
HP Service Activator

System Integrator’s Overview

Edition: V51-1A

for Microsoft Windows® Server 2008 R2, HP-UX 11i v3,
Red Hat Enterprise Linux 5.4 and Solaris 10 operating systems

Manufacturing Part Number: None

July 2, 2010

 Copyright 2001-2010 Hewlett-Packard Development Company, L.P.

Service Activator System Integrator’s Overview

2

Legal Notices
Warranty.

Hewlett-Packard makes no warranty of any kind with regard to this manual, including, but not
limited to, the implied warranties of merchantability and fitness for a particular purpose. Hewlett-
Packard shall not be held liable for errors contained herein or direct, indirect, special, incidental or
consequential damages in connection with the furnishing, performance, or use of this material.

A copy of the specific warranty terms applicable to your Hewlett-Packard product can be obtained
from your local Sales and Service Office.

Restricted Rights Legend.

Use, duplication or disclosure by the U.S. Government is subject to restrictions as set forth in
subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause in DFARS
252.227-7013.

Hewlett-Packard Company
United States of America

Rights for non-DOD U.S. Government Departments and Agencies are as set forth in FAR 52.227-
19(c)(1,2).

Copyright Notices.

©Copyright 2001-2010 Hewlett-Packard Development Company, L.P., all rights reserved.

No part of this document may be copied, reproduced, or translated to another language without the
prior written consent of Hewlett-Packard Company. The information contained in this material is
subject to change without notice.

Trademark Notices.

Java™ is a U.S. trademark of Sun Microsystems, Inc.

Linux is a U.S. registered trademark of Linus Torvalds

Microsoft® is a U.S. registered trademark of Microsoft Corporation.

Oracle® is a registered U.S. trademark of Oracle Corporation, Redwood City, California.

UNIX® is a registered trademark of the Open Group.

Windows® and MS Windows® are U.S. registered trademarks of Microsoft Corporation.

All other product names are the property of their respective trademark or service mark holders and
are hereby acknowledged.

HP Service Activator contains Westhawk’s Java SNMP stack.

Document id: p158-pd001206

Service Activator System Integrator’s Overview

Document Information

Contents

3

1 Introducing HP Service Activator ..9

Positioning an HP Service Activator Solution..9

HP Service Activator Component Architecture..12

Solution Packages...14

A Typical Workflow...14

HP Service Activator Documentation ..15

2 Solution Components and Tools ...17

Database Repositories ..18

Solution Data Repositories (Inventory) ..18

Plug-Ins and Activation Tasks..20

Workflows ..24

User Interface and Roles ..27

Interfaces for Integration ..28

Integration with Other HP NGOSS Products: NNMi, NA, uCMDB..28

Solution Deployment..29

3 An Example Solution: Intro_Example ...31

Contents of the Intro_Example...31

Deploying the Example ..33

Examining Components of the Intro_Example Solution ..34

Running the Intro_Example Solution Workflows ..37

4 Solution Planning and Analysis ..39

Activities in a Project to Build a Solution ..39

Analysis ..40

5 Solution Design...43

Solution Labelling ..43

Plug-Ins ..43

User Interface and Roles ..45

Encrypted Passwords..48

Data Models ...48

External Inventory Integration..48

Workflow Processes ...49

Northbound Interface..50

6 HP Service Activator Platform ...53

Cluster Platform ...53

Cluster Installation and Setup...55

Workflow Load Distribution ..55

Service Activator System Integrator’s Overview

Document Information

Contents

4

Standby Sites for Disaster Recovery ..58

Managing an HP Service Activator Cluster..58

7 Roles, Privileges and Authentication..59

System User and Predefined Roles...60

Assigning Privileges to Roles...60

Authentication and Assigning Roles to Users ..61

Organizing Users in Teams ..62

Light Weight Single Sign On ...62

8 Common Network Resource Model..65

Adapting the CNRM for a Solution..65

Model Configuration Data..66

Object Classes of the CNRM..67

User Interface and Launchable Functions for the CNRM ..75

9 Web Service Designer ..77

Defining a Web Service..77

Web Service Designer Tool..78

Extracting WSDL Definition..81

10 Integration with NNMi ..83

Positioning of NNMi ..83

Summary of Benefits of Integration with NNMi..83

Readily Available Capabilities with NNMi..84

Components for Customized Integration with NNMi ..84

Summary of Techniques for Configuring Integration on NNMi ..85

Customizing and Configuring Service Activator to Work with NNMi ..85

11 Integration with NA...89

Positioning of NA...89

Summary of Benefits of Integration with NA ..89

Readily Available Capabilities with NA ..90

HP Service Activator Components for Customized Integration with NA ..90

Summary of Techniques for Configuring Integration on NA...90

Customizing and Configuring HP Service Activator to Work with NA...90

12 Development Hints ...93

Configuring Database Credentials..93

Configuring Injection of Request Messages for Test ...93

Workflow Testing and Debugging ...93

13 System Configuration ..95

Service Activator System Integrator’s Overview

Document Information

Contents

5

14 Localization ..97

Appendix A Scripts..99

Appendix B Configuration Files...103

Appendix C Java Message Service ...105

Service Activator System Integrator’s Overview

Document Information

6

In This Guide
This guide provides an overview of the HP Service Activator product, including its architecture
and components, and provides information to help plan and design Service Activated-based
solutions.

Audience
The audience for this guide is the Systems Integrator (SI) who will plan and deliver solutions,
particularly SIs with architect roles. It is not intended for the end user. Implementors will need
additional detail from the manuals for the different components of tools within the Service
Activator product.The SI is expected to have some or all of the following background:

 Understanding and working knowledge of:

 UNIX® commands

 Windows® system administration

 Familiarity with Java™ and XML

 Understanding of security issues

 Understanding of the customer’s problem domain

Service Activator System Integrator’s Overview

Document Information

7

Conventions
The following typographical conventions are used in this guide.

Font
What the Font

Represents
Example

Italic Book or manual titles,
and manpage names

Refer to HP Service Activator, Workflows and
the Workflow Manager and the Javadocs for
more information

Provides emphasis,
introduces a new term

You must follow these steps.

Identifies a variable or
parameter

Run the command:
InventoryBuilder <sourceFiles>

The assigned_criteria parameter returns an
ACSE response.

Location descriptor $JBOSS_DEPLOY

Computer Text and items on the
computer screen

The system replies: Press Enter

Command names Use the InventoryBuilder command

Method names The get_all_replies() method does the
following…

File and directory
names

Edit the file
$ACTIVATOR_ETC/config/mwfm.xml

Window/dialog box
names

In the Test and Track dialog…

Computer
Bold

Text that you must type At the prompt, type: ls -l

Keycap Keyboard keys Press Return

[Button] Buttons on the user
interface

Click [Delete].

Click the [Apply] button.

Menu
Items

A menu name followed
by a colon (:) means
that you select the
menu, then the item.
When followed by an
arrow (->), a
cascading menu
follows.

Select Locate:Objects->by Comment

Service Activator System Integrator’s Overview

Document Information

8

Install Location Descriptors
The following names are used to define install locations throughout this guide.

Descriptor What the Descriptor Represents

$ACTIVATOR_OPT The base install location of Service Activator.
The UNIX® location is /opt/OV/ServiceActivator
The Windows® location is
<install drive>:\HP\OpenView\ServiceActivator

$ACTIVATOR_ETC The install location of specific Service Activator files.
The UNIX location is /etc/opt/OV/ServiceActivator
The Windows location is
<install drive>:\HP\OpenView\ServiceActivator\etc

$ACTIVATOR_VAR The install location of specific Service Activator files.
The UNIX location is /var/opt/OV/ServiceActivator
The Windows location is
<install drive>:\HP\OpenView\ServiceActivator\var

$ACTIVATOR_BIN The install location of specific Service Activator files.
The UNIX location is /opt/OV/ServiceActivator/bin
The Windows location is
<install drive>:\HP\OpenView\ServiceActivator\bin

$ACTIVATOR_THIRD_PARTY The location for new Java™ components such as workflow nodes and
modules.
The UNIX location is /opt/OV/ServiceActivator/3rd-party
The Windows location is
<install drive>:\HP\OpenView\Service Activator\3rd-party

Customized inventory files are stored in the following location:
$ACTIVATOR_THIRD_PARTY/inventory

$JBOSS_HOME The install location for JBoss.
The UNIX location is /opt/HP/jboss
The Windows location is <install drive>:\HP\jboss

$JBOSS_DEPLOY The install location of the Service Activator J2EE components.
The UNIX location is /opt/HP/jboss/server/default/deploy
The Windows location is
<install drive>:\HP\jboss\server\default\deploy

$JBOSS_ACTIVATOR More specific location of Service Activator UI components deployed in JBoss:
$JBOSS_DEPLOY/hpovact.sar/activator.war

Service Activator System Integrator’s Overview

Introducing HP Service Activator

Chapter 1 9

1 Introducing HP Service Activator
HP Service Activator is a customizable product that performs tasks to activate services offered by
providers of converged IT and network communications services. It can perform any activation on
elements of any infrastructure comprising network elements and IT servers that can be configured
through command or request interfaces, whether they use command lines, web services, or any
other protocol. The product is typically deployed to perform highly repetitive activations where
automation brings a significant advantage in terms of cost saving, speedup and ensuring correct
activation, but it is possible to use Service Activator to automate any process that requires the
execution of a sequence of automated command interactions.

The core of HP Service Activator is a generic workflow engine. To build a solution for activation
of services in a specific domain the core must be supplemented with customized data models,
workflows and plug-ins for interaction with the elements in the provider’s environment. Work-
flows must implement the activation processes needed to add, modify or terminate services for
each of the provider’s customers. The product includes tools to assist the SI in the customization
process.

This overview manual introduces the way Service Activator works in a deployed solution as well
as the tool set and the customization process that the SI must go through in a solution delivery
project.

Positioning an HP Service Activator Solution
Described here is the positioning of HP Service Activator for use as an activation system in
fulfillment solutions. It should be noted that this positioning is not exclusive. Due to the flexibility
of Service Activator workflows and plug-ins, it is possible to customize solutions also for other
domains, notably test and diagnostics, also known as network troubleshooting applications.

Positioning in the Provider’s Environment

An activation system built with HP Service Activator will typically be part of a complete service
fulfillment solution driven by requests from a CRM (Customer Relationship Management) system.
The fulfillment solution may comprise also order management (OM) and resource inventory, and
it may be integrated with other Operation and Business Support Systems (OSS and BSS) outside
of fulfillment.

The Service Activator-based activation system typically has a built-in data repository commonly
referred to as inventory: resource inventory, which is used to allocate resources in the network and
keep data about devices which are activated, and service inventory which records services and
their parameters as they are activated. Alternatively, if required, the activation system can access
the inventory data in an external inventory system.

The positioning of the activation system between a BSS system, which drives it with requests for
service activation, and the network and service infrastructure on which services are activated is
shown in Figure 1-1. In this diagram the flow of control is from north to south. The network and
service infrastructure may contain many different kinds of network elements and data servers. The
latter can belong to a service infrastructure, for example GSM or IMS: HLR, HSS, servers for
voice mail, SMS, MMS, etc. They can also be related to Internet data services: DHCP, RADIUS,

Service Activator System Integrator’s Overview

Introducing HP Service Activator

10 Chapter 1

email, etc. In general any server which needs to be activated with information about a new
customer/subscriber can be part of the infrastructure that is known to the Service Activator system.

Figure 1-1 Positioning of HP Service Activator Activation System

BSS: CRM or
Service Order Management/Provisioning

System

HPSA Activation
System

Network and Service Infrastructure

Middleware
Data ServerElement

Manager

Voice
softswitch

Network
Element

Network
Element

Provider’s network and customer devices

Network
Element

Network
Element

Provider’s network and customer devices

Inventory
System

Other OSS

It is typical, but not mandatory that Service Activator is driven by requests forwarded by an
external BSS system, as discussed above. It is also possible to implement a stand-alone system
where requests to start workflows are entered directly from the user interface on HP Service
Activator.

Positioning in TMF NGOSS Maps

For the reader who is familar with TMF’s (NGOSS) eTOM map of the processes which are
executed by a communications service provider to plan, deliver and maintain services, HP Service
Activator can be characterized by its position on the map as shown in Figure 1-2. Service
Activator helps to automate the processes designated in eTOM as ‘Service Configuration &
Activation’ and in particular ‘Resource Provisioning’.

Service Activator System Integrator’s Overview

Introducing HP Service Activator

Chapter 1 11

Figure 1-2 HP Service Activator in the eTOM Map

HPHP
ServiceService

ActivatorActivator

HPHP
ServiceService

ActivatorActivator

HP Service Activator can also be positioned on TMF’s emerging Telecom Application Map
(TAM). TAM describes a number of so-called applications (with considerable overlap), grouped
in domains and sub-domains, from which a complete OSS can be constructed. The functions of
Service Activator fall mainly in the sub-domains of Resource Inventory Management and
Resource Order Management, but also in Service Order Management.

Positioning in HP Integrated NGOSS Solutions

HP offers integrated NGOSS solutions which use a number of HP’s own products along with
appropriate partner products. The products that are used are depicted on a map which is similar to
both eTOM and TAM, as shown in Figure 1-3. Here HP Service Activator appears together with
other OSS products, integration adapters and business process management tools which may be
integrated to deliver a complete solution.

Figure 1-3 Service Activator in HP NGOSS Solutions

Service assurance

Problem
management

Business
process

Fault & Performance
Management

Service level
management

Operations
monitoring

Process
framework

SOA
framework

Service fulfillment

Orchestration

Executive dashboard

Adapter
Activation &

configuration
Inventory &
design

Adapter

Order management

Adapter
Adapter

OSS/J

OSS/J

HP Business
Availability

Center

HP uCMDB

Network
Inventory
Partners

3rd Party
TT systems

HP Service Mgt.
Center

HP
TeMIP

HP Operations
Center

HP Network
Mgt Center

HP SOA
Center

OSS/J

HP
Service

Activator

Order Entry
Mgt Partners

HP SW

ESB Partners

HP CME
Process

Framework

3rd Party Perf. Mgt

HP Dashboards

OSS/J

OSS/J

HP Business
Availability

Center

HP uCMDB

Network
Inventory
Partners

3rd Party
TT systems

HP Service Mgt.
Center

HP
TeMIP
HP

TeMIP
HP Operations

Center
HP Operations

Center
HP Network
Mgt Center

HP SOA
Center

OSS/J

HP
Service

Activator

Order Entry
Mgt Partners

HP SW

ESB Partners

HP CME
Process

Framework

3rd Party Perf. Mgt

HP Dashboards

HP SOA
Center

Service Activator System Integrator’s Overview

Introducing HP Service Activator

12 Chapter 1

HP Service Activator Component Architecture
In Figure 1-1 there is a single box ‘HPSA Activation System’. This box has a number of
interfaces. Here we open the box and consider the components inside it. The various interfaces into
the box are handled by different internal components. Figure 1-4 shows the major components: the
workflow manager, the resource manager, and the web server, all of which run on the J2EE
platform JBoss. The web server (Apache Tomcat) is actually part of JBoss, whereas the other
components are HP Service Activator additions to the platform. For further discussion of the
platform and how Service Activator can scale by using a cluster of servers (Note: not based on
JBoss clustering), see chapter 6.

This section only scrapes the surface. For more information about the components and the
associated development tools, read the next chapter and then go to the dedicated manuals as
needed.

The workflow manager and the resource manager together make up the workflow engine of
Service Activator. The workflow engine does the process work of the activation system by
executing workflow jobs.

Workflows

A workflow is a definition of an executable process. The definition is at a detailed algorithmic
level, suitable for control of interactions with activation targets. HP Service Activator workflows
should not be confused with business process workflows as supported by languages like BPEL. It
is possible, however, to implement processes which interact with human operators as well as
external system and have significant duration in Service Activator. Workflows are composed from
a set of action primitives known as workflow nodes. They are executed by the workflow manager,
one node at a time. The crucial step in an activation workflow is the Activate node. This node
executes an activation task which is where the actual interaction with activation targets take place.

Plug-ins and activation tasks

Activation tasks consist of one or more atomic tasks; each atomic task interacts with a specific
activation target and is implemented as an element of the plug-in for that target, for example a
specific type of network element (vendor and model) or IT server, for example LDAP, or a voice
softswitch. A plug-in is a pluggable component which is managed by the resource manager. A task
that consists of more than one atomic task is called a compound task. A compound task is executed
as a transaction: the atomic tasks are executed sequentially, and if one of them fails, any atomic
tasks that have already finished successfully will be undone by executing their “undo” parts, so
that the net effect of the compound task will be nil. The undo part of each atomic task restores the
state of the target as it was before the atomic task was executed.

Service Activator System Integrator’s Overview

Introducing HP Service Activator

Chapter 1 13

Figure 1-4 HP Service Activator Components and Interfaces

Workflow Manager

wf wf wf

Workflow Manager

wf wf wf

Resource Manager

plug-in plug-in

Resource Manager

plug-in plug-in

Data repositories
(Oracle)

Web Server

CRM System

Infrastructure
activation targets

Web Browser

HP Service Activator includes a few generic plug-ins, which are not for specific devices or target
systems, but for a certain of type of interface, such as a command line interface (CLI) or HTTP
message exchange interface. When a generic plug-in is used, it will have pre-implemented atomic
tasks which handle the communications protocol , but must be customized with additional control
information that determines the specific commands or messages that are exchanged. In these cases
a plug-in dedicated to specific type of activation target comprises the generic plug-in plus the
additional customization. Such plug-ins occur frequently.

Plug-ins may be reusable from one solution to another, and a list of plug-ins that have been built is
maintained as a “plug-in library”. However, plug-ins are typically designed to fit the requirements
of a particular provider’s solution. To limit the implementation effort they are not generally
designed to be able to control all features of the target, and may therefore require additional work
when reused for a different project.

Solution Data Repositories (Inventory)

It will often be necessary as steps of activation processes implemented with workflows to access
data describing resources in the provider’s infrastructure as well as the services (instances) that
have been activated. Service Activator has the capability to model and maintain repositories of
data that is needed by the solution, commonly referred to as resource and service inventory data.
There is also a user interface for working with inventory data.

Northbound interface

The native northbound interface of the workflow manager is a Java RMI interface which supports
a range of methods to inspect and control the state of the workflow manager. In particular it is
possible to request the workflow manager to start a workflow job, specified by name and with
parameters. The RMI is normally not used directly by an external requester, but all other NBIs are
based on it.

Service Activator System Integrator’s Overview

Introducing HP Service Activator

14 Chapter 1

Solution Packages
For frequently occurring types of activation solutions pre-customized packages of plug-ins,
workflows and more, are maintained and made available for delivery projects. These packages
allow rapid delivery of solutions. Depending on the provider’s environment some customization
will still be required, to adapt to the provider’s specific network architecture, processes and service
definitions, to develop any additional plug-ins needed for targets not already supported, and to
integrate with other systems.

Solution packages exist for layer 2 (Metro Ethernet) and layer 3 (IP) VPN services and for
residential services delivered over IP networks (Internet access, IPTV, etc.).

A Typical Workflow
Workflows for activation of services typically follow a pattern as depicted in Figure 1-5.

Figure 1-5 Typical Service Activation Workflow

activate service

provision
service

begin
activation

derive
parameters

execute
tasks

store
results

generate
messages

service infrastructureservice infrastructure

end

inventory

In an actual workflow, each box as shown in Figure 1-5, will require several workflow nodes, the
number depending on the complexity of the details of the process. At the high level, as shown, the
process is typically as follows:

 A customer order is entered into a CRM system, where it is validated, approved and forwarded
to the next level of processing. In a simple case it can go directly to Service Activation. In a
more complex case, an order management process may be needed to decompose an order
which is for a bundle of services and to separate the request for automatic activation, which can
be handled by HP Service Activator, from other tasks which must be performed manually or
passed on to partners of the provider.

 The activation system based on HP Service Activator receives the request for activation of a
service, maps to the appropriate workflow and starts an instance of the workflow as a job.

Service Activator System Integrator’s Overview

Introducing HP Service Activator

Chapter 1 15

 The workflow job inspects the parameter values from the request and calculates or gathers
additional necessary parameter values.

 For example, if a service type is specified as ‘Gold’ or ‘Silver’, the corresponding
technical values for bandwidth and similar parameters will be looked up. For a complex
technology, the derivatioin can also be complex.

 Resources needed to satisfy the request, such as an access port, for example on a DSLAM,
where customer premises equipment can be connected, are allocated from resource
inventory. Resource identifiers will also be activation parameters. Allocated resources are
recorded in resource inventory.

 Parameter values, for example selection of a device or port, can also be obtained from a
dialog with an operator.

 When all parameters are ready, the necessary activations are executed, ideally as a single task,
which may be compound.

 If an atomic task within a compound task fails, any preceeding atomic tasks are
automatically rolled back. This logic is not visible in the workflow.

 If the activation was successful, the newly activated service will be recorded in service
inventory. If it failed, any reserved resources are again released.

 A summary of the action of the workflow, including service id, main parameter values, success
or failure, is recorded in HP Service Activator’s audit trail.

 A response message to be returned to the requester is prepared. Success or failure indication
and any relevant parameters that were derived by the workflow are included in the message.
The message is forwarded according to the protocol of the northbound interface. This may be
done by a sender module or by the web service interface after the workflow terminates.

 The response message is processed by the order handling system or CRM system. This is
outside the scope of the activation system.

In actual implementations process logic is often divided over several workflows. A parent
workflow can start instances of child workflows and synchronize with their completion. An
architecture is recommended where the northbound communication to receive and respond to
incoming request messages is separated from activation details that will differ for each type of
request. This topic will be discussed in chapter 5.

HP Service Activator Documentation
This manual provides an introduction and overview:

 Chapter 2 describes in more detail each of the components of HP Service Activator that were
introduced above along with the tool(s) for customizing the corresponding part of a solution.

 Chapter 3 walks through a simple (not real) solution containing components of all the kinds
introduced in the first chapters.

 Chapter 4 provides a brief guide for planning a solution delivery project and identifies the
topics to be covered in the analysis phase which may be needed as a pre-sales activity to scope
the delivery project.

 Chapter 5 discusses some design topics for the different components of a solution.

 Chapter 6 describes how HP Service Activator can be deployed on a cluster of JBoss platforms
for scalability and high availability.

 Chapter 7 describes the use of roles to control access and customize the user interface for
different groups of users.

 Chapter 8 describes the Common Network Resource Model.

Service Activator System Integrator’s Overview

Introducing HP Service Activator

16 Chapter 1

 Chapter 9 describes the Web Server Designer, a tool to generate a web service servlet
dedicated to a solution.

 Chapter 10 describes the integration of HP Service Activator and HP NNMi.

 Chapter 11 describes the integration of HP Service Activator and HP Network Automation
(NA).

 Chapter 12 gives some useful hints about testing and debugging.

 Chapter 13 gives advice about configuring an HP Service Activator system.

 Chapter 14 gives an overview of the process of localizing an HP Service Activator solution.

For further familiarization with HP Service Activator it will be useful to study some of the
example material that is provided as part of the installable kit. A simple example is introduced in
chapter 2. A more thorough example - using management of layer 2 VPN services as use case -
complete with inventory data model, workflows and plug-in code is fully documented in a separate
manual, Putting Service Activator to Work: A Sample Service Scenario for VPLS.

For an actual customization and solution delivery project, detailed manuals are provided for
installation on each supported operating system platform and for the major components of HP
Service Activator and the associated customization tools:

 HP Service Activator, Workflows and the Workflow Manager provides all the information
needed to understand workflows in detail, including descriptions of the workflow node and
workflow manager module libraries, how to extend the libraries with new nodes and modules,
and the workflow designer tool.

 HP Service Activator, Inventory Subsystem explains how to customize a solution data
repository model with definitions of each entity class (database table) and the user interface to
present the data model. This manual also describes the Inventory Builder, the tool used to
process inventory definitions.

 HP Service Activator, Developing Plug-Ins and Compound Tasks explains the concepts of
plug-ins, atomic tasks and compound tasks, and how to use the Service Builder tool to build
plug-ins and customize compound tasks.

 HP Service Activator, Solution Separation and the Deployment Manager explains how
customized solutions can be managed on a target system: installed, inspected, removed. The
Deployment Manager is the tool to use for managing solutions.

There is one manual describing the HP Service Activator and its user interface in a generic way for
users and system administrators: HP Service Activator, User’s and Administrator’s Guide. You
should read that manual as an introduction and to understand how you can supply solution specific
information.

Service Activator System Integrator’s Overview

Solution Components and Tools

Chapter 2 17

2 Solution Components and Tools
In chapter 1 the components of HP Service Activator were introduced: workflow manager,
resource manager, data repositories. Correspondingly, a customized solution will contain different
components: workflows implementing activation processes, plug-ins implementing target
interactions, and definitions for the required data model. On top of the workflows it will generally
be necessary to add a northbound interface for receiving and responding to service activation
requests. Depending on specific requirements it may also be necessary to integrate with other
OSS/BSS systems.

Service Activator comes with a set of tools which make the process of customization a joy. They
will be introduced in this chapter and each one is thoroughly documented in one of the manuals
listed at the end of chapter 1. Here is an overview of this chapter:

 The first section, “Database Repositories”, describes the key role that is played by the Oracle
database to hold a number of repositories that are used by HP Service Activator.

 The second section, “Solution Data Repositories ”, introduces the capabilities of HP Service
Activator to manage repositories of resource and service data, also known as inventory,
including the tree-structured inventory user interface. The tools in this area are the Inventory
Builder and the Inventory Tree Designer.

 The third section, “Plug-Ins and Activation Tasks”, introduces the concepts of HP Service
Activator plug-ins, including plug-ins that are developed as new Java source code by the
solution integrator as well as generic plug-ins that can be customized. The tool in this area is
the Service Builder.

 The fourth section, “Workflows”, explains the capabilities and architecture of the workflow
manager and introduces the construction of workflows. The tool for building workflows is the
Workflow Designer.

 The fifth section, “User Interface and Roles”, introduces the user interface of HP Service
Activator.

 The sixth section, “Interfaces for Integration”, describes how an HP Service Activator solution
is integrated with other OSS/BSS systems, primarily how to construct a northbound interface
for receiving and responding to service activation requests. There is no tool dedicated to
building NBIs.

 The seventh section, “Integration with Other HP NGOSS Products: NNMi, NA, uCMDB”,
introduces the components which are present in HP Service Activator to enable integration
with the mentioned products.

 The final section, “Solution Deployment”, describes how to organize, package and deploy all
the components of a solution. The Deployment Manager is the tool that is used to deploy and
manage one or more customized solutions on the HP Service Activator platform.

The next chapter, “An Example Solution: Intro_Example”, walks through a small example
solution which does not activate devices in a real environment, but includes examples of all the
solution components that have been discussed in sections of this chpater as material for study.

Service Activator System Integrator’s Overview

Solution Components and Tools

18 Chapter 2

Database Repositories
Service Activator uses several data repositories, all stored in tables of one or more Oracle
databases, for different purposes. The first five repositories listed here are held in predefined tables
that are created when Service Activator is installed.

 Static Repository - customized items deployed on the system: workflows, plug-ins, compound
tasks, inventory presentation tree definitions; the static repository for atomic and compound
tasks is also called the task repository,

 Workflow Job Repository - state information about running workflow jobs and about cluster
nodes

 Auxiliary Repository - temporary data for use under workflow control

 Audit and Message Repository - audit trail collected from running workflow jobs and
modifications of inventory data, messages shown to operators

 Statistics Repository - server usage and workflow job statistics

 Solution Data Repository (Inventory) - the data model defined by the SI, primarily intended but
not restricted to store data pertaining to infrastructure resources (network elements, servers,
applications, etc.).

By default, all the repositories belong to a single Oracle user which is defined when HP Service
Activator is installed. Additional inventory repositories can be held in other Oracle databases. To
control the use of Oracle servers and of physical disk space it is possible to assign the different
repositories to multiple databases and/or to organize the tables in different tablespaces.

Solution Data Repositories (Inventory)
Repositories of data representing resources and services, or indeed anything that is needed, can be
incorporated in an HP Service Activator solution. Such repositories can be accessed from
workflows as well as from the user interface. Data repositories are commonly referred to as
resource inventory and service inventory, but these concepts and the distinction between them are
not implied by the tools that are used.

The HP Service Activator core product includes a Common Network Resource Model (CNRM)
which is suitable for often managed new generation networks based on IP, Ethernet and MPLS
technology. The network architecture that the CNRM is intended for is depicted in Figure 2-1.

Such networks may be used for a number of purposes, implying the CNRM can be used in several
different activation solutions:

 to provide corporate VPN services;

 to carry the traffic between (residential and business) customer sites and provider platforms for
a range of services: Internet access, VoIP, IPTV;

 to carry other provider traffic, for example between different platforms in the provider’s
service network such as mobile backhaul from BST to BSC.

Service Activator System Integrator’s Overview

Solution Components and Tools

Chapter 2 19

Figure 2-1 Network Architecture Modelled by Common Network Resource Model

CE Router

CE Router

CE Router
PE Router

Provider MPLS
Core Network

PE Router

PE Router

Provider Access
Network

Agg switch

Agg switch

Access
switch

L2 Access
topology

Access
switch

VODVODIP-TVIP-TV

CPE

Home

Internet

PE Router

The CNRM can be used, possibly with extensions and adaptations, for solutions in the NGN space.
For solutions in other spaces a different model must be built as needed. For example, a solution to
activate mobile services will need to model the various servers involved, like HLR, etc., which
must receive information about subscribers, but the solution has no need to know the radio and
backbone transmission networks.

In general the data model must contain the entities that are needed by the activation processes. It
must be defined in terms of entity classes. The solution designer may define any desired entity
classes.

The data for each entity class will be stored in a separate table in the underlying database, and data
entities can be accessed through Java bean objects from workflows. On the user interface different
forms are used to create, display and edit entities of different classes.

Entity class definitions, known as “resource definitions” or “resource bean definitions” (the name
does not imply that every entity must represent a resource), are given as compact XML-formatted
files, one file per entity class. The definition format has a number of powerful features to allow the
definition of fields, search keys, entity relationships, etc. Relationships between different entities
are represented with foreign keys, i.e. inter-table pointers. Inheritance can be used to define an
entity class which extends and modifies an existing entity class.

Deploying a data model from its definition in terms of entity classes is done with a tool, the
Inventory Builder. The Inventory Builder reads the definitions and generates all the code that is
needed for deployment: SQL statements that will create the database tables with indexes etc., Java
code for beans to access the data for each entity class, and Java Server Pages (JSPs implemented
with Struts) for forms to access the data from the user interface. The beans are used by the JSPs as
well as by workflows. A number of workflow nodes are available in the built-in node library to
create, query, reserve, release, update and delete repository data by means of the beans. The
customizer will be aware that the beans and JSPs are created and deployed, but does not normally
need to look into them.

Service Activator System Integrator’s Overview

Solution Components and Tools

20 Chapter 2

HP Service Activator’s user interface for accessing data in the repositories, known as the inventory
user interface, is based on an explorer-style expandable tree structure where data entities are
associated with branches of the tree. Entity relationships are used to define the child branches
which appear when a branch is expanded. An example screenshot from the CNRM is shown in
Figure 2-2. There is a graphical tool, the Inventory Tree Designer, to build tree definitions, branch
by branch. A solution can include one or more tree definitions.

Figure 2-2 Inventory User Interface Screenshot

For a description of the inventory user interface, see the chapter “Inventory User Interface” in HP
Service Activator, User’s and Administrator’s Guide.

To build a working acquaintance with resource definitions, refer to example material introduced in
chapter 3. For a full description of the details of resource definitions, tree definitions and the tools
to manage them, refer to HP Service Activator, Inventory Subsystem.

For some solutions it may be necessary to integrate HP Service Activator with an external
inventory. Approaches to address such a requirement are discussed in chapter 4.

Plug-Ins and Activation Tasks
In activation processes controlled by HP Service Activator workflows, interactions with target
devices or systems, possibly through element managers, take place in Activate nodes. Activate
nodes execute activation tasks. Three components of HP Service Activator are involved in the
execution of an activation task: the workflow manager, the transaction manager and the resource
manager, as shown in Figure 2-3, which is slightly more detailed than Figure 1-4 in chapter 1 in
that the transaction manager has been added here. The task can be a single atomic task, or it can
be a compound task, i.e. a list of atomic tasks.

Service Activator System Integrator’s Overview

Solution Components and Tools

Chapter 2 21

Figure 2-3 Components Involved in Target Interactions

Task
repository

Network and service
infrastructure

Network and service
infrastructure

...

resource manager

workflow
manager

workflows

workflow
manager

workflows

plug-in plug-in plug-in

transaction
manager

transaction
manager

When an activation task is executed the workflow manager will pass the task information
including all parameters from the activation node in the workflow job to the transaction manager.
The transaction manager will retrieve the definition of the requested task from the task repository
and, if it is a compound task, take control of the sequencing of atomic tasks and of rollback if a
failure occurs. Parameters of a compound task are mapped to parameters for each atomic task.
Each atomic task invokation with parameters is passed to the resource manager which will retrieve
the corresponding plug-in Java class method from the task repository and execute it. During
rollback, atomic tasks will be invoked in undo mode. Atomic tasks are responsible for
communication with target devices or systems and pass to them for execution all appropriate
commands or messages.

The transaction manager will return to the activation node in the workflow result information
indicating whether the activation succeeded or failed; more detail on how this result is obtained is
given below under “Plug-In Development”.

For each solution one or more plug-ins will be needed to interact with the relevant targets. In many
cases it will be possible to use one of the generic plug-ins, in other cases it may be possible to
reuse a dedicated plug-in from a previous solution. Otherwise it will be necessary to develop a new
dedicated plug-in.

Plug-In Development

Development of a new plug-in entails the writing of the atomic tasks as Java methods. The Service
Builder tool is a graphical development environment that supports this work. Figure 2-4 gives an
idea of how the Service Builder works and what must be added to implement a plug-in. Before the
time of the screenshot a new plug-in called doc.Example has been defined in a popup form, then
an atomic task called sample_atomic has been initiated using another popup form. The code that
is shown (including the prefix task_ for the method name) has then been generated by Service
Builder with placeholders for comments that will be used to generate plug-in documentation as
Javadoc, and for the code to implement the actions of the atomic tasks in the do and undo modes,
respectively. The sample_atomic task takes two parameters named param0 and param1 (thus
defined in the popup screen, any names can be used), the runtime values for which must be
supplied by the invoking Activate node in the workflow that initiates execution of the task.

Service Activator System Integrator’s Overview

Solution Components and Tools

22 Chapter 2

Figure 2-4 Atomic Task in Service Builder

The do mode (case DO_AND_CHECK) of an atomic task must always be implemented with
appropriate Java code. The undo mode must also be implemented if it shall be possible to use the
atomic task in a compound task in any sequential position other than the very last one. If there is
no such requirement, implementation of the undo case can be omitted.

An atomic task, when executed in the do mode, may fail, when for some reason it is not possible to
complete the necessary interactions with the targets. If possible, the atomic task must fail cleanly,
the target should be left in the same state as when execution of the task began. As Figure 2-4
shows, an atomic task must return an ExecutionDescriptor. The ExecutionDescriptor
makes it possible to distinguish between success and failure, and between clean failure and “dirty”
failure, i.e. the second order failure, when a change that was made to the target cannot be removed.
The ExecutionDescriptor also includes a descriptive text field. The information collected
from all atomic tasks that are executed in the forward path (do mode) of an activation task is
passed back to the calling workflow and may subsequently be processed in the continuation of the
workflow. Result information from atomic tasks executed in the rollback path (undo mode) is not
made available to the workflow.

The Service Builder packages a plug-in as a single file in an archive format known as a plug-in
archive identified by the file name suffix .par. To make use of existing Java libraries in a plug-in,
the .jar files can be included in the LIB folder of the plug-in archive. Plug-in archives can be
deployed into the task repository of an HP Service Activator system.

Compound tasks do not belong to plug-ins. Typically a compound task will include atomic tasks
from more than one plug-in. The Service Builder can also be used to build static compound tasks,
i.e. compound tasks with fixed member atomic tasks. An XML-formatted file which describes the
compound task is produced for distribution.

The Service Builder can also deploy plug-ins and compound tasks into HP Service Activator’s task
repository from the distribution files (.par and .xml, respectively).

Service Activator System Integrator’s Overview

Solution Components and Tools

Chapter 2 23

Customizing Control Templates for Generic Plug-ins

Two generic plug-ins are supplied as part of the HP Service Activator core product: the generic
CLI plug-in and the generic HTTP plug-in. These plug-ins implement communication protocols
for command line interface communication and for HTTP, respectively. But they do not include
information about commands or HTTP messages to send or what to expect as responses. The
controlling information must be prepared by the calling workflow and supplied in the form of task
parameters.

The CLI plug-in is controlled by an XML-formatted dialog control document. A dialog, for
example with a complex router device, may comprise a large number of commands, and so the
control document may be quite large. The control document will contain information about how to
establish a session (log in) with the device, a sequence of command-response exchanges, and
finally how to terminate the session. The specification for each command response exchange
includes the exact command line to be sent, the expected response (next prompt) and patterns that
allow recognition of possible error responses. Note that even a long dialog with many commands
is executed as a single atomic task. In order to ensure clean failure of the task when an error
response is received for a command, the CLI plug-in supports rollback of the command sequence
(sub atomic task rollback). Command sequence rollback uses rollback commands that can be
specified for each command-response exchange that is part of the sequence.

The HTTPPost atomic task supported by the generic HTTP plug-in makes a single HTTP Post call
to a specified target. It supports features such as HTTPS with exchange of certificates and use of a
proxy. The main parameter to achieve the intended effect is the HTTP Post message body,
typically in SOAP format. This plug-in can be used when all necessary message formats are well
known and simple enough that it is convenient to prepare templates for them and decode the
responses by parsing XML in the workflow.

The generic CLI and HTTP plug-ins are quite different. But in both cases, there is a main
parameter which takes the form of a document, the command sequence dialog control document
and the HTTP message body, respectively. And in both cases the document will typically include a
number of strings whose values must be sourced from variables of the workflow job that invokes
the atomic task, representing items such as: user name and password for authentication of the
session/request by the target, names of devices, ports, interfaces and other objects that exist and
must be manipulated on the target. The way to handle this situation is to prepare a template
document with replaceable placeholders for variable values, and to use a workflow node to
substitute the actual values for the placeholders to obtain the final document to submit to the plug-
in. The resulting workflow logic will be as shown in Figure 2-4, where the TransformXML node is
used to achieve the parameter value substitution. For simple cases the ComposeMessage node can
also be used.

Figure 2-5 Parameter Value Substitution for Generic Plug-in

CLI
plug-in

device

template (.XSL):
parameterized
description of
dialog

template (.XSL):
parameterized
description of
dialog

workflow execution

login sequence

CLI command-reply
dialog

parameter
values
parameter
values

TransformXML

actual dialog
(XML)
actual dialog
(XML)

workflow continuationActivate

Service Activator System Integrator’s Overview

Solution Components and Tools

24 Chapter 2

In summary, when a generic plug-in is used, the target specific interaction control information will
be found, not in the plug-in, but in the control document templates.

Workflows
Workflows are programs which define the activation processes of an HP Service Activator
solution. An execution of a workflow is called a job. The workflow manager is the operating
system for workflow jobs: it starts new jobs when called upon to do it, it executes the workflow
nodes of running jobs in the proper sequence, it persists and safeguards the states of running jobs,
and it manages the sharing of a number of execution threads by all concurrent jobs. Refer to
chapter 6 for a description of how the workflow engine can scale by deploying the workflow
manager on a cluster of HP Service Activator servers.

As programs, workflows consist of a number of directionally connected nodes. Each node
performs a basic action. The workflow manager executes one node at a time:

 select a ready job

 run the next node for the selected job

 save the state of the job to the workflow job repository

Persisting the states of workflow jobs between node executions makes the workflow engine robust.
It allows HP Service Activator to stop and restart at any time, whether intended or unintended, and
workflow jobs will just continue from the point where they were persisted. In practice it is not
necessary to persist the state after every single node, therefore it is possible per workflow node to
disable saving of the job state to optimize on processing time.

The state of a workflow job consists primarily of its case packet: the values of a set of variables,
some common ones are predefined for all workflows, others are added as part of the workflow
definition.

A library of workflow nodes are available that can be used to compose workflows. Workflows are
composed with the Workflow Designer, a tool with a user interface that displays a workflow as a
directed graph, with nodes connected by arrows to represent their algorithmic sequence. Two
special types of nodes allow the introduction of branching in the sequencing logic, based on values
of variables: rule nodes, for two-way branches, and switch nodes, for n-way branches. Figure 2-6
is a snapshot of the Workflow Designer, with the library from which nodes can be picked on the
left and the workflow chart with nodes, arrows and branches on the right.

Service Activator System Integrator’s Overview

Solution Components and Tools

Chapter 2 25

Figure 2-6 Workflow Designer

The built-in node library covers the functions which are generally needed in activation workflows.
Nodes range from very powerful ones which accomplish significant tasks, like transformations of
XML documents, to simple ones, like comparison of two values or simple string manipulation.
Functions accomplished with nodes include:

 inventory operations: create, query, update, delete repository data using beans

 reserve and release resources

 execute activation tasks, through the transaction manager

 spawn child workflow jobs

 wait to get data from outside the workflow job: from an operator through a popup dialog, from
another workflow job, or from an external source via a programmatic interface

 send message (or email) to an external system

 various transformations of documents, typically XML formatted, for parsing of incoming
request messages and preparation of messages to be sent

 post messages to be shown to operators, process log entries for troubleshooting purposes and
audit trail records

 liaison functions for integration with other relevant HP products, TeMIP and uCMDB

Data manipulated by a workflow is held in variables that are passed to and from workflow nodes
as input and output parameters. Typically, the request message whose receipt triggers execution of
a workflow is passed into the workflow job in a preinitialized variable, the first nodes of the
workflow will extract field values from the message into other, simpler variables. Some of these
values will be used as keys for retrieving data from repositories, and retrieved data will be placed
in further variables, etc., until all the parameters that are needed for the actual activation are held
in a set of variables, from where they are passed to the activation task through an activation node.

Service Activator System Integrator’s Overview

Solution Components and Tools

26 Chapter 2

A number of types are supported for variables, reflecting those of the underlying Java language:
String, Boolean, Integer, Float, Object. Objects can be beans, maps, arrays and vectors.

The input and output parameters for each node in a workflow are specified as constants or mapped
to workflow variables by means of the Workflow Designer.

Workflow Structure

Workflow jobs can spawn child jobs to execute other workflows. The parent may initialize
variables of the child and may also synchronize with the child to retrieve result values back into its
own variables. A single workflow job is restricted to a single string (thread) of node executions.
Parallel algorithms can be realized by spawning multiple child jobs to work concurrently, for
example to optimize activation of multiple independent devices.

Multiple workflows working in parent-child relationships can also be used to architect complex
processes in layers. A good practice is to use one workflow, designated as the controller
workflow, to deal with northbound communication and process orchestration, and use dedicated
workflows, spawned from the controller, to deal with service and device specific details.

Workflow Manager Architecture

The workflow manager has a core which is concerned with the execution of workflows, one node
at a time, as described above. Other functions of the workflow manager are implemented as
pluggable workflow manager modules. Modules are used for all functions which interface the
workflow manager to its environment, like synchronizing with external sources of input, sending
messages and emails, accessing the database, interacting with the transaction manager to execute
activation tasks, etc., as illustrated in Figure 2-7. All tasks which involve wait points are generally
performed by modules which run in separate threads from nodes of active jobs, to avoid depleting
and potentially even deadlocking the power of the core engine.

Other examples of functions performed by workflow manager modules are management of
scheduled workflows, authentication of users and RMI connections, writing of logs and audit
trails, job distribution within a cluster (see chapter 6), and collection of statistics.

Figure 2-7 Workflow Manager Architecture

workflow manager

workflow
states

resource
manager

controller
workflow

activation
workflow

listener
module

sender
module

database
module

database

activation
module

request

persistence
module

log

log
module

WFManager interface

Service Activator System Integrator’s Overview

Solution Components and Tools

Chapter 2 27

Algorithms residing in workflow manager modules can easily be replaced, because modules are
pluggable. In some cases, like authentication, several modules are provided in the product
distribution, making the choice configurable.

Each workflow node is implemented as a Java class, extending a base node class with
specializations for process nodes, rule nodes and switch nodes, and similarly with modules. As
with nodes there is a built-in library of modules, providing a wide range of generic capabilities.
The libraries can be extended by adding new nodes and modules. Extensions can be provided in
solution packages (see below), or they can be implemented as customizations for a delivery
project.

User Interface and Roles
HP Service Activator supports a web browser based user interface, which does not rely on any
components to be installed on the client side. It is implemented as a collection of web pages which
are executed in the web server component of the HP Service Activator platform (Apache Tomcat
in JBoss). The pages are implemented in multiple technologies: plain HTML, Java Server Pages
and Java Server Faces.

The inventory user interface that was mentioned under “Solution Data Repositories (Inventory)”
above is launchable from the main window of the HP Service Activator user interface as a separate
window. A special feature that can be customized in the inventory UI is an operation to start a
workflow job with input parameters that can be sourced from entities in the repository or entered
by the user.

Other functions are available within the working area of the main window, selected from menus in
the left hand side. Figure 2-8 shows the menu with the active jobs list (empty) selected and
displayed in the working area. The Work Area and Tools menus can be customized; the ones
shown here are the installation defaults.

Figure 2-8 User Interface Screenshot

Service Activator System Integrator’s Overview

Solution Components and Tools

28 Chapter 2

The user interface allows operators to monitor activity within the workflow engine, including
active activation transactions. Information about active jobs can be filtered by values of key
characteristic variables of the job, such as order id (identifier of the request that triggered the job),
service id (identifier of the service being activated) and type and state of the workflow.

Some HP Service Activator solutions require operators to interact with workflow jobs through the
user interface. There are also a number of housekeeping functions (Self Management) for the
system administrator. The menu and other capabilities that each user gets via the user interface is
controlled through roles that are established through log-in authentication. Only the admin role has
access to the Self Management functions, other users may be specialized to interact with certain
workflows, but not with others. The data that users may view and edit via the inventory user
interface can also be controlled by roles.

The texts that are displayed on the user interface are organized as resource bundles and can be
translated and localized by the system integrator.

For a general description of HP Service Activator’s user interface, see HP Service Activator,
User’s and Administrator’s Guide.

Interfaces for Integration
The main integration of HP Service Activator for a solution is normally the northbound integration
to the CRM / Order Management system which is the source of activation requests. Northbound
integration may be realized in different ways depending on the requirements.

The “classical” northbound interface for HP Service Activator uses workflow manager modules
for listening to request messages and sending response messages. This approach is illustrated in
Figure 2-7. Listener and sender modules, which can receive and send messages in any format, are
provided in the built-in workflow manager module library for TCP sockets and for JMS. With this
approach, receiving and sending are done on separate connections and are asynchronous. Such
decoupling is desired whenever workflow jobs can have non-neglible duration, to avoid occupying
connection resources while workflows are running.

Sender and listener modules can also be used to implement peer interfaces to other OSS systems,
with one-way notifications or two-way interactions as required.

An alternative to listener and sender modules is to use a web service interface, so that requests are
received by the web server component of the platform (JBossWS in Apache Tomcat) and handled
by a servlet which can start workflows. A tool is provided, the Web Service Designer, which can
generate the servlet that will expose a collection of workflows as web service methods that allow
them to be run conveniently by a client. A WSDL document defining the exposed interface for
import to a client system can be generated.

The native generic RMI for the workflow manager is also available in a web service version. With
this interface the method to start a workflow job can be called by forwarding a SOAP formatted
request specifying the name of the workflow to run and initial values for workflow variables as
parameters. A web service as described in the preceeding paragraph is just a convenient
specialization of the capabilities of this interface.

The section “Northbound Interface” in chapter 5 elaborates on the two approaches to northbound
integration that have been outlined here.

Integration with Other HP NGOSS Products: NNMi, NA, uCMDB
An important aspect of HP Service Activator is the support for solutions which include also HP
NGOSS products such as NNMi, NA and UCMDB, and where the products work seemlessly
together and mutually enhance each other’s capabilities.

HP Service Activator V5.1 includes support for interworking with NNMi V9, UCMDB V8.0 and
NA V7.6.

Service Activator System Integrator’s Overview

Solution Components and Tools

Chapter 2 29

The HP Service Activator product kit includes a number of components which serve to bind the
products together, mostly in the form of hooks such as workflow nodes and plug-ins dedicated to
interaction with the other products in order to allow the building of integrated solutions, but also
readily usable capabilities such as UI crosslaunch with single sign-on and workflows which can
load data into the Common Network Resource Model from NNMi.

Chapter 10 is about integration with NNMi, and chapter 11 about integration with NA. These two
chapters have similar organization, discussing the positioning of the product concerned to set the
scene for integration, the potential benefits of integration, the integration capabilities that are
available out-of-the-box, the components (hooks) that facilitate customized integration, and how to
customize and configure an integrated solution.

There is not a chapter about integration with UCMDB. The components for UCMDB integration
are a number of workflow nodes (Create/Delete/Query/Update UCMDBCIsandRelations) which
can be used to access data in a UCMDB data repository with similar power to those nodes which
are used to access the native inventory of HP Service Activator for the case where the inventory
for a solution will consist of data managed with UCMDB.

Solution Deployment
An HP Service Activator solution comprises different customized parts that are separate from and
added on top of the core product framework: inventory data model, workflows, plug-ins, etc. All
these parts have source files, mostly different XML documents, which are prepared using the
appropriate specialized tools. To become operational on a running HP Service Activator system,
all the customized parts of a solution must be deployed into the static repository and file structures
where they are accessed at runtime.

Deployment can be done with the specialized tools: the Workflow Designer can deploy
workflows, the Inventory Builder can deploy resource definitions, etc. An entire solution can be
deployed in a single operation with the Deployment Manager. The Deployment Manager is an
umbrella for the specialized tools, it will use each one of them as needed.

In order to be managed with the Deployment Manager the source files for a solution must be
arranged in a directory hierarchy which obeys a certain structure. The Deployment Manager can
create the structure, and it can import entire solutions from zip or tar archives of the structure. You
are not forced to keep your source files in a solution hierarchy, but it is strongly recommended to
name and use a solution structure.

See chapter 3 for illustrations of the solution directory structure and screenshots of the
Deployment Manager.

It is possible to have multiple independent solutions on a single HP Service Activator platform. All
sources for each solution must include a short name of the solution, which is used to keep the
deployed solutions separate, and must obey some naming conventions to avoid name clashes, for
example of database tables. The Deployment Manager can deploy and undeploy each solution in
turn.

The Deployment Manager is particularly useful with clustered platforms, where HP Service
Activator is running symmetrically on multiple servers. It will ensure that a solution is identically
deployed on all servers within the cluster. The Deployment Manager can also manage versions of
solutions, where some of the source files are updated.

Service Activator System Integrator’s Overview

Solution Components and Tools

30 Chapter 2

Service Activator System Integrator’s Overview

An Example Solution: Intro_Example

Chapter 3 31

3 An Example Solution: Intro_Example
This section walks you briskly through a very simple example solution, too simple to be realistic,
which has components of all the types that have been described. A larger example with more
substance, yet still only an example for study, not activating real services, is described in a
separate manual, Putting Service Activator to Work: A Sample Service Scenario for VPLS. Both
examples are found as zip files in the $ACTIVATOR_OPT/examples directory when HP Service
Activator has been installed, named Intro_Example.zip and VPN_Example.zip, respectively.

The Intro_Example is our subject here. The service that it activates is a point-to-point connection
terminating on two switches assumed to be customer facing. The switches with the ports where the
connections terminate are modelled as resources. There are workflows to create and delete
connections, working through a plug-in that activates the service by configuring the endpoint
switches. It doesn’t really do that, it only writes some log entries. The Intro_Example uses the
socket listener and sender modules to implement its northbound request interface. The listener
module receives request messages and then starts the controller workflow.

Throughout this section you will be instructed to use the different HP Service Activator tools to
investigate the solution components. This assumes you have installed HP Service Activator. After
installation on a Windows platform you can launch the tools, the documentation and the user
interface (in a browser) from the start -> all programs -> HP Service Activator

menu, or from desktop icons. For other platforms, consult the installation guide in question.

Contents of the Intro_Example
To access the source files of the Intro_Example, launch the Deployment Manager, select
Deployment -> Import Solution, and browse to the zip file, as shown in Figure 3-1. Click
[Import].

Figure 3-1 Deployment Manager, Import Solution

Service Activator System Integrator’s Overview

An Example Solution: Intro_Example

32 Chapter 3

The zip file contents will be unpacked into dedicated directories for the different solution
components, according to the conventions of the Deployment Manager, under
$ACTIVATOR_OPT/solutions/Intro_Example, see Figure 3-2. We will reference the
component directories with their names relative to this solution root directory.

Figure 3-2 Intro_Example Solution Directories

Browsing the various component directories, you will find:

 In plugins, the plug-in archive file Intro.Switch.par. This is the plug-in for switch
devices in deployable plug-in archive format. It has two atomic tasks:

 createConnectionEndPoint, intended to create a unilateral connection from a
customer facing port on one switch to a port on another switch; both switches and ports are
identified by parameters

 deleteConnectionEndPoint, intended to delete a unilateral connection from a
customer facing port on one switch to a port on another switch; again both switches and
ports are identified by parameters

 In CT, deployable definitions of two compound tasks that are invoked from the workflows:
Intro.CreateConnection and Intro.DeleteConnection. Both tasks take parameters
specifying two endpoints, each given by a switch and a port on that switch. The first task
creates a bilateral connection as two unileateral connections between the two endpoints. The
second task similarly deletes a bilateral connection.

 In etc/workflows, three workflows:

 Intro_Controller, controller workflow which is started by the socket listener. It parses
the request message, extracts the fields (tagged elements) of the message to variables, and
uses the value of the action field as the name of a workflow to run as a child job; it must
be one of the other two workflows.

 Intro_CreateConnection, workflow for creating a connection, specified by variables
initialized from the controller.

 Intro_DeleteConnection, workflow for deleting a connection, similarly.

 In inventory, resource definitions for two resource data entity classes, IntroSwitch and
IntroPort, where a port belongs to a switch identified by a foreign key on the port entity.

 In etc/sql, scripts to populate the resource inventory with a few switches and their ports.

 In etc/config/inventoryTree/intro-Tree.xml, the definition of a simple tree in which
switch and port data is made accessible on the inventory user interface.

Service Activator System Integrator’s Overview

An Example Solution: Intro_Example

Chapter 3 33

 In etc/tests/message/Intro_Example, sample request messages (intro-Message-
1.xml and intro-Message-2.xml) with format definition in etc/config/intro-

Message.dtd. You can use HP Service Activator’s regular user interface to select one of
these messages and inject it for processing (send it to the port configured for the socket listener
module). This feature must be enabled in the configuration file for the user interface
($JBOSS_ACTIVATOR/WEB-INF/web.xml) by setting the value of the parameter named
tests to true. Do this before or after you deploy the Intro_Example solution, but before you
start HP Service Activator.

 In etc/template_files/Intro_Example, templates for response messages to be sent after
processing of a request (ERROR_intro.template and OK_intro.template) and for an
information pane to be shown to an operator.

 In newconfig/mwfm.xml, a fragment to be copied into the configuration file for the workflow
manager ($ACTIVATOR_ETC/mwfm.xml) to configure the socket receiver and sender modules.
Do this before or after you deploy the Intro_Example solution (peruse the long configuration
file in an editor to find a proper place for the fragment), but before you start HP Service
Activator.

Deploying the Example
Once you have unpacked the solution zip file as described above, use the Deployment Manager to
deploy the complete solution. First you must configure the Deployment Manager to be able to
access the Oracle database; select Preferences -> Configure Database Connection,
enter the username and password for your HP Service Activator installation, and click [OK]. Then
select Deployment -> Deploy Local Solution and then in the drop-down list labelled
Solution name:, which shows all undeployed solutions present (unpacked under
$ACTIVATOR_OPT/solutions) on the server, select Intro_Example. Check the Create
Inventory Tables field and click [Deploy solution].

Figure 3-3 Deployment Manager, Deploy Solution

The Deployment Manager will then deploy all components of the solution into HP Service
Activator’s internal directories and static repository (database tables).

Service Activator System Integrator’s Overview

An Example Solution: Intro_Example

34 Chapter 3

Make sure you have changed the configuration files for the workflow manager (mwfm.xml) and
for HP Service Activator’s user interface (web.xml) as described above under “Contents of the
Intro_Example”. In the workflow manager configuration file you should also enable the auditor
module: search for auditor, uncomment the <Module> element for the DBAuditModule; set the
parameter store_audit to have value “true”. This module is used to write audit trail records,
and the workflows in the example generate such records.

When this has been done, you must start HP Service Activator (restart, if it is already running) to
be able to run the solution.

Examining Components of the Intro_Example Solution
We will now take a closer look at the components of the Intro_Example solution.

The plug-in can be imported from the archive file Intro.Switch.par into the Service Builder
and studied at the source code level, if desired. You will need to create a Service Builder project as
a workspace to import the plug-in. We will not go into the details here, refer to HP Service
Activator, Developing Plug-Ins and Compound Tasks. The plug-in is documented with Javadoc,
which you can study to understand the atomic tasks, their parameters and actions. To access the
Javadoc you can extract the contents of the archive with Winzip, go to the doc directory, and
double-click on the html file to open it in a browser.

The compound task definition files can also be imported and studied in the Service Builder which
has dedicated functions for editing compound tasks. Alternatively, the xml files, which are quite
straightforward, can be studied in a text editor. Be sure to understand the sequence of parameters
of each compound task.

To study the workflows, launch the Workflow Designer, and open the workflow definition files.
The initial location of the file open window will be $ACTIVATOR_ETC/workflows, you will need
to navigate to the solution’s workflow directory to open the files. With the Intro_Controller
workflow open, the Workflow Designer appears as in Figure 3-4.

Figure 3-4 Intro_Controller Workflow in Workflow Designer

Service Activator System Integrator’s Overview

An Example Solution: Intro_Example

Chapter 3 35

The workflows are simple. It is possible to understand the algorithms by inspecting them, node by
node. Some clues are given here:

In Figure 3-4 the first node of the controller workflow, an XML mapper node, is selected. It
extracts from the request message, which has been received by the listener module and passed to
the workflow job, several values identified by XPath-like tag sequences to workflow variables.
You can decipher this from the Action Parameters shown in the lower right corner (variable names
in Name column, tag sequences in Value column). Take a closer look at one of the sample
messages (in etc/tests/messages/Intro_Example) to understand how the tag sequences
relate to the message format. You may note the use of the variables WORKFLOW_ORDER_ID
and SERVICE_ID to hold the identifiers for the order and the service, respectively. These
predefined variables are used by convention to make it possible in a general way to display
information from running workflow jobs. The same is true for WORKFLOW_STATE, whose
value is intended to give the observer an idea of how far the workflow job has progressed
whenever it is inspected. The values of these predefined variables are automatically inherited to
child workflows.

The controller workflow starts one of the other workflows to do the actual work that was
requested. The name of the workflow is extracted literally from the request message. In a more
complete implementation it would be appropriate to perform a database lookup to validate the
request.

The child workflow in its final Sync node (true for both child workflows) returns a status that is
inspected by the controller to determine if the child completed its task successfully.

The ComposeMessage nodes in the controller substitute variable values for placeholders in
templates to create response messages which the controller will send back to the originator of the
request. The PutMessage node posts the response message into the message area of the user
interface, so you can easily see it when the workflow has run. Inspect the message template files
(in etc/template_files/Intro_Example) to understand how the value substitution works.

The Intro_CreateConnection workflow (shown as screenshot in Figure 3-5) begins by allocating
and reserving ports for the A and Z ends of the connection on switch devices which are specified
by values that originate from the request message and have been passed from the controller
workflow. This is done with ReserveResource nodes. Then follows the activation which invokes
the compound task that will configure the switches. The workflow has looping logic to repeat the
attempt after a failure. The GenericUIDialog andAskFor nodes synchronize with an operator; the
one in the Retry loop will ask the operator to decide whether a retry is appropriate. The node
labelled “Ask for confirmation” posts an information panel with a description of the connection
that will be created, and waits for the operator to read the information and perform the required
cabling before allowing the workflow to proceed, but does not take any input from the operator.

Service Activator System Integrator’s Overview

An Example Solution: Intro_Example

36 Chapter 3

Figure 3-5 Intro_CreateConnection Workflow

After a successful activation information about the newly created service is recorded as a simple
service instance. Service instances are generic and predefined, the system integrator does not need
to prepare a definition; they are stored in a database table that is created at installation time, not by
the Inventory Builder. A service instance includes a unique identifier (database key) and contains
the names and values of a number of additional variables, identified by name. This predefined
capability can be used if services are simple and you have no special requirements for a service
data repository, its structure or presentation. Finally, the sync node at the end of the workflow
passes information back to the operation_status and operation_description variables of the
controller workflow where they are used to determine the choice and contents of the response
message.

When you have understood the process to create a service, the Intro_DeleteConnection workflow
will be straightforward. It is supplied with the service identifier, retrieves all additional
information about the service to be deleted from the service instance and unravels everything that
was done during creation.

The resource definitions for resource data entity classes can be processed with the Inventory
Builder. But to inspect these XML files you must use an editor. During deployment some
instances of switch and port data were populated into the tables defined by the resource
definitions. After you have launched HP Service Activator’s main user interface (when you are
running the solution, see below) you can view this data in the inventory user interface which is
controlled by the tree definition that was also deployed, from file
/etc/config/inventoryTree/intro-Tree.xml. The InventoryTreeDesigner tool can be
used to inspect the tree definition itself as shown in Figure 3-6.

Service Activator System Integrator’s Overview

An Example Solution: Intro_Example

Chapter 3 37

Figure 3-6 Intro Tree in Inventory Tree Designer

Running the Intro_Example Solution Workflows
With HP Service Activator running, launch the user interface in a browser and log in; if you have
not configured an authentication module, you will not need to type a password.

Inspect inventory. In the left hand menu of the main user interface window click Inventory,
and the inventory user interface opens in a dedicated window. In this window select Instance
Views -> Intro Example/Intro Tree. Then expand the tree and click in the sensitive area
of a switch or port branch (or right-click to get an operations menu) to view the forms that display
the field value data for the entity associated with the branch. Compare the data you see in the view
forms to the fields defined in the resource definitions. If you inspect the tree after you have created
a connection you will notice the ports that have been reserved for the activated service are marked
with an r.

Make request to run workflow. You can select and inject one of the sample request messages to
run the workflows. In the left hand menu, open the Self Management part at the bottom by clicking
the little triangle. Then select Test Messaging. A list of the two sample messages will appear in
the work area as shown in Figure 3-7. The first message contains a request to create a connection,
the second message a request to delete the same.

Now right-click on one of the two message names, and then click Start Test in the single-item
pop-up menu that appears. The message will be sent to the listener module, which will start the
controller workflow. The resulting workflow job will read and process the message. The controller
job will start a child job to do the requested work.

As you know from examining the workflows, they contain AskFor nodes that synchronize with an
operator. To perform this interaction, select Jobs at the top of the left hand menu. In the job list
that appears, select the tab labeled Intro (the tab label is specified by a parameter of the AskFor
node). You will see a list of jobs waiting for interaction. Unless you have injected more than one
request message, there will be just one job in the list. Right-click on it, and select Interact
with job in the pop-up menu that appears. Study the pop-up window and click [Submit] to
close it and signal to the workflow job to proceed.

Service Activator System Integrator’s Overview

An Example Solution: Intro_Example

38 Chapter 3

Figure 3-7 User Interface with Test Messages

Inspect effects of workflow. The simplest way to study the result of running the workflow is to
view the request response message. The sender module will attempt to send it, but since no
application is waiting for it, the sending will fail. It is also posted in the message list on the user
interface, and you can view it there. Select Messages in the left hand menu to see the message
display. The posted messages will appear under the tab Intro (the tab is specified by a parameter
of the PutMessage node in the controller workflow). Compare the message you see to the template
from which it was generated.

When a request has been successfully it is documented with an audit record which you can inspect
in the Audit Record view (select Audit Messages in the left hand menu).

When a service has been created you can inspect the service instance record that has been stored to
hold information about it. In the left hand menu, click the ‘+’ to expand Service Instances,
then click Open Instance. A special window will then open; click the ‘+’ to expand the list of
service instances, and click on the service identifier of the branch line to view the details.

Another effect you can study is the warning messages written by the atomic tasks in the log of the
resource manager. Select Logs in in the left hand menu, then select the RESMGR tab at the top of
the work area, and then the resmgr_active file name at the bottom. Scroll down the file to see
the yellow entries (these entries are written as warnings, hence the yellow color, so they will be
easy to spot). If you study the Java source code of the plug-in you can find the statements that log
the warnings. The other entries are written by the resource manager itself. Try to make out what
they document. You can also view the log of the workflow manager (Logs -> WWFM ->
mwfm_active); here you will see error entries in red color written by the sender module when it
fails to send the request response message.

Finally you can inspect the inventory user interface to find the ports that are reserved and used
when a connection service is created.

Service Activator System Integrator’s Overview

Solution Planning and Analysis

Chapter 3 39

4 Solution Planning and Analysis
This chapter gives an overview of the activities that must be undertaken in a project to build a
solution based on HP Service Activator and explains the aspects of a solution that must be
analyzed early on to establish a solid base for scoping and planning a delivery project.

Activities in a Project to Build a Solution
Some solution delivery projects will start with a solution that exists more or less off the shelf, in
the form of a solution package or a similar solution that has been delivered previously. Other
projects will start from scratch or with very little in the form of reusable customization. Even when
a rich solution package is used, it must generally be expected that the customer has requirements
which are not met with the existing solution, so that the package must be enhanced or changed.

In general a solution delivery project can be broken into these phases, which are quite generic:

 Analysis: determine and understand all requirements in sufficient detail to develop a general
description of the solution and plan the work to build it. The amount of work in the subsequent
phases will depend heavily on the scope of the services that must be activated, the number of
activation targets and complexity of the interfaces to control them, as well as the complexity of
other process and integration requirements.

If a solution package or another existing solution is used as starting point, the analysis work
will take the form of gap analysis, where the required capabilities are compared to what is
already supported.

 Design: drawing board work to identify and determine full details of all components to be
built, so that they can be described and the ideas for building each one developed. Components
of a solution will include:

 Northbound interface to receive orders from CRM system or other system which is the
source of orders.

 Workflows to execute the processes to configure and control activation of services.

 Activation tasks to interact with target devices and systems for activation of services.

 Operational model for resource repository. You can build a data model of the resources
needed for the solution using HP Service Activator’s inventory capability. You will then
need to design a way load data into the resource repository when the solution is installed
and keep the repository regularly synchronized with the network; the source of the data
can be an existing resource inventory system, or it can be the network devices directly.
Alternatively, if there is a requriement to interface directly with an existing external
inventory system and you are building a solution from scratch, then you can build such an
interface using an API supported by that system.

 Data model for resource and service data repositories.

 Implementation and testing: use HP Service Activator tools to build all components
according to design; test them as units and as a complete solution. In this phase the
interworking of the components with external systems and devices must also be tested. Also

Service Activator System Integrator’s Overview

Solution Planning and Analysis

40 Chapter 3

latest in this phase documentation and plans for use of the solution must be prepared along
with training of the user’s of the solution.

 Install the solution in the production environment, perform appropriate tests to ensure it works
properly, train the users, commission and hand over for production use.

Analysis
The following information must be collected, clarified, documented and understood as part of the
analysis of an activation solution:

 Full definitions of the services to be activated including the underlying technology, the
packaging and organization of the services, the detailed features, and the intended evolution of
the services.

 The tasks involved in activating services. Understand all activation targets that are involved in
each service, the protocols for interacting with them, and the command-response or message
exchange interactions that must take place in the activation processes.

In order to fully understand activation tasks it may be necessary to study the network
architecture to identify devices with different roles. This can be the background for
understanding which devices need to be activated for a specific service. For example, when end
customer’s equipment is attached to the provider’s network through some access device such
as a DSLAM or access switch, where there is a port or interface dedicated to the customer then
it will typically be necessary to reserve the port or interface in the resource data model and also
to perform some action to enable the customer’s traffic across the access port. Whether it will
also be necessary to enable functions per customer on devices further towards the core of the
network, such as aggregation devices and MPLS edge devices, will vary depending on the
service and the network architecture.

 How activation processes are initiated. Normally these processes are triggered by XML
messages received via a northbound interface from a an order management or CRM system.
Various flavors of XML interfaces, including web services, are possible. Alternatively, in some
solutions, there can be a requirement to support a user interface for entry of orders directly into
HP Service Activator.

 How the solution will fit into the provider’s overall OSS/BSS environment, apart from order
entry. Which other systems will it interface to, what data will be exchanged? At what point in
the activation processes will there be interactions with other systems?

 Requirements for integrating with an external inventory system, initially or at a later stage. The
provider may enforce as a policy that all data of a given type, for example resource inventory,
is maintained in a single inventory system, and that other systems, including the activation
system, must retrieve and update the data by interfacing to that inventory system. Such a
requirement is fundamental to the way HP Service Activator must be customized and must be
made clear very early in the project.

 Requirements for maintaining resource and service data in HP Service Activator’s data
repositories. Such a requirement may be explicitly stated, or it may be implicit that the data
will be needed by activation processes. It is generally easier to customize HP Service Activator
to maintain resource and service data in its own repositories than to integrate with an external
inventory system.

 A very important point to decide and understand is how data describing physical and logical
resources that must be held in HP Service Activator’s resource data repository shall be loaded
and held synchronized with the actual state of the resources. One possible way is to include
workflows that can upload device details from devices in the network. Another possible way is
to refresh data from an external system that is already synchronized with the network.

Service Activator System Integrator’s Overview

Solution Planning and Analysis

Chapter 3 41

 Volumes of activation orders to be processed and of data to be managed. Number of users
performing web interactions with the solution and nature of interactions. This is information is
needed to determine the processing capacity that is needed.

 Requirements for the time allowed to process orders. The analysis of the implication of this
requirement combined with volume of orders will involve the activation targets and their
ability to execute the implied interactions in a timely fashion. HP Service Activator is rarely
the bottleneck in a solution.

 High availability requirement. This requirement together transaction volume may justify /
necessitate deployment of the solution on a cluster of servers.

 User interface requirements, for example: entering orders, monitoring activity,
browsing/editing data in HP Service Activator repositories. If several user functions shall be
available, there may be requirements to use of roles and privileges to differentiate between
users.

A special aspect of user interface is localization of messages from English to local language.

 Audit trail requirement: what information is required to be stored as historical information
about completed orders.

With all requirement information collected and organized it is possible to characterize the solution
and to identify and estimate work items for the delivery project.

Service Activator System Integrator’s Overview

Solution Planning and Analysis

42 Chapter 3

Service Activator System Integrator’s Overview

Solution Design

Chapter 5 43

5 Solution Design
This chapter provides information that is intended to help you as system integrator in the solution
design phase, after you have collected complete information in the analysis, before you embark on
implementation of the components of your solution using the HP Service Activator tools. You will
also need to consult the manuals for the individual components and tools, as listed at the end of
chapter 1. When you consider tasks that require Java programming, you must consider in addition
to the PDF-formatted manuals also the Javadoc which a range of interfaces and classes and which
can be accessed when HP Service Activator has been installed by selecting (on Windows) start
-> all programs -> HP Service Activator -> Docs -> JavaDoc. On Unix systems
the location is /opt/OV/ServiceActivator/docs/javadoc. An example page is shown in
Figure 5-1.

We explain here some best practices, discuss some possible ways to solve common problems, and
discuss some considerations that will have an impact on how the operating solution will be
experienced by operators.

Solution Labelling
In order to be able to manage and separate different solutions, which may also be different parts of
a large solution, it is strongly recommended that you use the source file organization supported by
the Deployment Manager for all the source files of your solution(s) and that you use a well-chosen
short string to uniquely label all the parts of the solution, as follows:

 As the name space part of the name of plug-ins and compound tasks.

 As the value of the <Solution> element in definitions of resource beans and inventory trees
(required for deployment).

 As prefix for database table names for resource beans.

 As the solution name in the workflow settings of each workflow and also as prefix for the
name of each workflow.

Plug-Ins

Customized Use of Generic Plug-ins

As described in chapter 2 if your activation target is controlled by a command line dialog you will
not need to construct a new plug-in. Instead you will customize control document templates to be
used with the generic CLI plug-in. Similarly if your activation target supports HTTP and it is
convenient to prepare template files for each message you will need to send, then you can use the
generic HTTP plug-in. In both of these cases you will need to read the documentation for the
generic plug-in you are using. It will be found as Javadoc.

A question that will come up for command-line interfaces is how many commands to include in a
single command document template, so that it is executed as an atomic task. Since there may be
significant overhead in establishing a session and committing changes on the target device you
should strive to accomplish the complete activation of all aspects of a service within a single

Service Activator System Integrator’s Overview

Solution Design

44 Chapter 5

atomic task. Combinations of multiple smaller files can be accomplished with include-files and the
XSL call-template construct. The result may well be large control documents containing many
commands.

Creating New Plug-ins

When the generic plug-ins are not sufficient, you will need to create your own plug-in(s). Then
refer to HP Service Activator, Developing Plug-Ins and Compound Tasks which gives you the
details about plug-in programming using the Service Builder. Some general points relevant for
plug-in design are briefly stated here:

All plug-ins extend a base class called PARPlugin. For detailed information, refer to the Javadoc
(see Figure 5-1). From class PARPlugin all plug-ins have available a context field with a set of
callable methods.

Figure 5-1 Javadoc for Class PARPlugin

In principle every atomic task must be implemented for both the do and undo modes. However, if
you don’t use compound tasks, the undo mode will never be used, so you can skip it. Even if
compound tasks are used, this is also true for an atomic task that will not be used in any compound
task or only be in the last sequential position, because then the atomic task will never be called in
the undo mode.

As you design the implementation of undo mode you may need information about the state of
activation targets before the do mode of the atomic task was executed, so that you can restore it.
Such information may have been passed as one or more parameters to the atomic task, or you may
have retrieved it from the activation target before its state is changed (in do mode). You can use

Service Activator System Integrator’s Overview

Solution Design

Chapter 5 45

the methods of the TransactionStateSaver (or AtomicTaskStateSaver) interface which are inherited
by the context to save the information for later retrieval, should the atomic task be called in the
undo mode as part of unrolling the transaction. However, don’t overdo it; it may not always be
meaningful to attempt to do a perfect job in the undo mode: in a task intended to destroy a service
a best effort approach may be the right one. When a service can only be partially destroyed, your
best choice may be to design the destroy method to be idempotent, i.e. record the partially
destroyed state and finish the job when the destroy method is called a second time.

If you write significant amounts of Java code, note that you can conveniently use the Service
Builder in combination with a more powerful Java development environment, for example Eclipse.

Target Locking

A question you will confront when you create a new plug-in is target locking. Some targets will
not be able to engage in multiple sessions concurrently, and even if the target does not have a
problem, you may want to eliminate concurrency at the session level. The resource manager
supports locking of a target. To determine when two calls to any atomic tasks in the plug-in
address the same target, the resource manager looks at the first arguments (param0, param1, ...).
You should think about this aspect when you define the arguments for the atomic tasks in your
plug-in. You must define for the entire plug-in (not per atomic task) how many parameters to use
for logging, with a minimum of one, and these parameters should then have the same meaning for
all atomic tasks in the plug-in.

As an example, the first parameter may be the IP address/hostname of an element manager and the
second parameter may identify a device in the communication with the element manager. If you
will accept multiple concurrent sessions to the element manager, but you want to prevent two
workflow jobs from configuring the same device concurrently, the number of locking arguments
for the plug-in shall be two. It would then be natural to use the third argument to identify the
function to perform and subsequent arguments to be function-specific.

As an alternative to locking on a set of argument values when one atomic task is actively using
them, you can set a limit higher than one on the number of concurrent activations that you will
allow.

Plug-ins for Web Services and Corba Interfaces

A frequently occurring case is an activation target which exposes a web service NBI described in
WSDL form. The recommended approach to build a plug-in for such a target is to use the
JBossWS utility WSConsume which is available as part of the HP Service Activator installation to
generate from the WDSL a Java class where the web service methods are callable as stubs and
then incorporate the generated class into the plug-in as an auxiliary Java class. The simplest
approach to complete the plug-in is then to wrap each web service method as an atomic task
method, but you may also want to call multiple methods, possibly with looping and branching,
within a single atomic task.

A very similar process will apply to a Corba interface defined in the form of IDL. You can
generate a class with stubs that can call the Corba methods and then wrap them as atomic task
methods. Use this link for further information on Java IDL technology:
http://java.sun.com/j2se/1.5.0/docs/guide/idl/index.html.

User Interface and Roles
The system integrator of an activation solution must understand the user community, how it can be
divided into users with different roles, and the requirements each role has for viewing data,
monitoring activity and interacting with processes. For more information on roles and what you
can restrict and organize by means of them, see chapter 7.

HP Service Activator’s main user interface window has functions to display information about
ongoing activity as well as messages and audit trails produced by the workflow jobs and user

http://java.sun.com/j2se/1.5.0/docs/guide/idl/index.html

Service Activator System Integrator’s Overview

Solution Design

46 Chapter 5

activity in the past. Such information is shown in the various windows available in the Work Area
menu. As system integrator you should be familiar with how these windows work, and you should
plan how you intend your users will use them. Such a plan will guide you to decide the details of
the information which you can control by customization. To become familiar with the user
interface, read the pertinent chapters in “HP Service Activator, User’s and Administrator’s Guide”
and work the UI on a running system.

You can customize the items that appear in the Work Area and Tools parts of the left hand menu
of the main UI window; see “HP Service Activator, User’s and Administrator’s Guide” for more
information.

Four common case-packet variables are present in all workflows intended to hold

1) an identifier of the order being processed (WORKFLOW_ORDER_ID),

2) an identifier of the service being activated (SERVICE_ID),

3) the type of the workflow (WORKFLOW_TYPE), and

4) the state of the workflow (WORKFLOW_STATE).

The values of these variables can be shown in several of the lists (jobs, messages, audit records,
including the service order view) available on the user interface. They can also be used to search
for jobs and other related items. You should use them properly in your workflows to ensure that
meaningful information is shown in these UI views. Use the type to classify your workflows, first
of all by solution, and within each solution as you see fit. When a workflow passes through several
phases the state can be used to indicate how far along a job is, particular when it is waiting for
something time consuming such as operator input, an activation task, or other external interaction.
The values you assign to these variables can be chosen freely.

General recommendations are:

 Use messages shown in the Message window (generated by PutMessage nodes in workflows)
for debugging during development, and when the solution is in operation only for well thought
out diagnostic information that will make the user aware of problems that have occurred and
point to causes that the user can repair.

 Use audit records generated explicitly using the Audit node in workflows to create an accurate
audit trail. In addition to a number of standard fields of audit records you can add any needed
information from case-packet variables, to properly document what has been accomplished by
your workflow. Audit records should always be written at the end of a workflow.

All strings shown on the user interface are collected in resource bundles to allow localization. See
Appendix A for more information.

UI Integration with Other Applications

Part of the integration of HP Service Activator with other HP NGOSS products such as NNMi and
NA is GUI integration involving cross launching from one the GUI of one application to that of
another.

One aspect of GUI interworking is the use of HP’s Light Weight Single Sign On to eliminate the
need for the user to log in to each application.

Another aspect is to configure one system to know the relevant URLs for contextual views of a
launched application. In order to be able to set up cross launch capability from some other
application to HP Service Activator views you will need to know the relevant URL formats. They
are described here in the following.

The general format is

http://<hostname>:<port>/activator/<activator-subsystem>?<parameters>

Service Activator System Integrator’s Overview

Solution Design

Chapter 5 47

where <hostname> must be an IP address or name of the servier hosting Service Activator, and
<port> is the port number configured at system installation for access to HP Service Activator’s
web server (default is 8080).

<activator-subsystem> defines the view you want to launch. Values are:

 views as shown in Work Area jsp/<jsp-file-name>

 Service Order View jsf/sov/serviceOrderView.jsf?<parameters>

 Inventory UI OpenInventoryFG.do?<parameters>

Look in the menu configuration file $ACTIVATOR_ETC/config/menu.xml for <jsp-file-name>
for the Work Area views.

<parameters> take the standard form for a URL: <name>=<value>, with multiple occurrences
separated by &

For service order view the following parameters can be used to specify the filter and the tab to
select: jobId, serviceId, orderId, type, state, resultsTab (value shall be one of: jobsTab,
messagesTab, auditTab, transactionsTab). Example:

http://<host-name>:<port>/activator/jsf/sov/serviceOrderView.jsf?
serviceId=site001&resultsTab=auditTab

For inventory UI the context must be specified as a specific instance branch to be selected using
the following parameters; all are mandatory except operation:

 solution name of solution the tree belongs to

 view name of tree definition

 cl =true (to indicate cross launch)

 operation to invoke an operation on the branch

 branchPath sequence of branch names from tree definition leading to the desired branch,
separated by ‘|’ characters

 pk primary key of the instance to be selected

Example (from CNRM):

http://<host-name>:<port>/activator/OpenInventoryFG.do?
solution=CRModel&view=Equipment&cl=true&operation=view&
branchPath=Catalog|Region|Network|PEs|PE&pk=100

A Note on Workflow Start Role Attribute

Most workflows do not get started from the workflows list on the user interface, but driven from
an external message, for example through the socket listener, or as child jobs of other workflow
jobs. To prevent users from accidentally starting such a workflow you can set the start (or default)
role attribute in the workflow definition.

Viewing Jobs During Activation

Workflow jobs engaged in activation transactions (while executing an Activate node) will be
visible on the activation queue in the Active Jobs view by users who have the ‘internal’ role. This
role is normally not assigned to human users, but you can modify this behavior by setting the role
attribute on the Activate node (using the Workflow Designer). The activation queue tab will then
be visible to users with the specified role, and they will be able to select ‘View Activation’ from
the right-click menu to launch the Transaction Details window. In order to allow the activation
module to synchronize with the job when an activation transaction has finished, you must also
assign the role you specify for the Activate node to the system user.

Service Activator System Integrator’s Overview

Solution Design

48 Chapter 5

You will not want users to be able to actually interact with a job during an activation transaction
(that would allow the workflow job to continue as if the activation had completed). It can be
prevented by configuring the user interface to hide the ‘Interact with Job’ item from the right-click
menu of jobs on the activation queue.

Encrypted Passwords
One of the data items you may need to model for an activation target is a password that will be
used to authenticate HP Service Activator when it establishes a session with the target. You will
want to avoid to store the password in clear text in resource inventory, log files, etc., so you will
need to be able to encrypt the password after it is entered, for example on the inventory UI, using
an encryption scheme that allows you to decrypt it again before transmission to the target, where it
may be encrypted again using the key appropriate for that particular connection.

You can configure fields of resource beans for the inventory to be treated as passwords that must
be encrypted upon entry. There are a number of ways to decrypt passwords (encrypted strings)
when needed: by a workflow node (Decrypt), by a context method for use in workflow manager
modules, by a context method for use in plug-ins, by an attribute in a control document for the CLI
plug-in.

Data Models
To create a data model for resource and service inventory you must apply entity relationship
analysis to the data you need to represent in order to determine entity classes and the foreign keys
you need to represent relationships.

The inventory subsystem, i.e. the Inventory Builder and the beans and JSPs it generates, support
many features that you should be aware of:

 a range of field data classes, including passwords as described above, with several control
attributes

 inheritance, which lets you define resource superclasses and then subclasses by adding fields to
a superclass

 flexible definition of keys that can be used to retrieve desired entity instances by resulting
findBy methods, including foreign keys which represent relationships between different entity
classes

 use of entity relationships to define keys comprising fields from inrter-related entity classes
(database joins)

For inventory trees and forms presented on the inventory there is also a rich set of features to
control the structure and appearance of the trees and the operations that can be performed by users
with different roles.

Consult the inventory manual, HP Service Activator, Inventory Subsystem, for detailed
information.

External Inventory Integration
You may need to integrate your solution with a preexisting inventory system.

If the inventory is held as Oracle data with known table definitions, and the HP Service Activator
system can access the data at the SQL level, you can integrate by creating resource definitions that
match the existing data, then use the resulting beans in your workflows to access the external
inventory.

If the inventory is accessible only through a higher level API, an approach you can take is to
design and build a number of workflow nodes to access the data in a way that will be convenient to

Service Activator System Integrator’s Overview

Solution Design

Chapter 5 49

use from your workflows: create, query, update, etc., as needed. Such nodes will typically use a
tailor-made workflow module to maintain a session with the external inventory.

A set of nodes providing a liaison to HP’s uCMDB product are available in the built-in library.

Workflow Processes

Controller Workflow Pattern

The section “A Typical Workflow” in chapter 1 and the example in chapter 2 give you some
general ideas of what you can do with workflows. The pattern that you see in the Intro example
with a controller workflow that handles the northbound communication and separate workflows to
handle each type of request (in this case, create and delete service) is often useful. This pattern is a
refinement of the single process that was described as “a typical workflow”.

Workflow Structure: Before - Activate - After

When you have complex activations involving several targets it is generally recommended to use
compound tasks in order to simplify the error recovery logic in the workflow. A workflow with an
activation task should have a clear before-and-after structure: before the activation only
preparations, like retrieval, calculation and selection of parameters for the activation, possibly
including resource reservations take place; after the activation come service inventory updates,
output of informative messages, writing of audit records. If the activation fails, it should fail
cleanly, and the updates that need to be undone or changed should be minimized.

Business Processes

Although workflows are primarily intended to implement activations, it is also possible using
interactions with operators and possibly external systems to implement business processes of some
complexity and duration.

Starting Workflow from Inventory UI

Although it is generally expected that most workflow processes are initiated by receipt of request
messages from a northbound system, it is also possible to start workflow jobs from the Inventory
UI. You can use this feature for example if you have some processes which are not service
oriented requests, for example device configuration or inventory maintenance. You can also
provide an emergency route to initiate service activations, for situations where the northbound
system is out of operation. It is possible to initialize case-packet variables of the workflow job that
is started with values that are sourced from inventory or entered by the user.

Workflow Job Persistence

In a workflow definition you determine for each node whether the state of a job executing the
workflow shall be stored (“persisted”) in the database after execution of the node. Should the
workflow manager be restarted while the workflow is running, the job will be restarted at the last
point of persistence. It is not necessary to persist after every single node; there is a performance
cost associated with storing the data. Nodes which only change state internally in the workflow
manager generally do not require persistence; they can be reexecuted after a restart, which will in
reality happen very rarely, or never.

Business Calendars

A dedicated set of workflow nodes - IsTimeIncluded, GetNextIncludedTime,
GetBusinessHoursAfterDuration, GetTimeRangesOfBusinessDay,
GetCalendarTimezone - allows workflows to consult a business calendar defined for a solution
with weekly working days and hours per day as well as annual holidays to avoid undesired activity

Service Activator System Integrator’s Overview

Solution Design

50 Chapter 5

outside of business hours. Business calendars are created and edited from the user interface. It is
configurable whether the editor shows time of day in 12 hour (am/pm) or 24 hour format.

Considerations for Custom Workflow Nodes

You can extend the library of built-in workflow nodes by implementing custom nodes. The same
is true for workflow manager modules. Information about these topics is found in HP Service
Activator, Workflows and the Workflow Manager.

There is a golden rule to observe: a workflow node must never occupy a workflow thread when it
is waiting for an external event.

Northbound Interface
In most cases an HP Service Activator solution will need to be integrated northbound with an
Order Management or CRM system which will be the originator of requests to create, modify or
terminate services. The activation system will then respond to each request with one or more
messages to acknowledge receipt and to indicate progress and completion of the requested process.

The general assumption is that the activation system is implemented as a collection of workflows
that can accomplish a set of tasks which the originator or client system will request. In other
words, each request from the client to perform a task can be translated to: run a specific workflow
with some case-packet variables initialized with parameter values supplied by the client as values
of elements in the message.

Two approaches to implementing the northbound integration were introduced in the section
“Interfaces for Integration” in chapter 2:

 using listener and sender modules of the workflow manager

 using web services implemented with servlets

The choice of which approach to take will depend on circumstances and specific requirements.

Using Listener and Sender Modules

Two pairs of listener and sender modules are available: the socket module pair and the JMS
module pair. The interworking between modules and workflows follows the same pattern in both
cases. An instance of the listener module is configured to listen at an access point of the
underlying communication service for an incoming message and start a named workflow each time
a message arrives. The message is stored in a temporary database entry, and access to it is
provided to the workflow job through one initialized case-packet variable. In both cases, socket
and JMS, a message is sent back to the client by using the SendMessage workflow node with two
parameters: one identifying the sender module instance, another holding or identifying the
message.

In the case of the socket listener and sender modules the underlying communication service is
TCP. The access points are ports, and the messages are exchanged as raw TCP messages. In the
JMS case the underlying communication service is a MOM (message-oriented middleware)
supporting a JMS interface. The access point are JMS destinations, and messages are exchanged as
MOM/JMS messages. See Appendix C for more information on using JMS.

With the listener/sender module approach parsing of incoming request messages is left to the
workflow job that is started by the listener module. It is recommended to use a controller workflow
to handle the parsing (at least of the general message fields such as order identifier, customer
identifier, service identifier and request type which are not specific to the type of request) and
determine the appropriate workflow to handle the specific request.

The Intro example described in chapter 3 follows this recommendation with one controller
workflow and a separate workflow for each request type. The example shows how to implement
parsing of request messages with the XMLMapper node and how to use templates of response

Service Activator System Integrator’s Overview

Solution Design

Chapter 5 51

messages where values of case-packet variables are substituted for placeholders. This pattern
represents a recommended best practice.

If you have multiple solutions with unrelated request message streams and formats, it is
recommended to use a separate instance of the listener module for each solution, each one
listening on a separate port.

Using Web Service Servlets

The second approach uses servlets deployed in JBoss, more specifically they are deployed with
JBossWS in Apache Tomcat which is part of the JBoss platform that HP Service Activator runs
on. The servlet for a service can be generated with the Web Service Designer tool which is
provided as part of the HP Service Activator core product. This tool and its use is described in
chapter 8. When the generated servlet has been deployed, a description of its interface in WSDL
can be extracted from JBossWS on the running platform - see chapter 8 for more detail - and
imported in a client system to support generation or configuration of the necessary interface
component on the client side.

In this approach a set of web service methods are exposed, where each method will run a specific
workflow. Incoming messages will be parsed by the servlet and parameters of the method are
assigned as initial values to case-packet variables of the workflow job.

The method may just start the workflow job and return the job identifier to the calling web service
client, or it may wait for the job to complete, and return a response message including final values
of case-packet variables. In the latter case the call-return communication synchronizes the caller
with the activation system. In the former case the activation job may run asynchronously with
continued activity on the client side, and will typically need to return one or messages to inform
the client of progress and final status of the activation job. Such messages can be implemented
according to the sender module approach as described above.

Synchronous calls are not recommended when there may be many jobs with long or unpredictable
duration. Servlets are not fault tolerant; the relationship between a running job and the client that
requested it will be lost in the case of server host failure.

With this approach there is no obvious need for a controller workflow. Compared to the first
approach the servlet takes on the role of the controller workflow.

Service Activator System Integrator’s Overview

Solution Design

52 Chapter 5

Service Activator System Integrator’s Overview

HP Service Activator Platform

Chapter 6 53

6 HP Service Activator Platform
As described in chapter 1 the core component of an HP Service Activator production system is a
workflow engine. The workflow engine comprises the workflow, transaction and resource
managers.

The workflow engine runs in the framework of JBoss (version 4.2.2). JBoss is a J2EE platform
which can run on a range of hardware and operating system platforms. HP Service Activator is
specifically supported on HP-UX on HP Itanium processors, on Sun Solaris on Sparc processors,
on Red Hat Enterprise Linux on x86-64 processors, and on Windows 2008 Servers on any
hardware platform. In addition to JBoss, the operating system, and the processor hardware, HP
Service Activator requires access to an Oracle server via Oracle net.

The complete stack comprising the workflow engine on top of the required platform is shown in
Figure 6-1.

Figure 6-1 HP Service Activator Platform Stack

Server Hardware

Operating System

JBoss J2EE Server

HPSA Workflow
Engine

Cluster Platform
As described above, HP Service Activator can be deployed on a range of different hardware, from
small and inexpensive to large, very powerful processing systems. From V5, HP Service Activator
can also be deployed on clusters of separate servers, interconnected within a segment of a local
area network. The term cluster node (or just node) is used to designate a server in a cluster.

Cluster configurations provide three important benefits:

 Extreme scalability: the workload of the HP Service Activator solution can be distributed over
all the nodes in a cluster; when a node is added, the total processing power is enhanced.

 High availability: if one of the nodes in a cluster suffers a failure and ceases to function or is
taken out operation, all running workflow jobs will continute to run and are redistributed over
the remaining nodes (one or more).

 Easy configuration of server nodes on standby sites for disaster recovery.

The unit of work for an HP Service Activator system is a workflow job. A cluster node is selected
to run a workflow job when the job is started. The job will remain on the selected node until it
completes, except when a node failure occurs. All the processing of the workflow job, including

Service Activator System Integrator’s Overview

HP Service Activator Platform

54 Chapter 6

activation transactions down to atomic tasks takes place on the same node. But when a job starts a
child job, a different node may well be selected for the child job.

At any point in time when an HP Service Activator production system is running, there will be a
number of jobs running on each of the nodes. The distribution of work will change when jobs
terminate, and when new jobs are started. The system administrator can view the running jobs and
their assignment to cluster nodes.

Workflow jobs are executed as a sequence of workflow nodes (note: a different meaning of the
word node!) determined by the control logic of the workflow, with branching controlled by rule
nodes. As the execution of each workflow node completes, the state of the workflow job may be
persisted, allowing execution of the job to be restarted from the next node. After a node which has
no external impact, persistence may be omitted to enhance performance. Workflow nodes which
have external impact are those which perform activation tasks, update the database (inventory or
audit trail), post messages to queues, send messages to other systems, or perform any other action
which causes something to change outside of the workflow engine itself. The persistence property
as described here allows a workflow job to be restarted, if the cluster node it runs on suffers a
failure or is halted, while the job is running. Restarting can take place without any startup costs on
any node in the cluster.

To allow completely symmetric assignment of workflow jobs to cluster nodes, all the information
that is needed to run a job is held in database repositories that can be accessed by all the nodes.
This includes the static information: workflows, compound and atomic tasks (plug-ins), inventory
tree definitions, as well as the dynamic states of workflow jobs, including values of case packet
variables, and of active compound transactions, including locks on activation targets.

As a result of the symmetry and the single database, a cluster of workflow engines will appear and
behave like a single distributed engine as illustrated in Figure 6-2 for a cluster comprising 3 nodes.
Operators and external systems can interact with a running workflow through the web service
interface of any node in the cluster.

Figure 6-2 HP Service Activator Distributed Workflow Engine

Server 1

Cluster Node 1

Server 2

Cluster Node 2

Server 3

Cluster Node 3

single distributed HPSA engine

Given the equal access to persisted workflows from all nodes in the cluster, it could be considered
to monitor the relative loads on differents nodes and migrate jobs between nodes to balance the
load. There would be a performance penalty, since a job that remains on the same node benefits
from having its state cached in the workflow engine. Assuming most workflows are short lived,
the benefit would not be great. In HP Service Activator V5 workflow jobs only migrate upon node
failure.

In the event of a node failure, it will be detected by the other nodes in the cluster. One of them will
then automatically assume the role of redistribution manager. The redistribution manager will
restart all workflow jobs that were active on the failed node. For each job a new cluster node is
chosen to execute it. In this way the load of the failed node will be shared over all the remaining
functional nodes.

Service Activator System Integrator’s Overview

HP Service Activator Platform

Chapter 6 55

Detection of cluster node failure is done by means of keep alive timers that are monitored by keep
alive modules of the workflow managers on all active nodes in the cluster. The timers are also held
in the shared database.

Cluster Installation and Setup
For details on how to install and configure an HP Service Activator cluster, please refer to the
Installation Guide. Only the main principles are mentioned here as part of the explanation of the
clustering concept:

 HP Service Activator must be installed on each node in the cluster. This will also install JBoss
on each node. HP Service Activator clustering does not build on JBoss clustering. The JBoss
servers are independent and not aware of each other.

 When HP Service Activator is installed on the first node, the database tables used by the
workflow manager and other parts of the HP Service Activator platform (as opposed to the
tables belonging to the customized data model of a solution to be added on top) shall be
created. When HP Service Activator is installed on subsequent nodes, the same database user
shall be specified, but the tables shall not be created again. An additional entry (row) will then
be created in the table (CLUSTERNODELIST) that describes the nodes of the cluster.

 HP Service Activator must be configured on each of the nodes in the cluster. For example, the
workflow manager is configured in file mwfm.xml. The configuration shall normally be
identical on all nodes of the cluster.

 Nodes can be installed on different sites. Each site is either a primary site or a standby site for
disaster recovery. The name and type of the site must be given for each node where HP Service
Activator is installed.

 Except on a Windows server a virtual IP address can be defined for the server. The virtual
address must be associated with an interface on the server. The virtual address is useful in the
internal load balancing scenario described below.

Workflow Load Distribution
The important control decision that determines the distribution of load across the cluster is the
selection of the node where each new workflow job is started.

Except for child workflows the initiative to start a workflow activity always originates outside of
HP Service Activator, typically in a CRM or Order Management system. The external component
which makes requests for workflow jobs to be run can also be a catalog-driven workflow
controller delivered by HP as part of a solution. Service orders may also be entered into an order
portal GUI, which can translate orders directly to requests to run workflows.

Once a workflow job has been started in response to an external request, it may spawn child jobs.
The complexity of the workflows that are started by an external initiator will vary depending on
the solution. In complex cases, the initial workflow will spawn many additional jobs.

Different mechanisms can be implemented to interface the external control component to HP
Service Activator’s workflow manager, but in the end the request to run a workflow job is always
made by a call on the API of the workflow manager: startJob (asynchronous mode) or
startAndWaitForJob (synchronous mode).

NOTE The case when a user starts a workflow from the main UI or from the inventory UI is not special. The request
is passed via the JBoss web server through a call on the workflow manager’s API.

The actual API call may be implemented in different ways. It can be made directly by an external
controlling component using either the RMI or SOAP version of the API. Alternatively it can be
made by a workflow manager module, such as the socket listener, or by a web service NBI

Service Activator System Integrator’s Overview

HP Service Activator Platform

56 Chapter 6

dedicated to an activation solution, i.e. a specific set of workflows exposed as web service
methods.

Regardless of these technical variants, the more significant difference has to do with the selection
of the cluster node where the job will run, as this is the decision that will affect load balancing in
the cluster. The selection is made by a module of the workflow manager which receives the API
call, known as the distribution module. Three different distribution modules implementing
different selection algorithms (see below, Internal Load Balancing) are available in the HP Service
Activator V5 kit; the workflow manager must be configured to know which distribution module to
use. When the distribution module has selected the node to process a workflow job, it transfers the
workflow job to that node.

The workflow manager can run in “stand-alone mode” (as all versions before V5) with no active
distribution module.

As for other workflow manager modules it is possible to extend HP Service Activator with
additional node selection algorithms by implementing new distribution modules.

All distribution modules allow the node selection algorithm to be bypassed for workflows that are
started by a call on the external API.

Internal Load Balancing, Virtual IP Address

Internal load balancing is the intended normal distribution model, where HP Service Activator
itself takes care of load balancing. In this mode it does not matter which cluster node receives the
request to start a workflow job. The originator of the request therefore does not require any load
balancing capability. It is enough to know a single node which can receive all the calls and
distribute them across the cluster, as illustrated in Figure 6-3.

Figure 6-3 Internal Load Balancing

Request Originator

Workflow
Manager

Distribution

Cluster Node

Workflow
Manager

Distribution

Cluster Node

Workflow
Manager

Distribution

Cluster Node

HPSA Cluster

The HP Service Activator server address known by the request originator should be the virtual IP
address of the node designated to receive the requests. In case this node suffers a failure its virtual
IP address will migrate (“fail over”) to one of the remaining servers. This may take up to a minute.
The request originator may then simply continue to forward requests to the same address, and they
will be transparently received and processing initiated by the failover server.

By default the virtual IP address will automatically move back to the node it belongs when that
node again becomes available. You can configure the keep alive workflow manager module to

Service Activator System Integrator’s Overview

HP Service Activator Platform

Chapter 6 57

overrule this behaviour, if you prefer to manually decide from the UI when the virtual IP address
shall move back.

Four distribution modules, supporting different algorithms, are available as part of the HP Service
Activator standard product distribution. The workflow manager can be configured to use any one
of these. The four algorithms are:

 Plain round robin.

 Weighted round robin, where each cluster node can be assigned a different weight according to
its processing power.

 Selection of the node which has the shortest queue of workflow jobs waiting for a processing
thread in the workflow manager (a measure of the load at the time when the decision is made).

 Selection is based on the value of a pre-initialized case-packet variable of the job to be started.

When a workflow job spawns a child job, the load balancing algorithm will again be applied, so a
family of jobs with a common ancestor are not tied to the same cluster node.

External Load Balancing

In the external load balancing model, the cluster node that receives the external API call to start a
workflow job also runs the job. To achieve this behavior the active distribution module must be
configured to run externally requested workflows locally, i.e. the node selection algorithm is not
used. This means the external originator of the requests to run workflows will determine the
distribution of processing across the cluster.

This mode of operation is supported to allow the use of request originating systems which already
support a desired load balancing algorithm. Such systems will need to know all the cluster nodes
and to maintain information about them, which requests have been dispatched to each one, etc., in
order to make load balancing decisions.

When a job is started on a cluster node where the distribution function is disabled, any child jobs
will run on the same cluster node. This is a logical consequence of the balancing logic being
implemented externally. However, when jobs are redistributed after a node failure, they will still
be distributed as opposed to all being executed by the node which acts as redistribution manager.

Figure 6-4 External Load Balancing

Request Originator &
Load Balancer

Workflow
Manager

(Distribution)

Cluster Node

Workflow
Manager

(Distribution)

Cluster Node

Workflow
Manager

Cluster Node

(Distribution)

HPSA Cluster

Service Activator System Integrator’s Overview

HP Service Activator Platform

58 Chapter 6

Standby Sites for Disaster Recovery
For the case of mission critical solutions where servers must be in standby mode at a secondary
disaster protection site, HP Service Activator cluster configuration allows cluster nodes to be
associated with sites, and sites can be categorized as primary or standby. The category is actually a
modifiable state of a site. Only the nodes at the primary site need to be running in normal
operation, but the standby site(s) is also included in the installed and configured system and is
visible from the user interface.

The Oracle database server that HP Service Activator uses may also be configured with primary
and standby sites and use Oracle Data Guard to automatically maintain an up-to-date copy of the
database at the standby site(s). Alternatively independent Oracler servers can be used at the sites
and backups of the database can be regularly transferred to the standby site(s).

In the event of a disaster, i.e. the servers at the primary site become unavailable, the server(s) at
the disaster site must be started, the system administrator must connect to it (one of them) and
change the state of the site from standby to primary. Northbound systems and users must then
make sure to access the (a) new primary server. A configuration change may be needed, because
the secondary site may have different host names and IP addresses from the original primary site.

The procedure for switchback to the original primary site must be similar. The secondary site must
be deactivated, the original primary site restarted, the states of the sites must be swapped; this can
be done from the system administrator user interface, and then the system will again be ready for
normal operation.

Managing an HP Service Activator Cluster

User Interface Functions for Cluster Nodes

HP Service Activator’s system administrator interface (see HP Service Activator, User’s and
Administrator’s Guide) has features for managing a cluster:

 The operator can view how jobs currently running are distributed across the nodes of the
cluster.

 The operator can set the state of a site to primary or standby.

 Statistics reports can be produced about the load of the nodes over a specified period of time.

 Nodes can be taken in and out of operation.

The last feature is known on the interface as locking and unlocking of a node. When a node is
locked, it will no longer be a candidate to run new workflow jobs. The load on the node will then
drain as current jobs run to completion. When there is no load left the node can be taken of
operation for hardware or software maintenance.

Cluster nodes can also be suspended: all jobs are immediately suspended with saved state so they
can be resumed later. Suspension is primarily intended to be applied to a complete cluster to allow
backup of a frozen database. No use case is intended for suspending a single node.

Synchronizing Time on Cluster Nodes

In order to allow proper cooperation between the workflow engines in a cluster, the date and time
on all the servers must be kept synchronized using a tool such as NTP (Network Time Protocol).

Service Activator System Integrator’s Overview

Roles, Privileges and Authentication

Chapter 7 59

7 Roles, Privileges and Authentication
Some Service Activator solutions are black boxes with very few users. Others may have a larger
user community. The inventory subsystem, in particular, may allow users to perform operations on
many different types of entities. It is possible, therefore, to assign privileges to perform operations
from the user interface with any desired granularity.

Privileges in Service Activator are granted to roles. When a user logs in to Service Activator, an
authentication takes place based on user name and password, and a list of roles is established that
the user will have during the session. The user is then permitted to perform any operation for
which the privilege has been granted to one of the roles in the list.

NOTE Authentication must be configured for the workflow manager, otherwise it will not occur, and users will not get
any roles. It is not enabled at installation time.

The user interface operations that may require privileges fall in four areas:

 Functions available as menu items in HP Service Activator’s main UI window. The menu falls
in two parts, the Work Area and the Self Management menu. The Self Management menu as a
whole is only available to users who have the - predefined - system administrator role,
normally named ‘admin’. For the work area a required role can be assigned to each menu item.

 Workflow related operations, also performed from the main UI window: starting and stopping
workflow jobs, inspecting the state of a workflow job, interacting with a workflow job,
viewing messages posted on queues by workflow jobs.

 Inventory operations performed from the inventory UI window: view a tree; expand a branch in
a tree to see more branches; create, view, edit or delete a resource instance.

 Deploying plug-ins using the Service Builder tools. In this case the user does not log in to
Service Activator’s web-based UI, but the Service Builder invokes methods to deploy plug-ins
on the resource manager, and these methods may require authorization using the user’s identity
as established by the operating system.

As customizer of a Service Activator solution you must define the roles that shall exist for the
system, and you must assign to roles the privileges to perform specific operations. Typically you
will then leave it to the system administrator to define users and assign roles to them. You must
decide which operations shall require specific privileges. If it is not necessary to distinguish
between different categories of users, you can simplify your task by leaving many operations
available to any authenticated user. You generally do this by omitting to configure a privilege for
each operation (for example to interact with a workflow or perform an operation on the inventory
UI). You must also decide the granularity of the roles you define. If you make few large roles,
each with wide privileges, you will simplify the task of the system administrator. If you make
many small roles, each with limited privileges, you enable the system administrator to assign
privileges to user groups with fine granularity.

The first section in this chapter introduces the system user and the predefined system administrator
role.

Service Activator System Integrator’s Overview

Roles, Privileges and Authentication

60 Chapter 7

The second section gives an overview, with references to additional information, of how the
privileges to perform the operations in the four mentioned areas are assigned to roles. This is done
in different ways, using different tools, for each of the four areas.

The third section gives an overview of the different modules you can choose from to authenticate
users and establish their roles at log-in, and how to configure these modules.

The fourth section describes how users can be grouped in teams, and finally there is a section that
describes HP Service Activator’s support for HP’s Light-Weight Single Sign On framework.

Management of users, roles and privileges is done by the system administrator using the User
Management view available from the Self Management menu area of HP Service Activator’s main
UI, as described in HP Service Activator, User’s and Administrator’s Guide.

System User and Predefined Roles
There are two predefined roles, ‘admin’ and ‘internal’.

The ‘admin’ role, as described above, is the system administrator role with privileges to perform
system administrator functions. It is possible, but not recommended to change the name of the role
by editing the configuration file for the workflow manager, mwfm.xml, see “Setting the Workflow
Manager Parameters” in HP Service Activator, Workflows and the Workflow Manager.

The ‘internal’ role exists for technical implementation reasons. This role has the privilege to
interwork with workflow jobs which are sleeping or waiting for activations or other software
internal interactions. It is not intended to be assigned to human users.

One special user, the system user, is created with username and password during installation
(system configuration) of HP Service Activator. It exists primarily for technical implementation
reasons and has all roles, including the predefined ones ‘admin’ and ‘internal’. Software
components (for example workflow manager modules) which need to perform ‘internal’
interactions with workflow jobs will take on the identity of the system user.

It is not possible from the user interface to change the name or password of the system user or to
revoke any roles from it.

The system user is not intended to be used by a system administrator during normal operation, but
must be used to create at least the first ordinary user once authentication has been enabled.

NOTE If a non-native authenticator module is used (see “Authentication and Assigning Roles to Users” below), the
predefined roles and the system user are not automatically created during installation. They must then be
explicitly created in the appropriate environment (operating system) before authentication is configured.

Assigning Privileges to Roles
The privileges to perform operations related to workflows and inventory can be defined and
assigned to roles with a fine granularity as part of the customization of workflows and inventory.

Roles and also their relationships to inventory UI privileges can be described in an XML-
formatted file. The schema for the document is found in file
$ACTIVATOR_ETC/config/ummData.xsd. If you have defined the roles and relationships in the
User Management view so that they are recorded in Service Activator’s static repository in the
Oracle database, you can use the UMMData script to export them to a file and include it in a
solution to be deployed with the Deployment Manager. Refer to the manual for the Deployment
Manager for information on how to include the roles file in a deployable solution.

For each of the four areas of potentially privileged operations, the information on how to define
the operations with privileges and assign them to roles is found in different manuals, as outlined
here:

Service Activator System Integrator’s Overview

Roles, Privileges and Authentication

Chapter 7 61

User Interface

Privileges to view and select menu items in the work area of HP Service Activator’s main UI are
assigned directly to roles. Configuration of the UI menu is described in HP Service Activator,
User’s and Administrator’s Guide.

Workflows

For operations related to workflows, privileges are also assigned directly to roles, see “Setting
Roles” in HP Service Activator, Workflows and the Workflow Manager. In the same manual,
specifically for information about message and request queues, see “Queues”, and for information
about how to make these queues permanent using the <Permanent-Queue> tag, see “Setting the
Workflow Manager Parameters”.

Inventory

With respect to inventory operations, see “Inventory Tree Definitions” in HP Service Activator,
Inventory Subsystem, for information about defining the privileges, known as operation types,
branch types and tree definitions. The assignment of these privileges to roles is done as part of
User Management in HP Service Activator’s main UI.

Deploying Plug-ins

For deploying plug-ins, there is only one privilege, it is preassigned to a role named “deployer”.
The role is only required if you have enabled authentication of plug-in deployment. For more
information, see “Configuring Authentication or Authorization” in HP Service Activator,
Developing Plug-Ins and Compound Tasks.

Authentication and Assigning Roles to Users
User authentication in Service Activator is the process of validating that a supplied (user name,
password) pair is valid, determining the identity of the user, and retrieving the list of the user’s
roles. It is done by a module of the workflow manager, known as an authenticator module.

On a virgin system, after installation of Service Activator, authentication is disabled. You enable
it, like other functions performed by workflow manager modules, by editing a specification of the
module you want to use - its name, Java class, and configuration parameters, into the configuration
file for the workflow manager, mwfm.xml.

You have four authenticator modules to choose from, HP Service Activator’s native recommended
module, the DatabaseAdvancedAuthModule, and one for each of the four supported operating
systems, Windows, HP-UX, Solaris and Red Hat Linux. For special requirements it is possible to
build additional authenticator modules.

With the native authenticator module the user information is held in Service Activator’s own
database, and all user administration functions are done through the User Management view of
Service Activator’s main UI.

The other authenticator modules delegate authentication to the operating system, validating
Service Activator user credentials against the same database that the operating system uses for its
own users. These modules then retrieve all user groups that the validated user belongs to and maps
them to roles using the role mapping file. By default, the role mapping file is absent, and each
group name is taken directly as a role name.

You will understand how to construct role mappings from this example, which shows the contents
of a role mapping file that maps the two groups activ_users and activ_oper to the same Service
Activator role, operator, and a third group root to the admin role.

<?xml version="1.0" encoding="utf-8" ?>
<!DOCTYPE RoleMappings SYSTEM "role_mappings.dtd">
<RoleMappings>

Service Activator System Integrator’s Overview

Roles, Privileges and Authentication

62 Chapter 7

<Role>
<Name>operator</Name>
<Mapping>activ_users</Mapping>
<Mapping>activ_oper</Mapping>

</Role>
<Role>

<Name>admin</Name>
<Mapping>root</Mapping>

</Role>
</RoleMappings>

The role mapping file must be named and placed as:
$ACTIVATOR_ETC/config/role_mappings.xml. After you create or change it, restart Service
Activator to allow it to take effect.

NOTE If you write your own authenticator module - see “Writing New Authenticator Module” in HP Service Activator,
Workflows and the Workflow Manager - you must consider if your module needs to support role mapping.

When you use one of the operating system based authenticator modules, you manage Service
Activator users by the same tools that you use to manage users of the operating system, including
the creation of dedicated groups to implement the roles you have defined for Service Activator.

Organizing Users in Teams
For use on systems with many users there is a concept of teams. You can divide the user
community in teams and appoint one or more administrators for each team. A team administrator
can access the user management functions in the Self Management menu, but is restricted to
manage the members of his/her own team.

Each user will belong to exactly one team. Roles must then be assigned to teams, and the team
roles limit what roles can be assigned to the users in the team. Initially there is a default team
which has all roles.

NOTE The team feature is only available when configured on the native authentication module.

Light Weight Single Sign On
LWSSO is a framework that a number of HP NGOSS (and other) products adhere to. Within this
framework a user can log in to establish a session with one product and may then execute a cross
launch action that will bring up a GUI of another product - in a separate window or in a frame of
the window from which the action was launched - without having to log in to the second product.
LWSSO is based on tranferring encrypted cookies between the product servers, via the user’s
browser client. The cookie will contain the user’s identity (user name), but not the password. The
password is only authenticated when the initial session is established, and the authentication
mechanisms (and users’ passwords) may be different on the various products that cooperate within
the framework.

HP Service Activator supports LWSSO. It allows cross launch to and from other products which
also support LWSSO. NNMi and UCMDB fall in this category, NA does not. When launching an
NA window from Service Activator, the user will be confronted with NA’s log in dialog, but only
once in a session.

The use of LWSSO must be configured for Service Activator at installation time. At this time a
number of parameters concerning the encryption method, etc., must be entered. See the Installation
Guide for details.

Some special considerations for the use of LWSSO must be noted: Functions which require access
to the user’s password are not possible when Service Activator has been cross launched using

Service Activator System Integrator’s Overview

Roles, Privileges and Authentication

Chapter 7 63

LWSSO: user management, use of stored filters and searches. Time skew between cooperating
servers must not exceed 15 minutes.

Service Activator System Integrator’s Overview

Common Network Resource Model

Chapter 8 65

8 Common Network Resource Model
The Common Network Resource Model (CNRM) is a data model appropriate for a class of
commonly managed new generation networks based on IP, Ethernet and MPLS technology. The
model is included in the HP Service Activator core product packaged as a deployable solution
which can be used as a basis for a customized solution or in fact by multiple solutions which will
manage different services over the same network. The CNRM consists of resource definitions, tree
definitions for the inventory user interface and functions implemented as workflows which can be
launched from the inventory UI.

The model matches well the types of networks which are typically managed with the HP BTO
NNM and NA products. It is eminently suitable for solutions where HP Service Activator is
integrated with these products (as discussed in chapters 10 and 11). The CNRM can be populated
by uploading data representing the network and its equipment. Data upload can achieved through
integration with NNMi.

NOTE The modelling of classical transmission technologies (SDH, SONET, T1) for layer 1 transport is not covered
by the CNRM, but must be added to the model if needed. With respect to the MPLS core network, the model
is only concerned with edge devices. Additions will be needed to manage routing of label switched paths
across core (P) routers.

The CNRM was introduced in the section “Solution Data Repositories (Inventory)” (starting on p.
18). The introduction included a diagram of the network architecture that CNRM is suitable for
and listed some services that such networks are used for: corporate VPN services; traffic between
customer sites and (provider or third party) platforms providing a range of services (Internet
access, VoIP, IPTV); interconnection of elements of provider infrastructure (mobile backhaul).

The network architecture as depicted in Figure 2-1 includes an MPLS core network and L2
(Ethernet) access networks. L2 and L3 VPN technologies are used to structure traffic across the
MPLS core network. Traffic across the L2 access network normally uses provider bridging, i.e. S-
VLAN tags are used to identify the traffic for specific services. PE routers can also have interfaces
to legacy access networks (ATM, frame relay, SDH, TDM), but the model does not cover these
networks.

Adapting the CNRM for a Solution
For some solutions, those which are not concerned with networks that resemble Figure 2-1, the
CNRM will be not be useful. For those solutions a different model must be created according to
the requirements.

In many cases, when the network and services of the service provider requiring an activation
solution, do resemble Figure 2-1, extensions or adaptations may be needed to match precisely the
provider’s network architecture and the data required to manage the equipment and services
involved in a solution.

An important case where the CNRM is used with some extensions is the solution package for L2
and L3 VPN management. In fact the model is a generalization of the one that was used in the
VPN SP before it was included in the core product.

Service Activator System Integrator’s Overview

Common Network Resource Model

66 Chapter 8

The CNRM is present in the core product in the form of resource and tree definition source files,
so it is possible to modify the model in any way required for a solution. Even in cases where
requirements dictate a significantly different model, it may be useful to take the CRM as a starting
point and work with differences and modifications rather than elaborating a complete model from
scratch.

For a project where the CNRM can be used with modest modifications, considerations of support
and maintenance of the solution over time suggest that the solution should be constructed in such a
way that such evolution of the CNRM as may occur in future product releases may be incorporated
smoothly. It is recommended, therefore, to strive to maintain the resource bean definitions of the
CNRM unchanged and implement any modifications in specializations of the classes of the
CNRM.

When defining a specialization you can use the <ParentField> element to define for the specialized
class properties to override the properties of the superclass (parent) fields, such as: name, label, list
of values, visibility, modifiability and formatting.

Model Configuration Data
A number of (resource bean) object class are associated with the CNRM but do not model
elements of a network. These classes configure the model by defining valid values for fields of the
proper network model classes. They are shown with entity relationships in Figure 8-1. Each region
object defines a valid value for the region property of a network, each ElementType object defines
a valid for the ElementType property of a network element, etc.

An important aspect of this is that a solution may contain mappings and templates for network
elements and their interfaces which depend on interface type, OS version and element type. The
configured property values will be used as indexes for lookup of the proper mapping or template to
apply for each network element or interface. The groupings of OSVersions and ElementTypes
make it possible to associate mappings and templates with groups rather than individual
OSVersions and ElementTypes without losing accuracy of the model data.

The CR Model solution itself contain a table, RouterTemplate, which is indexed by Vendor,
OSVersionGroup and ElementTypeGroup and identifies a template for the dialog to query a
network element for its interfaces and a Java class to parse the response.

Figure 8-1 Model Configuration Data Classes

Location OSVersion

Region
Vendor

ElementTypeGroup

ElementType

OSVersionGroup

InterfaceType

PWPolicy

There are very few fields on these objects (beans): the main one for each is simply the name which
defines a valid value of the corresponding property. In addition there are the foreign keys
representing the entity relationships and description fields.

The PWPolicy table also falls in the category of model configuration. It contains username and
passwords for a group of devices. This is useful when the same username and passwords are used
for several devices and must be regularly updated. Instead of updating them as properties of each
network element object, they will be updated on the PWPolicy object.

Service Activator System Integrator’s Overview

Common Network Resource Model

Chapter 8 67

Object Classes of the CNRM
This section describes the (resource bean) object classes of the actual CNRM. The object classes
and their entity relationships are depicted in Figure 8-2. The fields on the objects which have
values constrained by the model configuration data classes are indicated by showing relationships
to greyed-out model configuration objects.

 All of a provider’s resources are placed in one or more regions.

 Each region will contain one or more networks; networks can also be hierarchically nested.

 A region contains a number of locations where equipment can be placed; locations are not
nested within networks. This allows two or more networks to meet at a common location,
where network elements belonging to different networks can be colocated.

 The central object class is NetworkElement (NE). An NE has a location and belongs to a
network.

 An NE can be decomposed into ElementComponents, on which there may be interfaces which
serve as termination points for traffic.

 NEs can be connected by links which terminate on termination points.

 NEs are of specific element types provided by vendors. The operational characteristics
(command set) of the NE will depend on the firmware (OSVersion); the firmware is also
provided by the equipment vendor.

Figure 8-2 Common Network Resource Model Objects

Location

ElementComponent

TerminationPoint

/Interface

NetworkElement

OSVersion

Region

Network

Link

Vendor

ElementType

2

2Network

Attachment

InterfaceType

PWPolicy

The model is topological in the sense that those links between network elements which are needed
for activation purposes, because the devices at their endpoints must be configured for services, are
represented by objects. But the topology does not need to be complete to support service
activation: links between devices where the endpoints are not configured for individual services do
not need to be represented. Unless such devices and their links are also added, the model cannot be
used to generate a complete topological map of the provider’s network.

The properties of the object classes, including the fields, are described in the following sections.

The following conventions apply to primary key and foreign key fields:

 Every object class has a single field primary key; hence foreign keys are also single fields.

Service Activator System Integrator’s Overview

Common Network Resource Model

68 Chapter 8

 For the real resource objects (not system parameters) the primary key is always called ‘<class
name>Id’, e.g. NetworkId. Foreign keys referencing them have the same or a derived name,
which includes the ‘Id’, sometimes preceded by an underscore. These primary keys are
generated from sequences to automatically ensure uniqueness. Most of these objects also have
a ‘Name’ field intended to be human meaningful. The convention for device interfaces is to
follow the vendor’s standard naming scheme that will also be used in device commands.

An ‘M’ in the type column indicates the field is mandatory.

The remaining subsections within this section describe each entity bean class of the model in turn.
For each class there is a general description of the meaning of the class and a table which
described the fields of the bean.

Bean Class Network

This object class is used to represent a collection of NEs and the links between them.

In general networks may be nested to any depth. A network which has nested subnetworks may
also have direct member NEs (not members of any of the subnetworks).

The network object has a type field which can be used to distinguish different types of subnetwork,
for example with respect to nesting. The intended meaning of the predefined values is as follows
(use Figure 2-1 as architectural reference):

network A set of PE devices (NEs) and the CE devices that are attached to them; also used for
collections of unattached or unmanaged CE devices. No nesting.

access network A collection of aggregation devices (NEs) and the simple access topologies (nested)
attached to them. Aggregation devices will be linked by aggregation trunks to PE devices in
a network. The relationship of the PE device to the access network is modelled with a
NetworkAttachment object. S-VLAN tags assigned to attachment circuits over an access
network must be unique on an access network. If several access networks are attached to
the same PE device, uniqueness must extend to the union of such access networks
(complete flow domain).

topology A collection of access devices (NEs) connected in a simple ring or string topology within
an access network. Nested within an access network. Aggregation switches may also be
part of the ring or string, but in the model they will belong directly to the access network
with a NetworkAttachment to represent that topologically they are part of the ring or string.

Other network types may be defined for other network structures, in particular if a solution uses
nesting of networks.

Table 8-1 Fields of Network Bean

Name Type Description

NetworkId String Primary key

Name String M User friendly name

Type enumeration:
Network,
AccessNetwork,
Topology

See text above

ASN String Autonomous system number

Region String Foreign key, represents relationship to
Region object

Service Activator System Integrator’s Overview

Common Network Resource Model

Chapter 8 69

Name Type Description

ParentNetworkId String Foreign key, represents relationship to
enclosing Network object

Bean Class NetworkElement

This object class represents individual network elements. Its fields hold the information needed
when management communication takes place directly from HP Service Activator to each NE
(using CLI). Some modification may be needed if the network elements are managed through an
element manager. In simple cases it may suffice to use the Management_IP field to hold the
address of the element manager. In more complex case it may be necessary to introduce an
addtional object class to model the element manager and establish a relationship between the
NetworkElement and the ElementManager.

NEs are implemented as reservable beans to allow mutual exclusion zones to be implemented
easily in workflows: the NE is reserved over the section of the workflow where exclusive access is
required to the model of the NE and its components, or to communicate with the NE. NEs are not
expected to be reserved in their entirety for subscriber services.

NOTE The NE class can be specialized for a solution, the subclass will then inherit the reservability property. Do not
set the maxCount attribute on the subclass.

NEs play different roles in the network: PE router, CE router, aggregation switch, access switch.
The role is represented by the value of the Role field. The VPN SP uses specializations of the
Network class for the different roles.

When comparing the Table 8-2 to the inventory UI forms for the NetworkElement bean beware
that some of the fileds have labels which deviate from the values shown in the Name column.

Table 8-2 Fields of NetworkElement Bean

Name Type Description

NetworkElementId String Primary key

NetworkId String Foreign key, represents relationship to
Network object that the NE belongs to

Name String Human meaningful name of the device

Description String Additional user information about the device

Location String Constrained by configured Locations

IP String Primary IP address of the device

Management_IP String IP address used for management
communication with the device

ManagementInterface enumeration:
telnet, ssh

Protocol used for management
communication with the device

PWPolicyEnabled boolean True if PWPolicy is used

Service Activator System Integrator’s Overview

Common Network Resource Model

70 Chapter 8

Name Type Description

PWPolicy String References object defining username and
password information to use for the device

UsernameEnabled boolean Deprecating, replaced with PWPolicy

Username String

Password String (password)

EnablePassword String (password)

Vendor String Constrained by configured Vendors

OSVersion String Constrained by configured OSVersions

ElementType String Constrained by configured ElementTypes

SerialNumber String Serial number of the device (inventory
information)

Role enumeration:
PERouter,
CERouter,
AggregationSwitch,
AccessSwitch

See text above

AdminState enumeration:
Up, Down,
Unknown,
Reserved

Administrative state, semantics defined by
solution

LifeCycleState enumeration:
Planned,
Preconfigured,
Accessible, Ready

Life cycle state, semantics defined by solution

ROCommunity String SNMP read-only community string

RWCommunity String SNMP read-write community string

NNMi UUID String Universally unique identifier of
corresponding NNM object

NNMi ID String Local identifier of corresponding NNM object

NNMi Last Update Date Time the object was last updated/refreshed
from NNMi.

Bean Class NetworkAttachment

This object class models an n:m relationship between NetworkElements and Networks. An object
of the class exists to represent that the NE is attached through a link to the network, which is not
the one it belongs to, but may be a subordinate one, e.g. the NE can be an aggregation switch
belonging to an access network and the network an access topology.

Service Activator System Integrator’s Overview

Common Network Resource Model

Chapter 8 71

Table 8-3 Fields of NetworkAttachment Bean

Name Type Description

NetworkElementId String Identifies the NE

NetworkId String Identifies the Network the NE is attached to

Bean Class ElementComponent

This object class allows hierarchical decomposition of an NE, typically into racks, slots, cards,
ports, in a generic way without restriction to specific component types.

The ComponentType field is used to indicate the type of component, determining its level in the
containment hierarchy. The predefined values for this field include Slot and Port as well as
Controller. An ElementComponent with ComponentType Slot represents a slot as well as the card
that it holds. The value Controller is used for a port on a controller card which supports
multiplexing of channels and has the ability to create channelized interfaces on a subset of the
channels.

The capability to create a channelized interface on a Controller port is included in the Common
Resources solution and can be invoked from the inventory UI.

The EC is reservable for the same reason that is described for NetworkElement above.

Table 8-4 Fields of ElementComponent Bean

Name Type Description

ElementComponentId String Primary key

NE_Id String M Foreign key, represents relationship to NE
object that the component belongs to

ParentEC_Id String Foreign key, represents relationship to
enclosing element component

Name String M User meaningful name of the component,
vendor naming convention applies; typically
the type of port/interface, rack number, slot
number within rack, and port number on
card will be included (when applicable)

Description String Additional user information about the
component

State enumeration:
Up, Down,
Unknown, Added,
Removed

State, semantics defined by solution

ECType enumeration:
Slot, Port,
Controller M

See text above

Service Activator System Integrator’s Overview

Common Network Resource Model

72 Chapter 8

Name Type Description

Type String For a given ComponentType, the Type
further characterizes the component. Type of
slot: what cards can it holds; type of card:
for example, SDH linecard, Ethernet
linecard; type of port: Ethernet, GigEth,
SDH with layer rate - STM-1 etc., E1, etc.

By vendor convention this information may
also be part of Name field.

This field may be informative or may have
semantics according to application.

ComponentNumber String Slot number, port number, etc. Not expected
to be globally unique, only within the parent
component.

By vendor convention this information may
also be part of Name field.

This field may be informative or may have
semantics according to application.

Capacity int Indicates number of units of capacity on the
component.

Used with ComponentType Port or
Controller in situations where ports reside on
a daughter cards, which are not modelled as
separate ElementComponents, and the
daughter card may comprise multiple
physical ports or is preconfigured with
multiple separate termination points (E1s
within STM-1); indicates number of
physical or logical ports

Bean Class TerminationPoint

Termination points reside on ports. Depending on the type of the port there can be many
termination points on a port: for example VLAN tagged sub-interfaces on an Ethernet port or E1
channels on an SDH port. TerminationPoint fields are listed in Table 8-5.

Termination points often support switch/router interfaces, which can be configured for service.
Interfaces are modelled as a specialization of TerminationPoint. See the section below

Table 8-5 Fields of TerminationPoint Bean

Name Type Description

TerminationPointId String Primary key

Name String M Number of the slot, vendor conventions
apply

Service Activator System Integrator’s Overview

Common Network Resource Model

Chapter 8 73

Name Type Description

NE_Id String M Foreign key, represents relationship to NE
object that the termination point belongs to

EC_Id String Foreign key, represents relationship to
element component (port) object that the
termination point belongs to

State enum: Up, Down,
Unknown

Semantics of these values defined by VPN
SP

Bean Class Interface
This specialization of TerminationPoint covers all the technology and application details that are
added to generic termination points when they are used as switch/router interfaces for an NGN
application.

An interface is a resource that can be reserved for a service.

A workflow to upload information about ElementComponents and interfaces from an NE, parse it
and create the implied objects in the model is included with the CNRM solution and can be
invoked from the inventory UI.

Likewise a workflow to create aggregated interfaces from interfaces on multiple ports is included
with the CNRM and can be invoked from the inventory UI.

Table 8-6 Fields of Interface Bean

Name Type Description

TerminationPointId String Primary key

Type String M Type of interface

ParentIf String For a subinterface, represents relationship to
parent interface

IPAddr String IP address assigned to the interface

Subtype String Subtype of interface, more specific than type
(in VPN SP set to indicate how the interface
is used for a service)

Encapsulation String For Ethernet interface: none or Eternet-
dot1q
For serial interface: FR, HDLC or PPP

Description String Uploaded from equipment

IfIndex String SNMP identification index

ActivationState enumeratiuon:
Activated, Failed,
Undefined, Ready

Semantics of these values defined by VPN
SP

UsageState enumeration:
Available,

Semantics of these values defined by VPN
SP

Service Activator System Integrator’s Overview

Common Network Resource Model

74 Chapter 8

Name Type Description

SubIfPresent,
Uplink, Reserved,
InBundle, Trunk,
ASBRLink,
SwitchPort

VLANId String Tag for traffic belonging to the (sub-)
interface

VLANMode String

DLCI String For a frame relay interface, DLCI of the
traffic

Timeslots String For channelized interface: which time slots

NumberOfSlots String For channelized interface: number of
timeslots

Bandwidth String Bandwidth of interface (bps)

LMIType String For FR: Cisco, ansi or q933a

IntfType String For FR: dte/dce interface type

BundleKey String Alphanumeric name of an aggregate
interface; identical on aggregate and its
members

BundleId String Numeric identifier of an aggregate interface

NNMi_UUID String Universally unique identifier of
corresponding NNM object

NNMi_ID String Local identifier of corresponding NNM
object

NNMi_LastUpdate Date Time the object was last updated/refreshed
from NNMi.

Bean Class Link

In a classical layer transport network model, a connection in one (server) layer of a network is
used as a link in the topology of the next higher (client) layer. In the common network resource
model the link property is the more interesting one. Algorithms will generally configure link
endpoints to allow certain traffic (typically by VLAN tag) rather than explicitly create connections
by setting up cross-connections. Cross-connections occur in the server (transmission) layers that
are beyond the scope of the model.

A link connects two termination points, on two NEs.

Links are typically used as trunks, i.e. traffic for many different customer services identified by
different VLAN tags may pass the same link.

Link fields are specified in Table 8-7.

Service Activator System Integrator’s Overview

Common Network Resource Model

Chapter 8 75

Table 8-7 Fields of Link Bean

Name Type Description

LinkId String Identifies the link

Name String

NE1 String Foreign key, represents relationship to NE
object at endpoint 1

TP1 String Foreign key, represents relationship to
termination point object at endpoint 1

NE2 String Foreign key, represents relationship to NE
object at endpoint 2

TP2 String Foreign key, represents relationship to
termination point object at endpoint 2

Type enumeration:
access trunk,
aggregation trunk

Used to distinguish different types of links

NNMi_UUID String Universally unique identifier of
corresponding NNM object

NNMi_LastUpdateDate String Time the object was last updated/refreshed
from NNMi.

User Interface and Launchable Functions for the CNRM
The CNRM can be populated with data either directly from the network elements or from NMMi,
if the latter is present and set up to interwork with HP Service Activator. Dataload from NNMi
comprises network elements, interfaces and links, direct dataload is for one network element at a
time and comprises only the interfaces on each device.

The dataload process can be repeated regularly to update the model with new entities.

The process of loading data from NNMi has two phases. First all the data available from NNMi,
within the specified scope, is loaded as intermediate entities. Network elements and interfaces
which are equal to ones already existing in the CNRM are dropped at this point, and those which
are new, i.e. have no counterpart already in the CNRM are created in the CNRM.

The second phase is manual and is concerned with links and with network elements and interface
which already exist in the CNRM, but with one or more fields values being different from the one
on the intermediate entity. These entities can be inspected and validated in a special tree on the
inventory user interface. When there is a field value difference the user can select to update the
value as determined in the first phase or keep the old value. Each link entity can be edited and
accepted or rejected.

During the first phase extensive configuration data in the forms of mapping tables and enrichment
descriptions., is applied to the data that is received in NNMi in order to represent according to the
CNRM. The scope of the dataload, defined as a number of network elements identified by host
name or IP addess, is part of this configuration. All those network elements, their interfaces and
the links which interconnect them are then loaded in one process.

The CNRM solution pack includes definitions of three trees for the inventory user interface:

Service Activator System Integrator’s Overview

Common Network Resource Model

76 Chapter 8

 Equipment, the tree that shows network with regions, network elements, interfaces and links.
There are some operation privileges associated with this tree: nnm_operation_type allows UI
crossload from Service Activator to NNMi, na_operation_type allows crossload from HP
Service Activator to NA.

 Parameters, the tree where CNRM is configured: vendors, element types, information about
NA and NNMi system that HP Service Activator shall interwork with, as well as information
for the dataload function and for accessing NNMi and NA.

 NNMiDataload, the tree where data loaded from NMMi is validated in a temporary
intermedate form by the user before it is accepted into resource inventory.

The NNMi dataload processes are controlled through workflows which are invoked from the root
of the Equipment tree.

Alternatively, there is a workflow which can upload interfaces directly from a network element,
without involving NNMi. This workflow is invoked from the network element branch in the
Equipment tree. You can add a control workflow to traverse the network and invoke the interface
upload from several network elements in a single process invoked at a higher level.

An additional function, implemented as a workflow invokable from the Equipment tree, is creation
of channelized or aggregate interfaces on network elements which include controllers supporting
such interfaces. Channelized interfaces can be created on STM-1 and E1 ports. Aggregate
interfaces can be based on channels (64KB or E1) or on Ethernet interfaces.

Details about the functions that can be invoked from the interface UI are given in HP Service
Activator, User’s and Administrator’s Guide.

Service Activator System Integrator’s Overview

Web Service Designer

Chapter 8 77

9 Web Service Designer
The Web Service Designer is a tool dedicated to generate specialized servlets exposing the
capability to run HP Service Activator workflows as web service methods. Each servlet will
include a set of convenient methods mapping to the set of workflows which are required for
integration with a specific type of client. The servlets can be deployed very simply with JBossWS
on the HP Service Activator platform.

HP Service Activator also has a generic web service interface supporting a subset of the complete
API of the workflow manager whose primary form is RMI. Compared to the generic interface the
servlets generated with the Web Service Designer are specialized to contain dedicated methods to
use for a particular application; they avoid exposing the concept of workflows and generic
methods to control them. As system integrator you will control the names of the methods and their
parameters.

Each web service is defined in an XML document, the web service definition file, which is created
and edited with the tool. Consider this file a source file in the same way as workflow, resource
(bean) and tree definition files. It should not be confused with a WSDL file (in W3C standardized
web service definition language), which is used for external definition of a web service interface.
The file produced by the tool is in a private format, the schema for which is in file
$ACTIVATOR_ETC/config/wsd-config.xsd. It is concerned with both the definition of the
interface and its mapping to workflows.

With the tool you can create and edit the web service definition; you can generate the servlet Java
class, you can compile the class and build the web-application archive (.war file) containing the
servlet, and you can deploy it on the HP Service Activator platform.

Servlets generated with the Web Service Designer will use SOAP over HTTP as transport, and the
style of communication will be rpc (remote procedure call).

Defining a Web Service
The web service call to run an HP Service Activator workflow can be synchronous or
asynchronous. This choice is made for each method; you can combine synchronous and
asynchronous methods in the same servlet. In both cases the call will start the workflow as a job.
In the synchronous case it then waits for the workflow job to complete and is able to return final
values of case-packet variables as result information to the caller. In the asynchronous case the
web service method does not wait for the job to complete; the only return information is the job id.
A separate mechanism will then be needed for providing progress and result information to the
caller; refer to the section “Northbound Interface” in chapter 5 for further discussion of this topic.

Before you use the tool you must prepare the following:

 a list of the workflows you want to be runnable as web service methods; for each one you must
name the method you want to expose (typically the name will be similar to the name of the
workflow)

 for each runnable workflow the list of case-packet variables that must be initializable from
values of parameters of the web service

Service Activator System Integrator’s Overview

Web Service Designer

78 Chapter 8

 for each synchronous method the list of case-packet variables whose final values must be
returned to the caller

 for each of the input or output parameters a name for the parameter (the default choice will be
the name of the case-packet variable) and a type; the type must agree with the type of the
associated case-packet variable in the workflow (the tool does not read the types from
workflow definitions; you must select them)

 for each method with multiple output parameters a decision on how to package the parameters
in the result message (see below for more information)

With the tool you must then define the methods, each one named and mapped to a workflow and
with a list of input and output parameters. From these definitions the tool will generate a Java class
with your methods annotated to be callable as web service methods. The call parameters and
result type of the generated methods will be translated to input and output messages to be
exchanged between the caller and the HP Service Activator platform.

The input parameters will be combined as named elements (like members of a bean) of the input
message.

The result returned from a servlet method must be a single object. If there is exactly one output
parameter, the type of the result message will be the type of the output parameter. If there are
multiple output parameters, you can choose to package them as a record (bean) with the
parameters as named fields or as a hashmap with an entry for each parameter, in which case the
parameter name is passed as the key. The latter form is more generic: the parameter names will not
appear in the external definition (WSDL) of the interface, only as data in the messages.

You can use all the types supported for workflow case-packet variables for input and output
parameters: String, Integer, Long, Boolean, Double, Float, Data, Object, List, Map, Set, Bean.
Along with List and Set collection types you must also define a subtype, i.e. the type of the
elements. Along with a Map parameter you must define two subtypes, for the keys and values,
respectively. For Object and Bean you must provide a properly annotated Java class (library) that
implements the class in question. Bean classes generated by the inventory builder can be used.

If you want to use the same multi-field response from several methods, you can define a bean class
to represent the response. Then you will not need to list the bean members as output parameters for
each method, and you will avoid to have several response bean classes generated with the same
members but different names (derived from the name of the method).

There are two ways to authenticate the caller of the web service methods: either it is done globally,
once per session, by the JBossWS authentication handler using username and password supplied in
the SOAP header when the session is opened, or it is done by each method. When the latter
mechanism is selected, username and password will be added as two parameters to each method.

Web Service Designer Tool
The Web Service Designer is a stand-alone tool in the family of HP Service Activator design time
tools. It is basically a UI tool for editing a web service definition with additional capabilities to
generate servlet Java classes, build web archives and deploy them. All the functions except editing
are also available as command line functions, and the tool is integrated with the Deployment
Manager for deploying web services even across a multi-node cluster platform.

As the tool is quite simple, it has no dedicated manual; it is fully described in this chapter.

Figure 9-1 shows the user interface of the Web Service Designer, where the definition of an
example web service called TriplePlay is open. The root of the web service tree is selected,
allowing to edit the global properties of the web service.

Service Activator System Integrator’s Overview

Web Service Designer

Chapter 8 79

Figure 9-1 Web Service Designer, Global properties

For the login property select true, if you want each method to login separately, or false, if you want
session based authentication. In the first case each method will automatically get two parameters,
username and password, before any explicitly specified parameters.

The Name property defines the name of the servlet. You must also define a package name for the
Java class to be generated. The name of the servlet class will be appended to the package name
you give.

Right-click in the upper frame on the tree root (labelled WebService) to bring up a menu where
you can add or paste a method to the servlet (prepare for pasting by selecting the copy operation
from the right-click menu of an existing method).

Figure 9-2 shows the Web Service Designer UI, where the servlet has been expanded to show its
methods, and one of them (activateData) is selected, so that its properties and parameters can be
edited. You can right-click on a method in the upper frame to get a menu comprising the following
operations: copy the method, delete the method, move up and move down.

Service Activator System Integrator’s Overview

Web Service Designer

80 Chapter 8

Figure 9-2 Web Service Designer, Method properties and parameters

To add an input or output parameter to the selected method, right-click on the root of the lower
frame (labelled Method) and select the appropriate item in the menu that appears; the same applies
to the mwfmMethod and workflowName properties of the method, which in Figure 9-2 have
already been added.

The method properties are as follows:

Method the name of the method is editable

mwfmMethod selectable as startJob (asynchronous, applies if omitted) or
startAndWaitForJob (synchronous)

workflowName name of the workflow to run (Method is used if omitted)

returnType selectable as none, all (hashmap) or bean (record)

For each input or output parameter you can enter its name, add the name of the associated case-
packet variable and select its type. If you omit the name of the variable it is assumed to be the
same as the parameter name.

When you have finished defining the servlet and its methods, you can generate the code and build
the web application archive. Select each step from the Tools menu which is shown in Figure 9-3.

Service Activator System Integrator’s Overview

Web Service Designer

Chapter 8 81

Figure 9-3 Web Service Designer Tools menu

If your generated code will need to make reference to other Java classes, for example resource
beans, you can place such classes in libraries (.jar files) and add those libraries into the process in
the Web Service Designer through the ‘Default Libraries...’ operation that you can launch from the
Setting menu.

To build and deploy the servlet, first select Generate from the Tools menu. This operation will
generate the Java code for the servlet. It will generate a sequence of directories, according to the
Package defined, starting with classes, in the directory where the web service definition file is
located, normally <Solution>/etc/web-services. The operation also generates a deployment
descriptor file (web.xml), defining the mapping from URL to servlet code. This file is placed in the
web subdirectory, which will be a sibling to the classes directory. If you want to place the classes
and web directory in a different location (from that of the web service definition file), choose
‘Generate in’ from the Tools menu and browse to the desired location.

Next select Build. This operation will compile the Java code with the specified libraries in the
classpath and place the resulting class file along with you have specified, in a web archive,
packaged as a .war file, in the war directory. Again, if you do not want the generated war directory
to be place in the same parent directory as the web service definition file, use ‘Build in’ from the
Tools and browse to the desired location.

Finally, if you also want to deploy the web service, select the Deploy operation in the Deployment
menu. This function will retrieve the .war file from the war directory and copy it to the
$JBOSS_DEPLOY/hpovact.sar directory, whereby it will be activated when JBoss is restarted
(it is not hot deployed in a subdirectory of $JBOSS_DEPLOY).

To include the web service servlet in a deployed solution, you must include either the definition
file and the library files or the generated .war file in the solution distribution archive and include in
the deployment descriptor (deploy.xml) file a description of how to (generate and) deploy the
servlet.

Extracting WSDL Definition
When a servlet has been deployed with JBossWS you can view it in the list of deployed services as
shown in Figure 9-4. Use this URL in your web browser:

http://HPSA host:HPSA port/jbossws/services

Service Activator System Integrator’s Overview

Web Service Designer

82 Chapter 8

The table will have an entry for each deployed web service. In Figure 9-4 two services are shown:
the generic web service for the API of the workflow manager and the dedicated TriplePlay service.

To obtain the WSDL for a service, just click on its Endpoint Address (http:// ?wsdl). JBossWS
will generate and return the WSDL document. You can save it from the browser to a file. You will
need to edit the file to insert the proper XML header:

<?xml version="1.0" encoding="UTF-8"?>

You can study the WSDL document to observe the definitions of your web service methods as
operations with input and output messages, and you can use it as external documentation of the
interface supported by the servlet. Several software products used as client systems will be able to
import the WSDL document and use it directly to drive communication with the HP Service
Activator server or to generate client side artifacts for integration.

Figure 9-4 JBossWS Deployed Services List

Service Activator System Integrator’s Overview

Integration with NNMi

Chapter 8 83

10 Integration with NNMi
This chapter covers the integration of HP Service Activator with the HP NGOSS product Network
Automation.

The components dedicated to integration of HP Service Activator with NNMi are licensed for use
as the NNMi Liaison. To use these components the RTU (right to use) must be purchased in
addition to the license for the HP Service Activator core product.

Positioning of NNMi
NNMi enables a customer to monitor and manage all the devices in an IP network from a single
point of control; a graphical web browser based user interface offers the user topological and
tabular views of the network and its status, and is launch pad for control functions.

NNMi interworks with devices by means of the SNMP protocol. The product has built-in
knowledge of a large number of devices through their SNMP MIBs.

NNMi can automatically discover and build a model of a network as it is.

Fault reports from devices are received as SNMP traps and correlated to perform root cause and
service impact analysis.

Summary of Benefits of Integration with NNMi
Overall, instead of two separate solutions NNMi and Service Activator will appear and behave as a
well-integrated single solution for network and service management including service activation.

The capabilities of NNMi are enhanced in ways which will significantly assist operators in
focusing on high priority incidents to meet committed SLAs and provide better visibility of the
state of important services.

 Service Activator workflows to activate services by configuring network elements can also
enrich NNMi objects with service and customer related information. This will enable
prioritization of network faults based on evalauation of service importance. You get new
possibilities to group interfaces based on the type of service that is using each interface, or the
customer that is using the interface.

 For example device interfaces can be grouped by service type or customer.

 Enhanced synchronization of NNMi data model with the network, as Service Activator may
request NNMi to rediscover the state of a device when a service has been activated on it.

 Service Activator workflows to perform diagnostic analysis and corrective actions can be
initiated from NNMi. This will enrich the scope of control actions an NNMi operator can take
when faults have been discovered (fully automated ?)

 GUI crosslaunch from NNMi views to Service Activator inventory and service order views
allows an operator to view Service Activator data and activity related to known objects.

 Not only the network, but also the activation system based on Service Activator can be
monitored with NNMi

Service Activator System Integrator’s Overview

Integration with NNMi

84 Chapter 8

Through the integration with NNMi the Service Activator solution will benefit greatly from
availability of consolidated information about the network and its state:

 The resource inventory data model of the network can be populated by loading data already
discovered by NNMi. Likewise the data model can be synchronized with the NMMi data
model on an ongoing basis.

 Service Activator workflows can obtain real-time device status from NNMi.

 GUI crosslaunch from a Service Activator inventory view into NNMi topology view and status
lists. For example from Service Activator resource inventory objects such as network or
subnetwork, launch a topological view. Or from Service Activator service inventory customer
object, launch an NNMi interface group view of all the device interfaces carrying the
customer’s traffic.

Readily Available Capabilities with NNMi
The capabilities that are available “out of the box” without customizing items like Service
Activator workflows, modules and data models include populating and synchronizing the
Common Network Resource Model and mutual GUI crosslaunch.

Loading and Synchronizing of the CNRM

The workflow for this purpose and the definition of the inventory UI tree from which it can be
launched is provided as part of the Common Network Resource Model deployable solution pack
which is described in chapter 8.

The first time the dataloader is used it will populate the CNRM data model with network elements,
interfaces and links. On subsequent runs it will update the CNRM data model to include newly
discovered objects.

UI Cross Launch from Service Activator to NNMi

Crosslaunch from Service Activator to NNMi generally requires JSP customization and
incorporation in an inventory tree or main UI menu (see below). Some cross launch functions are
precustomized as part of CNRM:

 from every interface branch in the CNRM equipment tree the NNMi interface form is
launchable

 from every network element branch in the CNRM equipment tree the NNMi L2 and L3
neighbor views are launchable

UI Cross Launch from NNMi to Service Activator

Cross launch from NNMi to Service Activator inventory UI is simple to configure in NNMi. It
will be a menu item associated with the relevant NNMi object type, for example node or interface.
The substance of the menu item is the URL to launch (see “Summary of Techniques for
Configuring Integration on NNMi” below).

Components for Customized Integration with NNMi
The components that are available on Service Activator for use as a basis for customized
integration with NNMi include a plug-in to automate configuration of NNMi as part of service
activation, three workflow manager modules and three workflow nodes. The nodes serve
essentially to invoke the functions provided by the modules.

Service Activator System Integrator’s Overview

Integration with NNMi

Chapter 8 85

NNMi conf plug-in

The plug-in can create an interface group view on NNMi.

SNMP trap module

This is a general purpose module, not restricted to integration with NNMi, which can issue an
SNMP trap.

NNMi module

This module acts as a web service client towards NNMi. It supports all needed calls from Service
Activator to the NNMi web application, as used by the workflow nodes and the data load module.
It can create annotations on NNMi objects and pull data from NNMi.

Data load module

This module performs the task of loading and synchronizing the CNRM data model from/with
NNMi using the functions of the NNMi module to communicate with NNMi.

Workflow Nodes

Three workflow nodes are available that can be used in solution workflows:

 GetBeans retrieves objects from NNMi’s network data model

 RediscoverHost requests NNMi to rediscover a specific network element

 UpdateCustomAttributes sets values of custom attributes on an NNMi data object

For details, consult HP Service Activator, Workflows and the Workflow Manager.

Summary of Techniques for Configuring Integration on NNMi
To configure nodes and interfaces for cross launch of Service Activator views: define for a type of
NNMi object a URL action to launch an Service Activator view. The action may use one or more
ext properties of the NNMi installation (for example hostname and port of HPSA server) and
custom attribute values of the object, such as primary key of the HPSA counterpart object) to
construct the URL. The URL action will typically include a filter to enable it when necessary
custom attributes are set. Note that Service Activator has a script that can be used to set ext
properties on an NNMi installation. Consult NNMi online help for URL Actions for specific
detailed information.

To create action scripts to launch Service Activator workflows you can install and use the mwfm
command line tool.

Customizing and Configuring Service Activator to Work with NNMi
Configure the workflow manager to use the NNMi modules, and in the Parameters tree for the
CNRM configure the basic parameters to connect to the NNMi system and the function to data
load from NNMi as described in HP Service Activator, User’s and Administrator’s Guide.

Write workflows to perform functions that shall be invoked as actions from NNMi; there are no
special integration concerns for the workflow as such; integration is done by the invoking script on
the NNMi side.

Use NNMi workflow nodes in activation workflows to retrieve infornation from NNM, create
annotations on NNMi objects, and invoke host rediscovery.

Service Activator System Integrator’s Overview

Integration with NNMi

86 Chapter 8

Create JSPs (with Struts actions) to implement cross load functions in addition to the ones already
available (see above); for this you will need to understand NNMi URLs. As an example, study the
UI part of the CRModel solution, the Struts-config and JSPs.

Service Activator System Integrator’s Overview

Integration with NNMi

Chapter 8 87

Service Activator System Integrator’s Overview

Integration with NA

Chapter 8 89

11 Integration with NA
This chapter covers the integration of HP Service Activator with the HP NGOSS product Network
Automation.

The components dedicated to integration of Service Activator with NA are licensed for use as the
NA Liaison. To use these components the RTU (right to use) must be purchased in addition to the
license for the Service Activator core product.

Positioning of NA
NA maintains router configurations and enforces configuration policies.

NA connects to devices and configures them. NA also allows other system to establish connections
to devices and intercepts them to monitor and log the configuration changes. NA typically
establishes a baseline configuration for each device according to its role in the network.

NA enforces compliance of policies for configuring devices; this involves monitoring, comparing
configurations to policies applicable to a group that a device belongs to, detection of violations,
alerting.

NA manages and downloads firmware versions and patches to all devices in a network and
performs backup and restoring of device configurations.

NA is generally not concerned with configuring specific interfaces on service provider devices for
individual customer services.

Summary of Benefits of Integration with NA
By combining configuration management, setting up baseline configuration of devices done with
NA, and service activation, setup of customer service specific configuration done with Service
Activator, the complete device/service lifecycle is managed. NA is used heavily in the buildup of
network and service infrastructure, specifically to configure routing protocols, MPLS forwarding,
core network interfaces, BGP peering, ASN, general security settings, ACLs, passwords, QoS for
the service provider’s own traffic and other aspects which are general and not specific to
individual customers’ VPNs. Once the infrastructure for a service offering is in place, Service
Activator will automate flow-through configuration of devices for all aspects of customer specific
services with minimal operator involvement and elimination of the requirement for operators to
master the commands needed to configure services.

Service Activator workflows can be used to control and automate processes consisting of several
NA actions, for example to run test scripts, draw conclusions and take remedial actions.

NA can provide connectivity to devices that Service Activator can use including tunnelling to
devices that are not easily reachable, thus eliminating the need to configure Service Activator with
device specific usernames, passwords. etc., and ensuring that all device interactions to activate
services are logged together with all other device interactions.

NA can ensure integrity of services configured on devices: when configuring the device Service
Activator will also configure NA to monitor the setup, leveraging NA’s ability to enforce policy
compliance.

Service Activator System Integrator’s Overview

Integration with NA

90 Chapter 8

Also in the process of configuring a device for a specific customer service, Service Activator can
instruct NA to backup the device configuration, after all changes have been made, and annotate the
backup with a comment stating it was requested by Service Activator due to the specific service
that was configured.

As a minimum, even if the functions of NA and Service Activator are not combined to obtain these
benefits, some coordination is necessary to avoid counterproductive effects such as NA detecting
and “repairing” by undoing the service specific device configurations set up by Service Activator
as violations of policy.

Readily Available Capabilities with NA
NA, with its management of connections across the network and into shielded network domains
can be used as a proxy for network elements to provide connectivity for Service Activator to
establish command sessions with network elements.

The NA user interface can be accessed by cross launch from the CNRM tree of the Service
Activator inventory user interface. Note that NA does not support Single Sign On.

The platform for running Service Activator and NA can be shared, including hardware, operating
system, and Oracle. The two applications both include JBoss (different versions !), and it will be
necessary to configure one or the other JBoss instance to use non-fault port numbers for
overlapping functions, such as web service access, etc.

Service Activator Components for Customized Integration with NA
A large number of workflow nodes are available, allowing Service Activator workflow to exercise
a range of the capabilities of NA, including:

 take backup snapshot of device

 run scripts of different types

 create/delete devices and device groups, and manage group membership

 manage associations between device groups and rules, conditions and policies

 retrieve different types of information from NA to Service Activator

These nodes interwork with NA by invoking its web service interface through a dedicated module.

Summary of Techniques for Configuring Integration on NA
Where NA functions involve the running of scripts, it will be possible in a script to use the mwfm
command line tool to run a Service Activator workflow.

Cross launching of Service Activator UI from NA is not possible.

Customizing and Configuring Service Activator to Work with NA
When Service Activator activates a service by configuring one or more devices with specific
constructs, for example Virtual Router Forwarding tables, the activation workflow can be extended
to set up NA to monitor the integrity of those constructs. The rule that defines remedial actions
when the policy has been violated must be created on NA in advance and may involve such actions
as creating trouble tickets, sending email, even executing automatic repair. NA is generally geared
to manage groups of devices, not individual services, so it will be necessary to define a dedicated
“group” per service instance and add the affected device to that group. Then the policy which
knows the command pattern for the construct for the service can be defined for the group and

Service Activator System Integrator’s Overview

Integration with NA

Chapter 8 91

associated with the action rule. The activation workflow can accomplish all of that by means of
the workflow nodes for NA integration.

In general workflows can be written to perform any tasks which can be accomplished through
execution of NA actions or scripts, using the workflow nodes that are available. Such workflows
can be integrated in flow-through activation systems, or they can be launchable from the inventory
UI.

Service Activator System Integrator’s Overview

Integration with NA

92 Chapter 8

Service Activator System Integrator’s Overview

Development Hints

Chapter 8 93

12 Development Hints
This chapter contains miscellaneous useful information that will be useful during development,
including testing and debugging.

Configuring Database Credentials
The Workflow Designer, Deployment Manager, Tree Deployer, Tree Designer and the Inventory
Builder all require the user name and password for the system database to deploy data. To avoid
having to enter the credentials repeatedly, it is possible to create a configuration file with this
information that is read by the tools during start up. The file must be named dbAccess.cfg and be
placed in the directory $ACTIVATOR_ETC/config. An example file exists in this directory and is
named dbAccess_example.cfg.

NOTE This file must not be present in a production environment.

Configuring Injection of Request Messages for Test
If you use the socket listener to receive incoming request messages, a message injector can be
configured as part of the System Administrator menu in the navigation pane of the main UI. Files
that you wish to be able to inject must be placed in
$ACTIVATOR_ETC/templates_files/<your solution>.

In the UI configuration file $JBOSS_ACTIVATOR/WEB-INF/web.xml configure these two
parameters, then restart HP Service Activator.

tests True enables injection of messages to a socket (CRM
simulation). Default is false.

socketListener_port The socket port to which tests messages will be injected.
This port must match the configuration of the socket
listener module which is to receive the messages.

A menu item named Test Messaging will appear at the botton. When you select it a view listing
available files for injecting are shown. Right-click on the one you want and select Start Test.
This will inject the message into the socket listener which will should start your workflow.

Workflow Testing and Debugging
To avoid having to inject messages to start workflows, you can start your workflow from the
Workflows view available in the Work Area of the navigation pane of the main UI. For this to
work, your workflow must be independent of pre-initialized variables. For initial testing you can
start the workflow in debug mode and initialize variables manually (see below). When you are
confident with the workflow, make the northbound integration and test the interaction with a
northbound system to start the workflow.

Service Activator System Integrator’s Overview

Development Hints

94 Chapter 8

There are several ways to trace what is happening when you run your new and unproven
workflows.

 You can output trace messages that you can read in the Messages view. A number of messages
will be generated automatically by the workflow manager when the workflow contains or does
something invalid.

 You can study the log file produced by the workflow manager and resource manager. You can
include entries generated from your own workflow (Log node) or plug-in (context method).
Such log entries can be directed to dedicated files.

 You can dump the case-packet of your workflow to a file (WriteCasePacket node).

 You can place extra AskFor nodes to interact with your workflow job, thus controlling its
progress.

 If you set the tests variable in the UI configuration file (see above), you can start your
workflow in debug mode from the Workflows view. It will then interact with you from a
special queue, Debug, in the Active Jobs view when it reaches a breakpoint node, initially the
first node, before the breakpoint node is executed. In the debug interaction window you can
select single-step or set the next breakpoint, and you can read and edit values of case-packet
variables, for example to initialize them as discussed above. You can view the current
breakpoint in a flowchart (workflow) view, and you can dump the case-packet to a file. An
example of the debug window is shown in Figure 12-1.

Figure 12-1 Debug Interaction Window

Service Activator System Integrator’s Overview

System Configuration

Chapter 13 95

13 System Configuration
Most of the configurable aspects of HP Service Activator solutions are covered in detail
elsewhere:

 The resource manager has its own configuration file (resmgr.xml) which is described in
detail in HP Service Activator, Developing Plug-Ins and Compound Tasks

 The workflow manager has its own configuration file (mwfm.xml) which is described in detail
in HP Service Activator, Workflows and the Workflow Manager. Note that some important
workflow manager modules are not configured to be active upon installation, you must change
the configuration file to use these modules: authentication, audit, socket listener/sender,
statistics collection

 The user interface is configured has a main configuration file (web.xml) and separate files for
solution specific modifications to the default Work Area menu. Both aspect are described in
HP Service Activator, User’s and Administrator’s Guide.

 Appendix B contains a list with descriptions of all configuration files

A couple of topics deserve special mention here.

Number of Threads and Memory Usage

The amount of parallel activity that can take place in an HP Service Activator system is configured
for the workflow manager (in file mwfm.xml). The maximum number of workflow jobs that can
exist simultaneously is determined by the parameter Max-Work-List-Length. When this
number is reached, attempts to start additional jobs will fail. A typically much smaller number of
operating system threads will be used to execute the workflows, determined by the (global)
parameter Max-Threads. The assignment of threads to active jobs is managed by the Work
Manager module.

When a job is waiting on a queue or for an activation, it will not occupy a workflow job thread.
However, to control the amount of parallel activation activity, the Activation Manager module
(normally named activator), manages a private pool of so-called activation threads. The maximum
number of concurrent activations will be limited by the (module) parameter max_threads. When
all these threads are in use, additional workflow jobs attempting to start activations will be queued.
Activations do not occupy operating system threads in the workflow manager, but they do in the
resource manager. That is the real significance of the max_threads parameter.

There are two JBoss files with parameters that configure numbers of threads:

 $JBOSS_DEPLOY/hpovact-ra-ds.xml, parameter max-pool-size

 $JBOSS_DEPLOY/hpovact.sar/hpoavct-EJBs.jar/META-INF/jboss.xml, parameter:
MaximumSize in container-pool-conf.

Both of these parameters should be set 10 threads higher than max_threads for the Activation
Manager module.

The memory consumption of the workflow engine, i.e. workflow manager plus resource manager,
will depend on the number and size of deployed workflows and plug-ins, but even more on the
number of workflow threads and activation threads along with the sizes of their case-packets and

Service Activator System Integrator’s Overview

System Configuration

96 Chapter 13

the variables of the plug-ins. If you set the maximum numbers for the threads very high, out-of-
memory exceptions may occur at run-time. You should make sure that your system testing goes to
the limits that you have configured.

Instructions for increasing the memory size of the JBoss process that includes the workflow engine
are found in HP Service Activator, Installation Guide.

Database Connections

Database connections are needed by a number of different components of the HP Service
Activator system. Here is an overview of where the numbers of connections are configured for
different purposes:

 For the workflow manager’s access to system repositories and the default database module for
workflows: $JBOSS_DEPLOY/mwfm-default-ds.xml

 For the resource manager for purposes of locking and managing transactions:
$JBOSS_DEPLOY/resmgr-default-ds.xml

 For JBoss to access the task repository: $JBOSS_DEPLOY/hpovact-oracle-ds.xml

 For JBoss to support the UI except inventory UI: $JBOSS_DEPLOY/hpovact-ui-ds.xml

 For JBoss to support the inventory UI: $JBOSS_DEPLOY/hpovact-inventory-ds.xml

Service Activator System Integrator’s Overview

Localization

Chapter 14 97

14 Localization
This chapter describes the different resource bundles that must be translated to localize an HP
Service Activator solution.

In general the Java resource bundles you must translate are files with names ending in
_en.properties. You must make a copy of each resource bundle file in the same directory as
the original file, where you replace _en in the file name with the appropriate abbreviation for the
locale, like _jp or _dk.

Then you must translate the contents of each file to the language of the locale. The files must be
saved encoded in the ISO 8859-1 character set with appropriate escape sequences to represent
characters that do not have 8-bit codes; the Java utility native2ascii may be helpful to convert
from a UTF character set to ISO 8859-1.

NOTE When the same English word or phrase appears in property files for several parts of the UI, make sure to
translate it consistently. On the other hand, a property may be used in several places within a single part of
the UI, and you should make sure that the translation you choose is appropriate in all of those places.

After you modify resource bundles, restart HP Service Activator for the new resources to become
available.

Localizing the Main UI Window and most views

The basic resource property bundles are found in $ACTIVATOR_ETC/nls.

There are a couple of small exceptions: column headers for the Logs view, non-default column
headers for the Active Jobs view, and non-default entries in the Work Area menu are not defined
in the resource property bundles. The “non-default” items occur only when the UI has been
configured in special ways; follow the reference at the beginning of chapter 13 to understand the
options.

If you want to localize the column header for Logs views, do it directly in file
$JBOSS_ACTIVATOR/xsl/saLogs.xslt.

If you define non-default columns for the Active Jobs view, you must define them exactly as you
want them to appear in file $JBOSS_ACTIVATOR/WEB-INF/web.xml.

If you introduce new items in the Work Area menu or change the label on existing ones, you must
define the labels exactly as you want them to appear in the solution menu file.

Localizing the Service Order View and more

Three parts of the UI are implemented with Java Server Faces: the Service Order View, the job
counters at the bottom of the navigation pane, and the Debug window. The resource property
bundles for these parts are found in $JBOSS_ACTIVATOR/WEB-INF/classes/jsf-resources.
When you add support for a new locale, you must also add that locale in file
$JBOSS_ACTIVATOR/WEB-INF/classes/faces-config/locales.xml.

Service Activator System Integrator’s Overview

Localization

98 Chapter 14

Localizing the User Management UI

Files to localize for the User Management UI are:
$JBOSS_ACTIVATOR/WEB-INF/classes/umm.properties and
$JBOSS_ACTIVATOR/WEB-INF/classes/com/hp/ov/activator/mwfm/umm/*.properties

Localizing Inventory UI

There are several parts to localize for the Inventory UI relating to inventory resources and tree
definitions, as described in a dedicated chapter in HP Service Activator, Inventory Subsystem.

Custom UI Files in Solution Source Hierarchy

In the solution source hierarchy you build, files to be deployed for the UI should be placed under
the UI directory, which is a direct child directory of the main solution directory (in Figure 3-2
there is no UI directory, but it should be at same level as etc, inventory, plugins). The paths used
under the UI directory should equal the target paths relative to $JBOSS_ACTIVATOR.

Service Activator System Integrator’s Overview

Error! Reference source not found.

Appendix A 99

Appendix A Scripts
This table contains locations and descriptions of the scripts that are available in Service Activator.
Unless otherwise indicated, these files are located in the $ACTIVATOR_BIN directory. In general
the scripts have help options to explain usage, or do so when called without or with incorrect
parameters.

Table A-1 Service Activator Scripts

Script Description

/etc/init.d/activator Starts/stops the Service Activator processes
(Solaris).

/sbin/init.d/activator Starts/stops the Service Activator processes (HP-
UX).

ActivatorConfig[.bat] Configures Service Activator for a specific
environment.

AssignNonRoot Configures Service Activator to run as non-root,
only on UNIX

CatchSocketSenderMessages[.bat] Listens for messages on a given port and prints
those messages to stdout. This script is typically
used for testing and demonstration of the
SocketSenderModule of the Workflow Manager.
By default, it listens on port 4099, but takes a
single parameter to specify the port.

checkLicence.[bat] Checks the status of the HP OpenView AutoPass
license and prints out debug information.

CleanLogs[.bat] Deletes all but the active logs

crypt[.bat] Encrypts or decrypts a password for local use, to
avoid storing unencrypted passwords in the
workflow manager configuration file.

DataSourceConfiguration[.bat] Assists in management of data source
configurations.

dc[.bat] Starts Data Collector, command line tool for
gathering information about the Service Activator
components (Workflow Manager, Resource
Manager, JBoss).

DeleteCompleteTransactions[.bat] Cleans up saved completed activation

Service Activator System Integrator’s Overview

Error! Reference source not found.

100 Appendix A

Script Description

transactions.

deploymentmanager[.bat] Invokes the Deployment Manager executable.

designer[.bat] Runs the Workflow Designer tool

generateEncryptedPassword[.bat] Utility to generate an encrypted password. This
can be used when an additional data source file
has to be created.

generateMD5[.bat] Calculates MD5 checksum for a file.

InventoryBuilder[.bat] Runs the InventoryBuilder tool.

InventoryTreeDeployer[.bat] Runs the InventoryTreeDeployer tool.

InventoryTreeDesigner[.bat] Runs the InventoryTreeDesigner tool.

modifySystemPassword[.bat] Utility to update the system user password.

mwfmtool[.bat] A command line tool for performing workflow
engine tasks such as starting workflows and
viewing posted messages. If this script is
executed without any parameters, it will display a
list of all the tasks that can be performed.

NNMExtProperties[.bat] Creates ext properties on NNMi.

remove.serviceactivator Uninstalls Service Activator on UNIX.

servicebuilder[.bat] Invokes the Service Builder executable, either the
command line (if arguments are passed) or the
GUI (if no arguments are passed).

TestAtomicTask[.bat] Starts an atomic task for testing purposes.

UMMData[.bat] Imports/export roles with inventory UI privileges
from/to file.

updateLicence.[bat] The script lets you update your trial or existing
licence for HP Service Activator.

ViewTransactionState[.bat] Displays the different states of a completed
transaction.

WebServiceDesigner[.bat] Runs the WebServiceDesigner tool.

Some files with examples of scripts for use with Oracle are provided in the directory
$ACTIVATOR_OPT/examples/database/oracle10 as listed in the following table.

Service Activator System Integrator’s Overview

Error! Reference source not found.

Appendix A 101

Table A-2 Example Files for Oracle

File Description

create_ovdb_ora.sh Example of files used to create an Oracle
10g database instance.

listener.ora Example of an Oracle listener
configuration file used to enable remote
database access.

tnsnames.ora Example of an Oracle local naming
parameters file used to define aliases for
referencing Oracle databases.

Service Activator System Integrator’s Overview

Error! Reference source not found.

102 Appendix A

Service Activator System Integrator’s Overview

Configuration Files

Appendix B 103

Appendix B Configuration Files
The following table identifies and describes the configuration files that are provided with Service
Activator. Unless otherwise indicated, these files are located in $ACTIVATOR_ETC/config.

Table B-1 Service Activator Configuration Files

File Description

CompoundTask.dtd Document type definition (DTD) for compound task files
created by Service Builder.

designer.xml Configuration file for the Workflow Designer.

inventoryTree.dtd DTD for inventory tree definition file.

mwfm.xml
(mwfm.dtd)

Configuration file for the Workflow Manager and
associated DTD.

par.dtd DTD for the MANIFEST/par.xml file found in the Plug-in
Archive (PAR).

resmgr.xml
(resmgr.dtd)

Configuration file for the Resource Manager and associated
DTD.

role_mappings.xml
(role_mappings.dtd)

Definition file and associated DTD for configuring role
mappings. The role mappings definition file is optional.

service_builder.xml Configuration file for Service Builder.

$ACTIVATOR_ETC/
workflows/workflow.dtd

DTD for workflow definition.

$JBOSS_DEPLOY/
hpovact.sar/META-INF/
jboss-service.xml

Contains the classpath for the Service Activator J2EE
components deployed in JBoss.

$JBOSS_DEPLOY/
hpovact.sar/activator.war/
WEB-INF/web.xml

Configuration file for the UI and servlets. For additional
information, see the following references:

Chapter Error! Reference source not found., the section
“Error! Reference source not found.” in this manual;

Chapter 4, the section “Adding a Data Source for Inventory
UI” and Chapter 5, the beginning, in HP Service Activator,
Inventory Subsystem;

Chapter 4, the section “AskFor” in HP Service Activator,
Workflows and the Workflow Manager.

Service Activator System Integrator’s Overview

Configuration Files

104 Appendix B

File Description

$JBOSS_DEPLOY/
hpovact.sar/deployer.war/
WEB-INF/web.xml

Contains the configuration for the deployer servlet used by
Service Builder. See “Configuring Authentication or
Authorization” in HP Service Activator, Developing Plug-
Ins and Compound Tasks for a description of the
configurable parameters in this file.

$JBOSS_DEPLOY/
hpovact-inventory-ds.xml

JBoss data source file containing the database configuration
used by the UI.

$JBOSS_DEPLOY/
hpovact-ui-ds.xml

JBoss data source file containing the datasource
configuration used by the UI.

dm.dtd (dm.xml) Configuration file and associated DTD for the Deployment
Manager.

deploy.dtd DTD for deployment descriptor.

$JBOSS_DEPLOY/
mwfm-default-ds.xml

JBoss data source file configuring connections used by the
default (“db”) database module in the Workflow Manager.

$JBOSS_DEPLOY/
resmgr-default-ds.xml

JBoss data source file configuring connections used by the
Resource Manager.

$JBOSS_HOME/
server/default/conf/
login-config.xml

The JAAS login configuration file. It is here that the
information about user name and encrypted password for
datasources are configured.

$JBOSS_DEPLOY/
hpovact.sar/
hpovact-EJBs.jar/
META-INF/jboss.xml

The MaximumSize setting configures the maximum
number of concurrent invocations of the EJB that performs
task activations. For additional information, see Chapter 4,
“Configuring Activation Parameters,” in HP Service
Activator, Developing Plug-Ins and Compound Tasks.

$JBOSS_DEPLOY/hpovact.sar/
hpovact-EJBs.jar/
META-INF/ejb-jar.xml

Contains the activation time-out configuration parameter.
See Chapter 4, “Configuring Activation Parameters,” in HP
Service Activator, Developing Plug-Ins and Compound
Tasks for additional information.

$JBOSS_DEPLOY/
hpovact-ra-ds.xml

The max-pool-size setting configures the maximum number
of instances of the resource adapter that can be used during
task activations. For additional information, see Chapter 4,
“Configuring Activation Parameters,” in HP Service
Activator, Developing Plug-Ins and Compound Tasks.

$JBOSS_DEPLOY/
hpovact-oracle-ds.xml

JBoss data source file configuring connections used to
access the task repository.

menu.xml (menu.dtd) Default menu definition file for Work Area menu and its
DTD.

solutionmenu.dtd DTD for solution specific modifications to menu definition.

Service Activator System Integrator’s Overview

Java Message Service

Appendix B 105

Appendix C Java Message Service
This appendix gives you a quick introduction to those aspects of JMS, Java Message Service,
which are relevant with respect to using this type of communication interface for an HP Service
Activator solution.

JMS is a standardized interface for access from a Java-based client to a MOM infrastructure
(Message Oriented Middleware). A MOM product is used build the infrastructure for intercommu-
nication between applications within an enterprise. Several MOM products come with JMS
providers, i.e. a software layer that makes it possible to access the intercommunication service
over a JMS interface. When such a MOM is available it can be used for intercommunication
between HP Service Activator and other systems that it must be integrated with.

JMS comprises two data transfer modes, using two kinds of service access points known as
destinations: queues and topics. An installation may support one or both modes. Queues are for
point-to-point communication: one client, the sender, puts a message into the queue; the other
client receives the message. Topics are for one-to-many communication, where the sender does not
know the receivers. A sender client publishes a message on a topic; several clients can subscribe to
receive messages from the topic.

When one client receives request messages from another client, the queue is the appropriate mode
of communication. If the response is only of interest for the originator of the request, it is also
appropriate to send it on a queue; two different queues will be needed for requests and responses.
If the response is actually a general status update which could be of interest to multiple parties the
appropriate mode will be topic. The same is the case when a client wishes to communicate a state
change which is not the result of a specific request; this situation could occur, for example, when
the client is an Element Manager detecting changes that happen on network elements, or even new
network elements that are deployed in the network.

Figure C-1 shows two JMS clients exchanging messages through two queues, one for each
direction of traffic.

Figure C-1 MOM, JMS Provider and JMS Clients

MOM with JMS
Provider

Client A

Q1

Q2

Client A

Service Activator System Integrator’s Overview

Java Message Service

106 Appendix B

Queues and topics are generally created and managed by administration of the MOM and JMS
provider software, not by client-server interactions. Clients connect to destinations which already
exist through administrative configuration of the infrastructure by making requests to a JMS
connection factory to create connection objects, which will be different for queues and topics. The
client will find the connection factory and the destination by looking them up using a JNDI
naming service.

JMS Listener and Sender Modules

From V5.1 HP Service Activator includes JMS listener and sender workflow manager modules
which make it possible for an HP Service Activator-based system to act as a JMS client, i.e. to
receive and/or send messages over a JMS interface.

The communicating parties on HP Service Activator will be workflow jobs. A running job can put
a message to the JMS service by executing the SendMessage node with a parameter specifying the
sender module. The listener module can start a workflow job to process each received message.

Some administrative facts about a JMS provider must be known to its clients. These facts must be
known to the JMS listener and sender modules as configuration parameters.

Before a client can access a destination, it must connect to it. To do that, it must look up the
destination through a JNDI naming server. The basic installation specific administrative facts that
any communicating client must know are: the host name/address and port number where the JNDI
server provides the lookup service, the name of the initial context class that must be instantiated to
use the JNDI server, the name of the connection factory of the JMS server, and the name(s) of the
destination(s) it will use. Finally, depending on its configuration, the JMS provider may demand
that the client authenticate the request to connect to a destination by supplying username and
password.

Additional parameters of the JMS listener and sender modules control the local behaviour of the
modules, internally and vis-a-vis communicating workflow jobs. These parameters are not related
to JMS as such. You will find them described in HP Service Activator, Workflows and the
Workflow Manager, in the sections about these modules.

What is sent as a message from a workflow using the JMS sender module is conveyed as the body
of a JMS message. There are currently no means to control and use JMS message header fields
(JMSDeliveryMode, JMSMessageID, JMSTimestamp, JMSCorrelationID, JMSReplyTo,
JMSRedelivered, JMSType, JMSExpiration, JMSPriority, or message properties). Likewise it is
only the body of a received JMS message which is passed to the workflow job that will process the
message.

Durable Topics

Queues are always store-and-forward. The MOM is expected to retain messages until they are
consumed. The receiving client is not requried to listen for messages at all times. If it is inactive
for a period and then reconnects, it will receive messages that have been sent in the meantime.

With topics, in general, listeners only receive the messages that are published while the listener is
connected, but it is possible to create a durable topic subscription, thereby requesting of the JMS
provider that when the listening client temporarily disconnects, published messages shall be
retained and delivered when it reconnects. A durable topic subscription must be identified by a
unique identifier supplied by the client. A durable subscription will exist until it is explicitly
unsubscribed by the client.

Using JBossMQ as MOM

If you need to integrate HP Service Activator with another application that also supports JMS, and
the capabilities of JMS are appropriate for the integration, but there is no suitable MOM in the
customer’s environment, then it is possible to use JBossMQ which is available as a part of the
JBoss application server that HP Service Activator is running on.

Service Activator System Integrator’s Overview

Java Message Service

Appendix B 107

To accomplish this, you will need to configure JBossMQ to support the necessary destinations
with the appropriate security (roles, user names and password). The topic managing JBossMQ is
beyond the scope of this manual. You must find and read the applicable JBoss documentation. As
a hint, look in the directory $JBOSS_DEPLOY/jms, where the file
jbossmq-destinations-service.xml is used to configure the MBeans which implement
destinations and the file oracle-jdbc-state-service.xml is used to configure usernames,
passwords and roles for clients.

	System Integrator’s Overview
	Introducing HP Service Activator
	Positioning an HP Service Activator Solution
	Positioning in the Provider’s Environment
	Positioning in TMF NGOSS Maps
	Positioning in HP Integrated NGOSS Solutions

	HP Service Activator Component Architecture
	Workflows
	Plug-ins and activation tasks
	Solution Data Repositories (Inventory)
	Northbound interface

	Solution Packages
	A Typical Workflow
	HP Service Activator Documentation

	Solution Components and Tools
	Database Repositories
	Solution Data Repositories (Inventory)
	Plug-Ins and Activation Tasks
	Plug-In Development
	Customizing Control Templates for Generic Plug-ins

	Workflows
	Workflow Structure
	Workflow Manager Architecture

	User Interface and Roles
	Interfaces for Integration
	Integration with Other HP NGOSS Products: NNMi, NA, uCMDB
	Solution Deployment

	An Example Solution: Intro_Example
	Contents of the Intro_Example
	Deploying the Example
	Examining Components of the Intro_Example Solution
	Running the Intro_Example Solution Workflows

	Solution Planning and Analysis
	Activities in a Project to Build a Solution
	Analysis

	Solution Design
	Solution Labelling
	Plug-Ins
	Customized Use of Generic Plug-ins
	Creating New Plug-ins
	Target Locking
	Plug-ins for Web Services and Corba Interfaces

	User Interface and Roles
	UI Integration with Other Applications
	A Note on Workflow Start Role Attribute
	Viewing Jobs During Activation

	Encrypted Passwords
	Data Models
	External Inventory Integration
	Workflow Processes
	Controller Workflow Pattern
	Workflow Structure: Before - Activate - After
	Business Processes
	Starting Workflow from Inventory UI
	Workflow Job Persistence
	Business Calendars
	Considerations for Custom Workflow Nodes

	Northbound Interface
	Using Listener and Sender Modules
	Using Web Service Servlets

	HP Service Activator Platform
	Cluster Platform
	Cluster Installation and Setup
	Workflow Load Distribution
	Internal Load Balancing, Virtual IP Address
	External Load Balancing

	Standby Sites for Disaster Recovery
	Managing an HP Service Activator Cluster
	User Interface Functions for Cluster Nodes
	Synchronizing Time on Cluster Nodes

	Roles, Privileges and Authentication
	System User and Predefined Roles
	Assigning Privileges to Roles
	User Interface
	Workflows
	Inventory
	Deploying Plug-ins

	Authentication and Assigning Roles to Users
	Organizing Users in Teams
	Light Weight Single Sign On

	Common Network Resource Model
	Adapting the CNRM for a Solution
	Model Configuration Data
	Object Classes of the CNRM
	Bean Class Network
	Bean Class NetworkElement
	Bean Class NetworkAttachment
	Bean Class ElementComponent
	Bean Class TerminationPoint
	Bean Class Interface
	Bean Class Link

	User Interface and Launchable Functions for the CNRM

	Web Service Designer
	Defining a Web Service
	Web Service Designer Tool
	Extracting WSDL Definition

	Integration with NNMi
	Positioning of NNMi
	Summary of Benefits of Integration with NNMi
	Readily Available Capabilities with NNMi
	Loading and Synchronizing of the CNRM
	UI Cross Launch from Service Activator to NNMi
	UI Cross Launch from NNMi to Service Activator

	Components for Customized Integration with NNMi
	NNMi conf plug-in
	SNMP trap module
	NNMi module
	Data load module
	Workflow Nodes

	Summary of Techniques for Configuring Integration on NNMi
	Customizing and Configuring Service Activator to Work with NNMi

	Integration with NA
	Positioning of NA
	Summary of Benefits of Integration with NA
	Readily Available Capabilities with NA
	Service Activator Components for Customized Integration with NA
	Summary of Techniques for Configuring Integration on NA
	Customizing and Configuring Service Activator to Work with NA

	Development Hints
	Configuring Database Credentials
	Configuring Injection of Request Messages for Test
	Workflow Testing and Debugging

	System Configuration
	Number of Threads and Memory Usage
	Database Connections

	Localization
	Localizing the Main UI Window and most views
	Localizing the Service Order View and more
	Localizing the User Management UI
	Localizing Inventory UI
	Custom UI Files in Solution Source Hierarchy
	JMS Listener and Sender Modules
	Durable Topics
	Using JBossMQ as MOM

