
HP QuickTest Professional Web Add-in Extensibility

Software Version: 11.00

Developer Guide

Document Release Date: October 2010

Software Release Date: October 2010

2

Legal Notices

Warranty

The only warranties for HP products and services are set forth in the express warranty
statements accompanying such products and services. Nothing herein should be construed as
constituting an additional warranty. HP shall not be liable for technical or editorial errors or
omissions contained herein.

The information contained herein is subject to change without notice.

Restricted Rights Legend

Confidential computer software. Valid license from HP required for possession, use or copying.
Consistent with FAR 12.211 and 12.212, Commercial Computer Software, Computer Software
Documentation, and Technical Data for Commercial Items are licensed to the U.S.
Government under vendor's standard commercial license.

Copyright Notices

© 1992 - 2010 Hewlett-Packard Development Company, L.P.

Trademark Notices

Adobe® and Acrobat® are trademarks of Adobe Systems Incorporated.

Intel®, Pentium®, and Intel® Xeon™ are trademarks of Intel Corporation in the U.S. and
other countries.

Java™ is a US trademark of Sun Microsystems, Inc.

Microsoft®, Windows®, Windows NT®, and Windows® XP are U.S registered trademarks of
Microsoft Corporation.

Oracle® is a registered US trademark of Oracle Corporation, Redwood City, California.

Unix® is a registered trademark of The Open Group.

SlickEdit® is a registered trademark of SlickEdit Inc.

3

Documentation Updates

The title page of this document contains the following identifying information:

• Software Version number, which indicates the software version.

• Document Release Date, which changes each time the document is updated.

• Software Release Date, which indicates the release date of this version of the software.

To check for recent updates, or to verify that you are using the most recent edition of a
document, go to:

http://h20230.www2.hp.com/selfsolve/manuals

This site requires that you register for an HP Passport and sign-in. To register for an HP
Passport ID, go to:

http://h20229.www2.hp.com/passport-registration.html

Or click the New users - please register link on the HP Passport login page.

You will also receive updated or new editions if you subscribe to the appropriate product
support service. Contact your HP sales representative for details.

4

Support

Visit the HP Software Support web site at:

http://www.hp.com/go/hpsoftwaresupport

This web site provides contact information and details about the products, services, and
support that HP Software offers.

HP Software online support provides customer self-solve capabilities. It provides a fast and
efficient way to access interactive technical support tools needed to manage your business. As
a valued support customer, you can benefit by using the support web site to:

• Search for knowledge documents of interest

• Submit and track support cases and enhancement requests

• Download software patches

• Manage support contracts

• Look up HP support contacts

• Review information about available services

• Enter into discussions with other software customers

• Research and register for software training

Most of the support areas require that you register as an HP Passport user and sign in. Many
also require a support contract. To register for an HP Passport ID, go to:

http://h20229.www2.hp.com/passport-registration.html

To find more information about access levels, go to:

http://h20230.www2.hp.com/new_access_levels.jsp

5

Table of Contents

Welcome to This Guide ...7
About the QuickTest Professional Web Add-in Extensibility SDK8
About This Guide ..9
Who Should Read This Guide ...10
QuickTest Professional Documentation Library10
Additional Online Resources...11

PART I: WORKING WITH WEB ADD-IN EXTENSIBILITY

Chapter 1: Introducing QuickTest Professional Web Add-in
Extensibility...15

About QuickTest Professional Web Add-in Extensibility....................16
Extensibility Accelerator..17
Identifying the Building Blocks of Web Add-in Extensibility18
Deciding When to Use Web Add-in Extensibility20
Understanding How to Implement Web Add-in Extensibility...........28
Web Add-in Extensibility Samples ..30

Chapter 2: Planning QuickTest Support for Your Toolkit31
About Planning QuickTest Support for Your Toolkit32
Preparing to Create Support for a Custom Toolkit32
Determining the Toolkit Related Information....................................33
Determining the Support Information for Each

Custom Control Type ...34
Where Do You Go from Here? ..39

Table of Contents

6

Chapter 3: Developing Support for Your Toolkit41
About Custom Toolkit Support ...42
Creating a Custom Toolkit Support Set ..44
Understanding the Test Object Configuration File46
Understanding the Toolkit Configuration File57
Designing JavaScript Functions for Your Toolkit Support Set60
Teaching QuickTest to Identify the Test Object Class to Use for a

Custom Web Control..67
Testing the Toolkit Support Set During Development77
Logging and Debugging the Custom Support80
Implementing Support for Test Object Methods................................83
Implementing Support for Identification Properties89
Implementing a Filter for Learning Child Controls93
Implementing Support for Recording ...95
Troubleshooting and Limitations - Developing Support....................99

Chapter 4: Deploying the Toolkit Support Set.................................101
About Deploying the Custom Toolkit Support.................................102
Deploying the Custom Toolkit Support..102
Modifying Deployed Support..105
Removing Deployed Support ..107

PART II: TUTORIAL: LEARNING TO CREATE WEB CUSTOM TOOLKIT
SUPPORT

Chapter 5: Learning to Create QuickTest Support for a Simple
Custom Web Control ..111

Preparing for This Lesson ..112
Planning Support for the Web Add-in Extensibility

Book Sample Toolkit ...113
Developing the Toolkit Support Set ..122
Lesson Summary..154

Chapter 6: Learning to Create QuickTest Support for a Complex
Custom Web Control ..157

Preparing for This Lesson ..158
Planning Support for the Web Add-in Extensibility Sample

UsedBooks Control ...159
Developing the Toolkit Support Set ..167
Lesson Summary..184

7

Welcome to This Guide

Welcome to QuickTest Professional Web Add-in Extensibility.

QuickTest Professional Web Add-in Extensibility is an SDK (Software
Development Kit) package that enables you to support testing applications
that use third-party and custom Web controls that are not supported
out-of-the-box by the QuickTest Professional Web Add-in).

This chapter includes:

➤ About the QuickTest Professional Web Add-in Extensibility SDK
on page 8

➤ About This Guide on page 9

➤ Who Should Read This Guide on page 10

➤ QuickTest Professional Documentation Library on page 10

➤ Additional Online Resources on page 11

8

About the QuickTest Professional Web Add-in Extensibility
SDK

Installing Extensibility Accelerator for HP Functional Testing also installs the
QuickTest Professional Web Add-in Extensibility SDK, which provides the
following:

➤ An API that enables you to extend the QuickTest Professional Web Add-in
to support custom Web controls.

➤ The Help (available from Start > Programs > HP QuickTest Professional >
Extensibility > Documentation), which includes the following:

➤ A Developer Guide, including a step-by-step tutorial in which you
develop support for a sample custom control.

➤ API References.

➤ A Toolkit Configuration Schema Help.

➤ The QuickTest Test Object Schema Help.

➤ A printer-friendly (PDF) version of the Developer Guide (available in the
<Extensibility Accelerator installation>\help folder).

➤ Web Add-in Extensibility toolkit support sets that extend QuickTest
support for the following Web 2.0 environments:

➤ ASP.NET AJAX control toolkit

➤ Google Web Toolkit

➤ Yahoo User Interface

➤ Dojo

➤ A sample Web toolkit that includes controls named Book and
UsedBooksTable (if you install Extensibility Accelerator).

9

About This Guide

This guide explains how to set up QuickTest Professional Web Add-in
Extensibility and use it to extend QuickTest support for third-party and
custom Web controls.

This guide assumes you are familiar with QuickTest functionality and should
be used together with the API References, the Toolkit Configuration Schema
Help, and the QuickTest Test Object Schema Help provided in the Web Add-in
Extensibility Help (Start > Programs > HP QuickTest Professional >
Extensibility > Documentation > Web Add-in Extensibility Help).

These documents should also be used in conjunction with the HP QuickTest
Professional User Guide, the Web section of the HP QuickTest Professional
Add-ins Guide, and the HP QuickTest Professional Object Model Reference
(available with the QuickTest Professional installation (Help >
QuickTest Professional Help from the QuickTest main window)).

Note: The information, examples, and screen captures in this guide focus
specifically on working with QuickTest tests. However, much of the
information applies equally to components.

Business components and scripted components are part of HP Business
Process Testing, which utilizes a keyword-driven methodology for testing
applications. For more information, see the HP QuickTest Professional User
Guide and the HP QuickTest Professional for Business Process Testing User Guide.

10

Who Should Read This Guide

This guide is intended for programmers, QA engineers, systems analysts,
system designers, and technical managers who want to extend QuickTest
support for Web custom controls.

To use this guide, you should be familiar with:

➤ Major QuickTest features and functionality

➤ QuickTest Professional Object Model

➤ QuickTest Professional Web Add-in

➤ Web programming (HTML and JavaScript)

➤ XML (basic knowledge)

QuickTest Professional Documentation Library

The QuickTest Professional Documentation Library provides a single-point
of access for QuickTest Professional documentation.

You can access the QuickTest Professional Documentation Library by using
the following:

➤ In QuickTest, select Help > QuickTest Professional Help.

➤ In the Start menu on the QuickTest computer, select Program Files > HP
QuickTest Professional > Documentation > HP QuickTest Professional
Help.

➤ Click in selected QuickTest windows and dialog boxes or press F1.

➤ View a description, syntax, and examples for a QuickTest test object,
method, or property by placing the cursor on it (in QuickTest) and
pressing F1.

11

Additional Online Resources

Troubleshooting & Knowledge Base accesses the Troubleshooting page on
the HP Software Support Web site where you can search the Self-solve
knowledge base. Choose Help > Troubleshooting & Knowledge Base. The
URL for this Web site is http://h20230.www2.hp.com/troubleshooting.jsp.

HP Software Support accesses the HP Software Support Web site. This site
enables you to browse the Self-solve knowledge base. You can also post to
and search user discussion forums, submit support requests, download
patches and updated documentation, and more. Choose Help > HP Software
Support. The URL for this Web site is www.hp.com/go/hpsoftwaresupport.

Most of the support areas require that you register as an HP Passport user
and sign in. Many also require a support contract.

To find more information about access levels, go to:

http://h20230.www2.hp.com/new_access_levels.jsp

To register for an HP Passport user ID, go to:

http://h20229.www2.hp.com/passport-registration.html

HP Software Web site accesses the HP Software Web site. This site provides
you with the most up-to-date information on HP Software products. This
includes new software releases, seminars and trade shows, customer support,
and more. Choose Help > HP Software Web site. The URL for this Web site
is www.hp.com/go/software.

12

Part I

Working with Web Add-in Extensibility

14

15

1
Introducing QuickTest Professional Web
Add-in Extensibility

QuickTest Professional Web Add-in Extensibility enables you to provide
high-level support for third-party and custom Web controls that are not
supported out-of-the-box by the QuickTest Professional Web Add-in.

This chapter includes:

➤ About QuickTest Professional Web Add-in Extensibility on page 16

➤ Extensibility Accelerator on page 17

➤ Identifying the Building Blocks of Web Add-in Extensibility on page 18

➤ Deciding When to Use Web Add-in Extensibility on page 20

➤ Understanding How to Implement Web Add-in Extensibility on page 28

➤ Web Add-in Extensibility Samples on page 30

Chapter 1 • Introducing QuickTest Professional Web Add-in Extensibility

16

About QuickTest Professional Web Add-in Extensibility

The QuickTest Professional Web Add-in provides built-in support for a
number of commonly used Web controls. You use QuickTest Professional
Web Add-in Extensibility to extend that support and enable QuickTest to
recognize additional Web controls.

When QuickTest learns an object in an application, it recognizes the object
as belonging to a specific test object class. This determines the identification
properties and test object operations of the test object that represents the
application’s object in QuickTest.

When QuickTest learns the controls on a Web page without Extensibility, it
ignores certain types of elements and does not create test objects to
represent the controls they define.

For other Web controls that are not supported out-of-the-box by the Web
Add-in, QuickTest creates a generic WebElement test object. This type of test
object might not have certain characteristics that are specific to the Web
control you are testing. Therefore, when you try to create test steps with this
test object, the available identification properties and test object operations
might not be sufficient.

For example, consider a custom Web control that is a special type of table
that QuickTest recognizes as a plain WebElement. WebElement test objects
do not support GetCellData operations. To create a test step that retrieves
the data from a cell in the table, you would need to create test objects to
represent each cell in the table, and create a complex test that accesses the
relevant cell’s test object to retrieve the data.

By creating support for a Web control using Web Add-in Extensibility, you
can direct QuickTest to recognize the control as belonging to a specific test
object class, and you can specify the behavior of the test object. You can also
extend the list of available test object classes that QuickTest is able to
recognize. This enables you to create tests that fully support the specific
behavior of your custom Web controls.

Chapter 1 • Introducing QuickTest Professional Web Add-in Extensibility

17

Extensibility Accelerator

An increasing number of Web applications are making use of Web 2.0-based
toolkits, such as ASP.NET AJAX, Dojo, YahooUI, and GWT to add dynamic
and interactive content to their sites. The controls in these toolkits are
complex and require sophisticated and flexible testing capabilities.

QuickTest Professional Web Add-in Extensibility enables you to extend the
Web Add-in to customize how QuickTest recognizes and interacts with
different types of controls. Until now, using Web Add-in Extensibility
consisted of manually developing and maintaining toolkit support sets.

Extensibility Accelerator for HP Functional Testing is a Visual Studio-like IDE
that facilitates the design, development, and deployment of these support
sets. It makes it faster and easier to create the required extensibility XML
files so that you can invest your main efforts in the development of the
JavaScript functions that will enable QuickTest to work with your custom
Web controls.

The Extensibility Accelerator user interface helps you define new test object
classes, operations, and properties. It also provides a point-and-click
mechanism you can use to map the test object classes you defined to
controls in your application. Extensibility Accelerator deployment
capabilities enable you to automatically deploy your new toolkit support set
to QuickTest or to package it so that you can share it with other QuickTest
users.

The Extensibility Accelerator for HP Functional Testing installation is
available from:

➤ The Add-in Extensibility and Web 2.0 Toolkits option in the
QuickTest Professional setup program.

➤ www.hp.com/go/functionaltestingWeb2

Chapter 1 • Introducing QuickTest Professional Web Add-in Extensibility

18

Identifying the Building Blocks of Web Add-in Extensibility

The sections below describe the main elements that comprise QuickTest
object support. These elements are the building blocks of Web Add-in
Extensibility. By extending the existing support of one or more of these
elements, you can develop the support you need to create meaningful and
maintainable tests.

Test Object Classes

In QuickTest, every object in an application is represented by a test object of
a specific test object class. The test object class determines the list of
identification properties and test object methods available in QuickTest for
this test object. The icon used to represent the test object in QuickTest, for
example in the Keyword View and Object Repository, is also determined by
the test object class.

Test Object Names

When QuickTest learns an object, it creates a unique name for each test
object on the page. A descriptive test object name enables you distinguish
between test objects of the same class and makes it easier to identify them in
your object repository and in tests.

By default, a test object is given the name of its test object class (appended
with an index if there is more than one test object of the same class on the
page). In many cases, this is not the ideal name for the custom control.

The test object name needs to be meaningful to the QuickTest user,
preferably using terminology that is relevant to your toolkit. QuickTest
displays this name in the Keyword View, in the Expert View, and in the
object repository.

Chapter 1 • Introducing QuickTest Professional Web Add-in Extensibility

19

Test Object Identification Properties

The test object class used to represent the Web control determines the list of
identification properties available for the test object. It also determines
which of these identification properties are used to uniquely identify the
control, which identification properties are available for checkpoints and
output values (in the Checkpoint Properties and Output Value Properties
dialog boxes), and which are selected by default for checkpoints. However,
the actual values of the identification properties are derived from the Web
control. Therefore, several Web controls that are represented by test objects
from the same test object class might have different definitions for the same
identification property.

Test Object Methods

The test object class used to represent the Web control determines the list of
test object methods for a test object. However, the same test object method
might operate differently for different Web controls represented by test
objects from the same test object class. This happens because depending on
the specific type of Web control, QuickTest may have to perform the test
object method differently.

Recording Events

One way to create QuickTest tests is by recording user operations on the
application. When you start a recording session, QuickTest listens for events
that occur on objects in the application and writes corresponding test steps.
The test object class used to represent a Web control determines which
events QuickTest can listen for on the Web control and what test step to
record for each event that occurs.

Chapter 1 • Introducing QuickTest Professional Web Add-in Extensibility

20

Deciding When to Use Web Add-in Extensibility

The QuickTest Professional Web Add-in provides a certain level of support
for most Web controls, but ignores controls defined as DIV or SPAN
elements. Before you extend support for a custom Web control, analyze it
from a QuickTest perspective to view the extent of this support and to
decide which elements of support you need to modify.

When you analyze the custom Web control, use the Object Spy, Keyword
View, Expert View, and the Record option. Make sure you examine each of
the elements described in "Identifying the Building Blocks of Web Add-in
Extensibility", above.

If you are not satisfied with the existing object identification or behavior,
your Web control is a candidate for Web Add-in Extensibility, as illustrated
in the following situations:

➤ QuickTest might recognize the control using a test object class that does
not fit your needs. You can use Web Add-in Extensibility to instruct
QuickTest to identify the custom control as belonging to a new test object
class that you create.

➤ The test object class that QuickTest uses for the control might be
satisfactory, but you would like to customize the behavior of certain test
object methods or identification properties. You can use Web Add-in
Extensibility to create a new test object class that extends the one
QuickTest uses, override the implementation of these properties and
methods with your own custom implementation, and instruct QuickTest
to use the new test object class.

➤ You might find that the test object names QuickTest generates for all
objects of a certain control type are identical (except for a unique
counter) or that the name used for the test object does not clearly indicate
the control it represents. You can use Web Add-in Extensibility to create a
new test object class that extends the one QuickTest uses, modify how
QuickTest names test objects of your new class, and instruct QuickTest to
use the new test object class.

Chapter 1 • Introducing QuickTest Professional Web Add-in Extensibility

21

➤ QuickTest might identify individual sub-controls within your custom
control, but not properly identify your main control. For example, if your
main custom control is a digital clock with edit boxes containing the
hour and minute digits, you might want changes in the time to be
recognized as SetTime operations on the clock control and not as Set
operations on the edit boxes. You can use Web Add-in Extensibility to
modify how events that occur on child controls are treated.

➤ During a record session, when you perform operations or trigger events
on your control, QuickTest might not record a step at all, or it might
record steps that are not specific to the control’s behavior. Alternatively,
QuickTest might record many steps for an event that should be
considered a single operation, or it might record a step when no step
should be recorded.

You can configure the events you want to record for each type of existing
Web object by modifying the Web event configuration. For more
information, see the section on configuring Web event recording in the
HP QuickTest Professional Add-ins Guide.

If Web event configuration does not sufficiently enable you to customize
recording, for example, if you want to modify the steps that QuickTest
records when certain events occur, you can use Web Add-in Extensibility.

Chapter 1 • Introducing QuickTest Professional Web Add-in Extensibility

22

Analyzing the Default QuickTest Support and Extensibility
Options for a Sample Custom Control
The following example illustrates how you can use Web Add-in Extensibility
to improve the QuickTest support of a custom control.

The Book control shown below represents a book sold on the Internet. This
control is not specifically supported on QuickTest.

This control contains information including the title of the book, its
authors, the price for a new copy of the book, and the lowest price for which
a used copy can be purchased.

Clicking on the title of the book opens a page with more details about the
book. Clicking on an author name opens a page with a list of books by the
same author. Clicking on Used opens a UsedBooks page, listing all of the
available used copies of the book, and their prices.

Chapter 1 • Introducing QuickTest Professional Web Add-in Extensibility

23

The Book control is implemented as a Web table, as follows:

Therefore, if you point to this control using the Object Spy, QuickTest
recognizes it as a WebTable object named according to the title of the book.

<table class="Book">
<tr>

<td class="BookImageCell" rowspan="4">

</td>
<td class="BookCell">

The History of QuickTest Professional

</td>
</tr>
<tr>

<td class="BookCell">
By: Jane Doe,

John Doe
</td>

</tr>
<tr>

<td class="BookCell">
</td>

</tr>
<tr>

<td class="BookCell">
New: 59.99$

Used: from 29.99$
</td>

</tr>
</table>

Chapter 1 • Introducing QuickTest Professional Web Add-in Extensibility

24

The icon used for the test object is the standard WebTable class icon.

Chapter 1 • Introducing QuickTest Professional Web Add-in Extensibility

25

If you record on the Book control without implementing support for it, the
Keyword View looks like this:

In the Expert View, the recorded test looks like this:

Note that only simple Click steps are recorded, each attributed to a different
object defined within the book control. Click operations are recorded
independently on Web Link test objects with different names, or on the
Book image test object. These steps are not helpfully meaningful in the
context of this control.

Chapter 1 • Introducing QuickTest Professional Web Add-in Extensibility

26

If you use Web Add-in Extensibility to support the Book control, the result is
more meaningful. QuickTest recognizes the control as a WebExtBook test
object (still named according to the book title) and uses a different icon. The
identification properties include relevant information, such as authors and
min_used_price, which provide the names of all the book’s authors and the
lowest price for which a used copy can be purchased.

Chapter 1 • Introducing QuickTest Professional Web Add-in Extensibility

27

When you are ready to create a test on the control, the Select,
GoToAuthorPage, and GoToUsedBookPage methods are supported. These
methods can be recorded or you can select them manually in the Operation
column of the Keyword View. When recording a test, both clicking on the
book’s image and clicking its title result in a Select step being recorded.

You can also create a checkpoint to check the value of identification
properties, for example, authors (that provides a string comprised of all the
books authors).

In the Keyword View, a test created by recording the same user operations as
the test shown above looks like this:

In the Expert View, the test looks like this:

This test is more meaningful and relevant for the Book control’s
functionality.

Chapter 1 • Introducing QuickTest Professional Web Add-in Extensibility

28

Understanding How to Implement Web Add-in Extensibility

Using Web Add-in Extensibility, you can implement full support for all
QuickTest features for your controls. You can implement Web Add-in
Extensibility support for a set of controls (also referred to as a toolkit or
custom toolkit) by developing a toolkit support set.

Implementing Web Add-in Extensibility consists of the following stages:

 1 Planning the Toolkit Support Set

➤ Determine the set of Web controls that comprise your custom toolkit.

➤ Define the test object model by determining which test objects and
operations you want to support based on the controls and business
processes supported by your toolkit.

 2 Developing the Toolkit Support Set

A Web Add-in Extensibility toolkit support set is comprised of the
following files:

➤ One test object configuration file, which describes the test object
model that you want QuickTest to use for your toolkit.

➤ One toolkit configuration file, which describes which test object class
represents each control in the toolkit and how QuickTest interacts
with each control.

➤ One or more files containing JavaScript functions that QuickTest can
call to perform operations on the custom controls.

 3 Deploying and Testing the Toolkit Support Set

To deploy your toolkit support set and enable QuickTest to support your
controls, you need to copy the files you created to specific locations
within the QuickTest installation folder.

After you deploy the toolkit support set, when QuickTest opens, it
displays your toolkit name as a child node under the Web Add-in node in
the Add-in Manager. If you select the check box for your toolkit,
QuickTest supports the controls in this toolkit using the toolkit support
set that you developed.

Chapter 1 • Introducing QuickTest Professional Web Add-in Extensibility

29

 4 Enhancing the Toolkit Support Set

After you have created and tested basic Web Add-in Extensibility support
for your controls you can enhance your toolkit support set by using some
of the more complex options to fine tune your support.

For more information on each of these stages, see:

➤ "Planning QuickTest Support for Your Toolkit" on page 31

➤ "Developing Support for Your Toolkit" on page 41

➤ "Deploying the Toolkit Support Set" on page 101

When you develop a Web Add-in Extensibility toolkit support set, you can
start by creating a simple and basic support set and deploying it to
QuickTest. This enables QuickTest to recognize your controls correctly and
enables QuickTest user to create and run tests on the controls. You can then
enhance your support to enable more complex capabilities, such as filtering
the child objects learned with a control and more advanced handling of
events when recording a test.

You can learn how to develop a toolkit support set hands-on, by performing
the lessons in Part II, "Tutorial: Learning to Create Web Custom Toolkit
Support."

Chapter 1 • Introducing QuickTest Professional Web Add-in Extensibility

30

Web Add-in Extensibility Samples

The Web 2.0 Feature Pack for HP Functional Testing provides a number of
completed toolkit support sets from which you can learn more about Web
Add-in Extensibility.

➤ Installing the Web 2.0 Toolkit Support for QuickTest Professional from
this feature pack on a QuickTest computer installs child add-ins under the
Web Add-in that support some public Web 2.0 toolkits: ASP.NET AJAX,
GWT, YahooUI, and Dojo. These add-ins are toolkit support sets that were
developed using Web Add-in Extensibility. The files that comprise these
toolkit support sets are available in <QuickTest Professional installation
folder>\dat\Extensibility\Web folder and in the Toolkits subfolder within
this folder.

➤ Installing Extensibility Accelerator installs sample Web Add-in
Extensibility projects that contain the Web 2.0 toolkit support sets
mentioned above.

The sample projects are installed in the %ALLUSERSPROFILE%\
Documents\ExtAccTool\Samples folder, and are also accessible from the
Extensibility Accelerator Start Page. You can open these projects in
Extensibility Accelerator and browse through the files, functions, and
comments to learn more about how these support sets are designed. You
can also modify these sample projects and experiment with them. Backup
copies of the sample projects are installed in the <Extensibility Accelerator
installation folder>\Help\Samples folder.

➤ Installing Extensibility Accelerator also installs a sample Book application,
and the Web Add-in Extensibility project containing the toolkit support
set for this application.

➤ The application is installed in %ALLUSERSPROFILE%\Documents\
ExtAccTool\Samples\WebExtSample\Application\Book.htm

➤ The Web Add-in Extensibility project containing the toolkit support
set for the Book application is installed in %ALLUSERSPROFILE%\
Documents\ExtAccTool\Samples\WebExtSample.

In Part II, "Tutorial: Learning to Create Web Custom Toolkit Support", you
create a similar toolkit support set for the Book application and deploy it
to QuickTest (without using Extensibility Accelerator).

31

2
Planning QuickTest Support for Your
Toolkit

Before you begin to create support for a custom toolkit, you must carefully
plan the support. Detailed planning of how you want QuickTest to
recognize the custom controls enables you to correctly build the
fundamental elements of the custom toolkit support.

This chapter includes:

➤ About Planning QuickTest Support for Your Toolkit on page 32

➤ Preparing to Create Support for a Custom Toolkit on page 32

➤ Determining the Toolkit Related Information on page 33

➤ Determining the Support Information for Each Custom Control Type
on page 34

➤ Where Do You Go from Here? on page 39

Note: This chapter assumes familiarity with the concepts presented in
Chapter 1, "Introducing QuickTest Professional Web Add-in Extensibility."

Chapter 2 • Planning QuickTest Support for Your Toolkit

32

About Planning QuickTest Support for Your Toolkit

Extending the QuickTest Professional Web Add-in’s support to recognize
custom controls is a process that requires detailed planning. To assist you
with this, the sections in this chapter include sets of questions related to the
implementation of support for your custom toolkit and its controls. When
you create your toolkit support set, you implement it based on the answers
you provide to these questions.

The first step is determining general information related to your custom
toolkit, after which you will define the specific information related to each
control you want to support.

Preparing to Create Support for a Custom Toolkit

Before you begin planning support for custom Web controls, make sure you
have full access to the controls and understand their behavior. You must
have an application or Web page in which you can view the controls in
action, and view the source that implements them.

You do not need to modify any of a custom control’s sources to support it in
QuickTest, but you do need to be familiar with them. Make sure you know
what elements and attributes the control comprises, what HTML properties
it has, the events for which you can listen, and so on.

Chapter 2 • Planning QuickTest Support for Your Toolkit

33

Determining the Toolkit Related Information

When you plan your toolkit support set, begin by deciding the general
toolkit related information:

➤ Provide a unique name for the toolkit or environment for which you are
creating support.

QuickTest displays the name of your environment in all of the dialog
boxes that display lists of add-ins or supported environments. For
example, when QuickTest opens, it displays the name of your
environment as a child of the Web Add-in in the Add-in Manager dialog
box and the QuickTest user can specify whether to load support for that
environment.

➤ Decide which controls this toolkit support set will support.

➤ Decide what files will contain the JavaScript functions that you write for
the toolkit support set.

➤ You can specify one default file for the JavaScript functions that
implement support for the different QuickTest functionalities and the
different test object classes. In addition, you can define separate files
for your implementation functions for the different functionalities
and test object classes.

➤ You can specify one file that contains common JavaScript functions
that you call from within others.

➤ Decide whether to use one JavaScript function for the whole toolkit to
match test object classes to the custom controls. For more information,
"Teaching QuickTest to Identify the Test Object Class to Use for a Custom
Web Control" on page 67.

When you design the toolkit support set, you specify this information in the
toolkit configuration file. For more information, see "Understanding the
Toolkit Configuration File" on page 57.

Chapter 2 • Planning QuickTest Support for Your Toolkit

34

Determining the Support Information for Each Custom
Control Type

When planning custom support for a specific type of control, carefully
consider how you want QuickTest to recognize controls of this type—what
type of test object you want to represent the controls in QuickTest tests,
which identification properties and test object methods you want to use,
and so on. Make these decisions based on the business processes that might
be tested using this type of control and operations that users are expected to
perform on these controls.

You can run an application containing the custom control and analyze the
control from a QuickTest perspective using the Object Spy, the Keyword
View, and the Record option. This enables you to see how QuickTest
recognizes the control without custom support, and helps you to determine
what you want to change.

Note: Web Add-in Extensibility can be used to create support for Web
controls within Web pages and frames. You cannot develop custom support
for Web pages or frames themselves.

To view an example of analyzing a custom control using QuickTest, see
"Analyzing the Default QuickTest Support and Extensibility Options for a
Sample Custom Control" on page 22.

This section also includes:

➤ "Understanding the Web Add-in Extensibility Planning Checklist" on
page 35

➤ "Web Add-in Extensibility Planning Checklist" on page 38

Chapter 2 • Planning QuickTest Support for Your Toolkit

35

Understanding the Web Add-in Extensibility Planning
Checklist
When you plan the support for a specific type of control, you must ask
yourself a series of questions. These are explained below and are available in
an abbreviated, printable checklist on page 38.

 1 Make sure you have access to an application that runs the custom control
on a computer with QuickTest installed.

 2 Is there an existing Web test object class which can be extended to
represent the custom control? If so, which one? If not, your new test
object class needs to extend the WebElement class.

 3 If the new test object class extends a base test object class other than
WebElement, does the control contain an element of the type normally
represented by the base test object class (also referred to as a base
element)?

➤ If not, you will need to implement test object methods inherited from
the base class that not supported by WebElement. In addition, you will
need to design a method that returns values for all of the test class’
identification properties that are not supported by WebElement.

➤ If the control includes a base element, is it the root Web element of the
control?

➤ If it is the root element, QuickTest will use its internal
implementation for the inherited test object methods and
identification properties that you do not override.

➤ If the base element is not the root element, you need to implement
a JavaScript function that returns the base element.

Chapter 2 • Planning QuickTest Support for Your Toolkit

36

 4 Define the details for the new test object class that will represent the
custom control in QuickTest tests.

When you design the toolkit support set, you specify this information in
the test object configuration file. For more information, see
"Understanding the Test Object Configuration File" on page 46.

 a Specify the test object class name.

 b Do you want the new test object class to belong to a different generic
type than the one to which the base class belongs? If so, specify the
generic type. (For example, if your new test object class extends
WebElement (whose generic type is object), but you would like
QuickTest to group this test object class with the edit test object
classes.)

 c Do you want QuickTest to use a different icon for the new test object?
If so, make sure the icon file is available in an uncompressed .ico
format. Recommended location: <QuickTest Professional installation
folder>\dat\Extensibility\<QuickTest add-in name>\Toolkits\
<Environment name>\Res.

 d Specify one or more identification properties that can be used to
uniquely identify the control (in addition to the test object class).

 e Specify the default test object method to be displayed in the Keyword
View and Step Generator when a step is generated for a test object of
this class.

 f Do you want to provide a Help file, which QuickTest will open when
F1 is pressed for test objects of this class in the Keyword View or Expert
View?
If so, make sure that the Help file is available in .chm format.
Recommended location: <QuickTest Professional installation
folder>\dat\Extensibility\<QuickTest add-in name>\Toolkits\
<Environment name>\Help.

 5 Decide how to design the process of identifying the test object class to use
for this control.

➤ Do you want to limit the process to HTML elements with specific
HTML tags? If so, which? Make sure to include all HTML tags that can
be relevant for your custom control.

Chapter 2 • Planning QuickTest Support for Your Toolkit

37

➤ Which HTML properties will you use to determine what test object
class represents controls of this type?

➤ Do you need to create different identification rules to use when the
control runs on different browsers?

For more information, see "Teaching QuickTest to Identify the Test Object
Class to Use for a Custom Web Control" on page 67.

 6 Specify the basis for naming the test object that represents the control.

 7 What identification properties do you want to support? Which properties
should be displayed in the Checkpoint Properties and Output Value
Properties dialog boxes in QuickTest, and which should be selected by
default in this dialog box? Which identification properties can be used for
Smart Identification?

 8 What test object methods do you want to support? Specify the method
argument types and names, and whether the method returns a value in
addition to the return code.

Optionally, specify the location of a Help file, which QuickTest will open
when F1 is pressed in the Keyword View or Expert View or the Operation
Help button is clicked in the Step Generator for a test object method.

 9 Do you want to dynamically provide a list of possible values for any test
object method arguments? Which?

 10 Which types of children should QuickTest learn with the control?

 11 Should the Object Spy display test objects of this class?

 12 Do you want to provide support for creating QuickTest tests by recording?

If so, list the events you want to record on the custom control during a
QuickTest recording session.

 13 Determine what parts of the support need to be designed in the toolkit
configuration file and what parts need JavaScript functions.

Chapter 2 • Planning QuickTest Support for Your Toolkit

38

Web Add-in Extensibility Planning Checklist
Use this checklist to plan the support for your custom control.

Custom Control Support Planning Checklist
Specify in
Toolkit
XML?

Support by
JavaScript
function?

The sources for this custom control are located in: n/a n/a

Specify the Web test object base class that the new test object class
extends: (Default—WebElement)

n/a n/a

Is the base test object class WebElement?
Yes/No

If No, is there a base element (an element that matches the base
test object class)?
Yes/No

If there is a base element, do you need a JavaScript function to
return it?Yes/No

Yes/No Yes/No

Specify the New Web test object class details:

➤ Test object class name:

➤ Generic type (optional):

➤ Icon file location (optional):
➤ Identification properties for description:

➤ Default test object method:

➤ Help file location:

n/a n/a

Specify the basis for identifying the test object class to use for the
control (consider different browsers):

Yes/No Yes/No

Specify the basis for naming the test object: n/a Yes

List the identification properties to support. Mark which should
be available for checkpoints and output values (and which should
be selected by default in checkpoints) and which (if any) should
be used for Smart Identification:

Yes/No Yes/No

Chapter 2 • Planning QuickTest Support for Your Toolkit

39

Where Do You Go from Here?

After you finish planning the custom toolkit support, you create the toolkit
support set to support the custom toolkit as per your plan. Chapter 3,
"Developing Support for Your Toolkit" explains how to develop the toolkit
support set.

List the test object methods to support (if required, include
arguments, return values, Help file location and Help ID):

Yes/No Yes/No

Provide a dynamic list of values for any test object method
arguments?
Yes/No (default)

If so, list the arguments:

n/a Yes/No

Specify the types of children that QuickTest should learn with the
control:

Yes/No Yes/No

Display test objects of this class in the Object Spy?
Yes (default)/No

Yes/No n/a

Provide support for recording?
Yes/No

If so, list the events that should trigger recording:

Yes/No Yes/No

Custom Control Support Planning Checklist
Specify in
Toolkit
XML?

Support by
JavaScript
function?

Chapter 2 • Planning QuickTest Support for Your Toolkit

40

41

3
Developing Support for Your Toolkit

This chapter explains how to create support for a custom Web toolkit. It
explains what files you have to create for the toolkit support set, the
structure and content of these files, and how to use them to support the
different QuickTest capabilities for your environment.

For information on where the toolkit support set files should be stored to
activate the support you design, see Chapter 4, "Deploying the Toolkit
Support Set".

This chapter includes:

➤ About Custom Toolkit Support on page 42

➤ Creating a Custom Toolkit Support Set on page 44

➤ Understanding the Test Object Configuration File on page 46

➤ Understanding the Toolkit Configuration File on page 57

➤ Designing JavaScript Functions for Your Toolkit Support Set on page 60

➤ Teaching QuickTest to Identify the Test Object Class to Use for a Custom
Web Control on page 67

➤ Testing the Toolkit Support Set During Development on page 77

➤ Logging and Debugging the Custom Support on page 80

➤ Implementing Support for Test Object Methods on page 83

➤ Implementing Support for Identification Properties on page 89

➤ Implementing a Filter for Learning Child Controls on page 93

➤ Implementing Support for Recording on page 95

➤ Troubleshooting and Limitations - Developing Support on page 99

Chapter 3 • Developing Support for Your Toolkit

42

About Custom Toolkit Support

You implement Web Add-in Extensibility by creating a toolkit support set
for each Web toolkit you want to support. The toolkit support set is
comprised of XML configuration files and JavaScript functions. The XML
configuration files define the test object classes that you create to support
the custom Web controls and map them to the controls. In addition, they
define how QuickTest operates on the custom controls. The JavaScript
functions provide an interface between QuickTest and the application being
tested, retrieving information about the control and performing operations
on it.

This chapter describes the different files, definitions, and functions that you
must include in a custom support set. For more information, see the
QuickTest Web Add-in Extensibility Toolkit Configuration Schema Help, the
QuickTest Web Add-in Extensibility API Reference, the QuickTest Web Add-in
Extensibility JavaScript Function Reference, and the QuickTest Test Object Schema
Help (available in the QuickTest Professional Web Add-in Extensibility Help).

Extensibility Accelerator provides sample projects containing toolkit
support sets that extend QuickTest’s support for some public Web 2.0
toolkits. These are the support sets for ASPAjax, GWT, YahooUI, and Dojo,
which are installed on QuickTest when you install the Web 2.0 Toolkit
Support for QuickTest Professional. The samples also include Help files for
the test object models that QuickTest uses to support testing controls from
these toolkits.

The sample projects are installed under %ALLUSERSPROFILE%\Documents\
ExtAccTool\Samples. You can open the projects in Extensibility Accelerator
and browse through the toolkit support set files to see examples of how Web
Add-in Extensibility can be implemented. Some of the examples in this
chapter are taken from these files.

Note: Before you actually begin to create a toolkit support set, you must
plan it carefully. For more information, see "Planning QuickTest Support for
Your Toolkit" on page 31.

Chapter 3 • Developing Support for Your Toolkit

43

Developing Browser-Independent Support
Many Web controls are implemented differently and operate differently on
different browsers, because of the way different DOM properties are
implemented on the different browsers.

To enable your custom support to work for both Microsoft Internet Explorer
and Mozilla Firefox, you must address the following:

➤ If the control’s DOM structure is different in different browsers, QuickTest
may need to use different logic to identify which test object class to use
for the control when learning objects or running steps on different
browsers. For information on how to define browser-specific
identification conditions, see "Using the Conditions Elements" on
page 70.

➤ When you write your JavaScript functions, use jQuery function calls to
create code that can run smoothly on different types and versions of
browsers. For more information see "Creating Browser-Independent
Support" on page 62.

➤ Web Add-in Extensibility provides the GetBrowserType and
GetBrowserVersion utility methodsm, which you can use to determine
the type and version of the browser that is currently running a control.
This enables your JavaScript code to treat a control differently, depending
on the browser that is currently running the control.

Chapter 3 • Developing Support for Your Toolkit

44

Creating a Custom Toolkit Support Set

A Web Add-in Extensibility toolkit support set is comprised of the following
files:

➤ One test object configuration file, which describes the test object model
for your toolkit: The test object classes that QuickTest should use to
represent controls in your toolkit, and the identification properties and
test object methods that need to be supported for the test objects. For
more information, see "Understanding the Test Object Configuration File"
on page 46.

Note: QuickTest loads of all the test object class definitions (from all of
the test object configuration files) when it opens, regardless of the custom
toolkit for which they were created. This enables you to use the same test
object class definitions when supporting different custom toolkits.

➤ One toolkit configuration file, which describes which test object class
represents each control in the toolkit and how QuickTest interacts with
each control. For more information, see "Understanding the Toolkit
Configuration File" on page 57.

➤ One or more files containing JavaScript functions that QuickTest can call
to retrieve information from or perform operations on the custom
controls.

➤ Optionally, icon files that contain icons used in QuickTest to represent
the test object classes that you define, and Help files that describe these
test object classes and their methods and properties.

Chapter 4, "Deploying the Toolkit Support Set" describes the names of the
different files required for a toolkit support set, and the folder structure in
which they are stored.

Chapter 3 • Developing Support for Your Toolkit

45

To create a custom toolkit support set:

 1 Choose a unique name to represent the toolkit or environment for which
you are creating support.

You use the custom toolkit name to compose the name of the toolkit
folder and the toolkit configuration file. The name must start with a letter
and can contain only alphanumeric characters and underscores.

Providing unique toolkit names enables a single QuickTest installation to
support numerous custom toolkit support sets simultaneously. For this
reason, a name such as MyToolkit is not recommended.

 2 Create a folder for your toolkit support set.

You can choose any convenient name and location for this folder.

 3 Create the following folder structure:

➤ <toolkit support set folder>\Toolkits\<toolkit environment
name>\JavaScript.

➤ <toolkit support set folder>\Toolkits\<toolkit environment
name>\Res.

➤ <toolkit support set folder>\Toolkits\<toolkit environment
name>\Help.

 4 In the toolkit support set folder, create a file named <toolkit environment
name>TestObjects.xml. This is the test object configuration file.

 5 In the <toolkit support set folder>\Toolkits\<toolkit environment name>
folder, create a file named <toolkit environment name>.xml. This is the
toolkit configuration file.

 6 In the <toolkit support set folder>\Toolkits\<toolkit environment
name>\JavaScript folder, create one or more files that will contain the
JavaScript functions you design.

As a best practice, create one JavaScript file for each test object class. In
addition, you can create one JavaScript file that contains JavaScript
functions called from JavaScript functions in the other files.

 7 You can use the <toolkit support set folder>\Toolkits\<toolkit
environment name>\Res folder to store any icons that you provide to
represent your test object classes in QuickTest.

Chapter 3 • Developing Support for Your Toolkit

46

 8 You can use the <toolkit support set folder>\Toolkits\<toolkit
environment name>\Help folder to store any Help (.chm) files that
describe the test objects in your environment.

Understanding the Test Object Configuration File

The first stage of developing support for a custom toolkit is to introduce the
test object model that you want QuickTest to use to test your applications
and controls. To do this, you define the test object model in the test object
configuration XML file. You need to create a test object class for every type
of custom control for which you want to extend or modify QuickTest
support.

In a test object configuration XML, you define the test object classes (for
example, their identification properties, the test object methods they
support, and so on).

You create a ClassInfo element for each test object class that you want to
define. In addition, you define the name of the environment or custom
toolkit for which the test object classes are intended (in the PackageName
attribute of the TypeInformation element), and the QuickTest add-in which
these test object classes extend (in the AddinName attribute of the
TypeInformation element).

If the relevant add-in is not loaded when QuickTest opens, QuickTest does
not load the information in this XML. Similarly, if the name of the
environment or custom toolkit is displayed in the Add-in Manager dialog
box and its check box is not selected, the information in this XML is not
loaded.

For more information, see "How QuickTest Loads the Test Object
Configuration XML" on page 51.

Chapter 3 • Developing Support for Your Toolkit

47

The sections below describe the information that you can include in a test
object class definition.

Class Name and Base Class

The name of the new test object class and its attributes, including the base
class—the test object class that the new test object class extends A new test
object class extends an existing Web QuickTest test object class, directly or
indirectly. The base class may be a class delivered with QuickTest or a class
defined using Web Add-in Extensibility.

By default, the base class is WebElement.

The test object class name must be unique among all of the environments
whose support a QuickTest user might load simultaneously. For example, do
not use names of test object classes from existing QuickTest add-ins, such as
WebButton, WebEdit, etc.

Note:

➤ A test object class inherits the base class’ test object operations (methods
and properties), generic type, default operation, and icon. Identification
properties are not inherited.

➤ If you create test object classes that extend test object classes defined in
another toolkit support set, you create a dependency between the two
toolkit support sets. Whenever you select to load the extending toolkit
support set in the QuickTest Add-in Manager, you must also select to load
the toolkit support set that it extends.

Chapter 3 • Developing Support for Your Toolkit

48

Generic Type

The generic type for the new test object class, if you want the new test object
class to belong to a different generic type than the one to which its base
class belongs. (For example, if your new test object class extends
WebElement (whose generic type is object), but you would like QuickTest to
group this test object class with the edit test object classes.)

Generic types are used when filtering objects (for example, in the Step
Generator’s Select Object for Step dialog box and when adding multiple test
objects to the object repository). Generic types are also used when creating
documentation strings for the Documentation column of the Keyword View
(if they are not specifically defined in the test object configuration file).

Test Object Operations

A list of operations for the test object class, including the following
information for each operation:

➤ The arguments, including the argument type (for example, String or
Integer), direction (In or Out), whether the argument is mandatory, and, if
not, its default value.

➤ Whether a dynamic list of possible values for this argument can be
retrieved from the supported control and displayed in the Keyword View,
Expert View, and Step Generator.

➤ The operation description (shown in the Object Spy and as a tooltip in
the Keyword View and Step Generator).

➤ The Documentation string (shown in the Documentation column of the
Keyword View and in the Step Generator).

➤ The return value type.

➤ A context-sensitive Help topic to open when F1 is pressed for the test
object operation in the Keyword View or Expert View, or when the
Operation Help button is clicked for the operation in the Step Generator.
The definition includes the Help file path and the relevant Help ID within
the file.

Chapter 3 • Developing Support for Your Toolkit

49

Default Operation

The test object operation that is selected by default in the Keyword View
and Step Generator when a step is generated for an object of this class.

Identification Properties

A list of identification properties for the test object class. You can also
define:

➤ The identification properties that are used for the object description.

Tip: Include the html tag property in the object description to facilitate
faster object identification in QuickTest.

➤ The identification properties that are used for smart identification. (This
information is relevant only if smart identification is enabled for the test
object class. To enable smart identification, use the Object Identification
dialog box in QuickTest.)

➤ The identification properties that are available for use in checkpoints and
output values.

➤ The identification properties that are selected by default for checkpoints
(in the QuickTest Checkpoint Properties dialog box).

Icon File

The path of the icon file to use for this test object class (Optional. If not
defined, the base class’ icon is used.) The file can be a .dll or .ico file.

Help File

A context-sensitive Help topic to open when F1 is pressed for the test object
in the Keyword View or Expert View. The definition includes the .chm Help
file path and the relevant Help ID within the file.

For information on the structure and syntax of a test object configuration
XML, see QuickTest Test Object Schema Help (available in the QuickTest
Professional Web Add-in Extensibility Help).

Chapter 3 • Developing Support for Your Toolkit

50

Sample Test Object Configuration XML

The following example shows the definition of the WebExtUsedBooks test
object definition, which is part of the WebExtSample toolkit used for the
tutorial section of this guide:

This example shows that the WebExtUsedBooks test object class extends the
WebTable test object class. The WebExtUsedBooks test object class uses the
WebBookList.ico icon file, its default test object method is SelectBook
(which has one Integer mandatory input parameter: BookIndex), and it has
one additional identification property: title.

One identification property is defined for the WebExtUsedBooks test object
class: title. This identification property is used in the object description,
available for checkpoints and output values, and selected by default in the
Checkpoint Properties dialog box in QuickTest.

<ClassInfo BaseClassInfoName="WebTable" GenericTypeID="Table"
DefaultOperationName="SelectBook" Name="WebExtUsedBooks">

<IconInfo
IconFile="INSTALLDIR\Dat\Extensibility\Web\Toolkits\WebExtSample\

Res\WebBookList.ico"/>
<TypeInfo>

<Operation ExposureLevel="CommonUsed" Name="SelectBook"
PropertyType="Method">

<Description>
Selects the radio button for the specified book and clicks Select.

</Description>
<Documentation>

<![CDATA[Select the radio button for the book with index %a1
and click Select.]]>

</Documentation>
<Argument Name="BookIndex" IsMandatory="true" Direction="In">

<Type VariantType="Integer"/>
</Argument>

</Operation>
</TypeInfo>
<IdentificationProperties>

<IdentificationProperty ForDefaultVerification="true" ForVerification="true"
ForDescription="true" Name="title"/>

</IdentificationProperties>
</ClassInfo>

Chapter 3 • Developing Support for Your Toolkit

51

See also:

➤ "How QuickTest Loads the Test Object Configuration XML" on page 51

➤ "Extending an Existing Test Object Class" on page 54

➤ "Providing a Help File for Customized Test Object Classes" on page 56

How QuickTest Loads the Test Object Configuration XML

Each time you run QuickTest, it reads all of the test object configuration
XMLs and merges the information for each test object class from the
different XMLs into one test object class definition. For more information,
see "Understanding How QuickTest Merges Test Object Configuration Files"
on page 52.

The following attributes of the Identification Property element in the test
object configuration file specify information that can be modified in
QuickTest (using the Object Identification dialog box):
AssistivePropertyValue, ForAssistive, ForBaseSmartID, ForDescription,
ForOptionalSmartID, and OptionalSmartIDPropertyValue. These attributes
determine the lists of identification properties used for different purposes in
QuickTest.

Therefore, by default, QuickTest reads the values of these attributes from the
XML only once, to prevent overwriting any changes a user makes using the
Object Identification dialog box. In this way, QuickTest provides persistence
for the user defined property lists. For more information, see "Modifying
Identification Property Attributes in a Test Object Configuration File" on
page 105.

Chapter 3 • Developing Support for Your Toolkit

52

Understanding How QuickTest Merges Test Object
Configuration Files

Each time you open QuickTest, it reads all of the test object configuration
files located in the <QuickTest installation folder>\dat\Extensibility\
<QuickTest add-in name> folders. QuickTest then merges the information
for each test object class from the different files into a single test object class
definition, according to the priority of each test object configuration file.

QuickTest ignores the definitions in a test object configuration file in the
following situations:

➤ The Load attribute of the TypeInformation element is set to false.

➤ The environment relevant to the test object configuration file is displayed
in the Add-in Manager dialog box, and the QuickTest user selects not to
load the environment.

You define the priority of each test object configuration file using the
Priority attribute of the TypeInformation element.

If the priority of a test object configuration file is higher than the existing
class definitions, it overrides any existing test object class definitions,
including built-in QuickTest information. For this reason, be aware of any
built-in functionality that will be overridden before you change the priority
of a test object configuration file.

When multiple test object class definitions exist, QuickTest must handle any
conflicts that arise. The following sections describe the process QuickTest
follows when ClassInfo, ListOfValues, and Operation elements are defined in
multiple test object configuration files. All of the IdentificationProperty
elements for a specific test object class must be defined in only one test
object configuration file.

ClassInfo Elements

➤ If a ClassInfo element is defined in a test object configuration file with a
priority higher than the existing definition, the information is appended
to any existing definition. If a conflict arises between ClassInfo definitions
in different files, the definition in the file with the higher priority
overrides (replaces) the information in the file with the lower priority.

Chapter 3 • Developing Support for Your Toolkit

53

➤ If a ClassInfo element is defined in a test object configuration file with a
priority that is equal to or lower than the existing definition, the differing
information is appended to the existing definition. If a conflict arises
between ClassInfo definitions in different files, the definition in the file
with the lower priority is ignored.

ListOfValues Elements

➤ If a conflict arises between ListOfValues definitions in different files, the
definition in the file with the higher priority overrides (replaces) the
information in the file with the lower priority (the definitions are not
merged).

➤ If a ListOfValues definition overrides an existing list, the new list is
updated for all arguments of type Enumeration that are defined for
operations of classes in the same test object configuration file.

➤ If a ListOfValues is defined in a configuration file with a lower priority
than the existing definition, the lower priority definition is ignored.

Operation Elements

➤ Operation element definitions are either added, ignored, or overridden,
depending on the priority of the test object configuration file.

➤ If an Operation element is defined in a test object configuration file with
a priority higher than the existing definition, the operation is added to
the existing definition for the class. If a conflict arises between Operation
definitions in different files, the definition in the file with the higher
priority overrides (replaces) the definition with the lower priority (the
definitions are not merged).

Chapter 3 • Developing Support for Your Toolkit

54

Extending an Existing Test Object Class
If there is an existing test object class that provides partial support for your
control, but needs some modification, for example, a different naming
convention for test objects in the class, or additional or modified test object
methods, you create a new test object class to represent the control. When
you create the new test object class, you base this test object class on the
existing test object class, inheriting all of its test object methods.

You can then extend the functionality of this test object class by defining
and implementing additional test object methods and identification
properties. In addition, you can override existing test object methods by
providing an alternate implementation for them. You define the new or
changed methods and properties in the test object configuration file, and
design their implementation using JavaScript functions.

To extend an existing test object class, you define the name of the base test
object class in the ClassInfo\BaseClassInfoName attribute in the ClassInfo
element for the new test object class in the test object configuration file.
This declares that the new test object class supports all of the test object
methods of the base test object class in addition to any that you define for
the new test object class.

How to Choose a Base Class

When you choose a test object class to extend consider the following:

➤ Your test object class inherits the operation definitions from the test
object class. Choose a test object class with a set of operations
functionally relevant for your control.

➤ To inherit the implementation for the base class operations, your control
must include an element of the type that matches the base test object
class.

Chapter 3 • Developing Support for Your Toolkit

55

How to Make Sure That All Methods and Properties Are
Implemented

You must ensure that all of the inherited test object methods are
implemented and not only declared. One way to do this is to write
JavaScript functions to support each inherited test object method. Another,
simpler way is to ensure that the control includes an element of the type
that matches the base test object class. This element is referred to as the base
element. QuickTest can then use its internal implementation for the
inherited test object methods that you do not specifically implement for the
custom control, communicating with the base element.

In addition, if the control includes a base element, QuickTest uses the base
test object class implementation to retrieve the identification property
values when the following conditions are met:

➤ In the test object configuration file, you defined identification properties
for the new test object class with the same names as properties of the base
test object class.

➤ You do not implement a JavaScript function that retrieves the values for
those properties.

When You Need to Return a Base Element to QuickTest

If the base element is the root element of the control that you are
supporting, QuickTest recognizes the base element and uses the base test
class implementation for test object methods and identification properties
that you do not implement.

If the base element is not the root element of the control, you must write a
JavaScript function that returns this base element to QuickTest, and specify
the name and location of the JavaScript function in the toolkit
configuration file. You specify this information in the Control\Settings
element in the toolkit configuration file. For example, if your control is a
special kind of table, and is defined as a DIV element (which QuickTest
normally ignores) that contains a table element (which QuickTest normally
represents with a WebTable element), you can create a MyWebTable test
object class that extends WebTable and map the DIV element to this the
MyWebTable test object class.

Chapter 3 • Developing Support for Your Toolkit

56

To return the base element, you implement a JavaScript function named
get_base_table in a file named HPTable.js. In the toolkit configuration
Settings element for the MyWebTable Control element, you define the
func_to_get_base_elem as follows:

Providing a Help File for Customized Test Object Classes
As part of the QuickTest Professional online Help, QuickTest provides an
Object Model Reference for the test object classes that it defines. The
reference is intended to help the QuickTest users use QuickTest test objects,
methods, and properties in their tests. In addition, when F1 is pressed for a
test object or test object method in the Keyword View or Expert View, or
when the Operation Help button is clicked for a test object method in the
Step Generator, QuickTest opens the Object Model Reference to the relevant
location.

When you modify test object classes or define new ones, using test object
configuration XML definitions, you can provide similar (.chm) Help files for
the test objects, methods, and properties that you define. Deploy these Help
files as part of your toolkit support set and inform the users where they can
be found. You can store the Help files in any convenient location. For
example, in a <QuickTest Professional installation
folder>\dat\Extensibility\<QuickTest add-in name>\Toolkits\
<Environment name>\help folder. In the test object configuration XML, you
define HelpInfo elements for test object classes and test object methods,
specifying the Help file path and the relevant Help ID within the file.

Caution: The Help file name must be different from the names of the Help
files provided in the <QuickTest Professional installation folder>\help
folder.

<Control TestObjectClass=MyWebTable>
<Settings>

<Variable name="default_imp_file " value="HPTable.js"/>
<Variable name="func_to_get_base_elem" value="get_base_table"/>

</Settings>
</Control>

Chapter 3 • Developing Support for Your Toolkit

57

When F1 or the Operation Help button is pressed for a test object class or
test object method for which you defined a HelpInfo element, QuickTest
opens the context-sensitive Help topic you specified. For inherited test
object methods that do not have a HelpInfo element, QuickTest opens the
Help provided for the base test object class.

In the Help that you provide for your test object classes, it is helpful to
specify the following information for each test object class:

➤ The base test object class that this test object class extends (include a note
explaining that the descriptions for inherited test object methods not
covered in this Help can be found in the Help for the base test object
class).

➤ A list of the available test object methods (including the inherited
methods)

➤ Descriptions of the test object methods that you defined, including the
method’s purpose, syntax, arguments, return value, and any other
relevant information.

➤ A list of the available identification properties and descriptions for those
properties

Understanding the Toolkit Configuration File

To begin developing your toolkit support set, you define a basic toolkit
configuration file. You can verify the toolkit configuration file you design
against the <Extensibility Accelerator installation folder>\dat\Toolkit.xsd
file. (This file is also located in the <QuickTest Professional installation
folder>\dat\Extensibility\Web\Toolkits folder.)

In a toolkit configuration XML, you must define a Control element for each
test object class that you plan to use to support controls in your toolkit.
Each Control element must include a TestObjectClass attribute that specifies
the name of the test object class to which it applies.

The Control elements are contained within one Controls element, which
represents the toolkit as a whole.

Chapter 3 • Developing Support for Your Toolkit

58

The toolkit configuration file must provide information that enables
QuickTest to identify which test object class to use for each control in the
toolkit. This information can be provided at toolkit level or at control level,
as described in the following sections.

The toolkit configuration XML can also contain additional information. A
brief summary of the possible content of this XML is provided below and
more detail on how to design and use the toolkit configuration XML is
provided in the subsequent sections of this guide.

The toolkit specific information can include:

➤ A toolkit description.

QuickTest displays the description in the Add-in Manager when a user
selects the toolkit support set's environment name in the list of available
add-ins. If you are developing this toolkit support set for distribution,
include a Provided by clause in this description, specifying the relevant
person or company.

➤ The priority of the toolkit. When QuickTest attempts to identify the test
object class mapped to a custom control, it searches in the different
toolkits in the order of their priority (highest priority first).

➤ An identification function (and optionally the name of the file that
contains the function) used to identify the test object class to use for each
control in the toolkit.

➤ The name of the default file from which implementation functions are
called if no file is specifically defined for a test object class.

➤ JavaScript libraries for QuickTest to inject into the Web page, enabling
you to call the library functions from the support functions that you
design.

Chapter 3 • Developing Support for Your Toolkit

59

A test object class element can include:

➤ HTML tags and identification conditions or an identification function
(and optionally the name of the file that contains the function) used to
identify the custom controls that should be represented by this test object
class.

➤ The name of the default file from which implementation functions are
called if no file is specifically defined for a function.

➤ A function (and optionally the name of the file that contains that
function) that returns the element whose test object implements the
properties and test object methods inherited from the base class and not
implemented for this control.

➤ The functions (and optionally the name of the file containing those
functions) that implement the test object methods of this test object
class. QuickTest calls these functions to perform test steps on the control.
If no functions are defined, QuickTest calls implementation functions
with the same name as the test object methods.

➤ The function (and optionally the name of the file containing the
function) that retrieves the identification properties from the control. If
no function is defined, QuickTest calls a function named
get_property_value.

➤ Elements that indicate whether to use the default Web Event
Configuration for handling events on the control and its children, and
can specify functions that QuickTest should run to perform customized
event listening and handling.

➤ Elements that indicate when to learn the control and its children, and
optionally, a function that specifies which children to learn.

➤ Elements that indicate whether to display test objects of this class in the
Object Spy.

➤ A function (and optionally the name of the file containing the function)
that retrieves the list of possible values for a test object method argument
from the control. If no function is defined, QuickTest calls a function
named get_list_of_values.

Chapter 3 • Developing Support for Your Toolkit

60

Note: When planning the order of the Control elements in this file, consider
that QuickTest follows this order when searching for a test object class to
match a control. The first matching test object class is used.

For information on the structure and syntax of this XML, see the Toolkit
Configuration Schema Help, available in the QuickTest Professional Web
Add-in Extensibility Help.

Designing JavaScript Functions for Your Toolkit Support Set

As part of the toolkit support set, you design JavaScript functions that
QuickTest calls. The QuickTest Web Add-in Extensibility JavaScript Function
Reference (available with the Web Add-in Extensibility Help) describes the
JavaScript functions you implement.

When writing your JavaScript functions, also consider the information in
the following sections:

➤ "Conventions, Utility Objects and Global Functions You Can Use" on
page 61

➤ "Creating Browser-Independent Support" on page 62

➤ "Global Variable Scope" on page 63

➤ "Writing Global JavaScript Functions" on page 64

➤ "Calling Functions from External JavaScript Libraries" on page 64

➤ "Handling Exceptions" on page 65

Chapter 3 • Developing Support for Your Toolkit

61

Conventions, Utility Objects and Global Functions You Can Use

The Web Add-in Extensibility API provides the following conventions,
constants, utility object methods, and global JavaScript functions for you to
use in your JavaScript functions:

➤ _elem. A token that represents the Web element that QuickTest is
currently handling. In identification functions, the _elem token
represents the HTML element being learned. In all other contexts, it
represents the root element of the custom control. These contexts
include:

➤ Event handlers and event registration functions

➤ Functions for returning base elements, property values, and lists of
possible values

➤ Filter functions

For example, the following JavaScript function returns the value of the id
identification property of the current Web element:

➤ _util. The utility object whose methods you can use to instruct QuickTest
to perform different operations. For more information, see "Global
JavaScript Methods and Utility Methods" on page 65.

➤ Global JavaScript functions and constants defined in the common.js file
located in the <Extensibility Accelerator installation
folder>\bin\PackagesToLoad folder. (This file is also located in the
<QuickTest Professional installation
folder>\dat\Extensibility\Web\Toolkits folder.) For more information,
see "Global JavaScript Methods and Utility Methods" on page 65.

function get_property_value(prop)
{

if (prop == "id")
{

return _elem.id;
}

}

Chapter 3 • Developing Support for Your Toolkit

62

➤ window. Provides access to the Window object that corresponds to the
Web browser window you are testing. You can use this object to access
objects and functions that reside in the browser namespace and manage
the controls for which you are creating support.

For example, suppose that the Web page contains a global JavaScript
function getTree() that returns a Tree object that manages a specific tree
control. This Tree object would have Collapse, Expand, and Select
methods. You could write the following JavaScript method to support
running a Collapse test object method:

Creating Browser-Independent Support

To enable the your toolkit support set to work smoothly on different
browser types and versions, do one or both of the following in the JavaScript
functions that you develop:

➤ If you need to treat a control differently in different browsers, call the
GetBrowserType or GetBrowserVersion utility methods to retrieve the
relevant browser information. For more information, see "Global
JavaScript Methods and Utility Methods" on page 65.

➤ Use functions from external browser-independent JavaScript function
libraries, such as jQuery, to create code that can run smoothly on different
types and versions of browsers.

The jQuery (version 1.3.2) and jQuery.simulate libraries are included with
the QuickTest installation and provide browser-independent functions.
You use jQuery function calls to retrieve information and perform
operations, and jQuery.simulate function calls to handle dispatching
events.

function Collapse (treeBranch)
{

var tree = window.getTree(_elem);
tree.Collapse(treeBranch);

}

Chapter 3 • Developing Support for Your Toolkit

63

For example, if you need to perform a click operation on your control,
one line of code that uses jQuery would replace a complex block of code
that sends the event differently, depending on the current browser.

Use:

Instead of:

For information on the jQuery JavaScript library and on
jQuery.simulate.js, see http://jquery.com and http://code.google.com/p/
jqueryjs/source/browse/trunk/plugins/simulate/jquery.simulate.js?r=6163

For details on using the jQuery libraries and other external JavaScript
function libraries, see "Calling Functions from External JavaScript
Libraries" on page 64.

Global Variable Scope

When you define global variables in your JavaScript function, the variables
exist in the scope of the JavaScript engine running in the browser. QuickTest
can only connect to the JavaScript engine if QuickTest is opened before the
browser. Therefore, your global JavaScript variables are accessible until either
the browser or QuickTest is closed.

$(_elem).simulate("click");

if (_util.GetBrowserType()==QtpConstants.FireFox)
{

var myEvent = window.document.createEvent("MouseEvents")
myEvent.initEvent("click", true, true)
_elem.dispatchEvent(myEvent)

}
else

_elem.click();

Chapter 3 • Developing Support for Your Toolkit

64

Writing Global JavaScript Functions

As a best practice, create one JavaScript file for each test object class.
However, if you want to call the same JavaScript function from JavaScript
functions of multiple test objects, you can store these global functions in a
separate file, which will be used as the toolkit support set's common
JavaScript file. Specify the path of the common JavaScript file in the
Controls\Settings\Variable element in the toolkit configuration file. For
more information, see the Toolkit Configuration Schema Help, available in
the QuickTest Professional Web Add-in Extensibility Help.

Calling Functions from External JavaScript Libraries

In the JavaScript functions that you design, you can call any JavaScript
function included in the Web page that QuickTest is testing.

Keep in mind that if your toolkit support set is loaded, QuickTest might call
your code on any Web page that opens in a browser. For example, when
learning objects on a Web page, QuickTest might call the identification
function that you designed, even if the page does not contain any of your
controls, and does not include your function library.

To enable the use of your own JavaScript libraries on pages that do not
include them, you can instruct QuickTest to inject the JavaScript library into
every page. To do this, specify the file system path to the library in the
JSLibrariesToInject\JSLibrary element in the toolkit configuration file. For
more information, see the Toolkit Configuration Schema Help, available in
the QuickTest Professional Web Add-in Extensibility Help.

When QuickTest is open with your toolkit support set loaded, QuickTest
injects the specified JavaScript libraries into every Web page that opens in a
browser.

It is recommended to design your JavaScript library so that it will only be
loaded if it is not already included in the Web page.

When you deploy the toolkit support set to QuickTest, make sure that the
JavaScript libraries you reference are located in the paths that you specified
in the toolkit configuration file.

Chapter 3 • Developing Support for Your Toolkit

65

Using the jQuery Libraries Provided with QuickTest

The jQuery (version 1.3.2) and jQuery.simulate libraries are included with
the QuickTest installation. They are located in: <QuickTest Professional
installation folder>\bin\JSFiles

To call the jQuery library functions from your JavaScript functions, specify
the library locations in your toolkit configuration file:

These jQuery libraries are designed so that they are not loaded into the Web
page if the page already includes some version of the library.

Handling Exceptions

If the JavaScript function that you design throws an exception, QuickTest
displays a run-time error message and the test step fails. The message that
you provide with the exception is added to the test report details for the
failed step.

Global JavaScript Methods and Utility Methods
As part of the toolkit support set, you design JavaScript functions that
QuickTest calls. Your JavaScript functions can call global methods and utility
methods that QuickTest provides. The global methods are provided as
JavaScript functions in the common.js file. The utility methods are exposed
by the _util object.

The _util utility object exposes the following methods that you can call in
your JavaScript functions:

➤ Alert (message). Opens a modal message box displaying the specified
message.

➤ GetBrowserType / GetBrowserVersion (). Returns the name or version of
the browser that is currently running the control.

<Controls>
<JSLibrariesToInject>

<JSLibrary path="INSTALLDIR\bin\JSFiles\jQuery-1.3.2.js" />
<JSLibrary path="INSTALLDIR\bin\JSFiles\jQuery.simulate.js" />

</JSLibrariesToInject>
</Controls>

Chapter 3 • Developing Support for Your Toolkit

66

➤ LogLine (text, severity, Id, category). Adds an entry to the Microsoft
Windows event log (which you can view using the Event Viewer). Use this
method to help you analyze the performance of your support set or debug
its functionality. For more information on using the Event Viewer to
debug your toolkit support set, see "Using the Microsoft Windows Event
Log" on page 81.

➤ Record (method, arrParams, delay). Adds a step to the test and adds a test
object to the object repository if it is not already there. Use this method in
a JavaScript function that records a step in a test after an event occurs on
a control. For more information on developing support for recording, see
"Implementing Support for Recording" on page 95.

➤ RegisterForEvent (element, eventName, handler, [HandlerParam]). Registers
to listen for a specific event on a specific Web element. Use this method
in a JavaScript function that controls listening to events to support
recording. You can also invoke it from event handlers. For more
information on developing support for recording, see "Implementing
Support for Recording" on page 95.

➤ Report (status, method, arrParams, details). Adds information about the
results of a step to the run results. Use this method in a JavaScript
function that performs a step on a control. For more information on
developing support for running tests, see "Implementing Support for Test
Object Methods" on page 83.

➤ Wait (milliseconds). Suspends execution for the number of specified
milliseconds.

The most commonly used functions from common.js are:

➤ getFrameElement. Returns the frame element that contains the current
element.

➤ toSafeArray(inArray). Converts a JavaScript Array object to COM
SafeArray.

➤ trim(inString). Returns the string after stripping leading and trailing
white spaces.

The common.js file also contains variables with preset values that you can
use as constants in your code.

Chapter 3 • Developing Support for Your Toolkit

67

The common.js file is located in the <Extensibility Accelerator installation
folder>\bin\PackagesToLoad folder and the <QuickTest Professional
installation folder>\dat\Extensibility\Web\Toolkits folder.

For more information on these methods and constants, see the QuickTest
Professional Web Add-in Extensibility API Reference (available with the Web
Add-in Extensibility Help).

Teaching QuickTest to Identify the Test Object Class to Use
for a Custom Web Control

After you define the test object classes that you want QuickTest to use to
represent your controls, you need to map each type of control to a specific
test object class.

This identification can be performed using JavaScript functions or condition
elements that check the control’s properties and determine the test object
class that should represent it. To improve QuickTest’s performance of
learning custom controls and running steps on them, define the
identification elements in such a way that JavaScript function calls are
avoided as much as possible.

You can limit the identification process of custom controls to HTML
elements with HTML tags you specify. This can further improve
performance, and is more efficient than defining conditions that check the
tagName property.

Chapter 3 • Developing Support for Your Toolkit

68

You provide information enabling QuickTest to identify which test object
class to use for the different controls in the Controls\CommonIdentification
element in the toolkit configuration file, or in the Control\Identification
element. In these elements you can define the following:

➤ A set of HTML tags per test object class. When QuickTest handles each
control, it continues the identification process according to the
definitions in the Identification element, only for HTML elements with
the specified HTML tags.

➤ A set of conditions per test object class. When QuickTest handles each
control, QuickTest checks the control’s HTML properties against the
conditions you define in each Control element, and locates the first one
whose conditions the control meets.

Note: You can define different conditions and HTML tags for QuickTest to
use when running on different browsers.

➤ One JavaScript identification function for the whole toolkit. When
QuickTest handles each control, QuickTest calls this function, which
checks the control’s properties and returns the name of the appropriate
test object class.

Note: If you specify an identification function at the toolkit level (in the
Controls\CommonIdentification element) and also conditions at the test
object class level (in the Control\Identification element), QuickTest
checks the conditions before calling the JavaScript function, to avoid
unnecessary calls.

Chapter 3 • Developing Support for Your Toolkit

69

➤ A JavaScript identification function per test object class. When QuickTest
handles each control, QuickTest calls each of these JavaScript functions,
in the order in which the test objects are defined in the toolkit
configuration file. Each function checks whether the test object class for
which it is defined should represent the control. QuickTest uses the first
test object class whose function returns true.

This method of identification should be avoided if possible because it
significantly affects performance, as it involves many calls to JavaScript
functions for each control.

Note: If you specify an identification function at the toolkit level (in the
Controls\CommonIdentification element), QuickTest does not call any
identification functions specified at the test object class level (in the
Control\Identification element).

➤ You can also combine the use of conditions and JavaScript functions,
defining conditions that limit the calls to the JavaScript function you
define, based on the control’s properties. For more information, see
"Using the Conditions Elements" on page 70.

For more information on writing JavaScript functions for Web Add-in
Extensibility, see "Designing JavaScript Functions for Your Toolkit Support
Set" on page 60.

For information on the structure and syntax of the identification elements,
see the Toolkit Configuration Schema Help, available in the QuickTest
Professional Web Add-in Extensibility Help.

After you teach QuickTest to identify the test object class to use for the
custom control, you can test the basic functionality of your toolkit support
set. For more information, see "Testing the Toolkit Support Set During
Development" on page 77.

Chapter 3 • Developing Support for Your Toolkit

70

Using the Conditions Elements
You can define Conditions elements in the Control\Identification\Browser
element defined for a test object class. This enables QuickTest to identify the
controls that should be represented by this test object class, based on the
control’s properties, without calling an identification function.

Alternatively, you can define an identification function (per test object class
or for the whole toolkit) and use the conditions to limit the times QuickTest
calls the function. You do this by defining that the identification function
be called only in cases when the control’s properties meet certain
conditions.

You can define different sets of conditions for QuickTest to use when
running on different browsers, or you can define one set of conditions and
specify that it is relevant for all browsers. For more information, see the
Browser element description in the Toolkit Configuration Schema Help,
available in the QuickTest Professional Web Add-in Extensibility Help.

You compose the Conditions using a set of Condition elements, joined by
either and or or logic. Each Condition element specifies a certain property of
the HTML control, and the expected value for that property. The condition
is met if the value in the control’s property matches the specified value (you
can specify in the condition whether the value must be equal or not equal to
the specified value). You can nest Conditions elements to create complex
logic.

For each set of conditions, that is for each top-level Conditions element, you
specify one of the following types, instructing QuickTest how to treat the
control if its properties match the conditions within it:

➤ IdentifyIfPropMatch. If the conditions in this element are met, use the
current test object class to represent the control.

➤ CallIDFuncIfPropMatch. If the conditions in this element are met, call the
identification function to check this control. Otherwise, do not use the
current test object class to represent the control.

➤ SkipIfPropMatch. If the conditions in this element are met, do not use the
current test object class to represent the control.

Chapter 3 • Developing Support for Your Toolkit

71

If an identification function is defined, and checking the conditions does
not enable QuickTest to determine whether to use the current test object
class to represent the control, it calls the identification function.

Notes:

➤ If a Conditions element of type IdentifyIfPropMatch is defined, it is
checked before the other types.

➤ If both CallIDFuncIfPropMatch and IdentifyIfPropMatch Conditions
elements are defined, the Conditions of type CallIDFuncIfPropMatch are
checked only if the Conditions of type IdentifyIfPropMatch are not met.

➤ If both SkipIfPropMatch and IdentifyIfPropMatch Conditions elements
are defined, the Condition of type SkipIfPropMatch are checked only if
the Conditions of type IdentifyIfPropMatch are not met.

➤ A Conditions element of type SkipIfPropMatch is not checked if a
Conditions element of type CallIDFuncIfPropMatch is defined.

➤ If you nest Conditions elements, the type attribute of the nested elements
is ignored.

Chapter 3 • Developing Support for Your Toolkit

72

Understanding How QuickTest Performs the Identification

For each custom control that it handles, QuickTest performs the following
procedure to determine which test object class to use for the custom control:

 1 If an identification function is defined at the toolkit level (in the
CommonIdentification element of the toolkit configuration file), first
check the Identification\Conditions elements in all of the Control
elements, to determine whether calling the function can be avoided.

For each Control element:

 a If an IdentifyIfPropMatch condition is defined and the custom
control’s properties meet the condition’s requirements, use this
Control element’s test object class. Otherwise, continue with the
following steps.

 b If a CallIDFuncIfPropMatch condition is defined and the custom
control’s properties do not meet the condition’s requirements, do not
use this Control element’s test object class.

If this Control element does not contain a CallIDFuncIfPropMatch
condition, continue with the following step.

 c If a SkipIfPropMatch condition is defined and the custom control’s
properties meet the condition’s requirements, do not use this Control
element’s test object class.

After checking all of the conditions, call the toolkit level identification
function unless a matching Control element was found or the conditions
in all of the Control elements indicate not to use this Control element’s
test object class.

The identification function returns the name of the test object class to use
to represent this custom control.

Chapter 3 • Developing Support for Your Toolkit

73

 2 If no identification function is defined at the toolkit level, check the
Control elements one by one. Each Control element is defined for one test
object class.

For each Control element, perform the following steps to determine
whether to use this element’s test object class for the custom control. Use
the first matching Control element:

 a If an IdentifyIfPropMatch condition is defined and the custom
control’s properties meet the condition’s requirements, use this
Control element’s test object class. Otherwise, continue with the
following steps.

 b If a CallIDFuncIfPropMatch condition is defined and the custom
control’s properties meet the condition’s requirements, continue with
step d. If the custom control’s properties do not meet the condition’s
requirement, do not use this Control element’s test object class.

If this Control element does not contain a CallIDFuncIfPropMatch
condition, continue with the following steps.

 c If a SkipIfPropMatch condition is defined and the custom control’s
properties meet the condition’s requirements, do not use this Control
element’s test object class. Otherwise, continue with the following
step.

 d If an identification function is defined within this Control element,
run it to determine whether to use this element’s test object class for
the custom control. The function returns true or false. If this Control
element does not contain an identification function, do not use this
Control element’s test object class.

Chapter 3 • Developing Support for Your Toolkit

74

Understanding How HTML Properties are Compared for
Conditions

When comparing the value of an HTML property specified in a condition
with the specified expected value, the following rules apply:

➤ String value comparisons are not case-sensitive.

➤ You can instruct QuickTest to treat the string provided in the expected
value as a regular expression. In this case, set the is_reg_exp attribute to
true.

➤ Numeric value comparisons simply compare the numeric values.

➤ When comparing a Boolean value, the values true, 1, and yes are all
considered true. The values false, 0, and no, are all considered false.

➤ If the HTML property that you are checking returns an object, use valid
and null as the expected values. The property is considered valid if it
successfully returns an object, and null if it fails to return an object.

➤ Set the equal attribute in the Condition element to false if you want to
check if the property does not have a certain value.

➤ Set the trim attribute in the Condition element to true if you want
QuickTest to remove leading and trailing spaces from the property value
and the expected value before evaluating the condition.

Chapter 3 • Developing Support for Your Toolkit

75

The examples below illustrate different ways that you can use the
Conditions element.

Example 1: Identification Function and Conditions

If the custom control has a CalendarBehavior or PopupBehavior property
defined, QuickTest calls the isCalendar JavaScript function to determine
whether to use a TSGCalendar test object to represent the control.
Otherwise, it continues to the next Control element in the toolkit
configuration file and checks whether it matches the custom control.

Example 2: Conditions Only

If the custom control has an AccordionBehavior property defined, QuickTest
uses a TSGAccordion test object to represent the control. Otherwise, it
continues to the next Control element in the toolkit configuration file and
checks whether it matches the custom control.

<Control TestObjectClass="TSGCalendar">
<Identification type="javascript" function="isCalendar">
<Browser name="*">
<Conditions type="CallIDFuncIfPropMatch" logic="or">

<Condition prop_name="CalendarBehavior" expected_value="valid"/>
<Condition prop_name="PopupBehavior" expected_value="valid"/>

</Conditions>
</Browser>

</Identification>
</Control>

<Control TestObjectClass="TSGAccordion">
<Identification>
<Browser name="*">
<Conditions type="IdentifyIfPropMatch" logic="and">

<Condition prop_name="AccordionBehavior" expected_value="valid"/>
</Conditions>

</Browser>
</Identification>

</Control>

Chapter 3 • Developing Support for Your Toolkit

76

Example 3: Nested Conditions Nodes

If the value of the custom control’s className property is equal to tsg, and
either the value of the control’s id property is equal to tsg_table or the value
of the control’s myType property is equal to table, QuickTest uses a TSGTable
test object to represent the control.

If the value of the custom control’s className property is equal to tsg, but
the value of the control’s id property is not tsg_table and the value of the
myType property is not table, QuickTest calls the isTable JavaScript function
to determine whether to use a TSGTable test object.

If the value of the custom control’s className property is not equal to tsg,
QuickTest continues to the next Control element in the toolkit
configuration file without calling isTable identification function.

For information on the structure and syntax of the Conditions and
Condition elements, see the Toolkit Configuration Schema Help, available in
the QuickTest Professional Web Add-in Extensibility Help.

<Control TestObjectClass="TSGTable">
<Identification type="javascript" function="isTable">

<Browser name="*">
<Conditions type="IdentifyIfPropMatch" logic="and">

<Condition prop_name="className" expected_value="tsg"/>
<Conditions logic="or">

<Condition prop_name="id" expected_value="tsg_table"/>
<Condition prop_name="myType" expected_value="table"/>

</Conditions>
</Conditions>
<Conditions type=" SkipIfPropMatch" logic="and">

<Condition prop_name="className" expected_value="tsg" equal="false"/>
</Conditions>

</Browser>
</Identification>

</Control>

Chapter 3 • Developing Support for Your Toolkit

77

Testing the Toolkit Support Set During Development

After you define your test object model in the test object configuration file,
and define a basic toolkit configuration file enabling QuickTest to identify
which test object classes to use for the different controls, you can test the
existing functionality of the toolkit support set. To do this, you deploy the
toolkit support set and test how QuickTest interacts with the controls in
your environment.

After you complete additional stages of developing support for your
environment, you can deploy the toolkit support set again and test
additional areas of interaction between QuickTest and your controls
(learning test objects, running tests, an so on).

If you designed your support to operate on different browsers, make sure to
test it accordingly.

To test your toolkit support set after defining the test object classes and
mapping them to custom Web elements:

 1 In the test object configuration file, set the DevelopmentMode attribute
of the TypeInformation element to true, to ensure that QuickTest reads all
of the test object class information from the file each time it opens. When
you complete the development of the toolkit support set, make sure to set
this attribute to false.

 2 Deploy the toolkit support set on a QuickTest computer by copying the
files of the support set to the correct locations in the QuickTest
installation folder. For more information, see "Deploying the Toolkit
Support Set" on page 101.

 3 Open QuickTest. Ensure that the environment name that you defined for
the toolkit support set is displayed in the Add-in Manager dialog box as a
child of the Web Add-in. (If the Add-in Manager dialog box does not open
when you open QuickTest, see the HP QuickTest Professional Add-ins Guide
for instructions.)

Chapter 3 • Developing Support for Your Toolkit

78

Tip: The environment name displayed in the add-in manager is the same
as the toolkit configuration file name. If your environment is not
displayed correctly in the add-in manager, make sure that the toolkit
configuration file is correctly named, located in the correct folder, and
that its syntax is correct.

 4 Select the check box for your environment (the Web Add-in is then
selected automatically) and click OK to load the support for your toolkit.

 5 Use the Define New Test Object dialog box to create a new test object
from a test object class that you defined. The name of your environment
is displayed in the Environment list. If you select the name of your
environment from the list, the test object classes that you defined in the
test object configuration file are displayed in the Class list.

For more information, see the section on defining new test objects in the
object repository in the HP QuickTest Professional User Guide.

 6 Open an application with your custom controls.

 7 QuickTest can already recognize and learn your controls, and you can
create test steps with your custom test objects. (For more information on
working with the options below in QuickTest, see the HP QuickTest
Professional User Guide.)

 a Use the Object Spy to view the identification properties and test object
operations that are supported for your controls.

➤ For each test object class that you defined, the Object Spy displays
all of the identification properties that you defined in the test object
configuration file. New identification properties are displayed
without values because you have not yet implemented methods to
retrieve the values from the controls.

For identification properties that have the same names as base test
object class properties, QuickTest uses the base class implementation
to retrieve the property values if the root Web element of the
control matches the base test object class. For more information, see
"Implementing Support for Identification Properties" on page 89.

Chapter 3 • Developing Support for Your Toolkit

79

Note: QuickTest uses only lowercase letters in identification
property names. If the identification property name in the test
object configuration file contains uppercase letters, they are
converted to lowercase.

➤ The Object Spy displays all of the test object operations available for
each test object class that you defined to represent your controls.
This includes test object methods and properties inherited from the
base test object class, as well as the test object methods that you
defined in the test object configuration file.

 b Use the Add Objects to Local button in the Object Repository dialog
box to learn your controls. Ensure that the correct icon is used to
represent the test object in the object repository.

 c In the Keyword View, create a test step with a test object from a class
that you defined.

➤ If you defined a default operation for this class, it is displayed in the
Operation column after you select the test object in the Item
column.

➤ The list of available operations in the Operation column reflects the
definitions in the test object configuration file, and also includes
operations inherited from the base test object class.

➤ After you choose an operation, the Value cell is partitioned
according to the number of arguments of the selected operation,
and if you defined possible values for the operation (in the
ListOfValues element), they are displayed in a list.

➤ The descriptions and documentation strings you defined for test
object methods in the test object configuration file are displayed in
tooltips and in the Documentation column, respectively.

Chapter 3 • Developing Support for Your Toolkit

80

 d In the Expert View, create a test step with a test object from a class that
you defined. Intellisense displays all of the operations available for the
test object, and possible input values for these operations, if relevant,
based on the definitions in the test object configuration file. (Inherited
test object methods are also displayed.)

 e In the Step Generator, create a test step with a test object from a class
that you defined. The operations that you defined in the test object
configuration file are displayed in the Operation list, and the
descriptions you defined for the operations are displayed as tooltips.
(Inherited test object methods are also displayed.)

To test your toolkit support set after developing support for additional
QuickTest functionality:

 1 Follow steps 1 to 6 in the previous procedure, to deploy the toolkit
support set, open QuickTest, load the support and run an application with
controls from your environment.

 2 Depending on the QuickTest functionality for which you are developing
support, perform the relevant QuickTest operations on the application to
test that support. For example, learn controls in the application, run a test
on the application, record test steps on the application and so on.

Logging and Debugging the Custom Support

When you design the JavaScript functions for your toolkit support set, you
can use the _util.LogLine method to add log messages to the Microsoft
Windows event log. When QuickTest runs a test or component using the
support you designed, you can view these messages in the Event Viewer. For
more information see, "Using the Microsoft Windows Event Log" on
page 81.

When you test the toolkit support set that you designed, you can debug
your JavaScript files like you would debug any other JavaScript file, using
the Microsoft Script Debugger or the Microsoft Visual Studio debugger. For
more information, see "Debugging Your JavaScript Files" on page 82.

Chapter 3 • Developing Support for Your Toolkit

81

Using the Microsoft Windows Event Log
You can use the _util.LogLine method in your JavaScript functions to add
messages to the Microsoft Windows event log. For more information, see
the QuickTest Web Add-in Extensibility API Reference (available with the Web
Add-in Extensibility Help).

You provide the log message text and the level of severity for the log entry
and, optionally, an ID and a category number. QuickTest adds the toolkit
name and a time and date stamp to the information that you provide, and
adds the entry to the event log.

In addition, while recognizing objects supported by Web Add-in
Extensibility and performing tests on them, QuickTest also writes log and
error messages to the event log.

To view the event log and analyze the performance of your toolkit support
set, open the Event Viewer (in Windows XP and Windows 2000, select
Start > Settings > Control Panel > Administrative Tools > Computer
Management, expand the Event Viewer node in the Computer
Management tree) and select the QuickTest node. Double-click a specific log
entry to see its text.

Chapter 3 • Developing Support for Your Toolkit

82

You can filter the log messages displayed in the Event Viewer according to
severity and other message fields. In the Computer Management toolbar,
select View > Filter. For more information, see the Event Viewer Help (select
Action > Help in the Event Viewer).

Debugging Your JavaScript Files
You can use the Microsoft Script Debugger or the Microsoft Visual Studio
debugger to debug the JavaScript files that you write for your toolkit support
set. (Debugging for Mozilla Firefox is not supported.)

To enable debugging you must clear the Disable script debugging (Internet
Explorer) and Disable script debugging (other) options in the Internet
Explorer advanced options (Tools > Internet Options > Advanced). After you
change this option, you need to restart Internet Explorer for the change to
take effect.

Chapter 3 • Developing Support for Your Toolkit

83

If you want the Just-In-Time debugger to list the Microsoft Visual Studio
debugger as one of the available debuggers, you need to select the Script
option in the Visual Studio Options dialog box (Visual Studio > Tools >
Options > Debugging > Just-In-Time).

After these debugging options are enabled, you can use all the standard ways
to debug your JavaScript functions. For example:

➤ You can attach to the Internet Explorer process and put breakpoints in
your functions.

➤ You can include a debugger; statement in your JavaScript function, to
launch the Just-In-Time debugger when the function runs.

➤ You can use the Just-In-Time debugger when an exception occurs that
causes it to open.

Implementing Support for Test Object Methods

After enabling QuickTest to recognize the custom controls, you must
provide support for running test object methods. If you try to run a test with
steps that run on custom test objects before providing implementation for
these methods, the test fails and a run-time error occurs.

For each test object method that you defined in the test object configuration
file, you must write a JavaScript function that QuickTest runs to perform the
step on the control. In addition to performing the step, you can design the
JavaScript function to add a line to the run results, add log messages to the
event log, and display messages boxes to the QuickTest user, as necessary.
For more information, see "Designing JavaScript Functions for Your Toolkit
Support Set" on page 60.

In the toolkit configuration file, you need to specify the JavaScript file in
which QuickTest should look for the JavaScript functions and, optionally,
the name of the function to use for each test object method.

Chapter 3 • Developing Support for Your Toolkit

84

You can specify a JavaScript file and function for each test object method in
the toolkit configuration file, or you can define a default JavaScript file per
toolkit (Controls element) or per test object class (Control element).
QuickTest uses the default files for all test objects methods for which you do
not specify an implementation file. By default, QuickTest searches in the
specified file for a JavaScript function with the same name as the test object
method. Therefore, you do not need to specify function names in the toolkit
configuration file, unless you choose to name a function something other
than the corresponding test object method name. For more information, see
the Toolkit Configuration Schema Help, available in the QuickTest
Professional Web Add-in Extensibility Help.

Caution: Do not create JavaScript functions named get_property_value or
get_list_of_values. These names are reserved for the JavaScript functions
that QuickTest calls (by default) to retrieve run-time values of test object
identification properties and lists of possible values for test object method
arguments.

After you create support for running test object methods, you can run
QuickTest tests on your custom test objects, and verify that your toolkit
support set performs correctly. For more information on testing your toolkit
support set, see "Testing the Toolkit Support Set During Development" on
page 77.

Chapter 3 • Developing Support for Your Toolkit

85

The following example is taken from the ASPAjax toolkit support set, which
includes support for a Select method on the ASPAjaxTabs test object. In the
ASPAjax test object configuration file, this is declared as follows:

In the toolkit configuration file, the Control\Settings element for the
ASPAjaxTabs test object class is defined as follows:

No Run element is defined for this test object class. Therefore, when
QuickTest runs a step with the Select test object method, QuickTest searches
in the Tabs.js file (as defined in the toolkit configuration file) for a JavaScript
function named Select.

In the Tabs.js file, the Select JavaScript function is implemented to accept an
index and select the tab with that index.

<ClassInfo BaseClassInfoName="WebElement" Name="ASPAjaxTabs"
DefaultOperationName="Select" >

<TypeInfo>
<Operation ExposureLevel="CommonUsed" Name="Select"

PropertyType="Method">
<Description>Selects the specified tab.</Description>
<Documentation>

<![CDATA[Select the tab with index %a1.]]>
</Documentation>
<Argument Name="Index" IsMandatory="true" Direction="In">

<Type VariantType="Integer"/>
<Description>

The index value of the tab to select.
</Description>

</Argument>
</Operation>

</TypeInfo>
</ClassInfo>

<Control TestObjectClass="ASPAjaxTabs">
<Settings>

<!-- Indicates the location of the JavaScript file that contains the
implementation of the script -->

<Variable name="default_imp_file" value="Tabs.js"/>
</Settings>

</Control>

Chapter 3 • Developing Support for Your Toolkit

86

Supporting Dynamic Lists of Values for Method
Arguments
When a QuickTest user creates a test step with a test object method,
QuickTest can display a set of predefined possible values available for the
arguments of that method. For example, if an argument is a Boolean
argument, QuickTest can display true and false as the possible values, or, for
a month argument, QuickTest can display a list of names of all the months.
However, sometimes, a limited set of possible values for an argument exists,
but depends on the specific object on which the step is performed. For
example:

➤ The values that are actually relevant for the Integer row and column
arguments of the function Table(<table_name>).SetCellData (row, column)
are limited to the number of rows and columns in the specific table.

➤ The relevant values for the String path argument of the function
Tree(<tree_name>).Select (path) are limited to the paths that exist in the
specific tree.

Using extensibility, you can enable QuickTest to dynamically provide a list
of values for arguments of test object methods.

To support a dynamic list of values:

 1 In the test object configuration file, set the DynamicListOfValues attribute
of the Argument element to true.

 2 In the toolkit configuration file, you can specify the file name and
function name of the JavaScript function that QuickTest must call to
retrieve the list of values. By default, QuickTest requests the list of values
by calling the get_list_of_values JavaScript function from the default
implementation file that you specify for the test object class in the
default_imp_file variable in the Control\Settings element. For more
information, see the Toolkit Configuration Schema Help, available in the
QuickTest Professional Web Add-in Extensibility online Help.

QuickTest calls the JavaScript function for every argument whose
DynamicListOfValues attribute is set to true in the test object
configuration file. The parameters provided to this function indicate the
test object method and argument for which the values are being
requested.

Chapter 3 • Developing Support for Your Toolkit

87

 3 Write a JavaScript function that accepts the names of the test object
method and argument and returns a list of values relevant for the
specified argument on the current element. Return the string values
concatenated to one string, each value enclosed in quotation marks.

Note: The dynamic list of values is retrieved from the control in the
application being tested. Therefore, to display the dynamic list of values, the
relevant control must be visible in the application when the test is edited.

For example, in the toolkit support set for the WebExtSample environment,
located in <Web Add-in Extensibility SDK installation folder>\samples\
WebExtSample folder, a dynamic list of values is supported for the
AuthorName argument in the GoToAuthorPage test object method of the
test object class WebExtBook.

➤ In the WebExtSampleTestObjects.xml test object configuration file, the
argument is defined as follows:

<Operation Name="GoToAuthorPage" PropertyType="Method">
<Description>

Opens the Web page for the specified author.
</Description>
<Argument Name="AuthorName" IsMandatory="true" Direction="In"

DynamicListOfValues="true">
<Type VariantType="String"/>
<Description>The author.</Description>

</Argument>
</Operation>

Chapter 3 • Developing Support for Your Toolkit

88

➤ In the WebExtBook.js file (defined as the default implementation file for
the WebExtBook test object class in the WebExtSample.xml toolkit
configuration file) the following JavaScript functions are designed to
return a list of the book’s authors, each enclosed in quotation marks:

Note: The $ indicates that this code uses the jQuery JavaScript function
library to provide browser-independent support.

// Dynamic list of values implementation
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
function get_list_of_values(method, argIndex)
{

// When creating a step with the GoToAuthorPage test object method,
// provide a list of the authors of this book, that can be used for the method's
// argument.
if (method == "GoToAuthorPage")
{

return get_GoToAuthorPage_list_of_values(argIndex);
}

return null;
}

function get_GoToAuthorPage_list_of_values(argIndex)
{

var arr = new Array();
if(argIndex > 1)

return toSafeArray(arr);

// Retrieve all authors
var AuthorsCount = 0;
var authors = window.$(_elem.rows[1].cells[0]).children("A");
for(var i = 0 ; i < authors.length ; ++i)
{

arr[AuthorsCount] = "\"" + authors.eq(i).text() + "\"";
AuthorsCount++;

}
return toSafeArray(arr);

}

Chapter 3 • Developing Support for Your Toolkit

89

Implementing Support for Identification Properties

In the test object configuration file you defined the identification properties
for your test object classes. When QuickTest runs a test it needs to retrieve
the values for these properties. QuickTest uses identification property
run-time values in different test object methods, such as GetROProperty.
Identification property run-time values are also required for different basic
capabilities, such as creating checkpoints and outputting values.

To support retrieving the run-time values of identification properties, you
need to implement a JavaScript function that accepts a PropertyName
parameter and returns the value of any property QuickTest requests.
(QuickTest uses only lowercase letters in identification property names. If
the identification property name in the test object configuration file
contains uppercase letters, they are converted to lowercase.)

This function must return the property value in one of the following
formats: String, Integer, Boolean, or array. When returning an array, use the
toSafeArray function to convert the array to the format that QuickTest
expects. When you provide an identification property value in an array
format, QuickTest converts the array to a semicolon-delimited string.

For more information on writing JavaScript functions for Web Add-in
Extensibility, see "Designing JavaScript Functions for Your Toolkit Support
Set" on page 60.

QuickTest uses the base test object class implementation to retrieve the
identification property values when the following conditions are met:

➤ The control includes a base element (for more information, see
"Extending an Existing Test Object Class" on page 54).

➤ The identification property is defined in the test object configuration file
with the same name as a base test object class property.

➤ You do not provide a function that returns a value for that identification
property.

Chapter 3 • Developing Support for Your Toolkit

90

Implement your JavaScript function to return a value for the identification
properties defined in the test object configuration file in the following
situations:

➤ Base test object class implementation for retrieving the value for this
identification property value is not available.

➤ The base test object class implementation does not meet your needs.

By designing the function that returns identification property values to
return a value for the logical_name property, you can control how QuickTest
names test objects of this test object class. For more information, see
"Customizing the Test Object Name" on page 91.

Note: QuickTest uses some identification properties (such as html_tag, x, y,
height, width) internally. Therefore it is recommended to include the
identification properties available for WebElement test objects in the
definition of your test object class in the test object configuration file. You
can find a list of these properties in the Web section of HP QuickTest
Professional Object Model Reference available with the QuickTest Professional
Help. If you override the implementation for retrieving the values of these
properties, make sure that you return values that match their descriptions in
the Object Model Reference.

In the toolkit configuration file, you can specify the JavaScript file in which
you implemented the JavaScript function that retrieves property values. You
can also specify the name of the function that you implemented for this
purpose (in the Control\Run\Properties element). However, if you do not
specify a function name, QuickTest calls get_property_value (PropertyName)
and this is the function that you must implement. If you do not specify a
file name, QuickTest calls the function from the default JavaScript file you
specified in the Control\Settings element (at the test object class level) or in
the Controls\Settings element (at the toolkit level). For more information,
see the Toolkit Configuration Schema Help, available in the QuickTest
Professional Web Add-in Extensibility Help.

Chapter 3 • Developing Support for Your Toolkit

91

After you create support for retrieving the run-time values of identification
properties, you can test that your toolkit support set correctly enables
QuickTest to run checkpoints on your Web elements, output property
values, display the property values in the Object Spy, and run test steps with
the GetROProperty operation. For more information on testing your toolkit
support set, see "Testing the Toolkit Support Set During Development" on
page 77.

Customizing the Test Object Name
When QuickTest learns an object, it creates a unique name for each test
object on the page. A descriptive test object name enables you distinguish
between test objects of the same class and makes it easier to identify them in
your object repository and in tests.

By default, a test object is given the name of its test object class (appended
with an index if there is more than one test object of the same class on the
page). In many cases, this is not the ideal name for the custom control.

The test object name needs to be meaningful to the QuickTest user,
preferably using terminology that is relevant to your toolkit. QuickTest
displays this name in the Keyword View, in the Expert View, and in the
object repository. The test object name is not used for object identification
and therefore does not have to remain constant in the application.

For example, the test object name can be language-dependent. The
QuickTest user can create a test with the application running in one
language, creating test objects with names in that language. The user can
then run the test on the same application in another language. The names
of test objects in the test remain in the original language, but QuickTest can
correctly recognize the test objects and perform operations on them, based
on their description.

To control how QuickTest names test objects of a test object class, design the
function that returns identification property values to return a value for the
logical_name property. QuickTest uses this value as the test object name.

Chapter 3 • Developing Support for Your Toolkit

92

For example, WebExtBook test objects in the WebExtSample environment
are named based on their book title. The sample toolkit support set for the
WebExtSample environment is located in %ALLUSERSPROFILE%\
Documents\ExtAccTool\Samples\WebExtSample folder. The WebExtBook.js
file is defined as the default implementation file in the WebExtSample.xml
toolkit configuration file. The JavaScript function for returning
identification property run-time values is defined in the WebExtBook.js file
as follows:

Note: The $ indicates that this code uses the jQuery JavaScript function
library to provide browser-independent support.

function get_property_value(prop)
{

if (prop == "logical_name" || prop == "title")
// For the "title" identification property, as well as the
// "logical_name" property, return the inner text of the
// second cell in the first row.
{

return window.$(_elem.rows[0].cells[1]).text();
}

}

Chapter 3 • Developing Support for Your Toolkit

93

Implementing a Filter for Learning Child Controls

When you instruct QuickTest to learn a Web page, the Define Object Filter
dialog box opens, enabling you to determine which of the Web page’s
descendants should be learned with it. When you select All object types,
instructing QuickTest to learn the custom control with its parent Web page,
all of the controls contained within your custom control are also learned as
children of that Web page (and siblings of the control itself).

In some situations, there is no need to create test objects for all of the
children of a control. For example, when there are no significant operations
to perform on the children and no properties to retrieve, or when, for
testing purposes, operations performed on the children are viewed as
operations performed on the parent control. For example, on a calculator
control that contains button controls, there is no need to create test objects
for the digit buttons. Pressing the digit buttons performs a Set operation on
the calculator object itself, providing a numeric input for a calculator
operation.

You can determine which controls QuickTest learns by defining a Learn
Filter for the test object class you create. You can use the
Control\Filter\Learn element in the toolkit configuration file to define basic
filtering, or you can implement complex filters by writing a JavaScript
function. If you design a filter using a JavaScript function, specify the
location and name of the function in the toolkit configuration file.

In the toolkit configuration file, in the Control\Filter\Learn element, you
can define:

➤ Whether to learn controls represented by this test object class. You can
also specify that QuickTest should learn controls of this type only if they
have children.

➤ Whether to learn the controls contained within the controls represented
by this test object class. You can also specify that your JavaScript function
needs to be called to determine which descendants to learn.

If you write a JavaScript function to implement the filter, the function
must return a SafeArray containing all of the descendant Web elements
that you want QuickTest to learn. For more information, see "Designing
JavaScript Functions for Your Toolkit Support Set" on page 60.

Chapter 3 • Developing Support for Your Toolkit

94

For more information, see the Toolkit Configuration Schema Help, available
in the QuickTest Professional Web Add-in Extensibility Help.

You can see an example of defining Learn Filters in the sample toolkit
support set for the WebExtSample environment located in
%ALLUSERSPROFILE%\Documents\ExtAccTool\Samples\WebExtSample
folder.

➤ The Filter element for the WebExtBook test object class is defined (in the
WebExtSample.xml file) as follows:

This instructs QuickTest to learn WebExtBook test objects without their
descendants.

➤ The Filter element for the WebExtUsedBooks test object class is defined as
follows:

This instructs QuickTest to learn WebExtUsedBooks test objects, and to
call the CallFilterFunc JavaScript function to determine which
descendants to learn.

The GetChildrenToLearn JavaScript function is located in the
WebExtUsedBooks.js file, which is defined as the default implementation
file in the WebExtSample.xml toolkit configuration file. The
GetChildrenToLearn JavaScript function returns all of the radio button
descendants of the UsedBooks table control:

<Filter>
<Learn learn_control="Yes" learn_children="No"/>

</Filter>

<Filter>
<Learn learn_control="Yes" learn_children="CallFilterFunc"

type="javascript" function="GetChildrenToLearn" />
</Filter>

function GetChildrenToLearn()
{
// Return all of the radio buttons in the used books table
return toSafeArray(window.$(_elem).children()[0].getElementsByTagName("input"));
}

Chapter 3 • Developing Support for Your Toolkit

95

Note: The $ indicates that this code uses the jQuery JavaScript function
library to provide browser-independent support.

After you implement a Learn Filter, you can instruct QuickTest to learn your
custom controls, and verify that your toolkit support set correctly controls
which of the controls’ children are learned. For more information on testing
your toolkit support set, see "Testing the Toolkit Support Set During
Development" on page 77.

Implementing Support for Recording

One way to add objects to the object repository and create tests in QuickTest
is by recording. To record a test, QuickTest registers to listen to events on the
Web elements, and, when an event occurs, QuickTest adds the relevant step
to the test. By default, QuickTest uses the standard Web event configuration
to determine the events to which to listen for each Web element, and the
steps to record in the test when each event occurs.

If you want to customize recording on a test object class that you defined,
you must specify the events that you want to record and the steps that you
want QuickTest to add to the test when those events occur.

For each test object class on which you want to customize recording, define
a Control\Record\EventListening element in the toolkit configuration file.
In this element you can specify whether to use standard Web event
configuration to handle events on controls represented by this test object
class. In addition, you can specify whether to use standard Web event
configuration to handle events that take place on those controls’ children.

In addition to specifying whether QuickTest should use standard Web event
configuration, you can specify a JavaScript function that provides more
specific event registration (and optionally, the name of the file containing
the function). For more information, see the Toolkit Configuration Schema
Help, available in the QuickTest Professional Web Add-in Extensibility Help.

Chapter 3 • Developing Support for Your Toolkit

96

In addition to the definitions in the toolkit configuration file, you write the
following types of JavaScript functions:

➤ One JavaScript function (named in the toolkit configuration file) that uses
the RegisterForEvent function in the _util utility object to register for
listening to the correct events on the correct elements. The arguments of
this function also determine what JavaScript functions QuickTest calls
when each event occurs.

QuickTest calls this function after registering to listen to events according
to the standard Web event configuration. The event registration
performed by this function overrides any previous registrations for the
same events. For events not handled by this function the standard
registration is used.

➤ One or more JavaScript functions that handle the events, when they
occur, by calling the Record function in the _util utility object to inform
QuickTest what step to add to the test.

The Record function, and other utility object functions, require a
SafeArray type argument. To convert an array to a SafeArray, you can use
the toSafeArray (array) function that Web Add-in Extensibility provides.
This function is defined in <Extensibility Accelerator installation
folder>\bin\PackagesToLoad\common.js. (This file is also located in the
<QuickTest Professional installation folder>\dat\Extensibility\Web\
Toolkits folder.)

For information on the syntax of the utility object functions, see the _util
section in the QuickTest Web Add-in Extensibility API Reference (available with
the Web Add-in Extensibility Help). For more information on writing
JavaScript functions for Web Add-in Extensibility, see "Designing JavaScript
Functions for Your Toolkit Support Set" on page 60.

You can see an example of customized recording in the sample toolkit
support set for the WebExtSample environment located in
%ALLUSERSPROFILE%\Documents\ExtAccTool\Samples\WebExtSample
folder.

Chapter 3 • Developing Support for Your Toolkit

97

➤ In the toolkit configuration file, within the Control element for the
WebExtBook test object class, the following Record\EventListening
element is defined:

This instructs QuickTest not to use the default Web Event Configuration
for handling events on the Book control and its children, but to call the
JavaScript function RegisterToEvents. A JavaScript file is not defined,
therefore QuickTest looks for the JavaScript function in the
WebExtBook.js file that is specified at the Control level for the
WebExtBook test object class.

➤ In the WebExtBook.js file, the following RegisterToEvents function is
defined:

Note: The $ indicates that this code uses the jQuery JavaScript function
library to provide browser-independent support.

This function registers QuickTest to listen to click events on the book’s
title and image. When registering for an event, this function specifies
what JavaScript function QuickTest must call when the event occurs.

<Record>
<EventListening

use_default_event_handling_for_children="false"
use_default_event_handling="false"
type="javascript" function="RegisterToEvents"/>

</Record>

function RegisterToEvents(elem)
{

// Connect to the "Select" event: When the book name or the book icon
// is clicked, call OnSelectClicked.
_util.RegisterForEvent(window.$(_elem.rows[0].cells[0]).children[0], "onclick" ,

"OnSelectClicked");
_util.RegisterForEvent(window.$(_elem.rows[0].cells[0]), "onclick",

"OnSelectClicked");
}

Chapter 3 • Developing Support for Your Toolkit

98

➤ In the WebExtBook.js file add the following event handler JavaScript
functions:

This function records the Select test object method on the WebExtBook
test object when the book title or image is clicked.

After you implement support for recording, you can record a test on
controls in your environment, and verify that your toolkit support set
performs correctly. For more information on testing your toolkit support set,
see "Testing the Toolkit Support Set During Development" on page 77.

function OnSelectClicked(handlerParam , eventObj)
{

// Record the "Select" step
var arr = new Array();
_util.Record("Select", toSafeArray(arr) , 0);
return true;

}

Chapter 3 • Developing Support for Your Toolkit

99

Troubleshooting and Limitations - Developing Support

This section describes troubleshooting and limitations for developing Web
Add-in Extensibility support.

➤ Web Add-in Extensibility can be used to create support for Web controls
within Web pages and frames. You cannot develop custom support for
Web pages or frames themselves. In other words, you cannot map a Web
page or frame to a test object class you developed using Web Add-in
Extensibility.

➤ When designing a JavaScript function, it is not possible to click a link on
a Mozilla Firefox page using a simple Click or FireEvent method call. The
Web Add-in Extensibility _util object provides a special FireEvent method
that you can use to click links in this situation. (The method is not
documented in the API Reference, as it is meant to be used only for this
type of workaround).

This is an example of how you would use this method:

function clickOnLink(link) {
 if (_util.GetBrowserType() == QtpConstants.IE) {
 link.click();
 }
 else {
 //Firefox.
 var evObj = window.document.createEvent("MouseEvents");
 evObj.initEvent("click", true, true);
 _util.FireEvent(link, "click", evObj);
 }
}

Chapter 3 • Developing Support for Your Toolkit

100

➤ Usually, when QuickTest performs operations on a control located in an
area of the Web page that is not currently visible, QuickTest automatically
scrolls the page to make the control visible.

If the HTML element that represents your control is a hidden HTML
element, QuickTest may fail to scroll the Web page to the location of the
control.

Workaround (only solves the problem for Web pages opened in Internet
Explorer):

In your toolkit support set, implement the identification properties listed
below for your test object class. If you do not implement these properties,
the inherited implementation will provide the location and size of the
hidden HTML element instead of the location and size of the custom
control.

➤ x—The control’s x-coordinate (left) relative to the frame (in pixels).

➤ y—The control’s y-coordinate (top) relative to the frame (in pixels).

➤ width—The control’s width (in pixels).

➤ height—The control’s height (in pixels).

101

4
Deploying the Toolkit Support Set

The final stage of extending QuickTest support for a custom toolkit is
deploying the toolkit support set. This means placing all of the files you
created in the correct locations on a computer with QuickTest installed,
enabling QuickTest to recognize the controls in the toolkit and run tests on
them.

While you are developing the toolkit support set, deploying it to QuickTest
enables you to test and debug the support that you create. After the toolkit
support set is complete, you can deploy it on any computer with QuickTest
installed, to extend the Web Add-in.

This chapter includes:

➤ About Deploying the Custom Toolkit Support on page 102

➤ Deploying the Custom Toolkit Support on page 102

➤ Modifying Deployed Support on page 105

➤ Removing Deployed Support on page 107

Chapter 4 • Deploying the Toolkit Support Set

102

About Deploying the Custom Toolkit Support

From the QuickTest user’s perspective, after you deploy the toolkit support
set on a computer on which QuickTest is installed, the toolkit support set
can be used as a QuickTest add-in.

When QuickTest opens, it displays the toolkit support set’s environment
name in the Add-in Manager, as a child node under the Web Add-in node.
Select the check box for your environment to instruct QuickTest to load
support for the environment using the toolkit support set that you
developed.

If support for your environment is loaded:

➤ QuickTest recognizes the controls in your environment and can run tests
on them.

➤ QuickTest displays the name of your environment in all of the dialog
boxes that display lists of add-ins or supported environments.

➤ QuickTest displays the list of test object classes defined by your toolkit
support set in dialog boxes that display the list of test object classes
available for each add-in. (For example: Define New Test Object dialog
box, Object Identification dialog box.)

Deploying the Custom Toolkit Support

To deploy the toolkit support set that you create, you must place the files in
specific locations within the QuickTest installation folder.

Note: Before you begin, create a folder with the name of your custom toolkit
in the <QuickTest Installation folder>\dat\Extensibility\Web folder, if one
does not already exist.

Chapter 4 • Deploying the Toolkit Support Set

103

The following table describes the appropriate location for each of the toolkit
support files:

File Name Location

<Custom Toolkit Name>TestObjects.xml

Note: This is the recommended file
name convention. You can have more
than one test object configuration XML
file, and name them as you wish.

➤ <QuickTest Installation
folder>\dat\Extensibility\Web

➤ <QuickTest Add-in for ALM/QC
Installation folder>\dat\Extensibility\
Web
(Optional. Required only if QuickTest
Add-in for ALM/QC is installed)

<Custom Toolkit Name>.xml <QuickTest Installation folder>\dat\
Extensibility\Web\Toolkits\<custom
toolkit name>

JavaScript files Specify the location in the in <Custom
Toolkit Name>.xml

Icon files for new test object classes
(optional)

The file can be a .dll, .exe, or .ico file,
located on the computer on which
QuickTest is installed, or in an
accessible network location.

Specify the location in <Custom Toolkit
Name>TestObjects.xml

Help files for the test object classes
(optional)

Must be a .chm file, located on the
computer on which QuickTest is
installed.

Specify the location in <Custom Toolkit
Name>TestObjects.xml

External JavaScript libraries

These are not part of the toolkit support
set, but when you deploy the support
set you must make sure that the library
files are located in the location specified
in the toolkit configuration file.

A .js file, located on the computer on
which QuickTest is installed, or in an
accessible network location.

Specify the location in <Custom Toolkit
Name>.xml

Chapter 4 • Deploying the Toolkit Support Set

104

Recommended File Locations

You specify the locations of the JavaScript, Help, and icon files in the toolkit
support set’s configuration files. You can specify these locations using
relative paths. For more information, see the Test Object Schema Help and
the Toolkit Configuration Schema Help (available with the Web Add-in
Extensibility Help).

The recommended locations for these files are described in the following
table:

File Name Location

JavaScript files <QuickTest Installation folder>\dat\Extensibility\Web\
Toolkits\<custom toolkit name>\JavaScript

Icon files <QuickTest Installation folder>\dat\Extensibility\Web\
Toolkits\<custom toolkit name>\Res

Help files <QuickTest Installation folder>\dat\Extensibility\Web\
Toolkits\<custom toolkit name>\Help

Chapter 4 • Deploying the Toolkit Support Set

105

Setting the DevelopmentMode Attribute

If you modify attributes of Identification Property elements in the test
object configuration file, keep the DevelopmentMode attribute of the
TypeInformation element set to true during the design stages of the custom
toolkit support. Before you deploy the custom toolkit support set for regular
use, be sure to remove this attribute (or set it to false). For more
information, see "Modifying Identification Property Attributes in a Test
Object Configuration File" on page 105.

Modifying Deployed Support

If you modify a deployed toolkit support set, you must reopen QuickTest
and re-run the Web application for the changes to take effect.

If you change the identification property definitions that specify the
functionalities for which the properties are used in QuickTest, see
"Modifying Identification Property Attributes in a Test Object Configuration
File" below.

Modifying Identification Property Attributes in a Test
Object Configuration File
The following attributes of the Identification Property element in the test
object configuration file specify information that can be modified in
QuickTest (using the Object Identification dialog box):
AssistivePropertyValue, ForAssistive, ForBaseSmartID, ForDescription,
ForOptionalSmartID, and OptionalSmartIDPropertyValue. These attributes
determine the lists of identification properties used for different purposes in
QuickTest. For more information, see the QuickTest Test Object Schema
Help, available in the QuickTest Professional Web Add-in Extensibility Help.

Therefore, by default, QuickTest reads the values of these attributes from the
XML file only once, to prevent overwriting any changes a user makes using
the Object Identification dialog box. In this way, QuickTest provides
persistence for the user defined property lists.

If the user clicks the Reset Test Object button in the Object Identification
dialog box, the attributes' values are reloaded from the XML.

Chapter 4 • Deploying the Toolkit Support Set

106

If the XML changed since the last time it was loaded (based on the file's
modification date in the system), QuickTest reads the attributes from the
XML. QuickTest adds identification properties to the relevant lists (and
adjusts their order if necessary) according to the values of these attributes,
but does not remove any existing identification properties from the lists.

To instruct QuickTest to completely refresh the identification property lists
according to the attributes defined in the XML each time QuickTest is
opened, set the DevelopmentMode attribute of the TypeInformation
element in this test object configuration file to true.

Considerations When Modifying Identification Properties Attributes

➤ If you modify attributes of Identification Property elements in the test
object configuration file, keep the DevelopmentMode attribute of the
TypeInformation element set to true during the design stages of the
custom toolkit support. This ensures that QuickTest uses all of the
changes you make to the file.

➤ Before you deploy the toolkit support set for regular use, be sure to
remove the DevelopmentMode attribute of the TypeInformation element
(or set it to false). Otherwise, every time QuickTest opens it will refresh
the property lists based on the definitions in the test object configuration
file. If QuickTest users change the property lists using the Object
Identification dialog box, their changes will be lost when they reopen
QuickTest.

➤ Though QuickTest does not remove existing properties from the property
lists when reading a modified test object configuration file (unless the
DevelopmentMode attribute is set to true), it does add properties and
adjust the order of the lists based on the definitions in the file. If
QuickTest users removed properties from the lists or modified their order
using the Object Identification dialog box, those changes will be lost
when a modified file is loaded.

If you provide the custom toolkit support set to a third party, and you
deliver an upgrade that includes a modified test object configuration file,
consider informing the QuickTest users about such potential changes to
their identification property lists.

Chapter 4 • Deploying the Toolkit Support Set

107

Removing Deployed Support

When opening QuickTest, the QuickTest user can use the Add-in Manager to
instruct QuickTest whether to load the support provided for any particular
environment or toolkit.

If you want to remove support for a custom toolkit from QuickTest after it is
deployed, you must delete its toolkit configuration file from:
<QuickTest Installation folder>\dat\Extensibility\Web\Toolkits\<custom
toolkit name>

If none of the test object class definitions in a test object configuration file
are used to represent any custom controls (meaning they are no longer
needed), you can delete the file from:
<QuickTest Installation Folder>\dat\Extensibility\Web and <QuickTest Add-
in for ALM/QC Installation folder>\dat\Extensibility\Web if relevant.

Chapter 4 • Deploying the Toolkit Support Set

108

Part II

Tutorial: Learning to Create Web Custom
Toolkit Support

The lessons in this tutorial are Internet-Explorer oriented. This means that
the JavaScript code you create is written in Internet-Explorer style, and the
support that you create for the sample custom controls will operate correctly
only on Microsoft Internet Explorer. When you create your own Web Add-in
Extensibility support, you can design it to run on Mozilla Firefox as well. For
more information, see "Developing Browser-Independent Support" on
page 43.

110

111

1
Learning to Create QuickTest Support for
a Simple Custom Web Control

In this lesson you create support for the Book control in the Web Add-in
Extensibility Book Sample toolkit, which is installed with Extensibility
Accelerator for HP Functional Testing. Creating support for the Book control
requires only minimal customization, allowing you to learn the basics of
creating a toolkit support set.

When you create support for your own controls, use Extensibility
Accelerator to design your support. Extensibility Accelerator creates the
toolkit support set files and sets up the XML files automatically, so you can
focus on designing your JavaScript functions. Creating the support
manually in this lesson enables you to get a better understanding of the
structure and content of a Web Add-in Extensibility toolkit support set.

The %ALLUSERSPROFILE%\Documents\ExtAccTool\Samples\
WebExtSample folder contains a complete toolkit support set for this sample
to which you can refer while you perform this lesson. The JavaScript code is
not identical to the code you will create, because the sample support set is
designed to work on Firefox as well as Internet Explorer, and uses the jQuery
JavaScript library.

Before you perform this lesson, ensure that you have read Chapter 1,
"Introducing QuickTest Professional Web Add-in Extensibility."

Lesson 1 • Learning to Create QuickTest Support for a Simple Custom Web Control

112

This lesson includes:

➤ Preparing for This Lesson on page 112

➤ Planning Support for the Web Add-in Extensibility Book Sample Toolkit
on page 113

➤ Developing the Toolkit Support Set on page 122

➤ Lesson Summary on page 154

Preparing for This Lesson

Before you extend QuickTest support for a custom control, you must have
access to its source file. You do not need to modify any of the custom
control’s sources to support it in QuickTest, but you do need to be familiar
with them. Make sure you know what elements and attributes comprise the
control, the events that might occur on this control, and so on. You use this
information when you design the support class.

The source file for the Book control is located in %ALLUSERSPROFILE%\
Documents\ExtAccTool\Samples\WebExtSample\Application\Book.htm.

Open the file to run the control.

Run the control, open the source file for it and study the control’s behavior
and implementation.

The Book control contains information including the title of the book, its
authors, the price for a new copy of the book, and the lowest price for which
a used copy can be purchased.

Lesson 1 • Learning to Create QuickTest Support for a Simple Custom Web Control

113

Clicking on the title or the image of the book opens a page that can display
more details about the book (but is not implemented in this sample).
Clicking on an author name opens a page that can provide a list of books by
the same author (but is not implemented in this sample). Clicking on Used
opens a UsedBooks page, listing all of the available used copies of the book,
and their prices. The UsedBooks table is a more complex control that you
will learn to support in the lesson, "Learning to Create QuickTest Support for
a Complex Custom Web Control" on page 157.

Planning Support for the Web Add-in Extensibility Book
Sample Toolkit

In this section, you analyze how QuickTest currently recognizes the Book
control versus the way it should recognize it, based on your knowledge of
the control. Next, you determine the answers to the questions in the
"Understanding the Web Add-in Extensibility Planning Checklist" on
page 35, and fill in the "Web Add-in Extensibility Planning Checklist" on
page 38, accordingly.

The best way to do this is to analyze how QuickTest recognizes the Book
control on the one hand, using the Object Spy, Keyword View, and Record
option, and on the other hand, to consider how the control is implemented
and the purposes for which it is used.

 1 Open QuickTest and Run the Book control.

Open QuickTest and load the Web Add-in.

Close any open instances of the Book control and open it by opening the
%ALLUSERSPROFILE%\Documents\ExtAccTool\Samples\WebExtSample
\Application\Book.htm file.

 2 Use the Object Spy to view the Book properties and operations.

In QuickTest, select Tools > Object Spy or click the Object Spy toolbar
button to open the Object Spy dialog box. Click the Properties tab and
select Identification Properties.

In the Object Spy dialog box, click the pointing hand, then click the Book
control.

Lesson 1 • Learning to Create QuickTest Support for a Simple Custom Web Control

114

The Book control is implemented as a Web table, for which QuickTest
support is built in, therefore it recognizes the control as a WebTable,
named according to the title of the book. The icon used for the test object
is the standard WebTable class icon.

Close the Object Spy.

 3 Record operations on the Book control.

In QuickTest, select Automation > Record and Run Settings to open the
Record and Run Settings dialog box. In the Web tab, select Record and
run test on any open browser. Click OK.

Lesson 1 • Learning to Create QuickTest Support for a Simple Custom Web Control

115

Click the Record button or select Automation > Record. Click on different
links in the Book control (you must return to the previous page after each
click, to return to the Book control): the book title, the image in the
control, an author name, and the Used link.

With each click, a new step is added to the test:

Click the Stop button or select Automation > Stop to end the recording
session.

Only simple Click steps are recorded, each attributed to a different object
defined within the book control. Click operations are recorded
independently on Web Link test objects with different names, or on the
Book image test object. These steps are not helpfully meaningful in the
context of this control.

 4 Determine the custom toolkit to which the Book control belongs.

When you extend QuickTest support for a control you always do so in the
context of a toolkit. For the purpose of this tutorial, two custom Web
controls are grouped to form the custom toolkit named WebExtSample:
Book and UsedBooksTable.

In this lesson you create support for the WebExtSample toolkit, initially
supporting only the Book control.

Lesson 1 • Learning to Create QuickTest Support for a Simple Custom Web Control

116

 5 Complete the custom class support planning checklist.

The Book control is implemented as a Web table, as follows:

This section describes the decisions you need to make when planning
your support for the Book control, and then summarizes the information
in the support planning checklist.

 a Choose a test object class to represent the custom control:

The Book control is implemented as a Web table control to assist in its
appearance. For the purpose of performing tests on this control, there
is no need to for QuickTest to recognize the Book control as a table. On
the other hand, the basic support that QuickTest provides a generic

<table class="Book">
<tr>

<td class="BookImageCell" rowspan="4">

</td>
<td class="BookCell">

The History of QuickTest Professional

</td>
</tr>
<tr>

<td class="BookCell">
By: Jane Doe,

John Doe
</td>

</tr>
<tr>

<td class="BookCell">
</td>

</tr>
<tr>

<td class="BookCell">
New: 59.99$

Used: from 29.99$</
strong>

</td>
</tr>

</table>

Lesson 1 • Learning to Create QuickTest Support for a Simple Custom Web Control

117

Web element, using the WebElement object, is not specific enough for
the Book control. Therefore, you create a new test object class named
WebExtBook, which extends WebElement, and teach QuickTest to
identify this test object class as the one that represents the Book
control.

 b Define how QuickTest will identify which test object class to use to
represent the control:

If the control’s tagName property is table and its className property
is Book, use a WebExtBook test object to represent the control.

 c Decide the details for the new test object class:

➤ The new test object class is represented by the icon file:
<QuickTest installation folder>\Dat\Extensibility\Web\Toolkits\
WebExtSample\Res\WebBook.ico

➤ No Help file is provided.

➤ The new identification properties to support are: title, authors,
price, and min_used_price. They should all be displayed in the
QuickTest Checkpoint Properties and Output Value Properties dialog
boxes, and be selected by default in checkpoints. None are used for
Smart Identification.

The identification properties that uniquely define the object are the
book’s title and the names of its authors.

➤ The name of the test object itself should be the same as its title
identification property.

 d Decide which test object methods to support for the custom control:

The WebExtBook test object class provides the following test object
methods:

➤ Select. Simulates clicking the book’s title or image. This is the
default test object method.

➤ GoToAuthorPage. Simulates clicking the specified author name (the
available author names should be retrieved from the specific control
during run-time).

➤ GoToUsedBooksPage. Simulates clicking the Used link.

Lesson 1 • Learning to Create QuickTest Support for a Simple Custom Web Control

118

 e Determine whether you need to support a dynamic list of values for
any method arguments:

Yes, a dynamic list of values is required for the AuthorName argument
in the GoToAuthorPage method. (This requires modifying the toolkit
configuration file to specify the JavaScript function that provides the
values, and designing the relevant JavaScript function).

 f Define which of the control’s children QuickTest should learn when
learning the control:

For testing purposes, QuickTest should relate to all operations as
though they are carried out on the Book control itself, even if they are
technically performed on controls within it. Therefore, none of the
control’s children need to be learned and represented by test objects.

 g Decide whether the Object Spy should display WebExtBook test
objects: Yes.

 h Define whether to support recording, and what events to record:

Listen to mouse clicks that occur on the following elements in the
control: title, image, authors, and Used. When a click occurs on one of
these elements, record the relevant step in the test.

 i Decide what parts of the support need to be designed in the toolkit
configuration file and what parts need JavaScript functions:

➤ For the simple Book control, test object class identification is based
simply on html property values and can therefore be supported
using the toolkit configuration file without JavaScript functions.

➤ Test object methods and identification properties can be supported
by JavaScript functions using the default naming convention,
therefore no changes are required in the toolkit configuration file.

➤ Instructing QuickTest not to learn the control’s children can be
designed in the toolkit configuration file and does not require
JavaScript functions.

Lesson 1 • Learning to Create QuickTest Support for a Simple Custom Web Control

119

➤ To support recording, you modify the toolkit configuration file to
turn off the default Web Event Configuration and specify the
JavaScript function that registers QuickTest to listen to the correct
event. In addition, design one JavaScript function that handles
event registration, and additional JavaScript functions that instruct
QuickTest to record the relevant steps when the events occur.

On page 120, you can see the checklist, completed based on the information
above.

Lesson 1 • Learning to Create QuickTest Support for a Simple Custom Web Control

120

Web Add-in Extensibility Planning Checklist

Custom Control Support Planning Checklist
Specify in
Toolkit
XML?

Support by
JavaScript
function?

The sources for this custom control are located in:
%ALLUSERSPROFILE%\Documents\ExtAccTool\Samples\
WebExtSample\Application\Book.htm.

n/a n/a

Specify the Web test object base class that the new test object class
extends: (Default—WebElement)
WebElement

n/a n/a

Is the base test object class WebElement? Yes

If No, is there a base element (an element that matches the base
test object class)?n/a

If there is a base element, do you need a JavaScript function to
return it? n/a

No No

Specify the New Web test object class details:

➤ Test object class name:WebExtBook
➤ Icon file location (optional):

<QuickTest installation folder>\Dat\Extensibility\Web\Toolkits\Web
ExtSample\Res\WebBook.ico

➤ Identification properties for description:title, authors
➤ Default test object method:Select
➤ Help file location: n/a

n/a n/a

Specify the basis for identifying the test object class to use for the
control:
tagName = table, className = Book.

Yes No

Specify the basis for naming the test object:
Use the book title

n/a Yes

List the identification properties to support. Mark which should
be available (and which selected by default) for checkpoints and
which (if any) should be used for Smart Identification:
title, authors, price, min_used_price (all available for checkpoints
and selected by default, none used for Smart Identification)

No Yes

Lesson 1 • Learning to Create QuickTest Support for a Simple Custom Web Control

121

List the test object methods to support (if required, include
arguments, return values, Help file location and Help ID):
Select ()
GoToAuthorPage (AuthorName)
GoToUsedBookPage ()

No Yes

Provide a dynamic list of values for any test object method
arguments?
Yes

If so, list the arguments:

AuthorName for GoToAuthorPage method

n/a Yes

Specify the types of children that QuickTest should learn with the
control:
None

Yes No

Display test objects of this class in the Object Spy?
Yes

No n/a

Provide support for recording?
Yes

If so, list the events that should trigger recording:

Clicks on title, image, author names, and Used

Yes Yes

Custom Control Support Planning Checklist
Specify in
Toolkit
XML?

Support by
JavaScript
function?

Lesson 1 • Learning to Create QuickTest Support for a Simple Custom Web Control

122

Developing the Toolkit Support Set

Follow the steps in this section to develop the toolkit support set for the
WebExtSample toolkit and learn the basics of Web Add-in Extensibility.
Developing this toolkit support set comprises the following stages:

➤ Stage 1: Creating the Toolkit Support Set, described on page 122

➤ Stage 2: Introducing the WebExtSample Environment to QuickTest,
described on page 123

➤ Stage 3: Teaching QuickTest to Identify, Spy, and Learn the Book Control,
described on page 127

➤ Stage 4: Implementing Support for the WebExtBook’s Test Object
Methods, described on page 135

➤ Stage 5: Implementing Support for the WebExtBook’s Identification
Properties, described on page 139

➤ Stage 6: Changing the Name of the Test Object, described on page 142

➤ Stage 7: Implementing a Filter to Prevent Learning Child Objects,
described on page 144

➤ Stage 8: Implementing Support for Recording on the Book Control,
described on page 146

➤ Stage 9: Implementing Support for Dynamic List of Values for
AuthorName, described on page 151

Stage 1: Creating the Toolkit Support Set
In this section, you create the files and folders that comprise the toolkit
support set for the WebExtSample toolkit.

To create the toolkit support set:

 1 Create a folder for your toolkit support set.

You can choose any convenient name and location for this folder.

 2 In the toolkit support set folder, create a file named
WebExtSampleTestObjects.xml. This is the test object configuration file.

 3 In the toolkit support set folder, create a folder named Toolkits.

Lesson 1 • Learning to Create QuickTest Support for a Simple Custom Web Control

123

 4 In the Toolkits folder, create a folder named WebExtSample.

 5 In the Toolkits\WebExtSample folder, create the following:

➤ A file named WebExtSample.xml (This is the toolkit configuration file.)

➤ A file named WebExtBook.js (This is the file for all of the JavaScript
functions you design to support the Book control.)

➤ A folder named Res containing the WebBook.ico icon file (You can
copy the icon file from %ALLUSERSPROFILE%\Documents\
ExtAccTool\Samples\WebExtSample\Res.)

Stage 2: Introducing the WebExtSample Environment to
QuickTest
In this section, you introduce the WebExtSample environment to QuickTest,
using the toolkit configuration file and the test object configuration file.
The first layer of Web Add-in Extensibility is introducing the environment
to QuickTest. The toolkit configuration file informs QuickTest of the new
environment (and its name) and the test object configuration file describes
the test object model that you designed for the environment.

Designing the Toolkit Configuration File

The first role of the toolkit configuration file is informing QuickTest of the
new supported environment.

To inform QuickTest that a new environment is supported, it is sufficient to
create a basic toolkit configuration file, whose name is the same as the
environment name. A basic toolkit configuration file must contain one
Controls element with at least one Control element (describing one test
object class). For more information on the elements and attributes in the
toolkit configuration file, see the QuickTest Web Add-in Extensibility Toolkit
Configuration Schema Help (available with the Web Add-in Extensibility
Help).

Lesson 1 • Learning to Create QuickTest Support for a Simple Custom Web Control

124

To inform QuickTest about the WebExtSample environment:

Enter the following text in the WebExtSample.xml file that you created in
"Stage 1: Creating the Toolkit Support Set" on page 122:

After you deploy this file to the correct location on a QuickTest computer,
when QuickTest opens, it displays the WebExtSample environment in the
Add-in Manager, as a child node beneath the Web Add-in. If you select the
check box for the WebExtSample, QuickTest loads the support that you
provide for this environment.

Later in this lesson you will add additional elements within this Control
element, providing the location of the JavaScript functions that complete
the toolkit support set and information that provides support for the
following QuickTest abilities:

➤ Identifying the test object class used to represent the control (to support
the Object Spy and learning controls)

➤ Filtering child controls when learning the control

➤ Listening to events on the control to record test steps

Designing the Test Object Configuration File

You use the test object configuration file to introduce the WebExtSample
environment and its test object model to QuickTest.

The PackageName attribute in the TypeInformation element associates this
test object configuration file (and the test objects defined in it) with the
WebExtSample environment. If, when QuickTest opens, you do not select
the WebExtSample environment, QuickTest ignores the test object class
definitions in this file.

For more information on the elements and attributes in the test object
configuration file, see the QuickTest Test Object Schema Help (available with
the Web Add-in Extensibility Help).

<?xml version="1.0" encoding="UTF-8"?>
<Controls>

<Control TestObjectClass="WebExtBook"/>
</Controls>

Lesson 1 • Learning to Create QuickTest Support for a Simple Custom Web Control

125

To define the WebExtSample test object model in the test object
configuration file:

Enter the text below in the WebExtSampleTestObjects.xml file that you
created in "Stage 1: Creating the Toolkit Support Set" on page 122. This
defines the WebExtSample environment and the WebExtBook test object
class (including its test object methods and identification properties)
according to the details described in the "Web Add-in Extensibility Planning
Checklist" on page 120.

Lesson 1 • Learning to Create QuickTest Support for a Simple Custom Web Control

126

<?xml version="1.0" encoding="UTF-8"?>
<TypeInformation Load="true" AddinName="Web" PackageName="WebExtSample">

<ClassInfo BaseClassInfoName="WebElement" Name="WebExtBook"
DefaultOperationName="Select" >

<IconInfo IconFile=
"INSTALLDIR\dat\Extensibility\Web\Toolkits\WebExtSample\Res\WebBook.ico"/>

<TypeInfo>
<Operation ExposureLevel="CommonUsed" Name="Select" PropertyType="Method">

<Description>Selects the book.</Description>
<Documentation><![CDATA[Select the %l book.]]></Documentation>

</Operation>
<Operation ExposureLevel="CommonUsed" Name="GoToAuthorPage"

PropertyType="Method">
<Description>Opens the Web page for the specified author.</Description>
<Documentation><![CDATA[Open the Web page for %a1.]]></Documentation>
<Argument Name="AuthorName" IsMandatory="true" Direction="In"

DynamicListOfValues="true">
<Type VariantType="String"/>
<Description>The author.</Description>

</Argument>
</Operation>
<Operation ExposureLevel="CommonUsed" Name="GoToUsedBooksPage"

PropertyType="Method">
<Description>Opens the UsedBooks page.</Description>
<Documentation><![CDATA[Open the %l UsedBooks page.]]></Documentation>

</Operation>
</TypeInfo>
<IdentificationProperties>

<IdentificationProperty ForDefaultVerification="true" ForVerification="true"
ForDescription="true" Name="title"/>

<IdentificationProperty ForDefaultVerification="true" ForVerification="true"
ForDescription="true" Name="authors"/>

<IdentificationProperty ForDefaultVerification="true" ForVerification="true"
ForDescription="false" Name="price"/>

<IdentificationProperty ForDefaultVerification="true" ForVerification="true"
ForDescription="false" Name="min_used_price"/>

</IdentificationProperties>
</ClassInfo>

</TypeInformation>

Lesson 1 • Learning to Create QuickTest Support for a Simple Custom Web Control

127

Stage 3: Teaching QuickTest to Identify, Spy, and Learn
the Book Control
To support a custom control, QuickTest must be able to identify which test
object class should represent a given control. Therefore, the most basic
element of Web Add-in Extensibility is the Identification element, defined
within each Control element in the toolkit configuration file. Each Control
element defines a test object class. The Identification element specifies
which controls should be represented by that test object class.

When QuickTest needs to recognize a control in the application being
tested, it checks the Identification element defined for each test object class.
The first test object class whose Identification definition matches the control
is used to represent the control.

As described in "Planning Support for the Web Add-in Extensibility Book
Sample Toolkit" on page 113, any control whose tagName property is table
and whose className property is Book is represented by a WebExtBook test
object. This can be defined simply in the toolkit configuration file and does
not require using JavaScript functions.

Lesson 1 • Learning to Create QuickTest Support for a Simple Custom Web Control

128

To define the identification rules for the WebExtBook test object class:

Replace the text in the WebExtSample.xml file with the following text:

This adds an Identification element to the Control element that defines the
WebExtBook test object class. The Identification element includes one
Conditions element that contains two conditions, both of which must be
met for the control to qualify as a WebExtBook. The Condition elements
within the Conditions element specify one condition each. In each
condition, the value of the specified HTML property of the control must
match (case-insensitive compare) the specified expected value.

<?xml version="1.0" encoding="UTF-8"?>
<Controls>

<Control TestObjectClass="WebExtBook">
<Identification>
<Browser name="*">

<Conditions type="IdentifyIfPropMatch" logic="and">
<Condition prop_name="tagName" expected_value="TABLE"/>
<Condition prop_name="className" expected_value="Book"/>

</Conditions>
</Browser>

</Identification>
</Control>

</Controls>

Lesson 1 • Learning to Create QuickTest Support for a Simple Custom Web Control

129

This tutorial uses the definition above to illustrate the use of more than one
Condition element within a Conditions element. However, if you were
working with an application that had many controls on a page, or a large
DOM structure, this would be a better way to define the identification rules:

This definition provides improved performance because it instructs
QuickTest to perform the identification process only on TABLE elements.

For more information on defining the Identification element for a test
object class, see "Teaching QuickTest to Identify the Test Object Class to Use
for a Custom Web Control" on page 67 and the QuickTest Web Add-in
Extensibility Toolkit Configuration Schema Help (available with the Web Add-in
Extensibility Help).

<Identification>
<Browser name="*">
<HTMLTags>

<Tag name="TABLE"/>
</HTMLTags>
<Conditions type="IdentifyIfPropMatch">

<Condition prop_name="className" expected_value="Book"/>
</Conditions>

</Browser>
</Identification>

Lesson 1 • Learning to Create QuickTest Support for a Simple Custom Web Control

130

Deploying and Testing the Toolkit Support Set

After defining the WebExtBook test object class in the test object
configuration file and the identification rules for this test object class in the
toolkit configuration file, you can already test the effect of using the toolkit
support set with QuickTest.

Note: When you develop your own toolkit support set, if you modify
attributes of Identification Property elements in the test object
configuration file, keep the DevelopmentMode attribute of the
TypeInformation element set to true during the design stages of the custom
toolkit support. Before you deploy the custom toolkit support set for regular
use, be sure to remove this attribute (or set it to false). This is not required
when performing this tutorial lesson. For more information, see "Modifying
Identification Property Attributes in a Test Object Configuration File" on
page 105.

To deploy the toolkit support set:

 1 Copy the WebExtSampleTestObjects.xml file to <QuickTest installation
folder>\dat\Extensibility\Web.

 2 In the <QuickTest installation folder>\dat\Extensibility\Web\Toolkits
folder, create a folder named WebExtSample.

 3 Copy the WebExtSample.xml file to the <QuickTest installation
folder>\dat\Extensibility\Web\Toolkits\WebExtSample folder.

 4 In the <QuickTest installation folder>\dat\Extensibility\Web\Toolkits\
WebExtSample folder, create a folder named Res.

 5 Place the WebBook.ico file in <QuickTest installation
folder>\dat\Extensibility\Web\Toolkits\WebExtSample\Res folder.

Lesson 1 • Learning to Create QuickTest Support for a Simple Custom Web Control

131

To test the toolkit support set:

 1 After you deploy the toolkit support set, open QuickTest.

Note: QuickTest reads toolkit support files when it opens. Therefore, if
QuickTest is open, you must close QuickTest and open it again.

The Add-in Manager dialog box displays the WebExtSample as a child of
the Web environment in the list of available add-ins. (If the Add-in
Manager dialog box does not open, see the HP QuickTest Professional
Add-ins Guide for instructions.)

 2 Select the check box for WebExtSample and click OK. QuickTest opens
and loads the support you designed.

 3 Use the Define New Test Object button in the Object Repository dialog
box to open the Define New Test Object dialog box. The WebExtSample
environment is displayed in the Environment list. When you select the
WebExtSample environment from the list, the WebExtBook test object
class that you defined in the test object configuration file is displayed in
the Class list, with the icon that you specified in the
WebExtSampleTestObjects.xml file.

Lesson 1 • Learning to Create QuickTest Support for a Simple Custom Web Control

132

 4 Run the sample control by opening the %ALLUSERSPROFILE%\
Documents\ExtAccTool\Samples\WebExtSample\Application\Book.htm
file.

Note: QuickTest establishes its connection with an application when the
application opens. Therefore, if the Book control is open, you must close
it and run it again.

In QuickTest, perform the following activities on the Book control, to see
how QuickTest recognizes the control. (For more information on working
in QuickTest, see the HP QuickTest Professional User Guide.)

➤ Use the Object Spy to view the identification properties and test object
operations that are supported for the Book control:

➤ The WebExtBook test object created for the Book control is given the
name of its test object class. Later in this lesson, you customize your
toolkit support set to provide a more specific name.

Lesson 1 • Learning to Create QuickTest Support for a Simple Custom Web Control

133

➤ The list of test object operations includes all of the operations
(methods and properties) inherited from the WebElement base class,
as well as all of the methods that you defined in the
WebExtSampleTestObjects.xml test object configuration file.

➤ The list of identification properties includes all of the properties that
you defined in the WebExtSampleTestObjects.xml test object
configuration file. The property values are not displayed because
you have not yet implemented a method that returns property
values from the application (and the WebElement base class does
not support these properties). You will implement such a method
later in this lesson.

Lesson 1 • Learning to Create QuickTest Support for a Simple Custom Web Control

134

➤ Use the Add Objects to Local button in the Object Repository dialog
box to learn the Book control. Ensure that the correct icon is used to
represent the test object in the object repository.

➤ In the Keyword View, create a test step choosing the WebExtBook
object from the object repository in the Item column.

➤ The list of available operations in the Operation column reflects the
definitions in the test object configuration file.

➤ After you choose an operation, the Value cell is partitioned
according to the number of arguments of the selected operation,
and if you defined possible values for the operation (in the
ListOfValues element), they are displayed in a list. For example,
when you create a step with the operation GoToAuthorPage, the
value cell requires one argument and displays the argument’s Name
attribute in a tooltip. The AuthorName argument currently accepts
any string. Later in this lesson, you develop support for dynamically
providing a list of the authors that can be used for this argument.

➤ The descriptions and documentation strings you defined for test
object methods in the test object configuration file are displayed in
tooltips and in the Documentation column, respectively.

➤ In the Expert View, create a test step with a WebExtBook test object.
Intellisense displays all of the operations available for the test object,
and possible input values for these operations, if relevant, based on the
definitions in the test object configuration file.

 5 Run a test with a step that performs a new test object method on a
WebExtBook test object. QuickTest searches for a JavaScript function that
will run the test object method on the control. Because you have not yet
implemented support for running test object methods, a run-time error
occurs. In the next section, you implement this support.

Lesson 1 • Learning to Create QuickTest Support for a Simple Custom Web Control

135

Stage 4: Implementing Support for the WebExtBook’s
Test Object Methods
After enabling QuickTest to recognize the custom controls, you must
provide support for running test object methods. For each test object
method that you defined in the test object configuration file, you must
write a JavaScript function that QuickTest runs to perform the step on the
control.

In the toolkit configuration file, you need to specify the JavaScript file in
which QuickTest should look for the JavaScript functions and, optionally,
the name of the function to use for each test object method.

In this section, you provide support for the WebExtBook’s test object
methods: Select, GoToAuthorPage (AuthorName), and GoToUsedBooksPage.

It is possible to specify a JavaScript file and function for each test object
method in the toolkit configuration file. However, in this lesson, you
develop support for running test object methods in the simplest way
possible. At the Control element level, you define one JavaScript file that
QuickTest uses by default for all test objects methods defined within this
element. As for the JavaScript function names, by default, QuickTest
searches in the specified file for a JavaScript function with the same name as
the test object method. Therefore, you do not need to specify the function
names in the toolkit configuration file, but only to create the JavaScript
functions with the correct names.

Lesson 1 • Learning to Create QuickTest Support for a Simple Custom Web Control

136

To develop support for the WebExtBook test object methods:

 1 In the WebExtSample.xml file, within the Control element defined for the
WebExtBook test object class, add the following Settings element:

This instructs QuickTest to search for JavaScript functions in the
WebExtBook.js file (in the <QuickTest installation
folder>\dat\Extensibility\Web\Toolkits\WebExtSample folder).

Note: You can modify the WebExtSample.xml file in the toolkit support
set folder and then later deploy it to QuickTest for testing, or you can
modify <QuickTest installation folder>\dat\Extensibility\Web\Toolkits\
WebExtSample\WebExtSample.xml directly.

<Settings>
<Variable name="default_imp_file" value="WebExtBook.js"/>

</Settings>

Lesson 1 • Learning to Create QuickTest Support for a Simple Custom Web Control

137

 2 In the WebExtBook.js file that you created in "Stage 1: Creating the
Toolkit Support Set" on page 122, paste the text below to create JavaScript
functions for each test object method: Select, GoToAuthorPage
(AuthorName), and GoToUsedBooksPage.

Note: The _elem object is a reserved object that QuickTest uses to refer to
the HTML control currently being handled.

// Run implementation
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~
// This section contains the functions that carry out the test object methods.

function Select()
{ // Click the link in the second cell of the first row.

_elem.rows[0].cells[1].children[0].click();
}
function GoToAuthorPage(AuthorName)
{ // Look for the specified author name among the children

// of the first cell in the second row and click it.
var bWasFound = false;
for(var i = 0 ; i < _elem.rows[1].cells[0].children.length ; ++i)
{

if(_elem.rows[1].cells[0].children[i].innerText == AuthorName)
{

_elem.rows[1].cells[0].children[i].click();
bWasFound = true;
break;

}

if(bWasFound == false)
throw ("Author name not found !");

}
function GoToUsedBooksPage()
{ // Click the link in the first cell of the third row.

_elem.rows[3].cells[0].children[1].click();
}

Lesson 1 • Learning to Create QuickTest Support for a Simple Custom Web Control

138

Deploying and Testing the Toolkit Support Set

After developing support for running the test object methods, you deploy
the updated toolkit support set to QuickTest and test it.

To test the support for running test object methods:

 1 To deploy the updated toolkit support set to QuickTest, copy the
WebExtBook.js file (and WebExtSample.xml if necessary) to <QuickTest
installation folder>\dat\Extensibility\Web\Toolkits\WebExtSample.

 2 Close and reopen QuickTest. Select the check box for WebExtSample in
the Add-in Manager dialog box and click OK. QuickTest opens and loads
the support you designed.

 3 Close and rerun the sample control.

 4 Use the Add Objects to Local button in the Object Repository dialog box
to learn the Book control.

 5 Create a test with the following step and then run the test:

Note: If you run the GoToAuthorPage test object method with an author
name that does not exist in the control, the JavaScript function throws an
exception, QuickTest displays a run-time error message and the test step
fails.

Create and run similar tests to test the Select and GoToUsedBooksPage
test object methods.

Browser(“Book”).Page(“Book”).WebExtBook(“WebExtBook”). GoToAuthorPage
“Jane Doe”

Lesson 1 • Learning to Create QuickTest Support for a Simple Custom Web Control

139

Stage 5: Implementing Support for the WebExtBook’s
Identification Properties
In this section you implement support for retrieving the values of
identification properties during a test run. QuickTest uses identification
property run-time values in different standard test object methods, such as
GetROProperty. Identification property run-time values are also required for
different basic capabilities, such as creating checkpoints and outputting
values.

To support retrieving the run-time values of identification properties, you
need to implement a JavaScript function that accepts a PropertyName
parameter and returns the value of any property QuickTest requests. You
must implement this method to return a value for each identification
property defined in the test object configuration file.

In the toolkit configuration file, you can specify the JavaScript file in which
you implemented the JavaScript function that retrieves property values. You
can also specify the name of the function that you implemented for this
purpose. However, if you do not specify a function name, QuickTest calls
get_property_value (PropertyName) and this is the function that you must
implement. If you do not specify a file name, QuickTest calls the function
from the JavaScript file you specified in the Control\Settings element.
Therefore, in this lesson, you create the get_property_value function in the
WebExtBook.js file.

To support retrieving the run-time values of the WebExtBook’s
identification properties:

Add the following lines to the WebExtBook.js file:

Lesson 1 • Learning to Create QuickTest Support for a Simple Custom Web Control

140

// Property retrieval implementation
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
// The function provides values for all of the identification properties
// defined in the test object configuration XML file.
function get_property_value(prop)
{

if (prop == "title")
// For the "title" identification property,
// Return the inner text of the second cell in the first row
{

return _elem.rows[0].cells[1].innerText;
}
if (prop == "authors")
// To return a list of all the authors, look for all the children
// of the first cell in the second row.
{

var BookAuthors = "";
var AuthorsCount = 0;
for(var i = 0 ; i < _elem.rows[1].cells[0].children.length ; ++i)
{

if(_elem.rows[1].cells[0].children[i].tagName == "A")
{

if(AuthorsCount > 0)
BookAuthors += ",";
BookAuthors += _elem.rows[1].cells[0].children[i].innerText;
AuthorsCount++;

}
}
return BookAuthors;

}
if (prop == "price")
// To return the price of the book, return the innerText
// property of the first cell in the fourth row.
{

return _elem.rows[3].cells[0].children[0].innerText;
}
if (prop == "min_used_price")

// To return the lowest price available for a used copy of the book,
// return the innerText property of the second child of the first cell
// in the fourth row.
{

if(_elem.rows[3].cells[0].children.length > 2)
return _elem.rows[3].cells[0].children[2].innerText;

}
}

Lesson 1 • Learning to Create QuickTest Support for a Simple Custom Web Control

141

Note: You can modify the WebExtBook.js file in the toolkit support set
folder and then later deploy it to QuickTest for testing, or you can modify
<QuickTest installation folder>\dat\Extensibility\Web\Toolkits\
WebExtSample\WebExtBook.js directly.

Deploying and Testing the Toolkit Support Set

After developing support for retrieving run-time values of identification
properties, you deploy the updated toolkit support set to QuickTest and test
it.

To test the support for retrieving run-time values of identification
properties:

 1 Make sure that your most updated files are located in <QuickTest
installation folder>\dat\Extensibility\Web\Toolkits\WebExtSample.

 2 Close and reopen QuickTest. Select the check box for WebExtSample in
the Add-in Manager dialog box and click OK. QuickTest opens and loads
the support you designed.

 3 Close and rerun the sample control.

 4 Create a new test, add a WebExtBook test object to your object repository,
and create a test step with this test object. Right-click the object and select
Insert Standard Checkpoint. The Checkpoint Properties dialog box opens.
Make sure that the identification properties you defined in the test object
configuration file (title, authors, price, and min_used_price) are included
in the list of properties and are selected.

 5 Create and run a test that retrieves each identification property and
checks its value, or displays it in a message box. For example, you can run
the following test:

Lesson 1 • Learning to Create QuickTest Support for a Simple Custom Web Control

142

The first step checks the value of the authors property, the checkpoint in
the second step checks the properties selected in the checkpoint (in this
case price and min_used_price) and the third step displays the book’s title
in a message box.

 6 Click OK to close the message box. The test run is completed and the run
results are displayed. Expand the run results tree to view the step details.

Stage 6: Changing the Name of the Test Object
In this section, you modify the toolkit support set to instruct QuickTest to
name the WebExtBook test object according to its title, as per your plan
("Planning Support for the Web Add-in Extensibility Book Sample Toolkit"
on page 113).

When QuickTest creates the test object that represents a control, it calls the
get_property_value function (used for retrieving test object identification
property values) with the argument logical_name to determine the name for
the test object. You can implement the get_property_value function
accordingly, to customize the name QuickTest gives the test object. If the
get_property_value function does not support the logical_name property,
the test object is given the name of the test object class (followed by an
index, if there is more than one object of the same test object class on the
same page).

To customize the name of the test object:

In the get_property_value function in the WebExtBook.js file, replace the
lines:

with the lines:

if (prop == "title")
// For the "title" identification property,

if (prop == "logical_name" || prop == "title")
// For the "title" identification property, as well as the "logical_name" property

Lesson 1 • Learning to Create QuickTest Support for a Simple Custom Web Control

143

Note: You can modify the WebExtBook.js file in the toolkit support set
folder and then later deploy it to QuickTest for testing, or you can modify
<QuickTest installation folder>\dat\Extensibility\Web\Toolkits\
WebExtSample\WebExtBook.js directly.

The get_property_value function now returns the same text for the
logical_name property that QuickTest uses to name the test object, as it does
for the title identification property. (Modify the comment that explains this
function accordingly. At the end of the comment, add the following: as well
as the hard coded "logical_name" property that QuickTest uses to name the test
object.)

Deploying and Testing the Toolkit Support Set

After developing support for naming the test object that represents the
control, you deploy the updated toolkit support set to QuickTest and test it.

To test the support for naming the WebExtBook test object:

 1 Make sure that your most updated files are located in <QuickTest
installation folder>\dat\Extensibility\Web\Toolkits\WebExtSample.

 2 Close and reopen QuickTest. Select the check box for WebExtSample in
the Add-in Manager dialog box and click OK. QuickTest opens and loads
the support you designed.

 3 Close and rerun the sample control.

 4 Open the Object Repository and use the Add Object to Local button to
learn the Book control. Make sure that the test object that QuickTest
creates is named The History of QuickTest Professional.

Lesson 1 • Learning to Create QuickTest Support for a Simple Custom Web Control

144

Stage 7: Implementing a Filter to Prevent Learning Child
Objects
When you instruct QuickTest to learn a Web page, the Define Object Filter
dialog box opens, enabling you to determine which of the Web page’s
descendants should be learned with it. When you select All object types,
instructing QuickTest to learn the WebExtBook control with its parent Web
page, all of the controls that the WebExtBook control contains are also
learned as children of that Web page (and siblings of the WebExtBook
control).

In the case of the Book control, there is no need to create test objects for all
of its children, as described in "Planning Support for the Web Add-in
Extensibility Book Sample Toolkit" on page 113.

To prevent QuickTest from learning all of the descendants of a control
supported by Web Add-in Extensibility, you can define a Learn Filter.
Complex filters can be implemented using a JavaScript function, in which
case you specify the location and name of the function in the toolkit
configuration file. Simple filters can be implemented directly in the toolkit
configuration file, without using JavaScript functions.

To prevent learning the controls contained in the Book control, a simple
filter is sufficient. Before you implement this filter, learn the Web page that
contains the Book control with all of its descendants to see that all of the
Book’s children are learned as well. To do this, you can follow the procedure
described in "Deploying and Testing the Toolkit Support Set" on page 145.

Lesson 1 • Learning to Create QuickTest Support for a Simple Custom Web Control

145

To prevent learning the controls contained in the Book control:

In the WebExtSample.xml file, within the Control element defined for the
WebExtBook test object class, add the following Filter element:

This instructs QuickTest to learn WebExtBook test objects when learning
their parent Web pages, but not to learn the child controls they contain.

Note: You can modify the WebExtSample.xml file in the toolkit support set
folder and then later deploy it to QuickTest for testing, or you can modify
<QuickTest installation folder>\dat\Extensibility\Web\Toolkits\
WebExtSample\WebExtSample.xml directly.

Deploying and Testing the Toolkit Support Set

After defining the filter to prevent learning children, you deploy the
updated toolkit support set to QuickTest and test it.

To test the support for learning the WebExtBook test object without its
children:

 1 Make sure that your most updated files are located in <QuickTest
installation folder>\dat\Extensibility\Web\Toolkits\WebExtSample.

 2 Close and reopen QuickTest. Select the check box for WebExtSample in
the Add-in Manager dialog box and click OK. QuickTest opens and loads
the support you designed.

 3 Close and rerun the sample control.

<Filter>
<Learn learn_control="Yes" learn_children="No"/>

</Filter>

Lesson 1 • Learning to Create QuickTest Support for a Simple Custom Web Control

146

 4 Open a test and open the Object Repository. Use the Add Objects to Local
button in the Object Repository dialog box to learn the Web page that
contains the Book control. The Define Object Filter dialog box opens.

 5 Select All object types and click OK. The WebExtBook object named The
History of QuickTest Professional is added to the object repository, but the
controls in contains are not.

Stage 8: Implementing Support for Recording on the
Book Control
By this point in the tutorial, your toolkit support set already enables full
QuickTest functionality. QuickTest recognizes the Book control, can learn it
and can run tests on it.

An additional, optional way to create tests in QuickTest is by recording
operations that a user performs on the application. As you can see in
"Planning Support for the Web Add-in Extensibility Book Sample Toolkit" on
page 113, by default QuickTest records plain Click operations on the various
Web link and image objects within the Book control. It would be more
helpful to record Select, GoToAuthorPage, and GoToUsedBooksPage
operations on the Book control itself, in response to those same clicks.

To support customized recording on your control, you must instruct
QuickTest to listen to the relevant events and inform QuickTest what test
steps to record in response to each event.

To do this you write two types of JavaScript functions:

➤ One JavaScript function that uses the RegisterForEvent function in the
_util utility object that QuickTest exposes in the Web Add-in Extensibility
SDK to register for listening to the correct events on the correct elements.
The arguments of this function also determine what JavaScript functions
QuickTest calls when each event occurs.

In the toolkit configuration file, you specify the name and, optionally, the
location of this JavaScript function.

➤ One or more JavaScript functions that handle the events by calling the
Record function in the _util utility object to inform QuickTest what step
to add to the test.

Lesson 1 • Learning to Create QuickTest Support for a Simple Custom Web Control

147

Note: The Record function, and other utility object functions, require a
SafeArray type argument. To convert an array to a SafeArray, you can use
the toSafeArray (array) function that Web Add-in Extensibility provides.
This function is defined in <Extensibility Accelerator installation
folder>\bin\PackagesToLoad\common.js. (This file is also located in the
<QuickTest Professional installation folder>\dat\Extensibility\Web\
Toolkits folder.)

For information on the syntax of the utility object functions, see the _util
section in the QuickTest Web Add-in Extensibility API Reference (available with
the Web Add-in Extensibility Help).

To develop support for recording on the Book control:

Note: You can modify the WebExtSample.xml and WebExtBook.js files in
the toolkit support set folder and then later deploy them to QuickTest for
testing, or you can modify these files in <QuickTest installation folder>
\dat\Extensibility\Web\Toolkits\WebExtSample directly.

 1 In the toolkit configuration file, within the Control element add the
following Record\EventListening element:

This instructs QuickTest not to use the default Web Event Configuration
for handling events on the Book control and its children, but to call the
JavaScript function ListenToEvents. Because you did not specify a
JavaScript file, QuickTest looks for the JavaScript function in the
WebExtBook.js file that you specified at the Control level for the
WebExtBook test object class.

<Record>
<EventListening use_default_event_handling_for_children="false"

use_default_event_handling="false"
type="javascript" function="ListenToEvents"/>

</Record>

Lesson 1 • Learning to Create QuickTest Support for a Simple Custom Web Control

148

 2 In the WebExtBook.js file, add the following ListenToEvents function:

This function registers QuickTest to listen to click events on the book’s
title, image, and authors, and on the Used link. When registering for an
event, this function specifies what JavaScript function QuickTest must call
when the event occurs.

function ListenToEvents(elem)
{

// Connect to the "Select" event: When the book name or the book
// icon is clicked, call OnSelectClicked.
_util.RegisterForEvent(_elem.rows[0].cells[0].children[0], "onclick",

"OnSelectClicked");
_util.RegisterForEvent(_elem.rows[0].cells[1].children[0], "onclick" ,

"OnSelectClicked");

// Connect to the "Author" event: When an author name is clicked,
// call OnAuthorClicked.
for(var i = 0 ; i < _elem.rows[1].cells[0].children.length ; ++i)
{

if(_elem.rows[1].cells[0].children[i].tagName == "A")
{

_util.RegisterForEvent(_elem.rows[1].cells[0].children[i], "onclick",
"OnAuthorClicked");

}
}

// Connect to the "UsedBooks" event: When "Used" is clicked,
// call OnUsedBooksClicked.
if(_elem.rows[3].cells[0].children.length > 1)

_util.RegisterForEvent(_elem.rows[3].cells[0].children[1], "onclick",
"OnUsedBooksClicked");

return true;
}

Lesson 1 • Learning to Create QuickTest Support for a Simple Custom Web Control

149

 3 In the WebExtBook.js file add the following event handler JavaScript
functions:

These functions record Select, GoToAuthorPage, and
GoToUsedBooksPage on the WebExtBook test object, as planned in
"Planning Support for the Web Add-in Extensibility Book Sample Toolkit"
on page 113.

function OnSelectClicked(handlerParam , eventObj)
{

// Record the "Select" step
var arr = new Array();
_util.Record("Select", toSafeArray(arr) , 0);
return true;

}

function OnAuthorClicked(handlerParam , eventObj)
{

// Record the "GoToAuthorPage" step
var arr = new Array();
arr[0] = eventObj.srcElement.innerText;
_util.Record("GoToAuthorPage", toSafeArray(arr) , 0);
return true;

}

function OnUsedBooksClicked(handlerParam , eventObj)
{

// Record the "GoToUsedBooksPage" step
var arr = new Array();
_util.Record("GoToUsedBooksPage", toSafeArray(arr) , 0);
return true;

}

Lesson 1 • Learning to Create QuickTest Support for a Simple Custom Web Control

150

Deploying and Testing the Toolkit Support Set

After developing the support for recording on the Book control, you deploy
the updated toolkit support set to QuickTest and test it.

To test the support for recording operations performed on the Book
control:

 1 Make sure that your most updated files are located in <QuickTest
installation folder>\dat\Extensibility\Web\Toolkits\WebExtSample.

 2 Close and reopen QuickTest. Select the check box for WebExtSample in
the Add-in Manager dialog box and click OK. QuickTest opens and loads
the support you designed.

 3 Close and rerun the sample control.

 4 Click the Record button or select Automation > Record. Click on different
links in the Book control (you must return to the previous page after each
click, to return to the Book control): the book title, the image in the
control, an author name, and the Used link.

With each click, a new step is added to the test:

Click the Stop button or select Automation > Stop to end the recording
session.

Lesson 1 • Learning to Create QuickTest Support for a Simple Custom Web Control

151

Stage 9: Implementing Support for Dynamic List of Values
for AuthorName
Using Web Add-in Extensibility, you can provide the QuickTest user a list of
possible values to use for a test object method argument, based on the
run-time values of the specific control. For example, the GoToAuthorPage
test object method of the WebExtBook test object class receives an
AuthorName argument. It is easier for the QuickTest users if they can select
an author name from a list of possibilities instead of typing the name.
However, this list is different for each WebExtBook control.

In the test object configuration file, you defined the DynamicListOfValues
attribute for the AuthorName argument as true, instructing QuickTest to
request the list of possible values from the control when creating a test step.

In the toolkit configuration file, you can specify the file name and function
name of the JavaScript function that QuickTest must call to retrieve the list
of values. By default, QuickTest requests the list of values by calling the
get_list_of_values JavaScript function from the WebExtBook.js file that you
specified at the Control level for the WebExtBook test object class. QuickTest
calls the JavaScript function for every argument whose DynamicListOfValues
attribute is set to true in the test object configuration file. The parameters
provided to this function indicate the test object method and argument for
which the values are being requested.

In this section, you implement the get_list_of_values JavaScript function, to
return the author names from the Book control.

Lesson 1 • Learning to Create QuickTest Support for a Simple Custom Web Control

152

To provide a dynamic list of values for the AuthorName argument in the
GoToAuthorPage test object method:

In the WebExtBook.js file add the JavaScript functions:

This returns a list of the book’s authors, each enclosed in quotation marks.

// Dynamic list of values implementation
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
function get_list_of_values(method, argIndex)
{

// When creating a step with the GoToAuthorPage test
// object method, provide a list of the authors of this book
// that can be used for the method's argument.
if (method == "GoToAuthorPage")
{

return get_GoToAuthorPage_list_of_values(argIndex);
}

return null;
}

function get_GoToAuthorPage_list_of_values(argIndex)
{

var arr = new Array();
if(argIndex > 1)

return toSafeArray(arr);

// Retrieve all authors
var AuthorsCount = 0;
for(var i = 0 ; i < _elem.rows[1].cells[0].children.length ; ++i)
{

if(_elem.rows[1].cells[0].children[i].tagName == "A")
{

arr[AuthorsCount]="\""+_elem.rows[1].cells[0].children[i].innerText+"\"";
AuthorsCount++;

}
}
return toSafeArray(arr);

}

Lesson 1 • Learning to Create QuickTest Support for a Simple Custom Web Control

153

The Book custom control is now fully supported, according to the
specifications you decided on when planning your custom support.

Note: You can modify the WebExtSample.xml file in the toolkit support set
folder and then later deploy it to QuickTest for testing, or you can modify
<QuickTest installation folder>\dat\Extensibility\Web\Toolkits\
WebExtSample\WebExtSample.xml directly.

Deploying and Testing the Toolkit Support Set

After implementing the get_list_of_values JavaScript function, you deploy
the updated toolkit support set to QuickTest and test that the dynamic list of
author names is properly provided.

To test the support for recording operations performed on the Book
control:

 1 Make sure that your most updated files are located in <QuickTest
installation folder>\dat\Extensibility\Web\Toolkits\WebExtSample.

 2 Close and reopen QuickTest. Select the check box for WebExtSample in
the Add-in Manager dialog box and click OK. QuickTest opens and loads
the support you designed.

 3 Close and rerun the sample control.

 4 Open a test and create a step with a WebExtBook test object and the
GoToAuthorPage test object method. The names of the authors displayed
on the Book control are displayed in a drop-down menu in the Value
column in the Keyword View.

Lesson 1 • Learning to Create QuickTest Support for a Simple Custom Web Control

154

Lesson Summary

In this lesson you created a new test object class, WebExtBook, defining its
identification properties and test object methods. You created support for
the Book control, enabling QuickTest to recognize it as an WebExtBook test
object.

➤ You learned to understand the test object configuration file.

➤ You learned to understand the toolkit configuration file.

➤ You learned to support new identification properties and test object
methods.

➤ You learned to create a filter for preventing child controls from being
learned.

➤ You learned to support recording and you made use of the Record and
RegisterForEvent utility methods.

➤ You learned how to provide a dynamic list of values for a test object
argument.

Where Do You Go from Here?
For more information on the structure and content of a toolkit support set,
see "Developing Support for Your Toolkit" on page 41.

For more information on the structure and content of the test object
configuration file, see the QuickTest Test Object Schema Help (available with
the Web Add-in Extensibility Help).

For more information on the structure and content of the toolkit
configuration file, see the QuickTest Web Add-in Extensibility Toolkit
Configuration Schema Help (available with the Web Add-in Extensibility
Help).

Lesson 1 • Learning to Create QuickTest Support for a Simple Custom Web Control

155

For more information on the _util utility object and global JavaScript
methods, see the QuickTest Web Add-in Extensibility API Reference (available
with the Web Add-in Extensibility Help).

In the next lesson you learn how to create support for the UsedBooks
custom control. The test object class that represents the UsedBooks control
extends the existing WebTable test object class. In developing QuickTest
support for this control you will learn to use some of the more advanced
options that Web Add-in Extensibility has to offer.

Lesson 1 • Learning to Create QuickTest Support for a Simple Custom Web Control

156

157

2
Learning to Create QuickTest Support for
a Complex Custom Web Control

In this lesson you create support for the UsedBooks control in the Web
Add-in Extensibility Book Sample toolkit, which is installed with
Extensibility Accelerator for HP Functional Testing. The test object class that
represents the UsedBooks control extends the existing WebTable test object
class. Creating support for the UsedBooks control teaches you how to use
some of the more advanced options of Web Add-in Extensibility.

In the lesson "Learning to Create QuickTest Support for a Simple Custom
Web Control" on page 111, you learned to create support for a simple
custom control. You are now familiar with the basics of Web Add-in
Extensibility, therefore this lesson explains only the more advanced
information.

The %ALLUSERSPROFILE%\Documents\ExtAccTool\Samples\
WebExtSample folder contains a complete toolkit support set for this sample
to which you can refer while you perform this lesson. The JavaScript code is
not identical to the code you will create, because the sample support set is
designed to work on Firefox as well as Internet Explorer, and uses the jQuery
JavaScript library.

This lesson includes:

➤ Preparing for This Lesson on page 158

➤ Planning Support for the Web Add-in Extensibility Sample UsedBooks
Control on page 159

➤ Developing the Toolkit Support Set on page 167

➤ Lesson Summary on page 184

Lesson 2 • Learning to Create QuickTest Support for a Complex Custom Web Control

158

Preparing for This Lesson

Before you extend QuickTest support for a custom control, you must have
access to its source file. You do not need to modify any of the custom
control’s sources to support it in QuickTest, but you do need to be familiar
with them. Make sure you know what elements and attributes comprise the
control, the events that may occur on this control, and so on. You use this
information when you design the support.

The source file for the UsedBooks control is located in
%ALLUSERSPROFILE%\Documents\ExtAccTool\Samples\WebExtSample\
Application\UsedBooks.htm.

To run the sample application, open the %ALLUSERSPROFILE%\
Documents\ExtAccTool\Samples\WebExtSample\Application\Book.htm
file. The Book control opens. In the Book control, click Used to run the
UsedBooks control.

Run the control, open its source file, and study the control’s behavior and
implementation.

The UsedBooks control is implemented as a div element that comprises a
Web table containing information about the available used copies of this
book and radio buttons, and a Select link (outside the table element) used to
select a book from the list. Selecting a book and opening the page about the
selected book (which is not implemented in this sample) requires selecting
the radio button in the relevant row in the table and then clicking Select.

Lesson 2 • Learning to Create QuickTest Support for a Complex Custom Web Control

159

Planning Support for the Web Add-in Extensibility Sample
UsedBooks Control

In this section, you analyze how QuickTest currently recognizes the
UsedBooks control versus the way it should recognize it, based on your
knowledge of the control. Next, you determine the answers to the questions
in the "Understanding the Web Add-in Extensibility Planning Checklist" on
page 35, and fill in the "Web Add-in Extensibility Planning Checklist" on
page 38, accordingly.

The best way to do this is to analyze the UsedBooks control from a
QuickTest perspective on the one hand using the Object Spy, Keyword View,
and Record option, and on the other hand, to consider how the control is
implemented and the purposes for which it is used.

 1 Open QuickTest and Run the UsedBooks control.

Open QuickTest and load the Web Add-in.

Close any open instances of the UsedBooks control and open it by
opening the %ALLUSERSPROFILE%\Documents\ExtAccTool\Samples\
WebExtSample\Application\Book.htm file and then clicking Used in the
Book control that opens.

 2 Use the Object Spy to view the UsedBooks test object operations.

In QuickTest, select Tools > Object Spy or click the Object Spy toolbar
button to open the Object Spy dialog box. Click the Operations tab and
select Test Object Operations.

In the Object Spy dialog box, click the pointing hand, then click the
UsedBooks table.

Lesson 2 • Learning to Create QuickTest Support for a Complex Custom Web Control

160

The UsedBooks control contains a Web table, for which QuickTest support
is built in, therefore it recognizes the control as a WebTable, named
according to the title of the table. The icon used for the test object is the
standard WebTable class icon. QuickTest ignores the div element, which is
actually the root of the UsedBooks control.

Close the Object Spy.

Lesson 2 • Learning to Create QuickTest Support for a Complex Custom Web Control

161

 3 Record operations on the UsedBooks control.

In QuickTest, select Automation > Record and Run Settings to open the
Record and Run Settings dialog box. In the Web tab, select Record and
run test on any open browser. Click OK.

Click the Record button or select Automation > Record. In the UsedBooks
table, select one of the radio buttons and then click Select.

With each click, a new step is added to the test:

Click the Stop button or select Automation > Stop to end the recording
session.

The recorded steps reflect the selection of the radio button and the
clicking of the link separately, and do not recognize these operations as
related to the UsedBooks control.

 4 Determine the custom toolkit to which the UsedBooks control belongs.

When you extend QuickTest support for a control you always do so in the
context of a toolkit. For the purpose of this tutorial, two custom Web
controls are grouped to form the custom toolkit named WebExtSample:
Book and UsedBooks.

You created the toolkit support set for this toolkit in the previous lesson.
In this lesson you add support for the UsedBooks control in the
WebExtSample toolkit support set.

Lesson 2 • Learning to Create QuickTest Support for a Complex Custom Web Control

162

 5 Complete the custom control support planning checklist.

This section describes the decisions you need to make when planning
your support for the UsedBooks control, and then summarizes the
information in the support planning checklist.

 a Choose the test object class to represent the custom control:

The internal content of the UsedBooks control is implemented as a
Web table control because of the type of information it contains. For
the purpose of performing tests on the UsedBooks control and
checking the information it contains, it is appropriate that QuickTest
recognize this control as a table. However, to optimally support the
UsedBooks control, the test object that represents the control must
support a SelectBook test object method that selects a book from the
table by selecting the radio button in the correct row in the table, and
clicking Select.

In addition, because the first row in the UsedBooks table contains the
column names, it would be helpful to replace (or override) the
RowCount test object method supported for WebTable objects to
reduce the row count and return the number of used copies available
for this book. To support the SelectBook test object method and
override the implementation of RowCount, you create a new test
object class named WebExtUsedBooks, which extends WebTable. You
then teach QuickTest to identify this test object class as the one that
represents the UsedBooks control.

 b Define how QuickTest will identify which test object class to use to
represent the control:

If the following conditions are met, use a WebExtUsedBooks test
object to represent the control:

➤ The control’s tagName property is div.

➤ The tagName property of the control’s first child is table.

➤ The className property of the control’s first child is UsedBooks.

Lesson 2 • Learning to Create QuickTest Support for a Complex Custom Web Control

163

 c Decide the details for the new test object class:

➤ The new test object class is represented by the icon file:
<QuickTest installation folder>\dat\Extensibility\Web\Toolkits\
WebExtSample\Res\WebBookList.ico

➤ No Help file is provided.

➤ The WebExtUsedBooks test object class needs to support a title
identification property (used to uniquely identify the control, and
selected by default in the checkpoint properties dialog box, not used
for Smart Identification).

➤ The name of the test object itself should be the same as its title
identification property.

 d Decide which test object methods to support for the custom control:

The WebExtUsedBooks test object class needs to support all of the test
object operations supported by the WebTable test object class. In
addition, it needs to support the SelectBook test object method.

➤ All of the operations inherited from the base class, WebTable, can be
supported by the table element contained in the UsedBooks control.
However, because the table element is a not the root element of the
UsedBooks control, QuickTest does not recognize this element as the
base element. You must implement a JavaScript function that
returns the table element as the base element for the UsedBooks
control. This instructs QuickTest to use the table element to support
the operations inherited from the base WebTable test object class.

➤ The SelectBook test object method simulates selecting the radio
button for the specified book and clicking Select.

➤ The WebTable test object method RowCount needs to be overridden,
to return the actual number of books in the table instead of the
number of rows.

 e Define which of the control’s children QuickTest should learn when
learning the control:

For the purpose of this tutorial, when a WebExtUsedBooks test object
is learned as part of a Web page, the radio buttons within in should be
learned as well.

Lesson 2 • Learning to Create QuickTest Support for a Complex Custom Web Control

164

 f Decide whether the Object Spy should display WebExtUsedBooks test
objects: Yes.

 g Decide whether to support recording, and what events to record:

Listen to mouse clicks that occur on the Select link. When a radio
button is selected and this link is clicked, record a test step that selects
the book whose radio button is selected.

 h Decide what parts of the support need to be designed in the toolkit
configuration file and what parts need JavaScript functions:

➤ For the UsedBooks control, test object class identification is
performed by a JavaScript function, specified in the toolkit
configuration file. To avoid unnecessary calls to the JavaScript
function, a condition element is defined in the toolkit configuration
file, instructing QuickTest to call the JavaScript function only if the
control is defined as a div element.

➤ The table base element must be returned by a JavaScript function
specified in the toolkit configuration file.

➤ Test object identification properties can be supported by JavaScript
functions using the default naming convention, therefore no
changes are required in the toolkit configuration file.

➤ The WebTable’s RowCount test object method is overridden by a
new implementation, provided by a JavaScript function named
BookCount. Therefore, the name of the function needs to be
specified in the toolkit configuration file.

➤ Filtering the children that are learned with the UsedBooks control is
done by calling a JavaScript function that needs to be specified in
the toolkit configuration file.

➤ To support recording, you modify the toolkit configuration file to
turn off the default Web Event Configuration and specify the
JavaScript function that registers QuickTest to listen to the correct
event. In addition, you design one JavaScript function that handles
event registration, and additional JavaScript functions that instruct
QuickTest to record the relevant steps when the events occur.

Below, you can see the checklist, completed based on the information
above.

Lesson 2 • Learning to Create QuickTest Support for a Complex Custom Web Control

165

Web Add-in Extensibility Planning Checklist

Custom Control Support Planning Checklist
Specify in
Toolkit
XML?

Support by
JavaScript
function?

The sources for this custom control are located in:
%ALLUSERSPROFILE%\Documents\ExtAccTool\Samples\
WebExtSample\Application\UsedBooks.htm

n/a n/a

Specify the Web test object base class that the new test object class
extends: (Default—WebElement)
WebTable

n/a n/a

Is the base test object class WebElement? No

If No, is there a base element (an element that matches the base
test object class)?Yes

If there is a base element, do you need a JavaScript function to
return it? Yes

Yes Yes

Specify the New Web test object class details:

➤ Test object class name: WebExtUsedBooks
➤ Icon file location (optional):

<QuickTest installation folder>\dat\Extensibility\Web\Toolkits\WebE
xtSample\Res\WebBookList.ico

➤ Identification properties for description:title
➤ Default test object method:SelectBook
➤ Help file location: n/a

n/a n/a

Specify the basis for identifying the test object class to use for the
control:
tagName = div
tagName of 1st child = table
className of 1st child = UsedBooks.

Yes Yes

Specify the basis for naming the test object:
Use the UsedBooks table title

n/a Yes

Lesson 2 • Learning to Create QuickTest Support for a Complex Custom Web Control

166

List the identification properties to support, and mark which
should be available (and which selected by default) for
checkpoints and which (if any) should be used for Smart
Identification:
title (available for checkpoints and selected by default, not used
for Smart Identification)

No Yes

List the test object methods to support (if required, include
arguments, return values, Help file location and Help ID):
SelectBook (BookIndex)

RowCount

Yes Yes

Provide a dynamic list of values for any test object method
arguments?
No

If so, list the arguments:

n/a No

Specify the types of children that QuickTest should learn with the
control:
Radio buttons

Yes Yes

Display test objects of this class in the Object Spy?
Yes

No n/a

Provide support for recording?
Yes

If so, list the events that should trigger recording:

Click on Select

Yes Yes

Custom Control Support Planning Checklist
Specify in
Toolkit
XML?

Support by
JavaScript
function?

Lesson 2 • Learning to Create QuickTest Support for a Complex Custom Web Control

167

Developing the Toolkit Support Set

Follow the steps in this section to develop the toolkit support set for the
WebExtSample toolkit and learn more about Web Add-in Extensibility.
Developing this toolkit support set comprises the following stages:

➤ Stage 1: Expanding the Toolkit Support Set to Support an Additional
Control, described on page 167

➤ Stage 2: Teaching QuickTest to Identify, Spy, and Learn the UsedBooks
Control, described on page 169

➤ Stage 3: Implementing Support for the WebExtUsedBooks Test Object
Methods, described on page 174

➤ Stage 4: Implementing Support for the WebExtUsedBooks Identification
Properties and the Test Object Name, described on page 177

➤ Stage 5: Implementing a Filter to Prevent Learning Child Objects,
described on page 178

➤ Stage 6: Implementing Support for Recording on the UsedBooks Control,
described on page 181

Stage 1: Expanding the Toolkit Support Set to Support an
Additional Control
To add support for the UsedBooks control, you first add the definition for
the WebExtUsedBooks test object class to the
WebExtSampleTestObjects.xml file.

To expand the toolkit support set to support the UsedBooks control:

 1 Copy the icon file for the UsedBooks control, WebBookList.ico, from
%ALLUSERSPROFILE%\Documents\ExtAccTool\Samples\WebExtSample
\Res to the <toolkit support set folder>\Toolkits\WebExtSample\Res
folder.

Lesson 2 • Learning to Create QuickTest Support for a Complex Custom Web Control

168

 2 Add the following definition for the WebExtUsedBooks test object class to
the WebExtSampleTestObjects.xml file (within the TypeInformation
element, after the ClassInfo element for the WebExtBook test object
class):

This defines the WebExtUsedBooks test object class according to the
details described in the "Web Add-in Extensibility Planning Checklist" on
page 165.

For more information on the elements and attributes in the test object
configuration file, see the QuickTest Test Object Schema Help (available with
the Web Add-in Extensibility Help).

<ClassInfo BaseClassInfoName="WebTable" GenericTypeID="Table" Name="WebExtUsedBooks"
DefaultOperationName="SelectBook">

<IconInfo IconFile="INSTALLDIR\dat\Extensibility\Web\Toolkits\WebExtSample\Res\WebBookList.ico"/>
<TypeInfo>

<Operation ExposureLevel="CommonUsed" Name="SelectBook" PropertyType="Method">
<Description>Selects the radio button for the specified book and clicks Select.</Description>
<Documentation>

<![CDATA[Select the radio button for the book with index %a1 and click Select.]]>
</Documentation>
<Argument Name="BookIndex" IsMandatory="true" Direction="In">

<Type VariantType="Integer"/>
</Argument>

</Operation>
</TypeInfo>
<IdentificationProperties>

<IdentificationProperty ForDefaultVerification="true" ForVerification="true"
ForDescription="true" Name="title"/>

</IdentificationProperties>
</ClassInfo>

Lesson 2 • Learning to Create QuickTest Support for a Complex Custom Web Control

169

Stage 2: Teaching QuickTest to Identify, Spy, and Learn
the UsedBooks Control
After you define the new test object class you must enable QuickTest to
identify the Web controls for which to use this test object class.

As described in "Planning Support for the Web Add-in Extensibility Sample
UsedBooks Control" on page 159, a WebExtUsedBooks test object is used to
represent a control whose tagName property is div, if the tagName and
className properties of the control’s first child are table and UsedBooks
respectively.

For the WebExtUsedBooks test object class, identification is carried out by a
combination of Condition elements in the toolkit configuration file and a
JavaScript function.

To define the identification rules for the WebExtUsedBooks test object class:

 1 In the WebExtSample.xml file, within the Controls element, add the
following Control element for this test object type:

This defines that QuickTest will look for JavaScript functions in the file
WebExtUsedBooks.js unless another file is specified. The Identification
element includes one Conditions element that specifies that if the
tagName property of the control being handled is div (case-insensitive
compare), the JavaScript function IsWebExtUsedBooks is called to identify
whether to use this test object class to represent the control.

<Control TestObjectClass="WebExtUsedBooks">
<Settings>

<Variable name="default_imp_file" value="WebExtUsedBooks.js"/>
</Settings>
<Identification type="javascript" function="IsWebExtUsedBooks">
<Browser name="*">
<Conditions type="CallIDFuncIfPropMatch" logic="and">

<Condition prop_name="tagName" expected_value="div"/>
</Conditions>

</Browser">
</Identification>

</Control>

Lesson 2 • Learning to Create QuickTest Support for a Complex Custom Web Control

170

This tutorial uses the definition above to illustrate the use of the
CallIDFuncIfPropMatch value for the Conditions element’s Type attribute.
However, if you were working with an application that had many
controls on a page, or a large DOM structure, a better way to define these
identification rules would be to use the following text:

This provides the same functionality, instructing QuickTest to call the
IsWebExtUsedBooks identification function only for div elements, but it
provides better performance when learning custom controls and running
steps on them.

 2 In the toolkit support set folder, in the Toolkits\WebExtSample folder,
create a file named WebExtUsedBooks.js (This is the file for all of the
JavaScript functions you design to support the UsedBooks control).

 3 In WebExtUsedBooks.js, add the following JavaScript function:

This JavaScript function checks whether the control meets the conditions
that determine that a control should be represented by a
WebExtUsedBooks test object.

<Identification type="javascript" function="IsWebExtUsedBooks">
<HTMLTags>

<Tag name="div"/>
</HTMLTags>

</Identification>

function IsWebExtUsedBooks()
{

// Verify that the tagName property is "div" and the className property
// of the first child (a TABLE element) is "UsedBooks".
var firstChild = _elem.children[0];
if(_elem.tagName == "DIV" &&

firstChild.tagName == "TABLE" &&
firstChild.className == "UsedBooks")
return true;

return false;
}

Lesson 2 • Learning to Create QuickTest Support for a Complex Custom Web Control

171

Deploying and Testing the Toolkit Support Set

After defining the WebExtUsedBooks test object class in the test object
configuration file and the identification rules for this test object class in the
toolkit configuration file and JavaScript functions, you can test the effect of
using the toolkit support set with QuickTest.

To test the toolkit support set:

 1 Deploy the test object configuration file, toolkit configuration file, icon
file, and JavaScript file to their correct locations within the QuickTest
installation folder.

 2 Open QuickTest and load the WebExtSample support (select it in the
Add-in Manager dialog box).

 3 Use the Define New Test Object button in the Object Repository dialog
box to open the Define New Test Object dialog box. Select the
WebExtSample environment from the Environment list to see that the
WebExtUsedBooks test object class you defined in the test object
configuration file is displayed in the Class list.

 4 Run the sample control by opening the %ALLUSERSPROFILE%\
Documents\ExtAccTool\Samples\WebExtSample\Application\Book.htm
file and clicking Used.

Note: QuickTest establishes its connection with an application when the
application opens. Therefore, if the UsedBooks control is open, you must
close it and run it again.

 5 In QuickTest, perform the following activities on the UsedBooks control
to see how QuickTest recognizes the control. (For more information on
working in QuickTest, see the HP QuickTest Professional User Guide.)

➤ Use the Object Spy to view the identification properties and test object
operations that are supported for the UsedBooks control. No value is
displayed for the title property because you have not yet implemented
a JavaScript function that returns its value.

Lesson 2 • Learning to Create QuickTest Support for a Complex Custom Web Control

172

The test object created for the UsedBooks control is given the name of
its test object class, and uses the custom icon you defined. Later in this
lesson, you customize your toolkit support set to provide a more
specific name.

The WebExtUsedBooks test object includes all of the test object
operations of a WebTable test object, as well as the SelectBook method
that you defined in the test object configuration file.

Lesson 2 • Learning to Create QuickTest Support for a Complex Custom Web Control

173

➤ Use the Add Objects to Local button in the Object Repository dialog
box to learn the UsedBooks control. The custom icon is used to
represent the test object in the object repository.

➤ In the Keyword View, create a test step choosing the
WebExtUsedBooks object from the object repository in the Item
column.

➤ The list of available operations in the Operation column reflects the
definitions in the test object configuration file. All of the test object
operations supported by WebTable test objects are available, because
in the test object configuration file, you defined that the
WebExtUsedBooks test object extends (and therefore inherits from)
the WebTable test object class.

➤ After you choose an operation, the Value cell is partitioned
according to the number of arguments of the selected operation. For
example, when you create a step with the operation SelectBook, the
value cell requires one argument and displays the argument’s Name
attribute in a tooltip.

➤ The descriptions and documentation strings you defined for test
object methods in the test object configuration file are displayed in
tooltips and in the Documentation column, respectively.

➤ In the Expert View, create a test step with a WebExtBook test object.
Intellisense displays all of the operations available for the test object,
including the ones inherited from WebTable.

 6 Run a test with a step that performs the SelectBook test object method on
a WebExtUsedBooks test object. QuickTest searches for a JavaScript
function that will run the test object method on the control. Because you
have not yet implemented support for running test object methods, a
run-time error occurs. In the next section, you implement this support.

Lesson 2 • Learning to Create QuickTest Support for a Complex Custom Web Control

174

Stage 3: Implementing Support for the WebExtUsedBooks
Test Object Methods
In the test object configuration file you defined the test object methods
available for WebExtUsedBooks test objects. For QuickTest to run these test
object methods, the methods must actually be implemented.

You must provide implementation for different types of test object methods:

➤ Test object methods inherited from the WebTable base test object class

➤ Test object methods added for the new test object class

➤ Test object methods inherited from the base class that need to be
implemented differently

Implementing Test Object Methods Inherited from WebTable

In the test object configuration file, you defined that the WebExtUsedBooks
test object class extends the base class WebTable. For the inherited WebTable
test object methods that you do not override, QuickTest can use its internal
implementation by interacting with the table base element defined within
the UsedBooks control. Because the table element is not the root level of the
UsedBooks control, you must inform QuickTest that the table element is the
base element. To do this you must write a JavaScript function that returns
the base element, and specify its name in the toolkit configuration file.

To instruct QuickTest to use the table Web element as the base element:

 1 In the WebExtSample.xml file, within the Settings element that you
defined in the Control element for the WebExtUsedBooks test object class,
add the following Variable element:

This instructs QuickTest to call a JavaScript named GetTableElem (in the
file WebExtUsedBooks.js) to return the base element that supports the
inherited WebTable test object methods.

<Control TestObjectClass="WebExtUsedBooks">
<Settings>

<Variable name="func_to_get_base_elem" value="GetTableElem"/>
</Settings>

</Control>

Lesson 2 • Learning to Create QuickTest Support for a Complex Custom Web Control

175

 2 In the WebExtUsedBooks.js file, add the following JavaScript function:

This JavaScript function returns the table element, which is the first
element within the div element that defines the UsedBooks control. This
element supports the test object methods inherited from WebTable that
are not implemented by WebExtUsedBooks.

Other JavaScript functions that you write in this file can also use the
GetTableElem() function to access the table element in the UsedBooks
control.

Implementing the New Test Object Method SelectBook

To support the SelectBook test object method for the WebExtUsedBooks test
object class, write the SelectBook JavaScript function in
WebExtUsedBooks.js. This is the function that QuickTest calls to run the
SelectBook test object method. It simulates selecting the radio button for
the specified book, and clicking Select.

Add the following JavaScript function to the WebExtUsedBooks.js file:

function GetTableElem()
{

// Get the <table> element (the first child of the <div> element which is the
// root of the UsedBooks control)
return _elem.children[0];

}

function SelectBook(BookIndex)
// Select the radio button for the specified index and clicks the "Select" link.
{

if(BookIndex > BookCount())
throw "Book index is out of range !"

// Select the radio button corresponding to the specified index
GetTableElem().rows[1+BookIndex].cells[0].children[0].click();
// Click the "Select" link (the 3rd child of the <div> element)
_elem.children[2].click();
// Add a log message to the event log to assist in debugging
_util.LogLine("Book Selected",1);

}

Lesson 2 • Learning to Create QuickTest Support for a Complex Custom Web Control

176

Overriding the Implementation of the Inherited Test Object
Method RowCount

 1 In the WebExtSample.xml file, add the following Run element within the
Control element that defines the WebExtUsedBooks support.

This defines that the RowCount test object method is implemented by the
JavaScript function BookCount.

 2 In the WebExtUsedBooks.js file, add the BookCount JavaScript function,
which decreases the row count of the UsedBooks control, to return the
number of books in the table:

Deploying and Testing the Toolkit Support Set

After you develop support for running the test object methods, you deploy
the updated toolkit support set to QuickTest and test it.

To test the support for running test object methods:

 1 To deploy the updated toolkit support set to QuickTest, copy the
WebExtUsedBooks.js file (and WebExtSample.xml if necessary) to
<QuickTest installation folder>\dat\Extensibility\Web\Toolkits\
WebExtSample.

 2 Close and reopen QuickTest. Select the check box for WebExtSample in
the Add-in Manager dialog box and click OK. QuickTest opens and loads
the support you designed.

<Run>
<Methods>

<Method name="RowCount" type="javascript" function="BookCount" />
</Methods>

</Run>

function BookCount()
// This function overrides the RowCount test object method inherited from
// WebTable, so that it counts only book rows.
{

var table = GetTableElem();
if(table.rows.length < 2)

return 0;
return table.rows.length - 2;

}

Lesson 2 • Learning to Create QuickTest Support for a Complex Custom Web Control

177

 3 Close and rerun the UsedBooks sample control.

 4 Use the Add Objects to Local button in the Object Repository dialog box
to learn the UsedBooks control.

 5 Create a test that runs the SelectBook and RowCount methods and make
sure they perform correctly. You can also open the Microsoft Windows
Event Viewer and view the log message added by the SelectBook method
(for more information, see "Using the Microsoft Windows Event Log" on
page 81).

Stage 4: Implementing Support for the WebExtUsedBooks
Identification Properties and the Test Object Name
In the WebExtUsedBooks.js file, implement the get_property_value as
follows:

This function returns the title of the object for the title property, as well as
for the test object name.

Note: You can modify the WebExtUsedBooks.js file in the toolkit support set
folder and then later deploy it to QuickTest for testing, or you can modify
<QuickTest installation folder>\dat\Extensibility\Web\Toolkits\
WebExtSample\WebExtUsedBooks.js directly.

function get_property_value(prop)
// The function provides values for all of the identification properties
// defined in the test object configuration XML file, as well as the
// hard coded "logical_name" property that QuickTest uses to name
// the test object.
{

if (prop == "logical_name" || prop == "title")
// For the "title" identification property, as well as the "logical_name"
// property, return the inner text of the first cell in the first row
{

return GetTableElem().rows[0].cells[0].innerText;
}

}

Lesson 2 • Learning to Create QuickTest Support for a Complex Custom Web Control

178

Deploying and Testing the Toolkit Support Set

After you develop support for retrieving run-time values of identification
properties, you deploy the updated toolkit support set to QuickTest and test
it.

To test the support for retrieving run-time values of identification
properties:

 1 Make sure that your most updated files are located in <QuickTest
installation folder>\dat\Extensibility\Web\Toolkits\WebExtSample.

 2 Close and reopen QuickTest. Select the check box for WebExtSample in
the Add-in Manager dialog box and click OK. QuickTest opens and loads
the support you designed.

 3 Close and rerun the UsedBooks sample control.

 4 Create a new test, add a WebExtUsedBooks test object to your object
repository, and create a test step with this test object. Make sure that the
test object name is based on the table’s title. Right-click the object and
select Insert Standard Checkpoint. The Checkpoint Properties dialog box
opens. Make sure that the title identification property you defined in the
test object configuration file is included in the list of properties and
selected.

 5 Create and run a test that retrieves each identification property and
checks its value, or displays it in a message box.

Stage 5: Implementing a Filter to Prevent Learning Child
Objects
In this section, you create a filter to prevent QuickTest from learning all of
the UsedBooks control’s children along with the control.

You implement this in the toolkit configuration file and in the JavaScript
file.

Lesson 2 • Learning to Create QuickTest Support for a Complex Custom Web Control

179

To filter the children learned with the UsedBooks control:

 1 In the WebExtSample.xml file, within the Control element defined for the
WebExtBook test object class, add the following Filter element:

This instructs QuickTest to learn WebExtUsedBooks test objects when
learning their parent Web pages, and to call the JavaScript function
GetChildrenToLearn to determine which children to learn. The JavaScript
function returns a SafeArray of the controls descendants that should be
learned with the control.

Note: You can modify the WebExtSample.xml file in the toolkit support
set folder and then later deploy it to QuickTest for testing, or you can
modify <QuickTest installation folder>\dat\Extensibility\Web\Toolkits\
WebExtSample\WebExtSample.xml directly.

 2 In the WebExtUsedBooks.js file, add the following functions:

This ensures that only the radio buttons are learned, as planned in the
outset of this lesson.

<Filter>
<Learn learn_control="Yes" learn_children="CallFilterFunc"

type="javascript" function="GetChildrenToLearn" />
</Filter>

// Learn filtering
// This function instructs QuickTest which child objects of a UsedBooksTable
// should be learned with the object is learned.

function GetChildrenToLearn()
{

// Return all of the radio buttons in the UsedBooks table
return toSafeArray(GetTableElem().getElementsByTagName("input"));

}

Lesson 2 • Learning to Create QuickTest Support for a Complex Custom Web Control

180

Deploying and Testing the Toolkit Support Set

After defining the filter to customize learning children, you deploy the
updated toolkit support set to QuickTest and test it.

To test the support for learning the WebExtUsedBooks test object without
its children:

 1 Make sure that your most updated files are located in <QuickTest
installation folder>\dat\Extensibility\Web\Toolkits\WebExtSample.

 2 Close and reopen QuickTest. Select the check box for WebExtSample in
the Add-in Manager dialog box and click OK. QuickTest opens and loads
the support you designed.

 3 Close and rerun the UsedBooks sample control.

 4 Open a test and open the Object Repository. Use the Add Objects to Local
button in the Object Repository dialog box to learn the Web page that
contains the UsedBooks control. The Define Object Filter dialog box
opens.

 5 Select All object types and click OK. The WebExtUsedBooks object named
The History of QuickTest is added to the object repository, as is the
SelUsedBook radio button group. However, none of the other element
contained in the control are learned.

Lesson 2 • Learning to Create QuickTest Support for a Complex Custom Web Control

181

Stage 6: Implementing Support for Recording on the
UsedBooks Control
In this section, you implement support for recording on the UsedBooks
control.

 1 In the WebExtSample.xml file, and the following Record element within
the Control element that defines the WebExtUsedBooks class:

This instructs QuickTest not to use the default Web Event Configuration
to record events on the UsedBooks control, but to call the ListenToEvents
JavaScript function instead.

In the WebExtUsedBooks.js file add the ListenToEvents JavaScript
function:

This function registers QuickTest to listen to clicks on the Select link, and
call the appropriate event handler when the event occurs.

<Record>
<EventListening use_default_event_handling_for_children="false"

use_default_event_handling="false"
type="javascript" function="ListenToEvents"/>

</Record>

function ListenToEvents(elem)
{

// Connect to the "Select" event:
//When "Select" is clicked, call OnSelectUsedBooksClicked.
_util.RegisterForEvent

(_elem.children[2], "onclick", "OnSelectUsedBooksClicked");
return true;

}

Lesson 2 • Learning to Create QuickTest Support for a Complex Custom Web Control

182

 2 In the WebExtUsedBooks.js file add the OnSelectUsedBooksClicked event
handling JavaScript function:

This function checks which book’s radio button is selected, and instructs
QuickTest to record a step selecting that book (and add the relevant log
message to the event log).

function OnSelectUsedBooksClicked(handlerParam , eventObj)
{

var arr = new Array();
var booksCount = BookCount();
// Find the index of the selected radio button and record a step
// that runs the SelectBook test object method with that index.
var BookIndex = -1;
for(var i = 0 ; i < booksCount ; i++)
{

if(_elem.rows[2+i].cells[0].children[0].status == true)
{

// This is the selected item
arr[0] = i+1;
_util.Record("SelectBook", toSafeArray(arr) , 0);
_util.LogLine("SelectBook Recorded",1);
break;

}
}
return true;

}

Lesson 2 • Learning to Create QuickTest Support for a Complex Custom Web Control

183

Deploying and Testing the Toolkit Support Set

After developing the support for recording on the UsedBooks control, you
deploy the updated toolkit support set to QuickTest and test it.

To test the support for recording operations performed on the UsedBooks
control:

 1 Make sure that your most updated files are located in <QuickTest
installation folder>\dat\Extensibility\Web\Toolkits\WebExtSample.

 2 Close and reopen QuickTest. Select the check box for WebExtSample in
the Add-in Manager dialog box and click OK. QuickTest opens and loads
the support you designed.

 3 Close and rerun the UsedBooks sample control.

 4 Click the Record button or select Automation > Record. In the UsedBooks
table, select one of the radio buttons and then click Select.

A new step is added to the test only after you click Select:

Click the Stop button or select Automation > Stop to end the recording
session.

The Book custom control is now fully supported, according to the
specifications you decided on when planning your custom support.

Lesson 2 • Learning to Create QuickTest Support for a Complex Custom Web Control

184

Lesson Summary

In this lesson you created a test object class, WebExtUsedBooks, that extends
the WebTable test object class. You created support for the UsedBooks
control, enabling QuickTest to recognize it as an WebExtUsedBooks test
object.

➤ You learned to understand more options in the toolkit configuration file.

➤ You learned to implement the support using more complex JavaScript
functions and specifying their location in the toolkit configuration file.

Where Do You Go from Here?
Now that you have performed the lessons in this tutorial, you are ready to
apply the Web Add-in Extensibility concepts and the skills you learned to
creating your own custom toolkit support.

For more information on the structure and content of a toolkit support set,
see "Developing Support for Your Toolkit" on page 41.

For more information on the structure and content of the test object
configuration file, see the QuickTest Test Object Schema Help (available with
the Web Add-in Extensibility Help).

For more information on the structure and content of the toolkit
configuration file, see the QuickTest Web Add-in Extensibility Toolkit
Configuration Schema Help (available with the Web Add-in Extensibility
Help).

For more information on the _util utility object and global JavaScript
methods, see the QuickTest Web Add-in Extensibility API Reference (available
with the Web Add-in Extensibility Help).

	HP QuickTest Professional Web Add-in Extensibility Developer Guide
	Table of Contents
	Welcome to This Guide
	About the QuickTest Professional Web Add-in Extensibility SDK
	About This Guide
	Who Should Read This Guide
	QuickTest Professional Documentation Library
	Additional Online Resources

	Working with Web Add-in Extensibility
	Introducing QuickTest Professional Web Add-in Extensibility
	About QuickTest Professional Web Add-in Extensibility
	Extensibility Accelerator
	Identifying the Building Blocks of Web Add-in Extensibility
	Deciding When to Use Web Add-in Extensibility
	Analyzing the Default QuickTest Support and Extensibility Options for a Sample Custom Control

	Understanding How to Implement Web Add-in Extensibility
	Web Add-in Extensibility Samples

	Planning QuickTest Support for Your Toolkit
	About Planning QuickTest Support for Your Toolkit
	Preparing to Create Support for a Custom Toolkit
	Determining the Toolkit Related Information
	Determining the Support Information for Each Custom Control Type
	Understanding the Web Add-in Extensibility Planning Checklist
	Web Add-in Extensibility Planning Checklist

	Where Do You Go from Here?

	Developing Support for Your Toolkit
	About Custom Toolkit Support
	Developing Browser-Independent Support

	Creating a Custom Toolkit Support Set
	Understanding the Test Object Configuration File
	How QuickTest Loads the Test Object Configuration XML
	Extending an Existing Test Object Class
	Providing a Help File for Customized Test Object Classes

	Understanding the Toolkit Configuration File
	Designing JavaScript Functions for Your Toolkit Support Set
	Global JavaScript Methods and Utility Methods

	Teaching QuickTest to Identify the Test Object Class to Use for a Custom Web Control
	Using the Conditions Elements

	Testing the Toolkit Support Set During Development
	Logging and Debugging the Custom Support
	Using the Microsoft Windows Event Log
	Debugging Your JavaScript Files

	Implementing Support for Test Object Methods
	Supporting Dynamic Lists of Values for Method Arguments

	Implementing Support for Identification Properties
	Customizing the Test Object Name

	Implementing a Filter for Learning Child Controls
	Implementing Support for Recording
	Troubleshooting and Limitations - Developing Support

	Deploying the Toolkit Support Set
	About Deploying the Custom Toolkit Support
	Deploying the Custom Toolkit Support
	Modifying Deployed Support
	Modifying Identification Property Attributes in a Test Object Configuration File

	Removing Deployed Support

	Tutorial: Learning to Create Web Custom Toolkit Support
	Learning to Create QuickTest Support for a Simple Custom Web Control
	Preparing for This Lesson
	Planning Support for the Web Add-in Extensibility Book Sample Toolkit
	Web Add-in Extensibility Planning Checklist

	Developing the Toolkit Support Set
	Stage 1: Creating the Toolkit Support Set
	Stage 2: Introducing the WebExtSample Environment to QuickTest
	Stage 3: Teaching QuickTest to Identify, Spy, and Learn the Book Control
	Stage 4: Implementing Support for the WebExtBook’s Test Object Methods
	Stage 5: Implementing Support for the WebExtBook’s Identification Properties
	Stage 6: Changing the Name of the Test Object
	Stage 7: Implementing a Filter to Prevent Learning Child Objects
	Stage 8: Implementing Support for Recording on the Book Control
	Stage 9: Implementing Support for Dynamic List of Values for AuthorName

	Lesson Summary
	Where Do You Go from Here?

	Learning to Create QuickTest Support for a Complex Custom Web Control
	Preparing for This Lesson
	Planning Support for the Web Add-in Extensibility Sample UsedBooks Control
	Web Add-in Extensibility Planning Checklist

	Developing the Toolkit Support Set
	Stage 1: Expanding the Toolkit Support Set to Support an Additional Control
	Stage 2: Teaching QuickTest to Identify, Spy, and Learn the UsedBooks Control
	Stage 3: Implementing Support for the WebExtUsedBooks Test Object Methods
	Stage 4: Implementing Support for the WebExtUsedBooks Identification Properties and the Test Object Name
	Stage 5: Implementing a Filter to Prevent Learning Child Objects
	Stage 6: Implementing Support for Recording on the UsedBooks Control

	Lesson Summary
	Where Do You Go from Here?

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /JPXEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG2000
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 100
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /JPXEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG2000
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 100
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck true
 /PDFX3Check false
 /PDFXCompliantPDFOnly true
 /PDFXNoTrimBoxError false
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f0062006500200050004400460020658768637b2654080020005000440046002f0058002d00310061003a0032003000300031002089c4830330028fd9662f4e004e2a4e1395e84e3a56fe5f6251855bb94ea46362800c52365b9a7684002000490053004f0020680751c6300251734e8e521b5efa7b2654080020005000440046002f0058002d00310061002089c483037684002000500044004600206587686376848be67ec64fe1606fff0c8bf753c29605300a004100630072006f00620061007400207528623763075357300b300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200034002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef67b2654080020005000440046002f0058002d00310061003a00320030003000310020898f7bc430025f8c8005662f70ba57165f6251675bb94ea463db800c5c08958052365b9a76846a196e96300295dc65bc5efa7acb7b2654080020005000440046002f0058002d003100610020898f7bc476840020005000440046002065874ef676848a737d308cc78a0aff0c8acb53c395b1201c004100630072006f00620061007400204f7f7528800563075357201d300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200034002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c00200064006500720020006600f800720073007400200073006b0061006c00200073006500730020006900670065006e006e0065006d00200065006c006c0065007200200073006b0061006c0020006f0076006500720068006f006c006400650020005000440046002f0058002d00310061003a0032003000300031002c00200065006e002000490053004f002d007300740061006e0064006100720064002000740069006c00200075006400760065006b0073006c0069006e00670020006100660020006700720061006600690073006b00200069006e00640068006f006c0064002e00200059006400650072006c006900670065007200650020006f0070006c00790073006e0069006e0067006500720020006f006d0020006f007000720065007400740065006c007300650020006100660020005000440046002f0058002d00310061002d006b006f006d00700061007400690062006c00650020005000440046002d0064006f006b0075006d0065006e007400650072002000660069006e006400650072002000640075002000690020006200720075006700650072006800e5006e00640062006f00670065006e002000740069006c0020004100630072006f006200610074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200034002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002f0058002d00310061003a0032003000300031002d006b006f006d00700061007400690062006c0065006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002e0020005000440046002f0058002d003100610020006900730074002000650069006e0065002000490053004f002d004e006f0072006d0020006600fc0072002000640065006e002000410075007300740061007500730063006800200076006f006e0020006700720061006600690073006300680065006e00200049006e00680061006c00740065006e002e0020005700650069007400650072006500200049006e0066006f0072006d006100740069006f006e0065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002f0058002d00310061002d006b006f006d00700061007400690062006c0065006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002000660069006e00640065006e002000530069006500200069006d0020004100630072006f006200610074002d00480061006e00640062007500630068002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200034002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f00620065002000710075006500200073006500200064006500620065006e00200063006f006d00700072006f0062006100720020006f002000710075006500200064006500620065006e002000630075006d0070006c006900720020006c00610020006e006f0072006d0061002000490053004f0020005000440046002f0058002d00310061003a00320030003000310020007000610072006100200069006e00740065007200630061006d00620069006f00200064006500200063006f006e00740065006e00690064006f00200067007200e1006600690063006f002e002000500061007200610020006f006200740065006e006500720020006d00e1007300200069006e0066006f0072006d00610063006900f3006e00200073006f0062007200650020006c0061002000630072006500610063006900f3006e00200064006500200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00700061007400690062006c0065007300200063006f006e0020006c00610020006e006f0072006d00610020005000440046002f0058002d00310061002c00200063006f006e00730075006c007400650020006c006100200047007500ed0061002000640065006c0020007500730075006100720069006f0020006400650020004100630072006f006200610074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200034002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000710075006900200064006f006900760065006e0074002000ea0074007200650020007600e9007200690066006900e900730020006f0075002000ea00740072006500200063006f006e0066006f0072006d00650073002000e00020006c00610020006e006f0072006d00650020005000440046002f0058002d00310061003a0032003000300031002c00200075006e00650020006e006f0072006d0065002000490053004f00200064002700e9006300680061006e0067006500200064006500200063006f006e00740065006e00750020006700720061007000680069007100750065002e00200050006f0075007200200070006c007500730020006400650020006400e9007400610069006c007300200073007500720020006c006100200063007200e9006100740069006f006e00200064006500200064006f00630075006d0065006e00740073002000500044004600200063006f006e0066006f0072006d00650073002000e00020006c00610020006e006f0072006d00650020005000440046002f0058002d00310061002c00200076006f006900720020006c00650020004700750069006400650020006400650020006c0027007500740069006c0069007300610074006500750072002000640027004100630072006f006200610074002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200034002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF che devono essere conformi o verificati in base a PDF/X-1a:2001, uno standard ISO per lo scambio di contenuto grafico. Per ulteriori informazioni sulla creazione di documenti PDF compatibili con PDF/X-1a, consultare la Guida dell'utente di Acrobat. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 4.0 e versioni successive.)
 /JPN <FEFF30b030e930d530a330c330af30b330f330c630f330c4306e590963db306b5bfe3059308b002000490053004f00206a196e96898f683c306e0020005000440046002f0058002d00310061003a00320030003000310020306b6e9662e03057305f002000410064006f0062006500200050004400460020658766f830924f5c62103059308b305f3081306b4f7f75283057307e30593002005000440046002f0058002d0031006100206e9662e0306e00200050004400460020658766f84f5c6210306b306430443066306f3001004100630072006f006200610074002030e630fc30b630ac30a430c9309253c2716730573066304f30603055304430023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200034002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020c791c131d558b294002000410064006f0062006500200050004400460020bb38c11cb2940020d655c778c7740020d544c694d558ba700020adf8b798d53d0020cee8d150d2b8b97c0020ad50d658d558b2940020bc29bc95c5d00020b300d55c002000490053004f0020d45cc900c7780020005000440046002f0058002d00310061003a0032003000300031c7580020addcaca9c5d00020b9dec544c57c0020d569b2c8b2e4002e0020005000440046002f0058002d003100610020d638d65800200050004400460020bb38c11c0020c791c131c5d00020b300d55c0020c790c138d55c0020c815bcf4b2940020004100630072006f0062006100740020c0acc6a90020c124ba85c11cb97c0020cc38c870d558c2edc2dcc624002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200034002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die moeten worden gecontroleerd of moeten voldoen aan PDF/X-1a:2001, een ISO-standaard voor het uitwisselen van grafische gegevens. Raadpleeg de gebruikershandleiding van Acrobat voor meer informatie over het maken van PDF-documenten die compatibel zijn met PDF/X-1a. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 4.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200073006b0061006c0020006b006f006e00740072006f006c006c0065007200650073002c00200065006c006c0065007200200073006f006d0020006d00e50020007600e6007200650020006b006f006d00700061007400690062006c00650020006d006500640020005000440046002f0058002d00310061003a0032003000300031002c00200065006e002000490053004f002d007300740061006e006400610072006400200066006f007200200075007400760065006b0073006c0069006e00670020006100760020006700720061006600690073006b00200069006e006e0068006f006c0064002e00200048007600690073002000640075002000760069006c0020006800610020006d0065007200200069006e0066006f0072006d00610073006a006f006e0020006f006d002000680076006f007200640061006e0020006400750020006f007000700072006500740074006500720020005000440046002f0058002d00310061002d006b006f006d00700061007400690062006c00650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020007300650020006200720075006b00650072006800e5006e00640062006f006b0065006e00200066006f00720020004100630072006f006200610074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200034002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200063006100700061007a0065007300200064006500200073006500720065006d0020007600650072006900660069006300610064006f00730020006f0075002000710075006500200064006500760065006d00200065007300740061007200200065006d00200063006f006e0066006f0072006d0069006400610064006500200063006f006d0020006f0020005000440046002f0058002d00310061003a0032003000300031002c00200075006d0020007000610064007200e3006f002000640061002000490053004f002000700061007200610020006f00200069006e007400650072006300e2006d00620069006f00200064006500200063006f006e0074006500fa0064006f00200067007200e1006600690063006f002e002000500061007200610020006f00620074006500720020006d00610069007300200069006e0066006f0072006d006100e700f50065007300200073006f00620072006500200063006f006d006f00200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00700061007400ed007600650069007300200063006f006d0020006f0020005000440046002f0058002d00310061002c00200063006f006e00730075006c007400650020006f0020004700750069006100200064006f002000750073007500e100720069006f00200064006f0020004100630072006f006200610074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200034002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b00610020007400610072006b0069007300740065007400610061006e00200074006100690020006a006f006900640065006e0020007400e400790074007900790020006e006f00750064006100740074006100610020005000440046002f0058002d00310061003a0032003000300031003a007400e400200065006c0069002000490053004f002d007300740061006e006400610072006400690061002000670072006100610066006900730065006e002000730069007300e4006c006c00f6006e00200073006900690072007400e4006d00690073007400e4002000760061007200740065006e002e0020004c0069007300e40074006900650074006f006a00610020005000440046002f0058002d00310061002d00790068007400650065006e0073006f00700069007600690065006e0020005000440046002d0064006f006b0075006d0065006e0074007400690065006e0020006c0075006f006d0069007300650073007400610020006f006e0020004100630072006f0062006100740069006e0020006b00e400790074007400f6006f0070007000610061007300730061002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200034002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200073006b00610020006b006f006e00740072006f006c006c006500720061007300200065006c006c0065007200200073006f006d0020006d00e50073007400650020006d006f0074007300760061007200610020005000440046002f0058002d00310061003a0032003000300031002c00200065006e002000490053004f002d007300740061006e00640061007200640020006600f6007200200075007400620079007400650020006100760020006700720061006600690073006b007400200069006e006e0065006800e5006c006c002e00200020004d0065007200200069006e0066006f0072006d006100740069006f006e0020006f006d00200068007500720020006d0061006e00200073006b00610070006100720020005000440046002f0058002d00310061002d006b006f006d00700061007400690062006c00610020005000440046002d0064006f006b0075006d0065006e0074002000660069006e006e00730020006900200061006e007600e4006e00640061007200680061006e00640062006f006b0065006e002000740069006c006c0020004100630072006f006200610074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200034002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings when submitting to HP. These settings require font embedding.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /HighResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

