
HP QuickTest Professional WPF and Silverlight
Add-in Extensibility

Software Version: 11.00

Developer Guide

Document Release Date: October 2010

Software Release Date: October 2010

2

Legal Notices

Warranty

The only warranties for HP products and services are set forth in the express warranty
statements accompanying such products and services. Nothing herein should be construed as
constituting an additional warranty. HP shall not be liable for technical or editorial errors or
omissions contained herein.

The information contained herein is subject to change without notice.

Restricted Rights Legend

Confidential computer software. Valid license from HP required for possession, use or copying.
Consistent with FAR 12.211 and 12.212, Commercial Computer Software, Computer Software
Documentation, and Technical Data for Commercial Items are licensed to the U.S.
Government under vendor's standard commercial license.

Copyright Notices

© 1992 - 2010 Hewlett-Packard Development Company, L.P.

Trademark Notices

Adobe® and Acrobat® are trademarks of Adobe Systems Incorporated.

Intel®, Pentium®, and Intel® Xeon™ are trademarks of Intel Corporation in the U.S. and
other countries.

Java™ is a US trademark of Sun Microsystems, Inc.

Microsoft®, Windows®, Windows NT®, and Windows® XP are U.S registered trademarks of
Microsoft Corporation.

Oracle® is a registered US trademark of Oracle Corporation, Redwood City, California.

Unix® is a registered trademark of The Open Group.

3

Documentation Updates

The title page of this document contains the following identifying information:

• Software Version number, which indicates the software version.

• Document Release Date, which changes each time the document is updated.

• Software Release Date, which indicates the release date of this version of the software.

To check for recent updates, or to verify that you are using the most recent edition of a
document, go to:

http://h20230.www2.hp.com/selfsolve/manuals

This site requires that you register for an HP Passport and sign-in. To register for an HP
Passport ID, go to:

http://h20229.www2.hp.com/passport-registration.html

Or click the New users - please register link on the HP Passport login page.

You will also receive updated or new editions if you subscribe to the appropriate product
support service. Contact your HP sales representative for details.

4

Support

Visit the HP Software Support web site at:

http://www.hp.com/go/hpsoftwaresupport

This web site provides contact information and details about the products, services, and
support that HP Software offers.

HP Software online support provides customer self-solve capabilities. It provides a fast and
efficient way to access interactive technical support tools needed to manage your business. As
a valued support customer, you can benefit by using the support web site to:

• Search for knowledge documents of interest

• Submit and track support cases and enhancement requests

• Download software patches

• Manage support contracts

• Look up HP support contacts

• Review information about available services

• Enter into discussions with other software customers

• Research and register for software training

Most of the support areas require that you register as an HP Passport user and sign in. Many
also require a support contract. To register for an HP Passport ID, go to:

http://h20229.www2.hp.com/passport-registration.html

To find more information about access levels, go to:

http://h20230.www2.hp.com/new_access_levels.jsp

5

Table of Contents

Welcome to This Guide ...7
About the QuickTest Professional WPF and Silverlight

Add-in Extensibility SDK ..8
About This Guide ..9
Who Should Read This Guide ...10
QuickTest Professional Documentation Library10
Additional Online Resources...11

Chapter 1: Developing QuickTest Support for a Custom
WPF or Silverlight Toolkit ...13

The Test Object Configuration XML File ..15
Custom Servers ..21
Utility Methods and Properties ...22
WPF Add-in Extensibility Sample ...23
How to Create Support for a Custom WPF or Silverlight Toolkit.......24
How to Add Support for a Custom WPF or Silverlight Control29
How to Develop a Custom Server ...31
WPF/Silverlight Custom Server Setup Dialog Box

(in Microsoft Visual Studio)..38
Troubleshooting and Limitations - Developing Support....................44

Table of Contents

6

Chapter 2: Learning to Create QuickTest Support for a Custom
WPF Control..47

Planning Support for the WPF Calendar Control...............................49
Setting Up the WPF Add-in Extensibility Project for the

WPF Calendar Control..52
Designing the Toolkit Configuration File ...56
Designing the Test Object Configuration File58
Deploying and Testing the Preliminary Toolkit Support Set..............61
Design the Basic Custom Server..65
Implement Support for Retrieving

Identification Property Values..67
Deploy and Test Your Basic Custom Server and

Identification Property Support..68
Implement Support for Running Test Object Operations70
Deploy and Test Your Support for Test Object Operations73
Implement Support for Recording ..73
Deploy and Test Your Support for Recording77

Chapter 3: Deploying the Toolkit Support Set...................................79
About Deploying the Custom Toolkit Support...................................80
Deploying the Custom Toolkit Support..81
Modifying Deployed Support..84
Removing Deployed Support ..86

7

Welcome to This Guide

Welcome to QuickTest Professional WPF and Silverlight Add-in
Extensibility.

QuickTest Professional WPF and Silverlight Add-in Extensibility is an SDK
(Software Development Kit) package that enables you to support testing
applications that use third-party and custom WPF or Silverlight controls
that are not supported out-of-the-box by the QuickTest Professional WPF
and Silverlight Add-ins.

You must develop support for WPF and Silverlight controls separately, and
use different APIs. However, creating Silverlight support is very similar to
creating WPF support, therefore both are described together in this guide.

This chapter includes:

➤ About the QuickTest Professional WPF and Silverlight Add-in
Extensibility SDK on page 8

➤ About This Guide on page 9

➤ Who Should Read This Guide on page 10

➤ QuickTest Professional Documentation Library on page 10

➤ Additional Online Resources on page 11

8

About the QuickTest Professional WPF and Silverlight
Add-in Extensibility SDK

The QuickTest Professional WPF and Silverlight Add-in Extensibility SDK
installation provides the following:

➤ APIs that enable you to extend the QuickTest Professional WPF or
Silverlight Add-in to support custom WPF or Silverlight controls.

➤ WPF and Silverlight Custom Server C# project templates for Microsoft
Visual Studio 2008.

Each Custom Server template provides a framework of blank code, some
sample code, and the QuickTest project references required to build a
custom server.

➤ A Custom Server Setup dialog box in Visual Studio that enables you to
customize a project you are creating based on a Custom Server template.

➤ The Help (available from Start > Programs > HP QuickTest Professional >
Extensibility > Documentation), which includes the following:

➤ A Developer Guide, including a step-by-step tutorial in which you
develop support for a sample custom control.

➤ API References.

➤ A Toolkit Configuration Schema Help.

➤ The QuickTest Test Object Schema Help.

➤ A printer-friendly (PDF) version of the Developer Guide (available from
Start > Programs > HP QuickTest Professional > Extensibility >
Documentation and in the <QuickTest Professional
installation>\help\Extensibility folder).

➤ A sample WPF Add-in Extensibility support set that extends QuickTest
support for the Microsoft.Windows.Controls.Calendar custom control.

9

About This Guide

This guide explains how to set up WPF or Silverlight Add-in Extensibility
and use it to extend QuickTest support for third-party and custom WPF or
Silverlight controls.

This guide assumes you are familiar with QuickTest functionality and should
be used together with the API References, the Toolkit Configuration Schema
Help, and the QuickTest Test Object Schema Help provided in the WPF and
Silverlight Add-in Extensibility Help (Start > Programs >
HP QuickTest Professional > Extensibility > Documentation > WPF and
Silverlight Add-in Extensibility Help).

These documents should also be used in conjunction with the HP QuickTest
Professional User Guide, the WPF or Silverlight section of the HP QuickTest
Professional Add-ins Guide, and the HP QuickTest Professional Object Model
Reference (available with the QuickTest Professional installation (Help >
QuickTest Professional Help from the QuickTest main window)).

Note: The information, examples, and screen captures in this guide focus
specifically on working with QuickTest tests. However, much of the
information applies equally to components.

Business components and scripted components are part of HP Business
Process Testing, which utilizes a keyword-driven methodology for testing
applications. For more information, see the HP QuickTest Professional User
Guide and the HP QuickTest Professional for Business Process Testing User Guide.

10

Who Should Read This Guide

This guide is intended for programmers, QA engineers, systems analysts,
system designers, and technical managers who want to extend QuickTest
support for WPF or Silverlight custom controls.

To use this guide, you should be familiar with:

➤ Major QuickTest features and functionality

➤ QuickTest Professional Object Model

➤ QuickTest Professional WPF or Silverlight Add-in

➤ WPF or Silverlight programming in C#

➤ XML (basic knowledge)

QuickTest Professional Documentation Library

The QuickTest Professional Documentation Library provides a single-point
of access for QuickTest Professional documentation.

You can access the QuickTest Professional Documentation Library by using
the following:

➤ In QuickTest, select Help > QuickTest Professional Help.

➤ In the Start menu on the QuickTest computer, select Program Files > HP
QuickTest Professional > Documentation > HP QuickTest Professional
Help.

➤ Click in selected QuickTest windows and dialog boxes or press F1.

➤ View a description, syntax, and examples for a QuickTest test object,
method, or property by placing the cursor on it (in QuickTest) and
pressing F1.

11

Additional Online Resources

Troubleshooting & Knowledge Base accesses the Troubleshooting page on
the HP Software Support Web site where you can search the Self-solve
knowledge base. Choose Help > Troubleshooting & Knowledge Base. The
URL for this Web site is http://h20230.www2.hp.com/troubleshooting.jsp.

HP Software Support accesses the HP Software Support Web site. This site
enables you to browse the Self-solve knowledge base. You can also post to
and search user discussion forums, submit support requests, download
patches and updated documentation, and more. Choose Help > HP Software
Support. The URL for this Web site is www.hp.com/go/hpsoftwaresupport.

Most of the support areas require that you register as an HP Passport user
and sign in. Many also require a support contract.

To find more information about access levels, go to:

http://h20230.www2.hp.com/new_access_levels.jsp

To register for an HP Passport user ID, go to:

http://h20229.www2.hp.com/passport-registration.html

HP Software Web site accesses the HP Software Web site. This site provides
you with the most up-to-date information on HP Software products. This
includes new software releases, seminars and trade shows, customer support,
and more. Choose Help > HP Software Web site. The URL for this Web site
is www.hp.com/go/software.

12

13

1
Developing QuickTest Support for a
Custom WPF or Silverlight Toolkit

Many WPF (Windows Presentation Foundation) and Silverlight customer
applications include use of non-Microsoft controls in their UI. QuickTest
represents these controls with the generic WpfObject or SlvObject test
object respectively.

In other cases, QuickTest recognizes a complex control as a set of low-level
controls, instead of recognizing the functional significance of the high-level
control. For example, QuickTest might recognize a custom WPF or
Silverlight calendar control as several unrelated buttons and text boxes.

In these cases, the tester cannot run any methods containing logic specific
to the custom control type. Nor can the tester apply any recording logic
specific to this control type.

By creating a toolkit support set, you define new test object classes to
represent these custom controls. The support set gives QA engineers the
ability to run, record, learn and spy on custom WPF or Silverlight controls.
You must create separate toolkit support sets for WPF and Silverlight
controls, and use different APIs.

Implement WPF and Silverlight Add-in Extensibility in C# using Microsoft
Visual Studio 2008.

➤ Visual Studio is required only to develop the support set, not to use it.

➤ To develop Silverlight Add-in Extensibility, you must have the Microsoft
Silverlight Tools for Visual Studio installed. You can install Microsoft
Silverlight 3 Tools for Visual Studio 2008 from: http://www.microsoft.com/
downloads/details.aspx?familyid=9442B0F2-7465-417A-88F3-
5E7B5409E9DD&displaylang=en

Chapter 1 • Developing QuickTest Support for a Custom WPF or Silverlight Toolkit

14

➤ QuickTest Professional is required only to run and test your support set,
not to develop it.

A toolkit, or an environment, is a set of controls for which you want to
provide support in one package.

A toolkit support set consists of:

➤ A Test Object Configuration XML File. In this file, new test object types
are defined. For details, see "The Test Object Configuration XML File" on
page 15.

➤ A toolkit configuration file. In this file, WPF or Silverlight control types
are mapped to test object types (classes) and to the custom servers that
implement their record and run logic. For details on the structure and
syntax of this file, see the Toolkit Configuration Schema (available with
the WPF and Silverlight Add-in Extensibility Help).

➤ .Net DLLs containing the implementation of custom servers. For details,
see "Custom Servers" on page 21.

➤ Icon and Help files (Optional).

The icon files contain icons used in QuickTest to represent your test
object classes. (Supported file types: .ico, .exe, .dll)

The Help files are used for context-sensitive Help for your test object
classes and their methods and properties. (Supported file type: .chm)

This chapter includes:

➤ The Test Object Configuration XML File on page 15

➤ Custom Servers on page 21

➤ Utility Methods and Properties on page 22

➤ WPF Add-in Extensibility Sample on page 23

➤ How to Create Support for a Custom WPF or Silverlight Toolkit
on page 24

➤ How to Add Support for a Custom WPF or Silverlight Control on page 29

➤ How to Develop a Custom Server on page 31

Chapter 1 • Developing QuickTest Support for a Custom WPF or Silverlight Toolkit

15

➤ WPF/Silverlight Custom Server Setup Dialog Box (in Microsoft Visual
Studio) on page 38

➤ Troubleshooting and Limitations - Developing Support on page 44

The Test Object Configuration XML File

The first stage of developing support for a custom toolkit is to define the test
object classes that you want QuickTest to use to represent your application
controls. You define the test object classes in a test object configuration
XML file. You need to create a test object class for every type of custom
control for which you want to extend or modify QuickTest support.

In a test object configuration XML, you define the test object classes (for
example, their identification properties, the test object methods they
support, and so on).

You create a ClassInfo element for each test object class that you want to
define. In addition, you define the name of the environment or custom
toolkit for which the test object classes are intended (in the PackageName
attribute of the TypeInformation element), and the QuickTest add-in which
these test object classes extend (in the AddinName attribute of the
TypeInformation element).

If the relevant add-in is not loaded when QuickTest opens, QuickTest does
not load the information in this XML. Similarly, if the name of the
environment or custom toolkit is displayed in the Add-in Manager dialog
box and its check box is not selected, the information in this XML is not
loaded.

To ensure the structural correctness of your test object configuration file,
you can validate it against the ClassesDefintions.xsd file. This file is installed
with QuickTest, in the <QuickTest installation folder>\dat folder. (For
backward compatibility reasons, QuickTest still supports certain XML
structures that do not pass validation against this XSD.)

Chapter 1 • Developing QuickTest Support for a Custom WPF or Silverlight Toolkit

16

The sections below describe the information that you can include in a test
object class definition.

Class Name and Base Class

The name of the new test object class and its attributes, including the base
class—the test object class that the new test object class extends A new test
object class extends an existing WPF or Silverlight QuickTest test object
class, directly or indirectly. The base class may be a class delivered with
QuickTest or a class defined using WPF or Silverlight Add-in Extensibility. (A
WPF test object class must extend a WPF test object class and a Silverlight
test object class must extend a Silverlight test object class.)

By default, the base class is WpfObject or SlvObject.

The test object class name must be unique among all of the environments
whose support a QuickTest user might load simultaneously. For example, do
not use names of test object classes from existing QuickTest add-ins, such as
WpfButton, WpfEdit, SlvButton, etc.

Note:

➤ A test object class inherits the base class’ test object operations (methods
and properties), generic type, default operation, and icon. Identification
properties are not inherited.

➤ If you create test object classes that extend test object classes defined in
another toolkit support set, you create a dependency between the two
toolkit support sets. Whenever you select to load the extending toolkit
support set in the QuickTest Add-in Manager, you must also select to load
the toolkit support set that it extends.

Chapter 1 • Developing QuickTest Support for a Custom WPF or Silverlight Toolkit

17

Generic Type

The generic type for the new test object class, if you want the new test object
class to belong to a different generic type than the one to which its base
class belongs. (For example, if your new test object class extends WpfObject
or SlvObject (whose generic type is object), but you would like QuickTest to
group this test object class with the edit test object classes.)

Generic types are used when filtering objects (for example, in the Step
Generator’s Select Object for Step dialog box and when adding multiple test
objects to the object repository). Generic types are also used when creating
documentation strings for the Documentation column of the Keyword View
(if they are not specifically defined in the test object configuration file).

Test Object Operations

A list of operations for the test object class, including the following
information for each operation:

➤ The arguments, including the argument type (for example, String or
Integer), direction (In or Out), whether the argument is mandatory, and, if
not, its default value.

➤ The operation description (shown in the Object Spy and as a tooltip in
the Keyword View and Step Generator).

➤ The Documentation string (shown in the Documentation column of the
Keyword View and in the Step Generator).

➤ The return value type.

➤ A context-sensitive Help topic to open when F1 is pressed for the test
object operation in the Keyword View or Expert View, or when the
Operation Help button is clicked for the operation in the Step Generator.
The definition includes the Help file path and the relevant Help ID within
the file.

Chapter 1 • Developing QuickTest Support for a Custom WPF or Silverlight Toolkit

18

Default Operation

The test object operation that is selected by default in the Keyword View
and Step Generator when a step is generated for an object of this class.

Identification Properties

A list of identification properties for the test object class. You can also
define:

➤ The identification properties that are used for the object description.

➤ The identification properties that are used for smart identification. (This
information is relevant only if smart identification is enabled for the test
object class. To enable smart identification, use the Object Identification
dialog box in QuickTest.)

➤ The identification properties that are available for use in checkpoints and
output values.

➤ The identification properties that are selected by default for checkpoints
(in the QuickTest Checkpoint Properties dialog box).

Chapter 1 • Developing QuickTest Support for a Custom WPF or Silverlight Toolkit

19

Icon File

The path of the icon file to use for this test object class (Optional. If not
defined, the base class’ icon is used.) The file can be a .dll or .ico file.

Help File

A context-sensitive Help topic to open when F1 is pressed for the test object
in the Keyword View or Expert View. The definition includes the .chm Help
file path and the relevant Help ID within the file.

For details on the syntax and structure of a test object configuration file, see
the QuickTest Test Object Schema Help (available with the WPF and
Silverlight Add-in Extensibility Help).

Sample Test Object Configuration File

An example of a WPF Add-in Extensibility test object configuration file is
shown below. In a Silverlight Add-in Extensibility test object configuration
file, the AddinName attribute in the TypeInformation element needs to be
set to Silverlight.

In addition, in the toolkit name that you provide in the PackageName
attribute, you may want to include an indication as to whether this is a WPF
or Silverlight toolkit. This is recommended because the Add-in Manager in
QuickTest displays both WPF and Silverlight Add-in Extensibility supported
environments as child nodes under the WPF add-in node.

Chapter 1 • Developing QuickTest Support for a Custom WPF or Silverlight Toolkit

20

<TypeInformation Load="true" AddinName="WPF" PackageName="MyWpfToolkit">
 <ClassInfo Name="MyWpfButton" BaseClassInfoName="WpfButton"
 ROTypeInfo="false"
 GenericTypeID="button"
 DefaultOperationName="Click"
 FilterLevel="0">

<IconInfo
IconFile="INSTALLDIR\dat\Extensibility\WPF\MyWpfButton_icon.ico"/>

<TypeInfo>
 <Operation Name="Click">
 <Argument Name="X" IsMandatory="false"
 DefaultValue="-9999" Direction="In">
 <Type VariantType="Integer"/>
 </Argument>
 <Argument Name="Y" IsMandatory="false"
 DefaultValue="-9999" Direction="In">
 <Type VariantType="Integer"/>
 </Argument>
 <Argument Name="MouseButton" IsMandatory="false"
 DefaultValue="0" Direction="In">
 <Type VariantType="Enumeration"
 ListOfValuesName="E_ButtonType"/>
 </Argument>
 </Operation>

 </TypeInfo>
 <IdentificationProperties>

 <IdentificationProperty Name="devname" ForDescription="true"/>
 <IdentificationProperty Name="enabled" ForDescription="false"
 ForVerification="true"/>
 </IdentificationProperties>
 </ClassInfo>

</TypeInformation>

Chapter 1 • Developing QuickTest Support for a Custom WPF or Silverlight Toolkit

21

Custom Servers

For each custom control that you want to support, you develop a custom
server class, that derives from the CustomServerBase class. The resulting
custom server DLL runs in the context of the application and interfaces
between QuickTest and the custom control. At QuickTest’s request, it can
retrieve the values of identification properties from the control, perform
operations on the control, determine what steps to record in response to
user activity on the control and so on. You can compile more than one
custom server into a single DLL.

You implement each of these abilities by implementing the relevant
interface in the custom server class. For details on the interface methods and
their syntax, see the Custom Server API References (available with the WPF
and Silverlight Add-in Extensibility Help).

➤ To support running test object operations, you develop a run interface
that contains the methods that run the operations you defined in the test
object configuration file. You must tag this interface with the
RunInterfaceAttribute attribute.

When developing support for a Silverlight control, you must tag each one
of the methods that you design to implement running a test object
operation with the Microsoft Silverlight ScriptableMember attribute.

➤ To support retrieving identification property values from the control, you
develop a property interface that contains properties that retrieve the
values for the identification properties you defined in the test object
configuration file. You must tag this interface with the
CustomPropInterfaceAttribute attribute.

Note: In the test object configuration file, you must define all
identification properties relevant for your test object class. However, the
implementation for retrieving the property values is inherited from the
base class for any properties that it supports.

Chapter 1 • Developing QuickTest Support for a Custom WPF or Silverlight Toolkit

22

➤ To support table checkpoints and output values, you implement the
methods in the ITableVerify interface.

➤ To support recording, you implement the IRecord interface.

➤ To instruct QuickTest to ignore children of a control (because they are
functionally part of the control, and not independent controls
themselves), design the IsKnownPartOf method in the
IComponentDetector interface to return true for those child controls.

For task details, see "How to Develop a Custom Server" on page 31.

When you design your custom server, you can use utility methods and
properties provided by the WPF or Silverlight Add-in Extensibility API.

Utility Methods and Properties

The CustomServerBase class, which your custom server extends, includes a
UtilityObject property that returns an object that provides utility methods
and properties. You can call the following methods and properties in your
custom server implementation.

➤ AddHandler. Registers an event handler to use when an event occurs on
the control. The handler is added at the beginning of the event handler
invocation list for this event.

➤ Mouse and Keyboard operation simulation methods. Use these methods
in methods that perform steps on a control.

➤ GetSettingsValue, GetSettingsXML. Retrieves settings defined for this
custom server in the toolkit configuration file.

➤ Record. Adds a step to the test and adds a test object to the object
repository if it is not already there. Use this method in an event handler
that records a step in a test after an event occurs on a control.

➤ ReportStepResult. Adds information about the results of a step to the run
results. Use this method in a method that performs a step on a control.

➤ ThrowRunError. Throws an exception based on the specified error and
sets the step status to EventStatus.EVENTSTATUS_FAIL.

Chapter 1 • Developing QuickTest Support for a Custom WPF or Silverlight Toolkit

23

➤ ApplicationObject. This property returns the control object with which
the custom server is associated. For example, for a
CheckBoxCustomServer associated with a check box, this property
returns a reference to the check box. You can then use this reference to
retrieve information (for example the value of the IsChecked property), or
to perform some activity on the control (for example set its IsChecked
property to true).

For details, see the IUtilityObject interface in the
Mercury.QTP.WPF.CustomServer or Mercury.QTP.Slv.CustomServer
namespace section in the Custom Server API Reference (available with the
WPF and Silverlight Add-in Extensibility Help).

WPF Add-in Extensibility Sample

When you install the WPF Add-in Extensibility SDK, a custom WPF calendar
control and a sample toolkit support set that extends support for this
control are installed in the <WPF Add-in Extensibility SDK installation
folder>\samples\WPFExtCalendarSample folder. You can study this sample
to learn more about how to implement WPF and Silverlight Add-in
Extensibility. You can also experiment with this sample, testing the control
with QuickTest before and after deploying the sample toolkit support set.

To deploy the sample toolkit support set, place the provided XML and DLL
files in the correct locations on the QuickTest computer, as described in
"Deploying the Custom Toolkit Support" on page 81.

The files to deploy are:

➤ <WPF Add-in Extensibility SDK installation folder>\samples\
WPFExtCalendarSample\Support\QtCalendarSrv\MyWpfToolkit.cfg

➤ <WPF Add-in Extensibility SDK installation folder>\samples\
WPFExtCalendarSample\Support\QtCalendarSrv\MyWpfToolkitTestObj
ects.xml

➤ <WPF Add-in Extensibility SDK installation folder>\samples\
WPFExtCalendarSample\Support\QtCalendarSrv\bin\Release\
QtCalendarSrv.dll

Chapter 1 • Developing QuickTest Support for a Custom WPF or Silverlight Toolkit

24

How to Create Support for a Custom WPF or Silverlight
Toolkit

This task describes how to create, deploy, and test a toolkit support set to
extend QuickTest’s support for a set of WPF or Silverlight custom controls.

You must create separate support for WPF and Silverlight controls. However,
creating support for Silverlight controls is very similar to creating support
for WPF controls, therefore both are described together in this task.

Tips:

➤ Start by creating a basic toolkit support set with one test object class and
minimal functionality changes, and testing that QuickTest recognizes it
correctly. Then gradually add more complex support and more test object
classes, and test those as you add them.

➤ To create your WPF or Silverlight Add-in Extensibility files, use the
QuickTest WPF CustomServer or QuickTest Silverlight CustomServer
project template that the WPF and Silverlight Add-in Extensibility SDK
installs on Visual Studio.

Using this template helps set up the XML files and the custom server
classes that you need to develop in your toolkit support set, simplifying
the first three steps in the task described below. For details, see "WPF/
Silverlight Custom Server Setup Dialog Box (in Microsoft Visual Studio)"
on page 38.

This task includes the following steps:

➤ "Define new test object classes for QuickTest to use for your custom
controls" on page 25

➤ "Map the custom controls to test object classes and custom servers" on
page 25

➤ "Design the custom servers that contain the implementation of your
support" on page 27

➤ "Deploy the toolkit support set to QuickTest" on page 27

Chapter 1 • Developing QuickTest Support for a Custom WPF or Silverlight Toolkit

25

➤ "Test the functionality of the support you developed" on page 27

➤ "Debug your support - Optional" on page 28

 1 Define new test object classes for QuickTest to use for your
custom controls

 a Create a test object configuration XML file named <custom toolkit
name>TestObjects.xml.

After you deploy your support, QuickTest displays this name in the
Add-in Manager as a child add-in under the WPF add-in. Therefore,
you may want the name to indicate whether this is a WPF or
Silverlight toolkit.

 b In the test object configuration XML file, define new test object
classes.

➤ When creating support for WPF controls, create test object classes
that extend existing QuickTest WPF test object classes (or other WPF
Add-in extensibility test object classes).

➤ When creating support for Silverlight controls, create test object
classes that extend existing QuickTest Silverlight test object classes
(or other Silverlight Add-in extensibility test object classes).

For details on the structure and syntax of a test object configuration
file, see "The Test Object Configuration XML File" on page 15.

 2 Map the custom controls to test object classes and custom
servers

In a toolkit configuration XML file, map the custom control types to the
test object classes that should represent them in QuickTest and to the
custom servers that contain the implementation of your support. Create a
Control element for each type of control you want to support.

Name the file <custom toolkit name>.cfg

For details on the structure and syntax of a toolkit configuration file, see
Toolkit Configuration Schema (available with the WPF and Silverlight
Add-in Extensibility Help).

Chapter 1 • Developing QuickTest Support for a Custom WPF or Silverlight Toolkit

26

WPF Toolkit Configuration File Example:

Silverlight Toolkit Configuration File Example:

<?xml version="1.0" encoding="UTF-8"?>
<Controls>

<Control Type="MyCompany.MyDataGrid" MappedTo="MyWpfTable">
<CustomServer>

<Component>
<DllName>WpfCustomServers.dll</DllName>
<TypeName>MyCompany.MyWpfDataGridCustServer</TypeName>

</Component>
</CustomServer>

</Control>
</Controls>

<?xml version="1.0" encoding="UTF-8"?>
<Controls>

<Control Type="MyCompany.MyDataGrid" MappedTo="MySlvTable">
<CustomServer>

<Component>
<DllName>SlvCustomServers.dll</DllName>
<TypeName>MyCompany.MySlvDataGridCustServer,

SlvCustomServers, Version=1.0.0.0, Culture=neutral,
PublicKeyToken=null </TypeName>

</Component>
</CustomServer>

</Control>
</Controls>

Chapter 1 • Developing QuickTest Support for a Custom WPF or Silverlight Toolkit

27

 3 Design the custom servers that contain the implementation
of your support

Design one custom server for each type of control that you want to
support.

For details, see "How to Develop a Custom Server" on page 31.

 4 Deploy the toolkit support set to QuickTest

 a If you have completed the development and are deploying the support
set for general use, make sure to set the DevelopmentMode attribute of
the TypeInformation element in the test object configuration file to
false.

 b Deploy the toolkit support set by copying the files that you created to
the correct locations under the QuickTest installation folder. For
details, see "Deploying the Custom Toolkit Support" on page 81.

 5 Test the functionality of the support you developed

 a Open QuickTest. Ensure that your custom toolkit name is displayed in
the Add-in Manager dialog box as a child of the WPF Add-in, and
select it. (If the Add-in Manager dialog box does not open when you
open QuickTest, see the HP QuickTest Professional Add-ins Guide for
instructions.)

Note: If you are working with Silverlight, you must also select the
Silverlight Add-in.

 b Create and run QuickTest tests on your custom controls, and verify
that QuickTest interacts with your controls as expected. Make sure
that:

➤ Controls are represented by the expected test object class in the
Object Spy and when learning objects.

➤ You can successfully create test objects of the classes you defined,
using the Define New Test Object dialog box.

Chapter 1 • Developing QuickTest Support for a Custom WPF or Silverlight Toolkit

28

➤ You can successfully create test steps using your test object classes in
the Keyword View, Expert View (using Intellisense), and Step
Generator.

➤ Operations run correctly. Check the run support exposed by the
classes based on CustomServerBase (Click, DblClick, on so on).
Verify that operations that are not implemented by the custom
server are supported by the default QuickTest implementation for
the base test object type.

➤ Table checkpoints and output values function correctly (if relevant).

➤ Identification property values are retrieved correctly. Check that
identification properties not specifically implemented by the
custom server are supported by the base class implementation
(when relevant).

➤ Operations are recorded correctly both when record
implementation is based on Windows messages and when based on
events.

If you are developing support for a Silverlight control, check that
the correct messages are passed to the server, according to the
Windows message filter defined by the custom server.

➤ Your toolkit and its test object classes are properly displayed in the
relevant QuickTest dialog boxes: Object Identification, Available
Keywords (for application areas), Define New Test Object, and so on.

➤ Check that elements of WPF or Silverlight that are not part of your
support set have not had their functionality changed by installation
of your support set.

➤ Verify that low level controls that are part of a high level control, as
defined in the IComponentDetector implementation are not
recognized by QuickTest during Record, Learn, Spy, and so on.

 6 Debug your support - Optional

To use Microsoft Visual Studio debugging tools to debug the support that
you developed, attach Visual Studio to the application that contains the
custom WPF or Silverlight controls, as the custom servers run in the
context of this application.

Chapter 1 • Developing QuickTest Support for a Custom WPF or Silverlight Toolkit

29

How to Add Support for a Custom WPF or Silverlight
Control

This task describes how to add support for a single type of custom WPF or
Silverlight control to an existing toolkit support set.

For instructions on creating a toolkit support set, see "How to Create
Support for a Custom WPF or Silverlight Toolkit" on page 24.

Tip: To create your WPF or Silverlight Add-in Extensibility files, use the
QuickTest WPF CustomServer or QuickTest Silverlight CustomServer project
template that the WPF and Silverlight Add-in Extensibility SDK installs on
Visual Studio.

Using this template helps set up the XML data and the custom server class
that you need to develop to support your custom control, simplifying the
first three steps in the task described below. For details, see "WPF/Silverlight
Custom Server Setup Dialog Box (in Microsoft Visual Studio)" on page 38.

If necessary, you can move the XML data and custom server class that you
create using the template into an existing toolkit support set. Copy the
information from the XML files into the XML files of the existing toolkit
support set, and copy the custom server .cs file into the existing Visual
Studio WPF or Silverlight Add-in Extensibility project.

This task includes the following steps:

➤ "Define the test object class for QuickTest to use for your custom control -
Optional" on page 30

➤ "Map the custom control type to the relevant test object class and custom
server" on page 30

➤ "Design the custom servers that contain the implementation for
QuickTest to run" on page 30

➤ "Deploy and test the toolkit support set on QuickTest" on page 30

Chapter 1 • Developing QuickTest Support for a Custom WPF or Silverlight Toolkit

30

 1 Define the test object class for QuickTest to use for your
custom control - Optional

If your toolkit support set does not contain an appropriate test object
class, add a ClassInfo element to the test object configuration XML file
defining a new test object class.

For details on the structure and syntax of a test object configuration file,
see "The Test Object Configuration XML File" on page 15.

 2 Map the custom control type to the relevant test object class
and custom server

In the toolkit configuration XML file, define a Control element for the
custom control. Specify the test object class that QuickTest should use for
the control, and the custom server that contains the implementation for
supporting this control.

For details on the structure and syntax of a toolkit configuration file, see
Toolkit Configuration Schema (available with the WPF and Silverlight
Add-in Extensibility Help).

 3 Design the custom servers that contain the implementation
for QuickTest to run

For details, see "How to Develop a Custom Server" on page 31.

 4 Deploy and test the toolkit support set on QuickTest

Deploy, test and debug the changes you made as part of the whole toolkit
support set.

For details see, "How to Create Support for a Custom WPF or Silverlight
Toolkit" on page 24.

Chapter 1 • Developing QuickTest Support for a Custom WPF or Silverlight Toolkit

31

How to Develop a Custom Server

This task describes how to create a custom server that contains the
implementation QuickTest needs to run to interact with the custom control.

This task is part of a higher-level task. For details, see "How to Create
Support for a Custom WPF or Silverlight Toolkit" on page 24.

For additional details on the interface methods mentioned in this task, see
the Custom Server API References (available with the WPF and Silverlight
Add-in Extensibility Help).

This task includes the following steps:

➤ "Set up the Visual Studio project" on page 31

➤ "Create the custom server class" on page 33

➤ "Develop support for test object operations" on page 34

➤ "Develop support for identification properties" on page 35

➤ "Develop support for table checkpoints and output values" on page 36

➤ "Specify children of the control that should not be treated as separate
controls" on page 36

➤ "Develop support for recording steps" on page 37

➤ "Prepare your custom server for deployment" on page 37

 1 Set up the Visual Studio project

In Microsoft Visual Studio, create a new project using the QuickTest WPF
CustomServer or QuickTest Silverlight CustomServer project template
installed with the WPF and Silverlight Add-in Extensibility SDK.

This sets up the files, references, and classes that you need to develop
your custom server, simplifying the remainder of the steps in this task. For
details, see "WPF/Silverlight Custom Server Setup Dialog Box (in
Microsoft Visual Studio)" on page 38.

Chapter 1 • Developing QuickTest Support for a Custom WPF or Silverlight Toolkit

32

Alternatively, set up the Visual Studio project manually, as described in
the steps below:

 a Create a C# project in Visual Studio using the Visual C# > Windows >
Class Library template or the Visual C# > Silverlight > Silverlight Class
Library template.

 b Add references to all necessary .NET framework libraries.

For example, PresentationCore, PresentationFramework, and
WindowsBase (when developing in WPF) or .NET Framework Class
Library for Silverlight (when developing in Silverlight).

 c Add references to the libraries that implement the custom control
classes. For example, these may be third party libraries.

 d Add a reference to the DLL file that contains the WPF or Silverlight
Add-in Extensibility API. The file is located in the <WPF and Silverlight
Add-in Extensibility installation folder>\SDK\WpfSlv folder.

➤ If you are developing support for a WPF control, add a reference to
the Mercury.QTP.WpfAgent.dll file.

➤ If you are developing support for a Silverlight control, add a
reference to the Mercury.QTP.Slv.CustomServer.dll file.

If you develop your toolkit support set on a computer that does not
have the extensibility SDK installed, copy the DLL from the computer
on which you installed WPF and Silverlight Add-in Extensibility.

 e Add all required references in the Using section.

➤ To reference the WPF Add-in Extensibility API, add a reference to the
Mercury.QTP.WPF.CustomServer namespace and not the to
Mercury.WpfAgent.

➤ To reference the Silverlight Add-in Extensibility API, add a reference
to the Mercury.QTP.Slv.CustomServer namespace.

Chapter 1 • Developing QuickTest Support for a Custom WPF or Silverlight Toolkit

33

 2 Create the custom server class

Create a custom server class for your custom control, extending the
CustomServerBase class.

Note: If you used the QuickTest WPF/Silverlight CustomServer template
to set up the Visual Studio project, the class declaration is created
automatically.

In the next steps, you implement various interfaces in this class,
according to the QuickTest functionality that you want to support.

For example, your custom server class declaration might look like this:

When designing the support, you can call utility methods from the
IUtilityObject interface implemented by QuickTest in this base class. For
details, see "Utility Methods and Properties" on page 22.

public class MyCustomSupport:
 CustomServerBase,
 IMyCustomSupportRun,
 IRecord,
 ITableVerify,
 IMyCustomSupportCustProp,
 IComponentDetector

Chapter 1 • Developing QuickTest Support for a Custom WPF or Silverlight Toolkit

34

 3 Develop support for test object operations

 a To support running new or modified test object operations that you
defined for your test object class, implement one Run interface in your
custom server, and tag this interface with the RunInterfaceAttribute
attribute.

Note: If you used the QuickTest WPF/Silverlight CustomServer
template to set up the Visual Studio project, and specified that you
want to customize running operations, the Run interface definition is
created automatically.

 b In the Run interface, design a method for each test object operation
that you want to support or override. Each method you design must
have the same signature as the test object operation that it implements
(as defined in the test object configuration file).

 c If you are developing support for a Silverlight control, you must tag
each one of the methods that you design to implement running a test
object operation with the ScriptableMember attribute. (This is an
existing Microsoft Silverlight attribute.)

Example:

If the custom server defines an ICheckBoxRun interface with the Set
method to be used by QuickTest for running a Set operation, tag that
interface with RunInterfaceAttribute.

If this custom server is designed to support a Silverlight check box, tag the
Set method with ScriptableMemberAttribute.

Chapter 1 • Developing QuickTest Support for a Custom WPF or Silverlight Toolkit

35

 4 Develop support for identification properties

Design your custom server to retrieve identification property values from
the control. Do this for any new identification properties you defined for
your test object class, or if you want to override the value retrieval
implementation inherited from the base class.

To support retrieval of identification properties values implement one
Custom Properties interface in your custom server and tag this interface
with the CustomPropInterfaceAttribute attribute.

Note: If you used the QuickTest WPF/Silverlight CustomServer template
to set up the Visual Studio project, and specified that you want to
customize property retrieval, the interface definition is created
automatically.

In the Custom Properties interface, define a property for each
identification property whose value you want to retrieve from the
control. Each property returns the value relevant for the identification
property with the same name.

For example, if the custom server defines an ICheckBoxCustomProp
interface with the MyIsChecked property to be used by QuickTest for
retrieving the custom MyIsChecked identification property, mark the
interface with CustomPropInterfaceAttribute.

Note: In the test object configuration file, you must define all
identification properties relevant for your test object class. However, the
implementation for retrieving the property values is inherited from the
base class for any properties that it supports.

Chapter 1 • Developing QuickTest Support for a Custom WPF or Silverlight Toolkit

36

 5 Develop support for table checkpoints and output values

To support table verification and output value retrieval, implement all of
the methods in the ITableVerify interface in your custom server.

Note: If you used the QuickTest WPF/Silverlight CustomServer template
to set up the Visual Studio project, and specified that you want to design
support for table checkpoints, a preliminary implementation of this
interface is created automatically.

 6 Specify children of the control that should not be treated as
separate controls

To instruct QuickTest that certain child controls are part of a higher-level
control, implement the IComponentDetector interface, and design the
IsKnownPartOf method in the to return true for those child controls.

Example:

A calendar control might be implemented using buttons. To prevent
QuickTest from learning these buttons as separate objects, or recording
steps when the user clicks each button, the IsKnownPartOf method in the
calendar’s custom server returns true for any button that is part of the
calendar.

Note: If you used the QuickTest WPF/Silverlight CustomServer template
to set up the Visual Studio project, and specified that you want to
customize child object handling, a preliminary implementation of this
interface is created automatically.

Chapter 1 • Developing QuickTest Support for a Custom WPF or Silverlight Toolkit

37

 7 Develop support for recording steps

To support recording, implement the IRecord interface in your custom
server class by overriding the callback methods.

Note: If you used the QuickTest WPF/Silverlight CustomServer template
to set up the Visual Studio project, and specified that you want to
customize recording, a preliminary implementation of this interface is
created automatically.

 a Define and implement the event handlers required by your test object.

 b Define and implement the message handlers required by your test
object.

➤ Implement OnMessage to listen directly to Windows messages.
When developing support for a Silverlight control, the value returned
from OnMessage indicates whether the custom server handled the
message, or whether this message needs to be passed on to other
registered event handlers.

➤ When developing support for a Silverlight control, implement
GetWndMessageFilter to specify the objects on which to listen to
Windows messages. You can listen to messages on the control itself
(and the children considered and integral part of it), on the control’s
children, or on all messages to the application.

See also the limitation about handling Windows messages in
"Troubleshooting and Limitations - Developing Support" on page 44.

 c Implement RecordInit and RecordStop to register and release your
handlers.

 8 Prepare your custom server for deployment

Compile your custom server to create the DLL.

To deploy a WPF custom server to QuickTest installed on 64-bit operating
system, compile the custom server DLL for x86 platform. To do this, in
the C# class library properties, set the Platform target to x86.

Chapter 1 • Developing QuickTest Support for a Custom WPF or Silverlight Toolkit

38

WPF/Silverlight Custom Server Setup Dialog Box (in
Microsoft Visual Studio)

This dialog box opens when you select the QuickTest WPF or Silverlight
Custom Server template to create a WPF or Silverlight Add-in Extensibility
project in Microsoft Visual Studio.

This dialog box enables you to provide specifications that describe the
support that you want to create. When the extensibility project is created in
Visual Studio, its files are created with the basic content, infrastructure, and
references required to create the support you described.

This image displays a WPF Custom Server Setup dialog box. The options on
a Silverlight Custom Server Setup dialog box are identical to the ones shown
below. Only the dialog box titles and the list of available base classes are
different for Silverlight.

Chapter 1 • Developing QuickTest Support for a Custom WPF or Silverlight Toolkit

39

To access 1 In Microsoft Visual Studio, select File > New> Project.

2 Select one of the following:

➤ Visual C# Windows project type and QuickTest WPF
CustomServer template

➤ Visual C# Silverlight project type and QuickTest
Silverlight CustomServer

3 Provide a name and location for your new project, and
a name for the solution (or accept the default values
provided).

4 Click OK. The WPF or Silverlight Custom Server Setup
dialog box opens, depending on the template you
selected in step 2.

The project name is also used as the default value for
some of the fields in the dialog box.

Important
information

To successfully create a project using the QuickTest
Silverlight CustomServer template, you must have the
Microsoft Silverlight Tools for Visual Studio installed.

You can install Microsoft Silverlight 3 Tools for Visual
Studio 2008 from: http://www.microsoft.com/downloads/
details.aspx?familyid=9442B0F2-7465-417A-88F3-
5E7B5409E9DD&displaylang=en

Relevant tasks "How to Create Support for a Custom WPF or Silverlight
Toolkit" on page 24

See also ➤ "Developing QuickTest Support for a Custom WPF or
Silverlight Toolkit" on page 13

➤ "Custom Servers" on page 21

➤ The Custom Server API Reference, Toolkit
Configuration Schema Help, and QuickTest Test
Object Schema (available with the WPF and Silverlight
Add in Extensibility Help).

Chapter 1 • Developing QuickTest Support for a Custom WPF or Silverlight Toolkit

40

User interface elements are described below:

UI Elements Description

Custom server class
name

The name of the custom server class to create in the new
project.

Note: By default, this name is used to create the default
values for Run interface name, Property interface name,
and Mapped test object class. If you have not changed
these values, modifying the Custom server class name
modifies them as well.

Customize running
operations

Indicates that you want to design or override
implementation for running test object operations on
the control.

If you select this option, the Run interface that you
specify is defined and tagged with the
RunInterfaceAttribute. In the custom server class, the
interface is implemented with a method stub for an
example test object operation. The example test object
operation is also added to the project’s test object
configuration file.

Run interface name The name of the interface in which you want to
implement support for the test object operations.

Available only when Customize running operations is
selected.

Customize recording Indicates that you want to design support for recording
test object operations on the control.

If you select this option, the custom server class is
defined to implement the IRecord interface and includes
method stubs for the interface’s methods.

Chapter 1 • Developing QuickTest Support for a Custom WPF or Silverlight Toolkit

41

Customize property
retrieval

Indicates that you want to design or override
implementation for retrieving identification property
values from the control.

If you select this option, the Property interface that you
specify is defined and tagged with the
CustomPropInterfaceAttribute. In the custom server
class, the interface is implemented with a method stub
for an example identification property. The example
identification property is also added to the project’s test
object configuration file.

Property interface
name

The name of the interface in which you want to
implement support for property value retrieval.

Available only when Customize property retrieval is
selected.

Customize child
object handling

Indicates that you want QuickTest to treat some of the
custom control’s child objects as an integral part of the
control and not as independent objects.

If you select this option, a preliminary implementation
of the IsKnownPartOf method in the
IComponentDetector interface is created in the custom
server class. Implement the method to return true for the
relevant child objects.

Design support for
table checkpoints

Indicates that you want the standard checkpoints and
output values that QuickTest creates on your test object
to be table checkpoints and output values.

If you select this option, a preliminary implementation
of the ItableVerify interface is created in the custom
server class. Implement this interface according to your
needs.

UI Elements Description

Chapter 1 • Developing QuickTest Support for a Custom WPF or Silverlight Toolkit

42

Toolkit name A name for the environment, or set of controls, that you
want to support with this toolkit support set.

You may want the name to indicate whether this is a
WPF or Silverlight toolkit. After you deploy your support,
QuickTest displays this name in the Add-in Manager as a
child node under the WPF add-in node, enabling the user
to specify whether to load support for this environment.

In the new project created, the toolkit name is used to
create the configuration file names, and entered in the
PackageName attribute of the TypeInformation element
in the test object configuration file (if you select Auto
generate the XML configuration files). It is also used for
the root namespace of the project.

Auto generate the
XML configuration
files

Indicates that in the new project created, a toolkit
configuration file and test object configuration file
should also be created. The files are created with basic
definitions, according to the details you specify in this
dialog box.

In a toolkit support set, the definitions for all of the
controls that you want to support are included in one
toolkit configuration file, and one test object
configuration file. On the other hand, you design a
separate custom server for each control you support.
Therefore, if you use the template to create additional
custom servers, you might not want to generate
additional XML files. Alternatively, you can decide to
generate the XML configuration files as well, and then
copy the information from these new files to your main
configuration files.

Custom control type The fully qualified name of the custom control for which
you want to develop support (including namespaces).

UI Elements Description

Chapter 1 • Developing QuickTest Support for a Custom WPF or Silverlight Toolkit

43

Mapped test object
class

The test object class that you want QuickTest to use to
represent the custom control.

In the new project create, a basic definition for this new
test object class is created in the test object configuration
file (if you select Auto generate the XML configuration
files).

Base class name The test object class that your new test object classes
extends.

Select from the list of built in QuickTest test object
classes, or enter a name of a test object class that you
defined in a WPF or Silverlight Add-in Extensibility test
object configuration file. (WPF test object classes need to
extend other WPF test object classes, and Silverlight test
object classes need to extend other Silverlight test object
classes.)

Default: WpfObject or SlvObject

UI Elements Description

Chapter 1 • Developing QuickTest Support for a Custom WPF or Silverlight Toolkit

44

Troubleshooting and Limitations - Developing Support

This section describes troubleshooting and limitations for developing
support for custom WPF or Silverlight controls.

➤ If you define test object operations and the corresponding custom server
methods with OUT or IN/OUT parameters, the test object operation does
not run correctly.

Workaround: When designing test object methods to support using WPF
or Silverlight Add-in Extensibility custom servers, use only IN parameters.
Instead of an OUT or IN/OUT (ref) parameter, design the operation to
return a value.

➤ QuickTest does not handle controls as children of your custom control if
they are implemented as pop-up controls. This means that you cannot
implement the IsKnownPartOf method to instruct QuickTest to ignore
these controls and treat them as integral parts of the custom control.

QuickTest will recognize, spy, and learn these controls as independent
controls.

You may still be able to implement recording steps on the custom control
in response to events that occur on these controls, by registering event
handlers to listen to events on these controls.

➤ In the test object configuration file, you can define test object operations
with optional arguments. However, QuickTest does not support the use of
C# annotations for optional parameters in the custom server methods
developed to support running these test object operations.

Workaround: In the custom server, instead of designing one instance of a
RunInterface method with a signature that includes optional parameters,
design different instances of the method, using the same method name,
but different numbers of parameters.

Chapter 1 • Developing QuickTest Support for a Custom WPF or Silverlight Toolkit

45

➤ Relevant for Silverlight only: When the implementation of a test object
method in the custom server includes an operation which blocks until
the next step in the test runs, the test run session will not continue to the
next step.

For example: Suppose that clicking a custom button in the application
opens a modal dialog box, and your test includes the following steps:

If the implementation of the Click method in the custom server that
supports MySlvButton calls
(UtilityObject.ApplicationObject as UIElement).Click and that Click method
does not return until the modal dialog box is closed, then the test will run
the first step and never continue to the second.

Workaround: Do one of the following:

➤ Invoke the blocking statement asynchronously using BeginInvoke.

➤ Use mouse or keyboard operations to implement the test object
method (for example, click the button using UtilityObject.MouseClick).

➤ Relevant for Silverlight only: In some cases, when you design your
support to receive Windows messages generated for controls other than
the custom control you are supporting, some such Windows messages are
still not passed to the custom server.

The reason for this is that during a recording session, the custom server
mapped to your custom control is only created after some operation takes
place on the custom control itself.

If you design the GetWndMessageFilter method to specify that your
custom server will handle messages that occur on other controls, such
messages can only be handled after the custom server is created.

Therefore, for example, you may have to click on the custom control
before the custom server can receive and process messages generated for
other controls in the application.

Depending on how you implement support for recording on your custom
control, you might want to provide instructions regarding this issue to
the QuickTest users who use your support set.

MySlvButton.Click
SlvDialog.Close

Chapter 1 • Developing QuickTest Support for a Custom WPF or Silverlight Toolkit

46

47

2
Learning to Create QuickTest Support for
a Custom WPF Control

In this tutorial you manually create support for a WPF Calendar control,
learning the basics of creating a WPF Add-in Extensibility toolkit support
set. A toolkit, or an environment, is a set of controls for which you want to
provide support in one package. In this tutorial, the toolkit is named
MyWpfToolkit, and contains only the
Microsoft.Windows.Controls.Calendar control.

To perform this tutorial you must have Microsoft Visual Studio 2008
installed, in addition to the WPF and Silverlight Add-in Extensibility SDK
(which must be installed after Visual Studio). This tutorial uses the
QuickTest WPF CustomServer project template in Visual Studio to set up the
files necessary to create the toolkit support set. When you develop your own
support, if you want to create your toolkit support set files manually, follow
the steps in "How to Create Support for a Custom WPF or Silverlight Toolkit"
on page 24.

For details on the classes and interface methods mentioned throughout this
tutorial, see the Custom Server API References (available with the WPF and
Silverlight Add-in Extensibility Help).

Note: You develop support for a Silverlight control in much the same way as
you develop a support for a WPF control. Throughout the tutorial, where
modifications would be necessary if this were a Silverlight toolkit support
set, the modifications are explained.

Chapter 2 • Learning to Create QuickTest Support for a Custom WPF Control

48

The WPF Calendar application is installed in: <WPF and Silverlight Add-in
Extensibility SDK installation folder>\samples\WPFExtCalendarSample\
Application.

The <WPF and Silverlight Add-in Extensibility SDK installation
folder>\samples\WPFExtCalendarSample\Support folder contains the
Microsoft Visual Studio solution and XML files that make up support for this
control, similar to the support you create in this tutorial. You can refer to
these files while you perform the tutorial.

This tutorial includes:

➤ Planning Support for the WPF Calendar Control on page 49

➤ Setting Up the WPF Add-in Extensibility Project for the WPF Calendar
Control on page 52

➤ Designing the Toolkit Configuration File on page 56

➤ Designing the Test Object Configuration File on page 58

➤ Deploying and Testing the Preliminary Toolkit Support Set on page 61

➤ Design the Basic Custom Server on page 65

➤ Implement Support for Retrieving Identification Property Values
on page 67

➤ Deploy and Test Your Basic Custom Server and Identification Property
Support on page 68

➤ Implement Support for Running Test Object Operations on page 70

➤ Deploy and Test Your Support for Test Object Operations on page 73

➤ Implement Support for Recording on page 73

➤ Deploy and Test Your Support for Recording on page 77

Chapter 2 • Learning to Create QuickTest Support for a Custom WPF Control

49

Planning Support for the WPF Calendar Control

In this section, you study the behavior of the control that you want to
support and the way QuickTest recognizes it and interacts with it. You then
determine what you need to customize in QuickTest’s behavior in order to
enable creating test steps that are more meaningful and easier to maintain.

 1 Run the sample WPF Calendar application and study its
behavior

 a Double-click the <WPF and Silverlight Add-in Extensibility SDK
installation folder>\samples\WPFExtCalendarSample\Application\
WpfCalendar.exe file. The Calendar application opens.

This application contains 3 controls:

➤ A calendar display area with buttons:
Microsoft.Windows.Controls.Calendar

➤ A text label: System.Windows.Controls.TextBlock

➤ An edit box displaying the selected date:
System.Windows.Controls.TextBox

 b Study the application’s functionality.

Chapter 2 • Learning to Create QuickTest Support for a Custom WPF Control

50

➤ You can click the right and left arrows to go the next or previous
month.

➤ You can select a date in the calendar by clicking on the relevant day of
the month.

➤ You can view the selected date in the text box.

 2 Use the Object Spy in QuickTest to see how QuickTest
recognizes the controls in the Calendar application

 a Open QuickTest.

 b Select Automation > Record and Run Settings, and make sure that the
selections in the Windows Applications tab enable QuickTest to record
and run tests on the calendar application.

 c Run the Object Spy and spy on the WPF Calendar.

QuickTest recognizes the Calendar application as a WpfWindow. Within
this window, it recognizes the Microsoft.Windows.Controls.Calendar
control as a generic WpfObject and the
System.Windows.Controls.TextBox as a WpfEdit object.

Additionally, within the in the Microsoft.Windows.Controls.Calendar
control, QuickTest recognizes the days as independent WpfButtons in the
WpfWindow.

QuickTest ignores other user interface elements contained in the Calendar
control, such as the right and left arrows, and the month and year banner.

 3 Learn the Calendar control using QuickTest, adding it to an
object repository

 a Open the Object Repository

 b Click the Add Objects to Local button

 c Click on an area in the calendar.

 d Repeat steps b and c on different areas of the calendar.

Chapter 2 • Learning to Create QuickTest Support for a Custom WPF Control

51

QuickTest learns the application as a WpfWindow. Within this window, it
separately learns the calendar display area as a generic WpfObject and the
Selected Date box as a WpfEdit object.

The days are learned as independent WpfButtons, but other user interface
elements, such as the right and left arrows, and the month and year
banner, are not learned at all.

 4 Record a test on the Calendar control

 a Click Record.

 b Click on different areas in the calendar.

When you click on the right or left arrows, or on the month and year
banner, QuickTest records a generic click on the WpfObject, specifying
the coordinates of the location you clicked.

When you click a day and select it, or when you click in the Selected Date
box, nothing is recorded.

When you click in other areas of the application, QuickTest records a
generic click on the WpfWindow.

 5 Conclusion: Develop a MyWpfCalendar Test Object Class

➤ For functional testing purposes, the
Microsoft.Windows.Controls.Calendar control should be represented
in QuickTest by one MyWpfCalendar test object.

➤ The buttons within the Calendar control should not be treated as
separate controls.

➤ The Selected Date box is a read-only box, on which no user activity is
possible and no steps are recorded. Therefore, the
System.Windows.Controls.TextBox control does not have to be
supported as part of the MyWpfCalendar test object, and does not
need any customization for functional testing.

➤ The MyWpfCalendar test object class should be based on the existing
QuickTest test object class, WpfObject, and extend its capabilities.

Chapter 2 • Learning to Create QuickTest Support for a Custom WPF Control

52

➤ The MyWpfCalendar test object class should support calendar-related
operations.

In this tutorial you will develop support for the following test object
methods: SetDate (default operation), Next, Previous, and a
SelectedDate test object property.

➤ User operations performed on the calendar’s different user interface
elements, should be interpreted and recorded as high-level operations
on the calendar as a whole. For example: SetDate, Next, Previous, and
so on.

➤ The MyWpfCalendar test object class should support identification
properties relevant for a calendar, such as is_today_highlighted.

Setting Up the WPF Add-in Extensibility Project for the
WPF Calendar Control

A WPF Add-in Extensibility support set consists of the following mandatory
files:

➤ A Test Object Configuration XML File. In this file, new test object types
are defined. For details, see "The Test Object Configuration XML File" on
page 15.

➤ A toolkit configuration file. In this file WPF control types are mapped to
test object types and to the custom servers implementing their record and
run logic. For details of the schema, see Toolkit Configuration Schema
(available with the WPF and Silverlight Add-in Extensibility Help).

➤ .Net DLLs containing the implementation of custom servers. For details,
see "Custom Servers" on page 21.

The WPF and Silverlight Add-in Extensibility SDK installs a project template
and a setup dialog box in Microsoft Visual Studio that assist you in setting
up the files that you need to create the toolkit support set.

Chapter 2 • Learning to Create QuickTest Support for a Custom WPF Control

53

Use the template for each control you want to support. The template sets up
both the XML files and the Microsoft Visual Studio solution that you need
to create the custom server DLL. When you create support for more than
one control in a toolkit, you have to combine the XML content created for
each control into one toolkit configuration file and one test object
configuration file for the toolkit.

In this tutorial, because you are creating a toolkit support for only one
control, you can use the XML files created by the project template, as is.

Create a WPF Add-in Extensibility Project in Microsoft Visual Studio

 1 Open Microsoft Visual Studio 2008 and click New Project. The New
Project dialog box opens:

Chapter 2 • Learning to Create QuickTest Support for a Custom WPF Control

54

 2 Select the Visual C# Windows project type and the QuickTest WPF
CustomServer template, and click OK.

Note: If you were developing support for a Silverlight control, you would
select the Visual C# Silverlight project type and the QuickTest Silverlight
CustomServer template.

 3 Enter CalendarSrv as the project Name, and click OK. The WPF/Silverlight
Custom Server Setup dialog box opens.

 4 In this dialog box, you provide specifications that describe the support
that you want to create, and the files required to create this support are
created accordingly.

In this tutorial:

➤ You create support for the MyWpfToolkit toolkit.

➤ Within this toolkit you create support for
Microsoft.Windows.Controls.Calendar WPF controls.

➤ You create a MyWpfCalendar test object class, based on the standard
QuickTest WpfObject class, to represent the Calendar controls in
QuickTest.

➤ You create a CalendarSrv custom server class, to provide support for
the controls. Within the CalendarSrv custom server class, you
customize running operations, retrieving properties, recording, and
child object handling.

Chapter 2 • Learning to Create QuickTest Support for a Custom WPF Control

55

Specify these details in the WPF Custom Server Setup dialog box, as
shown in the image below, selecting also the options for automatically
generating XML files, comments, and sample code.

Make sure to enter the Run interface name and the Property interface
name shown below, as this tutorial does not use the default names
provided in the dialog box.

If you want more information on this dialog box, see "WPF/Silverlight
Custom Server Setup Dialog Box (in Microsoft Visual Studio)" on page 38.

 5 Click OK.

The CalendarSrv solution is created with the relevant files and references.
The solution includes a toolkit configuration file (MyWpfToolkit.cfg), a test
object configuration file (MyWpfToolkitTestObjects.xml), and the C# file for
the custom server class (CalendarSrv.cs).

It also includes the reference to the Mercury.QTP.WpfAgent.dll file, that
contains the WPF Add-in Extensibility API.

Chapter 2 • Learning to Create QuickTest Support for a Custom WPF Control

56

Note: If you use the QuickTest Silverlight CustomServer template, the
solution created includes a reference to the
Mercury.QTP.Slv.CustomServer.dll file, that contains the Silverlight Add-in
Extensibility API.

Designing the Toolkit Configuration File

The name of the toolkit configuration file informs QuickTest of the new
supported environment. After you deploy this file to the correct location on
a QuickTest computer, when QuickTest opens, it displays the environment
in the Add-in Manager, as a child node beneath the WPF Add-in. If you
select the check box for this environment, QuickTest loads the support that
you provide for it. (If you are working with Silverlight, you must also select
the Silverlight Add-in.)

The configuration file content defines how the controls are supported,
which test object classes and custom servers are used for each custom
control and so on.

Open the MyWpfToolkit.cfg file to see its content.

Chapter 2 • Learning to Create QuickTest Support for a Custom WPF Control

57

The MyWpfToolkit.cfg file was created automatically based on the
specifications you provided. Therefore, it already has all of the necessary
content to support the WPF Calendar control is the MyWpfToolkit
environment.

The Control element’s attributes specify that the controls of Type
Microsoft.Windows.Controls.Calendar (the full control type name including
namespaces must be specified) is MappedTo the test object class
MyWpfCalendar.

The CustomServer > Component element specifies the custom server DLL
and type that provides support for this control type.

Note: The custom server type must be a full type name including
namespaces, and in Silverlight it must include additional information, as
described in the Toolkit Configuration Schema Help.

For more information on the elements and attributes in the toolkit
configuration file, see the Toolkit Configuration Schema Help (available
with the WPF and Silverlight Add-in Extensibility Help).

<?xml version="1.0" encoding="UTF-8"?>
<Controls>
 <Control Type="Microsoft.Windows.Controls.Calendar"
MappedTo="MyWpfCalendar">

<CustomServer>
<Component>

<DllName>CalendarSrv.dll</DllName>
<TypeName>MyWpfToolkit.CalendarSrv</TypeName>

</Component>
</CustomServer>

 </Control>
</Controls>

Chapter 2 • Learning to Create QuickTest Support for a Custom WPF Control

58

Designing the Test Object Configuration File

You use the test object configuration file to introduce the MyWpfToolkit
environment and its test object class to QuickTest.

 1 Open the MyWpfToolkitTestObjects.xml file.

The MyWpfToolkitTestObjects.xml file was created with the AddinName
attribute in the TypeInformation element set to WPF and the
PackageName attribute set to MyWpfToolkit. This associates the test object
configuration file (and the test objects defined in it) with the
MyWpfToolkit environment under the WPF Add-in. If, when QuickTest
opens, you do not select the MyWpfToolkit environment, QuickTest
ignores the test object class definitions in this file.

Note: When developing support for a Silverlight control, the
TypeInformation element is set to Silverlight.

Based on the information you provided in the WPF Custom Server Setup
dialog box, the ClassInfo element for the MyWpfCalendar test object class
was also created, specifying WpfObject as its base class. This means that
the new MyWpfCalendar test object class you define inherits the WpfObject
methods, generic type, Help file, etc.

Chapter 2 • Learning to Create QuickTest Support for a Custom WPF Control

59

 2 To extend the test object class and add definitions for the calendar-
specific operations and identification properties, replace the comment
lines within MyWpfToolkitTestObjects.xml so that your test object
configuration file contains the following:

<TypeInformation AddinName="WPF" PackageName="MyWpfToolkit" >
<ClassInfo Name="MyWpfCalendar" BaseClassInfoName="WpfObject"
DefaultOperationName="SetDate">

<IdentificationProperties>
<IdentificationProperty Name="devname" ForDescription="true" />
<IdentificationProperty Name="devnamepath" ForAssistive="true"

AssistivePropertyValue="1"/>
<IdentificationProperty Name="regexpwndtitle" ForAssistive="true"

AssistivePropertyValue="2"/>
<IdentificationProperty Name="x" ForVerification="true" />
<IdentificationProperty Name="y" ForVerification="true" />
<IdentificationProperty Name="is_today_highlighted" ForVerification="true"/>

</IdentificationProperties>
<TypeInfo>

<Operation Name="Next" PropertyType="Method"/>
<Operation Name="Prev" PropertyType="Method"/>
<Operation Name="SelectedDate" PropertyType="Property_Get" >

<ReturnValueType>
<Type VariantType="VT_BSTR"/>

</ReturnValueType>
</Operation>
<Operation Name="SetDate" PropertyType="Method" >

<Argument Name="Date" IsMandatory="true" Direction="In">
<Type VariantType="VT_BSTR"/>

</Argument>
</Operation>

</TypeInfo>
</ClassInfo>

</TypeInformation>

Chapter 2 • Learning to Create QuickTest Support for a Custom WPF Control

60

You have now defined:

➤ The Previous, Next, and SetDate test object methods and the
SelectedDate property, including all relevant parameters, return
values, and their types. SetDate is the default operation for this test
object class.

➤ The devname, devnamepath, regexpwndtitle, x, y, and
is_today_highlighted identification properties.

➤ The first 5 properties are supported by the base class, and the
implementation for retrieving their values is inherited. However,
identification property definitions are not automatically inherited,
which is why you must define them here.

➤ For each identification property, you specified whether it should be
included in the test object description, used as an assistive property,
or available for verification in checkpoints.

For more information on the elements and attributes in the test object
configuration file, see the QuickTest Test Object Schema Help (available
with the WPF and Silverlight Add-in Extensibility Help).

Chapter 2 • Learning to Create QuickTest Support for a Custom WPF Control

61

Deploying and Testing the Preliminary Toolkit Support Set

After defining the MyWpfCalendar test object class in the test object
configuration file and mapping the Calendar control to this test object class
in the toolkit configuration file, you can already test the effect of using the
toolkit support set with QuickTest.

Note: When you develop your own toolkit support set, if you modify
attributes of Identification Property elements in the test object
configuration file, keep the DevelopmentMode attribute of the
TypeInformation element set to true during the design stages of the custom
toolkit support. Before you deploy the custom toolkit support set for regular
use, be sure to remove this attribute (or set it to false). This is not required
when performing this tutorial lesson. For more information, see "Modifying
Identification Property Attributes in a Test Object Configuration File" on
page 84.

To deploy the toolkit support set:

 1 Copy the MyWpfToolkitTestObjects.cfg file to <QuickTest installation
folder>\dat\Extensibility\WPF.

 2 In the <QuickTest installation folder>\dat\Extensibility\WPF folder,
create a folder named MyWpfToolkit.

 3 Copy the MyWpfToolkit.cfg file to the <QuickTest installation
folder>\dat\Extensibility\WPF\MyWpfToolkit folder.

Note: If you were developing support for a Silverlight control, you would
replace WPF in the paths above with Slv.

Chapter 2 • Learning to Create QuickTest Support for a Custom WPF Control

62

To test the toolkit support set:

 1 After you deploy the toolkit support set, open QuickTest.

Note: QuickTest reads toolkit support files when it opens. Therefore, if
QuickTest is open, you must close QuickTest and open it again.

The Add-in Manager dialog box displays MyWpfToolkit as a child of the
WPF environment in the list of available add-ins. (If the Add-in Manager
dialog box does not open, see the HP QuickTest Professional Add-ins Guide
for instructions.)

 2 Select the check box for MyWpfToolkit and click OK. QuickTest opens and
loads the support you designed.

 3 Use the Define New Test Object button in the Object Repository dialog
box to open the Define New Test Object dialog box. The MyWpfToolkit
environment is displayed in the Environment list. When you select the
MyWpfToolkit environment from the list, the MyWpfCalendar test object
class that you defined in the test object configuration file is displayed in
the Class list.

Chapter 2 • Learning to Create QuickTest Support for a Custom WPF Control

63

 4 Select Tools > Object Identification. In the Object Identification dialog
box, when you select the MyWpfToolkit environment in the Environment
list, the identification property definitions for the MyWpfCalendar test
object class should match the definitions in the test object configuration
file.

 5 Run the sample control by opening the <WPF and Silverlight Add-in
Extensibility SDK installation folder>\samples\WPFExtCalendarSample\
Application\WpfCalendar.exe file.

Note: QuickTest establishes its connection with an application when the
application opens. Therefore, if the Calendar application is open, you
must close it and run it again.

 6 In QuickTest, perform the following activities on the Calendar control, to
see how QuickTest recognizes the control. (For more information on
working in QuickTest, see the HP QuickTest Professional User Guide.)

➤ Use the Object Spy to see how QuickTest recognizes the Calendar
control and to view its identification properties and test object
operations:

➤ The calendar is represented by a MyWpfCalendar test object class.

➤ The calendar day numbers are still recognized as separate test
objects. Later in this tutorial you will customize child object
handling to prevent that.

➤ The list of test object operations includes all of the operations
(methods and properties) inherited from the WpfObject base class,
as well as all of the operations that you defined in the
MyWpfToolkitTestObjects.xml test object configuration file.

Chapter 2 • Learning to Create QuickTest Support for a Custom WPF Control

64

➤ The list of identification properties includes all of the properties that
you defined in the MyWpfToolkitTestObjects.xml test object
configuration file.

➤ The is_today_highlighted identification property has no value,
because you have not yet implemented its retrieval. For all other
identification properties, the value is provided as it would be for a
WpfObject (because it is the base class).

➤ In the Expert View, type MyWpfCalendar("MyCalendar").

➤ When you type the period, IntelliSense displays all of the operations
available for the MyWpfCalendar test object class. This includes
operations inherited from WpfObject, and ones that you defined in
the test object configuration file.

Chapter 2 • Learning to Create QuickTest Support for a Custom WPF Control

65

Design the Basic Custom Server

For each custom control that you want to support, you develop a custom
server class, that derives from the CustomServerBase class. The resulting
custom server DLL runs in the context of the application and interfaces
between QuickTest and the custom control.

In this section, you design the CalendarSrv custom server class to support
the Calendar control.

 1 Open CalendarSrv.cs. The basic framework of the class was created based
on the specifications that you provided in the WPF Custom Server Setup
dialog box.

➤ The class inherits from CustomServerBase.

➤ In the Using section, the class includes a reference to the
Mercury.QTP.WPF.CustomServer namespace in the WPF Add-in
Extensibility API.

Note: If you use the QuickTest Silverlight CustomServer template, the
class includes a reference to the Mercury.QTP.Slv.CustomServer
namespace in the Silverlight Add-in Extensibility API.

➤ The class definition includes the list of interfaces it will implement:
IRecord, ICalendarRun, IComponentDetector, ICalendarProperties.

 2 In your project, add a reference to <WPF and Silverlight Add-in
Extensibility SDK installation folder>\samples\WPFExtCalendarSample\
Application\WPFToolkit.dll.

This enables you to access the methods, properties, and events of
Microsoft.Windows.Controls.Calendar, by double-clicking the reference
node in the Visual Studio Solution Explorer. You need to be familiar with
these so that you can design code that interacts with the Calendar
control.

 3 In Calendar.cs, add a using Microsoft.Windows.Controls; statement. This
enables IntelliSense for the Microsoft.Windows.Controls.Calendar control
type in Visual Studio.

Chapter 2 • Learning to Create QuickTest Support for a Custom WPF Control

66

 4 In the CalendarSrv class, implement a common helper property that
returns a reference to the custom Calendar object. You can use this
throughout your custom server code to access the custom control’s
events, methods, and properties:

 5 You specified, in the WPF Custom Server Setup dialog box, that you want
to customize child object handling. Therefore, a preliminary
implementation of the IsKnownPartOf method in the
IComponentDetector interface was created in the CalendarSrv class.

Modify the IsKnownPartOf method to always return true. This means that
QuickTest will treat all child objects within the Calendar as part of the
calendar and not as independent objects.

private Calendar MyCalendar
{

get
{

return UtilityObject.ApplicationObject as Calendar;
}

}

Chapter 2 • Learning to Create QuickTest Support for a Custom WPF Control

67

Implement Support for Retrieving Identification Property
Values

In this section, you implement the property value retrieval interface in the
CalendarSrv class to support retrieving the values of identification
properties from the Calendar control.

You specified, in the WPF Custom Server Setup dialog box, that you want to
customize property retrieval. Therefore, the ICalendarProperties interface
that you specified was defined in the CalendarSrv.cs file, tagged with the
CustomPropInterface attribute, and implemented in the CalendarSrv class
for an example property, MyCustomProperty.

 1 Locate the ICalendarProperties interface definition in the CalendarSrv.cs
file.

 2 Replace the example object MyCustomProperty with bool
is_today_highlighted to complete the interface definition.

 3 Locate the interface implementation in the CalendarSrv class:

[CustomPropInterface()]
public interface ICalendarProperties
{

object MyCustomProperty
{

get;
}

}

public object MyCustomProperty
{

get
{

return null;
}

}

Chapter 2 • Learning to Create QuickTest Support for a Custom WPF Control

68

 4 Modify the example implementation to retrieve the value for the
is_today_highlighted identification property:

Deploy and Test Your Basic Custom Server and
Identification Property Support

In this section, you deploy the custom server that you developed to support
the Calendar control and test its effect on QuickTest.

 1 Build your solution and then deploy the custom server by copying the
CalendarSrv.dll file to the <QuickTest installation
folder>\dat\Extensibility\WPF\MyWpfToolkit folder. You do not need to
deploy the XML files because you did not change them.

 2 Run the sample control by opening the <WPF and Silverlight Add-in
Extensibility SDK installation folder>\samples\WPFExtCalendarSample\
Application\WpfCalendar.exe file.

Note: You can use an open instance of QuickTest because you did not
modify configuration files. However, if the Calendar application is open,
you must close it and run it again.

public bool is_today_highlighted
{

get
{

return MyCalendar.IsTodayHighlighted;
}

}

Chapter 2 • Learning to Create QuickTest Support for a Custom WPF Control

69

 3 Use the Object Spy to see how QuickTest recognizes the Calendar control
and its children, and to view its identification properties:

➤ The calendar is represented by a MyWpfCalendar test object class.

➤ The day numbers within the calendar are considered part of the
Calendar control and are not represented by separate WpfButton test
objects.

➤ The value of the is_today_highlighted property is displayed.

➤ The Selected Date box remains external to the Calendar control, and is
still represented by a separate WpfEdit test object, as planned.

 4 Use the Add Objects to Local button in the Object Repository dialog box
to learn the Calendar control. A MyWpfCalendar test object named
calender1 is added to the object repository.

 5 Start a recording session and create a checkpoint that checks the value of
the is_today_highlighted property of the calendar1 test object. Stop the
recording session and run the step to verify that the property value is
properly retrieved.

 6 In the Keyword View, create a test step with the calendar1 test object. The
default SetDate operation is selected automatically. Enter a date in the
Argument column (in the format: mm/dd/yyyy).

 7 Run the test. Because you have not yet implemented support for running
test object methods, a run-time error occurs. In the next section, you
implement this support.

Chapter 2 • Learning to Create QuickTest Support for a Custom WPF Control

70

Implement Support for Running Test Object Operations

In this section, you implement the Run interface in the CalendarSrv class to
support running test object operations on the Calendar control.

You specified, in the WPF Custom Server Setup dialog box, that you want to
customize running operations. Therefore, the ICalendarRun interface that
you specified was defined in the CalendarSrv.cs file, tagged with the
RunInterface attribute and implemented in the CalendarSrv class for an
example operation, MyRunMethod.

 1 Locate the ICalendarRun interface definition in the CalendarSrv.cs file:

 2 Replace the example void MyRunMethod(); with the following lines to
complete the interface definition to include all of the operations you
want to support:

 3 Locate the interface implementation in the CalendarSrv class:

[RunInterface()]
public interface ICalendarRun
{

void MyRunMethod();
}

void SetDate(string date);
void Prev();
void Next();
string SelectedDate
{

get;
}

public void MyRunMethod()
{
}

Chapter 2 • Learning to Create QuickTest Support for a Custom WPF Control

71

 4 Replace the MyRunMethod() example with the following
implementation of the Calendar-specific methods and property:

Note: If you were developing support for a Silverlight control, you would
tag each one of these methods with the Microsoft Silverlight
ScriptableMember attribute.

 public void SetDate(String date)
{

MyCalendar.SelectedDate = DateTime.Parse(date);
MyCalendar.DisplayDate = DateTime.Parse(date);

}

public string SelectedDate
{

get
{

return MyCalendar.SelectedDate.Value.ToShortDateString();
}

}

public void Prev()
{

Button prev = GetDescendantByName(UtilityObject.ApplicationObject,
"PART_PreviousButton") as Button;

RaiseButtonClickEvent(prev);
}

public void Next()
{

Button next = GetDescendantByName(UtilityObject.ApplicationObject,
"PART_NextButton") as Button;

RaiseButtonClickEvent(next);
}

Chapter 2 • Learning to Create QuickTest Support for a Custom WPF Control

72

 5 Add a using System.Windows.Media; statement to the CalendarSrv.cs file
and then add the following helper functions:

private void RaiseButtonClickEvent(Button button)
{

if (button != null)
{

RoutedEvent e = Button.ClickEvent;
RoutedEventArgs arg = new RoutedEventArgs();
arg.RoutedEvent = e;
button.RaiseEvent(arg);

}
}

private DependencyObject GetDescendantByName(DependencyObject parent,
string name)
{

if (parent == null)
return null;

int count = VisualTreeHelper.GetChildrenCount(parent);
for (int i = 0; i < count; i++)
{

DependencyObject child = VisualTreeHelper.GetChild(parent, i);
if (child is FrameworkElement)
{

if ((child as FrameworkElement).Name == name)
return child;

}
if (child is FrameworkContentElement)
{

if ((child as FrameworkContentElement).Name == name)
return child;

}
child = GetDescendantByName(child, name);
if (child != null)

return child;
}
return null;

}

Chapter 2 • Learning to Create QuickTest Support for a Custom WPF Control

73

Deploy and Test Your Support for Test Object Operations

In this section, you deploy the custom server again and test the support that
you designed for running test object operations.

 1 Build your solution and then deploy the custom server by copying the
CalendarSrv.dll file to the <QuickTest installation
folder>\dat\Extensibility\WPF\MyWpfToolkit folder.

 2 Run the sample control by opening the <WPF and Silverlight Add-in
Extensibility SDK installation folder>\samples\WPFExtCalendarSample\
Application\WpfCalendar.exe file.

 3 Use the Add Objects to Local button in the Object Repository dialog box
to learn the Calendar control. A MyWpfCalendar test object named
calender1 is added to the object repository.

 4 Create test steps with the calendar1 test object, using each of the test
object operations: SetDate (mm/dd/yyyy), SelectedDate, Next, and Prev.
(To view the value returned by the SelectedDate property you can use a
msgBox statement.)

 5 Run the test and make sure that the operations are carried out correctly.

Implement Support for Recording

In this section, you implement the IRecord interface and write the event
and message handling methods to support recording steps on the custom
control.

There are three types of steps that need to be recorded for the WPF custom
calendar: Next, Prev, and SetDate.

➤ Next and Prev are recorded in response to Windows messages, when a
user clicks the right and left arrows on the Calendar control. This is
handled by the OnMessage method.

➤ SetDate is recorded in response to a control event—
SelectedDatesChanged. This is handled by an event handler that you
design and register to handle the relevant control event.

Chapter 2 • Learning to Create QuickTest Support for a Custom WPF Control

74

To implement support for recording in your custom server class:

 1 In the CalendarSrv class, locate the section for the IRecord interface
implementation.

 2 Declare your event handler and implement RecordInit to register it to the
control.

Note: When developing support for a Silverlight control, the AddHandler
syntax is different. For details, see the Mercury.QTP.Slv.CustomServer
namespace in the Custom Server API Reference (available with the WPF
and Silverlight Add in Extensibility Help).

 3 You do not need to implement RecordStop because you registered the
event handler using QuickTest’s AddHandler method. This enables
QuickTest to automatically remove the event handler at the end of a
recording session.

public void OnMessage(DependencyObject src, int msg, int wParam, int lParam)
{
}
public void RecordInit()
{
}
public void RecordStop()
{
}

private EventHandler<SelectionChangedEventArgs> _h;

public void RecordInit()
{

_h = new EventHandler<SelectionChangedEventArgs>
(OnSelectedDatesChanged);

UtilityObject.AddHandler(MyCalendar, "SelectedDatesChanged", _h);
}

Chapter 2 • Learning to Create QuickTest Support for a Custom WPF Control

75

 4 Add the OnSelectedDatesChanged event handler implementation:

This creates a SetDate step with the new date selected by the user during a
recording session.

 5 Implement the OnMessage method as follows, to support recording Prev
and Next operations:

private void OnSelectedDatesChanged(object sender,
System.Windows.Controls.SelectionChangedEventArgs e)
{

UtilityObject.Record("SetDate", RecordingMode.RECORD_SEND_LINE,
MyCalendar.SelectedDate.Value.ToShortDateString());

}

public void OnMessage(DependencyObject o, int msg, int wParam, int lParam)
{

if(o is Button && msg == 0x201) // WM_LBUTTONDOWN
{

string name = (o as Button).Name;
switch (name)
{

case "PART_NextButton":
base.UtilityObject.Record("Next",

 RecordingMode.RECORD_SEND_LINE, null);
break;
case "PART_PreviousButton":

base.UtilityObject.Record("Prev",
 RecordingMode.RECORD_SEND_LINE, null);

break;
}

}
}

Chapter 2 • Learning to Create QuickTest Support for a Custom WPF Control

76

Note: When developing support for a Silverlight control, the OnMessage
method would return RECORD_HANDLED, indicating that the custom
server handled this message and it does not have to be passed on to any
other event handlers. For more information, see the
Mercury.QTP.Slv.CustomServer namespace in the Custom Server API
Reference (available with the WPF and Silverlight Add in Extensibility
Help).

 6 This step is only necessary when developing support for Silverlight
controls.

Implement the GetWndMessageFilter method to specify the level of
Windows messages to be handled by the custom server.

In this tutorial, all children of the control are regarded as part of the
control. Therefore, it is sufficient to return CTL_MSGS, and handle
messages intended only for this control.

If some of the control’s children were treated as separate test objects, but
you still wanted the control to handle events that occurred on these
children, you could implement GetWndMessageFilter to return
CHILD_MSGS.

CTL_MsgFilter GetWndMessageFilter()
{

return CTL_MsgFilter.CTL_MSGS;
}

Chapter 2 • Learning to Create QuickTest Support for a Custom WPF Control

77

Deploy and Test Your Support for Recording

You have now completed the design of the support for the WPF Calendar
control.

In this section, you deploy the custom server again and test the support that
you designed for recording operations on the Calendar control.

 1 Build your solution and then deploy the custom server by copying the
CalendarSrv.dll file to the <QuickTest installation
folder>\dat\Extensibility\WPF\MyWpfToolkit folder.

 2 Run the sample control by opening the <WPF and Silverlight Add-in
Extensibility SDK installation folder>\samples\WPFExtCalendarSample\
Application\WpfCalendar.exe file.

 3 To test that the support you developed for recording is working correctly,
start a recording session, select a day in the calendar, click the right arrow
at the top of the calendar, and click the left arrow at the top of the
calendar. SetDate, Next, and Prev steps should be recorded.

Chapter 2 • Learning to Create QuickTest Support for a Custom WPF Control

78

79

3
Deploying the Toolkit Support Set

The final stage of extending QuickTest support for a custom toolkit is
deploying the toolkit support set. This means placing all of the files you
created in the correct locations on a computer with QuickTest installed,
enabling QuickTest to recognize the controls in the toolkit and run tests on
them.

While you are developing the toolkit support set, deploying it to QuickTest
enables you to test and debug the support that you create. After the toolkit
support set is complete, you can deploy it on any computer with QuickTest
installed, to extend the WPF or Silverlight Add-in.

This chapter includes:

➤ About Deploying the Custom Toolkit Support on page 80

➤ Deploying the Custom Toolkit Support on page 81

➤ Modifying Deployed Support on page 84

➤ Removing Deployed Support on page 86

Chapter 3 • Deploying the Toolkit Support Set

80

About Deploying the Custom Toolkit Support

From the QuickTest user’s perspective, after you deploy the toolkit support
set on a computer on which QuickTest is installed, the toolkit support set
can be used as a QuickTest add-in.

When QuickTest opens, it displays the toolkit support set’s environment
name in the Add-in Manager, as a child node under the WPF Add-in node.
Select the check box for your environment to instruct QuickTest to load
support for the environment using the toolkit support set that you
developed.

Note: Toolkit support sets that you develop using Silverlight Add-in
Extensibility are dependent on the Silverlight Add-in. Therefore, if you
select the environment of such a toolkit support set, select the Silverlight
Add-in as well.

If support for your environment is loaded:

➤ QuickTest recognizes the controls in your environment and can run tests
on them.

➤ QuickTest displays the name of your environment in all of the dialog
boxes that display lists of add-ins or supported environments.

➤ QuickTest displays the list of test object classes defined by your toolkit
support set in dialog boxes that display the list of test object classes
available for each add-in. (For example: Define New Test Object dialog
box, Object Identification dialog box.)

Chapter 3 • Deploying the Toolkit Support Set

81

Deploying the Custom Toolkit Support

To deploy the toolkit support set that you create, you must place the files in
specific locations within the QuickTest installation folder.

Note: Before you begin, create a folder with the name of your custom toolkit
in the <QuickTest Installation folder>\dat\Extensibility\WPF (or ...\Slv)
folder, if one does not already exist.

The following table describes the appropriate location for each of the toolkit
support files:

File Name Location

<Custom Toolkit Name>TestObjects.xml

Note: This is the recommended file
name convention. You can have more
than one test object configuration XML
file, and name them as you wish.

When deploying support for WPF:

➤ <QuickTest Installation
folder>\dat\Extensibility\WPF

➤ <QuickTest Add-in for ALM/QC
Installation folder>\dat\Extensibility\
WPF
(Optional. Required only if QuickTest
Add-in for ALM/QC is installed)

When deploying support for
Silverlight:

➤ <QuickTest Installation
folder>\dat\Extensibility\Slv

➤ <QuickTest Add-in for ALM/QC
Installation folder>\dat\Extensibility\
Slv
(Optional. Required only if QuickTest
Add-in for ALM/QC is installed)

Chapter 3 • Deploying the Toolkit Support Set

82

<Custom Toolkit Name>.cfg When deploying support for WPF:

<QuickTest Installation folder>\dat\
Extensibility\WPF\<custom toolkit
name>

When deploying support for
Silverlight:

<QuickTest Installation folder>\dat\
Extensibility\Slv\<custom toolkit
name>

Custom Server DLL The .dll file can be located on the
computer on which QuickTest is
installed, or in an accessible network
location.

Specify the location in the DllName
element in <Custom Toolkit
Name>.cfg

Icon files for new test object classes
(optional)

The file can be a .dll, .exe, or .ico file,
located on the computer on which
QuickTest is installed, or in an
accessible network location.

Specify the location in <Custom Toolkit
Name>TestObjects.xml

Help files for the test object classes
(optional)

Must be a .chm file, located on the
computer on which QuickTest is
installed.

Specify the location in <Custom Toolkit
Name>TestObjects.xml

File Name Location

Chapter 3 • Deploying the Toolkit Support Set

83

Recommended File Locations

You specify the locations of the custom server DLL, Help, and icon files in
the toolkit support set’s configuration files. You can specify these locations
using relative paths. For more information, see the Test Object Schema Help
and the Toolkit Configuration Schema Help (available with the WPF and
Silverlight Add-in Extensibility Help).

The recommended locations for these files are described in the following
table:

File Name Location

Custom Server DLL files When deploying support for WPF:

<QuickTest Installation folder>\dat\Extensibility\WPF\<
custom toolkit name>\CustomServers

When deploying support for Silverlight:

<QuickTest Installation folder>\dat\Extensibility\Slv\
<custom toolkit name>\CustomServers

Icon files When deploying support for WPF:

<QuickTest Installation folder>\dat\Extensibility\WPF\<
custom toolkit name>\Res

When deploying support for Silverlight:

<QuickTest Installation folder>\dat\Extensibility\Slv\
<custom toolkit name>\Res

Help files When deploying support for WPF:

<QuickTest Installation folder>\dat\Extensibility\WPF\<
custom toolkit name>\Help

When deploying support for Silverlight:

<QuickTest Installation folder>\dat\Extensibility\Slv\
<custom toolkit name>\Help

Chapter 3 • Deploying the Toolkit Support Set

84

Setting the DevelopmentMode Attribute

If you modify attributes of Identification Property elements in the test
object configuration file, keep the DevelopmentMode attribute of the
TypeInformation element set to true during the design stages of the custom
toolkit support. Before you deploy the custom toolkit support set for regular
use, be sure to remove this attribute (or set it to false). For more
information, see "Modifying Identification Property Attributes in a Test
Object Configuration File" on page 84.

Modifying Deployed Support

If you modify a deployed toolkit support set, you must reopen QuickTest
and re-run the WPF or Silverlight application for the changes to take effect.

If you change the identification property definitions that specify the
functionalities for which the properties are used in QuickTest, see
"Modifying Identification Property Attributes in a Test Object Configuration
File" below.

Modifying Identification Property Attributes in a Test
Object Configuration File
The following attributes of the Identification Property element in the test
object configuration file specify information that can be modified in
QuickTest (using the Object Identification dialog box):
AssistivePropertyValue, ForAssistive, ForBaseSmartID, ForDescription,
ForOptionalSmartID, and OptionalSmartIDPropertyValue. These attributes
determine the lists of identification properties used for different purposes in
QuickTest. For more information, see the QuickTest Test Object Schema
Help, available in the QuickTest Professional WPF and Silverlight Add-in
Extensibility Help.

Therefore, by default, QuickTest reads the values of these attributes from the
XML file only once, to prevent overwriting any changes a user makes using
the Object Identification dialog box. In this way, QuickTest provides
persistence for the user defined property lists.

If the user clicks the Reset Test Object button in the Object Identification
dialog box, the attributes' values are reloaded from the XML.

Chapter 3 • Deploying the Toolkit Support Set

85

If the XML changed since the last time it was loaded (based on the file's
modification date in the system), QuickTest reads the attributes from the
XML. QuickTest adds identification properties to the relevant lists (and
adjusts their order if necessary) according to the values of these attributes,
but does not remove any existing identification properties from the lists.

To instruct QuickTest to completely refresh the identification property lists
according to the attributes defined in the XML each time QuickTest is
opened, set the DevelopmentMode attribute of the TypeInformation
element in this test object configuration file to true.

Considerations When Modifying Identification Properties Attributes

➤ If you modify attributes of Identification Property elements in the test
object configuration file, keep the DevelopmentMode attribute of the
TypeInformation element set to true during the design stages of the
custom toolkit support. This ensures that QuickTest uses all of the
changes you make to the file.

➤ Before you deploy the toolkit support set for regular use, be sure to
remove the DevelopmentMode attribute of the TypeInformation element
(or set it to false). Otherwise, every time QuickTest opens it will refresh
the property lists based on the definitions in the test object configuration
file. If QuickTest users change the property lists using the Object
Identification dialog box, their changes will be lost when they reopen
QuickTest.

➤ Though QuickTest does not remove existing properties from the property
lists when reading a modified test object configuration file (unless the
DevelopmentMode attribute is set to true), it does add properties and
adjust the order of the lists based on the definitions in the file. If
QuickTest users removed properties from the lists or modified their order
using the Object Identification dialog box, those changes will be lost
when a modified file is loaded.

If you provide the custom toolkit support set to a third party, and you
deliver an upgrade that includes a modified test object configuration file,
consider informing the QuickTest users about such potential changes to
their identification property lists.

Chapter 3 • Deploying the Toolkit Support Set

86

Removing Deployed Support

When opening QuickTest, the QuickTest user can use the Add-in Manager to
instruct QuickTest whether to load the support provided for any particular
environment or toolkit.

If you want to remove support for a custom toolkit from QuickTest after it is
deployed, you must delete its toolkit configuration file from the custom
toolkit’s folder under:
<QuickTest Installation folder>\dat\Extensibility\WPF (or ...\Slv)

If none of the test object class definitions in a test object configuration file
are used to represent any custom controls (meaning they are no longer
needed), you can delete the file from:
<QuickTest Installation Folder>\dat\Extensibility\WPF (or ...\Slv) and
<QuickTest Add-in for ALM/QC Installation folder>\dat\Extensibility\WPF
(or ...\Slv) if relevant.

	HP QuickTest Professional WPF and Silverlight Add-in Extensibility Developer Guide
	Table of Contents
	Welcome to This Guide
	About the QuickTest Professional WPF and Silverlight Add-in Extensibility SDK
	About This Guide
	Who Should Read This Guide
	QuickTest Professional Documentation Library
	Additional Online Resources

	Developing QuickTest Support for a Custom WPF or Silverlight Toolkit
	The Test Object Configuration XML File
	Custom Servers
	Utility Methods and Properties
	WPF Add-in Extensibility Sample
	How to Create Support for a Custom WPF or Silverlight Toolkit
	How to Add Support for a Custom WPF or Silverlight Control
	How to Develop a Custom Server
	WPF/Silverlight Custom Server Setup Dialog Box (in Microsoft Visual Studio)
	Troubleshooting and Limitations - Developing Support

	Learning to Create QuickTest Support for a Custom WPF Control
	Planning Support for the WPF Calendar Control
	Setting Up the WPF Add-in Extensibility Project for the WPF Calendar Control
	Designing the Toolkit Configuration File
	Designing the Test Object Configuration File
	Deploying and Testing the Preliminary Toolkit Support Set
	Design the Basic Custom Server
	Implement Support for Retrieving Identification Property Values
	Deploy and Test Your Basic Custom Server and Identification Property Support
	Implement Support for Running Test Object Operations
	Deploy and Test Your Support for Test Object Operations
	Implement Support for Recording
	Deploy and Test Your Support for Recording

	Deploying the Toolkit Support Set
	About Deploying the Custom Toolkit Support
	Deploying the Custom Toolkit Support
	Modifying Deployed Support
	Modifying Identification Property Attributes in a Test Object Configuration File

	Removing Deployed Support

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /JPXEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG2000
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 100
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /JPXEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG2000
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 100
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck true
 /PDFX3Check false
 /PDFXCompliantPDFOnly true
 /PDFXNoTrimBoxError false
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f0062006500200050004400460020658768637b2654080020005000440046002f0058002d00310061003a0032003000300031002089c4830330028fd9662f4e004e2a4e1395e84e3a56fe5f6251855bb94ea46362800c52365b9a7684002000490053004f0020680751c6300251734e8e521b5efa7b2654080020005000440046002f0058002d00310061002089c483037684002000500044004600206587686376848be67ec64fe1606fff0c8bf753c29605300a004100630072006f00620061007400207528623763075357300b300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200034002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef67b2654080020005000440046002f0058002d00310061003a00320030003000310020898f7bc430025f8c8005662f70ba57165f6251675bb94ea463db800c5c08958052365b9a76846a196e96300295dc65bc5efa7acb7b2654080020005000440046002f0058002d003100610020898f7bc476840020005000440046002065874ef676848a737d308cc78a0aff0c8acb53c395b1201c004100630072006f00620061007400204f7f7528800563075357201d300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200034002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c00200064006500720020006600f800720073007400200073006b0061006c00200073006500730020006900670065006e006e0065006d00200065006c006c0065007200200073006b0061006c0020006f0076006500720068006f006c006400650020005000440046002f0058002d00310061003a0032003000300031002c00200065006e002000490053004f002d007300740061006e0064006100720064002000740069006c00200075006400760065006b0073006c0069006e00670020006100660020006700720061006600690073006b00200069006e00640068006f006c0064002e00200059006400650072006c006900670065007200650020006f0070006c00790073006e0069006e0067006500720020006f006d0020006f007000720065007400740065006c007300650020006100660020005000440046002f0058002d00310061002d006b006f006d00700061007400690062006c00650020005000440046002d0064006f006b0075006d0065006e007400650072002000660069006e006400650072002000640075002000690020006200720075006700650072006800e5006e00640062006f00670065006e002000740069006c0020004100630072006f006200610074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200034002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002f0058002d00310061003a0032003000300031002d006b006f006d00700061007400690062006c0065006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002e0020005000440046002f0058002d003100610020006900730074002000650069006e0065002000490053004f002d004e006f0072006d0020006600fc0072002000640065006e002000410075007300740061007500730063006800200076006f006e0020006700720061006600690073006300680065006e00200049006e00680061006c00740065006e002e0020005700650069007400650072006500200049006e0066006f0072006d006100740069006f006e0065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002f0058002d00310061002d006b006f006d00700061007400690062006c0065006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002000660069006e00640065006e002000530069006500200069006d0020004100630072006f006200610074002d00480061006e00640062007500630068002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200034002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f00620065002000710075006500200073006500200064006500620065006e00200063006f006d00700072006f0062006100720020006f002000710075006500200064006500620065006e002000630075006d0070006c006900720020006c00610020006e006f0072006d0061002000490053004f0020005000440046002f0058002d00310061003a00320030003000310020007000610072006100200069006e00740065007200630061006d00620069006f00200064006500200063006f006e00740065006e00690064006f00200067007200e1006600690063006f002e002000500061007200610020006f006200740065006e006500720020006d00e1007300200069006e0066006f0072006d00610063006900f3006e00200073006f0062007200650020006c0061002000630072006500610063006900f3006e00200064006500200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00700061007400690062006c0065007300200063006f006e0020006c00610020006e006f0072006d00610020005000440046002f0058002d00310061002c00200063006f006e00730075006c007400650020006c006100200047007500ed0061002000640065006c0020007500730075006100720069006f0020006400650020004100630072006f006200610074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200034002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000710075006900200064006f006900760065006e0074002000ea0074007200650020007600e9007200690066006900e900730020006f0075002000ea00740072006500200063006f006e0066006f0072006d00650073002000e00020006c00610020006e006f0072006d00650020005000440046002f0058002d00310061003a0032003000300031002c00200075006e00650020006e006f0072006d0065002000490053004f00200064002700e9006300680061006e0067006500200064006500200063006f006e00740065006e00750020006700720061007000680069007100750065002e00200050006f0075007200200070006c007500730020006400650020006400e9007400610069006c007300200073007500720020006c006100200063007200e9006100740069006f006e00200064006500200064006f00630075006d0065006e00740073002000500044004600200063006f006e0066006f0072006d00650073002000e00020006c00610020006e006f0072006d00650020005000440046002f0058002d00310061002c00200076006f006900720020006c00650020004700750069006400650020006400650020006c0027007500740069006c0069007300610074006500750072002000640027004100630072006f006200610074002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200034002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF che devono essere conformi o verificati in base a PDF/X-1a:2001, uno standard ISO per lo scambio di contenuto grafico. Per ulteriori informazioni sulla creazione di documenti PDF compatibili con PDF/X-1a, consultare la Guida dell'utente di Acrobat. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 4.0 e versioni successive.)
 /JPN <FEFF30b030e930d530a330c330af30b330f330c630f330c4306e590963db306b5bfe3059308b002000490053004f00206a196e96898f683c306e0020005000440046002f0058002d00310061003a00320030003000310020306b6e9662e03057305f002000410064006f0062006500200050004400460020658766f830924f5c62103059308b305f3081306b4f7f75283057307e30593002005000440046002f0058002d0031006100206e9662e0306e00200050004400460020658766f84f5c6210306b306430443066306f3001004100630072006f006200610074002030e630fc30b630ac30a430c9309253c2716730573066304f30603055304430023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200034002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020c791c131d558b294002000410064006f0062006500200050004400460020bb38c11cb2940020d655c778c7740020d544c694d558ba700020adf8b798d53d0020cee8d150d2b8b97c0020ad50d658d558b2940020bc29bc95c5d00020b300d55c002000490053004f0020d45cc900c7780020005000440046002f0058002d00310061003a0032003000300031c7580020addcaca9c5d00020b9dec544c57c0020d569b2c8b2e4002e0020005000440046002f0058002d003100610020d638d65800200050004400460020bb38c11c0020c791c131c5d00020b300d55c0020c790c138d55c0020c815bcf4b2940020004100630072006f0062006100740020c0acc6a90020c124ba85c11cb97c0020cc38c870d558c2edc2dcc624002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200034002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die moeten worden gecontroleerd of moeten voldoen aan PDF/X-1a:2001, een ISO-standaard voor het uitwisselen van grafische gegevens. Raadpleeg de gebruikershandleiding van Acrobat voor meer informatie over het maken van PDF-documenten die compatibel zijn met PDF/X-1a. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 4.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200073006b0061006c0020006b006f006e00740072006f006c006c0065007200650073002c00200065006c006c0065007200200073006f006d0020006d00e50020007600e6007200650020006b006f006d00700061007400690062006c00650020006d006500640020005000440046002f0058002d00310061003a0032003000300031002c00200065006e002000490053004f002d007300740061006e006400610072006400200066006f007200200075007400760065006b0073006c0069006e00670020006100760020006700720061006600690073006b00200069006e006e0068006f006c0064002e00200048007600690073002000640075002000760069006c0020006800610020006d0065007200200069006e0066006f0072006d00610073006a006f006e0020006f006d002000680076006f007200640061006e0020006400750020006f007000700072006500740074006500720020005000440046002f0058002d00310061002d006b006f006d00700061007400690062006c00650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020007300650020006200720075006b00650072006800e5006e00640062006f006b0065006e00200066006f00720020004100630072006f006200610074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200034002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200063006100700061007a0065007300200064006500200073006500720065006d0020007600650072006900660069006300610064006f00730020006f0075002000710075006500200064006500760065006d00200065007300740061007200200065006d00200063006f006e0066006f0072006d0069006400610064006500200063006f006d0020006f0020005000440046002f0058002d00310061003a0032003000300031002c00200075006d0020007000610064007200e3006f002000640061002000490053004f002000700061007200610020006f00200069006e007400650072006300e2006d00620069006f00200064006500200063006f006e0074006500fa0064006f00200067007200e1006600690063006f002e002000500061007200610020006f00620074006500720020006d00610069007300200069006e0066006f0072006d006100e700f50065007300200073006f00620072006500200063006f006d006f00200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00700061007400ed007600650069007300200063006f006d0020006f0020005000440046002f0058002d00310061002c00200063006f006e00730075006c007400650020006f0020004700750069006100200064006f002000750073007500e100720069006f00200064006f0020004100630072006f006200610074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200034002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b00610020007400610072006b0069007300740065007400610061006e00200074006100690020006a006f006900640065006e0020007400e400790074007900790020006e006f00750064006100740074006100610020005000440046002f0058002d00310061003a0032003000300031003a007400e400200065006c0069002000490053004f002d007300740061006e006400610072006400690061002000670072006100610066006900730065006e002000730069007300e4006c006c00f6006e00200073006900690072007400e4006d00690073007400e4002000760061007200740065006e002e0020004c0069007300e40074006900650074006f006a00610020005000440046002f0058002d00310061002d00790068007400650065006e0073006f00700069007600690065006e0020005000440046002d0064006f006b0075006d0065006e0074007400690065006e0020006c0075006f006d0069007300650073007400610020006f006e0020004100630072006f0062006100740069006e0020006b00e400790074007400f6006f0070007000610061007300730061002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200034002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200073006b00610020006b006f006e00740072006f006c006c006500720061007300200065006c006c0065007200200073006f006d0020006d00e50073007400650020006d006f0074007300760061007200610020005000440046002f0058002d00310061003a0032003000300031002c00200065006e002000490053004f002d007300740061006e00640061007200640020006600f6007200200075007400620079007400650020006100760020006700720061006600690073006b007400200069006e006e0065006800e5006c006c002e00200020004d0065007200200069006e0066006f0072006d006100740069006f006e0020006f006d00200068007500720020006d0061006e00200073006b00610070006100720020005000440046002f0058002d00310061002d006b006f006d00700061007400690062006c00610020005000440046002d0064006f006b0075006d0065006e0074002000660069006e006e00730020006900200061006e007600e4006e00640061007200680061006e00640062006f006b0065006e002000740069006c006c0020004100630072006f006200610074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200034002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings when submitting to HP. These settings require font embedding.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /HighResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

