
HP Client Automation Enterprise

Configuration Server
for the AIX; Enterprise Linux ES, AS; HP-UX; Solaris; SuSE Linux
Enterprise Server; and Windows® operating systems

Software Version: 7.80

User Guide

Manufacturing Part Number: None

Document Release Date: November 2009

Software Release Date: November 2009

2

Legal Notices

Warranty

The only warranties for HP products and services are set forth in the express warranty
statements accompanying such products and services. Nothing herein should be construed as
constituting an additional warranty. HP shall not be liable for technical or editorial errors or
omissions contained herein.

The information contained herein is subject to change without notice.

Restricted Rights Legend

Confidential computer software. Valid license from HP required for possession, use or
copying. Consistent with FAR 12.211 and 12.212, Commercial Computer Software, Computer
Software Documentation, and Technical Data for Commercial Items are licensed to the U.S.
Government under vendor's standard commercial license.

Copyright Notices

© Copyright 1993–2009 Hewlett-Packard Development Company, L.P.

Trademark Notices

Linux is a registered trademark of Linus Torvalds.

Microsoft®, Windows®, and Windows® XP are U.S. registered trademarks of Microsoft
Corporation.

OpenLDAP is a registered trademark of the OpenLDAP Foundation.

PREBOOT EXECUTION ENVIRONMENT (PXE) SERVER
Copyright © 1996-1999 Intel Corporation.

TFTP SERVER
Copyright © 1983, 1993
The Regents of the University of California.

OpenLDAP
Copyright 1999-2001 The OpenLDAP Foundation, Redwood City, California, USA.
Portions Copyright © 1992-1996 Regents of the University of Michigan.

OpenSSL License
Copyright © 1998-2001 The OpenSSLProject.

Original SSLeay License
Copyright © 1995-1998 Eric Young (eay@cryptsoft.com)

3

DHTML Calendar
Copyright Mihai Bazon, 2002, 2003

4

Documentation Updates

The title page of this document contains the following identifying information:

• Software Version number, which indicates the software version.
— The number before the period identifies the major release number.
— The first number after the period identifies the minor release number.
— The second number after the period represents the minor-minor release number.

• Document Release Date, which changes each time the document is updated.

• Software Release Date, which indicates the release date of this version of the software.

To check for recent updates or to verify that you are using the most recent edition, visit:

http://h20230.www2.hp.com/selfsolve/manuals

This site requires that you register for an HP Passport and sign-in. To register for an HP
Passport ID, go to:

http://h20229.www2.hp.com/passport-registration.html

Or click the New users - please register link on the HP Passport login page.

You will also receive updated and new editions if you subscribe to the appropriate product
support service. Contact your HP sales representative for details.

Table 1 below lists the changes that were made to this document.

Table 1 Documentation changes

Chapter Version Changes

N/A 5.00 The chapter, CM Configuration Server Database Utilities
(formerly Chapter 6), has been deleted.
The functionality of these six database utilities has been replaced
by the EDMAMS verbs EXPORT_CLASS, EXPORT_INSTANCE,
EXPORT_RESOURCE, IMPORT_CLASS, IMPORT_INSTANCE,
and IMPORT_RESOURCE, which are documented in Chapter 5,
EDM Access Method Services, starting on page 253.

All 5.00 Removed all references to MVS and all MVS-related information;
MVS is not supported in this release.

All 5.00 In various places in this document, “characters” was replaced
with “bytes” due to internationalization considerations.

5

Chapter Version Changes

All 5.00 The default installation directory, Novadigm, has been revised for
this release. All references to the directory have been updated to:

• Windows: System Drive:\Program Files\Hewlett-
Packard\CM\ConfigurationServer

and

• UNIX: opt/HP/CM/ConfigurationServer

All 5.00 In various places in this document examples of, and references
to, Domains and Classes in the CM Configuration Server
Database have been revised to accurately reflect the structure of
the database.

All 5.00 All references to “Windows NT service” have been revised to
“Windows service.”

All 5.10 Removed several obsolete images.

All 7.50 Removed any references to EDM and Radia (versions 2.x and
3.x), and added a Note on page 20. These products and versions
are no longer supported.

Chapter 1 7.50 Page 23, added a new section, IP Networking Support.

Chapter 2 5.10 Page 56, in the section, Recommended Preventive Measures,
revised the information regarding the ZMTHNAME setting.

Chapter 2 5.00 Page 100, added a comprehensive definition of a CM
Configuration Server Database object ID.

Chapter 2 7.20 Page 101, added a new section, MANAGER_TYPE Values.

Chapter 2 7.50 Removed the sections, EDM_STARTUP and RADIA_STARTUP.
The end of support for HPCA EDM nullifies these sections of the
edmprof file.

Chapter 2 7.80 Added wildcard capability for DOMAIN and CLASS in the
MGR_CLASS section of the edmprof.dat file.
Added the SSL_CIPHERS setting to the MGR_SSL, which
specifies the ciphers to be used for SSL communication between
the Configuration Server and other HPCA components.

6

Chapter Version Changes

Chapter 3 5.10 Page 133, renamed and revised the section, HP REXX Functions,
to include information about functions that retrieve object names
and properties, as well as two utility functions to convert between
local code page (LCP) and UTF-8 strings.

Chapter 5 5.10 Page 195, revised the section ODBC Data Source Drivers.

Chapter 5 5.10 Page 203, revised the section Install the Necessary Software.

Chapter 6 5.00 Page 278, the EDMAMS verb, COPY_ZRSOURCE, has been
deleted from the CM Configuration Server Database. Its
functionality is handled by the verb, COPY_CLASS.

Chapter 6 5.00 Page 289, revised the keyword information for the EDMAMS
verb, DELETE_FIELD.

Chapter 6 7.50 Removed the section, COPY_DATA; it is no longer applicable due
to the end of support for HPCA EDM.

Cbapter 6 7.50
Jun. ‘09

Page 307, expanded the Note regarding the reasons for new deck
creation.

Chapter 7 5.00 Page 343, is where a new chapter, CM Configuration Server
Database Utility, begins. This chapter details the CM
Configuration Server Database utility, RadDBUtil.

Chapter 7 5.10 Page 360, revised the section, Deleting Bulletins from a
Database, with information on using the IGNORE keyword when
permanently deleting CM Patch Manager bulletins from the CM
Configuration Server Database.

Chapter 7 5.10 Page 364, revised the Export, Delete, and Import syntaxes in
Example 8..

Chapter 7 7.50 Page 349, added a new keyword, -substitute, for the EXPORT
function.

N/A 7.50 This chapter, detailing the “multi-mode” capability of the
Configuration Server, has been deleted. The end of support for
HPCA EDM nullifies this ability.

Appendix A 5.10 Page 388, revised this appendix (CM Configuration Server
Database Methods) so that the CM Configuration Server
methods are now documented with their current names, as seen
in the \bin directory.

7

Support

You can visit the HP Software support web site at:

www.hp.com/managementsoftware/services

This web site provides contact information and details about the products, services, and
support that HP Software offers.

HP Software online software support provides customer self-solve capabilities. It provides a
fast and efficient way to access interactive technical support tools needed to manage your
business. As a valued support customer, you can benefit by using the support site to:

• Search for knowledge documents of interest

• Submit and track support cases and enhancement requests

• Download software patches

• Manage support contracts

• Look up HP support contacts

• Review information about available services

• Enter into discussions with other software customers

• Research and register for software training

Most of the support areas require that you register as an HP Passport user and sign in.
Many also require a support contract.

To find more information about access levels, go to:

www.hp.com/managementsoftware/access_level

To register for an HP Passport ID, go to:

www.managementsoftware.hp.com/passport-registration.html

Contents

1 Introduction .. 19
Document Overview ...20

Documentation Map...20
Using this Guide with Core and Satellite Servers ...21
Overview of Configuration Server ...21

Configuration Server Database...22
Configuration Server Database Documentation ...22

Configuration Server and Client Operations Profiles ...22
Configuration Server Information...23

Platform Support..23
IP Networking Support..23
Backing up the Configuration Server ...24
Configuration Server Version Information ..25

HP Client Automation Documentation ...26

2 Tuning the Configuration Server .. 27
Understanding the Tuning Process...28
Configuration Server Settings Overview ..28
Viewing and Editing Configuration Server Settings..30

Accessing the EDMPROF File...30
Editing the EDMPROF File ..31

Configuration Server Settings ...31
Format of the EDMPROF File ..32

MGR_ACCESS..36
MGR_ATTACH_LIST...38
MGR_CACHE ...41

ICACHE_LOAD_TYPE Considerations...44

Contents 9

Purging Dynamic Cache ..45
MGR_CLASS...46
MGR_DB_VERIFY ...49
MGR_DIAGNOSTIC ..51
MGR_DIRECTORIES ..53
MGR_DMA..57
MGR_ERROR_CONTROL...59
MGR_LOG...60

Log Switching ..64
License Reclamation..66
Configuration Server Running as a Windows Service ..68

MGR_MESSAGE_CONTROL..70
MGR_METHODS ...72
MGR_NOTIFY ..73
MGR_OBJECT_RESOLUTION ..75
MGR_POLICY ..77
MGR_POOLS..78
MGR_RESOLUTION_FILTERS ...83
MGR_RETRY..84
MGR_RIM ...86
MGR_RMP ..87
MGR_ROM..88
MGR_SMTP_MAIL ..89
MGR_SNMP..92
MGR_SSL..95
MGR_STARTUP ...97

OBJECTID_FORMAT ...100
MANAGER_TYPE Values ...101

MANAGER_TYPE=SERVER ...101
MGR_TASK_LIMIT..102
MGR_TIMEOUT...104

Contents 10

MGR_TPINIT..106
MGR_TRACE..108
MGR_USERLOG ..113
OBJECT_SIZES..116
RCS_TUNING_CONTROL ..118
SECTION_DELIMITERS ..121

3 Managing Configuration Server Processing 123
Configuration Server Operations ..124
Customizing Configuration Server Processing ...125

Configuration Server REXX Programs...125
REXX Directories...125
Event Points...126

REXX Programs ...127
ZSTARTUP ..127
ZPCACHE ..127
ZINIT..127
ZTASKSTA...127
ZTASKEND..127
ZNFYxSTA...128
ZNFYxEND..128
ZLOGSWCH...129
ZLOGWRAP...129
ZSHUTDWN ..129

HP REXX Functions...133
EDMGET..133
EDMGETV ...135
EDMSET ..137
EDMSETV..137
EDMRESO ...138

Additional Functions..139
NvdCurrentObjects..139
NvdObjectInfo ..140
NvdObjectInfoEX...141
NvdL2U..142
NvdU2L..142

ZCVT and ZTCBG...143

Contents 11

ZCVT Table of Variables..143
ZTCBG Table of Variables...154

Configuration Server Methods...158
Overview...158

The Affects of Configuration Server Methods..159
Method Naming Standards...160

“Must Run” Methods..161

4 Notifying HPCA Agents.. 163
An Overview of Notify ..164

Notify and the HPCA Agent Connect Process..165
When to Use Notify ..166

Types of Notify ..166
Simple Notify..166
GUI-Configured Notify ..168

Types of Notifications Supported..170
Necessary Profile Information ..172
Programmatically Configuring Notifies...173

EDMMPUSH..174
Input Object Used by EDMMPUSH...175
Common Control Variables...176
Protocol Dependent Input Variables ..177

Multiple Notify Managers..178
Configuring Multiple Notify Managers ..179

Retrying Failed Notifies ...180
Scheduling for Notify..182

NTFYRTIM...183
NTFYRTIM Time Zone Adjustments ...184
Time Zone Offsets..185
Automatic Adjustments for Daylight Saving Time ...186

Drag-and-Drop Notify ..186
Wake-On-LAN ..187

The Benefits of Wake-On-LAN..188
Components Required to Enable Wake-On-LAN...188
Configuring Wake-On-LAN...188

EDMWAKE..188

Contents 12

Network Requirements ...190
Configuration Server Requirements ..191
HPCA Agent/PC Requirements ..191

Wake-On-LAN Supporting Remote Broadcast...192

5 HP SQL Methods ... 193
Overview..194
Data Exchange with ODBC-Compliant Databases ..194

Introduction..194
An ODBC Data Source: Prerequisites ..195

Defining an ODBC Data Source ...195
ODBC Data Source Drivers ..195
Configuring an ODBC Data Source..196

SQL Servers ..199
Microsoft SQL Server with a Windows Configuration Server200

Gather Information ...200
Install Necessary Software ...201
Create the SQL Server ODBC Data Source...202

Microsoft SQL Server with UNIX Configuration Server...203
Install the Necessary Software...203

ODBC Reserved Words..208
Using HP SQL Methods ...211

Overview...211
The HP SQL Methods..211
EDMMSQLG Method ..211
EDMMSQLP Method ..212

Defining EDMMSQLG and EDMMSQLP as Configuration Server Methods............215
Invoking EDMMSQLG ..215

Destination Object (DESTOBJ Parameter) Considerations.................................223
Invoking EDMMSQLP...223

Source Object (SRCOBJ Parameter) Considerations..230
Passing Control Information to EDMMSQLG and EDMMSQLP...............................230

Control Parameters ...231
Configuring the Configuration Server Database SQLTABLE Class..........................235
Control Information ...235

Content...235
Delivery ..236

VARIABLE-COLUMN Pairs ...239

Contents 13

HP Object Information...241
SQL Database Information ..242

Data Source Name ...242
Table Name, User ID, and Password ...243

SQL Column Data Types ...243
The WHERE Clause ...245

Considerations..245
Usage...246

Design Considerations..249
Troubleshooting ..250

The Configuration Server Log...250
ODBC Tracing ..251
Iterative Simplification..252

6 EDM Access Method Services (EDMAMS)............................... 253
Overview..254

Terminology..254
Invoking the EDMAMS Verbs...255
Using the EDMAMS Verbs..256
Usage Considerations ..257
Input Files ..258

EXPORT Verbs ..258
Multiple Verbs ...258

Wildcards ..259
LOGFILE..259
Internationalization Considerations for Exporting/Importing Database Decks........260

EXPORT Verb Considerations..260
IMPORT Verb Considerations..261
Codepage and Locale Defaults..261

Specifying the ZEDMAMS Utility...262
ADD_FIELD..266
BUILD_PATCH ..267
BUILD_STAGING_POINT ..268

Resource Naming ...269
CHANGE_FIELDNAME..270

Contents 14

CHANGE_FLD_VALUE ..271
CHANGE_INST_DATA..273
CHANGE_INS_FIELD...274
CHECK_RESOURCES...276
CLONE_INSTANCE ..277
COPY_CLASS...278
COPY_DOMAIN ...279

Copying a Domain and its Contents ...279
COPY_FIELD ...281
COPY_INSTANCE (COPY_RESOURCE)...282
COPY_NEW_SUFFIX ..284
CREATE_INSTANCES..285
DELETE_CLASS..286
DELETE_COMP_ORPHS..287
DELETE_DOMAIN..288
DELETE_FIELD ..289
DELETE_INSTANCE ..290
DELETE_ORPHANS ...292
DELETE_RESOURCE...293
EDIT_CLASS_PREFIX ..294
EXPORT_CLASS..296
EXPORT_INSTANCE ..298
EXPORT_RESOURCE ...300
IMPORT_CLASS ..302
IMPORT_INSTANCE...304

Verb History ...305
Syntax ...305

Retired Syntax ...310
IMPORT_RESOURCE ...316
LIST_CLASSES..318

Contents 15

LIST_CONNECTS..319
LIST_CONS_VARS ..320
LIST_DOMAINS...321
LIST_FLAGS ..322
LIST_INST_DATA..323
LIST_INSTANCE ...324
LIST_PACKAGE...325
LIST_PREFIX...326
LIST_RESOURCES..327
LIST_ZRSC_FIELDS ...328
MATCH_RESOURCES ..329
PACKAGE_UNMATES..330
REFRESH_DMA...331
RENAME_INSTANCE...333
SEARCH_INSTANCES..334
SORT_OBJECT_ID ..335
SYNC_CLASS...336
UPDATE_INSTANCES..337
UPDATE_MGRIDS ..339
VERIFY_CLASS ...340
VERIFY_DATABASE...341
ZRSOURCE_UNMATES..342

7 Configuration Server Database Utility (RadDBUtil).................... 343
Introduction ..344

Components & Processes ...344
Components..344
Processes ..344

Running RadDBUtil from a Command Line..345
Implementation Details ...345

HP Client Automation Patch Manager Considerations ..346

Contents 16

IMPORT ...346
EXPORT...346

EDMPROF File Settings ...346
RadDBUtil Verbs ...347

General Syntax ..347
VERSION...348
LOG ..348
IMPORT ...349
EXPORT...356
DELETE...358
RCS...361

Return Codes ..361
Examples ..362

IMPORT Examples..362
EXPORT Examples ...363

8 Configuration Server Performance ... 368
An Overview of Performance Issues..369

General Performance and Usage Considerations ..369
CPU Requirements...370

The CPU and Object Resolution..370
Total Number of Available CPU Seconds ..371
Total Number of CPU Seconds Required Per User ...371
Total Number of Possible User Resolutions ..371

Memory..372
MGR_CACHE...372
MGR_CLASS ..373

Networking..374
Bandwidth Throttling ..374

9 Troubleshooting the Configuration Server 376
Troubleshooting Issues...377

General Troubleshooting Considerations ...377
How this chapter is organized...377

The Configuration Server Does Not Start ...378
The Configuration Server Does Not Process Tasks as Expected..........................378
The Configuration Server Does Not Respond..380

Contents 17

10 SSL Managers... 382
Introduction ..383

Virtual IP Addresses in UNIX...383
Starting the Configuration Server with Root Privileges on UNIX Systems........384

SSL Manager ..384
Enabling SSL in Configuration Server and HPCA Agent...384

Configuration Server Changes ...385
HPCA Agent Changes ...385

Client Automation-specific Changes...385
HPCA Proxy Server ...385

A Configuration Server Methods... 388
EDMMAILQ..391
EDMMALLO...393
EDMMCACH ..394
EDMMDALO ..395
EDMMDB..396
EDMMGNUG..397

Usage...397
Security Requirements ..397

Windows NT...397
Windows 2000 ..397

Method Input Parameters ...398
Method Return Values...398

EDMMPUSH ..400
EDMMPUTD...402
EDMMRPRO...403
EDMMSQLG...406
EDMMSQLP ...407
EDMMULOG ..408
EDMSIGN...409
EDMSIGNR ..411

Contents 18

Linux-specific Configuration of EDMSIGNR ...412
Implementation Details ..412

EDMSIGNR and SECSPAWN ..414
Additional Reading ..414

ZDCLASS ..415
ZDELINS...416
ZDELOBJS..418
ZDELPROF ...419
ZEXIST..420
ZGETPROF ...421
ZNFYT...422
ZOBJCMPR...424
ZOBJCOPY ...425
ZOBJDELI ..426
ZOBJDELV ...427
ZOBJSORT..428
ZPROMANY..429
ZPUTHIST ..430
ZPUTPROF ...431
ZSIMRESO..432
ZTOUCH ...433
ZVARDEL..434
ZVARGBL..435
ZVARLOG ...436
ZUPDPROF...437
ZXREF...438

Index ... 440

19

1 Introduction
At the end of this chapter, you will:

• Know how this guide is arranged in order to more quickly find specific
information about the HP Client Automation Configuration Server
(Configuration Server).

• Have had a chance to review some basic information about the
Configuration Server’s relationship with:

— HP Client Automation Configuration Server Database (Configuration
Server Database, CSDB)

— Client Operations Profiles

• Have had a chance to review some basic information about the
Configuration Server, including:

— System requirements

— Backing up and directories

— Version information

Introduction 20

Document Overview
This guide describes the HP Client Automation Configuration Server
(Configuration Server). It is designed for an HP Client Automation
(HPCA) administrator who is authorized to manage the Configuration Server
Database (CSDB).

As announced in June 2007, the version obsolescence and product
discontinuance that were scheduled for November 30, 2008 (see
http://support.openview.hp.com/encore/configuration_manager_e
dm.jsp) indicate the end of support for the following products
and/or product versions.

• Configuration Management (CM) Enterprise Desktop
Manager (EDM)

• Configuration Management (CM, also known as Radia)
version 2.x

• Configuration Management (CM, also known as Radia)
version 3.x

If you are still using one of these in your environment, continue to
reference the documentation that you received with the product.

Documentation Map

This section provides an overview of the contents of the chapters in this
guide. It is designed to help HPCA administrators quickly locate and
navigate to specific Configuration Server information.

Chapter f shows how to modify the Configuration Server’s edmprof file in
order to enhance system performance.

The next three chapters describe: how to customize the flow of CSDB
processing (Chapter 2); the various approaches to configuring HPCA agent
notification (Chapter 3); and the advantages of ODBC connectivity to a SQL
database (Chapter 4).

Chapter 5 and Chapter 6 present information about using Access Method
Services and the Configuration Server Database utility, RadDBUtil, to
manage the CSDB.

The performance aspects of the Configuration Server are described in
Chapter 7. Chapter 8 addresses basic troubleshooting issues and
recommended actions, and Chapter 9 details SSL Manager settings.

http://support.openview.hp.com/encore/configuration_manager_edm.jsp
http://support.openview.hp.com/encore/configuration_manager_edm.jsp

Introduction 21

Using this Guide with Core and Satellite Servers

If your environment uses Core and Satellite servers, first read the
Core and Satellite Servers Getting Started Guide because the
installation, configuration, and troubleshooting information in that
guide might supersede the information in this guide.

Overview of Configuration Server
The Configuration Server is the heart of any HP Client Automation
implementation. The entire HP Client Automation environment is built
around it. In conjunction with the Configuration Server Database (CSDB),
the Configuration Server manages software content and policy across a
network environment.

The Configuration Server can be installed on a single server or on multiple
servers. Once installed, it stores (in the CSDB) application data and HPCA
agent-device information, and distributes application packages based on the
policies that are established by an administrator.

The Configuration Server can:

• Manage a HPCA agent’s Desired State
Dynamically generate an HPCA agent’s desired state based on
situation-specific data, thereby creating a software environment that
automatically adapts to user and device changes.

• Distribute Configuration Server Database Objects
Synchronize distributed objects (such as application components,
packages, device configurations, and policy relationships) across the
network, and automatically manage object transfer between HP Client
Automation components.

• Deliver and Maintain HPCA Policies
Maintain enterprise policies in the CSDB. When a device that is being
managed by HPCA connects to the Configuration Server all current
policies are automatically applied.

• Issue Connects and Fulfill Requests
Contact devices causing them to initiate data requests and desired-state
requests. These requests can be according to a schedule or upon
notification from an administrator.

Introduction 22

Configuration Server Database

The CSDB is stored on the Configuration Server, and is accessed and
modified via the HP Client Automation Administrator Configuration Server
Database Editor (Admin CSDB Editor). It houses Client Automation
products, and is where administrators save and maintain an enterprise’s
service-entitlement policies.

The CSDB includes the following information.

• The digital assets that are distributed by HP Client Automation.

• The policies that determine package assignment to managed devices and
subscribers.

• Security and access rules for administrators of HP Client Automation.

Configuration Server Database Documentation

Consult the following HP Client Automation publications for more
information on the structure, use, and components of the CSDB.

• HP Client Automation Configuration Server Database Reference Guide
(CSDB Reference Guide)

• HP Client Automation Administrator User Guide (Admin User Guide)

• HP Client Automation Configuration Server, Portal, and Enterprise
Manager Getting Started Guide (Getting Started Guide)

Configuration Server and Client Operations Profiles

Client Operations Profiles allow a administrator to identify and prioritize
data access points (DAP) without having to use additional customized scripts.
A server access profile (SAP) is a generic way of defining all possible DAPs
for a service. In a Client Automation environment, the Configuration Server
can be a SAP.

In order to do so, a Configuration Server must have a role, or function,
defined for the ROLE attribute of the SAP Class in the CSDB. A
Configuration Server can assume any of the following roles.

• Client Operations Profiles (O)
This Configuration Server will get the HPCA agent’s Client Operations
Profiles.

Introduction 23

• Service resolution (S)
This Configuration Server will resolve the HPCA agent’s services.

• HPCA agent self-maintenance (M)
This Configuration Server will help the HPCA agent perform self-
maintenance.

• Reporting (R)
This Configuration Server will store, in the CSDB PROFILE File,
reporting objects from the HPCA agent.

• Data download (D)
This Configuration Server will download application data to the HPCA
agent.

• All (A)
This Configuration Server will perform all of the functions listed here.

Configuration Server Information
This section presents the following Configuration Server information:

• Platform Support, starting below.

• Backing up the Configuration Server, starting on page 24.

• Configuration Server Version Information, starting on page 25.

Platform Support

For information about the platforms that are supported in this release, see
the accompanying release notes.

IP Networking Support

With this release, HP Client Automation adds support for IPv6—the latest
version of the internet protocol addressing structure—to its Windows-based
Core and Satellite servers. The Core and Satellite servers can now use either
IP version 4 (IPv4) or IP version 6 (IPv6) for server-to-server
communications. HPCA agent communications, however, are currently
limited to IPv4. For details, refer to the appendix, IPv6 Networking Support,
in the HPCA Enterprise User Guide.s

Introduction 24

HP Client Automation environments that use the traditional,
component-based, HPCA server installations will continue to be
supported on IPv4 only.

Backing up the Configuration Server

HP recommends that the Configuration Server (and CSDB) be periodically
backed up. To facilitate doing so, a list of the Configuration Server directories
(that are installed by default) and their applicable platforms and contents are
provided in Table 2 below.

HP recommends that backups be done in accordance with each
environment’s in-house, corporate protocol.

Table 2 Configuration Server Directories

Directory Platforms Contents

bin Windows The Configuration Server binary files and the edmprof file.

 UNIX The shell scripts that enable you to start, stop, clean up,
and query the Configuration Server.

DB Windows &
UNIX

The Configuration Server Database files.

internet Windows &
UNIX

The ARGS.XML file.

lib Windows &
UNIX

This directory contains files for proper Configuration
Server operation; do not modify or delete these files.

log Windows &
UNIX

The Configuration Server log.

modules Windows The .tkd files for OS Manager.

rexx Windows &
UNIX

This directory is for storing customized REXX methods.

Note: Its subfolder, NOVADIGM, contains the default
Configuration Server REXX methods.

shell Windows The batch and application files, such as the uninstall and
query scripts, and the files that coincide with the
Configuration Server options available from the Start
menu.

 UNIX This directory is empty.

Introduction 25

Configuration Server Version Information

To determine which version of the Configuration Server is running on a
machine, query the Configuration Server log file.

To query the Configuration Server version level

1 Go to Start → Programs → HP Client Automation → Client Automation
Configuration Server → Log Viewer.

2 Click Log Viewer. The Configuration Server activity log opens.

3 Scroll down to the Configuration Server Information Section.

===

Configuration Server Information Section

===

Configuration Server is Version <4.5.1> Build <651>

Configuration Server built on <Nov 21 2002 at 09:46:34>

version.nvd: <V4.5.2 RCS Level>

Verifying product consistency according to <C:\Program Files\
Hewlett-Packard\CM\ConfigurationServer\bin\version.nvd>file

===

1st line = Installed version of the Configuration Server.

3rd line = Service-pack level of the Configuration Server.

4th line = Path to the file version.nvd.

4 To find out the Configuration Server version, check the line,
Configuration Server is Version <n.n.n> Build <nnn>.

If there is a value for the line, version.nvd: <Vn.n.n RCS Level>, then
a Service Pack has been applied, and the updated Configuration Server
version level is reflected.

Introduction 26

• If there is no value for the line, version.nvd: <Vn.n.n

RCS Level>, then either:
⎯ no Service Pack has been applied, or
⎯ the version.nvd file has been deleted.

• Periodically check the Product Updates section of the
HP web site for Service Packs for the Configuration
Server.

• HP discourages deleting and modifying the file,
version.nvd.

HP Client Automation Documentation
7Table 3 presents a list of Client Automation publications that are associated
with the various HP Client Automation products, and which might be
referenced in this manual.

Table 3 HP Client Automation Documentation

HP Client Automation Configuration Server Messages Guide (Configuration Server
Messages Guide)

HP Client Automation Inventory Manager Installation and Configuration Guide (Inventory
Manager Guide)

HP Client Automation Application Manager and Application Self-Service Manager
Installation and Configuration Guide (Application Manager and Application Self-Service
Manager Guide)

HP Client Automation Portal Installation and Configuration Guide (Portal Guide)

HP Configuration Management REXX Programming Guide (REXX Guide)

HP Client Automation Configuration Server, Portal, and Enterprise Manager Getting
Started Guide (Getting Started Guide)

HP Client Automation Administrator User Guide (Admin User Guide)

HP Client Automation Messaging Server Installation and Configuration Guide (Messaging
Server Guide)

27

2 Tuning the Configuration Server
At the end of this chapter, you will:

• Know how to tune the HP Client Automation Configuration Server
(Configuration Server) for maximum performance.

• Be familiar with the Configuration Server edmprof file.

Tuning the Configuration Server 28

Understanding the Tuning Process
The performance of the Configuration Server depends on a number of factors,
such as the number of HPCA agents being concurrently processed, the
complexity of the configurations for those HPCA agents, the volume of the
data being processed, and network bandwidth. The configuration of the
Configuration Server log, which documents system status for informational
purposes and problem determination, can also alter performance.

The Configuration Server operational parameters are contained in its
edmprof file. The performance of the Configuration Server can be tuned by
working with the settings of the edmprof file.

This chapter details the structure of the edmprof file and the options that
can be specified.

Configuration Server Settings Overview

The Configuration Server edmprof file contains the parameters that
determine how the Configuration Server will operate. This file is organized
into sections—with each section containing keywords, called settings. The
sections can be categorized into functional areas. Further detail for the
settings in each of the sections is provided in this chapter.

• Identification

— MGR_STARTUP specifies the Configuration Server by ID, name,
type, and communications port.

— MGR_DIRECTORIES identifies the directory paths for the
Configuration Server Databases, REXX methods, and non-REXX
methods.

— MGR_LICENSE contains your unique license string.

• Specification
Configuration Server settings establish application wide technical
parameters.

— MGR_CACHE contains cache-processing options.

— MGR_TPINIT identifies communications packet sizes.

• Initialization

Tuning the Configuration Server 29

— MGR_ATTACH_LIST determines which Configuration Server
programs are initiated at startup, and has options to define their
functioning.

— MGR_CLASS specifies which classes and instances of the CSDB are
cached during the Configuration Server initialization process.

— SECTION_DELIMITERS specifies which characters are used to
distinguish sections in the edmprof file.

• Operations
A number of sections in the Configuration Server edmprof file contain
parameters for system operations.

— MGR_ACCESS determines Configuration Server access to
administrator and console functions.

— MGR_DB_VERIFY specifies the parameters for automatic CSDB
verification at initialization.

— MGR_DIAGNOSTIC specifies the timing, size, and logging options for
verifying adequate disk space for CSDB operations.

— MGR_DMA specifies parameters for HP Client Automation
Distributed Configuration Server (Distributed Configuration Server).

— MGR_METHODS identifies options for method processing.

— MGR_NOTIFY specifies the Configuration Server defaults for HPCA
agent notifications.

— MGR_OBJECT_RESOLUTION specifies parameters used in object
resolution.

— MGR_POOLS (Windows only) allocates available pools of memory (in
different sizes) for system tasks.

— MGR_RETRY values define how long a HPCA agent is to wait before
attempting to reconnect to the Configuration Server.

— MGR_TASK_LIMIT identifies the maximum concurrent
Configuration Server tasks, ongoing and deferred, system related
and/or HPCA agent-connect related.

— MGR_TIMEOUT specifies the amount of time a Configuration Server
will wait for an inactive HPCA agent.

• Monitoring

— MGR_LOG and MGR_TRACE identify where the Configuration
Server log is located, how flexible it is, and which individual system
traces are to be captured in the log.

Tuning the Configuration Server 30

— MGR_SMTP_MAIL specifies the parameters for using SMTP mail
messages to support Configuration Server monitoring.

— MGR_MESSAGE_CONTROL specifies where log messages are to be
sent and if they are to be suppressed.

— MGR_USERLOG allows an administrator to establish a user logging
facility.

Viewing and Editing Configuration Server Settings

The edmprof file can be opened in a text editor so that its parameters can be
viewed and, if necessary, adjusted. This section describes how to access the
edmprof file, as well as important information about editing and saving the
file.

Accessing the EDMPROF File

The edmprof file can be found in varying locations, based on operating
system, as described below:

• Windows
The edmprof file settings are located in the edmprof.dat file, located in
the bin subdirectory of the Configuration Server directory.

Or, alternatively:

From the system tray, go to Start → Programs → HP Client Automation
→ Client Automation Configuration Server → Profile Editor.

• UNIX
The edmprof file settings are located in the .edmprof file,, in the home
directory of the UNIX user ID that installs, starts, stops, and maintains
the Configuration Server.

Although the settings in the edmprof file are readily accessible
and easy to modify, some of the values are critical to the
operation of the Configuration Server. Therefore, it is
imperative that you do not:

• alter any edmprof file settings unless without consulting
this guide first, and then using the recommended values.

• delete any edmprof file settings unless instructed to do
so by a member of HP Technical Support.

Tuning the Configuration Server 31

Editing the EDMPROF File

The edmprof file can be edited in a standard text-editing application.

Be sure to review the important information in this section before
editing this file. Failure to do so could adversely effect your HPCA
environment.

HP recommends backing up the edmprof file prior to editing it.

• You must use a UTF8-aware text editor when editing the edmprof file.

• Be sure to select UTF-8 as the encoding type when saving the file.

— Windows users are advised to use Notepad.

— UNIX users are advised to use vi or vim.

Failure to use a recommended text-editing application and saving the file as
recommended in this section could result in the file’s changes not being
correctly applied to the Configuration Server. This could adversely effect your
HPCA environment.

Configuration Server Settings

Most of the sections of the edmprof file can be independently configured,
whereas some are based on operating system and communications
requirements. While many of the sections are optional, a number are
required for proper Configuration Server functioning.

Since some of the sections in the edmprof file are optional, and
others are platform-specific, it’s possible that not all of the settings
will be visible in every edmprof file.

The edmprof file is created during the installation of the Configuration
Server. Much of its information is derived directly from parameters that are
specified during the installation; while others are automatically entered
during the installation.

Two types of values are in the edmprof file.

• An as-installed value represents a manual input, specified during
installation or a derived entry for a required setting.

Tuning the Configuration Server 32

• A default value is established by the Configuration Server if there is a
blank value for that setting, whether it is required or manually entered.

 • If the value of a setting/parameter is documented as N/A, there
is no value of that type for that setting/parameter.

• If a value of a setting/parameter has NONE (all uppercase)
specified, then this is an accepted, optional value for that
setting/parameter.

Format of the EDMPROF File

The edmprof file is organized into sections. Each section contains individual
keywords called settings. Each setting receives an acceptable value, which
can be numeric, alphabetic, or alphanumeric.

Some of the settings and values are critical to the operation of the
Configuration Server. Do not alter or delete these unless instructed
to do so by a member of HP Technical Support.

The following is an example of the format of a section of the edmprof file.

Example

[MGR_SECTION]
SETTING = VALUE
SETTING = VALUE
SETTING = VALUE

The following table presents a list of the edmprof file sections, a brief
description, and whether the section is required or optional.

Table 4 Sections of the EDMPROF File

Section Name and Description Required or
Optional

MGR_ACCESS
Specifies access to the Administrator and Console functions.

Optional

MGR_ATTACH_LIST
Specifies the Configuration Server attach list that defines the programs
to be attached when the Configuration Server is started.

Required

Tuning the Configuration Server 33

Section Name and Description Required or
Optional

MGR_CACHE
Specifies cache-processing options, such as cache segments, size, and
statistics.

Optional

MGR_CLASS
Specifies processing parameters for classes and instances.

Optional

MGR_DB_VERIFY
Specifies the extent of automatic database verification.

Optional

MGR_DIAGNOSTIC
Specifies the parameters for diagnostic Manager (zdiagmgr) tasks.

Optional

MGR_DIRECTORIES
Specifies the path for the databases, REXX methods, and non-REXX
methods.

Recommended
but not
required

MGR_DMA
Specifies the parameters for Distributed Configuration Server
operations.

Optional

MGR_ERROR_CONTROL
Specifies how to process errors that are encountered while the
Configuration Server is running.

Optional

MGR_LOG
Specifies the logging directory and options for the Configuration Server
logging facility.

Recommended,
but not
required

MGR_MESSAGE_CONTROL
Specifies where messages are to be sent and whether they are to be
suppressed.

Optional

MGR_METHODS
Specifies options for method execution.

Recommended,
but not
required

MGR_NOTIFY
Specifies the parameters for notify processing.

Optional

MGR_OBJECT_RESOLUTION
Specifies the parameters used in object resolution.

Optional

MGR_POLICY
Specifies the IP address/name and port of the HP Client Automation
Policy Server (Policy Server), if it has been enabled.

Optional

Tuning the Configuration Server 34

Section Name and Description Required or
Optional

MGR_POOLS
Specifies the allocation of pool sizes on startup.

Optional

MGR_RESOLUTION_FILTERS
Specifies the filtering rules for resolution, based on the connection type.

Optional

MGR_RETRY
Specifies when an HPCA agent should attempt to reconnect to the
Configuration Server, following rejection.

Optional

MGR_RIM
Specifies the IP address/name and port of the Inventory Manager, if it
has been enabled.

Optional

MGR_ROM
Specifies the IP address/name and port of the Information Base, if it has
been enabled.

Optional

MGR_RMP
Specifies the IP address/name and port of the Portal, if it has been
enabled.

Optional

MGR_SMTP_MAIL
Specifies the parameters the Configuration Server uses to interface with
SMTP.

Optional

MGR_SNMP
Contains parameters to specify where SNMP traps are to be sent, and
controls the behavior of the built-in SNMP agent.

Optional

MGR_SSL
Specifies the parameters for the HP Client Automation Configuration
Server SSL Manager task.

Optional

MGR_STARTUP
Specifies the Configuration Server ID and TCP/IP port number.

Required

MGR_TASK_LIMIT
Specifies the number of concurrent tasks allowed.

Required

MGR_TIMEOUT
Specifies how long the Configuration Server will wait for a request from
a connected HPCA agent before disconnecting it.

Optional

MGR_TPINIT
Specifies communications packet sizes.

Required

Tuning the Configuration Server 35

Section Name and Description Required or
Optional

MGR_TRACE
Controls and influences diagnostic logging for the Configuration Server.

Optional

MGR_USERLOG
Specifies the logging directory and options for the user logging facility.

Optional

OBJECT_SIZES
Specifies the number of heaps and the heap size for CSDB objects that
are being created on the Configuration Server as in-storage CSDB
objects.

Optional

RCS_TUNING_CONTROL
Provides a mechanism to override the default values that are specified in
the Configuration Server self-tuning tool.

Optional

SECTION_DELIMITERS
Specifies the left and right delimiters that are to be used for enclosing
the section names within the Configuration Server edmprof file.

Optional

The remainder of this chapter documents each section of the edmprof file,
covering the individual settings and the values for each. Also described is the
impact of tunable settings on Configuration Server performance.

Before editing this file, be sure to review the important
information in the section, Editing the EDMPROF File, on page
31. Failure to do so could adversely effect your HPCA environment.

Tuning the Configuration Server 36

MGR_ACCESS
This section determines access to the Administrator and Console.

Table 5 MGR_ACCESS Settings

Setting Description

ADMIN Specifies access to the Administrator.
The values are DENY, ALLOW, and IGNORE.

CONSOLE Specifies access to the Console.
The values are DENY, ALLOW, and IGNORE.

Example

[MGR_ACCESS]
ADMIN = DENY
CONSOLE = DENY

Table 6 MGR_ACCESS Values

Setting Value as Installed Default Value

ADMIN DENY DENY

CONSOLE DENY DENY

Access can be controlled by native operating system security
features also.

Performance and Usage Considerations

• ADMIN=ALLOW will provide access to the Administrator without
checking the ZACCESS domain of the CSDB. Therefore, if
ADMIN=ALLOW, and an Administrator attempts an action for which no
access rules have been defined, the attempted action will be allowed.

• When ADMIN=DENY, access rules governing Administrator actions are
defined in the ZACCESS domain of the CSDB. Therefore, if
ADMIN=DENY, the Administrator will be unable to perform an action
unless there is an access rule specifically allowing it.

• If ADMIN=IGNORE the Administrator will be able to perform any action
because the access rules will be ignored by the Configuration Server.

Tuning the Configuration Server 37

Setting ADMIN=IGNORE essentially disables all access rules as they
relate to Administrator functions.

• Access to the Console is determined by local password security policy. If
CONSOLE=ALLOW and local security is not configured, read-only access
is granted. If CONSOLE=IGNORE, local Console security is bypassed.

Table 7 HPCA Administrator Access Level Values

Access
Value

Definition

ALLOW This value will result in the Configuration Server not checking the
administrator access rules before granting access to an administrator to
perform CSDB administrator functions.
This value disables all administrator access-rule checks, even if they are
defined in the database.

DENY This value will result in the Configuration Server checking administrator
access rules before granting access to an administrator to perform CSDB
administrator functions.
An administrator will be unable to perform an action unless there is an access
rule defined in the database for that administrator specifically allowing it.
This is the recommended setting when configuring administrator security.
Note: If this option is specified, undefined administrators will not have access
to any CSDB administrator functions, unless the
ADMINID._NULL_INSTANCE_ is modified to allow such access.

IGNORE This value will result in the Configuration Server checking administrator
access rules before granting access to an administrator to perform CSDB
administrator functions.
An administrator will be able to perform an action unless there is an access
rule defined in the database for that administrator specifically prohibiting it.
Note: If this option is specified, undefined administrators will have full access
to all CSDB administrator functions, unless the ADMINID instance exists for
that administrator to prohibit such access.

Tuning the Configuration Server 38

MGR_ATTACH_LIST
In this section, specify which programs (Configuration Server tasks) are to be
attached at startup, and set the options for these processes.

Table 8 MGR_ATTACH_LIST Settings

Setting Description

ATTACH_LIST_SLOTS Number of slots for the attach list kept in shared memory of the
Configuration Server. Every entry is 132 bytes long. HP
recommends that this setting be one more than the number of
CMD_LINE settings used. For example, if there are seven
CMD_LINE settings, set this value to 8.
Note: No process starts are required. However, system ability is
limited if ZTCPMGR, ZREXXMGR, and ZNFYTMGR are not
attached.

CMD_LINE Command line to use when starting processes. Blanks are not
allowed in CMD_LINE= substring.
A second format is allowed when multiple instances of the same
task are required and need to be separately identified. This
format is:
CMD_LINE=(NAME=,ADDR=,PORT=).
These names should be unique within the Configuration Server.

LIMIT (=CLOSE) The Configuration Server will drop any HPCA agent connection
attempts when LIMIT=CLOSE is specified, and either the Task
Limit or Storage Limit of the Configuration Server is reached.
The Configuration Server will not return an object to the HPCA
agent (no return EDMLOCTP), nor will it request the HPCA
agent retry the connection.
Note: This setting is valid with ztcpmgr only.

RESTART Use this setting to determine if a Configuration Server task will
be restarted when abnormally terminated. Blanks are not
allowed in RESTART= substring. The default is NO.

RESTART_LIMIT Number of attempts to restart an attached process that has
terminated.

VERIFY_INTERVAL Interval (in minutes) between verifications that attached
processes are still running. If this value is 0, no verification will
occur. The default is 1 (minute).

Tuning the Configuration Server 39

The following table lists the Configuration Server tasks.

Table 9 Configuration Server Tasks

Task Name Description

zbldpmgr Patch Build Manager task

zdiagmgr Diagnostic Manager task

znfytmgr TCP Notify Manager task

zrexxmgr REXX Manager task

zrtrymgr Notify Retry Manager task

zsmtrmgr SMTP receive Manager task

zsmtsmgr SMTP send Manager task

zsnmpmgr SNMP Manager task

zsslmgr SSL Manager task

ztcpmgr TCP Manager task

zutilmgr Utility Manager task

Example

[MGR_ATTACH_LIST]

ATTACH_LIST_SLOTS = 15

RESTART_LIMIT = 7

VERIFY_INTERVAL = 5

CMD_LINE = (zutilmgr) RESTART=YES

CMD_LINE = (zrexxmgr) RESTART=YES

CMD_LINE = (zsnmpmgr) RESTART=YES

CMD_LINE = (zsmtrmgr) RESTART=YES

CMD_LINE = (zsmtsmgr) RESTART=YES

CMD_LINE = (znfytmgr) RESTART=YES

CMD_LINE = (ztcpmgr) RESTART=YES

CMD_LINE = (ztcpmgr LIMIT=CLOSE) RESTART=YES

CMD_LINE = (zbldpmgr)

Tuning the Configuration Server 40

Table 10 MGR_ATTACH_LIST Values

Setting Value as
Installed

Default Value Minimum
Value

Maximum
Value

ATTACH_LIST
_SLOTS

15 15 Number of
CMD_LINEs

Number of
CMD_LINEs + 1

CMD_LINE Determined by
installation
options

Determined by
installation
options

N/A N/A

RESTART YES NO N/A N/A

RESTART_
LIMIT

7 7 0 = No restart 3200

Performance and Usage Considerations

• If the ATTACH_LIST_SLOTS value is too low, the Configuration Server
will attach as many tasks as there are slots available. Any remaining
tasks will not be attached until a slot becomes vacant. A too-high value
could degrade overall system performance by unnecessarily setting aside
resources that remain unused.

• The RESTART_LIMIT value should be set higher when critical
Configuration Server functions are being performed. Note that regardless
of the value in RESTART_LIMIT, the task will not be reinitiated if
RESTART=NO.

• To ensure that vital processes continue running, set VERIFY_INTERVAL
lower when critical Configuration Server functions are being performed.
A higher setting, on the other hand, might save CPU cycles when total
demand is a critical factor.

• The ztcpmgr task supports virtual IP addresses. It accepts the IP address
and port number on the command line, as in:

CMD_LINE = (ztcpmgr addr=1.1.1.94,port=4438)

If the address is not specified, the machine address is used.

Tuning the Configuration Server 41

MGR_CACHE
This section specifies cache-processing options, such as cache size, statistics,
load type, and error response.

The settings in this section should be established based on
operating system environment and performance needs.

Table 11 MGR_CACHE Settings

Setting Description

AVERAGE_OBJECT_SIZE Average size of an object that will be cached.

CACHE_SEGMENTS Number of cache segments.

CACHE_SIZE Size of each cache segment.

CACHE_STATS A YES/NO switch to accumulate statistics.

ICACHE_COUNT_ERROR Instructs the Configuration Server on what action to take
(shut down or log a warning) if the ICACHE instance counts
don’t match the DCS instance counts when it (the
Configuration Server) is starting up. The default is
SHUTDOWN.
Note: The default is SHUTDOWN because running the
Configuration Server without the correct number of cached
items it is not recommended. See Performance and Usage
Considerations, starting on page 43.

• SHUTDOWN directs the Configuration Server
program (ZTOPTASK) to shut down.

• WARN instructs the Configuration Server program to
continue loading and record the event in the
Configuration Server log.

Notes: ICACHE_COUNT_ERROR=SHUTDOWN is the
discrete, default behavior in pre-4.5.2 CM Configuration
Server versions.
If your CM Configuration Server was upgraded to version
4.5.2 from 4.5.1 and you want to change the default
behavior, this setting must be manually added to the
edmprof file.

Tuning the Configuration Server 42

Setting Description

ICACHE_LOAD_TYPE The DOMAIN.CLASS entries that are specified in the
MGR_CLASS section are loaded, one class at a time, into
Index cache via one of the following methods.

• AUTOMATIC instructs the Configuration Server to
auto-determine the loader method (FULL or
CHUNKY) to be used. This is the default.

• FULL instructs the Configuration Server to always
use the FULL loader method—loading the database as
a single entity.

• CHUNKY instructs the Configuration Server to
always use the CHUNKY loader method—loading each
CSDB service one at a time.

For more information, see ICACHE_LOAD_TYPE
Considerations on page 44.

ICACHE_SIZE Size of the Index cache.

Example

[MGR_CACHE]

AVERAGE_OBJECT_SIZE = 2048

CACHE_SEGMENTS = 2

CACHE_SIZE = 5242880

CACHE_STATS = NO

ICACHE_COUNT_ERROR = SHUTDOWN

ICACHE_LOAD_TYPE = AUTOMATIC

ICACHE_SIZE = 0

Table 12 MGR_CACHE Values

Setting Value as
Installed

Default Value Minimum
Value

Maximum
Value

AVERAGE_
OBJECT_SIZE

2048 Bytes 2048 2048 6144

CACHE_SEGMENTS 2 0 (No caching) 0 (No
caching)

System
resource
dependent

Tuning the Configuration Server 43

Setting Value as
Installed

Default Value Minimum
Value

Maximum
Value

CACHE_SIZE 5,242,880
Bytes

0 0 System
resource
dependent

CACHE_STATS NO NO N/A N/A

ICACHE_
COUNT_ERROR

SHUTDOWN SHUTDOWN N/A N/A

ICACHE_
LOAD_TYPE

AUTOMATIC AUTOMATIC N/A N/A

ICACHE_SIZE N/A N/A 0 (No Index
caching)

N/A

Performance and Usage Considerations

When modifying any of the cache parameters in this section, take
care not to exceed the amount of virtual memory that is available.
Also, sufficient virtual memory must be available to handle the
maximum concurrent resolutions workload.

• Classes that are going to be cached are defined in the MGR_CLASS
section.

At a minimum, the SYSTEM.PROCESS and SYSTEM.ZMETHOD
classes should be cached.

• If the value of AVERAGE_OBJECT_SIZE is too low, the Configuration
Server will have to reconfigure the cache until the object is
accommodated.

If the value of AVERAGE_OBJECT_SIZE is too high, the caching
function might not be used efficiently.

• The ICACHE_SIZE setting should be used in conjunction with the
CACHE_SEGMENTS setting and the MGR_CLASS section.

ICACHE_SIZE will be enabled only if the value of CACHE_SEGMENTS
is greater than zero.

Tuning the Configuration Server 44

UNIX Configuration Servers
The recommended value for ICACHE_SIZE is the total
_number_of_instances_in_the_classes_to_be_cached (see
the MGR_CLASS section) multiplied by 64.

• If ICACHE_COUNT_ERROR=SHUTDOWN and the Configuration
Server shuts down, areas to check are:

— Check the Configuration Server’s log file,

— Check the integrity of the connection to the database,

— Verify the load type for the database connection method, and

— Verify the validity of the database.

ICACHE_LOAD_TYPE Considerations

This section presents information that should be considered when specifying
a value for ICACHE_LOAD_TYPE.

• If ICACHE_LOAD_TYPE=FULL, the Configuration Server will attempt
to load into ICACHE, as a single element, all of the CSDB classes that
are specified in the MGR_CLASS section.

The Configuration Server sequentially accesses all instances in the
specified directories.

• If ICACHE_LOAD_TYPE=CHUNKY, the Configuration Server will
attempt to load all of the CSDB classes that are specified in the
MGR_CLASS section—but as individual entities.

— Component Classes
The Configuration Server uses the PACKAGE class in the current
domain to control the loading of Component class instances—that is,
all instances that are associated with a PACKAGE instance will get
loaded into ICACHE, but orphan instances (those not associated with
a PACKAGE instance) will not get loaded into ICACHE.

— Non-Component Classes
The Configuration Server uses a systematic approach to load the
instances of instances of non-Component classes.

HP recommends the CHUNKY method for large databases because
it minimizes the load on the network, thereby decreasing the
likelihood of problems and the possibility of the database integrity
being compromised.

Tuning the Configuration Server 45

• If a Configuration Server has a UNC connection (database path starts
with \\) to the CSDB and the DMA count exceeds 300K instances,
ICACHE_LOAD_TYPE=AUTOMATIC will choose the CHUNKY load
method. See UNC Connectivity Issues on page 55.

Purging Dynamic Cache

This section provides precautionary information about purging the dynamic
cache on a Configuration Server. It includes information about protection
that HP has introduced in order avoid purging the CSDB when an HP Client
Automation Proxy Server (Proxy Server) is co-located with the Configuration
Server and dynamic cache is enabled.

HP recommends not using dynamic cache for a co-located Proxy
Server.

If the dynamic cache root is a CSDB then, by default, this parameter
(default=0) prevents automatic dynamic cache purging of aged files when the
dynamic cache index is saved. By default, the new parameter automatically
safeguards against purging dynamic cache files from a CSDB.

To remove the safeguard and allow a purge of shared resource, dynamic
cache files, set the parameter to 1, as shown in the following example.

Example

-dynamic -allow -shared -resource –purge 1

Tuning the Configuration Server 46

MGR_CLASS
This section specifies which classes and instances will be cached during the
initialization of the Configuration Server.

Table 13 MGR_CLASS Settings

Setting Description

CLASS Specifies which classes and instances will be cached at initialization.

 Format: DOMAIN.CLASS={VALUE1,VALUE2,VALUE3,VALUE4}
If multiple domains have identical class names, the class templates must be
identical. If they are not, performance will be adversely impacted and objects,
larger than necessary, might be created from the resolution process.

Cache_Class_Template_&_Base_Instance, Cache_All_Instances,
Heap_Size, Maximum_Number_of_Heaps.

 VALUE1
To cache (at Configuration Server startup) the _BASE_INSTANCE_ and class
template of the associated class, specify Y. Otherwise, specify N.

 VALUE2
To cache (at Configuration Server startup) all instances in the associated class,
specify Y. Otherwise, specify N.

 VALUE3
This value is numeric and represents the initial size of the resolved object for
the associated class.
This is the size that each heap in the associated DOMAIN.CLASS will occupy
in persistent objects. It should include any attributes that have been classed
into the in-storage object as the result of resolution. Typically, the size of the
transient class instance can be used for transient objects (such as, ZLOCMGR,
ZLOCCLNT, ZSCHEDULE). The default (2048 bytes) can be refined for the
ZSERVICE and PACKAGE classes, which are typically 3–4 KB in size.
Examine the HPCA agent object resulting from a representative resolution in
order to determine the most appropriate value. Values specified are generally
in 512-byte increments.

Tuning the Configuration Server 47

Setting Description

 VALUE4
This is a numeric value that indicates an estimate of the number of heaps that
are required for resolution.
As each HPCA agent begins resolution, memory is allocated in blocks equal to
the sum of all of the products of VALUE3*VALUE4. When memory is
exhausted for a persistent class that is being cached, the next increment of
storage is obtained in a block determined by the product of VALUE3*VALUE4
for the associated class.
For example, if SOFTWARE.FILE = Y,Y,2048,100 was specified, the class
template and _BASE_INSTANCE_ are cached at startup. All of the instances
of the SOFTWARE.FILE class are cached in memory (if there is enough room
in CACHE_SEGMENTS*CACHE_SIZE for the whole class). The working
value for the size of each FILE instance after resolution is estimated to be 2048
bytes. An initial allocation for the in-storage FILE object is made for 100 heaps
that will require 100*2048 bytes (20 KB). If the resolution mode for the
average HPCA agent requires 1000 FILE instances, then one initial allocation
of 20 KB and nine subsequent allocations of 20 KB would be required to satisfy
the entire 1000 FILE instance in-storage objects.

At startup, classes are cached in the order they appear if
VALUE1=Y and VALUE2=Y.

Example

[MGR_CLASS]

SYSTEM.PROCESS = Y,Y,2048,1

SYSTEM.ZMETHOD = Y,Y,2048,1

SOFTWARE.FILE = Y,N,4096,1

SOFTWARE.REGISTRY = Y,Y,4096,1

SOFTWARE.DESKTOP = Y,Y,2048,1

SOFTWARE.ZSERVICE = Y,Y,3072,1

Table 14 MGR_CLASS Values

Setting Value as Installed Default Value

CLASS N/A N/A

Tuning the Configuration Server 48

Performance and Usage Considerations

• You can also specify your own unique classes in this section.

• Note that class instance size and number of instances specified in
MGR_CLASS have an impact on storage and performance. A class
instance size larger than the actual class size represents wasted storage.
A class instance size smaller than the actual class size results in
continual resolution performance degradation.

• Only the classes listed will be cached. All instances of listed classes are
icached, if required, regardless of the values of the first two parameters
in the list.

• You can use the following wildcard characters when you specify the
DOMAIN and CLASS:

Wildcard
Character Behavior

& Matches any string

! Excludes whatever follows it

The ampersand (&) character is used instead of the asterisk (*), because
the asterisk is used for commenting in the edmprof.dat file.

For example:

DOMAIN&.CLASS !DOMAIN&.CLASS

DOMAIN.& !DOMAIN.&

&.CLASS !&.CLASS

DOMAIN&.& !DOMAIN&.&

The following limitations apply:

a You can only use one & in the DOMAIN name and one & in the
CLASS name.

b The maximum number of entries in MGR_CLASS is 256 (not
counting those excluded with !).

c The maximum number of exclusions is 256

Tuning the Configuration Server 49

MGR_DB_VERIFY
This section establishes the level of CSDB verification and whether errors are
automatically corrected.

If this function is configured, the Configuration Server will scan the
CSDB for Y2K compliance, expanded format (ZBASE), and
appropriate CSDB ownership (Configuration Server IDs) at startup.
If errors are found, the CSDB utility can be run against the CSDB to
correct the error. See Configuration Server Database Utility starting
on page 343 for more information.

Table 15 MGR_DB_VERIFY Settings

Setting Description

DB_AUTOFIX A YES/NO switch to determine if the CSDB should be automatically
fixed (where possible) if errors are discovered. The default is NO.

VERIFY_DEPTH Specifies the level of CSDB verification. The values are DOMAIN,
CLASS, INSTANCE, and RESOURCE for this option. The default is
CLASS.

• If DOMAIN is selected, the verification process will verify down
to the DOMAIN level.

• If CLASS is selected, the verification process will verify down
to the CLASS level.

• If INSTANCE is selected, the verification process will verify
down to the INSTANCE level.

• If RESOURCE is selected, the verification process will verify
the entire CSDB.

Example

[MGR_DB_VERIFY]

MGR_VERIFY_DEPTH = CLASS

DB_AUTOFIX = YES

Table 16 MGR_DB_VERIFY Values

Setting Value as Installed Default Value

VERIFY_DEPTH N/A CLASS

DB_AUTOFIX N/A NO

Tuning the Configuration Server 50

Performance and Usage Considerations

• A value of VERIFY_DEPTH=RESOURCE will result in longer startup
times, as the level of detail is deeper. Conversely,
VERIFY_DEPTH=CLASS will result in a much quicker startup time,
because the level of verification is decreased.

• Refer to the MGR_ERROR_CONTROL section, which offers handling
parameters for errors found during the CSDB verification process.

Tuning the Configuration Server 51

MGR_DIAGNOSTIC
This section establishes the values that the Configuration Server will use to
verify that sufficient disk space is available for CSDB operations and logging,
as well as the frequency of verification occurrences.

Table 17 MGR_DIAGNOSTIC Settings

Setting Description

DIAGNOSTIC_INTERVAL Interval (in seconds) for the diagnostic Configuration
Server to verify that sufficient disk space is available
for the CSDB and log. If set to 0, monitoring is
disabled.

DIAGNOSTIC_MIN_DB_BYTES The minimum number of bytes established for CSDB
operations. The maximum value is 2 GB.

DIAGNOSTIC_MIN_LOG_BYTES The minimum number of bytes established for
logging operations. The maximum value is 2 GB.

Example

[MGR_DIAGNOSTIC]

DIAGNOSTIC_INTERVAL = 900

DIAGNOSTIC_MIN_DB_BYTES = 50

DIAGNOSTIC_MIN_LOG_BYTES = 25

Table 18 MGR_DIAGNOSTIC Values

Setting Value as Installed Default Value

DIAGNOSTIC_INTERVAL N/A 900

DIAGNOSTIC_MIN_DB_BYTES N/A 50M

DIAGNOSTIC_MIN_LOG_BYTES N/A 25M

Performance and Usage Considerations

• Include CMD_LINE=(zdiagmgr) in the MGR_ATTACH_LIST section in
order to configure and use this setting.

• On a Configuration Server Database:

Tuning the Configuration Server 52

— When the DIAGNOSTIC_MIN_DB_BYTES threshold (2GB) is
reached, the following will be issued:

– an SNMP trap of 2040.

– a message to the Configuration Server log:

(9282 - Warning: The volume containing the Configuration
Server Database has only %.0lf free bytes).

— When the DIAGNOSTIC_MIN_LOG_BYTES threshold (2GB) is
reached, the following will be issued:

– an SNMP trap of 2045.

– a message to the Configuration Server log:

(9283 - Warning: The volume containing the
Configuration Server log has only %.0lf free bytes).

• On the Configuration Server, you can program a REXX that calls the
EDMMAILQ method to send a notification e-mail.

• Set the following line in the MGR_MESSAGE_CONTROL section of the
edmprof file,

9282, 9283=LOG,EVENTLOG

(This triggers messages 9282 and 9283 to be generated in the
Configuration Server log and Windows Event Log.)

Tuning the Configuration Server 53

MGR_DIRECTORIES
This section specifies the path for the databases, REXX methods, and non-
REXX methods. See MGR_LOG to specify the directory path for the
Configuration Server log.

• The EXPORT_PATH setting can be used to define a directory for export
operations.

• The five USER_PATHn settings can be customized for each Client
Automation environment.

Table 19 MGR_DIRECTORIES Settings

Setting Description

DBPATH Fully qualified directory path for object databases.

EXPORT_PATH Fully qualified directory path for EXPORT operations, accessible via
REXX.

METHOD_PATH Fully qualified directory path for non-REXX methods.

REXX_PATH Fully qualified directory path for REXX methods.

USER_PATH1 Working directory to be used by users, accessible via REXX.

USER_PATH2 Working directory to be used by users, accessible via REXX.

USER_PATH3 Working directory to be used by users, accessible via REXX.

USER_PATH4 Working directory to be used by users, accessible via REXX.

USER_PATH5 Working directory to be used by users, accessible via REXX.

Tuning the Configuration Server 54

Examples

Windows Example:

[MGR_DIRECTORIES]

DBPATH = D:/MGR/DB

EXPORT_PATH = D:/MGR/BIN/EXPORT

METHOD_PATH = D:/MGR/BIN

REXX_PATH = D:/MGR/REXX

USER_PATH1 = D:/MGR/BIN/USER1

USER_PATH2 = D:/MGR/BIN/USER2

UNIX Example:

[MGR_DIRECTORIES]

DBPATH = /opt/cmconfigurationserver/DB

EXPORT_PATH = /opt/cmconfigurationserver/exe/export

METHOD_PATH = /opt/cmconfigurationserver/exe

REXX_PATH = /opt/cmconfigurationserver/rexx

USER_PATH1 = /opt/cmconfigurationserver/exe/user1

USER_PATH2 = /opt/cmconfigurationserver/exe/user2

Table 20 MGR_DIRECTORIES Values

Setting
(REXX Name)

Value as Installed Default Value

DBPATH As specified during installation Current_directory

EXPORT_PATH (EXPTPATH) As specified during installation Current_directory

METHOD_PATH As specified during installation Current_directory

REXX_PATH As specified during installation Current_directory

USER_PATH1 (USRPATH1) As specified during installation Current_directory

USER_PATH2 (USRPATH2) As specified during installation Current_directory

USER_PATH3 (USRPATH3) As specified during installation Current_directory

USER_PATH4 (USRPATH4) As specified during installation Current_directory

USER_PATH5 (USRPATH5) As specified during installation Current_directory

Tuning the Configuration Server 55

Performance and Usage Considerations

• The REXX directory specified in this section is further defined by the
samples subdirectory, which contains a set of sample REXX methods.

• HP supports Universal Naming Code (UNC), which allows paths in the
edmprof file to be specified as shown below:

\\VFH_LAPTOP\DRIVE_D\CMCSDB

When using UNC, the address must be preceded by two backslashes
(\\), with a single backslash (\) used to separate each subfolder.

UNC Connectivity Issues

Interruptions in UNC connectivity to a CSDB might result in critical
database classes not being accessed during the resolution process. This failed
access could lead to incomplete and erroneous resolution of Client
Automation services and, possibly, the inadvertent removal of applications. If
this happens, the following errors will appear in the Configuration Server log:

NVD7005E 06:19:52 <172.26.132.24 /1930> Radia Client
--! ERROR: CLASS <PRIMARY.POLICY.USER> NOT FOUND

NVD7005E 06:19:52 <172.26.132.24 /1930> Radia Client
--! ERROR: CLASS <PRIMARY.POLICY.ZBASE> NOT FOUND

ERROR: CLASS <LICENSE.80d40ad0fd2a4ded8c9d26254e8daf0c
.MDEVICE> NOT FOUND

NVD5113E 02:25:17 <172.31.18.5 /668> Radia Client
--! ERROR RC=<4> CREATING INSTANCE<LICENSE.80d40ad0fd2
a4ded8c9d26254e8daf0c.MDEVICE.3B06A9B26C5047D886942D1E2EC4A46E
>

Also, during Configuration Server startup, the following will be seen in the
Configuration Server log:

Configuration Server Database is on <Remote> <NTFS>
<Uncompressed> Drive <\\example\RCSDB\>

NVD9268I 02:17:34 <ztoptask /FB4> System Task
--- Drive <\\example\RCSDB\> supports <255> character file
names

NVD9269I 02:17:34 <ztoptask /FB4> System Task
--- Drive <\\example\RCSDB\> supports <Case-Sensitivity Case-
Preservation Unicode File-Compression>

NVD9271I 02:17:34 <ztoptask /FB4> System Task
--- Database resides in <\\example\RCSDB\DB\>

Tuning the Configuration Server 56

The UNC-mapped drive will be reflected in the DBPATH setting of
the MGR_DIRECTORIES section in the edmprof file.

Recommended Preventive Measures

HP recommends, in addition to the preventive measures detailed
here, that the Configuration Server be monitored—especially if
UNC disconnects are frequently occurring.

HP recommends the following measures be taken in order to minimize the
impact of UNC connectivity interruptions.

• At Configuration Server startup, cache all CSDB classes that are used for
resolution.

(See MGR_CACHE on page 41, and MGR_CLASS on page 46.)

• In the MGR_CACHE section of the edmprof file, type
ICACHE_LOAD_TYPE=CHUNKY.

(See MGR_CACHE on page 41.)

• In the CSDB ensure the following settings for the
PRIMARY.SYSTEM.ZMETHOD.LDAP_RESOLVE method:

— ZMTHTYPE (method type) is set to REXX

— ZMTHNAME (method name) is set to RADISH

If policy resolution is being driven by a method other than
LDAP_RESOLVE, and the configuration is uncertain, contact HP
Technical Support before making any changes to the CSDB.

These settings will result in the HPCA agent connects and resolutions being
stopped—preventing the HPCA agents from doing anything, thereby
protecting them in the event they are presented an empty catalog. This also
prevents the removal of applications.

Tuning the Configuration Server 57

MGR_DMA
This section specifies the timeout parameter and the directory path for the
Distributed Configuration Server (formerly known as the Distributed
Manager Adapter, DMA), and enables you to specify values for these options.

You must have the Distributed Configuration Server installed to
enable these parameters.

Table 21 MGR_DMA Settings

Setting Description

ADMIN_LIST If SECURITY_METHOD is specified this setting is required. It
defines the list of administrator user IDs that are allowed to do
login. The format is comma-separated, no spaces, and case-
sensitive.
For EDMSIGNR, the user IDs must be defined in the
Configuration Server’s native security system.

DMA_TIMEOUT Maximum interval (in seconds) that the Distributed
Configuration Server will wait for tasks to complete before
allowing a commit. A value of 0 means wait indefinitely.

DMA_STAGE_PATH Path in which staging directories will be created.

SECURITY_METHOD Name of the security method to be used to verify logins.
(Optional)
If Distributed Configuration Server security is wanted, the
recommended value is EDMSIGNR. If not specified, no login is
required.

Examples

Windows Example:

[MGR_DMA]

DMA_TIMEOUT = 0

DMA_STAGE_PATH = D:\MGR\

UNIX Example:

[MGR_DMA]

DMA_TIMEOUT = 600

Tuning the Configuration Server 58

DMA_STAGE_PATH = /radconfigsrvr/

Table 22 MGR_DMA Values

Setting Value as Installed Default Value

ADMIN_LIST N/A None

DMA_TIMEOUT N/A 600

DMA_STAGE_PATH N/A ZTOPTASK Path

SECURITY_METHOD N/A None

Performance and Usage Considerations

• In order to decrease the chance of the Distributed Configuration Server
synchronization timing out without having committed database updates,
increase the value of DMA_TIMEOUT.

Tuning the Configuration Server 59

MGR_ERROR_CONTROL
This section specifies error-handling parameters for the Configuration
Server.

Table 23 MGR_ERROR_CONTROL Settings

Setting Description

DBERROR Describes the type of error and the response.

The format is: (Error Type) = (Response)

Valid values for (Response) are: [SHUTDOWN, IGNORE],
[NOEMAIL, EMAIL], [NOSNMP, SNMP]

UserEmailErrorsTo E-mail address of the administrator to whom error messages should
be sent.

The actions taken by the settings in this section depend on the
levels specified for VERIFY_DEPTH and the errors discovered
during MGR_DB_VERIFY processing.

Example

[MGR_ERROR_CONTROL]

DBERROR = IGNORE,EMAIL

UserEmailErrorsTo = administrator@yourcompany.com

Table 24 MGR_ERROR_CONTROL Values

Setting Value as Installed Default Value

DBERROR N/A [SHUTDOWN] [NOEMAIL] [NOSNMP]

UserEmailErrorsTo N/A N/A

Performance and Usage Considerations

• Currently, the only DBERROR supported is DBError. Examples of
DBErrors are instances with 0 length, attempting to load a template that
does not exist, and so forth.

• The UserEmailErrorsTo value must be a valid e-mail address.

Tuning the Configuration Server 60

MGR_LOG
This section specifies the logging directory and logging options for the
Configuration Server logging facility. It also provides detailed information
about reclaiming dormant HPCA agent-device licenses.

Table 25 MGR_LOG Settings

Setting Description

DIRECTORY Fully qualified directory path where the Configuration Server log is
written.

DISABLE_NT_
EVENT_LOGGING

If YES is specified, the Configuration Server logger will disable its
Windows Event logging support. This means that messages sent to
the Configuration Server log will not be sent to the Windows Event
log even if EVENTLOG is specified in the section
MGR_MESSAGE_CONTROL.
If NO is specified, such messages will be echoed to the Windows
Event log if EVENTLOG is specified in the
MGR_MESSAGE_CONTROL section.
Note: This parameter affects only the event logging of Configuration
Server log messages. Some Windows Event log records are written
without any corresponding Configuration Server log messages.
Windows only.

DISABLE_SNMP
_TRAP_LOGGING

If YES is specified, the Configuration Server logger will disable its
SNMP trapping support. This means that messages sent to the
Configuration Server log will not be sent to the primary SNMP
Manager as traps, even if SNMPTRAP is specified in the section
MGR_MESSAGE_CONTROL.
If NO is specified, such messages will be sent to the SNMP Manager
as traps, if SNMPTRAP is specified in the
MGR_MESSAGE_CONTROL section.
Note: This parameter affects only the trapping of Configuration
Server log messages. Some SNMP traps are issued without any
corresponding Configuration Server log messages.

FLUSH_SIZE The number of bytes between automatic flushes of operating system
buffers for Configuration Server log file.

MESSAGE_DATE Allows insertion of the date into every line in the log. Values are
JULIAN (YYYYDDD), GREGORIAN (DDMMYYYY), and ISO
(YYYYMMDD).

Tuning the Configuration Server 61

Setting Description

MESSAGE
_DELIMITER

The left and right delimiters that are used for enclosing the task
name and task ID in the Configuration Server log messages.

The format is MESSAGE_DELIMITER=xy, where x is the left
delimiter and y is the right delimiter. The options are: [], (), < >,
and { }. The default is [].

MESSAGE
_PREFIX

The 3-digit, alphabetic, Configuration Server identifier that will
precede Configuration Server log messages. Specify any 3-digit,
alphabetic value. The default is NVD.
Note: If you have log scrapers, verify that they work properly with
the NVD setting. If not, change this to RAD.

MESSAGE
_WIDTH

The maximum width (in bytes) of the messages in the Configuration
Server log.

PIPE_SIZE The maximum amount (in bytes) of log messages that can be queued
by the Configuration Server logging facility while the log file is busy.
When the value of PIPE_SIZE is reached, any task that issues a log
message will freeze until the pipe starts emptying.

SWITCH_TOD A time-of-day specification that will, each day, automatically trigger
log switching (see Log Switching on page 64). The value must be 5
characters, expressed in base-24 time (00:00–23:59), with a colon
separator, as in HH:MM.
Notes: This is a scheduled event that causes the log to switch; it is
independent of, and runs regardless of, any previous log-switching
activity.
This setting can be used to activate license reclamation using
ZLICUTIL.EXE. For more information, see License Reclamation, on
page 66.
This setting is not part of the Configuration Server installation; it
must be manually added.
HP recommends that this be set to an off-peak, low-activity time.

THRESHOLD or
THRESHHOLD
(both accepted)

The maximum number of lines that will be written to the
Configuration Server log before it is automatically switched to the
next log. When the limit is reached, a new log file is created,
regardless of SWITCH_TOD setting.
Note: For a more detailed description of this setting and how it can
be used for license reclamation, see Log Switching, on page 64.

Tuning the Configuration Server 62

Examples

Windows Example:

[MGR_LOG]

DIRECTORY = D:\Program Files\Hewlett-Packard\CM\
ConfigurationServer\log

FLUSH_SIZE = 100000

MESSAGE_DATE = JULIAN

MESSAGE_DELIMITER = []

MESSAGE_PREFIX = NVD

MESSAGE_WIDTH = 256

PIPE_SIZE = 1000000

SWITCH_TOD = 23:38

THRESHHOLD = -5000000

UNIX Example:

[MGR_LOG]

DIRECTORY = /opt/HP/CM/ConfigurationServer/log

FLUSH_SIZE = 100000

MESSAGE_DATE = ISO

MESSAGE_DELIMITER = ()

MESSAGE_WIDTH = 256

MESSAGE_PREFIX = NVD

PIPE_SIZE = 1000000

SWITCH_TOD = 23:38

THRESHHOLD = -5000000

Tuning the Configuration Server 63

Table 26 MGR_LOG Values

Setting Value as Installed Default Value Minimum Value

DIRECTORY Program Files\
Hewlett-Packard\
CM\Configuration
Server\log

HP/CM/Configurati
onServer/log

Current_directory
Program Files\
Hewlett-Packard\
CM\Configuration
Server\log

HP/CM/Configurati
onServer/log

N/A

DISABLE_NT
_EVENT_LOGGING

Varies across
platforms.

NO N/A

DISABLE_SNMP
_TRAP_LOGGING

Varies across
platforms.

NO N/A

FLUSH_SIZE 1000 bytes 5000 bytes 1

MESSAGE_DATE N/A N/A N/A

MESSAGE
_DELIMITER

N/A [] N/A

MESSAGE_PREFIX NVD NVD N/A

MESSAGE_WIDTH 256 90 80

PIPE_SIZE 1000000 bytes 1 MB 1 MB

SWITCH_TOD N/A N/A N/A

THRESHOLD -5000000 lines 100000 lines 1

Performance and Usage Considerations

• Increasing the FLUSH_SIZE will enhance performance, but will delay
messages flushed to the log file.

• Increase MESSAGE_WIDTH if log messages are being truncated.

• When closely monitoring system status using the Configuration Server
log, set THRESHOLD to a positive value to create and save successive
portions of the Configuration Server log. If disk storage space is critical,
set the value to a negative number in order to reuse the allocated log disk
space.

• If numerous Configuration Server methods are being invoked, use the
MGR_METHODS.LOG_LIMIT setting to control the size of the
Configuration Server log for each method. Additionally, the

Tuning the Configuration Server 64

MGR_TASK_LIMIT.TASK_LOG_LIM setting controls the number of
messages printed by the execution of each task.

• When modifying parameters in this section as they relate to memory or
disk utilization, take care not to exceed the maximum amount of memory
or storage space available.

Log Switching

By default, the Configuration Server log will be switched according to the log
size value of THRESHOLD and the amount of Configuration Server activity.
However, log switching can be configured to automatically occur on a daily
basis, at a scheduled time. This is done by specifying the SWITCH_TOD
setting and modifying the THRESHOLD setting. THRESHOLD can also
dictate what happens to the log that gets rolled over. These sections describe
how to do this.

SWITCH_TOD

Specify the time-of-day for the Configuration Server log to automatically roll
over. This setting is independent of THRESHOLD, but can be used with it to
trigger either of two REXX methods (ZLOGSWCH.REX or ZLOGWRAP.REX) to
launch the user-implemented license-reclamation utility, ZLICUTIL, as
described on page 66 in the section, License Reclamation.

THRESHOLD

This setting determines how large the Configuration Server log can be before
it is switched to a new log. The value of this setting will dictate what happens
to the log that is rolled out, as described in this section.

• If THRESHOLD ≥ 0, the old log will be renamed and saved, and the
Configuration Server REXX method, ZLOGSWCH, will run.

The Configuration Server’s log directory (ConfigurationServer\log)
will have multiple log files whose names conform to the following
operating system-specific conventions.

ISO is the International Standards Organization.

Configuration Server ID is the value of the edmprof file’s
setting MGR_STARTUP.MGR_NAME.

Windows

— The standard log naming format is the Configuration Server log
prefix (nvd), followed by the letter r, and the Configuration Server ID:

Tuning the Configuration Server 65

nvdmr001.log

— The log switch format is the r replaced by an s, followed by the
Configuration Server ID, and the ISO-formatted date and time (each
preceded by an underscore) appended:

nvdms001_20050427_075835.log

UNIX

— The standard log naming format is the Configuration Server log
prefix (nvd), followed by the Configuration Server ID, an underscore,
and the manager designation:

nvd001_manager.log

— The log switch format is an s added to the prefix, followed by the
manager designation, and the ISO-formatted date and time (each
preceded by an underscore) appended:

nvds001_manager_20050427_083357.log

This THRESHOLD setting will result in multiple
Configuration Server log files. To differentiate between them,
check the date on which they were modified.
HP recommends this setting because it results in saved, rather
than deleted, log files.

• If THRESHOLD < 0, the old log will be overwritten (but not deleted), and
the Configuration Server REXX method, ZLOGWRAP, will run.

The Configuration Server log directory will have just one old log file
whose name conforms to the following operating system-specific
conventions.

ISO is the International Standards Organization.

Configuration Server ID is the value of the edmprof file’s
setting MGR_STARTUP.MGR_NAME.

Windows

— The standard log naming format is the Configuration Server log
prefix (nvd), followed by the letter r, and the Configuration Server ID:

nvdmr001.log

— The log wrap (dump) format is the r replaced by a d:

nvdmd001.log

UNIX

Tuning the Configuration Server 66

— The standard log naming format is the Configuration Server log
prefix (nvd), followed by the Configuration Server ID, an underscore,
and the manager designation:

nvd001_manager.log

— The log wrap (dump) format sees the manager designation being
replaced by mgrdump:

nvd001_mgrdump.log

At the next log switch, the previous log (from the last wrap) will be
replaced/overlaid by the newly switched log.

ZLICUTIL

The Configuration Server REXX utility, ZLICUTIL, can be used with
ZLOGSWCH and ZLOGWRAP for daily license reclamation. For more
information, see License Reclamation below.

License Reclamation

A Configuration Server license string supports a certain number of HPCA
agent devices. To keep only active, current devices in a license count, the
Configuration Server allows the reclamation of HPCA agent-device licenses.
If an HPCA agent device hasn’t connected to the Configuration Server for a
specified number of days, its license becomes inactive and can be reclaimed in
the license count by the Configuration Server utility, ZLICUTIL.

Considerations

• By default, license reclamation occurs only at Configuration Server
shutdown.

• To make license reclamation occur daily:

— Specify values for SWITCH_TOD and THRESHOLD (see
SWITCH_TOD and THRESHOLD in Table 25 on page 60).

— Modify the appropriate REXX (either ZLOGSWCH or ZLOGWRAP)
so that a log-switching REXX method will launch the license utility,
ZLICUTIL, when it gets called.

• Licenses that are aged out via ZLICUTIL are not immediately available.
They are reclaimed only at the next midnight.

Tuning the Configuration Server 67

The exception to this condition is that aged-out licenses will be
immediately available when the Configuration Server is
restarted.

The following instructions detail how to implement license reclamation on a
Configuration Server.

To reclaim licenses daily

1 Add the log switch setting, SWITCH_TOD, to the MGR_LOG section of
the edmprof file, and specify a valid value (see SWITCH_TOD in Table
25 on page 60), such as:

[MGR_LOG]
SWITCH_TOD = 23:45

2 Specify a value for THRESHOLD, as described on page 61.

3 Navigate to the directory in which the Configuration Server methods
reside, such as either:

System Drive:\Program Files\Hewlett-Packard\CM\
ConfigurationServer\rexx\NOVADIGM

or

/opt/HP/CM/ConfigurationServer/rexx/NOVADIGM

and copy either ZLOGSWCH or ZLOGWRAP (or both) up one level to the
rexx directory.

During the Configuration Server installation, the REXX
methods are, by default, installed to the platform-specific
directories that are listed in step 3.
Before making changes to either ZLOGSWCH or ZLOGWRAP,
be sure to copy it up one level to the rexx directory

4 Open the ZLOGSWCH (or ZLOGWRAP) file, and add the commands
shown here:

call edmget zcvt

ADDRESS CMD “ZLICUTIL” zcvt.dbpath zcvt.rptpath
zcvt.uuid zcvt.mgrid zcvt.syspath || license.nvd

See the section, Configuration Server Running as a Windows
Service on page 68, for Windows-specific configuration
information.

5 Save and close ZLOGSWCH (or ZLOGWRAP).

Tuning the Configuration Server 68

From this point on, the license reclamation feature will be started
asynchronously when the log switch is invoked.

Configuration Server Running as a Windows Service

This section describes the changes that are necessary if the Configuration
Server is running as a service on a Windows machine.

This information is relevant only if the Configuration Server is
configured as a Windows service; if it is not, this information is not
applicable.

The directory in which Windows always first looks for its “service” programs
is Windows\system32. Therefore, in order for a program to be run as a
service, it must be located here; if it is not, it won’t be found by Windows—or
Windows has to be instructed to look elsewhere.

Even though the Configuration Server might be set up to run as a Windows
service, it probably isn’t in this directory—rather, it is likely in the directory
that was specified during the installation (the default of which is System
Drive:\Program Files\Hewlett-Packard\CM\ConfigurationServer).
Therefore, Windows has to be told where to find the program files.
Instructions for doing this are in the following section.

Directing Windows to the Configuration Server Program Files

To resolve the issue of Windows not being able to find the Configuration
Server files, make the following changes to the ZLOGSWCH (or ZLOGWRAP)
REXX method.

1 Specify the fully qualified path name of the directory in which ZLICUTIL
resides so that Windows will know where to look. (See the example that
follows.)

2 Add a fifth argument—the fully qualified path name of the directory in
which the file license.nvd resides.

Examples

Original ZLOGSWCH (or ZLOGWRAP) REXX method command:

ADDRESS CMD “START ZLICUTIL” zcvt.dbpath “System Drive:
\Program Files\Hewlett-Packard\CM\ConfigurationServer\log”
“05c87c3e95194a9d9251fee5cbfddafb” zcvt.mgrid

Revised ZLOGSWCH (or ZLOGWRAP) REXX method command:

Tuning the Configuration Server 69

ADDRESS CMD “START FULLY_QUALIFIED_BIN_PATH\ZLICUTIL.EXE”
zcvt.dbpath “System Drive:\Program Files\Hewlett-Packard\CM
\ConfigurationServer\log” “05c87c3e95194a9d9251fee5cbfddafb”
zcvt.mgrid “FULLY_QUALIFIED_BIN_PATH\LICENSE.NVD”

Tuning the Configuration Server 70

MGR_MESSAGE_CONTROL
This section specifies which log messages are to be sent and to where, or if
they are to be suppressed.

Table 27 MGR_MESSAGE_CONTROL Settings

Setting Description

nnnnn = (Destination) (Message_Number) = (Message_Destination)

The left side of the equals sign (=) specifies which messages are to
be affected by the command. There is an “ALL” directive that can be
used to affect all messages (0001-9999). Also, if there is no
destination after the equals sign, the message has no associated
destination, so it is suppressed.

The following table presents a list of the six destinations for log messages.

Table 28 MGR_MESSAGE_CONTROL Log Message Destinations

Destination Description

EVENTLOG Write log messages to the Windows Event log. (Windows only)

LOG Write log messages to the Configuration Server log.

REXX Write log messages to a pre-determined REXX (named MGRLOG).
Important: MGRLOG is not an existing REXX, and therefore, must be
created in order to use this facility.
Note: The MGRLOG REXX will receive the message number and the
message text as its first and second input parameters. You can then
process the information in whatever manner you chose.

SNMPTRAP Write log messages as traps to the current SNMP Manager.

USERLOG Write log messages to the user log.
Note: You must first activate the user log feature in the MGR_USERLOG
section of the edmprof file, by specifying ACTIVATE=YES.

Example

[MGR_MESSAGE_CONTROL]

ALL = SNMPTRAP

Tuning the Configuration Server 71

500 =

520-600 = LOG

225, 300 =

220-299, 400, 542-545, 803 = EVENTLOG,REXX,USERLOG

In this example:

• The first line will send all messages to the SNMP Manager as traps.

Keep in mind that this means that no messages will be written to the
Configuration Server log; all messages will go out as SNMP traps
only, unless subsequent entries specifically override this.

• The second line will cause message 500 to be suppressed—that is, it will
not be written to the Configuration Server log.

• The third line will cause messages 520 through 600 (inclusive) to be
written to the Configuration Server log.

• The fourth line will suppress messages 225 and 300 only; all others will
be written to the Configuration Server log.

• The fifth line will cause messages 220 through 299 (inclusive), 400, 542
through 545 (inclusive), and 803 to be written to the Windows Event log,
the pre-determined REXX, and the user log.

Table 29 MGR_MESSAGE_CONTROL Values

Setting Value as Installed Default Value

nnnnn = (Destination) N/A ALL=LOG

Performance and Usage Considerations

• SNMPTRAP should be used as a destination only if the address of the
SNMP Manager has been configured in the SNMP section.

• Any line that does not contain an equals sign (=) is treated as a
comment. In addition, lines that begin with an asterisk (*), double
forward slashes (//), or a slash (/) are treated as comments. Blanks and
tabs can occur anywhere on the line, even ahead of the comment
specifications.

• ALL = will suppress all messages.

• Any errors encountered in parsing a line cause the entire line to be
ignored and an error message to be written to STDERR.

Tuning the Configuration Server 72

MGR_METHODS
This section specifies options for method execution.

Table 30 MGR_METHODS Settings

Setting Description

LOG_LIMIT Maximum number of messages that a method can issue to the
Configuration Server log. When this limit is reached, a message will be
written stating that the message limit has been reached and that all other
messages from the method will be ignored.

TIMEOUT The duration (in seconds) that a Configuration Server will wait for a
response from a method that is running. After this interval, if no response
is received, the Configuration Server will terminate the method.

Example

[MGR_METHODS]

LOG_LIMIT = 0

TIMEOUT = 300

Table 31 MGR_METHODS Value

Setting Value as
Installed

Default
Value

Minimum
Value

Maximum
Value

LOG_LIMIT 0 0 = No Limit 0 2,147,483,647

TIMEOUT 300 (seconds) 60 (seconds) 0 32000

Performance and Usage Considerations

• The number of messages generated by the execution of a method is also
affected by the TASK_LOG_LIM setting in MGR_TASK_LIMIT.

• Tune system resource usage with the TIMEOUT setting. If system
resources are critical, lower the TIMEOUT setting to free up unused
processing cycles.

• When the TIMEOUT value is reached, the method is terminated and
messages are written to the Configuration Server log.

• If the TIMEOUT=0, the method will continue in effect until its
conclusion.

Tuning the Configuration Server 73

MGR_NOTIFY
This section specifies the defaults for the Configuration Server’s HPCA agent
notification.

Table 32 MGR_NOTIFY Settings

Setting Description

ISSUE_WAKE_ON_LAN Enables support for TCP Wake-On-LAN.

NFY_RETRY Number of times to attempt re-notification after initial,
unsuccessful attempt.

NFYT_TIMEOUT Notify timeout (in seconds) for TCP/IP HPCA agents.

RECOVERY_DOMAIN The Domain that the Retry Manager will access in order to
reinitiate notifies after the Configuration Server has
prematurely shut down.

SUBNET_MASK This value is used to convert a destination IP address into a
subnet address for EDMWAKE.
Note: Applicable only to version 4.3 CM Configuration Server,
with Service Pack 2.

WAKE_ON_LAN_TTL This value is the number of routers that the WOL broadcast is
allowed to pass. The default is 99.
Note: Before establishing this value, consult your network
administrator.

Example

[MGR_NOTIFY]

NFYT_TIMEOUT = 120

NFY_RETRY = 5

SUBNET_MASK = 255.255.0.0

ISSUE_WAKE_ON_LAN = YES

RECOVERY_DOMAIN = ALL

WAKE_ON_LAN_TTL = 99

Tuning the Configuration Server 74

In some network addressing schemes, a class A IP address is used
with a class B or class C subnet mask. This often results in
problems, caused by parameters passed by a Configuration Server
while trying to invoke EDMWAKE. If specified, the
SUBNET_MASK parameter will cause the Notify Manager to use
this mask from the edmprof file, rather than generate the subnet
mask according to the network type.
For example, if the notify for IP address, 10.241.5.5 failed,
EDMWAKE will be issued for subnet address, 10.241.255.255.

Table 33 MGR_NOTIFY Values

Setting Value as
Installed

Default Value Value Range

ISSUE_WAKE_ON_LAN N/A NO YES/NO

NFY_RETRY N/A 0 32000

NFYT_TIMEOUT 120 seconds 0 32000

RECOVERY_DOMAIN N/A ALL RETRY/ALL

SUBNET_MASK N/A N/A N/A

WAKE_ON_LAN_TTL 99 99 99

Performance and Usage Considerations

• Establish MGR_NOTIFY settings based on network operations
parameters.

• The MGR_NOTIFY settings should be coordinated with values in the
MGR_RETRY and MGR_TASK_LIMIT sections.

• In order for the Wake-On-LAN Notify function to operate, and to allow
the retrying of failed operations, zrtrymgr must be specified under
MGR_ATTACH_LIST.

Tuning the Configuration Server 75

MGR_OBJECT_RESOLUTION
This section specifies the parameters to use during object resolution.

Table 34 MGR_OBJECT_RESOLUTION Settings

Setting Description

ALLOW_DUPLICATE
_INSTANCES

Allow or disallow duplicate instances to be used during object
resolution. Values are YES and NO.

ALWAYS_CALL
_ZADMIN

Force object resolution to call the ZADMIN method to process the
ZADMIN object. Values are YES and NO.

ZERRORM_MAX
_ERRORS

Maximum number of errors associated with a ZERRORM event.

ZERRORM_MAX
_WARNINGS

Maximum number of warnings associated with a ZERRORM
event.

Example

[MGR_OBJECT_RESOLUTION]

ALWAYS_CALL_ZADMIN = YES

ZERRORM_MAX_WARNINGS = 50

ZERRORM_MAX_ERRORS = 50

ALLOW_DUPLICATE_INSTANCES = YES

Table 35 MGR_OBJECT_RESOLUTION Values

Setting Value as
Installed

Default Value

ALWAYS_CALL_ZADMIN YES NO

ALLOW_DUPLICATE_INSTANCES N/A YES

ZERRORM_MAX_WARNINGS N/A 50

ZERRORM_MAX_ERRORS N/A 50

Performance and Usage Considerations

• ALLOW_DUPLICATE_INSTANCES=NO will cause the Configuration
Server to eliminate duplicate services at resolution. This might result in
the elimination of duplicate SOFTWARE.FILE instances on the HPCA

Tuning the Configuration Server 76

agent. As the size of the SOFTWARE.FILE object grows, the resolution
time will increase.

• HP recommends that you do not modify or remove
ALWAYS_CALL_ZADMIN, as doing so might prohibit administrator type
functions.

Tuning the Configuration Server 77

MGR_POLICY
This section specifies the IP address/name and port of the HP Client
Automation Policy Server (Policy Server), if it has been enabled.

This section will be present only if the Policy Server option was
selected during the Configuration Server installation.

Table 36 MGR_POLICY Settings

Setting Description

HTTP_HOST The IP address of the Policy Server.
If the Policy Server is co-located with the Configuration Server, specify
localhost.

HTTP_PORT The port of the Policy Server. The default is 3466.

Example

[MGR_POLICY]

HTTP_HOST = localhost

HTTP_PORT = 3466

Table 37 MGR_POLICY Values

Setting Value as Installed Default Value Minimum
Value

Maximum
Value

HTTP_HOST None N/A N/A N/A

HTTP_PORT N/A 3466 N/A N/A

Tuning the Configuration Server 78

MGR_POOLS

This section of the edmprof file is specific to Windows operating
systems.

This section allows you to specify allocations (pools) of memory in different
sizes, prior to Configuration Server startup. These allocations can be changed
dynamically while the Configuration Server is running by using modify
commands. In addition, you can establish percentage-of-waste tolerances (the
amount of memory that is not used by a specific requirement) for each of the
allocations.

You can establish pools of any size. The pool sizes specified, however, should
be multiples of eight. If not, they will be rounded up to the next multiple of
eight by the system. Likewise, you can specify any number of pools.

The sizes and number of pools you establish, as well as the
percentage of waste tolerated, should be based on the workload and
operating requirements of your environment.

When the Configuration Server requires memory, the pools are searched from
smallest to largest until a pool is found in which the memory requirement
fits. When that pool is found, the first item on the free list is used to resolve
the request—providing that the percent of space wasted is not above the
value specified for that pool. If there is no item on the free list, then the
memory allocation is redirected to the standard C heap. If the C heap is also
exhausted, a host system native-storage request will be performed to satisfy
the memory request.

The format for specific pool allocation is:

(Pool Size) = (number of elements for that pool size),
(specific percentage of waste tolerated),(expansion increments).

The specific percentage of waste tolerated parameter is optional.
The expansion increments default is 1.

Table 38 MGR_POOLS Settings

Setting Description

WASTE_TOLERATED The general percentage of waste that will be tolerated to
fit a specific requirement to an available pool. The default
is 100 (%).

Tuning the Configuration Server 79

Setting Description

ALLOCATION_SIZE
_ERROR_THRESHOLD

Deny memory allocations above this size.

ALLOCATION_SIZE_
REPORTING_THRESHOLD

Report memory allocations above this size.

XXXXXX The allocation for the XXXXXX byte pool. Any reasonable
number of these can be specified.

By default, the MGR_POOLS section establishes the pool sizes shown in the
example below.

Example

[MGR_POOLS]

WASTE_TOLERATED = 100

ALLOCATION_SIZE_ERROR_THRESHOLD = 4194304

ALLOCATION_SIZE_REPORTING_THRESHOLD = 65536

168 = 150

296 = 50

552 = 20

1064 = 10

2100 = 5000

2700 = 100

4136 = 4

8232 = 2

12500 = 2

Table 39 MGR_POOLS Values

Setting Value as
Installed

Default
Value

Minimum
Value

Maximum
Value

WASTE_TOLERATED 100 100 (%) 0 100 (%)

ALLOCATION_SIZE
_ERROR_THRESHOLD

4 MB 4 MB 0 (disabled) 2 GB

ALLOCATION_SIZE_
REPORTING_THRESHOLD

64 KB 64 KB 0 (disabled) 2 GB

Tuning the Configuration Server 80

Setting Value as
Installed

Default
Value

Minimum
Value

Maximum
Value

XXXXXX N/A (See Table 38
on page 78)

0 32767

Performance and Usage Considerations

• Provisions should be made for pools that are the product of the
MGR_CLASS section of the STARTUP member, as requests for these
memory elements will automatically occur at the initiation of resolution
(generally, the receipt of the ZMASTER object). Special attention should
be given to the pools that will be identified by the product of the third and
fourth values specified in MGR_CLASS, as in Y,N,3072,500 for the
MGR_CLASS entry for SOFTWARE.FILE.

• The product of the third and fourth values of this is a value exactly equal
to 1.5 MB, and one of these will be allocated at the initiation of each
resolution. Additional storage is required for storage management of
these queues, so a storage pool of elements size (3072) * (500) + 500 =
1536500 should be created. The number of elements to assign to this pool
is dependent on the MGR_TASK_LIMIT values specified (for example,
one element for each concurrent task), and the number of
SOFTWARE.FILE instances resolved for each HPCA agent.

• When using the Distributed Configuration Server, the default setting of
ALLOCATION_SIZE_ERROR_THRESHOLD must be changed in order
to prevent a destination CSDB being only partially updated. If the
Distributed Configuration Server transfers a resource file that is larger
than the default (4 MB), and the setting has not been changed, the
‘commit’ operation will halt, leaving the destination CSDB only partially
updated. See the examples below for completing this:

— If you use memory pooling, set
ALLOCATION_SIZE_ERROR_THRESHOLD to zero, as below:

[MGR_POOLS]
ALLOCATION_SIZE_ERROR_THRESHOLD = 0

Here, 0 will disable the memory allocation limit.

— If the MGR_POOLS section does not exist in the edmprof file, there
are no issues and no changes are required.

Table 40 Pool Values

Size 64 400 632 2048 4120 6504 8200 12000

Tuning the Configuration Server 81

Number 100 100 100 60 60 30 15 20

Waste % 100 100 100 100 100 89 65 75

InUse 21 2 12 0 0 0 1 0

HighWM 21 15 12 1 1 0 1 4

Allocs 30 656 19 1 5 0 1 218

Empty 0 0 0 0 0 0 0 0

Waste 0 0 0 0 0 0 0 0

• Size is the size of the elements of the pool.

• Number is the number of elements currently in the pool.

• Waste % is the percentage of waste tolerated at storage element
allocation time.

• InUse is the number of elements that were in use when the stats call was
made.

• HighWM is the high watermark that shows the maximum number of
elements that have been allocated at any one time since startup or a clear
command.

• Allocs is the total number of elements that were allocated since startup
or since the last clear command on that pool.

• Empty is the number of times we failed to get an element because there
were no free elements available.

• Waste is the number of times we failed to get an element because the
waste was higher than the tolerated waste percent.

In the example in Table 40 on page 80, the pools of 64, 400, 632,
2048, and 4120 do not have a specified waste tolerance. This is
because these pool sizes are so small that the waste in them will not
be an issue.

Tuning the Configuration Server 82

 There is a DISABLE command that looks like:
F jobname,DISABLE,2048

or just:
F jobname,D,2048

This would disable pool 2048, that is, it would prevent new
allocations from using that pool. Allocations between 633 and 4120
bytes would then come from the 4120 pool, provided the tolerated
waste percentage is met.
A disabled pool will show up on the command with a “D” after the
size. A disabled pool can be re-enabled with the ENABLE command,
as follows:
F jobname,E,2048

The pool counts can be cleared with the CLEAR command:
F jobname,C,2048

Note: The HighWM, Allocs, Empty, and Waste counters are cleared
by the above command.
Lastly, there is an ADJUST command, which looks like:
F jobname,A,2048,80,95

 This command would add 20 free elements to the 2048 pool (60 + 20
= 80) and would set its waste tolerated percentage to 95. The last
parameter (percentage of waste tolerated) is optional. The “A”
denoting the ADJUST subcommand can be replaced with ADJUST,
ADJUS, ADJU, ADJ, or AD. The Enable, Disable, and Clear
commands can also be specified in a longer form.
If you use the ADJUST command to set the number of elements to
0, then the pool is completely deleted if all the elements can be
freed. However, the pool count will not go to 0 as long as there are
allocated elements. New pools can be added on the fly with the
ADJUST command.
Finally, storage trace (STORAGE=YES) can be used to produce a
message in the log each time a storage allocation is made and freed.
This can be used to tune the pool, and to understand the
Configuration Server’s use of dynamic memory.

Tuning the Configuration Server 83

MGR_RESOLUTION_FILTERS
This section defines filtering rules for resolution, based on connection type.

This section is not included in the edmprof file at installation—it
must be manually added.

Table 41 MGR_RESOLUTION_FILTERS Settings

Setting Description

DOMAIN.CLASS Specify the domain and class of the CSDB for which to define
filtering rules for resolution.

Valid values for MGR_RESOLUTION_FILTERS are:

• RADIA – Allow Client Automation resolution only.

• ANY – Allow all resolutions. (This is the default.)

Example

[MGR_RESOLUTION_FILTERS]

SOFTWARE.ZSERVICE = RADIA

POLICY.WORKGROUP = RADIA

POLICY.* = RADIA

Table 42 MGR_RESOLUTION_FILTERS Values

Setting Value as
Installed

Default
Value

Minimum
Value

Maximum
Value

DOMAIN.CLASS N/A N/A N/A N/A

Performance and Usage Considerations

• CLASS can be specified as a valid CSDB class, or with a wildcard (*) to
specify all classes in a domain.

Tuning the Configuration Server 84

MGR_RETRY
This section specifies how soon (in minutes) an HPCA agent can attempt
another connection to the Configuration Server, after being rejected due to an
exceeded task limit or a disabled connection.

Table 43 MGR_RETRY Settings

Setting Description

BUSY_RETRY Number of minutes for an HPCA agent to wait before reconnecting when
the Configuration Server is at its task limit (TASK_LIMIT).

DISA_RETRY Number of minutes for an HPCA agent to wait before reconnecting when
the Configuration Server has logons halted.

Example

[MGR_RETRY]

BUSY_RETRY = 1

DISA_RETRY = 999

HP recommends values of at least 1 for these settings in order to
avoid unnecessarily tying up the Configuration Server.

Table 44 MGR_RETRY Values

Setting Value as
Installed

Default Value Minimum
Value

Maximum
Value

BUSY_RETRY 7 minutes 0 (allow connect now) 0 (allow connect
now)

999 (do not
retry)

DISA_RETRY 999 (do not
retry)

999 (do not retry) 0 (allow connect
now)

999 (do not
retry)

Performance and Usage Considerations

• You can raise these values if processing resources are critical. Lowering
these values will provide greater assurance that connections will be re-
established if broken during HPCA agent connects.

Tuning the Configuration Server 85

• The MGR_RETRY settings should be coordinated with values in the
MGR_NOTIFY and MGR_TASK_LIMIT sections.

Tuning the Configuration Server 86

MGR_RIM
This section specifies the IP address/name and port of the HP Client
Automation Inventory Manager (Inventory Manager) if it has been enabled.

This section will be present only if the Inventory Manager option
was selected during the Configuration Server installation.

Table 45 MGR_RIM Settings

Setting Description

HTTP_HOST The IP address of the Inventory Manager.
If the Inventory Manager is co-located with the Configuration Server,
specify localhost.

HTTP_PORT The port of the Inventory Manager. The default is 3466.

Example

[MGR_RIM]
HTTP_HOST = localhost
HTTP_PORT = 3466

Table 46 MGR_RIM Values

Setting Value as Installed Default Value Minimum
Value

Maximum
Value

HTTP_HOST None N/A N/A N/A

HTTP_PORT N/A 3466 N/A N/A

Tuning the Configuration Server 87

MGR_RMP
This section specifies the IP address/name and port of the HP Client
Automation Portal (Portal), if it has been enabled.

This section will be present only if the Portal option was selected
during the Configuration Server installation.

Table 47 MGR_RMP Settings

Setting Description

HTTP_HOST The IP address of the Portal.
If the Portal is co-located with the Configuration Server, specify
localhost.

HTTP_PORT The port of the Portal. The default is 3466.

Example

[MGR_RMP]
HTTP_HOST = localhost
HTTP_PORT = 3466

Table 48 MGR_RMP Values

Setting Value as Installed Default Value Minimum
Value

Maximum
Value

HTTP_HOST None N/A N/A N/A

HTTP_PORT N/A 3466 N/A N/A

Tuning the Configuration Server 88

MGR_ROM
This section specifies the IP address/name and port of the HP Client
Automation Information Base, if it has been enabled.

Table 49 MGR_ROM Settings

Setting Description

DSML_HOST The IP address of the Information Base.
If the Information Base is co-located with the Configuration Server,
specify localhost.

DSML_PORT The port of the Information Base. The default is 3468.

BASEDN The domain name of the root for the computer class.

Example

[MGR_ROM]
DSML_HOST = localhost
DSML_PORT = 3468
BASEDN = cn=machine

Table 50 MGR_ROM Values

Setting Value as Installed Default Value Minimum
Value

Maximum
Value

HTTP_HOST None N/A N/A N/A

HTTP_PORT N/A 3468 N/A N/A

BASEDN N/A N/A N/A N/A

Tuning the Configuration Server 89

MGR_SMTP_MAIL
This section specifies SMTP-related parameters, including the ID of the
Configuration Server and the TCP port number of the Configuration Server
to be used.

Table 51 MGR_SMTP_MAIL Settings

Setting Description

DNS_SERVER The Domain Name Service (DNS) server that is used to query
the mail server address.
Note: Specify a value for this setting to ensure that mail is
delivered.

MAIL_DIR Directory to spool and queue outgoing mail from the SMTP
send Manager.

MAIL_TIMEOUT Timeout interval (in seconds) for establishing communications
with the mail server.

MAX_TIME_IN_SPOOL The interval (in minutes) to wait before deleting undelivered
mail in the spool. The default is 4320 minutes (3 days).

MGR_MAIL_ID The mail ID for the Configuration Server. This setting takes
the form of a fully qualified address (for example,
ConfigServer@HP.com) and has a maximum length of 255
bytes. The mail-receiving Configuration Server will reject mail
that is addressed to any other user ID.

RETRY_INTERVAL The interval (in seconds) to wait before re-attempting to deliver
mail in the spool. The default is 300 seconds (5 minutes).

SMTP_PORT The port on which the Configuration Server’s SNMP Manager
send and receive tasks (ZSMTSMGR and ZSMTRMGR,
respectively) will listen for incoming mail.

Examples

Windows Example:

[MGR_SMTP_MAIL]

DNS_SERVER = 192.168.1.20

MAIL_DIR = D:\MGR\MAIL

MAIL_TIMEOUT = 60

Tuning the Configuration Server 90

MAX_TIME_IN_SPOOL = 4320

MGR_MAIL_ID = ConfigServer@HP.com

RETRY_INTERVAL = 300

SMTP_PORT = 25

UNIX Example:

[MGR_SMTP_MAIL]

DNS_SERVER = 192.168.1.20

MAIL_DIR = /opt/cmconfigsrvr/MAIL

MAIL_TIMEOUT = 60

MAX_TIME_IN_SPOOL = 4320

MGR_MAIL_ID = config_server@hp.com

RETRY_INTERVAL = 300

SMTP_PORT = 25

Table 52 MGR_SMTP_MAIL Values

Setting Value as Installed Default Value

DNS_SERVER N/A NONE

MAIL_DIR as specified during installation current_directory

MAIL_TIMEOUT N/A 60

MAX_TIME_IN_SPOOL 4320 minutes (3 days) 4320 minutes (3 days)

MGR_MAIL_ID as specified during installation sending_address

RETRY_INTERVAL 300 seconds (5 minutes) 300 seconds (5 minutes)

SMTP_PORT as specified during installation 25

Performance and Usage Considerations

• If storage capacity is an issue, decrease the MAX_TIME_IN_SPOOL
value. This will decrease the length of time messages are retained.

• Increase the RETRY_INTERVAL value to use fewer system processing
resources.

• DNS_SERVER: For cross-platform compatibility, operating system
network settings for DNS servers are not used by the Configuration
Server mail delivery. Therefore, in order to ensure delivery of all e-mail

Tuning the Configuration Server 91

(including license warning messages) that are sent by the Configuration
Server, DNS_SERVER must be defined.

Tuning the Configuration Server 92

MGR_SNMP
This section contains SNMP-related parameters that include where SNMP
traps are to be sent and how to control the behavior of the built-in SNMP
agent.

Table 53 MGR_SNMP Settings

Setting Description

RUN_AS_EXTENSION • If YES, the Windows SNMP service is the primary
SNMP agent, and HP SNMP transactions are processed
by a HP SNMP extension DLL. If so, SNMP_PORT and
SNMP_IP_ADDR are not used because SNMP port
access is handled by the Windows SNMP service. The
value of SNMP_COMMUNITY will be used for insertion
into traps that are issued by the Configuration Server,
but will not be used to authenticate GET and SET
commands.

• If NO, the Configuration Server will act as the primary
SNMP agent, and SNMP_COMMUNITY should be
specified, while SNMP_IP_ADDR and SNMP_PORT can
be specified to override their defaults.

SNMP_COMMUNITY This is a password that incoming SNMP transactions must
match. It should be set to a character string. The string will be
used as the SNMP community name by the agent. The default
is public.
Note: This keyword is effective only if
RUN_AS_EXTENSION=NO.

SNMP_IP_ADDR The TCP/IP address of the local network adapter card on
which the agent is to receive SNMP transactions. The default
is 0.0.0.0, meaning any adapter on the machine can be used.
Note: This keyword is effective only if RUN_AS_EXTENSION=NO
and there are several adapters on the machine, and a specific
adapter is to receive SNMP transactions.

Tuning the Configuration Server 93

Setting Description

SNMP_MANAGER_IP
_ADDR
SNMP_MANAGER_IP
_ADDR2
SNMP_MANAGER_IP
_ADDR3

The SNMP Managers at the IP addresses specified here are
authorized to issue GET and SET commands for variables
supported by the agent.
The SNMP Manager specified for
SNMP_MANAGER_IP_ADDR is considered the primary
SNMP Manager. This field is required because it specifies two
things: 1) the receiving location of traps generated by the
Configuration Server, and 2) the address of the authorized
source for SNMP commands.

SNMP_MANAGER
_PORT

This parameter is used to specify the remote TCP/IP port to
which the Configuration Server sends its traps. The default is
port 162.

SNMP_PORT This parameter is used to specify the TCP/IP port on which
the agent receives SNMP transactions. The default is port
161.
Note: This keyword is effective only if
RUN_AS_EXTENSION=NO.

SNMP_SET
_COMMUNITY

This parameter can be set to a character string. The agent will
use this string as the SNMP community name when it is
attempting to authorize SET commands. If this keyword is not
specified, the community name given by
SNMP_COMMUNITY is used for SET commands.
Note: This keyword is effective only if
RUN_AS_EXTENSION=NO.

SNMP_ZERROR
_SEVERITY

This parameter is used to specify the severity of ZERROR
instances to send as SNMP traps. The trap is sent when the
Configuration Server adds an error instance to its ZERRORM
for an error whose severity is greater than or equal to the
value specified by this parameter. The parameter can be set to
a positive value between 0 and 99; the default is 12.

Example

[MGR_SNMP]

RUN_AS_EXTENSION = NO

SNMP_COMMUNITY = public

SNMP_IP_ADDR = 0.0.0.0

Tuning the Configuration Server 94

SNMP_PORT = 162

SNMP_MANAGER_IP_ADDR = 183.235.246.32

SNMP_ZERROR_SEVERITY = 12

Table 54 MGR_SNMP Values

Setting Value as Installed Default Value

RUN_AS_EXTENSION YES NO

SNMP_COMMUNITY public public

SNMP_IP_ADDR 0.0.0.0 0.0.0.0

SNMP_MANAGER_IP_ADDR N/A N/A

SNMP_MANAGER_PORT N/A 162

SNMP_PORT 161 161

SNMP_SET_COMMUNITY N/A N/A

SNMP_ZERROR_SEVERITY 12 12

Performance and Usage Considerations

There are no performance or usage issues with any of the SNMP parameters.
If you do not start zsnmpmgr, you are not starting the HPCA agent, and are
running one less task in the Configuration Server.

Tuning the Configuration Server 95

MGR_SSL
This section specifies the operational settings for an SSL Manager. For more
information on configuring and using an SSL Manager, see Chapter 9, SSL
Managers.

Table 55 MGR_SSL Settings

Setting Description

CA_FILE Sets the Certificate Authority’s certificate. The CA certificate is
usually stored in a file in Privacy Enhanced Mail (PEM) format.
The SSL Manager needs a CA certificate to start up. If it’s
expired or corrupt it prevents the SSL Manager from starting up.

CERTIFICATE_FILE Sets the Configuration Server or the server certificate. The
certificate is usually stored in a file in PEM format. This value
must be a valid and existing certificate file. The SSL Manager
needs a certificate to start up. An expired or corrupt certificate
will prevent the SSL Manager from starting up.

KEY_FILE Sets the private key. The private key is usually stored in a file in
PEM format. This value must be a valid and existing key file. The
private key is usually stored in the same file as the server
certificate, in which case, you don’t have to specify any value for
the key file.

KEY_PASSWORD The password that is used to encrypt the private key, the one
specified in the KEY_FILE keyword. This is usually needed if the
private key is encoded. If the private key is not encoded, you don’t
need to specify this parameter.

Note: This setting is not automatically added to the edmprof file
by the installation; it must be manually added by an HPCA
administrator.

SSL_CIPHERS Specifies the preferred OpenSSL ciphers to use for SSL
connections between the Configuration Server and other HPCA
components. For example:
ALL:ADH:RC4+RSA:+HIGH:+MEDIUM:+EXP:+eNULL

If you do not specify SSL_CIPHERS, the default ciphers are used:
ALL:ADH:RC4+RSA:+HIGH:+MEDIUM:+LOW:+SSLv2:+EXP:+eNULL

Refer to the OpenSSL web site additional information:

http://openssl.org/docs/apps/ciphers.html

http://openssl.org/docs/apps/ciphers.html

Tuning the Configuration Server 96

Setting Description

SSL_PORT The port on which the SSL Manager will listen for HPCA agent
connects.

VERIFY_CLIENT Specifies whether the Configuration Server should verify the
HPCA agent by requesting a certificate from it. If the HPCA
agent doesn’t have a certificate, the connection will be dropped.

Note: This setting is not automatically added to the edmprof file
by the installation; it must be manually added by an HPCA
administrator.

Example

[MGR_SSL]

CA_FILE = w:\openssl\ms\cacert.pem

CERTIFICATE_FILE = w:\openssl\ms\srvcert.pem

KEY_FILE = w:\openssl\ms\srvprvk.pem

KEY_PASSWORD = violin

SSL_PORT = 3456

SSL_CIPHERS = ALL:ADH:RC4+RSA:+HIGH:+MEDIUM:+EXP:+eNULL

VERIFY_CLIENT = Y

Performance and Usage Considerations

• In order for an SSL Manager to function, CMD_LINE=(zsslmgr)
RESTART=YES must be specified in the MGR_ATTACH_LIST section.

• The settings are placeholders and, as such, are not used until an SSL
add-on is installed.

Tuning the Configuration Server 97

MGR_STARTUP
This section specifies startup information for the Configuration Server.

After a successful installation:
DO NOT change MANAGER_TYPE, MEMORY_TYPE, MGR_ID,
MGR_NAME, or TASK_TYPE, unless advised to do so by HP
Technical Support.
DO NOT change or delete MGR_UUID unless instructed to do so by
HP Technical Support.

Table 56 MGR_STARTUP Settings

Setting Description

ALLOW_DUPLICATE
_IP_ADDRESS

NO will cause the Configuration Server to reject a second log on
if one from the same IP address is already active.
YES will allow multiple concurrent IP connections from the
same HPCA agent IP address.

BYTE_LEVEL_DIFF Turns on byte-level differencing during resolution.

MANAGER_TYPE Type of Configuration Server; valid values are DISTRIBUTED
(the default), SERVER, and STANDALONE. For more
information on this setting, see MANAGER_TYPE Values on
page 101.
Note: If the Configuration Server is going to participate in
Distributed Configuration Server operations, its type must be
DISTRIBUTED or SERVER.
Important Note: Do not alter this setting unless instructed to do
so by HP Technical Support.

MEMORY_TYPE Reserved for future development.
Important Note: Do not alter this setting unless instructed to do
so by HP Technical Support.

Tuning the Configuration Server 98

Setting Description

MGR_ID A three-byte, hexadecimal identifier for the Configuration
Server log file. This ID is used in the CSDB to identify
Configuration Servers in a Distributed Configuration Server
environment, and is passed to the HPCA agent as the
ZOBJMID variable.
Valid values are any combination of 001 to EFF.
Important Note: Do not alter this setting unless instructed to do
so by HP Technical Support.

MGR_NAME Configuration Server name.
Important Note: Do not alter this setting unless instructed to do
so by HP Technical Support.

MGR_UUID The Universal Unique Identification Number (UUID) of the
Configuration Server. This 32-byte ID is generated
automatically during the installation and is used exclusively for
licensing.
Important Note: Do not change or delete this value.

OBJECTID_
FORMAT

This setting determines which format will be used for
generating object IDs.

• Specify 1 to use the established algorithm.
• Specify 2 to use the new algorithm.
• If the value is absent or invalid, the default of 1 is

assumed and the established algorithm is used.
Note: For more information on this setting, see the section,
OBJECTID_FORMAT, on page 100.

SHOW_VERINFO Displays version information in the Configuration Server log at
startup.

TASK_TYPE Reserved for future development.
Important Note: Do not alter this setting unless instructed to do
so by HP Technical Support.

TCP_PORT Port on which to listen for TCP/IP HPCA agent connects. The
default is 3464.
Note: This setting will be overridden by specifying a TCP/IP
port in the MGR_ATTACH_LIST section. See
MGR_ATTACH_LIST on page 38 for more details.

Tuning the Configuration Server 99

Setting Description

VERBOSE Sends messages to the screen (stderr) when the Configuration
Server starts up, verifies the license, verifies the CSDB, loads
cache, and readies IP Managers (TCP and SSL) for processing
and when shutting down.

Example

[MGR_STARTUP]

BYTE_LEVEL_DIFF = NO

MANAGER_TYPE = DISTRIBUTED

MGR_ID = 001

MGR_NAME = RCS

MGR_UUID = ssed111454d6kgh4eh7g3md90f94d6k8

OBJECTID_FORMAT = 2

SHOW_VERINFO = YES

TASK_TYPE = THREAD

TCP_PORT = 3464

VERBOSE = NO

Table 57 MGR_STARTUP Values

Setting Value as
Installed

Default Value Minimum
Value

Maximum
Value

ALLOW_DUPLICATE
_IP_ADDRESS

YES NO N/A N/A

BYTE_LEVEL_DIFF N/A NO N/A N/A

MANAGER_TYPE DISTRIBUTED DISTRIBUTED N/A N/A

MEMORY_TYPE SHARED SHARED N/A N/A

MGR_ID As specified 001 000 EFF (F00-FFF
are reserved)

MGR_NAME As specified EDM N/A N/A

MGR_UUID N/A N/A N/A N/A

OBJECTID_FORMAT 2 1 N/A N/A

Tuning the Configuration Server 100

Setting Value as
Installed

Default Value Minimum
Value

Maximum
Value

SHOW_VERINFO N/A YES N/A N/A

TASK_TYPE THREAD THREAD N/A N/A

TCP_PORT 3464 1029 N/A N/A

VERBOSE N/A NO N/A N/A

Performance and Usage Considerations

• If MANAGER_TYPE is set to STANDALONE, the Configuration Server
will not be eligible for Distributed Configuration Server functionality.
(See the section, MANAGER_TYPE Values on page 101.)

• MGR_ID must be a three-character, alphanumeric, hexadecimal string.
(Valid values are 001 to EFF.)

• If running the Configuration Server as a Windows Service, VERBOSE
will be disabled.

OBJECTID_FORMAT

A CSDB object’s ID is a unique, 12-character, hexadecimal identifier
that is automatically generated and assigned when a CSDB object is
created.

The time-based format of object ID generation eliminates the possibility of
randomly generating a duplicate object ID because each object ID begins with
the letter A, B, C, E, or F—differing from the old format, which used only the
letter D as a prefix.

The format of CSDB object IDs is AmmmXXXXXXXX, where:

A = the new prefix letter (A, B, C, E, or F)

mmm = the Configuration Server ID (see MGR_ID on page 98)

XXXXXXXX = the unique value in hexadecimal format

Tuning the Configuration Server 101

Specifying the object ID generation format affects new object ID
generation only; it has no impact on existing object IDs.
When the time-based generator counter wraps, this format will
automatically start prefixing the object IDs with the next sequential
letter.

MANAGER_TYPE Values

The values for the MANAGER_TYPE settings are described in more detail
below.

• DISTRIBUTED: The CSDB is read- and write-enabled and can be
updated by various means; this CSDB can participate in HPCA-DCS
operations in which it can function as Source, Destination, or both.

This is the MANAGER_TYPE external default.

• SERVER: The CSDB is read-only; it cannot be updated; in order to run,
it requires that OBJECTID_FORMAT=2 and object ID cache be disabled;
this CSDB can participate in HPCA-DCS operations, but only as
Destination or middle-tier.

• STANDALONE: The CSDB is read- and write-enabled for the
Administrator and Configuration Server methods from HPCA agent
connects; this CSDB cannot participate in DCS operations.

This is the MANAGER_TYPE internal default.

If the value of the MANAGER_TYPE setting is anything other
than DISTRIBUTED or SERVER (including no value and
invalid values), it will assume the MANAGER_TYPE internal
default of STANDALONE.

MANAGER_TYPE=SERVER

If MANAGER_TYPE=SERVER then, by default, two subsequent conditions
will exist:

• the OBJECTID_FORMAT=2 algorithm will be used for object ID
generation, and

• object ID caching will be disabled.

For more information about how this setting affects DCS operations, refer to
the HP Client Automation Distributed Configuration Server Guide.

Tuning the Configuration Server 102

MGR_TASK_LIMIT
An HPCA administrator can use this section of the edmprof file to specify the
various settings that are related to Configuration Server tasks.

Table 58 MGR_TASK_LIMIT Settings

Setting Description

TASK_HEAP_SIZE This setting controls the heap size of a task (used in conjunction
with MGR_POOLS).
Note: This setting is not applicable to the current release of the
Configuration Server.

TASKLIM The maximum number of HPCA agent tasks allowed to
concurrently run on the Configuration Server.

TASK_LOG_LIM The maximum number of lines, per HPCA agent, that can be
written to the Configuration Server log.

TASK_RESO_LIM The maximum number of resolutions allowed per HPCA agent.

TASK_STACK_SIZE This setting defines how many variables can be used per task.

Example

[MGR_TASK_LIMIT]

TASK_HEAP_SIZE = 0

TASKLIM = 20

TASK_LOG_LIM = 0

TASK_RESO_LIM = 64000

TASK_STACK_SIZE = 64000

Table 59 MGR_TASK_LIMIT Values

Setting Value as
Installed

Default Value Minimum
Value

Maximum
Value

TASK_HEAP_SIZE 0 0 0 4 GB

TASKLIM 50 0 0 32 KB

TASK_LOG_LIM 0 100000 Lines 0 N/A

Tuning the Configuration Server 103

Setting Value as
Installed

Default Value Minimum
Value

Maximum
Value

TASK_RESO_LIM 64000 64000
Resolutions

1 64000

TASK_STACK_SIZE 64000 64000 16384 64000

Do not change the TASK_STACK_SIZE setting in this section
unless advised to do so by a member of HP Technical Support.

Performance and Usage Considerations

• The MGR_TASK_LIMIT settings should be coordinated with values in
the MGR_NOTIFY and MGR_RETRY sections.

• TASK_STACK_SIZE will affect the depth of resolution. Higher values
will result in deeper resolution.

Tuning the Configuration Server 104

MGR_TIMEOUT
This section specifies how long the Configuration Server will wait for a
request from a connected HPCA agent before disconnecting that HPCA agent
due to inactivity (no requests/responses from the HPCA agent).

Table 60 MGR_TIMEOUT Settings

Setting Description

ADMIN_TIMEOUT Timeout (in seconds) for administrator functions.

SEND_THROTTLE Timeout (in milliseconds) before each send.

TIMEOUT_COMM Communications (receive) timeout (in seconds).

Example

[MGR_TIMEOUT]
ADMIN_TIMEOUT = 0
SEND_THROTTLE = 0
TIMEOUT_COMM = 1800

Table 61 MGR_TIMEOUT Values

Setting Value as
Installed

Default
Value

Minimum
Value

Maximum
Value

ADMIN_TIMEOUT 0 (never time out) 0 (never time
out)

0 32767

SEND_THROTTLE N/A 0 0 4 GB

TIMEOUT_COMM 1800 (seconds) 0 (never time
out)

0 32767

Performance and Usage Considerations

• If processing resources are critical, increase these MGR_TIMEOUT
values.

• The MGR_TIMEOUT settings should be coordinated with values in the
MGR_RETRY section.

• The SEND_THROTTLE value can be overridden by bandwidth throttling
variables sent up in an HPCA agent object.

Tuning the Configuration Server 105

• TIMEOUT_COMM is the Configuration Server analog to the HPCA agent
ZTIMEO. If a connect is active and the Configuration Server has not
received any data from an HPCA agent for the TIMEOUT_COMM value,
the Configuration Server will terminate the session.

Tuning the Configuration Server 106

MGR_TPINIT
This section specifies packet sizes to send to HPCA agents.

Table 62 MGR_TPINIT Settings

Setting Description

BUFTCP TCP buffer size used for send/receive.

GET_REMOTE
_HOST_NAME

Controls the Configuration Server’s attempt to obtain the
host_name from the DNS server. The default is NO.

Note: Do not set to YES if the Configuration Server is not in a
dynamic TCP/IP environment (such as DNS and DHCP).

MAXREC Maximum record size.

Do not change any settings in this section unless advised to do so by
a member of HP Technical Support.

Example

[MGR_TPINIT]

BUFTCP = 12288

GET_REMOTE_HOST_NAME = NO

MAXREC = 6144

Table 63 MGR_TPINIT Values

Setting Value as Installed Default Value

BUFTCP 12288 12288

GET_REMOTE_HOST_NAME NO NO

MAXREC 6144 6144

Performance and Usage Considerations

• The buffer size reflected in the MGR_TPINIT settings should be the same
for the Configuration Server and HPCA agents.

Tuning the Configuration Server 107

• Any buffer size setting in the MGR_TPINIT section should only be
changed in coordination with equivalent changes to HPCA agents and
after having been directed to do so by a member of HP Technical Support.

• Do not use GET_REMOTE_HOST_NAME if the Configuration Server is
not in a dynamic TCP/IP environment. This will cause the Configuration
Server to expend unnecessary processing time attempting to associate the
remote host name.

If GET_REMOTE_HOST_NAME=YES, the Configuration Server obtains
the remote host name using standard library calls. The IPNAME is
received on the Configuration Server (via DNS) and stored in
ZMASTER.ZIPNAME, which is stored in the appropriate domain of the
PROFILE File.

The remote host name will appear in each associated line of the
Configuration Server log in place of the IP address.

Tuning the Configuration Server 108

MGR_TRACE
This section contains a list of keywords (settings) that you can specify in
order to control and influence diagnostic logging for the Configuration Server.
All diagnostic output produced by TRACE settings is written to the active
Configuration Server log. To activate a TRACE keyword, specify YES. To de-
activate a TRACE keyword, specify NO.

TRACE keywords specified in this section are invoked at Configuration
Server initialization, and remain in effect:

• until they are changed by altering the MGR_TRACE setting and
restarting the Configuration Server.

• while the Configuration Server is running, using the Console.

• until a specified REXX overrides the setting.

• unless a ZCVT value overrides the setting.

The trace settings that are in effect at Configuration Server initialization are
displayed at the beginning of the log.

The value for each setting is evaluated in the order in which it is
presented in the edmprof file. The results can be non-intuitive. For
example:

• If ALL=YES is the first setting specified, and each following
settings are specified as NO, the effect is to turn off tracing.

• If ALL=YES is the last setting specified, all tracing will be
active.

• If ALL=NO is the last setting, all tracing is turned off.

Table 64 MGR_TRACE Settings

Setting Description

ADMIN Traces ADMIN transaction flow.

ADMPROM Not used.

ALL Turns on all other traces.

ALLOC Traces file allocations.

AUDIT Traces audit file activity.

BUFF Traces data buffers (without transformation).

CMPR Traces data compression.

Tuning the Configuration Server 109

Setting Description

COMM Traces data stream buffers.

COMMCBS Traces communications control block (CCB) activity.

COMMDATA Traces data communications.

COMMRPLS Traces communications control blocks (CCBS).

CONFIG Traces configuration file activities.

DATA Traces data buffers to or from the HPCA agent.

DES This setting is no longer used.

DMA Traces Distributed Configuration Server activity.

ENQDEQ Traces serialization activity (enqueues/dequeues).

EXPL Traces data transformation (explode).

FILE Traces file I/O.

IMPL Traces data transformation (implode).

LOOKASID Traces cache activity for classes/instances.

METHOD Traces Configuration Server method execution/return codes.

NOTIFY Traces notify processing.

OBJCRC Traces object CRC processing.

OBJRES Traces object resolution (very detailed).

OBJRES1 Traces object resolution (medium detail).

OBJRESO Traces high-level object resolution flow (light detail).

OBJXFER Traces object transfer.

PASSWORD Traces passwords.

POOLMISS Traces memory pool allocation.

PROFILE Traces profile database activity.

PROMOTE Traces file promotion.

RESOURCE Traces resource file activity.

REXX Traces REXX environment.

REXXOFF Suppresses all REXX activity.

Tuning the Configuration Server 110

Setting Description

STORAGE Traces storage in conjunction with the MGR_LOG’s
STORAGE_INTERVAL setting.

STATS Traces statistics.

SUBST Traces variable substitution.

TCP Traces TCP/IP activity.

TEST Reserved.

VAR Traces the variable references.

VARSTG Traces variable processing storage usage.

VARSUB Traces variable substitution activity.

YEAR2000 Traces a database’s Year-2000 compliance.

Example

[MGR_TRACE]

ADMIN = NO

ADMPROM = NO

ALLOC = NO

AUDIT = NO

BUFF = NO

CMPR = NO

COMM = NO

COMMCBS = NO

COMMDATA = NO

COMMRPLS = NO

CONFIG = NO

DATA = NO

DMA = NO

ENQDEQ = NO

EXPL = NO

FILE = NO

IMPL = NO

Tuning the Configuration Server 111

LOOKASID = NO

METHOD = NO

NOTIFY = NO

OBJCRC = NO

OBJRES = NO

OBJRES0 = NO

OBJRES1 = NO

OBJXFER = NO

PASSWORD = NO

POOLMISS = NO

PROFILE = NO

PROMOTE = NO

RESOURCE = NO

REXX = NO

REXXOFF = NO

STATS = YES

STORAGE = NO

SUBST = NO

TCP = NO

TEST = NO

VAR = NO

VARSTG = NO

YEAR2000 = NO

ALL = YES

Performance and Usage Considerations

• Turning on trace flags generates a large number of Configuration Server
log messages. This will degrade the performance of the Configuration
Server due to the disk I/O load. However, this might be necessary at
times for problem resolution. Ensure that the Configuration Server log is
properly configured.

• Tracing can be clustered in order to troubleshoot a particular aspect of
Configuration Server operations, while simultaneously preserving an
appropriate level of logging activity. For example, turning on flags, such

Tuning the Configuration Server 112

as OBJCRC, OBJRES, OBJRES1, OBJRES0, and OBJXFER, can help
identify problems that might be occurring during object resolution.
Likewise, CPIC, DATA, and TCP focus on communications activities.
(Note that some of these traces pertain to specific protocols.) Special
purpose trace flags include DMA, NOTIFY, REXX, and METHOD.

• STORAGE=YES can be used to produce a message in the log each time a
storage allocation is made and freed. This can be used to tune the pool
and to understand the Configuration Server’s use of dynamic memory.

• ALL=YES does not affect the REXXOFF trace settings.

Tuning the Configuration Server 113

MGR_USERLOG
This section specifies the logging directory and logging options for the user
logging facility.

Table 65 MGR_USERLOG Settings

Setting Description

ACTIVATE Activate user log at Configuration Server startup. Values are YES
and NO.

DIRECTORY Fully qualified directory path where the user log is written.

FLUSH_SIZE The number of bytes between automatic flushes of operating system
buffers for Configuration Server log file.

MESSAGE_WIDTH The maximum width (in bytes) of the messages in the user log.

PIPE_SIZE The maximum amount (in bytes) of log messages that can be queued
by the Configuration Server logging facility while the log file is
busy.
When this value is reached, any task that issues a log message will
freeze until the pipe starts emptying.

THRESHOLD
THRESHHOLD
(both spellings
accepted)

Maximum number of messages that will be written to a log before
automatically switching to the next log. When the limit is reached,
new log files are created. Specify a negative number to overwrite the
log file when the limit is reached.

Examples

UNIX Example

[MGR_USERLOG]

ACTIVATE = NO

DIRECTORY = /opt/HP/CM/ConfigurationServer/log

FLUSH_SIZE = 256

MESSAGE_WIDTH = 256

PIPE_SIZE = 1000000

THRESHOLD = 5000000

Windows Example

[MGR_USERLOG]

Tuning the Configuration Server 114

ACTIVATE = NO

DIRECTORY = C:\Program Files\Hewlett-Packard\CM\
ConfigurationServer\log

FLUSH_SIZE = 256

MESSAGE_WIDTH = 256

PIPE_SIZE = 1000000

THRESHOLD = 5000000

Table 66 MGR_USERLOG Values

Setting Value as
Installed

Default Value Minimum
Value

Maximum
Value

ACTIVATE NO NO N/A N/A

DIRECTORY /edmmgr/log current_directory N/A N/A

FLUSH_SIZE 256 bytes 100000 bytes 1 N/A

MESSAGE_WIDTH 256 bytes 90 80 N/A

PIPE_SIZE 1000000 bytes 65535 bytes 1 N/A

THRESHHOLD -5000000 bytes 5000 bytes 1 N/A

Performance and Usage Considerations

• Increasing the FLUSH_SIZE will enhance performance, but will delay
messages flushed to the log file.

• Increase MESSAGE_WIDTH if log messages are being truncated.

• When modifying parameters in this section as they relate to memory or
disk use, be sure that the maximum amount of memory or storage space
is available.

User Log Naming Conventions

The user log names conform to the following operating system specific
conventions.

ISO is the International Standards Organization.

Configuration Server ID is the value of the edmprof file’s setting
MGR_STARTUP.MGR_NAME.

Windows

Tuning the Configuration Server 115

— The standard log naming format is the user log prefix (nvd), followed
the user designation (ur), and the Configuration Server ID:

nvdur001.log

— The log switch format is similar to the standard but an us (rather
than ur) is added to the prefix, and the ISO-formatted date and time
(each preceded by an underscore) appended:

nvdus001_20050427_083357.log

— The log wrap (dump) format is similar to the standard but sees the r
being replaced by a d:

nvdud001.log

UNIX

— The standard log naming format is the user log prefix (nvd), followed
by the Configuration Server ID, then an underscore, and the user
designation:

nvd001_user.log

— The log switch format is similar to the standard but an s is added to
the prefix, and the ISO-formatted date and time (each preceded by an
underscore) appended:

nvds001_user_20050427_075835.log

— The log wrap (dump) format sees dump being added to the user
designation:

nvd001_userdump.log

Tuning the Configuration Server 116

OBJECT_SIZES

The OBJECT_SIZES section must be manually added to the
edmprof file.

Additionally, this section must be added to the edmprof file in order
for the Configuration Server self-tuning tool to operate properly.

This section accommodates specifying the number of heaps and the heap size
for CSDB objects that are being created on the Configuration Server as in-
storage CSDB objects.

• These values affect only the Configuration Server self-tuning tool; they
have no impact on other Configuration Server processing.

• The format for specifying these values is:

OBJECT_NAME = heap_size,number_of_heaps

For example:

ZCONTROL = 512,100000

In this example, whenever an object named ZCONTROL is created in the
Configuration Server as an in-storage object, its initial allocation will be
for 100,000 heaps of 512 bytes each.

ZERROR = 400,1000

In this example, whenever an object named ZERROR is created in the
Configuration Server as an in-storage object, its initial allocation will be
for 1000 heaps of 400 bytes each.

For a detailed description of how these settings affect the
Configuration Server self-tuning tool, see Configuration Server Self-
Tuning Tool on page 129.

Example

[OBJECT_SIZES]

FILE = 1536,2000
RELEASE = 420,1536
WBEMAUDT = 6000,100
MSIFEATS = 512,100
ZOBJSTAT = 512,270
PRODUCT = 1024,200
ZREQDATA = 200,100
ASERVICE = 3000,60

Tuning the Configuration Server 117

ZSERVICE = 4000,60
ZREQNEWI = 150,15
MSIPROPS = 1024,30
ZERROR = 512,10
UMFLTCRI = 1536,23
WBEM = 1024,20
APPEVENT = 1024,5
SAPSTATS = 1024,10
SAP = 1024,10
CLISTATS = 512,5
UMFLTRUL = 600,4
DESKTOP = 2000,3
MSI = 2000,5
REGISTRY = 1536,5
PATH = 1024,3
ZCONFIG = 4000,1
ZMASTER = 3000,1
TIMER = 1536,2

Tuning the Configuration Server 118

RCS_TUNING_CONTROL

The RCS_TUNING_CONTROL section must be manually added to
the edmprof file.

Additionally, this section must be added to the edmprof file in order
for the Configuration Server self-tuning tool to operate properly.

This section provides a mechanism to override the default values that are
specified in the Configuration Server self-tuning tool and these are described
in the following table. (For a look at the Configuration Server self-tuning tool,
see Configuration Server Self-Tuning Tool on page 129.)

Table 67 RCS_TUNING_CONTROL Settings

Setting Description

MAXIMUM_MEG_
CACHE

A four-digit integer value that specifies the maximum number
of MBs that are to be allocated to CONTENT CACHE.
Note: This setting provides protection when the size of a class
(or classes) would exceed the virtual storage of the process
space. In the case that one class exceeds this value, that class
is forced to be cached on first reference (=Y,N).

MINIMUM_MEG_
CACHE

A four-digit integer value that specifies the minimum number
of MBs that are to be allocated for CONTENT CACHE.

MAXIMUM_SHARED
_MEMORY_SEGMENTS

A two-digit integer value that specifies the
maximum_number_of_segments times the
largest_shared_memory_size.

Note: This value must be less than 15 because the value
cannot exceed the size of the process space (generally, 2 GB
[2*1024*1024*1024]).

MAXIMUM_SHARED
_MEMORY_SIZE

A four-digit integer value that specifies the maximum number
of MBs that are be allocated to any single CONTENT CACHE
segment.
Notes: If the aggregate size of CONTENT CACHE exceeds this
value, it should be allocated as multiple segments—each less
than this value in size.
This value anticipates the UNIX requirements for tuning
where shared memory sizes are a kernel parameter and not
easily changed.

Tuning the Configuration Server 119

Setting Description

MAXIMUM_CLASS_
INSTANCES

A ten-digit integer value that specifies the maximum number
of instance elements that can exist in a class that might be
cached at startup.
Note: Any class with more instances will be marked (=Y,N) as
“cache on first reference.”

MINIMUM_
INSTANCES

A five-digit integer value that specifies the minimum number
of instance elements for which ICACHE and CONTENT
CACHE are intended to be sized.

UPDATE_RCS_
STARTUP

A YES-NO toggle for updating the startup of the
Configuration Server.

The default (NO) leaves the edmprof file unchanged and
creates the file EDMPROF_TUNED.DAT_.

Example

[RCS_TUNING_CONTROL]

MAXIMUM_MEG_CACHE = 1500
MINIMUM_MEG_CACHE = 50
MAXIMUM_SHARED_MEMORY_SEGMENTS = 6
MAXIMUM_SHARED_MEMORY_SIZE = 32
MAXIMUM_CLASS_INSTANCES = 100000
MINIMUM_INSTANCES = 10000
UPDATE_RCS_STARTUP = YES

Table 68 RCS_TUNING_CONTROL Values

Setting Value as
Installed

Default
Value

Minimum
Value

Maximum
Value

MAXIMUM_MEG
_CACHE

None 1500 None None

MINIMUM_MEG
_CACHE

None 200 None None

MAXIMUM_SHARED
_MEMORY_SEGMENTS

None 6 None None

MAXIMUM_SHARED
_MEMORY_SIZE

None 384 None None

MAXIMUM_CLASS
_INSTANCES

None 100000 None None

Tuning the Configuration Server 120

Setting Value as
Installed

Default
Value

Minimum
Value

Maximum
Value

MINIMUM_INSTANCES None 50000 None None

UPDATE_RCS_STARTUP None NO None None

Tuning the Configuration Server 121

SECTION_DELIMITERS

This section is not a true section of the Configuration Server edmprof file. It
is used only to specify the symbols that will be used to delimit section names
in the edmprof file.

If used, SECTION_DELIMITERS must be the very first entry and
the first non-blank line in the edmprof file. If it is not, the
Configuration Server will not be able to read-in the license string
and will not start up.

Table 69 SECTION_DELIMITERS Settings

Setting Description

SECTION_
DELIMITERS

The character set that is to be used to enclose the section headings of
the edmprof file. The format is SECTION_DELIMITERS = xy, where x
and y are the left and right delimiters.

The options are: [], (), <>, and {}.

Examples

SECTION_DELIMITERS = <>

<MGR_LICENSE>
LICENSE_STRING = FFCDAB

SECTION_DELIMITERS = []

[MGR_LICENSE]
LICENSE_STRING = FFCDAB

Table 70 SECTION_DELIMITERS Values

Setting Value as Installed Default Value

SECTION_DELIMITERS N/A []

Tuning the Configuration Server 122

123

3 Managing Configuration Server
Processing

At the end of this chapter, you will:

• Have a better understanding of the HP Client Automation Configuration
Server (Configuration Server) processing.

• Know how to customize the processing flow using REXX programs and
methods.

Managing Configuration Server Processing 124

Configuration Server Operations
Configuration Server operations has three basic phases:

• Startup

• Processing Requests

• Shutdown

Configuration Server startup is initiated by icon, command line, console, or
control panel, depending on the platform and installation. In the Startup
phase, the Configuration Server initializes ZTOPTASK. Using the
Configuration Server edmprof file to provide the working parameters for
configuring the Configuration Server, ZTOPTASK then starts the Task
Manager. After the various tasks specified in MGR_ATTACH_LIST are
activated, the Configuration Server is ready to process requests.

A request can be sent to the Configuration Server as a system command, an
HPCA agent connect, an administrative transaction, or a Distributed
Configuration Server command. During the Processing Requests phase, the
Configuration Server performs the requests (tasks) that are submitted to it.
There are four types of tasks.

• System
These tasks pertain to Configuration Server functions.

• Client
These tasks pertain to HPCA agent requests.

• Admin
These tasks pertain to HPCA Admin CSDB Editor and Publisher
operations.

• Distributed Configuration Server
These tasks pertain to Distributed Configuration Server functions.

The type of task is shown in each line of the Configuration Server log, as
shown in the following example.

NVD1069I 13:49:52 [208.244.225.166 /16B] Radia Client
Max size of local memory allocated : 230805

NVD8115I 13:50:30 [ztoptask/17B] System Task
REXX Method <D:\DEV\MGR\REXX\ZSHUTDWN> with parms <%s> started at
<13:50:30:574>

Like startup, Configuration Server shutdown can be initiated in a number of
ways. In the Shutdown phase, the Configuration Server performs some basic
housekeeping, then essentially reverses the startup flow. The Configuration

Managing Configuration Server Processing 125

Server is now down, allowing you to run a backup, use the database utilities,
apply maintenance, or perform other operating system tasks.

Customizing Configuration Server Processing

The values in your Configuration Server edmprof file allow you to customize
its overall configuration. There are two main ways of customizing the flow of
Configuration Server processing:

• Configuration Server REXX programs and

• Configuration Server methods.

The primary difference is that REXX programs are preconfigured, while the
methods can be inserted anywhere in the processing flow.

This chapter describes the Configuration Server REXX programs and
Configuration Server methods. An overview of the methods is presented in
Configuration Server Methods, on page 158. Also Appendix A, Configuration
Server Methods, details each method, providing an example of its use, a
description, its associated parameters, and possible return codes.

Configuration Server REXX Programs

REXX Directories

The Configuration Server installation creates two REXX-related directories,

UNIX Windows

/opt/HP/CM/Configuration
Server/rexx

System Drive:\Program Files\Hewlett-
Packard\CM\ConfigurationServer\rexx

/opt/HP/CM/Configuration
Server/rexx/NOVADIGM

System Drive:\Program Files\Hewlett-
Packard\CM\ConfigurationServer\rexx\NOVADIGM

The rexx directory is empty, and the rexx/NOVADIGM (rexx\NOVADIGM)
directory contains all the HP-related REXX programs.

The ConfigurationServer/rexx (ConfigurationServer\rexx)
directory can be renamed to further distinguish it from the HP
REXX directory.

Managing Configuration Server Processing 126

Customizing the HP REXX Programs

The HP REXX programs can be customized in order to adapt to, and enhance,
various computing environments. To customize any of these REXX programs,
copy them from the rexx\NOVADIGM (rexx/NOVADIGM) directory to the rexx
directory, then modify them as needed.

Do not make any changes to the REXX programs in the
rexx\NOVADIGM (rexx/NOVADIGM) directory.
Doing so will adversely affect the performance of the CSDB.

There are two reasons that HP REXX programs have to be copied to the rexx
directory prior to being modified:

• If a REXX is customized and left in the \rexx\NOVADIGM directory, the
customizations could be lost (overwritten) if a database update is applied,
thereby affecting the behavior and execution of the database operations.

• During processing, the database reads the \rexx directory first.
Therefore, place any customized REXXs in that directory.

Event Points

There are eight event points at which the Configuration Server issues calls to
ten major REXX programs. Table 71 below lists these REXX programs and
the points at which they are called.

Table 71 Configuration Server REXX Programs

REXX Name When Called (Event Point)

ZSTARTUP Configuration Server Startup

ZPCACHE Configuration Server Startup

ZINIT Configuration Server Startup

ZTASKSTA Task Start

ZTASKEND Task End

ZNFYxSTA Notify Start

ZNFYxEND Notify End

ZLOGSWCH Log Switch

ZLOGWRAP Log Wrap

ZSHUTDOWN Configuration Server Shutdown

Managing Configuration Server Processing 127

REXX Programs

ZSTARTUP

This is called just before the Configuration Server is enabled to accept and
process HPCA agent connections. ZSTARTUP does not pass any parameters
to the REXX, nor does it accept any information from this REXX. It can be
used to perform user-defined specific processing prior to allowing connections
to be initiated.

ZPCACHE

This can be called after cache is loaded during Configuration Server startup.

ZINIT

This is called during Configuration Server startup. It runs REXXs and tests
for certain conditions. If the conditions are not met (return code = 16),
Configuration Server startup will be halted.

This is not configurable. Consult HP Technical Support before using
this REXX.

ZTASKSTA

This is called when each connection is first accepted. It is passed a single
parameter that contains the protocol level identifier for the HPCA agent.

ZTASKEND

This is called when each connection has ended, while storage and objects
associated with the connection are still available. It is passed a single
parameter that contains multiple subparameters that can be parsed and that
are position dependent.

• Connect termination reason.

• User ID of the current connection.

• Total number of object instances, of any type, processed during this
connection.

• Total number of object instances, of any type, resulting from resolution.

Managing Configuration Server Processing 128

• The maximum depth of transient objects processed in any single instance
resolution.

• Count of communications protocol sends and receives originating from
this connection.

• Total number of bytes transmitted from the Configuration Server to the
HPCA agent during this connection (non-compressed count).

• Total number of files transferred from the Configuration Server to the
HPCA agent during this connection.

ZNFYxSTA

This is called at the beginning of Notify processing for each HPCA agent that
is being notified. The x defines the type of Notify (T for TCP/IP and D for
Dial-up). The set of parameters passed includes:

• UINF=<value1>
user info passed via EDMMPUSH method. If no information is provided,
COMMON will be set as a value.

• RETRS=<value2>
number of retries for this destination.

• STATUS=<value3>
RETRY, SUCCESS, FAILURE.

• MSG=<value4>
message describing the result of notification.

ZNFYxSTA can generate a return code that controls the execution of the
Notify, RC value 1956 (RC_SKIP_NOTIFY). If this is set, it will cause the
Notify request to be written for retry without execution of current
notification.

ZNFYxEND

This is called at the end of Notify processing for each HPCA agent being
notified. The x defines the type of Notify (T for TCP/IP and D for Dial-up).
The set of parameters passed includes:

• UINF=<value1>
user info passed via EDMMPUSH method. If no information is provided,
COMMON will be set as a value.

• RETRS=<value2>
number of retries for this destination.

Managing Configuration Server Processing 129

• STATUS=<value3>
RETRY, SUCCESS, FAILURE.

• MSG=<value4>
message describing the result of notification.

ZNFYxEND can generate a return code that controls the execution of the
Notify, RC value 1955 (RC_NEVER_RETRY). If this is set, it will prevent the
Notify request from being rescheduled for retry.

ZLOGSWCH

This can be called when log switch occurs (a new log file is created) to insert a
user-defined command (for example, zip the old log file and save it).

ZLOGWRAP

This can be called when log wrap occurs (the log file is reused) to insert a
user-defined command (for example, zip the old log file and save it).

ZSHUTDWN

This is called just before the Configuration Server shuts down.

Configuration Server Self-Tuning Tool

The Configuration Server self-tuning tool enables Configuration Server
instances to automate the tuning of the edmprof file’s MGR_CACHE and
MGR_CLASS sections.

Two edmprof file sections, OBJECT_SIZES (see page 116) and
RCS_TUNING_CONTROL (see page 118), are needed in order for
this tool to function properly.

This tool does not dynamically alter the MGR_CACHE and MGR_CLASS
sections while the Configuration Server is active; rather, while the
Configuration Server is shutdown, it examines the database and creates an
updated dataset that can be compared to the existing (master) edmprof file,
and possibly used to automatically replace it.

The self-tuning tool can be configured to rename the master edmprof file and
replace it with the newly generated one, although this is not the default
behavior (which is to overwrite the master edmprof file). If the non-default
(rename-and-replace) option is selected, the only active edmprof file settings
that should differ between the two edmprof files are those in the

Managing Configuration Server Processing 130

MGR_CACHE and MGR_CLASS sections (because these settings are
generated at shutdown and are based on the size of the database and the
number of instances).

The MGR_CLASS Section

If the master edmprof file does not have a MGR_CLASS section, the self-
tuning tool attempts to content cache all the database instances. It does this
by calculating the amount of space that will be necessary to support content
caching all the instances, and by generating the caching directives for each
class that is to be set for caching in its entirety at Configuration Server
initiation and/or cache refresh.

If the MGR_CLASS section in the master edmprof file has caching directives
for individual classes, they will be preserved. However, if these caching
directives are intended for internally generated objects, or are received by the
Configuration Server from a session partner, they will not be preserved in the
automatically generated values because the new MGR_CLASS section is
based on the CSDB.

OBJECT_SIZES

The OBJECT_SIZES section will be preserved (as it was in the master
edmprof file) in the new edmprof file, and will result in additional
MGR_CLASS section entries, in the form of:

“NONDB.” OBJECT_NAME = N,N,heap_size,number_of_heaps

These entries will be listed first in the updated MGR_CLASS section.

They are followed by the MGR_CLASS entries from the master edmprof file,
which are listed based on the HP Client Automation processing preference in
which priority is placed on processing the ZSERVICE and PACKAGE
instances in order to facilitate the initial catalog resolution, followed by
component instances, and then non-component instances.

Revise and Overwrite

The default behavior for the Configuration Server self-tuning tool is to create
a new edmprof file in the directory that contains the master (or original)
edmprof file. That format for naming the file is:

EDMPROF_TUNED.DAT_REVISED_YYYYMMDD_HH_MM_SS_uuuuuu

Where:

• EDMPROF_TUNED.DAT_REVISED_ is a literal value,

• YYYYMMDD is the year, month, and date of the revise action, and

Managing Configuration Server Processing 131

• HH_MM_SS_uuuuuu is the local hour, minute, second, and microsecond at
which the new file is established.

Only one file matching the filter EDMPROF_TUNED.DAT_REVISED_* will
be retained in the directory—that file will be the most recent one that was
created by this tool.

Rename and Replace

If the non-default behavior of replacing the master edmprof file with the
newly created one is selected, the edmprof file that existed when the
Configuration Server was started will be renamed to:

EDMPROF.DAT_REPLACED_YYYYMMDD_HH_MM_SS_uuuuuu

Where:

• YYYYMMDD is the year, month, and date of the replace action, and

• HH_MM_SS_uuuuuu is the local hour, minute, second, and microsecond at
which the file is replaced.

Up to 15 files matching the filter EDMPROF.DAT_REPLACED_* will be
retained in the directory that contains the edmprof file.

The 15 files are the 14 most recent datasets, and the oldest edmprof
file (so that an original edmprof file is retained for reference).

All of these files will be in the directory in which the original edmprof file
was found. Therefore, the account under which the Configuration Server is
executing must have update and create authority for that directory.

The MGR_CACHE Section

In addition to the updated MGR_CLASS section, a new MGR_CACHE section
gets generated and replaces the section in the input edmprof file.

While processing the original input edmprof file, the existing
MGR_CLASS and MGR_CACHE sections are ignored, while all
other sections are copied in their entirety. The newly created
MGR_CACHE and MGR_CLASS sections will be appended to the
end of the copied input edmprof file.

If, in the original edmprof file, there are comments preceding the
MGR_CLASS and/or MGR_CACHE sections, then, in the newly
generated edmprof file, the comments might appear to be
dislocated. However, since these are comments, their position does
not impact the Configuration Server startup.

Managing Configuration Server Processing 132

Reporting Files

A reporting file (DB_EDMPROF_REPORT.TXT) will be created in the
Configuration Server log directory. It documents the MGR_CACHE and
MGR_CLASS settings and the fact that the newly created values represent
the actual amount of required storage. Only the most recent copy of each file
will be retained, and each execution of the self-tuning tool will delete prior
copies.

The self-tuning tool will attempt to allocate enough ICACHE and CONTENT
CACHE in order to accommodate a database growth of 30%. However, the
results might change due to default sizes for minimum number of database
instances, maximum amount of virtual storage to commit to content cache,
and the impact of very large classes.

• A file named EDMPROF_SECTION.DAT is also created. It contains a replica
of the MGR_CLASS and MGR_CACHE sections that were merged into
the master edmprof file and replaced the existing MGR_CACHE and
MGR_CLASS sections when the self-tuning tool started.

• A file (LIST_PREFIX.CSV) is created, but currently not used. When
implemented, this will contain a snapshot of database domain and class
information, including the size and number of instances in each class at
shutdown.

To implement the Configuration Server self-tuning tool

1 Install the new ZSHUTDWN REXX method into the rexx directory.

If a previous, customized version of ZSHUTDWN REXX exists
in the rexx directory, be sure to copy any customizations from
it to the new one. Then delete the previous one, or move it down
to the rexx\NOVADIGM directory.

2 Shutdown the Configuration Server.

(After the Configuration Server has shutdown, in the location that
housed the edmprof file when the Configuration Server was started,
there should be either: an updated edmprof file along with the original
(but now renamed) edmprof file, or the revised edmprof file that
overwrote the original.)

3 Restart the Configuration Server.

Managing Configuration Server Processing 133

HP REXX Functions
Ten HP REXX functions perform specific actions. These actions encompass
the getting and setting of objects and variables; object resolution; retrieving
object names and properties; and UTF-8 and local code page strings.

Knowledge of REXX operators and word lists is assumed.

The REXX extensions are:

• EDMGET (objects)

• EDMGETV

• EDMSET (objects)

• EDMSETV

• EDMRESO

• NvdCurrentObjects

• NvdObjectInfo

• NvdObjectInfoEX

• NvdL2U

• NvdU2L

EDMGET

(object,heapnumber)

• object is the Configuration Server in-storage object that is to be
processed.

Object names are usually specified in uppercase; EDMGET will
uppercase the value that is specified for object.

• heapnumber is the heap—of the above-referenced object—that is to be
processed.

If heapnumber is not specified, it defaults to zero (0), meaning the
current heap. The heapnumber can range from one (1) to the number
heaps in the object.

On the Configuration Server, the numbering of heaps starts at 1,
whereas on an HPCA agent the numbering of heaps starts at 0.

Managing Configuration Server Processing 134

EDMGET is used to retrieve the contents of a CSDB object, one heap at a
time, into a REXX’s variable pool. In addition to returning a return code,
EDMGET will set the REXX variables to contain the object’s heap and
variable count, the attribute names that are saved in the object, and their
“as-is” and “resolved” (“indirect”) values. The clause

rcode = EDMGET("zmaster")

will copy the contents of the first heap of the ZMASTER object into REXX
variables. The REXX variable names that are created are in the following
form.

object.attribute

object

objectvars

object.resolved.attribute

object1 ... objectn

For example, to check the value of the ZUSER attribute in the ZMASTER
object, use the REXX name

zmaster.zuser.

For additional information on using REXX stem variables that are
in this form, refer to the section on Symbols in the REXX
Programming Guide.

For example, the clause

Say zmaster.zuserid /* might return Fred */

• If the value of zmaster.zuserid was &(object.attribute), its syntax
is known as substitution, which is a form of value indirection.

• If the value of zmaster.zuserid was &(SESSION.USERID), the
USERID attribute in the SESSION object can be checked for the value.
However, the SESSION object does not have to be opened in order to
check the value because it is saved in the REXX variable

zmaster.resolved.zuser.

• If the value of zmaster.zuserid was not indirected, the value of
zmaster.resolved.zuserid is the same.

In addition to the attributes in the object, two other REXX variables are
created. The first has the same name as the object that is being processed;
the second is the objectname with vars appended to the end of it.

Therefore, if the object that is being processed is ZMASTER, then:

Managing Configuration Server Processing 135

say zmaster /* is the number of heaps in the object */

say zmastervars /* is the count of attributes in the object */

The variables <object>1 ... <object>n contain the name of the attribute
that is in the object. For example,

say zmaster1 /* might be ZUSERID */

To get all the attributes in an object, code the following.

object = "zmaster"

heaps = value(object)

vars = value(object"vars")

vnames = ""

do vv = 1 to vars

vnames = vnames value(object || vv)

end vv

If heapnumber is not specified, it defaults to zero (0), meaning the current
heap. The heapnumber can range from one (1) to the number heaps in
the object.

On the Configuration Server, the numbering of heaps starts at 1,
whereas on an HPCA agent the numbering of heaps starts at 0.

The return value is:

• 0 if the object was copied to REXX storage

• Ø if it failed; the Configuration Server log will indicate the exact error.

EDMGET has a high cost to process a CSDB object, because each call to
EDMGET will return all of the attributes in the object, thus creating all of
the REXX variables that are noted above. If the intent (in the REXX code) is
to get the value of some of the attributes that are defined in the object, then
use EDMGETV, which is discussed in the next section

EDMGETV

(object,attribute,heapnumber,resolve)

• object is the CSDB object that is to be processed.

The value that is specified will be automatically uppercased. Valid syntax
for object names is 1 to 8 bytes; invalid names will generate a REXX
syntax error.

Managing Configuration Server Processing 136

• attribute is the attribute—of the above-referenced object—that is to be
read.

The value that is specified will be automatically uppercased. Valid syntax
for attribute names is 1 to 8 bytes; invalid names will generate a REXX
syntax error.

• heapnumber is the heap—of the above-referenced object—that is to be
processed.

The heapnumber can range from one (1) to the number heaps in the
object.

— If heapnumber is not specified, it defaults to zero (0), meaning the
current heap.

— If the value that is specified is out of range, a REXX syntax error is
generated.

• resolve is a flag that can accept the values of 0, 1, Y, and N.

— If resolve is not specified, it defaults to 0 (N), and the value that is
returned is the contents of the object and attribute that are specified
in arguments 1 and 2.

— If 1 (Y) and the contents of the object and attribute that are specified
in arguments 1 and 2 are in the form of &(object.attribute), the
value that is returned is an “indirect” value.

If the contents are not in the form of &(object.attribute), the
contents are returned “as-is.”

For additional information on REXX operators, refer to the REXX
Programming Guide.

EDMGETV will return the null string ("") if either the object or the attribute
does not exist.

Use the REXX “strictly equal” operator, consecutive equals signs (==), to
check for the null string ("").

For additional information on signal instruction, refer to the REXX
Programming Guide.

For example:

thisuser = edmgetv("zmaster", "zuserid") /* such as FRED */

this_data = edmgetv("zmaster", "mydata")

if "" == this_data

Managing Configuration Server Processing 137

then say "The attribute mydata does not exist"

else say "The attribute mydata is" this_data

EDMSET

(object,heapnumber)

EDMSET is used to migrate the value of REXX variables into the specified
object at the specified heap. Attributes that are not defined in the object are
added; existing attributes are updated. To add a new heap to an existing
object, set the value of heapnumber to one more than the current number of
heaps in the object (that is, the current number heaps in the object
+ 1). The variables that are migrated to the object are in the following form.

object.attribute

The process scans all of the currently allocated (REXX) variables, looking for
names that start with the value that is specified for object, such as
zmaster. When a match is found, it is checked to determine whether the
second part of the argument (attribute) conforms to an attribute name (1
to 8 bytes in length).

If so, it is checked to determine whether it fits the size restrictions (no more
than 255 bytes) of an attribute.

If it passes this check, the REXX variable is migrated to the object.

• If either of these format checks fails, the REXX variable is skipped.

The return value is:

• 0 if no errors were encountered during the migration.

• Ø if errors were generated; the Configuration Server log will indicate the
exact error.

As noted with EDMGET, EDMSET is a costly process to save one or two
attributes. For this processing, it would be better to use EDMSETV, which is
discussed in the next section.

EDMSETV

(object,attribute,value,heapnumber)

• object is the CSDB object that is to be processed.

The value that is specified must be from 1 to 8 bytes in length; this value
will be automatically uppercased.

Managing Configuration Server Processing 138

• attribute is the attribute—of the above-referenced object—that is to be
written.

The value that is specified must be from 1 to 8 bytes in length; this value
will be automatically uppercased.

• value is the text to be saved to the attribute.

• heapnumber is the heap—of the above-referenced object—that is to be
processed.

If heapnumber is not specified, it defaults to zero (0), meaning the
current heap. The heapnumber can range from one (1) to the number
heaps in the object.

If the specified arguments do not conform to the syntax, a REXX syntax
error is generated with the error text being written to the Configuration
Server log.

For additional information on signal instruction, refer to the
REXX Programming Guide.

If EDMSETV completes (without a syntax error), a return value of:

• 0 indicates that the was saved in the specified object/attribute.

• Ø indicates that it failed; the Configuration Server log will indicate the
exact error.

EDMRESO

EDMRESO runs a “secondary” resolution on the instance name that is
specified by

rcode = EDMRESO(f.d.c.i).

The f.d.c.i indicates the CSDB tree structure,
FILE.DOMAIN.CLASS.INSTANCE.

EDMRESO status is indicated by return codes of:

• 0 indicates that the process started

• Ø indicates that the process did not start; check the Configuration Server
log for details.

Managing Configuration Server Processing 139

Configuration Server Database Object and non-ASCII Object Names

For REXX variables to be created by EDMGET, their names need to consist
of characters that are valid REXX variable names. (Refer to the REXX
Programming Guide.) Such is not the case for CSDB object names that
consist of multi-byte UTF-8 sequences.

Objects can still be processed via EDMGETV and EDMSETV because all of
the arguments to these functions are (REXX) strings, as in:

say EDMGETV("zmaster", "zos")

All object processing can be done with EDMGETV and EDMSETV, but the
numbers of heaps and attributes, which are set by the EDMGET call, would
not be known.

Additional Functions

Three additional REXX functions retrieve object names and properties.

• NvdCurrentObjects
returns information pertaining to the current Configuration Server
session.

• NvdObjectInfo
returns information pertaining to heap counts and attributes.

• NvdObjectInfoEX
is similar to NvdObjectInfo but includes attribute-property information.

These functions are valid on Windows and UNIX operating systems.

NvdCurrentObjects

Objectlist = NvdCurrentObjects() /* no arguments */

NvdCurrentObjects returns a list of words that contains the names of the
objects that exist in the current Configuration Server session. So,

AllObjects = NvdCurrentObjects()

returns a list of all object names that are allocated in the current
Configuration Server-HPCA agent connection. Use this information to check
the availability of, for example, ZMASTER, as in:

Objects = NvdCurrentObjects()

If wordpos("ZMASTER", Objects) > 0 /* Note that object names are
case sensitive */

Managing Configuration Server Processing 140

then say "zmaster exists"

else say "Can’t find ZMASTER"

NvdObjectInfo

Infolist = NvdObjectInfo(object)

• object is the CSDB object that is to be processed.

The value that is specified will be automatically uppercased. The name
that is specified has to be from 1 to 8 bytes; invalid names will generate a
REXX syntax error.

Returns

NvdObjectInfo returns a list of words in which

• the first word is the heap count for the specified object,

• the second word is the total size of all the attributes in the specified
object, and

• the rest of the list contains the names of the attributes that are in the
specified object.

Encrypted attributes are not returned.

So, the above-mentioned information can be determined by using the
following REXX code.

Object = "zmaster"

Parse value NvdObjectInfo(Object) With Heaps TotalSize
AttributeNames

AttributeCount = words(AttributeNames)

If there are any errors, only the heap count is returned, and is so as a
negative number.

if heaps > 0

then nop

else exit 16

To get the attribute names:

Do nn = 1 to AttributeCount

say word(AttributeNames, nn)

End nn

Managing Configuration Server Processing 141

NvdObjectInfoEX

Infolist = NvdObjectInfoEX(object)

• object is the CSDB object that is to be processed.

The value that is specified will be automatically uppercased. The name
that is specified has to be from 1 to 8 bytes; invalid names will generate a
REXX syntax error.

Returns

NvdObjectInfoEX returns “property” information for each of the attributes
that is returned—including encrypted attributes.

ObjectInfo = NvdObjectInfoEX(objectname)

The property information is returned in the following form, with the last four
values returned as numerals.

attributename:size:mflags:cflags:vtype

• size
“size” is a decimal numeric value from 1 to 255

• mflags
“manager flags” is a decimal numeric value from 0 to 255.

• cflags
“client flags” is a decimal numeric value from 0 to 255.

• vtype
“attribute type” is a single ASCII character that describes the attribute
“type.” Valid values are C (connection), V (variable), and M (method).

This is a decimal numeric value, so V would be specified as 86.

For additional information on attribute properties, refer to the
Admin User Guide.

To access this information, use the following REXX code.

parse value nvdobjectinfoex("zmaster") with heaps totalsize
attributes

do aa = 1 to words(attributes)

parse value word(attributes, aa) with attribute ":", maxlen
":" mflags ":" cflags ":" vtype .

wstr = d2c(vtype)

Managing Configuration Server Processing 142

if datatype(wstr, 'm')

then vtype = wstr

else vtype = d2x(vtype)

mflags = x2b(d2x(mflags, 2))

cflags = x2b(d2x(mflags, 2))

say attribute mflags cflags vtype

end aa

Lastly, two utility functions to convert between local code page (LCP) and
UTF-8 strings.

NvdL2U

UTF8Value = NvdL2U(LCPVALUE)

NvdU2L

LCPValue = NvdU2L(UTF8Value)

The REXX functions stream, linein, lineout, charin, charout, and lines
reference external files. The filename and path that are specified must be in
LCP. These functions can be used to convert the value. For example, to read a
file that has been saved in the Configuration Server’s method path, use:

wstr = edmgetv("ZCVT","MTHPATH")

if right(wstr, 1) = rxxospathseparator()

then nop

else wstr = wstr || rxxospathseparator()

mydata = nvdu2l(wstr || "mydata.file")

info = stream(mydata, 'c', 'query exists')

:

:

:

Managing Configuration Server Processing 143

In this case, mydata will contain LCP characters that are the value needed
for the REXX stream function.

ZCVT and ZTCBG
These two objects assist you in determining current values for CSDB tasks
and connects, whether or not they are running. ZCVT performs a global
function—determining values of tasks and connects for the entire CSDB,
whereas ZTCBG determines the values that are relevant to the specified task
or connect.

The ZCVT and ZTCBG objects (objname) work with the EDMGET,
EDMGETV, EDMSET, and EDMSETV REXX extensions, as described in the
previous section.

Table 72 below and Table 73 (on page 154) present the variables associated
with ZCVT and ZTCBG, respectively.

ZCVT Table of Variables

Table 72 ZCVT Variables

Variable Name Variable
Type

Description

VERMAJ USHORT Configuration Server major version number

VERMIN USHORT Configuration Server minor version number

VERREVNO USHORT Configuration Server revision number

VERREVLE UCHAR Configuration Server revision letter

VERBLDNO ULONG Configuration Server build number

OSNAME STR Configuration Server’s operating system

TOLOGONS LONG Total number of logons to the Configuration Server

TRCOMMCB FLAG COMM Trace value

TRCOMDAT FLAG COMM trace value

TRDSCOMP FLAG DSCOMP trace value

TRTEST FLAG TEST trace value

Managing Configuration Server Processing 144

Variable Name Variable
Type

Description

TRDYNALO FLAG ALLOC trace value

TRVARSTG FLAG VARSTG trace value

TRDBCB FLAG ODBCBS trace value

TRDBDATA FLAG ODBDATA trace value

TRAUDIT FLAG AUDIT trace value

TRPROFIL FLAG PROFLE trace value

TRRESRCE FLAG RESOURCE trace value

TRPROMOT FLAG PROMOTE trace value

TRCONFIG FLAG CONFIG trace value

TRMETHOD FLAG METHOD trace value

TRCPIC FLAG CPIC trace value

TRADMIN FLAG ADMIN trace value

TRRESLV0 FLAG OBJRES0 trace value

TRBINDFL FLAG DATA trace value

TRDAXFRM FLAG TRAN trace value

TR3270BU FLAG BUFF trace value

TRCOMM FLAG COMM trace value

TRFILPRO FLAG FILE trace value

TROBJXFR FLAG OBJXFER trace value

TROBJCRC FLAG OBJCRC trace value

TRREXX FLAG REXX trace value

TRVARS FLAG VAR trace value

TRSUBST FLAG SUBST trace value

TRDESENC FLAG DES trace value

TRCOMPR FLAG CMPR trace value

TROBJRES FLAG OBJRES trace value

Managing Configuration Server Processing 145

Variable Name Variable
Type

Description

TRIMPLOD FLAG IMPL trace value

TREXPLOD FLAG EXPL trace value

TRLASIDE FLAG LOOKASID trace value

TRENQUE FLAG ENQDEQ trace value

TRSTATS FLAG STATS trace value

TRRESLV1 FLAG OBJRES1 trace value

TRTCPIP FLAG TCP trace value

TRADMPRM FLAG ADMPROM trace value

TRNOTIFY FLAG NOTIFY trace value

TRSESBLK FLAG SESSBLK trace value

TRSTORAG FLAG Storage trace value

TRY2K FLAG YEAR2000 trace value

TRDMA FLAG DMA trace value

TRVSAPI FLAG VSAM trace value

TRVSCB FLAG VSAMRPL trace value

TRVSDATA FLAG VSAMDATA trace value

TRREXOFF FLAG REXXOFF trace value

SHTINDIC UCHAR Shutdown indicator

SHTLGMGR UCHAR Log Configuration Server shutdown indicator

REXALLOC LONG REXX allocate count

TOPTSKID LONG ZTOPTASK ID

LOGMGRID LONG ZLOGMGR ID

ULGMGRID LONG ZULOGMGR ID

CLKMGRID LONG ZCLKMGR ID

TSKMGRID LONG ZTASKMGR ID

MGRTYPE UCHAR MANAGER_TYPE value

Managing Configuration Server Processing 146

Variable Name Variable
Type

Description

TASKTYPE UCHAR TASK_TYPE value

MEMTYPE UCHAR MEMORY_TYPE value

DBLUDATE STR Date of last CSDB update

DBLUTIME STR Time of last CSDB update

DBLCKCNT USHORT CSDB lock count

DBSTATUS UCHAR CSDB status

BYTELEVD UCHAR Byte level differencing on value

DNYDUPIP FLAG ALLOW_DUPLICATE_IP_ADDRESS value

TRUSTEDP FLAG Authorized trusted partner value

TSOSRVCE FLAG TSO service value

LICERROR FLAG License violation error value

ACALLADM FLAG ALWAYS_CALL_ZADMIN value

OKDUPINS FLAG ALLOW_DUPLICATE_INSTANCES value

QUITASKS FLAG Quiesce task

QUITRANS FLAG Quiesce transaction

LALLTCP FLAG TCP/IP logons allowed value

REXDISAB FLAG REXX off

MODNAMLO FLAG SHOW_MODULE value

MODVERLO FLAG SHOW_VERINFO value

TCPRHNAM FLAG GET_REMOTE_HOST_NAME value

HISTORY UCHAR History file value

ACCESSA UCHAR MGR_ACCESS ADMIN value

ACCESSC UCHAR MGR_ACCESS CONSOLE value

ZTIME STR Time in HH:MM

ZTIME24 STR Time in HH:MM on 24-hour clock

ZAMPM STR AM or PM value

Managing Configuration Server Processing 147

Variable Name Variable
Type

Description

ZDATE STR MM/DD/YYYY date form

ZDATEDMY STR DD/MM/YYY date form

ZMONTH STR Short value for month (e.g., Jan)

ZMONTHLNG STR Long value for month (e.g., January)

ZDATEJUL STR Julian date

ZDATEYMD STR YYYY/MM/DD form for sorting

ZDAT2YMD STR YYYY/MM/DD form for sorting – full MM, DD value

MGRID STR Configuration Server ID (MGR_ID)

MGRNAME STR Configuration Server name (MGR_NAME)

DOMAIN STR Configuration Server domain name (DOMAIN)

STDOMANR STR HPCA agent start domain (START_DOMAIN)

STCLASSR STR HPCA agent start class (START_CLASS)

STDOMANA STR ATM start domain (START_DOMAIN)

STCLASSA STR ATM start class (START_CLASS)

DBASE STR CSDB used at startup (DBASE)

AGENT STR Agent ACB (AGENT)

TCPPORT STR TCP PORT value (TCP_PORT)

TCPUSRID STR USERID of TCP/IP address space

TORESO LONG Number of object resolutions

DEEPRESO LONG Deepest object resolution

TOOBJI LONG Number of inbound objects

TOOBJO LONG Number of outbound objects

ZERMXWRN SHORT Max number of warnings heaps

ZERMXERR SHORT Max number of error heaps

TOCOMP LONG Number of times compression done

TOCOMPI LONG Compression total bytes in

Managing Configuration Server Processing 148

Variable Name Variable
Type

Description

TOCOMPO LONG Compression total bytes out

TODCMPI LONG Decompression total bytes in

TODCMPO LONG Decompression total bytes out

TODCMP LONG Number to times decompression done

COMPSEED LONG Compression seed

TODBGETS LONG Number of GET operations

TODBPUTS LONG Number of PUT operations

TODBADDS LONG Number of ADD operations

TODBDELE LONG Number of DELETE operations

TOFILEIO LONG Global file i/o counts

TOFALLOC LONG Global file allocations

TSKLIMAX SHORT Max TASKLIM

TSKLIMIT SHORT TASKLIM (TASKLIM)

TSKLHARD SHORT HARD TASKLIM (TASKLIM_HARD)

TSKLSOFT SHORT SOFT TASKLIM

TSKLDLTA SHORT TASKLIM Delta

MAXRESCL LONG Max number of resource per HPCA agent

MAXRESAL LONG Max number of resource all HPCA agents

TOMETBIN LONG Number of methods run – ASM and C

TOMETREX LONG Number of methods run – REXX

TOXNRCVD LONG Number of transaction received

TOXNRJCT LONG Number of transaction rejected

PLSTATUS PTR Pointer to disable Pools heap

PLGLBHEP FLAG Global/local pools in used flag

PLCONTIG FLAG Pools are allocated contiguous flag

PLEXPSIZ ULONG Pool expansion size

Managing Configuration Server Processing 149

Variable Name Variable
Type

Description

PLCSCRED ULONG Current storage credit

PLPSGUAR ULONG Percent Storage Guard

PLCSCUSH ULONG Current storage cushion

PLMSCUSH ULONG Minimum storage cushion

PLPOLHWM ULONG Largest polar bytes used

TSKPRIV ULONG Task private size

TSKSTSIZ ULONG Task stack size

TSKSTHWM ULONG Task stack size overuse HWM

TSKHPSIZ ULONG Task heap size

TSKHPHWM ULONG Task heap size overuse HWM

TIMEOCOM LONG TIMEOUT_COMM

TIMEONCM LONG TIMEOUT_NCOMM

TIMEOADM LONG ADMIN_TIMEOUT

TIMEODMA LONG DMA_TIMEOUT

RETRYBUS LONG BUSY_RETRY

RETRYDIS LONG DISABLE_RETRY

DSCOMPI LONG Data stream compression total bytes in

DSCOMPO LONG Data stream compression total bytes out

DSCOMPT LONG Number of times data stream compression done

SNDTHRTL ULONG SEND_THROTTLE

TIMEONFT SHORT NFYT_TIMEOUT

TIMEONFS SHORT NFYS_TIMEOUT

TIMEONFD SHORT NFYD_TIMEOUT

OBJNMASK STR Object name mask for traces

VARNMASK STR Variable name mask for trace

LOGLNTSK ULONG TASK_LOG_LIM

Managing Configuration Server Processing 150

Variable Name Variable
Type

Description

MAXRSTSK ULONG TASK_RESO_LIM

MAXREC LONG MAXREC

BUFTCP LONG BUFTCP

LOGDIR STR DIRECTORY

LOGTHRES LONG THRESHOLD

LOGLNCNT LONG Log file line count

LOGSTINT LONG STORAGE_INTERVAL

LOGFSIZE LONG FLUSH_SIZE

LOGMWIDT USHORT MESSAGE_WIDTH

LOGMPREF STR MESSAGE_PREFIX

LOGMDATE UCHAR MESSAGE_DATE

LOGMLDEL UCHAR MESSAGE_DELIMITER

LOGMRDEL UCHAR MESSAGE_DELIMITER

LOGPSIZE LONG PIPE_SIZE

LOGFLUSH FLAG Log flush

LOGSWITC FLAG Log switch

LOGELOFF FLAG DISABLE_NT_EVENT_LOGGING

LOGSLOFF FLAG DISABLE_SNMP_TRAP_LOGGING

LOGSFREQ STR SWITCH_TOD

LOGFFREQ STR FLUSH_INTERVAL

LOGBPIPE LONG Log bytes in pipe

ULGDIR STR USERLOG DIRECTORY

ULGTHRES LONG USERLOG THRESHOLD

ULGLNCNT LONG USERLOG LINECOUNT

ULGFSIZE LONG USERLOG FLUSH_SIZE

ULGMWIDT USHORT USERLOG MESSAGE_WIDTH

Managing Configuration Server Processing 151

Variable Name Variable
Type

Description

ULGACTIV FLAG USERLOG ACTIVATE

ULGPSIZE LONG USERLOG PIPE_SIZE

ULGFLUSH FLAG USERLOG flush

ULGSWITC FLAG USERLOG switch

SIMTSKPC LONG Simulation TASKS_PER_CONNECT

STATPATH STR Stats path

STATINTV LONG Stats interval

MTHPATH STR METHOD_PATH

MTHMLIMI LONG LOG_LIMIT

MTHTIMEO LONG TIMEOUT

DBPATH STR DBPATH

DBPPRIM STR PRIMARY DB path

DBPSECO STR SECONDARY DB path

DBPPROF STR PROFILE DB path

DBPRESO STR RESOURCE DB path

DBPHIST STR HISTORY DB path

DBPNOTI STR NOTIFY DB path

REXXPATH STR REXX_PATH

SYSPATH STR System path

DMASPATH STR DMA_STAGE_PATH

MGRSETFI STR PROFILE path

EXPTPATH STR EXPORT_PATH

USRPATH1 STR USER_PATH1

USRPATH2 STR USER_PATH2

USRPATH3 STR USER_PATH3

USRPATH4 STR USER_PATH4

Managing Configuration Server Processing 152

Variable Name Variable
Type

Description

USRPATH5 STR USER_PATH5

USZTCBGS SHORT Number of used ZTCBGs

CACSEGS USHORT CACHE_SEGMENTS

CACSIZE ULONG CACHE_SIZE

CACMAXE ULONG Max cache entries

CACSTATS USHORT CACHE_STATS

CACFULL USHORT CACHE full

CACCLOSE USHORT CACHE closed

ICASIZE ULONG ICACHE_SIZE

ICACLOSE UCHAR ICACHE closed

SMMAILDR STR MAIL_DIR

SMMGRMID STR MGR_MAIL_ID

SMLOCHST STR Local host NAME

SMDNSSRV STR DNS_SERVER

SMSMTPRT USHORT SMTP_PORT

SMSPLCNT ULONG Spooled mail count

SMTIMEO USHORT MAIL_TIMEOUT

SMMAXSPL USHORT MAX_TIME_IN_SPOOL

SMRETRYI USHORT RETRY_INTERVAL

SNPORT USHORT SNMP_PORT

SNLOGPRT USHORT SNMP_LOGGER_PORT

SNMGRPRT USHORT SNMP_MANAGER_PORT

SNRUNEXT FLAG RUN_AS_EXTENSION

SNIPADD STR SNMP_IP_ADDR

SNMIPAD STR SNMP_MANAGER_IP_ADDR

SNMIPAD2 STR SNMP_MANAGER_IP_ADDR2

Managing Configuration Server Processing 153

Variable Name Variable
Type

Description

SNMIPAD3 STR SNMP_MANAGER_IP_ADDR3

SNCMNT STR SNMP_COMMUNITY

SNSTCMNT STR SNMP_SET_COMMUNITY

SNZERSEV SHORT SNMP_ZERROR_SEVERITY

ALSLOTS LONG ATTACH_LIST_SLOTS

ALVINTVL LONG VERIFY_INTERVAL

ALRLIMIT LONG RESTART_LIMIT

DMSECMTH STR SECURITY_METHOD

DIAINTVL ULONG DIAGNOSTIC_INTERVAL

DIADBYTE ULONG DIAGNOSTIC_MIN_DB_BYTES

DIALBYTE ULONG DIAGNOSTIC_MIN_LOG_BYTES

DBVERIFY STR VERIFY_DEPTH

DBAUTOFIX FLAG DB_AUTOFIX

METHDLLS FLAG Run methods as DLLS

ACTSKMON ULONG Number of monitors

ACTSKCON ULONG Number of consoles

ERREMAIL STR UserEmailErrorsTo

DBEEMAIL FLAG DBERROR e-mail

DBESHTDN FLAG DBERROR SHUTDOWN

DBESNMP FLAG DBERROR SNMP

POLCYSVR STR Status of the Policy Server (enabled/disabled)

RIM STR Status of the Inventory Manager (enabled/disabled)

RMP STR Status of the Portal (enabled/disabled)

Managing Configuration Server Processing 154

ZTCBG Table of Variables

Table 73 ZTCBG Variables

Variable Name Variable
Type

Description

AUDFLAG FLAG Audit trace flag

TSKNAME STR Name of this task or HPCA agent

TSKSTTIM STR Time when task started

TSKSTDAT STR Date when task started

TSKLSTCO STR Time of last communication transaction

FREEMAIN FLAG Return storage on last free call

SHORTSTO FLAG Retry due to Short on storage

ZTERMINI FLAG Terminal task initiated

STOCRCUR ULONG Current storage credit

STOCRHEP ULONG Heap credit

STOCRSTK ULONG Stack credit

STOCRPVT UONG Private credit

STOCRPOO ULONG Zpools credit

STOCRCUS ULONG Credit cushion

MTHNAME STR Child name

MTHLIBNA STR Method library name

MTHLIBHA ULONG Method library handle

MTHLIBEN ULONG Method library entry point

MTHTHPRM PTR Method thread parameter pointer

TASKID ULONG Unique ID of this task

TASKPAR ULONG Unique ID of the parent task

USERID STR Task’s user ID

TASKTYPE STR TASK TYPE

DEEPRESO LONG DEEPSET OBJECT RESOLUTION

Managing Configuration Server Processing 155

Variable Name Variable
Type

Description

OBJSRESO LONG NUMBER OF OBJECTS RECEIVED

OBJSRECV LONG NUMBER OF OBJECTS RECEIVED

OBJSSENT LONG NUMBER OF OBJECTS SENT

TRCOMDAT FLAG COMM TRACE FLAG

TRDSCOMP FLAG DSCOMP TRACE FLAG

TRTEST FLAG TEST TRACE FLAG

TRDYNALO FLAG ALLOC TRACE FLAG

TRVARSTG FLAG VARSTG TRACE FLAG

TRAUDIT FLAG AUDIT TRACE FLAG

TRPROFIL FLAG PROFILE TRACE FLAG

TRRESRCE FLAG RESOURCE TRACE FLAG

TRPROMOT FLAG PROMOTE TRACE FLAG

TRCONFIG FLAG CONFIG TRACE FLAG

TRMETHOD FLAG METHOD TRACE FLAG

TRCPIC FLAG CPIC TRACE FLAG

TRADMIN FLAG ADMIN TRACE FLAG

TRRESLVL FLAG OBJRES0 TRACE FLAG

TRBINDFL FLAG DATA TRACE FLAG

TRDAXFRM FLAG TRAN TRACE FLAG

TR3270BU FLAG BUFF TRACE FLAG

TRCOMM FLAG COMM TRACE FLAG

TRFILPRO FLAG FILE TRACE FLAG

TROBJXFR FLAG OBJXFER TRACE FLAG

TROBJCRC FLAG OBJCRC TRACE FLAG

TRREXX FLAG REXX TRACE FLAG

TRVARS FLAG VAR TRACE FLAG

Managing Configuration Server Processing 156

Variable Name Variable
Type

Description

TRSUBST FLAG SUBST TRACE FLAG

TRDESENC FLAG DES TRACE FLAG

TRCOMP FLAG CMPR TRACE FLAG

TROBJRES FLAG OBJRES TRACE FLAG

TRIMPLOD FLAG IMPL TRACE FLAG

TREXPLOD FLAG EXPL TRACE FLAG

TRLASIDE FLAG LOOKASID TRACE FLAG

TRENQUE FLAG ENQDEQ TRACE FLAG

TRSTATS FLAG STATS FLAG

TRRESOL1 FLAG OJBRES1 TRACE FLAG

TRTCPIP FLAG TCP TRACE FLAG

TRADMPRM FLAG ADMPROM TRACE FLAG

TRNOTIFY FLAG NOTIFY TRACE FLAG

TRSESBLK FLAG SESSBLK TRACE FLAG

TRSTORAG FLAG STORAGE TRACE FLAG

TRY2K FLAG YEAR2000 TRACE FLAG

TRDMA FLAG DMA TRACE FLAG

TRVSAPI FLAG VSAM TRACE FLAG

TRVSCB FLAG VSAMRPLS TRACE FLAG

TRVSDATA FLAG VSAMDATA TRACE FLAG

TRREXOFF FLAG REXXOFF TRACE FLAG

STBBSENT FLAG BB SENT FLAG

STNOSNAP FLAG NO SNAP FLAG

STCOWAIT FLAG WAIT FOR COMM OP FLAG

STPWDVER FLAG EDATS SF ORDERS OK FLAG

STTIMOUT FLAG TIMEOUT IN PROGRESS FLAG

Managing Configuration Server Processing 157

Variable Name Variable
Type

Description

STFORTER FLAG FORCED TREMINATION FLAG

STPARSES FLAG PAR SESS PARTNER FLAG

STSESEST FLAG SESSION ESTABLISHED FLAG

STSESTER FLAG SESSION TERMINATED FLAG

STSESLST FLAG SESSION LOST FLAG

STTSKABN FLAG TASK ABENDED FLAG

STSESSND FLAG SEND FLAG

STNOPDS FLAG NO PARSE R/S DATA STREAM FLAG

STTSKINA FLAG TASK BEING INACTIVATED FLAG

STTIMSND FLAG TIME SENT FLAG

STNODSCO FLAG NO DS COMPRESSION FLAG

STABTRES FLAG ABORT OBJECT RESOLUTION FLAG

STABTLEG FLAG ABORT OBJECT RESOLUTION FLAG

STSTRLOG FLAG IN LOGGER FLAG

STEOT FLAG EOT FLAG

STNOSUB FLAG NO SUBSTITUTION FLAG

STDRAINS FLAG DRAIN FLAG

STCONSOL FLAG CONSOLE IS RUNNING

STHRDLCK FLAG SYSTEM HARDLOCKED FLAG

STSSRESO FLAG SINGEL SERVICE RESOLUTION FLAG

STUSEMET FLAG USER METHOD RUNNING FLAG

STMSGLIM FLAG LOG MSG LIMIT REACHED FLAG

STMETMES FLAG METHOD MSG LIMIT REACHED FLAG

STREXMET FLAG REXX METHOD RUNNING FLAG

TOCOMP LONG NUMBER OF TIMES COMPRESSION DONE

TOCOMPI LONG COMPRESSION TOTAL BYTES IN

Managing Configuration Server Processing 158

Variable Name Variable
Type

Description

TOCOMPO LONG COMPRESSION TOTAL BYTES OUT

TODCOMPI LONG DECOMPRESSION TOTAL BYTES IN

TODCOMPO LONG DECOMPRESSION TOTAL BYTES OUT

TODCOMP LONG NUMBER OF TIME DECOMPRESSION DONE

TODBGETS LONG NUMBER OF GETS

TODBPUTS LONG NUMBER OF PUTS

TODBADDS LONG NUMBER OF ADDS

TODBDELE LONG NUMBER OF DELETES

TOFILEIO LONG FILE I/O COUNT

TOFALLOC LONG FILE ALLOCATION COUNT

TOMTHBIN LONG NUMBER OF METHODS RUNA – ASM AND C

TOMTHREX LONG NUMBER OF METHOS RUN – REXX

REMIPNAM STR IP NAME OF REMOTE CLIENT

Configuration Server Methods

Overview

A method is a program or procedure that can be packaged and exchanged as
an object, specifically as an instance of the METHOD Class. By connecting an
instance of this class to another class instance, an HPCA administrator can
specify where and when that program/procedure will run. An HPCA
administrator can also run a method from a REXX script, thereby enabling
the execution of methods outside of the object resolution process. The
following is an example of the format that is used to execute a method in this
way.

ADDRESS EDMLINK ZOBJCMPR 'ZTEST'

Managing Configuration Server Processing 159

EDMLINK is a method that allows an HPCA administrator to process other
methods. It returns the return code of the invoked method. The format for
EDMLINK is:

ADDRESS EDMLINK methodname 'Parameter associated with
Method'

Configuration Server methods allow an HPCA administrator to manipulate
in-storage objects and database entities (database components) at the system
(Configuration Server) level as opposed to the HPCA agent or workstation
objects.

• Configuration Server Database components are the entities (files,
domains, classes, instances, and variables) that reside in the CSDB.

• In-storage objects are used or created during object resolution.

Appendix A, Configuration Server Methods on page 388, describes
each method with parameters, examples, and return codes.

The Affects of Configuration Server Methods

Table 74 below lists the Configuration Server methods that affect in-storage
objects and database entities.

Table 74 lists only those Configuration Server methods that affect
in-storage objects and database entities. Configuration Server
methods that affect neither are not listed in this table.

Table 74 Methods affecting in-storage objects or CSDB entities

Method Affects

EDMMAILQ In-storage objects

EDMMCACH In-storage objects

EDMMDB CSDB entities

EDMMRPRO CSDB entities

ZDCLASS CSDB entities

ZDELINS CSDB entities

ZDELOBJS In-storage objects

ZDELPROF CSDB entities

ZEXIST CSDB entities

Managing Configuration Server Processing 160

Method Affects

ZGETPROF CSDB entities

ZOBJCMPR In-storage objects

ZOBJCOPY In-storage objects

ZOBJDELI In-storage objects

ZOBJDELV In-storage objects

ZOBJSORT In-storage objects

ZPROMANY CSDB entities

ZPUTHIST In-storage objects

ZPUTPROF In-storage objects

ZSIMRESO In-storage objects

ZTOUCH CSDB entities

ZVARDEL In-storage objects

ZVARGBL In-storage objects

ZVARLOG In-storage objects

ZXREF In-storage objects

Methods are often used in conjunction with one another to achieve a purpose.
For example, you can use the ZDELOBJS method to delete an in-storage
object, and then execute ZOBJCOPY to copy an object, giving it the original
object name.

Methods must be connected to other class instances at an appropriate point
to achieve a desired result. For example, you do not want to delete an
instance before it is used in object resolution, or create an instance if it will
be immediately overwritten.

The default file and domain used by some methods can be specified in the
DBASE and DOMAIN values of the MGR_STARTUP setting of the
Configuration Server edmprof file.

Method Naming Standards

The standard that is used to name the methods is dissectible, enabling you to
ascertain the method’s use. All method names are structured as detailed in
Table 75.

Managing Configuration Server Processing 161

Table 75 Configuration Server Methods Naming Standard

Symbol Definition

EDM Identifies the method as an HP method.

M Identifies the method as a Configuration Server method.

DOBJ Represents an abbreviation of the function for which the
method can be used, in this case, Delete Object.

“Must Run” Methods

When you configure methods to run during the resolution process, you expect
specific outcomes. If one method is intended to work in conjunction with
another, or have a direct effect on the correct outcome of the resolution, the
entire resolution process might depend on, first the existence of, then the
successful launching of, this method.

You can designate a method as “must run,” which means that, before
continuing with the resolution process, the Configuration Server will
determine if the method exists and can be run. If it is not found or cannot be
launched, the return code for the method will be set to 16 (Abort Resolution).
The resolution will then be halted.

If you do not designate a method as “must run,” the Configuration Server
does not recognize it as being essential to the outcome of the resolution and
will continue processing based on the resulting return code. The only
indications that the method was not processed are the return codes (as shown
in messages in the log) and the result of the resolution path.

To configure a method as “must run,” insert the ZMUSTRUN variable in the
METHOD instance and set the value to YES. (The default value for
ZMUSTRUN is NO.) You can also establish a specific message to be returned
by inserting the MSGONERR variable in the ZMETHOD instance.

If no value is specified for MSGONERR, the following message will
appear:
“CONFIGURATION UNCHANGED! UNABLE TO DETERMINE NEW
CONFIGURATION.”

Managing Configuration Server Processing 162

163

4 Notifying HPCA Agents
At the end of this chapter, you will:

• Know about the different ways to invoke the Notify function.

• Know how to configure multiple Notify Managers.

• Know how notification retries are established.

Notifying HPCA Agents 164

An Overview of Notify
The notify function enables the initiation and execution of programs on an
HPCA agent device from another location, and is usually, initiated by the
Configuration Server. However, an HPCA agent that is configured as an
administrator can also initiate notify processing requests.

The uses of the notify function vary from initiating HPCA agent connections
via notify to ad-hoc notifies to reboot a single machine. It is a powerful,
flexible tool that can be used for starting non Client Automation-specific
processes (such as, restart and backup) on HPCA-managed devices.

In a typical manual connect scenario, the HPCA agent initiates the connect
process to receive the resources configured for that device. By using notify,
the Configuration Server can contact an HPCA agent and request that it
connect or, alternately, accomplish some other task defined for that device, at
any time.

Generally, this process depends on the Configuration Server having a reliable
method by which to identify and contact each HPCA agent. This method of
contact might the IP address that was used at the last HPCA agent-
Configuration Server connect in a static IP address environment, or the host
name of the HPCA agent device in a DHCP environment. Any of these
methods can be used to identify the HPCA agent as the target of a
Configuration Server initiated notify. It is by this identifier, as well as the
communications environment being used, that the Configuration Server
knows how to contact the HPCA agent. Once communication is established
with the HPCA agent, the Configuration Server can initiate processes to
perform a variety of functions. The HPCA agent identifier must be unique
and reliable in order to predict which HPCA agent will receive the notify.

In order for TCP/IP to receive notify messages from the Configuration Server,
the receiving HPCA agent notify receive daemon (RADEXECD) must be
running. The Macintosh, UNIX, and Windows platforms must run the notify
receive daemon and the HPCA agent notify receive programs in order to
receive any incoming messages.

Notify currently supports TCP/IP and e-mail. The sender and receiver must
be using the same communications protocol if the program is to execute
properly.

The following section describes how the Configuration Server can notify
HPCA agents to initiate the HPCA agent connect process.

Notifying HPCA Agents 165

Notify and the HPCA Agent Connect Process

Software distribution is typically discussed in terms of push and pull. This
refers to the concepts of pushing software out from a central location to an
HPCA agent, or the HPCA agent pulling software in from a central location.
The major difference between the push and pull scenarios is the point at
which the distribution activity is initiated⎯the server or the HPCA agent.
HP supports both models by offering numerous options that are used to
define how, when, and where the distribution process is initiated. Notify
provides users with the means to configure and implement a push scenario.

The HP distribution process⎯the HPCA agent connect process⎯is part of an
entire configuration process during which the HPCA agent connects to the
Configuration Server to determine what its configuration should be. This
connection process is comprised of a series of programs that execute on the
HPCA agent to perform comprehensive, continuous configuration
management. Many of these programs communicate with the Configuration
Server to obtain required information, while other programs perform strictly
local processing.

HP Client Automation supports three basic connect types, as follows:

• Manual Connect
The user invokes the HPCA agent connect process by choosing the
appropriate icon. This process can be defined as a pull.

• Timed Connect
A timer process that runs on the HPCA agent executes the connect
process at a predetermined date and time. This operation can also be
defined as a pull.

For more information on these HPCA agent initiated connects, refer to
the Application Manager and Application Self-service Manager Guide.

• Notify Connect
The HPCA agent is notified from a central control point to perform the
connection. The notify process is a push.

Notify can be executed only if the “notifier” (usually the
Configuration Server) and the “notifyee” support the same
communications protocol.

Notifying HPCA Agents 166

When to Use Notify

In addition to forcing an HPCA agent to connect to a Configuration Server,
the notify function can be used in the following ways:

• Using notification for other purposes
The notify functionality can be used for emergency distribution of files
outside of an HPCA agent connect process; for initiating some event on
the HPCA agent (such as switching versions); and for collecting
debugging information about a connect failure.

• Instead of EDMTIMER
EDMTIMER is used to deploy applications at specific time intervals. It is
often set to execute during non-peak hours. Initiating a large number of
simultaneous connects in large network environments can slow down
deployment by overburdening the source. Notify can be used in place of
EDMTIMER to force smaller groups of users to receive information at
staggered time intervals.

Types of Notify
There are three ways in which to invoke the notify function, as described in
the following sections:

• Simple Notify (starting below)

• GUI-Configured Notify (starting on page 168)

• EDMMPUSH (starting on page 400)

Simple Notify

The ZNFYT method is for a TCP/IP environment. It enables a remote HPCA
agent notification, instructing the HPCA agent to initiate the connect. To
execute a Simple Notify, RADEXECD must be running on the HPCA agents
on which a push is being executed.

The ZNFYT method stores the results of the notification in the Configuration
Server’s NOTIFY File, producing an instance for each HPCA agent that is
notified. This Configuration Server method works on all HP supported
Configuration Server platforms. Table 76 presents the parameters for
ZNFYT, along with a description of each.

Notifying HPCA Agents 167

Table 76 ZNFYT Parameters

Parameter Description

domain Name of the domain where notification results are
stored. If this parameter is not specified, the domain
name will be automatically generated as a function of
date/time.

instance Instance name containing results of the single
notification. If this parameter is not specified, instance
name will be automatically generated as an eight-digit
number. Default is 00000001.

password ZNFYPWD for the ZMASTER object of the target
terminal.

port Port number. This should have the same value as the
ZMASTER port number.

“process to run” Application you are forcing the HPCA agent to execute.

target IP
address

IP address of the HPCA agent to which you are
executing a push.

user ID HPCA agent user ID.

Newer notify features, such as Wake-On-LAN and Scheduling for
Notifies are not supported by Simple Notify. To take advantage of
these features, you must use the EDMMPUSH form of notify.

Figure 1 on page 168 presents an overview of the Simple Notify process.

Notifying HPCA Agents 168

Figure 1 Overview of the Simple Notify process

For information on how to configure multiple Notify Manager tasks, see
Multiple Notify Managers on page 178.

For a look at how to retry failed notifications, see Retrying Failed Notifies on
page 180.

For information on how to schedule an HPCA agent notification, see
Scheduling for Notify on page 182.

GUI-Configured Notify

The Configuration Server supports a method for establishing notifies using a
standard graphical user interface. This easy-to-use process is called drag-
and-drop notification (DDN). The Admin CSDB Editor provides the support
for drag-and-drop notification on the administrator side. The drag-and-drop
notification feature was incorporated to make it easier to notify large groups
of users. Presently, this feature allows for the notification of all the users of
the department, user group, single user, or all the users of the service. It is
very important to understand that the destination information is searched for
in the PROFILE File—specifically, in PROFILE.USER_ID.ZMASTER.OBJECT.

Notifying HPCA Agents 169

In order for DDN to work, all the necessary information should be
written to the PROFILE File during the HPCA agent resolution
process before DDN. If the necessary information is not in the
PROFILE File, DDN will not be possible. DDN is not designed to
notify new users whose destination information is not yet in the
PROFILE File of the CSDB.

There are two aspects to DDN: the source icon and the destination icon. The
source icon is that which is dragged and dropped onto the destination icon.

The source instance must belong to the USER, WORKGRP, DEPT
of the POLICY Domain, or ZSERVICE Class of the SOFTWARE
Domain.
The destination instance must be a member of the ZCOMMAND
Class found in PRIMARY.SYSTEM Domain.

To perform drag-and-drop notification (DDN)

1 In the Admin CSDB Editor, expand the CSDB tree to the icon that
represents the source instance (for example,
PRIMARY.POLICY.WORKGRP.PROD_USERS).

2 Click the instance.

3 While holding down the left mouse button, drag the instance to the icon
that represents the destination instance (for example,
SYSTEM.ZCOMMAND.NOTIFY).

An icon, resembling a magic wand will appear, indicating that you are in
the COMMAND Class.

4 Release the mouse button, thereby associating the source icon (instance)
with the destination icon (instance).

The result is that all instances belonging to WORKGRP.PROD_USERS
will be notified.

The response message from the Configuration Server will indicate the
number of users were found in this group and how many were scheduled for
notification. Again, if the information about the selected users is not in the
PROFILE File, no notification will occur.

As usual, all the results of the notification can be found in the Configuration
Server log. Additionally, the notification results will be written to the
NOTIFY File with a domain name created dynamically for each DDN action.
The name of the domain will be returned to the HPCA agent in the
ZADMNHNL attribute of the ZADMIN object. To see the results, right-click

Notifying HPCA Agents 170

on the domain and, from the popup menu, select Status Display. Another
option, Status Delete, will delete the domain when you do not need it.

Types of Notifications Supported

It is important to note that a COMMAND Class instance is a special type of
instance that is used to define a command to be executed. Table 77 lists the
ZCOMMAND class variables that are used for DDN.

Table 77 ZCOMMAND Class Variables Used for DDN

Variable Description Length

ZCMDNAME Command name (NOTIFY, EMAIL). 8

ZCMDPATH Location of the command. Used only for EXEs that are not
pre-established (NOTIFY, EMAIL).

255

ZCMDPRMS Parameters passed to the command. 255

ZCMDSEP Separator used for parameters in user-defined commands. 1

ZCMDSYNC A synchronization flag that defines whether to wait until the
user command executes and ends, or to return control
immediately (Y/N).

1

ZCMDUCLS USER Class name. This is the name of the class in which to
look for users connected to the droppee. For example, if the
value is set to COMPUTERS and the droppee is
WORKGROP.ACCOUNTING, instances of the COMPUTERS
class that are members of WORKGROP.ACCOUNTING will
be the selected audience for the notification. If ZCMDUCLS is
not specified, then (using the above example) the audience will
be created by instances of the COMPUTERS class that are
members of WORKGROP.ACCOUNTING. The default for
ZCMDUCLS is USER.

8

ZCMDTYPE Type of command to be executed (REXX, EXE). 8

ZCMDHNDL Notify handle is a domain name created/reused in a NOTIFY
File to store the information about notification results. The
class name is created depending on the type of notification,
and an instance name is generated as a sequential number
(for first request it’s 00000001, for next 00000002, and so on).
If the handle is not specified, the name will be generated as a
function of date/time to make it unique.

32

Notifying HPCA Agents 171

Variable Description Length

ZCMDUINF User information passed to notify start and end methods. If
not specified, ZCMDHNDL in combination with instance name
(heap number) will be used.
For example, if handle was specified as
USERS_DEFERRED_NOTIFY.

For the first request, user info will be
USERS_DEFERRED_NOTIFY_00000001.

For the second,
USERS_DEFERRED_NOTIFY_00000002,

and so forth.

128

ZCMDRMAX Maximum number of retries in case of notify failure. 3

ZCMDDLAY In case of failure, the interval (in seconds) to wait before a
retry will be scheduled. The default is 300 (5 minutes).

4

ZCMDNFYD Date when the notify request should be executed the first
time. The format is YYYY/MM/DD. The default is the current
date.

10

ZCMDNFYT Time when the notify request should be executed the first
time. The format is HH:MM:SS. The default is the current
time.

8

The user information in ZCMDUINF can be used as a key to write
the information to an SQL database. The key would be unique. It is
recommended that you do not specify the value, rather, let it be
generated as described above. However, if the value is used in some
other fashion in notify methods, it can be defined and then further
processed in any way in notify methods (for instance, combine the
handle and IP address for TCP/IP).

Currently, two types of notify operations are supported in the COMMAND
Class: NOTIFY and EMAIL. This means that you can choose between TCP/IP
and e-mail for the notification.

You can also use the ZNFYTSTA REXX in conjunction with all
types of Notifies. For more information, see Chapter 2, Managing
Configuration Server Processing.

Notifying HPCA Agents 172

The notification command, specified as the ZCMDPRMS variable, is the text
that is sent to the HPCA agent as either the command line in a TCP/IP
Notify, or the message and subject in an e-mail notify. (See Scheduling for
Notify on page 182 for information on configuring the COMMAND Class for
deferred notification.)

The source instance must belong to the USER, WORKGRP, DEPT
of the POLICY Domain, or ZSERVICE Class of the SOFTWARE
Domain.
The destination instance must be a member of the ZCOMMAND
Class found in PRIMARY.SYSTEM Domain.

It is also important to understand that before the COMMAND Class instance
is taken for processing, the secondary resolution is done, and all the variables
of the instance will be substituted. This will allow a partial or complete
change of the command line and/or the notification type.

Necessary Profile Information

In order for the DDN to work, the following information must be in the source
instance’s PROFILE.userid.ZMASTER.OBJECT.

Table 78 Drag-and-Drop Profile Information

Variable Description e-mail TCP/IP

ZUSERID At the time of notification, the target user ID must
match the one in the ZMASTER object.

N/A √

ZNFYPWD Password. If there is a ZNFYPWD in the
ZMASTER object of the PROFILE File, notify will
use it. Otherwise, the default, EDMPASS, will be
used.

N/A √

ZNTFPORT Port number for notify daemon (The default is 512). N/A √

ZCIPADDR IP address of the HPCA agent device. N/A √

ZIPNAME Fully qualified host name of the HPCA agent
device. If ZCIPADDR is not specified, this variable
can be used instead.

N/A √

EMAIL Fully qualified e-mail address of the destination. √ N/A

There are two ways of specifying an HPCA agent IP address:

Notifying HPCA Agents 173

• ZCIPADDR
This variable can be used to point to a specific host name/address; it is
not resolved by the Configuration Server.

• IPNAME
This variable contains the fully qualified symbolic host name of the
connecting HPCA agent and is resolved by the Configuration Server.

The order of precedence for the sources of HPCA agent IP addresses is
ZCIPADDR, then ZIPNAME.

In a case when the source is an instance of the SERVICE class, the service
instance should be generated for each user of the service and this instance
should be written to either the ZSVCSTAT or ZERVICE class. The
ZSRCDOMN and ZSRCCLAS variables of this instance should specify the
domain and class names of the service. The instance name has to match the
name of the service itself.

Programmatically Configuring Notifies

Drag-and-drop was initially designed and implemented to support the Admin
CSDB Editor. However, it can be used separately in a well established
infrastructure for mass notification controlled by a timer on the HPCA agent.
The only input that is necessary for the back end is a ZADMIN object that
has all the variables in it defining the source and destination instances.

Table 79 lists and describes the ZADMIN object variable names, and offers a
sample value.

Table 79 Variables of the ZADMIN Object

Variable Name Description Sample Value

ZADMFILE Destination file name PRIMARY

ZADMDOMN Destination domain name SYSTEM

ZADMCLAS Destination class name ZCOMMAND

ZADMINST Destination instance name NOTIFY

ZADMDFIL Source file name PRIMARY

ZADMDDOM Source domain name POLICY

ZADMDCLS Source class name WORKGRP

ZADMDINS Source instance name PROD_USERS

ZADMFUNC Function name for DDN EXECUTE

Notifying HPCA Agents 174

Variable Name Description Sample Value

ZUSERID Administrator user ID Vladimir

ZNFYPWD Password nvdm123

An operation based on the above specifications would cause all the users of
the PRIMARY.POLICY.WORKGRP.PROD_USERS to be notified with the
command defined in PRIMARY.SYSTEM.ZCOMMAND.NOTIFY. All the
source information will be retrieved from the PROFILE File.

EDMMPUSH

The EDMMPUSH method is another way to implement the existing
Configuration Server-HPCA agent notification procedures. In fact,
EDMMPUSH enhances the process, rather than acting as a substitute for
any of the existing notify methods; and it might support future notify
features that other types of notify do not.

The major advantage of EDMMPUSH is that it is not dependent on any one
communications protocol, largely because it does not do the notification.
Rather, it:

• receives the input requests,

• gets the required parameters, and

• puts the requests to the correct queues for subsequent processing by the
appropriate Notify Manager.

This way, configuring the CSDB is simplified because all notify requests, of
all notification types, can be concentrated in a single input object. This object,
or even a dynamic object that was created because of object resolution, can be
used to deliver notification requests to the EDMMPUSH method. This object
might require different types of notification for each heap (request).

The HPCA administrator can create a single multi-heap object that will
notify all the HPCA agents, regardless of notification type, and then send the
object to the Configuration Server to accomplish the notification.

Notifying HPCA Agents 175

Figure 2 Input-object creation methods for EDMMPUSH

The left side of Figure 2 shows the various methods of building the HPCA
agent notification list that are put into an input object for EDMMPUSH.
Each method can input various types of requests. The methods write the
notify requests into input objects that will later be processed by EDMMPUSH
because of object resolution. These various notify requests will be processed
by a single method that will route them into the right queues for processing.

Input Object Used by EDMMPUSH

The EDMMPUSH method receives all the information about the notify
requests from the input object. The name of the input object is defined in the
CSDB, specifically in the PRIMARY.SYSTEM.ZMETHOD.EDMMPUSH
instance field named “Parameters passed to Method.” If this field does not
specify an input object name, ZNOTIFY (the default) will be used. Each
communications protocol that is used to execute a notification requires a
specific set of variables. However, there are control variables that must be
specified for every heap of the input object.

The following sections discuss these common control variables and describe
specific protocol-dependent variables for each.

Notifying HPCA Agents 176

Common Control Variables

Common Input Variables

You must specify the following input variables.

Table 80 EDMMPUSH Input Variables

Variable Description

NFYDELAY Specifies the delay interval for trying to re-notify an HPCA agent. If no
value is entered, the default value is the value specified in the
NFYT_TIMEOUT setting of the MGR_NOTIFY section of the edmprof
file.

NFYHNDL Specifies the domain name of the NOTIFY File where the results of
notifications will be stored. The heap number of the request object will
become the instance name.

NFYMRTRY Specifies the maximum number of retries. If no value is entered, the
default is the value specified in NFY_RETRY of the MGR_NOTIFY
section of the edmprof file.

NTFYRTIM HP timestamp that defines the time after which the notification should
occur.

NFYPROC Controls processing of the current heap request. If Y, the heap will be
processed. If N, the request for the current heap will be ignored. The
default is Y.

NFYTYPE Defines the type of notify requested. The following values are allowed:

• TCP
• EMAIL

The first three bytes of the type are used for the identification, so
EMAIL and EMA are treated the same. There is no default value for
this variable. If it is not defined, the current heap of the object will be
ignored.

NFYUINFO Allows you to enter user information.

Common Variables Set by EDMMPUSH

Due to the input request processing, the following variables are set in the
input object.

Notifying HPCA Agents 177

Table 81 Variables Set by EDMMPUSH

Variable Description or Setting

ZMMSG Message regarding success status of required notification scheduling.

ZMRC Return code (0 – success, 4 – warning, 16 – failure).

ZOBJCDEL Set to Y in order to enforce control object deletion after object transfer is
done.

ZOBJRDEL Set to Y in order to enforce response object deletion after object transfer
is done.

Protocol Dependent Input Variables

TCP/IP

The TCP/IP Notify uses REXEC protocol to deliver notification to the HPCA
agent. Therefore, a user ID and password are required for this type of
notification. After the connection is established and the user ID-password
combination is verified, the command line that was sent with the request will
be executed on the remote (destination) machine. This command line should
initiate the HPCA agent connect process. It is the administrator’s
responsibility to make sure that the command line contains the call that will
be executed on the HPCA agent and will initiate the HPCA agent connect to
the Configuration Server.

Table 82 TCP/IP Variables and Descriptions

Variable Description

NFYCMD Command line to be executed on the destination machine. This command
line should initiate the connect on the HPCA agent.

NFYIPADR TCP/IP address of the destination HPCA agent.

NFYIPORT Listening port number on the destination machine.

NFYPASSW Password acceptable with user ID specified in NFYUSER.

NFYUSER User ID acceptable on the destination system (used by native operating
system security system).

NFYMAC Mac address of the destination machine will be used for Wake-On-LAN.
If NFYMAC is not specified, Wake-On-LAN cannot be used.

Notifying HPCA Agents 178

E-mail

Table 83 EMAIL Variables and Descriptions

Variable Description

EMAILATT Attachment to send in an e-mail (optional) message. User can specify
multiple attachments by separating them with semicolons (;).

EMAILFRM E-mail address of the sender (mandatory).

EMAILMFN Message file name, in case message is greater than 255 bytes
(mandatory, if EMAILMSG is not used).

EMAILMSG Message that is restricted to 255 bytes (mandatory, if EMAILMFN is
not used). To send a message with spaces, follow the directions as in
EMAILATT.

EMAILSUB The subject of the e-mail (optional) message. The subject must be
enclosed in quotation marks if a space is used (as in “Hello Test”). If the
quotation mark is not inserted at the end of the message, the text up to
first space will be sent as a subject (“Hello” in this case).

EMAILTO E-mail address to which the message is being sent (mandatory).

For information on how to configure multiple Notify Manager tasks, see the
following section, Multiple Notify Managers.

For a look at how to retry failed notifications, see Retrying Failed Notifies,
starting on page 180.

For information on how to schedule an HPCA agent notification, see
Scheduling for Notify, starting on page 182.

Multiple Notify Managers
In order to speed up the processing of a large number of notification requests,
multiple Notify Manager tasks (of the same communications type) can be
configured. When multiple Notify Managers are used, a single notification
pipeline is substituted by as many lines as there are Notify Managers
configured. This approach is based on a single request queue, resource-
protected by a read mutex semaphore, with multiple Notify Managers
reading from it.

Each Notify Manager waits for the semaphore. The Notify Manager that
owns the semaphore reads it from the queue, and then immediately releases

Notifying HPCA Agents 179

it and continues the notification process for the request it currently has. Once
a Notify Manager releases the semaphore, other Notify Managers can start
processing their queued requests.

Configuring Multiple Notify Managers

Multiple Notify Managers should be started in the same way a single Notify
Manager is started—specified as a Configuration Server task in the
MGR_ATTACH_LIST section of the edmprof file. Sequentially specify as
many Notify Managers as necessary. Additional parameters and values (such
as NAME=ZNFYTMnnn) can be added to the CMD_LINE settings in order to
uniquely identify each of the Notify Managers. For example:

CMD_LINE=(znfytmgr NAME=ZNFYTM001)…
CMD_LINE=(znfytmgr NAME=ZNFYTM002)…
CMD_LINE=(znfytmgr NAME=ZNFYTM003)…

This will cause the Task Manager to start and maintain three tasks:
ZNFYTM001, ZNFYTM002, and ZNFYTM003.

An overview of the notify process with multiple Notify Manager tasks is
illustrated in Figure 3 on page 180.

Notifying HPCA Agents 180

Figure 3 Notify process with multiple Notify Manager tasks

For information on how to retry failed notifications, see the following section,
Retrying Failed Notifies.

For information on how to schedule an HPCA agent notification, see
Scheduling for Notify, starting on page 182.

Retrying Failed Notifies
Prior to the release of the version 4.1 Configuration Server, the notification
process included the three ways of invoking HPCA agent notification that
have been previously described. These types of notification put notification
requests into a notify queue. The Notify Manager task would take one
request from the queue, process it, and write the results to the CSDB

Notifying HPCA Agents 181

NOTIFY File. The Notify Manager would then sequentially process the
remaining requests, until all requests were processed.

If, for some reason, one of the notifications takes an inordinate amount of
time, all queued requests would be delayed. In the case of an error, the Notify
Manager does not retry the notification.

To enable the retrying of notifications, the Notify Manager stores failed-
request information in the RETRY Domain of the NOTIFY File. The suitable
time for retrying the notification is set in the request. The Retry Manager
wakes up every minute and checks all instances of all classes in the RETRY
Domain. If failed requests exist, the Retry Manager compares the scheduled
renotification time with the current time and, if the time is right, requeues
the request. The Retry Manager processes failed notifications for all types of
communications Managers and requeues them accordingly.

To configure for the Retry Manager, add zrtrymgr to the
MGR_ATTACH_LIST section of the edmprof file.

Figure 4 on page 182 illustrates the Notify Retry process.

Notifying HPCA Agents 182

Figure 4 Notify Retry process

Scheduling an HPCA agent notification is covered in the next section,
Scheduling for Notify.

Scheduling for Notify
You can use, in combination, the EDMMPUSH method and the Retry
Manager to schedule delayed executions of notify. To configure this
scheduling feature, add an NTFYRTIM variable to the in-bound
EDMMPUSH object, and have the zrtrymgr task included in the
MGR_ATTACH_LIST section of the edmprof file.

Notifying HPCA Agents 183

NTFYRTIM

The NTFYRTIM variable is used to schedule the time at which a notify event
should occur. If NTFYRTIM is specified, EDMMPUSH does not put the
request in the notify queue. Rather, the request is written to the RETRY
Domain of the NOTIFY File. The zrtrymgr task checks the RETRY Domain
every minute, and when the date and time specified by NTFYRTIM is
reached, it puts the notify request into the queue for the Notify Manager to
process. The scheduling function allows you to retry failed notifications also.
Additionally, you can recover those notifications that were scheduled, but
where the Configuration Server was stopped and restarted.

Table 84 NTFYRTIM Settings

Variable Description

NTFYRTIM Time (in the format of EDM_TIMESTAMP) at which the notification
should execute. If this variable is absent or blank, EDMMPUSH will
presume that the request should be executed immediately.
This value must be exactly 22 characters and cannot contain commas or
spaces. The format of the time stamp is:

 Parameter Length Options

 Year 4 YYYY

 Month 2 01-12 (where 01=January)

 Weekday 1 0-6 (where 0=Sunday)

 Date 2 01-31

 Hour 2 00-23

 Minute 2 00-59

 Second 2 00-59

 Millisecond 3 000-999

 Time zone adjustment This is the adjustment according to
the location of the Configuration
Server. This setting must start with +
or –, followed by a three-digit (number
of minutes) adjustment.

 NTFYRTIM Time Zone Adjustments details how to configure NTFYRTIM.

Notifying HPCA Agents 184

NTFYRTIM Time Zone Adjustments

In order for NTFYRTIM to function properly, time-zone adjustments must be
configured correctly. Since the Configuration Server uses the operating
system’s clock (which might have an automatic Daylight Saving Time (DST)
adjustment feature), it is important that the NTFYRTIM setting be properly
set, using Greenwich Mean Time (GMT), with DST accounted for, when
necessary. Additionally, when configuring this setting, 24-hour clock (a.k.a.
military) time must be used.

GMT is a constant; it does not adjust for Daylight Saving Time.

The first eight values in the table are the date and time (in GMT) that the
notify event is scheduled to execute. The last setting, time zone adjustment,
represents the adjustment (to the physical time of the Configuration Server
machine) necessary to synchronize it with GMT.

Therefore, a Configuration Server in NY, USA, which is 5 hours behind GMT
during standard time (and 4 hours behind during DST), would need the
proper number of adjustment minutes (300) added, to be synchronized with
GMT. The follow examples offer several sample NTFYRTIM settings.

Example A

To schedule a notify event for Wednesday July 09, 2001 at 2:35:15:000 (P.M.)
GMT, specify:

• on a Configuration Server in New York, USA (GMT -4 hours, since DST is
in effect)

2001 07 3 09 14 35 15 000 +240 = 200107309143515000+240.

• on a Configuration Server in Paris, France (GMT +2 hour, since DST is in
effect)

2001 07 3 09 14 35 15 000 -120 = 200107309143515000-120.

Example B

To schedule a notify event for Friday November 09, 2001 at 2:35:15:000
(A.M.) GMT, specify:

• on a Configuration Server in Seattle, USA (GMT -8 hours, since DST is
not in effect)

2001 11 5 09 02 35 15 000 +480 = 200111509023515000+480.

• on a Configuration Server in Tokyo, Japan (GMT +9 hours, since DST is
not in effect)

Notifying HPCA Agents 185

2001 11 5 09 02 35 15 000 -540 = 200111509023515000-540.

In Example B, a Configuration Server located in Seattle, WA, USA
would actually be on a different date (the previous day), November
08, 2001. This is irrelevant because the task is scheduled using
GMT.

Another way to specify this, is to make the adjustment in the four time
values (hour, minute, second, and millisecond) of NTFYRTIM, and specify (+ /
–) 000 for the time zone adjustment. Re-using the parameters from Example
A, Example C makes the adjustment in the time values.

Example C

To schedule a notify event for Wednesday July 09, 2001 at 2:35:15:000 (P.M.)
GMT, specify:

• on a Configuration Server in New York, USA (GMT -4 hours, since DST is
in effect)

2001 07 3 09 10 35 15 000 +000 = 200107309103515000+000.

• on a Configuration Server in Paris, France (GMT +2 hour, since DST is in
effect)

2001 07 3 09 16 35 15 000 -000 = 200107309163515000-000.

In Example C, the time zone adjustment value must still be
specified, but the offset symbol (+ / -) preceding 000 is irrelevant.

Time Zone Offsets

Figure 5 on page 186 has been included in order to assist in remembering
whether to adjust forward or back for the various time zones, in relation to
GMT.

Notifying HPCA Agents 186

Figure 5 Offsets for Greenwich Mean Time (GMT)

Automatic Adjustments for Daylight Saving Time

If the Configuration Server machine offers the ability to have its clock
automatically adjust for Daylight Saving Time, HP recommends activating
this feature.

• On a Windows machine, this is accomplished in the Control Panel area.

• On a UNIX machine, this is configured during installation. If you need
further information, consult the documentation for the operating system.

Drag-and-Drop Notify

Scheduling for notify can also be configured for Drag-and-Drop Notify (DDN).
To enable the scheduling function, you must add the following variables to
the ZCOMMAND class:

Notifying HPCA Agents 187

Table 85 ZCOMMAND Variables Required for Notify

Variable Name Description Length

ZCMDHNDL Domain name created/reused in the NOTIFY File to store
the information about notification results. The class name
will be created depending on the type of notification.
Individual instance names are generated as sequential
numbers (for example, 000000001 for the first request,
000000002 for the second, etc.). If ZCMNDHNDL is not
specified, it will be uniquely generated as a function of
date and time.

32

ZCMDUINF User information that is passed to notify start and stop
methods. If ZCMDUINF is not specified, it will be
uniquely generated as a combination of ZCMNDHNDL
and instance name (heap number).

128

ZCMDRMAX Maximum number of retries in case of notify failure. The
default is 7.

3

ZCMDDLAY Delay interval (in seconds) before the retry will be
scheduled. The default is 300 (5 minutes).

4

ZCMDNFYD Date when the notify request should be executed for the
first time. The format is YYYY/MM/DD. The default is the
current date.

10

ZCMDNFYT Time when the notify request should be executed for the
first time. The format is HH:MM:SS. The default is the
current time.

8

Wake-On-LAN
Another notify feature that takes advantage of the Retry Manager is Wake-
On-LAN (WOL). Wake-On-LAN is a management tool that enables a system
to remotely power on other systems that support WOL, by simply sending a
“wake up” packet. Wake-On-LAN allows the workstation to go into a sleep
mode and to then wake when it is sent a specially formatted packet.

Wake-On-LAN enables an administrator to remotely upload/download data
to/from systems, as well as schedule HPCA agent maintenance for off-peak
hours.

Notifying HPCA Agents 188

The Benefits of Wake-On-LAN

Some of the advantages of Wake-On-LAN are:

• Increased flexibility for the system administrator,

• A reduction in operating costs, and

• Extended ability to perform distribution during off-peak time windows.

Components Required to Enable Wake-On-LAN

To enable the Wake-On-LAN function, your system requires:

• An Ethernet LAN-adapter card (such as the ASUS PCI-L101) that
supports Wake-On-LAN,

• A motherboard that supports Wake-On-LAN,

• A jumper cable installed from the LAN adapter to the motherboard.

Configuring Wake-On-LAN

In order to enable WOL, and to have it function properly, some configuration
is required on the Configuration Server, and network routers must be
enabled for subnetwork broadcasts.

EDMWAKE

EDMWAKE is not a part of the standard Configuration Server product and is
currently available as optional material on selected platforms. Support for
EDMWAKE is now limited only to notify requests that are initiated using the
EDMMPUSH method.

EDMWAKE on the Command Line

When running EDMWAKE on the command line, it requires two address
parameters, separated by a blank character, and an optional parameter, TTL.

• The broadcast address of the destination machine (herein, destination
broadcast address). This is required to ensure the broadcast packet
traverses intermediate network routers, if any exist.

• The Media Access Control address of the destination machine (herein,
MAC address). EDMWAKE issues an asynchronous data flow from which

Notifying HPCA Agents 189

no response is expected. The return codes that are issued are indicative of
program execution only; they do not reflect the success of contacting the
target device.

• The optional TTL (time to live) is the maximum number of routers to
pass.

The MAC and destination broadcast addresses can be found on the
destination machine by typing:

IPCONFIG /all

This will generate output to the screen. The output of a sample IPCONFIG
/all command is shown in Table 86.

Table 86 Sample IPCONFIG /all Results

Parameter Value

Physical Address 00-06-5B-2F-99-23
Note: This is also the MAC address.

DHCP Enabled Yes

Auto-configuration Enabled Yes

IP Address 192.168.102.191
Notes: This is a Class C type address.
In an enterprise with the network address,
192.168.102, this machine is identified as
191.

Subnet Mask 255.255.255.0
Note: This is the Class C type address
default.

Default Gateway 192.168.102.1

DHCP Server 192.168.102.70

DNS Servers 192.168.110.4

 192.168.110.5

Primary WINS Server 208.244.225.122

The Physical Address that is displayed is the MAC address also.

Notifying HPCA Agents 190

Network Addresses

The destination broadcast address is generated by combining the network
and host portions of the target device’s IP address; after the host portion has
been replaced by the generic broadcast address, 255.

Therefore, using the information in Table 86, the destination IP address,
192.168.102.191, is used to create a destination broadcast address of
192.168.102.255. (The Configuration Server does this transparently.) This
results in the data packets being sent to all of the machines on the
(192.168.102.0) network.

Again, using the sample addresses in Table 86, with the subnet mask being
255.255.255.0 (the class C default), the network address is 192.168.102.0.

For a comprehensive look at IP addresses, visit:
http://www.networkcomputing.com/netdesign/ip101.html.

HP recommends running EDMWAKE from the command line first
to make sure it works, and then configure the Configuration Server
for usage via notify.

In EDMMPUSH, use the NFYMAC variable to specify the physical address of
the machine and all other parameters (as specified in HP documentation).

EDMWAKE issues an asynchronous data flow from which no response is
expected. The return codes issued are indicative of program execution only
and do not reflect the success or failure of contacting the intended target
device.

A log, EDMWAKE.LOG, s generated in the current directory, with the following
possible return codes generated:

0 successful

32 parms invalid, or some other error encountered

Network Requirements

EDMWAKE issues a broadcast packet that traverses an IP network. In order
to operate correctly, it is necessary that the IP routers and gateways be
configured to allow such broadcast traffic to pass through; otherwise, the
data-gram will not have the intended effect.

It might be necessary to involve the network management staff
within your enterprise during the testing and extended use of this
component.

Notifying HPCA Agents 191

Configuration Server Requirements

Add the following settings and values to the MGR_NOTIFY section of the
Configuration Server edmprof file to enable support for WOL:

ISSUE_WAKE_ON_LAN=YES

The default is NO.

Wake-On-LAN can only wake up machines that have been
gracefully shut down. If power has been turned off, a machine
cannot be contacted.

SUBNET_MASK = 255.255.0.0

For more information on SUBNET_MASK, see MGR_NOTIFY on
page 73.

Also, edit the Configuration Server retry variable in the
MGR_ATTACH_LIST section of the Configuration Server edmprof file as
follows:

[MGR_ATTACH_LIST]
CMD_LINE =(ztcpmgr,addr=joe,port=1955,name=TCP_Mgr_1955) RESTART =YES
CMD_LINE =(zrtrymgr) RESTART=YES
CMD_LINE =(znfytmgr,NAME=NFYTMGR1) RESTART=YES
CMD_LINE =(znfytmgr,NAME=NFYTMGR2) RESTART=YES

The Configuration Server attempts to issue a notify. If the notify fails on the
Connect stage with an error other than “destination port is not active,” the
machine might need to be powered up. The WAKE_ON_LAN is issued on the
first failure, and must be requested in the Configuration Server edmprof file.
The retry of the notify will be 300 seconds after Wake-On-LAN (to allow
enough time to boot). For the Retry Manager, which has no knowledge of
WOL, it is a normal retry operation.

HPCA Agent/PC Requirements

EDMWAKE implements a Wake-On-LAN functionality that is part of the
Wired-for-Management (WfM) initiative. Only HPCA agent devices that are
properly configured with appropriate motherboards, NICs, and the correct
jumpers connecting the two, will work with this data flow. Additionally, there
might be BIOS settings that need to be enabled in order to allow the HPCA
agent device to be responsive to this data flow. Check with the hardware
vendor to find out if your device is enabled for WOL.

Notifying HPCA Agents 192

Wake-On-LAN Supporting Remote Broadcast

In order to have the destination broadcast address included in the wake
command when it is issued, make sure that the subnetwork broadcast
address is specified as a parameter of EDMWAKE (see Network Addresses,
on page 190). The Configuration Server formulates the subnetwork broadcast
address based on the destination IP address. The destination broadcast
address will be adjusted according to the type of IP address (A, B, C, D, or E).
This is required to allow packets to traverse any intermediate routers.

Example

208.107.6.5 (subnet 208.107.6.255)

A specific SUBNET_MASK can be used if defined in the
Configuration Server edmprof file. For more information on
SUBNET_MASK, see MGR_NOTIFY on page 73.

193

5 HP SQL Methods
At the end of this chapter, you will:

• Have a better understanding of the HP Structured Query Language
(SQL) methods and Open Database Connectivity (ODBC) data sources.

HP SQL Methods 194

Overview
This chapter is divided into two primary sections:

• Data Exchange with ODBC-Compliant Databases starting below

• Using HP SQL Methods starting on page 211.

Data Exchange with ODBC-Compliant Databases discusses an ODBC data
source, and details why and how to define, obtain, and configure an ODBC
data source. Also covered is how to configure an ODBC connection to a SQL
Server (on Windows and UNIX).

Using HP SQL Methods details the HP SQL methods (EDMMSQLG and
EDMMSQLP), including:

• How to invoke HP SQL methods,

• The WHERE clause (which identifies the rows in the SQL database table
that are to be replaced), and

• Usage considerations and examples.

The HP SQL methods support only the following ODBC-compliant
databases:

• MS SQL
• Oracle
• Sybase

Data Exchange with ODBC-Compliant Databases

Introduction

Before using the HP SQL methods, configure an ODBC data source. ODBC is
a platform independent Application Program Interface (API) specification
that allows SQL statements to be submitted from programs external to the
database system, and then be processed by the database system over the
ODBC connection. A database system exposes its ODBC interface to external
programs through ODBC data source definitions.

HP SQL Methods 195

An ODBC Data Source: Prerequisites

The HP SQL methods are HPCA agent programs that are external to the
back-end database, which acts as a server.

The ODBC data source definition identifies the location of the ODBC-
compliant database’s tables for EDMMSQLG and EDMMSQLP. It also
specifies any options regarding how the back-end database system services
the ODBC connection. These options will vary from one back-end database to
another and, in order to set them properly, you will need to be familiar with
the back-end databases.

Many database systems are ODBC-compliant, and the specifics of configuring
an ODBC data source for a particular database system are described in the
database system’s documentation. In this section, several examples are
presented.

Defining an ODBC Data Source

The ODBC data source must be defined on the machine that is running the
Configuration Server, but the database tables can be located on any machine
that is accessible to the Configuration Server.

On Windows machines, a data source can be defined as either a User DSN or
a System DSN (Data Source Name).

• A User DSN is visible only to the user that defines it.

• A System DSN is visible to any user on the machine.

Since the Configuration Server normally runs as a service in the system
context, define the data source as a System DSN so that the Configuration
Server can use it.

ODBC Data Source Drivers

To configure an ODBC data source, the ODBC driver for the database system
must be installed on the machine on which the ODBC data source will be
defined. The ODBC driver typically ships with the database system, or can be
obtained from the database system vendor. Windows “server” operating
systems ship with a set of ODBC drivers.

The Configuration Server supports the HP Branded DataDirect
ODBC drivers.

HP SQL Methods 196

In some cases, additional software will be needed to completely configure an
ODBC connection. This is true, for example, when the Configuration Server
is running on a UNIX platform, and the ODBC-compliant database is
Microsoft SQL Server running on Windows. See Microsoft SQL Server with
UNIX Configuration Server, starting on page 203.

Configuring an ODBC Data Source

For many ODBC-compliant, desktop computer database systems (such as
Access and FoxPro), configuring an ODBC data source is no more complicated
than making up a name for the data source, then specifying a path to the
folder that contains the database tables, and perhaps specifying a small
number of database-specific settings. The following examples show this
process.

To configure an ODBC data source with Microsoft FoxPro 2.6

This example illustrates configuring the ODBC data source that is used in
some of the examples in this section. The ODBC-compliant database system
is Microsoft FoxPro 2.6 for Windows. The Configuration Server is running
under Windows NT 4.0.

1 Go to Start → Settings → Control Panel to open the Control Panel folder.

2 Double-click the ODBC icon to launch the ODBC Data Source
Administrator.

3 Click the System DSN tab.

The ODBC Data Source Administrator dialog box opens.

When the Configuration Server is running as a Windows
service, be sure to configure a System DSN rather than a User
DSN. Be sure to click on the System DSN tab to open the
System Data Sources panel.

4 Click Add to configure a new ODBC data source.

The Create New Data Source dialog box opens.

5 Click on the driver for the database you intend to use, and click Finish.

The ODBC Microsoft FoxPro Setup dialog box opens.

HP SQL Methods 197

Table 87 Microsoft FoxPro 2.6 ODBC Specifications

Setting Description

Data Source Name A name that you make up to identify this ODBC data source to
external programs, such as EDMMSQLG and EDMMSQLP. You
will supply this DSN as a parameter to EDMMSQLG/EDMMSQLP,
as described later in this document.

Description This is also a free text field. Make up a description that denotes the
purpose or use of the data source definition. It identifies this data
source when navigating the Control Panel ODBC applet.

Database • Version – This identifies the version of FoxPro. This setting
pertains only to FoxPro, you will not see this in dialog boxes
that configure ODBC data sources for other back-end
databases.

• Directory – This identifies a folder where the ODBC-
accessible FoxPro data tables are located.

• Select Directory – This setting defines a directory for the
ODBC data source.

Note: To enable the Select Directory button, clear the Use Current
Directory check box. Then click Select Directory, and use the
resulting dialog box to select the correct folder. Click OK, and the
ODBC data source definition is compete, and added to the system.

• Select Indexes – This option isn’t applicable.

Driver This setting is specific to FoxPro. It appears only when you click
Options. When you first open this dialog box, the Options button is
enabled, and its settings are hidden.
Do not alter these settings.

To configure an ODBC data source with Microsoft Visual FoxPro

The following example illustrates how to configure the ODBC data source
used in some of the examples later in this document. The back-end database
system is Microsoft Visual FoxPro. The Configuration Server is running
under Windows NT.

1 Go to Start → Settings → Control Panel to open the Control Panel folder.

2 Double-click the ODBC icon to launch the ODBC Data Source
Administrator.

3 Click the System DSN tab, and click Add.

The Create New Data Source dialog box opens.

HP SQL Methods 198

4 Click on the driver for the database that you intend to use, and click
Finish.

A dialog box for the selected database will open.

Table 88 Microsoft Visual FoxPro ODBC Specifications

Data Source
Name

Type a name to identify this ODBC data source to external programs, such
as EDMMSQLG and EDMMSQLP. You will supply this DSN as a
parameter to EDMMSQLG/EDMMSQLP, as described later in this
document.

Description Type a description that denotes the purpose or use of the data source
definition. It identifies this data source when navigating the Control Panel
ODBC applet.

Database
type

This setting pertains to Visual FoxPro only; you will not see this in dialog
boxes to configure ODBC data sources for other back-end databases.

Path This setting identifies a folder where the ODBC-accessible Visual FoxPro
data tables are located. You can type the path to this folder into the text
box, or click Browse to open a dialog box that enables you to select the
path from a list.

Driver This setting is specific to FoxPro. It appears only when you click Options.
When you first open this dialog box, the Options button is enabled, and its
settings are hidden.
In this area, select the following: Null, Deleted, and Fetch data in
background. From the Collating sequence drop-down list box, select
Machine.

5 Specify the required parameters.

6 Click OK to save the ODBC data source definition, and add it to the
system.

To configure an ODBC data source with Microsoft Access

The following example illustrates configuring an ODBC data source where
Microsoft Access is the back-end database. The Configuration Server is
running under Windows NT.

1 Go to Start → Settings → Control Panel to open the Control Panel folder.

2 Double-click the ODBC icon to launch the ODBC Data Source
Administrator.

3 Click the System DSN tab, and click Add.

HP SQL Methods 199

The Create New Data Source dialog box opens.

4 Click on the driver for the database you intend to use, and click Finish.

A dialog box for the selected database will open.

Table 89 Microsoft Access ODBC Specifications

Setting Description

Data Source
Name

Type a name to identify this ODBC data source to external programs, such
as EDMMSQLG and EDMMSQLP. You will supply this DSN as a
parameter to EDMMSQLG/EDMMSQLP, as described later in this
document.

Description Type a description that denotes the purpose or use of the data source
definition. It identifies this data source when navigating the Control Panel
ODBC applet.

Database This setting pertains to Microsoft Access only; you will not see this in dialog
boxes to configure ODBC data sources for other back-end databases.
These settings enable you to Select or Create a database, or perform
maintenance functions (Repair and Compact). Typically, you would click
Select and use the resulting file-selection dialog box to locate and choose
the Microsoft Access database with which you want to exchange data.

System
Database

This setting identifies a folder where the ODBC-accessible Visual FoxPro
data tables are located. You can type the path to this folder into the text
box, or click Browse to open a dialog box that enables you to select the path
from a list.

Driver This setting is specific to FoxPro. It appears only when you click Options.
When you first open this dialog box, the Options button is enabled, and its
settings are hidden.
In this area, specify the settings as shown in the previous figure.

5 Specify the required parameters.

6 Click OK to save your ODBC data source definition and add it to the
system.

SQL Servers
ODBC data sources for server based database systems such as Microsoft SQL
Server, Oracle, and Sybase, are more complex to configure. Since these are

HP SQL Methods 200

generally password protected, authorization rights need to be configured in
the back-end database. Also, when the database is running on a machine
other than that which houses the Configuration Server, the ODBC connection
will operate over a communications link, which will require some
configuration. Typically, your organization’s database systems administrator
and/or network administrator handles these jobs.

Additional software might need to be installed and configured. You will need
to consult your database systems administrator to have the ODBC data
source properly established in these cases. For additional information, see the
following examples for setting up an ODBC Data Source for Microsoft SQL
Server under Windows and UNIX.

Microsoft SQL Server with a Windows Configuration Server

Configuring an ODBC connection with Microsoft SQL Server is more complex
than setting up an ODBC connection to desktop databases such as Microsoft
Access and FoxPro.

Gather Information

First, the administrator of the SQL Server database must provide a user ID
and password for the ODBC connection to use when it logs on to SQL Server.
You will provide these to EDMMSQLG/EDMMSQLP as parameters at run
time.

Second, since SQL Server is server based, you are required to specify the
communication link for accessing the data. For desktop databases, the data
tables are located within the file system space of the Configuration Server,
either on the same machine or via a mapped drive on a LAN. You can
communicate with a machine running SQL Server using one of a number of
communications protocols. In this example, we used a TCP/IP connection.
You must know the SQL Server machine’s IP address and port number for
SQL Server HPCA agent communications.

To facilitate any future change in the IP address of the SQL Server machine,
define a name for the SQL Server machine’s IP address in the Configuration
Server machine’s HOSTS file, C:\WINNT\SYSTEM32\DRIVERS\ETC\HOSTS, as
in the following:

HP SQL Methods 201

Figure 6 Sample Configuration Server HOSTS file

Legend

a SQL Server machine’s entry in the HOSTS file

Third, you will need to have the name of the SQL Server database with which
the Configuration Server will exchange data, the tables within that database
to be used, and within those tables, the names of the fields that will
participate in the data exchange.

Install Necessary Software

In order to configure an HPCA agent machine (in this case, the machine on
which the Configuration Server is running) for connection to the machine
running SQL Server, the SQL Server Client Utilities must be installed on the
Configuration Server machine.

To configure the Configuration Server as an SQL server client

After installing the SQL Server Client Utilities, run the SQL Server Client
Configuration Utility.

1 Select the Net Library tab.

2 Set Default Network to TCP/IP Sockets.

3 Select the Advanced tab.

4 In the Client Configuration area:

— From the Server drop-down list, select SQLSRV.

— From the DLL Name drop-down list, select TCP/IP Sockets.

HP SQL Methods 202

— Enter the SQL Server machine’s IP address and port number
(separated by a comma) in the Connection String text box. Since we
have designated sqlsrv as the IP address of the Configuration Server
(in the HOSTS file), we can refer to the IP address by that name.

5 Click Add/Modify to save the settings in the Current Entries list.

6 Click Done to exit the utility.

Create the SQL Server ODBC Data Source

1 Go to Start → Settings → Control Panel to open the Control Panel folder.

2 Double-click the ODBC icon to launch the ODBC Data Source
Administrator.

3 If the Configuration Server is running as a Windows service, click the
System DSN tab, and click Add.

The Create New Data Source dialog box opens.

4 Select the driver for the database you intend to use, and click Finish.

This invokes a wizard that leads you through the process of defining the
ODBC data source.

5 Progress through the various dialog boxes that are presented by the
wizard.

Table 90 Microsoft SQL Server DSN Specifications

Setting Description

Data Source Name Type a name to identify this ODBC data source to external programs,
such as EDMMSQLG and EDMMSQLP. You will supply this DSN as
a parameter to EDMMSQLG/EDMMSQLP, as described later in this
document.

Description Type a description that denotes the purpose or use of the data source
definition. It identifies this data source when navigating the Control
Panel ODBC applet.

Server From the drop-down list, select the SQL Server with which the
Configuration Server will exchange data.

6 Review the settings and click Test Data Source to perform a test of your
ODBC data source definition.

HP SQL Methods 203

If you have correctly entered the information that is necessary to define
the ODBC data source, the system will display a “TESTS COMPLETED
SUCCESSFULLY” message.

7 Click OK to save the data source definition and close the dialog box.

Microsoft SQL Server with UNIX Configuration Server

This section provides information about setting up ODBC on UNIX. Note that
because installation directories vary from system to system, you must
substitute the name of the installation directory on your system, where noted
in the instructions that follow.

Install the Necessary Software

To build an interface to a Microsoft SQL Server database from the UNIX
machine that is running the Configuration Server, install HP DataDirect
ODBC drivers on the SQL Server host. HP DataDirect ODBC drivers are the
interface between the UNIX machine and the ODBC interface of the
Microsoft SQL Server machine, as shown in the following figure.

HP SQL Methods 204

Figure 7 HP DataDirect ODBC drivers as the interface

Configure the Configuration Server machine as a SQL Server client by
following the steps that are outlined below.

1 On the UNIX host, a shell script has to be run prior to using the HP
DataDirect ODBC driver. This shell script is located in the directory in
which the HP DataDirect ODBC driver is installed.

For the Bourne or Korn Shell, issue the command:

prompt> . <installation directory>/.sqlnk.sh

There is a <space><period><space> before <installation
directory>/.sqlnk.sh.

For the C-Shell, issue the command:

HP SQL Methods 205

prompt> source <installation directory>/.sqlnk.csh

This shell script will set several environmental variables that are needed
in order to run the HP DataDirect ODBC interface.

2 Use the SQLNKCAU utility to create a Data Source definition on the
UNIX machine. This is required in order to access a database.

3 Create a new definition by changing to the Configuration Server bin
directory under the installation directory and entering the following
command sequence.

Prompt> sqlnkcau
SequeLink Connect Administration Tool on HP-UX (ANSI)
(c)Copyright 1995-1998 INTERSOLV, Inc., All rights reserved
The following Data Source is selected:

[1] Select a Data Source
[2] New
[7] About
[0] Cancel
Select an action [2]: Select: New (2)

Name[]: Enter the Data Source
Name (e.g., QASQL)

*Description[]: Enter a description (e.g., Sample QA
SQL Data Source)

*Transliteration[]: Leave blank
The following network types are available:

[1] TCP/IP
Select a network []: Select: TCP/IP (1)

Host[]: Enter host name or IP
Address (SQLSRV)

The following server types are available:
[1] AS/400
[2] OS/390
[3] UNIX
[4] Windows NT
Select a server []: Select: Windows NT (4)

*User[]: Enter the Windows NT
user ID

*Password[*****]: Enter the Windows NT Password for
the user ID

The following service types are available:
[1] DB2 on AS/400
[2] DB2 on OS/390
[3] DB2 on NT
[4] DB2 on UNIX
[5] INFORMIX on NT
[6] INFORMIX on UNIX
[7] Microsoft SQL Server
[8] ODBC Btrieve
[9] ODBC dBase
[10] ODBC Excel

HP SQL Methods 206

[11] ODBC FoxPro
[12] ODBC MS Access
[13] ODBC Paradox
[14] ODBC Socket
[15] ODBC Text
[16] OpenIngres
[17] ORACLE
[18] Progress
[19] Sybase
Select a service []: Select: Microsoft SQL Server (7)

Name[]: Enter the default port
number (4006) or the name 'SQLSRV'

*Database[]: Enter the Database name
(e.g., PUBS)

User[]: Enter the SQL Server user
ID

Password[*****]: Enter the SQL Server user ID
password

4 Once the data source has been defined, test the access by using the Test
command. The Data Source QASQL is used in this example:

The following Data Source is selected:
[1] Select a Data Source
[2] New
[7] About
[0] Cancel
Select an action [1]: Select: Select a Data Source (1)

The following SequeLink Data Sources are available:
[1] QASQL
[0] Cancel
Select a SequeLink Data Source [1] Select: QASQL (1)

The following Data Source is selected: QASQL.
[1] Select a Data Source
[2] New
[3] Duplicate
[4] Edit
[5] Delete
[6] Test
[7] About
[0] Cancel
Select an action [0]: Select: Test (6)

Test passed: connection to 'QASQL' made.

— If all the parameters are properly set and a connection can be made to
the database, the response shown above will be received.

— If there is a problem, an error code and message will be displayed.

Refer to the Microsoft SQL Server documentation for an explanation
of the error codes. If a different database server is used, refer to the
respective documentation.

HP SQL Methods 207

5 Once the connection to the database has been established, it is necessary
to define an ODBC source that points to the Data Source. This definition
has to be made in the ini file for the interface.

This is a hidden file that is located in:

<installation directory>/ini/.odbc.ini.

To see a directory listing that includes this file, issue the command:

ls –a

6 The following example shows the changes that must be applied to the ini
file. Copy the template entry, and edit it to reflect your Data Source.

[ODBC Data Sources]
DataSourceName=INTERSOLV 3.10 SequeLink
VFHSQL=INTERSOLV 3.10 SequeLink

[DataSourceName]
Driver=/work/sqlnk/4_51_00/lib/ivslk13.sl
Description=INTERSOLV 3.10 SequeLink
SqlnkDSN=RADIA_DATA_SOURCE
LogonID=
Database=
AllowBatchStatements=0
UidPwdMapping=0 Template entry
PreFetchRows=30
EnableWarnings=0
EnableScrollableCursors=0
DataDictionary=(Default)
DataDictionaryCatalog=
DataDictionarySchema=

[RADIA] ODBC Name
Driver=/work/sqlnk/4_51_00/lib/ivslk13.sl Leave as default
Description=Sample Radia Data Source Database Description
SqlnkDSN=Radia Data Source Name
LogonID= Leave as default
Database=pubs Database name
AllowBatchStatements=0 Leave as default
UidPwdMapping=0 Leave as default
PreFetchRows=30 Leave as default
EnableWarnings=0 Leave as default
EnableScrollableCursors=0 Leave as default
DataDictionary=(Default) Leave as default
DataDictionaryCatalog= Leave as default
DataDictionarySchema= Leave as default

[ODBC]
Trace=0
TraceFile=odbctrace.out
TraceDll=/work/sqlnk/4_51_00/lib/odbctrac.sl
InstallDir=/work/sqlnk/4_51_00

HP SQL Methods 208

ODBC Reserved Words

ODBC reserved words are part of the ODBC syntax, and are poor choices for
column names in the back-end databases tables. Table 91 below lists ODBC
reserved words.

Table 91 ODBC Reserved Words

ABSOLUTE ADA ADA ALL

ALLOCATE ALTER AND ANY

ARE AS ASC ASSERTION

AT AUTHORIZATION AVG BEGIN

BETWEEN BIT BIT_LENGTH BY

CASCADE CASCADED CASE CAST

CATALOG CHAR CHAR_LENGTH CHARACTER

CHARACTER_LEN
GTH

CHECK CLOSE COALESCE

COBOL COLLATE COLLATION COLUMN

COMMIT CONNECT CONNECTION CONSTRAINT

CONSTRAINTS CONTINUE CONVERT CORRESPONDING

COUNT CREATE CURRENT CURRENT_DATE

CURRENT_TIME CURRENT_TIMES
TAMP

CURSOR DATE

DAY DEALLOCATE DEC DECIMAL

DECLARE DEFERRABLE DEFERRED DELETE

DESC DESCRIBE DESCRIPTOR DIAGNOSTICS

DICTIONARY DISCONNECT DISPLACEMENT DISTINCT

DOMAIN DOUBLE DROP ELSE

END END-EXEC ESCAPE EXCEPT

EXCEPTION EXEC EXECUTE EXISTS

EXTERNAL EXTRACT FALSE FETCH

FIRST FLOAT FOR FOREIGN

HP SQL Methods 209

FORTRAN FOUND FROM FULL

GET GLOBAL GO GOTO

GRANT GROUP HAVING HOUR

IDENTITY IGNORE IMMEDIATE IN

INCLUDE INDEX INDICATOR INITIALLY

INNER INPUT INSENSITIVE INSERT INTEGER

INTERSECT INTERVAL INTO IS

ISOLATION JOIN KEY LANGUAGE

LAST LEFT LEVEL LIKE

LOCAL LOWER MATCH MAX

MIN MINUTE MODULE MONTH

MUMPS NAMES NATIONAL NCHAR

NEXT NONE NOT NULL

NULLIF NUMERIC OCTET_LENGTH OF

OFF ON ONLY OPEN

OPTION OR ORDER OUTER

OUTPUT OVERLAPS PARTIAL PASCAL

PLI POSITION PRECISION PREPARE

PRESERVE PRIMARY PRIOR PRIVILEGES

PROCEDURE PUBLIC RESTRICT REVOKE

RIGHT ROLLBACK ROWS SCHEMA

SCROLL SECOND SECTION SELECT

SEQUENCE SET SIZE SMALLINT

SOME SQL SQLCA SQLCODE

SQLERROR SQLSTATE SQLWARNING SUB-STRING

SUM SYSTEM TABLE TEMPORARY

THEN TIME TIMESTAMP TIMEZONE_HOUR

TIMEZONE_MINU
TE

TO TRANSACTION TRANSLATE

HP SQL Methods 210

TRANSLATION TRUE UNION UNIQUE

UNKNOWN UPDATE UPPER USAGE

USER USING VALUE VALUES

VARCHAR VARYING VIEW WHEN

WHENEVER WHERE WITH WORK

YEAR

HP SQL Methods 211

Using HP SQL Methods

Overview

This section provides the information needed to enable the Configuration
Server to exchange data with an ODBC-compliant foreign SQL database,
using HP SQL methods. A foreign SQL database is one that is used by the
HP SQL methods, but is neither created, supported, nor maintained by HP.

The HP SQL methods support only the following ODBC-compliant
databases:

• MS SQL
• Oracle
• Sybase

The HP SQL Methods

• Are tools with which you can add, update, and retrieve SQL database
information.

• Work with single- and multi-heap objects, updating and inserting an
equivalent number of rows for as many heaps exist in the source object.

• Recognize and sort character strings, integers, decimals, and date/time
input.

• Are sensitive to column data types in an SQL database.

The EDMMSQLG (get) method imports data from an external database to an
in-storage object and is useful for influencing the Configuration Server
resolution process with data from an external source. See Figure 8 on page
213.

The EDMMSQLP (put) method exports data to an external database and is
useful for delivering data to an external subsystem for reporting and other
purposes. See Figure 8 on page 213.

Additionally, this section details the proper use of the WHERE clause within
control objects.

EDMMSQLG Method

The EDMMSQLG method provides users with a tool to extract data from a
customer specified SQL database table, and import it, via an ODBC

HP SQL Methods 212

connection, to an in-storage object, at a point in the Configuration Server
resolution process that has been defined by the administrator. The data to be
imported can be contained in any ODBC-compliant database.

EDMMSQLG is a Configuration Server method. Therefore, by establishing a
connection to this method in the distribution model for one or more devices
under management, an administrator can have it invoked during the HPCA
agent connect process.

Each invocation of EDMMSQLG executes an SQL SELECT statement that
retrieves data from the ODBC-compliant database, and stores the result in
an in-storage object. There will be one heap in the resulting in-storage object
for each row in the resulting set.

EDMMSQLP Method

The EDMMSQLP method provides users with a tool to extract data from the
Configuration Server Database and store it in an external database table, at
a point in the resolution process that has been defined by the administrator.
The exported data can be stored in any ODBC-compliant database.

EDMMSQLP is a Configuration Server method. Therefore, by establishing a
connection to this method in the distribution model for one or more devices
under management, an administrator can have it invoked during the HPCA
agent connect.

Each invocation of EDMMSQLP executes an SQL INSERT or UPDATE
statement to insert (or replace) data in the ODBC-compliant database. The
data is taken from an in-storage object. In the external database table, there
will be one row inserted (or replaced) for each heap in the in-storage data
source object.

Figure 8 on page 213 presents a graphical overview of the HP SQL methods
processes.

HP SQL Methods 213

Figure 8 EDMMSQLG and EDMMSQLP methods processes

EDMMSQLG retrieves (gets) data from the SQL table and writes it to
variables of the destination object. The mapping relationships between the
columns of the table and the variables of the destination object are defined in
the control information.

EDMMSQLP takes specified variables from the source object and writes
them (puts) into the SQL database. It works with the keywords REPLACE
and INSERT, as described in the parameter PUTTYPE in Table 92 below.

Because EDMMSQLG and EDMMSQLP are generic tools for
transferring data between an in-storage object and a back-end
database, you can make creative use of their capabilities in order to
meet your organization’s unique requirements.

The following table defines the keywords that are accepted by the HP SQL
methods.

Table 92 Keywords Accepted by the HP SQL Methods

Keyword Description Method
Put / Get

CTRLFILE Name of the file that contains the control information. If
this parameter is found, the parsing of the parameter
string stops, and all the control information will be read
from the specified file.

Put and Get

CTRLOBJ Name of the HP object that contains the control
information. If this parameter is found, the parsing of the
parameter string stops, and all the control information will
be received from the specified object.

Put and Get

HP SQL Methods 214

Keyword Description Method
Put / Get

SRCOBJ Name of the HP source object. Put

DESTOBJ Name of the HP destination object. This object is used in
read type methods.

Get

SQLDSN Data Source Name (DSN) used on the Configuration Server
to connect to the user database.

Put and Get

SQLTABLE The name of the SQL table to deal with in the method. Put and Get

SQLUSER The user ID to use in the database connect process. Put and Get

SQLPASSW The password to use in the database connect process. Put and Get

SQLTOUT Timeout value for the SQL connect operation. Put and Get

VC Defines one VARIABLE-COLUMN (VC) pair. There might
be more than one VC keyword in the parameter string. One
VC value must be specified for each VARIABLE-COLUMN
pair participating in the operation. For more information,
refer to the section, VARIABLE-COLUMN Pairs, on page
239.

Put and Get

WHERE This defines the search criteria for the WHERE clause. The
format is COLUMN_NAME=value,
COLUMN_NAME=value, etc. For more information, refer
to the section, The WHERE Clause, on page 245.

Put and Get

PUTTYPE {R, I} Type of Put operation requested, REPLACE or
INSERT.
When REPLACE is specified, the method will try to update
the existing row first. If the row does not exist, the method
will attempt to INSERT it. When INSERT is specified, the
method will try to insert the row. If this operation fails, no
other action is taken.

The default is R.

Put

In order for the HP SQL methods to work, they must be configured for
execution in the CSDB. During the resolution process, the method is executed
and the control information is passed as a parameter string. Generally, the
HP SQL methods deals with three types of information:

• control information,

• source (or destination) object information, and

HP SQL Methods 215

• SQL database information.

Defining EDMMSQLG and EDMMSQLP as Configuration Server
Methods

Before you can create a connection to the EDMMSQLG and EDMMSQLP
methods, you must define an instance—in the ZMETHOD class of the
SYSTEM domain—for each SQL method. The instance will contain the
information that is needed in order to execute the method.

You can name the instances whatever you want, but it is recommended that
the naming be consistent with the instance naming conventions of your
organization.

All of the variables in the instance should appear as shown here, except for
ZMTHPRMS, the variable that contains or identifies the control information
passed to the EDMMSQLG/EDMMSQLP method when it executes. There are
a number of ways to pass control information to EDMMSQLG/EDMMSQLP.
They are described in the next section.

Invoking EDMMSQLG

This section provides information needed to invoke EDMMSQLG, and
provides some examples.

Refer to the instructions for creating an instance in the Admin User Guide.
Before invoking the method, at least one instance must be defined in the
CSDB. You can define multiple instances to invoke EDMMSQLG, where each
instance (with its unique name) refers to a different set of control information
in its ZMTHPRMS variable.

To provide policy data from an external database

In this example, an external database contains information defining what
type of user the HPCA agent is, and therefore, what set of applications the
user should receive. For example, an insurance company might have
hundreds of claims adjusters for whom Client Automation manages a suite of
identical applications. Rather than define an instance for each claims
adjuster in the CSDB USER Class, a generic USER instance will serve to link
all adjusters to their appropriate application suite, based on the type of
claims they adjust. An external database is used to look up the HPCA agent’s
identity, and return an identifier that is then used to select the appropriate
generic USER instance for the HPCA agent.

HP SQL Methods 216

The back-end database is Microsoft Access, and the Configuration Server is
running under Windows NT.

The Microsoft Access database is named PERSONNEL.MDB. It contains a table
(EMPLOYEES) that contains the data to be extracted by EDMMSQLG. The
EMPLOYEES table looks like this:

Figure 9 Employees table of the Microsoft Access database

We’ll use EDMMSQLG to look up, in the EMPLOYEES table’s
RADIA_Client_ID column, the user ID provided by the user in the HPCA
agent connect login. If it exists in a record who’s Job_Class is equal to ADJ,
we’ll extract the Department_ID field. Department_ID will then be used in the
Configuration Server resolution process to select a generic USER instance to
provide the appropriate set of applications for the end user.

The generic USER instance will be named AUTO for automobile
insurance adjusters and HOMEOWN for homeowner’s insurance
adjusters.

We’ve defined an ODBC Data Source named Radia Policy to specify an ODBC
connection to this database. Once the ODBC Data Source exists, create an
instance of the SQLTABLE class to provide a control object for EDMMSQLG,
as in Figure 10 on page 217.

HP SQL Methods 217

Figure 10 SQLTABLE Class POLICY2 instance attributes

We’ve named this instance POLICY2. This instance should be named in
accordance with your organization’s convention for naming Client
Automation product instances.

• The SQLTABLE variable identifies the database table that EDMMSQLG
will access (in this example, Employees).

• The SQLDSN variable specifies which ODBC Data Source to use (in this
example, Radia Policy).

• As a result of its query, EDMMSQLG will produce an in-storage object (in
this example, POLICY) as specified in the DESTOBJ variable.

Examine the WHERE variable. Note the symbolic substitution using
&(ZMASTER.ZUSERID). At logon, the end user provides a user ID (and,
optionally, a password) in the logon dialog box. The user ID is transmitted to

HP SQL Methods 218

the Configuration Server in the ZMASTER object ZUSERID attribute at the
beginning of the HPCA agent connect.

This example uses this user ID to retrieve a record from the Microsoft Access
Personnel database EMPLOYEES table, identifying the type of user. The
WHERE clause retrieves any record whose RADIA_Client_ID is equal to the
user ID supplied by the end user, and whose Job_Class is ADJ.

The specifications for RADIA_Client_ID and Job_Class must be
enclosed in single quotes (‘ ’). This is an ODBC requirement.

Note: Quotation marks (“ ”) will not work.

Some databases do not permit embedded spaces in column names,
while others (like Microsoft Access) do. Notice (in Figure 10 on page
217) that the names of the columns from which EDMMSQLG
retrieves data have no embedded spaces.
EDMMSQLG is limited to retrieving data from columns with a
name that does not contain embedded spaces.

Connect the SYSTEM.PROCESS.ZMASTER instance to this SQLTABLE
instance.

The connection is SYSTEM.SQLTABLE.POLICY2(GET). It sets the system
message value to GET, so that the POLICY2 instance will execute
EDMMSQLG, not EDMMSQLP.

The POLICY object GENUSER attribute contains the value that
EDMMSQLG retrieved from the Department_ID column for the user who
signed on to the HPCA agent connect: either AUTO or HOMEOWN. This value
is then substituted into the USER Class connection that immediately follows,
connecting to either USER.AUTO or USER.HOMEOWN, depending on what
type of adjuster the end user is.

This example would require only two USER Class instances in order to
service all (auto and homeowner’s) adjusters. Since ZMASTER.ZUSERID is
not affected by the design of this example, individual PROFILE File Domains
are stored for each user who connects, despite the fact that a generic set of
applications is being supplied.

We’ve modified the ZPROCESS (PROCESS) class to include a TRIMUSER
variable. We need to do this because we intend to use symbolic substitution to
refer to a variable in the object created by EDMMSQLG. EDMMSQLG stores
data retrieved from a text field in a back-end database, in an object variable

HP SQL Methods 219

whose length is 255, regardless of the size defined for the field in the back-
end database. If we tried to symbolically substitute a 255-byte field into part
of another attribute, symbolic substitution would fail with a buffer overflow.
Thus, the purpose of the TRIMUSER attribute is to reduce the length of the
data retrieved from the back-end database to a size that can be successfully
symbolically substituted in the following attribute.

Two examples from the Configuration Server log illustrate this. First, the
sample code below contains an excerpt from the log showing the buffer
overflow that occurs when we try to symbolically substitute the object value
that was created from the back-end database.

Radia Client ---RESOLUTION ENDS: SQLTABLE.POLICY CRC:00000000
Radia Client ---Substituting POLICY.USER.&(POLICY.GENUSER)(EDMSETUP)
Radia Client ---Passing to Substitution ...: [&(POLICY.GENUSER)]
Radia Client ---PASSED TO SUBSTITUTION..: &(POLICY.GENUSER)
Radia Client ---GET POLICY .GENUSER (1) (255) 'AUTO'
Radia Client ---BACK FROM SUBSTITUTION...: 255 [AUTO]
Radia Client --! Substitution buffer overflow

Radia Client --! SUBSTITUION FAILURE
Radia Client ---Substitution Failed [POLICY.USER.&(POLICY.GENUSER)(EDMSETUP)

The sample of code below presents an excerpt from the Configuration Server
log showing successful symbolic substitution of the data obtained from the
Microsoft Access database, when we trim its length first in the TRIMUSER
variable:

Radia Client --- RESOLUTION ENDS: SQLTABLE.POLICY
Radia Client --- Passing to Substitution ...: [&(POLICY.GENUSER)]
Radia Client --- PASSED TO SUBSTITUTION..: &(POLICY.GENUSER)]
Radia Client --- GET POLICY .GENUSER (1) (255) 'AUTO'
Radia Client --- BACK FROM SUBSTITUTION...: 255 [AUTO]
Radia Client --- AFTER SUBSTITUTION [AUTO]

Radia Client --! Subst. Value Truncated ZPROCESS.TRIMUSER (1) Actual (255)
Allocated (50) 'AUTO'

Radia Client --- ADD ZPROCESS.TRIMUSER (1) (50) 'AUTO'
Radia Client --- Substituting POLICY.USER.&TRIMUSER(EDMSETUP)
Radia Client --- Passing to Substitution ...: [&TRIMUSER]
Radia Client --- PASSED TO SUBSTITUTION..: &TRIMUSER
Radia Client --- GET ZPROCESS.TRIMUSER (1) (50) 'AUTO'
Radia Client --- BACK FROM SUBSTITUTION...: 50 [AUTO]
Radia Client --- AFTER SUBSTITUTION [POLICY.USER.AUTO]
Radia Client --- SUBSTITUTION VALUE [POLICY.USER.AUTO]
Radia Client --- Substituted value POLICY.USER.AUTO
Radia Client --- MESSAGE CHANGES USER AUTO () (EDMSETUP)
Radia Client --- RESOLUTION BEGINS USER .AUTO (EDMSETUP)

HP SQL Methods 220

In the ZPROCESS class template, the Manager: Global property is
not selected for the TRIMUSER variable. There is no need to
preserve the TRIMUSER variable in a parent persistent object
because it is used only as temporary storage to reduce the length of
the data that is retrieved from the back-end database.
Also note that the Manager: Resolve property is selected. This
ensures that symbolic substitution will occur.

To extract pricing data from an external database

This example illustrates pricing content that is distributed by Client
Automation according to pricing records that are maintained in an external
database. EDMMSQLG is used to price each unit of content that Client
Automation distributes. Client Automation totals the prices for all content
that is delivered during an HPCA agent connect, and EDMMSQLP reports
the results to an external billing system.

The pricing data are kept in a Microsoft SQL Server database table, the
Configuration Server is running Windows NT, and Client Automation stores
the billing data in a Microsoft FoxPro table.

For this example, we will use the Radia data source for Microsoft SQL Server
as described beginning on page 200, and the Radia data source for Microsoft
FoxPro as described beginning on page 197.

The Microsoft SQL Server pubs database table (apps) holds the pricing data.
The format of this table is shown in Figure 11 below.

Figure 11 Microsoft SQL Server – SQLSRV\pubs

This table contains the following data:

HP SQL Methods 221

Figure 12 Microsoft SQL Server – SQLSRV\pubs\DKitt

For this example, each service that Client Automation manages has a catalog
number (CAT_NO). We will use EDMMSQLG to look up the service’s catalog
number in the apps table and extract the price into a Client Automation
object.

To implement this design, we added three attributes to the ZSERVICE Class
template:

• The CAT_NO attribute holds the catalog number for the service.
EDMMSQLG will look up this value in the SQL Server database.

• The EDMSETUP connection attribute (Pricing connection) holds a
connection to the SQLTABLE instance that invokes EDMMSQLG.

• The PRICE attribute stores, for this service, the price value that
EDMMSQLG extracts from the SQL Server database.

The PRICE attribute should have the Global, Manager, Resolve, and
Counter properties selected.

— Resolve enables symbolic substitution of the price, by reference to the
object that EDMMSQLG creates to contain the price value extracted
from the SQL Server database.

— Counter indicates that the PRICE attribute’s value will be
accumulated in an attribute named PRICE in all parent persistent
objects. This accomplishes summation of the price of all services
managed for each user into a PRICE variable in each user’s
ZMASTER object. Client Automation automatically creates the
PRICE attribute in ZMASTER (parent persistent) object when a child
object (in this case, ZSERVICE) contains a PRICE attribute with the
Counter property.

HP SQL Methods 222

Client Automation counter fields are treated as integers. Therefore,
the price in the SQL database must be expressed in cents.

The Pricing connection EDMSETUP attribute connects to SQLTABLE.PRICE.

EDMMSQLG looks up the ZSERVICE instance CAT_NO value in the SQL
Server database and creates a PROBJ object that contains a PRICE variable
in which is stored the price of the service, as retrieved from the SQL Server
database.

To implement this design, we modify the _BASE_INSTANCE_ of the
ZSERVICE Class as follows.

• If no value is provided for CAT_NO in a ZSERVICE instance, the base
instance CAT_NO will default to 999999.

• The EDMSETUP attribute, Pricing connection, with a value of
ZSYSTEM.SQLTABLE.PRICE(GET), is set to connect to the
SQLTABLE.PRICE instance, thereby providing a control object for
EDMMSQLG and invoking the method by setting the system message to
GET.

• The PRICE attribute, with a value of &(PROBJ.PRICE), retrieves the
service’s price from the PROBJ object by symbolic substitution.

During an HPCA agent connect, as each of the user’s services is resolved,
EDMMSQLG is invoked to retrieve the price from the SQL Server database.
HPCA accumulates the prices of all of the user’s services in the user’s
ZMASTER object. To write the totaled price for the user to the FoxPro
database, invoke EDMMSQLP using the SQLTABLE.BILLING instance.

The user ID, connection date and time, and totaled price will be written from
the ZMASTER object to the BILLS.DBF FoxPro table.

To invoke the EDMMSQLP method, we modify the _BASE_INSTANCE_ of
the USER Class by making ZSYSTEM.SQLTABLE.BILLING(PUT) the last step
in the resolution of the USER instance. This connection provides a control
object for EDMMSQLP and invokes the method by setting the system
message to PUT. It also assures that all services have been resolved and their
prices totaled in the ZMASTER object at the point where we invoke
EDMMSQLP.

As a result of the HPCA agent connect for user DKitt, the following record is
inserted in the FoxPro BILLS.DBF table:

HP SQL Methods 223

Figure 13 Microsoft FoxPro BILLS.DBF table

The Total (13990) is the sum of the prices of the two services that Client
Automation manages for this user (DKitt).

Destination Object (DESTOBJ Parameter) Considerations

EDMMSQLG creates the object identified in the DESTOBJ parameter. The
attributes of the object appear in the same order in which they are defined in
the VC pairs of the control information. One heap is created in the
destination object for each row retrieved from the back-end database. To limit
the number of rows retrieved from the back-end database, code an
appropriate WHERE clause in the control information.

Invoking EDMMSQLP

This section provides information needed to invoke EDMMSQLP, and some
examples.

Refer to the instructions for creating an instance in the Admin User Guide.
Before invoking the method, at least one instance must be defined in the
CSDB. You can define multiple instances to invoke EDMMSQLP, where each
instance (with its unique name) refers to a different set of control information
in its ZMTHPRMS variable.

Mimicking the PROFILE File

In this example, the HPCA agent connect will store information about its
hardware configuration in the back-end database. The information will be
extracted from the ZCONFIG object, and transferred to a back-end Visual
FoxPro table according to control information contained in a text file.

Here is the PRIMARY.SYSTEM.ZMETHOD instance created to invoke
EDMMSQLP:

HP SQL Methods 224

Figure 14 Methods Class SQLTEST instance attributes

Figure 15 below presents the control information text file.

Figure 15 SQLTEST control information file

The third subparameter, U, is coded on the DESKTOP, CPUTYPE,
and USERNAME VC parameters, because the concatenation of
these fields is required to uniquely specify an HPCA agent in the
back-end database.

The structure of the Visual FoxPro radia.dbf table is as follows.

HP SQL Methods 225

Figure 16 Visual FoxPro radia.dbf table

To invoke the EDMMSQLP method, a connection to the
PRIMARY.SYSTEM.ZMETHOD instance named SQLTEST is added to the
PRIMARY.SYSTEM.PROCESS.ZMASTER instance, which is processed when
the HPCA agent connect sends its ZMASTER object to the Configuration
Server.

As each HPCA agent connects to the Configuration Server, the pertinent
fields are extracted from the its ZCONFIG object and stored in the Visual
FoxPro radia.dbf table.

HP SQL Methods 226

Figure 17 Visual FoxPro radia.dbf table

Examine how this example mimics Client Automation’s saving of
the ZCONFIG object in the PROFILE File, which is accomplished
via a connection to SYSTEM.ZMETHOD.PUTPROF_ZCONFIG in
the ZMASTER instance, above.

Extracting from Multiple Objects

By design, EDMMSQLP extracts data from a single database object each
time it is invoked. If you need to extract data from multiple objects, you must
either:

• invoke EDMMSQLP multiple times (once for each object), or

• write a custom Configuration Server method to compile data from
multiple objects into a single object prior to invoking EDMMSQLP.

The following example demonstrates the latter method with a custom REXX
method named SQLPHDW.

********************Put SQL************************/

/* will format and PUT a ZCONFIG object into an */

/* ODBC compliant database */

/**/

/**/

/* */

HP SQL Methods 227

/* COPYRIGHT HP INC. 2000 */

/* LICENSED MATERIAL PROPERTY OF HP . */

/* HP Radia(tm) */

/* */

/**/

/**********************************/

/* get the ZCONFIG object */

/**********************************/

address cmd

RC = EDMGET('ZCONFIG',1); /* Get the ZCONFIG object */

if RC <> 0 then exit

RC = EDMGET('ZMASTER',1);

ZCONFIG.ZOS = ZMASTER.ZOS || ' ' || ZCONFIG.ZHDWOSDB;

ZCONFIG.ZUSERID = ZMASTER.ZUSERID;

RC = EDMSET('ZCONFIG',1);

/**********************************/

/* the main function */

/**********************************/

RC = EDMGET('SQLCNTRL',1);

SQLCNTRL.PUTTYPE = 'R';

SQLCNTRL.SQLDSN = 'Radia_Demo';

SQLCNTRL.SQLTABLE = 'RADIA.DBF';

SQLCNTRL.SQLTOUT = '10';

SQLCNTRL.SQLUSER = 'David';

SQLCNTRL.SQLPASSW = 'password';

SQLCNTRL.SRCOBJ = 'ZCONFIG';

SQLCNTRL.VC000 = 'ZHDWCOMP,DESKTOP,U';

SQLCNTRL.VC001 = 'ZHDWCPU,CPUTYPE';

SQLCNTRL.VC002 = 'ZHDWMEM,MEMORY';

SQLCNTRL.VC003 = 'ZOS,OS';

SQLCNTRL.VC004 = 'ZUSERID,USERNAME,U';

HP SQL Methods 228

RC = EDMSET('SQLCNTRL',1);

params = “ CTRLOBJ=SQLCNTRL”

address edmlink EDMMSQLP params

/return;

This method executes the following process.

1 It combines variables (ZOS, ZUSERID) from the ZMASTER object with
the variables in the ZCONFIG object.

2 It then builds an object (SQCNTRL) to contain the control information for
a call to EDMMSQLP.

3 Lastly, it invokes EDMMSQLP, and passes the control object via the
CTRLOBJ=SQLCNTRL parameter.

For further information on constructing custom methods in the REXX
programming language, refer to the REXX Programming Guide.

To invoke the SQLPHDW method, you must create an instance (for example,
SQL_PUTHDW) of the PRIMARY.SYSTEM.ZMETHOD class, which, in this
example, looks like:

Figure 18 Methods class SQL_PUTHDW instance attributes

Notice that the ZMTHPRMS variable is empty. The control
information for EDMMSQLP is built within the SQLPHDW method
and will be passed to the EDMMSQLP method in a control object.

• The SQLPHDW file (without a file extension) must be located in the
Manager\Rexx directory.

• For methods written in the REXX programming language, the
ZMTHTYPE variable must be REXX.

To have the HPCA agent connect invoke the SQLPHDW method, the
SYSTEM.PROCESS.ZMASTER instance has been changed from the previous

HP SQL Methods 229

example to include an _ALWAYS_ connection to
SYSTEM.ZMETHOD.SQL_PUTHDW.

As a result of the HPCA agent connect, its data is transferred to the back-end
database.

Figure 19 Visual FoxPro radia.dbf table

To transfer data from a multiple heap object

In this example, data is transferred from a FILE object. The FILE object has
a heap for each file that is transferred to the HPCA agent during the
deployment of an application.

1 Create a Visual FoxPro table to receive the data.

2 Create SQLTEST3.TXT, a control file for EDMMSQLP.

3 Create a SYSTEM.ZMETHOD instance named SQLTEST3 to invoke the
EDMMSQLP method with the SQLTEST3.TXT control file.

4 Modify SYSTEM.PROCESS.ZMASTER to connect to
SYSTEM.ZMETHOD.SQLTEST3.

5 Run the HPCA agent connect.

The following figure shows the result in the Visual FoxPro table for one
user with a SOFTWARE.FILE object containing eight heaps.

HP SQL Methods 230

Figure 20 Visual FoxPro table for user DKitt

Source Object (SRCOBJ Parameter) Considerations

Any CSDB object can be used as a source for EDMMSQLP. In the source
object, EDMMSQLP expects to find all the variables as defined in VC
keywords in the control information parameter string, or in VCnnn variables
in the control object.

Then, for each heap of the source object, EDMMSQLP reads the values of the
requested variables and writes them into the SQL table’s columns that are
defined in the corresponding VC pair. All other variables in the source object
that are not defined in any of the VC pairs of the control information are
ignored. All the requested variables from a single source object heap will be
put in one row of the SQL table. The next heap of the source object will
provide values for the next row of the SQL table, and the process will
continue until all the heaps of the source object are processed.

Passing Control Information to EDMMSQLG and EDMMSQLP

The EDMMSQLG and EDMMSQLP methods require a set of control
information to perform their function. Control information is passed to
EDMMSQLG and EDMMSQLP as a parameter (or set of parameters) at
execution time in one of the following ways:

• As a parameter string passed on the command line (such as, in the
ZMTHPRMS variable of the PRIMARY.SYSTEM.ZMETHOD instance

HP SQL Methods 231

used to invoke EDMMSQLG/EDMMSQLP). The maximum length of the
command line parameter string is 255 bytes. If the control information
you need to pass to the method is longer than 255 bytes, you must use
one of the other options.

• In a text file (identified by the CTRLFILE=<file_name> parameter).

• In a control object (identified by the CTRLOBJ=<object_name>
parameter)

Control Parameters

Table 93 below identifies the control information required by EDMMSQLG
and EDMMSQLP.

Table 93 EDMMSQLG/EDMMSQLP Control Information

Keyword Description

CTRLFILE The fully qualified name of a text file that contains the control
information. If this parameter is present on the command line, the
parsing of the parameter string stops, and all the control
information will be taken from the specified file. Required only if
the control information is supplied in the specified file.

CTRLOBJ The name of the object that contains the control information. If this
parameter is present in the command line, the parsing of the
parameter string stops, and all the control information will be
taken from the specified object. Required only if the control
information is supplied in the specified object.

SRCOBJ EDMMSQLP only. The name of the source object (right-padded
with blanks to eight bytes and enclosed in quotation marks when
specified in a text file or on the command line). The source object
contains the data to be transferred to the back-end SQL database.

DESTOBJ EDMMSQLG only. The name of the destination object (right-
padded with blanks to eight bytes and enclosed in quotation marks
when specified in a text file or on the command line). The
destination object contains the data to be received from the back-
end SQL database. EDMMSQLG will create this object when it is
executed.

SQLDSN The ODBC data source name (DSN) to be used to connect to the
back-end SQL database. See Configuring an ODBC Data Source on
page 196, for details.

HP SQL Methods 232

Keyword Description

SQLTABLE The fully qualified file name of the file containing the SQL table, or
simply the name of the table (depending on which the back-end
database requires the ODBC data source to supply). EDMMSQLP
will store the data into this table. EDMMSQLG will extract the
data from this table.

SQLUSER User ID to use in the CSDB connect process. Some back-end
databases ignore this information; others require and verify it. See
the database administrator of the back-end database in your
organization for details.

SQLPASSW The password to use in the CSDB connect process. Some back-end
databases ignore this information; others require and verify it. See
the database administrator of the back-end database in your
organization for details.

SQLTOUT Timeout value (in seconds) for the SQL connect operation. If a
connection to the back-end database cannot be established within
this time, the connection attempt will be terminated and an error
logged in the Configuration Server log.

VC, or
VCnnn (where nnn
is a sequential 3-
digit number from
000 to the total
number of variables
to be transferred to
the back-end
database; used when
control information
is passed in an
object)

Defines the correspondence between a variable in the source or
destination object and the column in the back-end database table
where it will be stored (EDMMSQLP), or from which it will be
extracted (EDMMSQLG). One VC value must be specified for each
variable-column pair participating in the operation.
Specify: “VARNAME [,COLUMN_NAME][,U]” (include the
quotation marks in a text file or on a command line, omit them in
an object)

• VARNAME is the name of the variable in the object whose
value will be set (EDMMSQLG), or transferred to
(EDMMSQLP), the back-end database.

• COLUMN_NAME is the name of the column in the back-end
database table that will supply (EDMMSQLG), or receive
(EDMMSQLP), the data. If COLUMN_NAME is omitted,
VARNAME will be used; this assumes that the back-end
database table’s column name is the same as the object
variable receiving (EDMMSQLG), or supplying
(EDMMSQLP), its data.

• The third subparameter, U, identifies the key fields used to
locate the row to be replaced in the back-end database. If
PUTTYPE=R, at least one VC value must have the third
subparameter coded.

HP SQL Methods 233

Keyword Description

PUTTYPE EDMMSQLP only. Indicator for type of operation to be performed
on the back-end database, either R (Replace) or I (Insert). When R
is specified, EDMMSQLP will try to update the identified row. If
the row does not exist, EDMMSQLP will try to insert it. When I is
specified, EDMMSQLP will try to insert the row. If this operation
fails, no other action is taken.

The default is R.

WHERE Contains a WHERE clause for the SQL statement that
EDMMSQLG builds to extract data from the back-end database, or
which EDMMSQLP constructs to update data in the back-end
database. Use this to limit the result set to records that meet a
specific condition. Do not code the word WHERE in this parameter;
only code the clause that would follow the WHERE keyword in the
SQL SELECT statement that retrieves the data from the back-end
database, or the SQL UPDATE statement that stores data in the
back-end database.

PUTTYPE

If, during an execution of EDMMSQLP, PUTTYPE=R, the following are
applicable:

• It generates a REPLACE statement using VC groups specified in the
control information provided. Typically, this will do a direct update for all
the rows that were found according to the search criteria in the WHERE
clause. The WHERE clause uses the WHERE variable content from the
control information (version 4.4 CM Configuration Server), or built as a
combination of unique fields, marked as such in VC variables (pre-version
4.4 CM Configuration Servers).

In a case where the WHERE variable exists, EDMMSQLP will ignore all
unique keys specified in VC variables. However, since various Database
Management Systems (DBMS) can use different implementations for this
operation, consult the documentation for your particular DBMS for
implementation issues.

• If the REPLACE operation fails due to SQL errors, nothing else is done
and an error is reported in the Configuration Server log.

• If the REPLACE does not fail, but the number_of_affected_rows=0
(meaning there were no rows found that meet the criteria), EDMMSQLP
will generate an INSERT and attempt to create a new row in the
database table.

HP SQL Methods 234

Generally, PUTTYPE=I should be used only when the key part of the row
is always different (for example, date and time plus user ID are used as a
combined key). For all other cases, PUTTYPE=R will handle initial
inserts as well as updates.

The U Subparameter

The U subparameter is used to identify one or more fields which
EDMMSQLP builds into a WHERE clause for the REPLACE SQL statement
it generates. The U subparameter is recognized by EDMMSQLP only, and
only when PUTTYPE=R (replace). If these two conditions are not met, it is
ignored.

• If one VC pair has the U subparameter coded, the WHERE clause
generated will resemble:

WHERE fieldname = current source object corresponding
variable value

The current source object corresponding variable value is the
value currently (at the time of the call to EDMMSQLP) held in
the source object variable, coded in the control information’s
VC pair that links the variable with the back-end database.

• If more than one VC pair has the U subparameter coded, the WHERE
clause ‘ANDS’ them together, as in:

WHERE fieldname1 = value1 AND fieldname2 = value2…

• If the result of executing the REPLACE statement with the WHERE
clause yields zero matching records, EDMMSQLP regenerates the SQL
statement as an insert, and inserts the record.

• If the result of executing the REPLACE statement with the WHERE
clause finds exactly one record in the database, the record is replaced
with the information contained in the source object.

• If the result of executing the REPLACE statement with the WHERE
clause finds more than one record in the database, all the records are
replaced with the information contained in the source object.

• If PUTTYPE=R and no VC pairs in the control input have the U
subparameter coded, EDMMSQLP terminates and logs the following
error message:

NO UNIQUE COLUMNS WERE FOUND FOR WHERE CLAUSE. TERMINATING.

HP SQL Methods 235

Configuring the Configuration Server Database SQLTABLE Class

The easiest way to provide the necessary control information to EDMMSQLG
and EDMMSQLP is to use a control object instantiated from a class in the
CSDB. This can be provided by an instance of a CSDB class, such as the
SQLTABLE class in the SYSTEM domain of the PRIMARY file. If your CSDB
does not contain this class, use the HPCA Admin CSDB Editor to add it.

Be sure that, in the Properties area, under Manager, the Global check box is
cleared for all variables in the SQLTABLE class template. This will prevent
unnecessary storage of the variables of the control object instantiated from an
instance of the SQLTABLE class from being stored in parent persistent
objects, such as ZSERVICE or ZMASTER (depending on where in the
resolution process the EDMMSQLP or EDMMSQLG method is invoked).

There are 15 VCnnn fields (VC000 – VC014) in the sample class template;
define as many as necessary for your template.

The GET and PUT method variables should connect to ZMETHOD instances
in order to run the EDMMSQLG and EDMMSQLP methods, so that if the
value of the system message is GET, EDMMSQLG is run; if the value of the
system message is PUT, EDMMSQLP is run. If the value of the system
message is something other than GET or PUT, neither method is run.

Control Information

Control information includes:

• how the method knows which database object to use as a source,

• which variables of that object to write to which columns of the destination
table,

• how to connect to the database,

• which table of the database to use in the operation, and

• what the user ID, password, and timeout are.

All this control information must be passed to the method.

Content

The following control information is required:

HP SQL Methods 236

• The name of the object that contains the source data (SRCOBJ) for the
SQL put request. Or the name of the object in which to store the
information (DESTOBJ) retrieved from the SQL database.

• Data Source Name - the logical name used to connect to the specific SQL
database.

• The fully qualified name of the table to access in the <SQLDSN>
database.

• The user ID and password to use for connecting to the database.

• VARNAME [,COLUMN_NAME][,U], which describes the relationship
between a variable of the (source or destination) object and the
corresponding column of the database table. For more information on
this, refer to the section, VARIABLE-COLUMN Pairs, on page 239.

• REPLACE (UPDATE) or INSERT as the type of Put operation requested.
(put method only)

• Number of seconds to wait on the SQL-connect operation.

• (Optional) The WHERE clause to use in the selected statement. The
method will substitute the WHERE, so that if USER=JANE is specified,
then in the select statement it will be WHERE (USER=JANE). The
variable WHERE is optional, and in cases where it is omitted in the
control object, it will be generated by the method, with the help of
variables with the U suffix. For more information on the WHERE clause,
refer to The WHERE Clause, on page 245.

Delivery

The control information can be delivered to the HP SQL method in one of the
following ways:

• via a parameter string,

• via a text file (CTRLFILE=<file_name>), or

• via a control object (CTRLOBJ=<object_name>).

Regardless of the selected delivery method, the parameter string must be
passed to the HP SQL method. If the substring CTRLFILE=<file_name> is
found in the parameter string, the control information will be retrieved from
file file_name. If the substring CTRLOBJ=<object_name> is found in the
parameter string, the control information will be retrieved from the
object_name. If neither substring is found, the method assumes that all the
control information is passed in the parameter string. Your system

HP SQL Methods 237

administrator will determine which method will be used to pass the control
information to the HP SQL method.

CTRLFILE always takes precedence over CTRLOBJ. Therefore, if
both are specified, regardless of their order, the control information
will be retrieved from the file that is specified by CTRLFILE.

Control Information Passed via a Parameter String

The parameter string has the comma-separated key-value format. The
maximum length of the parameter string is 255 bytes. If the control
information you need to pass to the method exceeds the maximum, use either
the CTRLFILE or the CTRLOBJ option and put all the control information in
the control file (or the control object).

Examples of the parameter string:

Example 1 – Text File

In the following example, all the control information will be read from the file
C:\Radia\SQLCNTL.TXT. All other information specified in the parameter
string will be ignored.

CTRLFILE=C:\Radia\SQLCNTL.TXT, SQLDSN=CUST_DB,
SQLTABLE=joe.USERS, SQLUSER=smith, SQLPASSW=Rabbit,
SQLTOUT=15, VC=“ZUSERID,USER”, VC=“ZBIOS,BIOS”, VC=“ZOS,OS”,
VC=“ZOSVER,OS_VERSION”

If you remove the CTRLFILE parameter, the remaining parameters on the
command line would control the execution of the method.

Example 2 – Control Object

In the following example, all the control information will be retrieved from
the SQLCNTL object, while all the other command line information will be
ignored.

CTRLOBJ=SQLCNTL, SQLDSN=CUST_DB, SQLTABLE=joe.USERS,
SQLUSER=smith, SQLPASSW=Rabbit, SQLTOUT=15, VC=“ZUSERID,USER”,
VC=“ZBIOS,BIOS”, VC=“ZOS,OS”, VC=“ZOSVER,OS_VER”

If you remove the CTRLOBJ parameter, the remaining parameters on the
command line would control the execution of the method.

Example 3 – Precedence of CTRLOBJ over CTRLFILE

In the following example, all the control information will be retrieved from
the C:\Radia\SQLCNTL.TXT file, and the information in the SQLCNTL object

HP SQL Methods 238

will be ignored. This does not allow combinations of sources of the control
information.

CTRLOBJ=SQLCNTL,CTRLFILE=C:\Radia\SQLCNTL.TXT

As previously noted, CTRLFILE always supercedes CTRLOBJ, regardless of
the order in which they are specified on the command line.

Example 4 – Command Line Control String

In the following example, all the control information is received from the
parameter strings on the command line.

SQLTABLE=RADIA.DBF, SQLUSER=joedoe, SQLPASSW=password,
SQLTOUT=15, VC=“ZHDWCOMP,DESKTOP,U”, VC=“ZHDWCPU,CPUTYPE”,
VC=“ZHDWMEM,MEMORY”, VC=“ZHDWOS,OS”, VC=“ZUSERID,USERNAME,U”,
SRCOBJ=ZCONFIG, SQLDSN=Radia_Demo, PUTTYPE=R

Control Information Passed via a Text File

All control information can be optionally passed to EDMMSQLG and
EDMMSQLP in a text file. In general, use a text file to pass the control
information when the length of the parameter string exceeds 255 bytes, or if
you need to make multiple references to the same set of control information.

The format of the control information passed in a text file is identical to that
of the parameter string passed on the command line. However, CTRLOBJ
and CTRLFILE parameters will be ignored if found in the text file.

Control Information Passed via a Control Object

All control information can be optionally passed to EDMMSQLG and
EDMMSQLP in a control object. In this case, keywords that were defined in
previous sections will become variable names in the object. Additionally, the
group of non-unique VC variables must be converted to unique variable
names. In order to create unique variable names, a three-digit index is
appended to VC, so that variable names will be VC000, VC001, …VCnnn.

The three-digit indexes that are appended to VC in forming the
variable name must start with 000, and subsequent variable names
must be created from an index value one greater than the previous
one. No numbers can be skipped.

The command line control string that was presented in Example 4 can be
implemented in a control object, SQLPARMS, with the variables that are
shown in Table 94.

HP SQL Methods 239

Table 94 SQLPARMS Values

Variable
Name

Variable Value

SRCOBJ ZCONFIG

SQLDSN Radia_Demo

SQLTABLE RADIA.DBF

SQLUSER joedoe

SQLPASSW password

SQLTOUT 15

VC000 ZHDWCOMP,DESKTOP,U

VC001 ZHDWCPU,CPUTYPE

VC002 ZHDWMEM,MEMORY

VC003 ZHDWOS,OS

VC004 ZUSERID,USERNAME,U

PUTTYPE R

In this case CTRLOBJ=SQLPARMS is the only parameter passed to the
EDMMSQLP method on the command line.

VARIABLE-COLUMN Pairs

A VARIABLE-COLUMN (VC) pair is the designation of one set of information
location data participating in a get or put operation. The VARIABLE is the
database object that is being received or transferred in the method. The
COLUMN is the category in the SQL database table that is being accessed to
receive or supply the data. The following rules apply to the use and execution
of VC pairings.

• There might be more than one VC keyword in a parameter string.
However, one VC value must be specified for each VARIABLE-COLUMN
pair participating in the operation.

• The VC can be specified as VCnnn, where nnn is a sequential, three-digit
number from 000 to the total number of variables to be transferred to the
back-end database. This is used when control information that is passed
in an object defines the correspondence between a variable in the HP
(source or destination) object, and the column in the back-end database

HP SQL Methods 240

table. That is, to where it will be stored (EDMMSQLP), or from where it
will be extracted (EDMMSQLG).

• Specify as “VARNAME [,COLUMN_NAME][,U]” (include the quotation
marks when using a text file or on the command line, but omit them in an
object). Here, VARNAME is the name of a variable in the source object.

• In order to be transferable, the value of a source object variable should
correspond to that of an SQL-table date type. Therefore,

VARNAME, “number”

should be in the source object.

“Transferable” means having the following information in the
control object: integers for number type columns, date
information for date type columns, and COLUMN_NAME for
the name of the column, in the SQL table.

If, in the source object, there is not a variable type that
corresponds to an SQL column type, the method might fail or
produce unexpected results in the database.
Table 95 on page 243 contains a complete list of the SQL
column data types that HP supports.

• VARNAME is the name of the variable in the object whose value will be
set from (EDMMSQLG), or transferred to (EDMMSQLP), the back-end
database.

• COLUMN_NAME is the name of the column in the back-end database
table that will supply (EDMMSQLG) or receive (EDMMSQLP) the data.

If COLUMN_NAME is omitted, VARNAME will be used (provided the
column of the back-end database table has the same name as the object
variable supplying or receiving the data).

• The third subparameter, U, means that this COLUMN_NAME is the
Unique Primary Key (PK) for the table; and therefore, identifies it as the
key fields to use to locate the back-end database column to be replaced.

The U subparameter is recognized by EDMMSQLP only, and only when
PUTTYPE=R. If coded in other situations, it is ignored.

The U subparameter is used to identify one or more fields that
EDMMSQLP builds into a WHERE clause for the REPLACE statement
that SQL generates. For more information on the impact of the U

HP SQL Methods 241

subparameter in the WHERE clause, see The WHERE Clause on page
245.

• If PUTTYPE=R (see Table 92 on page 213), at least one VC value must
have the third subparameter coded.

HP Object Information

Any database object can be used as a source or destination object for an SQL
method. For the source object, the method expects to find all the variables
defined in VC keywords in the object. For each heap of the object, the
requested variables are read and then written into the SQL table’s columns
as defined in the corresponding VC pair. Any variables that are not defined in
a VC pair are ignored. Generally, all the requested variables from a heap will
be put in one row of the SQL table. The next heap will be a source for the
next row of the SQL table, and so on until all the heaps of the source object
are processed.

By having the value in the WHERE clause substituted from the
source object variable, the substitution capability of EDMMSQLP
can be used to make the various heaps responsible for updating the
rows of the SQL table.

HP SQL Methods 242

SQL Database Information
To connect the user to the SQL database, follow the steps in To configure
DSN.

Data Source Name

The EDMMSQL methods use Open Database Connectivity (ODBC) to connect
to the database. Therefore, you must configure a Data Source Name (DSN)
for your system.

Using the steps outlined in the following example, you can create or
choose any DSN as long as it is available in your environment and
is supported by ODBC.

To configure DSN

1 Go to Start→Settings→Control Panel.

2 Double-click ODBC Data Sources.

The ODBC Data Source Administrator dialog box opens.

3 Select the System DSN tab.

You have the option to select User DSN, however, if the
Configuration Server runs as a service, User DSNs are not
accessible to it and database connects will fail.

The System DSN window opens.

4 Choose Data Source Name and use it in the SQLDSN keyword.

5 If Data Source Name does not exist, as in the figure above, click Add to
create a new DSN.

You might want to configure the new DSN exclusively for HP.
Generally, any DBMS supported by ODBC is supported by HP.

The Create New Data Source dialog box opens.

6 Select the driver for which you want to set up a data source, and click
Finish.

The Create New Data Source to SQL Server dialog box opens.

HP SQL Methods 243

7 From this point, continue with the wizard, specifying information that
pertains to your environment.

Table Name, User ID, and Password

The table name is the fully qualified name of the existing table in the
database defined by the DSN. The table name, as well as the names of its
columns, the user ID, and the password should be obtained from the
administrator responsible for the database.

SQL Column Data Types
The EDMMSQLP and EDMMSQLG methods support the following SQL-
column data types:

CHAR VARCHAR LONGVARCHAR SMALLINT

INTEGER TINYINT REAL DOUBLE

FLOAT DECIMAL NUMERIC DATE/TIME (TIMESTAMP)

All numeric types go into the EDMMSQLP method through the variable’s
character strings. They are handled by the methods in the same way that
character strings are. The column name that is provided by the input object
(control object or control file) should have the appropriate SQL type in order
to ensure that the data is inserted properly.

Table 95 SQL Column Data Types and their Definitions

SQL Column Data Type Description

CHAR array of character

VARCHAR array of character

LONGVARCHAR array of character

SMALLINT short integer

INTEGER long integer

TINYINT signed INT8

REAL float

DOUBLE double

HP SQL Methods 244

SQL Column Data Type Description

FLOAT double

DECIMAL long float

NUMERIC long float

DATE/TIME (TIMESTAMP) this data type is dependent on the database
being used

This setting has different (short and long) date/time-stamp formats
in different databases. For example, in Microsoft Access, it has the
Date/Time name, but has “General Date” “Long Date” in Microsoft
SQL Server database.
The EDMMSQLP and EDMMSQLG methods use only full
timestamps to store the date and time in one column variable.
Depending on the default settings of the database in use, the date
and/or time will be stamped by the database when the user fails to
provide the full DATE/TIME value for the EDMMSQLG and/or
EDMMSQLP methods.

For decimal and numeric SQL column types, the ODBC standard
uses a default placeholder (of an array of characters) to transfer
data back and forth, though the suitable program data type is
“double.”
Client Automation objects used to have character variables as
placeholders of these types also, so the variables naturally fit
ODBC. Extracting the numeric and decimal fields into the program
variable from the object is beyond the capability of these methods.
Therefore, we recommend that you have the “double” type in the
program in order to store the real value, in case the program needs
it for arithmetic manipulation.

The lengths of variables provided for the EDMMSQLP method depend on the
conversion, like the ftoa() function for the FLOAT type in the calling
program. For the DATE/TIME (TIMESTAMP) type in the SQL database, we
use the variable, EDM_TIMESTAMP for the put and get methods. This
means the source object should have a value specified for this variable type
for the put method, and should have a variable placeholder of the same type
for the get method.

HP SQL Methods 245

The same EDM_TIMESTAMP variable in the object can be used to
save the date and time in CHARACTER-type columns of the SQL
database. However, it will be a simple string, without some specific
helpful features provided for SQL-DATE/TIME-timestamps by the
database.

The WHERE Clause
The WHERE clause in the control object for EDMMSQLP identifies the rows
of the SQL table that are to be replaced by using the literal string of the
WHERE variable value as the body of the WHERE clause and ignoring any
variables with a U specified. If the optional WHERE variable is not specified
in the control object, and some of the variables are specified with U, the
method will work transparently (as it is fully compatible with previous
implementations of the U subparameter), and generate the WHERE clause
using variables specified with U.

Having the WHERE clause in place in the control object, the method does not
generate the WHERE, but rather, uses the provided string from the WHERE
variable of the control object.

The WHERE clause, if defined, will be used and is taken as the only one
having priority, and the internal WHERE is not generated as described in the
VC keyword. The clause can have a substitution in standard notation.

Considerations

• If one VC pair has the U subparameter coded, the WHERE clause that is
generated will be in the form:

WHERE fieldname = current source object corresponding variable value

The current source object corresponding variable value is the value
currently held (at the time of the call to EDMMSQLP) in the source object
variable that is coded in the control information’s VC pair (that links the
variable with the back-end database fieldname).

• If more than one VC pair has the U subparameter coded, the WHERE
clause will join them with an “AND”, as below:

WHERE fieldname1 = value1 AND fieldname2 = value2

HP SQL Methods 246

• If executing the REPLACE statement (PUTTYPE=R) with the WHERE
clause yields zero matching records, EDMMSQLP will regenerate the
SQL statement as an INSERT, and insert the record.

• If executing the REPLACE statement (PUTTYPE=R) with the WHERE
clause finds exactly one record in the database, it is replaced with the
source-object information.

• If executing the REPLACE statement (PUTTYPE=R) with the WHERE
clause finds more than one record in the database, all database records
are replaced with the source-object information.

• If executing the REPLACE statement (PUTTYPE=R) and no VC pairs in
the control input have the U subparameter coded, EDMMSQLP
terminates and logs the following error message:

NO UNIQUE COLUMNS FOUND FOR WHERE CLAUSE. TERMINATING.

Usage

There are two ways to use the WHERE parameter in the control object.

• Specify the WHERE clause in the control object, as in the example in
Table 96 below.

Table 96 Simple WHERE Clause Use

Variable Name Variable Value

SQLTABLE joe.USERS

SQLUSER Vladimir

SQLPASSW Rabbit

SQLTOUT 15

VC000 ZUSERID,USER,U

VC001 ZBIOS,BIOS

VC002 ZOS,OS

VC003 ZOSVER,OS_VERSION

WHERE BIOS=’V2.0’

SRCOBJ SQLSRC

SQLDSN SQLSVR01

HP SQL Methods 247

The generated UPDATE statement for the EDMMSQLP method will
have the WHERE clause as in the following:

UPDATE joe.USERS SET joe.USERS.USER
='Value_For_USER_From_SRCOBJ',

joe.USERS.BIOS ='Value_For_BIOS_From_SRCOBJ',…… WHERE
BIOS='V2.0'

Here, the first variable (VC000) is not used as a key in the WHERE
clause, even though it has a U. This U is ignored due to the presence of
the WHERE variable. On the contrary, in the example in Table 97, we see
the same control object, without the WHERE clause, and the subsequent
UPDATE statement that is generated.

Table 97 Control Object without WHERE Clause

Variable Name Variable Value

SQLTABLE joe.USERS

SQLUSER Vladimir

SQLPASSW Rabbit

SQLTOUT 15

VC000 ZUSERID,USER,U

VC001 ZBIOS,BIOS

VC002 ZOS,OS

VC003 ZOSVER,OS_VERSION

SRCOBJ SQLSRC

SQLDSN SQLSVR01

The generated UPDATE statement for the EDMMSQLP method will
have the WHERE clause as in the following:

UPDATE joe.USERS SET joe.USERS.USER
='Value_For_USER_From_SRCOBJ',

joe.USERS.BIOS ='Value_For_BIOS_From_SRCOBJ',

joe.USERS.OS ='Value_For_OS_From_SRCOBJ',

WHERE USER='Value_For_USERS_From_SRCOBJ'

• This method of WHERE clause usage actually requires a substitution (in
the clause) with the help of the source object variables. Therefore,
assuming the source object has the variable ZSOURCE1, the WHERE

HP SQL Methods 248

parameter can be present in the control object, and specified as shown in
Table 98.

Table 98 Substitution use with WHERE Clause

Variable Name Variable Value

SQLTABLE joe.USERS

SQLUSER Vladimir

SQLPASSW Rabbit

SQLTOUT 15

VC000 ZUSERID,USER,U

VC001 ZBIOS,BIOS

VC002 ZOS,OS

VC003 ZOSVER,OS_VERSION

WHERE BIOS=’&(ZSOURCE1)’

SRCOBJ SQLSRC

SQLDSN SQLSVR01

The generated UPDATE statement for the EDMMSQLP method will
have the WHERE clause as in the following:

UPDATE joe.USERS SET joe.USERS.USER
='Value_For_USER_From_SRCOBJ',

joe.USERS.BIOS ='Value_For_BIOS_From_SRCOBJ',……

WHERE BIOS='Value_Substituted_From_SRCOBJ_For_ZSOURCE1'

Additionally, the WHERE clause simplifies multi-heap substitution. The
processing is the same, but there are multiple updates to the SQL table
as the result of a single EDMMSQLP occurrence. Each heap from the
source object is transferred to the rows of the SQL database table,
thereby satisfying the WHERE condition.

This substitution takes the values from the source object
provided for this operation only.

For the following example, we will re-use the control object from the
previous example, and assume that the source object is a two-heap object.
The following tables show the source object heaps.

HP SQL Methods 249

Table 99 Multi-Heap Source Object: HEAP1

Variable Name Variable Value

ZBIOS “R5”

ZOS “NT”

ZSOURCE1 “R4”

Table 100 Multi-Heap Source Object: HEAP2

Variable Name Variable Value

ZOSVER 7

ZSOURCE1 “R5”

The UPDATE statements that are generated for the EDMMSQLP
method will have the WHERE clauses specified as in the following:

HEAP1:

UPDATE joe.USERS SET BIOS = “R5”, OS = “NT”

WHERE BIOS = “R4”

HEAP2:

UPDATE joe.USERS SET OS_VERSION = 7

WHERE BIOS = “R5”

Design Considerations
Keep in mind these points when designing data exchange solutions using
EDMMSQLG and EDMMSQLP.

1 EDMMSQLG and EDMMSQLP do not process back-end database column
names that contain embedded spaces.

2 EDMMSQLG creates an object to receive data from the back-end
database. The variables that are created in this object to hold text fields
from the back-end database will be 255 bytes in length, regardless of the
length that is defined for the field in the back-end database. You might
need to trim the length of these variables before using them in symbolic

HP SQL Methods 250

substitution. Invoking EDMMSQLG on page 215 provides an example of
this.

Troubleshooting
If data does not transfer successfully to the back-end database tables or to
the in-storage object as expected, the first place to look is in the
Configuration Server log.

The Configuration Server Log

Here is an SQL example from the Configuration Server log:

EDM0532I 16:28 [208.244.225.133 /278] EDMV4 Client ---EDMGET 0[SQLTABLE] VN[VC015]
(L)255 V[]

EDM0999I 16:28 [208.244.225.133 /278] EDMV4 Client ---GET ZMASTER .ZUSERID (1) (5) 'jsmith'
EDM0532I 16:28 [208.244.225.133 /278] EDMV4 Client ---EDMGET 0[ZMASTER] VN[ZUSERID] (L)5 V

[jsmith]
EDM0999I 16:28 [208.244.225.133 /278] EDMV4 Client ---GET ZMASTER .ZSYSDATE (1) (8)

'19990408'
EDM0532I 16:28 [208.244.225.133 /278] EDMV4 Client ---EDMGET 0[ZMASTER] VN[ZSYSDATE] (L)8

V[19990408]
EDM0999I 16:28 [208.244.225.133 /278] EDMV4 Client ---GET ZMASTER .ZSYSTIME (1) (8)

'16:20:54'
EDM0532I 16:28 [208.244.225.133 /278] EDMV4 Client ---EDMGET 0[ZMASTER] VN[ZSYSTIME] (L)8

V[16:20:54]
EDM0999I 16:28 [208.244.225.133 /278] EDMV4 Client ---GET ZMASTER .PRICE (1) (16)

'0000000000013990'
EDM0532I 16:28 [208.244.225.133 /278] EDMV4 Client ---EDMGET 0[ZMASTER] VN[PRICE] (L)16

V[0000000000013990]
EDM0000E 16:28 [208.244.225.133 /278] EDMV4 Client --![Microsoft][ODBC FoxPro Driver] The

Microsoft Jet database engine cannot open the file 'C:\Data\BILLS.DBF'. It is already
opened exclusively by another user, or you need permission to view its data.

EDM0000E 16:28 [208.244.225.133 /278] EDMV4 Client --!ODBC execute error, DSN=[EDM Data],
RC=[-8], SQLState=[S1000]

EDM2500E 16:25 [208.244.225.133 /278] EDMV4 Client --!Failed to execute INSERT statement for
object [ZMASTER] heap [1]

In this example, the ODBC FoxPro driver was unable to store the
APPEVENT object in the FoxPro table because another user concurrently
opened the table. When designing solutions using ODBC-compliant back-end
databases, you must take into account when, and how the data will be
shared.

HP SQL Methods 251

In this case, none of the VC pairs in the control information had the third
subparameter (U) coded, so EDMMSQLP was unable to identify a key field to
use in a WHERE clause, which specifies which record in the back-end data
table to update.

The data extraction process is sensitive to typing errors. Check all typing
carefully, and trace through all connections. Most of the time, your problem
will be typographical.

The WHERE clause you provide to EDMMSQLG must comply syntactically
with ODBC requirements for quotation mark usage when specifying literals,
and any syntactical requirements imposed by your back-end database.

ODBC Tracing

If the error is not immediately apparent from the Configuration Server log, it
is often helpful to repeat the operation with ODBC tracing enabled. ODBC
tracing is very detailed and can generate a large log very quickly, so only
enable ODBC tracing while you are actively debugging a problem.

One benefit of ODBC tracing is that its log shows the SQL statement that
was generated by EDMMSQLP and EDMMSQLG, and what ODBC and the
back-end database driver did with it.

To enable ODBC tracing, open the Control Panel ODBC applet, and click the
Tracing tab. Then:

1 In the When to trace area, select All the time.

2 Set the Log file Path to identify the ODBC log file.

3 Then, the When to trace area, click Start Tracing Now.

The button face changes to Stop Tracing Now. All ODBC operations from
this point forward will be logged in the log file that was specified in the
previous step.

To turn off ODBC tracing, return to the Tracing tab and click Stop Tracing
Now.

Figure 21 on page 252 presents a sample of the log file (SQL.LOG) for a
successfully processed SQL statement generated by EDMMSQLP.

HP SQL Methods 252

Figure 21 SQL.LOG file with processed SQL statement

Legend

b SQL statement generated by EDMMSQLP

b SQL statement was processed successfully

Iterative Simplification

Finally, a productive way to isolate a failure is to iteratively simplify the
connection until the problem disappears. The last simplifying change you
make before a successful connection locates the error.

253

6 EDM Access Method Services
(EDMAMS)

At the end of this chapter, you will:

• Be able to use the EDMAMS verbs to manage the Configuration Server
Database.

HP recommends shutting down the Configuration Server in order to
ensure that the CSDB contents are not changing during the
execution of the EDMAMS utilities.
However, ZEDMAMS can be run as a method, in which case the
Configuration Server must be running.
Furthermore, HP recommends backing up the CSDB prior to
running any of the EDMAMS utilities that will update it.

EDM Access Method Services 254

Overview
EDMAMS is a core set of utilities that can be used to create, delete, copy,
change, and list objects in the Configuration Server Database. The
functionality of these utilities is invoked using one of the EDMAMS verbs,
which are called by the module, ZEDMAMS. The ZEDMAMS module is
located in the directory in which the Configuration Server was installed.

• On a Windows system, the default is:

System_Drive:\Program Files\Hewlett-Packard\CM\
ConfigurationServer\bin

• On a UNIX system, the default is:

/opt/HP/CM/ConfigurationServer/exe

Terminology

Table 101 below lists terms that will be encountered in this chapter.

Table 101 EDMAMS Verb Terminology

Term Definition

Verb The action to be performed on the database object. For example:

DELETE_INSTANCE, EXPORT_CLASS, and SYNC_CLASS.

Keyword The (required and optional) predefined database location or object
designators, such as:

FILE, DOMAIN, FROMDOMA, and TOINST.
Also, a predefined instruction to be considered during the action.
For example:

KEEPDATE, PREVIEW, and HEADER.

EDM Access Method Services 255

Term Definition

Value The user-specified database location or object upon which the verb
will act, such as:

POLICY, USER, RAD*, and EXPC.DAT.
Also, a user-specified consideration that accompanies the action.
For example:

• Retaining an object’s creation date and time
(KEEPDATE=YES),

• Applying a comment to a copied object
(COMMENT=copied_object), and

• Replacing all existing data in the target object
(REPLACE=YES)

Unmated Instance An instance that does not have a resource.

Orphaned Resource A resource that does not have a parent instance.

Component Orphans A component instance that does not have a parent (for example, a
package instance).

Invoking the EDMAMS Verbs

For a list of the EDMAMS verbs that are available with the version of the
CSDB running in an environment, on the command line, type:

ZEDMAMS VERB=

The ZEDMAMS module is subject to continuous development. Due
to this ongoing development, some of the verbs detailed in this
chapter might not be applicable to the CSDB version that is running
in your environment.
Subsequent printings of this guide will document enhancements to
the EDMAMS functionality.

To display a verb’s (required and optional) keywords, type:

ZEDMAMS VERB=VERB_NAME

For example, typing,

ZEDMAMS VERB=DELETE_INSTANCE

on the command line, yields the following:

EDM Access Method Services 256

Figure 22 Keywords and conditions for the DELETE_INSTANCE verb

Figure 22 above shows the results of invoking the verb,
DELETE_INSTANCE. The keywords are listed, as well as an explanation of
each, with examples and applicable defaults.

Note that in Figure 22 above, some of the keywords are in
parentheses; these keywords are optional.

For more information on using the verbs, see the sections, Using the
EDMAMS Verbs and Usage Considerations.

Using the EDMAMS Verbs

All of the EDMAMS verbs are specified in the following format:

ZEDMAMS VERB=VERB_NAME,KEYWORD=VALUE,KEYWORD=VALUE

For example,

ZEDMAMS VERB=DELETE_INSTANCE,CLASS=USER,INSTANCE=SALES

There are no rules governing the order in which the keyword-value
combinations are specified.

EDM Access Method Services 257

Usage Considerations

UNIX: Important Notes
On the command line, “ZEDMAMS” must be specified in uppercase.
The verbs, keywords, and values, however, are not case sensitive.
When specifying values for CSDB locations and objects such as,
FILE=, CLASS=, FROMDOMA=, and TOINST=, the value must
exactly match the location/object, as it is labeled in the CSDB. If it
doesn’t, the verb will fail. For example, to act on the instance,
JohnDoe, in the USER Class of the POLICY Domain, specifying:
DOMAIN=POLICY,CLASS=USER,INSTANCE=johndoe

will result in a fail, because the value of INSTANCE=, as specified,
does not exist in the CSDB. Rather, the following must be specified.
DOMAIN=POLICY,CLASS=USER,INSTANCE=JohnDoe

• Optional keywords are enclosed in parentheses ().

• Verbs, keywords, and data can be typed in UPPERCASE, lowercase, and
a coMbinATioN.

However, the value of string keywords, such as FROMDATA=,
TODATA=, and STRING= are case-sensitive, where indicated.

• A comma (without a space) must follow each keyword-value combination,
with the exception of the last keyword-value combination, which must be
followed by a space.

• An asterisk (*) is not required for those values that recognize partial
specification.

• For all of the EDMAMS verbs, the default value of FILE is PRIMARY.

• The EDMAMS verbs act on one database object per execution, unless
otherwise noted.

For example, to change the names of the instances, East_Sales and
North_Sales to US_Sales, the verb RENAME_INSTANCE would have
to be run once for each of these instances.

• Output is written to zedmams.log, unless a different log is specified for
LOGFILE=.

Error conditions are written to STDERR.

EDM Access Method Services 258

Input Files

Another way to run the EDMAMS utilities is to contain the commands in an
input file—a file that has been edited by a text editor. This file can then be
run to successively execute several EDMAMS verb functions.

• In an input file, the keywords can be specified on one or more lines for a
single function.

• Like the command line method, a comma must follow each keyword-value
combination, with the last keyword-value combination followed by a
space.

EXPORT Verbs

Input files are very useful when using the exporting EDMAMS verbs
(EXPORT_CLASS, EXPORT_INSTANCE, and EXPORT_RESOURCE)
because they allow multiple domain-class combinations to be exported during
a single export function.

The section, Internationalization Considerations for Exporting/Importing
Database Decks (on page 260) contains important information regarding the
use of the EXPORT verbs.

Multiple Verbs

More than one verb can be specified in an input file. For example, the
COPY_DOMAIN verb can be followed by the verbs, DELETE_CLASS and
LIST_CONS_VARS. Any combination of verbs can be included in one run, as
long as the data sets being accessed do not conflict. If an asterisk (*) is
placed in the first column, it is considered a comment and no action is taken.

To execute commands that are contained in an input file, enter the following
on the command line:

ZEDMAMS ZFILE “DRIVE:\FILE_PATH\FILE_NAME”

ZEDMAMS is the executable. ZFILE is the second argument and
must be in uppercase.

Example of multiple VERBS executed from one file:

VERB=COPY_DOMAIN,FROMDOMA=POLICY,TODOMAIN=SYSTEMA,
REPLACE=NO

*

EDM Access Method Services 259

VERB=DELETE_CLASS,DOMAIN=SYSTEMA,CLASS=TESTCLAS

*

VERB=LIST_CONS_VARS,DOMAIN=SOFTWARE,CLASS=FILE,INSTANCE=*

Wildcards

EDMAMS supports two types of wildcards: implicit and explicit.

• Implicit wildcards
are available for the COPY_INSTANCE, DELETE_INSTANCE, and
LIST_INSTANCE verbs. Specify any portion of the value to select all
occurrences that contain that portion of the value. Implicit wildcards do
not require an asterisk, and are expressed as follows:

KEYWORD=<wildcard_string>.

For example, specify FROMINST=RAD to include all the fields that
contain RAD as any part of the string.

• Explicit wildcards
are available for the CHANGE_INS_FIELD, COPY_NEW_SUFFIX,
COPY_RESOURCE, LIST_CONS_VARS, LIST_INST_DATA,
LIST_ZRSC_FIELDS, and SEARCH_INSTANCES verbs. Explicit
wildcards require an asterisk, and are expressed as follows:

KEYWORD=<wildcard_string>*.

For example, specify FROMINST=RAD* to select all the instances that
contain RAD as the first part of the string.

LOGFILE

This keyword can be used with all of the EDMAMS verbs. Specify the fully
qualified path to, and name of, the log file to which the information is to be
reported. The default log file name is ZEDMAMS.LOG.

If this keyword is not specified, or specified without a value, the following
default locations are assumed:

• Windows: the bin folder in which the zedmams.exe utility is running.

• UNIX: the home directory of the user ID that installed the Configuration
Server.

To send the information to a location\file other than the default, specify:

EDM Access Method Services 260

LOGFILE=FILE_PATH\FILE_NAME

HP recommends that if LOGFILE is specified as a path other than
the default, that its existence be verified. If the directory does not
exist, the log creation process will fail, and the command will not
execute.

Internationalization Considerations for Exporting/Importing
Database Decks

This section details the conditions under which database decks can be
exported/imported using the ZEDMAMS EXPORT and IMPORT verbs. Table
104, in the section, Codepage and Locale Defaults, on page 261, is a
supplement to this information; it lists the defaults of the new keywords for
the EXPORT and IMPORT verbs.

Table 102 EXPORT_CLASS, EXPORT_INSTANCE, and EXPORT_RESOURCE

Source Database Format Acceptable Target Database Formats

UTF-8 UTF-8 and Basic ASCII

Other Locale or Codepage UTF-8

Basic ASCII UTF-8 and Basic ASCII

Extended ASCII UTF-8 and Extended ASCII

EXPORT Verb Considerations

• If the deck is being exported from a database with a locale or codepage
that differs from the database into which it is being imported, the
appropriate keyword (FROM_LOCALE or FROM_CODEPAGE) must be
specified.

If the source database’s locale or codepage is the same as the database
into which it is being imported, neither keyword needs to be specified.

• If the deck is being exported from a database with a locale or codepage
that differs from the database into which it is being imported, the
appropriate keyword (TO_LOCALE or TO_CODEPAGE) must be
specified.

If the source database’s locale or codepage is the same as the database
into which it is being imported, neither keyword needs to be specified.

EDM Access Method Services 261

• If TO_LOCALE=LEGACY is specified, XPR headers will be automatically
converted to EBCDIC.

• If TO_LOCALE=UTF8 is specified, an internationalized ZEDMAMS
UTF-8 export deck is produced.

Table 103 IMPORT_CLASS, IMPORT_INSTANCE, and IMPORT_RESOURCE

Target Database Format Source Database Format Must Be

UTF-8 UTF-8 or Basic ASCII or Extended ASCII

Other Locale or Codepage UTF-8

Basic ASCII Basic ASCII

Extended ASCII Extended ASCII

IMPORT Verb Considerations

• If the deck is being imported into a locale or codepage that differs from
the database from which it was exported, the appropriate keyword
(TO_LOCALE or TO_CODEPAGE) must be specified.

If the target locale or codepage is the same as the database from which
the deck was exported, neither keyword needs to be specified.

• If the deck is being imported into a locale or codepage that differs from
the database from which it was exported, the appropriate keyword
(FROM_LOCALE or FROM_CODEPAGE) must be specified.

If the target locale or codepage is the same as the database from which
the deck was exported, neither keyword needs to be specified.

• Translated data must fit the field size limits.

• Legacy XPR headers in EBCDIC are automatically converted to ASCII.

Codepage and Locale Defaults

The following table lists the defaults for the IMPORT and EXPORT codepage
and locale keywords.

EDM Access Method Services 262

Table 104 Codepage and Locale Defaults

Keywords Default

FROM_CODEPAGE If the deck is encoded in UTF8, the default is UTF8
codepage 65001; otherwise, the default is the
current system codepage.

TO_CODEPAGE If the database is encoded in UTF8, the default is
UTF8 codepage 65001; otherwise, the default is
the current system codepage.

FROM_LOCALE If the deck is encoded in UTF8, the default is
Locale country_region.UTF8; otherwise, the
default is the current process locale.

TO_LOCALE If the database is encoded in UTF8, the default is
Locale country_region.UTF8; otherwise, the
default is the current process locale.

If the command line options are omitted, ZEDMAMS will open the
import decks, look for the indicator and, if not found, will assume
locale code page; it will then examine the database and look for the
indicator and, if found, will treat as UTF8, but if not found, will treat
as locale code page.

Specifying the ZEDMAMS Utility

Table 105 below lists and describes the verbs for the ZEDMAMS utility.

Table 105 ZEDMAMS Verbs

Verb Description

ADD_FIELD Adds a variable at the end of a template, including an
automatic README file.

BUILD_PATCH Builds a PATCH file in a CSDB, or a file from two
Configuration Server Databases.

BUILD_STAGING_POINT Creates a staging point, as needed, on the hard drive, and
allows the resources (represented as an export deck) to be
converted into a tree of files located in a stager style
directory.

EDM Access Method Services 263

Verb Description

CHANGE_FIELDNAME Changes variable names in class templates.

CHANGE_FLD_VALUE Changes a template’s variable length, type, Configuration
Server, and HPCA agent flags.

CHANGE_INST_DATA Globally changes data in instance records, by class.

CHANGE_INS_FIELD Changes one field in each instance of a class and verifies
connects.

CHECK_RESOURCES Verifies the size of resources against ZRSCSIZE and
ZCMPSIZE.

CLONE_INSTANCE Clones an instance with a four-digit suffix (max. 2000).

COPY_CLASS Copies a class, its instances, and, if it exists, its resource
data.

COPY_DATA Copies only resource data from one
domain.class.instance to another.

COPY_DOMAIN Copies domains.

COPY_FIELD Copies attribute data to a new attribute or to an existing
attribute.

COPY_INSTANCE Copies an instance or a range of instances and associated
resource records.

COPY_NEW_SUFFIX Copies and renames the suffixes for the FILE class and its
mated instances.

COPY_RESOURCE See COPY_INSTANCE.

CREATE_INSTANCES Writes and populates instances from data in an edited text
file.

DELETE_CLASS Deletes a class and its instances.

DELETE_COMP_ORPHS Deletes component orphans from the PACKAGE class.

DELETE_DOMAIN Deletes one, or a range of, domains.

DELETE_FIELD Deletes an attribute from a template.

DELETE_INSTANCE Deletes/displays a range of instances within a class and, if it
exists, its resource data.

DELETE_ORPHANS Deletes unmated resource records (orphans) from the
RESOURCE file.

EDM Access Method Services 264

Verb Description

EDIT_CLASS_PREFIX Updates the fields in the first 60 bytes of the prefix.

EXPORT_CLASS Exports classes to an output file or data set for import to
another file or data set.

EXPORT_INSTANCE Exports instances to an output file or data set for import to
another file or data set for reporting.

EXPORT_RESOURCE Exports resource data to an output file or data set for import
to another file or data set.

IMPORT_CLASS Imports classes from an exported output file or data set to a
PRIMARY file specified in the edmprof file.

IMPORT_INSTANCE Imports instances from an exported output file or data set to
a PRIMARY file specified in the edmprof file.

IMPORT_RESOURCE Imports resource data from an exported output file or data
set to a RESOURCE file specified in the edmprof file.

LIST_CLASSES Displays a list of classes with the class names, object IDs,
ZOBJDATE, ZOBJTIME, persistence flag, sequence
sensitive flag, Distributed Configuration Server flag,
database type, and count totals.
Note: If DOMAIN=* is specified, all classes in the domain
will be listed.

LIST_CONS_VARS Displays connect and variable field (types C and V) values
from instance records and stores output in zedmams.log.

LIST_DOMAINS Display a list of domains in the log of a specified file.

LIST_FLAGS Lists Configuration Server and HPCA agent flags in selected
class record.

LIST_INST_DATA Lists instance data including variable names to
zedmams.log.

LIST_INSTANCE Lists instance names by domain, class, and instance (prefix).

LIST_PACKAGE List PACKAGE class instances and all mated components.

LIST_PREFIX Lists the Distributed Configuration Servers prefix by file,
domain, and class.

LIST_RESOURCES Lists resource prefix information (promote date, instance,
and so forth).

EDM Access Method Services 265

Verb Description

LIST_ZRSC_FIELDS Lists field values of fields beginning with ZRSC.

MATCH_RESOURCES Matches resource records against data-bearing instances for
the specified class.

PACKAGE_UNMATES List all PACKAGE class instances without mated
components.

REFRESH_DMA Recounts the instances and classes in a file and updates the
Distributed Configuration Server prefix.

RENAME_INSTANCE Renames or displays instances by full name or prefix.

SEARCH_INSTANCES Searches selected instances by domain and class for
specified string

SORT_OBJECT_ID Sorts object IDs in ascending or descending order by file or
domain.

SYNC_CLASS Synchronizes an existing class with a newly formatted class,
and re-organizes all (existing class) instances according to
the mapping in the newly formatted class. All existing class
attributes that have a match in the new template will adopt
the characteristics of the new template attribute, whereas
any existing class attributes that do not have a match in the
new template will be deleted.

UPDATE_INSTANCES Updates the existing instance fields from data in an edited
text file.

UPDATE_MGRIDS Updates the Configuration Server ID and name by file,
domain, and class.

VERIFY_CLASS Verifies class templates for gaps, overlaps, and other
anomalies.

VERIFY_DATABASE Verifies the integrity of a CSDB.

ZRSOURCE_UNMATES Matches data-bearing instances with the appropriate
resources for the specified class.

The sections that follow describe each ZEDMAMS verb.

In the Syntax for each verb, the default values are presented in
bold.

EDM Access Method Services 266

ADD_FIELD
This verb adds a variable (attribute) to the end of a class template and
unconditionally includes a README attribute.

• The README attribute is 35 bytes long.

• The LENGTH of the specified attribute cannot be greater than 255 bytes,
or less than one byte.

• The Configuration Server and HPCA agent flags (MFLAGS and
CFLAGS) are optional and will default according to the attribute TYPE.
The default flags are presented when requesting a usage display.

• The FLDNAME can be any one- to eight-byte name and can be changed
with the CHANGE_FIELDNAME function.

Syntax: (FILE=,)DOMAIN=,CLASS=,FLDNAME=,LENGTH=,TYPE=
(,MFLAGS=)(,CFLAGS=)(,KEEPDATE=YES/NO)(,README=)
(,DEFAULT=)

Example: Add an M type attribute, NEWFIELD, to the specified class,
giving it a length of 165 bytes, assigning default
Configuration Server and HPCA agent flags, and updating
the object date and time:
DOMAIN=SOFTWARE,CLASS=USER,FLDNAME=NEWFIELD,
LENGTH=165,TYPE=M

Tip: Run LIST_FLAGS against the class before and after running
this to view the old and new template.

EDM Access Method Services 267

BUILD_PATCH

The functionality of this verb has been replaced with the Service
Optimization feature of the HPCA Admin CSDB Editor. For more
information, refer to the Admin User Guide.

EDM Access Method Services 268

BUILD_STAGING_POINT
This verb allows resources (represented as an export deck) to be converted
into a tree of files located in a stager style directory. It creates, on the hard
drive, a staging point at a location designated by OUTFILE, then the data
can be transferred to a CD using standard CD-writing software. This verb
checks for the staging point and, if it does not exist, creates it.

• Specify PREVIEW=YES to see the expected results of running the verb
with specific parameters.

• INFILE is the fully qualified path and filename of an exported resource
(XPR) file.

• OUTFILE is the destination directory location of the staging files.

OUTFILE defaults to the location_of_edmprof\staging_point.
Therefore, if edmprof is located in C:\HP\configserver\bin, the
default staging point is C:\HP\configserver\bin\staging_point.

If PREVIEW=YES, OUTFILE is ignored.

• XPI is an exported instance deck that is used to timestamp the staged
resources.

This setting’s value must be specified as the fully qualified path and
filename of an exported instance deck.

If XPI is not specified, or if the specified deck does not contain instance
data for the staged resource, the timestamp will be determined using the
date and time from the input deck resource header.

• REPLACE=YES replaces the existing same-named file at the specified
staging point.

• MULTICAST=YES specifies that the OUTFILE will contain the name of
a directory where resource data will be stored in
File.Domain.Class.Instance format, and each file will contain an
embedded 60-byte prefix, identical to the prefix saved in the RESOURCE
file.

Syntax: (PREVIEW=YES/NO,)INFILE=(,OUTFILE=)(,XPI=)
(,REPLACE=YES/NO)(,MULTICAST=YES/NO)

EDM Access Method Services 269

Example: Accept the default staging point on the hard drive as the
destination for files from C:\NovaFiles\NewCD:
INFILE=C:\NovaFiles\NewCD

Tip: To see what would be the result of running the verb (without
actually doing so), specify PREVIEW=YES.

Resource Naming

BUILD_STAGING_POINT will remove the 60-byte prefix from each resource
that is delivered to the staging point, and rename it according to the
following format:

1 The first byte of the object ID is added to the 000 string, and used as a
branch root.

2 Bytes 2 – 9 will be used as a name, and followed by a period.

3 The last three bytes will be used as an extension.

For example, a resource with an object ID of

DABC12345678

will be renamed:

000D\ABC12345.678.

In accordance with step 1, the first byte (D) was added to the string 000. The
back slash (\) was automatically inserted to make 000D a branch root. A
period was placed in front of the final three bytes (678), making them the
extension, as described in step 3. The bytes in between the branch root and
the extension (ABC12345) become the name.

EDM Access Method Services 270

CHANGE_FIELDNAME
This verb changes the specified class template field name (FROMNAME) to a
new field name (TONAME).

• If there are multiple occurrences of a field name (such as, README), all
of them will be changed.

However, README names should not be changed; only user-created
variable field names should be changed.

Syntax: (FILE=,)DOMAIN=,CLASS=,FROMNAME=,TONAME=
(,KEEPDATE=YES/NO)

Example: Change the template field name in the specified class from
GROUPID to GROUP:
DOMAIN=SOFTWARE,CLASS=USER,FROMNAME=GROUPID
,TONAME=GROUP

Tip: Run LIST_INST_DATA to display template field names with
INSTANCE=_BASE.

EDM Access Method Services 271

CHANGE_FLD_VALUE
This verb changes a variable’s length, type, and Configuration Server and
HPCA agent flags by FLDNAME.

• The LENGTH must be in the range of 1 to 255 bytes.

• The Configuration Server (Manager) and HPCA agent flags (MFLAGS
and CFLAGS) are optional, and will retain their current settings if
omitted.

• The keyword DESC changes the DESCRIPTION field in the template for
a maximum of 20 bytes. The DESCRIPTION field can be changed either
alone or in addition to other fields.

If blanks are included in the text, it must be enclosed in quotation marks
(“ ”).

• The keyword TYPE is required except when DESC is the only field being
changed. The values are:

— For connect types – the characters C, A, I, R, and O.

— For method types – the characters M, T, H, and D.

— For variable types – the characters V, U, and W.

• INDEX changes the nth occurrence of variable FLDNAME. When
omitted, the first variable with a matching fieldname will be changed.

• KEEPDATE=YES will prevent the OBJDATE and OBJTIME from being
updated.

• README is the 1- to 35-byte description of the changed field that was
placed in the _BASE_INSTANCE_. If blanks are included in the text, it
must be enclosed in quotation marks (“ ”).

• DEFAULT the length of the default data must be less than or equal to
the length specified by LENGTH.

This value populates FLDNAME in the _BASE_INSTANCE_. If blanks
are included in the text, it must be enclosed in quotation marks (“ ”).

Syntax: (FILE=,)DOMAIN=,CLASS=(,DESC=,)FLDNAME=
(,LENGTH=,)TYPE=(,MFLAGS=)(,CFLAGS=)(,INDEX=)
(,KEEPDATE=YES/NO)(,README=)(,DEFAULT=)

EDM Access Method Services 272

Example: In the template specified, change the TYPE value of the third
attribute (named EDMSETUP) from V to C. (The length, and
Configuration Server and HPCA agent flags retain their
current value.):
DOMAIN=SOFTWARE,CLASS=ZSERVICE,FLDNAME=EDMSETUP
,TYPE=C,INDEX=3

Tip: Run LIST_FLAGS against the class before and after running
this to view the old and new template.

EDM Access Method Services 273

CHANGE_INST_DATA
This verb changes instance data.

• A match occurs only when the value of FROMDATA begins the instance
field and is not embedded, or is not part of other data in the field.

• If PREVIEW=YES, only the instances to be changed will be displayed.

• If FIELD is specified, this verb will change all instances whose
FROMDATA criteria is equal to the data portion of the heap specified by
FIELD.

• FROMDATA is the data, in the heap, that is to be replaced.

All instances that meet the criteria of FIELD and FROMDATA will be
changed with TODATA.

If FROMDATA=BLANKS, the change criteria will be all blank bytes.

• Omitting TODATA will set the field to blanks.

• FROMDATA and TODATA can be entered in any case. Keep in mind that
the comparison made against FROMDATA is based on the case entered.

• If either FROMDATA or TODATA contain embedded spaces, the string
must be enclosed in quotation marks.

• If KEEPDATE=NO, a new ZOBJDATE and ZOBJTIME are generated.

Syntax: (FILE=,)DOMAIN=,CLASS=(,FIELD=,)FROMDATA=
(,TODATA=)(,PREVIEW=YES/NO)(,KEEPDATE=YES/NO)

Example: Change all instance data in the specified class from
JohnPublic to John Q. Doe:
DOMAIN=SOFTWARE,CLASS=USER,FROMDATA=JohnPublic,
TODATA=“John Q. Doe”

Tips: Run LIST_INST_DATA to get a display of instance data and
the class field names to which the data belongs.
Run first with PREVIEW=YES to display the current variable
data values.

EDM Access Method Services 274

CHANGE_INS_FIELD
This verb changes the instance data of the specified field in specific instances
within the same domain.

• INDEX is the relative number (1– 99) of multiple same named fields
(such as, EDMSETUP or README).

• The keyword PREFIX:

— Can be specified wildcards (*). For example, DIFF* and DIFF*SOL*.

— If specified with just an asterisk (*), all instances in the specified
class are changed.

— To change only one instance, the entire name must be specified.

• The keyword FIELD is the name of the attribute to be changed.

• VERIFY=YES verifies that a connection value in TODATA exists. If the
verify fails, the program aborts.

• KEEPDATE=YES will prevent the OBJDATE and OBJTIME from being
updated.

• TODATA can be entered in any case; the data is placed in the field as
entered. If TODATA contains embedded spaces, the string must be
enclosed in quotation marks.

Specify only CLASS.INSTANCE, not the domain.

• PREVIEW=YES displays instance names and the current data before the
change and PREVIEW=NO displays instance names and the current data
after the change.

Syntax: (FILE=,)DOMAIN=,CLASS=(,PREVIEW=YES/NO,)PREFIX=
,FIELD=,TODATA=(,INDEX=)(,VERIFY=YES/NO)
(,KEEPDATE=YES/NO)

Example: Change the third EDMSETUP field (INDEX=3) in the
specified instances to ZLOCMGR.RAD_RESOURCE_FILE.
Verify the existence of the connection, and update the
OBJDATE and OBJTIME:
DOMAIN=SOFTWARE,CLASS=USER,PREFIX=TSO,FIELD=EDM
SETUP,TODATA=ZLOCMGR.RAD_RESOURCE_FILE
,VERIFY=YES,INDEX=3

EDM Access Method Services 275

Tip: This verb allows wildcards for the PREFIX parameter.
Therefore, you can specify PREFIX=RAD* to view all the
prefixes that contain RAD as the first part of the string.

EDM Access Method Services 276

CHECK_RESOURCES
This verb verifies the actual size of the resource data against ZRSCSIZE or
ZCMPSIZE.

The entire PRIMARY file is checked for the presence of the variable field
names ZRSCSIZE and ZCMPSIZE. If these fields exist, and if ZCMPSIZE
contains a value, it is compared against the actual size. If ZCMPSIZE is zero
or blank, the value in ZRSCSIZE is used. If there is a mismatch, the name of
the resource and the appropriate sizes are listed to the log and a return code
of 8 is passed.

• If LISTALL=YES, all objects checked are listed, and objects with
resources are listed with their respective sizes.

• If UPDATE=YES, and if the appropriate of either ZRSCSIZE or
ZCMPSIZE does not contain the correct value, the field will be updated
with the correct value. In addition, the 8-byte, printable hex field in the
instance prefix will be updated if in error.

• CRC is a toggle to activate/disable the Cyclical Redundancy Check.

If CRC=YES, a CRC is calculated for each resource and if UPDATE=YES,
incorrect CRCs are updated to their correct values in the OBJRCRC field.

• DOMAIN is a 1- to 32-byte (Domain) name that is to have its resources
checked.

• CLASS is a 1- to 8-byte (class) name that is to have its resources checked.

If specified, DOMAIN must be specified.

• INSTANCE is a 1- to 32-byte (Instance) name that is to have its
resources checked.

If specified, DOMAIN and CLASS must be specified.

Syntax: LISTALL=YES/NO(,UPDATE=YES/NO)(,CRC=YES/NO,)
DOMAIN=,CLASS=,INSTANCE=

Example: List all the resources that have a mismatch:
CHECK_RESOURCES,LISTALL=YES

Tip: N/A

EDM Access Method Services 277

CLONE_INSTANCE
This verb clones the instance a specified number (nnnn) of times and each
new instance name is suffixed with one to four digits: 0000 through nnnn-1.

The cloned instance name, plus its suffix, cannot exceed 32 bytes: 1 to 28
digits for the instance name + 1 to 4 digits for the suffix. Therefore, instance
name length = 32, the length of the suffix.

• A new OBJID, OBJDATE, and OBJTIME are generated for the cloned
objects.

• COUNT is the number of clones to spawn, and can range from 1 to 2000.

Syntax: DOMAIN=,CLASS=,INSTANCE=,COUNT=nnnn

Example: Clone 100 instances in the specified class, naming the cloned
instances DIFF80 through DIFF899 type:
DOMAIN=SOFTWARE,CLASS=USER,INSTANCE=DIFF8,
COUNT=100

Tip: Run LIST_INSTANCE to display the instance names before
and after the cloning.

EDM Access Method Services 278

COPY_CLASS
This verb copies a class template, its component instances, and resource data
from one domain to another.

Although this verb is supported, HP recommends using the verbs
EXPORT_CLASS and IMPORT_CLASS to copy a class from the
CSDB.

As of version 4.4 of the CSDB, this verb will copy the component instances
and resource data also.

• TODB specifies the path to a destination file other than the one in the
edmprof file. If omitted, it defaults to the DBPATH specified in the
edmprof file.

• If TOCLASS is omitted, the destination class will be assumed to be the
same as the FROMCLAS. In this case, TODOMAIN and FROMDOMA
must be different.

• A new object ID, ODJDATE, and OBJTIME are generated for the copied
objects.

• If TODOMAIN does not exist, the ZBASE class and base instance will be
copied from the source domain (FROMDOMA) in order to create a valid
domain.

• If REPLACE=YES, all existing data is replaced.

Syntax: (TODB=)(,FILE=,)FROMDOMA=,FROMCLAS=,TODOMAIN=
(,TOCLASS=)(,REPLACE=YES/NO)

Example: Copy the specified class template and only the base instance
from SOFTWARE to SYSTEM:
FROMDOMA=SOFTWARE,FROMCLAS=USER,TODOMAIN=SYSTEM

Tip: Run once with REPLACE=NO to determine the preexistence
of the class in the destination domain.

EDM Access Method Services 279

COPY_DOMAIN
This verb copies only the class template and _BASE_INSTANCE_ of a
domain within a database, and optionally, to a different destination database.
To copy the entire contents of a domain, see the section, Copying a Domain
and its Contents.

• A new object ID, OBJDATE, and OBJTIME are generated for the copied
objects.

• If REPLACE=YES, all existing data is replaced.

• TODB specifies the path to a destination file other than the one in the
edmprof file. If omitted, it defaults to the DBPATH specified in the
edmprof file.

Syntax: (FILE=,)FROMDOMA=,TODOMAIN=(,REPLACE=YES/NO)
(,TODB=)

Example: Copy the class template and _BASE_INSTANCE_ of the
SOFTWARE Domain to the SYSTEM domain:
FROMDOMA=SOFTWARE,TODOMAIN=SYSTEM

Tip: Run once with REPLACE=NO to determine the preexistence
of the destination domain.

Copying a Domain and its Contents

To copy a domain, run this verb with FROMDOMA and TODOMAIN
specified, then use the export and import verbs as detailed below.

To copy a domain with contents

1 Run this verb with FROMDOMA and TODOMAIN specified.

This will copy just the _BASE_INSTANCE_ and class template.

2 Verify that the new domain has been created by checking the ZEDMAMS
log’s return code or physically querying the CSDB using an explorer tool.

3 Use the EDMAMS verbs, EXPORT_INSTANCE (detailed on page 298)
and EXPORT_RESOURCE (detailed on page 300) with
DOMAIN=<old_domain> (the value of FROMDOMA).

EDM Access Method Services 280

4 Import the domain using the EDMAMS verb, IMPORT_INSTANCE
(detailed starting on page 304). Be sure to specify:

— the exported instance (FILE=),

— the resource files (XPR=),

— MAP_DOMAIN=old_domain/new_domain.

EDM Access Method Services 281

COPY_FIELD
This verb copies an attribute (FROMFLD) and its instance data to a new
attribute (TOFLD). The length, type, and flags of the new attribute will be
inherited from the existing attribute.

• INDEX is the nth occurrence of a FROMFLD multiple-named attribute.

• PREVIEW will display the value of the FROMFLD attribute before
changing an existing TOFLD attribute.

• REPLACE=YES will overlay existing data in the TOFLD attribute with
the values in the FROMFLD attribute.

• If KEEPDATE=NO, a new zobjdate and zobjtime are generated.

Syntax: (FILE=,)DOMAIN=,CLASS=,FROMFLD=,TOFLD=(,INDEX=)
(,PREVIEW=YES/NO)(,REPLACE=YES/NO)
(,KEEPDATE=YES/NO)

Example: Copy an attribute named OLDFLD (and the associated data
in the specified class) to a new attribute named NEWFLD:
DOMAIN=SOFTWARE,CLASS=USER,FROMFLD=OLDFLD
,TOFLD=NEWFLD

Tip: Run LIST_INST_DATA against the class to view the contents
of each attribute.

EDM Access Method Services 282

COPY_INSTANCE (COPY_RESOURCE)
These verbs copy a range of specified instances and resource data from one
domain-class pair to another, in the PRIMARY and RESOURCE files, and
optionally, to a different destination database. The function assumes that the
destination class name is the same as the source, and that the templates are
identical.

Although this verb is supported, HP recommends using the verbs
EXPORT_INSTANCE and IMPORT_INSTANCE to copy an
instance from the CSDB.
This verb can be specified as either COPY_INSTANCE or
COPY_RESOURCE, as these verbs have been combined and
perform identical functions.

As of version 4.4 of the Configuration Server Database, this verb will copy the
component instances and resource data also.

• TODB specifies the path to a destination file other than the one in the
edmprof file. If omitted, it defaults to the DBPATH specified in the
edmprof file.

• The value of FROMINST can be partially specified. For example, you can
specify FROMINST=DIFF to specify all the instances that contain DIFF
as any part of the string.

• A new object ID is generated for the copied objects. A new OBJDATE and
OBJTIME will be generated unless KEEPDATE=YES.

• PREVIEW=YES will display a list of instance names that will be copied
from the source class. PREVIEW=NO will display instances that have
been copied.

• If REPLACE=NO and an existing instance is found, the function will
abort, indicating the existing instance name to STDERR and the log, and
listing in the log any instances that have been copied.

• The existing instance name will be written to STDERR, and instances
that have been copied will be listed in the log.

• If PREVIEW=NO and the destination domain does not contain
FROMCLAS, the source class (FROMCLAS) and its BASE_INSTANCE
will be copied to the destination domain (TODOMAIN).

• NEWINST renames an instance (if TODB is specified).

If wildcards are used for FROMINST, NEWINST is not allowed.

EDM Access Method Services 283

Syntax: (PREVIEW=YES/NO)(,TODB=)(,FILE=,)FROMDOMA=
,FROMCLASS=,TODOMAIN=,FROMINST=(,NEWINST=)
(,REPLACE=YES/NO)(,KEEPDATE=YES/NO)

Example: Copy instances and resource data from the SOFTWARE
Domain to the SYSTEM domain, with the from-instance
wildcard specified as CICS*ICO*:
FROMDOMA=SOFTWARE,FROMCLAS=ZSERVICE,
TODOMAIN=SYSTEM,FROMINST=CICS*ICO*

Tips: Run once with PREVIEW=YES to get a list of instances to be
copied.
Also, run LIST_RESOURCES against the source domain to
display a list of existing resources and instance names that
can be copied, and then against the destination domain to see
what was copied. Destination domain instance names that
match the new instance name will be deleted.

EDM Access Method Services 284

COPY_NEW_SUFFIX
This verb copies the specified instances and resource data from one domain to
another in the PRIMARY and RESOURCE files; and adds a new suffix to the
destination instance. This verb allows wildcards for FROMINST.

• The value of FROMINST can be partially specified. For example, you can
specify FROMINST=DIFF to select all the instances that contain DIFF as
the first part of the string.

• If the length of NEWSUFF is longer than that of OLDSUFF, the new
instance name must not exceed 32 bytes. If it does, a message will be
placed in the log and the instance will not be copied.

• PREVIEW=YES will display the old instance name and the new instance
name and the total number of instances to be copied.

• If the class does not exist in the TODOMAIN, the class and
BASE_INSTANCE will be copied from the source domain (FROMDOMA).

• Instance names must match the prefix (FROMINST) and the suffix
(OLDSUFF) in order to be copied and renamed.

Syntax: (PREVIEW=YES/NO,)FROMDOMA=,FROMCLASS=,FROMINST=
,TODOMAIN=,OLDSUFF=,NEWSUFF=

Example: From the SOFTWARE Domain, copy and re-suffix instances
and resource data prefixed with TSO and suffixed with ICO,
to the SYSTEM domain with the new suffix,
TSO_(*)_NEW_ICO; and displaying only those that would be
copied:
FROMDOMA=SOFTWARE,FROMCLAS=ZSERVICE,TODOMAIN=
SYSTEM,FROMINST=TSO,OLDSUFF=ICO,NEWSUFF=NEW_ICO

Tips: Run once with PREVIEW=YES to verify that the new
instance names will not exceed 32 bytes, and that the
instances required will be copied.
Also, run LIST_RESOURCES against the source domain to
display a list of existing resources and instance names that
can be copied and then against the destination domain to see
what was copied. Destination domain instances that match
the new instance name will be deleted.

EDM Access Method Services 285

CREATE_INSTANCES
This verb creates Instances in the specified CSDB Domain from data in an
edited text file (INFILE). The INFILE must conform to the following
specifications.

• The first line must contain a new Instance name starting in column 1 for
a maximum of 32 bytes.

• The next line contains the variable field name, beginning in column 2, for
a maximum of eight bytes; then a blank in column 10; followed by a two-
byte index value (01-99) in columns 11 and 12; followed by the data to be
populated beginning in column 13.

• Existing Instance names will be bypassed and the function will stop
unless a /* (in columns 1 and 2) line follows the last data line of an
Instance. In the example below, the function will continue to the next
input Instance.

Column
Number

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Line 1 U S E R _ N A M E

Line 2 N A M E J . A . D E V E L O P E R

Line 3 E D M S E T U P D O M A I N . C L A S S

Line 4 Z P R I O R I T 9 9 9

Line 5 U S E R _ N A M E L . Z I M M E R

Line 6 N A M E

Line 7 E D M S E T U P U S E R . U S E R 3

Line 8 Z T R A C E N N N

Syntax: INFILE=,DOMAIN=,CLASS=

Example: Create the instances in the specified text file in
CLASS=USER:
INFILE=MYINPUT.TXT,DOMAIN=POLICY,CLASS=USER

Tip: N/A

EDM Access Method Services 286

DELETE_CLASS
This EDMAMS verb deletes a class template and all of its instances.

As of version 4.4 of the Configuration Server Database, this verb will delete
the component instances and resource data also.

• If PACKAGE=YES, all component and component data is deleted.

Syntax: (FILE=)(,PREVIEW=YES/NO)(,PACKAGE=YES/NO,)DOMAIN=
,CLASS=

Example: Delete the class, USERTEST, from the SOFTWARE Domain:
DOMAIN=SOFTWARE,CLASS=USERTEST

Tip: N/A

EDM Access Method Services 287

DELETE_COMP_ORPHS
This verb deletes component orphans from the PACKAGE class. Orphans are
defined as RESOURCE file data that have no mated instances in the
associated PRIMARY file PACKAGE class.

• CLASS defaults to all classes of the specified domain.

Syntax: (FILE=)(,PREVIEW=YES/NO,)DOMAIN=(,CLASS=)

Example: Delete orphans from the TSTRESLT Class of the SOFTWARE
Domain:
DOMAIN=SOFTWARE,CLASS=TSTRESLT,PREVIEW=NO

Tip: N/A

EDM Access Method Services 288

DELETE_DOMAIN
This verb deletes a domain or an alphabetical range of domains (class
templates and instances) from the file that is specified.

As of version 4.4 of the Configuration Server Database, this verb will delete
the component instances and resource data also.

• If TODOMAIN is omitted, only FROMDOMA will be deleted.

If TODOMAIN is specified, the range is inclusive.

Syntax: (FILE=)(,PREVIEW=YES/NO,)FROMDOMA=(,TODOMAIN=)

Example: From the PRIMARY file, delete only SOFTWARE:
FILE=PRIMARY,FROMDOMA=SOFTWARE

From the PROFILE File, delete USERA through USERF:
FILE=PROFILE,FROMDOMA=USERA,TODOMAIN=USERF

Tip: Run with PREVIEW=YES first.

Use caution when specifying a range of domains. Be certain of the
range specified, because there is no confirmation request.

EDM Access Method Services 289

DELETE_FIELD
This verb deletes an attribute from a template along with its README field,
and reorganizes the class accordingly.

• FILE will default to PRIMARY if it is omitted or if no value is specified.

• DOMAIN specifies the name of the CSDB Domain.

• CLASS specifies the name of the CSDB Class.

• FIELD must refer to an attribute, not a README (description) field.

• INDEX refers to multiple occurrences of the same attribute name. For
example, if there were three occurrences of EDMSETUP, the third would
be INDEX=3. Index deletes the nth occurrence of a multiple named
variable.

Values for INDEX are the numbers 1 through 99.

The default is 1.

Syntax: (FILE=,)DOMAIN=,CLASS=,FIELD=(,INDEX=)

Example: Delete the attribute USERATTR from the USER Class:
DOMAIN=POLICY,CLASS=USER,FIELD=USERATTR

Tip: Use with discretion because deletion of an attribute causes a
restructuring and rewrite of all the instances in the class.

EDM Access Method Services 290

DELETE_INSTANCE
This verb deletes an Instance or an alphabetical range of Instances within a
specified Class of the CSDB.

The keywords, TOINST and SUFFIX, were deleted from this verb’s
functionality with version 4.3 of the Configuration Server Database.

As of version 4.4 of the Configuration Server Database, this verb will delete
the component instances and resource data also.

• FROMINST and INSTANCE perform the same function; either one must
be used. Both will delete groups of instances and any existing, associated
resource data. To delete only one instance, the entire name must be
specified.

FROMINST and INSTANCE can specify wildcards (*). For example,
DIFF* and DIFF*SOL*.

• PREVIEW=YES displays a list of instances that would be deleted with
PREVIEW=NO.

• INDATA specifies the fully qualified path to, and name of, a file that
contains the delete parameters. This file can be either an exported
instance deck (.XPI), or a manually created file that contains the FILE,
DOMAIN, CLASS, and INSTANCE values.

If using INDATA, the values that are specified for FILE, DOMAIN,
CLASS, FROMINST, and INSTANCE on the command line are ignored
because these values are extracted from the INDATA file.

When not using INDATA, either FROMINST or INSTANCE must be
specified. Both can delete groups of instances.

FROMINST (instead of INSTANCE) can be specified inside the INDATA
file in order to define a group of instances to be deleted.

Syntax: (PREVIEW=YES/NO)(,INDATA=)(,FILE=,)DOMAIN=,CLASS=
(,FROMINST=)(,INSTANCE=)

Example: Delete all USER Class instances, beginning with the instance
prefix name of
OLD_USER:DOMAIN=POLICY,CLASS=USER,FROMINST=OLD_
USER

EDM Access Method Services 291

Tip: Run once with PREVIEW=YES to view which instances will
be deleted.
Also, run LIST_INSTANCES against the class to display a
list of instance names that might be deleted.

Use caution when specifying a range of domains. Be certain of the
range specified, because there is no confirmation request.

EDM Access Method Services 292

DELETE_ORPHANS
This verb will delete all orphans in all domains. Orphans are defined as
RESOURCE file data that have no mated instance in the associated
PRIMARY file.

• TRACE=YES provides additional diagnostic (tracing) confirmation in the
log.

Syntax: (PREVIEW=YES/NO)(,TRACE=YES/NO)

Example: Delete all orphans:
PREVIEW=NO

Tip: N/A

EDM Access Method Services 293

DELETE_RESOURCE
This verb deletes the specified resource from the RESOURCE File of the
CSDB.

The keyword, DELETE_RESOURCE, was deleted from the Configuration
Server as of version 4.2. Its functionality is handled by the verb,
DELETE_INSTANCE (on page 290).

EDM Access Method Services 294

EDIT_CLASS_PREFIX
This verb enables you to edit the first 60 bytes of the template’s prefix.

• FIELD is the name of the class prefix field, such as the priority of the
class, CLASSPRI.

• VALUE will not be read if FIELD is not specified.

Refer to the Values column in Table 106 below for the valid values for
each FIELD type.

• If KEEPDATE=NO, a new OBJDATE and OBJTIME are generated.

Table 106 Changeable Fields

Field Values

CLASTYPE P (POLICY_CLASS_TYPE)
C (CONFIGURATION_CLASS_TYPE)
T (COMPONENT_CLASS_TYPE)
B (CLASS_TYPE_BLANK)

CLASSPRI 5 (PATH), 10 (METACLAS), 50 (FILE), 50 (ZSERVICE),
60 (DESKTOP), 70 (MACALIAS),70 (REGISTRY), 50
(DEFAULT_PRIORITY), B (Blank)

DBTYPE U (UNICODE)
A (ASCII)

Note: A third value (E) is not applicable to the current
release of the Configuration Server.

OBJDM D (DISTRIBUTED_MANAGER)

OBJTYPE S (SINGLE_DIMENSIONAL_OBJECT)
M (MULTIPLE_DIMENSIONAL_OBJECT)

SEQ_SENS S (SEQUENCE_SENSITIVE)
I (SEQUENCE_INSENSITIVE)
Note: Specifies whether to process variables in the order
in which they occur in the class template (S), or in order
of attribute type (I)—that is, VARs then CONNs, and so
on.

OBJNAME Any text up to 20 bytes in length. If there are embedded
spaces in the text, enclose the text with quotation marks
(“ ”), as in the example.

EDM Access Method Services 295

Syntax: DOMAIN=,CLASS=,FIELD=,VALUE=(,PREVIEW=YES/NO)
(,KEEPDATE=YES/NO)

Example: DOMAIN=POLICY,CLASS=USER,FIELD=OBJNAME,
VALUE=“User names”,PREVIEW=NO

Tip: N/A

EDM Access Method Services 296

EXPORT_CLASS
This verb enables the exporting of class template data from a file or data set
for importing to another file or data set.

• If PREVIEW=YES, OUTPUT is ignored.

• OUTPUT is the name of the destination output file (with extension)
where the exported data is to reside.

• INPUT references a predefined input file, which enables multiple
FILE.DOMAIN.CLASS combinations to be specified.

The input file must be specified in the following format.

FILE=file_name,DOMAIN=domain_name,CLASS=class_name,
INSTANCE=instance_name

• HEADER=YES produces an output header file.

• COMMENT=YES adds a comment to the optional output file header.

• If the deck is being exported from a database with a locale or codepage
that differs from the database into which it is being imported, the
appropriate keyword (FROM_LOCALE or FROM_CODEPAGE) must be
specified.

If the source database’s locale or codepage is the same as the database
into which it is being imported, neither keyword needs to be specified.

• If the deck is being exported from a database with a locale or codepage
that differs from the database into which it is being imported, the
appropriate keyword (TO_LOCALE or TO_CODEPAGE) must be
specified.

If the source database’s locale or codepage is the same as the database
into which it is being imported, neither keyword needs to be specified.

— The values for the CODEPAGE keywords must be integers, such as
1252, 65001, and 936.

— The LOCALE keywords’ values will accept the following values only:
LEGACY, UTF8, and UTF-8.

– LEGACY is an alias for the local machine’s code page, such as
CP_ACP, 1252.

– UTF8 and UTF-8 are aliases for a UTF-8 code page, such as
CP_UTF8, 65001.

• If TO_LOCALE=

EDM Access Method Services 297

— LEGACY: XPR headers will be automatically converted to EBCDIC.

— UTF8: an internationalized ZEDMAMS UTF-8 export deck is
produced.

The keywords FROM_LOCALE, FROM_CODEPAGE,
TO_LOCALE, and TO_CODEPAGE will not show up on the
command line when the syntax/usage is queried; however, they are
functional and, when specified, will work as designed.

Syntax: FILE=(,DOMAIN=)(,CLASS=)(,PREVIEW=YES/NO,)OUTPUT=(,C
OMMENT=)(,INPUT=)(,HEADER=YES/NO)

Example: Export all the classes (templates) in the PRIMARY file to a
file named EXPC.DAT:
FILE=PRIMARY,PREVIEW=NO,OUTPUT=C:\EXPC.DAT

Tip: N/A

EDM Access Method Services 298

EXPORT_INSTANCE
This verb enables the exporting of instances to an output file or data set for
importing to another file or data set or for reporting purposes.

• If PREVIEW=YES, OUTPUT is ignored.

• OUTPUT is the name of the destination output file (with extension)
where the exported data is to reside.

• KEEP specifies a text file that contains a list of the instance attributes to
be retained in the resulting output file. These names are case-sensitive.

• DROP specifies the instance attributes that are not to be retained in the
output file.

• If ORDER=YES, the resulting file will be ordered by attribute name.

• COMMENT=YES adds a comment to the optional output file header.

• Specify REPORT=YES to export instances to third-party vendor software.

• CSVL=YES produces a Comma Separated Variable listing for all
attribute values. Currently, the output file you specify with CSVL=YES is
created in a subdirectory of the current working directory.

• If BASE=YES, the values of the _BASE_INSTANCE_ will be inherited.

• INPUT references a predefined input file, which enables multiple
FILE.DOMAIN.CLASS.INSTANCE combinations to be specified.

The input file must be specified in the following format.

FILE=file_name,DOMAIN=domain_name,CLASS=class_name,
INSTANCE=instance_name

• HEADER=YES produces an output header file.

• If SKIP_ERRORS=YES and database or consistency errors are
encountered in the PROFILE File, a “bad object” event (return code=4)
will be recorded in the log, but processing will continue.

If SKIP_ERRORS=NO (the default) and errors are encountered, the
exporting will stop.

• PHEX=YES outputs the data portion of variables in printable hex format.

• If the deck is being exported from a database with a locale or codepage
that differs from the database into which it is being imported, the
appropriate keyword (FROM_LOCALE or FROM_CODEPAGE) must be
specified.

EDM Access Method Services 299

If the source database’s locale or codepage is the same as the database
into which it is being imported, neither keyword needs to be specified.

• If the deck is being exported from a database with a locale or codepage
that differs from the database into which it is being imported, the
appropriate keyword (TO_LOCALE or TO_CODEPAGE) must be
specified.

If the source database’s locale or codepage is the same as the database
into which it is being imported, neither keyword needs to be specified.

— The values for the CODEPAGE keywords must be integers, such as
1252, 65001, and 936.

— The LOCALE keywords’ values will accept the following values only:
LEGACY, UTF8, and UTF-8.

– LEGACY is an alias for the local machine’s code page, such as
CP_ACP, 1252.

– UTF8 and UTF-8 are aliases for a UTF-8 code page, such as
CP_UTF8, 65001.

• If TO_LOCALE=

— LEGACY: XPR headers will be automatically converted to EBCDIC.

— UTF8: an internationalized ZEDMAMS UTF-8 export deck is
produced.

The keywords FROM_LOCALE, FROM_CODEPAGE,
TO_LOCALE, and TO_CODEPAGE will not show up on the
command line when the syntax/usage is queried; however, they are
functional and, when specified, will work as designed.

Syntax: FILE=(,DOMAIN=)(,CLASS=)(,INSTANCE=)(,FROMINST=)
(,TOINST=)(,FROMDATE=)(,PREVIEW=YES/NO)(,TODATE=)
(,FROMTIME=)(,TOTIME=,)OUTPUT=(,KEEP=YES/NO)
(,DROP=)(,ORDER=)(,COMMENT=)(,CSVL=YES/NO)
(,PHEX=YES/NO)(,BASE=YES/NO)(,INPUT=)(,HEADER=YES/N
O)(,REPORT=YES/NO)(,SKIP_ERRORS=YES/NO)

Example: Export all the instances in the PRIMARY file to a file named
EXPI.DAT:
FILE=PRIMARY,PREVIEW=NO,OUTPUT=C:\EXPI.DAT

Tip: N/A

EDM Access Method Services 300

EXPORT_RESOURCE
This verb enables the exporting of resource data to an output file or data set
for importing to another file or data set.

• If PREVIEW=YES, OUTPUT is ignored.

• OUTPUT is the name of the destination output file (with extension)
where the exported data is to reside.

• Specify COMMENT=YES to add a comment to the optional output file
header.

• INPUT references a predefined input file, which enables multiple
FILE.DOMAIN.CLASS.INSTANCE combinations to be specified.

The input file must be specified in the following format.

FILE=file_name,DOMAIN=domain_name,CLASS=class_name,
INSTANCE=instance_name

• HEADER=YES produces an output header file.

• If the deck is being exported from a database with a locale or codepage
that differs from the database into which it is being imported, the
appropriate keyword (FROM_LOCALE or FROM_CODEPAGE) must be
specified.

If the source database’s locale or codepage is the same as the database
into which it is being imported, neither keyword needs to be specified.

• If the deck is being exported from a database with a locale or codepage
that differs from the database into which it is being imported, the
appropriate keyword (TO_LOCALE or TO_CODEPAGE) must be
specified.

If the source database’s locale or codepage is the same as the database
into which it is being imported, neither keyword needs to be specified.

— The values for the CODEPAGE keywords must be integers, such as
1252, 65001, and 936.

— The LOCALE keywords’ values will accept the following values only:
LEGACY, UTF8, and UTF-8.

– LEGACY is an alias for the local machine’s code page, such as
CP_ACP, 1252.

– UTF8 and UTF-8 are aliases for a UTF-8 code page, such as
CP_UTF8, 65001.

EDM Access Method Services 301

• If TO_LOCALE=

— LEGACY: XPR headers will be automatically converted to EBCDIC.

— UTF8: an internationalized ZEDMAMS UTF-8 export deck is
produced.

The keywords FROM_LOCALE, FROM_CODEPAGE,
TO_LOCALE, and TO_CODEPAGE will not show up on the
command line when the syntax/usage is queried; however, they are
functional and, when specified, will work as designed.

Syntax: FILE=(,DOMAIN=)(,CLASS=)(,INSTANCE=)(,FROMINST=)
(,TOINST=)(,PREVIEW=YES/NO)(,FROMDATE=)(,TODATE=)
(,FROMTIME=)(,TOTIME=,)OUTPUT=(,COMMENT=YES/NO)
(,INPUT=)(,HEADER=YES/NO)

Example: Export all resources in the RESOURCE file to a file named
EXPR.DAT:
FILE=PRIMARY,PREVIEW=NO,OUTPUT=C:\EXPR.DAT

Tip: N/A

EDM Access Method Services 302

IMPORT_CLASS
This verb allows you to import template data from an exported data set or
output file to a PRIMARY File specified in the edmprof file.

• FILE is the name of the file or data set that contains the import class
data..

• TIME=NEW – generates a new OBJDATE, OBJTIME, and OBJID.

TIME=OLD – retains the original OBJDATE, OBJTIME, and OBJID.

TIME=MOD – generates a new OBJDATE and OBJTIME, but retains
the original OBJID.

• TODOMA is the domain with which matching source domains are
replaced.

• If the FROMDOMA domain exists in the destination database, specify
TIME=NEW to avoid duplicate object IDs.

If FROMDOMA is specified, TODOMA must also be specified.

• If REPLACE=NO, the class template will not be replaced.

• If the deck is being imported into a locale or codepage that differs from
the database from which it was exported, the appropriate keyword
(TO_LOCALE or TO_CODEPAGE) must be specified.

If the target locale or codepage is the same as the database from which
the deck was exported, neither keyword needs to be specified.

• If the deck is being imported into a locale or codepage that differs from
the database from which it was exported, the appropriate keyword
(FROM_LOCALE or FROM_CODEPAGE) must be specified.

If the target locale or codepage is the same as the database from which
the deck was exported, neither keyword needs to be specified.

— The values for the CODEPAGE keywords must be integers, such as
1252, 65001, and 936.

— The LOCALE keywords’ values will accept the following values only:
LEGACY, UTF8, and UTF-8.

– LEGACY is an alias for the local machine’s code page, such as
CP_ACP, 1252.

– UTF8 and UTF-8 are aliases for a UTF-8 code page, such as
CP_UTF8, 65001.

EDM Access Method Services 303

• Translated data must fit the field size limits.

• Legacy XPR headers in EBCDIC are automatically converted to ASCII.

The keywords FROM_LOCALE, FROM_CODEPAGE,
TO_LOCALE, and TO_CODEPAGE will not show up on the
command line when the syntax/usage is queried; however, they are
functional and, when specified, will work as designed.

Syntax: FILE=(,PREVIEW=YES/NO)(,TIME=OLD/NEW/MOD)
(,REPLACE=YES/NO)(,FROMDOMA=)(,TODOMA=)

Example: Import all the classes in the file specified by FILE to a
PRIMARY file specified in the edmprof file:
FILE=input_file,PREVIEW=NO

Tip: N/A

EDM Access Method Services 304

IMPORT_INSTANCE
The IMPORT_INSTANCE verb enables an administrator to import instance
and resource data from an exported data set or output file (an import deck) to
a location in the CSDB. The import deck will be imported to the CSDB
PRIMARY File that is specified for the DBPATH setting in the
MGR_DIRECTORIES section of the edmprof file, such as:

[MGR_DIRECTORIES]
DBPATH = C:\Program Files\Hewlett-Packard\CM\
ConfigurationServer\DB

The entire process is compromised of the following phases.

Verify the Import Deck
This verification checks the internal integrity (such as, size, referential
integrity, and validity of data) of the incoming deck.

Preview the Import Deck
This phase is a comprehensive analysis that scans the database and the
entire import deck, and reports the results, detailing differences that are
relevant to this import session. This analysis checks for duplicate object IDs
(OIDs), determines if fixes are possible, and determines if a new deck is
required. The entire import deck is analyzed before this phase completes.

For the import deck, an all-or-nothing rule applies. Therefore, if an
error condition is realized for one instance of the import deck, the
entire deck is invalid.

When OIDs in the deck are the same as OIDs in the database, this verb’s
behavior is dictated by the keywords REPLACE and CONTINUE. These
keywords are discussed in detail on page 307.

Import the Instances and Resources
The instances and resources from the deck will be imported only if the
integrity check (performed during the Preview the Import Deck phase) is
free of errors.

The IMPORT_INSTANCE information is presented as follows:

• Verb History (starting on page 305) describes when the keywords were
introduced or discontinued.

• Syntax (starting on page 305) details all the keywords that are associated
with this verb. This includes their expected behavior, and their
interactions with, and dependencies on, one another.

EDM Access Method Services 305

• Retired Syntax (starting on page 310) covers the keywords that have been
retired from use in this version, and includes information about which
new keywords have replaced them.

• Usage Considerations (starting on page 311) addresses some of the more
noticeable and critical effects that might result from using this verb, as
well as some of the new features.

• Examples (starting on page 312) presents a few examples of how to
express the keywords.

Verb History

This verb was introduced with version 4.3 of the CM Configuration Server to
manage its database.

• The keywords, VERIFY and LOGFILE, were added to this verb’s
functionality in version 4.4 of the CM Configuration Server.

• In version 4.5.2 of the CM Configuration Server:

— The keywords, FROMDOMA, TODOMA, TIME, CHGCONS, FORCE,
Y2K, and IMPORT_RESOURCE were removed from this verb’s
functionality—but continue to be supported. See the section, Retired
Syntax, on page 310.

— The keywords, XPR, DUPLICATES, FORCE, CONTINUE, NEW,
AUTOFIX, MAP_DOMAIN, and COMMIT_CHANGES were added in
order to provide enhanced behavior management in the event of
duplicate object IDs, multiple domains, and import decks from older
systems and databases.

Syntax

This section details the syntax (keywords and values) that is associated
with this verb, including the most efficient and effective ways to use it.

FILE=(,PREVIEW=YES/NO)(,DUPLICATES=STOP/MANAGE)(,XPR=)
(,NEW=)(,REPLACE=YES/NO)(,VERIFY=YES/NO)(,AUTOFIX=YES/NO)
(,MAP_DOMAIN=)(,CONTINUE=YES/NO)(,COMMIT_CHANGES=YES/NO)
(,LOGFILE=)

EDM Access Method Services 306

The keywords FROM_LOCALE, FROM_CODEPAGE,
TO_LOCALE, and TO_CODEPAGE will not show up on the
command line when the syntax/usage is queried; however, they are
functional and, when specified, will work as designed.

• If the deck is being imported into a locale or codepage that differs from
the database from which it was exported, the appropriate keyword
(TO_LOCALE or TO_CODEPAGE) must be specified.

If the target locale or codepage is the same as the database from which
the deck was exported, neither keyword needs to be specified.

• If the deck is being imported into a locale or codepage that differs from
the database from which it was exported, the appropriate keyword
(FROM_LOCALE or FROM_CODEPAGE) must be specified.

If the target locale or codepage is the same as the database from which
the deck was exported, neither keyword needs to be specified.

— The values for the CODEPAGE keywords must be integers, such as
1252, 65001, and 936.

— The LOCALE keywords’ values will accept the following values only:
LEGACY, UTF8, and UTF-8.

– LEGACY is an alias for the local machine’s code page, such as
CP_ACP, 1252.

– UTF8 and UTF-8 are aliases for a UTF-8 code page, such as
CP_UTF8, 65001.

• Translated data must fit the field size limits.

• Legacy XPR headers in EBCDIC are automatically converted to ASCII.

FILE is the only keyword that must be specified on the
command line in order for this verb to execute.
The other keywords are optional (as denoted by their inclusion
in parentheses); if they are not specified, their defaults will be
assumed and they will effect the processing of this verb.

• PREVIEW creates a preview listing of the input file contents, the
expected results, and its ability to be imported. The results are written to
the log file. The default is YES.

EDM Access Method Services 307

To better understand the functionality of this keyword, think of
it as asking, “Preview only?”
If PREVIEW=NO, the processing will run and the import deck
data can be written to the database—depending on the other
keywords and the results of the comparison.

If PREVIEW=YES (the default), the only result is a log file being
generated—no action is taken on the database.

If PREVIEW=NO, the processing will run and, provided there are no
errors, the import deck can be written to the database.

• FILE is the fully qualified path and filename of the file that contains the
collection of instances for the import deck. This file is commonly suffixed
with the extension XPI, as shown in the examples starting on page 312.

If a fully qualified path is not specified (as shown below), the
location of the import file is assumed to be that from which
ZEDMAMS is running.
ZEDMAMS VERB=IMPORT_INSTANCE,FILE=DB_001.XPI
,PREVIEW=YES

• DUPLICATES enables an administrator to indicate the action to be taken
when duplicate OIDs of instances are encountered (in the import deck
and the database). The default is STOP.

DUPLICATES=STOP (the default) will result in this operation stopping.
The return code 8 will be reported.

DUPLICATES=MANAGE will result in a new deck being created in order
to avoid the re-use of a previously allocated OID. If the instance is data
bearing, it can be corrected only if the resource is available, in which
case, XPR must be specified.

A new deck could be created for any of the following reasons:
duplicate OIDs; domain change; OBJRCRC is NULL;
duplication, re-mapping, or OID difference between source
decks and target database.

• XPR is the fully qualified path and filename of the resource deck.

• REPLACE dictates the behavior of the process (as defined in the
following conditions) when identical instances are discovered in the
database and the deck. The default is NO.

If REPLACE=YES, the data in the import deck can be written to the
database.

EDM Access Method Services 308

If REPLACE=NO (the default), the database and import deck will be
queried for differences, and the following logic will apply.

— If no differences are found, processing will continue with the next
instance in the import deck.

— If differences are found, the value of CONTINUE is checked.

– If CONTINUE=NO, each instance with a difference will be
ignored and processing will continue with the next instance in the
import deck, but the process will not proceed to the next phase. A
return code of 8 will be returned.

– If CONTINUE=YES, each instance with a difference will be
ignored and processing will continue with the next instance in the
import deck.

• CONTINUE dictates the behavior of the process when matching records
are discovered. The default is NO.

If CONTINUE=YES:

— For any class attribute found in the target class template, the import
will continue as long as it doesn’t result in the truncating of any
significant (non-blank) data. In this case, the process will continue
and an error will be reported.

— For any class attribute found in the target class template, but the
import cannot import the data without truncating significant (non-
blank) data, the process will continue, an error will be reported, and
the import will fail.

— For any class attribute not found in the target class template, the
field will be dropped—even if it contains significant (non-blank)
instance data. (A warning or error message will be issued, indicating
this occurrence.)

Fields and data that are dropped will be documented in the log
file.

If CONTINUE=NO (the default) and…

— the class attribute is not defined in the target class template, the
import will fail.

• VERIFY compares the date (ZOBJDATE) and time (ZOBJTIME) of
incoming files with those of the database files, if specified as YES. The
default is NO.

If VERIFY=YES and…

EDM Access Method Services 309

— the dates and times do not match (rc=8), a warning message is
issued, and processing will continue with the next instance in the
import deck.

— the dates and times match and XPR was specified (with a valid
value), the VERIFY_IMPORT verb will run in order to check the
integrity of the decks.

— the dates and times match, but XPR has not been specified (or its
value is invalid), verification is not possible.

The results are reported to ZEDMAMS.LOG (the default), unless a
different log has been specified for LOGFILE.

If the dates and times match, the ZEDMAMS.LOG will report a
successful verify; if not, the ZEDMAMS.LOG will report a
failed verify. These verifications are done on a per-instance
basis and reported at the end of the process.
If VERIFY=YES, PREVIEW=YES and REPLACE=YES are
assumed—but nothing is imported to the database.

If VERIFY=NO, no verification is done.

• NEW is the fully qualified path and filename prefix of the new decks that
will be created.

Optionally, just the filename prefix can be specified, in which case the
new decks will be created in the current directory (by default, the bin
directory).

This keyword is applicable only if DUPLICATES=MANAGE.

— If either the filename prefix or the fully qualified path have
embedded blanks, the entire string must be enclosed in quotation
marks (“ “).

— The decks will have the suffixes .MPI and .MPR.

— The defaults are the fully qualified paths of XPI (as specified by the
keyword, FILE) and XPR (as specified by the keyword, XPR),
respectively.

• AUTOFIX dictates whether to delete orphaned resources. If importing a
data bearing instance and the resource file exists in the database, the
existing resource will be deleted and the incoming resource will be
written to the database. The default is NO.

This keyword should be used with extreme caution and only by

EDM Access Method Services 310

an experienced administrator in a controlled manner. Incorrect
use could result in the accidental removal of database elements
that are critical to performance and operation.

If AUTOFIX=YES, orphaned resources will be deleted.

• MAP_DOMAIN enables an administrator to import all instances from
one domain into a different domain, thereby facilitating application
management.

Use MAP_DOMAIN=source_domain/target_domain to import all
instances that originated in one domain, source_domain, into a domain
with a different name, target_domain. Doing so triggers the creation of
a new deck. All object IDs from a domain that matches source_domain
are placed in the new deck. In the new deck, their domain value is
replaced by that of target_domain.

For example, import all instances of the SOFTWARE Domain to the
domain, SOFTBACK, by specifying,

MAP_DOMAIN=SOFTWARE/SOFTBACK

The new domain must exist in the database. If it doesn’t, the
process will stop.

• COMMIT_CHANGES dictates whether to commit to the database, the
data in the import deck. The default is YES.

COMMIT_CHANGES=YES (the default) will write the changes to the
database.

If COMMIT_CHANGES=NO, the changes will not be written to the
database, but new .MPI and .MPR decks will be produced (if required).

If there are no changes, this keyword is ignored.

• LOGFILE (see the section, LOGFILE, on page 259).

Retired Syntax

As the EDMAMS verbs have evolved, changes have been made in order to
enhance their processing. Because of this, and in order to maintain logic for
the user, there have been changes to the syntax of some of the verbs.

This section details the keywords that have been retired from use for the
IMPORT_INSTANCE verb.

EDM Access Method Services 311

Although retired, these keywords are still supported.
These are superseded by new keywords where indicated.

• TIME=OLD (the default) retains the original OBJDATE, OBJTIME, and
OBJID. (This is superseded by DUPLICATES=STOP.)

TIME=NEW generates a new OBJDATE, OBJTIME, and OBJID. (This is
superseded by DUPLICATES=MANAGE.)

TIME=MOD generates a new OBJDATE and OBJTIME, but retains the
original OBJID.

• FROMDOMA=<source_domain> and TODOMA=target_domain have
been replaced by MAP_DOMAIN.

• FORCE=YES/NO. (This is superseded by CONTINUE.)

• CHGCONS specifies whether any embedded references to the name
specified by FROMDOMA should be changed to the name specified by
TODOMA.

• IMPORT_RESOURCE dictates whether this operation should import
resources.

Usage Considerations

This section addresses some of the more noticeable and critical effects that
might result from using this verb, as well as some of the new features.

• Once the data from an import deck has been written to the CSDB, the
changes are considered permanent. Therefore, it is imperative that a
CSDB administrator using this verb be certain of the changes that are
being considered.

HP Recommendations

• Shut down the Configuration Server to ensure that the
CSDB contents are not changing during the processing.

• Back up the CSDB prior to running this verb.
• Specify PREVIEW=YES and check the resulting log

before committing any changes to the database.

• Executing this verb might result in the creation of new decks
(MPI/MPR). The circumstances under which this might happen are:

— There exist duplicate object IDs (ZOBJID) in the database instances
and the import deck instances, and DUPLICATES=MANAGE.

— There is a domain name change for the imported data (using the
MAP_DOMAIN keyword).

EDM Access Method Services 312

— The ZOBJRCRC (the object resource CRC) is NULL or empty and the
value can be calculated and assigned in the process.

All of these occur in conjunction with the existence of the XPR
deck, it being specified on the command line, and the values of
the CONTINUE and REPLACE allowing the processing to
continue.
The XPR deck is necessary so that if changes are required, it is
available to be updated at that time.

• This version of IMPORT_INSTANCE has more consistency checks that
must be passed before the import deck is considered valid for import.

• Combining instances and resources on the same command line allows the
import deck to be more thoroughly examined.

• Use the CONTINUE option to prevent data loss during import. (See the
description for the keyword CONTINUE on page 308.)

• In this version, an administrator:

— Can manage the processing behavior if an import deck OID collides
with a database OID.

— Can specify the filename prefix if a new deck is generated.

— Has a single keyword to facilitate changing domains.

• A new time-based format of object ID generation has been introduced,
thereby eliminating the chance of randomly generating a duplicate OID.
For more information on this feature, consult the MGR_STARTUP
section on page 97.

Examples

The following examples offer a look at the ways this verb can be used.

Even though some keywords are dependent on another, the order in
which they are specified on the command line is not significant.
If a keyword is not specified on the command line, but has a default,
the default will be assumed.
Some keywords, although optional, become mandatory based on the
specifications of others and the results of processing. For an
example, see DUPLICATES=MANAGE.

EDM Access Method Services 313

Example 1

Import the instance data that is contained in DB_001.XPI and DB_001.XPR
to the PRIMARY file that is specified in the edmprof file. Do not write the
changes to the database. Do not manage duplicate object IDs. Write the
results to C:\Temp\EDMAMS\DB001\Test01.log.

ZEDMAMS VERB=IMPORT_INSTANCE,FILE=DB_001.XPI
,XPR=DB_001.XPR,PREVIEW=YES,LOGFILE=C:\Temp\EDMAMS
\DB001\Test01.log

In this run, the implied values (defaults) that affected the processing are
DUPLICATES=STOP and CONTINUE=NO.

Example 2

Import the instance data that is contained in DB_001.XPI and DB_001.XPR
to the PRIMARY file that is specified in the edmprof file. Do not write the
changes to the database. Manage any duplicate object IDs that are
encountered. Query the database and deck for matching records and, if any
are found, continue processing. Delete any orphaned resources that are
encountered. Write the results to C:\Temp\EDMAMS\DB001\Test02.log.

ZEDMAMS VERB=IMPORT_INSTANCE,FILE=DB_001.XPI,
XPR=DB_001.XPR,PREVIEW=YES,DUPLICATES=MANAGE,CONTINUE=YES,
AUTOFIX=YES,LOGFILE=C:\Temp\EDMAMS\DB001\Test02.log

In this run, the implied value (default) that affected the processing is
REPLACE=NO.

Example 3

Assume that the Example 2 command line has completed as specified.
Execute the same run, but this time, write the changes to the database and
the results to C:\Temp\EDMAMS\DB001\Test02.log.

ZEDMAMS VERB=IMPORT_INSTANCE,FILE=DB_001.XPI,
XPR=DB_001.XPR,PREVIEW=NO,DUPLICATES=MANAGE,CONTINUE=YES,
AUTOFIX=YES,LOGFILE=C:\Temp\EDMAMS\DB001\Test02.log

EDM Access Method Services 314

In this run, the implied values (defaults) that affected the processing are:
COMMIT_CHANGES=YES.
Note: The only difference between examples 2 and 3 is the value of
PREVIEW=.

Example 4

Import the instance data (contained in DB_001.XPI and DB_001.XPR) from
the SOFTWARE Domain to the SOFTBACK domain in the PRIMARY file
in the database. Do not write the changes to the database. Do not manage
duplicate object IDs. Query the database and deck for matching records
and, and if any are found, continue processing. Delete any orphaned
resources that are encountered. Write the results to
C:\Temp\EDMAMS\DB001\Test03.log.

ZEDMAMS VERB=IMPORT_INSTANCE,FILE=DB_001.XPI
,XPR=DB_001.XPR,MAP_DOMAIN=SOFTWARE/SOFTBACK,PREVIEW=YES
,REPLACE=NO,CONTINUE=YES,AUTOFIX=YES,LOGFILE=C:\Temp
\EDMAMS\DB001\Test03.log

In this run, the implied value (default) that affected the processing is
DUPLICATES=STOP.

Example 5

Import the instance data that is contained in DB_001.XPI and
DB_001.XPR to the PRIMARY file that is specified in the edmprof file.
Write the changes to the database. Do not query the database and deck for
matching records. Write the results to
C:\Temp\EDMAMS\DB001\Test04.log.

ZEDMAMS VERB=IMPORT_INSTANCE,FILE=DB_001.XPI
,XPR=DB_001.XPR,PREVIEW=NO,REPLACE=YES,LOGFILE=C:\Temp
\EDMAMS\DB001\Test04.log

In this run, the implied values (defaults) that affected the processing are
COMMIT_CHANGES=YES, DUPLICATES=STOP, and CONTINUE=NO.

EDM Access Method Services 315

Import and Export Files

Table 107 below presents a list of the six default import/export files that are
generated by the CSDB. Their level in the CSDB is part of the logic in their
naming.

Table 107 Import and Export File Names

Database Level Import File Name Export File Name

Class .MPC – modified class file .XPC – exported class file

Instance .MPI – modified instance file .XPI – exported instance file

Resource .MPR – modified resource file .XPR – exported resource file

The export files (XPI and XPR) are the original decks that might be
generated during the export process, and are the files that are
imported either back into the existing database or into another
database. So, each XPI and XPR file can be an export and import file.

The MPI and MPR files are decks that are generated during a
database import that resulted in correcting duplicate OID issues,
changing domains, or correcting empty or NULL OBJRCRCs.

EDM Access Method Services 316

IMPORT_RESOURCE
This verb imports resource data from an exported data set or file to a
RESOURCE File as specified in the edmprof file.

The keyword, VERIFY, was added to this verb’s functionality in version 4.4 of
the Configuration Server.

• If REPLACE=NO, the class template will not be replaced.

• If VERIFY=YES, an implied PREVIEW=YES is set.

If a resource exists, its size is compared to the size of the incoming
resource to verify that they match.

• If the deck is being imported into a locale or codepage that differs from
the database from which it was exported, the appropriate keyword
(TO_LOCALE or TO_CODEPAGE) must be specified.

If the target locale or codepage is the same as the database from which
the deck was exported, neither keyword needs to be specified.

• If the deck is being imported into a locale or codepage that differs from
the database from which it was exported, the appropriate keyword
(FROM_LOCALE or FROM_CODEPAGE) must be specified.

If the target locale or codepage is the same as the database from which
the deck was exported, neither keyword needs to be specified.

— The values for the CODEPAGE keywords must be integers, such as
1252, 65001, and 936.

— The LOCALE keywords’ values will accept the following values only:
LEGACY, UTF8, and UTF-8.

– LEGACY is an alias for the local machine’s code page, such as
CP_ACP, 1252.

– UTF8 and UTF-8 are aliases for a UTF-8 code page, such as
CP_UTF8, 65001.

• Translated data must fit the field size limits.

• Legacy XPR headers in EBCDIC are automatically converted to ASCII.

The keywords FROM_LOCALE, FROM_CODEPAGE,
TO_LOCALE, and TO_CODEPAGE will not show up on the
command line when the syntax/usage is queried; however, they are
functional and, when specified, will work as designed.

EDM Access Method Services 317

Syntax: FILE=(,FROMDOMA=)(,TODOMA=)(,PREVIEW=YES/NO)
(,REPLACE=YES/NO)(,VERIFY=YES/NO)

Example: Import all resources in the file specified by FILE to a
RESOURCE file specified in edmprof:
FILE=RESOURCE,PREVIEW=NO

Tip: N/A

EDM Access Method Services 318

LIST_CLASSES
This verb displays a list of class names, object IDs, and other 60-byte prefix
information, such as ZOBJDATE, ZOBJTIME, persistence flag, sequence
sensitive flag, Distributed Configuration Server flag and db type and count
totals.

Syntax: FILE=,DOMAIN=

Example: List all classes in the PRIMARY file:
DOMAIN=*

Tip: N/A

EDM Access Method Services 319

LIST_CONNECTS
This verb displays a list of connect-to values (type C) for the specified
instances.

• INSTANCE can be partially specified.

To display only one instance, the entire name must be specified.

Syntax: DOMAIN=,CLASS=(,INSTANCE=)

Example: List all of the connect-to values in the ZSERVICE Class of
the SOFTWARE Domain:
DOMAIN=SOFTWARE,CLASS=ZSERVICE

Tip: To list data for all type C values in all instances of the
specified class, omit INSTANCE.

EDM Access Method Services 320

LIST_CONS_VARS
This verb automatically displays a list of connect-to data (type C) and,
optionally, variable data (type V) for the specified instances.

• Wildcards (*) can be specified in INSTANCE.

For example, specify DIFF* to select all the instances that contain DIFF
as the first part of the string.

To display only one instance, the entire name must be specified.

• If VTYPE=YES, variable data will be included in the display.

Syntax: (FILE=,)DOMAIN=,CLASS=(,INSTANCE=)(,VTYPE=YES/NO)

Example: From the USER Class in the SOFTWARE Domain, list the
connect-to and variable values only for those instances
prefixed with DIFF:
DOMAIN=SOFTWARE,CLASS=ZSERVICE,INSTANCE=DIFF
,VTYPE=YES

Tip: To list all C- and V-type data in all the instances of the
specified class, omit INSTANCE.

EDM Access Method Services 321

LIST_DOMAINS
This verb displays an alphabetical list of domains for a specified file (the
default is the PRIMARY file).

• FROMDOMA is the domain from which to start the list of domains.

If omitted, all the domains through the TODOMAIN will be listed.

• TODOMAIN is the domain at which to end the list of domains.

If omitted, all the domains following FROMDOMA will be listed.

Syntax: FILE=(,FROMDOMA=)(,TODOMAIN=)

Example: In the PRIMARY file, list all of the domains that follow the
domain ACCT:
FILE=PRIMARY,FROMDOMA=ACCT

In the PROFILE File, list the domains in the range ACCT
through SALES (inclusive):
FILE=PROFILE,FROMDOMA=ACCT,TODOMAIN=SALES

Tips: To list all the domains of the selected file, simply omit
FROMDOMA and TODOMAIN.
To list one domain, specify it for FROMDOMA and
TODOMAIN.

EDM Access Method Services 322

LIST_FLAGS
This verb displays the attribute name, length, type, and Configuration Server
and HPCA agent flags for a specific class template.

• Specify README=YES to include the README attributes.

Syntax: DOMAIN=,CLASS=(,README=YES/NO)

Example: List the attribute information for the attributes of the
ZSERVICE Class of the SOFTWARE Domain and omit the
README attributes:
DOMAIN=SOFTWARE,CLASS=ZSERVICE

Tip: N/A

EDM Access Method Services 323

LIST_INST_DATA
This verb displays, in a concise format, the attribute data of the specified
instances.

• Wildcards (*) can be specified for INSTANCE.

For example, specify DIFF* to select all the instances that contain DIFF
as the first part of the string.

To display only one instance, the entire name must be specified.

• Use FIELDS to specify up to six attribute names.

Specify the fields with a space separating each name, and the entire
string enclosed in quotation marks, as in:

“field1 field2 field3 field4 field5 field6”

To list all attribute data of all instances of the specified class, omit
FIELDS.

If FIELD is omitted, all attribute data of all instances of the
specified class will be displayed. This might produce a very
large log, which might hinder locating data.

If a fieldname does not exist in the template, it will be ignored.

Syntax: DOMAIN=,CLASS=(,INSTANCE=)(,FIELDS=)

Example: From the ZSERVICE Class in the SOFTWARE Domain, list
the attribute data of all instances with the prefix, RAD:
DOMAIN=SOFTWARE,CLASS=ZSERVICE,INSTANCE=RAD*

Tip: To list all instances of the specified class, omit INSTANCE.

EDM Access Method Services 324

LIST_INSTANCE
This verb displays a list of instance names and object IDs for the class
specified. It also displays the ZOBJTIME and resource size.

• The value of FROMINST can be partially specified.

For example, specify FROMINST=DIFF to select all the instances that
contain DIFF as any part of the string.

Use a wildcard (*) to specify this value as a prefix, as in RAD*.

• The value of SUFFIX can be partially specified.

For example, specify SUFFIX=INT to select all the instances that have
INT as a suffix.

Syntax: DOMAIN=,CLASS=(,FROMINST=)(,SUFFIX=)

Example: From the USER Class of the POLICY Domain, list the
instance names and object IDs for all instances with the
prefix RAD, and all instances with the suffix, PORT:
DOMAIN=POLICY,CLASS=USER,FROMINST=RAD*,SUFFIX=P
ORT

Tip: To list all instances, omit FROMINST.

EDM Access Method Services 325

LIST_PACKAGE
This verb lists the instances and all mated components of the PACKAGE
class.

• The value of INSTANCE can be partially specified.

For example, specify INSTANCE=DIFF to select all the instances that
contain DIFF as any part of the string.

Use a wildcard (*) to specify this value as a prefix, as in, RAD*; and as a
suffix, as in, *INT.

Syntax: (FILE=,)DOMAIN=,INSTANCE=

Example: From the SOFTWARE Domain, list all instances with the
prefix RAD:
DOMAIN=SOFTWARE,INSTANCE=RAD*

Tip: N/A

CLASS is not an option because this verb applies to the PACKAGE
class only.

EDM Access Method Services 326

LIST_PREFIX
This verb displays data from the Distributed Configuration Server prefix.

• If CLASS is omitted, all class prefixes will be displayed.

Syntax: (FILE=,)DOMAIN=(,CLASS=)

Example: List the Distributed Configuration Server prefixes for all
classes in SOFTWARE Domain of the PRIMARY file:
DOMAIN=SOFTWARE

Tip: N/A

EDM Access Method Services 327

LIST_RESOURCES
This verb displays a list of resource names (with promote dates, times, data
names, data sizes, and object IDs) from the PRIMARY File.

As of version 4.3 of the Configuration Server Database, this verb was
renamed. Its original name was LIST_RESOURCE.

• If there is no mated instance in the PRIMARY file, an appropriate
message will be generated.

• If ORPHANS=YES, only the orphans will be listed.

• If CHKSIZE=YES, the size listed (from ZOBJRSIZ) is compared to the
actual size (from the NvdDBFind).

Only those resources that have a size anomaly will be listed.

• SIZE is the size of the resource.

SIZE must be specified as a range (not a single byte size), and the range
must be defined with a dash (-), as in, 100-500.

Syntax: DOMAIN=,CLASS=(,ORPHANS=YES/NO)(,CHKSIZE=YES/NO)
(,SIZE=nnnn-nnnn)

Example: From the FILE Class of the SOFTWARE Domain, list all
resources that are between 64 and 1024 bytes in length, and
compare this with the actual size:
DOMAIN=SOFTWARE,CLASS=FILE,CHKSIZE=YES,
SIZE=64-1024

Tip: N/A

EDM Access Method Services 328

LIST_ZRSC_FIELDS

This verb displays the data in all fields that begin with ZRSC, such as
ZRSCSIZE and ZRSCVRFY. This verb allows wildcards for INSTANCE.

• INSTANCE can be specified with a partial name.

For example, specify INSTANCE=DIFF to select all the instances that
contain DIFF as any part of the string.

Use a wildcard (*) to specify this value as a prefix, as in, RAD*; and as a
suffix, as in, *INT.

To display only one instance, the entire name must be specified.

Syntax: DOMAIN=,CLASS=(,INSTANCE=)

Example: From the ZSERVICE Class of the SOFTWARE Domain, list
the instances that begin with CICS:
DOMAIN=SOFTWARE,CLASS=ZSERVICE,INSTANCE=CICS*

Tip: To list all instances of the specified class, do not specify
INSTANCE.

EDM Access Method Services 329

MATCH_RESOURCES
This verb will compare resource data from the RESOURCE file against
instance names from the PRIMARY file to determine and display whether
those resources are mated (orphaned). This comparison is made by reading
the resource data, extracting the instance name from the resource prefix, and
attempting to find the mated resource.

The keyword, PREVIEW, was added to this verb as of version 4.3 of the
Configuration Server Database.

• If PREVIEW=NO, and there is resource data that has been determined to
be orphaned, a search of the PRIMARY file instances will occur, in order
to locate a matching instance object ID.

If a match is made, the instance name is placed in the resource data
prefix and the resource is updated, with the time stamp for the resource
data being updated with the ZRSCDATE and ZRSCTIME.

• Totals at completion include resources found, as well as total resources
(mated and orphaned).

• When using PREVIEW=NO, a great deal of I/O might occur.

Syntax: DOMAIN=,CLASS=(,PREVIEW=YES/NO)

Example: Match and display resource data names for all the
SOFTWARE.FILE Instances:
DOMAIN=SOFTWARE,CLASS=FILE,PREVIEW=YES

Tip: N/A

If many orphans are detected with PREVIEW=YES, a more efficient
way to update the resource data file is to use the verb
ZRSOURCE_UNMATES, detailed on page 342.

EDM Access Method Services 330

PACKAGE_UNMATES
This verb lists all PACKAGE class instances that do not have mated
components in the domain that is specified.

• DOMAIN must be one that has a PACKAGE class.

• CLASS defaults to PACKAGE.

Syntax: DOMAIN=(,CLASS=)

Example: From the SOFTWARE Domain, list all the PACKAGE class
instances that have no mated components:
DOMAIN=SOFTWARE

Tip: N/A

EDM Access Method Services 331

REFRESH_DMA
This verb will recount all the instances, classes, and domains in the
PRIMARY file and, optionally, refresh the count (TotalInstanceCount,
TotalClassCount, and TotalDomainCount) and date (LastUpdateDate,
LastInstanceUpdateDate, and LastClassUpdateDate) fields in the
appropriate Distributed Configuration Server prefix areas. Additionally, the
updated output can be displayed in the log.

This verb was introduced with version 4.2 of the CM Configuration Server. It
replaced the verb, REFRESH_COUNTS.

The keywords, DOMAIN and CLASS, were added with version 4.3; and the
keyword, COUNTS_ONLY, was added with version 4.5.2.

• If PREVIEW=YES, a count of instances by class, domain, and file will be
listed to the log, but no data will be written.

The log will display the actual count (as calculated by running this verb)
and the current count (current values in the total count fields [mentioned
in the introductory paragraph] in the database) in the Distributed
Configuration Server prefix. If the actual count differs from the current
count, the latter will be flagged with an asterisk (*).

• If PREVIEW=NO, the TotalInstanceCount, TotalClassCount, and
TotalDomainCount (for each applicable Distributed Configuration Server
prefix) will be computed and updated, in addition to updating the current
counts.

• If COUNTS_ONLY=NO (the default) and PREVIEW=NO, the current
count and date fields in the Distributed Configuration Server area for
each class will be updated.

If COUNTS_ONLY=NO and PREVIEW=YES, the current count and date
fields in the Distributed Configuration Server area for each class will be
displayed.

• If COUNTS_ONLY=YES and PREVIEW=NO, the current count fields
only will be updated. This is effective for very large database files
because, by not refreshing the date fields and not having to read every
instance in the database, the function executes in less time.

If COUNTS_ONLY=YES and PREVIEW=YES, the current count and
actual count fields will be displayed, but not updated; the date fields are
not touched.

• Each class for each domain will be previewed separately, and at the end
of each domain, a domain summary will be presented.

EDM Access Method Services 332

• After the last domain, a file summary will be presented by listing the
ZBASE.ZBASE template information.

Syntax: PREVIEW=YES/NO(,DOMAIN=)(,CLASS=)
(,COUNTS_ONLY=YES/NO)

Example: Preview the counts and update dates in the Distributed
Configuration Server prefix for the entire PRIMARY file:
PREVIEW=YES

Tip: N/A

EDM Access Method Services 333

RENAME_INSTANCE
This verb will rename instances and the internal name of any mated resource
data.

• KEEP indicates whether the old instance will be deleted.

• OLDPREFIX specifies existing instances that are to be renamed.

If a single instance is to be renamed, specify the entire name.

If multiple instances are to be renamed, a wildcard (*) is required.

For example, to change the names of the instances, east_sales and
north_sales to US_Sales, specify
OLDPREFIX=*_sales,NEWPREFIX=US_Sales.

• NEWPREFIX is that which will replace OLDPREFIX.

Syntax: DOMAIN=,CLASS=,OLDPREFIX=,NEWPREFIX=
(,KEEP=YES/NO)(,PREVIEW=YES/NO)

Example: In the ZSERVICE Class of the SOFTWARE Domain, rename
all instances prefixed with EAST to NORTH_EAST, and
delete the old prefix:
DOMAIN=SOFTWARE,CLASS=ZSERVICE,OLDPREFIX=EAST,
NEWPREFIX=NORTH_EAST,PREVIEW=NO

Tip: N/A

EDM Access Method Services 334

SEARCH_INSTANCES
This verb will search the specified instances for the data contained in
STRING.

• The data specified is not case-sensitive; if it contains embedded spaces, it
must be enclosed in quotation marks (“ ”).

• The output log will contain the name of the instance, attribute, and the
specified STRING value.

• If the value of STRING is not found in the specified instances, this will be
reported in the log.

• FROMINST can be specified with a partial name.

For example, specify FROMINST=DIFF to select all the instances that
contain DIFF as any part of the string.

Use a wildcard (*) to specify this value as a prefix, as in, RAD*; and as a
suffix, as in, *INT.

To display only one instance, the entire name must be specified.

Syntax: DOMAIN=,CLASS=(,FROMINST=,)STRING=

Example: Search for the string “J. Q. Public” in all instances that end
in EAST in the USER Class of the SOFTWARE Domain:
DOMAIN=SOFTWARE,CLASS=USER,STRING=“J. Q.
Public”,FROMINST=*EAST

Tip: To list all instances of the specified class, omit FROMINST.

EDM Access Method Services 335

SORT_OBJECT_ID
This verb will sort object IDs within a Domain.

• FILE will default to PRIMARY if it is omitted or if no value is specified.

• DOMAIN can be a single Domain (domain_name) or all Domains (ALL) of
the specified File.

To sort the object IDs of multiple (but not all) Domains in a File, execute
this verb once for each Domain.

To sort the object IDs of multiple Domains in multiple Files, execute this
verb once for each Domain.

• ORDER=NOSORT means that the object IDs will be listed in
CLASS.INSTANCE groups.

ORDER=ASCEND/DESCEND specifies the order of sorting, based on
object IDs.

Duplicate object IDs will be flagged in ascending or descending order.

• ALLIDS is valid only if ORDER=ASCEND or DESCEND.

ALLIDS=YES will duplicate (list all object IDs) the entire File.

ALLIDS=NO will list only duplicate object IDs.

Syntax: (FILE=,)DOMAIN=(ALL/DOMAIN)(,ORDER=ASCEND/
DESCEND/NOSORT)(,ALLIDS=YES/NO)

Example: Sort, in descending order, all the object IDs of all domains,
and duplicate the entire file:
DOMAIN=ALL,ORDER=DESCEND,ALLIDS=YES

Tip: All domains can be selected by specifying DOMAIN=ALL.

EDM Access Method Services 336

SYNC_CLASS
This verb will synchronize an existing (target) class with a newly formatted
(source) class, and re-organize all existing class instances according to the
mapping in the source class template.

• All target class attributes that have a match in the new template will
adopt the characteristics of that matching attribute.

Any target class attributes that do not have a match in the new template
will be deleted.

• TODOMAIN specifies the class that contains the target class template
that is to be synchronized.

• SYNCDOMA specifies the class that contains the source class template.
The default is ZEDMSYNC.

• CLASS is the target class (within the domain that is specified by
TODOMAIN and SYNCDOMA) that will be synchronized.

The value of CLASS must exist in the TODOMAIN and SYNCDOMA
domains; if it doesn’t, the function will fail.

• CACHE=YES will update loaded cache when running as a Configuration
Server method.

• If BASE=YES, this verb will copy the _BASE_INSTANCE_ from the
source (SYNCDOMA) to the target (TODOMAIN).

Syntax: TODOMAIN=(,PREVIEW=YES/NO)(,SYNCDOMA=ZEDMSYNC,)
CLASS=(,CACHE=YES/NO)(,BASE=YES/NO)

Example: In the POLICY Domain, synchronize the existing USER
Class with a newly formatted USER Class, imported from
ZEDMSYNC. Include the _BASE_INSTANCE_ and update
the loaded cache:
TODOMAIN=POLICY,CLASS=USER,PREVIEW=NO,CACHE=YES
,BASE=YES

Tip: N/A

EDM Access Method Services 337

UPDATE_INSTANCES
This verb will update instances in the specified domain from data in an
edited text file, INFILE. INFILE must conform to the following
specifications.

• The first line must contain a new instance name (max. 32 bytes) starting
in column 1.

The next line contains the variable field name (max. eight bytes) starting
in column 2; then a blank in column 10; a 1-byte index value (1-9) in
column 11; a blank in column 12; and the data to be populated beginning
in column 13.

• REPLACE=YES specifies that an attribute that contains existing data
(non-blank) be overlaid.

• Use a slash-asterisk combination (/*) in columns 1 and 2 to denote the
end of instance data (see lines 5 and 10 below).

Column
Number

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Line 1 U S E R _ N A M E

Line 2 N A M E J . A . D E V E L O P

Line 3 E D M S E T U P 5 5 T H A T T R I B U T E

Line 4 Z P R I O R I T 9 9 9

Line 5 / *

Line 6 U S E R _ N A M 2

Line 7 N A M E L . Z I M M E R

Line 8 E D M S E T U P 2 2 N D A T T R I B U T E

Line 9 E D M S E T U P 3 3 R D A T T R I B U T E

Line 10 / *

Line 11 U S E R _ N A M E _ 3

Line 12 N A M E J I M D O E

Line 13 E D M S E T U P 4 4 T H A T T R I B U T E

Syntax: INFILE=,DOMAIN=,CLASS=(,REPLACE=YES/NO)

EDM Access Method Services 338

Example: Update the instances in the MYINPUT.TXT file in the
POLICY Domain’s USER Class:
INFILE=MYINPUT.TXT,DOMAIN=POLICY,CLASS=USER

Tip: Run LIST_INST_DATA or LIST_FLAGS to determine the
index of a like named variable to be updated.

EDM Access Method Services 339

UPDATE_MGRIDS
This verb updates the specified Manager ID, Manager name, managing
Manager ID, and managing Manager name in the Distributed Configuration
Server prefix.

The Configuration Server was previously called the Manager.
Therefore, the keywords associated with this verb retain the
‘Manager’ designation, as in, Manager name (MNAME).

• All keywords are optional. However, at least one keyword other than
DOMAIN and CLASS must be specified in order to avoid a usage error
being displayed to STDERR.

Syntax: (FILE=)(,DOMAIN=)(,CLASS=)(,MID=)(,MMID=)
(,MNAME=)(,MMNAME=)

Example: Update the managing Configuration Server IDs and
managing Configuration Server names in the USER Class of
the POLICY Domain in the PRIMARY file:
FILE=PRIMARY,DOMAIN=POLICY,CLASS=USER,MMID=010,
MMNAME=New_Mngng_RCS

Tip: To update an entire file, omit DOMAIN and CLASS.

EDM Access Method Services 340

VERIFY_CLASS
This verb will display class templates, as specified, to determine if any gaps,
overlays, or other anomalies exist. The output log will consist of a template
entry number, the attribute name, its length, and its displacement in the
heap. If an error is found, it will be indicated in the appropriate place.

• DOMAIN must be specified.

All domains can be selected by specifying the value as ALL.

• CLASS must be specified.

All classes can be selected by specifying the value as ALL.

Syntax: (FILE=,)DOMAIN=,CLASS=

Example: In the POLICY Domain of the PRIMARY file, verify all the
class templates:
FILE=PRIMARY,DOMAIN=POLICY,CLASS=ALL

Verify the ZSERVICE Class templates in the PRIMARY file:
DOMAIN=ALL,CLASS=ZSERVICE

Tip: N/A

EDM Access Method Services 341

VERIFY_DATABASE
This verb will validate the integrity of a CSDB. It can be used at any time to
check database integrity, and can run standalone or as a Configuration
Server method. This database validation must be done in read-only mode.

This verb was introduced with version 4.5.1 of the CM Configuration Server.

• DOMAIN can be a single domain or all domains of the CSDB.

To verify the integrity of multiple (but not all) domains in the CSDB,
execute this verb once for each domain.

This is an exhaustive check of the database and, as such, might
take a long time to run, possibly several hours.
It makes two passes over the database – first, checking the
PRIMARY file and any associated resources; and second,
checking the RESOURCE file for orphans.
As a result of the two passes, it has enough information to do a
check for duplicate object IDs.

Syntax: DOMAIN=(ALL/any_domain)

Example: Verify the integrity of the CSDB SOFTWARE Domain:
DOMAIN=SOFTWARE

Verify the integrity of all domains in the database:
DOMAIN=ALL

Tip: Specify DOMAIN=ALL to select all domains in the CSDB.

EDM Access Method Services 342

ZRSOURCE_UNMATES
This verb will match Instances in the PRIMARY File with the resource data
in the RESOURCE file, based on the specified Domain and Class, and the
object ID from the PRIMARY File instances.

• If resource data is not found, the Instance is considered unmated.

• If resource data is found, the Instance name in the resource data prefix is
compared with the Instance name from the PRIMARY File.

If it does not match, it is reported in the log as an inconsistency.

• If PREVIEW=NO, the resource prefix is updated to reflect the true
Instance name from the PRIMARY file.

• At completion, totals are listed in the log to indicate the number of
unmated Instances, inconsistencies, and so forth.

• DOMAIN is that which contains resource data, usually SOFTWARE.

• If DEBUG=YES, all Instances are listed as they are verified.

Syntax: DOMAIN=,CLASS=(,PREVIEW=YES/NO)(,DEBUG=YES/NO)

Example: In the FILE Class of the SOFTWARE Domain in the
PRIMARY File, list all unmated Instances and
inconsistencies:
PREVIEW=YES,DOMAIN=SOFTWARE,CLASS=FILE,DEBUG=YES

Tip: N/A

343

7 Configuration Server Database Utility
(RadDBUtil)

At the end of this chapter, you will:

• Know how to use RadDBUtil for Configuration Server Database updates,
Configuration Server communications, activity logging, and version
queries.

HP recommends creating a back up the Configuration Server
Database prior to executing any of the commands that are shown in
this chapter.

Configuration Server Database Utility 344

Introduction

RadDBUtil (raddbutil.exe) is the Configuration Server Database tool that
manages:

• Configuration Server Database updates (imports, exports, and deletions),

• Configuration Server communications,

• activity logging, and

• version queries.

This chapter focuses on the functionality, syntax, and common-use attributes
of this tool, and provides examples of each of these capabilities.

HP recommends creating a back up the CSDB prior to executing any
of the commands that are shown in this chapter.

The Configuration Server does not need to be running in order for
RadDBUtil to run.
Additional information is detailed in the section, Running RadDBUtil
from a Command Line, starting on page 345.

Components & Processes

This section details the components and processes that benefit from using
RadDBUtil.

Components

• Configuration Server

• Configuration Server Database

• Distributed Configuration Server

Processes

• Importing/exporting to/from the CSDB

Configuration Server Database Utility 345

• Output materials produced by, or during, importing and exporting

• Deleting instances and resources from the CSDB

• Querying and manipulating the Configuration Server lock status

• Version information queries

• Activity logging

Running RadDBUtil from a Command Line

This section provides information regarding running RadDBUtil from a
command line.

It is important to note that RadDBUtil must be able to lock the CSDB,
which it cannot do when it is run from a command line if:

• The Configuration Server is running

and

• MANAGER_TYPE=STANDALONE.

In order to run RadDBUtil from a command line, do either (or both) of the
following before running RadDBUtil.

• Shut down the Configuration Server.

• Open the edmprof file and, in the MGR_STARTUP section, set
MANAGER_TYPE to something other than STANDALONE—either
DISTRIBUTED or SERVER.

Implementation Details

RadDBUtil has a dependency on the edmprof file, and should be placed in
the same directory as it—typically the Configuration Server bin directory on
Windows, and exe directory on UNIX. Additionally, RadDBUtil must be able
to find a valid CSDB and the Configuration Server log directory.

Configuration Server Database Utility 346

HP recommends creating a back up the CSDB prior to executing any
of the commands that are shown in this chapter.

HP Client Automation Patch Manager Considerations

This section contains important information and warnings about using
RadDBUtil to import and export HP Client Automation Patch Manager
(Patch Manager) bulletins.

Important information regarding the deleting of Patch Manager
bulletins is detailed in the section, Deleting Bulletins from a
Database, on page 360.

IMPORT

When using the -domain switch, all instances and resources (of the
XPI file that is specified for INPUT) will be imported to the target
domain. Therefore, it is imperative that the necessary domains and
classes exist in the target domain.

EXPORT

In order for the RadDBUtil tool to successfully export bulletins, in the
PATCHMGR.ZSERVICE Class template there must be an attribute
named SYNC of the type CONNECTION with the appropriate default
value.
See EXPORT on page 356 for an example of the SYNC-
CONNECTION attribute being specified for a Patch Manager
bulletin.
If this attribute is not present in the PATCHMGR.ZSERVICE Class
template, it must be added.

EDMPROF File Settings

The following edmprof file settings affect the operation of RadDBUtil. Be sure
to verify these settings and adjust them accordingly.

Configuration Server Database Utility 347

MGR_LOG.DIRECTORY
specifies where the activity and audit logs will be generated. For more
information, see Standard Files on page 355.

MGR_DIRECTORIES.DBPATH
determines the CSDB location.

MGR_STARTUP.MGR_ID
is the unique, three-character identifier of the Configuration Server that was
specified during its installation.

MGR_STARTUP.MGR_NAME
is the identifying name of the Configuration Server that was specified during
its installation.

RadDBUtil Verbs

In this section, each of the six RadDBUtil verbs is detailed with syntax
options, syntax descriptions, and verb-specific considerations.

UNIX Note: Using Quotation Marks
In a UNIX environment, it is important that any string that contains
special characters—such as parentheses, (and)—be enclosed within
quotation marks, “ ”.

General Syntax

• The executable, verbs, keywords, and values are not case-sensitive.

UNIX Note: Filename Case-sensitivity

The RadDBUtil executable, raddbutil, must be specified
exactly as it appears; otherwise it will not work.

• The verbs are VERSION, LOG, IMPORT, EXPORT, DELETE, and RCS.

• The verbs can be specified in either of the following formats:

-keyword value

If this syntax is used, pairs of combinations must be separated by a
space, as in:

-keyword value -keyword value -keyword value

or

keyword=value

Configuration Server Database Utility 348

If this syntax is used, pairs of combinations must be separated by a
space, a comma, or both, as in:

keyword=value keyword=value,keyword=value,
keyword=value

A double-dash (--) indicates the end of the options.

The acceptable Boolean values are:

TRUE: 1, YES, ON, and TRUE

FALSE: 0, NO, OFF, and FALSE

VERSION

The VERSION verb produces build information for the RadDBUtil tool and
all embedded executables. For examples of the syntax, see Examples on page
362.

Syntax

The syntax of the verb, VERSION, is shown below.

Raddbutil version

LOG

This verb places RadDBUtil-specific messages in the audit log and activity
log.

The audit log information is:

⎯ BuildInfo ⎯ CommandLine
⎯ CompletionCode ⎯ Timestamp (ISO)

There are two messages per command—one when RadDBUtil begins and one
when it ends.

20050126 15:24:04 C:/RadDBUtil/raddbutil.exe 60 --> import
20050126 15:24:04 C:/RadDBUtil/raddbutil.exe 60 <-- rc=8

Syntax

The syntax of the LOG verb is shown below. For examples of the syntax, see
Examples starting on page 362.

RadDBUtil LOG “record this information”

Configuration Server Database Utility 349

The RadDBUtil entry in the log can be accompanied by customized text.

The text must be enclosed within quotation marks, as shown above. For
example, to delineate a nightly log entry for a specific date, specify:

RadDBUtil log “Nightly Log for June 22, 2005”

IMPORT

HP recommends creating a back up the CSDB prior to executing any
of the commands that are shown in this section.

The IMPORT verb simplifies the importing of materials into the CSDB. It
can import materials from one domain into a domain of a different name
within a CSDB, and from one CSDB to another. It offers the following options
in order to optimize the import operation.

• Automatically recognize and re-use the instances that exist in the target
domains, and

• Import only those elements that do not exist in the target domains.

Additionally, by having a feature that allows the IMPORT verb to identify
packages and dialogs that exist in the database and to dynamically adapt to
them, RadDBUtil reduces the size of the targeted domain—as well as
Distributed Configuration Server execution times—without impacting the
integrity of the imported materials. Other features of the IMPORT verb are:

— Parameter validation

— Database receptiveness to receiving the import materials

— Deck verification (XPI and XPR)

— Attributes that are dropped from the import operation will be noted
with a warning level (--?) in the activity log.

For the IMPORT verb, an “all-or-nothing” rule applies—that is,
if RadDBUtil cannot do all of that which is requested, it will do
none of that which is requested.
If a RadDBUtil IMPORT operation fails, the Configuration
Server log will have an entry reflecting this and the return code
will be rc=8.

Syntax

The syntax of the IMPORT verb is shown in this section. For examples of the
syntax, see Examples on page 362.

Configuration Server Database Utility 350

• The keywords and values are not case-sensitive, as can be seen in the
following examples.

Optional keyword-value combinations are in parentheses.
Default values are underlined.

Raddbutil import –input FileName (-output value)
(-domain value)(-commit false) (-root=*) (-accept a)
(-reject u+d) (-ignore s)

raddbutil IMPORT
INPUT=value(,OUTPUT=value)(,DOMAIN=domain_name{:REUSE})
(,COMMIT=TRUE/FALSE)(,ROOT=*)(,ACCEPT=A)(,REJECT=U+D)
(,IGNORE=S)

IMPORT Keywords

Table 108 below lists and defines the keywords for the verb, IMPORT.

Table 108 RadDBUtil IMPORT Keywords

Keyword Explanation

INPUT This is the prefix (the fully specified drive and path) of the input files.

• If a fully specified drive and path is not provided with the input file
name, the current directory is used.

• If .xpi is specified, it will be stripped off.

• This keyword is mandatory; it does not have a default value.

• The associated resource file must be in the same location and have the
same name, but with the extension .XPR.

This is the only location that will be searched if any of the
import Instances require resource data.

• If the fully specified drive and path contains blanks or other special
characters, it is necessary to enclose in quotation marks the entire file
identifier, including the drive letter and all directories.

Configuration Server Database Utility 351

Keyword Explanation

OUTPUT This is the prefix of the output files (the merged “accepts” and “ignores”).
Specify a filename to be used for the result of importing this and any
modifications to the input media that were required due to events such as
duplicate OIDs, different domains, different parentage, etc.

• This value is required if any of the output of the modified XPI and XPR
decks is required. It defines the directory and name, in XPI and XPR, of
the generated, modified output.

• If .xpi is specified, it will be stripped off.

Although this keyword is optional, there is no default—if it is
omitted or specified without a valid value, no output files
other than logs will be available after the completion of
RadDBUtil.

COMMIT Specifies whether the CSDB will be updated.
-commit true
allows those elements that meet the import criteria to be passed into the
CSDB for processing.
-commit false (the default)
forces RadDBUtil to only scan and reconcile the input files and the database.

ROOT Specifies the root instance of the model (either FILE.DOMAIN.CLASS
.INSTANCE, DOMAIN.CLASS.INSTANCE, CLASS.INSTANCE, or CLASS).

• Only matching instances and those that are referenced (directly or
indirectly) by root will be processed.

• The default is *.

• COMPONENT classes and instances cannot be specified.

Configuration Server Database Utility 352

Keyword Explanation

DOMAIN Specifies an existing CSDB domain into which this import deck is to be
placed.

• If the specified value does not correctly identify an existing domain in
the target database, RadDBUtil will end with an error.

If a domain is specified, the input files will be imported into
that CSDB domain. However, if no domain is specified (the
default), the input files will be imported into the domains that
are specified in the decks.

• All of the instance and resource data that are contained in the INPUT-
specified decks will be examined and considered for import into the
single CSDB domain that is specified by this keyword.

• Domain names in the CSDB are limited to 32 bytes.

The -domain switch is designed to put the contents of the
input decks into a single destination.
Therefore, when importing a Patch Manager bulletin, do not
use this switch because if the instances are coming from
multiple domains they must be imported back into multiple
domains.

Configuration Server Database Utility 353

Keyword Explanation

REUSE Specify as: -domain domain_name:REUSE

This is an optional directive that allows RadDBUtil to compare the target
database and import deck for matching package instances and, when present,
re-use those that are in the database. This allows RadDBUtil to avoid creating
duplicates of package instances and resources in the target domain if they
already exist, in either the original source or target domain.

• For each non-root and non-component element in the deck: the domain
that is specified by the DOMAIN keyword is searched first, followed by
the domain that is identified in the package instance of the import deck.

⎯ If a package instance has the same name as the package instance
that is found in the CSDB, RadDBUtil will:

− ABORT if it is determined that the contents are different from
that which is in the import deck.

− REUSE it if it is determined that the contents are identical to
that which is in the import deck. This means that the existing
database package instance will be referenced by the appropriate
connection attributes in the import deck, and the matching
Package Instances in the import deck will be removed.

Although the :REUSE option might remove duplicates from
the import process, the output files (INPUT.XPI and
INPUT.XPR) will contain the instances and resources that were
in the original import deck, and which could have been used to
update the database but were deferred as a result of this
option.

Configuration Server Database Utility 354

Keyword Explanation

ACCEPT,
REJECT,
and
IGNORE

The instances in the import deck are compared to the instances in the
database. These optional keywords dictate the action—based on that
comparison—that RadDBUtil is to take on the import deck and database
instances.
There are four instances types. They are:

• Adds (A) are instances that are in the import deck and are to be added
to the database. The default behavior is to ACCEPT these additions.

• Deletes (D) are instances that are to be deleted from the database. The
default behavior is to REJECT these deletions.

• Sames (S) are instances in the import deck that are identical to those
in the database. The default behavior is to IGNORE these instances.

• Updates (U) are instances in the database that will be updated by a
matching instance in the import deck. The default behavior is to
REJECT these instances.

These actions (ACCEPT, REJECT, and IGNORE) are applicable
only to these four instance types (A, D, S, and U), and act on
only those instance types that have been specified for each.

The following points are additional items for consideration when using these
keywords.

• An instance type cannot be specified for multiple actions in a single
RadDBUtil execution. That is, Adds cannot be configured to be
accepted and ignored.

• Multiple instance types can be specified for one action (as in, -reject
d+u).

If multiple instance types are specified for an action, a plus
sign (+) must separate them.

• Any operations that match the REJECT parameters will cause the tool
to not commit, and will return a non-zero return code when processing
has completed.

MSI Files

RadDBUtil has an option that allows an import error to be overruled if
inconsistent MSI files are discovered. This might occur if the package with
the materials matching the IDX file has been renamed (and, as a result,

Configuration Server Database Utility 355

cannot be found by either import or tree export), or where the ACP file might
not yet have been imported into the database, but is in a set of imports that is
to be processed subsequent to the current import materials.

The command to overrule the import error is IGNORE=BADMSI.

Output Files

This section provides information about the log files that will be
automatically generated by the IMPORT verb. Also, the section, Conditional
Files (below), discusses additional logs and files, and the conditions under
which they might be generated.

• Standard Files

— RADDBUTIL.LOG
located in the directory specified by DIRECTORY in the MGR_LOG
section of the edmprof file. This is a text file that records the actions
(activity log) taken by RadDBUtil in processing each command
invocation, and the results of these actions. Each execution of
RadDBUtil overwrites the previous log.

To save the logs of previous RADDBUTIL.EXE executions,
rename the (RADDBUTIL.LOG) file.

This log queries the edmprof file and identifies the location of the
edmprof file, the CSDB, and the Configuration Server log. It also
contains return codes and summary information about execution
results.

— RADDBUTIL.AUDIT.LOG
located in the directory specified by DIRECTORY in the MGR_LOG
section of the edmprof file. This file contains a record of all
RadDBUtil calls and the corresponding return codes; it is designed
for archival reference only.

— STDERR
contains the same information as RADDBUTIL.LOG but, by default, is
directed to the console. This log can be redirected as desired.

• Conditional Files

XPR and XPI Files
If RadDBUtil import updates the database, these two files will be created
in the directory that is optionally specified by the keyword OUTPUT. The
contents of these files can be returned to the customer’s Digital Source
Library (DSL) as a record of the materials as imported into the target
CSDB.

Configuration Server Database Utility 356

EXPORT

HP recommends creating a back up the CSDB prior to executing any
of the commands that are shown in this section.

The EXPORT verb allows for the simultaneous exporting of the XPC, XPI
and, optionally, the XPR decks that are needed to ensure that the exported
portions are accurately reproduced in another database. This includes class
templates, instances and, optionally, the resources. It also allows the
specifying of the entire database, or individual parts of the database (such as
domain, class, instance, package, and service) to be exported. EXPORT offers
the ability to:

• Perform deletions based on the results of object resolution.

• Specify multiple inputs, such as exporting four services on one export
operation.

Additionally, exporting can include:

• The associated resources, and

• All required packages (similar to a client resolution).

Syntax

The syntax of the EXPORT verb is shown below. For examples of the syntax,
see Examples on page 362.

Optional keyword-value combinations are in parentheses.
Default values are underlined.

RADDBUTIL EXPORT (,SUBSTITUTE=TRUE|FALSE)
(,DATA=TRUE|FALSE) (,WALK=TRUE|FALSE) (,OUTPUT=stemname)
INPUT

Raddbutil export (-substitute 0|1) (-data 0/1) (-walk 0/1)
(-output stemname) input

Raddbutil export (-substitute NO/YES) (-data NO/YES)
(-walk no/yes) (-output stemname) input

Raddbutil export (-substitute true|false) (-data
false/true) (-walk FALSE/TRUE) (-output stemname) input

EXPORT Keywords

Table 109 on page 357 lists and defines the keywords for the EXPORT verb.

Configuration Server Database Utility 357

Table 109 RadDBUtil EXPORT Keywords

Keyword Explanation

DATA Indicates whether to export the resource files in the CSDB. The default
is 0 (FALSE, NO).

WALK Indicates whether to do a resolution—CSDB should be traversed. The
default is 1 (TRUE, YES).

INPUT is not a keyword, like the others; it is a documentation
placeholder. A value must be specified without “input” being
used as an indicator, as shown in this table.

OUTPUT This is the prefix of the output files.

• If .xpi is specified, it will be stripped off.

• This keyword does not have a default value.

SUBSTITUTE Indicates whether to do a variablized substitution. The default is 1
(TRUE, YES). It is used while resolving the variablized substitutions
when exporting.

• -substitute true (the default): variablized substitution done to
*, export all

• -substitute false: variablized substitution done to
UNKNOWN, export none

For example, when -substitute true:
PRIMARY.SOFTWARE.ZSERVICE.A001&(ZCONFIG.ZHDWCOMP)

would resolve to
PRIMARY.SOFTWARE.ZSERVICE.A001*

Configuration Server Database Utility 358

Keyword Explanation

INPUT This, the only mandatory parameter, indicates the CSDB Instances that
are to be exported.

INPUT is not a keyword, like the others; it is a documentation
placeholder. A value must be specified without “input” being
used as an indicator, as shown below.

Raddbutil export (-data 0/1) (-walk 0/1) (-output
stemname) file.domain.class.*

• The format can be either:

⎯ FILE.*.*.*,

⎯ FILE.DOMAIN.*.*,

⎯ FILE.DOMAIN.CLASS.*,

⎯ FILE.DOMAIN.CLASS.INSTANCE, or

⎯ FILE.DOMAIN.CLASS.INSTANCE(msg).

• Wildcards (*) are valid values for the domain, class, and instance
keywords.

• More than one database instance can be specified; multiples must
be separated a blank space.

The INPUT value must be specified at the end of the command
line; otherwise the operation will fail.

Output Files

The EXPORT verb will always generate XPC and XPI files. If -data is
specified, an XPR file will also be generated.

DELETE

HP recommends creating a back up the CSDB prior to executing any
of the commands that are shown in this section.

This verb deletes instances and resources from the CSDB. It offers the ability
to perform deletions based on:

• The results of object resolution.

• The contents of an XPI file.

Configuration Server Database Utility 359

The XPI file that is passed to RadDBUtil when using this verb must
be an XPI file that was exported from the CSDB from which the
instances and/or resources are to be deleted.

Syntax

The syntax of the DELETE verb is shown below. For examples of the syntax,
see Examples on page 362.

Optional keyword-value combinations are in parentheses.
Default values are in underlined.

RADDBUTIL DELETE INPUT=value(,PREVIEW=TRUE|FALSE)
(,FILE=value)(,WALK=TRUE|FALSE)(,IGNORE=value)

Raddbutil delete -input (-preview value) (-file value)
(-walk value) (-ignore value)

DELETE Keywords

Table 110 below lists and defines the keywords for the verb, DELETE.

Table 110 RadDBUtil DELETE Keywords

Keyword Explanation

PREVIEW Indicates whether to preview the changes only, or make the deletions. The
default is 0 (FALSE, NO, OFF).

FILE The name of XPI file that specifies what to is to be deleted from the CSDB.

WALK Indicates whether to do a resolution—CSDB should be traversed. The default
is 1 (TRUE, YES, ON).

IGNORE This keyword specifies (in) which CSDB instances should not be deleted.

• The format can be either F.D.C.I or f.d.c.i format.

• Wildcards (*) are valid in the domain, class, and instance
specifications.

• More than one database instance can be specified; multiples must be
separated a plus sign (+).

Configuration Server Database Utility 360

Keyword Explanation

INPUT This parameter indicates which CSDB instances are to be deleted.

INPUT is not a keyword, like the others; it is a documentation
placeholder. A value must be specified without “input” being used
as an indicator, as shown below.

Raddbutil delete file.domain.class.* (-walk 0/1)

• The format can be either:

⎯ FILE.*.*.*,

⎯ FILE.DOMAIN.*.*,

⎯ FILE.DOMAIN.CLASS.*,

⎯ FILE.DOMAIN.CLASS.INSTANCE, or

⎯ FILE.DOMAIN.CLASS.INSTANCE(msg).

• Wildcards (*) are valid in the domain, class, and instance
specifications.

More than one database instance can be specified; multiples must be
separated a blank space.

Deleting Bulletins from a Database

To permanently delete Patch Manager bulletins from the Configuration
Server Database, specify the following classes with the IGNORE keyword.

• PRIMARY.PATCHMGR.CMETHOD

• PRIMARY.PATCHMGR.OPTIONS

• PRIMARY.PATCHMGR.METADATA

• PRIMARY.SYSTEM.ZMETHOD

• PRIMARY.SYSTEM.PROCESS

• PRIMARY.PATCHMGR.PRODUCT

• PRIMARY.PATCHMGR.SP

• PRIMARY.PATCHMGR.RELEASE

• PRIMARY.PATCHMGR.PATCHARG

• PRIMARY.PATCHMGR.PG2PR

• PRIMARY.PATCHMGR.PROGROUP

Configuration Server Database Utility 361

The following example shows these classes being included with the IGNORE
option.

Raddbutil.exe delete -walk 1 -ignore
PRIMARY.SYSTEM.PROCESS.*+PRIMARY.SYSTEM.ZMETHOD.*
+PRIMARY.PATCHMGR.CMETHOD.*+PRIMARY.PATCHMGR.METADATA.*
+PRIMARY.PATCHMGR.OPTIONS.*+PRIMARY.PATCHMGR.PATCHARG.*
+PRIMARY.PATCHMGR.PRODUCT.*+PRIMARY.PATCHMGR.RELEASE.*
+PRIMARY.PATCHMGR.SP.*+PRIMARY.PATCHMGR.PG2PR.*
+PRIMARY.PATCHMGR.PROGROUP.*
 -preview 0 PRIMARY.PATCHMGR.ZSERVICE.MS07-042(SYNC)

RCS

This verb communicates with the CSDB and allows for:

• Querying of the CSDB lock status.

• Unlocking of the CSDB.

Syntax

The syntax of the RCS verb is shown below. For examples of the syntax, see
the section, Examples starting on page 362.

raddbutil rcs status

raddbutil rcs unlock

RCS Keywords

Table 111 below lists and defines the keywords for the verb, RCS.

Table 111 RadDBUtil RCS Keywords

Keyword Explanation

STATUS Displays the lock status of the Configuration Server
status.

UNLOCK Unconditionally unlocks the Configuration Server.

Return Codes

Table 112 on page 362 shows the return codes that are associated with the
RadDBUtil executable.

Configuration Server Database Utility 362

Table 112 RadDBUtil Return Codes

Return
Code

Meaning

0 SUCCESS

4 WARNING

8 or 16 FAILURE

• No database update occurred,

or

• A database update was started but not completed.

Note: If the latter, the database might be in an error state.

Examples

This section presents a few examples of the simpler and more direct
RADDBUTIL.EXE syntax.

As previously stated, the RADDBUTIL.EXE utility supports the
following two syntax formats:

-keyword value

and
keyword=value

The examples in this section are presented in the -keyword value
format.

IMPORT Examples

Example 1. Performing a simple import

Run a routine, daily import of the file, sample.xpi in order to add instances
to the CSDB.

raddbutil import –input sample -commit yes

Abort if there are updates and/or deletes.

raddbutil import -input sample -accept A -reject U+D
-commit yes

Ignore any updates and deletes.

Configuration Server Database Utility 363

raddbutil import -input sample -accept A -ignore U+D
-commit yes

Results:

— The instances and resource data from the files sample.xpi and
sample.xpr are imported directly into the domain and class that are
specified in the input deck.

— No domain mapping is performed

Example 2. Performing a simple import and replacing the old instances

raddbutil import –input sample –accept A+U+D –commit yes

Example 3. Importing to a domain other than SOFTWARE

Import all instances from the input deck into the SOFT0002 domain. Re-use
any database elements that are identical to elements of the deck, overrule the
inconsistent MSI file import error, and reject any updates.

Example 3a

The syntax of the following example is fully supported by
RadDBUtil.

Raddbutil Import -Input Sample -Domain SOFT0002:Reuse
-Commit Yes -Ignore Badmsi

Example 3b

The following example is the same as Example 2a, but includes
the fully specified drive and path (with special characters) of the
input material, and the name of the output decks.

RADDBUTIL IMPORT –INPUT "G:\CONTAINS BLANKS\SAMPLE"
-OUTPUT Sample_Soft_2 -DOMAIN SOFT0002:REUSE -COMMIT YES
-IGNORE BADMSI

EXPORT Examples

Example 4. An easy method by which to create export files

The following command will create AMORTIZE.XPC and AMORTIZE.XPI
containing just the specified class and instance.

raddbutil export -output amortize
PRIMARY.SOFTWARE.ZSERVICE.AMORTIZE

Configuration Server Database Utility 364

Example 5. Using the -walk command

The following command will create AMORTIZE.XPC and AMORTIZE.XPI
containing the classes and instances. This command will resolve the package,
and include any other required packages because -walk is specified.

raddbutil export -output amortize -walk 1
PRIMARY.SOFTWARE.ZSERVICE.AMORTIZE

No resources will be exported.

Example 6. Using the -walk and -data commands

Example 6a

The following command will create AMORTIZE.XPC, AMORTIZE.XPI, and
AMORTIZE.XPR which contain the classes, instances, and resources (because -
data is specified), and the package will be resolved because -walk is
specified.

raddbutil export -output AMORTIZE -walk 1 -data 1
PRIMARY.SOFTWARE.ZSERVICE.AMORTIZE

Example 6b

The following command will create ALL.XPC, ALL.XPI, and ALL.XPR
containing the classes, instances, and resources of all services in the
SOFTWARE Domain.

raddbutil export -output ALL -walk 1 -data 1
PRIMARY.SOFTWARE.ZSERVICE.*

Example 7. Exporting and importing the PRIMARY File (ZEDMAMS used to import
the class)

The following series of commands will export and then import the entire
PRIMARY file of the CSDB.

raddbutil export -output ALL -walk 1 -data 1
PRIMARY.*.*.*

zedmams verb=import_class,file=ALL.xpc,preview=no,
logfile=ALL_PRIMARY.log

raddbutil import -input ALL -commit yes

Example 8. Exporting, deleting, and importing a bulletin

The following commands will export, delete, and import (respectively) the
Patch Manager bulletin, MS07-042.

Configuration Server Database Utility 365

In the following examples, the value of INPUT should be enclosed in
quotation marks on UNIX platforms.

Export

./raddbutil export -walk 1 -data 1 -output ms07-042
"PRIMARY.PATCHMGR.ZSERVICE.MS07-042(SYNC)"

Delete

raddbutil.exe delete -walk 1 -ignore
PRIMARY.SYSTEM.PROCESS.*+PRIMARY.PATCHMGR.ZMETHOD.*
+PRIMARY.SYSTEM.CMETHOD.*+PRIMARY.PATCHMGR.METADATA.*
+PRIMARY.PATCHMGR.OPTIONS.*+PRIMARY.PATCHMGR.PATCHARG.*
+PRIMARY.PATCHMGR.PRODUCT.*+PRIMARY.PATCHMGR.RELEASE.*
+PRIMARY.PATCHMGR.SP.*+PRIMARY.PATCHMGR.PG2PR.*
+PRIMARY.PATCHMGR.PROGROUP.* PRIMARY.PATCHMGR.ZSERVICE.
MS07-042(SYNC)

Import

raddbutil import -input ms07-042 -commit yes

In the import example, the -domain switch was not used
because the instances are coming from multiple domains.
See the warning under DOMAIN in Table 108 on page 350.

Example 9. The DELETE verb

This series of example focuses on the DELETE verb commands.

• Delete the service PRIMARY.SOFTWARE.ZSERVICE.MSOFFICE.

raddbutil delete PRIMARY.SOFTWARE.ZSERVICE.MSOFFICE

• Delete the service PRIMARY.SOFTWARE.ZSERVICE.MSOFFICE; do
not delete the methods.

raddbutil delete -walk 1 -ignore
PRIMARY.SYSTEM.ZMETHOD.* PRIMARY.SOFTWARE.ZSERVICE.
MSOFFICE

• Delete the instance PRIMARY.SOFTWARE.ZSERVICE.MSOFFICE.

raddbutil delete -walk 0 PRIMARY.SOFTWARE.ZSERVICE.
MSOFFICE

• Delete the contents of foo.xpi.

raddbutil delete -file foo.xpi

Configuration Server Database Utility 366

Example 10. The Configuration Server Database

The following commands pertain to the Configuration Server Database.

• Show the current status of the CSDB.

raddbutil rcs status

• Unlock the CSDB.

raddbutil rcs unlock

Configuration Server Database Utility 367

368

8 Configuration Server Performance
At the end of this chapter, you will:

• Have a better understanding of how CPU and network considerations can
impact various performance aspects of the Configuration Server.

Configuration Server Performance 369

An Overview of Performance Issues
The purpose of this chapter is to discuss system performance issues as they
relate to the Configuration Server. The next chapter, Chapter 8,
Troubleshooting the Configuration Server, explores some problem
determination issues.

Performance issues are associated with enhancing the efficiency of a working
system, while troubleshooting deals with features, functions, and components
that are not operating as expected. Taking into account performance and
usage considerations prior to configuring the Configuration Server might
prevent many of the conditions that require troubleshooting.

The Configuration Server is a multi-platform, multi-processing server
framework for:

• Policy Management

• Component Management

• Network Management

• Version Management

• Asset Management

• State Management

There are many aspects of Configuration Server performance. In addition,
there are specific phases of Configuration Server operations. Each phase has
different performance characteristics and requirements. Because of these
many variables, there is no easy “cook book” approach to Configuration
Server performance.

General Performance and Usage Considerations

Three important performance and usage considerations must be taken into
account before beginning any discussion of Configuration Server issues.

• What is the overall system infrastructure?
This includes numbers, types, and speeds of processors; total size and
type of memory; and network capability and configuration.

• What are the performance benchmarks?
These include average performance levels, as well as the high and low
levels.

Configuration Server Performance 370

• What are the workload parameters?
These include average demand, peak load requirements, and idle times.

Before undertaking any further performance initiatives, become familiar with
the above considerations as they apply to your Configuration Server.

How this Chapter is Organized

This chapter is divided into three areas that dramatically influence
performance:

• CPU Requirements, starting below.

• Memory, starting on page 372.

• Networking, starting on page 374.

CPU Requirements
There are minimum CPU requirements specified at installation for each
Configuration Server platform. It must be noted, however, that these are
minimum values. The real requirements for CPU utilization can only be
determined by workload—essentially, the number of resolutions that a
Configuration Server can process.

The CPU and Object Resolution

As each HPCA agent connects to the Configuration Server, an identifier
object (ZMASTER) is sent from the HPCA agent to the Configuration Server
triggering the dynamic construction of an object model for that HPCA agent.
This process is known as object resolution. The object resolution process
exhausts most of the processor time required by the Configuration Server.

When trying to determine how many object resolutions can take place
simultaneously, use the simple formula outlined below.

 Total Number of Available CPU Seconds

 x Number of CPU Seconds required (per user)

 = Total Number of Possible User Resolutions

Configuration Server Performance 371

Total Number of Available CPU Seconds

This value is obtained by multiplying the number of CPUs by the number of
seconds in the connection window of opportunity. The window of opportunity
is the timeframe in which the HPCA agents need to connect.

For example: a two-processor machine with a six-hour window of opportunity
(e.g., 12:00 AM - 6:00 AM) would result in a total number of available CPU
seconds of 43,200. (2 processors X 6 hours (21,600 seconds) = 43,200 seconds).

Total Number of CPU Seconds Required Per User

This value is a little more complicated to obtain. Some benchmarks for object
resolution speed have been determined by HP running a Configuration
Server on an HP/K200 system with 85 MHz processors. We have determined
that approximately 860 objects can be resolved in one second. With this
benchmark, we can make an approximation of how many CPU seconds are
required to resolve a user’s object model.

By taking the average number of FILE objects per user (ZRSOURCE being
the most common object in a user’s model) and multiplying it by three (an
estimate of how many objects are resolved in order to end up with a fully
resolved ZRSOURCE), we get the average number of objects to be resolved
per user. We then divide that by the number of objects the Configuration
Server can resolve in a CPU second, and get the number of CPU seconds
required to resolve the average HPCA agent’s object model.

For example, let us assume that the average number of ZRSOURCE objects
per user in your environment is 1000. We multiply that by 3, and get 3000
objects per user. Now divide 3000 by 860 (the average number of objects
resolved per second by the Configuration Server), and you get approximately
3.5 seconds of CPU time required to resolve the average user’s model.

1000 x 3 = 3000
3000/860 = ~3.5 (3.488…)

Total Number of Possible User Resolutions

This value is obtained by dividing the (Total Number of Available CPU
Seconds) by the (Total Number of CPU Seconds Required per User). Using the
results of our previous examples, we would divide the 43,200 (available CPU
Seconds based on a two-processor machine with a six-hour window) by 3.5
(number of CPU seconds required to resolve the average user’s model)
resulting in a (Total Number of Possible User Resolutions) of approximately
12,000.

Configuration Server Performance 372

43,200/3.5 = ~12,000 (12,342.8571…)

This calculation does not mean that 12,000 users could be
successfully configured in the six-hour period. Other variables must
be considered, such as disk I/O for data being transferred/received
to/from HPCA agents, the platform’s network card capability (for
concurrent communications between the Configuration Server and
HPCA agents), and the system’s available memory (process/memory
swapping requires system overhead).
Also, note that other tasks running on the machine will be sharing
system resources with the Configuration Server.

Memory

There are two features that deal with memory usage, content caching and
index caching. They are established in the MGR_CACHE section of the
Configuration Server edmprof file.

• Content Caching
refers to loading a portion of the CSDB (class templates, base instances,
and other instances) into memory to speed up the resolution process. This
enhances performance by eliminating disk I/O. In configuring index
caching, the size used for each content cache entry needs to reflect the
size of the instance in the database before any resolution has been
performed. This provides a resolution boost across the Configuration
Server.

• Index Caching
is used to keep in memory all names of the instances of the class that
have been cached. Caching the names of all instances of cached classes
eliminates the need to read the directory in order to determine which
instances begin with the specified prefix. Index caching makes a
significant performance improvement when the generic resolution feature
is utilized. Generic resolutions are those that use a partially specified
CLASS.INSTANCE naming format that terminates in an asterisk (*),
indicating that all instances with the same prefix are to be resolved.

MGR_CACHE

The MGR_CACHE section of the Configuration Server edmprof file defines
the values that determine how much virtual storage is reserved for

Configuration Server Performance 373

content cache. The two values are CACHE_SEGMENTS—which
determines the number of separate memory areas—and CACHE_SIZE—
which is allocated at startup and used exclusively for content cache. The
product of CACHE_SEGMENTS x CACHE_SIZE is the amount of memory
that will not be available for resolution purposes during connection.

In a Windows environment, the maximum virtual storage that will be
available for any single process is 2 GB. If the Windows Enterprise Server is
used, this is increased to 3 GB, and for Windows 2003 Server x64, up to 4 GB
of virtual memory per 32-bit process, although it might be constrained by the
size of real memory and the size of the page space available.

The Configuration Server process will attempt to use all of the virtual storage
that is available to it and might cause all of the defined page space to be in
use, so make sure that the total page file space is at least 4 GB. The value of
AVERAGE_OBJECT_SIZE in this section should be set to the size of the
largest Instance of the Classes being cached. The default is 2048 bytes.

A parameter called ICACHE_SIZE is available for index caching. It is
activated by simply specifying a value for the keyword. The easiest means by
which to correctly size this is to take the total of all instances to be cached,
multiply by 100, and place the result as the ICACHE_SIZE value size.
ICACHE_SIZE is of benefit when generic resolution is active, that is, any
connection to SOFTWARE.PACKAGE.* that requires the Configuration
Server to process all of the potential Instances prefixed by the string. While
ICACHE is most important for SOFTWARE.FILE, the caching mechanism
(described below in MGR_CLASS) uses the same criteria for selecting which
DOMAIN.CLASS Instances to cache.

MGR_CLASS

The MGR_CLASS section controls two separate processes: initial Classes to
be cached and the amount of storage to be used for in-storage objects during
resolution of each HPCA agent (as differentiated from CSDB Classes and
Instances where the Class name might be the same as the in-storage object
name, as is the case of ZSERVICE). In-storage objects of interest are
generally persistent and multi-heap. Controlling the storage and processing
of these objects provides for performance improvements.

For index caching and content caching, the contents of MGR_CLASS are
processed in the order in which they are presented, so the first
DOMAIN.CLASS is processed completely (index cache is loaded and content
cache is loaded) before the second, and so on.

Configuration Server Performance 374

For each DOMAIN.CLASS (for example, SOFTWARE.FILE) that is identified
in this section, four parameters are specified. The first and second control the
caching behavior, and the third and fourth are used exclusively for persistent
object virtual storage allocation during resolution.

For a detailed explanation of the MGR_CLASS settings, including
performance and usage considerations, see MGR_CLASS on page 46. The
first of the four parameters (Value1) allows one to specify whether the Class
template and _Base_Instance_ are to be cached. A value of Y is recommended
because it is generally necessary to load the Class template and
_Base_Instance_, and this eliminates a tremendous amount of disk I/O for
Classes that are commonly involved in resolution.

Networking

Bandwidth Throttling

Bandwidth throttling refers to reserving a percentage of the available TCP/IP
bandwidth for use by other processes on the device. It was designed to help
maximize network resources while running the Configuration Server.
Bandwidth throttling is configured in the Configuration Server using the
SEND_THROTTLE setting of the MGR_TIMEOUT section of the edmprof
file. It specifies the number of milliseconds that the Configuration Server will
wait before sending packets. The default is 0, meaning no delay. The range of
values is 0 to 4 GB.

There are three variables in the HPCA agent’s ZMASTER object that also
have an impact on bandwidth throttling, ZBWMGR, ZBWMAX, and
ZBWPCT.

• ZBWMGR=YES means the Configuration Server will be controlling the
bandwidth.

• ZBWMAX is the maximum speed (bytes/second) of the “sends.”

• ZBWPCT is the percentage of the maximum to use (0–100).

The ZBWMGR, ZBWMAX, and ZBWPCT values will override
the SEND_THROTTLE setting.

Configuration Server Performance 375

376

9 Troubleshooting the Configuration
Server

At the end of this chapter, you will:

• Have a better idea of some of the common causes of Configuration Server
processing problems, and be able to quickly recognize and remedy them.

If your environment uses Core and Satellite servers, first read the
Core and Satellite Servers Getting Started Guide as the installation,
configuration, and troubleshooting information in that guide may
override the information in this guide.

Troubleshooting the Configuration Server 377

Troubleshooting Issues
The purpose of this chapter is to explore problem determination issues as
they relate to the Configuration Server. Chapter 7, Configuration Server
Performance discusses system performance issues.

Performance issues are associated with enhancing the efficiency of a working
system while troubleshooting deals with features, functions, and components
that are not operating satisfactorily. Before troubleshooting, see General
Performance and Usage Considerations on page 369.

General Troubleshooting Considerations

There are several things that you should consider before attempting to
troubleshoot a specific problem:

• What, specifically, is the problem?
Sometimes, different problems have similar symptoms. For example, if an
HPCA agent resolution does not complete due to timing out, the timeout
could be based on either a Configuration Server value or an HPCA agent
setting.

• At what point did the problem occur?
If you can determine at what point a process failed, you might be able to
eliminate prior steps.

• How is the problem reflected in the Configuration Server log?
You can use the Configuration Server log and the search tools provided
by HP Technical Support to isolate exactly where the problem is reported
in the Configuration Server log.

• Are there external causes for the problem?
You might be able to determine if a cause unrelated to the Configuration
Server is responsible for the problem.

How this chapter is organized

This chapter is organized into three general scenarios:

• The Configuration Server Does Not Start

• The Configuration Server Does Not Process Tasks as Expected

• The Configuration Server Does Not Respond

Troubleshooting the Configuration Server 378

Each scenario contains individual conditions, possible causes, and
recommended actions.

The Configuration Server Does Not Start

Table 113 The Configuration Server Does Not Start

Condition Possible Cause Recommended Action

The Configuration Server
does not start.

The CSDB did not verify
correctly.

Reset VERIFY_DEPTH
setting in the Configuration
Server edmprof file.

 There is insufficient disk
space.

Free up sufficient disk
space.

 The Configuration Server
edmprof file is not
processed.

Ensure that the
Configuration Server
edmprof file is in the same
directory as ZTOPTASK.

The Configuration Server
does not start.
(NT-specific)

The Configuration Server
was installed under a user
account that is not part of
the Windows Admin Group.

Reinstall the Configuration
Server under a user account
that is part of the Windows
Admin Group.

The Configuration Server
does not appear in the
Windows Services List.
(NT-specific)

The Configuration Server
was not installed as a
Windows service.

Reinstall the Configuration
Server as a Windows
service.

The Configuration Server
does not start automatically
when rebooted.
(NT-specific)

The Configuration Server
Service in the Windows
Services List is set to
manual.

Set the Configuration
Server Service to Automatic.
Then reboot the
Configuration Server.

The Configuration Server Does Not Process Tasks as Expected

There are two aspects to this scenario: either the Configuration Server does
not perform the process correctly, or the data received is not correct.

Table 114 The Configuration Server Does Not Process Tasks as Expected

Condition Possible Cause Recommended Action

No Console or Admin Incorrect MGR_ACCESS Change MGR_ACCESS

Troubleshooting the Configuration Server 379

Condition Possible Cause Recommended Action

functions. values. values.

Configuration Server tasks
not starting.

Tasks not listed in
MGR_ATTACH_LIST
section.

Add slots in
MGR_ATTACH_LIST
section.

Configuration Server does
not accept HPCA agent
tasks.

No Configuration Server
communications tasks
specified in
MGR_ATTACH_LIST
section.

Specify appropriate
Configuration Server
communications tasks in
MGR_ATTACH_LIST
section.

Configuration Server does
not accept additional HPCA
agent tasks.

Setting in TASKLIM is too
low.

Increase TASKLIM setting.

Too much processor time
required to load commonly
used classes.

Classes not listed in
MGR_CLASS section.

Add classes to MGR_CLASS
section.

Methods not executing
properly.

TIMEOUT setting in
MGR_METHODS section is
too low.

Increase TIMEOUT setting
in MGR_METHODS section.

Too many messages in
Configuration Server log.

Tracing is set to YES. Set tracing to NO for
unnecessary trace settings.

Configuration Server log is
slow to respond.

FLUSH_SIZE is set too low. Increase FLUSH_SIZE in
MGR_LOG section.

Lost portions of
Configuration Server log.

Log has been reused. Change THRESHOLD
setting in MGR_LOG
section to a positive value.

Troubleshooting the Configuration Server 380

The Configuration Server Does Not Respond

Table 115 The Configuration Server Does Not Respond

Condition Possible Cause Recommended Action

The Configuration Server
does not respond to
communications requests.

Configuration Server
communication tasks are
not enabled.

Add appropriate
Configuration Server
communications tasks in
MGR_ATTACH_LIST
section.

The Configuration Server
does not respond to HPCA
agent task requests.

Other HPCA agents have a
RETRY value that is too
low.

Raise RETRY value to at
least 1.

Troubleshooting the Configuration Server 381

382

10 SSL Managers
At the end of this chapter, you will:

• Have a better understanding of the configuration and use of the
Configuration Server SSL Manager task.

The proper licensing is required in order to operate the SSL
Manager.

For more information on SSL Managers, proxies, and firewalls, refer to the
SSL Implementation Guide, which covers:

• Installing and implementing SSL in a Client Automation environment.

• SSL components and terminology.

• Configuring an HPCA agent.

• OSI and TCP/IP reference models.

• The purpose and benefits of proxies and firewalls.

• OpenSSL

SSL Managers 383

Introduction
The Configuration Server is a powerful resource for the storage and
dissemination of information. Its versatility is enhanced by the introduction
of security in the information exchange, and enabling the Configuration
Server to act as a web server.

This feature is enabled via the SSL Manager, a new task that must be
entered in the MGR_ATTACH_LIST section of the Configuration Server’s
edmprof file. For instructions on how to do this, see the section,
Configuration Server Changes, starting on page 385; or the
MGR_ATTACH_LIST section, starting on page 38.

Virtual IP Addresses in UNIX

With virtual IP addresses, a machine with a single Network Interface Card
(NIC) can have multiple IP addresses. This is especially useful when multiple
server programs have to listen on the same port. To resolve the port conflicts,
machines are set up with virtual IP addresses, whereby multiple IP addresses
are assigned.

The ztcpmgr can support virtual IP addresses. It accepts the IP address and
port number on the command line, as shown in this example
MGR_ATTACH_LIST section entry:

CMD_LINE=(ztcpmgr addr=1.1.1.10,port=4438) RESTART=YES

If the address is not specified, the machine address is used.

To configure virtual IP addresses, use the ifconfig command. This command
has to be run under root privileges, as shown in the following example.

/usr/sbin/ifconfig hme0:1 inet 208.244.225.163 netmask
0xffffff00 broadcast +

/usr/sbin/ifconfig hme0:2 inet 208.244.225.175 netmask
0xffffff00 broadcast +

/usr/sbin/ifconfig hme0:1 up

/usr/sbin/ifconfig hme0:2 up

hme0 is the device name. This can be le0 on other systems. To
get the proper device name, type:
ifconfig -a

SSL Managers 384

Starting the Configuration Server with Root Privileges on UNIX Systems

When an HPCA agent has to connect to the Configuration Server using an
intermediary Web server, it uses TCP/IP tunneling. The TCP/IP tunneling
works by blindly funneling requests between the HPCA agent and the
Configuration Server. It is important that the Configuration Server’s port
number be properly set.

For using ports below 1024, which are reserved ports, you would have to start
the Configuration Server as root, either using the rc scripts or logging in as
root. In addition, you would have to set the LD_LIBRARY_PATH to the
Configuration Server executable directory before you run ZTOPTASK, as in
the following example.

LD_LIBRARY_PATH=/mgrbuild/V4.11/exe:/usr/lib:lib

export LD_LIBRARY_PATH

./ztoptask

For Microsoft proxy servers, the port number has to be 443, which is
the secure HTTP port. This requires that the Configuration Server
run on port 443, so that the proxy can contact it; otherwise, the
proxy won’t let the HPCA agents establish the tunnel.

SSL Manager

Enabling SSL in Configuration Server and HPCA Agent

Secure Sockets Layer (SSL) capability increases security in the
Configuration Server’s information exchange. It is a communication DLL
(shared library), similar to HP TCP/IP DLL. The SSL protocol is actually an
extension of HP existing TCP/IP DLL, and is called nvdtcps.dll. SSL is
used by the HPCA agent and the Configuration Server, and is implemented
using the public domain, OpenSSL.

To use SSL, the HPCA agent and the Configuration Server each need a
Certificate Authority root certificate (CA root certificate). These certificates
enable the Configuration Server–HPCA agent handshake, so they can
communicate. The Configuration Server needs a Server certificate also.

SSL Managers 385

Configuration Server Changes

To enable SSL on the Configuration Server, add a task to the
MGR_ATTACH_LIST section, as below.

[MGR_ATTACH_LIST]
CMD_LINE=(zsslmgr) RESTART=YES

With the SSL Manager, there are two important components: nvdtcps.dll
(the SSL DLL) and zsslmgr (the SSL Manager Task). The MGR_SSL section
of the edmprof file allows you to configure SSL.

HPCA Agent Changes

To enable SSL on the HPCA agent, the parameters listed in Table 116 below
must be in its ZMASTER object.

Table 116 ZMASTER Object Parameters

Parameter Function

CAFILE Use to specify the Certificate Authority certificate file.

ZDEVICEN Use to specify the device number for SSL (094).

Client Automation-specific Changes

The Certificate Authority root certificates are stored in the
CACERTIFICATES directory. The HPCA agent should store all the CA
certificates in this directory. If there are multiple CAs, they should be stored
with unique names. The default certificate file is CACERT.PEM.

HPCA Proxy Server

The Proxy Server functions as an extension of the Configuration Server.
When it is used, it becomes the primary repository for HPCA agent data.
Once an HPCA agent determines which resources it needs in order to achieve
its desired state, it can request the resources from the Proxy Server. This
feature allows the Configuration Server to allocate more resources to other
tasks.

HPCA agent requests are made using either HTTP or TCP/IP. The Proxy
Server can service multiple, concurrent HPCA agent requests using both
protocols simultaneously.

SSL Managers 386

For extensive information on Proxy Server, refer to the Proxy Server Guide.

SSL Managers 387

388

A Configuration Server Methods
This appendix is a reference for Configuration Server methods. For
information on configuring and using Configuration Server methods, see
Chapter 2, Managing Configuration Server Processing.

Table 117 below provides an alphabetical list of Configuration Server

methods and a description of the method’s use.

Table 117 Configuration Server Methods

Method Description

EDMMAILQ Deposits e-mail in the mail queue (outbox) so it can be sent to a remote
system user.

EDMMALLO This method is not applicable to the current release of the
Configuration Server.

EDMMCACH Refreshes or disables cache.

EDMMDALO This method is not applicable to the current release of the
Configuration Server.

EDMMDB Locks and unlocks the database against all components except
Distributed Configuration Server.

EDMMGNUG Retrieves a list of local and global groups to which a specified user
belongs.

EDMMPUSH Puts an inbound object into a notify queue.

EDMMPUTD Receives multiple data types that are sent by the Inventory Manager
and stores the data in files on the Configuration Server.

EDMMRPRO Adds, updates, or deletes instances in the PRIMARY file based on the
variables of an in-storage object.

EDMMSQLG Imports data from an external SQL database.

EDMMSQLP Exports data to an external SQL database.

EDMMULOG Used to write to the user log file.

EDMSIGN Authenticates users against the database.

EDMSIGNR Authenticates users against external security systems.

Configuration Server Methods 389

Method Description

ZDCLASS Deletes a class from the database.

ZDELINS Deletes an instance or instances from within a database class.

ZDELOBJS Deletes an in-storage object.

ZDELPROF Deletes an object in the PROFILE File.

ZEXIST Verifies the existence of a given class or instance in the database.

ZGETPROF Creates an in-storage object from the PROFILE File.

ZNFYT Executes a TCP/IP notification on a HPCA agent.

ZOBJCMPR Compresses an in-storage object.

ZOBJCOPY Copies an in-storage object.

ZOBJDELI Deletes an instance from an in-storage object.

ZOBJDELV Deletes a variable from all instances of an in-storage object.

ZOBJSORT Sorts instances, by stems, of in-storage objects.

ZPROMANY Adds or updates an instance to the database.

ZPUTHIST Puts an in-storage object into the HISTORY file.

ZPUTPROF Puts an in-storage object into the PROFILE File.

ZSIMRESO Resolves specified objects.

ZTOUCH Updates the date/time stamp of an instance.

ZVARDEL Deletes all in-storage objects.

ZVARGBL Migrates values from one in-storage object to another and deletes the
source object.

ZVARLOG Displays the contents of an in-storage object.

ZUPDPROF Updates profile information, only; it does not perform any type of
deletion.

ZXREF Cross-references class and instance usage during the object resolution
process.

The following pages describe each Configuration Server method, providing
examples of use, a description, its parameters, and the associated possible
return codes.

Configuration Server Methods 390

All arguments are expected to be in the format,
KEYWORD=VALUE, and delimited by commas.

Quotation marks (“ ”) are required when a value contains commas
and/or embedded blanks.

Configuration Server Methods 391

EDMMAILQ
This method deposits e-mail in the mail queue (outbox). For this method to
execute correctly, the MGR_SMTP_MAIL section must be added to the
Configuration Server edmprof file.

EDMMAILQ Parameters

attach Specifies attachment files. Multiple attachments can be
listed by using a semicolon (;) delimiter between each
attachment. For example,
c:\config.sys;c:\autoexec.bat. Attachments are sent
using MIME, and can be in binary. This parameter is
optional.

from The sender’s address. This parameter is required.

mesgfile Specifies the file that contains the message. Used in place of
the parameter, message, if the message is greater than 255
bytes. This parameter is optional.

message Specifies a brief message (limited to 255 bytes). This
parameter is required.

subject Specifies the subject of the e-mail. This parameter is
optional.

to Specifies the e-mail recipients. Multiple users can be listed
by using a semicolon (;) delimiter between each recipient.
This parameter is required.

Parameters are used like keywords and are not case-sensitive.

Example

In the example below, an e-mail with a brief message is sent from
user1@company1.com to user2@company2.com.

EDMMAILQ from=user1@company1.com,to=user2@company2.com,
Message=“This is a brief message”

Configuration Server Methods 392

Example

In the example below, a text file (c:\report.txt) with a subject (My
report) is sent between the same users.

EDMMAILQ from=user1@company1.com,to=user2@company2.com,
Mesgfile=c:\report.txt,Subject=“My report”

Return Codes

0 The method was successful.

8 An error was detected, the method failed.

Configuration Server Methods 393

EDMMALLO
This method is not applicable to the current release of the Configuration
Server.

Configuration Server Methods 394

EDMMCACH
This method refreshes or disables caching.

EDMMCACH Parameters

Parameter Description

option Caching option values are ENABLE or DISABLE.

Example

ADDRESS EDMLINK EDMMCACH 'option=ENABLE' ;

Return Codes

0 The method was successful.

8 An error was detected, the method failed.

Configuration Server Methods 395

EDMMDALO
This method is not applicable to the current release of the Configuration
Server.

Configuration Server Methods 396

EDMMDB
This method locks and unlocks the CSDB to all tasks except the Distributed
Configuration Server.

EDMMDB Parameter

option LOCK locks the CSDB to any incoming tasks except Distributed
Configuration Server.
UNLOCK makes the CSDB accessible to all incoming tasks.

Example

EDMLINK EDMMDB “OPTION=LOCK”

Return Codes

0 The method was successful.

8 An error was detected, the method failed.

Configuration Server Methods 397

EDMMGNUG
This method retrieves a list of local and global groups to which a specified
user belongs.

This method is functional in a Windows network environment only.

Usage

This method is used to issue a function call to a specific server to collect
information about the Windows group membership of a user. It does not
provide authentication of a particular user ID. These calls are issued under
security provisions of the user used to start the Configuration Server when it
runs as a normal task; or under a system account when the Configuration
Server runs as a service. See the Security Requirements below for security
limitations as defined by Microsoft.

Security Requirements

Windows NT

No special group membership is required to successfully execute the
EDMMGNUG method.

Windows 2000

If you invoke this function on a Windows 2000 domain controller that is
running Active Directory, access is determined based on the access control
list (ACL) for the securable object. The default ACL permits all authenticated
users and members of the “Pre-Windows 2000 compatible access” group to
view the information. By default, the “Pre-Windows 2000 compatible access”
group includes everyone as a member. This enables anonymous access to the
information if the system allows anonymous access.

If you invoke this function on a Windows 2000 member server or workstation,
all authenticated users can view the information. Anonymous access is also
permitted if the Restrict Anonymous policy setting allows anonymous access.

Configuration Server Methods 398

For more information on restricting anonymous access, go to the following
web site:
http://msdn.microsoft.com/library/psdk/network/ntlmapi_13zn.htm.

Method Input Parameters

The only parameter passed to the method is the name of the object containing
the request. The following table details the input parameters and defaults for
the method.

ZUSERID Required variable used as user name.

NTSRVNAM Name of the remote server on which the function is to
execute. If this parameter is NULL, the local computer is
used. The default is the local server.

ZOBJREQ Name of the response object that will contain information
about local and global (network) groups to which the user
specified in ZUSERID belongs. The default is
NTGROUPS.

Method Return Values

The EDMMGNUG method returns group membership information about a
user in the object specified in ZOBJREQ (usually NTGROUPS). The following
are the variables delivered by the method.

NTGRPLCT Number of local groups on the server to which the user
belongs.

NTGRPGCT Number of global (network) groups on the server to which
the user belongs.

NTGRPSCT Total number of groups on the server to which the user
belongs. (NTGRPLCT + NTGRPGCT)

NTGRPLxx There are as many of these variables as there are local
groups that a user belongs to on the specified server. xx =
{1, NTGRPLCT}

NTGRPGxx There are as many of these variables as there are global
groups that a user belongs to on the specified server. xx =
{1, NTGRPGCT }

Configuration Server Methods 399

MSGGRPLE An error message, returned by the Network Management
Functions, for request for the local group list to which the
user belongs.

MSGGRPGE An error message, returned by the Network Management
Functions, for request for the global group list to which the
user belongs.

NTUSER Name of the user for which the function was executed.
(This is the same as ZUSERID)

NTSRVNAM Name of the remote server on which the function was
executed.

ZMRC Return code (set in in-bound and response objects).

Configuration Server Methods 400

EDMMPUSH
This method receives input requests, gets the required parameters, and then
puts the requests to the right queues for processing by a specific Notify
Manager. An in-bound object, or even a dynamic object, created because of
the object resolution can be used to deliver requests to EDMMPUSH. The
return code associated with the in-bound object might initiate further action.
(See Chapter 3, Notifying HPCA Agents for more information.)

EDMMPUSH Parameters

nfydelay The interval for delay before trying to re-notify an HPCA agent.
The default is the value specified in the NFYT_TIMEOUT
setting of the MGR_NOTIFY section of the edmprof file.

nfyhndl The domain name of the NOTIFY File where the results of
notifications will be stored. The heap number of the request
object will become the instance name.

nfymrtry The maximum number of retries. The default is the value
specified in the NFY_RETRY setting of the MGR_NOTIFY
section of the edmprof file.

ntfyrtim HP timestamp defining the time after which the notification
should occur.

nfyproc Controls the processing of the current heap request. If Y, the
heap will be processed. If N, the request for the current heap is
ignored. The default is Y.

nfytype Defines the type of the notify requested. Valid values are:
TCP and EMAIL.
Note: Only the first three bytes of the type are used for the
identification. Therefore, EMAIL and EMA will be treated as
the same. There is no default for this variable. If it is not
defined, the current heap of the object will be ignored.

nfyuinfo Allows you to enter user information.

Example

EDMLINK EDMMPUSH ZNOTIFY

Configuration Server Methods 401

Return Codes

0 The method was successful.

8 An error was detected, the method failed.

Configuration Server Methods 402

EDMMPUTD
This method is called when EDMSENDF is used to send the ZTRANSF object
to the Configuration Server. It closes a security loophole. EDMSENDF will
not work with the version 4.4 CM Configuration Server, therefore, it is
necessary to modify your CSDB by adding a new instance in ZPROCESS and
linking it to a ZMETHOD object that invokes the EDMMPUTD method. This
will have to be done for each object that is sent to the Configuration Server
using EDMSENDF.

EDMMPUTD allows you to receive multiple data types sent by the Inventory
Manager, and enables you to specify where on the Configuration Server to
store this data.

• With EDMMPUTD, you can inject a REXX method before EDMMPUTD
gets dispatched to alter the location of the data based on appropriate
criteria or to do security validation.

• The EDMMPUTD method handles the object and data sent from the
HPCA agent’s EDMSENDF method. Thus, the specifications for the
inbound object are the same.

• PROCESS class instances must be configured for each inbound object
needing EDMMPUTD in order to receive the appended inbound data and
store it in a file.

The following table lists the attributes that EDMMPUTD expects.

Table 118 Attributes Associated with EDMMPUTD

ZRSCMFIL ZRSCMLOC ZRSCMMEM

ZRSCRASH ZRSCSTYP ZOBJCLAS

ZOBJDOMN ZOBJFILE ZOBJID

ZOBJNAME ZPERUID ZPERGID

ZEDMTYPE

The ZRSCDATE and ZRSCTIME fields are not referenced, nor are
they used to update the date/time of the file received. ZRSCSIZE
and ZCMPSIZE are ignored also. However, these attributes might
be used in the future.

Configuration Server Methods 403

EDMMRPRO
This method allows the adding, updating, and deleting of heaps in the
PRIMARY database based on the contents of the parameter object that is
passed. Each heap in the object specifies an instance to be added, updated, or
deleted.

EDMMRPRO Parameter

object The name of the in-storage object. The object can have multiple
heaps where each heap in the object represents a CSDB instance
to be altered.

Example

EDMLINK EDMMRPRO 'ANYOBJECT'

Return Codes

0 The method was successful.

>0 An error was detected, the method failed.

The instance indicates which CSDB instance will be altered by specifying five
control variables:

ZOBJCLAS Target class, for example, ZADMIN.

ZOBJDOMN Target domain, for example, SYSTEM.

ZOBJFILE Target file, for example, PRIMARY.

ZOBJNAME Target instance. This can be any valid instance name.

ZOBJFILE Target file, for example, PRIMARY.

• On a delete request, only the control variables are used to identify the
instance to be deleted, the remaining variables are ignored.

• On add and update requests, the variables in each instance contain the
values used to update the instance in the CSDB.

• The fields that can be updated are variables, class connections,
expressions, and methods.

• There are specification differences for the three field types.

Configuration Server Methods 404

However, regardless of field type, the target instances’ field lengths
determine the amount of data moved, and length adjustment is
performed, including blank padding and truncation.

Variables

Any variable name found in the parameter object and found in the target
instance will be used to update the target instance. Any variable not found in
the target instance will be ignored.

Method Fields

Method fields found in the parameter object and found in the target instance
will be used to update the target instance. Any method not found in the
target instance will be ignored.

The string before the equals sign (=) must be eight bytes long.

The methods are indicated by variables in the parameter object that are
named MTHDnnnn, where nnnn is 0001 to 9999. The value of the variable in
the object should contain

methodfieldname=xxxxxxxxxx

where methodfieldname is used to identify the target method field. For
example:

ALWAYS=SYSTEM.METHOD.SIGNON_METHOD

OR

EDMSETUP=SYSTEM.METHOD.CHECK_APPL_STATUS.***

Connection Fields

Class fields found in the parameter object and found in the target instance
will be used to update the target instance. Any variable not found in the
target instance will be ignored. The connections are indicated by variables in
the parameter object that are named CONNnnnn, where nnnn is 0001 to
9999. Types of connection fields include CONNnnnn (connection), INCLnnnn
(Includes), ALWAnnnn (Always), and REQUnnnn (Requires). The value of
the variable in the object should contain

connectionfieldname=xxxxxxxxxx

where connectionfieldname is used to identify the target class field. For
example,

ALWAYS=SOFTWARE.ZSERVICE.MY_SERVICE.

Configuration Server Methods 405

These variable names are the same format as object resolution with a
message type = _NONE_. This is designed to allow for the output of these
resolutions (sometimes referred to as reporting resolutions) to be used
unchanged as input to EDMMRPRO.

You can update specific target instances while not overwriting some existing
values (for example, EDMSETUP=) via EDMMRPRO in one of two ways:

• Each class named by the CONNnnnn, the value of the variable in the
object connectionfieldname=xxxxxxxx, needs to be specified even if it
is not the target of change and will be updated with the specified content.
Each CONNnnnn needs to be specified for each variable in the sequence
to provide a placeholder for updating the variables. For example,

CONN0001 EDMSETUP=COUNTRY.USA_EAST_COAST

CONN0002 EDMSETUP=ZSERVICE.XYZ

CONN0003 EDMSETUP=ZSERVICE.ABC

• Another way of updating specific target instances while not overwriting
some existing values is to specify a CSV (comma-separated variable)
string for the instance. Empty values specified before a comma indicates
that the connection should skip over the existing value and not update it.
For example, the format for skipping over the first two variables and
updating the third would appear as:

CONN0001 “EDMSETUP=, ,ZSERVICE.ABC”

Notes on EDMMRPRO Usage

• The file, domain, and class must already exist; EDMMRPRO will not add
any of these levels dynamically. In addition, any fields being processed
must already be defined in the target class; ZPROMANY will not modify
classes.

• Different class instances can be altered during one execution of
EDMMRPRO. However, it is not advisable to do so as certain field names
might overlap (particularly methods and connections).

• Different databases cannot be altered in one execution of EDMMRPRO.

Configuration Server Methods 406

EDMMSQLG
For a detailed description of this method, including usage, see Chapter 4, HP
SQL Methods.

Configuration Server Methods 407

EDMMSQLP
For a detailed description of this method, including usage, see Chapter 4, HP
SQL Methods.

Configuration Server Methods 408

EDMMULOG
This method writes a message returned from the execution of a REXX
method to a user log file. For this method to work, the MGR_USERLOG
section must be added to the edmprof file, and ACTIVATE= must be YES.

EDMMULOG Parameter

msg The message that will be written to the user log file. This message
is returned by a method after its execution.

Example

ADDRESS EDMLINK “EDMMULOG” MSG

Return Codes

0 The method was successful.

8 An error was detected, the method failed.

Configuration Server EDMPROF File Sample

[MGR_USERLOG]
ACTIVATE = YES
COLUMN_WIDTH = 128
DIRECTORY =
FLUSH_SIZE = 128
PIPE_SIZE = 100000
THRESHOLD = 500000

Configuration Server Methods 409

EDMSIGN
This method enables the Configuration Server to authenticate HPCA agent
and HPCA administrator sessions against the CSDB. The password that is
stored in the ZPWD variable in the specified object on the HPCA
agent/administrator is compared to that which is stored in the user’s profile
in the CSDB.

• If the passwords match, the session continues.

• If the passwords do not match, the message “PASSWORD INVALID” is
returned.

Changing Passwords

Passwords can be changed by either of the following methods.

• In the HPCA Admin Agent Explorer: specifying a new password in
ZNEWPWD and the old password in ZPWD.

• On the HPCA Admin CSDB Editor login panel: selecting the Change
Password option, and specifying the password information.

For information about HPCA agent and HPCA Administrator
password authentication, refer to the Admin User Guide.

EDMSIGN Parameter

object Specifies the name of the object from which the ZPWD variable is
extracted. If no object name is specified, the ZMASTER object is
used by default.

Example

REXX

EDMSIGN

(Uses the ZMASTER Object)

EDMSIGN & (ZCURRENT>ZCUROBJ)

Return Codes

0 The method was successful.

4 New user.

Configuration Server Methods 410

8 An error was detected, the method failed.

Configuration Server Methods 411

EDMSIGNR
This method enables the Configuration Server to authenticate sessions with
HPCA agent and HPCA administrator against an external security system
such as Windows security. The password that is stored in the ZPWD variable
in the specified object on the HPCA agent/administrator is compared to that
which is stored in the native security system for that user ID.

• If the passwords match, the session continues.

• If the passwords do not match, the message “PASSWORD INVALID” is
returned.

AIX User’s Note

This module must have a root user ID and the permissions must be
modified.
Therefore, after the binaries are installed (under non-root
credentials), use root credentials to change the ownership of this
module to root, and modify the permissions with:

chmod 4755 EDMSIGNR.

Changing Passwords

Passwords can be changed by either of the following methods.

• In the HPCA Admin Agent Explorer: specifying a new password in
ZNEWPWD and the old password in ZPWD.

• On the HPCA Admin CSDB Editor login panel: selecting the Change
Password option, and specifying the password information.

For information about HPCA agent and HPCA Administrator
password authentication, refer to the Admin User Guide.

EDMSIGNR Parameter

object Specifies the name of the object from which the ZPWD variable is
extracted. If no object name is specified, the ZMASTER object is
used by default.

Example

/*******************REXX****************************/

Configuration Server Methods 412

EDMSIGNR

(Uses the ZMASTER Object)

EDMSIGNR & (ZCURRENT>ZCUROBJ)

Return Codes

0 The method was successful.

8 An error was detected, the method failed.

Linux-specific Configuration of EDMSIGNR

This section details the configuration of EDMSIGNR for a Configuration
Server that is installed on a Linux machine.

Implementation Details

During the installation of the Linux operating system, make sure that the
Linux-PAM (Pluggable Authentication Modules) are installed (refer to sub-
instructions 1.a and 1.b that follow).

PAM libraries are free for Linux. Usually they are included on, and
installed by default from, the Linux installation CD—provided they
are not disabled while the Linux installation is being performed.

In order for ZTopTask to be able to find security modules, manual
configuration of the PAM libraries should be done in place. One of the
possible working configurations is a general PAM-configuration file (for
example, other) that is located in the directory, /etc/pam.d/. The fully
qualified file name is:

/etc/pam.d/other

This file contains the four facilities of the PAM API as the lines:

auth required /lib/security/pam_unix_auth.so

account required /lib/security/pam_unix_acct.so

password required /lib/security/pam_unix_passwd.so

session required /lib/security/pam_unix_session.so

These lines will, by default, invoke PAM-security for ZTopTask and other
applications if they request user authentication.

Configuration Server Methods 413

Considerations

There are three major things to consider.

1 Before installing the Configuration Server on a Linux machine, make
sure that:

b The kernel level is 8 or higher and is compiled for an x86 32-bit
architecture.

This includes Red Hat 8, Red Hat Enterprise 3.0 and higher, and
SuSE Enterprise 8 and higher.

d The Linux machine has PAM libraries installed at a (minimum) level
of Rev0.75 in order for EDMSIGNR to work.

The files that you should have are:

– /usr/lib/libpam.a

– /usr/lib/libpam.so

– /usr/lib/libpam_misc.a

– /usr/lib/libpam_misc.so

– /usr/lib/libpamc.a

– /usr/lib/libpamc.so

– /lib/security/pam_unix.so

– /lib/security/pam_unix_acct.so

– /lib/security/pam_unix_auth.so

– /lib/security/pam_unix_passwd.so

– /lib/security/pam_unix_session.so

2 Depending on your Configuration Server’s “task needs,” follow the HP-
recommended standard calculation of the UNIX kernel parameters as
documented in the UNIX Kernel Tuning appendix of the Getting Started
Guide.

3 Refer to the HP Engineering Note OV-ENKB01156: Cache-Memory
Management on a Radia Configuration Server and verify that the total
shared memory size that has been requested for total segments of the
Configuration Server in cache memory does not exceed the value of the
total swap file of the system. Otherwise, the Configuration Server will not
start.

http://openview.hp.com/ecare/getsupportdoc?hl=true&urlN=http://support.openview.hp.com/selfsolve/do/search&f=ss&urlB=http://support.openview.hp.com/selfsolve/do/search?action=results&fromOV=false&docid=OV-ENKB01156
http://openview.hp.com/ecare/getsupportdoc?hl=true&urlN=http://support.openview.hp.com/selfsolve/do/search&f=ss&urlB=http://support.openview.hp.com/selfsolve/do/search?action=results&fromOV=false&docid=OV-ENKB01156

Configuration Server Methods 414

Everything else is similar for other UNIX configurations of the Configuration
Server.

EDMSIGNR and SECSPAWN

In order for external security modules to access system information, most of
the UNIX platforms require root credentials. The following are manual
commands for the EDMSIGNR (all UNIX platforms) and SECSPAWN
(Linux only) modules, and should be executed after the Configuration Server
is installed.

To execute the following commands, use administrative credentials to
log on as root.

EDMSIGNR & EDMMSGNR

chown root EDMMSGNR

chmod 4777 EDMMSGNR

chown root EDMSIGNR

chmod 4777 EDMSIGNR

SECSPAWN (Linux only)

chown root secspawn

chmod 4777 secspawn

Additional Reading

• HP Engineering Note: ENKB01156: Cache-Memory Management on a
Radia Configuration Server

• A full description of the installed PAM-library can be found on a Linux
computer in /usr/share/doc/pam-0.75/.

• A short description of Linux-PAM standards can be found at
http://www.kernel.org/pub/linux/libs/pam/pre/doc/rfc86.0.txt.gz.

http://openview.hp.com/ecare/getsupportdoc?hl=true&urlN=http://support.openview.hp.com/selfsolve/do/search&f=ss&urlB=http://support.openview.hp.com/selfsolve/do/search?action=results&fromOV=false&docid=OV-ENKB01156
http://openview.hp.com/ecare/getsupportdoc?hl=true&urlN=http://support.openview.hp.com/selfsolve/do/search&f=ss&urlB=http://support.openview.hp.com/selfsolve/do/search?action=results&fromOV=false&docid=OV-ENKB01156

Configuration Server Methods 415

ZDCLASS
This method deletes a class and its associated instances from the database.

ZDCLASS will not delete data-bearing instances.

ZDCLASS Parameters

domain The 32-byte (maximum) name of the domain that houses the
class to be deleted.

class The eight-byte (maximum) name of the class to be deleted.

file The file name that contains the class to be deleted. This
parameter is optional.

Example

/***************************** REXX ****************/

 DOMAIN = 'SOFTWARE';

 CLASS = 'TESTCLAS';

 PARM = SUBSTR(DOMAIN,1,8) || SUBSTR(CLASS,1,8);

 SAY 'PARM STRING IS ' PARM;

 ADDRESS EDMLINK ZDCLASS PARM;

Return Codes

0 The method was successful.

8 An error was detected, the method failed.

Configuration Server Methods 416

ZDELINS
This method displays or deletes (from the CSDB) an instance, or range of
instances, within a class. It permits the use of wildcards (*).

Displayed instances will be written to the Configuration Server log
even if all other TRACE settings are OFF.

ZDELINS Parameters

Parameter Description

file The file that contains the instances to be displayed or
deleted.

domain The domain that contains the instances to be displayed or
deleted.

class The class that contains the instances to be displayed or
deleted.

option DISPLAY if instances are to be displayed. DELETE if
instances are to be deleted.

frominst The name or starting name of the instance to be deleted or
displayed.

toinst The instance to be deleted or displayed. Blanks in this field
indicate that it is a single instance to display or delete, not
a range.

Example

/************************ REXX ********************/

FILE = 'PRIMARY'

 DOMAIN = 'SOFTWARE'

 CLASS = 'PACKAGE';

 FROMIN = 'TSO_ ;

 TOINS = ' ;

 OPTION = 'DISPLAY';

 PARM = FILE||DOMAIN||CLASS||OPTION||FROMIN||TOINS;

 SAY 'PARM STRING IS 'PARM;

Configuration Server Methods 417

 ADDRESS EDMLINK ZDELINS PARM;

Return Codes

0 The method was successful.

8 An error was detected, the method failed.

Configuration Server Methods 418

ZDELOBJS
This method deletes an in-storage object.

This method supports the deletion of multiple objects in one call,
without spawning additional processes.

ZDELOBJS Parameters

object The name of the in-storage object to be deleted.

Example

ADDRESS EDMLINK ZDELOBJS 'ZTEST';

Return Codes

0 The method was successful.

8 An error was detected, the method failed.

Configuration Server Methods 419

ZDELPROF
This method deletes a class in the PROFILE File of the CSDB.

ZDELPROF Parameters

domain The domain that contains the object to be deleted.

class The class that contains the object to be deleted.

Example

EDMLINK ZDELPROF 'TESTP1,TESTPROF'

Return Codes

0 The method was successful.

8 An error was detected, the method failed.

Configuration Server Methods 420

ZEXIST
This method verifies the existence of classes and instances in the CSDB.

ZEXISTParameters

file The file that contains the class or instance to be verified.

domain The domain that contains the class or instance to be verified.

type The type of file.

class The class that contains the instance or class record to be
verified.

instance The instance to be verified.

Example

FILE = 'PRIMARY'
DOMAIN = 'POLICY' ;
CLASS = 'USER' ;
INST = 'USER1' ;
PARM = FILE || '.' || DOMAIN || '.' || CLASS || '.' ||
INST ;

ADDRESS EDMLINK ZEXIST PARM ;

IF RC = 0 THEN

 SAY 'QAREXX ****** OBJECT ' INST ' EXISTS;

Return Codes

0 The method was successful.

8 An error was detected, the method failed.

Configuration Server Methods 421

ZGETPROF
This method accesses the PROFILE File of the CSDB, gets the dbobject object
and puts it in storage creating an in-storage object, inobject. The domain in
the PROFILE database is the USERID, ZUSERID, which is found in the
current object or in the ZMASTER object. If ZUSERID is not found, the
method will return an error message, “Profile error: user ID not found” in the
log.

ZGETPROF Parameters

dbobject The PROFILE File object name.

inobject The name of the in-storage object to be created.

domain name The name of the domain in the PROFILE File (usually
the ZUSERID of the ZMASTER object).

instance The name of the instance. This parameter is optional.

Example

/*************** REXX ******************************/

 PARM='ZSTATUS,ZSTATUS,'ZMASTER.ZUSERID;

 ADDRESS EDMLINK ZGETPROF PARM;

/* GET OLD PROFILE.?.ZSTATUS */

Return Codes

0 The method was successful.

8 An error was detected, the method failed.

Configuration Server Methods 422

ZNFYT
This method enables you to initiate a PUSH notification (the execution of a
program or programs on an HPCA agent from another location). To execute
notify successfully, EDMEXECD must be running on the HPCA agents on
which you are executing a PUSH.

ZNFYT Parameters

“process to run” The application that you are forcing the HPCA agent
to execute.

domain The name of the domain where the notification results
are stored. If not specified, this will be automatically
generated as a function of date/time.

instance The instance name containing the results of the single
notification. If not specified, this will be automatically
generated as an eight-digit number. The default is
00000001.
Note: Only numeric names 00000000 to 99999999 are
valid. Specifying anything else will result in 00000000
replacing the erroneous name.

password The ZNFYPWD for the target terminal’s ZMASTER
object.

port The port on which the HPCA agent notify daemon is
listening. This should be the same as the HPCA
agent’s ZMASTER.ZNTFPORT port number.

target IP address The IP address of the HPCA agent device on which
you are executing a PUSH.

user ID The HPCA agent user ID.

If the domain and instance parameters are omitted, the resulting
instance will be written as:
NOTIFY.mmddyyhhmmss.NOTIFY.00000001

This does not guarantee the uniqueness of the domain name. In
addition, the instance name does not represent anything significant,
other than sequence.

Configuration Server Methods 423

Example

/*trace i*/

RC = EDMGET(“ZNFYT”,0)

NHEAPS = ZNFYT

DO CURRHEAP = 1 TO NHEAPS BY 1

 RC = EDMGET(“ZNFYT”,CURRHEAP)

 NIPADDR = ZNFYT.IPADDR

 NPORT = ZNFYT.PORT

 NUSER = ZNFYT.USER

 NPASSW = ZNFYT.PASSW

 NCMDLINE = strip(ZNFYT.CMDLINE)

 NHANDLE = ZNFYT.HANDLE

 /*** CALL ZNFYT TO ISSUE THE NOTIFY ***/

 ADDRESS EDMLINK “ZNFYT” NIPADDR || ',' || NPORT ||
',' || NUSER || ',' || NPASSW || ',”' || NCMDLINE || '“'||
',' NHANDLE || ',' || CURRHEAP;

END

UNIX User’s Note
To ensure that the UNIX process was started, type the following
command at the UNIX prompt:
ps –u [username]

Return Codes

0 The method was successful.

8 An error was detected, the method failed.

Configuration Server Methods 424

ZOBJCMPR
This method compresses an in-storage object.

ZOBJCMPR Parameter

object The name of the in-storage object to be compressed.

Example

ADDRESS EDMLINK ZOBJCMPR 'ZTEST' ;

Return Codes

0 The method was successful.

8 An error was detected, the method failed.

Configuration Server Methods 425

ZOBJCOPY
This method copies an in-storage object. The resulting object has the same
variables and number of heaps as the original object.

ZOBJCOPY Parameters

fromobject The name of the existing in-storage object to be copied.

toobject The name of the in-storage object to be created.

Example

ADDRESS EDMLINK ZOBJCOPY 'OBJECT1,OBJECT2' ;

Return Codes

0 The method was successful.

8 An error was detected, the method failed.

Configuration Server Methods 426

ZOBJDELI
This method deletes a heap of an in-storage object.

ZOBJDELI Parameters

object The name of the in-storage object from which to delete a heap.

instance# The heap number to delete.

Example

/************************ REXX *********************/

DPARM = 'TESTOBJ,'||1|| ' ';

ADDRESS EDMLINK ZOBJDELI DPARM;

Return Codes

0 The method was successful.

8 An error was detected, the method failed.

Configuration Server Methods 427

ZOBJDELV
This method deletes a variable from all heaps of an in-storage object. It
verifies the existence of the specified object and finds the specified variable in
that in-storage object. The variable value is then removed from each heap of
the in-storage object.

ZOBJDELV Parameters

object The object that contains the variable to be deleted.

variable The name of the variable to be deleted.

Example

/************************* REXX ********************/

ADDRESS EDMLINK ZOBJDELV 'TESTOBJ,VAR00001' ;

SAY 'QAREXX ****** VAR00001 DELETED FROM OBJECT
 TESTOBJ' ;

Return Codes

0 The method was successful.

8 An error was detected, the method failed.

Configuration Server Methods 428

ZOBJSORT
This method sorts the heaps of an in-storage object by the values of specified
variables and according to the desired collating sequence.

ZOBJSORT Parameters

sort sequence Ascending (SORT) or descending (SORTD).

object The name of the object to be sorted.

variable Up to three variable names can be specified.

Example

PARM1 = 'SORT,'

PARM2 = 'ZSERVICE'

PARM3 = ',ZOBJNAME,ZOBJDATE,ZOBJTIME ';

PARM = PARM1 || PARM2 || PARM3;

ADDRESS EDMLINK ZOBJSORT PARM;

Return Codes

0 The method was successful.

8 An error was detected, the method failed.

Configuration Server Methods 429

ZPROMANY
This method allows the addition and updating of instances in the PRIMARY
database, based on the contents of the parameter object that was passed.
Each heap in the object specifies an instance to be added or updated.

ZPROMANY requires that spaces be entered after commas in order
to blank out existing services in fields on the CSDB.

ZPROMANY Parameter

object The name of the in-storage object.

Example

EDMLINK ZPROMANY 'ZANYOBJECT'

Configuration Server Methods 430

ZPUTHIST
This method puts an in-storage object into the HISTORY file. It takes the
inobject that is in storage and puts it in the HISTORY file as dbobject. The
domain used in the HISTORY file is the DATE/TIME stamp found in current
object, or in ZMASTER object.

ZPUTHIST Parameters

dbobject The object name that will be put in the HISTORY file. This
parameter is optional.

inobject The object name of the in-storage object.

Example

ADDRESS EDMLINK ZPUTHIST 'ZCOMPARE,ZCOMPARE';

ADDRESS EDMLINK ZPUTHIST 'ZSTATUS';

Return Codes

0 The method was successful.

8 An error was detected, the method failed.

Configuration Server Methods 431

ZPUTPROF
This method puts an in-storage object (inobject) into the PROFILE File of the
CSDB, as dbobject. The domain in the PROFILE File is the ZUSERID found
in the inobject, or in the ZMASTER object. If ZUSERID is not found, the
dbobject is put in the domain, _UNKNOWN.

The ZPUTPROF method allows you to specify multiple objects
simultaneously.

ZPUTPROF Parameters

dbobject The object name that will be put into the PROFILE database.
The default is the object name.

domainid The value of an optional third operand can be used to specify a
domain other than ZUSERID or to eliminate the search for a
ZUSERID value.

inobject The name of the in-storage object.

Example

/************** REXX ************************************/

ADDRESS EDMLINK ZPUTPROF 'OBJECTS=ZMASTER,ZCONFIG,ZUSERID'

Return Codes

0 The method was successful.

8 An error was detected, the method failed.

Configuration Server Methods 432

ZSIMRESO
This method resolves the CSDB instance specified by the parameter string,
and the resulting objects are left in storage. Any prerequisite objects needed
for a successful resolution must already be built and in storage. For example,
to resolve:

USER.&ZUSERID

an object containing the ZUSERID variable might have to be constructed.
Otherwise, the resolution might not be completely successful.

ZSIMRESO Parameters

file The file that contains the instance to resolve.

domain The domain that contains the instance to resolve.

class The class that contains the instance to resolve.

instance The instance to resolve.

message This specifies the message for conditional resolution paths.

Example

ADDRESS EDMLINK ZSIMRESO PRIMARY,POLICY,USER,USER1,EDMSETUP

Return Codes

0 The method was successful.

8 An error was detected, the method failed.

Configuration Server Methods 433

ZTOUCH
This method updates the date/time stamp of an instance in the CSDB.

ZTOUCH Parameters

class The name of the class that contains the instance to be updated.

domain The name of the domain that contains the instance to be
updated.

instance The name of the instance to be updated.

Example

DOMAIN = “SOFTWARE”;
CLASS = “ZSERVICE”;
INST = “TEST_OBJECT”;
PARM = SUBSTR(DOMAIN,1,8)||SUBSTR
(CLASS,1,8)||SUBSTR(INST,1,32);

ADDRESS EDMLINK ZTOUCH PARM ;

Return Codes

0 The method was successful.

8 An error was detected, the method failed.

Configuration Server Methods 434

ZVARDEL
This method deletes all in-storage objects. There are no parameters
associated with ZVARDEL.

Example

ADDRESS EDMLINK “ZVARDEL”

Return Codes

0 The method was successful.

8 An error was detected, the method failed.

Configuration Server Methods 435

ZVARGBL
This method migrates values from one in-storage object to another, and then
deletes the source object.

ZVARGBL Parameters

destination Object to which the values are being migrated.

source Object from which the values are being migrated.

Only variables with appropriate flag settings will be migrated.

Example

EDMLINK ZVARGBL 'TESTSORT,TESTVGBL'

Return Codes

0 The method was successful.

8 An error was detected, the method failed.

Configuration Server Methods 436

ZVARLOG
This method writes the contents of an in-storage object to the Configuration
Server log.

EDMMOLOG will write to the Configuration Server log even if all
other TRACE settings are OFF.

ZVARLOG Parameter

object The name of the in-storage object to be displayed.

Example

ADDRESS EDMLINK ZVARLOG 'ZMASTER';

Return Codes

0 The method was successful.

8 An error was detected, the method failed.

Configuration Server Methods 437

ZUPDPROF
This method only updates profile information. It does not perform any type of
deletion.

• If toobject is not specified, the fromobject (source) name will be used.

• If user ID is not specified, the current user ID will be used.

ZUPDPROF Parameters

fromobject The source object name.

toobject The destination object name.

user ID The user ID.

Example

ADDRESS ZUPDPROF OBJECT1,OBJECT

Return Codes

0 The method was successful.

8 An error was detected, the method failed.

Configuration Server Methods 438

ZXREF
ZXREF cross references class and instance usage during object resolution,
and collects information on the cross-referenced objects. It will generate
objects that enable administrators to cross reference users with any, and all,
Departments, Workgroups, and Services with which they are affiliated
(connected).

To implement the ZXREF method

1 Add new method instances to the METHOD class. Some are methods to
create the objects from the PRIMARY database and others are to write
these objects to the PROFILE database.

2 Update the Configuration Server process (ZMASTER) used during the
HPCA agent connect process by adding new methods to
SYSTEM.PROCESS.ZMASTER.

3 Update your class templates, if necessary, to add new method attributes.

4 Update the _BASE_INSTANCE_ to specify the method instances to be
executed.

ZXREF Parameter

object The name of the object containing the cross referenced
information.

Return Codes

0 The method was successful.

8 An error was detected, the method failed.

Configuration Server Methods 439

440

Index

.

.edmprof, 30

/
/rexx directory, 125

/rexx/NOVADIGM directory, 125

A
ACALLADM, 146

access control list, 397

access levels, 7

access rules, 36

ACCESSA, 146

ACCESSC, 146

ACL. See access control list

ACTIVATE, 113

ACTSKCON, 153

ACTSKMON, 153

ADD_FIELD, 262, 266

address

broadcast, 188
class C, 190
destination IP, 190
generic broadcast, 190
IP, 190
MAC, 189
network, 190

ADMIN, 36, 108

Admin Configuration Server Database Editor. See
Admin CSDB Editor

ADMIN_LIST, 57

ADMIN_TIMEOUT, 104

ADMPROM, 108

AGENT, 147

ALL, 108

ALLOC, 108

ALLOCATION_SIZE_ERROR_THRESHOLD, 79

ALLOCATION_SIZE_REPORTING_THRESHOLD,
79

ALLOW_DUPLICATE_INSTANCES, 75

ALLOW_DUPLICATE_IP_ADDRESS, 97

ALRLIMIT, 153

ALSLOTS, 153

ALVINTVL, 153

ALWAYS_CALL_ZADMIN, 75

ARGS.XML file, 24

as-installed value, defined, 31

attach parameter, EDMMAILQ, 391

ATTACH_LIST_SLOTS, 38, 40

attaching tasks, Configuration Server, 38

AUDFLAG, 154

AUDIT, 108

AVERAGE_OBJECT_SIZE, 41, 373

B
backing up, Configuration Server, 24

backing up, Configuration Server Database, 24

bandwidth throttling, 374

BASEDN, 88

bin directory, 24

broadcast address, 188

BUFF, 108

BUFTCP, 106, 150

BUILD_PATCH, 262, 267

Index 441

BUILD_STAGING_POINT, 262, 268

BUSY_RETRY, 84

byte level differencing, 146

BYTE_LEVEL_DIFF, 97

BYTELEVD, 146

C
CA certificate, 95

CA root certificate, 384

CA_FILE, 95

CACCLOSE, 152

CACERT.PEM, 385

CACERTIFICATES directory, 385

CACFULL, 152

cache, 388

CACHE_SEGMENTS, 41, 373

CACHE_SIZE, 41, 373

CACHE_STATS, 41

cache-processing options, 41

caching, 394

CACMAXE, 152

CACSEGS, 152

CACSIZE, 152

CACSTATS, 152

CAFILE, 385

CERTIFICATE_FILE, 95

CHANGE_FIELDNAME, 263, 270

CHANGE_FLD_VALUE, 263, 271

CHANGE_INS_FIELD, 263, 274

CHANGE_INST_DATA, 263, 273

CHAR, 243

CHECK_RESOURCES, 263, 276

CHGCONS, 311

class C address, 190

class parameter

ZDCLASS, 415
ZDELINS, 416
ZDELPROF, 419
ZEXIST, 420
ZSIMRESO, 432
ZTOUCH, 433

CLKMGRID, 145

CLONE_INSTANCE, 263, 277

CMD_LINE, 38, 40

CMPR, 108

COLUMN_NAME, 232, 240

COMM, 109

COMMAND class, 169

instance, 172

COMMCBS, 109

COMMDATA, 109

COMMRPLS, 109

Component classes, 44

COMPSEED, 148

CONFIG, 109

Configuration Server, 20

activity log, 25
attaching tasks, 38
backing up, 24
benefits, 21
configuring as an SQL server client, 201
configuring SQLTABLE class, 235
content caching, 372
CPU, 370

object resolution, 370
customizing processing, 125
edmprof file

edmprof, 30
edmprof.dat, 30
example, 32
format, 32
MGR_ACCESS, 36
MGR_ATTACH_LIST, 38
MGR_CACHE, 41
MGR_CLASS, 46
MGR_DB_VERIFY, 49
MGR_DIAGNOSTIC, 51

Index 442

MGR_DIRECTORIES, 53
MGR_DMA, 57
MGR_ERROR_CONTROL, 59
MGR_LOG, 60
MGR_MESSAGE_CONTROL, 70
MGR_METHODS, 72
MGR_NOTIFY, 73
MGR_OBJECT_RESOLUTION, 75
MGR_POLICY, 77
MGR_POOLS, 78
MGR_RESOLUTION_FILTERS, 83
MGR_RETRY, 84
MGR_RIM, 86
MGR_RMP, 87
MGR_ROM, 88
MGR_SMTP_MAIL, 89
MGR_SNMP, 92
MGR_STARTUP, 97
MGR_TASK_LIMIT, 102
MGR_TIMEOUT, 104
MGR_TRACE, 108
MGR_USERLOG, 113
OBJECT_SIZES, 116, 131
RCS_TUNING_CONTROL, 118
section list, 32
SECTION_DELIMITERS, 121
sections, 28
viewing, 30

index caching, 372
log file, 28

functions, 28
troubleshooting SQL methods, 250

log viewer, 25
memory, 372
methods, 158

EDMMSQLG, 212
EDMMSQLP, 212
functions, 159
must run methods, 161
naming standards, 160
SQL methods, 211

EDMMSQLG, 212

EDMMSQLP, 212
network, 374

bandwidth throttling, 374
operations, 124
performance, 28
performance and usage considerations, 369

performance issues, 369
processing, 123
REXX programs, 125
tasks, 39

diagnostic, 39
Notify retry, 39
patch building, 39
REXX, 39
SMTP, 39
SNMP, 39
SSL, 39
TCP, 39
utility, 39

tasks table, 39
troubleshooting, 377
tuning, 28
version information, 25
version.nvd, 25

Configuration Server Database, 20, 21

backing up, 24
description, 22

Configuration Server Database Editor. See Admin
CSDB Editor

configuring multiple Managers for notify, 179

CONSOLE, 36

content caching, 372

COPY_CLASS, 263, 278

COPY_DATA, 263

COPY_DOMAIN, 263, 279

COPY_FIELD, 263, 281

COPY_INSTANCE, 263, 282

COPY_NEW_SUFFIX, 263, 284

COPY_RESOURCE, 263, 282

copyright notices, 2

Core servers, 23

CREATE_INSTANCES, 263, 285

CS Database. See Configuration Server Database

CSDB. See Configuration Server Database

components, description, 159

CSDBEditor. See Admin CSDB Editor

Index 443

CTRLFILE, 213, 231, 237

CTRLOBJ, 213, 231, 237

customer support, 7

customizing, REXX programs, 126

D
DATA, 109

Data Source Name. See DSN

Database. See Configuration Server Database

Database Editor. See Admin CSDB Editor

database verification, 49

DATE/TIME (TIMESTAMP), 244

DB directory, 24

DB_AUTOFIX, 49

DBASE, 147

DBAUTOFIX, 153

DBEEMAIL, 153

DBERROR, 59

DBESHTDN, 153

DBESNMP, 153

DBLCKCNT, 146

DBLUDATE, 146

DBLUTIME, 146

dbobject parameter

ZGETPROF, 421
ZPUTHIST, 430
ZPUTPROF, 431

DBPATH, 53, 151

DBPHIST, 151

DBPNOTI, 151

DBPPRIM, 151

DBPPROF, 151

DBPRESO, 151

DBPSECO, 151

DBSTATUS, 146

DBVERIFY, 153

DDN. See drag-and-drop

DECIMAL, 244

DEEPRESO, 147, 154

DELETE_CLASS, 263, 286

DELETE_COMP_ORPHS, 263, 287

DELETE_DOMAIN, 263, 288

DELETE_FIELD, 263, 289

DELETE_INSTANCE, 263, 290

DELETE_ORPHANS, 263, 292

DELETE_RESOURCE, 293

DES, 109

desired state, 385

destination broadcast address, 190

destination parameter, ZVARGBL, 435

DESTOBJ, 214, 231, 236

considerations, 223
parameter, 223
variable, 217

DIADBYTE, 153

DIAGNOSTIC_INTERVAL, 51

DIAGNOSTIC_MIN_ LOG _BYTES, 51

DIAGNOSTIC_MIN_DB_BYTES, 51

DIAINTVL, 153

DIALBYTE, 153

DIRECTORY, 60, 113

directory paths, specifying, 53

DISA_RETRY, 84

DISABLE_NT_EVENT_LOGGING, 60

DISABLE_SNMP_TRAP_LOGGING, 60

Distributed Configuration Server, 57, 349, 388, 396

prefix, 331

DMA, 109

DMA_STAGE, 57

DMA_TIMEOUT, 57

Index 444

DMASPATH, 151

DMSECMTH, 153

DNS_SERVER, 89

DNYDUPIP, 146

documentation updates, 4

DOMAIN, 147

domain parameter

ZDCLASS, 415
ZDELINS, 416
ZDELPROF, 419
ZEXIST, 420
ZGETPROF, 421
ZNFYT, 167
ZNFYT, 422
ZSIMRESO, 432
ZTOUCH, 433

DOMAIN.CLASS, 83

domainid parameter, ZPUTPROF, 431

DOUBLE, 243

drag-and-drop, 168, 186

destination instance, 169
source instance, 169
without Admin CSDB Editor, 173

DSCOMPI, 149

DSCOMPO, 149

DSCOMPT, 149

DSML_HOST, 88

DSML_PORT, 88

DSN, 242

configuring, 242

E
EDIT_CLASS_PREFIX, 264, 294

EDM_TIMESTAMP, 183

EDMAMS, 253, 262

ADD_FIELD, 266
CHANGE_FIELDNAME, 270
CHANGE_FLD_VALUE, 271
CHANGE_INS_FIELD, 274

CHANGE_INST_DATA, 273
CHECK_RESOURCES, 276
CLONE_INSTANCE, 277
COPY_CLASS, 278
COPY_DOMAIN, 279
COPY_FIELD, 281
COPY_INSTANCE, 282
COPY_NEW_SUFFIX, 284
COPY_RESOURCE, 282
CREATE_INSTANCES, 285
DELETE_CLASS, 286
DELETE_COMP_ORPHS, 287
DELETE_DOMAIN, 288
DELETE_FIELD, 289
DELETE_INSTANCE, 290
DELETE_ORPHANS, 292
DELETE_RESOURCE, 293
EDIT_CLASS_PREFIX, 294
EXPORT_INSTANCE, 298
EXPORT_RESOURCE, 300
IMPORT_CLASS, 302
IMPORT_INSTANCE, 304
IMPORT_RESOURCE, 316
invoking verbs, 255
keywords, 255

LOGFILE, 259
LIST_CLASSES, 318
LIST_CONNECTS, 319
LIST_CONS_VARS, 320
LIST_DOMAINS, 321
LIST_FLAGS, 322
LIST_INST_DATA, 323
LIST_INSTANCE, 324
LIST_PACKAGE, 325
LIST_PREFIX, 326
LIST_RESOURCES, 327
LIST_ZRSC_FIELDS, 328
MATCH_RESOURCES, 329
PACKAGE_UNMATES, 330
REFRESH_DMA, 331
RENAME_INSTANCE, 333
SEARCH_INSTANCES, 334
SORT_OBJECT_ID, 335
specifying multiple verbs, 258
SYNC_CLASS, 336
syntax, 255

Index 445

UPDATE_INSTANCES, 337
UPDATE_MGRIDS, 339
values, 256
verb, 255
VERIFY_CLASS, 340
VERIFY_DATABASE, 341
wildcards

explicit, 259
implicit, 259

ZRSOURCE_UNMATES, 342

EDMEXECD, 166

needed for Notify, 422

EDMGET, 133

EDMGETV, 135

EDMLINK, 159

EDMMAILQ, 159, 388, 391

EDMMCACH, 159, 388, 394

EDMMCMPR. See ZOBJCMPR

EDMMCOPY. See ZOBJCOPY

EDMMDB, 159, 388, 396

EDMMDCLA. See ZDCLASS

EDMMDELI. See ZOBJDELI

EDMMDELV. See ZOBJDELV

EDMMDINS. See ZDELINS

EDMMDOBJ. See ZDELOBJS

EDMMDPRO. See ZDELPROF

EDMMEXIS. See ZEXIST

EDMMGNUG, 388, 397

parameters, 398
return values, 398
security requirements, 397

EDMMGPRO. See ZGETPROF

EDMMNFYT. See ZNFYT

EDMMOLOG. See ZVARLOG

EDMMPHIS. See ZPUTHIST

EDMMPPRO. See ZPUTPROF

EDMMPROM. See ZPROMANY

EDMMPUSH, 174, 182, 188, 388, 400

control variables, 176
description, 174
for Wake-On-LAN, 167
input object, 175
input variables, 176

EDMMPUSH notify diagram, 175

EDMMPUTD, 388, 402

EDMMRESO. See ZSIMRESO

EDMMRPRO, 388, 403

EDMMSGNR. See EDMSIGNR

EDMMSIGN. See EDMSIGN

EDMMSORT. See ZOBJSORT

EDMMSQLG, 195, 197, 198, 199, 202, 211, 222, 388,
406

defining as a method, 215
invoking, 215
SELECT, 212
UPDATE, 212

EDMMSQLG/EDMMSQLP

Configuration Server log, 250
control information, 230, 235

content, 235
delivery, 236
required, 235

control parameters, 231
design considerations, 249
troubleshooting, 250

ODBC tracing, 251
VC pairs, 239

COLUMN_NAME, 240
PUTTYPE, 241
specifying, 240
U subparameter, 240
VARNAME, 240
WHERE clause, 241

EDMMSQLP, 197, 198, 199, 202, 211, 212, 388, 407

defining as a method, 215
INSERT, 212, 236
invoking, 222, 223
method, 228
PUTTYPE, 213, 233
REPLACE, 236

Index 446

U subparameter, 234

EDMMTUCH. See ZTOUCH

EDMMULOG, 388, 408

EDMMVDEL. See ZVARDEL

EDMMVGBL. See ZVARGBL

EDMMXREF. See ZXREF

EDMPASS, 172

edmprof file, 30, 345

example, 32
format, 32
RadDBUtil, 345
section list, 32
viewing, 30

EDMRESO, 138

EDMSENDF, 402

EDMSET, 137

EDMSETUP connection attribute, 221

EDMSETV, 137

EDMSIGN, 388, 409

EDMSIGNR, 388, 411

EDMSNDF method, 402

EDMTIMER, 166

EDMWAKE, 74, 188, 192

EMAIL for drag-and-drop, 172

EMAIL Notify, 178

EMAILATT, 178

EMAILFRM, 178

EMAILMFN, 178

EMAILMSG, 178

EMAILSUB, 178

EMAILTO, 178

emergency distribution of software, 166

ENQDEQ, 109

ERREMAIL, 153

event points, 126

EVENTLOG, 70

EXPL, 109

EXPORT_CLASS, 264, 296

EXPORT_INSTANCE, 264, 298

EXPORT_PATH, 53

EXPORT_RESOURCE, 264

EXPTPATH, 151

F
FILE, 109

object, 371

FILE object, 229

file parameter

ZDCLASS, 415
ZDELINS, 416
ZEXIST, 420
ZSIMRESO, 432

FLOAT, 244

FLUSH_SIZE, 113, 379

FREEMAIN, 154

from parameter, EDMMAILQ, 391

frominst parameter

ZDELINS, 416

fromobject parameter

ZOBJCOPY, 425

fromobject parameter, ZUPDPROF, 437

G
generic broadcast address, 190

GET_REMOTE_HOST_NAME, 106

H
HISTORY, 146

HISTORY file, 430

HP SQL methods, 194

HPCA agent

connect
defined, 165

Index 447

manual, 165
notify, 165
timed, 165

IP address
ZCIPADDR, 172
ZIPNAME, 172

HPCA Core, 21, 376

HPCA Satellite, 21, 376

HTTP, virtual IP addresses, 383

HTTP_HOST, 77, 86, 87

HTTP_PORT, 77, 86, 87

I
ICACHE_COUNT_ERROR, 41

ICACHE_LOAD_TYPE, 42

ICACHE_SIZE, 42, 373

ICACLOSE, 152

ICASIZE, 152

IDMSYS, 385

IMPL, 109

IMPORT_CLASS, 264, 302

IMPORT_INSTANCE, 264, 304

IMPORT_RESOURCE, 264, 316

index caching, 372

inobject parameter

ZGETPROF, 421
ZPUTHIST, 430
ZPUTPROF, 431

instance parameter

ZEXIST, 420
ZGETPROF, 421
ZNFYT, 167, 422
ZOBJDELI, 426
ZSIMRESO, 432
ZTOUCH, 433

in-storage object, 389

compressing, 424
copying, 425
creating, 425

definition, 159
deleting, 418
deleting a heap, 426
deleting a variable, 427
displaying, 436
name, 431
object name, 430
sorting heaps, 428

INTEGER, 243

internet directory, 24

internet protocol addressing structures, 23

IP address, 190

specifying for a HPCA agent, 172

IP Networking Support, 23

IP version 4, 23

IP version 6, 23

IPv4, 23

IPv6, 23

ISSUE_WAKE_ON_LAN, 73

K
KEY_FILE, 95

KEY_PASSWORD, 95

keywords, EDMAMS, 255

L
LALLTCP, 146

LD_LIBRARY_PATH, 384

legal notices

copyright, 2
restricted rights, 2
warranty, 2

lib directory, 24

license reclamation, 67

LICERROR, 146

LIMIT=CLOSE, 38

LIST_CLASSES, 264, 318

LIST_CONNECTS, 319

Index 448

LIST_CONS_VARS, 264, 320

LIST_DOMAINS, 264, 321

LIST_FLAGS, 264, 322

LIST_INST_DATA, 264, 323

LIST_INSTANCE, 264, 324

LIST_PACKAGE, 264, 325

LIST_PREFIX, 264, 326

LIST_RESOURCES, 264, 327

LIST_ZRSC_FIELDS, 265, 328

LOCK, 396

LOG, 70

log directory, 24

log switching, 64

LOG_LIMIT, 72

LOGBPIPE, 150

LOGDIR, 150

LOGELOFF, 150

LOGFFREQ, 150

LOGFLUSH, 150

LOGFSIZE, 150

LOGLNCNT, 150

LOGLNTSK, 149

LOGMDATE, 150

LOGMGRID, 145

LOGMLDEL, 150

LOGMPREF, 150

LOGMRDEL, 150

LOGMWIDT, 150

LOGPSIZE, 150

LOGSFREQ, 150

LOGSLOFF, 150

LOGSTINT, 150

LOGSWITC, 150

LOGTHRES, 150

LONGVARCHAR, 243

LOOKASID, 109

M
MAC. See Media Access Control

MAIL_DIR, 89

MAIL_TIMEOUT, 89

MANAGER_TYPE, 97

mask, subnet, 190

MATCH_RESOURCES, 265, 329

MAX_TIME_IN_SPOOL, 89

MAXIMUM_CLASS_INSTANCES, 119

MAXIMUM_MEG_CACHE, 118

MAXIMUM_SHARED_MEMORY_SEGMENTS, 118

MAXIMUM_SHARED_MEMORY_SIZE, 118

MAXREC, 106, 150

MAXRESAL, 148

MAXRESCL, 148

MAXRSTSK, 150

Media Access Control, 188

MEMORY_TYPE, 97

MEMTYPE, 146

mesgfile parameter, EDMMAILQ, 391

message parameter

EDMMAILQ, 391
ZSIMRESO, 432

MESSAGE_DATE, 60

MESSAGE_DELIMITER, 61

MESSAGE_PREFIX, 61

MESSAGE_WIDTH, 61, 113

METHDLLS, 153

METHOD, 109

METHOD instance, 161

METHOD_PATH, 53

MGR_ACCESS, 36, 378

Index 449

example, 36
settings, 36
values, 36

MGR_ATTACH_LIST, 38, 179, 181, 379, 380, 383,
385

example, 39
settings, 38
values, 40

MGR_CACHE, 41, 129, 130, 131, 372

example, 42
settings, 41
values, 42

MGR_CLASS, 46, 129, 373, 379

example, 47
settings, 46
values, 47

MGR_DB_VERIFY, 49

example, 49
settings, 49
values, 49

MGR_DIAGNOSTIC, 51

example, 51
settings, 51
values, 51

MGR_DIRECTORIES, 53

example, 54
settings, 53
values, 54

MGR_DMA, 57

example, 57
settings, 57
values, 58

MGR_ERROR_CONTROL, 59

example, 59
settings, 59
values, 59

MGR_ID, 98

MGR_LOG, 60, 379

example, 62
settings, 60
values, 63

MGR_MAIL_ID, 89

MGR_MESSAGE_CONTROL, 70

example, 70
settings, 70
values, 70, 71

MGR_METHODS, 72, 379

example, 72
settings, 72
values, 72

MGR_NAME, 98

MGR_NOTIFY, 73, 400

example, 73
settings, 73
values, 74

MGR_OBJECT_RESOLUTION, 75

example, 75
settings, 75
values, 75

MGR_POLICY, 77

example, 77
settings, 77
values, 77

MGR_POOLS, 78

example, 79
settings, 78
values, 79, 80

MGR_RESOLUTION_FILTERS, 83

example, 83
settings, 83
values, 83

MGR_RETRY, 84

example, 84
settings, 84
values, 84

MGR_RIM, 86

example, 86
settings, 86
values, 86

MGR_RMP, 87

example, 87
settings, 87

Index 450

values, 87

MGR_ROM, 88

example, 88
settings, 88
values, 88

MGR_SMTP_MAIL, 89, 391

example, 89
settings, 89
values, 90

MGR_SNMP, 92

example, 93
settings, 92
values, 94

MGR_SSL

example, 96
settings, 95

MGR_STARTUP, 97

example, 99
settings, 97
values, 99

MGR_TASK_LIMIT, 102

example, 102
settings, 102
values, 102

MGR_TIMEOUT, 104, 374

example, 104
settings, 104
values, 104

MGR_TPINIT

example, 106
settings, 106
values, 106

MGR_TRACE, 108

example, 110
settings, 108

MGR_USERLOG, 113, 408

example, 113
settings, 113
values, 114

MGR_UUID, 98

MGRID, 147

MGRNAME, 147

MGRSETFI, 151

MGRTYPE, 145

Microsoft SQL Server

with UNIX Configuration Server, 203

MINIMUM_INSTANCES, 119

MINIMUM_MEG_CACHE, 118

MODNAMLO, 146

MODVERLO, 146

msg parameter, EDMMULOG, 408

MSGGRPGE variable, EDMMGNUG, 399

MSGGRPLE variable, EDMMGNUG, 399

MSGONERR variable, 161

MTHLIBEN, 154

MTHLIBHA, 154

MTHLIBNA, 154

MTHMLIMI, 151

MTHNAME, 154

MTHPATH, 151

MTHTHPRM, 154

MTHTIMEO, 151

multiple file collection, 388, 402

multiple Managers, notify, 178

must run methods, 161

mutex semaphore, 178

N
network address, 190

NFY_RETRY, 176

setting, 73, 400

NFYCMD, 177

NFYDELAY, 176

nfydelay parameter, EDMMPUSH, 400

NFYHNDL, 176

nfyhndl parameter, EDMMPUSH, 400

Index 451

NFYIPADR, 177

NFYIPORT, 177

NFYMAC, 177

NFYMRTRY, 176

nfymrtry parameter, EDMMPUSH, 400

NFYPASSW, 177

NFYPROC, 176

nfyproc parameter, EDMMPUSH, 400

NFYT_TIMEOUT, 73, 176, 400

NFYTYPE, 176

nfytype parameter, EDMMPUSH, 400

NFYUINFO, 176

nfyuinfo parameter, EDMMPUSH, 400

NFYUSER, 177

non-Component classes, 44

notify daemon, 172

NOTIFY file, 181, 400

notify function

and the HPCA agent connect, 165
and ZNFYxSTA, 128
configuring multiple Managers, 179
diagram, 167, 175

EDMMPUSH, 175
Simple, 167

drag-and-drop, 168, 186
EMAIL, 178
emergency distribution, 166
initiating, 164
multiple Managers, 178

configuring, 179
overview, 164
retry queue, 180
TCP/IP, 177
types, 166

EDMMPUSH, 174
GUI-Configured, 168
Simple, 166

versus EDMTIMER, 166
when to use, 166

NOTIFY setting for MGR_TRACE, 109

NTFYRTIM, 176, 182, 183

DST, 184
GMT, 184
time zone adjustments, 184

daylight saving time, 186
time zone offsets, 185

ntfyrtim parameter, EDMMPUSH, 400

NTGRPGCT variable, EDMMGNUG, 398

NTGRPGxx variable, EDMMGNUG, 398

NTGRPLCT variable, EDMMGNUG, 398

NTGRPLxx variable, EDMMGNUG, 398

NTGRPSCT variable, EDMMGNUG, 398

NTSRVNAM variable, EDMMGNUG, 398, 399

NTUSER variable, EDMMGNUG, 399

NUMERIC, 244

NvdCurrentObjects, 139

NvdDBFind, 327

NvdL2U, 142

NvdObjectInfo, 140

NvdObjectInfoEX, 141

NvdU2L, 142

O
OBJCRC, 109

object parameter

EDMMRPRO, 403
EDMSIGN, 409
EDMSIGNR, 411
ZDELOBJS, 418
ZOBJCMPR, 424
ZOBJDELI, 426
ZOBJDELV, 427
ZOBJSORT, 428
ZPROMANY, 429
ZVARLOG, 436
ZXREF, 438

OBJECT_FORMAT, 98

OBJECT_SIZES, 116, 131

example, 116

Index 452

OBJNMASK, 149

OBJRES, 109

OBJRES1, 109

OBJRESO, 109

OBJSRECV, 155

OBJSRESO, 155

OBJSSENT, 155

OBJXFER, 109

ODBC, 194, 242

connection, 200
data source

configuring, 196

Microsoft Access, 198

Microsoft FoxPro 2.6, 196

Microsoft Visual FoxPro, 197
defining, 195
prerequisites, 195

tracing, 251
EDMMSQLG/EDMMSQLP, 251

OKDUPINS, 146

Open Database Connectivity. See ODBC

OpenSSL, 384

option parameter

EDMMCACH, 394
EDMMDB, 396
ZDELINS, 416

OSNAME, 143

P
PACKAGE, 130

PACKAGE class, 263

PACKAGE class instances, 265

PACKAGE_UNMATES, 265, 330

PARMLIB, 121

PASSWORD, 109

password parameter, ZNFYT, 167, 422

Patch Manager, 346

performance of the Configuration Server, 28

PIPE_SIZE, 61, 113

PLCONTIG, 148

PLCSCRED, 149

PLCSCUSH, 149

PLEXPSIZ, 148

PLGLBHEP, 148

PLMSCUSH, 149

PLPOLHWM, 149

PLPSGUAR, 149

PLSTATUS, 148

POLCYSVR, 153

POOLMISS, 109

port parameter, ZNFYT, 167, 422

PROCESS class instances, 402

process to run parameter, ZNFYT, 167, 422

PROFILE, 109

PROFILE file, 421

object name, 421

PROMOTE, 109

Proxy Server, 385

description, 385

pulling software, defined, 165

PUSH, notification, 422

pushing software, defined, 165

PUTTYPE, 214, 232, 233, 234, 239, 241, 246

Q
QUITASKS, 146

QUITRANS, 146

R
RadDBUtil

components, 344
DELETE

example, 365

Index 453

deleting bulletins, 360
edmprof file, 345
edmprof file settings, 346

MGR_DIRECTORIES, 347
MGR_LOG, 347
MGR_STARTUP, 347

examples, 362
DELETE, 365
EXPORT, 363
IMPORT, 362
RCS, 366

EXPORT
example, 363

export decks, 356
IMPORT

example, 362
MSI files, 354
output files, 355, 358

conditional, 355

XPI, 355

XPR, 355
standard, 355

raddbutil.audit.log, 355

raddbutil.log, 355

stderr, 355
Patch Manager, 346

export, 346
import, 346

processes, 344
RCS

example, 366
return codes, 361
verbs, 347

DELETE, 358
EXPORT, 356
formats, 347
IMPORT, 349
LOG, 348
RCS, 361
syntax, 347
VERSION, 348

raddbutil.exe, 344

RADEXECD, 164, 166

RADIA.DBF, 239

RC_SKIP_NOTIFY, 128

RCS_TUNING_CONTROL, 118

example, 119
settings, 118
values, 119

REAL, 243

reclaiming licenses, 67

RECOVERY_DOMAIN, 73

REFRESH_DMA, 265, 331

REMIPNAM, 158

RENAME_INSTANCE, 265, 333

re-notify an HPCA agent, 176

REPLACE statement, 233, 246

REPLACE, SQL statement, 234

RESOURCE, 109

RESOURCE file, 263

RESTART, 38, 40

RESTART_LIMIT, 38, 40

restricted rights legend, 2

RETRY

domain, 181
value, 380

Retry Manager, 181

scheduling delays, 182

RETRY_INTERVAL, 89

RETRYBUS, 149

RETRYDIS, 149

REXALLOC, 145

REXDISAB, 146

REXEC protocol, 177

REXX, 70, 109

directories, 125
functions, 133

EDMGET, 133
EDMGETV, 135
EDMRESO, 138
EDMSET, 137
EDMSETV, 137

Index 454

method, 402
programs, 125

customizing, 126
event points, 126
ZINIT, 127
ZLOGSWCH, 129
ZLOGWRAP, 129
ZNFYxEND, 128
ZNFYxSTA, 128
ZPCACHE, 127
ZSHUTDWN, 129
ZSTARTUP, 127
ZTASKEND, 127
ZTASKSTA, 127

rexx directory, 24, 125

REXX_PATH, 53

rexx\NOVADIGM directory, 125

REXXOFF, 109

REXXPATH, 151

RIM, 153

RMP, 153

RUN_AS_EXTENSION, 92

S
Satellite servers, 23

SEARCH_INSTANCES, 265, 334

SECTION_DELIMITERS, 121

example, 121
settings, 121
values, 121

Secure Sockets Layer. See SSL

security

requirements, 397
systems, 388

SECURITY_METHOD, 57

semaphore, 178

SEND_THROTTLE, 104, 374

shell directory, 24

SHORTSTO, 154

SHOW_VERINFO, 98

SHTINDIC, 145

SHTLGMGR, 145

Simple Notify diagram, 167

SIMTSKPC, 151

SMALLINT, 243

SMDNSSRV, 152

SMLOCHST, 152

SMMAILDR, 152

SMMAXSPL, 152

SMMGRMID, 152

SMRETRYI, 152

SMSMTPRT, 152

SMSPLCNT, 152

SMTIMEO, 152

SMTP_PORT, 89

SNCMNT, 153

SNDTHRTL, 149

SNIPADD, 152

SNLOGPRT, 152

SNMGRPRT, 152

SNMIPAD, 152

SNMP_COMMUNITY, 92

SNMP_IP_ADDR, 92

SNMP_MANAGER_IP_ADDR, 93

SNMP_MANAGER_PORT, 93

SNMP_PORT, 93

SNMP_SET_COMMUNITY, 93

SNMP_ZERROR_SEVERITY, 93

SNMPTRAP, 70

SNPORT, 152

SNRUNEXT, 152

SNSTCMNT, 153

SNZERSEV, 153

sort sequence parameter, ZOBJSORT, 428

Index 455

SORT_OBJECT_ID, 265, 335

source parameter, ZVARGBL, 435

SQCNTRL object, 228

SQL

column data types, 243
data exchange with ODBC database, 194

prerequisites, 195
database, 194, 211

ZCMDUINF, 171
database information, 242
DSN database, 236
HP methods, 194

keywords, 213

CTRLFILE, 213

CTRLOBJ, 213

DESTOBJ, 214

PUTTYPE, 214

SQLDSN, 214

SQLPASSW, 214

SQLTABLE, 214

SQLTOUT, 214

SQLUSER, 214

SRCOBJ, 214

VC keyword, 214

WHERE, 214
link interface, 205
methods, 211

WHERE clause, 211
SELECT statement, 233
Servers, 199

UNIX, 203
Windows NT, 200

table, 230
UPDATE statement, 233

SQLCNTL object, 237

SQLDSN, 214, 231, 239, 246, 247, 248

SQLDSN keyword, 242

sqlnkcau utility, 205

SQLPARMS, 238

SQLPASSW, 214, 232, 239, 246, 247, 248

SQLPHDW, 226

SQLPHDW file, 228

SQLPHDW method, 228

SQLSRC, 246

SQLSVR01, 246

SQLTABLE, 214, 232, 239, 246, 247, 248

SQLTABLE class, 235

SQLTABLE instance, 218

SQLTOUT, 214, 232, 239, 246, 247, 248

SQLUSER, 214, 232, 239, 246, 247, 248

SRCOBJ, 214, 231, 236, 239, 246, 247, 248

considerations, 230
parameter, 230

SSL, 384

certificate authority, 385
root certificate, 384

SSL Manager, 382

SSL_PORT, 96

STABTLEG, 157

STABTRES, 157

STATINTV, 151

STATPATH, 151

STATS, 110

STBBSENT, 156

STCLASSA, 147

STCLASSR, 147

STCONSOL, 157

STCOWAIT, 156

STDERR, 257

STDOMANA, 147

STDOMANR, 147

STDRAINS, 157

STEOT, 157

STFORTER, 157

Index 456

STHRDLCK, 157

STMETMES, 157

STMSGLIM, 157

STNODSCO, 157

STNOPDS, 157

STNOSNAP, 156

STNOSUB, 157

STOCRCUR, 154

STOCRCUS, 154

STOCRHEP, 154

STOCRPOO, 154

STOCRPVT, 154

STOCRSTK, 154

STORAGE, 110

STPARSES, 157

STPWDVER, 156

STREXMET, 157

STSESEST, 157

STSESLST, 157

STSESSND, 157

STSESTER, 157

STSSRESO, 157

STSTRLOG, 157

STTIMOUT, 156

STTIMSND, 157

STTSKABN, 157

STTSKINA, 157

STUSEMET, 157

subject parameter, EDMMAILQ, 391

subnet mask, 190

SUBNET_MASK, 73, 192

SUBST, 110

SWITCH_TOD, 61, 64, 67

SYNC_CLASS, 265, 336

SYSPATH, 151

T
target IP address, 190

parameter, ZNFYT, 167, 422

TASK_HEAP_SIZE, 102

TASK_LOG_LIM, 102

TASK_RESO_LIM, 102

TASK_STACK_SIZE, 102

TASK_TYPE, 98

TASKID, 154

TASKLIM, 102

TASKPAR, 154

TASKTYPE, 146, 154

TCP, 110

TCP/IP Notify, 177

TCP/IP tunneling, 384

TCP_PORT, 98

TCPPORT, 147

TCPRHNAM, 146

TCPUSRID, 147

technical support, 7

TEST, 110

THRESHOLD, 61, 64, 67, 113

setting, 379

throttling bandwidth, 374

TIMEOADM, 149

TIMEOCOM, 149

TIMEODMA, 149

TIMEONCM, 149

TIMEONFD, 149

TIMEONFS, 149

TIMEONFT, 149

TIMEOUT, 72

TIMEOUT setting, 379

Index 457

TIMEOUT_COMM, 104

TINYINT, 243

to parameter, EDMMAILQ, 391

TOCOMP, 147, 157

TOCOMPI, 147, 157

TOCOMPO, 148, 158

TODBADDS, 148, 158

TODBDELE, 148, 158

TODBGETS, 148, 158

TODBPUTS, 148, 158

TODCMP, 148

TODCMPI, 148

TODCMPO, 148

TODCOMP, 158

TODCOMPI, 158

TODCOMPO, 158

TOFALLOC, 148, 158

TOFILEIO, 148, 158

toinst parameter

ZDELINS, 416

TOLOGONS, 143

TOMETBIN, 148

TOMETREX, 148

TOMTHBIN, 158

TOMTHREX, 158

toobject parameter

ZOBJCOPY, 425
ZUPDPROF, 437

TOOBJI, 147

TOOBJO, 147

TOPTSKID, 145

TORESO, 147

TOXNRJCT, 148

TR3270BU, 144, 155

TRACE settings, 436

tracing, 379

TRADMIN, 144, 155

TRADMPRM, 145, 156

TRAUDIT, 144, 155

TRBINDFL, 144, 155

TRCOMDAT, 143, 155

TRCOMM, 144, 155

TRCOMMCB, 143

TRCOMP, 156

TRCOMPR, 144

TRCONFIG, 144, 155

TRCPIC, 144, 155

TRDAXFRM, 144, 155

TRDBCB, 144

TRDBDATA, 144

TRDESENC, 144, 156

TRDMA, 145, 156

TRDSCOMP, 143, 155

TRDYNALO, 144, 155

TRENQUE, 145, 156

TREXPLOD, 145, 156

TRFILPRO, 144, 155

TRIMPLOD, 145, 156

TRIMUSER, 220

attribute, 219
variable, 218, 219

TRLASIDE, 145, 156

TRMETHOD, 144, 155

TRNOTIFY, 145, 156

TROBJCRC, 144, 155

TROBJRES, 144, 156

TROBJXFR, 144, 155

TRPROFIL, 144, 155

TRPROMOT, 144, 155

TRRESLV0, 144

Index 458

TRRESLV1, 145

TRRESLVL, 155

TRRESOL1, 156

TRRESRCE, 144, 155

TRREXOFF, 145, 156

TRREXX, 144, 155

TRSESBLK, 145, 156

TRSTATS, 145, 156

TRSTORAG, 145, 156

TRSUBST, 144, 156

TRTCPIP, 145, 156

TRTEST, 143, 155

TRUSTEDP, 146

TRVARS, 144, 155

TRVARSTG, 144, 155

TRVSAPI, 145, 156

TRVSCB, 145, 156

TRVSDATA, 145, 156

TRY2K, 145, 156

TSKHPHWM, 149

TSKHPSIZ, 149

TSKLDLTA, 148

TSKLHARD, 148

TSKLIMAX, 148

TSKLIMIT, 148

TSKLSOFT, 148

TSKLSTCO, 154

TSKMGRID, 145

TSKNAME, 154

TSKPRIV, 149

TSKSTDAT, 154

TSKSTHWM, 149

TSKSTSIZ, 149

TSKSTTIM, 154

TSOSRVCE, 146

tuning the Configuration Server, 28

tunneling, 384

type parameter, ZEXIST, 420

U
U subparameter, EDMMSQLP, 240

ULGACTIV, 151

ULGDIR, 150

ULGFLUSH, 151

ULGFSIZE, 150

ULGLNCNT, 150

ULGMGRID, 145

ULGMWIDT, 150

ULGPSIZE, 151

ULGSWITC, 151

ULGTHRES, 150

UNC. See Universal Naming Code

Universal Naming Code, 55

connectivity issues, 55, 56

UNLOCK, 396

UPDATE statement, 248

UPDATE_INSTANCES, 265, 337

UPDATE_MGRIDS, 265, 339

UPDATE_RCS_STARTUP, 119

updates to doc, 4

user ID parameter

ZNFYT, 167, 422
ZUPDPROF, 437

USER_PATH, 53

UserEmailErrorsTo setting,
MGR_ERROR_CONTROL, 59

USERID, 154, 421

USERLOG, 70

USRPATH1, 151

USZTCBGS, 152

Index 459

V
values, EDMAMS, 256

VAR, 110

VARCHAR, 243

variable parameter

ZOBJDELV, 427
ZOBJSORT, 428

VARIABLE-COLUMN pairs, defined, 239

VARNAME, 232, 240

VARNMASK, 149

VARSTG, 110

VARSUB, 110

VC

keywords, 239
pairs, 239, 245
pairs, defined, 239

VC keyword, 214, 232

verb, EDMAMS, 255

VERBLDNO, 143

VERBOSE, 99

VERIFY_CLASS, 265, 340

VERIFY_CLIENT, 96

VERIFY_DATABASE, 265, 341

VERIFY_DEPTH, 49

VERIFY_INTERVAL, 38

verifying the database, 49

VERMAJ, 143

VERMIN, 143

VERREVLE, 143

VERREVNO, 143

version information, Configuration Server, 25

version.nvd, 26

W
WAKE_ON_LAN_TTL, 73

Wake-On-LAN, 187

and NFYMAC, 177
benefits, 188
Configuration Server requirements, 191
configuring, 188
EDMWAKE, 188
HPCA agent requirements, 191
MAC address, 189
NFYMAC, 190
remote broadcast, 192
required components, 188
requirements, 190
Retry Manager, 187
Wired-for-Management (WfM), 191

warranty, 2

WASTE_TOLERATED, 78

WHERE, 214

clause, 234, 236, 245
U subparameter, 245
usage, 246
usage considerations, 245
usage example

control object, 247

multi-heap object, 248

simple, 246

substitution, 248
keyword, 233
variable, 217, 245, 246, 248

wildcards in EDMAMS

explicit, 259
implicit, 259

WOL. See Wake-On-LAN

X
XPI, 349

XPR, 349

Y
YEAR2000, 110

Index 460

Z
ZACCESS domain, 36

ZADMCLAS, 173

ZADMDCLS, 173

ZADMDDOM, 173

ZADMDFIL, 173

ZADMDINS, 173

ZADMDOMN, 173

ZADMFILE, 173

ZADMFUNC, 173

ZADMIN object, 169

variables, 173

ZADMINST, 173

ZADMNHNL attribute, 169

ZAMPM, 146

ZBIOS, 249

zbldpmgr, 39

ZBWMAX, 374

ZBWMGR, 374

ZBWPCT, 374

ZCIPADDR

for drag-and-drop, 172
to specify an IP address, 173

ZCMDDLAY, 171, 187

ZCMDHNDL, 170, 187

ZCMDNAME, 170

ZCMDNFYD, 171, 187

ZCMDNFYT, 171, 187

ZCMDPATH, 170

ZCMDPRMS, 170

variable, and notify, 172

ZCMDRMAX, 171, 187

ZCMDSEP, 170

ZCMDSYNC, 170

ZCMDTYPE, 170

ZCMDUCLS, 170

ZCMDUINF, 171, 187

ZCMPSIZE, 276, 402

ZCOMMAND, 170

class, 172
variables, 170, 186

ZCONFIG, 239

object, 223, 225

ZCVT, 143

variables, 143

ZDAT2YMD, 147

ZDATE, 147

ZDATEDMY, 147

ZDATEJUL, 147

ZDATEYMD, 147

ZDCLASS, 389, 415

ZDELINS, 389, 416

ZDELOBJS, 159, 160, 389, 418

ZDELPROF, 389, 419

ZDEVICEN, 385

zdiagmgr, 39, 51

ZEDMAMS. See EDMAMS

ZEDMAMS command. See EDMAMS

ZEDMAMS module. See EDMAMS

ZEDMAMS syntax. See EDMAMS

ZEDMAMS verbs. See EDMAMS

zedmams.log, 264

ZEDMTYPE, 402

ZERMXERR, 147

ZERMXWRN, 147

ZERRORM_MAX_ERRORS, 75

ZERRORM_MAX_WARNINGS, 75

ZEXIST, 389, 420

ZGETPROF, 389, 421

ZINIT, 127

Index 461

ZIPNAME

for drag-and-drop, 172
to specify an IP address, 173

ZLICUTIL, 64, 66, 67

ZLOGSWCH, 64, 66, 67, 129

ZLOGSWCH.REX, 64

ZLOGWRAP, 65, 66, 67, 129

ZLOGWRAP.REX, 65

ZMASTER, 370

object, 172, 222, 228, 421, 422
ZNFYPWD, 167

ZMETHOD, 158

class, 215
object, 402

ZMMSG, 177

ZMONTH, 147

ZMONTHLNG, 147

ZMRC, 177

variable, EDMMGNUG, 399

ZMTHPRMS, 215

variable, 215

ZMTHTYPE variable, 228

ZMUSTRUN variable, 161

ZNFYPWD, 167, 174, 422

for drag-and-drop, 172

ZNFYT, 166, 389, 422

znfytmgr, 39, 179

ZNFYTSTA, using with Notify, 171

ZNFYxEND, 128

ZNFYxSTA, 128

ZNOTIFY, 175

ZNTFPORT for drag-and-drop, 172

ZOBJCDEL, 177

ZOBJCLAS, 402

ZOBJCMPR, 160, 389, 424

ZOBJCOPY, 160, 389, 425

ZOBJDELI, 160, 389, 426

ZOBJDELV, 160, 389, 427

ZOBJDOMN, 402

ZOBJFILE, 402

ZOBJID, 402

ZOBJNAME, 402

ZOBJRDEL, 177

ZOBJREQ variable, EDMMGNUG, 398

ZOBJSORT, 160, 389, 428

ZOS, 249

ZOSVER, 249

ZPCACHE, 127

ZPERGID, 402

ZPERUID, 402

ZPROMANY, 389, 429

ZPUTHIS, 160

ZPUTHIST, 389, 430

ZPUTPROF, 160, 389, 431

zrexxmgr, 39

ZRSCDATE, 402

ZRSCMFIL, 402

ZRSCMLOC, 402

ZRSCMMEM, 402

ZRSCRASH, 402

ZRSCSIZE, 276, 402

ZRSCSTYP, 402

ZRSCTIME, 402

ZRSOURCE_UNMATES, 265, 329, 342

zrtrymgr, 39, 181, 183

ZSERVICE, 130

ZSHUTDWN, 129

Configuration Server self-tuning tool, 129
MGR_CACHE, 131
MGR_CLASS, 130
OBJECT_SIZES, 130

Index 462

rename and replace, 131

revise and overwrite, 130
reporting files, 132

ZSIMRESO, 160, 389, 432

zsmtrmgr, 39

zsmtsmgr, 39

zsnmpmgr, 39, 94

ZSOURCE1, 249

ZSRCCLAS, 173

ZSRCDOMN, 173

zsslmgr, 39, 96, 385

ZSTARTUP, 127

ZSVCSTAT, 173

ZTASKEND, 127

ZTASKSTA, 127

ZTCBG, 143

variables, 154

ztcpmgr, 39

ZTERMINI, 154

ZTIME, 146

ZTIME24, 146

ztoptask, 378, 384

ZTOUCH, 389, 433

ZTRANSF object, 402

ZUPDPROF, 437

ZUSERID, 174, 399, 421, 431, 432

for drag-and-drop, 172
variable, EDMMGNUG, 398

zutilmgr, 39

ZVARDEL, 160, 389, 434

ZVARGBL, 160, 389, 435

ZVARLOG, 160, 389, 436

ZXREF, 160, 389, 438

We appreciate your feedback!

If an email client is configured on this system, by default an email window opens when you
click on the bookmark “Comments”.

In case you do not have the email client configured, copy the information below to a web mail
client, and send this email to ca-docfeedback@hp.com

Product name:

Document title:

Version number:

Feedback:

	HP Client Automation Enterprise
	Configuration Server
	Introduction
	Document Overview
	Documentation Map

	Using this Guide with Core and Satellite Servers
	Overview of Configuration Server
	Configuration Server Database
	Configuration Server and Client Operations Profiles

	Configuration Server Information
	Platform Support
	IP Networking Support
	Backing up the Configuration Server
	Configuration Server Version Information

	HP Client Automation Documentation

	Tuning the Configuration Server
	Understanding the Tuning Process
	Configuration Server Settings Overview
	Viewing and Editing Configuration Server Settings
	Accessing the EDMPROF File
	Editing the EDMPROF File

	Configuration Server Settings
	Format of the EDMPROF File

	MGR_ACCESS
	MGR_ATTACH_LIST
	MGR_CACHE
	Purging Dynamic Cache

	MGR_CLASS
	MGR_DB_VERIFY
	MGR_DIAGNOSTIC
	MGR_DIRECTORIES
	MGR_DMA
	MGR_ERROR_CONTROL
	MGR_LOG
	MGR_MESSAGE_CONTROL
	MGR_METHODS
	MGR_NOTIFY
	MGR_OBJECT_RESOLUTION
	MGR_POLICY
	MGR_POOLS
	MGR_RESOLUTION_FILTERS
	MGR_RETRY
	MGR_RIM
	MGR_RMP
	MGR_ROM
	MGR_SMTP_MAIL
	MGR_SNMP
	MGR_SSL
	MGR_STARTUP
	OBJECTID_FORMAT
	MANAGER_TYPE Values

	MGR_TASK_LIMIT
	MGR_TIMEOUT
	MGR_TPINIT
	MGR_TRACE
	MGR_USERLOG
	OBJECT_SIZES
	RCS_TUNING_CONTROL
	SECTION_DELIMITERS

	Managing Configuration Server Processing
	Configuration Server Operations
	Customizing Configuration Server Processing
	Configuration Server REXX Programs
	REXX Programs

	HP REXX Functions
	Additional Functions

	ZCVT and ZTCBG
	ZCVT Table of Variables
	ZTCBG Table of Variables

	Configuration Server Methods
	Overview
	“Must Run” Methods

	Notifying HPCA Agents
	An Overview of Notify
	Notify and the HPCA Agent Connect Process
	When to Use Notify

	Types of Notify
	Simple Notify
	GUI-Configured Notify
	EDMMPUSH

	Multiple Notify Managers
	Configuring Multiple Notify Managers

	Retrying Failed Notifies
	Scheduling for Notify
	NTFYRTIM
	Drag-and-Drop Notify

	Wake-On-LAN
	The Benefits of Wake-On-LAN
	Components Required to Enable Wake-On-LAN
	Configuring Wake-On-LAN
	Wake-On-LAN Supporting Remote Broadcast

	HP SQL Methods
	Overview
	Data Exchange with ODBC-Compliant Databases
	Introduction
	An ODBC Data Source: Prerequisites

	SQL Servers
	Microsoft SQL Server with a Windows Configuration Server
	Microsoft SQL Server with UNIX Configuration Server
	ODBC Reserved Words

	Using HP SQL Methods
	Overview
	Defining EDMMSQLG and EDMMSQLP as Configuration Server Methods
	Invoking EDMMSQLG
	Invoking EDMMSQLP
	Passing Control Information to EDMMSQLG and EDMMSQLP
	Configuring the Configuration Server Database SQLTABLE Class
	Control Information
	VARIABLE-COLUMN Pairs
	HP Object Information

	SQL Database Information
	Data Source Name

	SQL Column Data Types
	The WHERE Clause
	Considerations
	Usage

	Design Considerations
	Troubleshooting
	The Configuration Server Log
	ODBC Tracing
	Iterative Simplification

	EDM Access Method Services (EDMAMS)
	Overview
	Terminology
	Invoking the EDMAMS Verbs
	Using the EDMAMS Verbs
	Usage Considerations
	Input Files
	Wildcards
	LOGFILE
	Internationalization Considerations for Exporting/Importing Database Decks
	Specifying the ZEDMAMS Utility

	ADD_FIELD
	BUILD_PATCH
	BUILD_STAGING_POINT
	Resource Naming

	CHANGE_FIELDNAME
	CHANGE_FLD_VALUE
	CHANGE_INST_DATA
	CHANGE_INS_FIELD
	CHECK_RESOURCES
	CLONE_INSTANCE
	COPY_CLASS
	COPY_DOMAIN
	Copying a Domain and its Contents

	COPY_FIELD
	COPY_INSTANCE (COPY_RESOURCE)
	COPY_NEW_SUFFIX
	CREATE_INSTANCES
	DELETE_CLASS
	DELETE_COMP_ORPHS
	DELETE_DOMAIN
	DELETE_FIELD
	DELETE_INSTANCE
	DELETE_ORPHANS
	DELETE_RESOURCE
	EDIT_CLASS_PREFIX
	EXPORT_CLASS
	EXPORT_INSTANCE
	EXPORT_RESOURCE
	IMPORT_CLASS
	IMPORT_INSTANCE
	Verb History
	Syntax

	IMPORT_RESOURCE
	LIST_CLASSES
	LIST_CONNECTS
	LIST_CONS_VARS
	LIST_DOMAINS
	LIST_FLAGS
	LIST_INST_DATA
	LIST_INSTANCE
	LIST_PACKAGE
	LIST_PREFIX
	LIST_RESOURCES
	LIST_ZRSC_FIELDS
	MATCH_RESOURCES
	PACKAGE_UNMATES
	REFRESH_DMA
	RENAME_INSTANCE
	SEARCH_INSTANCES
	SORT_OBJECT_ID
	SYNC_CLASS
	UPDATE_INSTANCES
	UPDATE_MGRIDS
	VERIFY_CLASS
	VERIFY_DATABASE
	ZRSOURCE_UNMATES

	Configuration Server Database Utility (RadDBUtil)
	Introduction
	Components & Processes
	Running RadDBUtil from a Command Line

	Implementation Details
	HP Client Automation Patch Manager Considerations
	EDMPROF File Settings
	RadDBUtil Verbs
	Return Codes
	Examples

	Configuration Server Performance
	An Overview of Performance Issues
	General Performance and Usage Considerations

	CPU Requirements
	The CPU and Object Resolution

	Memory
	MGR_CACHE
	MGR_CLASS

	Networking
	Bandwidth Throttling

	Troubleshooting the Configuration Server
	Troubleshooting Issues
	General Troubleshooting Considerations
	How this chapter is organized

	SSL Managers
	Introduction
	Virtual IP Addresses in UNIX

	SSL Manager
	Enabling SSL in Configuration Server and HPCA Agent
	Client Automation-specific Changes
	HPCA Proxy Server

	EDMMAILQ
	EDMMALLO
	EDMMCACH
	EDMMDALO
	EDMMDB
	EDMMGNUG
	Usage
	Security Requirements
	Method Input Parameters
	Method Return Values

	EDMMPUSH
	EDMMPUTD
	EDMMRPRO
	EDMMSQLG
	EDMMSQLP
	EDMMULOG
	EDMSIGN
	EDMSIGNR
	Linux-specific Configuration of EDMSIGNR
	EDMSIGNR and SECSPAWN
	Additional Reading

	ZDCLASS
	ZDELINS
	ZDELOBJS
	ZDELPROF
	ZEXIST
	ZGETPROF
	ZNFYT
	ZOBJCMPR
	ZOBJCOPY
	ZOBJDELI
	ZOBJDELV
	ZOBJSORT
	ZPROMANY
	ZPUTHIST
	ZPUTPROF
	ZSIMRESO
	ZTOUCH
	ZVARDEL
	ZVARGBL
	ZVARLOG
	ZUPDPROF
	ZXREF

	We appreciate your feedback!
	Comments

