
HP QuickTest Professional .NET Add-in Extensibility

Software Version: 11.00

Developer Guide

Document Release Date: October 2010

Software Release Date: October 2010

2

Legal Notices

Warranty

The only warranties for HP products and services are set forth in the express warranty
statements accompanying such products and services. Nothing herein should be construed as
constituting an additional warranty. HP shall not be liable for technical or editorial errors or
omissions contained herein.

The information contained herein is subject to change without notice.

Restricted Rights Legend

Confidential computer software. Valid license from HP required for possession, use or copying.
Consistent with FAR 12.211 and 12.212, Commercial Computer Software, Computer Software
Documentation, and Technical Data for Commercial Items are licensed to the U.S.
Government under vendor's standard commercial license.

Copyright Notices

© 1992 - 2010 Hewlett-Packard Development Company, L.P.

Trademark Notices

Adobe® and Acrobat® are trademarks of Adobe Systems Incorporated.

Intel®, Pentium®, and Intel® Xeon™ are trademarks of Intel Corporation in the U.S. and
other countries.

Java™ is a US trademark of Sun Microsystems, Inc.

Microsoft®, Windows®, Windows NT®, and Windows® XP are U.S registered trademarks of
Microsoft Corporation.

Oracle® is a registered US trademark of Oracle Corporation, Redwood City, California.

Unix® is a registered trademark of The Open Group.

SlickEdit® is a registered trademark of SlickEdit Inc.

3

Documentation Updates

The title page of this document contains the following identifying information:

• Software Version number, which indicates the software version.

• Document Release Date, which changes each time the document is updated.

• Software Release Date, which indicates the release date of this version of the software.

To check for recent updates, or to verify that you are using the most recent edition of a
document, go to:

http://h20230.www2.hp.com/selfsolve/manuals

This site requires that you register for an HP Passport and sign-in. To register for an HP
Passport ID, go to:

http://h20229.www2.hp.com/passport-registration.html

Or click the New users - please register link on the HP Passport login page.

You will also receive updated or new editions if you subscribe to the appropriate product
support service. Contact your HP sales representative for details.

4

Support

Visit the HP Software Support web site at:

http://www.hp.com/go/hpsoftwaresupport

This web site provides contact information and details about the products, services, and
support that HP Software offers.

HP Software online support provides customer self-solve capabilities. It provides a fast and
efficient way to access interactive technical support tools needed to manage your business. As
a valued support customer, you can benefit by using the support web site to:

• Search for knowledge documents of interest

• Submit and track support cases and enhancement requests

• Download software patches

• Manage support contracts

• Look up HP support contacts

• Review information about available services

• Enter into discussions with other software customers

• Research and register for software training

Most of the support areas require that you register as an HP Passport user and sign in. Many
also require a support contract. To register for an HP Passport ID, go to:

http://h20229.www2.hp.com/passport-registration.html

To find more information about access levels, go to:

http://h20230.www2.hp.com/new_access_levels.jsp

5

Table of Contents

Welcome to This Guide ...7
About the QuickTest Professional .NET Add-in Extensibility SDK.......8
About This Guide ..9
Who Should Read This Guide ...10
QuickTest Professional Documentation Library11
Additional Online Resources...11

Chapter 1: Introducing QuickTest Professional .NET
Add-in Extensibility ...13

About QuickTest Professional .NET Add-in Extensibility14
Deciding When to Use .NET Add-in Extensibility15
Recognizing Which Elements of QuickTest Support Can Be

Customized ...16
Example: Customizing Recording of an Event’s

Meaningful Behaviors ...17
Understanding How to Implement .NET Add-in Extensibility19

Chapter 2: Installing the QuickTest Professional .NET Add-in
Extensibility SDK ...27

Before You Install ..28
Installing the QuickTest Professional .NET Add-in

Extensibility SDK ..28
Repairing the QuickTest Professional .NET Add-in

Extensibility SDK Installation...32
Uninstalling the QuickTest Professional .NET Add-in

Extensibility SDK ..33

Table of Contents

6

Chapter 3: Planning Your Support Set ...35
About Planning QuickTest Support for Your .NET Add-in

Extensibility Controls ...36
Determining Information Related to Your Custom Controls36
Selecting the Coding Option for Implementing the

Custom Servers..38
Selecting the Custom Server Run-Time Context Depending on the

Test Function ..39
Analyzing Custom Controls and Mapping Them to Test Objects42
Using the .NET Add-in Extensibility Planning Checklist43
Where Do You Go from Here? ..45

Chapter 4: Developing Your Support Set ...47
Understanding the Development Workflow48
Describing the Test Object Model ..48
Mapping the Custom Controls to the Test Object Classes.................57
Defining How QuickTest Operates on the Custom Controls57
Using the .NET Add-in Extensibility Samples.....................................85
Troubleshooting and Limitations -

Running the Support You Designed...86

Chapter 5: Configuring and Deploying the Support Set89
Understanding the Deployment Workflow..90
Configuring QuickTest to Use the Custom Server..............................90
Deploying the Custom Support Set ..97
Testing the Custom Support Set..98

Chapter 6: Learning to Create Support for a Simple Custom
.NET Windows Forms Control ..103

Developing a New Support Set..104
Configuring and Deploying the Support Set111
Testing the Support Set ...114

Chapter 7: Learning to Create Support for a Complex Custom
.NET Windows Forms Control ..115

SandBar Toolbar Example ...116
Understanding the ToolBarSrv.cs File ...124

7

Welcome to This Guide

Welcome to QuickTest Professional .NET Add-in Extensibility.

QuickTest Professional .NET Add-in Extensibility is an SDK (Software
Development Kit) package that enables you to support testing applications
that use third-party and custom .NET Windows Forms controls that are not
supported out-of-the-box by the QuickTest Professional .NET Add-in.

This chapter includes:

➤ About the QuickTest Professional .NET Add-in Extensibility SDK
on page 8

➤ About This Guide on page 9

➤ Who Should Read This Guide on page 10

➤ QuickTest Professional Documentation Library on page 11

➤ Additional Online Resources on page 11

8

About the QuickTest Professional .NET Add-in Extensibility
SDK

The QuickTest Professional .NET Add-in Extensibility SDK installation
provides the following:

➤ An API that enables you to extend the QuickTest Professional .NET Add-in
to support custom .NET Windows Forms controls.

➤ Custom Server C# and Visual Basic project templates for Microsoft Visual
Studio.

Note: For a list of supported Microsoft Visual Studio versions, see the
HP QuickTest Professional Product Availability Matrix, available from the
QuickTest Documentation Library Home page or the root folder of the
QuickTest Professional DVD.

Each Custom Server template provides a framework of blank code, some
sample code, and the QuickTest project references required to build a
custom server.

➤ The wizard that runs when the Custom Server template is selected to
create a new project. The wizard simplifies setting up a Microsoft Visual
Studio project to create a Custom Server .NET DLL using .NET Add-in
Extensibility. For more information, see "Using a .NET DLL to Extend
Support for a Custom Control" on page 58.

➤ The .NET Add-in Windows Forms Extensibility Help (available from Start
> Programs > HP QuickTest Professional > Extensibility > Documentation),
which includes the following:

➤ A Developer Guide, including a step-by-step tutorial in which you
develop support for a sample custom control.

➤ An API Reference.

9

➤ The .NET Add-in Extensibility Configuration Schema Help.

➤ The .NET Add-in Extensibility Control Definition Schema Help.

➤ The QuickTest Test Object Schema Help.

➤ A printer-friendly (PDF) version of the Developer Guide (available from
Start > Programs > HP QuickTest Professional > Extensibility >
Documentation and in the <QuickTest Professional
installation>\help\Extensibility folder).

➤ A sample .NET Add-in Extensibility support set that extends QuickTest
support for the SandBar toolbar custom control.

About This Guide

This guide explains how to set up QuickTest Professional .NET Add-in
Extensibility and use it to extend QuickTest support for third-party and
custom .NET Windows Forms controls.

This guide assumes you are familiar with QuickTest functionality and should
be used together with the following sections of the .NET Add-in
Extensibility online Help (Start > Programs > HP QuickTest Professional >
Extensibility > Documentation > .NET Add-in Windows Forms Extensibility
Help):

➤ QuickTest Professional .NET Add-in Extensibility API Reference

➤ QuickTest Professional .NET Add-in Extensibility Systems Forms Configuration
Schema Help

➤ QuickTest Professional .NET Add-in Extensibility Control Definition Schema
Help

➤ HP QuickTest Professional Test Object Schema Help

10

These documents should also be used in conjunction with the following
documents (available with the QuickTest Professional installation (Help >
QuickTest Professional Help from the QuickTest main window)):

➤ The HP QuickTest Professional User Guide

➤ The .NET section of the HP QuickTest Professional Add-ins Guide

➤ The HP QuickTest Professional Object Model Reference

Note: The information, examples, and screen captures in this guide focus
specifically on working with QuickTest tests. However, much of the
information applies equally to components.

Business components and scripted components are part of HP Business
Process Testing, which utilizes a keyword-driven methodology for testing
applications. For more information, see the HP QuickTest Professional User
Guide and the HP QuickTest Professional for Business Process Testing User Guide.

Who Should Read This Guide

This guide is intended for programmers, QA engineers, systems analysts,
system designers, and technical managers who want to extend QuickTest
support for .NET Windows Forms custom controls.

To use this guide, you should be familiar with:

➤ Major QuickTest features and functionality

➤ QuickTest Professional Object Model

➤ QuickTest Professional .NET Add-in

➤ .NET programming in C# or Visual Basic

➤ XML (basic knowledge)

11

QuickTest Professional Documentation Library

The QuickTest Professional Documentation Library provides a single-point
of access for QuickTest Professional documentation.

You can access the QuickTest Professional Documentation Library by using
the following:

➤ In QuickTest, select Help > QuickTest Professional Help.

➤ In the Start menu on the QuickTest computer, select Program Files > HP
QuickTest Professional > Documentation > HP QuickTest Professional
Help.

➤ Click in selected QuickTest windows and dialog boxes or press F1.

➤ View a description, syntax, and examples for a QuickTest test object,
method, or property by placing the cursor on it (in QuickTest) and
pressing F1.

Additional Online Resources

Troubleshooting & Knowledge Base accesses the Troubleshooting page on
the HP Software Support Web site where you can search the Self-solve
knowledge base. Choose Help > Troubleshooting & Knowledge Base. The
URL for this Web site is http://h20230.www2.hp.com/troubleshooting.jsp.

HP Software Support accesses the HP Software Support Web site. This site
enables you to browse the Self-solve knowledge base. You can also post to
and search user discussion forums, submit support requests, download
patches and updated documentation, and more. Choose Help > HP Software
Support. The URL for this Web site is www.hp.com/go/hpsoftwaresupport.

Most of the support areas require that you register as an HP Passport user
and sign in. Many also require a support contract.

To find more information about access levels, go to:

http://h20230.www2.hp.com/new_access_levels.jsp

12

To register for an HP Passport user ID, go to:

http://h20229.www2.hp.com/passport-registration.html

HP Software Web site accesses the HP Software Web site. This site provides
you with the most up-to-date information on HP Software products. This
includes new software releases, seminars and trade shows, customer support,
and more. Choose Help > HP Software Web site. The URL for this Web site
is www.hp.com/go/software.

13

1
Introducing QuickTest Professional .NET
Add-in Extensibility

QuickTest Professional .NET Add-in Extensibility enables you to provide
high-level support for third-party and custom .NET Windows Forms
controls that are not supported out-of-the-box by the QuickTest Professional
.NET Add-in.

This chapter includes:

➤ About QuickTest Professional .NET Add-in Extensibility on page 14

➤ Deciding When to Use .NET Add-in Extensibility on page 15

➤ Recognizing Which Elements of QuickTest Support Can Be Customized
on page 16

➤ Example: Customizing Recording of an Event’s Meaningful Behaviors
on page 17

➤ Understanding How to Implement .NET Add-in Extensibility on page 19

Chapter 1 • Introducing QuickTest Professional .NET Add-in Extensibility

14

About QuickTest Professional .NET Add-in Extensibility

The QuickTest Professional .NET Add-in provides support for a number of
commonly used .NET Windows Forms controls. QuickTest Professional .NET
Add-in Extensibility enables you to support third-party and custom .NET
Windows Forms controls that are not supported out-of-the-box by the .NET
Add-in.

When QuickTest learns an object in an application, it recognizes the object
as belonging to a specific test object class. This determines the identification
properties and test object methods of the test object that represents the
application’s object in QuickTest.

Without extensibility, .NET Windows Forms controls that are not supported
out-of-the-box are represented in QuickTest tests by a generic SwfObject test
object. This generic test object might be missing characteristics that are
specific to the .NET Windows Forms control you are testing. Therefore,
when you try to create test steps with this test object, the available test
object methods might not be sufficient. In addition, when you record a test
on controls that are not supported, the recorded steps reflect the low-level
activities passed as Windows messages, rather than the meaningful behavior
of the controls.

Using QuickTest Professional .NET Add-in Extensibility, you can teach
QuickTest to recognize custom .NET Windows Forms controls more
specifically. When a custom control is mapped to an existing QuickTest test
object, you have the full functionality of a QuickTest test object, including
visibility in IntelliSense and meaningful steps in the test.

The behavior of the existing test object methods might not be appropriate
for the custom control. You can modify the behavior of existing test object
methods, or extend QuickTest test objects with new methods that represent
the meaningful behaviors of the control.

You develop a Custom Server that extends the .NET Add-in interfaces that
run methods on the controls in the application. The Custom Server can
override existing methods or define new ones.

Chapter 1 • Introducing QuickTest Professional .NET Add-in Extensibility

15

Deciding When to Use .NET Add-in Extensibility

The QuickTest Professional .NET Add-in provides a certain level of support
for most .NET Windows Forms controls. Before you extend support for a
custom .NET Windows Forms control, analyze it from a QuickTest
perspective to view the extent of this support and to decide which elements
of support you need to modify.

When you analyze the custom .NET Windows Forms control, use the .NET
Windows Forms Spy, Keyword View, Expert View, and the Record option.
Make sure you examine each of the elements described in "Recognizing
Which Elements of QuickTest Support Can Be Customized" on page 16.

If you are not satisfied with the existing object identification or behavior,
your .NET Windows Forms control is a candidate for .NET Add-in
Extensibility, as illustrated in the following situations:

➤ A test object class already exists with more appropriate behavior for your
custom .NET Windows Forms control. You can use .NET Add-in
Extensibility to map the control to this test object class.

➤ QuickTest might recognize the control using a test object that does not fit
your needs. You can use .NET Add-in Extensibility to instruct QuickTest to
change the functionality of the test object by modifying its methods.

➤ QuickTest might identify individual sub-controls within your custom
control, but not properly identify your main control. For example, if your
main custom control is a digital clock with edit boxes containing the
hour and minute digits, you might want changes in the time to be
recognized as SetTime operations on the clock control and not as Set
operations on the edit boxes. You can use .NET Add-in Extensibility to set
a message filter to process messages from child controls, and record
operations on the main control in response to events that occur on the
controls it contains.

Chapter 1 • Introducing QuickTest Professional .NET Add-in Extensibility

16

Recognizing Which Elements of QuickTest Support Can Be
Customized

The following elements comprise QuickTest support. By extending the
existing support of one or more of these elements, you can develop the
support you need to create meaningful and maintainable tests.

Test Object Classes

In QuickTest, every object in an application is represented by a test object of
a specific test object class. The test object class determines the list of
identification properties and test object methods available in QuickTest for
this test object. You might want to instruct QuickTest to use a different test
object class to represent your control.

Test Object Methods

The test object class used to represent the .NET Windows Forms control
determines the list of test object methods for a test object. However, the
same test object method might operate differently for different .NET
Windows Forms controls represented by test objects from the same test
object class. This happens because depending on the specific type of .NET
Windows Forms control, QuickTest may have to perform the test object
method differently.

Recording Events

One way to create QuickTest tests is by recording user operations on the
application. When you start a recording session, QuickTest listens for events
that occur on objects in the application and registers corresponding test
steps. The test object class and Custom Server used to represent a .NET
Windows Forms control determines which events QuickTest can listen for
on the .NET Windows Forms control and what test step to record for each
event that occurs.

Chapter 1 • Introducing QuickTest Professional .NET Add-in Extensibility

17

Example: Customizing Recording of an Event’s Meaningful
Behaviors

A control’s meaningful behavior is the behavior that you want to test. For
example, when you click a button in a radio button group in your
application, you are interested in the value of the selection, not in the Click
event and the coordinates of the click. The meaningful behavior of the radio
button group is the change in the selection.

If you record a test or business component on a custom control without
extending support for the control, you record the low-level behaviors of the
control. For example, the TrackBar control in the sample .NET application
shown below is a control that does not have a corresponding QuickTest test
object.

If you record on the TrackBar without implementing support for the
control, the Keyword View looks like this:

Chapter 1 • Introducing QuickTest Professional .NET Add-in Extensibility

18

In the Expert View, the recorded test looks like this:

Note that the Drag, Drop, and Click methods—the low-level actions of the
TrackBar control—are recorded at specific coordinates in the control display.
These steps are difficult to understand and modify.

If you use .NET Add-in Extensibility to support the TrackBar control, the
result is more meaningful. Below is the Keyword View of a test recorded on
the TrackBar with a Custom Server that implements a customized SetValue
method.

In the Expert View, the recorded test looks like this:

QuickTest is now recording a SetValue operation reflecting the new slider
position, instead of the low-level Drag, Drop, and Click operations recorded
without the customized test object. You can understand and modify this test
more easily.

SwfWindow("Sample Application").SwfObject("trackBar1").Drag 50,10
SwfWindow("Sample Application").SwfObject("trackBar1").Drop 32,11
SwfWindow("Sample Application").SwfObject("trackBar1").Drag 34,11
SwfWindow("Sample Application").SwfObject("trackBar1").Drop 51,12
SwfWindow("Sample Application").SwfObject("trackBar1").Drag 50,4
SwfWindow("Sample Application").SwfObject("trackBar1").Drop 23,7
SwfWindow("Sample Application").SwfObject("trackBar1").Click 83,10
SwfWindow("Sample Application").SwfObject("trackBar1").Click 91,11
SwfWindow("Sample Application").SwfButton("Close").Click

SwfWindow("Sample Application").SwfObject("trackBar1").SetValue 5
SwfWindow("Sample Application").SwfObject("trackBar1").SetValue 0
SwfWindow("Sample Application").SwfObject("trackBar1").SetValue 10
SwfWindow("Sample Application").SwfObject("trackBar1").SetValue 6
SwfWindow("Sample Application").Close

Chapter 1 • Introducing QuickTest Professional .NET Add-in Extensibility

19

Understanding How to Implement .NET Add-in Extensibility

You implement .NET Add-in Extensibility support for a set of custom
controls by developing a .NET Add-in Extensibility support set. Developing
a .NET Add-in Extensibility support set consists of the following stages, each
of which is described below.

Planning the .NET Add-in Extensibility Support Set
Detailed planning of how you want QuickTest to recognize the custom
controls enables you to correctly build the fundamental elements of the
.NET Add-in Extensibility support set. Generally, to plan the support set,
you:

➤ Determine the .NET Windows Forms controls for which you need to
customize support.

➤ Plan the test object model by determining which test objects and
operations you want to support based on the controls and business
processes you need to test.

➤ Plan the most appropriate way for implementing the support.

For more information, see "Planning Your Support Set" on page 35.

Chapter 1 • Introducing QuickTest Professional .NET Add-in Extensibility

20

Developing the .NET Add-in Extensibility Support Set
To develop a .NET Add-in Extensibility support set, you must:

➤ Define the test object model.

➤ Create Custom Servers.

➤ Map the custom controls to the relevant test object classes.

These activities are described in detail in the following sections.

Define The Test Object Model

Introduce the test object model that you want QuickTest to use to test your
applications and controls. The test object model is a list of the test object
classes that represent custom controls in your environment, and their test
object methods.

You define the test object model in a test object configuration XML file. For
more information, see "Describing the Test Object Model" on page 48.

Create Custom Servers

Create a Custom Server (DLLs or control definition XML file) to handle each
custom control. In the Custom Server, you can modify:

➤ What steps are recorded during a recording session.

➤ The implementation of test object methods.

➤ Support for table checkpoints and output values.

The Custom Server mediates between QuickTest Professional and the .NET
application. During a recording session, the Custom Server listens to events
and maps the user activities to meaningful test object methods. During a
test run, the Custom Server performs the test object methods on the .NET
Windows Forms control.

Chapter 1 • Introducing QuickTest Professional .NET Add-in Extensibility

21

Custom Server Coding Options

The Custom Server can be implemented in one of the following coding
options:

➤ .NET DLL

➤ XML, based on a schema (which QuickTest then uses to create a .NET DLL
Custom Server behind the scenes)

For more information, see:

➤ "Using a .NET DLL to Extend Support for a Custom Control" on page 58

➤ "Using XML Files to Extend Support for a Custom Control" on page 82

Custom Server Run-time Contexts

Classes supplied by a Custom Server may be instantiated in the following
software processes (run-time contexts):

➤ Application under test context: An object created in the context of the
application you are testing has direct access to the .NET Windows Forms
control’s events, methods, and properties. However, it cannot listen to
Windows messages.

➤ QuickTest context: An object created in the QuickTest context can listen
to Windows messages. However, it does not have direct access to the .NET
Windows Forms control’s events, methods, and properties.

If the Custom Server is implemented as a .NET DLL, an object created under
QuickTest can create assistant classes that run under the application you are
testing.

For more details on run-time contexts, see "Selecting the Custom Server
Run-Time Context Depending on the Test Function" on page 39.

For more information on assistant classes, see "Using a .NET DLL to Extend
Support for a Custom Control" on page 58 and see the HP QuickTest
Professional .NET Add-in Extensibility API Reference.

Chapter 1 • Introducing QuickTest Professional .NET Add-in Extensibility

22

Map the Custom Controls to the Relevant Test Objects

Map test objects using the .NET Add-in Extensibility configuration file
(SwfConfig.xml). This file is located in the <QuickTest Professional
installation path>\dat\ folder and contains:

➤ The mapping of the custom controls to their corresponding test objects.

➤ The mapping to corresponding Custom Servers. This mapping provides
the full functionality to QuickTest test objects.

For more information, see "Mapping the Custom Controls to the Test Object
Classes" on page 57.

Chapter 1 • Introducing QuickTest Professional .NET Add-in Extensibility

23

The illustrations below demonstrate how .NET Add-in Extensibility maps
custom controls to their test objects and Custom Servers during recording
sessions and run sessions.

Mapping Custom Controls to Test Object Classes During Recording

The following illustration and table explain how QuickTest maps custom
controls to their test objects, locates the corresponding extended
implementation for the custom control, and records an appropriate test step
when recording.

Step Description

1 An event occurs on a type of control that QuickTest does not recognize,
or for which recording implementation is customized.

2 QuickTest checks the Type attribute of the Control elements in the
SwfConfig.xml file to locate information for this type of custom control.
QuickTest then checks the MappedTo attribute, to find the test object
class mapped to this type of control. If no specific test object class is
specified, SwfObject is used.

Chapter 1 • Introducing QuickTest Professional .NET Add-in Extensibility

24

Mapping Custom Controls to Custom Servers When Running a Test

The following illustration and table explain how QuickTest maps custom
controls to their test objects, locates the corresponding extended
implementation for the custom control, and performs the appropriate
operations on a custom control when running a test.

3 QuickTest checks the DLLName element in the SwfConfig.xml file to
locate the Custom Server containing implementation for this type of
custom control, and communicates with the Custom Server.

4 The Custom Server instructs QuickTest what step to add to the test in
response to the event that occurred.

Step Description

Chapter 1 • Introducing QuickTest Professional .NET Add-in Extensibility

25

Deploying the .NET Add-in Extensibility Support Set
To deploy your .NET Add-in Extensibility support set and enable QuickTest
to support your controls, copy the files you created to specific locations
within the QuickTest installation folder.

For more information, see "Configuring and Deploying the Support Set" on
page 89.

Testing the .NET Add-in Extensibility Support Set

After you have created the .NET Add-in Extensibility support for your
controls, test your .NET Add-in Extensibility support set.

You can learn how to develop a .NET Add-in Extensibility support set hands-
on, by performing the lessons in Chapter 6, "Learning to Create Support for
a Simple Custom .NET Windows Forms Control" and Chapter 7, "Learning
to Create Support for a Complex Custom .NET Windows Forms Control."

Step Description

1 A test runs. This test includes a test object representing a custom control
whose implementation has been customized.

2 QuickTest locates the Control element in the SwfConfig.xml file that
contains information for the custom control mapped to this test object.

3 QuickTest checks the DLLName element in the SwfConfig.xml file to
locate the Custom Server containing implementation for the custom
control.

4 QuickTest runs the test using the correct implementation for the test
object operation as defined by the implementation of the custom control.

Chapter 1 • Introducing QuickTest Professional .NET Add-in Extensibility

26

27

2
Installing the QuickTest Professional .NET
Add-in Extensibility SDK

This chapter describes the installation process for the QuickTest Professional
.NET Add-in Extensibility SDK.

For a list of items that the QuickTest Professional .NET Add-in Extensibility
SDK installation provides, see "About the QuickTest Professional .NET
Add-in Extensibility SDK" on page 8.

This chapter includes:

➤ Before You Install on page 28

➤ Installing the QuickTest Professional .NET Add-in Extensibility SDK
on page 28

➤ Repairing the QuickTest Professional .NET Add-in Extensibility SDK
Installation on page 32

➤ Uninstalling the QuickTest Professional .NET Add-in Extensibility SDK
on page 33

Chapter 2 • Installing the QuickTest Professional .NET Add-in Extensibility SDK

28

Before You Install

Before you install the QuickTest Professional .NET Add-in Extensibility SDK,
review the requirements listed below.

➤ You must have access to the QuickTest Professional installation DVD.

➤ A supported version of Microsoft Visual Studio must be installed on your
computer.

Note: For a list of supported Microsoft Visual Studio versions, see the
HP QuickTest Professional Product Availability Matrix, available from the
QuickTest Documentation Library Home page or the root folder of the
QuickTest Professional DVD.

Installing the QuickTest Professional .NET Add-in
Extensibility SDK

Use the QuickTest Professional Setup program to install the QuickTest
Professional .NET Add-in Extensibility SDK on your computer.

Note: You must be logged on with Administrator privileges to install the
QuickTest .NET Add-in Extensibility SDK.

To install the QuickTest Professional .NET Add-in Extensibility SDK:

 1 Close all instances of Microsoft Visual Studio.

 2 Insert the QuickTest Professional DVD into the CD-ROM/DVD drive. The
QuickTest Professional Setup window opens. (If the window does not
open, browse to the DVD and double-click setup.exe from the root
folder.)

Chapter 2 • Installing the QuickTest Professional .NET Add-in Extensibility SDK

29

 3 Click Add-in Extensibility and Web 2.0 Toolkits. The QuickTest Add-in
Extensibility and Web 2.0 Toolkit Support screen opens.

 4 Click QuickTest Professional .NET Add-in Extensibility SDK Setup. The
QuickTest Professional .NET Add-in Extensibility SDK Setup wizard opens.

Note: If the wizard screen that enables you to select whether to repair or
remove the SDK installation opens, the QuickTest Professional .NET
Add-in Extensibility SDK is already installed on your computer. Before
you can install a new version, you must first uninstall the existing one, as
described in "Uninstalling the QuickTest Professional .NET Add-in
Extensibility SDK" on page 33.

 5 Follow the instructions in the wizard to complete the installation.

 6 In the final screen of the Setup wizard, if you select the Show Readme
check box, the QuickTest Professional .NET Add-in Extensibility Readme
file opens after you click Close. The Readme file contains the latest
technical and troubleshooting information. To open the Readme file at
another time, select Start > Programs > HP QuickTest Professional >
Extensibility > Documentation > .NET Add-in Extensibility Readme.

 7 Click Close to exit the Setup wizard.

 8 If you use a non-English edition of Visual Studio, do the following to
apply the installed QuickTest CustomServer project templates to your
Visual Studio edition:

 a Copy the QuickTestCustomServerVB.zip file from:
C:\Program Files\Microsoft Visual Studio 9.0\Common7\IDE\
ProjectTemplates\VisualBasic\Windows\1033 (English language
setting folder) to the folder relevant to the language you use (for
example, use 1036 for French).

 b Run the PostCustomVizard.exe program from the C:\Program
Files\Microsoft Visual Studio 9.0\Common7\IDE folder.

Chapter 2 • Installing the QuickTest Professional .NET Add-in Extensibility SDK

30

 c Repeat this process for the C# template, copying the
QuickTestCustomServer.zip file from:
C:\Program Files\Microsoft Visual Studio 9.0\Common7\IDE\
ProjectTemplates\CSharp\Windows\1033

Note: This file system paths in this step are relevant for Visual Studio
2008. If you use a different version of Visual Studio, adjust the paths
accordingly.

To confirm that the installation was successful:

Note: The Microsoft Visual Studio dialog box illustration and the
instructions in this procedure refer to Microsoft Visual Studio 2008. If you
use a different Microsoft Visual Studio version, the dialog box may differ
slightly in appearance and the QuickTest CustomServer template may be
located in a slightly different node in the tree.

 1 Open a supported version of Microsoft Visual Studio.

For a list of supported Microsoft Visual Studio versions, see the
HP QuickTest Professional Product Availability Matrix, available from the
QuickTest Documentation Library Home page or the root folder of the
QuickTest Professional DVD.

 2 Select File > New > Project to open the New Project dialog box.

 3 Select the Visual Basic > Windows node in the Project types tree.

Chapter 2 • Installing the QuickTest Professional .NET Add-in Extensibility SDK

31

 4 Confirm that the QuickTest CustomServer template icon is displayed in
the Templates pane.

 5 Select the Visual C# > Windows node in the Project types tree.

 6 Confirm that the QuickTest CustomServer template icon is displayed in
the Templates pane.

Note: If you upgrade to a new version of Microsoft Visual Studio, you must
uninstall and reinstall the .NET Add-in Extensibility SDK to be able to access
the QuickTest CustomServer template.

Chapter 2 • Installing the QuickTest Professional .NET Add-in Extensibility SDK

32

Repairing the QuickTest Professional .NET Add-in
Extensibility SDK Installation

You can use the QuickTest Professional Setup program to repair an existing
QuickTest Professional .NET Add-in SDK installation by replacing any
missing or damaged files from your previous installation.

Notes:

➤ You must use the same version of the setup program as you used for the
original installation.

➤ You must be logged on with Administrator privileges to repair the
installation.

➤ If User Account Control (UAC) is available for your operating system,
UAC must be turned off while you repair the installation.

To repair the QuickTest Professional .NET Add-in Extensibility SDK
installation:

 1 Insert the QuickTest Professional DVD into the CD-ROM/DVD drive. The
QuickTest Professional Setup window opens. (If the window does not
open, browse to the DVD and double-click setup.exe from the root
folder.)

 2 Click Add-in Extensibility and Web 2.0 Toolkits. The QuickTest Add-in
Extensibility and Web 2.0 Toolkit Support screen opens.

 3 Click QuickTest Professional .NET Add-in Extensibility SDK Setup. The
.NET Add-in Extensibility SDK Setup wizard opens, enabling you to select
whether to repair or remove the SDK installation.

 4 Select Repair and click Finish. The setup program replaces the QuickTest
Professional .NET Add-in Extensibility SDK files and opens the
Installation Complete screen.

 5 In the Installation Complete screen, click Close to exit the Setup wizard.

Chapter 2 • Installing the QuickTest Professional .NET Add-in Extensibility SDK

33

Uninstalling the QuickTest Professional .NET Add-in
Extensibility SDK

You can uninstall the QuickTest Professional .NET Add-in SDK by using
Add/Remove Programs as you would for other installed programs.
Alternatively, you can use the QuickTest Professional Setup program.

Notes:

➤ You must use the same version of the setup program as you used for the
original installation.

➤ You must be logged on with Administrator privileges to uninstall the
QuickTest .NET Add-in Extensibility SDK.

To uninstall the QuickTest Professional .NET Add-in Extensibility SDK:

 1 Insert the QuickTest Professional DVD into the CD-ROM/DVD drive. The
QuickTest Professional Setup window opens. (If the window does not
open, browse to the DVD and double-click setup.exe from the root
folder.)

 2 Click Add-in Extensibility and Web 2.0 Toolkits. The QuickTest Add-in
Extensibility and Web 2.0 Toolkit Support screen opens.

 3 Click QuickTest Professional .NET Add-in Extensibility SDK Setup. The
.NET Add-in Extensibility SDK Setup wizard opens, enabling you to select
whether to repair or remove the SDK.

 4 Select Remove and click Finish. The setup program removes the QuickTest
Professional .NET Add-in Extensibility SDK and opens the Installation
Complete screen.

 5 In the Installation Complete screen, click Close to exit the Setup wizard.

Chapter 2 • Installing the QuickTest Professional .NET Add-in Extensibility SDK

34

35

3
Planning Your Support Set

Before you begin to create support for custom controls, you must carefully
plan the support. Detailed planning of how you want QuickTest to
recognize the custom controls enables you to correctly build the
fundamental elements of the .NET Add-in Extensibility support set.

This chapter includes:

➤ About Planning QuickTest Support for Your .NET Add-in Extensibility
Controls on page 36

➤ Determining Information Related to Your Custom Controls on page 36

➤ Selecting the Coding Option for Implementing the Custom Servers
on page 38

➤ Selecting the Custom Server Run-Time Context Depending on the Test
Function on page 39

➤ Analyzing Custom Controls and Mapping Them to Test Objects
on page 42

➤ Using the .NET Add-in Extensibility Planning Checklist on page 43

➤ Where Do You Go from Here? on page 45

Note: This chapter assumes familiarity with the concepts presented in
Chapter 1, "Introducing QuickTest Professional .NET Add-in Extensibility."

Chapter 3 • Planning Your Support Set

36

About Planning QuickTest Support for Your .NET Add-in
Extensibility Controls

Extending the QuickTest Professional .NET Add-in’s support to recognize
custom .NET Windows Forms controls is a process that requires detailed
planning. To assist you with this, the sections in this chapter include sets of
questions related to the implementation of support for your custom
controls. When you create your .NET Add-in Extensibility support set, you
implement it based on the answers you provide to these questions.

Determining Information Related to Your Custom Controls

Decide which controls this support set will support.

Before you begin planning support for custom .NET Windows Forms
controls, make sure you have full access to the controls and understand
their behavior.

You must have an application in which you can view the controls in action.

You must also be able to view the source that implements them. You do not
need to modify any of a custom control’s sources to support it in QuickTest,
but you do need to be familiar with them.

When planning custom support for a specific type of control, carefully
consider how you want QuickTest to recognize controls of this type—what
type of test object you want to represent the controls in QuickTest tests,
which test object methods you want to use, and so on. Make these decisions
based on the business processes that might be tested using this type of
control and operations that users are expected to perform on these controls.

➤ Make sure you know the methods the control supports, what properties it
has, the events for which you can listen, and so on.

➤ Identify existing test object classes whose functionality is similar to that
of the custom .NET Windows Forms controls.

➤ Decide what methods need to be written or modified for extending the
controls.

Chapter 3 • Planning Your Support Set

37

Analyzing the Custom Controls
You can run an application containing the custom control and analyze the
control from a QuickTest perspective using the .NET Windows Forms Spy,
the Keyword View, and the Record option. This enables you to see how
QuickTest recognizes the control without custom support, and helps you to
determine what you want to change.

Using the .NET Windows Forms Spy

You can use the .NET Windows Forms Spy to help you develop extensibility
for .NET Windows Forms controls. The .NET Windows Forms Spy enables
you to:

➤ View details about selected .NET Windows Forms controls and their run-
time object properties.

➤ See which events cause your application to change (to facilitate record
and run extensibility implementation) and how the changes manifest
themselves in the control's state.

You access the .NET Windows Forms Spy by choosing Tools > .NET Windows
Forms Spy in the main QuickTest window.

Note: To spy on a .NET Windows Forms application, make sure that the
application is running with Full Trust. If the application is not defined to
run with Full Trust, you cannot spy on the application’s .NET Windows
Forms controls with the .NET Windows Forms Spy. For information on
defining trust levels for .NET applications, see the relevant Microsoft
documentation.

For more information on the .NET Windows Forms Spy, see the HP QuickTest
Professional Add-ins Guide.

When you plan the support for a specific control, you must ask yourself a
series of questions. You can find a list of these questions in Using the .NET
Add-in Extensibility Planning Checklist. When you are familiar with the
questions and you are designing your own custom support classes, you can
use the abbreviated, printable checklist on page 44.

Chapter 3 • Planning Your Support Set

38

Selecting the Coding Option for Implementing the Custom
Servers

You can implement custom support for custom .NET Windows Forms
controls in the following ways:

➤ .NET DLL. Extends support for the control using a .NET Assembly.

➤ XML. Extends support for the control using an XML file, based on a
schema.

.NET DLL: Full Program Development Environment
Most Custom Servers are implemented as a .NET DLL. This option is
generally preferred because:

➤ Development is supported by all the services of the program development
environment, such as syntax checking, debugging, and Microsoft
IntelliSense.

➤ If table checkpoint and output value support is needed, this support is
available only when implementing the Custom Server as a .NET DLL.

➤ A Custom Server implemented as a .NET DLL can perform part of its Test
Record functions in the QuickTest context and part in the Application
under test context. For more information, see "Using a .NET DLL to
Extend Support for a Custom Control" on page 58, and the QuickTest
Professional .NET Add-in Extensibility API Reference (available in the
QuickTest Professional .NET Add-in Extensibility online Help).

For information on run-time contexts, see "Selecting the Custom Server
Run-Time Context Depending on the Test Function" on page 39.

Chapter 3 • Planning Your Support Set

39

XML Implementation
There are circumstances when it is most practical to implement Custom
Servers using the XML coding method. These circumstances include:

➤ When the controls are relatively simple and well documented.

➤ When the controls map well to an existing object, but you need to replace
the implementation during a recording session (Test Record), or replace or
add a small number of test object methods during a run session (Test
Run).

➤ When a full programming environment is not available–implementation
using XML Custom Servers requires only a text editor.

However, when implementing a custom control with XML:

➤ You have none of the support provided by a program development
environment.

➤ The XML implementation includes C# programming commands, and
runs only in the Application under test context.

For more information, see "Using XML Files to Extend Support for a Custom
Control" on page 82.

Selecting the Custom Server Run-Time Context Depending
on the Test Function

Each Custom Server may implement the following test functions for each
control:

➤ Test Record

➤ Test Run

➤ Table Verification (to support checkpoints and output values)

➤ A combination of these test functions

Chapter 3 • Planning Your Support Set

40

Run-time contexts include:

➤ Application under test: The context in which the application is being
tested.

➤ QuickTest: The application is being tested under QuickTest.

The following table provides guidelines for determining which test function
you can implement for each run-time context.

Need / Task
Test
Record

Test Run
Table
Verification

Run-Time
Context

Explanation

Create tasks
using keyword-
driven testing
(and not by
recording steps
on an
application)

Not
applicable

Yes Only for
.NET DLL
Custom
Servers

Either
Application
under test
or
QuickTest

The Test Record test
function records the
actions performed on the
application being tested
and the application’s
resulting behaviors. The
recording is then
converted to a test. If you
plan to create tests using
keyword-driven testing,
and not by recording
steps on an application,
you do not need to
implement the Test
Record function.

Implement the
Custom Server
in the
Application
under test
context

Optional Optional
(usually)

Only for
.NET DLL
Custom
Servers

Application
under test

The Test Run function
tests if the application is
performing as required
by running the test and
tracking the results. Test
Run is nearly always
implemented in the
Application under test
context.

Chapter 3 • Planning Your Support Set

41

Listen to
Microsoft
Windows
messages

Yes Only
with
assistant
classes

Only for
.NET DLL
Custom
Servers

QuickTest If the .NET DLL Custom
Server must both listen
to Windows messages
and access control events
and properties, use
assistant classes. The
Custom Server running
in the QuickTest context
can listen to events in
the Application under
test context with
assistant class objects
that run in the
Application under test
context. These objects
also provide direct access
to control properties.

Implement
table
checkpoints
and output
values on
custom grid
controls

Optional Optional Only for
.NET DLL
Custom
Servers

Either
Application
under test
or
QuickTest

You can implement
support for table
checkpoints and output
values on custom grid
controls, regardless of
the context in which
your .NET DLL runs.

Your
application
uses QuickTest
services more
than it uses
services of the
custom control

Yes, but
possibly
less
efficient

Possibly
more
efficient

Possibly
more
efficient

QuickTest is
preferred

There is no need to listen
to Windows messages
during a Test Run
session, so the QuickTest
context is not required.
However, if your
application uses
QuickTest services more
than it uses services of
the custom control, it
may be more efficient to
implement Test Run in
the QuickTest context.

Need / Task
Test
Record

Test Run
Table
Verification

Run-Time
Context

Explanation

Chapter 3 • Planning Your Support Set

42

Analyzing Custom Controls and Mapping Them to Test
Objects

Custom .NET Windows Forms controls are mapped to existing QuickTest
test object classes. When the test object class is applied to the custom
control, the Custom Server extends the functionality of the existing test
object to match the custom control.

Map the custom controls to test objects by using the MappedTo attribute in
the QuickTest Professional .NET Add-in Extensibility’s System Windows
Forms configuration file (SwfConfig.xml). This element defines a QuickTest
test object class containing behaviors that are similar to those that your
Custom Server will inherit. For more information, see Chapter 5,
"Understanding How to Configure QuickTest Windows Forms Extensibility."

If you do not specify a mapping, QuickTest maps the custom control to the
default generic test object, SwfObject.

When you map your Custom Server to a functionally similar QuickTest test
object, you do not need to override the Test Run methods of the existing
object that apply without change to your custom object. For example, most
controls contain a Click method. If the Click method of the existing object
implements the Click method of the custom object adequately, you do not
need to override the existing object’s method.

To cover the Test Run functionality of the custom object that does not exist
in the existing object, add new methods in your Custom Server. To cover
functionality that has the same method name, but a different
implementation, override the existing object’s methods. The custom control
support consists of the Test Run members of the existing object (or overrides
of those members), and new members added by this Custom Server.

Note that mapping is sometimes sufficient without any programming. If the
existing QuickTest test object adequately covers a control, it is sufficient to
map the control to the QuickTest test object. If the QuickTest test object
adequately covers Test Record, but you need to customize Test Run, do not
implement Test Record. If you do implement Test Record, the
implementation replaces that of the existing object. You must implement all
required Test Record functionality.

Chapter 3 • Planning Your Support Set

43

When you edit a step that references the custom control, Microsoft
IntelliSense displays the properties and methods of the custom control in
addition to those of the existing QuickTest test object. QuickTest uses test
object configuration files to provide IntelliSense the list of custom methods
and properties.

Using the .NET Add-in Extensibility Planning Checklist

When you plan the support for a specific type of control, you must ask
yourself a series of questions. These are explained below and are available in
an abbreviated, printable checklist on page 44.

 1 Make sure you have access to an application that runs the custom control
on a computer with QuickTest installed.

 2 Choose a .NET Windows Forms test object class to represent the custom
control? (QuickTest uses SwfObject by default.)

 3 Does the test object class you selected have to be customized?

 a Specify any test object methods that you want to add to the test object
definition. Specify the method argument types and names, and
whether the method returns a value in addition to the return code.

When you design the .NET Add-in Extensibility support set, you
specify this information in the test object configuration file.

 b Specify any test object methods whose behavior you want to modify or
override.

When you design the .NET Add-in Extensibility Custom Server, you
will need to implement any new test object methods that you add, or
any test object methods whose existing behavior you want to override.

 4 Should test objects of this class be displayed in the .NET Windows Forms
Spy? (By default they are.)

Chapter 3 • Planning Your Support Set

44

 5 Are you going to provide support for recording? If so, list the events that
should trigger recording.

 6 If you are creating support for a table control, decide whether you want to
provide support for table checkpoints and output values on this control.

.NET Add-in Extensibility Planning Checklist
Use this checklist to plan the support for your custom control.

Custom Control Support Planning Checklist

Specify
in Test
Object
Config.
file?

Specify in
.NET Add-in
Extensibility
configuration
file ?

Specify
in
Custom
Server?

The sources for this custom control are located in:

Specify the .NET test object class to map to the
control: (Default— SwfObject)

Specify the test object methods you want to add or
modify (if required, include arguments, and return
values):

Display test objects of this class in the .NET
Windows Forms Spy?
Yes (default)/No

Provide support for recording?
Yes/No

If so, list the events that should trigger recording:

Provide support for table checkpoints and output
values?
Yes/No

Chapter 3 • Planning Your Support Set

45

Where Do You Go from Here?

After you finish planning the custom control support, you create the .NET
Add-in Extensibility support set. Chapter 4, "Developing Your Support Set"
explains how to develop the .NET Add-in Extensibility support set.

Chapter 3 • Planning Your Support Set

46

47

4
Developing Your Support Set

This chapter explains how to develop extended support for custom .NET
Windows Forms controls. It explains which files you have to create for a
.NET Add-in Extensibility support set, the structure and content of these
files, and how to develop them to support the different QuickTest
capabilities for your environment.

Note: Before you actually begin to create a support set, you must plan it
carefully. For more information, see "Planning Your Support Set" on page 35.

For information on where the .NET Add-in Extensibility support set files
should be stored to activate the support you design, see Chapter 5,
"Configuring and Deploying the Support Set."

This chapter includes:

➤ Understanding the Development Workflow on page 48

➤ Describing the Test Object Model on page 48

➤ Mapping the Custom Controls to the Test Object Classes on page 57

➤ Defining How QuickTest Operates on the Custom Controls on page 57

➤ Using the .NET Add-in Extensibility Samples on page 85

➤ Troubleshooting and Limitations - Running the Support You Designed
on page 86

Chapter 4 • Developing Your Support Set

48

Understanding the Development Workflow

Implementing the .NET Add-in Extensibility support set consists of the
following stages. The workflow for developing the support set is described in
the following sections.

Describing the Test Object Model

The first stage of developing support for custom controls is to introduce the
test object model that you want QuickTest to use to test your applications
and controls. The test object model is a list of the test object classes that
represent custom controls in your environment and the syntax of the test
object methods that support the custom controls.

You define the test object model in a test object configuration file according
to a specific XML schema. For details about how to create test object
configuration files, see "Creating Test Object Configuration Files" on
page 49.

Chapter 4 • Developing Your Support Set

49

Benefits of Describing Test Object Models
Implementation of a test object configuration file is optional. If you choose
not to implement the test object configuration file, the test object methods
defined in the .NET Custom Server DLL or control definition files will work
as expected, but the functionality listed below will be missing.

Describing your custom test object methods in a test object configuration
file enables the following functionality when editing tests in QuickTest:

➤ A list of available custom test object methods in the Operations column
in the Keyword view and in Intellisense in the Expert view.

➤ A test object method selected by default in the Keyword View and Step
Generator when a step is generated for a test object of this class.

➤ Documentation for the custom test object methods in the
Documentation column in the Keyword view.

➤ Icons and context-sensitive Help (only for new test object methods added
to a test object class).

Creating Test Object Configuration Files
The following steps describe how to create test object configuration files.

To create test object configuration files:

 1 Create a copy of the <QuickTest Professional installation
path>\dat\Extensibility\DotNet\DotNetCustomServerMethods.xml file
to create a new test object configuration file in the same folder. (Do not
modify the original file.)

 2 Edit the new test object configuration file, modifying any test object
classes whose behavior you want to modify. Delete any test object classes
that you do not modify.

 3 Save and close the test object configuration file.

For more information, see:

➤ "Guidelines for Implementing Test Object Configuration Files" on page 50

➤ "Understanding the Contents of the Test Object Configuration File" on
page 53

Chapter 4 • Developing Your Support Set

50

➤ "Modifying an Existing Test Object Class" on page 55

➤ "Example of a Test Object Configuration File" on page 56

➤ The QuickTest Test Object Schema Help

Guidelines for Implementing Test Object Configuration
Files
When you define the test object model for your custom controls in test
object configuration files, consider the following (based on the information
in the sections below):

➤ Decide whether you want to add test object methods for all test objects of
a certain type.

➤ Make sure that the test object configuration information matches the
Custom Server information.

➤ Decide whether you want to create one test object configuration file or
more.

Adding Test Object Methods to an Existing Test Object Class

When you add a custom method to the test object configuration file, the
new method is added to the existing definition of this test object class,
affecting all objects of this class.

For example, if you add a test object method, it is displayed in the
IntelliSense list of test object methods in QuickTest, but if you use the test
object method in a test, and it is not supported for the relevant control, a
run-time error occurs. Test designers may use a custom method in a test step
without realizing that it is not relevant for a specific test object, and then
the test run will fail.

Tip: It is recommended that you add a unique prefix to all custom test object
method names so that test designers can easily identify the custom methods
and use them in test steps only if they know that the custom method is
supported for the specific object (for example, CustomButtonClick,
CustomEditSet).

Chapter 4 • Developing Your Support Set

51

Make Sure that Test Object Configuration File Information
Matches Custom Server Information

Make sure that the information you define in the test object configuration
file exactly matches the corresponding information defined in the .NET
Custom Server DLL or control definition files. For example, the test object
method names must be exactly the same in both locations. Otherwise, the
methods will appear to be available (for example, in IntelliSense) but they
will not work, and, if used, the run session will fail.

Implementing More Than One Test Object Configuration File

You can choose to implement one or multiple test object configuration files
(or none, if not needed). For example, you can define custom methods for
one test object class in one test object configuration file, and custom
methods for another test object in a different test object configuration file.
You can also choose to define a group of custom methods for a test object
class in one test object configuration file, and another group of custom
methods for the same test object class in a different test object configuration
file.

Each time you open QuickTest, it reads all of the test object configuration
files and merges the information for each test object class from the different
files into a single test object class definition. This enables you to use the
same test object class definitions when supporting different custom toolkits.

Understanding How QuickTest Merges Configuration Files

Each time you open QuickTest, it reads all of the test object configuration
files located in the <QuickTest installation folder>\dat\Extensibility\
<QuickTest add-in name> folders. QuickTest then merges the information
for each test object class from the different files into a single test object class
definition, according to the priority of each test object configuration file.

QuickTest ignores the definitions in a test object configuration file in the
following situations:

➤ The Load attribute of the TypeInformation element is set to false.

➤ The environment relevant to the test object configuration file is displayed
in the Add-in Manager dialog box, and the QuickTest user selects not to
load the environment.

Chapter 4 • Developing Your Support Set

52

You define the priority of each test object configuration file using the
Priority attribute of the TypeInformation element.

If the priority of a test object configuration file is higher than the existing
class definitions, it overrides any existing test object class definitions,
including built-in QuickTest information. For this reason, be aware of any
built-in functionality that will be overridden before you change the priority
of a test object configuration file.

When multiple test object class definitions exist, QuickTest must handle any
conflicts that arise. The following sections describe the process QuickTest
follows when ClassInfo, ListOfValues, and Operation elements are defined in
multiple test object configuration files. All of the IdentificationProperty
elements for a specific test object class must be defined in only one test
object configuration file.

ClassInfo Elements

➤ If a ClassInfo element is defined in a test object configuration file with a
priority higher than the existing definition, the information is appended
to any existing definition. If a conflict arises between ClassInfo definitions
in different files, the definition in the file with the higher priority
overrides (replaces) the information in the file with the lower priority.

➤ If a ClassInfo element is defined in a test object configuration file with a
priority that is equal to or lower than the existing definition, the differing
information is appended to the existing definition. If a conflict arises
between ClassInfo definitions in different files, the definition in the file
with the lower priority is ignored.

ListOfValues Elements

➤ If a conflict arises between ListOfValues definitions in different files, the
definition in the file with the higher priority overrides (replaces) the
information in the file with the lower priority (the definitions are not
merged).

➤ If a ListOfValues definition overrides an existing list, the new list is
updated for all arguments of type Enumeration that are defined for
operations of classes in the same test object configuration file.

Chapter 4 • Developing Your Support Set

53

➤ If a ListOfValues is defined in a configuration file with a lower priority
than the existing definition, the lower priority definition is ignored.

Operation Elements

➤ Operation element definitions are either added, ignored, or overridden,
depending on the priority of the test object configuration file.

➤ If an Operation element is defined in a test object configuration file with
a priority higher than the existing definition, the operation is added to
the existing definition for the class. If a conflict arises between Operation
definitions in different files, the definition in the file with the higher
priority overrides (replaces) the definition with the lower priority (the
definitions are not merged).

Understanding the Contents of the Test Object
Configuration File
A test object configuration file can include the following:

➤ The name of the test object class and its attributes.

➤ The methods for the test object class, including the following information
for each method:

➤ The arguments, including the argument type and direction

➤ Whether the argument is mandatory, and, if not, its default value

➤ The description (shown as a tooltip in the Keyword View, Expert View,
and Step Generator)

➤ The documentation string (shown in the Documentation column of
the Keyword View and in the Step Generator)

➤ A context-sensitive Help topic to open when F1 is pressed for the test
object method in the Keyword View or Expert View, or when the
Operation Help button is clicked for the method in the Step Generator.
The definition includes the Help file path and the relevant Help ID
within the file. (Relevant only for new test object methods added to
the test object class.)

➤ The return value type

Chapter 4 • Developing Your Support Set

54

➤ The test object method that is selected by default in the Keyword View
and Step Generator when a step is generated for a test object of this class.

The following example shows parts of the SwfObject test object class
definition in a test object configuration file. The example shows that the
SwfObject is extended by adding a Set method. The method has one
argument (Percent, which defines the percentage to set in the control), and
it also has a documentation string that appears in the Keyword View.

For information on the structure and syntax of the test object configuration
file, see the QuickTest Test Object Schema Help (available with the QuickTest
Professional .NET Add-in Extensibility online Help).

</TypeInformation>
...

<ClassInfo Name="SwfObject"
...

<TypeInfo>
<Operation Name="MyCustomButtonSet" PropertyType="Method"

ExposureLevel="CommonUsed">
<Description>Set the percentage in the task bar</Description>

<Documentation><![CDATA[Set the %l %t to <Percent> percent.]]>
</Documentation>
<Argument Name="Percent" IsMandatory="true" Direction="In">

<Type VariantType="Integer"/>
<Description>The percentage to set in the task bar.</Description>

</Argument>
</Operation>

</TypeInfo>
</ClassInfo>

</TypeInformation>

Chapter 4 • Developing Your Support Set

55

Modifying an Existing Test Object Class
Identify a test object class that provides partial support for your control, but
needs some modification, for example, additional or modified test object
methods.

You can then extend the functionality of this test object by defining and
implementing additional test object methods. In addition, you can override
existing test object methods by providing an alternate implementation for
them. You define the new or changed methods in the test object
configuration file, and design their implementation using Custom Servers.

Chapter 4 • Developing Your Support Set

56

Example of a Test Object Configuration File
The following example shows the definition of the ToolStrip test object:

This example shows that the ToolStrip test object class extends the
SwfToolBar test object class. The default test object method for the ToolStrip
test object class is Select (which has one mandatory input parameter: Item).

<ClassInfo Name="System.Windows.Forms.ToolStrip"
BaseClassInfoName="SwfToolBar" FilterLevel="1">

<TypeInfo>
<Operation Name="Select" PropertyType="Method"

ExposureLevel="CommonUsed" SortLevel="-1">
<Description>Selects a menu item from a SwfToolBar dropdown menu.
</Description>
<Argument Name="Item" Direction="In" IsMandatory="true">

<Type VariantType="VT_BSTR"/>
</Argument>

</Operation>
<Operation Name="IsItemEnabled" PropertyType="Method"

ExposureLevel="Expert" SortLevel="-1">
<Description>Indicates whether the toolbar item is enabled.</Description>
<Argument Name="Item" Direction="In" IsMandatory="true">

<Type VariantType="VT_BSTR"/>
</Argument>
<ReturnValueType><Type VariantType="VT_BOOL"/></ReturnValueType>

</Operation>
<Operation Name="ItemExists" PropertyType="Method"

ExposureLevel="Expert" SortLevel="-1">
<Description>Indicates whether the specified toolbar item exists.</Description>
<Argument Name="Item" Direction="In" IsMandatory="true">

<Type VariantType="VT_BSTR"/>
</Argument>
<ReturnValueType> <Type VariantType="VT_BOOL"/></ReturnValueType>

</Operation>
</TypeInfo>

</ClassInfo>

Chapter 4 • Developing Your Support Set

57

Mapping the Custom Controls to the Test Object Classes

The mapping of custom controls to test object classes is defined in the .NET
Add-in Extensibility configuration file, SwfConfig.xml, in the
<QuickTest Professional installation path>\dat folder. This XML file
describes which test object class represents each custom control and where
QuickTest can locate the information it needs to interact with each control.
For more information on mapping, see "Configuring QuickTest to Use the
Custom Server" on page 90.

Defining How QuickTest Operates on the Custom Controls

After enabling QuickTest to recognize the custom controls, you must
provide support for running test object methods. If you try to run a test with
steps that run custom test object methods before providing implementation
for these methods, the test fails and a run-time error occurs.

Custom Servers contain the implementation for how QuickTest interacts
with the custom controls. Custom Servers can be .DLL files or .XML files
(which QuickTest converts to .DLL files "behind the scenes" when
necessary). For instructions on deciding when it is appropriate to use each
method, see "Planning Your Support Set" on page 35.

➤ Most implementations are developed using DLL files. For more
information, see "Using a .NET DLL to Extend Support for a Custom
Control" on page 58.

➤ Simpler implementations can be developed using the XML files, by
creating a Control Definition file for each custom control. For more
information, see "Using XML Files to Extend Support for a Custom
Control" on page 82.

After creating the Custom Server, configure QuickTest to use it. For more
information, see "Configuring QuickTest to Use the Custom Server" on
page 90.

Chapter 4 • Developing Your Support Set

58

Using a .NET DLL to Extend Support for a Custom Control
You can support a .NET Windows Forms control by creating a Custom Server
implemented as a .NET DLL. Set up a .NET project in Microsoft Visual Studio
as a .NET DLL class library that implements the interfaces for a combination
of:

➤ Test Record (IRecord interface)

➤ Test Run (Replay interface)

➤ Table verification (supports checkpoints and output values)

Note: The IRecord interface is provided in the QuickTest Professional .NET
Add-in Extensibility SDK. When running the QuickTest Custom Server
Settings wizard to create a .NET DLL Custom Server, the wizard provides
code that implements the IRecord interface to get you started.

The SDK does not provide interfaces for replay and table verification. You
must implement these.

For details, see "Implementing the IRecord Interface" on page 66 and the
QuickTest Professional .NET Add-in Extensibility API Reference (available in the
QuickTest Professional .NET Add-in Extensibility online Help).

Chapter 4 • Developing Your Support Set

59

To create a .NET DLL Custom Server you need to know how to program a
.NET Assembly. The illustrations and instructions in this section assume that
you are using Microsoft Visual Studio 2008 as your development
environment and that the Custom Server Project Templates are installed. For
more information, see "Installing the QuickTest Professional .NET Add-in
Extensibility SDK" on page 27.

Notes:

➤ QuickTest loads the Custom Server when you open a test. Therefore, if
you implement your Custom Server as a .NET DLL, any changes you
make to the DLL after the Custom Server is loaded take effect only the
next time you open a test.

➤ Applications running under .NET Framework version 1.1 cannot use
DLLs that were created using Visual Studio 2005 or above. Therefore you
cannot use a Custom Server that you implemented as a .NET DLL using
Visual Studio 2005 or above when you run the application you are
testing under .NET Framework version 1.1.

Implementing your Custom Server as a .NET DLL involves the following
tasks:

➤ Setting up the .NET Project (described on page 60)

➤ Implementing Test Record for a Custom Control Using a .NET DLL
(described on page 65)

➤ Implementing Test Run for a Custom Control Using the .NET DLL
(described on page 71)

➤ Implementing Support for Table Checkpoints and Output Values in the
.NET DLL Custom Server (described on page 72)

➤ Running Code under Application Under Test from the QuickTest Context
(described on page 78)

Chapter 4 • Developing Your Support Set

60

Setting up the .NET Project

Set up a .NET project in Microsoft Visual Studio using the Custom Server C#
Project Template or the Custom Server Visual Basic Project Template. (This
template is installed automatically during the installation, as described in
Chapter 2, "Installing the QuickTest Professional .NET Add-in Extensibility
SDK.")

When you set up the .NET project, the Custom Server Project template does
the following:

➤ Creates the project files necessary for the build of the .DLL file.

➤ Sets up a C# or Visual Basic file (depending on which template you
selected) with commented code that contains the definitions of methods
that you can override when you implement Test Record or Test Run.

➤ Provides sample code that demonstrates some Test Record and Test Run
implementation techniques.

➤ Creates an XML file segment with definitions for the Custom Server that
you can copy into the .NET Add-in Extensibility configuration file
(SwfConfig.xml).

To set up a new .NET project:

 1 Start Microsoft Visual Studio.

 2 Select File > New > Project to open the New Project dialog box, or press
CTRL + SHIFT + N. The New Project dialog box opens.

Chapter 4 • Developing Your Support Set

61

 3 Select the Visual C# > Windows or Visual Basic > Windows node in the
Project types tree.

Note: In Microsoft Visual Studio versions other than 2008, the dialog box
may differ slightly in appearance and the QuickTest CustomServer
template may be located in a slightly different node in the tree.

Chapter 4 • Developing Your Support Set

62

 4 Select the QuickTest CustomServer template in the Templates pane. Enter
the name of your new project and the location in which you want to save
the project. Click OK. The QuickTest Custom Server Settings wizard
opens.

Chapter 4 • Developing Your Support Set

63

 5 Determine whether your Custom Server will extend Test Record support,
Test Run support, or both, by making selections in the Application
Settings page of the wizard.

➤ In the Server class name box, provide a descriptive name for your
Custom Server class.

➤ Select the Customize Record process check box if you intend to
implement the Test Record process in QuickTest.

If you select the Customize Record process check box, the wizard
creates a framework of code for the implementation of recording steps.

Do not select this check box if you are going to create the test
manually in QuickTest, or if you are going to use the Test Record
functions of the existing test object to which this control will be
mapped. Your Test Record implementation does not inherit from the
existing test object to which the custom control is mapped. It replaces
the existing object’s Test Record implementation entirely. Therefore, if
you need any of the existing object’s functionality, code it explicitly.

➤ Select the Customize Run process check box if you intend to
implement Test Run functions for the custom control (meaning, if you
are going to override any of the existing test object’s methods, or
extend the test object with new methods). Enter a name for the replay
interface you will create in the Replay interface name box.

If you select the Customize Run process check box, the wizard creates a
framework of code to implement Test Run support.

➤ Select the Generate comments and sample code check box if you want
the wizard to add comments and samples in the code that it generates.

Chapter 4 • Developing Your Support Set

64

 6 Click Next. The XML Configuration Settings page of the wizard opens.

 7 Using the XML Configuration Settings page of the wizard, you can
generate a segment of XML code that can be copied into the .NET Add-in
Extensibility configuration file (SwfConfig.xml). This file maps the
custom control to the test object, and provides QuickTest with the location
of the test object’s Custom Server. (If you choose not to generate the XML
configuration segment, you can manually edit the .NET Add-in
Extensibility configuration file later.) For instructions on copying this
segment into the SwfConfig.xml file, see "Copying Configuration
Information Generated by the QuickTest Custom Server Settings Wizard"
on page 93.

➤ Select the Auto-generate the XML configuration segment check box to
instruct the wizard to create the configuration segment, which is saved
in the Configuration.xml file.

➤ In the Customized Control type box, enter the full type name of the
control for which you are creating the Custom Server, including all
wrapping namespaces, for example,
System.Windows.Forms.CustomCheckBox.

Chapter 4 • Developing Your Support Set

65

➤ In the Mapped to box, select the test object to which you want to map
the Custom Server. If you select No mapping, the Custom Server is
automatically mapped to the SwfObject test object.

For more information, see "Map the Custom Controls to the Relevant
Test Objects" on page 22.

➤ Select the run-time context for Test Record and/or Test Run: the
context under which the application is being tested (Application under
test) or under QuickTest.

For more information, see "Create Custom Servers" on page 20.

 8 Click Finish. The wizard closes and the new project opens, ready for
coding.

When you click Finish in the wizard, the Configuration.xml segment file
is created and added to the project. Update and modify the configuration
segment file as required. For more information about using the segment
file, see "Copying Configuration Information Generated by the QuickTest
Custom Server Settings Wizard" on page 93.)

Implementing Test Record for a Custom Control Using a .NET
DLL

Recording a business component or test on a control means listening to the
activity of that control, translating that activity into test object method
calls, and writing the method calls to the test. Listening to the activities on
the control is done by listening to control events, by hooking Windows
messages, or both.

Note: If you plan to create tests using keyword-driven testing, and not by
recording steps on an application, you do not need to implement Test
Record.

Chapter 4 • Developing Your Support Set

66

Write the code for Test Record by implementing the methods in the code
segment created by the wizard based on the IRecord interface (provided
with the QuickTest Professional .NET Add-in Extensibility SDK). Your Test
Record implementation does not inherit from the existing test object to
which the custom control is mapped. It replaces the existing object’s Test
Record implementation entirely. Therefore, if you need any of the existing
object’s functionality, code it explicitly.

Before reading this section, make sure you are familiar with "Create Custom
Servers" on page 20.

This section describes:

➤ Implementing the IRecord Interface

➤ Writing Test Object Methods to the Test

For more information on the interfaces, classes, enumerations, and methods
in this section, see the QuickTest Professional .NET Add-in Extensibility API
Reference (available in the QuickTest Professional .NET Add-in Extensibility
online Help).

Implementing the IRecord Interface

To implement the IRecord interface, override the callback methods
described below and add the details of your implementation in your event
handlers or message handler.

The examples provided below for each callback method are written in C#.

InitEventListener Callback Method

CustomServerBase.InitEventListener is called by QuickTest when your
Custom Server is loaded. Add your event and message handlers using this
method.

Chapter 4 • Developing Your Support Set

67

To add event and message handlers:

 1 Implement handlers for the control’s events.

A typical handler captures the event and writes a method to the test. This
is an example of a simple event handler:

For more information, see "Writing Test Object Methods to the Test" on
page 70.

 2 Add your event handlers in InitEventListener:

Note that if the Test Record implementation will run in the context of the
application being tested, you can use the syntax:

If you use this syntax, you must release the handler in
ReleaseEventListener.

public void OnMouseDown(object sender, MouseEventArgs e)
{

// If a button other than the left was clicked, do nothing.
if(e.Button != System.Windows.Forms.MouseButtons.Left)
return;
/*
For more complex events, here you would get any
other information you need from the control.
*/
// Write the test object method to the test
RecordFunction("MouseDown",
RecordingMode.RECORD_SEND_LINE,
e.X,e.Y);

}

public override void InitEventListener()
{

.....
// Adding OnMouseDown handler.
Delegate e = new MouseEventHandler(this.OnMouseDown);
AddHandler("MouseDown", e);
.....

}

SourceControl.MouseDown += e;

Chapter 4 • Developing Your Support Set

68

 3 Add a remote event listener.

If your Custom Server will run in the QuickTest context, use a remote
event listener to handle events. Implement a remote listener of type
EventListenerBase that handles the events, and add a call to
AddRemoteEventListener in method InitEventListener.

When you implement a remote event listener, you must override
EventListenerBase.InitEventListener and
EventListenerBase.ReleaseEventListener in addition to overriding these
callback functions in CustomServerBase. The use of these EventListenerBase
callbacks is the same as for the CustomServerBase callbacks. For details, see
the EventsListenerBase class in the QuickTest Professional .NET Add-in
Extensibility API Reference.

When you handle events from the QuickTest context, the event arguments
must be serialized. For details, see CustomServerBase.AddHandler(String,
Delegate, Type) and the IEventArgsHelper interface in the QuickTest
Professional .NET Add-in Extensibility API Reference.

To avoid the complications of remote event listeners, run your event
handlers in the Application under test context, as described above.

OnMessage Callback Method

OnMessage is called on any window message hooked by QuickTest. If Test
Record will run in the QuickTest context and message handling is required,
implement the message handling in this method.

If Test Record will run in the Application under test context, do not override
this function.

public class EventsListenerAssist : EventsListenerBase
{

// class implementation.
}
public override void InitEventListener()
{

...
AddRemoteEventListener(typeof(EventsListenerAssist));
...

}

Chapter 4 • Developing Your Support Set

69

For details, see CustomServerBase.OnMessage in the QuickTest Professional
.NET Add-in Extensibility API Reference.

GetWndMessageFilter Callback Method

If Test Record will run in the QuickTest context and listen to windows
messages, override this method to inform QuickTest whether the Custom
Server will handle only messages intended for the specific custom object , or
whether it will handle messages from child objects, as well.

For details, see IRecord.GetWndMessageFilter in the QuickTest Professional
.NET Add-in Extensibility API Reference.

See also: "Troubleshooting and Limitations - Running the Support You
Designed" on page 86.

ReleaseEventListener Callback Method

QuickTest calls this method at the end of the recording session. In
ReleaseEventListener, unsubscribe from all the events to which the Custom
Server was listening. For example, if you subscribe to OnClick in
InitEventListener with this syntax,

you must release it:

However, if you subscribe to the event with the AddHandler method,
QuickTest unsubscribes automatically.

SourceControl.Click += new EventHandler(this.OnClick);

public override void ReleaseEventListener()
{

....
SourceControl.Click -= new EventHandler(this.OnClick);
....

}

Chapter 4 • Developing Your Support Set

70

Writing Test Object Methods to the Test

When information about activities of the control is received, whether in the
form of events, Windows messages, or a combination of both, this
information must be processed as appropriate for the application and a step
must be written as a test object method call.

To write a test step, use the RecordFunction method of the
CustomServerBase class or the EventsListenerBase, as appropriate.

Sometimes, it is impossible to know how an activity should be processed
until the next activity occurs. Therefore, there is a mechanism for storing a
step and deciding in the subsequent call to RecordFunction whether to write
it to the test. For details, see RecordingMode Enumeration in the QuickTest
Professional .NET Add-in Extensibility API Reference.

To determine the argument values for the test object method call, it may be
necessary to retrieve information from the control that is not available in
the event arguments or Windows message. If the Custom Server Test Record
implementation is running in the context of the application being tested,
use the SourceControl property of the CustomServerBase class to obtain
direct access to the public members of the control. If the control is not
thread-safe, use the ControlGetProperty method to retrieve control state
information.

Chapter 4 • Developing Your Support Set

71

Implementing Test Run for a Custom Control Using the .NET
DLL

Defining test object methods for Test Run means specifying the actions to
perform on the custom control when the method is run in a step. Typically,
the implementation of a test object method performs several of the
following actions:

➤ Sets the values of attributes of the custom control

➤ Calls a method of the custom control

➤ Makes mouse and keyboard simulation calls

➤ Reports a step outcome to QuickTest

➤ Reports an error to QuickTest

➤ Makes calls to another library (to show a message box, write custom log,
and so on)

Define custom Test Run methods if you are overriding existing methods of
the existing test object, or if you are extending the existing test object by
adding new methods.

Ensure that all test object methods recorded are implemented in Test Run,
either by the existing test object or by this Custom Server.

To define custom Test Run methods, define an interface and instruct
QuickTest to identify it as the Test Run interface by applying the
ReplayInterface attribute to it. Only one replay interface can be
implemented in a Custom Server. If your interface defines methods with the
same names as existing methods of the existing object, the interface
methods override the test object implementation. Any method name that is
different from existing object’s method name is added as a new method.

Start a test object method implementation with a call to PrepareForReplay,
specify the activities to perform, and end with a call to ReplayReportStep
and/or ReplayThrowError.

For more information, see the QuickTest Professional .NET Add-in Extensibility
API Reference (available in the QuickTest Professional .NET Add-in
Extensibility online Help).

Chapter 4 • Developing Your Support Set

72

Implementing Support for Table Checkpoints and Output
Values in the .NET DLL Custom Server

By adding table checkpoints to a test, QuickTest users can check the content
and properties of tables displayed in their application. By adding table
output value steps to a test, you can retrieve values from a table, store them,
and then use them as input at a different stage in the run session.

With .NET Add-in Extensibility, you can enable QuickTest to support table
checkpoints and output values for custom table (grid) controls.

To implement table checkpoint and output value support, add a verification
class in your Custom Server that inherits from the VerificationServerBase
class and override the necessary methods (for more information, see below).
In the .NET Add-in Extensibility configuration file, map each custom table
control to an SwfTable test object, and to the verification class in the
relevant Custom Server. For information on the syntax of the verification
class methods, see the QuickTest .NET Add-in Extensibility API Reference
(available with the .NET Add-in Extensibility SDK online Help).

Note: When creating a Custom Server using the QuickTest Custom Server
Settings wizard, the source code created by the wizard does not include
commented code for table checkpoint and output value support. Add the
implementation manually.

Chapter 4 • Developing Your Support Set

73

To implement support for table checkpoints and output values on custom
table objects:

 1 Map the custom table control to the SwfTable test object class. This
instructs QuickTest to use an SwfTable test object to represent the custom
table control in tests or components.

In the .NET Add-in Extensibility configuration file, <QuickTest
Installation folder>\dat\SwfConfig.xml, create a Control element with a
Type attribute set to the name of the custom table control, and the
MappedTo attribute set to SwfTable.

For more information on the SwfConfig.xml file, see "Understanding How
to Configure QuickTest Windows Forms Extensibility" on page 90 and the
.NET Add-in Extensibility Configuration Schema Help (available with the
.NET Add-in Extensibility SDK online Help).

 2 Specify table verification configuration information for the Custom
Server of this custom table control.

In the same SwfConfig.xml file, define a CustomVerify element. In this
element, specify:

➤ The run-time context, which for this element must always be AUT.

➤ The name of the Custom Server (DLL) that contains the
implementation of table checkpoint and output value support for this
control.

➤ The type name for the verification class within the Custom Server
(DLL) including wrapping namespaces.

Chapter 4 • Developing Your Support Set

74

A sample of the CustomVerify element is provided below:

 3 In the verification class, override the following protected methods so that
QuickTest receives what it requires when supporting table checkpoints
and output values.

➤ GetTableData

QuickTest calls this method to retrieve table data from the specified
range of rows and returns the data as an array of objects.

When working with a table checkpoint or output value, QuickTest
calls the GetTableRowRange method before this method so that the
first and last rows in the data range of the table are known to the
GetTableData method.

➤ GetTableRowRange

QuickTest calls this method to retrieve the number and range of rows
in the table that will be included in the checkpoint or output value.

When working with a table checkpoint or output value, QuickTest
calls this method before the GetTableData method. The
GetTableRowRange method initializes the values of the first and last
rows in the data range of the table, which the GetTableData method
uses as input.

<Control Type="System.Windows.Forms.DataGridView" MappedTo="SwfTable">
<CustomRecord>
...
...
</CustomRecord>
<CustomReplay>
...
...
</CustomReplay>
<CustomVerify>

 <Context>AUT</Context>
 <DllName>C:\MyProducts\Bin\\VfySrv.dll</DllName>
 <TypeName>VfySrv.DataGridCPSrv</TypeName>

</CustomVerify>
<Settings>

</Control>

Chapter 4 • Developing Your Support Set

75

➤ GetTableColNames

QuickTest calls this method to retrieve the column names as an array
of strings. QuickTest displays these column names in the Table
Checkpoint Properties and Table Output Value Properties dialog boxes.
If this method is not implemented, numbers appear instead of column
names in these dialog boxes.

The images below shows what the Table Checkpoint Properties dialog
box looks like with and without GetTableColNames implementation:

Chapter 4 • Developing Your Support Set

76

The following sample (written in C#) demonstrates implementation of the
GetTableData, GetTableColNames, and GetTableRowRange methods.

using System;
using System.Collections.Generic;
using System.Text;
using Mercury.QTP.CustomServer;
using System.Windows.Forms;
namespace VfySrv
{

public class DataGridCPSrv : VerificationServerBase
{
/// GetTableData() is called by QuickTest to retrieve the data in a table.
/// The following base class properties are used:
/// SourceControl - Reference to the grid (table) object
/// FirstRow - The (zero-based) row number of the start of the checkpoint
/// or output value
/// LastRow - The (zero-based) row number of the end of the checkpoint
/// or output value
/// Returns a two-dimensional array of objects.
protected override object[,] GetTableData()
{

DataGridView GridView = (DataGridView)(base.SourceControl);
int TotalRows = GridView.Rows.Count;
int TotalColumns = GridView.Columns.Count;
int FirstRowN = base.FirstRow;
int LastRowN = base.LastRow;
TotalRows = LastRowN - FirstRown + 1;
object[,] Data = new object[TotalRows, TotalColumns];
DataGridViewRowCollection Rows = GridView.Rows;
for (int i = FirstRowN; i <= LastRowN; i++)
{
DataGridViewRow Row = Rows[i];
DataGridViewCellCollection Cells = Row.Cells;
for (int k = 0; k < TotalColumns; k++)
{
Data[i - FirstRown, k] = Cells[k].Value;

}
}

return Data;
}

Chapter 4 • Developing Your Support Set

77

/// GetTableColNames is called by QuickTest to
/// retrieve the column names of the table.
/// Returns an array of column names.
protected override string[] GetTableColNames()
{

DataGridView GridView = (DataGridView)(this.SourceControl);
int TotalColumns = GridView.Columns.Count;
string[] ColNames = new string[TotalColumns];
for (int i = 0; i < TotalColumns; i++)
{

ColNames[i] = GridView.Columns[i].HeaderText;
}
return ColNames;

}

/// GetTableRowRange is called by QuickTest to
/// obtain the number of rows in the table.
protected override void GetTableRowRange

(out int FirstVisible, out int LastVisible, out int Total)
{

DataGridView GridView = (DataGridView)(this.SourceControl);
DataGridViewRowCollection Rows = GridView.Rows;
FirstVisible = -1;
LastVisible = Rows.Count -1;
for (int i = 0; i < Rows.Count; i++)
{

if (Rows[i].Visible == false)
continue;

FirstVisible = i;
break;

}
for (int i = FirstVisible + 1; i < Rows.Count; i++)
{

if (Rows[i].Visible)
continue;

LastVisible = i;
break;

}
FirstVisible++;
LastVisible++;
Total = GridView.Rows.Count;

}
}

}

Chapter 4 • Developing Your Support Set

78

Running Code under Application Under Test from the
QuickTest Context

When the Custom Server is running in the QuickTest context, there is no
direct access to the control, which is in a different run-time process. To
access the control directly, run part of the code in the Application under test
context. This is done using assistant classes.

To launch code from the QuickTest context that will run under the
Application under test context, implement an assistant class that inherits
from CustomAssistantBase. To create an instance of an assistant class, call
CreateRemoteObject. Before using the object, attach it to the control with
SetTargetControl.

After SetTargetControl is called, you can call methods of the assistant in one
of the following ways:

➤ If the method can run in any thread of the Application under test process,
read and set control values and call control methods with the simple
obj.Member syntax:

➤ If the method must run in the control’s thread, use the InvokeAssistant
method:

Tip: You can use the EventListenerBase, which is an assistant class that
supports listening to control events.

int i = oMyAssistant.Add(1,2);

int i = (int)InvokeAssistant(oMyAssistant, "Add", 1, 2);

Chapter 4 • Developing Your Support Set

79

Reviewing Commonly-used API Calls

This section provides a quick reference of the most commonly used API
calls. Review this information before starting to implement methods.

These methods are in CustomServerBase except where indicated.

For more information, see the QuickTest Professional .NET Add-in Extensibility
API Reference (available in the QuickTest Professional .NET Add-in
Extensibility online Help).

Test Record Methods

Test Record Callback Methods

AddHandler Adds an event handler as the first handler of
the event.

RecordFunction Records a step in the test.

GetWndMessageFilter Called by QuickTest to set the Windows
message filter.

InitEventListener Called by QuickTest to load event handlers and
start listening for events.

OnMessage Called when QuickTest hooks the window
message.

ReleaseEventListener Stops listening for events.

Chapter 4 • Developing Your Support Set

80

Test Run Methods

Cross-Process Methods

DragAndDrop, KeyDown,
KeyUp, MouseClick,
MouseDblClick, MouseDown,
MouseMove, MouseUp,
PressKey, PressNKeys,
SendKeys, SendString

Mouse and keyboard simulation methods.

PrepareForReplay Prepares the control for an action run.

ReplayReportStep Writes an event to the test report.

ReplayThrowError Generates an error message and changes the
reported step status.

ShowError Displays the .NET warning icon.

TestObjectInvokeMethod Invokes one of the methods exposed by the
test object's IDispatch interface.

AddRemoteEventListener Creates an EventListener instance in the
Application under test process.

CreateRemoteObject Creates an instance of an assistant object in the
Application under test process.

GetEventArgs
(IEventArgsHelper)

Retrieves and deserializes the EventArgs object.

Init (IEventArgsHelper) Initializes the EventArguments helper class
with an EventArgs object.

InvokeAssistant Invokes a method of a CustomAssistantBase
class in the control's thread.

InvokeCustomServer
(EventsListenerBase)

Invokes the Custom Server’s methods running
in the QuickTest process from the Application
under test process.

SetTargetControl
(CustomAssistantBase)

Attaches to the source custom control by the
control's window handle.

Chapter 4 • Developing Your Support Set

81

General Methods

Table Checkpoint and Output Value Support Methods

ControlGetProperty Retrieves a property of a control that is not
thread-safe.

ControlInvokeMethod Invokes a method of a control that is not
thread-safe.

ControlSetProperty Sets a property of a control that is not thread-
safe.

GetSettingsValue Gets a parameter value from the settings of this
control in the configuration file.

GetSettingsXML Returns the settings of this control as entered
in the configuration file.

GetTableData
(VerificationServerBase)

Called by QuickTest to retrieve the data in a
table.

GetTableRowRange
(VerificationServerBase)

Called by QuickTest to retrieve the first and
last rows of the table.

GetTableColNames
(VerificationServerBase)

Called by QuickTest to retrieve the names of
the table columns.

Chapter 4 • Developing Your Support Set

82

Using XML Files to Extend Support for a Custom Control
You can implement custom control support without programming a .NET
DLL by entering the appropriate Test Record and Test Run instructions for
that custom control in a control definition file. (Create a separate control
definition file for each control you want to customize.) You can instruct
QuickTest Professional to load the custom control implementation
instructions by specifying each control definition file in the .NET Add-in
Extensibility configuration file, SwfConfig.xml.

Note: When extending support using an XML file, QuickTest generates an
ad hoc .NET DLL for you based on the XML file. This ad hoc .NET DLL
becomes the custom server for the control.

When using this technique, you do not have the support of the .NET
development environment—the object browser and the debugger— or the
ability to create table checkpoints or output values. However, by enabling
the implementation of custom control support without the .NET
development environment, this technique enables relatively rapid
implementation, even in the field.

This feature is most practical either with relatively simple, well documented
controls, or with controls that map well to an existing object but for which
you need to replace the Test Record definitions, or replace or add a small
number of test object Test Run methods.

Chapter 4 • Developing Your Support Set

83

Understanding Control Definition Files

The control definition file can contain a Record element in which you
define the customized recording for the control and a Replay element in
which you define the customized test object methods.

➤ The Record element specifies the control events for which you want
QuickTest Professional to add steps to the test (or component) during a
recording session. The steps are calls to test object methods of the custom
control’s test object.

➤ The Replay element specifies the operations that QuickTest should
perform on the control for each test object method during a run session.

You do not always need to enter both a Record and a Replay element:

➤ If the Test Record implementation for the custom test object should be
different than the one defined for the existing test object, create a Record
element in the control definition file for the custom control.

➤ Similarly, if the Test Run implementation for the custom test object
should be different than the one defined for the existing test object,
create a Replay element in the control definition file for the custom
control.

If you create a Record element, the definitions replace the Test Record
implementation of the existing test object entirely. If you create a Replay
element, it inherits the Test Run implementation of the existing object and
extends it. For more information on test object mapping options, see "Map
the Custom Controls to the Relevant Test Objects" on page 22.

For information on the elements in a control definition XML file, see the
.NET Add-in Extensibility Control Definition Schema Help (available with
the .NET Add-in Extensibility SDK online Help).

An Example of a Control Definition File

The following example shows the handling of an object whose value
changes at each MouseUp event. The value is in the Value property of the
object. The MouseUp event handler has Button, Clicks, Delta, X, and Y event
arguments.

Chapter 4 • Developing Your Support Set

84

The Record element describes the conversion of the MouseUp event to a
SetValue command. The Replay element defines the SetValue command as
setting the value of the object to the recorded Value and displaying the
position of the mouse pointer for debugging purposes.

<?xml version="1.0" encoding="UTF-8"?>
<Customization>

<Record>
<Events>

<Event name="MouseUp" enabled="true">
<RecordedCommand name="SetValue">

<Parameter>
Sender.Value

</Parameter>
<Parameter lang="C#">

String xy;
xy = EventArgs.X + ";" + EventArgs.Y;
Parameter = xy;

</Parameter>
</RecordedCommand>

</Event>
</Events>

</Record>
<Replay>

<Methods>
<Method name="SetValue">

<Parameters>
<Parameter type="int" name="Value"/>
<Parameter type="String" name="MousePosition"/>

</Parameters>
<MethodBody>

RtObject.Value = Value;
System.Windows.Forms.MessageBox.Show(MousePosition,

"Mouse Position at Record Time");
</MethodBody>

</Method>
</Methods>

</Replay>
</Customization>

Chapter 4 • Developing Your Support Set

85

Using the .NET Add-in Extensibility Samples

The .NET Add-in Extensibility SDK provides a sample support set to help
you learn about .NET Add-in Extensibility. The toolkit support set files are
installed in the <QuickTest Professional .NET Add-in Extensibility SDK
installation folder>\samples\WinFormsExtSample folder. You can study the
content of these files to gain a better understanding of how to develop your
own toolkit support sets.

The sample support set extends QuickTest support for the SandBar custom
.NET Windows Forms control. The custom server provided in this sample is
similar to the one you create in "Learning to Create Support for a Complex
Custom .NET Windows Forms Control" on page 115.

The SandbarSample.sln solution file located in the WinFormsExtSample
folder includes a configuration file and a fully implemented custom server
that supports the SandBar control. The SandBarCustomServer
implementation is provided in C# and in Visual Basic, in separate projects
within the solution (SandbarCustomServer and VBSandbarCustomServer).
In addition, the SandbarSample solution includes a sample .NET Windows
Forms application that uses the SandBar toolbar control (SandbarTestApp).

To learn how extensibility can affect QuickTest’s interaction with custom
controls, create and run a QuickTest test on the sample application before
and after deploying the sample toolkit support set to QuickTest.

Considerations for Working with the SandBar Support Sample

➤ To open the SandbarSample solution, use Microsoft Visual Studio 2005 or
later.

➤ Before you build the SandbarSample solution, ensure that the following
items are installed on your computer:

➤ The QuickTest Professional .NET Add-in Extensibility SDK

➤ SandBar for .NET 2.0/3.x (can be downloaded from http://
www.divil.co.uk/net/download.aspx?product=2&license=5)

➤ After successfully building the SandbarSample solution, deploy the C# or
Visual Basic custom server it creates as described in Chapter 5,
"Configuring and Deploying the Support Set."

Chapter 4 • Developing Your Support Set

86

➤ Before you update the SwfConfig.xml file according to the information in
Configuration.xml, consider the following: The Configuration.xml file in
the SandbarSample solution is set up to use the DLL generated by the C#
project and located in c:\Program Files\HP\QuickTest Professional\
samples\WinFormsExtSample\Bin.

➤ To use VBCustomSandBarSrv.dll, replace all appearances of
SandbarCustomServer in with VBCustomSandBarSrv.dll.

➤ If your DLL file is located in a different location, update the path in the
DllName element accordingly.

Troubleshooting and Limitations - Running the Support You
Designed

This section describes troubleshooting and limitations for developing your
support set.

The custom server is not receiving some Windows messages

During a recording session, the custom server mapped to your custom
control is only created after some operation takes place on the custom
control itself.

If you design the GetWndMessageFilter method to specify that your custom
server will handle messages that occur on other controls, such messages can
only be handled after the custom server is created.

Therefore, for example, you may have to click on the custom control before
the custom server can receive and process messages on other controls in the
application.

Depending on how you implement support for recording on your custom
control, you might want to provide instructions regarding this issue to the
QuickTest users who use your support set.

Chapter 4 • Developing Your Support Set

87

A General Run Error occurs while running the test in QuickTest

When using the .NET Add-in Extensibility API with Microsoft .NET
Framework 1.1, a General Run Error may occur while running your test. This
is caused by an Execution Engine Exception error in the application under
test (AUT).

Workaround: Install Service Pack 1 (or later) for Microsoft .NET Framework
1.1.

A run-time error occurs while running the test in QuickTest

When using an XML-based Custom Server, if you have more than one
version of Microsoft .NET Framework installed, a run-time error might occur
during the run session. The error message in the log file indicates that the
configuration file contains a compilation error. This is because assemblies
compiled with Microsoft .NET Framework version 2.0 and later are not
recognized by earlier versions of Microsoft .NET Framework.

Workaround: Perform one of the following:

➤ Solution 1: In the Registry, in the following key
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\.NETFramework
add the following DWORD Value "OnlyUseLatestCLR"=dword:00000001

➤ Solution 2: If the .NET application you are testing has a configuration file,
add the following information to the file:

The configuration file must be named <executable_name>.exe.Config
and be located in the same folder as the executable of the .NET
application you are testing.

<configuration>
<startup>

<supportedRuntime version="v2.0.50727"/>
</startup>

</configuration>

Chapter 4 • Developing Your Support Set

88

89

5
Configuring and Deploying the Support
Set

After developing the implementation for your Custom Server, the QuickTest
Professional .NET Add-in Extensibility Support Set is ready for configuration
and deployment.

This chapter includes:

➤ Understanding the Deployment Workflow on page 90

➤ Configuring QuickTest to Use the Custom Server on page 90

➤ Deploying the Custom Support Set on page 97

➤ Testing the Custom Support Set on page 98

Chapter 5 • Configuring and Deploying the Support Set

90

Understanding the Deployment Workflow

The workflow for deploying a .NET Add-in Extensibility support set consists
of the stages shown in the highlighted area of the image. These stages are
described in detail in the sections below.

Configuring QuickTest to Use the Custom Server

The .NET Add-in Extensibility configuration file (SwfConfig.xml) provides
QuickTest with the configuration information it needs to load your Custom
Servers.

Understanding How to Configure QuickTest Windows
Forms Extensibility
To instruct QuickTest to load Custom Servers according to the appropriate
configuration, enter the information in the .NET Add-in Extensibility
configuration file. This file, SwfConfig.xml, is located in the
<QuickTest Professional installation path>\dat folder.

Enter configuration information into the SwfConfig.xml file in one of the
following ways:

➤ Manually edit the file using any text editor.

➤ Copy information from configuration.xml files generated by the
QuickTest Custom Server Settings wizard.

Chapter 5 • Configuring and Deploying the Support Set

91

For more information about the wizard, see "Using a .NET DLL to Extend
Support for a Custom Control" on page 58.

For instructions on how to copy information from configuration.xml
files, see "Copying Configuration Information Generated by the
QuickTest Custom Server Settings Wizard" on page 93.

When configuring QuickTest Windows Forms extensibility, define elements
according to the coding option you selected for implementing your Custom
Server:

➤ "When Using a .NET DLL Custom Server" on page 91

➤ "When Using an XML Custom Server" on page 92

When Using a .NET DLL Custom Server

In the SwfConfig.xml file, for each custom .NET control that you will
implement using a .NET DLL Custom Server, you can define:

➤ A MappedTo attribute, if you want the custom control to correspond to a
test object other than the default generic test object SwfObject.

➤ A CustomRecord element if you want to customize recording on the
control.

➤ A CustomReplay element if you want to customize how test steps are run
on a custom control.

➤ A CustomVerify element if you want to add table checkpoint and output
value support for custom table controls.

➤ A Settings element, in which you can use the Parameter element to pass
values to the Custom Server at run-time.

Chapter 5 • Configuring and Deploying the Support Set

92

When Using an XML Custom Server

In the SwfConfig.xml file, for each custom .NET control that you will
implement using an XML Custom Server, you define:

➤ A MappedTo attribute, if you want the custom control to correspond to a
test object other than the default test grid object SwfTable.

➤ The Context attribute of a CustomRecord element if you want to
customize recording on the control.

➤ The Context attribute of a CustomReplay element if you want to
customize how test steps are run on a custom control.

➤ A Settings element, in which you can use the Parameter element to pass
values to the Custom Server at run-time.

Note: QuickTest loads the Custom Server when you open a test. Therefore, if
you implement your Custom Server as a .NET DLL, any changes you make
to the DLL after the Custom Server is loaded take effect only the next time
you open a test.

For information on the elements in the .NET Add-in Extensibility
configuration file (SwfConfig.xml), see the .NET Add-in Extensibility
Configuration Schema Help (available with the .NET Add-in Extensibility
SDK online Help).

Chapter 5 • Configuring and Deploying the Support Set

93

Copying Configuration Information Generated by the
QuickTest Custom Server Settings Wizard
When running the QuickTest Custom Server Settings wizard to create a
Custom Server, the wizard creates an XML configuration segment. The
wizard outputs this segment to help you enter the configuration
information in the .NET Add-in Extensibility configuration file.

To incorporate the contents of the XML configuration segment before
deploying the Custom Server:

 1 Edit the Configuration.xml segment file in the project to ensure that the
information is correct. Set the DllName element value to the location to
which you will deploy the Custom Server. If Test Record and/or Test Run
are to be loaded in different run-time contexts, edit the Context value
accordingly.

 2 Copy the entire <Control>...</Control> node. Do not include the
enclosing <Controls> tags.

 3 Open the .NET Add-in Extensibility configuration file,
<QuickTest Professional installation path>\dat\SwfConfig.xml. Paste the
Control node from Configuration.xml at the end of the file, before the
closing </Controls> tag.

 4 Save the file. If QuickTest was open, you must close and reopen it for the
SwfConfig.xml changes to take effect.

Note: You can validate the configuration file you design against the
<QuickTest Professional installation path>\dat\SwfConfig.xsd file.

Chapter 5 • Configuring and Deploying the Support Set

94

Example of a .NET Add-in Extensibility Configuration File
Following is an example of a file that configures QuickTest to recognize the
following controls:

➤ Support for the MyCompany.WinControls.MyListView control is
implemented in the CustomMyListView.CustListView .NET DLL Custom
Server. The Custom Server is not installed in the GAC, so the DLL name is
specified as a path and file name (and is not passed as a type name
according to GAC standard syntax).

MyListView is mapped to the SwfListView test object, and runs in the
context of the application being tested.

➤ Support for the mySmileyControls.SmileyControl2 control is
implemented in an XML file. Therefore, the path and file name for the
Control Definition file that contains its implementation is passed to
QuickTest during run-time using the Parameter element.

The SmileyControl2 control is not explicitly mapped to any test object in
the SwfConfig.xml file, so QuickTest maps it to the default generic test
object, SwfObject.

➤ Customized record and run support for the
System.Windows.Forms.DataGridView control is implemented in a .NET
DLL Custom Server called CustomMyTable.dll. Table checkpoint and
output value support for the System.Windows.Forms.DataGridView
control is implemented in a .NET DLL Custom Server called VfySrv.dll.

DataGridView must be mapped to the SwfTable test object (according to
the restrictions imposed by the TableElement complex type element in
the schema), and, because the customized support includes table
checkpoints and output values, must run in the context of the
application being tested.

Chapter 5 • Configuring and Deploying the Support Set

95

<?xml version="1.0" encoding="UTF-8"?>
<Controls>

<Control Type="MyCompany.WinControls.MyListView "
MappedTo="SwfListView" >

<CustomRecord>
<Component>

<Context>AUT</Context>
<DllName>C:\MyProducts\Bin\CustomMyList View.dll</DllName>
<TypeName>CustomMyListView.CustListView</TypeName>

</Component>
</CustomRecord>
<CustomReplay>

<Component>
<Context>AUT</Context>
<DllName>C:\MyProducts\Bin\CustomMyList View.dll</DllName>
<TypeName>CustomMyListView.CustListView</TypeName>

</Component>
</CustomReplay>
<Settings>

<Parameter Name="sample name">sample value</Parameter>
<Parameter Name="ConfigPath">C:\Program Files\HP\QuickTest
Professional\dat\Extensibility\dotNET\MyContrSIM.xml</Parameter>

</Settings>
</Control>

<Control Type="mySmileyControls.SmileyControl2">
<Settings>

<Parameter Name="ConfigPath">d:\Qtp\bin\ConfigSmiley.xml
</Parameter>

</Settings>
<CustomRecord>

<Component>
<Context>AUT-XML</Context>

</Component>
</CustomRecord>
<CustomReplay>

<Component>
<Context>AUT-XML</Context>

</Component>
</CustomReplay>

</Control>

Chapter 5 • Configuring and Deploying the Support Set

96

<Control Type="System.Windows.Forms.DataGridView"
MappedTo="SwfTable">

<CustomRecord>
<Component>

<Context>QTP</Context>
<DllName>C:\MyProducts\Bin\CustomMyTable.dll</DllName>
<TypeName>CustomMyTable.CustTableView</TypeName>

</Component>
</CustomRecord>
<CustomReplay>

<Component>
<Context>AUT-XML</Context>

</Component>
</CustomReplay>
<CustomVerify>

 <Context>AUT</Context>
 <DllName>C:\MyProducts\Bin\VfySrv.dll</DllName>
 <TypeName>VfySrv.DataGridCPSrv</TypeName>

 </CustomVerify>
<Settings>

<Parameter Name="sample name">sample value</Parameter>
</Settings>

</Control>

</Controls>

Chapter 5 • Configuring and Deploying the Support Set

97

Deploying the Custom Support Set

The next stage of extending QuickTest support for custom controls is
deployment. This means placing all files you created in the correct
locations, so that the custom support is available to QuickTest.

After you deploy the custom support, if you run an application that
contains the custom controls and perform QuickTest operations on the
application, you can see the effects of the support you designed.

Placing Files in the Correct Locations
To deploy the support set that you create, place the files in the locations
described in the following table. Make sure that QuickTest is closed before
placing the files in their appropriate locations.

File Name Location

SwfConfig.xml <QuickTest Professional installation path>\dat

<Test Object Configuration File
Name>.xml

Note: You can have more than one test
object configuration file (if any), and
name them as you wish.

➤ <QuickTest Professional installation
path>\dat\Extensibility\DotNet

➤ <QuickTest Add-in for ALM/QC Installation Path>\
dat\Extensibility\DotNet
(Optional. Required only if QuickTest Add-in for
ALM/QC is installed)

<Control Definition File Name>.xml>

Note: The Control Definition file is used
when creating a Custom Server using the
XML coding option. You can have more
than one control definition file (one for
each custom control).

➤ <QuickTest Professional installation
path>\dat\Extensibility\DotNet

➤ <QuickTest Add-in for ALM/QC Installation Path>\
dat\Extensibility\DotNet\
(Optional. Required only if QuickTest Add-in for
ALM/QC is installed

<Custom Server File Name>.dll

Note: This type of Custom Server is used
when creating a Custom Server using the
.NET DLL coding option. You can have
more than one custom server for each
custom control.

Specify the location of your compiled Custom Servers
(DLLs) in the SwfConfig.xml file.

Chapter 5 • Configuring and Deploying the Support Set

98

Modifying Deployed Support
If you modify a support set that was previously deployed to QuickTest, the
actions you must perform depend on the type of change you make, as
follows:

➤ If you modify the .NET Add-in Extensibility configuration file or a test
object configuration file, you must deploy the support.

➤ If you modify a test object configuration file, you must reopen QuickTest
after deploying the support.

Removing Deployed Support
To remove support for a custom control from QuickTest after it is deployed,
you must delete the corresponding section in the SwfConfig.xml file from
<QuickTest Professional installation path>\dat and remove the
corresponding test object configuration file from <QuickTest Professional
installation path>\dat\Extensibility\DotNet.

If you remove support for a new test object method that you added in a test
object configuration file, you should remove the method definition (or the
whole file, if appropriate) so that QuickTest users do not create test steps
that call that method. Modify or remove the test object configuration file in:
<QuickTest Installation Folder>\Dat\Extensibility\DotNet (and <QuickTest
Add-in for ALM/QC Installation Folder>\Dat\Extensibility\DotNet if
relevant).

Testing the Custom Support Set

We recommend that you test the custom support using an incremental
approach. First, test the basic functionality of the support set. Then, test its
implementation.

➤ "Testing Basic Functionality of the Support Set" on page 99

➤ "Testing Implementation" on page 101

Chapter 5 • Configuring and Deploying the Support Set

99

Testing Basic Functionality of the Support Set
After you define a basic .NET Windows Forms configuration file enabling
QuickTest to identify which test object classes to use for the different
controls, and (optionally) define your test object model in the test object
configuration file, you can test the existing functionality of the support set.
To do this, you deploy the support set and test how QuickTest interacts with
the controls in your environment.

To test your support set after defining the test object classes and mapping
them to custom .NET Windows Forms controls:

 1 In the test object configuration file, set the
TypeInformation\DevelopmentMode attribute to true, to ensure that
QuickTest reads all of the test object class information from the file each
time it opens. When you complete the development of the support set,
make sure to set this attribute to false.

 2 Deploy the support set on a QuickTest computer by copying the files of
the support set to the correct locations in the QuickTest installation
folder, as described in "Placing Files in the Correct Locations" on page 97.

 3 Open QuickTest and load the .NET Add-in. (If the Add-in Manager dialog
box does not open when you open QuickTest, see the HP QuickTest
Professional Add-ins Guide for instructions.)

 4 Open an application with your custom controls.

 5 Based on the mapping definitions you created, QuickTest can already
recognize and learn your controls.

Use the Add Objects to Local button in the Object Repository dialog box
to learn your controls.

 6 If you created a test object configuration file, you can already see its effect
on QuickTest:

 a If you added a test object method to a test object class, you can view it
using the Object Spy.

 b You can create test steps that use the test object method that you
added. (If you have not yet implemented the custom server that
supports this test object method, running a such a test step will cause a
run-time error.)

Chapter 5 • Configuring and Deploying the Support Set

100

In the Keyword View:

Create a test step with a test object from a class that you modified.

➤ If you added a test object method to a test object class, the method
appears in the list of available operations in the Operation column.

➤ After you choose an operation, the Value cell is partitioned
according to the number of arguments of the selected operation,
and if you defined possible values for the operation (in the
ListOfValues element), they are displayed in a list.

➤ The descriptions and documentation strings you defined for the test
object methods are displayed in tooltips and in the Documentation
column, respectively.

In the Expert View:

Create a test step with a test object from a class that you modified.
Intellisense displays all of the operations available for the test object,
and possible input values for these operations, if relevant, based on the
definitions in the test object configuration file.

In the Step Generator:

Create a test step with a test object from a class that you modified. The
operations that you defined in the test object configuration file are
displayed in the Operation list, and the descriptions you defined for
the operations are displayed as tooltips.

For more information on working with these options in QuickTest, see
the HP QuickTest Professional User Guide.

Chapter 5 • Configuring and Deploying the Support Set

101

Testing Implementation
After you complete additional stages of developing support for your
environment, you can deploy the support set again and test additional areas
of interaction between QuickTest and your controls (for example, running
and recording tests).

To test your support set after developing support for additional QuickTest
functionality:

 1 Follow steps 1 to 4 in the procedure on page 99 for testing basic
functionality of the support set to deploy the support set, open QuickTest,
load the support and run an application with controls from your
environment.

 2 Depending on the QuickTest functionality for which you are developing
support, perform the relevant QuickTest operations on the application to
test that support. For example, run a test on the application, record test
steps on the application and so on.

Chapter 5 • Configuring and Deploying the Support Set

102

103

6
Learning to Create Support for a Simple
Custom .NET Windows Forms Control

In this tutorial, you will learn how to build a Custom Server for a Microsoft
TrackBar control that enables QuickTest Professional to record and run a
SetValue operation on the control. You will implement the Custom Server
in C#. A Custom Server can be similarly implemented in Visual Basic.

This tutorial refers to Microsoft Visual Studio 2008. However, you can use
other supported versions of Visual Studio to build the Custom Server as
described in this tutorial.

Note: The Microsoft Visual Studio dialog box images and the instructions in
this chapter refer to Microsoft Visual Studio 2008. If you use a different
Microsoft Visual Studio version, the dialog boxes may differ slightly in
appearance and the QuickTest CustomServer template may be located in a
slightly different node in the tree.

This chapter includes:

➤ Developing a New Support Set on page 104

➤ Configuring and Deploying the Support Set on page 111

➤ Testing the Support Set on page 114

Chapter 6 • Learning to Create Support for a Simple Custom .NET Windows Forms Control

104

Developing a New Support Set

The first step in creating support for a custom control is to create a new
Custom Server project. This project will create support for the TrackBar
control.

To create a new Custom Server project:

 1 Open Microsoft Visual Studio.

 2 Select File > New > Project. The New Project dialog box opens.

 3 Specify the following settings:

➤ Select the Visual C# > Windows node in the Project types tree. (In
Microsoft Visual Studio versions other than 2008, the QuickTest
CustomServer template may be located in a slightly different node in
the tree.)

➤ Select QuickTest CustomServer in the Templates pane.

➤ In the Name box, specify the project name QTCustServer.

➤ Accept the rest of the default settings.

Chapter 6 • Learning to Create Support for a Simple Custom .NET Windows Forms Control

105

 4 Click OK. The QuickTest Custom Server Settings wizard opens.

 5 In the Application Settings page, specify the following settings:

➤ In the Server class name box, enter TrackBarSrv.

➤ Select the Customize Record process check box.

➤ Select the Customize Run process check box.

➤ Accept the rest of the default settings.

Chapter 6 • Learning to Create Support for a Simple Custom .NET Windows Forms Control

106

 6 Click Next. The XML Configuration Settings page opens.

 7 In the XML Configuration Settings page, specify the following settings:

➤ Make sure the Auto-generate the XML configuration segment check
box is selected.

➤ In the Customized Control type box, enter
System.Windows.Forms.TrackBar.

➤ Accept the rest of the default settings.

Chapter 6 • Learning to Create Support for a Simple Custom .NET Windows Forms Control

107

 8 Click Finish. In the Class View window, you can see that the wizard
created a TrackBarSrv class derived from the CustomServerBase class and
ITrackBarSrvReplay interface.

Chapter 6 • Learning to Create Support for a Simple Custom .NET Windows Forms Control

108

Implementing Test Record Logic
You will now implement the logic that records a SetValue(X) command
when a ValueChanged event occurs, using an event handler function.

To implement the Test Record logic:

 1 In the TrackBarSrv class, locate an appropriate place to add a new
method, OnValueChanged. For example, you might want to add it after
other event handler methods, such as OnMessage, in the IRecord
override Methods region.

 2 Add the new method with the following signature to the TrackBarSrv
class:

Note: You can add the new method manually or use the wizard that
Visual Studio provides for adding methods and functions to a class.

 3 Add the following implementation to the function you just added:

public void OnValueChanged(object sender, EventArgs e) { }

public void OnValueChanged(object sender, EventArgs e)
{
 System.Windows.Forms.TrackBar trackBar =
(System.Windows.Forms.TrackBar)sender;
 // get the new value
 int newValue = trackBar.Value;
 // Record SetValue command to the test
 RecordFunction("SetValue", RecordingMode.RECORD_SEND_LINE, newValue);
}

Chapter 6 • Learning to Create Support for a Simple Custom .NET Windows Forms Control

109

 4 Register the OnValueChanged event handler for the ValueChanged event,
by adding the following code to the InitEventListener method:

Implementing Test Run Logic
You will now implement a SetValue method for the test Test Run.

To implement the Test Run logic:

 1 Add the following method definition to the ITrackBarSrvReplay interface:

 2 Add the following method implementation to the TrackBarSrv class in the
Replay interface implementation region:

 3 Build your project.

public override void InitEventListener()
{
 Delegate e = new System.EventHandler(this.OnValueChanged);
 AddHandler("ValueChanged", e);
}

[ReplayInterface]
public interface ITrackBarSrvReplay
{
 void SetValue(int newValue);
}

public void SetValue(int newValue)
{
 System.Windows.Forms.TrackBar trackBar =
(System.Windows.Forms.TrackBar)SourceControl;
 trackBar.Value = newValue;
}

Chapter 6 • Learning to Create Support for a Simple Custom .NET Windows Forms Control

110

Checking the TrackBarSrv.cs File
Following is the full source code for the TrackBarSrv class. Check that the
contents of your TrackBarSrv.cs file is similar to the one illustrated below.

using System;
using Mercury.QTP.CustomServer;
namespace QTCustServer
{

[ReplayInterface]
public interface ITrackBarSrvReplay
{

void SetValue(int newValue);
}
public class TrackBarSrv:

CustomServerBase,
ITrackBarSrvReplay

{
public TrackBarSrv()
{
}
public override void InitEventListener()
{

Delegate e = new System.EventHandler(this.OnValueChanged);
AddHandler("ValueChanged", e);

}
public override void ReleaseEventListener()
{
}
public void OnValueChanged(object sender, EventArgs e)
{

System.Windows.Forms.TrackBar trackBar =
(System.Windows.Forms.TrackBar)sender;

int newValue = trackBar.Value;
RecordFunction("SetValue",

RecordingMode.RECORD_SEND_LINE,
newValue);

}
public void SetValue(int newValue)
{

System.Windows.Forms.TrackBar trackBar =
(System.Windows.Forms.TrackBar)SourceControl;

trackBar.Value = newValue;
}

}
}

Chapter 6 • Learning to Create Support for a Simple Custom .NET Windows Forms Control

111

Configuring and Deploying the Support Set

Now that you created the QuickTest Custom Server, you need to configure
QuickTest Professional to use this Custom Server when recording and
running tests on the TrackBar control.

To configure QuickTest Professional to use the Custom Server:

 1 In the Solution Explorer window, double-click the Configuration.XML
file.

Chapter 6 • Learning to Create Support for a Simple Custom .NET Windows Forms Control

112

The following content should be displayed:

 2 Select the <Control>…</Control> segment and select Edit > Copy from
the menu.

 3 Open the SwfConfig.xml file located in <QuickTest Professional
installation folder>\dat.

<!-- Merge this XML content into file "<QuickTest Professional>\dat\
SwfConfig.xml". -->
<Control Type="System.Windows.Forms.TrackBar">

<CustomRecord>
<Component>

<Context>AUT</Context>
<DllName>D:\Projects\QTCustServer\Bin\QTCustServer.dll

</DllName>
<TypeName>QTCustServer.TrackBarSrv</TypeName>

</Component>
</CustomRecord>
<CustomReplay>

<Component>
<Context>AUT</Context>
<DllName>D:\Projects\QTCustServer\Bin\QTCustServer.dll

</DllName>
<TypeName>QTCustServer.TrackBarSrv</TypeName>

</Component>
</CustomReplay>
<!--<Settings>

 <Parameter Name="sample name">sample value</Parameter>
</Settings> -->

</Control>

Chapter 6 • Learning to Create Support for a Simple Custom .NET Windows Forms Control

113

 4 Paste the <Control>…</Control> segment you copied from
Configuration.xml into SwfConfig.xml, under the <Controls> tag in
SwfConfig.xml. After you paste the segment, the SwfConfig.xml file
should look as follows:

 5 Make sure that the <DllName> elements contain the correct path to your
Custom Server DLL.

 6 Save the SwfConfig.xml file.

<?xml version="1.0" encoding="UTF-8"?>
<Controls>

<Control Type="System.Windows.Forms.TrackBar">
<CustomRecord>

<Component>
<Context>AUT</Context>
<DllName>D:\Projects\QTCustServer\Bin\QTCustServer.dll

</DllName>
<TypeName>QTCustServer.TrackBarSrv</TypeName>

</Component>
</CustomRecord>
<CustomReplay>

<Component>
<Context>AUT</Context>
<DllName>D:\Projects\QTCustServer\Bin\QTCustServer.dll

</DllName>
<TypeName>QTCustServer.TrackBarSrv</TypeName>

</Component>
</CustomReplay>

</Control>
</Controls>

Chapter 6 • Learning to Create Support for a Simple Custom .NET Windows Forms Control

114

Testing the Support Set

You can now verify that QuickTest records and runs tests as expected on the
custom TrackBar control by testing the Custom Server.

To test the Custom Server:

 1 Open QuickTest Professional with the .NET Add-in loaded.

 2 Start recording on a .NET application with a
System.Windows.Forms.TrackBar control.

 3 Click the TrackBar control. QuickTest should record commands such as:

 4 Run the test. The TrackBar control should receive the correct values.

SwfWindow("Form1").SwfObject("trackBar1").SetValue 2

115

7
Learning to Create Support for a
Complex Custom .NET Windows Forms
Control

In this tutorial, you will learn how to build a Custom Server for controls that
require more complex implementation solutions, so that
QuickTest Professional can record and run operations on these controls. You
will implement the Custom Server in C#. A Custom Server can be similarly
implemented in Visual Basic.

The explanations in this chapter assume that you are familiar with .NET
Add-in Extensibility concepts and already know how to implement a
Custom Server.

This chapter includes:

➤ SandBar Toolbar Example on page 116

➤ Understanding the ToolBarSrv.cs File on page 124

Chapter 7 • Learning to Create Support for a Complex Custom .NET Windows Forms Control

116

SandBar Toolbar Example

This example demonstrates how to implement .NET Add-in Extensibility for
the Divelements Limited TD.SandBar.Toolbar control.

You can view the full source code of the final ToolBarSrv.cs class
implementation in "Understanding the ToolBarSrv.cs File" on page 124.

A complete support set for the SandBar control, implemented both in C#
and in Visual Basic, is located in <QuickTest Professional .NET Add-in
Extensibility SDK installation folder>\samples\WinFormsExtSample. You
can use the files in this sample as an additional reference when performing
this tutorial. For more information, see "Using the .NET Add-in Extensibility
Samples" on page 85.

Tip: You can download an evaluation copy of the TD.SandBar.Toolbar
control from: http://www.divil.co.uk/net/download.aspx?product=2&license=5.

The Toolbar control appears as follows:

The Toolbar control is comprised of a variety of objects, such as:

➤ ButtonItem objects, which represent buttons in the toolbar. ButtonItem
objects contain images and no text. Each ButtonItem object has a unique
tooltip.

➤ DropDownMenuItem objects, which represent drop-down menus in the
toolbar.

Both the ButtonItem object and the DropDownMenuItem object are derived
from the ToolbarItemBase object.

Chapter 7 • Learning to Create Support for a Complex Custom .NET Windows Forms Control

117

When you implement a Custom Server for a custom control, you want
QuickTest to support recording and running the user's actions on the
custom controls. When recording the test, your Custom Server listens to the
control's events and handles the events to perform certain actions to add
steps to the QuickTest test. When running the test, you simulate (replay) the
same actions the user performed on that control.

For example, suppose you want to implement a user pressing a button on a
custom toolbar. Before doing so, you must understand the toolbar control,
its properties and methods, and understand how you can use them to
implement the Custom Server.

Chapter 7 • Learning to Create Support for a Complex Custom .NET Windows Forms Control

118

Following are some of the SandBar ToolBar object's properties and events
(methods are not visible in this image) as displayed in the Object Browser in
Visual Studio:

As you can see in the image above, the ToolBar object has a property called
Items that retrieves the collection of ToolbarItemBase objects assigned to
the ToolBar control. You can also see that the ToolBar control has an event
called ButtonClick. Your Custom Server can listen to the ButtonClick event
to know when a button in the toolbar is clicked. However, this event does
not indicate which specific button in the toolbar is clicked.

Chapter 7 • Learning to Create Support for a Complex Custom .NET Windows Forms Control

119

Now expand the ButtonItem object and review its properties, methods, and
events:

As shown in the image above, the ButtonItem object is derived from the
ToolbarItemBase object. You can see that the ToolbarItemBase object
contains a ToolTipText property, but does not contain a Click event or
method.

Chapter 7 • Learning to Create Support for a Complex Custom .NET Windows Forms Control

120

When you look at the custom toolbar object, the following possible
implementation issues arise:

 1 When handling a ButtonClick event during recording, how
can you tell which button in the toolbar was clicked?

Solution: All of the ToolBar object's events are ToolBarItemEventArgs
events that are derived from the EventArgs object:

The Item property indicates which toolbar item (button) raised the event.
You can use that toolbar item’s unique ToolTipText property to recognize
which button was clicked and add that to the QuickTest test.

Chapter 7 • Learning to Create Support for a Complex Custom .NET Windows Forms Control

121

To do this, enter the following code in the Record events handlers section
of the ToolBarSrv.cs file:

Now, each time you record a click on a button in the toolbar, a step is
added to the test for the toolbar test object with the ClickButton method
and the tooltip text of the button as its argument. For example:

#region Record events handlers
private void oControl_ButtonClick(object sender, TD.SandBar.ToolBarItemEventArgs
e)
{

TD.SandBar.ToolBar oControl = (TD.SandBar.ToolBar)SourceControl;

//Add a step in the test for the test object with the ClickButton method and the
tooltip text as an argument

base.RecordFunction("ClickButton",
RecordingMode.RECORD_SEND_LINE, e.Item.ToolTipText);

}
#endregion

SwfToolbar("MySandBar").ClickButton "Spelling and Grammar"

Chapter 7 • Learning to Create Support for a Complex Custom .NET Windows Forms Control

122

 2 When running a test, how do you perform a ClickButton
method, when the ButtonItem object does not contain a
Click method or event, and you know only the ButtonItem
object’s tooltip text?

Solution: The ToolbarItemBase object has a property called
ButtonBounds:

You can loop through all of the ToolbarItemBase objects until you find a
ToolbarItemBase objects that has the same tooltip text as the ButtonItem
object, find that ToolbarItemBase object’s rectangle boundaries, calculate
the middle of its boundaries, and click that point.

Chapter 7 • Learning to Create Support for a Complex Custom .NET Windows Forms Control

123

To do this, enter the following code in the Replay interface
implementation section of the ToolBarSrv.cs file:

#region Replay interface implementation
public void ClickButton(string text)
{
TD.SandBar.ToolBar oControl = (TD.SandBar.ToolBar)SourceControl;

//Find the correct item in the toolbar according to its tooltip text.
for(int i=0; i<oControl.Items.Count; i++)
{

//Found the correct ButtonItem
if(oControl.Items[i].ToolTipText == text)
{

//Retrieve the rectangle of the button's boundaries and locate its center
System.Drawing.Rectangle oRect = oControl.Items[i].ButtonBounds;
int x = oRect.X + oRect.Width/2;
int y = oRect.Y + oRect.Height/2;

//Click the middle of the button item
base.MouseClick(x, y, MOUSE_BUTTON.LEFT_MOUSE_BUTTON);
break;

}
}

//Add the step to the report
base.ReplayReportStep("ClickButton", EventStatus.EVENTSTATUS_GENERAL,

text);
}
#endregion

Chapter 7 • Learning to Create Support for a Complex Custom .NET Windows Forms Control

124

Understanding the ToolBarSrv.cs File

Following is the full source code for the ToolBarSrv.cs class, used to
implement QuickTest record and run support for the TD.SandBar.Toolbar
control:

using System;
using Mercury.QTP.CustomServer;
//using TD.SandBar;

namespace ToolBar
{

[ReplayInterface]
public interface IToolBarSrvReplay
{

void ClickButton(string text);
}
/// <summary>
/// Summary description for ToolBarSrv.
/// </summary>
public class ToolBarSrv:

CustomServerBase,
IToolBarSrvReplay

{
// You shouldn't call Base class methods/properties at the constructor
// since its services are not initialized yet.
public ToolBarSrv()
{

//
// TODO: Add constructor logic here
//

}
#region IRecord override Methods
#region Wizard generated sample code (commented)
/// <summary>
/// To change Window messages filter, implement this method.
/// The default implementation is to get only the control's
/// Windows messages.
/// </summary>
public override WND_MsgFilter GetWndMessageFilter()
{

return(WND_MsgFilter.WND_MSGS);
}

Chapter 7 • Learning to Create Support for a Complex Custom .NET Windows Forms Control

125

/*
/// <summary>
/// To catch Windows messages, you should implement this method.
/// Note that this method is called only if the CustomServer is running
/// under QuickTest process.
/// </summary>
public override RecordStatus OnMessage(ref Message tMsg)
{

// TODO: Add OnMessage implementation.
return RecordStatus.RECORD_HANDLED;

}
*/
#endregion

/// <summary>
/// If you are extending the Record process, you should add your event
/// handlers to listen to the control's events.
/// </summary>
public override void InitEventListener()
{

TD.SandBar.ToolBar oControl =
(TD.SandBar.ToolBar)SourceControl;

oControl.ButtonClick += new

TD.SandBar.ToolBar.ButtonClickEventHandler(oControl_ButtonClick);
//AddHandler("ButtonClick", new
//

TD.SandBar.ToolBar.ButtonClickEventHandler(oControl_ButtonClick));
}

/// <summary>
/// At the end of the Record process, this method is called by QuickTest to
/// release all the handlers the user added in the InitEventListener method.
/// Note that handlers added via QuickTest methods are released by
/// the QuickTest infrastructure.
/// </summary>
public override void ReleaseEventListener()
{

TD.SandBar.ToolBar oControl = (TD.SandBar.ToolBar)SourceControl;
oControl.ButtonClick -= new
TD.SandBar.ToolBar.ButtonClickEventHandler(oControl_ButtonClick);

}
#endregion

Chapter 7 • Learning to Create Support for a Complex Custom .NET Windows Forms Control

126

#region Record events handlers
private void oControl_ButtonClick(object sender,

TD.SandBar.ToolBarItemEventArgs e)
{

TD.SandBar.ToolBar oControl = (TD.SandBar.ToolBar)SourceControl;
// Add a step in the test for the test object with the ClickButton method
// and the tooltip text as an argument
base.RecordFunction("ClickButton",

RecordingMode.RECORD_SEND_LINE, e.Item.ToolTipText);
}
#endregion
#region Replay interface implementation
public void ClickButton(string text)
{
TD.SandBar.ToolBar oControl = (TD.SandBar.ToolBar)SourceControl;
//Find the correct item in the toolbar according to its tooltip text.
for(int i=0; i<oControl.Items.Count; i++)
{

//Found the correct ButtonItem
if(oControl.Items[i].ToolTipText == text)
{
// Retrieve the rectangle of the button's boundaries and
// locate its center
System.Drawing.Rectangle oRect=oControl.Items[i].ButtonBounds;
int x = oRect.X + oRect.Width/2;
int y = oRect.Y + oRect.Height/2;
//Click the middle of the button item
base.MouseClick(x, y, MOUSE_BUTTON.LEFT_MOUSE_BUTTON);
break;
}

}
//Add the step to the report
base.ReplayReportStep("ClickButton",

EventStatus.EVENTSTATUS_GENERAL, text);
}
#endregion

}
}

	HP QuickTest Professional .NET Add-in Extensibility Developer Guide
	Table of Contents
	Welcome to This Guide
	About the QuickTest Professional .NET Add-in Extensibility SDK
	About This Guide
	Who Should Read This Guide
	QuickTest Professional Documentation Library
	Additional Online Resources

	Introducing QuickTest Professional .NET Add-in Extensibility
	About QuickTest Professional .NET Add-in Extensibility
	Deciding When to Use .NET Add-in Extensibility
	Recognizing Which Elements of QuickTest Support Can Be Customized
	Example: Customizing Recording of an Event’s Meaningful Behaviors
	Understanding How to Implement .NET Add-in Extensibility
	Planning the .NET Add-in Extensibility Support Set
	Developing the .NET Add-in Extensibility Support Set
	Deploying the .NET Add-in Extensibility Support Set
	Testing the .NET Add-in Extensibility Support Set

	Installing the QuickTest Professional .NET Add-in Extensibility SDK
	Before You Install
	Installing the QuickTest Professional .NET Add-in Extensibility SDK
	Repairing the QuickTest Professional .NET Add-in Extensibility SDK Installation
	Uninstalling the QuickTest Professional .NET Add-in Extensibility SDK

	Planning Your Support Set
	About Planning QuickTest Support for Your .NET Add-in Extensibility Controls
	Determining Information Related to Your Custom Controls
	Analyzing the Custom Controls

	Selecting the Coding Option for Implementing the Custom Servers
	.NET DLL: Full Program Development Environment
	XML Implementation

	Selecting the Custom Server Run-Time Context Depending on the Test Function
	Analyzing Custom Controls and Mapping Them to Test Objects
	Using the .NET Add-in Extensibility Planning Checklist
	.NET Add-in Extensibility Planning Checklist

	Where Do You Go from Here?

	Developing Your Support Set
	Understanding the Development Workflow
	Describing the Test Object Model
	Benefits of Describing Test Object Models
	Creating Test Object Configuration Files
	Guidelines for Implementing Test Object Configuration Files
	Understanding the Contents of the Test Object Configuration File
	Modifying an Existing Test Object Class
	Example of a Test Object Configuration File

	Mapping the Custom Controls to the Test Object Classes
	Defining How QuickTest Operates on the Custom Controls
	Using a .NET DLL to Extend Support for a Custom Control
	Using XML Files to Extend Support for a Custom Control

	Using the .NET Add-in Extensibility Samples
	Troubleshooting and Limitations - Running the Support You Designed

	Configuring and Deploying the Support Set
	Understanding the Deployment Workflow
	Configuring QuickTest to Use the Custom Server
	Understanding How to Configure QuickTest Windows Forms Extensibility
	Copying Configuration Information Generated by the QuickTest Custom Server Settings Wizard
	Example of a .NET Add-in Extensibility Configuration File

	Deploying the Custom Support Set
	Placing Files in the Correct Locations
	Modifying Deployed Support
	Removing Deployed Support

	Testing the Custom Support Set
	Testing Basic Functionality of the Support Set
	Testing Implementation

	Learning to Create Support for a Simple Custom .NET Windows Forms Control
	Developing a New Support Set
	Implementing Test Record Logic
	Implementing Test Run Logic
	Checking the TrackBarSrv.cs File

	Configuring and Deploying the Support Set
	Testing the Support Set

	Learning to Create Support for a Complex Custom .NET Windows Forms Control
	SandBar Toolbar Example
	Understanding the ToolBarSrv.cs File

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /JPXEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG2000
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 100
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /JPXEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG2000
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 100
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck true
 /PDFX3Check false
 /PDFXCompliantPDFOnly true
 /PDFXNoTrimBoxError false
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f0062006500200050004400460020658768637b2654080020005000440046002f0058002d00310061003a0032003000300031002089c4830330028fd9662f4e004e2a4e1395e84e3a56fe5f6251855bb94ea46362800c52365b9a7684002000490053004f0020680751c6300251734e8e521b5efa7b2654080020005000440046002f0058002d00310061002089c483037684002000500044004600206587686376848be67ec64fe1606fff0c8bf753c29605300a004100630072006f00620061007400207528623763075357300b300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200034002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef67b2654080020005000440046002f0058002d00310061003a00320030003000310020898f7bc430025f8c8005662f70ba57165f6251675bb94ea463db800c5c08958052365b9a76846a196e96300295dc65bc5efa7acb7b2654080020005000440046002f0058002d003100610020898f7bc476840020005000440046002065874ef676848a737d308cc78a0aff0c8acb53c395b1201c004100630072006f00620061007400204f7f7528800563075357201d300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200034002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c00200064006500720020006600f800720073007400200073006b0061006c00200073006500730020006900670065006e006e0065006d00200065006c006c0065007200200073006b0061006c0020006f0076006500720068006f006c006400650020005000440046002f0058002d00310061003a0032003000300031002c00200065006e002000490053004f002d007300740061006e0064006100720064002000740069006c00200075006400760065006b0073006c0069006e00670020006100660020006700720061006600690073006b00200069006e00640068006f006c0064002e00200059006400650072006c006900670065007200650020006f0070006c00790073006e0069006e0067006500720020006f006d0020006f007000720065007400740065006c007300650020006100660020005000440046002f0058002d00310061002d006b006f006d00700061007400690062006c00650020005000440046002d0064006f006b0075006d0065006e007400650072002000660069006e006400650072002000640075002000690020006200720075006700650072006800e5006e00640062006f00670065006e002000740069006c0020004100630072006f006200610074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200034002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002f0058002d00310061003a0032003000300031002d006b006f006d00700061007400690062006c0065006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002e0020005000440046002f0058002d003100610020006900730074002000650069006e0065002000490053004f002d004e006f0072006d0020006600fc0072002000640065006e002000410075007300740061007500730063006800200076006f006e0020006700720061006600690073006300680065006e00200049006e00680061006c00740065006e002e0020005700650069007400650072006500200049006e0066006f0072006d006100740069006f006e0065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002f0058002d00310061002d006b006f006d00700061007400690062006c0065006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002000660069006e00640065006e002000530069006500200069006d0020004100630072006f006200610074002d00480061006e00640062007500630068002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200034002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f00620065002000710075006500200073006500200064006500620065006e00200063006f006d00700072006f0062006100720020006f002000710075006500200064006500620065006e002000630075006d0070006c006900720020006c00610020006e006f0072006d0061002000490053004f0020005000440046002f0058002d00310061003a00320030003000310020007000610072006100200069006e00740065007200630061006d00620069006f00200064006500200063006f006e00740065006e00690064006f00200067007200e1006600690063006f002e002000500061007200610020006f006200740065006e006500720020006d00e1007300200069006e0066006f0072006d00610063006900f3006e00200073006f0062007200650020006c0061002000630072006500610063006900f3006e00200064006500200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00700061007400690062006c0065007300200063006f006e0020006c00610020006e006f0072006d00610020005000440046002f0058002d00310061002c00200063006f006e00730075006c007400650020006c006100200047007500ed0061002000640065006c0020007500730075006100720069006f0020006400650020004100630072006f006200610074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200034002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000710075006900200064006f006900760065006e0074002000ea0074007200650020007600e9007200690066006900e900730020006f0075002000ea00740072006500200063006f006e0066006f0072006d00650073002000e00020006c00610020006e006f0072006d00650020005000440046002f0058002d00310061003a0032003000300031002c00200075006e00650020006e006f0072006d0065002000490053004f00200064002700e9006300680061006e0067006500200064006500200063006f006e00740065006e00750020006700720061007000680069007100750065002e00200050006f0075007200200070006c007500730020006400650020006400e9007400610069006c007300200073007500720020006c006100200063007200e9006100740069006f006e00200064006500200064006f00630075006d0065006e00740073002000500044004600200063006f006e0066006f0072006d00650073002000e00020006c00610020006e006f0072006d00650020005000440046002f0058002d00310061002c00200076006f006900720020006c00650020004700750069006400650020006400650020006c0027007500740069006c0069007300610074006500750072002000640027004100630072006f006200610074002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200034002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF che devono essere conformi o verificati in base a PDF/X-1a:2001, uno standard ISO per lo scambio di contenuto grafico. Per ulteriori informazioni sulla creazione di documenti PDF compatibili con PDF/X-1a, consultare la Guida dell'utente di Acrobat. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 4.0 e versioni successive.)
 /JPN <FEFF30b030e930d530a330c330af30b330f330c630f330c4306e590963db306b5bfe3059308b002000490053004f00206a196e96898f683c306e0020005000440046002f0058002d00310061003a00320030003000310020306b6e9662e03057305f002000410064006f0062006500200050004400460020658766f830924f5c62103059308b305f3081306b4f7f75283057307e30593002005000440046002f0058002d0031006100206e9662e0306e00200050004400460020658766f84f5c6210306b306430443066306f3001004100630072006f006200610074002030e630fc30b630ac30a430c9309253c2716730573066304f30603055304430023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200034002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020c791c131d558b294002000410064006f0062006500200050004400460020bb38c11cb2940020d655c778c7740020d544c694d558ba700020adf8b798d53d0020cee8d150d2b8b97c0020ad50d658d558b2940020bc29bc95c5d00020b300d55c002000490053004f0020d45cc900c7780020005000440046002f0058002d00310061003a0032003000300031c7580020addcaca9c5d00020b9dec544c57c0020d569b2c8b2e4002e0020005000440046002f0058002d003100610020d638d65800200050004400460020bb38c11c0020c791c131c5d00020b300d55c0020c790c138d55c0020c815bcf4b2940020004100630072006f0062006100740020c0acc6a90020c124ba85c11cb97c0020cc38c870d558c2edc2dcc624002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200034002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die moeten worden gecontroleerd of moeten voldoen aan PDF/X-1a:2001, een ISO-standaard voor het uitwisselen van grafische gegevens. Raadpleeg de gebruikershandleiding van Acrobat voor meer informatie over het maken van PDF-documenten die compatibel zijn met PDF/X-1a. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 4.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200073006b0061006c0020006b006f006e00740072006f006c006c0065007200650073002c00200065006c006c0065007200200073006f006d0020006d00e50020007600e6007200650020006b006f006d00700061007400690062006c00650020006d006500640020005000440046002f0058002d00310061003a0032003000300031002c00200065006e002000490053004f002d007300740061006e006400610072006400200066006f007200200075007400760065006b0073006c0069006e00670020006100760020006700720061006600690073006b00200069006e006e0068006f006c0064002e00200048007600690073002000640075002000760069006c0020006800610020006d0065007200200069006e0066006f0072006d00610073006a006f006e0020006f006d002000680076006f007200640061006e0020006400750020006f007000700072006500740074006500720020005000440046002f0058002d00310061002d006b006f006d00700061007400690062006c00650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020007300650020006200720075006b00650072006800e5006e00640062006f006b0065006e00200066006f00720020004100630072006f006200610074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200034002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200063006100700061007a0065007300200064006500200073006500720065006d0020007600650072006900660069006300610064006f00730020006f0075002000710075006500200064006500760065006d00200065007300740061007200200065006d00200063006f006e0066006f0072006d0069006400610064006500200063006f006d0020006f0020005000440046002f0058002d00310061003a0032003000300031002c00200075006d0020007000610064007200e3006f002000640061002000490053004f002000700061007200610020006f00200069006e007400650072006300e2006d00620069006f00200064006500200063006f006e0074006500fa0064006f00200067007200e1006600690063006f002e002000500061007200610020006f00620074006500720020006d00610069007300200069006e0066006f0072006d006100e700f50065007300200073006f00620072006500200063006f006d006f00200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00700061007400ed007600650069007300200063006f006d0020006f0020005000440046002f0058002d00310061002c00200063006f006e00730075006c007400650020006f0020004700750069006100200064006f002000750073007500e100720069006f00200064006f0020004100630072006f006200610074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200034002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b00610020007400610072006b0069007300740065007400610061006e00200074006100690020006a006f006900640065006e0020007400e400790074007900790020006e006f00750064006100740074006100610020005000440046002f0058002d00310061003a0032003000300031003a007400e400200065006c0069002000490053004f002d007300740061006e006400610072006400690061002000670072006100610066006900730065006e002000730069007300e4006c006c00f6006e00200073006900690072007400e4006d00690073007400e4002000760061007200740065006e002e0020004c0069007300e40074006900650074006f006a00610020005000440046002f0058002d00310061002d00790068007400650065006e0073006f00700069007600690065006e0020005000440046002d0064006f006b0075006d0065006e0074007400690065006e0020006c0075006f006d0069007300650073007400610020006f006e0020004100630072006f0062006100740069006e0020006b00e400790074007400f6006f0070007000610061007300730061002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200034002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200073006b00610020006b006f006e00740072006f006c006c006500720061007300200065006c006c0065007200200073006f006d0020006d00e50073007400650020006d006f0074007300760061007200610020005000440046002f0058002d00310061003a0032003000300031002c00200065006e002000490053004f002d007300740061006e00640061007200640020006600f6007200200075007400620079007400650020006100760020006700720061006600690073006b007400200069006e006e0065006800e5006c006c002e00200020004d0065007200200069006e0066006f0072006d006100740069006f006e0020006f006d00200068007500720020006d0061006e00200073006b00610070006100720020005000440046002f0058002d00310061002d006b006f006d00700061007400690062006c00610020005000440046002d0064006f006b0075006d0065006e0074002000660069006e006e00730020006900200061006e007600e4006e00640061007200680061006e00640062006f006b0065006e002000740069006c006c0020004100630072006f006200610074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200034002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings when submitting to HP. These settings require font embedding.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /HighResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

