
HP OpenView Select Identity

Connector Developer Guide

Software Version: 3.0
July 2004

 Copyright 2004 Hewlett-Packard Development Company, L.P.

Legal Notices

Warranty

Hewlett-Packard makes no warranty of any kind with regard to this document, including, but
not limited to, the implied warranties of merchantability and fitness for a particular purpose.
Hewlett-Packard shall not be held liable for errors contained herein or direct, indirect, special,
incidental or consequential damages in connection with the furnishing, performance, or use of
this material.

A copy of the specific warranty terms applicable to your Hewlett-Packard product can be
obtained from your local Sales and Service Office.

Restricted Rights Legend

Use, duplication, or disclosure by the U.S. Government is subject to restrictions as set forth in
subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause in
DFARS 252.227-7013.

Hewlett-Packard Company
United States of America

Rights for non-DOD U.S. Government Departments and Agencies are as set forth in FAR
52.227-19(c)(1,2).

Copyright Notices

© Copyright 2002, 2004 Hewlett-Packard Development Company, L.P.

No part of this document may be copied, reproduced, or translated into another language
without the prior written consent of Hewlett-Packard Company. The information contained in
this material is subject to change without notice.

This product includes software developed by the Apache Software Foundation (http://
www.apache.org/). Portions Copyright (c) 1999-2003 The Apache Software Foundation. All
rights reserved.

Select Identity uses software from the Apache Jakarta Project including:

• Commons-beanutils.

• Commons-collections.

• Commons-logging.

• Commons-digester.

• Commons-httpclient.
2

• Element Construction Set (ecs).

• Jakarta-poi.

• Jakarta-regexp.

• Logging Services (log4j).

Additional third party software used by Select Identity includes:

• JasperReports developed by SourceForge.

• iText (for JasperReports) developed by SourceForge.

• BeanShell.

• Xalan from the Apache XML Project.

• Xerces from the Apache XML Project.

• Java API for XML Processing from the Apache XML Project.

• SOAP developed by the Apache Software Foundation.

• JavaMail from SUN Reference Implementation.

• Java Secure Socket Extension (JSSE) from SUN Reference Implementation.

• Java Cryptography Extension (JCE) from SUN Reference Implementation.

• JavaBeans Activation Framework (JAF) from SUN Reference Implementation.

• OpenSPML Toolkit from OpenSPML.org.

• JGraph developed by JGraph.

• Hibernate from Hibernate.org.

This product includes software developed by Teodor Danciu http://
jasperreports.sourceforge.net). Portions Copyright (C) 2001-2004 Teodor Danciu
(teodord@users.sourceforge.net). All rights reserved.

Portions Copyright 1994-2004 Sun Microsystems, Inc. All Rights Reserved.

This product includes software developed by the Waveset Technologies, Inc.
(www.waveset.com). Portions Copyright © 2003 Waveset Technologies, Inc. 6034 West
Courtyard Drive, Suite 210, Austin, Texas 78730. All rights reserved.

Portions Copyright (c) 2001-2004, Gaudenz Alder. All rights reserved.
3

Trademark Notices

HP OpenView Select Identity is a trademark of Hewlett-Packard Development Company, L.P.

Microsoft, Windows, the Windows logo, and SQL Server are trademarks or registered
trademarks of Microsoft Corporation.

Sun™ workstation, Solaris Operating Environment™ software, SPARCstation™ 20 system,
Java technology, and Sun RPC are registered trademarks or trademarks of Sun Microsystems,
Inc. JavaScript is a trademark of Sun Microsystems, Inc., used under license for technology
invented and implemented by Netscape.

This product includes the Sun Java Runtime. This product includes code licensed from RSA
Security, Inc. Some portions licensed from IBM are available at http://oss.software.ibm.com/
icu4j/.

IBM, DB2 Universal Database, DB2, WebSphere, and the IBM logo are trademarks or
registered trademarks of International Business Machines Corporation in the United States,
other countries, or both.

This product includes software provided by the World Wide Web Consortium. This software
includes xml-apis. Copyright © 1994-2000 World Wide Web Consortium, (Massachusetts
Institute of Technology, Institute National de Recherche en Informatique et en Automatique,
Keio University). All Rights Reserved. http://www.w3.org/Consortium/Legal/

Intel and Pentium are trademarks or registered trademarks of Intel Corporation in the
United States, other countries, or both.

AMD and the AMD logo are trademarks of Advanced Micro Devices, Inc.

BEA and WebLogic are registered trademarks of BEA Systems, Inc.

VeriSign is a registered trademark of VeriSign, Inc. Copyright © 2001 VeriSign, Inc. All rights
reserved.

All other product names are the property of their respective trademark or service mark
holders and are hereby acknowledged.
4

Support

Please visit the HP OpenView web site at:

http://openview.hp.com/

There you will find contact information and details about the products, services, and support
that HP OpenView offers.

You can go directly to the support web site at:

http://support.openview.hp.com/

The support web site includes:

• Downloadable documentation

• Troubleshooting information

• Patches and updates

• Problem reporting

• Training information

• Support program information
5

contents
Chapter 1 Introduction to Connectors . 8
Overview of Select Identity Connectors . 8
J2EE Connector Architecture (JCA) . 9
Development Phases. 10

Requirements Phase . 10
Design Phase . 13
Implementation . 14
Integration . 15
Packaging. 15
Documentation . 16

Chapter 2 Implementing a Connector. 17
Overview of the Select Identity Connector API . 18
Building a Connector . 20

Interface, Class, and Method Implementations. 22
JCA Interfaces . 22
Select Identity Connector API Interfaces and Classes 23

JNDI Registration of the Parameter Factory Implementation. 30
Mapping File Overview . 31

General Attribute Information . 32
Creating a Mapping File . 35

Installing a Connector . 38
Deploying a Connector in Select Identity . 39
Testing a Connector . 40
6

Contents
Chapter 3 LDAP Connector Example . 42
Description of Source Files. 43
Description of Build Files. 47

Glossary. 49

Index . 58
7

1

Introduction to Connectors
HP OpenView Select Identity enables you to connect to enterprise
applications and resources to configure and manage users, groups, and
entitlements in those systems. The component that enables Select Identity to
access a resource is called a connector.

Overview of Select Identity Connectors

Select Identity supports two types of connectors:

• A one-way connector initiates communication with a resource. If a
resource is supported through the use of a one-way connector, user data
must be updated in Select Identity and the changes are sent to the
resource, to synchronize the resource with Select Identity. The following
diagram illustrates the flow of data:
8

Chapter 1
The connector resides on the Select Identity server and sends requests to
the resource. The resource defines the protocol that must be used by the
connector to issue the request. To create a one-way connector, you must
create the connector and install it on the Select Identity server.

• A two-way connector comprises the connector that resides on the Select
Identity server and an agent that resides on the resource. This enables the
resource to issue a request to Select Identity, as well as Select Identity
issuing a request to the resource. Thus, a two-way connector enables data
to flow in two directions, as illustrated in the following diagram, and
changes to users can occur on either system.

The connector must issue a request according to the resource’s
specifications. When the resource issues a request to Select Identity’s web
service, it must use the SOAP protocol, sending an SPML payload.

J2EE Connector Architecture (JCA)

Creating a Select Identity connector entails building a J2EE Connector
architecture (JCA) resource adapter. JCA provides a Java solution to the
problem of connectivity between application servers and enterprise
information systems (EISs). This architecture is based on technologies that
are defined and standardized as part of the Java 2 Platform, Enterprise
Edition (J2EE).

For a general overview of JCA, refer to the following page:

http://java.sun.com/j2ee/white/connector.html

You can download the specification from the following page:
9

Chapter 1
http://java.sun.com/j2ee/connector/download.html

Note that Select Identity implements only the Connector Management portion
of the JCA specification.

You must have an understanding of the Java Developer Kit (JDK), version 1.4,
and you should be familiar with the JCA, version 1.0. In addition, Select
Identity has provided a Connector API that is used in conjunction with JCA to
create connectors.

For information about the J2EE APIs, including those for connectors, refer to
http://java.sun.com/j2ee/1.4/docs/api/index.html.

Development Phases

This section outlines the steps that are typically involved in the development
of a connector. It is strongly recommended that you take the time to address
each phase and plan for the connector’s development carefully.

Requirements Phase

Ensure that the resource supports a mechanism for user provisioning by
external clients, in a secure and reliable manner. You must have an
understanding of the underlying resource, including knowledge of the
resource’s tools and administration API. You may also need to obtain an
administrative account that has privileges to provision.

Collect requirements for development, as follows:

1 Determine the requirements based on the resource system.

— What identity information will be provisioned? What users or other
objects?

— What are the entitlements supported by the resource? Typically,
resources support groups (groups or users), roles, access control levels
(ACLs), privileges, and so on.

— What are the supported attributes of the identity object based on the
schema in the resource?

— How is the schema retrieved from the resource?
10

Chapter 1
— How is the identity object addressed on the resource? This could be a
DN (for LDAP-type of resources), an SSN,a user ID, hierarchical
naming, and so on. This will be used as the primary key to address the
identity object.

— How does the resource application support connectivity for external
systems to provision identity information? This might mean accessing
the system through API calls, RMI, JMS, a Web Service, a CLI such as
telnet, ssh, and so on.

— If the resource already supports a connector interface, how can you
develop the Select Identity connector leveraging the existing
connector?

— Does the resource support an SDK or a development toolkit for
administration, which might include JAR files or libraries for making
calls to access and provision information?

— Are there security requirements to consider? Is SSL or any
proprietary encryption/decryption information required between the
connector and the resource?

— What are the performance requirements? How many objects can the
resource support? How may entitlements? How many users can the
connector create, read, update, or delete in a second, minute, or hour?

— What are the scalability requirements? How many connections does it
support? Can the same connector support similar resources through
configuration support for transactions?

— Does the resource support synchronous or asynchronous connectivity?
It is possible that the resource cannot finish provisioning immediately
and might finish the job at a later time. How does the connector know
when the resource operation is done and how does it handle the
response from the resource?

— Is the connector required to maintain state? If so, what is the required
schema?

2 Determine access requirements for the resource.

— What are the addressing parameters such as TCP/IP address, port
number, URL,and secure IDs?

— Is there authentication information (user ID and password)?

— Are there secure channel parameters?
11

Chapter 1
— Does the connection pass through a proxy server or a firewall? If so,
what are the parameters involved?

3 Determine the requirements for error reporting.

— What errors are supported by the resource?

— What kind of exceptions are reported to Select Identity?

— What kind of errors in the resource are reported to Select Identity?

— What are the recoverable and non-recoverable exceptions?

4 Determine the requirements for reverse synchronization.

— What changes to identity objects on the resource must be
synchronized with Select Identity. For example, if a user's password or
address changes on the resource, is there a requirement that Select
Identity should be notified about this?

— How often do changes occur? Are they done in real time or as a batch
job at the end of the day?

— How is information obtained from the resource? The resource might
support an audit log of all changes on the resource, or it might support
a log of all events that are triggered by someone like an administrator.
How is this information retrieved from the resource? Should the
connector support a pull model or a push model?

5 Detemine the requirements for child transactions.

— Is an operation invoked on the resource that might trigger child
operations within the resource?

— How should the connector notify Select Identity of the status of child
operations?

— What status information about child operations should be reported to
Select Identity?

— Is the operation is “atomic” or a “best-effort?”

— How does the connector determine when the operation is done?

— Does the resource automatically rollback all previous successful child
operations if one child operation fails?

6 Determine requirements for the policies supported by the resource.
12

Chapter 1
— What are the policies for the identity objects? For example, the
primary key of the identity object must be obtained from another
external system.

— What are the attribute policies? For example, password policy might
restrict in the size, content (maximum lenght, minimum length,
maximum number of alphabetic characters, minimum number of
numeric charactrs, and so on), encryption (one-way or two-way), and
so on. What are the limitations on attribute size, masking, and other
parameters?

Design Phase

Design the connector you will implement following these guidelines:

1 Provide a high-level design of the approach taken for the provisioning
process. Provide the following:

— Mapping of functionality to be supported by the connector to the
functionality supported by the resource.

— Mapping of the Select Identity schema to the schema (attribute
information) supported by the resource. This is also referred to as the
forward mapping.

— The Connector API methods that are supported by the connector
implementation.

— Reverse mapping of the attribute information at the time of reverse
synchronization.

— How the implementation solves the cyclic update problem. For
example, a change in object's information triggers an update on the
resource, which might in turn trigger a reverse synchronization with
Select Identity for the same object, and vice-versa.

— Use of the JCA framework in the design. Define how the connector
makes use of the framework to address some of the requirements.

— Resource product version. Provide any functionality changes between
versions of the resource application.

2 Provide information about how to address the various requirements:
synchronous versus asynchronous processing, scalability, performance,
security, and so on.
13

Chapter 1
— Can the connector handle large number of identity objects, such as
users?

— Can it handle large number of entitlements? Is caching, paging, batch
loading, or file loading is used by the connector?

— Can it handle large number of resources?

3 Define whether the connector is agent-based or agent-less.

— Agent-based requires that an agent is installed on the resource with
which the connector implementation interacts. The agent in turn
interacts with the resource or the operating system. Reverse
synchronization is generally possible with an agent-based solution. On
the other hand, an agent-based implementation requires an
installation effort and administration on the resource system.

— An agent-less connector requires complete out-of-box support for all
provisioning operations by the resource or through an SDK.

— Address the advantages and disadvantages for both solutions.

Implementation

Specific information about how to implement the JCA and Connector API
methods is provided in Interface, Class, and Method Implementations on
page 22. This procedure provides a general overview.

1 Start with a sample application that can provision identity objects and
perform entitlement assignment s on the identity objects in the resource.

2 Implement all of the required methods of the Select Identity Connector
API to create, read, update, and identity objects, leveraging the sample
application.

— The main interface to implement is TAConnector interface.

— Implement the connector parameter factory, which creates instances
of connection parameter beans.

3 Implement all entitlement association and dissociation methods.

4 Implement all required interfaces in the JCA CCI framework, which
enables the connector as a Resource Adapter.

5 If necessary, implement an agent to run on the resource machine.
14

Chapter 1
6 Implement a secure way of communication between the connector and
resource, and vice versa. If necessary, use certificates.

7 Implement modules to send SOAP messages containing SPML to the
Select Identity Web Service for reverse synchronization (password
synchronization and identity object reverse synchronization).

8 If necessary, install the EJB driver for unit testing the connector.

9 If necessary, install the client driver for testing the connector.

10 Use IDEs for the development and ANT for build tools.

11 Use the JDK, J2EE, and third-party libraries for further development.

12 Implement junit test cases.

Integration

Verify the connector’s integration with Select Identity as follows:

1 Verify that Select Identity is loading and using the connector as a resource
adapter to communicate with the new resource.

2 Create a Service that uses this resource.

3 Provision users in the Service, verifying that they are successfully created
in the resource.

4 Associate and disassociate entitlements with users.

5 Verify integration with the Select Identity Web Service for user
provisioning through SPML payloads.

Packaging

Detailed information about packaging the connector is described in Building a
Connector on page 20. This provides a general overview:

1 Include all libraries required by the connector in a RAR file.

2 Test the client for unit testing.

3 Determine any schema information (ddl, dml) needed by the connector.

4 Obtain all third-party software licenses and their installation procedures.
15

Chapter 1
Documentation

For future maintenance and distribution, compile the following information
about the connector:

• Detailed documentation on the requirements and design

• User guides

• Configuration guides

• Functionality mapping document

• Schema (or attribute) mapping document

• Installation guides, for agent-less and agent-based solutions

• Javadoc

• Documentation of encryption/decryption used, port numbers of agent, size
of agent foot print, and so on

• Requirements on the system administrator to install the agent on the
resource

• Administration documents
16

2

Implementing a Connector
You must have an understanding of the Java Developer Kit (JDK), version 1.4,
and you should be familiar with the JCA, version 1.0. In addition, Select
Identity has provided a Connector API that is used in conjunction with JCA to
create connectors.

You can download the JCA specification from the following page:

http://java.sun.com/j2ee/connector/download.html

For information about the J2EE APIs, including those for connectors, refer to
http://java.sun.com/j2ee/1.4/docs/api/index.html.

When implementing a connector using the J2EE Connector APIs and the APIs
described here, it is expected that the operations on the connector instances
are called within transactions and from multiple threads. Also, the connectors
must implement adequate synchronization to prevent data corruption.
17

Chapter 2
Overview of the Select Identity Connector API

The following diagram illustrates the Select Identity API architecture,
showing the relationship of the Connector API to Select Identity and the other
APIs:

The following classes and interfaces are provided by the Connector API.
Online help (Javadoc) is provided for this API on the Select Identity CD, in the
docs/connectors/Javadoc directory:

• EntitySupport

Defines the actions that can be performed on an entity, which is an object
that is managed by Select Identity, such as a user, group, role, or stage.

• GroupModel

Represents an entitlement on a resource.

• RelationSupport

Specifies an association between identity object types, such as between a
user and entitlement and vice versa.
18

Chapter 2
• TAConnector

The top-level interface that maps identity information to a resource type.

• TAConnectorFactory

Creates instances of connections handles for resources. The connection
handle is an implementation of TAConnector.

• TAConnectorParamBean

Describes a configuration parameter needed by the connector. Examples of
such parameters include URLs or configuration parameters like wait
time. Select Identity retrieves a list of these beans to create a user
interface to obtain values from the user.

• TAConnectorParameterFactory

Obtains connection-specific beans that contain connection parameter
values.

• TAConnectorParamValueBean

An abstract class that represents the connection parameter values needed
to establish a connection to a resource. It also contains all parameters
needed to access the resource for user provisioning.

• TAFilter

Enables you to issue search requests.

• UserEntitySupport

Provides additional methods for setting permissions on UserModel
classes. It shows the level of support for user objects in the repository. In
addition to supporting create, read, update, and delete tasks,
UserEntitySupport specifies whether the password can be reset or
changed in the resource.

• UserModel

Enables you to retrieve and set attributes for users; returns a list of users.
19

Chapter 2
Building a Connector

To build a connector, follow this general procedure. Each step below references
another section that provides further details. You may also find it useful to
refer to LDAP Connector Example on page 42 for an overview of those source
files.

1 If you have not done so, review Development Phases on page 10 in
preparation for this procedure.

2 Code the Java classes and implement the interfaces that will comprise the
connector. This entails implementing JCA and Select Identity Connector
APIs. You must also register the parameter factory implementation with
JNDI. See Interface, Class, and Method Implementations on page 22 for
details.

3 Create a mapping file that maps each attribute on the physical resource to
an attribute on the connector. See Creating a Mapping File on page 35 for
more information.

4 Build the connector. Select Identity provides all of the base classes you
need to build a connector in a file named clientintf.jar, which resides
on the Select Identity CD. Use the contents of this file to build your
connector. See Description of Build Files on page 47 for a listing of build
files created to build the LDAP connector.

5 Two-way connector only
Code the file(s) that will comprise the agent. The resource type will dictate
the programming language and APIs you use.

When the agent sends data to the Select Identity server, it must send a
Service Provisioning Markup Language (SPML) compliant message. It
must also send the data using SOAP. Refer to the User Provisioning API
for more information about the SPML-compliant message.

6 Define the deployment descriptor by creating an XML file called ra.xml.
This file contains deployment specific information; you must specify the
interface class names and implementation class names of the connector
here. Here is an example of the "resourceadapter" section of the descriptor
taken from LDAP connector:

<resourceadapter>
<managedconnectionfactory-class>com.trulogica.truaccess.
 connector.ldap.ldapv3.LDAPManagedConnectionFactory
</managedconnectionfactory-class>
20

Chapter 2
<connectionfactory-interface>com.trulogica.truaccess.
 connector.TAConnectorFactory
</connectionfactory-interface>
<connectionfactory-impl-class>com.trulogica.truaccess.
 connector.ldap.ldapv3.LDAPConnectorFactory
</connectionfactory-impl-class>
<connection-interface>com.trulogica.truaccess.connector.
 TAConnector
</connection-interface>
<connection-impl-class>com.trulogica.truaccess.connector.ldap.
 ldapv3.LDAPConnector
</connection-impl-class>
<transaction-support>NoTransaction</transaction-support>
<reauthentication-support>false</reauthentication-support>

</resourceadapter>

Create this XML file according to the JCA specification.

7 Create the WebLogic-specific deployment descriptor by creating a file
called weblogic-ra.xml. You must register the JNDI name for the
connector (eis/connector) here. The following is an example:

<weblogic-connection-factory-dd>
<connection-factory-name>
 LDAPConnectorFactory
</connection-factory-name>
<jndi-name>eis/LDAPv3</jndi-name>
<pool-params>

<initial-capacity>0</initial-capacity>
</pool-params>

</weblogic-connection-factory-dd>

8 Bundle all other connector class files, library JAR files, and the ra.xml
file in a RAR file. Use the following format when naming this file:
connector.rar.
21

Chapter 2
Interface, Class, and Method Implementations

The following illustrates the connector architecture and the relationship
between connector classes, Select Identity, and the resource:

The following provides guidelines that you must follow when coding the
connector.

JCA Interfaces

Implement the JCA interfaces; refer to the J2EE specification for details.
Connectors must support both local and distributed transaction protocols. If a
resource does not support transactions, the adapter must record transactions
so that compensating transactions can be applied on rollback. Regarding
security, JAAS is used to authenticate inbound communication.

Here are the interfaces you must implement:

• java.resource.cci.Connector extended by TAConnector

• javax.resource.spi.ManagedConnection

• javax.resource.spi.ManagedConnectionFactory (implement only one
instance of this interface)

• javax.resource.spi.ManagedConnectionMetaData
22

Chapter 2
Select Identity Connector API Interfaces and Classes

Implement the following Select Identity Connector API interfaces and classes.
Refer to the API online help (on the Select Identity CD, in the docs/
connector/Javadoc directory) for more information.

• TAConnector interface — the main interface to implement. Select Identity
calls on the methods in this interface to perform provisioning operations.
In particular, you must implement these methods:

Method Comment

add(UserModel) To implement: Build all of the needed
attributes by taking the values from
UserModel and creating a new user on
the resource.

After a succesfully adding the user,
Select Identity requires the
implementation to set the key field value
by calling UserModel.setUserId().

Usage: The add(UserModel) method is
called to provision a new user on the
resource.

changePassword(UserModel) To implement: Use the new password
in UserModel to update the password on
the resource.

Usage: This method is called to change a
user's password.

expirePassword(UserModel,
Boolean)

Usage: This method expires a password
for the specified user.
23

Chapter 2
get(UserModel) To implement: The connector should
construct the key field value of the user
on the resource and check the existence
of user in the resource.

If the user is not present on the resource,
the connector should throw
ObjectNotFoundException.

Usage: This method is called to verify
the existence of user in the resource.

getGroupAttributes() To implement: The implementation can
return one attribute to represent the ID
of the entitlement.

Usage: This method must return the
schema supported by the resource for
group and entitlement provisioning.

getGroups() To implement: Build and return a set of
Strings that identify the entitlement.

Usage: This is called by Select Identity
to get a list of all entitlements on the
resource. For example, this could be used
when your are setting the fixed
entitlements for a service, or it could be
used when you are adding a user.

getGroups(TAFilter) To implement: Build and return a set of
Strings that identify the entitlement.
Using TAFilter, you can filter out the list
returned.

Usage: This is called by Select Identity
to get a list of all entitlements on the
resource. TAFilter is used to filter out
the entitlements retrieved from the
resouce and is passed in from the filter.

Method Comment
24

Chapter 2
getUserAttributes() To implement: Return a list of
TAConnectorParamBean instances that
contain details about each of the
attributes supported by the connector.
These attributes are the Select Identity
resource attributes and not the
attributes on the physical resource. The
mapping between the Select Identity
resource attributes and the physical
resource attributes is to be done by the
connector. For example, the LDAP
connector uses an XML mapping file to
map these attributes. In this mapping
file, "tafield" is the Select Identity
resource attribute and "resfield" is the
physical resource attribute.

Usage: Select Identity calls this method
to get the schema supported by the
connector for the user object.

isPasswordValid(password) To implement: Check the validity of the
password on the resource.

Usage: This method is called before
adding a new user or resetting the
password of an existing user.

isSupported(entity1) To implement: Return the support for
UserModel and GroupModel.
GroupModel is a generic container that
represents any type of entitlement on the
resource. Examples include user groups,
access control levels, privileges, roles,
and so on.

Usage: This method is called on the
connector to get the level of support for
the object.

Method Comment
25

Chapter 2
isSupported(entity1, entity2) Usage: This method is called to get the
level of support for the association of
entitlements to users.

link(UserModel,
GroupModel)

To implement: Select Identity first
makes a call to getGroups(TAFilter) to
get a list of all entitlements on the
resource. Then, GroupModel passed in
references to the entitlements returned
by the getGroups method. You can call
getGroupId(), which identifies the
entitlement and uses it as the key to
associate this user with the entitlement
on the resource.

Usage: This method is used to assign
entitlements to an existing user. Select
Identity calls this method once for each
entitlement to be assigned.

remove(UserModel) To implement: Delete the user account
on the resource.

Usage: This method is called to remove a
user from a resource.

resetPassword(UserModel) To implement: Use the new password
in UserModel to update the password on
the resource.

Usage: This method is called to reset a
user's password.

Method Comment
26

Chapter 2
setStatus(UserModel, int) To implement: Depending on the
resource support that is appropriate, the
implementation could disable or enable
the user on the resource. For example, on
a resource that does not support this
feature, you can set an attribute to
reflect that the user is disabled or
enabled.

If the connector implementation does not
support this operation, throw
NotImplementedException. When the
connector throws this exception, Select
Identity will call back on the connector to
add or delete all of the entitlements on
the user (using link or unlink methods).
This feature is provided to support those
resources where the meaning of disable
or enable is to remove or add
entitlements of the user, respectively.

Usage: This method is called when user
is being disabled or enabled for all
Services.

Method Comment
27

Chapter 2
• TAConnectorFactory interface — creates instances of connection handles
for the connector. The connection handle is an implementation of the
TAConnector interface. For the TAConnectorFactory interface, you must
implement the following method:

test() To implement: This method should test
the connectivity of the physical resource
using the connection parameter values
given in the implementation of
TAConnectorParamValueBean. This
method can also implement the required
logic to validate the connection
parameters.

Usage: Select Identity calls this method
on the connector when a new resource is
deployed or an existing resource is
modified. Select Identity expects the
connector to verify connectivity with the
resource and validate the connection
parameters.

unlink(UserModel,
GroupModel)

To implement: Dissociate the user from
the entitlement referred to by the
GroupModel.getGroupId().

Usage: This is called when a user's
Service membership is modified or when
user is disabled for a given Service.

update(UserModel) To implement: Update the attributes of
the user on the resource.

Usage: This method is called to update
the attributes of a user. Select Identity
sends all attributes of the user.

Method Comment

getConnection(connParam) Usage: This is called to return the
implementation of the TAConnector
interface.

Method Comment
28

Chapter 2
• TAConnectorParameterFactory interface — obtains connector-specific
beans that hold connection parameter values. In particular, you must
implement these methods:

• TAConnectorParamValueBean class — an abstract class that represetns
the connection parameter values needed to establish a connection with the
resource. It also holds all parameters needed to access the resource for
user provisioning. In particular, you must implement these methods:

Method Comment

createParamValueBean() Usage: This is called to create a bean
to pass to the parameter values.

getParamBeans() Usage: This is called to return a
collection of
TAConnectorParamBean classes if
the connector needs configuration
values from the user.

Method Comment

getTAInstallDirectory() Usage: This is called to return the
path of the Select Identity
installation directory.

setTAInstallDirectory(path) Usage: This is called to set the path
of the Select Identity installation
directory.

getParamNames To implement: Return all
connection parameter names.

Usage: This method will return the
names of the connection parameters
that are used to establish a
connection with the resource.
29

Chapter 2
You can also implement the following Select Identity Connector API interfaces
and classes (this is a subset of all interfaces and classes provided by the API),
as needed:

• UserModel

• GroupModel

• EntitySupport

• RelationSupport

Finally, implement an authentication mechanism for the connection. For
example, you may implement simple username/password authentication
using an administrative account that has the necessary authority.

JNDI Registration of the Parameter Factory Implementation

You must register the parameter factory implementation with JNDI. Select
Identity will look up the parameter factory when creating instances of
TAConnectorParamValueBeans.

The following sample code illustrates how you could register the parameter
factory implementation with the JNDI on the application server. Select
Identity will reference this factory and use it to create instances of
ParamValueBean in which it passes the connection information.

get To implement: Return the value of
the connector parameter.

Usage: This gets the value of the
connection parameter.

set To implement: Save the value of the
connector parameter.

Usage: The set method sets the
connection parameter value. Select
Identity will pass the values
provided when the resource was
deployed using this method. The
bean implementation should store
the value for later use.

Method Comment
30

Chapter 2
private void registerParamFactory(String connectorJndiName)
throws Exception
{
String lFuncName = "registerParamFactory()";
LDAPParamFactory paramFactory = new LDAPParamFactory();
InitialDirContext initCtx = new InitialDirContext();

// Initialize the factory
paramFactory.initialize();

try {
initCtx.lookup("eis");

} catch (NameNotFoundException e) {
initCtx.createSubcontext("eis");

}

// Register param factory with JNDI
// Example: eis/LDAPv3-ParamFactory
String lPfJndiName = connectorJndiName +
TAConnectorParameterFactory.JNDI_PARAMFACTORY_SUFFIX;

try {
initCtx.lookup(lPfJndiName);
catch (NameNotFoundException e) {
initCtx.bind(lPfJndiName, paramFactory);

} finally {
initCtx.rebind(lPfJndiName, paramFactory);

}
}

Mapping File Overview

As described in Building a Connector on page 20, you must create a file that
maps the Select Identity fields defined for a user to the fields used by the
resource. The connector will reference this mapping file to understand the
target field on the resource for each user value.

The LDAP connector provides three mapping files: one for an Active Directory
server (ActiveDir.xml), one for an iPlanet server (iPlanet.xml), and one
for ETrust (CAEtrust.xml). The files are created in XML, according to SPML
standards, and are bundled in a JAR file called schema.jar.
31

Chapter 2
General Attribute Information

The following operations can be performed in the mapping file:

• Add a new attribute mapping

• Delete an existing attribute mapping

• Modify attribute mappings

Here is an explanation of the elements in the XML mapping files provided by
the LDAP connectors:

• <Schema>, <providerID>, and <schemaID>

Provides standard elements for header information.

• <objectClassDefinition>

Defines the actions that can be performed on the specified object as
defined by that name attribute (in the <properties> element block) and
the Select Identity-to-resource field mappings for the object (in the
<memberAttributes> block). For example, the object class definition for
users defines that users can be created, read, updated, deleted, reset, and
expired in LDAP.

• <properties>
Defines the operations that are supported on the object. This can be
used to control the operations that are performed through Select
Identity. The following operations can be controlled:

— Create (CREATE)

— Read (READ)

— Update (UPDATE)

— Delete (DELETE)

— Enable (ENABLE)

— Disable (DISABLE)

— Reset password (RESET_PASSWORD)

— Expire password (EXPIRE_PASSWORD)

— Change password (CHANGE_PASSWORD)
32

Chapter 2
The operation is assigned as the name of the <attr> element and
access to the operation is assigned to a corresponding <value>
element. You can set the values as follows:

— true — the operation is supported by the connector

— false — the operation is not supported by the connector and will
throw a permission exception

— bypass — the operation is not supported by the connector but will
not throw any exception; the operation is simply bypassed

Here is an example:

<objectClassDefinition name="User" description="Active
Directory User>

<properties>
<attr name="CREATE">
<value>true</value>

</attr>
<attr name="READ">
<value>true</value>

</attr>

• <memberAttributes>
Defines the attribute mappings. This element contains
<attributeDefinitionReference> elements that describe the mapping
for each attribute. Each <attributeDefinitionReference> must be
followed by an <attributeDefinition> element that specifies details
such as minimum length, maximum length, and so on.

Each <attributeDefinitionReference> element contains the following
attributes:

— Name — the name of the reference.

— Required— if this attribute is required in the provisioning (set to
true or false).

— Concero:tafield — the name of the Select Identity resource
attribute.

— Concero:resfield — the name of the physical resource attribute
from the resource schema. If the resource does not support an
explicit schema (such as UNIX), this can be a tag field that
indicates a resource attribute mapping.
33

Chapter 2
— Concero:isKey — An optional attribute that, when set to true,
specifies that the connector can use this attribute mapping to
locate the object on the resource. To set the attribute mapping as a
key, you need to specify this attribute for only one
<attributeDefinitionReference> element in the
<memberAttributes> element. The connector attribute for which
you set isKey does not need to be the same attribute that is
defined as the key in Select Identity.

— Concero:init — An optional attribute that identifies that the
attribute is initialized with the value of the attribute passed in
from Select Identity.

Here is an example:

<memberAttributes>
<attributeDefinitionReference name="User Name"
 required="true" concero:tafield="[User Name]"
 concero:resfield="cn" concero:isKey="true"
 concero:init="true" />

The interpretation of the mapping between the connector field (as
specified by the Concero:tafield attribute) and the resource field (as
specified by the Concero:resfield attribute) is determined by the
connector. The LDAP connector has code to interpret the mappings in
one way, as follows:

— The connector attribute names are specified in square braces, like
this: [xyz]. The value of attribute xyz is taken from the UserModel
during provisioning.

— Composite attributes can be specified in the LDAP connector
mapping file. To do this, specify [attr1] xxxx [attr2] as the
connector attribute. This specifies that the value of the attr1 and
attr2 attributes should be combined with the string xxxx to form a
mapping for the specified resource field. LDAP connector has code
to handle these composite mappings.

• <attributeDefinition>

Defines the properties of each object’s attribute. For example, the attribute
definition for the HomeDir attribute defines that it must be between zero
and 100 characters in length and can contain the following letters,
numbers, and characters: a-z, A-Z, 0-9, @, +, and a space.

Here is an excerpt from the ActiveDir.xml file:
34

Chapter 2
<attributeDefinition name="HomeDir" description="User Home
directory" type="xsd:string" >
<properties>
<attr name="minLength">
<value>0</value>

</attr>
<attr name="maxLength">
<value>128</value>

</attr>
<attr name="pattern">
<value><![CDATA[[a-zA-Z0-9@]+]]> </value>

</attr>
</properties>

</attributeDefinition>

• <concero:entitlementMappingDefinition>

Defines how entitlements are mapped to users.

• <concero:objectStatus>

Defines how to assign status to a user.

• <concero:relationshipDefinition>

Defines how to create relationships between users.

Creating a Mapping File

Create a mapping file that maps each attribute on the physical resource to an
attribute on the connector. (To complete this mapping, attributes must be
created using the Select Identity client to map a name on the server to this
name on the connector.) For example, the connector may store the user ID in a
field called userID and the resource may store the ID in a field called
user_id. The connector will reference the mapping file to understand the
target field on the resource for each user value.
35

Chapter 2
The following illustrates the relationship between the fields in Select Identity,
the connector, and the resource:

Instances of UserModel and GroupModel are populated and provided by
Select Identity when it calls the TAConnector methods. Obtain user and group
attributes from here and map them to the resource using map file.

You determine the format of the mapping file. The connector may require only
a simple mapping stored in a text file. Here is a simple text file example where
the Select Identity field is specified first and a pipe (|) separates the fields:

User Name|UserId
Password|Password
User Name|cn
First Name|givenName
Last Name|sn
[First Name] [Last Name]|displayName
Title|Title
36

Chapter 2
Directory|homeDirectory
Email|Mail
Address 1|streetAddress

Or, the connector may require a format that supports robust mapping, such as
an XML file. XML mapping files are used by all connectors built and provided
by HP. Here is an excerpt from the iPlanet.xml file, which is provided with
the LDAP connector. Refer to Mapping File Overview on page 31 for a full
description of the file.

<objectClassDefinition name="User" description="LDAP User">
<properties>
<attr name="CREATE">
<value>true</value>

</attr>
<attr name="READ">
<value>true</value>

</attr>
<attr name="UPDATE">
<value>true</value>

</attr>
<attr name="DELETE">
<value>true</value>

</attr>
<attr name="ENABLE">
<value>true</value>

</attr>
<attr name="DISABLE">
<value>true</value>

</attr>
<attr name="RESET_PASSWORD">
<value>true</value>

</attr>
<attr name="EXPIRE_PASSWORD">
<value>false</value>

</attr>
<attr name="CHANGE_PASSWORD">
<value>true</value>

</attr>
</properties>
<memberAttributes>
<!-- For iPlanet -->
<attributeDefinitionReference name="UserName" required="true"
 concero:tafield="[UserName]" concero:resfield="uid"
 concero:isKey="true" concero:init="true"/>
<attributeDefinitionReference name="Password" required="false"
 concero:tafield="[Password]" concero:resfield="userpassword"
 concero:init="true" />
37

Chapter 2
Installing a Connector

To install the connector on the Select Identity server, you must copy the
connector files to the target locations and configure the application server. The
following steps provide general guidelines for installing a connector; the
details will depend on how the connector was implemented and the type of
application server.

1 If necessary, stop the application server.

2 Copy the connector.rar file and the mapping file into the Select
Identity folder on the application server (which should have been
created when Select Identity was installed).

3 Start the application server.

4 Edit the startweblogic.cmd file to specify the location of the mapping
file. The startweblogic.cmd file resides in the WebLogic_home/
user_projects/domains/domain/ directory on WebLogic 8.1.

Locate the line set CLASSPATH=%CLASSPATH% in the
startweblogic.cmd file and add C:\Select_Identity\file_name
to the class path.

5 Restart the application server.

6 Deploy the connector on the application server, as follows:

a On the WebLogic Administrator Console, navigate to My_domain –>
Deployments –> Connector Modules.

b Click Deploy a New Connector Module.

c Locate and select the connector.rar file (in the Select_Identity
directory).

d Click Target Module.

e Select the My Server (which is your server instance) check box.

f Click Continue. Review your setings.

After you install the connector the first time, you do not need to
restart the application server if the connector.rar and mapping
files change. This is because neither the connector.rar file nor
name of the mapping file were added to the classpath.
38

Chapter 2
g Keep all default settings and click Deploy.

h Restart the application server.

7 Two-way connector only
Install and configure the agent on the resource with which the connector
communicates to provision users. The agent may also be used to
synchronize changes to the identity objects, pushing the changes from the
resource to Select Identity. The installation and configuration steps are
agent-specific, though you can refer to the HP OpenView Select Identity
Installation Guide for the NTLocal and NTDomain Connector for an
example, if you purchased this connector.

Deploying a Connector in Select Identity

After you create a connector, you can deploy it using the Select Identity
interface. The following provides an overview of the procedures you must
complete in order to deploy your connector:

1 After you build and install the connector, you must register it with Select
Identity. Do so on the home page of the Connector Management tab by
clicking the Deploy New Connector button. Complete this procedure,
referencing your connector files, as described in the “Connector
Management” chapter of the HP OpenView Select Identity Administrator
Guide.

2 You must deploy the resource that uses the newly created connector. On
the home page of the Resource Management tab, click the Deploy New
Resource button. Complete the steps in this procedure, referencing the
new connector created in step 1, as described in the “Resource
Management” chapter of the HP OpenView Select Identity Administrator
Guide.

3 Create attributes that link Select Identity to the connector. For each
mapping in the connector’s mapping file, create an attribute using the
Attributes capability on the Select Identity client. Refer to the “Attributes”
chapter in the HP OpenView Select Identity Administrator Guide for more
information.

4 Create a Service that will use the newly created resource. To do so, click
the Deploy New Service button on the home page of the Service
Management tab. Complete this procedure as described in “Service
39

Chapter 2
Management” of the HP OpenView Select Identity Administrator Guide.
You will reference your new resource created in step 2 while creating this
service.

Testing a Connector

To test a connector, verify that you can perform user provisioning tasks.
Perform each of the following tasks to thoroughly test the connector.

1 Verify provisioning operations using the Select Identity client. Go to the
Users home page and perform the following tasks, if applicable. Refer to
the HP OpenView Select Identity Administrator Guide for detailed
information.

• Add a user

• Modify the user attributes

• Delete an existing user from the resource

• Retrieve the details of user from the resource

• Disable the user on the resource

• Enable the user on the resource

• Change the user’s password

• Retrieve all entitlements present in the resource

• Associate entitlements with an existing user on the resource

• Remove entitlements from the user

• Synchronize passwords, which involves changing a user’s password on
the resource; the resource should then propagate to the existing user
in Select Identity

• With an agent-based connector, an SPML <extendedRequest>
request should be sent to the Select Identity Web Service with the
password information

• Reverse synchronization, which involves synchronizing Select Identity
with changes to identity information on the resource.
40

Chapter 2
2 Perform the following operations on the resource directly using its
interface. These tests involve verifying the reconciliation in Select
Identity. With an agent-based connector, SPML requests should be sent
back to the Select Identity Web Service with the changes made on the
resource.

• Add a new user on the resource. This should result in an SPML
<addRequest> request including all the attributes of the user.

• Modify the user attributes on the resource. This should result in an
SPML modifyRequest with the modified attribute information

• Delete an existing user from the resource. This should result in an
SPML deleteRequest with the id of the user

• Disable the user on the resource. This should result in an SPML
extendedRequest with all the attributes of the user

• Enable the user on the resource. This should result in an SPML
extendedRequest with all the attributes of the user

• Associate entitlements to an existing user on the resource. This should
result in an SPML modifyRequest with the new entitlements added.

• Dissociate entitlements from the user. This should result in an SPML
modifyRequest with the removal of entitlements

• Associate some and dissociate some entitlements on the user on the
resource. This should result in an SPML modifyRequest addition/
deletion of entitlements.

3 Verify changes made on the ID object in the Select Identity repository. You
can view user attribute or service membership information in the
repository.
41

3

LDAP Connector Example
The LDAP connector enables HP OpenView Select Identity to manage user
data in LDAP. It is a one-way connector and pushes changes made to user
data in the Select Identity database to a target LDAP server. This connector is
generic and can be used to connect to any LDAP data source. The mapping file
controls how Select Identity fields are mapped to LDAP fields.

The mapping file, source files, definition file, and build files reside in a
directory with the following structure in the docs/connectors directory on
the Select Identity CD:

ldapv3/
com/

trulogica/
truaccess/

connector/
ldap/

ldapv3/
LDAPConnector.java
LDAPConnectorFactory.java
LDAPManagedConnection.java
LDAPManagedConnectionFactory.java
LDAPManagedConnectionMetaData.java
LDAPParamFactory.java
LDAPParamResources.properties
LDAPParamValueBean.java
LDAPRAMetaData.java
42

Chapter 3
LDAPUtil.java
schema/

spml/
ActiveDir.xml
CAEtrust.xml
iPlanet.xml

META-INF/
ra.xml
weblogic-ra.xml

build.bat
build.properties
build.xml
build_common.xml
build_rar.xml

This chapter provides an explanation of the source code that implements the
LDAP connector, the mapping file that Select Identity refers to when pushing
data, and the packaging. Use this example to help you build your own
connector.

Description of Source Files

The source files for the LDAP connector are provided on the Select Identity
CD, in the docs/connectors/LDAPv3 directory. The following provides a
description of the files:

• LDAPConnector.java

This is the implementation of TAConnector interface to provision users
onto the LDAP data store. This represents a physical connection to the
LDAP store.

The class uses the JNDI API for a directory interface to access and update
LDAP. Connection parameters should contain the URL to access the
LDAP store and the root directory name and password. This class uses the
SPML-based XML mapping file to map Select Identity resource fields to
LDAP attributes.
43

Chapter 3
• LDAPManagedConnectionFactory.java

This is the implementation of the
javax.resource.spi.ManagedConnectionFactory interface. This class is
registered with the application server by specifying the
managedconnectionfactory-class in the ra.xml deployment descriptor file.

The application server calls on this implementation to create and return
an instance of ManagedConnection, which represents the connection to
the resource and matches existing managed connections with the given
one. Also, the connector parameter factory implementation is registered
with JNDI in this file.

• LDAPConnectorFactory.java

This is the implementation of TAConnectorFactory interface and
represents a factory to create managed connections. This class is
registered with the application server by specifying the factory under the
connectionfactory-impl-class in the ra.xml file.

The getConnection(TAConnectorParamValueBean connParam) method is
implemented and it calls on the application server connection manager to
allocate and return a new connection.

• LDAPManagedConnection.java

This is the implementation of the javax.resource.spi.ManagedConnection
interface and it represents the physical connection to the resource.

The application server calls the getConnection() method in this class to get
a connection handle to the resource. The connection parameter value bean
is passed in by the application server. A local copy of this bean is created
and a new instance of LDAPConnector is created and returned.

A copy of the schema repository is maintained here for reference by
LDAPConnector. This repository is built from the mapping file.

• LDAPParamFactory.java

This is the implementation of TAConnectorParameterFactory interface. It
is instantiated and registered with the JNDI so that Select Identity can
lookup and call on this instance to create instances of beans that contain
the connection parameter values.
44

Chapter 3
• LDAPParamValueBean.java

This is the derived class of the TAConnectorParamValueBean abstract
class. It contains the names of all of the connection parameters needed to
connect to and access the LDAP resource, as follows:

• accessURL — the URL to access the LDAP store

• suffix — the suffix of the domain name (DN) for all users and groups

• rootDN — the root DN to log in to the LDAP store

• rootPassword — the root password

• userSuffix — the user suffix, such as ou=Users

• userObjectClass — the Object class of all users

• groupSuffix — the group suffix, such as ou=Groups

• groupObjectClass — the Object class of all group objects

• mappingFile — the name of the file that contains the attribute
mappings

Each instance of this bean contains one set of information for the
connection parameters.

Also, the following method are implemented:

• getParamNames() returns all the above-listed connection parameters

• get(name) returns the value of the connection parameter

• set(name, value) stores the value of the connection parameter. This
value is passed from the configuration at the time of resource
deployment

• LDAPManagedConnectionMetaData.java

This is the implementation of the
javax.resource.spi.ManagedConnectionMetaData interface and is used to
return the EIS product name, version, and maximum connections allowed
to the application server.

• LDAPRAMetaData.java

This is the implementation of the
javax.resource.cci.ResourceAdapterMetaData interface and is used to
return the resource adapter-specific information to the application server,
such as the adapter name, vendor name, and version.
45

Chapter 3
• LDAPUtil.java

This is a utility class that implements some methods used by other parts
of the connector.

• LDAPParamResources.properties

This is a text file containing configuration properties for the connector and
has the default values for all of the connection parameters. This file is
read in during startup by LDAPUtil.java to return the default values of
the connection parameters. These are displayed in the Select Identity
client, on the Resources home page.

• ra.xml

This is the deployment descriptor for the resource adapter implementing
the connector. The interface and implementation class names are
registered here.

As described in Step 6 on page 20, this file contains the name of the
connector, the configuration, the interface names of the connector, and the
JNDI name for the connector. Refer to the ra.xml file provided by the
LDAP connector as an example when creating your own. Create this XML
file according to the JCA specification. Here is an explanation of the
elements in the ra.xml file:

• <display-name>, <vendor-name>, <spec-version>, <eis-type>,
<version>, and <license>

Provides general information about the connector.

• <managedconnectionfactory-class>

Specifies the path to the class implementing the
ManagedConnectionFactory interface.

• <connectionfactory-interface>

Specifies the path to the TAConnectorFactory interface.

• <connectionfactory-impl-class>

Specifies the path to the class implementing the TAConnectorFactory
interface.

• <connection-interface>

Specifies the path to the TAConnector interface.
46

Chapter 3
• <connection-impl-class>

Specifies the path to the class implementing the TAConnector
interface.

• <transaction-support>

Specifies whether the connector supports transactions.

• <config-property>

Defines a configuration property for the connector. For example, the
UserName property is defined. It is a string and its value is set to
cn=Directory Manager.

A <config-property> element is defined for each of the connector’s
configuration properties.

• <reauthentication-support>

Specifies whether the connector supports authentication after the
connector has communicated with Select Identity.

• weblogic-ra.xml

This is the WebLogic-specific deployment descriptor for the resource
adapter and contains the LDAP connector JNDI name.

Description of Build Files

The following XML and property files are used by Apache Ant to build the
LDAP connector. Refer to the LDAP files on the CD to view the contents.

• build.xml

This is the main build file for the connector. It references the
build.properties file and calls the build_rar.xml file, which
contains information about building the .rar file. It also calls the
build_common.xml file to build common files.

• build_common.xml

This file builds the common classes.

• build_rar.xml

This file contains information about building the .rar file.
47

Chapter 3
• build.properties

This file contains definitions used by the build files.

• build.bat

This file launches the build using Ant.
48

glossary
A

Access Control List (ACL)

An abstraction that organizes entitlements and controls authorization. An
ACL is list of entitlements and users that is associated with a secured object,
such as a file, an operation, or an application. In an ACL-based security
system, protected objects carry their protection settings in the form of an ACL.

Access Management

The process of authentication and authorization.

Action

An action represents a task that can be performed within each Select Identity
capability.

See also: capability

Admin Role

A template that defines the administrative actions that can be performed by a
user. An Administrative Service is created to provide access to roles. Users are
then given access to the Service. Users with administrative roles can also
grant their set of roles to another administrator within their Service context.

Approval Process

The process of approving the association, modification, or revocation of
entitlements for an identity. This process is automated of these through
workflow templates.
49

Glossary
Approver

A Select Identity administrator who has been given approval actions through
an Admin Role.

Attribute

An attribute is an individual field that helps define an identity profile. For
each identity, an attribute has a corresponding value. For example, an
attribute could be “department” with possible values of “IT,” “sales,” or
“support.”

Audit Report

A report that provides regular account interaction information within the
Select Identity system.

Authentication

Verification of an identity’s credentials.

Authoritative Source

A resource that has been designated as the “authority” for identity
information. Select Identity accounts can be reconciled against accounts in an
authoritative source.

Authorization

Real-time enforcement of an identity’s entitlements. Authentication is a
prerequisite for authorization.

Auto Discovery

The process of adding user accounts to the Select Identity system for a
specified Service through the use of a data file.

B

Business Relationship

A Select Identity abstraction that defines how a logical grouping of users will
access a Select Identity Service. The Select Identity Service is a superset of all
the identity management elements of a business service.
50

Glossary
Business Service

A business service is a product or facility offered by, or a core process used by,
a business in support of its day-to-day operations. Example business services
could include an online banking service, the customer support process, and IT
infrastructure services such as email, calendaring, and network access.

See also: service

C

Capability

Actions that can be performed within the Select Identity client are grouped by
capability, or link, in the interface.

See also: action

Challenge and Response

A method of supplying alternate authentication credentials, typically used
when a password is forgotten. Select Identity challenges the end user with a
question and the user must provide a correct response. If the user answers the
question correctly, Select Identity resets the password to a random value and
sends email to the user. The challenge question can be configured by the
administrator. The valid response is stored for each user with the user’s
profile and can be updated by an authenticated user through the Self Service
pages.

Configurations

The Configurations capability enables you to import and export Select
Identity settings and configurations. This is useful when moving from a test
to a production environment.

Configuration Reports

Configuration reports provide current system information for user,
administrator, and Service management activities.

Connector

A J2EE connector that communicates with the system resources that contain
your identity profile information.
51

Glossary
Context

A Select Identity concept that defines a logical grouping of users that can
access a Service.

Contextual Identity Management (CIM)

An organizational model that introduces new abstractions that simplify and
provide scale to the business processes associated with identity management.
These abstractions are modeled after elements that exist in businesses today
and include Select Identity Services and Business Relationships.

Credentials

A mechanism or device used to verify the authenticity of an identity. For
example, a user ID and password, biometrics, and digital certificates are
considered credentials.

D

Data File

An SPML file that enables you to define user accounts to be added to Select
Identity through Auto Discovery or Reconciliation.

Delegated Administration

The ability to securely assign a subset of administrative roles to one or more
users for administrative management and distribution of workload. Select
Identity enables role delegation through the Self Service pages from one
administrator to another user within the same Service context.

Delegated Registration

Registration performed by an administrator on behalf of an end user.

E

End User

A role associated to every user in the Select Identity system that enables
access to the Self Service pages.
52

Glossary
Entitlement

An abstraction of the resource privileges granted to an identity. Entitlements
are resource-specific and can be resource account IDs, resource role
memberships, resource group memberships, and resource access rights and
privileges. Entitlements are also considered privileges, permissions, or access
rights.

External Call

A programmatic call to a third-party application or system for the purpose of
validating accounts or constraining attribute values.

F

Form

An electronic document used to capture information from end users. Forms
are used by Select Identity in many business processes for information
capture and system operation.

I

Identity

The set of authentication credentials, profile information, and entitlements for
a single user or system entity. Identity is often used as a synonym for “user,”
although an identity can represent a system and not necessarily a person.

Identity Management

The set of processes and technologies involved in creating, modifying, deleting,
organizing, and auditing identities.

M

Management

The ongoing maintenance of an object or set of objects, including creating,
modifying, deleting, organizing, auditing, and reporting.
53

Glossary
N

Notifications

The capability that enables you to create and manage templates that define
the messages that are sent when a system event occurs.

P

Password Reset

The ability to set a password to a system-generated value. Select Identity uses
a challenge and response method to authenticate the user and then allow the
user to reset or change a password.

Policy

A set of regulations set by an organization to assist in managing some aspect
of its business. For example, policy may determine the type of internal and
external information resources that employees can access.

Process

A repeatable procedure used to perform a set of tasks or achieve some
objective. Whether manual or automated, all processes require input and
generate output. A process can be as simple as a single task or as complicated
a multi-step, conditional procedure.

See also: approval process

Profile

Descriptive attributes associated with an identity, such as name, address,
title, company, or cost center.

Provisioning

The process of assigning authentication credentials to identities.
54

Glossary
R

Reconciliation

The process by which Select Identity accounts are synchronized with a system
resource. Accounts can be added to the Select Identity system through the use
of an SPML data file.

Registration

The process of requesting access to one or more resources. Registration is
generally performed by an end user seeking resource access, or by an
administrator registering a user on a user’s behalf.

See also: delegated registration, self registration

Request

An event within the Select Identity system for the addition, modification, or
removal of a user account. Requests are monitored through the Request
Status capability.

Resource

Any single application or information repository. Resources typically include
applications, directories, and databases that store identity information.

Role

A simple abstraction that associates entitlements with identities. A role is an
aggregation of entitlements and users, typically organized by job function.

See also: administrative role

Rule

A programmatic control over system behavior. Rules in Select Identity are
typically used for programmatic assignment of Services. Rules can also be
used to detect changes in system resources.
55

Glossary
S

Self Registration

Registration performed by an end user seeking access to one or more
resources.

Self Service

The ability to securely allow end-users to manage aspects of a system on their
own behalf. Select Identity provides the following self-service capabilities:
registration, profile management, and password management (including
password change, reset, and synchronization).

Service

A business-centric abstraction representing resources, entitlements, and other
identity-related entities. Services represent the products and services that you
offer to customers and partners.

Service Attribute

A set of attributes and values that are available for or required by a Service.
Attributes are created and managed through the Attributes pages.

See also: Attributes

Service View

A restricted view of a Service that is valid for a group of users. Views enable
you to define a subset of Service registration fields, change field names,
reorder fields, and mask field values for specific users.

Single Sign-On (SSO)

A session/authentication process that permits a user to enter one set of
credentials (name and password) in order to access multiple applications. A
Web SSO is a specialized SSO system for web applications.

SPML Data File

A file that is used to add and provision accounts within Select Identity.

See also: Data File
56

Glossary
U

Users

The Select Identity capability that provides consistent account creation and
management across Services.

W

Workflow

The tasks, procedural steps, organizations or people involved, and required
input and output information needed for each step in a business process. In
identity management, the most common workflows are for provisioning and
approval processes.

Workflow Engine

A system component that executes workflows and advances them through
their flow steps.

Workflow Studio

The Select Identity capability that enables you to create and manage
workflow templates.
57

index
A
agent, 20

API overview, 9

B
build files, 47

C
connector.java, 20

connectors
API overview, 9
creating, 20
deploying, 39
installing, 38
introduction, 8, 17
LDAP example, 42
mapping file, 20, 35
one-way, 8
required Java classes and interfaces, 22
two-way, 9
types, 8

creating a connector, 20

D
deploying a connector, 39

I
installing a connector, 38

J
Java classes and interfaces, 22

JCA, 9

L
LDAP connector

build files, 47
directory structure, 42
mapping file, 31
overview, 42
ra.xml file, 46
source files, 43 to ??

M
mapping file

ldap example, 31
overview, 20, 35
simple example, 36

O
one-way connector, 8
58

Index
R
ra.xml file

example, 46
overview, 20

S
source file examples, 43 to ??

T
two-way connector, 9

X
XML file, 20
59

	Connector Developer Guide
	contents
	Introduction to Connectors
	Overview of Select Identity Connectors
	J2EE Connector Architecture (JCA)
	Development Phases
	Requirements Phase
	Design Phase
	Implementation
	Integration
	Packaging
	Documentation

	Implementing a Connector
	Overview of the Select Identity Connector API
	Building a Connector
	Interface, Class, and Method Implementations
	JCA Interfaces
	Select Identity Connector API Interfaces and Classes

	JNDI Registration of the Parameter Factory Implementation

	Mapping File Overview
	General Attribute Information
	Creating a Mapping File

	Installing a Connector
	Deploying a Connector in Select Identity
	Testing a Connector

	LDAP Connector Example
	Description of Source Files
	Description of Build Files

	glossary
	index

