HP Service Activator
TeMIP Liaison

Edition: V51-1A

Manufacturing Part Number: None

July 1, 2010

© Copyright 2010 Hewlett-Packard Devel opment Company, L.P.

L egal Notices

Warranty.

Hewlett-Packard makes no warranty of any kind with regard to this manual, including, but not limited
to, the implied warranties of merchantability and fitness for a particular purpose. Hewl ett-Packard
shall not be held liable for errors contained herein or direct, indirect, special, incidental or
consequential damages in connection with the furnishing, performance, or use of this material.

A copy of the specific warranty terms applicable to your Hewlett-Packard product can be obtained
from your local Sales and Service Office.

Restricted Rights Legend.

Use, duplication or disclosure by the U.S. Government is subject to restrictions as set forth in
subparagraph (c)(1)(ii) of the Rightsin Technical Data and Computer Software clausein DFARS
252.227-7013.

Hewlett-Packard Company
United States of America

Rightsfor non-DOD U.S. Government Departments and Agencies are as set forth in FAR 52.227-
19(c)(1,2).

Copyright Notices.

©Copyright 2001-2010 Hewlett-Packard Development Company, L.P., al rights reserved.

No part of this document may be copied, reproduced, or trandated to another language without the
prior written consent of Hewlett-Packard Company. The information contained in this material is
subject to change without notice.

Trademark Notices.

Java™ jsa U.S. trademark of Sun Microsystems, Inc.

Linux isaU.S. registered trademark of Linus Torvalds

Microsoft® isa U.S. registered trademark of Microsoft Corporation.

MS-DOS® isaU.S. registered trademark of Microsoft Corporation.

Oracle® isaregistered U.S. trademark of Oracle Corporation, Redwood City, California.
UNIX® isaregistered trademark of the Open Group.

Windows® and MS Windows® are U.S. registered trademarks of Microsoft Corporation.

All other product names are the property of their respective trademark or service mark holders and are
hereby acknowledged.

Document id: p158-pd010004

Table of Contents

(@ gT=To] (= g A I 1 oo [1 [ox £ o o H USSR 8
Calling TeMIP directives from HP ServiCe ACHVEALONccccvvveieiereeeereses e sesese e eseesee e ssesse e snens 8
Running OV SA WOrKfIOWS from TEMIP.........coiiiiieee e e 9

Chapter 2: Configuring TEMIP [i@iSON t0 WO Keeieieierire e ceeeeeesee st snens 10

OVEIVIBW ...ttt st R et R Rt e R R Rt e e R e e R Rt e e R et s e R et e r e e e r s 10
Configuring ServiCe ACHVALON SIEcoi et e bbb e e 11
TeMIP MOdUIE CONFIGUIALIONeiviieie ettt se et snesresreeneeseeneneeneenrenrs 11
TeMIPLiaison plug-in CONFIQUIATON........coiiieieriesie sttt ee e 11
Installing and configuring TEMIP SIAE.........civeeeeeere e ene e 12
(S = = o] o (USSR 12
(@00 1T 1= 1o o 1P 13
BACKUP OF IMITR ...ttt e e bt a et e e e e e e e b e e bt e aeebe e e e e e b e ebe s b e saeebeeneeneenes 14
Re-Start Of TEMIP OV SA FIM ..ottt ettt sttt 14
Chapter 3: TeMIP Callsand Results 0N Service ACHIVALOLcccoieririerieeie et 16
(O | I 1 - = USSR 16
TEMIP ENLLY NBIMES....c.iitiieiiitiietirteeete sttt ettt bbb bt e et be st e s b e e nenbentenes 17
Argument and AITDULE VEIUBS..........ooi ittt et se e ae e 17
TEMIP RESUIL SYNEAX ..veveveieeereeeeiesiesteste e stes e e esaesses e saestesseeseeseeseesteseestessessesseeseeneessesessessessessessenenneen 19
= 10 1SR 20
Chapter 41 OV SA FM .ot r et r et ren e n s 24
L@ Y= VT STV T 24
S Ve R 1= = o TSR 24
OV SA ettt ettt et b e e R b e R b e Rt b e e R e Eene Rt SR e e e R e b e e e b e b et be e e et ebenee e ebeneeneas 24
(117 U SRR 26

O o o PSSRSO 27
WV OTKFTOW ...ttt et b bt e e e e bt e b e e bt e aeehe e e e b e seesbeebesaeeae e e eneeeeseennas 30
Sl f-MANAGEMENT INEEITACE ... e iti i s e te s aesaesrenneene e e eneenes 31
OV SA ettt sttt st et et e e e Rt b e sa e st Eese e Rt Ee e e Rt e EeneeR e ReneeR e eE et e R et et e R e e Ee e eteete e etenae e etenreneas 31
OV SA TITECLIVES. ...ttt e s et e st n et e r e r e e r e es 31
OV SA CONFIG CIBSS ..ttt sttt ettt ettt et e e et b e s bt e bt ebe e e e e e seeebesbesbeebeeaeenee e eeaneeseeas 32
Chapter 5: TEMIP NOUES......c.coiieirerrerirrreee et n et n e 34
OVEIVIBW ...ttt s R e Rt R Rt e R e R Rt e e R e e R R et e e R e s e R et e r e e r s 34
TeMIPEXECULEDI reCtiVe EXAMPIES ..ottt sttt et bbb ne e e e e 35
Non Wild-carded SHOW Call ... 35
Wild-Cardet SNOW Calloooeiiie et bt b e bt e e e be e e 37
Action and MOAIfICAION CAIIS.......ccoviriirerer e 38
TeMIPStartDirective and TEMIPNeXtResult EXAMPIEcoceiiiiiiiiiiieeeee e 41
TCL BXECULION ...ttt s bRt e bRt r Rt n st rer e e nr e nn s 43

V= A= o LT o 1 (o 44

Chapter 6: TEM IPLIAISON PIUGFIN.c..eitiiiiiiieeee ettt s e b e b st be e e e e e sbesbesae s 46
(O < YT SRR 46
TranSACHiON FOHDBCKvveercieereer et 46
Temip EXP_direCtive EXAMPIE.ottt ettt bbb e e s 47
Variale SUDSEITULION........ceeerceieerccrereees e 47
TOMPIALE FIIES ...ttt bttt e et e et e bt e bt e b e e st e st et et e sbesbesbesaeeneeneenean 48

Install Location Descriptors

The following names are used to define install locations throughout this guide.

Descriptor

What the Descriptor Represents

$ACTIVATOR OPT

The base ingtall location of Service Activator.

The UNIX® locationis/ opt / OV/ Ser vi ceActi vat or

The Windows® location is

<install drive>:\HP\OpenVi ew\ ServiceActi vat or

$ACTIVATOR ETC

Theinstall location of specific Service Activator files.

The UNIX locationis/ et c/ opt / OV/ Ser vi ceAct i vat or

The Windows location is

<install drive>:\HP\OpenVi ew\ Servi ceActivator\etc

$ACTIVATOR VAR

Theinstall location of specific Service Activator files.

The UNIX locationis/ var/ opt / OV/ Ser vi ceAct i vat or

The Windows location is

<install drive>:\HP\OpenVi ew\ Servi ceActivator\var

$ACTIVATOR BIN

Theinstall location of specific Service Activator files.

The UNIX locationis/ opt / OV/ Servi ceActivator/bin

The Windows location is

<install drive>:\HP\ OpenVi ew\ ServiceActivator\bin

$ACTIVATOR THIRD_PARTY

The location for new Java™ components such as workflow nodes and
modules.

The UNIX locationis

/opt/ OV/ Servi ceActivator/3rd-party

The Windows location is

<install drive>:\HP\OpenVi ew Service
Activator\3rd-party

Customized inventory files are stored in the following locations:
UNIX: $ACTI VATOR_THI RD_PARTY/ i nvent ory

Windows: $ACTI VATOR_THI RD_PARTY\'i nvent ory

$JBOSS HOME

The install location for JBoss.

The UNIX locationis

/ opt/ HP/ j boss

The Windows location is

<install drive> \HP\jboss

$JBOSS DEPLOY

The install location of the Service Activator J2EE components.
The UNIX location is
/opt/ HP/ j boss/ server/ def aul t/ depl oy

The Windows location is
<install drive>\HP\jboss\server\default\depl oy

$ACTIVATOR DB _USER

The database user name you define. Suggestion: ovact i vat or

$ACTIVATOR SSH_USER

The Secure Shell user name you define. Suggestion: ovact usr

In This Guide

This guide contains information about HP Service Activator TeMIP liaison solution which is provided
as part of HP Service Activator.

The guide contains detailed information about:
e Installation and configuration of TeMIP liaison
e Syntax of command messages and responses to them
e The syntax of encoding of values of different TeMIP data types
e The recommendations and examples of usage of TeMIP workflow nodes

e Therecommendations and examples of usage of TeMIPLiaison plug-in

Audience

The audience for thisguideis:
e SystemsIntegrator, using it as a resource for building new solutions.
e Educational staff, using it as student material in customer training.

The reader must understand the architecture, tools, and service delivery processes described in HP
OpenView Service Activator—Introduction & Overview Guide.

In addition, the reader has a combination of some or al of the following:
e Understandsthe XML and DTD schemes
e Hasabasic knowledge of TCL language and TTS commands
e Hasabasic understanding of TeMIP framework and especially of following aress:
e Datatypes
e Dictionary structure

e Directivecadls

References
[MWFM] HP OpenView Service Activator, Workflows and the Micro-Workflow Manager.

[RESMGR] HP OpenView Service Activator, Developing plug-ins and compound tasks.
[TTS] HP OpenView TeMIP TCL Scripting User Guide.

Manual Organization

This guide contains the following chapters:

Chapter 1, “Introduction”, which describes the structure of the TeMIP liaison solution, its features and
possible areas of application.

Chapter 2, “Configuring TeMIP liaison to work”, which provides detailed instructions on how to install
the the TeMIP liaison solution and configure it.

Chapter 3, “TeMIP data encoding”, which describes what request and response messages the
communication of TeMIP and HP Service Activator is based on, how different TeMIP datatypes are
encoded into XML.

Chapter 4, “OVSA FM”, describes the model of the central part of the TeMIP liaison solution — OV SA
FM.

Chapter 5, “TeMIP nodes’. Aswell as the detailed descriptions of TeMIP nodes is provided in the
document [MWFM], this chapter contains a recommendations and examples of usage of TeMIP nodes.

Chapter 6, “TeMIPLiaison plug-in”, provides the examples of usage of TeMIPLiaison plug-in.

Chapter 1: Introduction

The HP Service Activator TeMIP Liaison (further TeMIP liaison or liaison) isintended to facilitate the
building of solutions which draw on the combined power of the two platforms—HP TeMIP and HP
Service Activator - and leverage existing solution components from both of them, components which
may or may not have been productized. The liaison requires TeMIP V5.0 on HP-UX PA-RISC.

The liaison contains for each platform components which fit into its architecture and expose the native
mechanisms for retrieving data and controlling activities on the other platform. The main mechanisms
for interactions are depicted in Figure 1. Note that a specia functional module, the OVSA FM, is
introduced on the TeMIP platform and serves as a key component of the liaison.

Figure 1, Liaison interaction mechanisms

service activator a
workflow manager \7
4
service activator ‘
inventory -

service activator

Calling TeMIP directives from HP Service Activator

In order to enable an HP Service Activator solution to make use of capabilitiesimplemented on TeMIP,
the TeMIP directive call is made available for use within workflows. TeMIP directive calls can be
invoked in two different ways that are suitable for different purposes. The first way is through
workflow nodes that are added to the node library so that they can easily be used in workflows (1 in
Figure 1). The second way is through a TeMIP-call plug-in (2 in Figure 1) which can be called from a
workflow as an activation step. The plug-in can be used when an activation task is supported on TeMIP
and then allowsit to be invoked in the same way as an activation task in any other plug-in.

The workflow nodes are intended for retrieval of datathat is available in the TeMIP information model,
when such datais needed in the activation sequencing and parameter identification logic of an Service
Activator workflow. Five nodes are provided. One, TeM PExecut eDi r ect i ve, takes parameters
which fully specifiesa TeMIP call, makes the call, waits for the execution of the call to complete, and
returns all resulting data. If the call returns multiple responses, the node waits for all of them to be
returned.

Three other nodes, TeM PSt art Di rect i ve, TeM PNext Resul t and

TeM PCancel Di recti ve, arefor asynchronous response processing. They allow the separation of
call initiation and result retrieval, with the possibility to cancel an active call. When a call returns
multiple results, they are retrieved one at atime. To simplify branching on normal responses and failure
cases TeMIPNextResult is arule node.

Arguments of the TeMIP directive call are given by a single parameter, XML encoded to hold the
names and values of all relevant arguments. Similarly results are returned in XML encoded form which
iseasily parsed by the standard features of Service Activator.

Finally, the fifth node, TeM PExecTcl , supports the execution of a TCL command which can draw
onthefeaturesof TTS, TeMIP Tcl Scripting. The command is passed as a parameter to the node and is

executed by the OV SA FM. Results are returned through an output parameter of the node. This node
makes it possible to retrieve TeMIP information which cannot be obtained by invoking a directive, for
example from the TeMIP dictionary. For more information on the power of TTS, please refer to TTS
documentation.

All activity isinitiated by messages forwarded from the nodes and plug-in described above and
received by the OVSA FM on the TeMIP side. The FM will then make the implied call or callsinto the
TeMIP framework.

A general message exchange protocol, not visible to the system integrator, enables the Service
Activator and TeMIP components to communicate as described above.

Running OV SA workflowsfrom TeM I P

OV SA supports ageneral API for controlling its activity and inspecting its state. The native APl isa
JavaRMI. A SOAP versionis used within the TeMIP Service Activator Liaison to start workflow jobs,
inspect them when queued and interacting with them (3 in Figure 1). The OV SA FM, using the SOAP
interface, exposes for use by other TeMIP modules the TeMIP framework the information model
shown in Figure 2;

Figure 2, TeMIP model of OVSA

OVSA
4| Workflow

Queue

An ingtance of the class OV SA represents a Service Activator server. These are the only entities
persisted on TeMIP. All child entities are proxies for objects on the Service Activator server.

A Workflow entity represents a workflow that is available on the parent server. The list of workflows
available on a server can be retrieved to TeMIP by awild-carded Show call.

A job running a specific workflow can be started by the Start directive (on class Workflow), which will
return thejob id. A single argument on this directive will be passed to the job and can be used to
initialize case-packet variables. How to encode multiple variable values within the argument is a
convention between the caller and the workflow; the general recommendation isto use an XML-
encoded list of names and values, which will be easy to decode within the workflow.

A Queue entity represents an Service Activator queue. Two queues are always present: ‘ Running Jobs
and ‘ Scheduled Jobs'. All current queues can be listed by a wildcarded Show call.

A Job entity represents a Service Activator job which is waiting on the queue included in the full entity
name. A job can be killed by means of the Stop directive. Synchronization with the job, providing it
with the dataiit is waiting for, can be achieved by means of the Load directive, which will load values
provided as through a directive argument structured as alist of (name, value) pairsinto case-packet
variables of the workflow job, just asif an operator had interacted with the job on Service Activator’s
GUI.

Chapter 2: Configuring TeMIP liaison to work

This chapter describes how to install and configure the entire TeMIP liaison solution.

Overview

The TeMIP OV SA Liaison solution, as mentioned in previous chapter, consists of two sides. The first
one — OV SA side — represented by the MWFM module TeMIPModule and TeMIPLiaison plug-inis
built into Service Activator. It does not require additional installation — it should only be configured for
communication with one or a number of TeMIP directors.

The TeMIP side of the TeMIP liaison consists of one component, the OV SA FM. It should be installed
and configured to make TeMIP Liaison solution functioning.

In the following sections you can find information about how to install and configure the TeMIP
liaison. To make a description of the installation and configuration process more illustrative an
example situation is used. Let’s assume that:

e The communication of single Service Activator instance to single TeMIP director
should be organized

e your Service Activator installation and the OV SA FM are running on different
machines:

e the Service Activator instance is running on the host 172.16.1.28
e the OVSA FM isrunning on the host 172.16.1.35

e the OVSA FM islistening to the requests from Service Activator instances on port
number 4051

e the TeMIPLiaison plug-inislistening to the OVSA FM on port 3074
e theTeMIPModuleislistening to the OVSA FM on port 3075

e thelD of the connection of TeMIPLiaison plug-into the OVSA FM is
RESM GR_sa0_directorO,

e thelD of the connection of TeMIPModule to the OVSA FM is
MWFM _sa0 directorO

e Theuserid, which is used when sending requests from the OV SA FM to the Service
Activator’s web/soap interface, is example_usr

e The password , which is used when sending requests from the OVSA FM to the
Service Activator’ s web/soap interface, is example pwd

e the port number where the web-service is listening for requests from the OVSA FM
is 8080

10

Configuring Service Activator side

This section explains how to configure the Service Activator side of the TeMIP liaison.

TeMIP module configuration

The configuration of all of the MWFM modulesis placed into file
$ACTI VATOR_ETC confi g/ mM m xnl .

For the description of the configuration parameters of tbe TeMIPModule see section TBD in TBD.
To configure TeMIPModule do the following:

e inmwfm.xml find the line “ Start TeMIP module’ and uncomment all the lines below
ituntil “End TeMIP module’. Asthe result you will get the following lines
uncommented;
<Modul e>

<Name>t em p</ Nanme>
<d ass- Nane>
com hp. ov. acti vat or. mM m engi ne. nodul e. TeM PMbdul e
</ C ass- Name>
<Par am nane="I| ocal port" val ue="3073"/>
<Par am nane="di rect or 0" val ue="MAFM 172. 16. 0. 29 4050" />

<Par am nanme="confirnti me" val ue="4000"/ >

<Param nane="pol | ti ne" val ue="30"/>

<Par am nanme="def aul tti meout " val ue="30000"/ >

<Par am nane="keepal i vei nterval " val ue="5000"/ >

<Par am nane="keepal i veti meout " val ue="60000"/ >
</ Modul e>

e According to the example situation change the module parameters as follows:
e Set the value of the parameter local port to 3075

e Set the value of the parameter director0to “MWFM _sa0 director0172.16.1.35
4051"

e Set parameters comfirmtime, polltime, defaulttimeout, keepaliveinterval,
keepalivetimeout to your preferred values (description of these parameters can be
found in [MWFM], section TBD)

TeMIPLiaison plug-in configuration
To use the TeMIPLiaison plug-in the plug-in must be deployed.

The TeMIPLiaison plug-in configuration settings should be placed into file
$ACTIVATOR_ETC/config/temipResources.xml. The content of this file conformsto the DTD file
temipResources.dtd placed in the same directory.

Asfar astemipResources.xml is not provided with the Service Activator installation (only the
temipResources.dtd), it should be created explicitly with the below content to configure plug-in
according to example parameters:

<TeM PResour ces>
<Li st ener Port >3074</ Li st ener Port >
<Def aul t Ti meout >60000</ Def aul t Ti neout >
<KeepAl i vel nt er val >5000</ KeepAl i vel nt erval >

11

<KeepAl i veTi neout >60000</ KeepAl i veTi neout >
<Pol | Ti nre>30</ Pol | Ti me>
<Confi r mli me>30000</ Confi r mTli me>
<Connecti on>
<Cl D>RMGR_sa0_di rect or 0</ Cl D>
<TeM PHost >172. 16. 1. 35</ TeM PHost >
<TeM PPort >4051</ TeM PPort >
</ Connecti on>
</ TeM PResour ces>

The correspondence between elements in temipResources.xml and parameters of TeMIPModule in
mwfm.xml is as follows (in the context of TeMIPLiaison plug-in, of course):

e ListenerPort = localport — the port the TeMIP liaison listens to the messages directed
to the plug-in

e DefaultTimeout = defaulttimeout

e KeegpAlivelnterval = keepaliveinterval
e KeepAliveTimeout = keepalivetimeout
e PollTime = polltime

e ConfirmTime = confirmtime

e Connection = directorN — describes the parameters of the connection of the
TeMIPLiaison plug-in to TeMIP director. Sub-element CID corresponds to the first
token in the value of the parameter directorN (connectionld), TeMIPHost
corresponds to the second one (temiphost) and TeMIPPort to the third token
(temipport). There can be a number of elements Connection.

e The purpose of each of the elements can be found in TBD.

e Set elements DefaultTimeout, KeepAlivel nterval, KeepAliveTimeout, Poll Time in
temipResources.xml to the values you intend to use in your solution for the
connections of the plug-in to TeMIP directors (description of these parameters can be
found in [RESMGR], section TBD). These values can differ from analogous set in
mwfm.xml in configuration of TeMIPModule.

| nstalling and configuring TeM I P side

The section below describes how to install and configure the TeMIP side of the TeMIP liaison, i.e. the
OVSA FM.

The TeMIP sideisfully based on the TTS product [TTS] version 5.0. Before starting the installation
assurethat TTSisinstalled on the TeMIP director. If TTSisnot installed then follow the instructions
described in [TTS]. The TTSkit and documentation can be found in the Unix/TeMIPLiaison/TTS
directory on the Service Activator CD. Likewise can alicensefile be found in this directory. Please
refer to the TeMIP documentation about how to install alicense.

I nstallation

The OVSA FM isnot automatically installed when Service Activator isinstalled. A separate kit exists,
which can be found inthe uni x/ OVACTFM OVDEPOT _HPUX11. 11 directory on the Service
Activator CD.

Toinstall the OVSA FM do:

12

swinstall —s <kit> OVACTFM <t emi p>

Where <kit> is the absolute path to the directory where the kit can be found and <temip> is the
absolute path to the active temip version (normally /usr/opt/ TEMIPV500)

To uninstall the OV SA FM do:

swenove OVACTFM | =<t em p>

Configuration
The procedure of configuration of TeMIP side consists of two steps:

e The configuration of the global parameters of the OV SA FM. These parameters are
common for all OV SA instances of the FM and are initialized at the OVSA FM tart-
up. They are the attributes of the class “config”, which is a subclass of OVSA FM
self-management interface. The attributes are :

e portNumber —the number of the port, on which the OVSA FM listensto the
connections from all of Service Activator instances

e connConfirmTimeout — the time in milliseconds between attempts of OV SA
FM to resume connection to Service Activator instance if it has been lost.

e confimTimeout — the time in milliseconds within which the request sent by
OV SA FM to one of Service Activator instances should be confirmed.

e Creation of instances of the global class OV SA. Each instance represent the
configuration parameters for setting up the communication between the TeMIP
director and one Service Activator installation.

Following the configuration of TeMIPModule and TeMIPLiaison plug-in, which have been set in the
previous sections, the below steps should be undertaken on TeMIP side to accomplish the TeMIP
liaison configuration and make it functioning.

Using the tts_pm or manage set the attributes of subclass “config” of the OVSA FM self-management
interface to the values you intend to use in your solution. See section “When a configuration parameter
isset it does not take effect until OVSA FM isrestarted.

e OVSA config class attributes’ for details about attributes of class “config”. E.g. you
intend to set portNumber to 4050, the connConfirmTimeout to 10000 and
confirmTimeout to 10000. In manage the following command should be executed:

TeMIP> set mec 0 ovsa config portNumber 4050, -
_TeMIP> connConfirmTimeout 10000, -

_TeMIP> confirmTimeout 10000

Using the tts_pm or manage cr eate OV SA instance with the following arguments set
for the directive call:

hostName = 172.16.1.28

portNumberMWFM = 3075
portNumberRESMGR = 3074

portNumberWEB = 8080

userld = example_usr

password = example _pwd

cidMWFM = MWFM_sa0_directorO
CiIdRESMGR = RESMGR_sa0_director0
description = Test instance.

In manage the following command should be executed:

13

TeMIP> create ovsa sa0 -

_TeMIP> hosthame 172.16.1.28, -

_TeMIP> portNumberMWFM 3075, -

_TeMIP> portNumberRESMGR 3074, -

_TeMIP> portNumber WEB 8080, -

_TeMIP> userld example_usr, -

_TeMIP> password example _pwd, -

_TeMIP> cidMWFM MWFM_sa0_director0, -

_TeMIP> cidRESMGR RESMGR _sa0_directorO, -

_TeMIP> description “ Test instance”

Re-start OV SA FM (see section “Re-start of TeMIP OVSA FM”). Therestart is
reguired only in the case if the configuration parameters of OV SA FM self-
management interface have been changed. If only an OV SA instance is created (for
example, if you have TeMIP Liaison already running but would like to add another
OV SA instance) the restart is not required — OV SA FM will automatically
reconfigure to also communicate to this instance.

NOTE

During the installation of TeMIP side the application entity associated with the OVSA FM (MCC 0
APPLICATION ovsa) is created and its attribute “ Automatic Startup” is set to true. It means that

OV SA FM will be automatically started when TeMIP is started. However if the OV SA FM is manually
stopped then no request from the OV SA side will be executed. The OVSA FM must be running to
process these requests.

The OVSA FM must berunning all thetimeto have TeMIP Liaison fully functioning.

Backup of MIR

The configuration of self-management interface (sees section “When a configuration parameter is set it
does not take effect until OVSA FM isrestarted.

OV SA config class attributes’) as well as instances of class OV SA (see section “OVSA”) are persisted
inalocal MIR and are loaded into the memory each time the OVSA FM is started. The MIR is places
in the directory /var/opt/temip/ovsa.

Y ou can populate your OV SA FM installation with existing, already configured OV SA instances.
Simply place your file config.dat into the directory /var/opt/temip/ovsal.

On the other hand if you intend to reinstall OVSA FM then make a back-up copy of thisfile.

Re-start of TeMIP OVSA FM

The OVSA FM isrepresented by the “mcc 0 application ovsa’ instance. If you want to restart the FM
then you must first stop the FM and then start the FM. The stop and start directive are found on the
“application” class. In manage arestart of the FM must be executed the following way:

TeMIP> stop mcc 0 application ovsa

TeMIP>start mcc 0 application ovsa

14

15

Chapter 3: TeMIP Callsand Results on Service
Activator

This chapter explains the XML syntax used to make TeMIP calls from Service Activator and decode
the results.

The syntax is basically the same whether a TeMIP call is made using workflow nodes or the plug-in.
The XML syntax covers a complete description of a TeMIP call or result from a call. With the
workflow nodesit is also possible to pass the various parts of the call description (entity, verb,
arguments) as node parameters. When thisis done only the arguments need to be encoded in XML.
When the entire call is described in XML the description may be held in afile or in a node parameter.
Refer to [] for documentation of node parameters.

Results are always XML wrapped and must be parsed by the receiving workflow.

From aworkflow acall which will return multiple results can be made in two ways: using the
ExecuteDirective node to return all the results lumped together, or using the StartDirective node to
return one result at atime. Only the first option is available in the plug-in.

Before the formal syntax definition hereis an example Execut eDi r ect i ve to give the flavor. The
call setsavalue for the attribute “ Trace File” of the instance “mcc 0 application tts pm”:

<ExecuteDirective>
<User >Hugo</ User >
<Expr essi on>
<Ver b>set </ Ver b>
<Entity>
{ncc 0} {application tts_pn}
</Entity>
<Partition>Characteristics</Partition>
<Ar gunent s>
<Attributes>
<Trace__Fil e tem pNane="Trace File">
<Val ue>/tnp/trace_file.l og</Val ue>
</Trace__File>
</ Attributes>
</ Ar gunent s>
</ Expr essi on>
</ ExecuteDirective>

The following sections describe call and result syntax, respectively, and also briefly describe the
meaning of the syntactic elements.

Call Syntax

The XML syntax to describe a TeMIP call isidentical in the two cases, except for thetag. The DTD
syntax for Execut eDi recti ve and St art Di recti ve, respectively, isasfollows:

<! ELEMENT ExecuteDirective (User?, Expression)>
<IELEMENT StartDirective (User?, Expression)>

The DTD for the identical bodies follow. Note that tagsin italics are “meta-tags’, not to be taken
literally, as explained in the subsection Argument and Attribute Values below.

<! ELEMENT User (#PCDATA) >

<! ELEMENT Expression (Vep | (Verb, Entity, Partition?), Qualifiers?,
Ar gunent s?)

<! ELEMENT Vep (#PCDATA) >

16

<! ELEMENT Verb (#PCDATA) >

<! ELEMENT Entity (#PCDATA)>

<! ELEMENT Partition (#PCDATA) >

< ELEMENT Qualifiers (domain | password | account | user manager) * >
<! ELEMENT domai n (#PCDATA) >

<! ELEMENT password (#PCDATA) >

<! ELEMENT account (#PCDATA) >

<! ELEMENT user (#PCDATA) >

<! ELEMENT nmanager (#PCDATA) >

<! ELEMENT Argunents (Attributes?, Args*)>

The leaf elementsUser , Ver b, Parti ti on,donai n, passwor d,account, user and
manager al have the form of ssimple strings.

If the User element is present an acloc session is created on the TeMIP system and the call is executed
in this session. Otherwise it is executed in an acloc session belonging to the default user, t emni p.

Theelement Ent i t y represents the in-entity of the call, see the subsection TeMIP Entity Names
below.

The element Vep can be used to concatenate the values of Ver b, Ent i t y (enclosed within an extra
pair of curly braces) and optionally Parti ti on, into asinglevalue, for example:

<Vep>set {{ncc 0} {application tts_pn}} Characteristics</Vep>

The element Ar gunent s represents an optional list of argument or attribute values. It isexplained in
the subsection Argument and Attribute Values below.

TeMIP Entity Names

TeMIP entity names appear asthe element Ent i t y in XML-coded calls and results, and they can also
appear as argument or attribute values. They are list structured, but for smplicity the structure is not
rendered using XML tags. Instead, the standard TeMIP FCL syntax is used with the addition of curly
braces around each (class name, instance name) pair, where the instance name is optional, thereby
potentially causing ambiguity when a name is parsed without the context of the TeMIP dictionary.
Names containing spaces must be enclosed within extra curly brackets and then within double quotes
(example: {“ab"}). Asusual, the global class name can be preceded by a TNS name space name.

Here is an example which includes a TNS name space:
{domai n nach5: . dennar k} { mrenber xscl7}

Wildcarding (full or partial) can be used in instance names, normally to retrieve (Show) datafrom
multiple entities, resulting in multiple responses to the call.

Synonyms are not supported.

Argument and Attribute Values

The element Ar gunent s inthe XML syntax for acall or result represents alist of call or result
arguments. In a modify (Set) directivethe At t ri but es element can be used within the Ar gunent s
element to contain alist of attribute (name, value) pairs:

<! ELEMENT Attributes (Atr*)>
<! ELEMENT Atr (Val ue)>
<! ATTLI ST Atr tem pName PCDATA #REQUI RED>

In action and getevent directivesthe Ar gunent s element containsalist of Ar g elements each
describing one call argument:

17

<! ELEMENT Arg (Val ue)>
<! ATTLI ST Arg teni pName PCDATA #REQUI RED>

The element Val ue represents the value of a single attribute (or argument, see below). If the value is
of asimple TeMIP type (numeric or string) it is contained directly in the Val ue element using
standard TeMIP syntax for simple values:

<! ELEMENT Val ue (#PCDATA) >

The following simple TeMIP types are supported: Boolean (can be encoded as “yes’, “no”, “true”,
“fase, “17,“0", “on”, “off”, decodes to “true” or “false”), OctetString, Latin1String, SimpleName,
FullName, FileSpec, UID, Version, Enumeration, Expression, IntegerXX, UnsignedX X, CounterX X,
LcounterXX, MCCError, Octet, HexString, BinAbsTime (CCY'Y -MM-DD-hh:mm;ss.ffff),

BinRel Time, DictionarySpec, FloatF, Real, IPAddress, InternetName

If the value is an entity name or of a TeMIP constructor or constructed data type further XML encoding
isused to convey its structure:

<! ELEMENT Val ue (Entity | Record | List | EventReport | AttribList)>

Definitions of the elementsRecor d, Li st , Event Report and At tri bLi st aregiven under
individual headings below; Ent i t y isdiscussed under the heading TeMIP Entity Names above.

In results from Set and Show directivesthe At t ri but es element isalso used but in aslightly
different form from the one specified above, asit contains for each value aso a reason code:

<! ELEMENT Attributes (Atr*)>

<! ELEMENT Atr (Val ue?, ReasonCode)>

<! ATTLI ST Atr teni pNane PCDATA #REQUI RED>
<! ELEMENT ReasonCode (#PCDATA) >

If ReasonCode isdifferent from “Available’, the Val ue will not be present.

Similarly, areply argument in the result from an action or getevent directive will use the following
form of the Ar g element, i.e. there will be aReasonCode, explaining the possible absence of the
Val ue:

<! ELEMENT Arg (Val ue?, ReasonCode) >
<! ATTLI ST Arg tem pName PCDATA #REQUI RED>

In all of the constructs discussed here the “ meta-tag” of the element representing a single attribute or
argument (At r or Ar g) represents the display name of the attribute or argument with each space
replaced by two underscores. The actual TeMIP display name is given as the value of thet eni pNane
(XML) attribute within double quotes.

Record

<! ELEMENT Record (Fiel d*)
<! ELEMENT Field (Val ue)>

TheFi el d element tag isthe name of the field.
For example, arecord with two fields named X and Y containing simple values will be represented as:
<Recor d>

<X>12345</ X>

<Y>ABC</ Y>
</ Recor d>

18

SetOf, SequenceOf, AttribldList and Eventl DL ist
The values of these four data types have alist structure and are encoded in the same way.

<! ELEMENT List (Elenent*)>
<! ELEMENT El enent (Val ue) >

EventReport

The substance of a getevent reply is normally an argument named “Event Data’ of type EventReport.
Thistypeissimilar to an argument list and reuses the principle for naming an element of the list and
also the syntax elements Val ue and ReasonCode.

<! ELEMENT Event Report (Eventld, EventArgunents)>
<! ELEMENT Event|d (#PCDATA) >

<! ELEMENT Event Argunents (Event Arg*)

<! ELEMENT Event Arg (Val ue, ReasonCode) >

<! ATTLI ST Event Arg tem pName PCDATA #REQUI RED>

AttribList

The element tagged with the “meta-tag” At r is as described above in the main section for its
appearanceinthe At t ri but es element.

<! ELEMENT AttribList (Atr*)>

TeMIP Result Syntax

The workflow node TeMIPNextResult retrieves one result from a TeMIP call made by means of the
StartDirective node. If there are multiple results, they must be retrieved one at atime. The syntax for
the retrieved result is the OK element which is described below.

The workflow node TeM I PExecuteDirective waits for al results from the specified call to be returned.
The result syntax for retrieved resultsis:

<! ELEMENT Tem pResults (Handl e, ResponseNunber, OK*, Result Count,
Error Fl ag) >

The DTD syntax for the elements which occur in the body of TeMIP resultsis:

<! ELEMENT Handl e (#PCDATA) >

<! ELEMENT ResponseNunber (#PCDATA) >

< ELEMENT OK (Tinme, Entity, ResultStatus, Director, Argunents?)>
<! ELEMENT Ti nme (#PCDATA) >

<! ELEMENT Result Status (Code, Status, Text)>
<! ELEMENT Code (#PCDATA) >

<! ELEMENT St atus (#PCDATA) >

<! ELEMENT Text (#PCDATA) >

<! ELEMENT Director (#PCDATA) >

<! ELEMENT More (#PCDATA) >

<! ELEMENT Resul t Count (#PCDATA) >

<! ELEMENT ErrorFl ag (#PCDATA) >

The element Arguments is discussed under Argument and Attribute Valuesin the Call Syntax section.
All the other elements contain standard TeMIP call response information in standard encoding except
the last two. Resul t Count provides the number of results (number of OK elements) in the entire
result, and Er r or Fl ag isaboolean indicating whether the entire result contains valid response
information.

19

Examples

An Execut eDi rect i ve wasgiven at the beginning of this chapter, setting avalue for the attribute
“Trace File” of theinstance “mcc 0 application tts_ pm”. The result returned by the ExecuteDirective
from the node or the plug-in would look like:

<TeM PResul t s>

<Handl e>1111397617433#TeM PStart Di rect i ve#-
552608615852567522</ Handl e>

<ResponseNumnber >1</ ResponseNunber >

<OK>
<Ti me> Thu Cct 7 09: 48: 46</ Ti me>
<Entity>
{osi _systen} {testobj xxx}
</Entity>

<Resul t St at us>
<Code>1</ Code>
<St at us>Response</ St at us>
<Text >
{Set Success} {Modification(s) conpleted successfully.}
</ Text >
</ Resul t St at us>
<Di rector>.: peony_ns</Director>
<Ar gunent s>
<Attributes>
<Trace__Fil e tem pNane="Trace File">
<Val ue>123456789</ Val ue>
<ReasonCode>Avai | abl e</ ReasonCode>
</Trace__File>
</Attributes>
</ Ar gunent s>
</ OK>
<Resul t Count >1</ Resul t Count >
<Error Fl ag>f al se</ Error Fl ag>
</ TeM PResul t s>

ThisSt art Di rect i ve describes acall to show the attributesin the characteristics partition of
domain testdomain.

<StartDirective>
<User >Hugo</ User >
<Expr essi on>
<Ver b>show</ Ver b>
<Entity>
{domai n testdomai n}
</Entity>
<Partition>Characteristics</Partition>
<Qualifiers>
<donmai n>Vi | ni us</ domai n>
<user >Hugo</ user >
</Qualifiers>
</ Expr essi on>
</StartDirective>

The TeMIPStartDirective node returns a handle to the TeMIP directive call that has been started. The
handle can be used in the TeMIPNextResult node to retrieve the result. The result returned by the
TeMIPNextResult will be the OK element would look like:

<OK>
<Ti me>2005- 03- 21- 10: 42: 39</ Ti me>
<Entity>{Donain litiumns:.testdonain}</Entity>
<Resul t St at us>
<Code>1</ Code>
<St at us>Response</ St at us>
<Text >{ Show Success} {Exami nation of attributes shows}</Text>
</ Resul t St at us>
<Director>litiumns:.tem p.litiumdirector</Director>

20

<Ar gunent s>
<Attributes>
<Omner __I D ten pNane="Owner |D'>
<Val ue>rt a</ Val ue>
<ReasonCode>Avai | abl e</ ReasonCode>
</ Omer __| D>
<Directory teni pNane="Directory">
<Val ue>/ hone/ rt a</ Val ue>
<ReasonCode>Avai | abl e</ ReasonCode>
</Directory>
<Donmi n__cat egory ten pNane="Donmai n cat egory">
<Val ue></ Val ue>
<ReasonCode>Not Avai | abl e</ ReasonCode>
</ Dorai n__cat egory>
</ Attributes>
</ Ar gunent s>
</ OK>

An example of ExecuteDirective that uses wildcarding and returns multiple responses follows. It shows

the characteristics attributes of all domains.

<ExecuteDirective>
<User >Hugo</ User >
<Expr essi on>
<Ver b>showx/ Ver b>
<Entity>
{domai n *}
</Entity>
<Partition>char</Partition>
</ Expr essi on>
</ ExecuteDirective>

The result could be the following:

<TeM PResul t s>
<Handl e>1111397617433#TeM PStart Di rect i ve#-
552608615852567522</ Handl e>
<ResponseNunber >1</ ResponseNunber >
<OK>
<Ti me>2005- 03- 21- 10: 42: 39</ Ti me>
<Entity>{Dormain litiumns:.testdomain}</Entity>
<Resul t St at us>
<Code>1</ Code>
<St at us>Response</ St at us>

<Text >{ Show Success} {Exami nation of attributes shows}</Text>

</ Resul t St at us>

<Director>litiumns:.temp.litiumdirector</Director>

<Ar gunent s>
<Attributes>
<Owner __| D tem pNane="Omner |D'>
<Val ue>rt a</ Val ue>
<ReasonCode>Avai | abl e</ ReasonCode>
</ Omer __| D>
<Directory teni pNane="Directory">
<Val ue>/ hone/ rt a</ Val ue>
<ReasonCode>Avai | abl e</ ReasonCode>
</Directory>
<Donmmi n__cat egory ten pNane="Donmai n cat egory">
<Val ue></ Val ue>
<ReasonCode>Not Avai | abl e</ ReasonCode>
</ Dormai n__cat egory>
</ Attributes>
</ Ar gunent s>
</ OK>
<OK>
<Ti me>2005- 03- 21- 10: 42: 39</ Ti ne>
<Entity>{Donain litiumns:.testdonai nl}</Entity>

21

<Resul t St at us>
<Code>1</ Code>
<St at us>Response</ St at us>
<Text >{ Show Success} {Exami nation of attributes shows}</Text>
</ Resul t St at us>
<Director>litiumns:.temp.litiumdirector</Director>
<Ar gunent s>
<Attributes>
<Omner __I D teni pNane="Owner |D'>
<Val ue>hugo</ Val ue>
<ReasonCode>Avai | abl e</ ReasonCode>
</ Omer __| D>
<Directory teni pNane="Directory">
<Val ue>/ honme/ hgo</ Val ue>
<ReasonCode>Avai | abl e</ ReasonCode>
</Directory>
<Donmi n__cat egory ten pNane="Domai n cat egory">
<Val ue></ Val ue>
<ReasonCode>Not Avai | abl e</ ReasonCode>
</ Dorai n__cat egory>
</ Attributes>
</ Ar gunent s>
</ OK>
<Resul t Count >2</ Resul t Count >
<Error Fl ag>f al se</ ErrorFl ag>
</ TeM PResul t s>

22

23

Chapter 4. OVSA FM

This chapter explains the composition and roles of the OVSA FM classes and provides details of their
attributes and directives.

Overview

The OVSA FM isthe central and only component of the TeMIP side of TeMIP Liaison. It provides the
following functionality to its clients:

e Toshow and start workflows on a given Service Activator instance

e To show request queues currently existing on a given Service Activator instance
e To show jobs currently running on a given service activator instance

e To supply case-packet variablesto ajob waiting for interaction.

e To stop currently running jobs.

The OVSA FM consists of a self-management interface represented by class OV SA and a service
interface containing four classes. These classes are described in the following sections.

Serviceinterface

Below is shown a figure of the Service interface. One global class exist, the OV SA class. An instance
of this class represents an OV SA server. All child entities are proxies for objects on the OV SA server.

This hierarchy fully corresponds to the Service Activators logic. So, each OV SA instance has a number
of workflows which can be started. The same workflow can be started unlimited number of times. The
started workflow is named a“ Job”. Each job belongsto a“Queug’.

Figure 3, TeMIP model of OVSA FM Service Interface

OVSA

Queue
I Workflows
Job

OVSA

The entity represents a single Service Activator server. It contains the information internally used by
the OVSA FM to connect to the Service Activator server. It isfirst when an instance of thisclassis
created for agiven Service Activator server it is possible to send request or to receive request from the
Service Activator server.

The instances of the global class are persisted in alocal MIR. Note thisisthe only class which is
persistent on the Service interface.

24

OV SA class attributes

Table 1 OVSA Identifier Attributes

I dentifiers

Attribute Name Datatype Settable Description

id FullName No OV SA instance name

Table 2 OVSA Characteristic Attributes

Characteristics

Attribute Name Datatype Settable | Description

description LatinlString | Yes Description of the OV SA server instance.
Default is empty string.

hostname LatinlString | Yes The name of the host of the OV SA server.

portNumberM WFM Unsigned32 | Yes The MWFM listener port for the OV SA server
No default

portNumberRESMGR | Unsigned32 | Yes The RESMGR listener port for the OV SA server
No default

portNumberWEB Unsigned32 | Yes The web listener port for the OV SA server
No default

userld LatinlString | Yes The user id which is used when sending messages
to the web/soap interface used in show directive
cals
No default

password LatinlString | Yes The password which is used when sending
messages to the web/soap interface used in the
show directive calls
No default

cidMWFM LatinlString | Yes The connection id used for the connection to the
MWFM
No default

cidRESMGR LatinlString | Yes The connection id used for the connection to the

RESMGR

No default

25

OV SA classdirectives

Table 3 OVSA class Directives

Directives

Show Standard responses/ exceptions

Parameters. None

Examines the specified attribute or attributes partition and returns their values. Only non wild-carded
callsare possible.

Create Responses: Exceptions:

Par ameters: Cresate Success Argument Cid Error
description (Optional),

hostname (Mandatory), Argument Cid Unique
portNumberMWFM (Mandatory), Error
portNumberRESMGR (Mandatory), .
portNumberWEB (Mandatory), Create Already Exists

userld (Mandatory),
password (Mandatory),
cidMWFM (Mandatory),
CcidRESMGR (Mandatory)

Argument Missing

Creates new OV SA instance. The arguments hosthame, portNumberWEB, portNumberMWFM,
portNumberRESMGR, cidMWFM and cidRESMGR must be unique for each OV SA instance.

If hostname or one of cidMWFM or cidRESMGR is used by another entity the exception “ Argument
Cid Error” isreturned.

If cidMWFM or cidRESMGR are not unique then the exception “Argument Cid Unique Error” is
returned.

If the entity already exist then the exception “Create Already EXists’ is returned.

If one of the mandatory arguments are missing the exception “Argument Missing” is returned.

Delete Responses: Exceptions:
Parameters: None Delete Success Unable to Complete
Operation

Delete Nothing
No Such Entity

The OVSA FM checked for outstanding jobs to or from the deleted instance. If there are any
outstanding jobs the OV SA instance can’t be deleted and the common exception “Unable to Complete
Operation” isreturned. Otherwise the instance is deleted and a successful response is returned back to
the caller.

If the entity does not exists the common exception “No Such Entity” is returned.

Queue

A queue entity represents a queue on the Service Activator server. The queue instances are always
retrieved from the Service Activator server.

26

Two queues are always presented — “Running Jobs’ and “ Scheduled jobs”.

Queueclass attributes

Table 4 Queue Identifier Attributes

Identifiers
Attribute Name Datatype Settable Description
name LatinIName No Job queue name

Queueclassdirectives

Table 5 Queue class Directives

Directives

Show Standard responses/ exceptions

Parameters. None

All queue instances are retrieved directly from the corresponding OV SA instance.

Both wild-carded and non wild-carded calls are supported. Partially wild-carded calls are not
supported.

Job
A job entity represents ajob currently running on a Service Activator server. The Job instances are
retrieved directly from the Service Activator server. The directives of this class provide the capability

to show all the jobs currently running on the Service Activator server, to stop ajob and to interact with
ajob, i.e. provide case-packet variablesto ajob waiting in a queue.

Job class attributes

Table 6 Job Identifier Attributes

I dentifiers

Attribute Data type Settable | Description

Name

jobld SimpleName | No Theid of an active job

27

Table 7 Job Characteristic Attributes

Characteristics

Attribute Name

Datatype

Settable

Description

wor kflow

Latin1String

No

The name of the workflow thisjob is executing

No default

status

Latin1String

No

Status of the job.

No default

startTime

BinAbsTime

No

The start time of the job.

No default

postTime

BinAbsTime

No

The time when the job was posted

No default

scheduleTime

BinAbsTime

No

The time when the job should be started. Only set if the
job belongs to the queue “ Scheduled Jobs’

No default

endRepeating

BinAbsTime

No

The time when the repeating job should end. Only set if
the job belongs to the queue “ Scheduled Jobs’ and it is
repeatable job

No default

repeatingPeriod

Latin1String

No

The repeating period of the job. Only set if the job
belongs to the queue “ Scheduled Jobs” and it is
repeatable job

No default

username

Latin1String

No

User name of the user who posted the Scheduled Job.

No default

groupld

Latin1String

No

A string which can be used to group scheduled jobs
together.

No default

step

Latin1String

No

Which node the job is currently running.

No default

description

Latin1String

No

The workflow description.

28

Job class directives

Table 8 Job class Directives

Directives

Show Standard responses/ exceptions

Parameters. None

Examines the specified attribute or attributes partition and returns their values.

The directive returns the runtime information about jobs currently running on a Service Activator
server.

Both wild-carded and non wild-carded calls are possible. Partial wild-carding is not supported.

Stop Responses: Exceptions:
Parameters: Stop Job Success Exception

userld (Mandatory), o
password(Mandatory) Argument Missing

Kills running job.

Two mandatory arguments must be provided — userld and password — indicates as which user thisjob
will be killed.

If one of the argumentsis not present then the exception “ Argument Missing” is returned.

If the Service Activator server returns an exception then exception “Exception” isreturned by the call.

L oad Responses: Exceptions:
Parameters: Load Job Success Exception
casePacket (Mandatory), o
userld (Mandatory), Argument Missing

assword (M andator
P (y) Field Missing

Sends case-packet variablesto the job, i.e. it isthe same as if an operator interact with the job on
OVSA’'sGUI.

Three mandatory arguments must be provided to the call:

e casePacket — contains the name-value pairs of the case-packet variables. The
argument is of type SequenceOfRecords where each record has two fields — name

and value. First one, isthe name of the case-packet variable, the second, isitsvalue.

Both fields are of type Latin1String.
e userld and password — indicates for which user thisinteraction is done as.
If one of the argumentsis missing then the exception “ Argument Missing” is returned.

If an error occurred on the Service Activator server when interacting with the job then the exception
“Exception” isreturned by the call.

If either name or value is missed at least in one of the name-value pairs then the exception “Field
Missing” is returned by the call.

29

Wor kflow

The workflow entity represents a workflow on the Service Activator server. The show directive shows
one or all the workflows on the Service Activator server and the start directive starts a workflow.

Workflow class attributes

Table 9 Workflow Identifier Attributes

I dentifiers

Attribute Name Datatype Settable Description

wor kflow SimpleName No The name of the workflow
Table 10 Workflow Characteristic Attributes

Characteristic

Attribute Name Data type Settable Description
description LatinlString No Workflow description

Workflow class directives

Table 11 Workflow class Directives

Directives

Show

Parameters. None

Standard responses / exceptions

Shows the workflow(s) which exists on the Service Activator server. Both non wild-carded and wild-
carded calls are supported. Partial wild-carding is not supported.

Start Responses:
Parameters: Start Job Success
casePacket (Optional),

userld (Mandatory),
password (Mandatory)

Exceptions:
Exception

Argument Missing

Starts a workflow on the Service Activator server.

Three arguments exist for the directive:

e casePacket —is used to pass start-up data to the workflow. The argument is of type
Latin1String. The datawill be saved in afile on the Service Activator server and the
workflow will be started with the case packet variable message file.

e userld and password — indicates for which user the workflow should be started. Both
arguments are of type Latin1String.

30

If one of the mandatory arguments is missing then the exception “Argument Missing” is returned.

If an error occurred on the Service Activator server during the workflow start-up then the exception
“Exception” isreturned by the call.

Self-management interface

The OV SA FM supports a number of configuration parameters, settable as characterics attributes on its
TeMIP self-management interface, i.e. on the “mcc 0 ovsa config” entity.

The self-management interface has the following hierarchy:

Figure 4, OVSA FM Sdf Management classes

MCC

OVSA

config

OVSA

OV SA directives

All TeMIP Framework management modules must support certain required directives (Show and Test).
Class OV SA supports only these directives.

Table 12 OVSA class Directives

Directives

Show Standard responses/ exceptions

Parameters. None

Examines the specified attribute or attributes partition and returns their values.

Test Standard responses/ exceptions

Parameters. None

Verifies that the component is correctly enrolled into the TeMIP Framework system dispatch table.

31

OV SA config class

The instance holds the common configuration of the OVSA FM. This configuration is used to
configure communication linksto all Service Activator servers.

When a configuration parameter is set it does not take effect until OVSA FM is restarted.

OV SA config class attributes

The values of the attributes portNumber, connConfirmTimeout and confirmTimeout are persisted in the

local MIR.

Table 13 OVSA config Characteristic Attributes

Characteristics

Attribute Name

Datatype

Settable

Description

Component
Identification

Latin1String

No

Describe the Identification of the OVSA FM

Component Version

Version

No

Describe the version number of the OVSA FM

portNumber

Unsigned32

Yes

The listener port number, i.e. thisisthe port that
all Service Activator serverswill connect to when
communication with TeMIP.

Default is 4050

connConfirmTimeout

Unsigned32

Yes

Thisisthe number of milliseconds that the FM
will wait until again try to send the connect
request message.

This parameter is used when requests are sent
from Service Activator server to TeMIP.
Normally this value should never be changed.
However in rare cases where a bad network
connection exists it would help to increase this
value.

Default is 10000

confirmTimeout

Unsigned32

Yes

Thisisthe number of milliseconds that the FM
will wait until again try to send the request
message. The same rule apply to this attribute as
for the attribute conConfirmTimeout.

Default is 10000

OV SA config class directives

The class supports only two directives — show and set.

32

Table 14 OVSA config class Directives

Directives

Show Standard responses/ exceptions

Parameters. None

Examines the specified attribute or attributes partition and returns their values.

Set Standard responses/ exceptions

Parameters: Attribute List

Sets the configuration attributes. The attributes por t Nunber , connConf i r nli neout , and
confi rnTi nmeout arethe only ones which can set. However the values will first be used next time
the OVSA FM is started.

33

Chapter 5: TeMIP nodes

This chapter describes the best approaches to usage of TeMIP nodes as well as provides the examples
of configuration of the nodes and processing of their results.

Overview

Five nodes exist to provide the capability to execute directives and TCL expressionson a TeMIP
director. Below isabrief description of each of them:

o TeMIPStartDirective - starts a directive, i.e. executes the directive call but do not
wait for the call to complete. The call results are returned to the workflow one at a
time as fast as they are returned from TeMIP. The results can be retrieved by the
TeMIPNextResult node.

e TeMIPNextResult — returns the next result from a previoudly initiated start directive.
e TeMIPCancelDirective - cancels a started directive

e TeMIPExecuteDirective - executes a directive call, waits for the execution of the call
to complete, and returns all resulting data.

e TeMIPEXecTCL - executes a sequence of TCL commands on a TeMIP director and
returns the result of the last command to the workflow.

Detailed information about each node can be found in the Wor kfl ows and the Micro-Wor kflow
Manager document.

The TeMIP nodes are intended for use in workflows to execute directives or TCL commands on a
TeMIP director where the execution of the directive or commandsis limited in time. The main reason
isthat the workflow threads - a critical resource - are NOT released during the node execution.

If it takes long time to execute the directive or TCL commands, or if atransaction is necessary, then
use the TeMIPLiaison plug-in, which is described in Chapter 6 of this document.

A good practice isto only query for information in nodes and make modification, creating, and deletion
through the TeMIPLiaison plug-in.

Which node to use when depends on what to execute and what is the purpose with the data returned.
Use the TeM | PExecuteDirective in the following situations:
e For directive execution which always return a single response

e For directive execution which can return multiple responses where all of them are required in
the workflow before any further workflow action can be taken.

Use the TeMIPStartDirective and TeMIPNextResult in the following situations:
e For directive execution where a specific action will be taken for each call result returned

e For directive execution where the workflow searches for a specific instance is needed and this
is not the identifier. When the instance is found the rest of the result datais not needed. In this
situation the TeM|PCancel Directive should be called when the instance is found to cancel
directive for further execution.

Use the TeMIPExecTCL in the following situations:
e When execution of TCL commands are wanted

e When any of the other TTS features are wanted

NOTE

It isalways possible to use the nodes TeMIPStartDirective - TeMIPNextResult instead of only using
the TeMIPExecuteDirective. However thisis not good practice as this will unnecessarily complicate
the workflow and the workflow execution time will be slower.

The following sections will give some examples of how to use the different nodes.

TeM | PExecuteDirective Examples

The RET_VALUE isaso set for the TeMIPExecuteDirective node; however for this node the
RET_VALUE can have four values. The node will set the value to:

if the directive returns a response

if an error occur on one of the sides during execution of the directive
if the directive returns a SpecializedException

if the directive returns a CommonException.

WN O

The RET_VAULE isthen easy to use in you workflow logic to verify if directive has been executed
successfully or not and in case of exception what kind of an exception isreceived. This could be the
case where aworkflow wants to verify if a TeMIP instance exists or not. In this case would a show
directive call done as a non wild-carded show directive call on the identifier partition for the given
instance return aRET_VALUE of 0if the entity exists (a TeMIP response is returned) and a
RET_VALUE of 3if the entity did not exists (CommonException “No Such Entity”).

If further information is needed in the workflow from the directive result the case-packet variables

provided to the node for the parameters xml_result and xml_results must be analyzed. The easiest way

to do thisis by using the XM LMapper node (see descriptionin [MWFM]).

The case-packet variable for the xml_result parameter will always contain the first response returned
from the directive and the XML syntax will follow the syntax defined for the element TeMIPResult.

The case-packet variable for the xml_results parameter will always contain all responses returned from

the directive and the XML syntax will follow the syntax defined for the element TeMIPResults. See
chapter 3 for further information.

Non wild-carded Show Call

This example makes a “show” directive for the “characteristic” partition on the entity nrcc 0
application ovsa.

To execute this directive the node can be configured the following way:

35

Figure5, TeM|PExecuteDirective node parameters

E'i View Mode Properties

r Hode Attributes |/ Action Parameters |

Mame | Yalue |
connection_id MFh_sal_directard
directive_exp show {imce 0 {application avsall char
LUSer_name test
¥ml_result variablexmiResultCPY
¥ml_results variablexmlBesultsCPY

Note that as far as the directive has no arguments there is no parameter “arguments’ in the node
configuration.

The parameter directive_exp is used in this example to set the verb, entity and partition of the directive.
The call parameters verb, entity and partition are omitted.

The node will set case-packet xmlResultCPV to the following string:

<OK>
<Ti me>2005- 03- 24- 12: 54: 43</ Ti me>
<Entity>{MCC litiumns:.temp.litiumdirector} {APPLI CATI ON ovsa}</Entity>
<Resul t St at us>
<Code>1</ Code>
<St at us>Response</ St at us>
<Text >{ Show Success} {Exam nation of Attributes Shows:}</Text>
</ Resul t St at us>
<Director>litiumns:.temp.litiumdirector</Director>
<Ar gunent s>
<Attributes>
<Appl i cation__Type tem pNane="Application Type">
<Val ue>Mw/ Val ue>
<ReasonCode>Avai | abl e</ ReasonCode>
</ Application__Type>
<Modul e__Type teni pName="Mdul e Type">
<Val ue>FM</ Val ue>
<ReasonCode>Avai | abl e</ ReasonCode>
</ Modul e__Type>
<Fi | ename temnm pName="Fi | enane" >
<Val ue>/ usr/opt/tem p/ bin/tts_mx/ Val ue>
<ReasonCode>Avai | abl e</ ReasonCode>
</ Fi | enane>
<Argunents teni pNane="Argunents">
<Val ue></ Val ue>
<ReasonCode>Avai | abl e</ ReasonCode>
</ Ar gunent s>
<Automatic__Startup tem pNane="Automatic Startup">
<Val ue>Tr ue</ Val ue>
<ReasonCode>Avai | abl e</ ReasonCode>
</ Automatic__Startup>
<Trace__File tem pNane="Trace File">
<Val ue>/ var/opt/tenip/trace/ovsa. | og</ Val ue>
<ReasonCode>Avai | abl e</ ReasonCode>
</Trace__File>

</ Attributes>
</ Ar gunent s>
</ OK>

36

Wild-carded Show Call

In following example the TeMIPExecuteDirective node is configured to execute wild-carded show of
domains on partition identifiers (see Figure 1).

Figure 6, TeM | PExecuteDir ective node parameter s

E'i View Mode Properties

r Node Attributes |T Action Parameters |
Mame | Yalue |
connection_id MFh_sal_directard
e ntity fdomain *}
partition ident
LUSer_name test
verh S hiowy
¥ml_result ¥mIResultcPyY
¥ml_results ¥miResultsCRY

The node places all the responses into the case-packet variable xmlResultsCPV. The first responseis
placed into the case-packet xmIResultCPV.

After successful execution of the node the xmIResultsCPV will contain a below string:

<TeM PResul t s>
<Handl e>1111397617433#TeM PStart Di rect i ve#- 552608615852567522</ Handl e>
<ResponseNumber>1</ResponseNumber>
<OK>
<Ti me>2005- 03- 24- 13: 13: 50</ Ti me>
<Entity>{Dormain litiumns:.jane}</Entity>
<Resul t St at us>
<Code>1</ Code>
<St at us>Response</ St at us>
<Text >{ Show Success} {Exam nation of attributes shows}</Text>
</ Resul t St at us>
<Director>litiumns:.temp.litiumdirector</Director>
<Ar gurent s>
<Attri butes>
<Domai nNane t en pNane="Donai nNane" >
<Val ue>litiumns:.jane</ Val ue>
<ReasonCode>Avai | abl e</ ReasonCode>
</ Dorrai nName>
</Attributes>
</ Ar gunent s>
</ OK>
<OK>
<Ti me>2005- 03- 24- 13: 13: 50</ Ti me>
<Entity>{Dormain litiumns:.janr}</Entity>
<Resul t St at us>
<Code>1</ Code>
<St at us>Response</ St at us>
<Text >{ Show Success} {Exam nation of attributes shows}</Text>
</ Resul t St at us>
<Director>litiumns:.tem p.litiumdirector</Director>
<Ar gumrent s>
<Attributes>
<Domai nNane t en pNane="Donai nNane" >
<Val ue>litiumns:.janr</ Val ue>
<ReasonCode>Avai | abl e</ ReasonCode>
</ Dorrai nName>

</Attributes>
</ Ar gunent s>
</ OK>

<Error Fl ag>f al se</ Error Fl ag>
</ TeM PResul t s>

There are eight domains (< ResultCount>8</ResultCount>) on the TeMIP server. So, eight responses
for this directive call are returned the Domain FM. Correspondently TeM|PResults message contains
eight “OK” elements — one per response.

The xmlResultCPV will be set to the string containing the first “OK” element:

<OK>
<Ti me>2005- 03- 24-13: 13: 50</ Ti me>
<Entity>{Dormain litiumns:.jane}</Entity>
<Resul t St at us>
<Code>1</ Code>
<St at us>Response</ St at us>
<Text >{ Show Success} {Exam nation of attributes shows}</Text>
</ Resul t St at us>
<Director>litiumns:.temp.litiumdirector</Director>
<Ar gunent s>
<Attributes>
<Donai nNare t eni pNane="Donai nName" >
<Val ue>litiumns:.jane</Val ue>
<ReasonCode>Avai | abl e</ ReasonCode>
</ Domai nNanme>
</ Attributes>
</ Ar gunent s>
</ OK>

Action and modification calls

In the following example we will configure the TeMIPExecuteDirective node to “set” the
“characteristic” attribute “Trace File” of the application “test_application” ({ mcc 0} {application
test_application}) to value “/tmp/test_application.log”. The directive call returns a single response or
an exception. Thisiswhy the response message will contain only one “OK” element and the val ue of
element “ResultCount” will be equal to “1”.

The node will, by using the below node parameters, place the element “OK” of the response message -
in the case-packet variable xmlResultCPV and the entire response message in the case-packet variable
xmlResultsCPV.

Figure 7, TeM | PExecuteDir ective node parameter s

E'i View Mode Properties

r Hode Attributes |/ Action Parameters |
Mame | Yalue |
arguments variable:arguments CPY
connection_id MFh_sal_directord
e ntity fmec O} application test_application?
partition char
LUSEr_name test
verh set
¥rml_result variahlexmiResultic Py
¥ml_results variahlexmiResults CPY

38

The case-packet variable argumentsCPV, provided in the node parameter argument, must contain the
following XML string:

<Ar gunent s>
<Attributes>
<Trace__File teni pNane="Trace File">
<Val ue>
/tnp/test_application.|og
</ Val ue>
</ Trace__File>
</Attributes>
</ Ar gunent s>

Or to the equivalent string:

<Ar gunent s>
<Attribute__ Values tem pNane="Attri bute Val ues”>
<Val ue>
<AttribList>
<Trace__Fil e tem pNane="Trace File">
<Val ue>
/tnp/test _application.|og
</ Val ue>
</Trace__File>
</AttribList>
</ Val ue>
</ Attribute__Val ues>
</ Ar gunent s>

In the example the case-packet variable argumentsCPV is used to pass this string to the node, although
it is possible to set the node parameter “arguments’ to a constant value containing the same string.

NOTE

All of the parameters of the node TeMIPExecuteDirective can be set both to constant values and
variables. For more information see the node description in the document [MWFM].

Asaresult of execution of the node, the RET_VALUE will be set to “0”and the xmIResultCPV will be
set to the XML string:

<OK>
<Tinme> Thu Cct 7 09: 48: 46</ Ti me>
<Entity>
{MCC litiumns:.temp.litiumdirector} {APPLI CATI ON ovsa}
</Entity>

<Resul t St at us>
<Code>1</ Code>
<St at us>Response</ St at us>
<Text >
{Set Success} {Mdification(s) conpleted successfully.}
</ Text >
</ Resul t St at us>
<Director> litiumns:.temp.litiumdirector</Director>
<Ar gunent s>
<Attributes>
<Trace__Fil e tem pNane="Trace File">
<Val ue>/tnp/test _application.log </ Val ue>
<ReasonCode>Avai | abl e</ ReasonCode>
</Trace__File>
</Attributes>

39

</ Ar gunent s>
</ OK>

And the xmIResultsCPV will be set to the string:

<TeM PResul t s>
<Handl €>1111397617433#TeM PSt art Di rect i ve#- 552608615852567522</ Handl e>

<ResponseNumber>1</ResponseNumber>

<OK>
<Tinme> Thu Cct 7 09: 48: 46</ Ti me>
<Entity>
{MCC litiumns:.temp.litiumdirector} {APPLI CATI ON ovsa}
</Entity>

<Resul t St at us>
<Code>1</ Code>
<St at us>Response</ St at us>
<Text >
{Set Success} {Mdification(s) conpleted successfully.}
</ Text >
</ Resul t St at us>
<Director> litiumns:.temp.litiumdirector</Director>
<Ar gunent s>
<Attributes>
<Trace__File tem pNane="Trace File">
<Val ue>/tnp/test_application.log </ Val ue>
<ReasonCode>Avai | abl e</ ReasonCode>
</Trace__File>
</Attributes>
</ Ar gunent s>
</ OK>
<Resul t Count >1</ Resul t Count >
<Error Fl ag>f al se</ ErrorFl ag>
</ TeM PResul t s>

The case-packet variable xmlResultsCPV contains the complete response also in the case where only
one response is returned and there will be only one “OK” element in the message and the
“ResultsCount” is“1". An exception was not returned from the directive call, so the element
“ErrorFlag” hasthe value “false”.

In the case where directive call has returned a CommonException or SpecializedException the
xmlResultsCPV would have contained this exception and the element “ErrorFlag” would have had the
value“true”. Below isan example for a CommonException:

<TeM PResul t s>
<Handl €>1111397617433#TeM PSt art Di r ecti ve#- 552608615852567522</ Handl e>
<ResponseNumber>1</ResponseNumber>
<OK>
<Ti me>2005- 03- 21- 13: 52: 54</ Ti me>
<Entity>{Dormain litiumns:.notexist}</Entity>
<Resul t St at us>
<Code>3</ Code>
<St at us>CommonExcept i on</ St at us>
<Text>{No Such Entity} {No such entity: Domain
litiumns:.notexist}</Text>
</ Resul t St at us>
<Director>litiumns:.temp.litiumdirector</Director>
</ OK>
<Resul t Count >1</ Resul t Count >
<Error Fl ag>t rue</ ErrorFl ag>
</ TeM PResul t s>

The xmlResultCPV will be set to the “OK” part of the string.

40

NOTE

The value of the element <Entity> is the same as the one set for the node parameter “entity”, except
that TN'S namespace now has been added. Thisis aways the case when the entity is returned from
TeMIP.

TeMIPStartDirective and TeM | PNextResult Example

Let’s assume that in your workflow you need to execute an action for each of the domain instances
existing on aTeMIP director. Thisisthe case when the combination of the nodes TeMIPStartDirective
and TeMIPNextResult should be applied. In the example workflow, shown in the diagram below, the
name of the domain isjust written as a message to avoid complexity. However, in area workflow it
could very likely be that another directive call should be maid with some data from the first directive
call. In this case would the node “ Output domain name” be substituted with the new directive call.

The Example workflow starts the directive (TeMIPStartDirective node) and then verifies the
RET_VALUE (node Equal). If RET_VALUE equalsto “1” (i.e. an error occurred during the directive
start-up) then the workflow places the message “Directive failed” into the queue “Domains’ (node
“Directive failed”) and finishes, otherwise, if the directive has been successfully started then the
workflow loops through all of the responses using the node TeMIPNextResult, extracts the
DomainName attribue of each of the domains by means of the XMLMapper node and put a message to
the queue “Domains’ (node “ Output domain name”). If the last response has already been retrieved
and displayed then the call to the TeMIPNextResult node will result in that the workflow follows the
false brance. The workflow will aso follow the false branch in the case where the directive returnsa
Common or Specialized exception. In this case, the workflow put a message - “No other domains’ - to
the queue “Domains’.

Figure 8, Executing wild-carded show with TeM I PStartDirective and TeM | PNextResult nodes.

b— TeMIPStartDirective |

fal true
Ecjual

falze
=—TemMPMextResult

H“MLMapper

Output domain name |

Directive failed Mo other domains

The following two figures show the configuration of the nodes of this workflow.

41

Figure9, TeMIPStartDirective node parameters

fﬂ View Mode Properties

" Node Atributes | Action Parameters |

Hame | Yalue
connection_id MW Eh_sa0_directord
enhtity Tdamain *}
handle variahlehandle CRY
partition ident
LUSer_name test
verkb Shomw

Figure 10, TeM | PNextResult node parameters

B View Node Properties

Mo Atrutes | Action Parameters

MHame | YWalle
handle handleCPY
Hml_result HmiFEesURCPY

Parameter “handle”’ in both TeMIPStartDirective (see figure 1) and TeMIPNextResult (see figure 2)
points to the same case-packet variable — handleCPV. TeMIPStartDirective will place the directive call
identifier into the handleCPV, on the other hand, the TeMIPNextResult will useit to retrieve the
responses of exactly the directive started by TeMIPStartDirective node.

The string placed into xmlResultCPV by TeMIPNextResult on each of iterations will have a next
structure:

<OK>
<Ar gunent s>
<Attributes>
<Donmi nNare t eni pNane=" Donai nName” >
<Val ue>
A domai n nane including TNS nane space
</ Val ue>
</ Dorrai nName>
</ Attributes>
</ Ar gunent s>
</ OK>

To extract the value of the attribute DomainName from the response placed in the case-packet variable
xmlResultCPV the node XM LMapper is configured as described in the figure below.

42

Figure 11, XM LM apper node parameters

B View Node Properties

[ﬁ/ Action Parameters

MHame | Walue
domaintamecPY kAU mentsiattributes/Domainklamefdalue
¥ _war ¥miREesultc Py

The node extracts the value of the attribute DomainName from the element
“/OK/Arguments/AttributesyDomainName/VValue” and placesit in the case-packet variable
domainNameCPV. The value of the case-packet variable domainNameCPV is then put in a message by
the node “ Output domain name”.

Because of the DomainName isasimple TeMIP type - FullName - the value is encoded into XML
directly — without additional wrapping.

TCL execution

If TeMIPStartDirective, TeMIPNextResult and TeMIPExecuteDirective nodes do not completely
satisfy your particular needs or if you want to move some part of the calculations from your workflow
to TeMIP server you can then use the node TeMIPExecTCL. Place an arbitrary sequence of TCL
expressionsinto the node parameter tcl_exp or create afile with the sequence of expressions and
indicate the file name with full path in parameter tcl_file. The node will execute the sequence of TCL
commands and place the result of last command into the case-packet variable indicated for the
parameter result.

NOTE

The sequence of TCL expressions can contain both standard TCL commands and TTS commands (see
document [TTS] for more information).

Figure 12, TeM | PExecTCL node parameters

B View Node Properties

Mo Atrbutss | Acton Parameters |

MHame | Yalue
connection_id MR _sa0_directord
result variable:domainCountCPy
fcl_exp variahletclExpression CRY

The TCL commands are passed to the node in the case-packet variabl e tclExpressionCPV. The result of
the execution of the last command is placed into the case-packet variable domainCountCPV.

The TCL commands given in the paramter tclExpressionCPV looks the following way:

set dNumber O

#construct the call
set call [temi p::call setup show {{domain *}} ident]

set nore 1
#l oop through domai ns
while {$more !=0 } {
set res [$call call]
if {$res == “Response”} {
set dNunber [expr {$dNumber + 1}]
set nore [$call nore]
} else {
br eak;

}
}

#return the nunber of donmains
set dNunber

The value of variable dNumber will be returned to the workflow and placed into case-packet
domainCountCPV.

Variable substitution

The mgjority of the parametersin the TeMIP nodes support substitution of case-packet variables. Any
occurrence of %variable% within the parameter value is replaced with the val ue of the corresponding
case-packet variable. If the corresponding case-packet variable is not defined in the workflow, then the
occurrence of %variableY% isleft in the parameter value without changes.

For example, you might want to define the partition of the directive call at the runtime. In this case, the
parameter directive_exp can be constructed like: show {{mcc 0}} %partitionCPV%. The occurrence of
%partitionCPV% is replaced with the value of the partitionCPV case-packet variable.

Variables are also substituted in the content of the directive or TCL file (the parameter directive filein
the nodes TeM | PStartDirective and TeM I PExecuteDirective and parameter tcl_file defined in the node
TeMIPExecTCL).

Templatefiles

The definition of the directive or the sequence of TCL commands to execute can be placed into afile—
template file. The default location for these filesis SACTIVATOR_ETC/template files.

Thisfeature is extremely useful when a complicated directive call is constructed with lot of attributes
or arguments or in the case of alarge sequence of TCL commands. This feature can be combined with
variable substitution and make it even more useful.

To execute the directive using the node TeM | PExecuteDirective the file name with the message
“ExecuteDirective” should be given in the parameter directive file. To start the directive using
TeMIPStartDirective node the message “ StartDirective” should be placed into template file

The sequence of TCL commands is placed into the file without wrapping.

For example, the content of the directive file to execute a wild-carded “show” of domain
“characteristics’ must be:

<ExecuteDirective>
<User >t est </ User >
<Expr essi on>
<Ver b>show</ Ver b>
<Entity>{domain *}</Entity>
<Partition>char</Partition>
</ Expr essi on>
</ ExecuteDirective>

To set the attribute “Trace File” of the domain “liaisontest” to the value “/tmp/liaisontest.log” the
content of the fill must be:

<ExecuteDi recti ve>

<User >t est </ User >

<Expr essi on>
<Ver b>set </ Ver b>
<Entity>{donmin |iaisontest}</Entity>
<Partition>char</Partition>
<Ar gunent s>

<Attributes>

<Trace__File tem pNane = “Trace File">
<Val ue>
/tnp/liaisontest.|og
</ Val ue>

</ Trace__File>
<[Attributes>
</ Ar gunent s>
</ Expr essi on>
</ ExecuteDirective>

As mentioned in the previous section the substitution of case-packet variablesis aso donein the
content of the template file. So, for example, if you want to do the modification of the domain
attributes more dynamic, you can replace the domain instance name as well as modified attribute name
and partition in previous example with the names of the correspondent case-packets as follows:

<ExecuteDirective>
<User >t est </ User >
<Expr essi on>
<Ver b>set </ Ver b>
<Entity>{domai n %donai nNane% </ Entity>
<Partition>%attributePartition¥%</Partition>
<Ar gunent s>
<Attributes>
<UattributeTag% tem pNane = “%attri but eNaned% >
<Val ue>
Y%attri but evVal ue%
</ Val ue>
</%attribut eTag%
</ Attributes>
</ Ar gunent s>
</ Expr essi on>
</ ExecuteDi rective>

45

Chapter 6: TeMIPLiaison plug-in

This chapter describes the usage of the TeMIPLiaison plug-in. The description of the plug-in can be
found in the document Developing Plug-Ins and Compound Tasks and the Javadoc assosiated with the
code.

Overview

There are two ways to execute requests to a TeMIP director. The first one is by means of TeMIP
workflow nodes; thisis described in the previous chapter. As noted above, this approach is applicable
for “easy” requests, which are processed fast without blocking the workflow for along time. However,
it does not guarantee the consistency of the system in the case of afailure.

The second one is the activations through the TeMIPLiaison plug-in. It should be used for long-lasting
reguests and in the case atransaction is required. First of all, the workflow thread is released during the
activation which helps to use the system resources efficiently and secondly, the plug-in rollback
mechanism ensures that the system isleft in a consistent state in the case of afailure.

NOTE

The workflow thread is released when the activation is performed by means of the Multi-Threaded
Activation Module. In the case where the Simple Activation Module is used the workflow threads are
blocked when activation is performed.

The plug-in contains two atomic tasks:

e temip_EXP_directive executes a TeMIP directive on agiven TeMIP director and upload the
result data to the workflow.

e temip EXP_tcl evaluates a sequence of TCL commands on agiven TeMIP director and upload
the result data to the workflow.

Both atomic tasks support the same number of parameters. A description of the parameters and what
datais uploaded to the workflow can be found in the document Developing Plug-1ns and Compound
Tasks and the Javadoc assosiated with the code.

No locking is needed when sending regquests to a TeMIP director, but an atomic task must have at least
one parameter to lock on. The parameter Jobld (the ID of the current job) has been added to both

atomic tasks for this purpose. This does not cause any problems as only one activation can be done at a
timein aworkflow.

Transaction rollback

Each atomic task isreversible. If the Resource Manager determines that an activation transaction needs
to be rolled back, then any atomic tasks in a transaction that have been completed will be invoked again
and told to undo their changes.

Accordingly, both atomic tasks of the TeMIPLiaison plug-in have two parameters the do and undo
parameter. The first one indicates the command, which should be executed by the task and the second
one the command which will be executed if the transaction isrolled back.

So, for example, if the task creates adomain in the “do” action, then it would be most probably to
delete domain in the “undo” command.

46

Temip_EXP_directive Example
Let’s assume that your workflow should update a domain.

Figure 13, Parameters of the activation node to update the domain

B View Node Properties

r Node Attributes |T Action Parameters |

MHame | Yallue |
parami JOB_ID
parami constantRESMGRE_=sal_directard
paramaz doCommand! CPY
parama3 constant:
task GLOBAL temip_EXP_directive
uploaded_data_var TEMIFRESLILT

Parameter doCommand1CPV contains the request message to set the “reference” attribute “Phone
Number” of “testDomainl” to the value “123456789":

<ExecuteDirective>
<Expr essi on>
<Ver b>set </ Verb>
<Entity>{donai n testDomai n1}</Entity>
<Partition>ref</Partition>
<Ar gunent s>
<Attributes>
<Phone__Nunber teni pName="Phone Nunber”>
<Val ue>123456789</ Val ue>
</ Phone__Nunber >
</Attributes>
</ Ar gunent s>
</ Expr essi on>
</ ExecuteDirective>

Note that the “undo” command in this example is empty for the task “update domain”. This can be OK
in a set directive as the one in this example, but in many other cases would thisleft the systemin an
inconsistent state.

The uploaded_data var is set with the value TEMIPRESULT. The case-packet variable
TEMIPRESULT will then after the activation contains the TeMIPResults string.

Variable substitution

The variable substitution is done in the “do” and “undo” messages the same way as for the TeMIP
nodes. The values of the case-packet variables which should be substituted into the messages are
passed to both atomic tasks in the parameter “variables’.

In the example above would it be possible to replace the domain instance name and phone number with
the names of case-packet variable as shown below:

<ExecuteDirective>
<Expr essi on>
<Ver b>set </ Verb>
<Entity>{domai n %donai nNane% </ Entity>
<Partition>ref</Partition>
<Ar gunent s>
<Attributes>
<Phone__Nunber teni pNane="Phone Nunber”>

47

<Val ue>%phoneNunber %/ Val ue>
</ Phone__Nunber >
<[Attributes>
</ Ar gunent s>
</ Expr essi on>
</ ExecuteDirective>

The string passed to the task parameter “variables’ should look this way:

<Variables>
<domainName>testDomainl/domainName>
<phoneNumber>123456789</phoneNumber>
</Variables>

If the do and the undo commands are provided in files then substitution of case-packet variablesis done
in the file content as well.

Templatefiles

The do and the undo command can also be provided by giving the name of afile which should be used
asthe parameter. The syntax when using this option is “file: xml_filename”.

If afilenameis specified, it must include the full pathname to the file.

48

	TeMIP Liaison
	Calling TeMIP directives from HP Service Activator
	Running OVSA workflows from TeMIP

	Overview
	Configuring Service Activator side
	TeMIP module configuration
	TeMIPLiaison plug-in configuration

	Installing and configuring TeMIP side
	Installation
	Configuration

	Backup of MIR
	Re-start of TeMIP OVSA FM
	Call Syntax
	TeMIP Entity Names
	Argument and Attribute Values
	Record
	SetOf, SequenceOf, AttribIdList and EventIDList
	EventReport
	AttribList

	TeMIP Result Syntax
	Examples
	Overview
	Service interface
	OVSA
	OVSA class attributes
	OVSA class directives

	Queue
	Queue class attributes
	Queue class directives

	Job
	Job class attributes
	Job class directives

	Workflow
	Workflow class attributes
	Workflow class directives

	Self-management interface
	OVSA
	OVSA directives
	OVSA config class
	OVSA config class attributes
	OVSA config class directives

	Overview
	TeMIPExecuteDirective Examples
	Non wild-carded Show Call
	Wild-carded Show Call
	Action and modification calls

	TeMIPStartDirective and TeMIPNextResult Example
	TCL execution
	Variable substitution
	Overview
	Transaction rollback
	Temip_EXP_directive Example
	Variable substitution
	Template files

