
HP Correlation Composer Software

for the HP-UX, Linux, Solaris, and Windows operating systems

Software Version: 9.00
User’s Guide for HP Operations Manager and
HP Network Node Manager
Document Release Date: June 2011

Software Release Date: September 2010

Legal Notices

Warranty

The only warranties for HP products and services are set forth in the express warranty
statements accompanying such products and services. Nothing herein should be construed as
constituting an additional warranty. HP shall not be liable for technical or editorial errors or
omissions contained herein.

The information contained herein is subject to change without notice.

Restricted Rights Legend

Confidential computer software. Valid license from HP required for possession, use or copying.
Consistent with FAR 12.211 and 12.212, Commercial Computer Software, Computer Software
Documentation, and Technical Data for Commercial Items are licensed to the U.S.
Government under vendor’s standard commercial license.

Copyright Notices

© Copyright 2004–2011 Hewlett-Packard Development Company, L.P.

Trademark Notices

Microsoft® and Windows® are U.S. registered trademarks of Microsoft Corporation.

UNIX® is a registered trademark of The Open Group.
2

Audience

This guide explains how to efficiently use HP Correlation Composer with HP Operations
Manager (HPOM) and HP Network Node Manager (NNM). It is intended for operations
personnel who maintain event correlation in HPOM and NNM environments. These users
should have a general operational understanding of managed entities (networks and
distributed applications). In particular, they should understand the event types generated by
managed entities. Users should also have a good understanding of HPOM or NNM.
3

Documentation Updates

The title page of this document contains the following identifying information:

• Software Version number, which indicates the software version.

• Document Release Date, which changes each time the document is updated.

• Software Release Date, which indicates the release date of this version of the software.

To check for recent updates, or to verify that you are using the most recent edition of a
document, go to the following location:

http://h20230.www2.hp.com/selfsolve/manuals

Under “Product,” select one of the following:

• Network Node Manager

• Operations for UNIX

• Operations for Windows

This site requires that you register for an HP Passport and log on.

To register for an HP Passport ID, go to the following location:

http://h20229.www2.hp.com/passport-registration.html

Or click the New Users – Please Register link on the HP Passport log-on page.

If you subscribe to the appropriate product support service, you also receive updated or new
editions. For details, contact your HP sales representative.
4

Related Documents

For more information about Composer, see the following documents:

• Composer Online Help

Composer includes an online help system that explains its functionality.

To access the online help system, go to the main window of Composer and click
HelpOverview.

• Deploying HP OMi in an HP BSM Solution

This white paper explains how you can deploy HP Operations Manager i (HP OMi) as part
of a larger HP Business Service Management (BSM) solution. In particular, it describes
how to customize HP Network Node Manager i (NNMi) messages on an HP Operations
Manager (HPOM) for UNIX server to fit HP OMi Topology Based Event Correlation
(TBEC).

To find out how to access this white paper from the HP Software Product Manuals
website, see Documentation Updates on page 4.
5

Support

Visit the HP Software Support website at the following location:

http://www.hp.com/go/hpsoftwaresupport

This website provides contact information and details about the products, services, and
support that HP Software offers.

HP Software online support provides customer self-solve capabilities. It provides a fast and
efficient way to access interactive technical support tools needed to manage your business.

As a valued support customer, you can benefit by using the support website to do the
following:

• Search for knowledge documents of interest.

• Submit and track support cases and enhancement requests.

• Download software patches.

• Manage support contracts.

• Look up HP support contacts.

• Review information about available services.

• Enter into discussions with other software customers.

• Research and register for software training.

Most of the support areas require that you register as an HP Passport user and log on. Many
also require a support contract.

To register for an HP Passport ID, go to the following location:

http://h20229.www2.hp.com/passport-registration.html

To find more information about access levels, go to the following location:

http://h20230.www2.hp.com/new_access_levels.jsp
6

Contents
1 Composer Overview . 21

Composer Concepts . 22
Events . 22

Alarms . 22
Event Types . 23
Event Actions. 23
Event Flow . 24

Attributes . 26
Correlators . 26
Correlator Store . 28
Correlation Flow . 28
ECS Engine . 29
ECS Designer . 29

Composer Modes . 30
Developer Mode (HPOM and NNM) . 30
Operator Mode (NNM Only). 30

Correlator Templates . 31
Enhance Correlator Template . 31
Multi-Source Correlator Template. 32

Example of Mode 1: Networking Device Fails . 33
Example of Mode 2: Server Crashes . 34

Rate Correlator Template. 34
Repeated Correlator Template . 35
Suppress Correlator Template . 35
Transient Correlator Template . 35
User-Defined Correlator Template . 36
Correlator Template Evaluation Precedence . 37
7

2 Composer GUI . 39

Correlation Composer Window . 40
Online Help . 40
Shortcut Menus. 41
Localized Descriptions . 41

Correlator Configuration Window. 42
Description Tab . 43
Definition Tab . 43

Alarm Signature . 43
Alarm Signatures in NNM. 45
Alarm Signatures in HPOM . 46

Variables. 47
Variable Evaluation . 50
Automatic Variables . 51

Advanced Filter . 51
Message Key . 52

Example 1: Generating New Router Alarms . 54
Example 2. Monitoring Interface Failure Rates . 55

Parameters . 55
New Alarm Tab . 56
CallBacks Tab . 58

Composer Menus . 59
File Menu . 60
Correlations Menu . 61
Options Menu . 62
Help Menu. 63

Composer Toolbars. 64
Standard Toolbar . 64
Correlator Templates Toolbar . 65
Deploy Button (NNM Only) . 66
8

3 Getting Started . 67

Starting Composer . 68
Starting Composer from NNM. 68
Starting Composer from HPOM. 68

Stopping Composer . 69
Configuring the Correlator Store . 69
Defining Event Attributes . 70

Default Attributes. 70
Changing Mandatory Attributes . 71
Adding Attributes . 72

Backing Up Files . 73
Automatic Backups of Correlator Store Files . 73
Example of Backed-Up Files . 74
Overriding the Number of Backed-Up Files . 76
Restoring Backed-Up Files. 77

4 Developing Correlators. 79

Developing Correlator Stores . 80
Creating a Correlator Store . 80
Opening a Correlator Store . 80
Modifying a Correlator Store . 81
Migrating a Correlator Store to Composer 3.3 . 82

Configuring Correlator Stores. 83
Defining Event Types . 84
Optional: Defining Global Constants. 85

Value Types for Global Constants. 85
Defining a Global Constant. 86
Deleting a Global Constant . 86

Defining Alarm Correlators . 87
Creating a Correlator . 87
Defining a Correlator. 87
Defining Variable Types . 90

Defining Constant Values . 90
Combining Variables . 90
Extracting Value Patterns . 92
Defining Functions . 93
Validating Function Definitions . 95
9

Optional: Defining New Alarms. 96
Changing Alarm Attributes . 96
Creating a New Alarm. 97
New Alarm Definition Table . 98

Optional: Creating Callback Functions . 99
Callback Variables . 100

Callback Functions. 100
Automatic Variables . 100

Setting the Perl File Location . 101
Managing Correlators . 102

Opening a Correlator . 102
Modifying a Correlator . 103
Deleting a Correlator . 103

Writing C Functions . 104
Creating a C Function . 104
Skeleton Code for C Functions. 105
Signatures for C Functions . 107
Parts of C Functions . 107

Passing Arguments . 107
Processing Arguments. 108
Returning Values . 108

Allocating Space for the Return Values. 109
Wrapping the Return Values . 109
Marshalling the Return Values . 110
Running the Callback Function. 111

Configuring the UserDevelopedFuncDetails.xml File . 111
Writing Perl Functions . 113

Creating a Perl Function . 113
Skeleton Code for Perl Functions. 113
Support for Multiple Perl Files . 115

Including Files on UNIX . 115
Including Files on Windows . 115
10

Creating a Main Perl File . 116
User-Defined Correlation . 117

Input Functions . 117
Output Functions . 120
Writing a User-Defined Function . 121

Return Values . 121
Flag Values. 121

Skeleton Code for User-Defined Functions . 122
Merging Correlator Store Files . 124

Merging Correlator Stores Specified in the NameSpace File. 125
Removing User Descriptions from the Correlator Store. 125
Merging Correlator Stores . 126
Configuration File. 127

Example 1: Clashing Global Constants . 128
Example 2: Configuration File . 129

5 Composer in NNM . 131

Correlator Stores . 131
Operator Mode . 132

Starting Composer in Operator Mode . 132
Operator Tasks . 133
Operator Menu Options . 134

Developer Mode . 135
Starting Composer in Developer Mode . 135
Configuration Files . 135

NameSpace File . 136
Security File . 136
Deploy Configuration File . 137

Built-In Function . 137
getOIDValue. 137
11

6 Composer in HPOM . 139

Composer GUI . 140
ECS Engine . 141
Message Correlation . 142

Correlation Options . 142
Correlation Guidelines . 143
Correlation Tools. 144

Starting the Composer GUI. 144
Configuring MSI in HPOM 8.00 for UNIX . 145

Configuring MSI on the HPOM 8.00 for UNIX Management Server 145
Configuring MSI on HPOM 8.00 for UNIX Managed Nodes (Agents). 147

Configuring MSI in HPOM 9.00 for Windows . 149
Configuring MSI on the HPOM 9.00 for Windows Management Server. 149
Configuring MSI on HPOM 9.00 for Windows Managed Nodes (Agents) 151

Merging and Deploying Correlator Store Files . 154
Location of Correlator Store Files . 154
Composer Applications on UNIX . 154
Merging and Deploying on the Management Server . 155
Merging and Deploying on Managed Nodes (Agents). 156

Accessing External Data . 157
Data Store File . 157

Location of the Data Store File . 157
Syntax of the Data Store File . 158

Example 1: Creating a New Data Store . 159
Example 2: Updating an Existing Data Store . 159

Perl Scripts . 159
12

7 Use Cases in NNM . 161

Case 1: Enhance Correlation. 162
PDU for a Temperature Alarm. 162
Responding to the Temperature Alarm . 163
Defining the Enhance Correlator Template . 164

Case 2: Multi-Source Correlation . 165
PDU for SS7 Link Failure . 165
PDU for SS7 Link Set Failure . 165
Responding to the SNMP Trap PDU Alarms . 166
Defining the Multi-Source Correlator Template . 168

Case 3: Rate Correlation . 170
PDU for Radio Antenna Failure. 170
Responding to Radio Antenna Failure Alarms . 171
Defining the Rate Correlator Template . 172

Case 4: Repeated Correlation . 175
PDU for Duplicate Alarms . 175
Responding to Duplicate Alarms . 176
Defining the Repeated Correlator Template . 177

Case 5: Suppress Correlation . 179
PDU for Movement Alarms . 179
Responding to Movement Alarms . 180
Defining the Suppress Correlator Template . 181

Case 6: Transient Correlation . 182
PDU for PCM Link Failure . 182
PDU for PCM Clear Alarm. 182
Responding to PCM Link Failure . 183
Defining the Transient Correlator Template . 185

Case 7: Multi-Event Correlation . 188
PDU for MSC Failure . 188
PDU for BSC Failure . 188
Responding to Connected MSC and BSC Failure . 189
Defining the Multi-Source Correlator Template . 190
13

8 Use Cases in HPOM . 193

Case 1: Enhance Correlation. 194
Changing Simple Message Text . 194

Changing the Text of a Simple Message . 195
Changing Message Text in the Enhance Correlator Template 196

Replacing Error and Status Codes with Descriptions . 200
Replacing an Error or Status Code with a Description . 201
Replacing a Code with a Description in the Enhance Correlator Template. 201

Enriching Messages by Using Perl Commands. 205
Appending Comment Fields to Message Text . 206
Adding a CMA by Name to an Event . 207
Increasing Event Severity for Non-Critical Events . 208
Determining Whether To Suppress Events Based on Maintenance Mode. 209

Case 2: Suppress Correlation . 210
Suppressing Message Subsets . 210
Suppressing the Subset of a Message . 211
Defining the Suppress Correlator Template . 212

Case 3: Multi-Source Correlation . 215
Suppressing Messages on Remote Sites . 215
Suppressing a Sympathetic Message on a Remote Site . 216
Suppressing Subsets with the Multi-Source Correlator Template 218

Case 4: Rate Correlation . 225
Detecting DNS Outages . 225
Responding to a DNS Outage. 226
Defining the Rate Correlator Template . 228

Case 5: Transient Correlation . 233
Generating New Messages . 233
Smart Message Correlation . 234
Suppressing High CPU Utilization Messages. 234
Responding to High CPU Utilization Messages . 235
Defining the Transient Correlator Template . 237
14

9 Developer Mode in NNM . 241

Administrative Tasks. 241
Starting Composer in Developer Mode . 242
Configuring Operator Profiles . 242

Creating Correlator Stores . 242
Listing Correlator Stores . 242
Creating NameSpace and Security Files. 242

NameSpace Files . 243
Syntax of the NameSpace File. 243
Example of a NameSpace File . 243
Guidelines for NameSpace Files . 244

Security File . 244
Syntax of the Security File. 245
Template Names in CORRELATOR_TEMPLATE . 246
Token Identifiers in TOK_LIST. 247
Example of a Security File . 249
Guidelines for Security Files . 250

Creating Deploy Configuration Files . 251
Deploy Procedure. 251
Example of a Deploy Configuration Files. 252
Guidelines for Deploy Configuration Files . 253
Parameters for Deploy Configuration Files . 254

Defining Operator Access . 255
Customizing the NameSpace File . 255
Customizing the Security File . 256
Customizing the Deploy Configuration File . 256

Deploying the Correlator Store . 257
Loading the Correlator Store File to the ECS Engine . 257
Viewing Errors in the Deploy Status Window . 257
Deploying Correlator Stores from the Command Prompt . 258
15

16

10 Operator Mode in NNM . 259

Operator Access Rights . 259
Starting Composer in Operator Mode. 260
Locking Files . 261

File Locking Modes . 261
File Locking Failure . 262
Recovering Correlator Stores . 263

Deploying Correlator Stores . 264
Loading the Correlator Store File to the ECS Engine . 264
Viewing Errors in the Deploy Status Window . 264
Deploying Correlator Stores from the Command Prompt . 265

A Built-In Functions . 267

Functions . 267
add . 269
bitand. 269
bitinv . 270
bitor . 270
bitxor . 271
div . 271
getByIndex . 272
getCounter. 273
getHour . 274
getMinute . 274
getMonth . 274
getTime . 274
makeList . 275
mod . 275
mul. 276
retrieve . 276
retrieveStr . 277
setCounter . 278
store . 280
storeStr . 281
sub . 282

Keys . 283
Multiple Keys . 283
Unique Keys . 283

B Event Attributes. 285

HPOM Event Attributes . 286
SNMP Event Attributes . 293

C Pattern Matching . 295

Syntax of Pattern Matching . 296
Expression Delimiter ([]) . 296
Operator Delimiter (< >). 296
OR Operator (|) . 296
NOT Operator (!). 297
Mask Operator (\). 298

Matching Expressions . 299
Matching First or Last Characters . 299
Matching Multiple Characters. 300

Matching Tags . 301
Assigning Substrings to Tags. 301
Assigning Subpatterns to Tags . 302

Examples of Pattern Matching . 303

D Troubleshooting in NNM . 305

Tracing Events . 306
Enabling Tracing in Composer. 306
Enabling Tracing in NNM . 307
Enabling Tracing for ECS . 308
Disabling Tracing for ECS . 308
Tracing the Flow of an Event . 309
Tracing the Actions of a Specific Correlator . 309
Tracing the Actions of a Correlator Event ID . 309

Trace Tools . 310
Trace Configuration File . 311

Location of the Trace Configuration File. 311
Sample Trace Configuration File . 311
Fields of the Trace Configuration File. 312
Viewing the Binary Trace Configuration File . 312
17

Trace Messages . 313
Location of the Trace Message File . 313
Format of the Trace Message File . 313
Reading the Trace Message File . 314

Error Messages . 316
Sample Error Messages . 316
Syntax for Error Messages . 317
Conventions for Error Messages . 318
Sample Error Messages . 319

E Troubleshooting in HPOM . 321

Verifying Deployment . 322
Verifying the ECS Process . 322
Verifying the MSI Configuration . 325
Verifying Composer File Deployment . 326

Message Logging . 326
Enabling Message Logging in HPOM 8.00 for UNIX . 327
Enabling Message Logging in HPOM 9.00 for Windows . 328
Sample Message Log File . 329

Sample Input File . 329
Sample Output File . 330

Statistics . 332
Retrieving Statistics . 332
Sample Statistics . 333

Event Tracing. 334
Enabling Tracing . 335
Disabling Tracing . 336
Location of the Trace Message File . 337
Format of the Trace Message File . 337
Sample Trace Entries . 338
Reading the Trace Message File . 339
Tracing the Flow of a Message. 341
Tracing the Actions of a Specific Correlator . 341
Tracing the Actions of a Correlator Event ID . 342

Error Logging . 342
Format of the Error Log . 342
Sample Error Log Entries . 342
18

F Error Messages. 343

Creation Errors . 344
Alarm Name Is In Use, Cannot Delete . 345
Correlator Name Is Invalid . 345
Duplicate Alarm Name. 345
Duplicate Variable Name . 345
Invalid Syntax. 346
Look and Feel Not Supported. 346
Minutes in Window Period Cannot Be Greater Than 60 . 346
No Blank Entry Allowed. 346
Seconds in Window Period Cannot Be Greater Than 60 . 347
Threshold Count Should Be Integer Only . 347
Unknown Event Type . 347
Unspecified Correlator Name. 347
Unspecified Function Name. 348
Unspecified Threshold Count. 348
Unspecified Threshold Window . 348
Unspecified Window Period . 348
Variable in Use, Cannot Delete . 349
Variable Name Cannot Be Null . 349
Variable Name in Use, Cannot Rename . 349
Window Period Should Be Integer Only . 349

Deployment Errors. 350
Cannot Load the Correlator Store into the ECS Engine . 350
Merge Failed: Cannot Execute the csmerge Script . 350
Merge Failed: Cannot Open File . 351
Merge Failed: Correlator Stores Are of Different Event Type 351
Merge Failed: Correlator Stores Have Different C Libraries 351
Merge Failed: Correlator Stores Have Different Perl Files . 351
Merge Failed: Destination File Already Exists . 352

Glossary . 353
19

20

1 Composer Overview
HP Correlation Composer is a graphical user interface (GUI) on top of the
HP Event Correlation Services (ECS) runtime that enables you to customize
predefined correlation logic to meet your requirements in HP Operations
Manager (HPOM) and HP Network Node Manager (NNM) environments. To
customize predefined correlation logic in Composer, you create correlators.
Each correlator represents a unit of logic to be applied to an event or a set of
events.

In HPOM and NNM environments, the critical challenge for network and
system administrators is to manage the massive amount of information
related to network, system, and application problems. This information comes
in many forms. It is essential that your management solution help you
accurately understand which information is important to present to your
operators, which information you can discard, and which information you
must provide to specialists, who diagnose very complex problems.

Composer enables you to correlate these network, system, and application
problems into specific parameters. The problem-specific correlators provided
by Composer uniquely identify units of logic you can apply to events or sets of
events. In HPOM, these events are known as “messages.” Composer enables
you to tailor the event correlation behavior for correlators that are shipped
with HP Software products, fine-tuning them to fit your environment. It also
enables you to develop your own custom correlators. You do not need any
special programming knowledge to customize correlators in this way.

This chapter describes the following:

• Composer Concepts on page 22

• Composer Modes on page 30

• Correlator Templates on page 31
 21

Composer Concepts

Before defining correlators in Composer, you must understand the following:

• Events on page 22

• Attributes on page 26

• Correlators on page 26

• Correlator Store on page 28

• Correlation Flow on page 28

• ECS Engine on page 29

Events

In Composer, an event is an unsolicited notification generated by an agent
process in a managed object or by a user action. For example, an agent process
can generate an unsolicited Simple Network Management Protocol (SNMP)
trap. The term “event” is commonly used in Internet Protocol (IP)
environments.

Alarms

Events received from network elements are known as “alarms.” This term is
used commonly in telecommunications environments. The event type specifies
the type of alarms that can be handled by Composer.

This document uses the terms “event,” “message,” and “alarm” as follows:

• “Event”

Composer is used for “event correlation.” In this document, the term
“event” is most commonly used to represent the generic concept.

• “Message” and “alarm”

The terms “message” and “alarm” are used for event types. In HPOM,
event correlation is message correlation. In NNM, event correlation is
alarm correlation. However, in both HPOM and NNM, an event can also
be a generic term for anything coming from the network.
22 Chapter 1

Event Types

Composer supports the following event types:

• Messages

In HPOM, a message is an event related to a managed object. These
events are also known as “OpC messages.” HPOM supports only HPOM
messages.

• SNMP event traps

NNM supports only SNMP event traps.

Composer supports only one event type for a Correlator Store.

Event Actions

In Composer, you can output or discard events:

• Outputting events

When an event is output, it is visible to end users. For example, it can be
listed in an NNM event browser or in an HPOM message browser. Event
correlation is often used to suppress unwanted events. However, you can
also use it to generate new events when certain conditions are detected.
Likewise, you can use correlation to enrich existing events with additional
useful information. For example, you can add custom message attributes
(CMAs) to an HPOM message.

• Discarding events

When an event is discarded, it is not visible to end users.
Composer Overview 23

Event Flow

Figure 1 shows how events flow through Composer.

Figure 1 Event Flow in Composer
24 Chapter 1

Events flow through the Composer circuit in the following phases:

1 Comparing with Alarm Signatures

When an event enters Composer at run time, Composer compares it with
the Alarm Signature for all of the correlators. If the event matches none of
them, Composer outputs it immediately.

2 Comparing with Advanced Filters

Composer compares the event with the Advanced Filters for all of the
correlators of the matching Alarm Signatures.

3 Executing logic

For each matching filter, the logic of the correlators is executed. Each
correlator returns what needs to be done to the event.

4 Processing actions

Composer processes the actions of the specified correlators together. If the
event is to be held, Composer forwards it to the event hold mechanism.

5 Holding events

If Composer holds an event, it outputs the event after the period specified.
All of the correlators that requested the event to be held are executed.
Each correlator returns what needs to be done to the event.

Events can be held in one of three different ways: Hold, WeakHold,
and PseudoHold. For WeakHold and PseudoHold actions, different
correlators may require different hold periods. The output logic of
each correlator is executed at the requested times. If multiple
correlators require a Hold action, the event is held for the longest
duration requested.
Composer Overview 25

Attributes

An event is a set of name value pairs. The name is referred to as an
“attribute.”

Attribute examples:

• NNM

enterprise, agent-addr, specific-trap, variable bindings

• HPOM

MSGTEXT, APPLICATION, OBJECT

For a list of attributes for the standard event types, see Appendix B, Event
Attributes. You can configure the set of attributes that are visible within
Composer. To add CMAs for HPOM, you edit the CO.conf configuration file.
For details, see Defining Event Attributes on page 70.

Correlators

Composer uniquely identifies a unit of correlation logic to be applied to an
event or a set of events. This unit of logic is called a “correlator.”

Every correlator has three main sections:

• Alarm Definition

In this section, you define the filters, variables, messages keys, and
parameters of the correlator.

This section is divided into five subsections:

— Alarm Signature

Primary filter that forms the first level of filtering, based on event
attributes. This set of data structures consists of Attribute Name,
Operator, and Value. Further processing takes place when an event
matches all attributes set in the Alarm Signature.

— Variables

Names assigned to values. After they are assigned, the names can be
used in other sections of Composer.
26 Chapter 1

There are two types of variables:

– Global constants

Constants defined in the Global Constants section. These
constants can be accessed by any correlator within the Correlator
Store. For details, see Correlator Store on page 28.

– Correlator-specific variables

Variables defined in the Alarm Definition section. You can access
these variables only within the scope of that correlator.

— Advanced Filter

Optional. Secondary filter used to further process alarms that have
already been processed by the primary filter, Alarm Signature.
Typically, this condition is used to define filters, based on external
factors like topology.

— Message Key

Key that identifies the instance of the correlator under which the
alarm is correlated. The key is evaluated for each incoming alarm that
passes the Alarm Signature and Advanced Filter. Alarms with
identical message keys are correlated under the same instance of the
correlator.

— Parameters

Parameters that specify the default behavior of the basic correlator
template. Typically, these parameter specify the time window for
which the correlation is to be monitored.

• New Alarm

In this section, you define specifications to create new alarms or alter
existing alarms.

• Callback

In this section, you configure create and discard callback functions to
establish an audit trail when alarms are created and deleted. For
example, when you delete an event, you can invoke a logging function.
Composer Overview 27

Correlator Store

A Correlator Store is an ASCII file that stores configured correlators. The
Correlator Store is loaded at run time to perform correlation. To find out how
to develop a Correlator Store, see Developing Correlator Stores on page 80.

Correlation Flow

Figure 2 shows the correlation flow within Composer.

Figure 2 Correlation Flow
28 Chapter 1

Composer Overview 29

ECS Engine

Composer runs inside the HP Event Correlation Services (ECS) engine, which
is a component of the following:

• HPOM for UNIX 8.00 or higher

• HPOM for Windows 9.00 or higher

Composer runs as a single ECS circuit. The ECS engine correlates,
suppresses, and enriches HPOM messages, based on the rules configured in
deployed circuits, including Composer. For details, see ECS Engine on
page 141.

ECS Designer

Composer is designed to handle the most common correlation scenarios you
might encounter. However, if Composer does not meet your requirements,
consider using ECS Designer. This product provides a complete event
correlation development environment for sophisticated requirements. ECS
Designer is not included with HPOM. You must purchase it separately.

Composer Modes

Composer has two modes for developing and maintaining correlators:

• Developer mode (HPOM and NNM)

• Operator mode (NNM only)

Developer Mode (HPOM and NNM)

In Developer mode, HPOM and NNM developers can set up, create, or modify
correlation logic.

Developers can use NameSpace files in both environments:

• NNM

NNM developers set up operator access rights by using Security files.
Developers determine the area of operation by using NameSpace files.

• HPOM

Although HPOM developers can use NameSpace files, these files are
designed primarily to provide logic separation within Operator mode, as
described in Operator Mode (NNM Only) on page 30. As a result, there is
little need for them in HPOM environments. For details, see Chapter 9,
Developer Mode in NNM.

Operator Mode (NNM Only)

In NNM environments, Composer operators determine which correlation logic
is active, and set the values of configurable parameters provided by
developers. Operators have limited access to Composer functionality. Their
access is governed by the permissions specified by developers in the Security
files and the area of operation specified in the NameSpace files.

When assigning operator roles, you must set appropriate conditions and
permissions to enable operators to efficiently manage the correlation logic
deployed. To simplify this task, Composer provides Security and NameSpace
files that link operators to parts of the correlation logic.

In Composer, HPOM administrators are treated as operators.
30 Chapter 1

Correlator Templates

To provide correlation models for the most common correlation tasks,
Composer supplies the following correlator templates:

• Enhance

• Multi-Source

• Rate

• Repeated

• Suppress

• Transient

In addition, you can use the User-Defined correlator template to configure
custom requirements.

Enhance Correlator Template

You can use the Enhance correlator template to do the following:

• Create alarms

Create one or more new alarms. For example, you can create a new alarm
that enumerates the set of customers affected by a failed entity.

• Modify event attributes

Modify the event attributes of an alarm. For example, you can modify the
severity of an alarm, based on the customer who is affected.

• Add troubleshooting information

Add information that would be useful to operators for problem resolution
or automatic trouble ticketing.

By default, the alarm is enhanced only if no other correlator has discarded the
alarm. You can override this default behavior.

When an event is altered, a copy of the original event is made, and then the
copy is modified.
Composer Overview 31

Also, the attribute unique_id changes:

• NNM

UUID attribute ($u) of the event changes when altered.

• HPOM

MSGID attribute of the message changes when altered.

When a message is altered (for example, by using the Enhance correlator),
and more than one Message Stream Interface (MSI) application is registered,
the message is assigned a new Universally Unique Identifier (UUID).
However, a new UUID is not desirable in Manager of Manager (MoM)
configurations. To ensure that the UUID of a message does not change, you set
the configuration variable OPC_MSI_CREATE_NEW_MSGID to 4.

For example, for the Server MSI, you would set the configuration variable as
follows:

ovconfchg -ovrg server -ns opc -set
OPC_MSI_CREATE_NEW_MSGID 4

Multi-Source Correlator Template

You can use the Multi-Source correlator template to define a relationship and
correlate an arbitrary number of related (or “sympathetic”) alarms, potentially
from different sources. Together, these alarms form a logical set that identifies
the problem. The set is considered complete if all alarms configured arrive
within the specified time window.

On set completion, you can use Multi-Source correlation to do the following:

• Discard subsets

Discard a subset of alarms.

• Modify subsets

Modify a subset of alarms with attributes defined from any or all of the
other alarms in the set.

• Create alarms

Create one or more new alarms with values called from attributes or
predefined variables from the other alarms in the set.
32 Chapter 1

On completion, the set can operate in one of two modes:

• Mode 1: Complete set

Default. When the set is deemed complete, the instance of the set remains
in a completed state for the duration of the time window. Typically, you
use this mode in situations where all alarms from a source can be
discarded if caused by the failure of another entity. The correlator
template works in this mode when the Set button is not selected.

• Mode 2: Predefined sets

When the set is deemed complete, the instance of the set is closed
immediately. You use this mode when you expect alarms to arrive in
predefined sets, and when you want to ensure that a new instance is
created for each set. After a new instance is created, the correlation
remains open until at least one event for each source has been received.
After the last source has received an event, the set is deemed complete.

Example of Mode 1: Networking Device Fails

When a common networking device (for example, a switch or router) fails,
monitoring software may detect and report a series of interface_down
alarms, as well as an overall node_down alarm. Because the device is down, all
interface-related alarms from that device can be discarded safely.

In this example, the set has two alarm types:

• node_down alarm

• interface_down alarm (marked for discarding)

When a node_down alarm and an interface_down alarm are received, the set
is complete. The node_down alarm is shown. The interface_down alarm is
discarded. Any subsequent interface_down alarms are discarded until the
time window expires.
Composer Overview 33

Example of Mode 2: Server Crashes

When a server crashes, NNM detects that it cannot communicate with the
server. As a result, NNM forwards a node_down alarm to HPOM. HPOM also
detects that it cannot communicate with the agent on that server and
generates a message. When both of these messages arrive, HPOM generates a
report message indicating that a server has gone down.

In this example, the set has two alarm types:

• Node Down message (in HPOM, from NNM)

• OpC Agent Not Responding message

If these alarms are received within a given time window, both can be
discarded. After set completion (Server Failure), you must create a new
alarm. In addition, if a subsequent alarm belonging to the set arrives within
the same time window, it is not deleted until the second set is complete. For
example, if a node_down alarm arrives immediately after the first set is
complete, it is not discarded until another OpC Agent Not Responding
message arrives.

Rate Correlator Template

You can use the Rate correlator template to count the number of events
occurring within a specified time window. If the count equals the value
specified within the time window, the threshold is considered breached and a
new alarm is created.

You can configure the Rate correlator template to do the following:

• Discard all alarms

Discard all alarms (regardless of rate). Emit only the newly created alarm
when the threshold is breached.

• Emit all alarms

Emit all alarms as they arrive. Emit the newly created alarm (if any)
when the threshold is breached.
34 Chapter 1

Repeated Correlator Template

The Repeated correlator template can operate in one of two modes:

• Mode 1: Discard duplicate alarms

Default. Discards duplicate alarms received within the time window of the
first alarm. If you want, you can set up the incoming alarm to participate
in other correlations before it is discarded. You can also send an update
alarm at the end of the time window. Typically, you send an update alarm
to create a new event indicating the number of alarms discarded by the
first alarm in the window. Repeated correlation operates in this mode
when the Discard Duplicate button is selected.

• Mode 2: Keep duplicate alarms

Does not discard duplicate alarms. If there is a specification for a new
alarm to be created, a new alarm is created for every incoming alarm.
Typically, you use this mode to send a new alarm to replace the previously
sent one, along with the count of duplicate alarms received so far.

Suppress Correlator Template

You use the Suppress correlator template when you need to discard a specific
category of alarms. Alarms that match all of the conditions in both the Alarm
Signatures and Advanced Filter are discarded.

Transient Correlator Template

A transient failure is when the state of a managed entity changes to
abnormal, and then reverts to normal, in a short period of time. Typically, you
use the Transient correlation template to detect transient failures. When a
transient failure is detected, associated events are discarded. You can also use
this template to monitor the rate of transient failures, and create a new alarm
if a configured threshold is breached. The threshold is considered breached if
the number of transient pairs equals the configured breach value.

For example, Temperature_ON and Temperature_OFF alarms are generated
when the temperature of a router exceeds the threshold or falls below the
threshold. You can use the Transient correlation template to discard both
alarms if the Temperature_OFF alarm is received within five minutes of the
Temperature_ON alarm.
Composer Overview 35

User-Defined Correlator Template

You use the User-Defined correlator template to implement a requirement
when none of the other correlation models, either by itself or in combination,
can meet the correlation requirement.

Alarms that meet the conditions specified in the Alarm Signature and
Advanced Filter invoke the input function specified.

The input function can be of the Perl or the built-in type. The return value of
the input function determines the action to be taken on the alarm (for
example, create a new alarm, discard the alarm, hold the alarm for a specified
period, and so on).

If the input function requests that the alarm be held, the output function is
invoked after the specified time window. The return value of the output
function determines the action to be taken on the alarm.
36 Chapter 1

Correlator Template Evaluation Precedence

Each correlator is implemented by a discrete decision-making mechanism,
based on the correlator template used. If the filters of two correlators are
defined in a way that admits the same alarm, both correlators are applied to
the alarm.

If one event is managed by multiple correlators, the outcome is determined by
the following rules:

• Evaluation order

Correlator evaluation follows this order:

a Suppress correlation

b Repeated correlation

c All other correlation (in parallel) except Enhance

d Enhance correlation

• Event enhancement

Enhance correlation is run last.

The event is enhanced only if the following is true:

— No other correlator discards the event.

— Enhance Always is not enabled in the Enhance correlator template.

• Event sharing

Before the Suppress and Repeated correlators discard an alarm, operators
can admit the event into other correlators.

• Event output

An event is output only if no other correlator has discarded it.
Composer Overview 37

38 Chapter 1

2 Composer GUI
 39

HP Correlation Composer is a graphical user interface (GUI) that enables you
to customize predefined correlation logic to meet your requirements in
HP Operations Manager (HPOM) and HP Network Node Manager (NNM)
environments. To customize predefined correlation logic in Composer, you
create correlators. Each correlator represents a unit of logic to be applied to an
event or a set of events.

This chapter describes the following:

• Correlation Composer Window on page 40

• Correlator Configuration Window on page 42

• Composer Menus on page 59

• Composer Toolbars on page 64

This chapter assumes you are running the Composer GUI in Developer mode.

Correlation Composer Window

When a Correlator Store opens, the Correlation Composer window displays, as
shown in Figure 3. The opening panel of the Correlation Composer window
consists of the standard menus and options required to define correlators.

Figure 3 Correlation Composer Window

Online Help

From the Correlation Composer window, you can access online help as follows:

• To display the online help, press F1.

• To display the online help contents, click HelpTable of Contents from the
toolbar.

Correlation Templates ToolbarStandard Toolbar

Status Bar Input Event TypeCorrelators
40 Chapter 2

Shortcut Menus

From the Correlation Composer window, you can open or learn about menu
items with your mouse:

• To select an item, click it.

• To pop up a menu of frequently used options for an item, right-click the
item.

Localized Descriptions

You can open, modify, and use Correlator Stores developed in another locale.
User descriptions in the correlators written using the English-language locale
are visible in all the other locales, even if the descriptions are not localized in
the respective locales. This visibility enables users with knowledge of both the
English language and the current locale language to read and localize the
English-language descriptions. Because logic is kept separate from language,
logic changes are identical across locales. User descriptions change for each
locale, as needed.
Composer GUI 41

Correlator Configuration Window

You define correlators and add their parameters from the Correlator
Configuration window, as shown in Figure 4.

Figure 4 Correlator Configuration Window

The Correlator Configuration window has four tabs:

• Description Tab

• Definition Tab

• New Alarm Tab

• CallBacks Tab
42 Chapter 2

Description Tab

In the Correlator Configuration window, the Description tab describes the
correlator. The window opens in the Description tab.

Definition Tab

In the Correlator Configuration window, the Definition tab contains the
following sections:

• Alarm Signature

• Variables

• Advanced Filter

• Message Key

• Parameters

Alarm Signature

The Alarm Signature is the primary filter in Composer. As such, it provides
the first level of alarm filtering. The Alarm Signature consists of Attribute,
Operator, and Value. The operator matches the attribute type to the value
entered. Alarms whose attributes match the specification in the Alarm
Signature are processed further.

Event attributes vary, depending on the event type selected. For a list of
standard event attributes, see Appendix B, Event Attributes. To customize the
list of attributes, see Defining Event Attributes on page 70.
Composer GUI 43

The Alarm Signature supports the following operators:

=

Equal to. Attribute type is equal to the value entered. The value must be
an integer, float, string, boolean (true, false), or object ID.

!=

Not equal to. Attribute type is not equal to the value entered. The value
must be an integer, float, string, boolean (true, false), or object ID.

<

Less than. Attribute type is less than the value entered. The value must
be an integer or float.

>

Greater than. Attribute type is greater than the value entered. The value
must be an integer or float.

<=

Less than or equal to. Attribute type is less than or equal to the value
entered. The value must be an integer or float.

>=

Greater than or equal to. Attribute type is greater than or equal to the
value entered. The value must be an integer or float.

matches

Attribute contains the pattern specified by the value entered. The value
must be an integer, float, string, or object ID.

Example 1:

"1234510" matches 10

The string pattern 10 is found in the string 1234510.

Example 2:

"1234510" matches "^10"

The string pattern "^10" returns False. If the value extracted from the
attribute is not a string, the value is converted to a string and the pattern
is matched.

The pattern is given as a string. It follows the rules of all patterns
used in HPOM.
44 Chapter 2

Example 3:

enterprise matches "^1.2.3.4"

If the attribute enterprise contains the object ID 1.2.3.4.5.6, and the
requirement is to discard traps with an enterprise object ID of 1.2.3.4,
enterprise would be 1.2.3.4.

Internally, 1.2.3.4 is converted to the string "1.2.3.4", and this pattern
is used to search in the string version of enterprise. However, the
pattern would also match an enterprise object ID of 5.6.1.2.3.4, which
is not the requirement.

For regular pattern matching expressions, see Appendix C, Pattern
Matching.

does NOT match

Attribute does not contain the pattern specified by the value entered. The
value must be an integer, float, string, or object ID.

Example:

The value "1020" must not be present in the attribute.

is in list

Attribute equals at least one value in the list entered. Values must be
listed within brackets ([]).

Example:

- a is in list [a, b, c, d]

is NOT in list

Attribute does not equal any value in the list entered. Values must be
listed within brackets ([]).

Alarm Signatures in NNM

In NNM, the Alarm Signature attribute agent-addr in the SNMP trap is
represented as a string in the "." notation. For example, the agent-addr
attribute is passed to a function as "a.b.c.d", not a.b.c.d.
Composer GUI 45

If you need to set agent-addr while creating or altering an alarm, make sure
that the variable carrying agent-addr has the same format. For example, to
set agent-addr to the IP address 15.10.76.143, define a variable whose
value is a string such as "15.10.76.143".

Variable bindings are a name value pair in which the name is always an object
ID. When specifying a new alarm that has variable bindings, you must specify
both the name and the value for each variable binding. Variable bindings start
with an index of 0.

Alarm Signatures in HPOM

In HPOM, you can use any attributes to define the Alarm Signature. The two
most commonly used attributes are Message Type (MSGTYPE) and Message
Text (MSGTEXT). MSGTYPE is extremely useful, but only in environments where
templates and policies have been configured to use it.

Figure 5 shows an example of an Alarm Signature for messages in which the
MSGTYPE is "multi_login_failure".

Figure 5 Example of MSGTYPE Alarm Signature

Figure 6 shows an example of an Alarm Signature that uses a pattern match
in which MSGTEXT matches "Bad switch user to <*> by <*>".

Figure 6 Example of MSGTEXT Alarm Signature

The IP address supports IPv6 only.
46 Chapter 2

Variables

Variables are names given to values that are used to define correlators or
global constants. All attributes in the alarms can be accessed as variables, in
which the variable name is the attribute name.

Correlators use the following variables:

Constant

Value used as a reference when defining a correlator. The variable name is
bound to the value specified in the Value field.

Example:

The variable ErrStr is bound to the following value:

"Temperature High. Check for A/C Failure."

The variable ErrStr can be used locally within the correlator under which
it is declared.

Extract

Variable that is extracted from a substring within the event attribute.
This variable is then used in the New Alarm and Advanced Filter tabs.

Example:

"Bad switch user to <*.to_user> by <*.by_user>"

This string matches the following message:

"Bad switch user to root by jsmith"

The string assigns "root" to a to_user variable, and assigns "jsmith" to
by_user variable.

For more pattern matching examples, see Appendix C, Pattern Matching.
Composer GUI 47

Function

Data returned from a function. This return value can be bound to a name.

You can call functions synchronously or asynchronously. For details, see
Writing a User-Defined Function on page 121.

Example:

The getTeamInfo function uses the Message Group attribute as a
parameter and returns a string containing the name of the Team
responsible for the event.

If functions return more than a single value, individual elements can be
accessed by using the built-in getByIndex function. For example, a
myFunction function returns the values 10, 20, and 30. These values are
bound to a myVariable variable. To access the individual elements, you
would use the built-in getByIndex function. For more information about
built-in functions, see Appendix A, Built-In Functions.

Combine

Variable that combines two or more variables.

Example:

You define the following variables:

a constant 'Hello'

b constant 'World'

c constant 'Rate is'

d constant 10

e constant 20

You combine the variables you defined:

Combine [a b] results in "Hello World".

Combine [c <AlarmCnt>] results in "Rate is <AlarmCnt>.

Combine [10, 20] results in 1020.

When an integer and a string are combined, the resulting output is a
string.

In HPOM, you can use Perl functions only. C functions do not work.
48 Chapter 2

Lookup

Data returned from a Data Store lookup. The Data Store contains a table
of global values. Unique keys identify each table entry. You use these keys
to select a value from the table.

You can use the Lookup operator to query values from a Data Store and
bind them to variables. Parameters for this operator are one or more
variables. The values referred to by these variables are concatenated. The
resulting value is used as the key in the Data Store lookup.

Each line of the Data Store file uses the following syntax:

ADD DATA(keyValue, ReturnValue)

This syntax contains the following values:

keyValue

Must be an integer or string.

ReturnValue

Can be any data type.

The Data Store file can contain multiple lines.

The first line in the file must be the header with the following format:

#path#date#version#0

You begin the comment with two hyphens (--).

Example:

The Data Store is loaded and contains one entry:

ADD DATA("Overheated", 80)

An X variable has a value of "Overheated". If you use X as a parameter of
Lookup, a value of 80 is returned.

Two variables, Y and Z, with values of "Over" and "heated", respectively,
result in a key value of "Overheated". The value 80 is returned.

For more information about the Data Store, see Accessing External Data
on page 157.

Typically, the Data Store contains static topological information.
For example, you could run scripts once a day to create the Data
Store file and update the ECS engine with the newly created file.
Composer GUI 49

Variable Evaluation

By default, a variable is evaluated by a function when it is used. To override
this default behavior, you can select when the variable is evaluated.

Variables can be evaluated at the following times:

Default

Variable is evaluated when it is used.

Event In

Variable is evaluated when the event participates in the correlator, after
having passed the primary and secondary filter conditions.

Correlator Creation

Variable is evaluated when the correlator is instantiated. For example, in
Repeated correlation, the variable is evaluated when the correlator is
instantiated. For background information on correlator instantiation, see
Message Key on page 52.

Correlator Deletion

Variable is evaluated when the instance of the correlator is deleted.

For more information about creating and deleting correlators, see Table 1 on
page 53. You should define all parameters (other than the standard attributes
displayed in the shortcut menu) as variables.

A variable is evaluated only once. For example, if a variable has been flagged
to be evaluated at Event In, but the variable is used in the Advance Filter,
the variable is evaluated when the Advanced Filter is processed. The variable
is not re-evaluated when the event enters the correlator.

Functions flagged for evaluation at Event In, Correlator Creation, and
Correlator Deletion are always invoked synchronously.

An asynchronous function, whose parameters have not yet been evaluated at
the point at which the function has been invoked, cannot depend on a
parameter that is evaluated through another asynchronous function.
50 Chapter 2

Automatic Variables

In addition to the standard event attributes and the user-defined variables,
Composer maintains the following automatic variables:

AlarmCnt

The number of alarms that enter the correlator. For example, if you are
using Rate correlation, the attribute AlarmCnt counts the number of
alarms arriving.

You can access the variable when creating new alarms or defining callback
functions in the New Alarm and CallBacks tabs, respectively.

CorrelationDuration

The actual time taken to apply the correlator. For example, if you are
using Rate correlation, you might generate a new alarm when the rate
exceeds 5 in 30 minutes. If the rate is breached in the tenth minute, the
variable is bound to the value 10.

Advanced Filter

After filtering events with an Alarm Signature (primary filter), you can
further filter the events in the correlator, based on the Advanced Filter
(secondary filter) condition. The Advanced Filter is a set of data structures
consisting of Name, Operator, and Value fields. For a list of supported
attributes and operators, see Alarm Signature on page 43.

For example, if a Router_Failure alarm is received from a Core router, there
is a requirement to generate a new alarm. By examining the event attributes
only, you cannot determine whether the alarm is emitted from a Core router.
To solve this problem, you might define an isCoreRouter variable that is
bound to the return value of a GetIsRouter function. This function takes the
agent-address as its parameter. If the router is a Core router, it returns 1.
Otherwise, it returns 0. In the Advanced Filter, you define a correlator that
checks whether isCoreRouter is set to 1. In this way, you make sure that the
alarm is applied only to Core routers.
Composer GUI 51

Message Key

A defined correlator is merely a template to indicate the interaction of alarms.

For example, you might define a Multi-Source correlator with two alarms:
router_down and interface_down. The router_down alarm suppresses
individual interface_down alarms emitted from the same router. If a router
fails, the correlator discards individual interface (component) failures from
the same router.

The specified Multi-Source correlator is generic in the sense that it applies to
all router_down and interface_down alarms. However, an interface_down
alarm should be suppressed only if the router to which the interface belongs
has also failed. The mechanism that ties alarms together is the message key.
The message key is evaluated when the alarm enters the correlator. Alarms
that match the value of the message key are correlated together.

In the Multi-Source correlator you defined, you can use the name of the router
as a message key if you can extract the router name from both the router and
the interface_down alarms. The message key can be a physical entity (for
example, an interface or a router) or a logical entity (for example, a service or
customer).

When an alarm enters the correlator, the event has passed the primary
(Alarm Signature) and secondary (Advanced Filter) filters for the correlator,
and the message key is evaluated. If there is no instance of the correlator with
the evaluated message key, an instance of the correlator is created with the
message key. Creating this new instance is called “correlator creation.” If an
instance of the correlator exists for the same message key when the event
arrives, the incoming alarm is correlated under the correlator for this message
key. In other words, the alarm is correlated with the other alarms that are
evaluated with the same message key. The message key is necessary only
when two or more alarms must be related. For example, in Suppress
correlation, there is no requirement for a message key because the correlator
is applied to all alarms that meet the Alarm Signature and Advanced Filter
conditions.

Do not confuse “message key” in this section with Message Key attributes or
Message Key Correlation attributes, which are defined in HPOM policies. In
this section, “message key” simply refers to an event’s attribute. If multiple
events (as defined by their signatures) contain the same value in the message
key attribute, they are considered “linked” for the correlator. However, each
alarm can reference a different event attribute. As long as the values are
identical, everything is fine.
52 Chapter 2

The point at which an instance of the correlator is deleted is dictated by the
semantics of the correlation model, as shown in Table 1.

Table 1 Correlator Creation and Deletion

Correlation
Model

Requires
Message
Key

Operational
Mode

Point of Correlator

Creation Deletion

Enhance No N/A N/A N/A

Multi-Source Yes Mode 1 At the first alarm with a
message key for which no
correlator has been
instantiated

When the time window
for the last event for this
message key expires

Mode 2 At the first alarm with a
message key for which no
correlator has been
instantiated

• When the set is
complete

• When the set is not
complete (time)

• After the last alarm

• When the message
key enters the
system

Rate Yes N/A At the first alarm with a
message key for which no
correlator has been
instantiated

• When the rate is
breached

• When the time
window expires from
the time the last
event for this message
key enters the system

Repeated Yes N/A At the first alarm with a
message key for which no
correlator has been
instantiated

After correlator
instantiation

Suppress No N/A N/A N/A
Composer GUI 53

Example 1: Generating New Router Alarms

You have a requirement to generate a new alarm when the number of alarms
received from the same router is higher than 20 within one hour. All events
matching the Alarm Signature are categorized as router alarms. To create a
mechanism to examine alarms emitted from the same router, you could assign
the agent-address as the message key.

Transient Yes No threshold
specified

When the first Fail alarm
arrives with a message
key for which no
correlator has been
instantiated

• When a Clear alarm
arrives within the
time window of the
Fail alarm
(immediately on
getting a pair)

• When the time
window expires
without a Clear alarm
arriving (no pair
detected)

N/A Threshold
specified

N/A • When the threshold
number of pairs is
received in the
specified time window
(at the point the
threshold is breached)

• When the threshold is
not breached and the
threshold time
window is after the
last pair was created

User-Defined N/A N/A N/A N/A

Table 1 Correlator Creation and Deletion

Correlation
Model

Requires
Message
Key

Operational
Mode

Point of Correlator

Creation Deletion
54 Chapter 2

Example 2. Monitoring Interface Failure Rates

You have a requirement to monitor the rate at which interfaces on a router are
failing. You could use the IF_Rate correlator, in which the message key is
x+<Interface Number> (for example, x+varbind0). In this correlator, x could
be an attribute, as shown in Figure 7.

Figure 7 Example of Message Key

Parameters

To change the default behavior of the basic correlator type, you set
parameters. The functionality of the parameters can vary across the different
correlator templates. For details about parameter functionality, see Chapter 7,
Use Cases in NNM and Chapter 8, Use Cases in HPOM.
Composer GUI 55

New Alarm Tab

In the Correlator Configuration window, the New Alarm tab enables you to
define correlators that generate new alarms, as shown in Figure 8. For
example, you might use Repeated correlation to generate an alarm that
reports the number of alarms that arrive in a specified time window.

Figure 8 New Alarm Tab

When you create and alter alarms, you can enrich them. Enriched alarm
information includes text from multiple alarms, customer details, affected
users and systems, and so on.

The New Alarm tab is not available for Suppress correlation, as there are no
new events that can be generated.
56 Chapter 2

To create a new alarm, you can use one of the following options:

• New Alarm Specification

Create a new alarm with all new attributes. The New Alarm Specification
includes Name and Value. The New Alarm Specification displays all of the
mandatory attributes that must be entered to create a new alarm.

In addition, you can feed the alarm back into the circuit. If you want the
new event to be fed back into the system, where it can participate in other
correlators, click the Feedback button.

• Alter Specification

Create a new alarm by altering some of the attributes of the existing
alarm:

Field

Field that must be altered. The drop-down menu displays all
attributes for the selected event type. For more information about
event attributes, see Appendix B, Event Attributes.

Mode

Mode used to alter event attributes:

Replace

New value replaces the event attribute of the original alarm.

Append

New value is appended to the existing event attribute.

Value

Value of event attributes appended or replaced with new values.

To find out how to create a new alarm, see Creating a New Alarm
on page 97. To find out how to add event attributes to the CO.conf
file, see Adding Attributes on page 72.

The Alter Specification tab is not enabled if the correlation type
being defined is Multi-Source. The attributes displayed to alter an
alarm are always the attributes of the last alarm that arrived. For
example, when you use Transient correlation, the attributes
displayed are always that of the last Clear alarm.
Composer GUI 57

CallBacks Tab

In the Correlator Configuration window, the CallBacks tab enables you to
execute a function after it has participated in correlation, as shown in
Figure 9. When you create a new alarm, you can invoke an external command
to perform user-specific functions (for example, logging or issuing trouble
tickets).

Figure 9 CallBacks Tab

You can write the external function in C or Perl. Or you can use built-in
functions that enable you to select the parameters for the function from the
Parameter List table. The location of the C or the Perl file containing the
external function is specified in Composer.

In HPOM, you can use Perl functions only. C functions do not work.
58 Chapter 2

To find out how to write C functions, see Writing C Functions on page 104. To
find out how to write Perl functions, see Writing Perl Functions on page 113.

You can run callback functions by using the following tabs:

• Create tab

Runs the Callback function (if defined) when a new alarm is created.

• Discard tab

Runs the Callback function (if defined) when the alarm is discarded.

You use the Create or Discard tab to define when the Callback function is run.

Composer Menus

The Composer GUI includes the following menus:

• File Menu on page 60

• Correlations Menu on page 61

• Options Menu on page 62

• Help Menu on page 63
Composer GUI 59

File Menu

The Composer GUI includes a File menu, as shown in Figure 10.

Figure 10 File Menu

The File menu contains the following items:

New

Creates an empty Correlator Store file. If an existing Correlator Store file
is still open, Composer closes the file. If you have not yet saved the file,
you are prompted to save it.

Open

Displays the file browser, which enables you to find and open a previously
saved Correlator Store.

Close

Closes the opened Correlator Store file. If you have not yet saved the file,
you are prompted to save it.

Save

Saves the Correlator Store file. This item is disabled if the Correlator
Store file has not been modified since the last save.

Save As

Saves the Correlator Store file to a different name. Selecting this item
displays the file browser in which you enter the new file name.

Exit

Closes the Correlator Store file and exits Composer. If the file has unsaved
changes, you are prompted to save the file before exiting.

 A Correlator Store is the same as an ECS Fact Store.
60 Chapter 2

Correlations Menu

The Composer GUI includes a Correlations menu, as shown in Figure 11.

Figure 11 Correlations Menu

The Correlations menu contains the following items:

Global Constants

Displays the Global Constant Definition window. This window enables you
to enter the constants that are global across the Correlator Store.

Perl File

Displays the Perl File Name window, in which you specify the Perl file that
contains all of the functions.

C Library Name

NNM only: Displays the C Library Name window, in which you specify the
C library name.

Deploy

NNM only: Deploys the Correlator Store files to the HP Event Correlation
Services (ECS) engine. This option is enabled only when Composer is
started in Operator mode. For more information about the ECS engine,
see ECS Engine on page 141.

Correlator Templates

Displays a submenu from which you can select the kind of correlation you
want.

In HPOM environments, you merge and deploy by using the
ovocomposer command. For details, see Merging and Deploying
Correlator Store Files on page 154.
Composer GUI 61

Options Menu

The Composer GUI includes an Options menu, as shown in Figure 12.

Figure 12 Options Menu

The Options menu contains the following items:

Forcefully Unlock

Provides mutually exclusive access to the Correlator Store. For details, see
Locking Files on page 261.

Appearance

Displays a submenu from which you can select the look and feel of the
interface.

File History

Displays the File History window that displays a list of recently opened
files.

View/Restore Backup

Displays a submenu from which you can select the version of a backed-up
file that you want. For details, see Restoring Backed-Up Files on page 77.
62 Chapter 2

Help Menu

The Composer GUI includes a Help menu, as shown in Figure 13.

Figure 13 Help Menu

The Help menu contains the following items:

Overview

Displays the online help for Composer.

Table of Contents

Displays the table of contents for the online help. You can also view the
online help index from this window.

About

Displays the current release and copyright information for Composer and
associated software.
Composer GUI 63

Composer Toolbars

Composer includes the following toolbars:

• Standard Toolbar on page 64

• Correlator Templates Toolbar on page 65

• Deploy Button (NNM Only) on page 66

Standard Toolbar

The standard toolbar buttons, shown in Figure 14, provide shortcuts to
frequently used menu commands.

Figure 14 Standard Toolbar Buttons

The standard toolbar contains the following buttons:

New

Creates a new Correlator Store. Displays the Input Event Type window
from which you can select the input event type.

Open

Displays a file browser from which you can find and open a previously
saved Correlator Store.

Save

Saves the current Correlator Store. This item is disabled if the
Correlator Store has not been modified since the last save.

Help

Displays the contents of the online help for Composer.
64 Chapter 2

Correlator Templates Toolbar

The correlator templates toolbar, shown in Figure 15, provides shortcuts to
the various correlator templates.

Figure 15 Correlator Templates Buttons

The correlator templates toolbar contains the following buttons:

Enhance

Displays the Enhance Correlation window. From this window, you can
define parameters to add more information to an alarm before the
alarm is output.

Multi-Source

Displays the Multi-Source Correlation window. From this window, you
can define related or sympathetic events, and discard or output events
with enriched information.

Rate

Displays the Rate Correlation window. From this window, you can
define parameters to maintain a count of event arrival and output a
new event based on this count.

Repeated

Displays the Repeated Correlation window. From this window, you can
define parameters to discard events of similar type.

Suppress

Displays the Suppress Correlation window. From this window, you can
define parameters to discard a certain class of events.

Transient

Displays the Transient Correlation window. From this window, you can
define parameters and correlate based on some threshold values.

User-Defined

Displays the User-Defined Correlation window. From this window, you
can define correlators based on your requirements.
Composer GUI 65

Deploy Button (NNM Only)

The Deploy button provides a shortcut to the “Deploy the Correlator Stores to
the ECS” engine. This button is used in NNM environments only.

Deploy

Merges the Correlator Stores and loads them into the ECS engine. To
find out how to deploy the Correlator Store, see Deploying the
Correlator Store on page 257.

In HPOM environments, you merge and deploy by using the ovocomposer
command. For details, see Merging and Deploying Correlator Store Files on
page 154.
66 Chapter 2

3 Getting Started
This chapter explains how to get started with HP Correlation Composer:

• Starting Composer on page 68

• Stopping Composer on page 69

• Configuring the Correlator Store on page 69

• Defining Event Attributes on page 70

• Backing Up Files on page 73

This chapter assumes you are running Composer in Developer mode. For
details, see Developer Mode (HPOM and NNM) on page 30.
 67

68 Chapter 3

Starting Composer

How you start Composer depends on the environment in which you invoke it.

Starting Composer from NNM

In HP Network Node Manager (NNM), you can start Composer in HP Event
Correlation Services (ECS) or from the command line.

To start Composer from NNM, do one of the following:

• ECS

From the ECS Configuration Management GUI, follow these steps:

a Select the row with Composer.

b Click Modify.

Composer starts in Operator mode.

• Command Line

From the command line, enter one of the following:

— Operator mode

ovcomposer -m o

— Developer mode

ovcomposer -m d

For details, see the ovcomposer reference page.

Starting Composer from HPOM

In HP Operations Manager (HPOM), you can start Composer from the
command line or from the GUI. The HPOM for UNIX GUI is a Java
application that requires X-Server to display on the client.

To start Composer from the command line, enter the following:

ovocomposer -ui

Composer starts in Developer mode. (There is no Operator mode.)

For more usage options, see Merging and Deploying Correlator Store Files on
page 154 as well as the ovocomposer reference page.

Stopping Composer

You can stop Composer in one of two ways:

• To close the Correlator Store file, click FileClose. This step closes only the
Correlator Store that is currently being configured.

• To exit the current Composer session, click FileExit.

Configuring the Correlator Store

Before you use the Correlator Store, make sure you fully understand your
requirement. After you document your requirement, you can map it to an
off-the-shelf template.

To configure a Correlator Store, follow these steps:

1 Document your requirement.

To make sure you fully understand your correlation requirement,
document it in distinct steps. Make sure to document the set of alarms
that participates in the correlation.

For example, if the requirement is to discard node_down alarms from
routers, you can document how to recognize a node_alarm from the router.
A node_down alarm contains attributes that determine whether the alarm
is a node_alarm. Typically, you recognize a node_alarm in the Alarm
Signature section. Examine the attributes to determine whether the
node_down alarm is from a router. If there is no attribute within the alarm
to indicate that it is from a router, you recognize it in the Advanced Filter.

2 Map the requirement to a correlator template.

For descriptions of correlator templates, see Correlator Templates on
page 31. For scenarios in which multiple correlator templates are used to
meet a requirement, see Chapter 9, Developer Mode in NNM.
Getting Started 69

Defining Event Attributes

Composer ships with standard event attributes. In HPOM and NNM, you can
add attributes by editing the CO.conf file.

Default Attributes

The default configuration shipped with Composer contains standard event
attributes, defined by event type (SNMP for NNM, OpC for HPOM). You can
configure additional attributes by editing the CO.conf configuration file in the
default directory where Composer is installed, as listed in Table 2.

Table 2 Directories for Composer and CO.conf

Operating System Composer Installation Configuration File

HP-UX /opt/OV/bin /opt/OV/bin

Linux /opt/OV/bin /opt/OV/bin

Solaris /opt/OV/bin /opt/OV/bin

Windows %OvInstallDir%\bin %OvInstallDir%\bin

To make changes to the configuration file, you need root or administrator user
access.
70 Chapter 3

Changing Mandatory Attributes

If you create a new alarm in the New Alarm tab of Composer, you must set
values for mandatory fields. The list of mandatory attributes are specified in
the CO.conf file. You can reduce the number of attributes you must set when
using Create New Alarm specification.

To change the mandatory attributes in HPOM, follow these steps:

1 Open the CO.conf file.

2 In the ##MANDATORYFIELDS section, search for #OpC_Msg.

This is the first occurrence of the string "OpC_Msg".

3 Change the mandatory fields:

• Remove fields that you do not want to be mandatory.

• Add fields (for example, CMAs) that you want to be mandatory.

4 Save and close the file.

5 Restart Composer.

In HPOM, MSGTEXT and OBJECT are mandatory fields.
Getting Started 71

Adding Attributes

In HPOM and NNM, you can add attributes by editing the CO.conf file.

To add attributes, follow these steps:

1 Open the CO.conf file in any standard text editor.

To find out where this file is located on your platform, see Table 2 on
page 70.

2 Edit the CO.conf file.

Examples:

• HPOM

You might want to add a custom message attribute (CMA) named
Customer-ID to the file.

To get started, search for the second occurrence of the string
"OpC_Msg" and add Customer-ID to a new line:

#OpC_Msg
AACTION_ACK
AACTION_ANNOTATE
AACTION_CALL
AACTION_NODE

• NNM

The default CO.conf file contains variable bindings from 0 to 12 (100
in later releases).

To add a variable binding, search for the second occurrence of the
string "SNMP" in this file and add the following:

varBind[13]->name

varBind[13]->value

3 Save and close the file.

4 Restart Composer.
72 Chapter 3

Backing Up Files

Composer enables you to recover from a disaster by making regular backups
of Correlator Store files automatically.

Automatic Backups of Correlator Store Files

When you create or open a file for the first time, the Correlator Store creates a
default backup file (if it does not exist already). This file remains constant
throughout the life of the Correlator Store.

The file contains the changes made to the Correlator Store in the current
session. The backup file is identified by a numerical extension, which
indicates the version. When you save the file for the first time in the first
session, the file name is appended with an extension of .1 (for example,
filename.1). This number is incremented each time you save the file for the
first time in subsequent sessions (for example, filename.2).

You can edit backed-up files by user and group only. Table 3 lists the file
permissions for the Correlator Store and its backed-up files.

Table 3 File Permissions for the Correlator Store and Backed-Up Files

File Type

HP-UX, Linux, Solaris Windows

Correlator
Store

Backed-Up
Files

Correlator
Store

Backed-Up
Files

User read+write read+write read+write read+write

Group read+write read+write read+write read+write

Others read read read+write read+write
Getting Started 73

Example of Backed-Up Files

An example of a backed-up file in the Correlator Store is the ATM.fs file.
Every time you open a new session of ATM.fs and save it the first time, the
backup files roll to the next version number.

The Correlator Store backs up the ATM.fs file as follows:

1 Creating the file creates the default backup (ATM.fs.default).

When you create or open the Correlator Store for the first time, it creates
a backup ATM.fs.default file.

This file remains constant throughout the life of ATM.fs. Every time you
edit and save ATM.fs, the changes are reflected in ATM.fs.

2 Editing the file for the first time creates ATM.fs.1.

When you open the first session of ATM.fs file and save it the first time,
the following occurs:

a Contents of the existing ATM.fs are saved as ATM.fs.1.

b Your edits are written to ATM.fs.

This example assumes that users can view only three backup versions. To find
out how to increase the number of backed-up files, see Overriding the Number
of Backed-Up Files on page 76.
74 Chapter 3

3 Editing the file for the second time creates ATM.fs.2.

When you open the second session of ATM.fs and save it the first time, the
following occurs:

a Contents of the existing ATM.fs.1 file are saved as ATM.fs.2.

b Contents of the existing ATM.fs file are saved as ATM.fs.1

c Your edits overwrite ATM.fs.

4 Editing the file for the third time creates ATM.fs.3.

When you open the third session of ATM.fs and save it the first time, the
following occurs:

a Contents of the existing ATM.fs.2 file are saved as ATM.fs.3.

b Contents of the existing ATM.fs.1 file are saved as ATM.fs.2.

c Contents of the existing ATM.fs file are saved as ATM.fs.1.

d Your edits overwrite ATM.fs.
Getting Started 75

5 Editing the file for the fourth time overwrites previous backups.

When you open the fourth session of ATM.fs and save it the first time, you
begin to overwrite previous backups:

a Contents of the existing ATM.fs.2 file overwrite ATM.fs.3.

b Contents of the existing ATM.fs.1 file overwrite ATM.fs.2.

c Contents of the existing ATM.fs file overwrite ATM.fs.1.

d Your edits overwrite ATM.fs.

The backed-up file ATM.fs.3 from the third session is now updated with
new contents. To prevent this from happening, you can increase the
number of backed-up files. For details, see Overriding the Number of
Backed-Up Files on page 76.

Overriding the Number of Backed-Up Files

By default, three backed-up versions of any given file in Composer are visible
to users. You can override the number of backed-up files by editing the
MAX_BACKUP field in the CO.conf configuration file.

To override the number of backed-up files visible to users, follow these steps:

1 Open the CO.conf file in any standard text editor.

To find out where this file is located on your platform, see Table 2 on
page 70.

2 In the CO.conf file, replace the default number (3) under the heading
MAX_BACKUP by the number of backup files you want users to view.

For a Correlator Store, the maximum number of backups allowed is 20.

3 Save and close the file.

4 Restart Composer.
76 Chapter 3

Restoring Backed-Up Files

You can open, view, and restore backed-up versions of files in Composer.

To restore backed-up files, follow these steps:

1 To open a backed-up file, click OptionsView Backup<FileVersion>.

The following message displays:

You are now viewing an archive version of the file.

2 To restore the archive version you are viewing, click Save.

This step makes the backup file you are viewing the latest version of the
file. Previously backed-up files roll down to accommodate the change.

This procedure assumes that users can view only three backup versions. To
find out how to increase the number of backed-up files, see Overriding the
Number of Backed-Up Files on page 76.

When you revert changes to the latest file, you overwrite the previously saved
version of the file your are viewing. Make sure that you are not overwriting
data erroneously.
Getting Started 77

78 Chapter 3

4 Developing Correlators
This chapter explains how to develop Correlator Stores in HP Correlation
Composer:

• Developing Correlator Stores on page 80

• Configuring Correlator Stores on page 83

• Managing Correlators on page 102

• Writing C Functions on page 104

• Writing Perl Functions on page 113

• User-Defined Correlation on page 117

• Merging Correlator Store Files on page 124
 79

Developing Correlator Stores

This section explains how to create, open, modify, and migrate Correlator
Stores in Composer.

Creating a Correlator Store

To create a new Correlator Store file, follow these steps:

1 To open a new Correlator Store file, do one of the following:

• In the Composer main menu, click FileNew.

• In the standard toolbar, click the New icon.

If a file is already open, Composer prompts you to save the file.

2 From the main menu, select FileSave.

3 In the File panel, enter the Correlator Store file name.

Use file names that start with a letter and contain only letters, numbers,
and underscores (_). For example, my_configuration is a valid file name.
The extension.fs is supplied automatically.

4 Click OK to save the Correlator Store file.

You can save the Correlator Store file under any directory. Before saving
the file, make sure the path you specified is correct.

Opening a Correlator Store

To open a Correlator Store file, follow these steps:

1 To select the file to open, do one of the following:

• From the file browser window, click FileOpen.

• In the standard toolbar, click the Open icon.

The Open File browser window displays.

The default event type is SNMP. To find out how to change the event
type, see Defining Event Types on page 84.
80 Chapter 4

2 Select the name of the file you want to open.

3 Click Open.

The Correlator Store file displays.

Modifying a Correlator Store

After you create a Correlator Store, as described in Creating a Correlator
Store on page 80, you can modify its properties, as needed.

To modify the Correlator Store, follow these steps:

1 Select FileOpen to open the Correlator Store.

The file browser window opens.

2 From the file browser window, select the file name.

The Correlator Store with the correlators displays.

3 To open a correlator, do one of the following:

— Double-click the correlator.

— Right-click the correlator in the table and click Modify.

The Correlator window opens.

4 Edit the Correlator Store file.

5 From the main menu, select one of the following:

• Click FileSave to save the file to its current file name.

• Click FileSave As to save the file to another file name.

Correlator Stores created in Composer versions before Composer 3.3 must be
migrated to the latest version. To find out how to migrate Correlator Stores,
see Migrating a Correlator Store to Composer 3.3 on page 82.

In NNM, only Save and Exit options are available. NNM has a
default Correlator Store. All updates must be made to this file.
Developing Correlators 81

Migrating a Correlator Store to Composer 3.3

You must migrate Correlator Stores created before Composer 3.3 to the latest
version with the following script:

• UNIX

$OV_CONTRIB/ecs/csmigrate.ovpl

• Windows

%OvInstallDir%\contrib\ecs\csmigrate.ovpl

To migrate a Correlator Store to Composer 3.3, enter the following:

csmigrate.ovpl <Correlator Store name> -lang
<ENGLISH|JAPANESE|CHINESE> -o <final Correlator Store name>

This command includes the following parameters:

<Correlator Store name>

Name of the Correlator Store to be migrated.

<ENGLISH|JAPANESE|CHINESE>

Native language of the Correlator Store to be migrated.

<final Correlator Store name>

Name of the Correlator Store after migration.
82 Chapter 4

Configuring Correlator Stores

Figure 16 shows the tasks you perform when configuring a Correlator Store.

Figure 16 Planning the Configuration

To configure a Configuration Store, perform the following tasks:

• Task 1: Defining Event Types on page 84

• Task 2: Optional: Defining Global Constants on page 85

• Task 3: Defining Alarm Correlators on page 87

• Task 4: Optional: Defining New Alarms on page 96

• Task 5: Optional: Creating Callback Functions on page 99

• Task 6: Setting the Perl File Location on page 101

Although tasks 2, 4, and 5 are optional, it is recommended that you perform
them if you have to define any of the parameters described in the tasks.
Developing Correlators 83

Defining Event Types

The event type determines the kind of events that enter HP Event Correlation
Services (ECS).

Composer supports the following event types:

HPOM

HPOM messages. Used only with HPOM.

SNMP

Default. SNMP traps. Used only for NNM.

You select the event type when you create a Correlator Store.

The default event type is SNMP. You can create a Correlator Store for one event
type at a time. If you want to change the event type, close the currently
opened Correlator Store and repeat the procedure.
84 Chapter 4

Optional: Defining Global Constants

Composer enables you to define global constants that bind values to names.
You can then refer to the values by these names when defining correlators.

Value Types for Global Constants

When you define named value pairs, the parameters you enter can refer to
global constants. For example, a named value called MULTI_LOGIN_FAIL that
you have defined can have the event attribute "multi_login_failure".

Table 4 lists examples of value types for global constants.

Table 4 Examples of Value Types for Global Constants

Value Type Example

Integer 123

Float 123.45

String "1234"

'abcd'

OID 1.2.3.4
Developing Correlators 85

Defining a Global Constant

To define a global constant, follow these steps:

1 From the main menu, click CorrelationsGlobal Constants.

The Global Constants Definition window opens.

2 Enter the following data:

Name

Name of the constant.

Value

Value for the name.

These values can be referenced anywhere inside the Correlator Store.

3 Click OK to close the window.

Deleting a Global Constant

To delete a global constant, follow these steps:

1 From the main menu, click CorrelationsGlobal Constants.

The Global Constants Definition window opens.

2 For each global constant you want to delete, do one of the following:

• Right-click the global constant and click Delete from the shortcut
menu.

• Click the global constant and press DELETE.

3 Click OK to close the window.

To add more global constants, right-click a row and click Add from
the shortcut menu. A new row is then added to the Global
Constants Definition table.
86 Chapter 4

Defining Alarm Correlators

To define alarm correlators, perform the following tasks:

• Task 1: Creating a Correlator on page 87

• Task 2: Defining a Correlator on page 87

• Task 3: Defining Variable Types on page 90

Creating a Correlator

Every correlator has a unique name that identifies it, a description that states
briefly what the correlator is expected to do, and a definition.

 To create a new correlator, follow these steps:

1 Click CorrelationCorrelation Templates.

2 From the list of templates, select the type of correlator you want to create.

The Correlator window opens.

3 Define the correlator.

For instructions, see Defining a Correlator on page 87.

Defining a Correlator

Figure 17 summaries the steps you follow to define a correlator.

Figure 17 Defining a Correlator
Developing Correlators 87

To define a correlator, follow these steps:

1 Enter a name for the correlator.

In the Correlator window, enter a name in the Name text box.

The alarm is referenced by this name throughout the Correlator Store.
Use names that start with a letter and contain only letters, numbers, and
underscores (_). Special characters (for example, !, @, #, ^, &, and *) are
not allowed. Make sure the name indicates the problem type (for example,
Generator_OFF).

2 Enter a description of the alarm.

Briefly state the cause of the alarm and what the correlator does.

3 Define the Alarm Signature.

To add an Alarm Signature, follow these steps:

a Click the Definition tab.

The Alarm Definition panel displays.

b Define the Alarm Signature.

The Alarm Signature is a set of values that specifies a filter.

c From the drop-down list, select the Field name.

For a list of valid event attributes for the event types supported by
Composer, see Appendix B, Event Attributes.

d From the drop-down list, select the Operator value.

For a list of valid operators, see Alarm Signature on page 43.

e Enter the value of the field for which the Alarm Signature is
described:

— To enter a value, click the Value cell and type the value.

— To select a global constant, double click the Value cell.

A shortcut menu displays the previously defined constants.
Choose the constant from the menu.
88 Chapter 4

4 Declare the variables.

Variables are names with associated values that can be used inside the
correlator definition.

To declare a variable, follow these steps:

a Enter a name for the variable.

b From the drop-down menu, select the variable type.

For a list of variable types supported, see Variables on page 47.

c Depending on the variable type you chose, enter a value.

To enter the value, click the Value cell. For instructions, see Defining
Variable Types on page 90.

5 Define the message key.

To define the message key, follow these steps:

a Click the Message Key box.

A shortcut menu displays all possible values.

b Select the variable or attribute you want to use as the message key.

6 Optional: Define the Advanced Filter.

From the shortcut menu in the respective columns, select the Attributes,
Operator, and Value.

This field is non-editable. For values to display, they must be previously
defined.

7 Define the parameters.

For descriptions of all the buttons in the parameters section, see Chapter
7, Use Cases in NNM and Chapter 8, Use Cases in HPOM.

8 Create the correlator.

Click OK to complete the creation of the correlator.

You do not need to define a message key for Suppress, Enhance, or
User-Defined correlations.
Developing Correlators 89

Defining Variable Types

This section explains how to define variable types:

• Defining Constant Values on page 90

• Combining Variables on page 90

• Extracting Value Patterns on page 92

• Defining Functions on page 93

• Validating Function Definitions on page 95

Defining Constant Values

You use constant values for reference when defining correlators.

To define a constant value, follow these steps:

1 Click the Value cell.

2 Enter the value.

The value displays in the cell.

Combining Variables

You can define a new variable by combining two or more previously defined
variables, attributes, or global constants.

In NNM, object IDs do not have the leading dot. For example,
1.2.3.4 is valid, but .1.2.3.4 is not.

A variable can represent data returned from a Data Store lookup. The
procedure is the same as when variables are to be combined.
90 Chapter 4

To combine the values of two or more variables, follow these steps:

1 Click the Value cell.

The Combine Definition window opens.

2 Click the Parameters cell.

A shortcut menu displays all attributes, predefined variables, and global
constants.

3 From the shortcut menu, select the attribute or variables.

The selected item displays in the Parameters cell.

4 To add a variable or attribute to the list, right-click the list and select Add
from the shortcut menu.

A new row is added.

5 Optional: To view all attributes and variables from a shortcut menu, click
the Parameters cell.

6 Select the variables, attributes, or global constants that you want to
combine.

Repeat this step to combine more variables, attributes, or global
constants.

7 Click on OK to close the Combine Definition window.

Before you combine variables, make sure the Parameters column
contains parameters for them. If the column does not contain
parameters, you cannot combine the variables.
Developing Correlators 91

Extracting Value Patterns

You can extract and use event attribute values inside correlation definition.

To define an extract pattern, follow these steps:

1 From the drop-down menu, select Extract.

2 Click the Value cell.

The Extract Pattern window opens.

3 Select the attribute from which you want to extract a substring.

4 In the Pattern text box, enter the pattern you want to extract.

For examples of extract patterns, see Appendix C, Pattern Matching.

5 In the Pattern Separator text box, enter the pattern separator.

By default, the pattern separator is an empty space.

6 Click OK to close the Extract Pattern window.
92 Chapter 4

Defining Functions

The variable type can be a function whose return value is bound to the name
of the variable. To find out how to write functions in C, see Writing C
Functions on page 104. To find out how to write functions in Perl, see Writing
Perl Functions on page 113.

To define a function, follow these steps:

1 Click the Function tab.

The Function window opens.

2 From the Function Type drop-down menu, select one of the following
function types:

— C

— Perl

— Built-in

To create a Callback function to be used when discarding the event, perform
this procedure in the Discard window instead of the Function window.
Developing Correlators 93

Perl and C functions are external functions that you supply. Built-in
functions are packaged with Composer.

Based on the type you select, the appropriate function names are loaded in
the Function Name field. To find out how to enable loading of C or Perl
function names, see Configuring the UserDevelopedFuncDetails.xml File
on page 111.

3 In the Function Name field, select or enter the name of the function you
want to call.

4 In the Function Description field, type a brief description of the function.

To view the entire description window, click the ellipses (...) button.

5 From the Function Usage drop-down menu, select the phase at which the
external function has to be invoked:

• Default

External function (written in Perl or C) is called.

• Event In

Function is called when the event enters ECS.

• Correlator Creation

Function is called when the correlator is instantiated.

• Correlator Deletion

Function is called when the instance of the correlator is deleted.

For details about correlator creation and deletion, see Table 1 on page 53.

As a prefix to the function name, you can add the name of the C
library name in which the function resides. For example, if a
function named BSCName() resides in a library called SNMPlib, you
can type the function name as SNMPlib:BSCName() in the
Function Name text box.

Likewise, as a prefix to the function name, you can add the name of
the Perl library name in which the function resides. For example,
for a function named function1 in a Perl file named User1.pm, you
can enter User1::function1. For details, see Support for
Multiple Perl Files on page 115.
94 Chapter 4

6 To select the mode in which the function must be called, click one of the
following:

• Synchronously

• Asynchronously

7 From the shortcut menu in the Parameter list, add the parameters for the
function.

8 Click OK to complete the function definition.

Validating Function Definitions

The details you enter in the Function window are validated against XML files:

• Built-in functions

The built-in functions are validated with the data in the following file:

— UNIX

$OV_CONF/ecs/CIB/BuiltInFuncDetails.xml

— Windows

%OvInstallDir%\conf\ecs\CIB\BuiltInFuncDetails.xml

Do not edit this file. The built-in functions provided with ECS are not
extensible.

• C and Perl functions

The C and Perl functions are validated with the data in the following file:

— UNIX

$OV_CONF/ecs/CIB/UserDevelopedFuncDetails.xml

— Windows

%OvInstallDir%\conf\ecs\CIB\UserDevelopedFuncDetails.xml

This file is extensible. You can add details about the C and Perl functions
that have been developed to this file. For instructions, see Configuring the
UserDevelopedFuncDetails.xml File on page 111.

These options are not valid for Composer built-in functions, which
are always invoked synchronously.
Developing Correlators 95

• Number of parameters

For function definitions with a fixed number of parameters, Composer
validates the number of parameters. For function definitions with a
variable number of parameters, Composer verifies that the definitions
have a minimum number of parameters. For example, the StoreStr()
function can hold a variable number of parameters even though the
minimum number of parameters is five. If the number of parameters does
not match the expected value, an error message appears. You can then
make the required modifications to the function definition.

The data type of parameters is not validated.

Optional: Defining New Alarms

You can define new alarms in one of two ways:

• Changing Alarm Attributes on page 96

• Creating a New Alarm on page 97

Changing Alarm Attributes

You can create new alarms by altering the attributes of existing alarms.

To change the attributes of an alarm, follow these steps:

1 In the Correlator window, click the New Alarms tab.

The New Alarms panel opens. By default, the None option is selected.

2 From the drop-down menu, select Alter Specification.
96 Chapter 4

The Alter Alarm Definition table displays.

3 From the drop-down menu in the Field column, select the attribute you
want to change.

4 From the drop-down menu in the Mode column, select the mode of
alteration you want to use:

• replace

Replaces the existing event contents.

• append

Appends the new values to the existing contents of the attribute.

5 From the shortcut menu, select the variable that is to be replaced or added
to the attribute contents.

Creating a New Alarm

You can create new alarms for outgoing events.

To create a new alarm, follow these steps:

1 From the drop-down menu in the New Alarms panel, select New Alarm
Specification.

Any new values to be appended must already be defined in the
Variables section of the correlator.
Developing Correlators 97

The New Alarm Definition table displays the mandatory attributes.

2 From the shortcut menu, select values for the fields.

The list of attributes are based on the configuration file:

<Composer install directory>/CO.conf.

If you need to add more attributes, you must edit the CO.conf file. For
instructions, see Defining Event Attributes on page 70. To find out how to
change mandatory attributes, see Changing Mandatory Attributes on
page 71.

3 To add new attributes to the new alarm, right-click the row and select Add.

A new row is added to the New Alarm Definition table. For a description of
the buttons in this table, see New Alarm Definition Table on page 98.

The text Alarm No. 1 displays in the upper-right corner of the table. You can
navigate through the list of alarms defined.

New Alarm Definition Table

In correlators, the New Alarm Definition table contains the following buttons:

Delete

Deletes the new alarm.

Feedback

Sends all alarms back to Composer.

Names are OpC_Msg message attributes. Values are case-sensitive,
user-defined variables.
98 Chapter 4

New

Creates a new alarm and displays a New Alarm Definition table.

Next

Moves to the next alarm created. Displays the contents of the succeeding
alarm in the new alarms list.

Previous

Moves to the previous alarm created. Displays the contents of preceding
alarm in the new alarms list.

Optional: Creating Callback Functions

When a correlator discards or creates an alarm, you can invoke a user-defined
function by using C, Perl, or built-in functions. You can choose parameters for
these functions from the set of variables defined for the correlator. Typically,
you use the Callback functions to create audit trails. For example, when you
delete an event, you can invoke a logging function.

To create a Callback function, follow these steps:

1 In the Correlator window, click the CallBacks tab.

The Callbacks panel displays.

2 From the Function Name drop-down menu, select the name of the
Callback function.

3 In Function Description field, type a description that describes what the
function does.

4 From the Function Type drop-down menu, enter the mode in which the
function must be called.

5 From the Function Usage drop-down menu, select the time at which the
function is to be called.

6 From the shortcut menu in the Parameters table, select the parameters to
the external function.

7 Optional: To add more parameters to the function, right-click and select
the attributes from the shortcut menu.

8 Click OK to complete the Callback function definition.
Developing Correlators 99

Callback Variables

You can access all alarms attributes by the corresponding alarm names.

Callback Functions

You can access automatic variables by using the following functions:

• Create Callback

You can use the Create Callback function to access the attributes of the
new alarm just created by using the New Alarm automatic variable.

• Discard Callback

The automatic variables for the Discard Callback function depend on the
correlation model you choose.

Automatic Variables

Automatic variables are available for specific correlation models only:

• Discarded (Multi-Source model only)

In the Multi-Source model, you can access the attributes of the discarded
alarm from the Discarded automatic variable. You can also access the
attributes of the alarms in the set by name.

• Suppressor (Transient model only)

In the Transient model, the Discard Callback function is called only for
the Fail alarm. The Callback function can access all attributes of the Clear
alarm by using the Suppressor automatic variable.

No automatic variables are available for the Enhance, Rate, Repeated,
Suppress, or User-Defined modes.
100 Chapter 4

Setting the Perl File Location

Before you can write external functions in Perl, you must provide Composer
with the Perl file location.

To set the Perl file location in Composer, follow these steps:

1 In the Correlator Store window, click CorrelationsPerl File.

The Perl File window opens.

2 Enter the name of the Perl file.

By default, the Perl file is located in the following directory:

• UNIX (HP-UX, Linux, and Solaris)

$OV_CONTRIB/ecs/external/perl

• Windows managed node

%OvInstallDir%\contrib\ecs\external\perl

• Windows management server

%OvShareDir%\contrib\ecs\external\perl

To set Perl files in a different location, you must specify the relative path
in the Perl File window. To find out how to reference multiple Perl files,
see Writing Perl Functions on page 113.

3 Click OK to close the Perl File window.
Developing Correlators 101

Managing Correlators

This section explains how to do the following:

• Opening a Correlator on page 102

• Modifying a Correlator on page 103

• Deleting a Correlator on page 103

Opening a Correlator

To open an existing correlator, follow these steps:

1 From the main menu, click FileOpen.

The file browser displays all the Correlator Stores that have been defined.

2 Do one of the following:

• In the File panel, enter the Correlator Store name.

• From the directory listing, select the file name.

The Correlator Store displays all existing correlators.

3 Double-click the correlator you want to open.

The Correlator window opens.

In the Operator mode, Composer does not allow you to create new correlators.
For details, see Chapter 10, Operator Mode in NNM.
102 Chapter 4

Modifying a Correlator

After you define a correlator, you can modify its properties, as needed.

To modify a correlator, follow these steps:

1 In the Correlator Store window, do one of the following:

• Double-click the name of the correlator you want to open.

• Right-click the name of the correlator you want to open, and then
select Modify from the shortcut menu.

The Correlator window opens.

2 Modify the properties of the correlator.

3 Click OK to save your changes.

The Correlator window closes. You return to the Correlator Store window.

Deleting a Correlator

When you delete a correlator, the selected correlation record is deleted from
the Correlator Store file. Composer sorts the remaining correlators by name in
alphabetical order.

To delete a correlator, follow these steps:

1 Open the Correlator Store window.

2 Do one of the following:

• Select the correlator you want to delete, and then press Delete.

• Right-click the correlator you want to delete, and then select Delete
from the shortcut menu.
Developing Correlators 103

Writing C Functions

This section describes how to write external C functions for Composer.

Creating a C Function

To create a C function that is accessible in Composer, follow these steps:

1 Write the C function.

Follow these guidelines:

• Skeleton Code for C Functions on page 105

• Signatures for C Functions on page 107

• Parts of C Functions on page 107

2 Create a shared library of the C function in the following location:

— UNIX

$OV_CONTRIB/ecs/external

— Windows

%OvInstallDir%\contrib\ecs\external

For more information about C libraries, see Managing Correlators on
page 102.

3 Configure the UserDevelopedFuncDetails.xml file for ease of use in
Composer GUI.

For instructions, see Configuring the UserDevelopedFuncDetails.xml File
on page 111.
104 Chapter 4

Skeleton Code for C Functions

When writing C functions, use the following skeleton code:

#include <stdio.h>

#include <ECS/GC_Values.h>

int testFunction(int argc,void ** argv,int reqId,int cmdId, genc_callback *

callback)

{

int i = 0;

char * str = NULL;

char * oid = NULL;

char myStr[] = "some string ";

char myOid[] = "1.2.3.4.5.6.7.8.9";

GC_Values ** retValue = NULL;

GC_Values * intVal = NULL;

GC_Values * strVal = NULL;

GC_Values * oidVal = NULL;

/* Do your own checking here - this example checks if number of arguments is 3 */

if(argc != 3)

{

/* Improper No. for argumnets */

/* Allocate the space for returning the err string back to Composer */

retValue = (GC_Values **)calloc(1,sizeof(GC_Values *));

GC_MAKEVALUE(GC_ERRSTR, "Improper Arguments", strVal);

if(!strVal)

{ /* just return */

callback(reqId, cmdId, 0, NULL);

return ;

}

retValue[0] = strVal;

/* Do callback to notify the error */

callback(reqId, cmdId, 1, &retValue);

return 0;

}

/* Get the arguments passed to the function. The type of the arguments needs to

be defined by the function writer and its the resposibility of the Composer user

to pass in the correct number and type.*/

/* Do not free these values, will be freed by caller when callback is called */

i = *(int *)argv[0];

str = (char *)argv[1];

oid = (char *)argv[2];
Developing Correlators 105

/* Object ID will be passed as string to the function */

/* Do your processing here */

/* processing is done-time to return back to the Composer*/

/* THIS is the second half */

/* Allocate space for 3 return values - one can return any number of retrun

values - the example return 3 */

retValue = (GC_Values **)calloc(3,sizeof(GC_Values *));

/* Now create the wrapper to pass back the values to Composer*/

GC_MAKEVALUE(GC_INTEGER, &i, intVal); /* Integer*/

if(!intVal)

{

/* Do Error handling */

}

GC_MAKEVALUE(GC_STRING, myStr, strVal); /* String */

if(!strVal)

{

/* Do Error handling */

GC_FREEVALUE(intVal);

}

GC_MAKEVALUE(GC_OID, myOid, oidVal); /* Object ID */

if(!oidVal)

{

/* Do Error handling */

GC_FREEVALUE(intVal);

GC_FREEVALUE(strVal);

}

/* Set the 3 return values in the wrapper */

retValue[0] = intVal;

retValue[1] = strVal;

retValue[2] = oidVal;

/* Call the callback to give the value back to Composer

1. ReqId

2. cmdId passed as the argument to this function

3. Number of return values i.e. number of elements in the

GC_Values array

4. Address of the GC_Values array */

callback(reqId, cmdId, 3, &retValue);

return 0;

}

106 Chapter 4

Signatures for C Functions

From Composer, invoke the following signature for all C functions:

int func(int argc, void ** argv, int reqId, int cmdId,
genc_callback *callback)

This signature contains the following parameters:

argc

Number of arguments passed.

argv

Array of pointers to the arguments.

reqId|cmdId

Opaque parameters used when running the Callback function.

callback

Pointer to a function must be invoked on completion. The function passes
back any return values to Composer.

Parts of C Functions

C functions consist of the following parts:

• Part 1: Passing Arguments on page 107

• Part 2: Processing Arguments on page 108

• Part 3: Returning Values on page 108

Passing Arguments

You begin a C function by passing arguments from Composer. The function
can take any number of arguments of any type. To ensure that the correct
parameters are passed, you must configure Composer correctly.

In Skeleton Code for C Functions on page 105, the function assumes three
parameters: an integer, a string, and an object ID. The pointers to these
parameters are in argv. They are accessed as argv[0], argv[1], argv[2].
When accessing these pointers, make sure they are cast as the right type.
Developing Correlators 107

Processing Arguments

After passing arguments from Composer, the C function processes them. The
C function must not free the parameters that it has passed from Composer.
When it is evoked, the Callback function frees space.

Table 5 lists the data type that are passed from and received by Composer.

Returning Values

After processing arguments from Composer, the C function returns a value or
set of values back to Composer. The C function indicates that processing has
completed by invoking the Callback function. This mechanism enables you to
process either synchronously or asynchronously. In other words, the function
returning does not indicate function completion.

You can extract the arguments, queue them up for processing by some other
thread, and return immediately. After processing, you can invoke the Callback
function to return the values to Composer and simultaneously indicate
completion. (The call to the Callback function is made from a function other
than the function that was originally called.)

Extracting arguments in this way is useful when, for example, the function
must go over the network to access data, or when databases must be accessed,
both of which take time. If the function being invoked takes very little time, it
is recommended that you call the Callback function and then return it.

Table 5 Data Types in Composer

Passed from Composer Received by Composer

Integer Integer

Float Float

String Char *

Object ID Char *

Time Integer
108 Chapter 4

If the function encounters an error at any point during its processing, the
error is indicated by calling the Callback function with the error code as
shown in the example.

Returning values consists of four tasks:

• Task 1: Allocating Space for the Return Values on page 109

• Task 2: Wrapping the Return Values on page 109

• Task 3: Marshalling the Return Values on page 110

• Task 4: Running the Callback Function on page 111

Allocating Space for the Return Values

To allocate space for return values, the function makes the following calls:

retValue = (GC_Values **)calloc(X,sizeof(GC_Values *));

In this command, X is the number of return values that must be returned.

The retValue call is defined as follows:

- GC_Values ** retValue = NULL;

Wrapping the Return Values

The GC_MAKEVALUE macro is contained in the GC_Values.h file in the
following directory:

• UNIX (HP-UX, Solaris, and Linux)

 $OV_HEADER/ecs/ECS

• Windows

%OV_HEADER%\ecs\ECS

To wrap return values, the function invokes the following macro:

GC_MAKEVALUE(GC_INTEGER|GC_STRING|GC_OLD|GC_FLOAT, valToReturn,
strVal);

GC_Values * strVal = NULL

The Callback function must be called even if the function succeeds.
Developing Correlators 109

This macro contains the following parameters:

GC_INTEGER

Returns an integer.

GC_STRING

Returns a string.

GC_OID

Returns an object ID. To return an Object ID, the valToReturn parameter
should be a string in the dot notation.

Example: "1.2.3.4"

GC_FLOAT

Returns a float.

valToReturn

Holds the value to be returned.

strVal

Points the macro GC_Values (for example, GC_Values * strVal;).

Marshalling the Return Values

After allocating space and wrapping returning values, the function combines
the two.

Assuming there are two values to be returned, the function calls the following:

retValue[0] = valToReturn1;

retValue[1] = valToReturn2;

This call includes the following:

retValue

Return value whose space is defined in Allocating Space for the Return
Values on page 109.

 valToReturn1|valToReturn2

Returned values, which are wrapped in Wrapping the Return Values on
page 109.
110 Chapter 4

Running the Callback Function

After combining allocated space and wrapped return values, the function
indicates that the process is complete and returns the values.

The function calls the following:

callback(reqId, cmdId, 3, &retValue);

This call includes the following:

callback

Points to a function that was passed as the fifth parameter.

reqId and cmdId

Third and fourth parameters passed.

Configuring the UserDevelopedFuncDetails.xml File

To eliminate the task of manually entering function details (for example,
name, signature, and call mode) when creating a function definition, you can
configure the UserDevelopedFuncDetails.xml file. This file enables you to
access function details quickly and easily from the Composer GUI (for
example, in the Function Definition dialog box).

The XML file is located in the following directory:

• UNIX

$OV_CONF/ecs/CIB/UserDevelopedFuncDetails.xml

• Windows

%OV_CONF%\ecs\CIB\UserDevelopedFuncDetails.xml

To configure the UserDevelopedFuncDetails.xml file, follow these steps:

1 For each function, add the following details to the XML file:

FunctionName

Name of the function in the following format:

LibraryName:FunctionName

FunctionDescription

Brief description of the function behavior.

Composer supports this feature only in Developer mode. If this feature is not
used, you can manually enter the function details as before.
Developing Correlators 111

FunctionSignature

Signature of the function signature.

Example:

add int1 int2

In this example, int1 int2 are the integer values to be added.

No_Of_Args

Number of parameters to be added. -1 indicates a variable number of
parameters.

Min_No_Of_Args

Minimum number of parameters expected. Applicable only if the
number of parameters is -1.

FunctionType

Type of function. Value can be C or Perl.

FunctionUsage

Usage of the function.

Value can be one of the following:

— Default

— Correlator Creation

— Correlator Deletion

— Correlator EventIn

— Function call mode

FunctionCall

Function call. Value can be Asynchronous or Synchronous.

2 Validate the updated XML file.

When Composer starts, it validates the XML file for syntax and semantic
errors. The function definitions are validated with the corresponding XML
schema file, function.xsd, located in the same directory as the XML
file. If errors are found, they are reported on the command line or in a log
file (if XPL is enabled). If no errors are found, the parser loads the
definitions into memory.
112 Chapter 4

Writing Perl Functions

This section describes how to write external Perl functions for Composer.

Creating a Perl Function

To create a Perl function that is accessible in Composer, follow these steps:

1 Write the Perl function.

For guidelines, see Skeleton Code for Perl Functions on page 113.

2 Store the file in the following location:

• UNIX

$OV_CONTRIB/ecs/external/perl

• Windows managed node

%OvInstallDir%\contrib\ecs\external\perl

• Windows management server

%OvDataDir%\contrib\ecs\external\perl

Skeleton Code for Perl Functions

This section includes skeleton code you can use to write Perl functions. In this
skeleton, the orchPerlfunction function contains the key elements required
to write a Perl function. The arguments are passed to the function as an array.
Individual parameters can be accessed as array elements. Object IDs are
passed as a string in the dot notation format (for example, "1.2.3.4").

It is strongly recommended that you test Perl functions outside of
Composer. The embedded Perl interpreter is known to exit on
syntax or parse errors.

Only one Perl file can be loaded into the Composer at run time. If
multiple Perl files are required, see Support for Multiple Perl Files
on page 115.
Developing Correlators 113

Multiple return values can be returned. If an object ID must be returned, it
must be encapsulated before returning. If you need to return an object ID,
include the ecdlEncap subroutine.

Function to encapsulate return values into ECS specific data types

Do not modify

sub ecdlEncap

{

my $x=$_[0];

my $z=$_[1];

if("$z" eq "ECS_OID")

{ push @$x,"ECS_OID"; }

}

sub OrchPerlFunction

{

Get the arguments to the function

my $arg0 = $_[0];

my $arg1 = $_[1];

my $arg2 = $_[2];

Do processing here

return value(s) back to the Composer

Example of returning an int - uncomment the next two lines & modify

$retVal = 10

$retVal

Example of returning a string - uncomment the next two lines & modify

$retVal = "Hello World";

$retVal;

Example of returning a multiple values - uncomment the next four lines & modify

@retVal ;

@retVal ;

$retVal[0] = "Hello World";

$retVal[1] = 10;

$retVal[2] = "This is the 3rd return value";

@retVal;

Example of returning a Object ID type - OID . Uncomment the next 3 lines &

modify

@retVal = ("1.2.3.4");

ecdlEncap(\@retVal, "ECS_OID");

return (\@retVal);

Example of multiple values, including OID. Uncomment the next 5 lines and

modify

@retVal0 = ("1.2.3.4");

$retVal1 = 1;

return an Integer

$retVal2 = "Hi there";

return an string

ecdlEncap(\@retVal0, "ECS_OID");

return(\@retVal0, $retVal1, $retVal2);

return a Object ID, int and a string

}

114 Chapter 4

Support for Multiple Perl Files

Although Composer supports multiple Perl files, it does not support multiple
Perl files with more than one MAIN routine (BEGIN block).

Including Files on UNIX

On UNIX, to include one Perl file in another Perl file, you need the use
keyword:

p.pm
sub f {
my $rv = "HELLO THERE!!";
return $rv;
}
1;

t.pl
BEGIN{
push(@INC, '\/opt\/OV\/contrib\/ecs\/external\/perl\/');
}
use p;

In this example, the Perl file t.pl includes the file p.pm by using the keyword
use. Only t.pl includes a BEGIN block.

Including Files on Windows

On Windows, to include one Perl file in another Perl file, you use the following:

p.pm
sub f {
my $rv = "HELLO THERE!!";
return $rv;
}
1;

t.pl
BEGIN{
push(@INC, $ENV{OvInstallDir} .'contrib\\ecs\\external\\perl\\');
};

On UNIX, Perl files are normally stored in the following directory:

/opt/OV/contrib/ecs/external/perl/

If Perl files are stored in this directory, you do not need to provide the
complete path when loading Perl to the ECS engine.
Developing Correlators 115

Only t.pl includes a BEGIN block.

Creating a Main Perl File

When creating multiple Perl files, it is recommended that you create one main
Perl file that contains a BEGIN block that performs a few initialization tasks,
at most. Make sure to include all the other Perl files in the main Perl file by
adding a use keyword.

For example, two users create individual Perl files. The first user develops a
set of Perl functions in user1.pm. The second user develops a set of Perl
functions in user2.pm. You can include both files in the main Perl file,
main.ovpl, by using the statements use user1; and use user2;. Only the
main.ovpl file must be referenced from Composer.

In this example, if the files user1.pm and user2.pm are in a different location
than the main.ovpl file, the file main.ovpl must add their locations:

push(@INC, <location of Perl files>);

If user1.pm and user2.pm have clashing function names, the main.ovpl file
must use the scope resolution operator (::) when making a function call like
user1::f().

To eliminate the task of manually entering function details whenever you
create a function definition in Composer, you can configure the
UserDevelopedFuncDetails.xml file. For details, see Configuring the
UserDevelopedFuncDetails.xml File on page 111.

On Windows, Perl files are normally stored in the following directory:

• Managed node

%OvInstallDir%\contrib\ecs\external\perl

• Management server

%OvDataDir%\contrib\ecs\external\perl

If Perl files are stored in this directory, you do not need to provide the
complete path when loading Perl to the ECS engine.

All Perl files other than the main Perl file must have the extension .pm.
116 Chapter 4

User-Defined Correlation

If the predefined correlator templates do not meet your requirement, you can
use the User-Defined template. Like the other templates, the User-Defined
template has Alarm Definition, New Alarm, and Callback sections.

Input Functions

In the User-Defined template, you call the input function when the event
satisfies the Alarm Signature and Advanced Filters. You can write the input
function in Perl, C, or built-in functions (for example, makelist).

The return value must be in the following format:

flag, window, alarm mask, optional values

This return format includes the following parameters:

flag

Mandatory. Action to be taken on the alarm. You can provide multiple
values with OR.

This parameter can have one or more of the following values:

ALTER

Alters the event, as specified in the Alter Alarm specification.

Default: 4

CREATE

Creates a new event, as specified in the New Alarm specification.

Default: 16

DISCARD

Discards the event.

Default: 2
Developing Correlators 117

HOLD

Holds the event for the time window specified in the window
parameter. After this time window, it invokes the specified output
function. If you specify the parameter, the event is held for the
specified time window, regardless of other correlators outputting the
same event. At the specified time, the output function is invoked. Its
return value determines the action to be taken on the event.

Default: 1

PASSTHROUGH

Outputs the event. The event is output only if no other correlator is
used to DISCARD or HOLD it.

Default: 8

WEAKHOLD

Holds the event for the time window specified in the window
parameter. If other correlators output the event, a copy of the event is
held, and the output function is invoked after the number of second
specified in window.

Typically, you use WEAKHOLD to invoke the output function at the end of
the specified time window to send a new alarm (by creating or altering
the alarm).

Default: 64

PSEUDOHOLD

Does not hold the event. However, it calls the output function after the
number of seconds specified in window. If you specify PSEUDOHOLD, the
output function cannot return ALTER or CREATE. If you need to create
or alter alarms in the output function, you must use either WEAKHOLD
or HOLD. Use PSEUDOHOLD when the output function needs to be called
after the specified time window (typically, to do cleanup).

Default: 32

The HOLD, PSEUDOHOLD, and WEAKHOLD flags can be used only by the
input function.
118 Chapter 4

window

Mandatory. Valid only if the flag parameter contain HOLD, WEAKHOLD, or
PSEUDOHOLD. This parameter indicates the time, in seconds, after which
the output function is invoked.

alarm mask

Mandatory. Controls the set of alarms to be created. In the New Alarm
section, several alarms can be defined. However, in many cases, only a
subset of these new alarms must be created. You use this parameter to
control the set of alarms to be created. For example, if five alarms have
been defined in the New Alarm section, and this parameter is set to 3 (last
two bits are set), the first and second alarms are created.

To create all alarms defined, use a mask of -1.

optional values

Optional. Any values other than the mandatory values returned are
bound to a variable called InputRetVal. For example, if the function
returns only one optional value (for example, HOLD, 5, 10), the
InputRetVal variable is bound to the value 10, and can be used like any
other variable. If the function returns more than one optional value (for
example, HOLD, 5, 10, 20, 30), the InputRetVal variable is bound to a
list that contains more than one optional value (for example, 10, 20, and
30). You can access individual elements by using the built-in getByIndex
function.

This parameter is valid only if you choose the CREATE option as part
of the flag parameter. Otherwise, the value is ignored.
Developing Correlators 119

Output Functions

In the User-Defined template, you invoke output functions when the flag
returned by the input function is either HOLD, PSEUDOHOLD, or WEAKHOLD. The
function is called after the number of seconds specified in the window
parameter of the input function.

The return value must be in the following format:

flag, alarm mask, optional values

This return format includes the following parameters:

flag

Mandatory. Action to be taken on the alarm.

alarm mask

Mandatory. Controls the set of alarms to be created. For details, see Input
Functions on page 117.

optional values

Optional. Additional values returned by the function. These values are
bound to an OutPutRetVal variable. You access the OutPutRetVal
variable the way you access the InputRetVal variable. For details, see
Input Functions on page 117.
120 Chapter 4

Writing a User-Defined Function

To write input or output functions in C for User-Defined correlation, you use
the process for writing external C or Perl functions:

• Writing C Functions on page 104

• Writing Perl Functions on page 113

The only differences are the return values.

Return Values

User-Defined correlation uses the following return values:

• Input function

Must return at least two values: flag and window period.

• Output function

Must return at least one value: flag.

Flag Values

You define the values for the flags in the GC_Values.h file:

• UNIX (HP-UX, Solaris, and Linux)

 $OV_HEADER/ecs/ECS/GC_Values.h

• Windows

%OV_HEADER%\ecs\ECS\GC_Values.h

Although environment variables (for example, %OV_CONTRIB% and
%OV_HEADER%) exist on Windows, they are not set globally. Instead,
the variables are set by the "%OvInstallDir%\bin\ov.envvars.bat"
script, which must be executed before Composer can be launched.

To set the required environment variables, enter the following:

"%OvInstallDir%\bin\ov.envvars.bat"
Developing Correlators 121

Skeleton Code for User-Defined Functions

When writing input or output functions in C for User-Defined correlation, use
the following skeleton code:

#include <stdio.h>

#include <ECS/GC_Values.h>

int InputFunction(int argc,void ** argv,int reqId,int
cmdId,genc_callback *

callback)

{

int flags = GC_WEAKHOLD|GC_PASSTHRU;

int window = 300 /* window period of 300 seconds */

int arg1 = 0, createMask =0;

char * arg2 = NULL;

GC_Values ** retValue = NULL;

GC_Values * flagVal = NULL;

GC_Values * maskVal = NULL;

GC_Values * windowVal = NULL;

/* Do your own checking here */

/* Get the arguments passed to the function - assuming 2 parameters are
passed in

*/

arg1 = *(int *)argv[0];

arg2 = (char *)argv[1];

/* Now that you have the parameters passed in, do your processing here
*/

/* processing is done - time to return back to the Composer */

/* THIS is the second half */

/* Allocate space for 3 return values - one can return more than 3 */

retValue = (GC_Values **)calloc(3,sizeof(GC_Values *));

/* Now create the wrapper to pass back the values to Composer*/

GC_MAKEVALUE(GC_INTEGER, &flag, flagVal); /* Integer */

GC_MAKEVALUE(GC_INTEGER, &createMask, maskVal);

GC_MAKEVALUE(GC_INTEGER, &window, windowVal);

/* Set the 3 return values in the wrapper */

retValue[0] = flagVal;
122 Chapter 4

retValue[1] = windowVal;

retValue[2] = maskVal;

callback(reqId, cmdId, 3, &retValue);

return 0;

}

/* Skeleton for the Output function */

int OuputFunction(int argc,void ** argv,int reqId,int
cmdId,genc_callback *

callback)

{

int flags = GC_CREATE;

int createMask=-1; /* create all new alarms defined */

int arg1 = 0;

GC_Values ** retValue = NULL;

GC_Values * flagVal = NULL;

GC_Values * maskVal = NULL;

/* Do your own checking here */

/* Get the arguments passed to the function- assuming 1 argument is
passed in */

arg1 = *(int *)argv[0];

/* Now that you have the parameters passed in, do your processing here
*/

/* processing is done - time to return back to the Composer */

/* THIS is the second half */

/* Allocate space for 2 return values - one can return more than 2 */

retValue = (GC_Values **)calloc(2, sizeof(GC_Values *));

/* Now create the wrapper to pass back the values to Composer*/

GC_MAKEVALUE(GC_INTEGER, &flag, flagVal); /* Integer */

GC_MAKEVALUE(GC_INTEGER, &createMask, maskVal); /* Integer */

/* Set the 2 return values in the wrapper */

retValue[0] = flagVal;

retValue[1] = maskVal;

callback(reqId, cmdId, 1, &retValue);

return 0;

}

Developing Correlators 123

Merging Correlator Store Files

To merge two Correlator Stores, you use the csmerge tool. For example, you
may need to merge two Correlator Stores when you update a correlator in
your production environment with the latest revision of the correlator.
Likewise, you may need to update a correlator when you add newly developed
correlators to your production environment.

Within a Correlator Store, no two global constants or correlators can have the
same name. When two global constants or correlators have the same name,
but different values or correlation logic, they clash. If there is a clash, external
input is required to continue with the merge. You provide external input
interactively or by specifying them in the configuration file. If there is no clash
in names, the merge is automatic.

The the csmerge tool is available in the following directory:

• UNIX (HP-UX, Solaris, and Linux)

$OV_CONTRIB/ecs

• Windows

%OvInstallDir%\contrib\ecs

The csmerge tool recognizes the following options:

csmerge -namespace NameSpace.conf <final Correlator Store name>

csmerge -rm_desc <Correlator Store name> <final Correlator Store
name>

csmerge <file1> <file2> <final Correlator Store name>

-config <configuration filename>

The csmerge -h command summarizes the usage of csmerge. You can execute
only one command at a time. The csmerge command ignores all commands
except the first.

In HPOM environments, you merge and deploy by using the ovocomposer
command. For details, see Merging and Deploying Correlator Store Files on
page 154.

The csmerge tool is implemented as a Perl script. It requires a Perl 5.6 or
higher. The %OV_CONTRIB% environment variable is valid on Windows only if
ov.envvars.bat is sourced.
124 Chapter 4

Merging Correlator Stores Specified in the NameSpace File

You can merge Correlators Stores listed in a given namespace by specifying
the name of the NameSpace file. All Correlators from the Correlator Stores
are prefixed with the logical name (as mentioned in the NameSpace file) of the
Correlator Store as <Logical Name>_< Correlator Name> in the final
Correlator Store. If there is an overlap of names of global constants, the global
constants are prefixed with the logical name of the Correlator Store. For this
reason, it is important that the logical names for correlators be unique.

When you invoke csmerge with the -namespace option, all Correlator Stores
are locked to enable merging. If the locking fails even for one of the Correlator
Stores, the merge process fails.

To merge the Correlator Stores that are listed in the Namespace file, type the
following:

csmerge -namespace <Namespace filename> <final Correlator
Store name>

This command includes the following parameters:

<Namespace filename>

Name of the NameSpace file from which the Correlator Store file is
picked.

<final Correlator Store name>

Name of the merged Correlator Store.

Example:

csmerge.pl -namespace /etc/opt/OV/share/conf/ecs/CIB/
NameSpace.conf /tmp/demoFactstore.fs

Removing User Descriptions from the Correlator Store

To remove the user description from a Correlator Store file, type the following:

csmerge -rm_desc <Correlator Store name> <destination
Correlator Store name>
Developing Correlators 125

This command includes the following parameters:

<Correlator Store name>

Name of the Correlator Store from which the user description is to be
removed.

<destination Correlator Store name>

Name of the Correlator Store without the user description.

Merging Correlator Stores

You can merge Correlator Stores that are created, but not listed in the
NameSpace configuration file, to a single Correlator Store.

To merge two Correlator Stores, type the following:

csmerge <file1> <file2> <mergedfile> -config <configuration
filename>

This command contains the following parameters:

<file1> and <file2>

Correlator Stores to be merged.

<mergedfile>

File that results from the merger.

<configuration filename>

File that specifies which values are considered while merging the
Correlator Stores. If you specify this option, the user is not prompted for
input, and all specifications are taken from the configuration file.

If there is a clash, one of following things can happen:

• Definition is picked from File1.

• Definition is picked from File2.

• Both definitions are picked, but the name for one of them is changed.

In interactive mode (where is there is no configuration file), users must choose
one of these three options. In non-interactive mode, the configuration file
resolves the clash.
126 Chapter 4

Configuration File

The configuration file has the following format:

decision-tag:<list of comma-separated names>

The decision-tag variable is one the following:

Global_Constant_from_File1

Global Constant from File1 is used in the mergedfile.

Global_Constant_from_File2

Global Constant from File2 is used in the mergedfile.

Correlator_from_File1

Correlator from File1 is used in the mergedfile.

Correlator_from_File2

Correlator from File2 is used in the mergedfile.

When creating a configuration file, you must follow these punctuation rules:

• Separate names with commas.

• Begin every decision-tag on a new line.

• Place the decision-tag and the list of names on the same line.

• Separate the decision-tag and the list of names with a colon (:).

• Place comments on new lines that begin with a number sign (#). Each line
that begins with a number sign in the first column is read as a comment.

For an example of a configuration file, see Example 2: Configuration File on
page 129.
Developing Correlators 127

Example 1: Clashing Global Constants

As an example of clashing global constants, File1 has a global constant called
Clash with a value of 100. File2 has a global constant called Clash with a
value of 200.

This conflict can result from two possible scenarios:

• Intention

The value of the global variable was deliberately changed to 200, in which
case the only global that is in the merged file is Clash with a value of 200.

In this case, the configuration file would look like this:

Global_Constants_from_File2:Clash

• Coincidence

The names being the same is merely a coincidence. In this case, you need
to add both to the merged file, but change the name of one of the variables.
The configuration file is empty, but the file must be present. The merge
tool automatically changes one of the names, and then adds both to the
merged file.
128 Chapter 4

Example 2: Configuration File

A configuration file might look like this:

Global_Constant_from_File1:a,b

Global_Constant_from_File2:x,y

Correlator_from_File1:i,j

Correlator_from_File2:m,n

This configuration file specifies the following for the merge tool:

Global_Constant_from_File1:a,b

If there is a clash of global constants a or b, the global constants a and b in
the merged file are taken from File1.

Global_Constant_from_File2:x,y

If there is a clash of global constants x or y, the global constants x and y in
the merged file are taken from File2.

Correlator_from_File1:i,j

If there is a clash of correlators with names i or j, the correlators i and j
in the merged file are taken from File1.

Correlator_from_File2:m,n

If there is a clash of correlators with names m or n, the correlators m and n
in the merged file are taken from File2.

In addition, if there is a name clash other than those specified in the
configuration file, both names are used in the merged file after one of the files
is renamed. The tool generates a unique name by appending an underscore (_)
to the name in File2. For example, if there is a name clash for a correlator
with the name z, both correlators are added to the merged file. The correlator
from File2 is renamed z_.

The default C library and Perl filename are always taken from File2.
Developing Correlators 129

130 Chapter 4

5 Composer in NNM
This chapter explains how to use the HP Correlation Composer in the
HP Network Node Manager (NNM) environment:

• Correlator Stores on page 131

• Operator Mode on page 132

• Developer Mode on page 135

• Built-In Function on page 137

Correlator Stores

NNM provides a set of built-in Correlator Stores that enable you to maintain
correlators specific to that environment. These correlators are loaded and
enabled when NNM is installed. You can enable or disable them at any time
from the Correlation Composer window. For more information about these
correlators, see Managing Your Network with HP Network Node Manager.

In the NNM environment, Composer is available through the HP Event
Correlation Services (ECS) Configuration window.
 131

Operator Mode

In the NNM environment, operators start Composer in Operator mode to
perform basic tasks.

Starting Composer in Operator Mode

To start Composer in Operator mode, follow these steps:

1 In the Event Configuration window, select EditEvent Correlation.

A web browser opens and displays correlations.

2 Select the row with Composer and click the Modify button.

The Composer window opens in Operator mode.

NNM Built-In Correlator Stores Correlators for OV_NodeIf
132 Chapter 5

Operator Tasks

When operators launch Composer from NNM, permissions to certain menus,
correlators, and correlator fields are restricted.

In particular, operators can perform only the following tasks:

• View correlators

View correlators defined for the listed NameSpaces. By default, only the
NNM built-in correlators are visible in the Composer GUI.

• Edit parameters

Edit those parameters defined as editable. By default, almost all of the
correlator parameters for the NNM built-in correlators are not editable.

• Save correlators

Save changes made to the Correlators by doing one of the following:

— Click the Save button.

— Click FileSave.

Save Correlator Store files to the following directory:

— UNIX

$OV_CONF/ecs/CIB

— Windows

%OV_CONF%\ecs\CIB

You must deploy the Correlator Store to apply its changes to the ECS
engine.

• Deploy Correlator Stores

Deploy Correlator Stores to the ECS engine by doing one of the following:

— Click the Deploy button.

— Click CorrelationsDeploy.

• Launch online help

Launch the online help contents by doing one of the following:

— Click the Help button.

— Click HelpTable of Contents.
Composer in NNM 133

Operator Menu Options

In the NNM environment, operators can use the following Composer menu
options:

FileSave

Saves the Correlator Store.

By default, NNM ships four Correlator Stores: NNMBasic.fs, NodeIf.fs,
PollerIntermittent.fs, and PollerLinkDown.fs.

FileClose

Closes the Correlator Store.

FileExit

Closes the Composer window.

CorrelationsGlobal Constants

Opens the Global Constants window, where you can edit the values of
Global Constants that are declared editable in the Security file. For more
information about the Security file, see Security File on page 244.

CorrelationsDeploy

Deploys the Correlator Stores listed in the NameSpace file. By default, the
NameSpace file lists the Correlator Stores OV_NNM_BASIC and OV_NodeIf.
The Deploy procedure involves merging the Correlator Stores into a single
Correlator Store, and loading the merged file into the ECS engine. For
details about the Deploy procedure, see Deploying the Correlator Store on
page 257. To find out how to create the Deploy configuration file, see
Creating Deploy Configuration Files on page 251.

OptionsForcefully Unlock

Provides mutually exclusive access to the Correlator Store. For
information about file locking, see Locking Files on page 261.

OptionsAppearance

Displays a submenu for selecting the look and feel of the interface.

OptionsView/Restore Backup

Displays a submenu to select the backup file version. For information
about backing up files, see Backing Up Files on page 73. In the NNM
environment, all users have read and write permission for backup files.
134 Chapter 5

HelpOverview

Displays the first page of the Composer online help.

HelpTable Of Contents

Displays the table of contents of the Composer online help. You can also
view the online help index from this window.

HelpAbout Correlation Composer

Displays the current release and copyright information for Composer and
associated software.

Developer Mode

In the NNM environment, you start Composer in Developer mode to maintain
the configuration files and use built-in functions.

Starting Composer in Developer Mode

To start Composer in Developer mode, type the following command:

ovcomposer -m d

Configuration Files

In addition to creating correlation logic, developers maintain the configuration
files required by Composer. The definitions provided in these files govern how
Composer functions in the NNM environment. The default configuration files
required by Composer are shipped with the product.

In the NNM environment, developers use the following configuration files:

• NameSpace File on page 136

• Security File on page 136

• Deploy Configuration File on page 137
Composer in NNM 135

NameSpace File

The default NameSpace file resides in the following directory:

• UNIX

$OV_CONF/ecs/CIB

• Windows

%OV_CONF%\ecs\CIB

This file does not contain any entries. It must be edited by NNM users. The
listing in this file governs what is displayed in the Composer window.

By default, when NNM is installed, a NameSpace file is placed on the NNM
system that provides access to the built-in NNM Correlator Stores.

The NameSpace file contains text such as the following:

#Comments begin with '#'
#Configure this file as per your requirements
#The format of the namespace.conf file is as follows:
#<logical name>=<associated file>
#where,
#<logical name> is the logical name as displayed in the namespace
table when
#Correlation Composer operates in Operator Mode.
#<associated file >is the file associated with the logical name.
All the files
#are relative to $OV_CONF/ecs/CIB/ directory.
#Example
#OV_Basic=OV_Basic/OV_Basic.fs
OV_NNM_Basic=NNMBasic.fs
OV_NodeIf=NodeIf.fs

Security File

A default Security file is created for every Correlator Store when it is saved.
This file resides in the same directory in which the Correlator Store is saved.

Typically, the Security file resides in or below the following directory:

• UNIX

$OV_CONF/ecs/CIB

• Windows

%OV_CONF%\ecs\CIB
136 Chapter 5

For example, if you want to enable operators to edit the values of Window
Period and Count for the correlator OV_Connector_IntermittenStatus,
you edit the Security file NNMBasic.sec.

This NNM Basic Security file contains text such as the following:

#NOTE: No space between the comma separating the variable fields
#ALL_TEMPLATE=ALL_PARAMS
OV_Connector_IntermittentStatus=WINDOW,COUNT

Deploy Configuration File

The default Deploy Configuration file resides in the following directory:

• UNIX

$OV_CONF/ecs/CIB

• Windows

%OV_CONF%\ecs\CIB

The entries in this file are the default entries required by Composer in the
NNM environment.

Built-In Function

Composer provides the getOIDValue build-in function to work only with
SNMP traps. You can use this function only in the NNM environment.

getOIDValue

Syntax

getOIDValue oid failValue

Parameters

oid

Name of the variable binding for which the value is to be extracted.

failValue

Value that is returned by the function if the retrieve fails.

Description

The getOIDValue function retrieves the value of the first occurrence of the
corresponding name from the variable bindings.
Composer in NNM 137

Examples

Consider the following trap:

Trap-PDU
enterprise {1 2 3 4 995},
agent-addr internet : "\x0A\x00\x01\x7F"
generic-trap 6,
specific-trap 95,
time-stamp 414746291,
variable-bindings{
{
name { 1 3 6 1 4 1 11 2 7 2 17 0},
value simple : number : 95
},
{
name {1 3 6 1 4 1 11 2 17 2 2 0},
value simple : number : 96
},
{
name {1 3 6 1 4 11 2 17 2 17 0},
value simple : number 97
}
}
}

Consider the following statement:

getODValue 1.3.6.1.4.11.2.7.2.17.0 -1

If the retrieve is successful, the statement returns the value 95. Otherwise,
the function returns -1. The oid and failvalue parameters must be declared
as variables in the correlator definition section. To find out how to use
functions, see Defining Functions on page 93.
138 Chapter 5

6 Composer in HPOM
This chapter explains how to use the HP Correlation Composer in the
HP Operations Manager (HPOM) environment:

• Composer GUI on page 140

• ECS Engine on page 141

• Message Correlation on page 142

• Starting the Composer GUI on page 144

• Configuring MSI in HPOM 8.00 for UNIX on page 145

• Merging and Deploying Correlator Store Files on page 154

• Accessing External Data on page 157

HPOM 8.00 and higher provide Composer as a standard built-in feature. This
feature includes a sample Correlator Store.

In HPOM environments, you merge and deploy by using the ovocomposer
command. For details, see Merging and Deploying Correlator Store Files on
page 154.

By default, no correlators are enabled.
 139

Composer GUI

The Composer graphical user interface (GUI) enables you to create and
maintain all correlation logic for Composer. In HPOM, you run the Composer
GUI on the HPOM management server, even if the correlators you create or
maintain are destined for managed nodes (agents). The HPOM management
server evaluates the local Composer startup configuration information, as
shown in Figure 18. For example, the HPOM management server evaluates
which correlators to display, which correlator input parameters are offered,
and so on.

Figure 18 Composer GUI on the Management Server
140 Chapter 6

ECS Engine

Composer runs inside the HP Event Correlation Services (ECS) engine, which
is a component of HPOM 8.00 or higher. Composer runs as a single ECS
circuit. The ECS engine correlates, suppresses, and enriches HPOM messages,
based on the rules configured in deployed circuits, including Composer.

The ECS engine runs the following processes:

• opcecm (UNIX) and OvOWECM.exe (Windows)

ECS on the management server

• opceca

ECS on the managed nodes

• opcecaas

ECS Annotation Manager Server on the management server and
managed nodes

These processes are run only if they are required.

The ECS engine runs a process on the Message Stream Interface (MSI) on the
management server and agent. Messages to be input to ECS must be sent to
MSI. For details, see Configuring MSI in HPOM 8.00 for UNIX on page 145.

In HPOM 8.00 for UNIX, the ECS circuit is called an “EC Template.” In
HPOM for Windows, as well as HPOM 9.00 for UNIX and Linux, the ECS
circuit is called the “Event Correlation” policy type.

Before HPOM 8.00, the ECS Designer was used to create event and message
correlation rules called “correlation circuits.” Although you can use ECS
Designer to produce extremely complex correlation logic, Composer provides
the most common operations in a much simpler form.
Composer in HPOM 141

Message Correlation

This section describes how to configure message correlation in the HPOM
environment:

• Correlation Options on page 142

• Correlation Guidelines on page 143

• Correlation Tools on page 144

Correlation Options

When setting up Composer in the HPOM environment, consider the relative
advantages of different locations for message correlation:

• NNM domain

You can set up event correlation in the HP Network Node Manager (NNM)
domain to significantly reduce the amount of SNMP-related messages
intercepted by the trap interceptor. As a rule, the earlier correlation
occurs, the better. Earlier correlation reduces the load on the HPOM trap
interceptor downstream. As a result, fewer messages arrive in the
message browser.

• Managed node

Correlating messages on the managed node reduces the number of
messages sent to the management server. It also reduces network traffic,
database usage, and the load on the management server.

• Management server

Correlating messages on the management server enables you to compare
and, if necessary, suppress similar or related messages coming from
different managed nodes. In larger environments, you can use HPOM
flexible management to configure layers of management servers into a
hierarchy. In this hierarchy, the choice of where to correlate widens to
include the relationship between the various levels of management server.
In addition, you can correlate and enrich events arriving through HPOM
Incident Web Service (IWS) on the management server.
142 Chapter 6

• Multiple sources

You do not need to restrict correlation to individual sources. You can
correlate messages from different message sources within HPOM: SNMP
traps, opcmsg, logfiles, threshold monitoring, and IWS.

For example, you might correlate the following:

— Messages generated by SNMP traps that relate to a node being down

— Messages generated by the log file encapsulator that relate to entries
in a client-server application log file about an unreachable server

For a summary of correlation architecture, see ECS Engine on page 29.

Correlation Guidelines

When correlating, pick a location that suits your plans:

• NNM

Correlate on NNM if you are correlating only SNMP traps together.

• HPOM

Correlate on the managed node if you are correlating HPOM messages
that occur on the same agent.

• Management server

Correlate on the management server if you are correlating messages
generated on different agents or if you are correlating messages arriving
through IWS.

Always correlate as early as possible. Where appropriate, correlate at multiple
levels. Whenever possible, suppress messages on the agent before correlating
them further with messages from other agents on the managements server.
Composer in HPOM 143

Correlation Tools

In addition to Composer, you can use the following correlation tools:

• Message source template

In HPOM, standard message source template configurations enable you to
perform common message correlation. Normally, you can perform message
de-duplication or simple state-based (down-up) actions without Composer.
However, if the rules for state management are more sophisticated than
the standard message source template configurations, consider using
Composer.

• ECS Designer

Composer is designed to handle the most common correlation scenarios
you might encounter. However, if Composer does not meet your
requirements, consider using ECS Designer. This product provides a
complete event correlation development environment for sophisticated
requirements. ECS Designer is not included with HPOM. You must
purchase it separately.

Starting the Composer GUI

To find out how to start the Composer GUI, see Starting Composer from
HPOM on page 68.

In HP Operations Manager i (OMi), Topology Based Event
Correlation (TBEC) provides another way to do correlation.
144 Chapter 6

Configuring MSI in HPOM 8.00 for UNIX

After you create correlators in the Composer GUI, and before ECS can begin
to process the messages, you need to configure the Message Stream Interface
(MSI). ECS can operate on the management server, the managed nodes
(agents), or both.

Configuring MSI on the HPOM 8.00 for UNIX Management Server

To configure MSI on the HPOM 8.00 for UNIX management server, follow
these steps:

1 Enable output on MSI.

a Click ActionsServerConfigure.

b In the Message Stream Interface section, select the Enable Output
check box.

c Optional: Send all messages to the Server MSI.

Select one of the following check boxes:

— Divert Messages

Default. Divert all messages to the Server MSI.

The information in this section applies only to the HPOM 8.00 for UNIX Motif
administrator GUI. It does not apply to the HPOM 9.00 for UNIX or Linux
web-based administrator GUI. In HPOM 9.00 for UNIX or Linux, you can
assign policies (in particular, the EC policies) to the HPOM management
server directly. In HPOM 9.00, MSI must be enabled.

If you select Divert Messages, all messages are processed by ECS,
even if they will never be used. This processing could negatively
affect the performance of the server. If you use HP Dependency
Mapping Automation (DMA), you must create a msiconf file to
serialize Composer and the DMA MSI. If you do not create this file,
messages that are dropped by Composer continue to appear in the
message browser as DMA “tunnels” them around Composer.
Composer in HPOM 145

— Copy Messages

Copy all messages to the Server MSI. All original messages (before
ECS processing) are already output, so suppression has no
purpose. Enriched messages are provided in addition to, rather
than instead of, the original messages.

The management server forwards all messages to the Server MSI. As
a result, you do not need to configure specific message types to be
forwarded (from the message source template configuration).

2 Configure specific messages to pass to MSI.

If you chose the Divert Messages option in step 1, all messages are
forwarded to the Server MSI, and this step is not required.

For each message template that you want to pass messages to MSI, follow
these steps:

a Go to the Message Source Templates screen.

b Locate and highlight the templates that produce the messages that
must be input to Composer.

c Click ModifyAdvanced Options.

d In the Message Stream Interface section, select the following options:

— Server MSI

— Divert Messages

3 Assign and distribute the Composer EC Template to the server.

a Locate and highlight the Correlation Composer template.

Typically, this template is located under Top Level.

b Click ActionsServerAssign Templates.

c Click OK to assign the template to the server.

d Click ActionsServer Install/Update Server Templates.
146 Chapter 6

4 Verify that Composer and ECS are configured and running.

On the management server, do the following:

• Run opcsv -status to see these two ECS processes:

Event Corr. Mgr opcecm (14386) is running

ECS Anno. Mgr opcecmas (14387) is running

• Run ecsmgr -i 11 -info to verify that the Composer circuit
(ecs_comp) is installed:

circuits enabled in stream - circuit ecs_comp

The MSI is now enabled and the ECS engine is now running.

Configuring MSI on HPOM 8.00 for UNIX Managed Nodes
(Agents)

To configure MSI on HPOM 8.00 for UNIX managed nodes (agents), follow
these steps:

1 Enable output on MSI.

a In the Node Bank, select the managed nodes where ECS and the
Composer circuit (ecs_comp) are to be run.

b Click ActionsNodeModify.

c Click Advanced Options.

d In the Message Stream Interface section, select Enable Output.

e If you are using Composer to add actions to messages, select one or
both of the following:

— Allow Externally Defined Automatic Actions

— Allow Operator Initiated Actions

The Fact Stores built in the Composer GUI can be used with the
Composer circuit on the management server and managed nodes.
Composer in HPOM 147

2 Configure specific messages to pass to MSI.

For each message template that you want to pass messages to MSI, follow
these steps:

a Go to the Message Source Templates screen.

b Locate and highlight the templates that produce messages that must
be input to Composer.

c Click ModifyAdvanced Options.

d In the Message Stream Interface section, select the following options:

— Agent MSI

— Divert Messages

3 Assign and distribute the Composer EC Template to agents.

a Locate and highlight the Correlation Composer template.

Typically, this template is located under Top Level.

b With the nodes of interest still highlighted in the Node Bank, select
ActionsNodeAssign Templates.

c Click OK to assign the template to the select agent nodes.

d Click ActionsNodeInstall/Update OVO Software and Configuration.

e In the list, select the templates and nodes to update and click OK.

4 Verify that Composer and ECS are configured and running.

On the agent, do the following:

• Run ovc -status to see these two ECS processes:

opceca OVO Event Correlation AGENT,EA (3238) Running

opcecaas ECS Annotate Server AGENT,EA (3286) Running

• Run ecsmgr -i 12 -info to verify that the Composer circuit
(ecs_comp) is installed:

circuits enabled in stream - circuit ecs_comp

After the distribution to the managed nodes completes, ECS, the Composer
circuit, and the associated Composer Fact Stores are running on each of the
selected managed nodes.
148 Chapter 6

Configuring MSI in HPOM 9.00 for Windows

After you create correlators in the Composer GUI, and before ECS can begin
to process the messages, you need to configure the Message Stream Interface
(MSI). ECS can operate on the management server, the managed nodes
(agents), or both.

Configuring MSI on the HPOM 9.00 for Windows Management
Server

To configure MSI on the HPOM 9.00 for Windows management server, follow
these steps:

1 Enable output on MSI.

a Click ActionsServerConfigure.

b In the Message Stream Interface section, select the Enable Output
check box.

c Optional: Send all messages to the Server MSI.

Select one of the following check boxes:

— Divert Messages

Default. Divert all messages to the Server MSI.

— Copy Messages

Copy all messages to the Server MSI. All original messages (before
ECS processing) are already output, so suppression has no
purpose. Enriched messages are provided in addition to, rather
than instead of, the original messages.

The management server forwards all messages to the Server MSI. As
a result, you do not need to configure specific message types to be
forwarded (from the message source template configuration).

If you select Divert Messages, all messages are processed by ECS,
even if they will never be used. This processing could negatively
affect the performance of the server. If you use HP Dependency
Mapping Automation (DMA), you must create a msiconf file to
serialize Composer and the DMA MSI. If you do not create this file,
messages that are dropped by Composer continue to appear in the
message browser as DMA “tunnels” them around Composer.
Composer in HPOM 149

2 Configure specific messages to pass to MSI.

If you chose the Divert Messages option in step 1, all messages are
forwarded to the Server MSI, and this step is not required.

For each message template that you want to pass messages to MSI, follow
these steps:

a Go to the Message Source Templates screen.

b Locate and highlight the templates that produce the messages that
must be input to Composer.

c Click ModifyAdvanced Options.

d In the Message Stream Interface section, select the following options:

— Server MSI

— Divert Messages

3 Assign and distribute the Composer EC Policy to the server.

a In the left pane, locate the Correlation Composer policy in the
following directory:

\Policies\Policies grouped by type\Event Correlation

b Right-click the Correlation Composer policy, select All TasksDeploy On,
and then select the management server.

c Click OK.
150 Chapter 6

4 Verify that Composer and ECS are configured and running.

On the management server, do the following:

a Open the Task Manager to verify that the ECS process
(OvOWECM.exe) is running.

b Run ecsmgr -i 11 -info to verify that the Composer circuit
(ecs_comp) is installed:

circuits enabled in stream - circuit ecs_comp

The MSI is now enabled and the ECS engine is now running.

Configuring MSI on HPOM 9.00 for Windows Managed Nodes
(Agents)

To configure MSI on HPOM 9.00 for Windows managed nodes (agents), follow
these steps:

1 Enable output on MSI.

a Create a new Node Info policy with the following content:

OPC_AGTMSI_ENABLE TRUE

b Save and close the policy with the title Enable MSI.

c Deploy this policy to the managed nodes where ECS and the
Composer circuit (ecs_comp) are to be run.
Composer in HPOM 151

2 Configure specific messages to pass to MSI.

For each message policy that you want to pass messages to MSI, follow
these steps:

a Go to the Policy Rule screen.

b Locate and open the rule that produces the messages that must be
input to Composer.

c Click ModifyActionsMessage.

d Click the Message Stream Interface and External Services tab.

e Select the following:

— Agent Message Stream Interface

— Divert Messages

f Click OK.

g Update the policy on the agent.

If you want, you can enable MSI for all rules in a policy by going the
Rules tab, clicking Defaults, clicking the Message Stream Interface
and External Services tab, and then selecting Agent Message Stream
Interface and Divert Messages.
152 Chapter 6

3 Assign and distribute the Composer EC Policy to agents.

a In the left pane, locate the Correlation Composer policy in the
following directory:

\Policies\Policies grouped by type\Event Correlation

b Right click the Correlation Composer policy, click All TasksDeploy On,
and select the nodes you want ECS composer to be active on.

4 Verify that Composer and ECS are configured and running.

On the agent, do the following:

• Run ovc -status to see these two ECS processes:

opceca OVO Event Correlation AGENT,EA (3238) Running

opcecaas ECS Annotate Server AGENT,EA (3286) Running

• Run ecsmgr -i 12 -info to verify that the Composer circuit
(ecs_comp) is installed:

circuits enabled in stream - circuit ecs_comp
Composer in HPOM 153

Merging and Deploying Correlator Store Files

Composer saves all Correlator Stores in files (that is, in ECS Fact Stores). You
can use the Composer GUI to create and maintain any number of Correlator
Stores. However, the ECS engine can process only one Correlator Store for the
Correlation Composer template. If you have multiple Correlator Stores, the
deployment process first merges the files into a single, temporary Correlator
Store file (ecs_comp.fs).

Location of Correlator Store Files

The Correlator Store files are located in the following directory:

• UNIX

/etc/opt/OV/share/conf/OpC/mgmt_sv/CO

• Windows

%OvInstallDir%\conf\OpC\mgmt_sv\CO

This directory includes a set of sample correlators for HPOM in the demo.fs
file. To deploy Correlator Stores, use the ovocomposer -install command.
This command searches the directory for all Correlator Store (.fs) files and
displays their file names. You can then select the files you want to merge and
deploy.

Composer Applications on UNIX

The HPOM for UNIX Application Bank includes three applications for
Composer:

Composer UI

Launches the Composer GUI.

Install Correlators on Agents

Merges and deploys the Composer configuration to selected managed
nodes.

Install Correlators on Server

Merges and deploys the Composer configuration to the management
server.
154 Chapter 6

Merging and Deploying on the Management Server

To merge and deploy Composer files on the management server, run the
following command:

ovocomposer -install [-fs file1 [-fs file2...]] -ms

Example:

ovocomposer -install -fs demo.fs -fs myConfig.fs -ms

This sample command merges the demo.fs and myConfig.fs files in the
following directory:

• UNIX

/etc/opt/OV/share/conf/OpC/mgmt_sv/CO

• Windows

%OvInstallDir%\conf\OpC\mgmt_sv\CO

The command merges demo.fs and myConfig.fs into a temporary file
(ecs_comp.fs), which it then deploys. The deployed file must have exactly the
same name as the ECS circuit (ecs_comp.eco) that is referenced by the
Correlation Composer template.

If you do not specify an -fs option, the command displays a list of numbered
files from that directory, and prompts you for the files to be merged and
deployed. In response, you specify a comma-separated list of numbers at the
prompt. For details, see the ovocomposer reference page.

In HPOM 9.00 for UNIX and Linux, you assign and deploy EC policies just
like any other types. However, you can still use the ovocomposer -install
command to merge multiple correlator files.
Composer in HPOM 155

Merging and Deploying on Managed Nodes (Agents)

To merge and deploy Composer files on managed nodes, run the following
command:

ovocomposer -install [-fs file1 [-fs file2...]] -agt node1

[node2 ...]

Example:

ovocomposer -install -fs demo.fs -fs myConfig.fs -agt
myAgentNode1.my.com myAgentNode2.my.com

This sample command merges the demo.fs and myConfig.fs files in the
following directory:

• UNIX

/etc/opt/OV/share/conf/OpC/mgmt_sv/CO

• Windows

%OvInstallDir%\conf\OpC\mgmt_sv\CO

The command merges demo.fs and myConfig.fs into a temporary file
(ecs_comp.fs), which it then deploys. The deployed file must have exactly the
same name as the ECS circuit (ecs_comp.eco) that is referenced by the
Correlation Composer template.

If you do not specify an -fs options, the command displays a list of numbered
files from that directory, and prompts you for the files to be merged and
deployed. In response, you specify a comma-separated list of numbers at the
prompt. For details, see the ovocomposer reference page.
156 Chapter 6

Accessing External Data

You can access extra information for Composer by using the ECS Data Store
file and Perl scripting.

Data Store File

The simplest way to access extra information is by using the ECS Data Store
file. The data in this file is normally static. However, you can update it
manually, if needed.

Location of the Data Store File

You must name the Data Store file ecs_comp.ds and store it in the following
directory:

• Management server

— HPOM 8.00 for UNIX

/var/opt/OV/conf/OpC/mgmt_sv

— HPOM 9.00 for UNIX

/var/opt/OV/shared/server/datafiles/policies/ec

— HPOM for Windows

%OvDataDir%\shared\server\datafiles\policies\ec

• Managed node

— HPOM for UNIX

/var/opt/OV/conf/eaagt

— HPOM for Windows

%OvDataDir%\conf\eaagt

You must manually copy the Data Store to the correct location on each
managed node where it is required.
Composer in HPOM 157

In Composer, you use the lookup function to access the ECS Data Store file.
For information about the lookup function, see Variables on page 47.

Syntax of the Data Store File

Each line of the Data Store file uses the following syntax:

ADD DATA(keyValue, ReturnValue)

This syntax contains the following values:

keyValue

Must be an integer or string.

ReturnValue

Can be any data type.

The Data Store file can contain multiple lines.

The first line in the file must be the header with the following format:

#path#date#version#0

You begin the comment with two hyphens (--).

Example:

The Data Store is loaded and contains one entry:

ADD DATA("Overheated", 80)

An X variable has a value of "Overheated". If you use X as a parameter of
Lookup, a value of 80 is returned.

Two variables, Y and Z, with values of "Over" and "heated", respectively,
result in a key value of "Overheated". The value 80 is returned.

All HPOM message attributes in Composer are of the data type STRING, even
numeric values. You cannot use numeric values as index values for lookups.

Typically, the Data Store contains static topological information. For example,
you could run scripts once a day to create the Data Store file and update the
ECS engine with the newly created file.
158 Chapter 6

Example 1: Creating a New Data Store

To create a new Data Store on the management server, you create an
ecs_comp.ds file:

ecsmgr -i 11 -disable ecs_comp

ecsmgr -i 11 -circuit_unload ecs_comp

ecsmgr -i 11 -data_load ecs_comp ecs_comp.ds

ecsmgr -i 11 -circuit_load ecs_comp ecs_comp.eco ecs_comp ecs_comp

ecsmgr -i 11 -enable ecs_comp

Example 2: Updating an Existing Data Store

To update an existing Data Store on the management server, you change the
date/version string in the in ecs_comp.ds file:

ecsmgr -i 11 -disable ecs_comp

ecsmgr -i 11 -circuit_unload ecs_comp

ecsmgr -i 11 -data_update ecs_comp ecs_comp.ds

ecsmgr -i 11 -circuit_load ecs_comp ecs_comp.eco ecs_comp ecs_comp

ecsmgr -i 11 -enable ecs_comp

Perl Scripts

By calling external Perl functions, you can access any external data. Typically,
Perl functions are used when the data is dynamic in nature.

In the HPOM environment, you must manually copy the Perl module file to
the correct location on each managed node where it is required. To find out
how to use Perl scripting in Composer, see Writing Perl Functions on
page 113.

To create a new Data Store on the agent, replace -i 11 with -i 12.

To update an existing Data Store on the agent, replace -i 11 with -i 12.

If the Composer Fact Store has already been updated (for example, by using
ovocomposer -install -ms), you may need to reload it.
Composer in HPOM 159

160 Chapter 6

7 Use Cases in NNM
To help you understand the workflow schema of HP Correlation Composer in
the HP Network Node Manager (NNM) environments, this chapter provides
the following use cases:

• Case 1: Enhance Correlation on page 162

• Case 2: Multi-Source Correlation on page 165

• Case 3: Rate Correlation on page 170

• Case 4: Repeated Correlation on page 175

• Case 5: Suppress Correlation on page 179

• Case 6: Transient Correlation on page 182

• Case 7: Multi-Event Correlation on page 188

You can follow these examples when planning your system configuration.

Composer supports the following event types:

• HP Operations Manager (HPOM)

• Simple Network Management Protocol (SNMP)

Although all of the alarm examples in this document use the SNMP Trap
Protocol Data Unit (PDU) format, Composer is format-independent.
 161

Case 1: Enhance Correlation

One use case for Enhance correlation is a Temperature alarm.

PDU for a Temperature Alarm

A sample SNMP trap PDU for a Temperature alarm could appear in an event
log, as follows:

Trap-PDU
enterprise {1 2 3 4 995},
agent-addr internet : "\x0A\x00\x01\x7F"
generic-trap 6,
specific-trap 95,
time-stamp 414746291,
variable-bindings{
{
name { 1 3 6 1 4 1 11 2 7 2 17 0},
value simple : number : 95
}
}
}

The problem is not immediately evident from the alarm.

The requirement is to add a variable binding with the following string:

"Temperature of the device is too high - Please check for
air-conditioning and/or fan failure"
162 Chapter 7

Responding to the Temperature Alarm

When responding to the sample PDU for a Temperature Alarm on page 162,
you would use the Enhance Correlator Template window.

To respond to the Temperature alarm, you would follow these steps:

1 Identify the Temperature alarm.

All Temperature alert failures have the following identifying attributes:

• enterprise is set to 1.2.3.4.995.

• generic-trap is set to 6.

• specific-trap is set to 95.

2 Differentiate Temperature ON and OFF alarms.

If specific-trap is set to 95, the alarm is a Temperature ON alarm.

3 Respond to the original alarm.

You can choose to retain the original alarm along with the enhanced
alarm. Table 6 describes the functionality of the buttons in the Enhance
Correlator Template window.

Table 6 Buttons in the Enhance Correlator Template Window

Button Name Selected Functionality

Want Original Yes Original alarm is output with the enhanced
alarm.

No Only the enhanced alarm is output. The original
alarm is discarded.

Enhance Always Yes Alarms are modified and output, even if another
correlation discards the alarm.

No Alarms are modified if no other correlator
discards the alarm.

Click the Enhance Always button with caution. By clicking this button, you
enhance all alarms.
Use Cases in NNM 163

Defining the Enhance Correlator Template

When responding to the PDU for a Temperature Alarm on page 162, you
would define an Enhance correlator template.

To define the Enhance correlator template, follow these steps:

1 From the Correlator Store window, click CorrelationsCorrelator
TemplatesEnhance.

The Enhance Correlator Template window opens.

2 In the Name text box, type a name for the correlator.

3 In the Description text box, type a description for the correlator.

4 To define the Alarm Signature, type the following values:

• enterprise = 1.2.3.4.995

• generic-trap = 6

• specific-trap = 95

5 Declare the errstr variable:

a In the Name cell, type errstr.

b From the Operator drop-down menu, select Constant.

c In the Value field, type the following string:

"Temperature of the device is too high - Please check
for air-conditioning and/or fan failure"

These substeps are the equivalent of errstr constant <str>.

6 Click the New Alarms tab to alter the alarm.

The New Alarm panel opens.

7 From the drop-down menu, select Alter Specification.

The Alter Alarm Definition table displays.

8 To alter the alarm, define the following attributes:

• From the Field drop-down menu, select variable-bindings[1].value.

• From the Mode drop-down menu, select replace.

• From the Value drop-down menu, select errstr .

9 Click OK to complete the definition of the correlator.

The new correlator displays in the Correlator Store table.
164 Chapter 7

Case 2: Multi-Source Correlation

One use case for Multi-Source correlation is multiple redundant Signaling
System Number 7 (SS7) links between two switching entities. Together, these
SS7 links form a logical entity, called a signaling set. If the trunk between the
two links fails, an SS7 link set failure is received, with an SS7 failure alarm
for each individual SS7 link. The requirement is to suppress all individual
SS7 failures, and forward only the SS7 link set failure.

PDU for SS7 Link Failure

An SNMP trap PDU for an SS7 link failure could appear in an event log, as
follows:

Trap-PDU{
enterprise{1 2 3 4 997}
agent-addr internet ; "\x0A\x00\x01\x7F",
generic-trap 6,
specific trap 55,
time-stamp 414746291,
variable-bindings {
{
name {1 3 6 1 4 1 11 2 17 17 0},
value simple : string "Link Failure -10 on Signalling set 2"
}
}
}

PDU for SS7 Link Set Failure

An SNMP trap PDU for an SS7 link set failure could appear in an event log,
as follows:

Trap-PDU{
enterprise {1 3 6 1 4 1 999 9}
agent-addr internet : "\x0A\x00\x01\x7F",
generic-trap 6,
specific-trap 56,
time-stamp 414746291,
variable-bindings {
name { 1 3 6 1 4 1 11 2 17 2 17 0},
value simple :string :"Link Set Failure - 2"
}
}
}

Use Cases in NNM 165

Responding to the SNMP Trap PDU Alarms

When responding to the sample PDU for SS7 Link Failure on page 165 and
the sample PDU for SS7 Link Set Failure on page 165, you would use the
Multi-Source Correlator Template window.

To respond to the SS7 link and link set failures, you would follow these steps:

1 Identify the SS7 link failure alarms.

All SS7 link failure alarms have the following identifying attributes:

• enterprise is set to 1.2.3.4.997.

• generic-trap is set to 6.

• specific-trap is set to 55.

2 Identify the SS7 link set failure alarms.

All SS7 link set failure alarms have the following identifying attributes:

• enterprise is set to 1.2.3.4.999.

• generic-trap is set to 6.

• specific-trap is set to 56.

3 Determine whether the SS7 link and SS7 link set failures are
emitted from the same device and belong to the same set.

The SS7 link failure belongs to the SS7 link set failure only if both of the
following are true:

• SS7 link set ID and the SS7 link ID are the same.

• Agent addresses for both the failure alarms are the same.
166 Chapter 7

4 Respond to the alarms.

You can discard alarms, based on whether the set is complete. Table 7
describes the functionality of the various buttons in the Multi-Source
Correlator Template window.

Table 7 Buttons in the Multi-Source Correlator Template Window

Button Name Selected Functionality

Discard on Set Completion Yes If the set is complete, the alarm is
discarded. Otherwise, the alarm forwarded.

No Alarm is forwarded, regardless of set
completion.

Window Period Mandatory field. Time period in which all
alarms of the set need to arrive for the set
to be considered complete. The alarms can
arrive in any order.

Set No Operates in Mode 1. For details, see
Multi-Source Correlator Template on
page 32.

Yes Operates in Mode 2. For details, see
Multi-Source Correlator Template on
page 32.
Use Cases in NNM 167

Defining the Multi-Source Correlator Template

When responding to the sample PDU for SS7 Link Failure on page 165 and
the sample PDU for SS7 Link Set Failure on page 165, you would define a
Multi-Source correlator template.

To define the Multi-Source correlator template, follow these steps:

1 From the Correlator Store window, click CorrelationsCorrelation
TemplatesMulti-Source.

The Multi-Source Correlator Template window opens.

2 In the Name text box, type a name for the correlator.

3 In the Description text box, type a description for the correlator.

4 Click the Definition tab to open the Alarm Definition panel.

5 In the Name panel on the left side of the window, type a name for the SS7
link failure alarm.

6 Define the Alarm Signature to identify the SS7 link failure alarm.

In the Alarm Signature table, type the following values:

• enterprise id=1.2.3.4.997

• generic trap=6

• specific trap=55

7 In the Variables table, declare the following variables:

• Name of the SS7 link ID variable

The SS7 link ID is extracted from variable-bindings[0].value.

• Extract pattern

In the Extract Pattern window, type *#-#<#.linkID>* .

• Pattern separator

Set to "#".

This step extracts the SS7 link ID and assigns the extracted numeral to
the variable linkID.
168 Chapter 7

8 Define the message key:

a Click the Message Key text box.

b In the shortcut menu, click SS7 Link FailureSS7 Link IDlinkID.

9 To create a set of alarms, select the Set check box.

10 Optional: To alter the alarm, define the changes in the Alter Alarm
Definition table.

11 Optional: To add a new alarm, right-click and select Add.

Do the following:

• Define the Alarm Signature to identify the SS7 link set failure:

— enterprise=1.3.6.1.4.1.999.9

— generic-trap=6

— specific-trap=56

• Declare a variable SS7 link set failure extracted from Variable
Bindings[0].value. Enter the extract pattern = *<S><#.setID>

• Select the Message Key to SS7 Link Set FailureSS7 Link Set IDsetID.

12 In the Parameters panel, type the following parameters:

• Define the Window Period for which you want to monitor the
occurrences of the alarms.

• Select the Set Complete check box to emit the alarm only if the set is
complete.

For example a Power Down alarm arriving after an occurrence of a
Power Up and Power Down pair is not emitted out until a Power ON
alert is received.

13 Click OK to complete the definition of the Signature file.

The new correlation displays in the Correlator Store table.
Use Cases in NNM 169

Case 3: Rate Correlation

One use case for Rate correlation is radio antenna failure. Radio antennas
frequently report failure during bad weather conditions. The requirement is to
discard all radio antenna failures if the rate of failure is below five failures in
30 minutes. If the rate exceeds this threshold, you forward the alarm to the
browser after annotating the alarm with the rate.

PDU for Radio Antenna Failure

An SNMP trap PDU for an antenna failure could appear in an event log, as
follows:

Trap-PDU{
enterprise {1 2 3 4 998}
agent-addr internet : "\x0A\x00\x01\x7F",
generic-trap 6,
specific trap 80,
time-stam 414746291,
variable-bindings{
{
name{1 3 6 1 4 11 2 17 2 1 0},
value simple:number : 2
},
{
name { 1 3 6 1 4 11 2 17 2 2 0},
value simple : string : "Ant#10#BTS#20"
}
}
}

170 Chapter 7

Responding to Radio Antenna Failure Alarms

When responding to the sample PDU for Radio Antenna Failure on page 170,
you would use the Rate Correlator Template window.

To respond to the radio antenna failure alarm, you would follow these steps:

1 Identify the alarms for which the count is maintained.

A count is maintained for alarms identified by the following attributes:

• enterprise is set to 1.2.3.4.998.

• generic-trap is set to 6.

• specific-trap is set to 80.

• variable-bindings[0].valueis set to 2.

2 Respond to the alarms.

You can discard duplicate alarms. However, you must define the
correlation to monitor the time at which the alarm is discarded or output.
Table 8 describes the functionality of the buttons in the Rate Correlator
Template window.

Table 8 Buttons in the Rate Correlator Template Window

Button Selected Functionality

Window Period N/A Mandatory field. Time period for which the alarm
arrival rate is monitored.

Count N/A Mandatory field. Threshold count. If the number of
alarms exceeds the threshold count within the
specified window period, the rate threshold is
considered to be breached.

Discard Yes All alarms are discarded. If a new alarm is created,
it is output. No other alarms are output.

No Alarms are not discarded. If a new alarm is created,
it is output.
Use Cases in NNM 171

Defining the Rate Correlator Template

When responding to the sample PDU for Radio Antenna Failure on page 170,
you would define a Rate correlator template.

To define the Rate correlator template, follow these steps:

1 From the Correlator Store, click CorrelationsCorrelator TemplatesRate.

The Rate Correlator Template window opens.

2 In the Name text box, type a name for the correlator.

3 In the Description text box, type a description for the correlator.

4 Click the Definition tab to display the Alarm Definition panel.

5 To identify the Alarm Signature, type the following values:

• enterprise

• generic-trap

• specific-trap

6 Declare the following variables:

• ant

Together with the extracted pattern, this variable specifies the
antenna ID and base transceiver station (BTS) ID:

— Extract the antenna ID and BTS from
variable-bindings[1].value.

In the extract pattern window, type the following:

Ant<S><*.antid><S>Bts<*.btsid>

— In the Pattern Separator field, enter #.

Two alarms are emitted from the same antenna and BTS if their
corresponding antid, btsid, and agent-addr variables are the same.

• mkey

Unique field that combines all of the attributes into one attribute,
which constitutes the message key. Combine the attributes
ant.antid, ant.btsid, and agent-addr.
172 Chapter 7

7 Select the message key.

a Click the Message Key window.

A pop-up menu displays all attributes and predefined variables.

b From the pop-up menu, click mkey.

8 Define the parameters for the correlation:

• Window Period = 30 minutes

• Count = 5

9 Optional: If you want to discard the alarms, click Discard.

After the alarms are discarded, the count of alarm arrival is still
maintained.

10 In the Variables table, define the following variables:

• str1 constant "The threshold has been breached for the
antenna "

• str2 constant "from BTS"

• errstr combine of str1, ant.antid, str2, ant.btsid

This definition creates an errstr that looks like the following:

"The threshold has been breached for the antenna 10 from BTS
20"

Before a new alarm is created, it is necessary to define the error string
that declares the problem.

11 Define the new alarm.

To alter the alarm, click the New Alarms tab.

The New Alarm panel opens.

12 From the drop-down menu, select New Alarm Specification.

The New Alarm Definition table displays.
Use Cases in NNM 173

13 To define the change, select the following:

• enterprise = enterprise

• agent-addr = agent-addr

• generic-trap = generic-trap

• specific-trap = specific-trap

• time-stamp = time-stamp

• varBind[0]->name=varBind[0]->name

• varBind[1]->value = errstr

14 Click OK to complete the definition of the correlator.

The correlator is displayed in the Correlator Store table.
174 Chapter 7

Case 4: Repeated Correlation

One use case for Repeated correlation is duplicate alarms. In general,
duplicate alarms are messages that report the same alarm. You can use
Repeated correlation to suppress duplicate messages, based on a variety of
suppression types. This correlation monitors duplicate alarms arriving within
the specified window period.

When utilization exceeds the threshold, routers generate a CPU Hog alarm.
The requirement is to pass only the first alarm for a given router in a
30-minute time window, and discard all other alarms received in the same
window. At the end of the 30-minute period, a new alarm is generated. The
new alarm indicates the number of such alarms received (and discarded).

PDU for Duplicate Alarms

An SNMP trap PDU for duplicate alarms could appear in a log, as follows:

Trap PDU{
enterprise {1 2 3 4 6},
agent-addr internet:"\x0A\x00\x01\x7F",
generic-trap 6,
specific-trap 25,
time-stamp 41474291,
variable-bindings { }
}

Use Cases in NNM 175

Responding to Duplicate Alarms

When responding to the sample PDU for Duplicate Alarms on page 175, you
would use the Repeated Correlator Template window.

To respond to duplicate alarms, you would follow these steps:

1 Identify which alarms are duplicated.

Duplicate alarms have the following attributes:

• enterprise is set to 1.2.3.4.6.

• generic-trap is set to 6.

• specific-trap is set to 25.

2 Identify which alarms are emitted from the same router.

Two alarms are said to come from the same router if the agent address of
the router from which they are emitted is the same.

3 Respond to the duplicate alarms.

You can respond to duplicate alarms by placing them in one of the
following states:

• Discarded

Events are discarded from HP Event Correlation Services (ECS). After
that, the events are not available for further correlation.

• Output

Before outputting events, you need to decide whether they should take
part in other correlations.
176 Chapter 7

4 Set a time to discard or output the alarms.

You can choose to discard or output alarms whenever required, based on
the correlator definition. Table 9 describes the functionality of the buttons
in the Repeated Correlator Template window.

Defining the Repeated Correlator Template

When responding to the sample PDU for Duplicate Alarms on page 175, you
would define a Repeated correlator template.

To define the Repeated correlator template, follow these steps:

1 From the Correlator Store window, select CorrelationsCorrelator
TemplatesRepeated.

The Repeated Correlator Template window opens.

2 In the Name text box, type a name for the correlator.

3 In the Description text box, type a description for the correlator.

4 Click the Definition tab to display the Alarm Definition panel.

Table 9 Buttons in the Repeated Correlator Template Window

Button Selected Functionality

Window Period N/A Mandatory field. Time period for which the
alarm duplication is monitored.

Discard Duplicate Yes Chooses Mode 1 of operation. For details, see
Repeated Correlator Template on page 35.

No Chooses Mode 2 of operation. For details, see
Repeated Correlator Template on page 35.

Discard Immediately Yes Applicable only if you select the Discard
Duplicate button. All duplicate alarms are
discarded without participating in other
correlations.

No Duplicate alarms are discarded only after
participating in other correlators.
Use Cases in NNM 177

5 To define the Alarm Signature, type the following values:

• enterprise = 1.2.3.4.6

• generic-trap = 6

• specific-trap = 25

6 Declare the following variables:

• str constant " alarms discarded in 30 minutes"

• errstr combine of AlarmCnt and str

7 Select the following:

Message Key = agent-addr

8 Define the window period for which the alarm arrival must be maintained.

9 In the Window Period field, type 30 minutes.

10 Select the following buttons:

• Discard Duplicate

• Discard Immediately

Discard duplicate alarms as soon as they have taken part in this
correlation. You do not want them to take part in other correlations.

11 Click the New Alarms tab.

The New Alarm panel displays.

12 From the drop-down menu, select New Alarm Specification.

The Create Alarm Definition table displays.

13 Set the following values:

• enterprise = enterprise

• agent-addr = agent-addr

• generic-trap = generic-trap

• specific-trap = specific-trap

• time-stamp = time-stamp

• varBind[1]->value = errstr

14 Click OK to complete the definition of the correlator.

The correlator displays in the Correlator Store table.
178 Chapter 7

Case 5: Suppress Correlation

One use case for Suppress correlation is movement alarms. Normally,
movement traps require investigation. However, if the movement alarms are
from exchanges emitted from the City offices, they can be discarded because
there is always movement, and the alarm browser is filled with these alarms.
The requirement is to discard all movement alarms emitted from the City
offices.

PDU for Movement Alarms

An SNMP trap PDU for movement alarms could appear in a log, as follows:

Trap PDU {
enterprise{1 2 3 4 999},
agent-addr internet : "\x0A\x00\x01\x7F",
generic-trap 6,
specific-trap 1,
time-stamp 414746291,
variable-bindings{
{
name {1 3 6 1 4 1 11 2 17 2 1 0},
value simple : number 2
},
{
name {13 6 1 4 1 11 2 17 2 2 0},
value simple : "City-Bangalore"
}
{
name {1 3 6 1 4 11 2 17 2 17 0},
value simple : string : "There is movement"
}
}
}

Use Cases in NNM 179

Responding to Movement Alarms

When responding to the sample PDU for Movement Alarms on page 179, you
would use the Suppress Correlator Template window.

To respond to movement alarms, you would follow these steps:

1 Identify which alarms to suppress.

All movements are identified by the following attributes:

• enterprise id is set to 1.2.3.4.999.

• generic trap is set to 6.

• specific trap is set to 1.

• variable bindings[1].value contains the string "City".

• variable bindings[2].value contains the following string:

"There is Movement"

2 Identify the parameters to configure.

Table 10 describes the functionality of the different buttons in the
Suppress Correlator Template window.

Table 10 Buttons in the Suppress Correlator Template Window

Button Name Selected Functionality

Participate In Other
Correlation

No Alarm does not participate in other correlations
before it is discarded.

Yes Alarm takes part in other correlations before it
is discarded.
180 Chapter 7

Defining the Suppress Correlator Template

When responding to the sample PDU for Movement Alarms on page 179, you
would define a Suppress correlator template.

To define the Suppress correlator template, follow these steps:

1 From the Correlator Store window, select CorrelationsCorrelator
TemplatesSuppress.

The Suppress Correlator Template window opens.

2 In the Name text box, type a name for the correlator.

3 In the Description text box, type a description for the correlator.

4 Click the Definition tab to display the Alarm Definition panel.

5 To define the Alarm Signature, set the following values:

• enterprise = 1.2.3.4.999

• generic-trap = 6

• specific-trap = 1

• variable-bindings [2].value = "There is movement"

• variable-bindings [1].value matches "City"

6 Click OK to complete the correlator.

The correlator displays in the Correlator Store table.
Use Cases in NNM 181

Case 6: Transient Correlation

One use case for Transient correlation is pulse code modulation (PCM) link
failure. PCM links get out of synchronization frequently. When they do, a trap
is generated that indicates a link failure. Typically, the two ends of the PCM
link re-synchronize within one second. The requirement is to hold the PCM
Down alarm for a period of two seconds, and to discard it if the PCM Up alarm
is received within this time period. Also, if five such link failures are detected
in a 30-minute period, a new alarm must be generated to indicate instability.
The newly created alarm indicates the time taken for the breach to take place.

PDU for PCM Link Failure

A SNMP trap PDU for PCM link failure would appear in a log, as follows:

Trap-PDU {
enterprise {1 2 3 4 999}
agent-addr internet : "\x0A\x00\x01\x7F",
genric-trap 6,
specific-trap 400,
time-stamp 414746291,
variable-bindings{
{
name {1 3 6 1 4 11 2 17 2 1 0},
value simple : number : 400
}
}
}

PDU for PCM Clear Alarm

A SNMP trap PDU for PCM clear alarm would appear in a log, as follows:

Trap-PDU {
enterprise {1 2 3 4 999}
agent-addr internet : "\x0A\x00\x01\x7F",
genric-trap 6,
specific-trap 400,
time-stamp 414746291,
variable-bindings{
{
name {1 3 6 1 4 11 2 17 2 1 0},
value simple : number : 401
}
}
}

182 Chapter 7

Responding to PCM Link Failure

When responding to the sample PDU for PCM Link Failure on page 182, you
would use the Transient Correlator Template window.

To respond to PCM link failure alarms, you would do the following:

1 Identify PCM trap alarms.

All PCM link alarms are identified by the following attributes:

• enterprise is set to 1.2.3.4.999.

• generic-trap is set to 6.

• specific-trap is contained in [400, 401].

2 Differentiate PCM clear and link failure alarms.

The alarms are distinguished by the specific-trap attribute:

• If specific-trap is set to 401, the alarm is a PCM clear alarm.

• If specific-trap is set to 400, the alarm is a PCM link failure alarm.

3 Determine whether the alarms come from the same PCM link.

Alarms come from the same PCM link if either of the following is true:

• variable-bindings[0].value contains the PCM link ID.

• Two alarms have the same agent-addr and PCM Link ID.

4 Determine how time is maintained.

Determine the following:

• Time interval for correlation to be monitored

• Time period for which a failure alarm waits for a clear alarm to arrive
Use Cases in NNM 183

Table 11 describes the functionality of the various buttons in the
Transient Correlator Template window.

Table 11 Buttons in the Transient Correlator Template Window

Button Name Selected Functionality

Window Period N/A Mandatory field. Maximum time a failure
alarm is held for a clear alarm. If the clear
alarm is received while the alarm is held, the
clear and failure alarms are discarded. If no
clear alarm is received in this window period,
the failure alarm is forwarded. Typical hold
periods are between 1 and 10 minutes,
depending on the severity of the problem.

Enable Threshold Yes Count of the number of alarm pairs for the
specified threshold window. If the count equals
the threshold count within the threshold
window, a new alarm is created and forwarded.

No No count is maintained. The threshold count
and threshold windows are disabled.

Threshold Count N/A Number of failure and clear alarm pairs
arriving. This button is enabled only if the
Enable Threshold button is enabled.

Threshold Window N/A Time period for which the count is maintained.
This button is enabled only if the Enable
Threshold button is enabled.
184 Chapter 7

Defining the Transient Correlator Template

When responding to the sample PDU for PCM Link Failure on page 182, you
would define a Transient correlator template.

To define the Transient correlator template, follow these steps:

1 From the Correlator Store window, select CorrelationsCorrelator
TemplatesTransient.

The Transient Correlator Template window opens.

2 In the Name text box, type a name for the correlator.

3 In the Description text box, type a description for the correlator.

4 To identify the Alarm Signature, type the following values:

• enterprise = 1.2.3.4.999

• generic-trap = 6

• specific-trap is in list [400, 401]

5 Declare the following variable:

clear constant 401

This variable differentiates the clear alarm from the failure alarm.

6 Define the time period within which a clear alarm must arrive after the
failure alarm has arrived.

In the Window Period field, enter 2 seconds.

7 Define the clear alarm:

a Click the Clear Alarm button.

The Clear Alarm window opens.

b From the drop-up menus under the respective headings, select the
following:

— Attribute = Specific-trap

— Operator = '='

— Value = clear

You must define the Alarm Signature so that the clear and failure
alarms pass this condition.
Use Cases in NNM 185

8 Define the message key.

The message key is a combination of the PCM link ID and the agent
address. The message key uniquely identifies the PCM link from which
the alarms are emitted. You must define a variable that contains this
value.

To define the variable, follow these steps:

a In the Variables table, enter PCMLink in the Name cell.

b Select Operator = Combine.

The Combine Definition window opens.

c From the pop-up menu, select the following parameters:

— agent-addr

— variable-bindings[0]->value

d Close the Combine Definition window.

9 From the message key pop-up menu, select PCMLink.

10 Create variables containing the error string:

errstr1 constant "Threshold breached in "

errstr2 constant "seconds"

errstr = combine of str1, CorrelationDuration, str2

The CorrelationDuration variable is generated automatically by
Composer to monitor the time taken for the threshold to be breached.

11 Define the threshold window period:

a Select the Enable Threshold checkbox.

b Set the following values:

Threshold Count = 5

Threshold Window = 30 minutes
186 Chapter 7

12 Define the new alarm to be output:

a Click the New Alarm tab.

The New Alarm panel displays.

b From the drop-down menu, select New Alarm Definition.

The New Alarm Definition table displays.

Select the following values:

— enterprise = enterprise

— agent-addr = agent-addr

— generic-trap = generic-trap

— specific-trap = specific-trap

— time-stamp = time-stamp

— varBind[0]->name=varBind[0]->name

— varBind[1]->value = errstr

13 Click OK to complete the definition of the correlator.

The correlation displays in the Correlator Store table.
Use Cases in NNM 187

Case 7: Multi-Event Correlation

One use case for Multi-Event correlation is Mobile Switching Center (MSC)
and Base Station Controller (BSC) failure. In a network, if an MSC fails, and a
connected BSC fails within five minutes, you add a valid message to the BSC
indicating what the problem may be.

PDU for MSC Failure

A sample SNMP trap PDU for an MSC failure could appear in an event log, as
follows:

TrapPDU {
enterprise { 1 2 3 4 996},
agent-addr internet : "\x0A\x00\x01\x7F",
generic-trap 6,
specific-trap 65,
time-stamp 414746291,
variable-bindings {
{
name {1 3 6 1 4 1 11 2 17 2 17 0},
value simple : string :"MSC Failure-MSC_ID=MSC1"
}
}
}

PDU for BSC Failure

A sample SNMP trap PDU for a BSC failure could appear in an event log, as
follows:

Trap PDU {
enterprise { 1 2 3 4 995},
agent-addr internet : "\x0A\x00\x01\x7F",
generic-trap 6,
specific-trap 66,
time-stamp 414746291,
variable-bindings {
{
name {1 3 6 1 4 1 11 2 17 2 17 0},
value simple : string :"BSC Failure-BSC_ID=BSC1"
}
}
}

188 Chapter 7

Responding to Connected MSC and BSC Failure

When responding to the sample PDU for MSC Failure on page 188 and the
sample PDU for BSC Failure on page 188, you would use the Multi-Source
Correlator Template window.

To respond to a connected MSC and BSC failure in a network, you would
follow these steps:

1 Identify the MSC failure alarm.

All MSC failures are identified by the following attributes:

• enterprise is set to 1.2.3.4.996.

• generic-trap is set to 6.

• specific-trap is set to 65.

2 Identify the BSC failure alarm.

All BSC failures are identified by the following attributes:

• enterprise is set to 1.2.3.4.995.

• generic-trap is set to 6.

• specific-trap is set to 66.

3 Determine whether the MSC and BSC are connected.

Studying the alarms alone does not help identify how the alarms are
related to each other. To understand the topology, you need to invoke an
external application. To extract the required information, you write a
user-defined function.

For example, you could define a getname() function to take the BSC ID as
a parameter and return the name of the MSC to which it is connected. If
the value returned is the same as the MSC that emitted the failure alarm,
the two devices are connected.
Use Cases in NNM 189

Defining the Multi-Source Correlator Template

When responding to the sample PDU for MSC Failure on page 188 and the
sample PDU for BSC Failure on page 188, you would define the Multi-Source
correlator template.

To define the Multi-Source correlator template, follow these steps:

1 From the Correlator Store window, select CorrelationsCorrelator
TemplatesMulti-Source.

The Multi-Source Correlator Template window opens.

2 In the Name text box, type a name for the correlator.

3 In the Description text box, type a description for the correlator.

4 Click the Definition tab to display the Alarm Definition panel.

5 In the Name panel on the left side of the window, enter the name for the
alarm:

MSC Failure

6 Declare the Alarm Signature to identify the MSC Failure alarms.

In the Definition table, type the following values:

• enterprise = 1.2.3.4.996

• generic-trap = 6

• specific-trap = 65

7 Define the MSCLinkID variable:

• Type the name of the variable:

MSC Link ID

MSC link ID is extracted from variable-bindings[0].value.

• Type the set to extract:

#-#<#.mscID>

• Set the pattern separator set to "#".

This step extracts the MSC link ID and binds it to the variable mscID.
190 Chapter 7

8 Define the message key:

a Click the Message Key text box.

A pop-up menu displays.

b Select MSC FailureMSCLinkIDmscID.

9 Optional: If you want to alter the alarm, define the changes in the Alter
Alarm Definition table.

10 Add a new alarm:

a Right-click the mouse button in the Name panel on the left.

b Enter BSC Failure.

c Define the Alarm Signature to identify BSC Failure:

— enterprise = 1.2.3.4.995

— generic-trap = 6

— specific-trap = 66

d Declare a variable BSCLinkID extracted from
variable-bindings[0].value.

e Select the message key to BSC FailureMSCName.

11 To identify how the MSC and BSC are connected, define a function that
performs the required operation.

For example, you can define a getname() function that takes the BSC
name as a parameter and returns the name of the MSC to which it is
connected.

12 Declare the following variables:

• str1 constant "MSC"

• str2 constant "has reported a failure. The BSC failure
us probably a result of this"

• errstr combine str1, mscID, str2

13 In the Parameters panel, do the following:

• Define the Window Period for which you want to monitor the
occurrences of the alarms.

• Select the Set check box to emit the alarm only if the set is complete.
Use Cases in NNM 191

14 Define the new alarm:

a Click the New Alarm tab.

The New Alarm panel displays.

b From the drop-down menu, select New Alarm Definition.

The New Alarm Definition displays.

c Select the following values:

— enterprise = enterprise

— agent-addr = agent-addr

— generic-trap = generic-trap

— specific-trap = specific-trap

— time-stamp = time-stamp

— varBind[0]->name=varBind[0]->name

— varBind[1]->value = errstr

15 Click OK to complete the definition of the correlator.

The correlator displays in the Correlator Store table.
192 Chapter 7

8 Use Cases in HPOM
To help you understand the workflow schema of HP Correlation Composer in
the HP Operations Management (HPOM) environment, this chapter provides
the following use cases:

• Case 1: Enhance Correlation on page 194

• Case 2: Suppress Correlation on page 210

• Case 3: Multi-Source Correlation on page 215

• Case 4: Rate Correlation on page 225

• Case 5: Transient Correlation on page 233

You can follow these examples when planning your system configuration.

Most likely, you will never face a scenario in which Repeated correlation is
required in a HPOM environment. The sophisticated facilities available with
the standard Message Source template configurations in HPOM are more
appropriate in nearly all situations. Should a situation arise where Repeated
correlation is required, see Case 4: Repeated Correlation on page 175 of
Chapter 7, Use Cases in NNM.

Although all of the alarm examples in this document use the HPOM message
format, Composer is format-independent.

Composer supports the following event type:

• HP Operations Manager (HPOM) Message
 193

Case 1: Enhance Correlation

In the HPOM environment, Enhance correlation is frequently used to enrich
messages.

Common examples of message enrichment include the following:

• Changing Simple Message Text on page 194

• Replacing Error and Status Codes with Descriptions on page 200

• Enriching Messages by Using Perl Commands on page 205

Changing Simple Message Text

As an example of Enhance correlation, you might verify that the OBJECT
message attribute is set to Test. If it is, you could add Test: to the beginning
of MSGTEXT.

Consider the following two messages:

NODENAME: system1
OBJECT: Test
APPLICATION: Web Monitor
MSGTEXT: Application Memory Warning

NODENAME: system1
OBJECT: disk1
APPLICATION: Disk Monitor
MSGTEXT: Volume Warning

You need to match and modify the first message only.

After the text enhancement, the message text would read as follows:

MSGTEXT: Test: Application Memory Warning

In this scenario, you normally do not output the original message with the
enhanced message. That is, you do not present two messages for one condition.
194 Chapter 8

Changing the Text of a Simple Message

To change the text of a simple message, you would follow these steps:

1 Identify the test message.

All test messages are identified by the following attribute:

OBJECT is set to "Test".

2 Change the original message.

You can retain the original alarm along with the enhanced alarm.
Table 12 describes the functionality of the buttons in the Enhance
Correlator Template window.

Table 12 Buttons in the Enhance Correlator Template Window

Button Name Selected Functionality When to Use

Want Original Yes Original message is output
with the enhanced message.

Rarely used. Typically, the option is
required when the enhanced message
is set to represent a separate condition
from that of the original. It is still
appropriate to show the original
message.

No Only the enhanced message
is output. The original
message is discarded.

Default option. If the enhanced
message adds enriched information to
the original condition, it is not
appropriate to show the original
message, which duplicates part of the
enhanced message.

Enhance Always Yes Message is modified and
output, even if another
correlation discards the
message.

Rarely used. Typically, the option is
used if the enhancement includes
external Perl functions with side effects
that should be executed even if the
message will be discarded by another
correlation.

No Message is modified if no
other correlator discards it.

Default option. If another correlator
suppresses a message that is also to be
enriched, the message is not enriched
or output.
Use Cases in HPOM 195

Changing Message Text in the Enhance Correlator Template

To change message text in the Enhance correlator template, you would follow
these steps:

1 Do one of the following:

• From the Correlator Store window, click CorrelationsCorrelator
TemplatesEnhance.

• Click the Enhance button.

The Enhance Correlator Template window opens.

2 In the Name text box, type a name for the correlator.

3 In the Description text box, type a description for the correlator.

4 Click the Definition tab.

You cannot use spaces in the correlator name.
196 Chapter 8

5 To define the Alarm Signature (to select only messages of interest to you),
select the following values:

a In the Field cell, select OBJECT.

b From the Operator drop-down menu, select the equal sign (=).

c In the Value field, type "Test".

6 Create a textPrefix variable for the prefix of the message text:

a In the Name text box, type textPrefix.

b From the Operator drop-down menu, select Constant.

c In the Value field, type the string "Test: ".

7 Create a newText variable to concatenate (combine) the prefix text
(textPrefix) with the message text attribute:

a Press Enter, or right-click the Variables area and click Add in the
shortcut menu.

b In the Name cell, type newText.

c From the Operator field drop-down menu, select Combine.

d Click the Value field to open the Combine Definition box.

e For the first parameter, select textPrefix.

f For the second parameter, select MSGTEXT.
Use Cases in HPOM 197

The Definition tab should now look like this.

8 Alter the message:

a Click the New Alarm tab.

The New Alarm panel opens.

b From the drop-down menu, select Alter Specification.

The Alter Alarm Definition table displays.

c Define the following attributes:

— From the Field drop-down menu, select MSGTXT.

— From the Mode drop-down menu, select Replace.

— From the Value drop-down menu, select newText.
198 Chapter 8

The New Alarm tab should now look like this.

9 Click OK to complete the definition of the correlator.

The correlator displays in the Correlator Store table.
Use Cases in HPOM 199

Replacing Error and Status Codes with Descriptions

As an example of Enhance correlation, you might want to verify that the
OBJECT message attribute is set to HTTP, and then find the error or status code
in the MSGTEXT attribute. If the error code is in the 500 through 599 range, it is
a server error. You should replace it with a status description that is retrieved
from the Data Store. (In addition, you would use the Suppress correlator to
suppress all non-server error or status messages. For details, see Case 2:
Suppress Correlation on page 210.)

Consider the following message and sample Data Store entries:

NODENAME: system1
OBJECT: HTTP
APPLICATION: Web Monitor
MSGTEXT: Response Code: 502

#/tmp/c.ds#Sat Aug 16 15:39:47 2008#0#0
ADD DATA("HTTP_500", "Internal Server Error")
ADD DATA("HTTP_501", "Not Implemented")
ADD DATA("HTTP_502", "Bad Gateway")
ADD DATA("HTTP_503", "Service Unavailable")
ADD DATA("HTTP_504", "Gateway Timeout")
ADD DATA("HTTP_505", "HTTP Version Not Supported")
ADD DATA("HTTP_506", "Variant Also Negotiates")
ADD DATA("HTTP_507", "Insufficient Storage")
ADD DATA("HTTP_509", "Bandwidth Limit Exceeded")
ADD DATA("HTTP_510", "Not Extended")

For this message, you would replace the MSGTEXT value with Bad Gateway:

MSGTEXT: Bad Gateway
200 Chapter 8

Replacing an Error or Status Code with a Description

To replace an error or status code with a description, you would follow these
steps:

1 Identify appropriate messages.

All HTTP messages are identified by the following attributes:

• OBJECT is set to "HTTP".

• MSGTEXT has a format such as the following:

"Response Code: 502"

2 Decide what to do with the original message.

You output the modified message and suppress the matching messages.
For a detailed description of options, see Table 12 on page 195.

Replacing a Code with a Description in the Enhance Correlator Template

To replace an error or status code with a description in the Enhance correlator
template, follow these steps:

1 Do one of the following:

• From the Correlator Store window, click CorrelationsCorrelator
TemplatesEnhance.
Use Cases in HPOM 201

• Click the Enhance button.

The Enhance Correlator Template window opens.

2 In the Name text box, type a name for the correlator.

3 In the Description text box, type a description for the correlator.

4 Click the Definition tab.

5 To define the Alarm Signature (to select only messages of interest to you),
select the following values:

a In the Field cell, select OBJECT.

b From the Operator drop-down menu, select the equal sign (=).

c In the Value field, type "HTTP".

6 Create a errorCode variable to hold the error or status code to be
extracted with a pattern from the matching text:

a In the Name text box, type errorCode.

b From the Operator drop-down menu, select Extract.

c In the Attribute pop-up menu, select MSGTEXT.

d In the Pattern text box, type Response Code: <*.code>$.

The pattern separator is not required to specify whether normal
whitespace is used as the word separator. In this case, you can later
use the code tag to represent that part of the extracted message text
(the HTTP status or error code).

You cannot use spaces in the correlator name.

Pattern matching in Composer uses the syntax of the HPOM
template configuration.
202 Chapter 8

7 Create a lookupPrefix variable to hold the prefix to the extract code:

a In the Name cell, type lookupPrefix.

b From the Type field drop-down menu, select Constant.

c In the Value field, enter "HTTP_".

8 Create a lookupCode variable to hold the text that is combined with the
lookupPrefix and the extract code to look up the Data Store:

a In the Name cell, type lookupCode.

b From the Type field drop-down menu, select Combine.

c In the Value field, select the following:

— lookupPrefix

— errorCode->code

9 Create a message variable to hold the text set from the Data Store lookup:

a In the Name cell, type message.

b From the Type field drop-down menu, select Lookup.

c In the Value field, select lookupCode.

10 Create a desiredRange variable to hold the pattern used in the Advanced
Filter to select only messages that are for HTTP code or status values in
the range 500 through 599:

a In the Name cell, type desiredRange.

b From the Type field drop-down menu, select Constant.

c In the Value field, type "5<2#>".

You use the Advanced Filter to select and enhance a subset of messages
that match the Alarm Signature.

The Lookup operator requires that the data to be retrieved is
already loaded in the Data Store. For details, see Data Store File on
page 157.
Use Cases in HPOM 203

11 Declare the Advanced Filter entry, errorCode.code, to match the pattern
declared in desiredRange:

a In the Name cell, select errorCode->code.

b From the Operator field drop-down menu, select matches.

c In the Value field, select desiredRange.

The Definition tab should now look like this.
204 Chapter 8

12 Alter the message:

a Click the New Alarms tab.

The New Alarm panel opens.

b From the drop-down menu, select Alter Specification.

The Alter Alarm Definition table displays.

c Define the following attributes:

— From the Field drop-down menu, select MSGTXT.

— From the Mode drop-down menu, select Append.

— From the Value drop-down menu, select message.

13 Click OK to complete the definition of the correlator.

Enriching Messages by Using Perl Commands

As an example of Enhance correlation, you might want to use Perl commands
to enhance messages, as follows:

• Appending Comment Fields to Message Text on page 206

• Adding a CMA by Name to an Event on page 207

• Increasing Event Severity for Non-Critical Events on page 208

• Determining Whether To Suppress Events Based on Maintenance Mode
on page 209
Use Cases in HPOM 205

206 Chapter 8

Appending Comment Fields to Message Text

You can use a Perl script to return data to Composer that can then be added to
a message. In this example, a message is enhanced by appending the comment
fields for a server /etc/hosts entry to the message text.

This implementation assumes that /etc/hosts has the following format:

IP_address hostname # Comments

For example, the file could contain the following function:

1.2.3.4 server_4.company.net # Asset ID 12345

This function would return the following:

" Asset ID 12345"

To append any message text with the comment fields from /etc/hosts, you
could use the Perl command getHostinfo, as follows:

sub getHostInfo {

 local($nodename)=@_;
 local($infile);
 local($line);

 if ($^O eq "MSWin32")
 { $infile = $ENV{ SystemRoot } .'\System32\drivers\etc\hosts';
}
 else # Unix platforms
 { $infile = "/etc/hosts"; }

 if (!open (INFILE, "<$infile"))
 { print "Error while opening the hosts file"; exit; }

 while (<INFILE>)
 {
 $line = $_;
 if($line =~ /$nodename.*\#(.*)/)
 { return " $1"; }
 }
 return " ";
}

The correlation requirement is to call getHostInfo(msg_node_name) and add
the return value to the message text.

On Windows, the host file is %SystemRoot%\system32\drivers\etc\hosts.
This Windows file has the same format as in UNIX.

This portable Perl code should work on all supported platforms.

Adding a CMA by Name to an Event

You can use a Perl script to read a custom message attribute (CMA) from an
external file and add it to an event. In this example, you identify a team to
work on the event from a file containing this mapping, based on an event’s
message group. In this example, the mapping file is named teams.txt.

By default, the teams.txt file is located in the following directory:

• UNIX

$OV_CONTRIB/ecs/external/perl

• Windows managed node

%OvInstallDir%\contrib\ecs\external\perl

• Windows management server

%OvDataDir%\contrib\ecs\external\perl

The teams.txt file contains entries in the following format:

Message_group TeamName

The file might contain entries such as the following:

SNMP NetAdmins

OpC OpsTeam

VP_SM OpsTeam

...

This Perl subroutine returns the TeamName string to the correlator that
invokes the getTeamInfo() function:

sub getTeamInfo {
 local($msggrp)=@_;
 local($infile) = "teams.txt";
 local($line);
 if (!open (INFILE, "<$infile")) { ... }
 while (<INFILE>)
 {
 $line = $_;
 if($line =~ /$msggrp\t(.*)/)
 { return " $1"; }
 }
 return " ";
}

Use Cases in HPOM 207

To set a CMA named CMA_TEAM_NAME to reflect the getTeamInfo() return
string, in an Enhance correlator, you would define a variable teaminfo of the
type Function with a value of getTeamInfo(GROUP). Then, in the correlator’s
Alarm Definition window, you could alter the alarm’s definition by adding a
field CMA_TEAM_NAME, in mode Replace, with a value of teaminfo. This
command requires CMA_TEAM_NAME to be added to the CO.conf file.

Increasing Event Severity for Non-Critical Events

You can use external Perl functions to modify an event’s severity. The code
sample in this section shows how to increase the severity by one, where
possible. Notice that event severity is represented internally as an integer
value. Notice also how the severities and their integer values are not in a
numerical order, thus requiring some special handling when manipulating
them programmatically:

sub incrSeverity {
 local($origSev) = @_;
 local($newSev);
 local($SEV_NORMAL) = 8;
 local($SEV_WARNING) = 16;
 local($SEV_MINOR) = 64;
 local($SEV_MAJOR) = 128;
 local($SEV_CRITICAL) = 32;

 if ($origSev >= $SEV_NORMAL) {

 $newSev = $origSev * 2;

 if ($newSev == 256)
 { $newSev = $SEV_CRITICAL;
 return int $newSev; }
 if ($newSev == $SEV_MINOR)
 { $newSev = $SEV_CRITICAL;
 return int $newSev; }
 if ($newSev == $SEV_CRITICAL)
 { $newSev = $SEV_MINOR;
 return int $newSev; }
 }
 else { $newSev = $origSev; }
 return int $newSev;
}

208 Chapter 8

To apply a function to change an event’s severity, you would follow these steps:

1 Define a new variable (for example, by the name NewSeverity) of the type
Function and with a value of incrSeverity(SEVERITY).

2 In the correlator’s Alter Alarm Definition section, add an entry for the
field SEVERITY, in Replace mode, with a value of NewSeverity.

Determining Whether To Suppress Events Based on Maintenance Mode

Many users need to flexibly manage planned or unplanned outages for the
managed node. One goal of the outage management could be to suppress all
events from nodes during an outage. A very simple implementation approach
would be to maintain a file with the hostnames for nodes that are considered
to be in an outage. (This file would be maintained by an external mechanism.)
You could query the external file for the name of the message host, and return
different values, based on whether the hostname was found in the outage file.
A Suppress correlator could then use the function’s return to determine
whether an event needed to be suppressed.

To determine whether to suppress events based on maintenence mode, you
could use the Perl command check_outage, as follows:

sub check_outage {

 my ($node) = @_ ;
 open MAINT, "/some/path/to/maint/file";
 while (<MAINT>) {
 chomp;
 if (/^$node$/o) {
 close MAINT;
 return(1);
 }
 }
 close MAINT;
 return(0);
}

If a host is listed in the external file, the event is suppressed, based on the
return of a Perl function. The function is used in a Advanced Filter definition
for the Suppress correlator.
Use Cases in HPOM 209

Case 2: Suppress Correlation

In the HPOM environment, you use Suppress correlation to filter out
messages. You can also use the standard HPOM Message Source template
conditions. However, it is sometimes easier to set simple message conditions in
the template definitions, and use the correlator to suppress an unwanted
subset of messages.

Suppressing Message Subsets

As an example of enhance correlation, you might want to suppress an
unwanted subset of messages. This example is an extension of the HTTP
server message enrichment described in Replacing Error and Status Codes
with Descriptions on page 200. In the Enhance correlator, you can replace the
error or status code with a description if the codes are in the range of 500
through 599. For codes outside this range, you can use Suppress correlation.

This kind of Suppress correlation verifies that the OBJECT message attribute
is set to HTTP, and then finds the error or status code in the MSGTEXT. If the
error code is not in the 500 through 599 range, it is suppressed.

Consider the following messages:

NODENAME: system1
OBJECT: HTTP
APPLICATION: Web Monitor
MSGTEXT: Response Code: 502

NODENAME: system1
OBJECT: HTTP
APPLICATION: Web Monitor
MSGTEXT: Response Code: 401

The first message should be passed and enriched by Enhance correlation. The
second message is suppressed.
210 Chapter 8

Suppressing the Subset of a Message

To suppress the subset of a message, you would follow these steps:

1 Identify the appropriate messages.

All HTTP messages are identified by the following attributes:

• OBJECT is set to "HTTP".

• MSGTEXT has format such as "Response Code: 502".

2 Decide whether messages participate in other correlations.

Table 13 summarizes the options available in the Suppress Correlator
Template window.

For this example, if you decided to suppress a message (not in the 500 through
599 code range), you would not enhance it. As a result, you could safely
suppress it and not have it participate in other correlations.

Table 13 Buttons in the Suppress Correlator Template Window

Button Name Selected Functionality When to Use

Participate In
Other
Correlation

No Alarm does not participate
in other correlations before
it is discarded.

Default option. Suppress
messages before they
could be seen by other
correlations.

Yes Alarm takes part in other
correlations before it is
discarded.

Typically, you use this
option if the message
contributes to another
correlation logic, but
itself is not output.
Use Cases in HPOM 211

Defining the Suppress Correlator Template

To define the Suppress correlator template, follow these steps:

1 Do one of the following:

• From the Correlator Store window, click CorrelationsCorrelator
TemplatesSuppress.

• Click the Suppress button.

The Suppress Correlator Template window opens.

2 In the Name text box, type a name for the correlator.

3 In the Description text box, type a description of the correlator.

4 Click the Definition tab.

You cannot use spaces in the correlator name.
212 Chapter 8

5 Define the Alarm Signature:

a In the Field cell, select OBJECT.

b From the Operator field drop-down menu, select the equal sign (=).

c In the Value field, enter "HTTP".

6 Create an errorCode variable to hold the error or status code extracted
with a pattern from the message text:

a In the Name cell, type errorCode.

b From the Type field drop-down menu, select Extract.

c In the Attribute drop-down menu, select MSGTEXT.

d In the Pattern drop-down menu, select Response Code: <*.code>$.

You do not need to specify the pattern separator if you use normal
whitespace as the word separator pattern. Later, you can use the code
tag to represent that part of the extracted the message text (the HTTP
status or error code).

7 Create a desiredRange variable to hold the pattern used in the Advanced
Filter to select only messages that are not for HTTP code or status values
in the range 500 through 599:

a In the Name cell, type desiredRange.

b From the Type field drop-down menu, select Constant.

c In the Value field, enter "5<2#>".

8 Declare the Advanced Filter entry, errorCode.code, to match the pattern
declared in desiredRange:

a In the Name cell, select errorCodecode.

b From the Operator field drop-down menu, select does NOT match.

c In the Value field, select desiredRange.

In Composer, you use the pattern matching syntax used in HPOM
for the UNIX template configuration.
Use Cases in HPOM 213

You use the Advanced Filter to select a subset of messages that match the
Alarm Signature. Only those message are suppressed.

At this point, the Definition tab should look like this.

9 Click OK to complete the definition of the correlator.
214 Chapter 8

Case 3: Multi-Source Correlation

In the HPOM environment, you use Multi-Source correlation to detect and
suppress messages caused by another fault or situation. These messages are
also known as sympathetic messages. Sometimes, you may want to simply
suppress the sympathetic messages. At other times, you may also want to
generate a new message that shows a greater problem or situation.

Examples of Multi-Source correlation include the following:

• Core router goes down on a remote site, and HPOM generates alerts
indicating that a number of agents are not responding.

• File system full messages—as well as OS SPI, application, and database
writing errors—are generated.

• DNS issues, as well as the system running DNS, are detected.

Suppressing Messages on Remote Sites

An example of Multi-Source correlation is a situation in which the primary
router for a remote site goes down. There are a number of systems within that
site that may be detected as down or unreachable from heartbeat monitoring.

In this situation, if you received a router down message, you would suppress
any HP Operations Agent Not Responding messages that came from that
site (based on device or node naming conventions). You would also report the
site as down.

Suppressing messages on remote sites involves the relative timing of the
messages.

Consider the following five messages:

1 Message 1 is issued:

NODENAME: crt01siteA
MSGTYPE: OV_APA_NODE_DOWN
MSGTEXT: Node Down

This message should be output immediately because it is a Node Down
message from a router (using the ctr naming prefix for core router).
Use Cases in HPOM 215

2 Message 2 is issued 1 minute after Message 1:

NODENAME: sys05siteB
MSGTEXT: OpC agent not responding.

This message should be output because it comes from a different site
(siteB) than Message 1 (siteA).

3 Message 3 is issued 10 seconds after Message 2:

NODENAME: sys05siteA
MSGTEXT: OpC agent not responding.

This message should be suppressed because it is from the same site as
Message 1. The message should trigger a Site Down message because it is
an Agent Not Responding message.

4 Message 4 is issued 1 second after Message 3:

NODENAME: sys03siteA
MSGTEXT: OpC agent not responding.

This message should be suppressed because it is from the same site as
Message 1. However, it should not trigger another Site Down message.

5 Message 5 is issued 20 minutes after Message 4:

NODENAME: sys04siteA
MSGTEXT: OpC agent not responding.

This message should be output because it occurs too long after the original
scenario was triggered, even though it is an Agent Not Responding
message from the same site.

Suppressing a Sympathetic Message on a Remote Site

To suppress a sympathetic message on a remote site, you would follow these
steps:

1 Identify the appropriate messages.

All Core Router Down messages are identified by the following:

• MSGTYPE is OV_APA_NODE_DOWN.

• NODENAME starts with "crt" (for core router).

• Location is extracted from NODENAME (after the digits).
216 Chapter 8

All Agent Not Responding messages are identified by the following:

• MSGTEXT is OpC agent not responding.

• Locations are extracted from the NODENAME (after the digits).

You must allow up to 10 minutes for all messages to be received.

2 Determine which other parameters to consider.

Table 14 summarizes the options available for Multi-Source correlations.

Table 14 Buttons in the Multi-Source Correlator Template Window

Button Name Selected Functionality When to Use

Discard on Set
Completion

No Alarm is forwarded, regardless
of set completion.

Default option. Typically, you select
this option for messages that are the
root cause or trigger of the scenario.

Yes Alarm is discarded if the set is
complete. Otherwise, it is
forwarded.

Typically, you select this option for
the sympathetic messages in the
scenario.

Window Period N/A Mandatory field. Time period
within which all alarms of the
set must arrive for the set to be
considered complete. The alarms
can arrive in any order.

Always required. Set a realistic time
period within which all messages
must arrive for the given scenario.
NOTE: All messages that are
matched are delayed for this window
period, regardless of the result of the
correlation.

Set No Operates in Mode 1. For details,
see Multi-Source Correlator
Template on page 32.

Default mode. Typically, you use this
option for all scenarios in which there
can be a number of sympathetic
messages of the same type to be
suppressed.

Yes Operates in Mode 2. For details,
see Multi-Source Correlator
Template on page 32.

Typically, you use this option when
there is a fixed set of messages that
determine an issue. After the issue
has been established, no extra
messages are suppressed.
Use Cases in HPOM 217

Suppressing Subsets with the Multi-Source Correlator Template

To suppress subsets with the Multi-Source correlator template, follow these
steps:

1 Do one of the following:

• From the Correlator Store window, click CorrelationsCorrelator
TemplatesMulti-Source.

• Click on Multi-Source button.

The Multi-Source Correlator Template window opens.

2 In the Name text box, type a name for the correlator.

3 In the Description text box, type a description of the correlator.

Unlike previous examples in this chapter, multiple message (alarms) need
to be configured for Multi-Source correlations. You need to complete the
details of each message (alarm) before moving on to the next.

You cannot use spaces in the correlator name.
218 Chapter 8

4 Click the Definition tab.

5 Enter a name for the first message (alarm) type.

In the Name text box, type routerDown.

6 Define the Alarm Signature:

a In the Field cell, select MSGTYPE.

b From the Operator field drop-down menu, select the equal sign (=).

c In the Value field, enter "OV_APA_NODE_DOWN".

7 Create a device variable to hold the location code to be extracted with a
pattern from the node name (device):

a In the Name cell, type device.

b From the Type drop-down menu, select Extract.

c In the Attribute drop-down menu, select NODENAME.

d In the Pattern text field, type "^<*><#><*.location>".

8 Create a coreRouter variable for the Advanced Filter that selects only
messages from nodes that match the naming convention for core routers:

a In the Name cell, type coreRouter.

b From the Type field drop-down menu, select Constant.

c In the Value field, type "^crt".

You do not need to specify the pattern separator if you use normal
whitespace as the word separator. Later, you can use the location tag to
represent that part of the extracted node name (the site name).
Use Cases in HPOM 219

9 Create a message variable for the message text for the Site Down
message that is generated on detection:

a In the Name cell, type message.

b From the Type field drop-down menu, select Constant.

c In the Value field, type "Site Down".

The Advanced Filter is used to select a subset of messages that match the
Alarm Signature (Node Down), and only those of interest (nodes that are
core routers).

10 Declare the Advanced Filter entry to match the pattern declared in the
coreRouter variable:

a In the Name cell, select routerDown->NODENAME.

b From the Operator field drop-down menu, select matches.

c In the Value field, select routerDow->coreRouter.

11 In the Message Key cell, select routerDown->device->location.

You use the message key to match the different message (alarm) types. In
this case, you match the site (location) name extracted from NODENAME.

12 Under Window Period, type the following:

• 00 hours (hh)

• 10 minutes (mm)

• 00 seconds (ss)

The Window Period is a global setting used for this correlator. It defines
the time period in which messages are related.

Do not select the Discard on Set Completion – Router Down check
box. You do not want to suppress root cause messages.
220 Chapter 8

The definition of the routerDown component now looks like this.
Use Cases in HPOM 221

13 Add another message alarm for the Agent Not Responding message:

a In the Name section, right-click the routerDown entry.

b In the Name field, type notResponding.

A blank entry appears for the definition of the Agent Not Responding
message.

14 Enter the following values to define the Alarm Signature (to select only
the Node Down messages):

a In the Field cell, select MSGTEXT.

b From the Operator field drop-down menu, select the equal sign (=).

c In the Value field, type the following:

"OpC agent not responding"

15 Create a device variable to hold the location code to be extracted with a
pattern from the node name (device):

a In the Name cell, type device.

b From the Type field drop-down menu, select Extract.

c In the shortcut menu from the Value field, select the following:

— Attribute: NODENAME

— Pattern: ^<*><#><*.location>
222 Chapter 8

You use the Advanced Filter to select a subset of messages that match the
Alarm Signature (Agent Not Responding). In this case, nothing is
required for the Advanced Filter.

16 In the Message Key cell, select notResponding->device->location.

You use the message key to match the different message (alarm) types. In
this case, you match the site (location) name extracted from NODENAME.

17 Select the Discard on Set Completion – Not Responding check box for the
sympathetic messages.

The definition of the notResponding component now looks like this.
Use Cases in HPOM 223

18 Click the New Alarms tab to create the Site Down message.

The New Alarm panel opens.

19 From the drop-down menu, select Alter Specification.

The Alter Alarm Definition table displays.

20 Define the following attributes to alter the new alarm:

a From the Field drop-down menu, select NODENAME.

b From the Mode drop-down menu, select Replace.

c From the Value drop-down menu, select routerDown->NODENAME.

21 Add another fields line:

• From the Field drop-down menu, select MSGTEXT.

• From the Mode drop-down menu, select Replace.

• From the Value drop-down menu, select routerDown->message.

The New Alarm tab now looks like this.

22 Click OK to complete the definition of the correlator.
224 Chapter 8

Case 4: Rate Correlation

In the HPOM environment, you use Rate correlation to handle scenarios
where it is necessary to detect issues, based on the frequency of messages.

You might want to detect issues, based on message frequency, in the following
situations:

• Issue does not exist unless a number of the same messages occur within a
short time period.

• Severity is increased when a certain rate of the same message occurs.

Detecting DNS Outages

Sometimes, a Domain Name Server (DNS) does not respond. If this lack of
response occurs only occasionally, it may be part of normal operations.
However, if a DNS does not respond repeatedly within a short period of time,
the problem may be serious enough to require attention. One example of a
serious problem is a DNS outage.

In response to a DNS outage, you verify that the OBJECT message attribute is
set to DNS, and that the MSGTEXT contains the following:

"No response from server Name Server"

If you receive five such messages from the same NODENAME within 10 seconds,
you generate a new message indicating a likely DNS outage.

Consider the following messages, which occur within 10 seconds:

NODENAME: system1
OBJECT: DNS
MSGTEXT: No response from server Name Server

NODENAME: system2
OBJECT: DNS
MSGTEXT: No response from server Name Server

NODENAME: system1
OBJECT: DNS
MSGTEXT: No response from server Name Server
Use Cases in HPOM 225

NODENAME: system1
OBJECT: DNS
MSGTEXT: No response from server Name Server

NODENAME: system1
OBJECT: DNS
MSGTEXT: No response from server Name Server

NODENAME: system1
OBJECT: DNS
MSGTEXT: No response from server Name Server

For system1 and system2, you should suppress all messages. On the arrival of
the fifth occurrence of the message from system1, you generate a new
message. For system2, you generate nothing.

Responding to a DNS Outage

To respond to a DNS outage, you would do the following:

1 Identify the appropriate messages.

All DNS server problem messages are identified by the following:

• OBJECT is set to "DNS".

• MSGTEXT has a format such as the following:

"No response from server Name Server"

2 Decide whether to discard contributing messages.

There is no issue until the frequency of the messages from the same node
breaches a threshold. For this reason, you should discard the contributing
messages. In this example, you suppress all of the contributing messages
if the rate threshold is breached. That is, you select the Discard flag.
226 Chapter 8

Table 15 lists the options available in the Rate Correlation Template window.

Table 15 Buttons in the Rate Correlator Template Window

Button Name Selected Functionality When to Use

Window Period N/A Time period for which the
message arrival rate is
monitored

Mandatory field. Must always be
set.

Count N/A Threshold count. If the number
of messages exceeds the
threshold count within the
specified window period, the
rate threshold is breached.

Mandatory field. Must always be
set.

Discard No Messages are not discarded. If
created, the new message is
output.

Default mode. In HPOM
environments, this mode is not
used very often.
Use this option when you are
required to output all of the
messages that led to the
triggering of the issue. Normally,
you use this option when the
contributing messages provide
information that augments the
triggered message.

Yes All messages are discarded.
Only the new message, if
created, is output.

In HPOM environments, this is
the most commonly used mode.
All contributing messages are
discarded because there is no
problem until the frequency
threshold is breached (and a
new message is generated).
Use Cases in HPOM 227

Defining the Rate Correlator Template

To define the Rate correlator template, follow these steps:

1 Do one of the following:

• From the Correlator Store window, select CorrelationsCorrelator
TemplatesRate.

• Click the Rate button.

The Rate Correlator Template window opens.

2 In the Name text box, type a name for the correlator.

3 In the Description text box, type a description of the correlator.

You cannot use blank spaces in the correlator name.
228 Chapter 8

4 Define the Alarm Signature to select only the messages of interest:

a Click the Definition tab.

a In the Field cell, select OBJECT.

b From the Operator field drop-down menu, select the equal sign (=).

c In the Value field, enter "DNS".

For all messages in which the OBJECT is DNS, you use the Advanced Filter
to select only those messages that are considered DNS No Response
messages.

5 Create an errorString variable to hold the generated message text:

a In the Name cell, type errorString.

b From the Type field drop-down menu, select Constant.

c In the Value field, type the following:

"Likely DNS Failure"

6 Create a msgText variable to hold the pattern to be used in the Advanced
Filter to select only messages of interest:

a In the Name cell, type msgText.

b From the Type field drop-down menu, select Constant.

c In the Value field, type the following:

"No response from server Name Server"

7 Declare the Advanced Filter entry:

a In the Name cell, select MSGTEXT.

b From the Operator field drop-down menu, select matches.

c In the Value field, select msgText.

You use the Advanced Filter to select a subset of messages that match the
Alarm Signature. Only these messages are used to test the frequency of
the occurring messages.
Use Cases in HPOM 229

8 In the Message Key cell, select NODENAME.

You use the message key to match the messages from the same source. In
this case, you use the message key to count the messages for each node on
which they occur.

9 Under Window Period, set the following:

• 00 hours (hh)

• 00 minutes (mm)

• 10 seconds (ss)

The window period is a global setting used for this correlator. It defines
the time period in which related messages are matched.

10 In the Count text box, type 5.

The count is the number of messages from the same source (message key)
that must be received within the specified window period for a rate or
frequency threshold breach to occur.

11 Select the Discard check box to discard the contributing messages.

The Discard flag determines whether messages contributing to the rate
check are suppressed (discarded).
230 Chapter 8

The Rate configuration now looks like this.

12 Alter the alarm:

a Click the New Alarms tab.

The New Alarm panel opens.

b From the drop-down menu, select Alter Specification.
Use Cases in HPOM 231

The Alter Alarm Definition table displays.

c Define the following attributes:

— From the Field drop-down menu, select MSGTXT.

— From the Mode drop-down menu, select Replace.

— From the Value drop-down menu, select errorString.

13 Click OK to complete the definition of the correlator.
232 Chapter 8

Case 5: Transient Correlation

Transient correlation matches messages in transient pairs.

A transient pair is made up of the following messages:

• Set

Typically indicates an error condition.

• Clear

Signifies the end of that same error condition.

This pair of related messages is considered transient when it occurs within a
predefined time interval (typically relatively short).

Often, when Set or Clear message pairs occur within a short period of time,
they represent only a fleeting problem and can safely be ignored. If too many
transient matches occur from the same source in a given time period, you can
use Transient correlation to generate a new message.

Generating New Messages

You might want to generate a new message in the following situations:

Some common situations where this would occur include the following:

• Messages

— Application Down

— Application Up

— Interface Down

— Interface Up

— Node Down

— Node Up

— Service Down

— Service Up

• CPU utilization problems

• Network link flapping (that is, multiple transients in a short time period)
Use Cases in HPOM 233

Smart Message Correlation

HPOM includes templates, based on smart message correlation (that is, the
state-based browser). These templates provide functionality similar to that of
the Transient correlator.

Smart message correlation and Transient correlation have the following key
differences:

• Set messages

Transient correlation completely suppresses a Set message if it receives a
matching Clear message. In the same situation, smart message
correlation outputs the Set message and later acknowledges it.

• Flapping conditions

You can use Transient correlation to detect a possible flapping condition
(repeated Set and Clear pairs from the same source).

• Message matching

With the state-based browser, you can match messages as Set and Clear
pairs that have been apart for a long time, even after a software restart. In
contrast, Composer relies on short-term, memory-based window matching.

Despite these key differences, smart message correlation and Transient
correlation can have similar outcomes. The key differences can help you to
determine which mechanism is most appropriate for your needs.

Suppressing High CPU Utilization Messages

A high CPU utilization message may indicate a “rogue” process running on a
system. More commonly, the message is followed shortly by a message
indicating that the issue no longer exists. In such a situation, you can safely
suppress both messages. You should output the high CPU utilization message
only if the Clear message does not occur within a short period of time.

Consider the following messages, which occur within 10 seconds:

NODENAME: system1
MSGTEXT: system1:LZ has high CPU usage.

NODENAME: system1
MSGTEXT: system1:LZ no longer has high CPU usage.

You should suppress both messages because the problem no longer exists.
234 Chapter 8

Responding to High CPU Utilization Messages

To respond to high CPU utilization messages, you would follow these steps:

1 Identify the appropriate messages.

CPU utilization messages are identified by the following:

• MSGTEXT for the Set message has a format such as the following:

"system1:LZ has high CPU usage."

• MSGTEXT for the Clear message has a format such as the following:

"system1:LZ no longer has high CPU usage."

2 Decide how to match the messages.

Transient pairs of Set and Clear messages are identified by the following:

• Have the same NODENAME value.

• Occur within 10 seconds of each other. (Set is before Clear.)
Use Cases in HPOM 235

Table 16 summarizes the options available in the Transient Correlation
Template window.

Table 16 Buttons in the Transient Correlator Template Window

Button Name Selected Functionality When to Use

Window Period N/A Mandatory field. The maximum
time a Set message is held by
Composer while waiting for a
Clear message. If the Clear
message is received while the
alarm is held, both the Set and
Clear messages are discarded. If
no Clear message is received in
this window period, the Set
message is output.

Mandatory field. Must always be
set. Typically, the period is
somewhere between 10 seconds
and 10 minutes, depending on
the severity of the problem.

Enable Threshold No No Count is maintained. The
Threshold Count and Threshold
Windows are both disabled.

Default option. This option is
applicable to situations in which
a flapping (multiple transients
in a short time period) condition
is not likely or is not appropriate
to detect and report.

Yes Maintains a count of the number of
alarm pairs for the specified
threshold window. If the count
equals the threshold count within
the threshold window, a new alarm
is created and forwarded.

This option is applicable in
situations where a flapping
(multiple transients in a short
time period) condition is
possible, and where it is
appropriate to detect and report
the condition.

Threshold Count N/A Threshold count. If the number of
transient pair matches for the
same source exceeds the threshold
count within the specified window
period, the rate threshold is
breached.

This field is enabled only if the
Enable Threshold button is
enabled.

Threshold Window N/A Time period for which the count is
maintained.

This field is enabled only if the
Enable Threshold button is
enabled.
236 Chapter 8

Defining the Transient Correlator Template

To define the Transient correlator template, follow these steps:

1 Do one of the following:

• From the Correlator Store window, select CorrelationsCorrelator
TemplatesTransient.

• Click the Transient button.

The Transient Correlator Template window opens.

2 In the Name text box, type a name for the correlator.

3 In the Description text box, type a description of the correlator.

You cannot use blank spaces in the correlator name.
Use Cases in HPOM 237

4 Define the Alarm Signature (to select only the messages of interest):

a Click the Definition tab.

a In the Field cell, select MSGTEXT.

b From the Operator field drop-down menu, select matches.

c In the Value field, type "high CPU usage".

In this step, you consider all messages in which the MSGTEXT contains
high CPU usage.

5 Create a clearMessage variable to hold the text to match for Clear
messages:

a In the Name cell, type clearMessage.

b From the Type field drop-down menu, select Constant.

c In the Value field, type "no longer".

6 In the Message Key cell, select NODENAME.

You use the message key to match messages from the same source.

7 Under Window Period, type the following:

• 00 hours (hh)

• 00 minutes (mm)

• 10 seconds (ss)

The window period is a global setting used for this correlator. It defines a
time period in which transient messages are matched.

The Alarm Signature must match for both Set and Clear
messages.

In this scenario, nothing is required for the Advanced Filter.

Do not select the Enable Threshold check box because you are not
checking for a flapping condition. The Threshold Count and
Threshold Windows fields are inactive.
238 Chapter 8

8 Set the matching criteria for the Clear messages:

a Click the Clear Alarm button.

b In the Attribute cell, select MSGTEXT.

c From the Operator field drop-down menu, select matches.

d In the Value cell, type clearMessage.

At this point, the Transient configuration looks like this.

9 Click OK to complete the definition of the correlator.
Use Cases in HPOM 239

240 Chapter 8

9 Developer Mode in NNM
This chapter explains how developers manage HP Correlation Composer in
HP Network Node Manager (NNM) environments:

• Administrative Tasks on page 241

• Starting Composer in Developer Mode on page 242

• Configuring Operator Profiles on page 242

• Defining Operator Access on page 255

• Deploying the Correlator Store on page 257

Administrative Tasks

In Composer, developers are responsible the following tasks:

• Correlator Stores

Creating and modifying the Correlator Store file. For instructions, see
Chapter 4, Developing Correlators.

• Operator access

Defining operator access by maintaining NameSpace and Security files.

• Correlation logic

Creating the Deploy Configuration file that deploys the correlation logic to
the HP Event Correlation Services (ECS) engine.

Unless otherwise noted, all tasks described in this chapter should be executed
by the Correlator Store developer.
 241

Starting Composer in Developer Mode

To start Composer in Developer mode, type the following:

ovcomposer -m d

For more information about the ovcomposer command, see the ovcomposer
reference page.

Configuring Operator Profiles

To configure operator profiles for Composer, complete the following tasks:

• Task 1: Creating Correlator Stores on page 242

• Task 2: Listing Correlator Stores on page 242

• Task 3: Creating NameSpace and Security Files on page 242

• Task 4: Creating Deploy Configuration Files on page 251

After you plan operator profiles, you can provide them with access rights. For
details, see Defining Operator Access on page 255.

Creating Correlator Stores

As a developer, you create Correlator Store files in a way that logically groups
correlators defined for set environments. That is, you put all correlators
defined for one environment into one Correlator Store. For details, see
Chapter 4, Developing Correlators.

Listing Correlator Stores

As a developer, you must give operators access to the Correlator Store files
that display correlation logic. To do so, you create a list of Correlator Stores to
be displayed to operators.

Creating NameSpace and Security Files

As a developer, you create NameSpace and Security files for operators.
242 Chapter 9

NameSpace Files

A NameSpace file contains a list of Correlator Store files, grouped logically to
define operator profiles. You use this list to assign access permissions for the
Correlator Store files to operator profiles. The list has no other purpose. The
list of Correlator Stores specified in this file determines the area of operation
within which an operator can work.

A NameSpace file is a simple ASCII file you can edit in any standard text
editor. This file lists named value pairs of the Correlator Store name and the
relative path of the Correlator Store location.

Syntax of the NameSpace File

NameSpace files use the following general syntax:

<Logical Name1>=<Location of Correlator Store file>

<Logical Name2>=<Location of Correlator Store file>

This syntax includes the following parameters:

<Logical Name1>

<Logical Name2>

Logical names of Correlator Store files. These names are displayed in
Composer when started in Operator mode.

<Location of the Correlator Store file>

Location of the Correlator Store file relative to the following directory:

— UNIX

$OV_CONF/ecs/CIB

— Windows

%OV_CONF%\ecs\CIB

Example of a NameSpace File

A NameSpace might look like this:

#comment line:path relative to the $OV_CONF/ecs/CIB directory
ATM=ATM/atm.fs
OV=OV/ov.fs
CISCO=CISCO/cisco.fs

To create or edit a NameSpace file, you need root access on the machine
where Composer is installed.
Developer Mode in NNM 243

244 Chapter 9

Guidelines for NameSpace Files

When creating NameSpace files, follow these guidelines:

• Locations

Make sure the location of the Correlator Store file on the right side of the
equal sign (=) is always relative to the following directory:

— UNIX

$OV_CONF/ecs/CIB

— Windows

%OV_CONF%\ecs\CIB

You may not add Correlator Store files above this directory. The files must
be in this directory or in a subdirectory (typically, with the same name as
that of the Correlator Store).

• Spaces

Do not add a blank space before or after the equal sign (=).

• Names

Use unique logical names for Correlator Stores. Place every entry for a
logical name on a separate line.

• Paths

Specify all file location paths on a single line.

• Extensions

Always save NameSpace files with the .conf extension.

• Comments

Precede all comments with the number sign (#).

Security File

In Composer, the Security file contains a list of fields and parameters that can
be edited by operators. Each Correlator Store file has a corresponding Security
file associated with it. The Security file is stored in the same directory as the
Correlator Store file.

Make sure the NameSpace file referenced in the Deploy Configuration file
(see Creating Deploy Configuration Files on page 251) is the same file passed
with the -N option when Composer is started (see the ovcomposer reference
page). If the file names are different, you create one set of Correlator Stores
and then deploy a completely different set of Correlator Stores.

The first time you save a Correlator Store file, a default Security file is
created:

<Correlator Store filename>.sec

In this file name, <Correlator Store filename> is the name of the
Correlator Store for which the Security file is created.

The default Security file enables operators to edit all parameter values in the
Alarm Definition section of all correlators. The Security file also contains a list
of correlator fields that operators can edit. Only the values of these fields can
be edited by the operators.

The Security file is a simple ASCII file that can be edited in any standard text
editor.

Syntax of the Security File

Security files use the following general syntax:

ALL_TEMPLATE=TOK_LIST

ALL_TEMPLATE=CORRELATOR_STATUS

GLOBAL_CONSTANT=GC_LIST

CORRELATOR_TEMPLATE=TOK_LIST

CORRELATOR_NAME=TOK_LIST

This syntax includes the following parameters:

ALL_TEMPLATE=TOK_LIST

All correlator templates can be used by operators to edit the values of the
parameters listed. TOK_LIST can be any token identifier listed in Token
Identifiers in TOK_LIST on page 247. However, any other condition
specified in the Security file are not overridden by this statement.

ALL_TEMPLATE=CORRELATOR_STATUS

Operators can enable or disable the correlator to participate in
correlation. If this condition is not specified, operators are not allowed to
enable or disable correlators. By default, all correlators participate in
correlation if it is already enabled.

GLOBAL_CONSTANT=GC_LIST

List of global constants whose values can be edited. GC_LIST is a list of
global constants whose value can be edited.
Developer Mode in NNM 245

CORRELATOR_TEMPLATE=TOK_LIST

List of parameters for the specific correlator template type for which
values can be edited. CORRELATOR_TEMPLATE can be any correlator
template name listed in Template Names in CORRELATOR_TEMPLATE
on page 246. TOK_LIST can be any token identifier listed in Token
Identifiers in TOK_LIST on page 247.

CORRELATOR_NAME=TOK_LIST

List of parameters for the specific correlator whose values can be edited.
CORRELATOR_NAME is the name of the correlator template. TOK_LIST can be
a token identifier listed in Token Identifiers in TOK_LIST on page 247.

Template Names in CORRELATOR_TEMPLATE

The CORRELATOR_TEMPLATE parameter includes the following correlator
template names:

ALL_TEMPLATE

All correlator templates.

ENHANCE

Enhance correlator template.

GLOBAL_CONSTANT

Global constants.

MULTI_SOURCE

Multi-Source correlator template.

RATE

Rate correlator template.

REPEATED

Repeated correlator template.

SUPPRESS

Suppress correlator template.

TRANSIENT

Transient correlator template.

USER_DEFINED

User-Defined correlator template.
246 Chapter 9

Token Identifiers in TOK_LIST

The TOK_LIST parameter includes the following token identifiers:

ADVANCED_FILTER

Advanced Filter.

ALARM_SIGNATURE

Alarm Signature.

ALL_PARAM

All parameters.

ALTER_ALARM

Alter alarm parameters.

CLEAR_ALM

Clear the alarms of the Transient correlator template.

COUNT

Count the number of alarms in the Rate correlator template.

CRT_CALLBACK

Create Callback function parameters.

DESCRIPTION

Description of the correlator.

DIS_CALLBACK

Discard Callback function section.

DISCARD

Discard alarm in the Rate correlator template.

DISCARD_DUP

Discard duplicate in the Repeated correlator template.

DISCARD_IMD

Discard immediately in the Repeated correlator template.

DISCARD_ON_SET

Discard alarms on set completion in the Multi-Source correlator template.
Developer Mode in NNM 247

ENABLE_THR

Enable a threshold in the Transient correlator template.

ENHANCE_ALWAYS

Always enhance the alarm of the Enhance correlator template.

INPUT_FUN

Input function in User-Defined correlation.

MESSAGE_KEY

Message key.

NEW_ALARM

New Alarm parameters.

OUTPUT_FUN

Output function in User-Defined correlation.

PAR_OTHCORR

Participate in other correlations in the Suppress correlator template.

SET

Wait for set completion in the Multi-Source correlator template.

THR_CNT

Threshold count in the Transient correlator template.

THR_WIN

Threshold window in the Transient correlator template.

VARIABLES

Variables.

WANT_ORIGINAL

Want Original alarm in the Enhance correlator template.

WINDOW

Time period.
248 Chapter 9

Example of a Security File

A Security file might look like this:

OV_Chassis_Cisco=NEW_ALARM

USER_DEFINED=ALARM_SIGNATURE

ALL_TEMPLATE=WINDOW

This example indicates the following:

OV_Chassis_Cisco=NEW_ALARM

For the OV_Chassis_Cisco correlator, parameters defined for New Alarm
creation can be edited.

USER_DEFINED=ALARM_SIGNATURE

For all User-Defined correlators, the values in the Alarm Signature
section can be edited.

ALL_TEMPLATE=WINDOW

For all correlator templates other than the User-Defined template, as well
as the OV_Chassis_Cisco correlator, the value for the window parameter
can be edited.

To edit the value of the window parameter for the USER_DEFINED template or
the OV_Chassis_cisco correlator, you must explicitly type the following:

OV_Chassis_cisco=NEW_ALARM,WINDOW

USER_DEFINED=ALARM_SIGNATURE,WINDOW
Developer Mode in NNM 249

Guidelines for Security Files

When creating Security files, follow these guidelines:

• Conditions

Specify each condition on a separate line.

• Tokens

Separate token parameters with commas.

• Spaces

Do not add blank space before or after the commas, which are used as
separators for token identifiers.

• Comments

Precede all comments with a number sign (#).

• Locations

Always save the Security file as <Correlator Store filename>.sec in
the directory where the Correlator Store is located.

• Conditions

For conditions in the Security file, follow this order of precedence:

a Correlator name

b Correlator template type

c Condition for all templates

This order provides complete security and control for the Correlator Store.

• Global constants

Use the token identifier GLOBAL_CONSTANT to edit global constant values.

For example, if you want to give operators permission to edit the global
constants pi, timeout, and createtime, type the following:

GLOBAL_CONSTANT=pi,timeout,createtime

• Correlator templates

Provide appropriate token identifiers to make specific changes to values of
attributes and variables in correlator templates. Specify all identifiers in
uppercase. When adding token identifiers, follow the conventions listed in
Token Identifiers in TOK_LIST on page 247.
250 Chapter 9

Creating Deploy Configuration Files

Operators are responsible for loading correlation logic into the HP Event
Correlation Services (ECS) engine. For operator instructions, see Chapter 10,
Operator Mode in NNM.

Composer enables operators to load correlation logic into the ECS engine
through the deploy feature. As the developer, you must maintain the Deploy
Configuration file.

Deploy Procedure

The deploy procedure invokes the csdeploy and csmerge scripts. These
scripts merge the Correlator Store files, remove user descriptions from the
merged Correlator Store, and then load the file into the ECS engine. If you
want, you can execute the two scripts separately from the command prompt.
For more information on how Correlator Stores are merged, see Merging
Correlator Store Files on page 124.

The deploy procedure uses the Deploy Configuration file, which includes the
following:

• Name of the Correlator Store file after the merge

• Path to the NameSpace file for the associated Correlator Store files

• Name of the log file to which the merge logs are written

• ECS engine instance to which the merged Correlator Store is loaded

• Logical name of the merged Correlator Store file
Developer Mode in NNM 251

Example of a Deploy Configuration Files

The Deploy Configuration file contains information required by the ECS
engine at the time the Correlator Store files are loaded into the ECS engine.
The Deploy Configuration file is an ASCII file.

A Deploy Configuration file might look like this:

#Following is the default configuration file for the deploy

operation from composer GUI in standalone operator Mode and NNM

CMG Mode.

#SUPPORT_DEPLOY_ON_GUI - determines if the deploy should be

supported from the GUI.(Not implemented at the time of this

release)

#FINAL_CS_NAME - path name of the merged Correlator Store to

which all the correlator store files configured in

NameSpace.conf file are merged in to.

#NAMESPACE_FILE - path name of the NameSpace.conf configuration

file used for deploy operation.

#MERGE_LOG_FILE - path name of the log file where the merge

process logs are kept.

#CS_LOGICAL_NAME - logical name of the correlator store loaded

in the engine.

#ENGING_INSTANCE - instance number of the ECS Engine to which

the correlator store should be loaded.

SUPPORT_DEPLOY_ON_GUI=yes

FINAL_CS_NAME="$OV_CONF/ecs/circuits/Composer.fs"

NAMESPACE_FILE="$OV_CONF/ecs/CIB/NameSpace.conf"

MERGE_LOG_FILE="$OV_LOG/ecs/csmerge.log"

ENGINE_INSTANCE=1

CS_LOGICAL_NAME=Composer
252 Chapter 9

Guidelines for Deploy Configuration Files

When creating a Deploy Configuration file, follow these guidelines:

• Comments

Precede all comments with a number sign (#). All text from the start of the
number sign to the end of the current line is ignored by the system.

• Locations

Always specify file locations with the absolute path. Always enclose file
locations within quotation marks. You can use environment variables
when specifying file locations.

• Blanks

Do not add blank spaces before or after the equal sign (=).

• Parameters

Use the parameters listed in Parameters for Deploy Configuration Files
on page 254.
Developer Mode in NNM 253

Parameters for Deploy Configuration Files

The Deploy Configuration file has the following parameters:

SUPPORT_DEPLOY_ON_GUI

Deploy the merged Correlator Store through the GUI.

FINAL_CS_NAME

Name of the merged Correlator Store file.

NAMESPACE_FILE

Name of the NameSpace file from which the Correlator Stores are
gathered.

MERGE_LOG_FILE

Name of the log file to which the logs of the Correlator Store merge are
written.

ENGINE_INSTANCE

ECS engine instance number for which the Correlator Store file is loaded.

CS_LOGICAL_NAME

Logical name of the merged Correlator Store.

Make sure the NameSpace file referenced in the Deploy Configuration file
(see Creating Deploy Configuration Files on page 251) is the same file passed
with the -N option when Composer is started (see the ovcomposer reference
page). If the file names are different, you create one set of Correlator Stores,
and then deploy a completely different set of Correlator Stores.
254 Chapter 9

Developer Mode in NNM 255

Defining Operator Access

To provide access to Composer, you need the following for each operator:

• NameSpace file

• Security file associated with the Correlator Store

• Deploy Configuration file

To give operators access to Correlator Store files, complete the following tasks:

• Task 1: Customizing the NameSpace File on page 255

• Task 2: Customizing the Security File on page 256

• Task 3: Customizing the Deploy Configuration File on page 256

Customizing the NameSpace File

A default NameSpace file is available in the following location:

• UNIX

$OV_CONF/ecs/CIB

• Windows

%OV_CONF%\ecs\CIB

To override the specifications in the default NameSpace file, follow these
steps:

1 Copy the default NameSpace file to any local directory.

2 In the NameSpace file, list the names of Correlator Stores and the path of
the Correlation Store (relative to $OV_CONF/ecs/CIB or
%OV_CONF%\ecs\CIB).

For guidelines, see Guidelines for NameSpace Files on page 244.

3 Save the file with a .conf extension.

To find out how to edit NameSpace and Security files in the NNM
environment, see Chapter 10, “Correlation Composer for NNM,” on page 205.

After creating the configuration files for your environment, make sure that
their correct file names and locations are used when Composer is started. (For
details, see the ovcomposer reference page.) If no files are specified, Composer
uses the default configuration files.

Customizing the Security File

When the Correlator Store file is saved the first time, a default Security file is
created. This file is present in the directory where the Correlator Store is
located.

To override the specifications in the default Security file, follow these steps:

1 List the token identifiers and the parameters that can be edited.

For guidelines, see Guidelines for Security Files on page 250.

2 Save the file as <Correlator Store filename>.sec.

Make sure that the file is stored in the same directory where the
Correlator Store file is stored.

Customizing the Deploy Configuration File

A default Deploy Configuration file is available in the following location:

• UNIX

$OV_CONF/ecs/CIB

• UNIX

%OV_CONF%\ecs\CIB

To override the specifications in the default Deploy Configuration file, follow
these steps:

1 Copy the default Deploy Configuration file to any local directory.

2 Edit the file with values and names specific to your environment.

3 Save the file with a .conf extension.

The newly created NameSpace and Deploy Configuration files are bound
together, based on the entry NAMESPACE_FILEin the Deploy Configuration file.
Make sure you provide the correct NameSpace file name in the Deploy
Configuration file.

As a developer, you are responsible for providing the correct
permissions for the file. Make sure the file cannot be overwritten or
edited erroneously.
256 Chapter 9

Deploying the Correlator Store

As a developer, you deploy the Correlator Store to the ECS engine. Before
doing so, make a copy of the existing NameSpace.conf file, rename it, and
update it to contain the list of Correlator Stores you want to deploy.

The default Deploy Configuration file is located in the following directory:

• UNIX

 $OV_CONF/ecs/CIB/Devdeploy.conf

• Windows

 %OV_CONF%\ecs\CIB\Devdeploy.conf

Update this file to refer to the newly created NameSpace file.

Loading the Correlator Store File to the ECS Engine

To load the Correlator Store file into the ECS engine, follow these steps:

1 Make sure that all Correlator Stores have been saved and closed.

2 Do one of the following:

• Click OptionsDeploy.

• Click the Deploy icon.

Viewing Errors in the Deploy Status Window

The Deploy Status window indicates one of the following:

• If the deployment is successful, the window indicates success.

• If an error occurred, the window indicates failure.

To view the details of an error, follow these steps:

1 In the Deploy Status window, click Details.

2 Click OK to close the window.

Update the Devdeploy.conf file only if you do not want to disturb the
existing configuration specifications in the NameSpace.conf file.
Developer Mode in NNM 257

Deploying Correlator Stores from the Command Prompt

You can deploy Correlator Stores from the command prompt using the
csdeploy.ovpl script provided in the $OV_BIN or %OV_BIN% directory. The
csdeploy.ovpl script references the Deploy Configuration file required by
Composer. For details, see Creating Deploy Configuration Files on page 251.

To deploy the Correlator Store, type the following from the command prompt:

csdeploy.ovpl -p <Deploy Configuration file name>

This command contains the following parameter:

<Deploy Configuration file name>

Name of the Deploy Configuration file. If you do not specify a file name,
the default Deploy Configuration file is selected:

— UNIX

$OV_CONF/ecs/CIB/Devdeploy.conf

— Windows

%OV_CONF%\ecs\CIB\Devdeploy.conf

To summarize the usage of csdeploy, run the csdeploy.ovpl -h command.
258 Chapter 9

10 Operator Mode in NNM
This chapter explains how operators access and use HP Correlation Composer
in HP Network Node Manager (NNM) environments:

• Operator Access Rights on page 259

• Starting Composer in Operator Mode on page 260

• Locking Files on page 261

• Deploying Correlator Stores on page 264

Operator Access Rights

Correlation logic is created by the Correlator Store developer who provides
access rights to operators. Operators have limited access on the Correlator
Store files. These rights are governed by the information provided in the
Security and NameSpace files.

In Composer, operators can do the following:

• NameSpace file

Access the files specified in the NameSpace file. This file is created and
maintained by the developer. For details, see Configuring Operator
Profiles on page 242. Only the files specified in the NameSpace file are
visible to operators in the Composer NameSpace table.

• Security file

Edit values of parameters specified in the Security file. This file is created
and maintained by the developer. For details, see Configuring Operator
Profiles on page 242.

• Correlator Stores

Enable and disable correlators in Correlator Stores.

Operators cannot create new correlators and or Correlator Stores.
 259

Starting Composer in Operator Mode

To start Composer in Operator mode, type the following:

ovcomposer -m o

Composer opens in Operator mode with the list of Correlator Store files, as
shown in Figure 19. The last modified time of the Correlator Store displays in
the NameSpace table.

Figure 19 Composer in Operator Mode
260 Chapter 10

Locking Files

To avoid overwriting data when Correlator Stores are accessed concurrently
by multiple users (developers or operators), Composer enables you to lock a
file.

File Locking Modes

File locking for Correlator Stores functions in the following modes:

• Operator mode

For details, see Starting Composer in Operator Mode on page 260.

• Developer mode

For details, see Starting Composer in Developer Mode on page 242.

• Deploy script

For details, see Deploying Correlator Stores from the Command Prompt
on page 265.

• Deploy procedure

For details, see Deploying Correlator Stores on page 264.

• Merge script

For details, see Merging Correlator Store Files on page 124.

When you open a Correlator Store that is not already in use, a lock file is
created. The lock file is named <filename>.lock, where <filename> is the
name of the Correlator Store. Acquiring a lock provides total access to the
Correlator Store file.

When you close the Correlator Store, the lock is removed.
Operator Mode in NNM 261

File Locking Failure

If you open a Correlator Store that is already in use, file locking fails:

• Operator mode

Displays an error message and opens the file in read-only mode.

• Developer mode

Displays an error message and aborts the file open action.

• Deploy script

Displays an error message and aborts the deploy action.

• Deploy procedure

Displays an error message and aborts the deploy action.

• Merge script

Displays an error message and aborts the merge action.
262 Chapter 10

Recovering Correlator Stores

If a file action aborts while a Correlator Store is locked, you can recover the
Correlator Store.

To recover a Correlator Store, follow these procedures:

• Operator mode

In Operator mode, highlight the locked Correlator Store and then click
OptionsForcefully Unlock.

• Developer mode

In Developer mode, remove the lock file manually from the directory
where the Correlator Store is located.

• Deploy script

In Developer mode, remove the lock file manually from the directory
where the Correlator Store is located.

• Deploy procedure

In Developer mode, highlight the locked Correlator Store and then select
OptionsForcefully Unlock.

• Merge script

In Developer mode, remove the lock file manually from the directory
where the Correlator Store is located.

Recover Correlator Stores with caution. If multiple operators save Correlator
Store files, it is possible to lose important data.

Although operators are allowed to make changes to the Correlator
Store, they do not have exclusive access to this file.
Operator Mode in NNM 263

Deploying Correlator Stores

Operators can deploy a Correlator Store to the HP Event Correlation Services
(ECS) engine.

Loading the Correlator Store File to the ECS Engine

To load the Correlator Store file into the ECS engine, follow these steps:

1 Make sure that all Correlator Stores have been saved and closed.

2 Do one of the following:

• Click OptionsDeploy.

• Click the Deploy icon.

Viewing Errors in the Deploy Status Window

The Deploy Status window indicates one of the following:

• If the deploy is successful, the window indicates success.

• If an error occurred, the window indicates failure.

To view the details of an error, follow these steps:

1 In the Deploy Status window, click Details.

2 Click OK to close the window.
264 Chapter 10

Deploying Correlator Stores from the Command Prompt

You can deploy Correlator Stores from the command prompt using the
csdeploy.ovpl script provided in the $OV_BIN or %OV_BIN% directory. The
csdeploy.ovpl script references the Deploy Configuration file required by
Composer. For details, see Creating Deploy Configuration Files on page 251.

To deploy the Correlator Store, type the following from the command prompt:

csdeploy.ovpl -p <Deploy Configuration filename>

This command contains the following parameter:

<Deploy Configuration filename>

Name of the Deploy Configuration file.

If you do not specify a file name, the default Deploy Configuration file is
selected:

— UNIX

$OV_CONF/ecs/CIB/Devdeploy.conf

— Windows

%OV_CONF%\ecs\CIB\Devdeploy.conf

To summarize the usage of csdeploy, run the csdeploy.ovpl -h command.
Operator Mode in NNM 265

266 Chapter 10

A Built-In Functions
 267

HP Correlation Composer includes built-in functions and keys:

• Functions

Built-in functions help you log, retrieve, and manipulate event data.

• Keys

Values for the store, retrieve, storeStr, and retrieveStr functions are
stored and retrieved against keys.

The keys are passed to the functions as parameters.

Functions

HP Correlation Composer includes the following built-in functions:

• add

Sum of the values passed to the function.

• bitand

Integer value of a bitwise and operation between two arguments.

• bitinv

Integer value of a bitwise inversion of the argument.

• bitor

Integer value of a bitwise or operation between two arguments.

• bitxor

Integer value of a bitwise exclusive or operation between two
arguments.

• div

Integer value of dividing one integer by another.

• getByIndex

Element at the index position of a list.

• getCounter

Counter values stored against the keys.

• getHour

Integer representing the current hour.

• getMinute

Integer representing the current minute.

• getMonth

Integer representing the current month.

• getTime

String representing the time (in seconds) since the epoch.

• makeList

List of arguments that are passed to the function.

• mod

Integer value of the remainder after dividing one integer by another.

• mul

Integer that is the product of two multiplied values.

• retrieve

Value that was stored previously.

• retrieveStr

String that was stored previously.

• setCounter

Incremented value stored under the keys.

• store

Value to be stored, based on the keys for a given time period or until
another call to store.

• storeStr

String value to be stored, based on the keys for a specified time period.
268 Appendix A

• sub

Difference between two integers passed to the function.

add

Syntax

add int1 int2

Parameters

int1 and int2 are integers.

Description

Sum of values passed to the function.

Example

add 1 2 returns the value 3.

bitand

Syntax

bitand int1 int2

Parameters

int1 and int2 are integers.

Description

Integer value of a bitwise and operation between two arguments.

Examples

bitand 7 0 returns the value 0.

bitand 7 1 returns the value 1.
Built-In Functions 269

bitinv

Syntax

bitinv int

Parameters

int is an integer.

Description

Integer value of a bitwise inversion of the argument. The argument is treated
as a 32-bit unsigned bit pattern.

Example

bitenv 1 returns the integer -2.

bitor

Syntax

bitor int1 int2

Parameters

int1 and int2 are integers.

Description

Integer value of a bitwise or operation between two arguments. The
arguments are treated as 32-bit unsigned bit patterns.

Examples

bitor 7 0 returns the value 7.

bitor 7 1 returns the value 7.

bitor 8 1 returns the value 9.
270 Appendix A

bitxor

Syntax

bitxor int1 int2

Parameters

int1 and int2 are integers.

Description

Integer value of a bitwise exclusive or operation between two arguments.
The arguments are treated as 32-bit unsigned bit patterns.

Examples

bitxor 7 0 returns the integer 7.

bitxor 7 1 returns the integer 6.

bitxor 8 1 returns the integer 9.

div

Syntax

int1 div int2

Parameters

int1

Integer dividend.

int2

Integer divisor.

Description

Integer value of dividing the one integer by another.

Example

7 div 3 returns the integer 2.
Built-In Functions 271

getByIndex

Syntax

getByIndex list index failvalue

Parameters

list

List of any data types.

index

Position from which the value is to be extracted.

failvalue

Value returned if the function fails.

Description

Element at the index position of the list passed in. If index number of
elements does not exist, the function returns the failvalue.

Typically, you use the getByIndex function to retrieve individual elements
from the return value of the previous call to an external function.

Examples

An external getInterfaceDetails function returns the interfaceName and
interface IP Address. This return value is bound to a details variable.

To extract the IP address, you call the getByIndex function as follows:

getByIndex details 2 0

If the getByIndex function fails, the value returned is 0.

See also

• retrieve on page 276

• store on page 280
272 Appendix A

getCounter

Syntax

getCounter toInit key1, key2...

Parameters

toInit

Method in which the value is retrieved:

1

Returns the stored value and frees the storage memory occupied by
this value.

0

Returns the stored value, but does not delete the storage space.
Additional retrieve calls return the stored value.

key1, key2,...

Keys based on which value is retrieved. To find out how keys function, see
Keys on page 283.

Description

Counter values stored against keys. The values are stored previously using
the setCounter call with the same set of keys.

Examples

The usage of the getCounter function is illustrated by the following example:

getCounter 1 agent_addr arrival_time

The counter value stored under the keys agent_addr and arrival_time are
retrieved and the memory space occupied is freed.

See also

• setCounter on page 278
Built-In Functions 273

getHour

Syntax

getHour()

Description

Integer representing the current hour. The value can be 0 through 23. All time
is represented in Coordinated Universal Time (UTC).

getMinute

Syntax

getMinute()

Description

Integer representing the current minute. The value can be 0 through 59. All
time is represented in UTC.

getMonth

Syntax

getMonth()

Description

Integer representing the current month. The value can be 1 through 12.

getTime

Syntax

getTime ()

Description

String representing the time in seconds since the epoch (January 1, 1970).
274 Appendix A

makeList

Syntax

makeList arguments

Parameters

arguments

List of arguments that are passed to the function.

Description

List of arguments passed to the function. Typically, you use the function as the
input function, the output function, or both in user-defined correlators
because the functions require a list as the return type.

Examples

makeList 10, 20, 30

mod

Syntax

int1 mod int2

Parameters

int1 and int2 are integers.

Description

Integer value of the remainder after dividing one integer by another.

Examples

7 mod 3 returns the integer 1.

1 mod 1 returns the integer 0.

7 mod (-3) returns the integer 1.

(-7) mod 3 returns the integer -1.
Built-In Functions 275

mul

Syntax

mul int1 int2

Parameters

int1 and int2 are two integers.

Description

Integer that is the product of two multiplied values.

Examples

mul 3 4 returns 12.

retrieve

Syntax

retrieve toInit failvalue key1, key2,...

Parameters

toInit

Method in which the values are retrieved:

1

Returns the stored value, and frees the storage memory occupied by
this value.

0

Returns the stored value, but does not delete the storage space.
Additional retrieve calls return the stored value.

failvalue

Value returned by the function if the retrieve function fails.

key1, key2,...

Keys based on which the value is retrieved. To find out how keys function,
see Keys on page 283.
276 Appendix A

Description

Value that was stored previously. You must call the values to be retrieved
under the same keys in the same order.

Examples

retrieve 1 0 agent_addr, Constants.Type2_SP

Retrieves the values associated with the keys agent_addr and
Constants.Type2_SP, and frees the occupied memory. If the function fails,
the value returned is 0. All further calls to retrieve, without a preceding
call to store, result in an error and return the failvalue.

retrieve 0 0 agent_addr, Constants.Type2_SP

Retrieves the values associated with the keys agent_addr and
Constants.Type2_SP, but does not delete the memory used for storage.
All succeeding calls to retrieve return the stored value. If the retrieve
function fails, the value returned is 0.

See also

• store on page 280

retrieveStr

Syntax

retrieveStr toInit failvalue key1, key2,...

Parameters

toInit

Method in which the value is retrieved.

failvalue

Value returned by the function if the retrieve function fails.

key1, key2,...

Keys based on which value is retrieved. To find out how keys function, see
Keys on page 283.

Description

Value (as a string) stored previously by using the storeStr function, based on
the same set of keys.
Built-In Functions 277

Example

retrieveStr 1 0 agent_addr arrival_time

Retrieves the value associated with the keys agent_addr and
arrival_time (in string format) and frees the occupied memory. If the
retrieve function fails, the value returned is 0.

See also

• storeStr on page 281

setCounter

Syntax

setCounter toInit increment window key1, key2,...

Parameters

toInit

Method in which the value is set:

0

Increments the stored value by the amount specified in the increment
value, but does not delete the storage space. Additional calls to
retrieve return the stored value.

1

Re-initializes and frees the storage memory. The value passed is
returned. The return value is the stored value.

2

Frees the associated memory if the resultant value after the operation
(increment added to the stored value) is zero.

increment

Increment value.

window

Time period for which the value is stored.

key1, key2,...

Keys against which the value is set. To find out how keys function, see
Keys on page 283.
278 Appendix A

Description

Incremented value stored under the keys. If no value has been previously
stored, the value passed is stored. The value is stored for the time specified in
the window. After that, the value is backed out.

For example, if the value in the counter before an operation is 10, and a
setCounter operation is performed with an increment of 5 and a window of 3
seconds, the counter value is 15. After 3 seconds, the setCounter operation is
reversed. In this example, the operation would result in 5 being decremented
from the current counter value. If window is set to 0, the value is stored for 1
second. If window is set to -1, the value is stored until the keys are
re-intialized.

Examples

setCounter 0 6 10 agent_addr arrival_time

If the value stored previously is 5, the new value stored is 6+5=11. If there
was no value stored previously, the value stored is 6 under the keys
agent_addr and arrival_time. The new value is stored for a period of 10
seconds.

See also

• getCounter on page 273
Built-In Functions 279

store

Syntax

store value window key1, key2,...

Parameters

value

Value to be stored.

window

Time period for which the value is stored:

n

Time in seconds. The value is stored for n seconds.

-1

Value is stored forever.

key1, key2,...

Keys based on which value is stored. To find out how keys function, see
Keys on page 283.

Description

Value to be stored, based on the keys for a given time period or until another
call to store. There must be at least one key for the value being stored.
Another call to store under the same keys overwrites the currently stored
value.

Examples

store uuid agent_addr, Constants.Type2_SP

The uuid specified in the event is stored under the agent_addr and
Constants.Type2_SP keys.

See also

• retrieve on page 276
280 Appendix A

storeStr

Syntax

storestr toAppend separator value window key1, key2,...

Parameters

toAppend

Determines how the value is stored:

0

Appends the value to an existing value. Stores the value, based on the
keys.

1

Stores the value, based on the keys. Any values stored previously are
erased. Only the new value is stored.

separator

Field separator.

value

Value to be stored.

window

Time period for which the value is stored:

n

Time in seconds. The value is stored for n seconds.

-1

Value is stored forever.

key1, key2...

Keys based on which value is stored. To find out how keys function, see
Keys on page 283.

Description

String value to be stored, based on the keys for a specified time period.
Built-In Functions 281

Examples

storeStr 0 ":" Hello 10 agent_addr arrival_time

Stores the string "Hello" for a period of 10 seconds.

storeStr 0 ":" World 5 agent_addr arrival_time

Stores World for 5 seconds.

A call to retrieveStr returns Hello:World. After 5 seconds, a call to
retrieveStr returns Hello. After 10 seconds, a call to retrieveStr returns
the failvalue.

See also

• retrieveStr on page 277

sub

Syntax

sub int1 int2

Parameters

int1 and int2 are any two integers.

Description

Difference between two integers passed to the function.

Example

sub 20 10 returns the integer 10.
282 Appendix A

Keys

This section describes how to use keys in the store, retrieve, storeStr, and
retrieveStr functions.

Multiple Keys

For the store, retrieve, storeStr, and retrieveStr function, values are
stored or retrieved against the keys passed to the function as parameters. The
functions require at least one key to be passed. However, you can use multiple
keys. If you use multiple keys, the function internally concatenates the values
referred to by these keys and creates a single key.

For example, a key X, which holds a value abc, is equivalent to the set of keys
x, y, z that hold the values a, b, c respectively. Make sure that the order
of the keys is maintained. In this example, passing in keys z, y, x results in
a final key value of cba, not abc.

Unique Keys

The store and retrieve functions use a global hash table.

For example, Correlator1 stores a value against a key whose value is abc, and
Correlator2 stores a value against a key whose value also evaluates to abc. In
this situation, the value stored would be the last value stored. To ensure that
correlators do not overwrite each other, choose unique keys. One way to ensure
unique keys is to use the correlator name as part of the key.

This table is a powerful mechanism for passing data between correlators.
Using it incorrectly can result in correlators overwriting each other.

The store and retrieve functions use a different hash table than that used
by storeStr and retrieveStr functions.
Built-In Functions 283

284 Appendix A

B Event Attributes
This appendix describes the valid attributes for all event types supported by
HP Correlation Composer:

• HPOM Event Attributes on page 286

• SNMP Event Attributes on page 293
 285

HPOM Event Attributes

Table 17 describes the valid HP Operations Manager (HPOM) event
attributes supported by Composer.

Table 17 HPOM Event Attributes

Message Attribute Type Description

AACTION_ACK Boolean Whether the message is acknowledged automatically on
the HP Operations management server after the
corresponding automatic action has finished
successfully. Possible values are true or false.

AACTION_ANNOTATE Boolean Whether HP Operations creates “start” and “end”
annotations for automatic actions. Possible values are
true or false.

AACTION_CALL String Command to use as an automatic action for the
HP Operations message. The default is an empty string.
The maximum length is 2000 characters.

AACTION_NODE String System on which the automatic action runs. The default
value is NODENAME. The maximum length is 254
characters.

AACTION_STATUS Integer Status of the automatic action that belongs to the
current message.
Possible values:
0 - ACTION_UNDEF

Default. Action is undefined.
1 - ACTION_DEF

Default if AACTION_CALL is defined. Action is
defined.

2 - ACTION_STARTED

Action is started.
3 - ACTION_FINISHED

Action is finished.

APPLICATION String Application name to use for the HP Operations message.
Default is an empty string. Maximum length is 32
characters.
286 Appendix B

CREATION_TIME Time Time at which the message was created. The time is in
UNIX format (seconds since the epoch). The default is
the (local) time at which the message was created.

FORWARDED Boolean Read only. Whether message is forwarded in an
environment configured with manager-to-manager
forwarding. Possible values are true or false.

GROUP String HP Operations message group to use for the message.
The default is an empty string. The maximum length is
32 characters.

INSTR_IFa String Name of the external instruction-text interface. This
interface must be configured in HPOM. The default is
an empty string. The maximum length is 36 characters.

INSTR_IF_TYPEa Integer Whether the internal HP Operations instruction-text
interface or an external interface is used to display
instructions for the message.
Possible values:
0 - INSTR_NOT_SET

Default. Instruction is not set.
1 - INSTR_FROM_OPC

Instruction is stored in the HP Operations
database.

2 - INSTR_FROM_OTHER

Instruction is accessed by using an external
instruction-text interface.

INSTR_PARa String Parameters for the call to the external instruction-text
interface. The default is an empty string. The maximum
length is 254 characters.

MSG_LOG_ONLY Boolean Message is inserted immediately into the history
message log when the message is received on the
management server. The message is not sent to any
operator. Operators can see the message only when
using the HP Operations history message browser.
Possible values are true or false.

Table 17 HPOM Event Attributes

Message Attribute Type Description
Event Attributes 287

MSGID String Read only. Unique identifier of the message. Modified or
newly created messages assume a null ID:
00000000-0000-0000-0000-000000000000.

MSGSRC String Read only. Source of the message.
Examples:
• Name of the encapsulated log file if the message

originated from log file encapsulation.
• Interface name if the message was sent by using an

instance of the Message Stream Interface (MSI).
The default is an empty string. There is no maximum
length.

MSGSRC_TYPE Integer Read only. Source type of the message. Each source is
represented in one bit. For example, a message that is
generated by the log file encapsulator, and then
modified at the Agent MSI, has bit or LOGFILE_SRC and
AGTMSI_SRC set.

Possible values:

1 - CONSOLE_SRC

MPE/iX source.
2 - OPCMSG_SRC

OPC message source.
4 - LOGFILE_SRC

Log file source.
8 - MONITOR_SRC

Monitor source.
16 - SNMPTRAP_SRC

SNMP trap source.
32 - SVMSI_SRC

MSI on HP Operations management server.
64 - AGTMSI_SRC

MSI on HP Operations managed node.
128 - LEGLINK_SRC

Legacy Link interface.
256 - SCHEDULE_SRC

Schedule source.

Table 17 HPOM Event Attributes

Message Attribute Type Description
288 Appendix B

MSGTEXT String Message text. The default is an empty string. There is
no maximum length.

MSGTYPE String Message type used to group messages into subgroups
(for example, to denote the occurrence of a specific
problem). The default is an empty string. The maximum
length is 36 ASCII characters with no blank spaces.

MSI_OUTPUT Integer How messages are handled in the MSI. Each value
represents one bit that can be processed with a bitor
operation.
Possible values:
0 - SV_MSI_NO_OUTPUT

Default. No message is sent to the Server MSI.
1 - SV_MSI_DIVERT

Divert the message to the Server MSI instead of
sending it to the message manager.

2 - SV_MSI_COPY

Send the message directly to the message browser,
and send a copy of the message to the Server MSI.

0 - AGT_MSI_NO_OUTPUT

Default. No message is sent to the Agent MSI.
4 - AGT_MSI_DIVERT

Divert the message to the Agent MSI instead of
sending it to the message manager.

8 - AGT_MSI_COPY

Send the message directly to the message browser,
and send a copy of the message to the Agent MSI.

NODENAME String Name of the system on which the message is created.
The message is handled by the HP Operations
management server only if NODENAME is part of the
HPOM managed environment (Node Bank). The default
is the local node name. The maximum length is 254
characters.

Table 17 HPOM Event Attributes

Message Attribute Type Description
Event Attributes 289

NOTIFICATION Boolean HP Operations messages are forwarded from the
management server to the trouble ticket notification
service interfaces if the appropriate notification
interfaces are configured and active. Possible values are
true or false.

OBJECT String Object name to use for the HP Operations message. The
default is an empty string. The maximum length is 254
characters.

OPACTION_ACK Boolean Whether the message is acknowledged automatically on
the HP Operations management server after the
corresponding operator-initiated action has finished
successfully. Possible values are true or false.

OPACTION_ANNOTATE Boolean Whether HPOM creates “start” and “end” annotations
for the operator-initiated action. Possible values are
true or false.

OPACTION_CALL String Command to use as an operator-initiated action for the
HP Operations message. The default is an empty string.
The maximum length is 2000 characters.

OPACTION_NODE String System on which the operator-initiated action should
run. The default value is NODENAME. The maximum
length is 254 characters.

OPACTION_STATUS Integer Status of the operator-initiated action that belongs to
the current message.
Possible values:
0 - ACTION_UNDEF

Default. Action is undefined.
1 - ACTION_DEF

Default if OPACTION_CALL is defined. Action is
defined.

2 - ACTION_STARTED

Action is started.
3 - ACTION_FINISHED

Action is finished.
4 - ACTION_FAILED

Action failed.

Table 17 HPOM Event Attributes

Message Attribute Type Description
290 Appendix B

ORIGMSGTEXT String Original message text. This attribute enables you to set
additional source information for a message. This source
information is useful if the message text was
reformatted, but the HP Operations operator needs to
have access to the original text. The default is an empty
string. There is no maximum length.

READ_ONLY Boolean Read only. Whether a message is forwarded as a
“notification” in an environment configured with
manager-to-manager forwarding. Possible values are
true or false.

RECEIVE_TIME Time Read only. Time the message was received by the
management server. The time is in UNIX format
(seconds since the epoch). This value is set by the
management server.

SERVICE_TIME Time Service time of the message.

SEVERITY Integer Severity of the message.
Possible values:
4 - SEV_UNKNOWN

8 - SEV_NORMAL

16 - SEV_WARNING

32 - SEV_CRITICAL

64 - SEV_MINOR

128 - SEV_MAJOR

TIME_ZONE_DIFF Time Read only. Difference in seconds between Coordinated
Universal Time (UTC) and local time at the time a
message is created.

Table 17 HPOM Event Attributes

Message Attribute Type Description
Event Attributes 291

TROUBLETICKET Boolean HP Operations messages are forwarded from the
management server to the HP Operations trouble ticket
interface if the interface is configured. Possible values
are true or false.

TROUBLETICKET_ACK Boolean HP Operations management server acknowledges the
message automatically if the message is forwarded to
the trouble ticket system successfully. Possible values
are true or false.

UNMATCHED Boolean Whether the message matches a condition. Possible
values are true or false.

a. HPOM for Windows, unlike HPOM for UNIX or Linux, does not support the instruction text
interface. Using the HPOM event attributes INSTR_IF, INSTR_IF_TYPE, and INSTR_PAR in a
correlator store leads to the following browser message: (MS387) An external
Instruction Interface is not supported.

Table 17 HPOM Event Attributes

Message Attribute Type Description
292 Appendix B

SNMP Event Attributes

Table 18 describes the valid Simple Network Management Protocol (SNMP)
event attributes supported by Composer.

Table 18 SNMP Event Attributes

Message Attribute Type Description

agent_addr String in dot notation Network address of the object that generated the
trap in the form of an ECDL tuple.

enterprise Object ID Network management subsystem that generated the
trap.

generic-trap Integer One of the predefined values in the definition. Values
must be between 1 and 6.

specific-trap Integer Code that indicates the nature of the trap more
specifically than the generic trap number. Specific
trap numbers are defined by the owning enterprise.
They are meaningful only in conjunction with the
enterprise attribute.

time-stamp Integer Number of time ticks, in hundreths of a second,
between the last initialization of the device and the
generation of the trap. As a rule, this number is not
required for correlation.

variable-bindings String, integer Additional information about the trap. The content of
this field is dependent on the enterprise ID and
specific trap values.
Event Attributes 293

294 Appendix B

C Pattern Matching
HP Correlation Composer includes a powerful text pattern-matching language
that enables you to search logically for substrings and patterns. You can use
the language to extract parts of a text string, assign the parts to tags, and
then reuse the tags within the same scope.

Typically, you use pattern-matching to scan for a specific substring in the
target string:

• Positive matches

To search for the substring ERROR anywhere in the target string, you
would search for the following pattern:

"ERROR"

• Negative matches

To match text that does not contain the substring WARNING, you would
search for the following pattern:

"<![WARNING]>"

This string uses the NOT operator (!), angle brackets (<>) that enclose all
operators, and brackets ([]) that isolate subpatterns.

• Case sensitivity

To control case sensitivity, you could use a separate argument to the
Match.make function.

The pattern-matching language provided by Composer is the same as that
used in HP Operations Manager (HPOM).
 295

Syntax of Pattern Matching

In pattern matching, you use the following expressions and operators:

• Expression Delimiter ([]) on page 296

• Operator Delimiter (< >) on page 296

• OR Operator (|) on page 296

• NOT Operator (!) on page 297

• Mask Operator (\) on page 298

Expression Delimiter ([])

You use brackets ([]) as delimiters to group expressions. Typically, you use
bracketed expressions with the OR operator (|), the NOT operator (!), and
when using subpatterns to assign strings to tags.

To increase performance, avoid brackets wherever possible. For example, in
the pattern "ab[cd[ef]gh]", the brackets are unnecessary if you are
searching for "abcdefgh".

Operator Delimiter (< >)

You use angle brackets (<>) as delimiters for operators and expressions. You
must enclose any expression that includes an operator (for example, a NOT
operator) in angle brackets (for example, "<![WARNING]>").

OR Operator (|)

You use a vertical bar (|) to separate alternate expressions with a logical OR.
Expressions separated by the vertical bar match strings that contain either
expression. For example, "[ab|c]d" would match the string "abd" and the
string "cd".
296 Appendix C

NOT Operator (!)

You use an exclamation point (!) to prefix expressions with a logical NOT
operator. You must use the NOT operator with delimiting brackets. For
example, "<![WARNING]>" would match all text that does not contain the
string "WARNING".

You can also use the NOT operator with complex subpatterns:

"LN<*>: R< ![490|[501[a|b]]] >-<*>"

This complex pattern would enable you to generate a message for any line
connection other than from repeaters 490, 501a, or 501b.

As a result, the complex pattern would match the following string:

"LN270: R300-427"

However, the complex pattern would not match the following string, which
refers to repeater 501a:

"LN270: R501a-800"

If the subpattern that includes the NOT operator does not find a match, the
NOT operator behaves like the <*> expression: it matches zero or more
arbitrary characters. For this reason, there is a difference between the UNIX
expression "[!123]" and the corresponding ECS pattern-matching expression
"<![1|2|3]>". The ECS expression matches any character or number of
characters, except 1, 2, or 3. The UNIX expression matches any one character,
except 1, 2, or 3.
Pattern Matching 297

Mask Operator (\)

You use a backslash (\) to mask characters that have a special meaning in
pattern matching.

In pattern matching, the following special character have a special meaning:

[]

Brackets delimit expressions. For details, see Expression Delimiter ([]) on
page 296.

<>

Angle brackets delimit operators. For details, see Operator Delimiter (< >)
on page 296.

|

Vertical bars separate expressions with logical OR operators. For details,
see OR Operator (|) on page 296.

^

Carets delimit the beginning of lines. For details, see Matching First or
Last Characters on page 299.

$

Dollar signs delimit the ends of lines. For details, see Matching First or
Last Characters on page 299.

If you want to mask the special function of one of these characters, you must
preface it with a backslash (\) escape character (for example, \$). A special
character preceded by a backslash results in an expression that matches the
special character itself.

An exception to this rule is the tab character, which is specified by entering
\t into the pattern string.

The caret symbol (^) and the dollar sign ($) have special meanings only when
they are placed at the beginning or the end of a pattern, respectively. As a
result, you do not need to mask them when using them within the pattern
(that is, not as the first or last character of the pattern).
298 Appendix C

Matching Expressions

You can define expressions to match the following:

• Matching First or Last Characters on page 299

• Matching Multiple Characters on page 300

Matching First or Last Characters

You can use anchoring characters at the beginning or end of patterns:

• Caret (^)

If you use a caret as the first character of a pattern, only expressions
discovered at the beginning of lines are matched. For example, "^ab"
matches the string "ab" in the line "abcde", but not in the line "xabcde".

• Dollar sign ($)

If you use the dollar sign as the last character of a pattern, only
expressions at the end of lines are matched. For example, "de$" matches
"de" in the line "abcde", but not in the string "abcdex".

If you use a caret or dollar sign in any position other than the first or last
character, it is considered an ordinary character without masking.
Pattern Matching 299

Matching Multiple Characters

To match strings consisting of an arbitrary number of characters, you can use
one or more of the following expressions:

<*>

Matches any string of zero or more characters (including separators).

<n*>

Matches a string of n arbitrary characters (including separators).

<#>

Matches a sequence of one or more digits.

<n#>

Matches a number composed of n digits.

<S>

Matches a sequence of one or more separator characters.

<nS>

Matches a string of n separators.

<@>

Matches any string that contains no separator characters. That is, it
matches a sequence of one or more non-separators. You can use this
expression to match words.

You can configure separator characters for each pattern. By default,
separators are the space and the tab characters. You specify the separator
string as the second element in the 3-tuple passed to the Match.make function.
300 Appendix C

Matching Tags

In search patterns, you can use tags to identify parts of the target string. For
example, to compose a new string from selected parts of the target string,
define a tag, add .tagname before the closing angle bracket.

You could define the following pattern:

^errno: <#.number> - <*.error_text>

This pattern would match the following string:

errno: 125 - device not in service

Also, it would assign 125 to the tag number and device not in service to
the tag error_text. The tags may be accessed as members of a dictionary.

Assigning Substrings to Tags

In matching the pattern "<*.tag1><*.tag2>" against the string "abcdef", it
is not immediately clear which substring of the input string is assigned to
which tag. For example, it is possible to assign an empty string to tag1 and
the whole input string to tag2. Likewise, it is possible to assign "a" to tag1
and "bcdef" to tag2.

The pattern matching algorithm always scans both the input line and the
pattern definition (including alternative expressions) from left to right. The
expression <*> is assigned as few characters as possible. The expressions <#>,
<@>, and <S> are assigned as many characters as possible. As a result, tag1 is
assigned an empty string.

For example, you might want to match the following input string:

"this is error 100: big problem"

To match this input string, you would use a pattern such as the following:

error <#.errnumber>:<*.errtext>

This pattern includes the following assignments:

• "100" is assigned to the tag errnumber.

• "big problem" is assigned to the tag errtext.
Pattern Matching 301

For performance and pattern readability purposes, you can specify a
delimiting substring between two expressions. In the pattern, the colon (:) is
used to delimit the expressions <#> and <*>.

Matching <@.word><#.num> against "abc123" assigns "abc12" to word and
"3" to num, because digits are permitted for both <#> and <@>, and the left
expression takes as many characters as possible.

Patterns without expression anchoring can match any substring within the
input line.

As a result, the following two patterns would be treated the same way:

• "this is number<#.num>"

• "<*>this is number<#.num><*>"

Assigning Subpatterns to Tags

In the same way that you can use a single operator (for example, * or #) to
assign a string to a tag, you can use the operator to build a complex
subpattern, composed of a number of operators with the following pattern:

<[subpattern].tag>

Examples:

<[rack<#>.brd<#>].hware>

The dot (.) between rack<#> and brd<#> matches a similar dot, but the
dot between the close bracket (]) and hware is necessary syntax. This
pattern would match a string such as "rack123.brd47" and assign the
complete string to hware.

<[Error|Warning].sev>

Any line that contains either the word "Error" or "Warning" is assigned
to the tag sev.

<[Error[<#.n><*.msg>]].complete>

Any line that contains the word "Error" has the error number assigned to
the tag n and any further text assigned to msg. Both number and text are
assigned to complete.
302 Appendix C

Examples of Pattern Matching

You can use the ECS pattern matching language in many different ways.

Examples:

"Error"

Recognizes any message containing the keyword Error at any place in the
message, when ExactCase is specified.

"panic"

Matches all messages containing panic, Panic, or PANIC at any place in
the text, when IgnoreCase is specified.

"logon|logoff"

Uses the OR operator (|) to recognize any message containing the
keyword logon or logoff.

"^switch:<*.msg> errno<*><#.errnum>$"

Recognizes messages such as the following:

— "switch: lost service errno : 6"

— "switch: service unavailable; errno 16"

In the first example, the string "lost service errno" is assigned to the
tag msg. The digit 6 is assigned to the tag errnum. The anchoring symbol
($) indicates that the digit 6is matched only if it is at the end of the line.

"^errno[|=]<#.errnum> <*.errtext>"

Matches strings such as the following:

— "errno 6 - no such device or address "

— "errno=12 not enough capacity. "

Note the space before the OR operator (|). The expression within the
brackets ([]) matches either this blank space or the equal sign (=). The
blank space between <#.errnum> and <*.errtext> is used as a delimiter.
Although not strictly required for assignments to the tags shown here,
this blank space improves performance.
Pattern Matching 303

"^system:<*>:<*.id>:"

Matches a line delimited by colons such as the following:

"system:abc123:#103.79a:270295114730:"

It returns the third field in tag id. The colon (:) in the middle of the
pattern is used to delimit the string passed to id from the preceding
string. The colon at the end of the pattern delimits the string passed to id
from the succeeding field in the input pattern. Here the colon is necessary
to separate the strings, not merely to enhance efficiency.

^Warning:<*.text>on circuit<@.circuit>$

Matches any message such as the following:

"Warning: too many errors on circuit 473-186"

It assigns "too many errors" to text, and "473-186" to circuit.
304 Appendix C

D Troubleshooting in NNM
This appendix explains how to troubleshoot HP Correlation Composer during
run time in an HP Network Node Manager (NNM) environment:

• Tracing Events on page 306

• Trace Tools on page 310

• Trace Configuration File on page 311

• Trace Messages on page 313

• Error Messages on page 316

Before debugging correlators, it is helpful to understand the event flow
through Composer. For an overview, see in Event Flow on page 24.
 305

Tracing Events

This section explains how to trace events in Composer:

• Enabling Tracing in Composer on page 306

• Enabling Tracing in NNM on page 307

• Enabling Tracing for ECS on page 308

• Disabling Tracing for ECS on page 308

• Tracing the Flow of an Event on page 309

• Tracing the Actions of a Specific Correlator on page 309

• Tracing the Actions of a Correlator Event ID on page 309

Enabling Tracing in Composer

In Composer, you can enable tracing to follow program and data flow to debug
problems. To perform tracing, you use the HP Cross-Platform Library (XPL).

To enable tracing, start Composer with the -debug option included:

ovcomposer -debug

Enabling tracing affects performance and trace file size. Enable tracing only
when you need to troubleshoot problems.
306 Appendix D

Enabling Tracing in NNM

To enable tracing in an NNM environment, follow these steps:

1 Make sure that the trace server is running.

To find out how to start the trace server, see the XPL documentation.

2 Edit the trace configuration file.

Examples:

• HP-UX

TCF Version 3.2
APP: "ECSComposer"
SINK: Socket "<server name>" ""
TRACE: "ECSTrace" "Event" Info Warn Error Developer Verbose

• Windows

TCF Version 3.2
APP: "ECSComposer"
SINK: Socket "<server name>" "node=<ip-address>;"
TRACE: "ECSTrace" "Event" Info Warn Error Developer Verbose

In place of <server name>, include the name of the trace server. For trace
file locations, see Location of the Trace Configuration File on page 311.

3 Associate the trace configuration file with the application that you are
tracing by typing the following:

trccfg -server <server-name> <configuration filename>

4 Start the Trace Monitor utility by typing the following:

• HP-UX or Linux

run trcmon

• Windows

run tracemon

5 Start Composer.
Troubleshooting in NNM 307

Enabling Tracing for ECS

To enable tracing for HP Event Correlation Services (ECS), follow these steps:

1 Enable tracing in NNM by typing the following command:

• UNIX

ecsmgr -fact_update Composer \
$OV_CONTRIB/ecs/CO/CompTraceOn.fs

• Windows

ecsmgr -fact_update Composer
%OV_CONTRIB%\ecs\CO\CompTraceOn.fs

2 Enable tracing for ECS by typing the following command:

• NNM

ecsmgr -i 1 -trace 65536
pmdmgr -Secss\;T0xffffffff

• HPOM management server

ecsmgr -i 11 -trace 65536

• HPOM agent

ecsmgr -i 12 -trace 65536

Disabling Tracing for ECS

To disable tracing for ECS, type the following command:

• UNIX

ecsmgr -fact_update Composer \
$OV_CONTRIB/ecs/CO/CompTraceOff.fs

• Windows

ecsmgr -fact_update Composer
%OV_CONTRIB%\ecs\CO\CompTraceOff.fs

This command assumes that Composer is installed on the C drive.
308 Appendix D

Tracing the Flow of an Event

To trace the flow of an event, type the following command:

grep "Composer" | grep <eventid>

In this command, eventid is the “if” of the event that needs to be traced.

Tracing the Actions of a Specific Correlator

To trace the actions of a specific correlator, type the following command:

grep "Composer" |grep <correlatorname>

In this command, correlatorname is the name of the correlator that needs to
be traced.

Tracing the Actions of a Correlator Event ID

To trace the actions of a correlator on a given event ID, type the following
command:

grep "Composer" |grep <correlatorname> | grep <eventid>
Troubleshooting in NNM 309

Trace Tools

The HP Operations Tracing subsystem includes a variety of tools that help
you control and monitor trace messages:

• Trace server

Process that provides an interface between trace-enabled applications and
the tools you use to configure tracing in the applications or to monitor
their trace output.

• Trace configuration file

File that contains the tracing specifications (for example, the application
name being traced, the location of trace files, the kind of messages that
you want to trace, and so on). Trace configuration files are ASCII text files
that you can view or modify in a standard text editor.

• Trace monitor

Program (for example, tracemon or trcmon) that receives messages
forwarded by the default trace server, and then displays them
interactively or archives them to disk.
310 Appendix D

Trace Configuration File

When an application initializes its trace configuration, it can get the initial
trace configuration information from a variety of places. The configuration
code searches for trace configuration information in a well-defined sequence of
possible locations.

Location of the Trace Configuration File

The trace configuration file is available at the following location:

• UNIX (HP-UX, Linux, or Solaris)

$OV_CONF/ecs/CO/OVCompTrc.tcf

• Windows

%OV_CONF%\ecs\CO\OVCompTrc.tcf

Sample Trace Configuration File

A sample trace configuration file might look like this:

TCF Version 3.2
APP: "ECSComposer"
SINK: File "%OvInstallDir%\\log\\composer.trc" /
"flush=1;maxfiles=10;maxsize=10;"
TRACE: "ECSTrace" "Event" Info Warn Error Developer Verbose /
Location Stack

If you choose static tracing, make sure that the trace configuration file is
present in the current directory. When editing the trace configuration file,
follow standards (for example, single spacing).
Troubleshooting in NNM 311

Fields of the Trace Configuration File

In the trace configuration file, you must fill in the following fields:

• TCF Version 3.2

Version of the trace configuration file.

• APP

Application that is traced. In this case, Composer is traced.

• SINK

Location of the tracing component specifications for the trace file. This
location can be overridden.

• TRACE

Two arguments. The first argument is the trace component name. The
second argument is the trace category name. Enclose each argument in
double quotes(""). If you are using one of the standard categories in the
code, it is mapped to a string value (which you supply).

Viewing the Binary Trace Configuration File

The trace configuration file is in binary format. You can view it by using the
Trace Monitor utility.

To view the binary file, start the Trace Monitor utility by typing the following:

• HP-UX

run trcmon

• Windows

run tracemon

On Windows, the Trace Monitor utility is a graphical user interface (GUI).
312 Appendix D

Trace Messages

This section explains how to use trace messages to troubleshoot problems.

Location of the Trace Message File

Trace message files are stored in the following directory:

• UNIX (HP-UX, Solaris, or Linux)

$OV_LOG/pmd.log0

• Windows

%OV_LOG%\pmd.log0

Format of the Trace Message File

The trace file has the following format:

TRACE [interpreter]: Composer : <time stamp>.000000Z : <Event Id>
: <Correlator Name> : <Informative Message>

The trace file has six fields, separated by colons:

TRACE [interpreter]

Mandatory first field.

Composer

Mandatory second field.

<time stamp>.000000Z

Time stamp in the format yyyymmddhhmmss, followed by the time in
milliseconds (always 000000Z).

<Event Id>

ID of the event being processed.

Enabling tracing affects performance and trace file size. Enable tracing only
when you need to troubleshoot problems.
Troubleshooting in NNM 313

<Correlator Name>

Name of the correlator that is being processed. If the trace message is part
of the common processing of events, type Common.

<Informative Message>

Trace message itself.

Reading the Trace Message File

After sending in events, you use the grep command for the string Composer to
get trace messages. A trace message is printed when an event enters each of
the phases described in Tracing Events on page 306.

When reading a trace message file, look for the following:

1 Alarm Signature processing

Alarm Signature processing begins and ends with the following strings:

• Alarm Signature processing starting

• Alarm Signature processing done

2 Advanced Filter processing

Advanced Filter processing begins and ends with the following strings:

• Advanced Filter processing starting

• Advanced Filter processing done

3 Logic execution

Logic execution begins and ends with the following strings:

• Input processing starting

• Input processing done

Look for the following two strings:

• Executing logic for the Correlator - starting

• Executing logic for the Correlator - done

The fifth field, Correlator Name, contains the name of the correlator that
is executed. There may be a number of such pairs, depending on the
number of correlators to be executed for the alarm.
314 Appendix D

4 Action processing

In action processing, look for the following strings:

• Decision after all the Correlators run

What happens to an event after all of the correlators have processed it.

• The variables are...

Variables defined in a correlator, which are periodically printed out as
the correlator is being processed. Below the string is the set of
variables that were defined for the correlator and the value currently
bound to it. If the variable has not been evaluated yet, it is listed as
Not Yet Evaluated. You may ignore variables that begin with an
underscore (_) because they are used for internal purposes only.

• Calling

Synchronous function that was called, and the arguments that are
passed to it.

• Return value of the function

What the synchronous function returned.

• Asynchronously invoking function

Which asynchronous function was invoked, and which parameters are
passed to it.

• Setting variable

Return values from asynchronous functions. This string indicates
which variable is set for which correlator. Asynchronous functions are
handled by a common code. As a result, the fifth field in the trace
message is set to Common.

5 Event holding

If any correlators hold an event, the processing of the event continues
after the specified period. In the meantime, other events may enter the
system. To ensure that you are looking at the trace messages for the right
event, check the <Event Id> field.

Event holding phases begin and end with the following strings:

• HOLD processing starting

• HOLD processing done.

There may be multiple such phases, depending on how many correlators
requested a hold on the event.
Troubleshooting in NNM 315

Error Messages

Before attempting to diagnose a problem, consider whether one of the
following common situations may be the cause.

Sample Error Messages

When Composer encounters problems during processing, it displays error
traps, such as the following:

Trap-PDU {
enterprise {1 2 3 4},
agent-addr internet : "\x7F\x00\x00\x01",
generic-trap 6,
specific-trap 5000,
time-stamp 0,
variable-bindings {
{
name{1 2 3 4 5},
value simple: string : "Correlator Name is unctionnotpresent :
Event Input -
Asynchronous function :'C' function not found. Path = libEcho -
function is
HelloWorld"
}
}
}

Trap-PDU {
enterprise {1 2 3 4},
agent-addr internet : "\x7F\x00\x00\x01",
generic-tra 6,
specific-trap 5000,
time-stamp 0,
variable-bindings {
{
name{1 2 3 4 5},
value simple: string : "Asynchronous function call/s had errors
or times
out : Correlators affected are[annoNodeTimeOutInput]"
}
}
}

316 Appendix D

Syntax for Error Messages

In Composer, error message use the following syntax:

Correlator Name is Correlatorname:where:reason

This error string contains the following parameters:

Correlatorname

Name of the correlator that caused the error.

where

At which point in the processing the error was encountered by a
correlator:

— Post 'HOLD'

The correlator logic may hold an event for a specified period of time.
For example, a User-Defined input function may hold an alarm for 10
seconds. After 10 seconds, the event exits from the hold, and the
post-hold processing begins. In this example, the correlator involves
the output function.

— Asynchronous User Defined Output

— Asynchronous variables used in alter/create

— Processing parameters for asynchronous functions

— Event Input - Asynchronous function

— Event Input

— Processing Advanced Filter

— Event Cleanup

reason

Cause of the problem. For descriptions of selected error messages, see
Sample Error Messages on page 316.
Troubleshooting in NNM 317

Conventions for Error Messages

Error messages use the following conventions:

CORRELATORNAME

Name of the correlator that caused the problem.

FUNCTIONNAME

Name of the function that is called.

LIBRARYNAME

Name of the library that contains the user-supplied function.

ARGUMENTS

Parameters passed to the function

VARIABLENAME

Name of the variable being evaluated

For sample error messages, see Sample Error Messages on page 316.
318 Appendix D

Sample Error Messages

When it encounters problems, Composer displays error messages, such as the
following:

Function returned an Error - Error returned is Path = LIBRARYNAME
- Function is FUNCTIONAME: Function returned: ERROR STRING
RETURNED BY THE FUNCTION

Called external function returned an error. The function was invoked as
part of an evaluating variable in the correlator CORRELATORNAME.

'c' Function not found: Path = LIBRARYNAME - Function is
FUNCTIONAME

C function was not found in the specified library. Either the library name
or the function name is incorrect.

Arguments to function is invalid Path = LIBRARYNAME - Function is
FUNCTIONAME: Function returned: PARAMETERS TO THE FUNCTION

Data types of the parameters passed to the function are invalid. The valid
data types that can be passed to a function are integer, real, string, object
ID, and time.

Library not found Path = LIBRARYNAME - Function is FUNCTIONAME

Library path is not found. You could have entered an incorrect library
name or the path specified is incorrect. Check the logs for more
information.

Function timed out Path = LIBRARYNAME - Function is FUNCTIONAME

Called function returned, but has not yet invoked, the callback function to
indicate that processing is complete.

Function returned an Error - Error returned is Path = LIBRARYNAME
- Function is FUNCTIONAME: Function returned: ERROR STRING
RETURNED BY THE FUNCTION

User-supplied function returned an error while processing.

Unable to evaluate variable - VARIABLENAME: No definition seems
to exist for variable VARIABLENAME

Incorrect usage of automatic variable is most likely the cause of the
problem. For example, using OutputRetval as a parameter to the input
function in User-Defined correlation would result in this error.
Troubleshooting in NNM 319

Lookup entry not found for key KEYNAME: Unable to evaluate
VARIABLENAME

Key for which a Data Store lookup is being performed cannot be found. As
a result, the variable cannot be evaluated.

Asynchronous function call/s had errors or timed out: Correlator
is - CORRELATORNAME: variables are - VARIBALENAMES: Correlator is
- CORRELATORNAME: Variables are -VARIABLENAME

Called function did not return values in the expected time. The most likely
cause is that the function invoked did not send a return value.

Type mismatch while creating/altering the event. Attribute, Value
pair is: (ATTRIBUTENAME, VALUE BEING ASSIGNED)

Variable type assigned to the attribute is incorrect (for example, assigning
a string to the specific trap).

Variable Binding value not specified for index INDEXNUM

Value for the variable bindings with the index number INDEX NUM is not
provided.

For conventions used in these error message, see Conventions for Error
Messages on page 318.
320 Appendix D

E Troubleshooting in HPOM
This appendix explains how to troubleshoot HP Correlation Composer during
run time in an HP Operations Manager (HPOM) for UNIX environment.

In Composer, most problems result from minor problems with configuration or
deployment.

When troubleshooting message correlation in the HP Event Correlation
Services (ECS) engine at run time, you focus on a few common areas:

• Task 1: Verifying Deployment on page 322

• Task 2: Message Logging on page 326

• Task 3: Statistics on page 332

• Task 4: Event Tracing on page 334

• Task 5: Error Logging on page 342

In general, troubleshooting is similar for managed nodes (agents) and for the
management server. Specific differences (typically, in file locations) are noted.

At run time, only the ECS engine runs. Composer fact stores configure the
ECS circuit.

Before debugging correlators, it is helpful to understand the event flow
through Composer. For an overview, see in Event Flow on page 24.
 321

Verifying Deployment

When you begin troubleshooting Composer—especially if this is the first time
Composer has been used within your environment—make sure that the
Correlation Composer template is configured and deployed correctly. While
verifying the template, you see no effect on the message flow.

Verifying the ECS Process

Composer is run from within the ECS process in HPOM. The ECS process
does not run unless a Correlation Composer template is assigned and
distributed to a given managed node or management server.

To verify the ECS process, follow these steps:

1 Do the following:

• Management server

— UNIX

Run the opcsv -status command.

— Windows

Open the Task Manager.

• Managed node

Run the opcagt -status command.

2 Verify that the ECS process is running:

• Management server

Make sure the Event Correlation Manager process is running:

— UNIX

Verify that opcecm is running.
322 Appendix E

— Windows

Verify that OvOWECM.exe is running.

• Managed node

Make sure the Event Correlation Agent (opceca) process is running.

3 If the ECS process is running, verify that Composer is currently running
within ECS by running the ecsmgr command:

• Management server

ecsmgr -i 11 -info

• Managed node

ecsmgr -i 12 -info

The command is located in the following directory:

• UNIX

/opt/OV/bin/OpC/utils/ecsmgr

• Windows

%OvInstallDir%\lbin\eaagt\ecsmgr
Troubleshooting in HPOM 323

Sample output:

Engine Status :
engine environment - Standalone Engine
engine instance - 11
engine version - ECS 3.33 (A.03.33)
time last started - Thu Aug 28 01:15:48 2008
engine trace mask - 0x0
engine log mask - 0xffffffff
maximum engine log size - 512 KBytes
maximum event log size - 512 KBytes
input event logging - off
default drill info logging - off
default drill event logging - off
automatic configuration saving - on

stream name - default
stream policy - output (unless discarded by a circuit)
stream event logging - off
stream policy event logging - off
stream drill info logging - off
stream drill event logging - off
circuits enabled in stream -
circuit ecs_comp

circuit name - ecs_comp
circuit date - Mon Dec 13 15:48:33 2004
circuit version - 0
circuit unique identifier - 5502542
time circuit load - Thu Aug 28 01:20:03 2008
circuit event logging - off
circuit state -
stream default - enabled
fact store name - ecs_comp
fact store date - 28 7 2008 17:9:57 36000000+0
fact store version - 1
time fact store load - Thu Aug 28 01:20:03 2008

The key item is the output indicating that the circuit ecs_comp is enabled:

circuits enabled in stream -
circuit ecs_comp

If these entries are not present in the (valid) output, the Enhance
correlator deployed is not the Correlation Composer template.
324 Appendix E

4 Assign and deploy the Correlation Composer template if either of the
following is true:

• ECS process is not running.

• ECS process is running, but Composer is not active in that process.

To find out how to assign and deploy the Correlation Composer policy
correctly, see the following:

• Configuring MSI in HPOM 8.00 for UNIX on page 145

• Configuring MSI in HPOM 9.00 for Windows on page 149

Verifying the MSI Configuration

A common problem associated with the Correlation Composer template
involves diverting messages to the HPOM for UNIX Message Stream
Interface (MSI).

To verify the MSI configuration, follow these steps:

1 Verify that the messages to be processed by Composer display in the
message log.

For details, see Message Logging on page 326.

2 If the messages to be processed by Composer do not appear in the input
message log, reconfigure MSI.

When configuring MSI, follow these guidelines:

• Management server

— MSI must be enabled on the server.

— Either individual message source templates must divert messages
to MSI, or all messages must be diverted to MSI.

• Managed node

— MSI must be enabled on each agent where Composer is used.

— Individual message source templates must divert messages to
MSI.

For details, see the following:

• Configuring MSI in HPOM 8.00 for UNIX on page 145

• Configuring MSI in HPOM 9.00 for Windows on page 149
Troubleshooting in HPOM 325

Verifying Composer File Deployment

The Composer configuration file that is deployed by using the ovocomposer
command is named ecs_comp.fs. (For usage information, see Merging and
Deploying Correlator Store Files on page 154.)

To verify Composer configuration file deployment, make sure the
ecs_comp.fs file is in the following location:

• Management server

— HPOM 8.00 for UNIX

/var/opt/OV/conf/OpC/mgmt_sv

— HPOM 9.00 for UNIX

/var/opt/OV/shared/server/datafiles/policies/ec

— HPOM for Windows

%OvDataDir%\shared\server\datafiles\policies\ec

• Managed nodes

— HPOM for UNIX

/var/opt/OV/conf/eaagt

— HPOM for Windows

%OvDataDir%\conf\eaagt

If the file is in this location, it was deployed successfully.

Message Logging

If you do not find any problems in Verifying Deployment on page 322, verify
the flow of messages. HPOM can log all events that are passed as Composer
input and output.

You can use these event logs to verify the following:

• Input

— Verify that messages flow to the ECS engine.

— Verify that the expected messages are passed to the ECS engine.
326 Appendix E

• Output

— Verify the suppression (not present in output) of messages.

— Verify any modification of attributes in a message.

Enabling Message Logging in HPOM 8.00 for UNIX

To enable message logging for Composer in HPOM 8.00 for UNIX, follow these
steps:

1 Select the Correlation Composer template.

Typically, this template is located under Top Level.

2 Click Options.

3 Select the Log Engine Input Messages check box.

4 Select the Log Engine Output Messages check box.

5 In the Node Bank, select the nodes for which you want to enable message
logging.

6 Update the following:

• Management server

Click ActionsServerInstall/Update Server Templates.

• Managed nodes

Click ActionsNodeInstall/Update OVO Software and Configuration,
select Templates and Nodes in the list you want to update, and click OK.

After you enable message logging, all messages to and from Composer are
logged in the following locations:

• Input

— Management server

/var/opt/OV/log/OpC/mgmt_sv/ecevilg

— Managed node

/var/opt/OV/log/OpC/ecevilg
Troubleshooting in HPOM 327

• Output

— Management server

/var/opt/OV/log/OpC/mgmt_sv/ecevolg

— Managed node

/var/opt/OV/log/OpC/ecevolg

Enabling Message Logging in HPOM 9.00 for Windows

To enable message logging for Composer in HPOM 9.00 for Windows, follow
these steps:

1 In the console, click Policy ManagementPolicies Grouped by TypeEvent
Correlation.

2 Open the Correlation Composer policy.

3 Select the following check boxes:

• Log Messages that Leave the ECS Engine

• Log Messages that Enter the ECS Engine

4 Update the policy on the nodes on which you want logging to be enabled.

After you enable message logging, all messages to and from Composer are
logged in the following locations:

• Input

— Management server

%OvDataDir%\shared\log\inEcsEvt.log

— Managed node

%OvDataDir%\log\OpC\ecevilg

• Output

— Management server

%OvDataDir%\shared\log\ecs_comp.log

— Managed node

%OvDataDir%\log\OpC\ecevolg
328 Appendix E

Sample Message Log File

This section illustrates the format of the input and output message log files.

Sample Input File

An input message log file might look like this:

> 03866cd8-74c9-71dd-06db-0f0276eb0000
> 1219904258 ; Thu Aug 28 00:17:38 2008
> hostname.your.com (IP) ; Normal ;
> Unmatched ; ; ITO: opcmsg(1|3)(1.0)
> ; Test ; Test
> ; :
> INSTR_NOT_SET: ;
> AA: ; ; ; Undef
> AA:
> OA: ; ;
> OA:
> NM Test1
> Node: \nMessage group: \nApplication: Test\nObject:
Test\nText: NM Test1\n
>
> 21600
>
>
>
> ;
>
% OpC_Msg::2
1219904260
+1042
Troubleshooting in HPOM 329

Sample Output File

In output message log files, the values of the input message are matched to
HPOM message attributes.

An output message log file might look like this:

> [MSGID[;ORIGMSGID]]
> [CREATION_TIME] ; [CREATION_TIME (in ASCII)]
> [NODENAME] ([net_type: usually IP]) ; [SEVERITY] ;
[MSG_LOG_ONLY: "LOG_ONLY"|""]
> [UNMATCHED: "Matched"|"Suppressed"|"Unmatched"] ; [MSGTYPE] ;
"Console"|"OpC"|"Logfile"|"Monitor"|"SNMP"|"MSI": [MSGSRC]
> [GROUP] ; [APPLICATION] ; [OBJECT]
> [NOTIFICATION: "NOTIFICATION"|""] ; [TROUBLETICKET: "TT"|""]:
[TROUBLETICKET_ACK: "ACK"|""]
> [INSTR_IF_TYPE:
"INSTR_NOT_SET"|"INSTR_NOT_SET"|"INSTR_FROM_OTHER"]:
[INSTR_IF] ; [INSTR_PAR]
> AA: [AACTION_NODE] ; [AACTION_ACK: "ACK"|""] ;
[AACTION_ANNOTATE: "ANN"|""] ; [AACTION_STATUS:
Configuring Circuits for OVO
Logging Correlation Events in OVO
Chapter 3 103
"Undef"|"Def"|"Started"|"Finished"|"Failed"]
> AA: [AACTION_CALL]
> OA: [OPACTION_NODE] ; [OPACTION_ACK: "ACK"|""] ;
[OPACTION_ANNOTATE: "ANN"|""] ; [OPACTION_STATUS:
"Undef"|"Def"|"Started"|"Finished"|"Failed"]
> OA: [OPACTION_CALL]
> [MSGTEXT]
> [ORIGMSGTEXT]
> [SERVICE_NAME]
> [TIME_ZONE_DIFF]
> [READ_ONLY: "READ_ONLY"|""]
> [FORWARDED: "FORWARDED"|""]
> [MSGKEY]
> [MSGKEY_RELATION_ICASE: "MKR_ICASE"|""] ;
[MSGKEY_RELATION_SEPS]
> [MSGKEY_RELATION]
% OpC_Msg::(time difference between log time and CREATION_TIME)
(log time in seconds since epoch)
+ (time difference to next message)
330 Appendix E

This sample output file contains the following notation:

[OPACTION_ACK: "ACK" | ""]

Depending on the OPACTION_ACK attribute, the log contains either ACK or
nothing. The quotation marks are not present in the log file.

>

Beginning of a new line.

;

Separator for attributes on the same line.

XXX

Literal text that appears in the message.

[...]

Message attribute value. The brackets may enclose a list of literal values.
The brackets are not present in the message.

"..."

Named value. The quotation marks are not present in the message itself.
Empty quotation marks ("") indicate that a missing value is acceptable.

|

Separator for alternative values.

(...)

Descriptive comment

The ecsmgr -log_events option is useful when troubleshooting in the NNM
environment. For HPOM for UNIX environments, enable message logging as
described in Enabling Message Logging in HPOM 8.00 for UNIX on page 327.
Troubleshooting in HPOM 331

Statistics

ECS statistics provide you with a quick snapshot of messages that are
currently being processed by Composer.

Retrieving Statistics

To retrieve statistics, run the -stats command:

• Management server

— UNIX

/opt/OV/bin/OpC/utils/ecsmgr -i 11 -stats

— Windows

"%OvInstallDir%\lbin\eaagt\ecsmgr" -i 11 -stats

• Managed node

— UNIX

/opt/OV/bin/OpC/utils/ecsmgr -i 12 -stats

— Windows

"%OvInstallDir%\lbin\eaagt\ecsmgr" -i 12 -stats
332 Appendix E

Sample Statistics

Output from the -stats command might look like this:

Engine Statistics -

input.inputFilters = [((), (), ())]
engineInstance = 12
currentTime = 20080828072139.000000Z
enginelog.errors = 0
enginelog.warnings = 1
enginelog.info = 3

Stream Statistics -

Stream "default" -

default.in.input = 0
default.in.new = 0
default.out.output = 0
default.out.discarded = 0
default.out.undecided = 0
default.out.errors = 0
default.original.output = 0
default.policy.num = 0

Circuit Statistics -

Circuit "ecs_comp" -

ecs_comp.in.input = 0
ecs_comp.in.new = 0
ecs_comp.out.output = 0
ecs_comp.out.discarded = 0
ecs_comp.out.undecided = 0
ecs_comp.out.errors = 0
ecs_comp.original.output = 0

These statistics tell you whether Composer is processing messages as
expected. The details below Circuit "ecs_comp" - provide the relevant
information for Composer. (The Composer ECS circuit is named ecs_comp.)

These statistics are reset only when the ECS processes are restarted
(normally on a server or agent restart).
Troubleshooting in HPOM 333

The sample output includes the following statistics:

ecs_comp.in.input = 0

Number of messages input to Composer. This number indicates whether
Composer is actually receiving any messages.

ecs_comp.in.new = 0

Number of new messages generated by Composer. An Enhance correlator
that alters a messages creates a new message.

ecs_comp.out.output = 0

Number of messages output. This number includes the original messages
output, as well as the newly created messages.

ecs_comp.out.discarded = 0

Number of messages discarded by Composer. This number includes
messages in which an input message has been altered, and the newly
created message is output, but the actual original message is discarded.

ecs_comp.out.undecided = 0

Number of messages currently held by Composer until a decision is made
whether to discard or output. For example, Multi-Source and Transient
correlators must often wait for appropriate matching messages. During
this time, the number of the messages held is in this undecided count.

ecs_comp.out.errors = 0

Number of errors. If Composer cannot a process a message, it increments
the errors count. If this count increases, see Event Tracing on page 334.

ecs_comp.original.output = 0

Number of original messages that were input to and output from
Composer.

Event Tracing

Tracing Composer events in run time provides you with troubleshooting
information about the processes in your configuration.

Enabling event tracing affects performance and trace file size. Disable event
tracing when you are not actively using it for troubleshooting.
334 Appendix E

Enabling Tracing

To enable event tracing on the system, follow these steps:

1 Enable event tracing in Composer.

Run the following command:

• Management server

— UNIX

ecsmgr -i 11 -fact_update ecs_comp \
$OV_CONTRIB/ecs/CO/CompTraceOn.fs

— Windows

ecsmgr -i 11 -fact_update ecs_comp
%OvInstallDir%\ecs\CO\CompTraceOn.fs

• Managed node

— UNIX

ecsmgr -i 12 -fact_update ecs_comp \
$OV_CONTRIB/ecs/CO/CompTraceOn.fs

— Windows

ecsmgr -i 12 -fact_update ecs_comp
%OvInstallDir%\ecs\CO\CompTraceOn.fs

2 Enable event tracing in ECS.

In ECS, run the following command:

• Management server

ecsmgr -i 11 -trace 65536

• Managed node

ecsmgr -i 12 -trace 65536

On Windows, you cannot use a back slash (\) to escape new lines.
You must type the entire command on one line at the command
prompt.
Troubleshooting in HPOM 335

Disabling Tracing

To disable event tracing, follow these steps:

1 Disable event tracing in Composer.

In Composer, run the following command:

• Management server

— UNIX

ecsmgr -i 11 -fact_update ecs_comp \
$OV_CONTRIB/ecs/CO/CompTraceOff.fs

— Windows

ecsmgr -i 11 -fact_update ecs_comp

%OvInstallDir%\contrib\ecs\CO\CompTraceOff.fs

• Managed node

— UNIX

ecsmgr -i 12 -fact_update ecs_comp \
$OV_CONTRIB/ecs/CO/CompTraceOff.fs

— Windows

ecsmgr -i 12 -fact_update ecs_comp
%OvInstallDir%\contrib\ecs\CO\CompTraceOff.fs

2 Disable event tracing in ECS.

In ECS, run the following command:

• Management server

ecsmgr -i 11 -trace 0

• Managed node

ecsmgr -i 12 -trace 0

On Windows, you cannot use a back slash (\) to escape new lines.
You must type the entire command on one line at the command
prompt.
336 Appendix E

Location of the Trace Message File

The trace message file is stored in the following location:

• Management server

— UNIX

/var/opt/OV/log/OpC/mgmt_sv/ecengtr

— Windows

%OvDataDir%\log\OpC\mgmt_sv\ecengtr

• Managed node

— UNIX

/var/opt/OV/log/OpC/ecengtr

— Windows

%OvDataDir%\log\OpC\ecengtr

Format of the Trace Message File

The trace message file has the following format:

TRACE [interpreter]: Composer : <time stamp>.000000Z : <Event Id>
: <CorrelatorName> : <Informative Message>

The trace message file has six fields, separated by colons:

TRACE [interpreter]

First field that is always set and that is always the same.

Composer

Second field that is always set and that is always the same.

<time stamp>.000000Z

Time stamp in the format yyyymmddhhmmss, followed by the time in
milliseconds (always 000000Z).

<Event Id>

ID of the event being processed.
Troubleshooting in HPOM 337

<Correlator Name>

Name of the correlator that is being processed. If the trace message is part
of the common processing of events, type Common.

<Informative Message>

Trace message itself.

Sample Trace Entries

Entries in a Composer trace message file might look like this:

TRACE [interpreter]: Composer : 20080828065408.000000Z :
"eventid(0:3744)" : Common : Advanced signature processing
starting

Common : Advanced signature processing starting
Common : Alarm signature processing starting
Test1 : "APPLICATION" "=" "Test"
Test1 : "Test" "=" "Test"
Test1 : The result of above comparison is : true
Test1 : Incoming Alarm passed Alarm signature for this correlator
Common : Alarm signature processing done
Test1 : Executing logic for the Correlator - starting
Test1 : In Enrich correlation input Processing (Correlator Test1)
:The variables are:
Test1 : __isRuleValid = true
Test1 : __corClass = 5
Test1 : newVal = "Hello"
Test1 : The Correlator has decided the following - :Event will be
altered.
Test1 : Executing logic for the Correlator - done
Common : Decision after all the Correlators ran: The event will
be Altered.

The first (TRACE) line shows a complete entry. The subsequent (Common,
Test 1) lines shows the details of the trace entries.
338 Appendix E

Reading the Trace Message File

After Composer processes events, it logs entries to the trace message file.

When reading a trace message file, look for the following:

1 Alarm Signature processing

Alarm Signature processing begins and ends with the following strings:

• Alarm Signature processing starting

• Alarm Signature processing done

2 Advanced Filter processing

If the filter criteria of at least one correlator was met, Advanced Filter
processing begins and ends with the following strings:

• Advanced Filter processing starting

• Advanced Filter processing done

3 Logic execution

Logic execution begins and ends with the following strings:

• Input processing starting

• Input processing done

Look for the following two strings:

• Executing logic for the Correlator - starting

• Executing logic for the Correlator - done

The fifth field, Correlator Name, contains the name of the correlator that
is executed. There may be a number of such pairs, depending on the
number of correlators to be executed for the alarm.
Troubleshooting in HPOM 339

4 Action processing

In action processing, look for the following strings:

• Decision after all the Correlators run

What happens to an event after all of the correlators have processed it.

• The variables are...

Variables defined in a correlator, which are periodically printed out as
the correlator is being processed. Below the string is the set of
variables that were defined for the correlator and the value currently
bound to it. If the variable has not been evaluated yet, it is listed as
Not Yet Evaluated. You may ignore variables that begin with an
underscore (_) because they are for internal use only.

• Calling

Synchronous function that was called and the arguments that are
passed to it.

• Return value of the function

What the synchronous function returned.

• Asynchronously invoking function

Which asynchronous function was invoked, and which parameters are
passed to it.

• Setting variable

Return values from asynchronous functions. This string indicates
which variable is set for which correlator. Asynchronous functions are
handled by a common code. As a result, the fifth field in the trace
message is set to Common.
340 Appendix E

5 Event holding

If any correlators hold an event, the processing of the event continues
after the specified period. In the meantime, other events may enter the
system. To ensure that you are looking at the trace messages for the right
event, check the <Event Id> field.

Event holding phases begin and end with the following strings:

• HOLD processing starting

• HOLD processing done

There may be multiple such phases, depending on how many correlators
requested a hold on the event.

Tracing the Flow of a Message

To trace the flow of a message, type the following command:

• UNIX

grep "Composer" |grep <eventid>

• Windows

find "Composer" | find <eventid>

In this command, eventid is the identifier of the event that needs to be
traced.

Tracing the Actions of a Specific Correlator

To trace the actions of a specific correlator, type the following command:

• UNIX

grep "Composer" |grep <correlatorname>

• Windows

find "Composer" |find <correlatorname>

In this command, correlatorname is the name of the correlator that
needs to be traced.

This is an internal ECS event ID, not an HPOM for UNIX message ID
(MSGID) attribute.
Troubleshooting in HPOM 341

Tracing the Actions of a Correlator Event ID

To trace the actions of a correlator on a given eventid, type the following
command:

• UNIX

grep "Composer" |grep <correlatorname> | grep <eventid>

• Windows

find "Composer" |find <correlatorname> |find <eventid>

Error Logging

The ECS engine in which Composer runs logs any specific errors to the engine
log file. Look at this file if other troubleshooting tasks do not help you find the
source of a problem.

Format of the Error Log

The engine error file is formatted as follows:

LOG [<Internal ECS filename>]: <Informative Message>

Only <Informative Message> is used for troubleshooting.

Sample Error Log Entries

Error log entries might look like this:

LOG [../perl_interp.c@227]: Perl Path /var/opt/OV/conf/OpC/
mgmt_sv/perlfile.pl
LOG [../perl_interp.c@345]: Error: while accessing perl file /
var/opt/OV/conf/OpC/mgmt_sv/perlfile.pl
LOG [../perl_interp.c@227]: Perl Path /opt/OV/contrib/ecs/
external/perl/getData.p
342 Appendix E

F Error Messages
This appendix lists the error messages you might encounter when creating or
deploying Correlation Stores in HP Correlation Composer:

• Creation Errors on page 344

• Deployment Errors on page 350

For each error message, it describes the cause of the problem as well as the
action, if any, you should take to correct the problem.
 343

Creation Errors

When creating Correlator Store files, you might encounter the following error
messages:

• Alarm Name Is In Use, Cannot Delete on page 345

• Correlator Name Is Invalid on page 345

• Duplicate Alarm Name on page 345

• Duplicate Variable Name on page 345

• Invalid Syntax on page 346

• Look and Feel Not Supported on page 346

• Minutes in Window Period Cannot Be Greater Than 60 on page 346

• No Blank Entry Allowed on page 346

• Seconds in Window Period Cannot Be Greater Than 60 on page 347

• Threshold Count Should Be Integer Only on page 347

• Unknown Event Type on page 347

• Unspecified Correlator Name on page 347

• Unspecified Function Name on page 348

• Unspecified Threshold Count on page 348

• Unspecified Threshold Window on page 348

• Unspecified Window Period on page 348

• Variable in Use, Cannot Delete on page 349

• Variable Name Cannot Be Null on page 349

• Window Period Should Be Integer Only on page 349
344 Appendix F

Alarm Name Is In Use, Cannot Delete

Problem

In Multi-Source correlation, you are trying to delete an existing alarm whose
attributes are being used to create a new alarm.

Solution

Change the New Alarm specification and delete the alarm.

Correlator Name Is Invalid

Problem

You have entered a blank space or special character in the Correlator name
text field.

Solution

Rename the correlator without any blank spaces or special characters.

Duplicate Alarm Name

Problem

Specified correlator name already exists.

Solution

Enter a different name for the correlator.

Duplicate Variable Name

Problem

Specified variable name already exists.

Solution

Provide a new name for the variable.
Error Messages 345

Invalid Syntax

Problem

You have entered some invalid characters (for example, consecutive blank
spaces, commas, or mismatched quotation marks).

Solution

Enter values without consecutive blank spaces, commas, or mismatched
quotation marks.

Look and Feel Not Supported

Problem

You have tried to change the look and feel to “Windows” on a UNIX machine.

Solution

Re-enter the Threshold Count in numeric form only.

Minutes in Window Period Cannot Be Greater Than 60

Problem

You have tried to enter a minutes value greater than 60.

Solution

Convert minutes to hours, and then enter the value in the Window Period
field.

No Blank Entry Allowed

Problem

You have left an entry blank.

Solution

Enter valid values in the blank cell.
346 Appendix F

Seconds in Window Period Cannot Be Greater Than 60

Problem

You have entered a seconds value greater than 60.

Solution

Convert the seconds value to minutes, and then enter the value in the Window
Period field.

Threshold Count Should Be Integer Only

Problem

You have tried to enter special characters or unsupported alphabetical
characters in the Threshold Count window.

Solution

Re-enter the Threshold Count in numeric form only.

Unknown Event Type

Problem

You entered an invalid event type while starting the Orchestrator from the
command line.

Solution

Enter a valid event type: SNMP or OpC.

Unspecified Correlator Name

Problem

You have not entered a name for the correlator.

Solution

Enter a name for the correlator.
Error Messages 347

Unspecified Function Name

Problem

You have not entered the name for the function while defining a callback
function.

Solution

Enter the name of the function.

Unspecified Threshold Count

Problem

In Transient correlation, you have tried to correlate without specifying the
count of the Failure and Clear pairs after checking the Enable Threshold
checkbox.

Solution

Enter the threshold count.

Unspecified Threshold Window

Problem

In Transient correlation, you have tried to correlate without specifying the
threshold window in which you want to monitor the correlation.

Solution

Enter the threshold window in which you want to monitor the correlation.

Unspecified Window Period

Problem

You have not entered the window period in which the correlation has to be
maintained.

Solution

Enter the window period in which the correlation must be entered in the Time
Period window.
348 Appendix F

Variable in Use, Cannot Delete

Problem

You have tried to delete a variable that is used to define other variables.

Solution

Change the condition rule for the variable, and then delete the variable.

Variable Name Cannot Be Null

Problem

You have not entered a name for the variable.

Solution

Enter a name for the variable.

Variable Name in Use, Cannot Rename

Problem

You have tried to rename a variable that is used when defining other
variables.

Solution

Change the condition rule for the variable, and then rename the variable.

Window Period Should Be Integer Only

Problem

You have tried to enter special characters or unsupported alphabetical
characters in the Time Period window.

Solution

Re-enter the window period in numeric form only.
Error Messages 349

Deployment Errors

When merging and deploying Correlator Store files, you might encounter the
following error messages:

• Cannot Load the Correlator Store into the ECS Engine on page 350

• Merge Failed: Cannot Execute the csmerge Script on page 350

• Merge Failed: Cannot Open File on page 351

• Merge Failed: Correlator Stores Are of Different Event Type on page 351

• Merge Failed: Correlator Stores Have Different C Libraries on page 351

• Merge Failed: Correlator Stores Have Different Perl Files on page 351

• Merge Failed: Destination File Already Exists on page 352

Cannot Load the Correlator Store into the ECS Engine

Problem

The Correlator Store cannot be loaded into the ECS engine.

Solution

Verify that the ECS engine is running. If it is already running, contact the
administrator.

Merge Failed: Cannot Execute the csmerge Script

Problem

The csmerge script (invoked internally at the time of deployment) could not
be executed.

Solution

None.
350 Appendix F

Merge Failed: Cannot Open File

Problem

One of the Correlator Store files specified in the NameSpace file cannot be
opened.

Solution

Check the permissions for the file. Change the permissions for the file to
ensure that the file is visible.

Merge Failed: Correlator Stores Are of Different Event Type

Problem

The csmerge file is trying to merge Correlator Store files created for different
event types.

Solution

None. Correlator files created for different event types cannot be merged.

Merge Failed: Correlator Stores Have Different C Libraries

Problem

The C libraries are different in the Correlator Stores.

Solution

Reference only one C library when specifying a C library name.

Merge Failed: Correlator Stores Have Different Perl Files

Problem

The Perl files are different in the Correlator Stores.

Solution

Include all Perl files in one main Perl file, and then reference the main Perl
file when specifying the Perl file name. For details, see Support for Multiple
Perl Files on page 115.
Error Messages 351

Merge Failed: Destination File Already Exists

Problem

A Correlator Store file with the same name already exists.

Solution

Provide a different name to the merged Correlator Store.
352 Appendix F

Glossary
Advanced Filter

Condition used to further filter alarms that have entered a rule. Typically, you
use this condition to define filters based on external factors (for example, state
and topology).

Alarm Signature

Set of event attributes (Attribute, Operator, and Value) on which the first
level of filtering is based. Further processing takes place when an event
matches all attributes in the alarm set.

attribute

Set of named value pairs, in which the name is an attribute.

callback function

User-defined function invoked when a new alarm is created or when an
existing alarm is discarded. When applied to an event, a correlation rule may
discard an event or generate a new correlation. You can invoke user-defined
functions to perform user-specific functions (for example, logging events).

combine

Operator used to combine variables to form a new variable.

Composer

HP Correlation Composer. Combination of a packaged ECS circuit and the
graphical user interface (GUI) used to add parameters and define correlation
rules for event correlation.

constant

Values used for reference when defining a correlation rule. The variable name
is bound to the value specified in the value field.
 353

correlation

Processing an event stream to improve its value (for example, by making it
smaller and by improving its information content). This processing is
performed on the basis of relationships between events.

correlator

Uniquely identified unit of correlation logic that is applied to an event or a set
of events.

Correlator Store

Set of correlators that define a specific correlation requirement.

ECS

HP Event Correlation Services. Service that identifies and highlights changes
in the state of a network (by suppressing and correlating event storms), and
then passes on or generates events that have a greater significance or a higher
value.

Enhance correlation

Correlation type that enables event attributes of an event to be added,
deleted, or changed after correlation. This type of correlation changes the
information content of an event.

Event Correlation Services

See ECS.

extract

Retrieving substrings within an event attribute.

function

Variable type whose value can be associated with the name of a variable. The
return value of a user-defined function can be bound to a variable name.

global constants

Values bound to names when defining correlation rules.
354

lookup operator

Operator used to query values from a Data Store and bind them to variables.
The return type of this operator is always the same type as the value in the
Data Store. However, if you specify more than one parameter, the return value
is a combined string.

message key

Key identifying the instance of the rule under which an alarm is correlated
after it has passed the Alarm Signature and Advanced Filter conditions.

Multi-Source correlation

Correlation used to define a relationship between an arbitrary number of
alarms, potentially from different sources, that collectively form a logical set
that identifies a problem. The logical set is considered complete if all
configured alarms arrive within the specified time window.

parameters

Measurable factures that change the default behavior of a basic rule type. The
functionality of these factors can vary across the different correlation types.

Rate correlation

Correlation that measures the number of events occurring in a defined
window of time (threshold time), and then outputs an event with more
information content. The rate is maintained for a particular category of
events. An arrival rate that exceeds the threshold indicates a serious problem.
For this reason, a new alarm is created and forwarded.

Repeated correlation

Correlation used to eliminate similar alarms. This correlation passes on only
those alarms that contain useful information. As a result, operators do not
need to receive alarms of the same kind during a defined window of time.

Suppress correlation

Correlation used when a specific category of alarms must be discarded. These
alarms are identified by the specified Alarm Signature.
355

Transient correlation

Correlation used to detect transient alarms. Alarms that come from the same
network element, and that have the same probable cause and specific problem
within a specified time window, are considered transient. You can define a
period of time in which this transience must occur. To do so, you check for the
number of transient alarms occurring in a threshold of time. If the transient
suppression exceeds the threshold, a new alarm is generated and forwarded to
operators. The new alarm alerts operators to threshold breach, and indicates
the number of transients suppressed in the window.

User-Defined correlation

Correlation used to implement a requirement when none of the other
correlation models, either by itself or in a combination, can meet the
correlation requirement.

Variables

Names given to values used to define a correlation rule.
356

	User’s Guide for HP Operations Manager and HP Network Node Manager
	Contents
	1 Composer Overview
	Composer Concepts
	Events
	Alarms
	Event Types
	Event Actions
	Event Flow

	Attributes
	Correlators
	Correlator Store
	Correlation Flow
	ECS Engine
	ECS Designer

	Composer Modes
	Developer Mode (HPOM and NNM)
	Operator Mode (NNM Only)

	Correlator Templates
	Enhance Correlator Template
	Multi-Source Correlator Template
	Example of Mode 1: Networking Device Fails
	Example of Mode 2: Server Crashes

	Rate Correlator Template
	Repeated Correlator Template
	Suppress Correlator Template
	Transient Correlator Template
	User-Defined Correlator Template
	Correlator Template Evaluation Precedence

	2 Composer GUI
	Correlation Composer Window
	Online Help
	Shortcut Menus
	Localized Descriptions

	Correlator Configuration Window
	Description Tab
	Definition Tab
	Alarm Signature
	Alarm Signatures in NNM
	Alarm Signatures in HPOM

	Variables
	Variable Evaluation
	Automatic Variables

	Advanced Filter
	Message Key
	Example 1: Generating New Router Alarms
	Example 2. Monitoring Interface Failure Rates

	Parameters

	New Alarm Tab
	CallBacks Tab

	Composer Menus
	File Menu
	Correlations Menu
	Options Menu
	Help Menu

	Composer Toolbars
	Standard Toolbar
	Correlator Templates Toolbar
	Deploy Button (NNM Only)

	3 Getting Started
	Starting Composer
	Starting Composer from NNM
	Starting Composer from HPOM

	Stopping Composer
	Configuring the Correlator Store
	Defining Event Attributes
	Default Attributes
	Changing Mandatory Attributes
	Adding Attributes

	Backing Up Files
	Automatic Backups of Correlator Store Files
	Example of Backed-Up Files
	Overriding the Number of Backed-Up Files
	Restoring Backed-Up Files

	4 Developing Correlators
	Developing Correlator Stores
	Creating a Correlator Store
	Opening a Correlator Store
	Modifying a Correlator Store
	Migrating a Correlator Store to Composer 3.3

	Configuring Correlator Stores
	Defining Event Types
	Optional: Defining Global Constants
	Value Types for Global Constants
	Defining a Global Constant
	Deleting a Global Constant

	Defining Alarm Correlators
	Creating a Correlator
	Defining a Correlator
	Defining Variable Types
	Defining Constant Values
	Combining Variables
	Extracting Value Patterns
	Defining Functions
	Validating Function Definitions

	Optional: Defining New Alarms
	Changing Alarm Attributes
	Creating a New Alarm
	New Alarm Definition Table

	Optional: Creating Callback Functions
	Callback Variables
	Callback Functions
	Automatic Variables

	Setting the Perl File Location

	Managing Correlators
	Opening a Correlator
	Modifying a Correlator
	Deleting a Correlator

	Writing C Functions
	Creating a C Function
	Skeleton Code for C Functions
	Signatures for C Functions
	Parts of C Functions
	Passing Arguments
	Processing Arguments
	Returning Values
	Allocating Space for the Return Values
	Wrapping the Return Values
	Marshalling the Return Values
	Running the Callback Function

	Configuring the UserDevelopedFuncDetails.xml File

	Writing Perl Functions
	Creating a Perl Function
	Skeleton Code for Perl Functions
	Support for Multiple Perl Files
	Including Files on UNIX
	Including Files on Windows
	Creating a Main Perl File

	User-Defined Correlation
	Input Functions
	Output Functions
	Writing a User-Defined Function
	Return Values
	Flag Values

	Skeleton Code for User-Defined Functions

	Merging Correlator Store Files
	Merging Correlator Stores Specified in the NameSpace File
	Removing User Descriptions from the Correlator Store
	Merging Correlator Stores
	Configuration File
	Example 1: Clashing Global Constants
	Example 2: Configuration File

	5 Composer in NNM
	Correlator Stores
	Operator Mode
	Starting Composer in Operator Mode
	Operator Tasks
	Operator Menu Options

	Developer Mode
	Starting Composer in Developer Mode
	Configuration Files
	NameSpace File
	Security File
	Deploy Configuration File

	Built-In Function
	getOIDValue

	6 Composer in HPOM
	Composer GUI
	ECS Engine
	Message Correlation
	Correlation Options
	Correlation Guidelines
	Correlation Tools

	Starting the Composer GUI
	Configuring MSI in HPOM 8.00 for UNIX
	Configuring MSI on the HPOM 8.00 for UNIX Management Server
	Configuring MSI on HPOM 8.00 for UNIX Managed Nodes (Agents)

	Configuring MSI in HPOM 9.00 for Windows
	Configuring MSI on the HPOM 9.00 for Windows Management Server
	Configuring MSI on HPOM 9.00 for Windows Managed Nodes (Agents)

	Merging and Deploying Correlator Store Files
	Location of Correlator Store Files
	Composer Applications on UNIX
	Merging and Deploying on the Management Server
	Merging and Deploying on Managed Nodes (Agents)

	Accessing External Data
	Data Store File
	Location of the Data Store File
	Syntax of the Data Store File
	Example 1: Creating a New Data Store
	Example 2: Updating an Existing Data Store

	Perl Scripts

	7 Use Cases in NNM
	Case 1: Enhance Correlation
	PDU for a Temperature Alarm
	Responding to the Temperature Alarm
	Defining the Enhance Correlator Template

	Case 2: Multi-Source Correlation
	PDU for SS7 Link Failure
	PDU for SS7 Link Set Failure
	Responding to the SNMP Trap PDU Alarms
	Defining the Multi-Source Correlator Template

	Case 3: Rate Correlation
	PDU for Radio Antenna Failure
	Responding to Radio Antenna Failure Alarms
	Defining the Rate Correlator Template

	Case 4: Repeated Correlation
	PDU for Duplicate Alarms
	Responding to Duplicate Alarms
	Defining the Repeated Correlator Template

	Case 5: Suppress Correlation
	PDU for Movement Alarms
	Responding to Movement Alarms
	Defining the Suppress Correlator Template

	Case 6: Transient Correlation
	PDU for PCM Link Failure
	PDU for PCM Clear Alarm
	Responding to PCM Link Failure
	Defining the Transient Correlator Template

	Case 7: Multi-Event Correlation
	PDU for MSC Failure
	PDU for BSC Failure
	Responding to Connected MSC and BSC Failure
	Defining the Multi-Source Correlator Template

	8 Use Cases in HPOM
	Case 1: Enhance Correlation
	Changing Simple Message Text
	Changing the Text of a Simple Message
	Changing Message Text in the Enhance Correlator Template

	Replacing Error and Status Codes with Descriptions
	Replacing an Error or Status Code with a Description
	Replacing a Code with a Description in the Enhance Correlator Template

	Enriching Messages by Using Perl Commands
	Appending Comment Fields to Message Text
	Adding a CMA by Name to an Event
	Increasing Event Severity for Non-Critical Events
	Determining Whether To Suppress Events Based on Maintenance Mode

	Case 2: Suppress Correlation
	Suppressing Message Subsets
	Suppressing the Subset of a Message
	Defining the Suppress Correlator Template

	Case 3: Multi-Source Correlation
	Suppressing Messages on Remote Sites
	Suppressing a Sympathetic Message on a Remote Site
	Suppressing Subsets with the Multi-Source Correlator Template

	Case 4: Rate Correlation
	Detecting DNS Outages
	Responding to a DNS Outage
	Defining the Rate Correlator Template

	Case 5: Transient Correlation
	Generating New Messages
	Smart Message Correlation
	Suppressing High CPU Utilization Messages
	Responding to High CPU Utilization Messages
	Defining the Transient Correlator Template

	9 Developer Mode in NNM
	Administrative Tasks
	Starting Composer in Developer Mode
	Configuring Operator Profiles
	Creating Correlator Stores
	Listing Correlator Stores
	Creating NameSpace and Security Files
	NameSpace Files
	Syntax of the NameSpace File
	Example of a NameSpace File
	Guidelines for NameSpace Files

	Security File
	Syntax of the Security File
	Template Names in CORRELATOR_TEMPLATE
	Token Identifiers in TOK_LIST
	Example of a Security File
	Guidelines for Security Files

	Creating Deploy Configuration Files
	Deploy Procedure
	Example of a Deploy Configuration Files
	Guidelines for Deploy Configuration Files
	Parameters for Deploy Configuration Files

	Defining Operator Access
	Customizing the NameSpace File
	Customizing the Security File
	Customizing the Deploy Configuration File

	Deploying the Correlator Store
	Loading the Correlator Store File to the ECS Engine
	Viewing Errors in the Deploy Status Window
	Deploying Correlator Stores from the Command Prompt

	10 Operator Mode in NNM
	Operator Access Rights
	Starting Composer in Operator Mode
	Locking Files
	File Locking Modes
	File Locking Failure
	Recovering Correlator Stores

	Deploying Correlator Stores
	Loading the Correlator Store File to the ECS Engine
	Viewing Errors in the Deploy Status Window
	Deploying Correlator Stores from the Command Prompt

	A Built-In Functions
	Functions
	add
	bitand
	bitinv
	bitor
	bitxor
	div
	getByIndex
	getCounter
	getHour
	getMinute
	getMonth
	getTime
	makeList
	mod
	mul
	retrieve
	retrieveStr
	setCounter
	store
	storeStr
	sub

	Keys
	Multiple Keys
	Unique Keys

	B Event Attributes
	HPOM Event Attributes
	SNMP Event Attributes

	C Pattern Matching
	Syntax of Pattern Matching
	Expression Delimiter ([])
	Operator Delimiter (< >)
	OR Operator (|)
	NOT Operator (!)
	Mask Operator (\)

	Matching Expressions
	Matching First or Last Characters
	Matching Multiple Characters

	Matching Tags
	Assigning Substrings to Tags
	Assigning Subpatterns to Tags

	Examples of Pattern Matching

	D Troubleshooting in NNM
	Tracing Events
	Enabling Tracing in Composer
	Enabling Tracing in NNM
	Enabling Tracing for ECS
	Disabling Tracing for ECS
	Tracing the Flow of an Event
	Tracing the Actions of a Specific Correlator
	Tracing the Actions of a Correlator Event ID

	Trace Tools
	Trace Configuration File
	Location of the Trace Configuration File
	Sample Trace Configuration File
	Fields of the Trace Configuration File
	Viewing the Binary Trace Configuration File

	Trace Messages
	Location of the Trace Message File
	Format of the Trace Message File
	Reading the Trace Message File

	Error Messages
	Sample Error Messages
	Syntax for Error Messages
	Conventions for Error Messages
	Sample Error Messages

	E Troubleshooting in HPOM
	Verifying Deployment
	Verifying the ECS Process
	Verifying the MSI Configuration
	Verifying Composer File Deployment

	Message Logging
	Enabling Message Logging in HPOM 8.00 for UNIX
	Enabling Message Logging in HPOM 9.00 for Windows
	Sample Message Log File
	Sample Input File
	Sample Output File

	Statistics
	Retrieving Statistics
	Sample Statistics

	Event Tracing
	Enabling Tracing
	Disabling Tracing
	Location of the Trace Message File
	Format of the Trace Message File
	Sample Trace Entries
	Reading the Trace Message File
	Tracing the Flow of a Message
	Tracing the Actions of a Specific Correlator
	Tracing the Actions of a Correlator Event ID

	Error Logging
	Format of the Error Log
	Sample Error Log Entries

	F Error Messages
	Creation Errors
	Alarm Name Is In Use, Cannot Delete
	Correlator Name Is Invalid
	Duplicate Alarm Name
	Duplicate Variable Name
	Invalid Syntax
	Look and Feel Not Supported
	Minutes in Window Period Cannot Be Greater Than 60
	No Blank Entry Allowed
	Seconds in Window Period Cannot Be Greater Than 60
	Threshold Count Should Be Integer Only
	Unknown Event Type
	Unspecified Correlator Name
	Unspecified Function Name
	Unspecified Threshold Count
	Unspecified Threshold Window
	Unspecified Window Period
	Variable in Use, Cannot Delete
	Variable Name Cannot Be Null
	Variable Name in Use, Cannot Rename
	Window Period Should Be Integer Only

	Deployment Errors
	Cannot Load the Correlator Store into the ECS Engine
	Merge Failed: Cannot Execute the csmerge Script
	Merge Failed: Cannot Open File
	Merge Failed: Correlator Stores Are of Different Event Type
	Merge Failed: Correlator Stores Have Different C Libraries
	Merge Failed: Correlator Stores Have Different Perl Files
	Merge Failed: Destination File Already Exists

	Glossary

