HP OpenView
Correlation Composer’s Guide

For HP-UX, Solaris, Linux, Windows® 2000,
Windows® XP, and Windows® 2003 operating systems

i1

b

inwvent

Manufacturing Part Number: T2490-90013
May 2004

© Copyright 2004 Hewlett-Packard Development Company, L.P., all rights reserved.

Legal Notices

Hewlett-Packard makes no warranty of any kind with regard to this
manual, including, but not limited to, the implied warranties of
merchantability and fitness for a particular purpose. Hewlett-Packard
shall not be held liable for errors contained herein or direct, indirect,
special, incidental or consequential damages in connection with the
furnishing, performance, or use of this material.

Warranty. A copy of the specific warranty terms applicable to your
Hewlett- Packard product and replacement parts can be obtained from
your local Sales and Service Office.

Restricted Rights Legend. All rights are reserved. No part of this
document may be photocopied, reproduced, or translated to another
language without the prior written consent of Hewlett-Packard
Company. The information contained in this document is subject to
change without notice.

Use, duplication or disclosure by the U.S. Government is subject to
restrictions as set forth in subparagraph (c) (1) (ii) of the Rights in
Technical Data and Computer Software clause at DFARS 252.227-7013
for DOD agencies, and subparagraphs (c) (1) and (c) (2) of the
Commercial Computer Software Restricted Rights clause at FAR
52.227-19 for other agencies.

HEWLETT-PACKARD COMPANY
3404 E. Harmony Road
Fort Collins, CO 80528 U.S.A.

Use of this manual and flexible disk(s), tape cartridge(s), or CD-ROM(s)
supplied for this pack is restricted to this product only. Additional copies
of the programs may be made for security and back-up purposes only.
Resale of the programs in their present form or with alterations, is
expressly prohibited.

Copyright Notices. © Copyright 2004 Hewlett-Packard Development
Company, L.P., all rights reserved.

Reproduction, adaptation, or translation of this document without prior
written permission is prohibited, except as allowed under the copyright
laws.

Contains software from AirMedia, Inc.

© Copyright 1996 AirMedia, Inc.

Trademark Notices

Java™ is a U.S. trademark of Sun Microsystems, Inc.

Microsoft® is a U.S. registered trademark of Microsoft Corporation.

Windows® and MS Windows® are U.S. registered trademarks of
Microsoft Corporation.

Netscape™ and Netscape Navigator™ are U.S. trademarks of Netscape
Communications Corporation.

OSF/Motif® and Open Software Foundation® are trademarks of Open
Software Foundation in the U.S. and other countries.

Pentium® is a U.S. registered trademark of Intel Corporation.
UNIX® is a registered trademark of The Open Group.
Perl is a trademark of O’Reilly & Associates, Inc.

All other product names are the property of their respective trademark
or service mark holders and are hereby acknowledged.

Contents

1. Introduction

S0P . ittt 14
AUAIENCEo e e 15
On-linedocumentation 16

On-line Help e 16

2. HP OpenView Correlation Composer

HP OpenView Correlation CoOmMpPOoSErt teee e eieeeeeas 19
BasiC CONCEPLSttt 20
T 0 20
N = g 2 20
Output an Event e 20
Discard an EVENt 20
EVeNt TYPe .o 21
ALtrIDULES . . . o 22
Correlator . ..o 23
Correlator STOre 24
Correlator Templates. 25
Enhance Correlator Template i e 25
Multi-Source Correlator Template. e 25
Rate Correlator Template. 27
Repeated Correlator Template. i e e e e 27
Suppress Correlator Template. e 27
Transient Correlator Template 28
User-Defined Correlator Template i, 28
Modes of Correlation COmMPOSErttt e e e 29
Correlator Template Evaluation Precedence 30

3. Using the Correlation Composer

Getting Started 33
Software PrerequisSites e e 33
Start the COmMPOSEr. . . .o oo e 34
EXit the COmMPOSEr e e 36
Menu ComMmMaAaNdS 36
Toolbar bUuttONS 43

Contents

Correlator Window. e 47
1 Alarm Definition. 48
2. New Alarms Creation.ttt e e e e 61
3. Callback FUNCLIONS 63

Define Event Attributes. 66
View Backup Files 67

4. Developing Correlators with Composer

Planning the configuration 71
Correlator STOre 73
Create and Save the Correlator Store 73
Opening an existing Correlator Store 73
Modify an existing Correlator Store 74
Migrate existing Correlator Stores e 75
Step L EVENE TY P, o oot e 76
Step 2: Define Global Constants 77
Global Constants. 77
Step 3: Define Alarm Definition 79
COrrelatorS . . .o e 79
Step 4: Define New Alarms o e 87
Step 5: Callback FUNCLIONS 91
Step 6: Load Perl and C Library 93
Managing Correlatorst e 95
Open an existing Correlator. e 95
Modify an existing Correlator 95
Delete an existing Correlator. e 96
Writing External functions in C e 97
Writing External functionsin Perl 105
Support for Multiple Perl files e 107
User Defined Correlation. e 109
Writing External Functions to be called as the Input/Output functions of a
User-Defined correlation 112
Merging Correlator Store files. e 114
Merge Correlator Stores that are specified in the Namespace 115
Remove User Description from Correlator Store 115
Merge Correlator StOresS. i e 116

Contents

5. Correlation Composer for the Developer

Composer inthe Developermode e 121
Planning Operator's Profiles. e e 122
Step 1: Creating Correlator Stores e 122
Step 2: Listing Correlator Store. 122
Step 3: Creating NameSpace and Security files............................ 122
Step 4: Creating the Deploy Configurationfile. 129
Configuring the Operator i e e e 133
Deploying the Correlator Store. e i e 135
Deploy from command prompt. 135

6. Correlation Composer for the Operator

Composer inthe Operatormode i e 139
Mutual Exclusive Access to Correlator Storefiles 141
Deploying the Correlator Store e 142

7. Composer Built-In Functions

Composer Built-in FUNCLIONS. e e e 147
A . .. 148
bitand. 148
DNV . 148
o 0 149
o 1 (oL 149
IV e e 150
getBYINAEX . .. e 150
Ot OUNTEY . . . oo 151
OetHOUL . . . 151
QEtMIINULE . .. e 151
getMoONth . . .o 152
OEETIME . o o e e e 152
MaKeLiSt . . . 152
MO . . 152
MUL. L 153
PO OV . . oo 153
FEtriEVE SN e e 154

Contents

SEECOUNT Yo e e e 155
5] (0] = 156
3] 0]] 1 157
SUD . L 158
Concept Of KeYS. . ..o e 158

Case 1: Enhance Correlation. e 161
What you need to KNOW?. 161
Case 2: Multi-Source Correlation 164
What you need to KNOW?. 165
Case 3: Rate Correlation 168
What you need to KNOW?. 168
Case 4: Repeated Correlation i e 172
What you need to KNOW?. 172
Case 5: Suppress Correlation 176
What you need to KNOW?. e 176
Case 6: Transient Correlation e 179
What you need to KNOW?. 180
Case 7: Multi Event Correlation accessing external topology. 185
What you need to KNOW?. 186

9. Troubleshooting the Composer During Runtime

Troubleshooting the COmMPOSEro e 191
Tracing inthe NNM environment. i 193
Troubleshooting the Composer during Runtime 195

10. Correlation Composer for NNM

INtrodUuCtion 207
Composer inthe Operator Mode i e 207
Composer in the Developer Mode e 210

Built-In FUNCLiON e 212
getOIDValUe e 212

A. Ready Reckoner

Contents

Parameters for Correlator Templates. e 217
Enhance Correlator Template 217
Multi-Source Correlator Template. i i 218
Rate Correlator Template. 219
Repeated Correlator Template. e 220
Suppress Correlation Template i e i i 221
Transient Correlation. 222

Terminology FIow. e 224

Flow of EVENES e 225

Built-In functions e 226
A . .. e e e 226
bitand. . .. 226
DItINV . 226
o (0] 226
DIEXOr . . 226
IV L 227
getBYINdeX 227
QL OUNTEY e 227
OEtHOUN . . o 228
OetMIINULE . . . 228
getMONtN e 228
OELTIME o o 228
MakKeLiSt e 228
21T o 228
UL e 229
PO BV . . e 229
L= = 229
SEECOUNTEY . . . o 229
SHO e . Lo 230
SEOrE S . . o e 230
SUD L 230

B. Error Messages
Error Messages displayed while creating Correlator Storefiles. 232
Error Messages displayed while Deploying Correlator Storefiles 235

Contents

C. Event Attributes

D. Pattern Matching

Pattern-Matching. e e 251
Defining Match EXPressions e e e 252
A, . o oo 255
Assignment RUIES 256
Sub-Patterns AsSignment e 257
Examples of Pattern-matching Conditions. 258
GlOSSaNY . .o 261

10

Contact Information

Contacts Please visit our HP OpenView web site at:
htt p: // openvi ew. hp. conl
There you will find contact information as well as details about the
products and services HP OpenView has to offer.

Support The “hp OpenView support” area of the HP OpenView web site includes:

= Downloadable documentation
= Troubleshooting information
= Patches and updates

= Problem reporting

= Training Information

e Support program information

11

12

Introduction

Chapter 1

13

Introduction

Scope

Scope

This document contains information you require to efficiently use the HP
OpenView Correlation Composer. This guide contains information on:

Understanding the Correlator Templates
Using the Correlation Composer to define Correlators
Use cases for using the Composer

Troubleshooting the Composer during Runtime

14

Chapter 1

Introduction
Audience

Audience

This manual is intended for network personnel who maintain event
correlation. Readers of this document are assumed to have the following
background:

= General operational understanding of managed entities (network
applications). In particular, an understanding of the event types
generated by them.

= Familiarity with using GUI-based applications with mouse and
menu-driven interface on UNIX workstations and Windows based
machines.

Chapter 1

15

Introduction
On-line documentation

On-line documentation

Product documentation is available in both hardcopy and browsable
on-line format.

On-line documentation in Adobe Acrobat and/or postscript formats can
be installed from the documentation CD-ROM.

To view documents from the external website, go to

http://ovweb.external.hp.com/Ipe/doc_serv/

On-line Help

The HP OpenView Correlation Composer has an on-line help system that
provides help on the functionality of the Correlation Composer.

To invoke the on-line help, click Hel p- >Qver vi ewin the Composer’s
Main window.

16

Chapter 1

HP OpenView Correlation
Composer

Chapter 2

17

HP OpenView Correlation Composer

This chapter introduces the HP OpenView Correlation Composer and
introduces some of the commonly used terms. Additionally, it describes
the Correlator Templates supported.

It describes the following terms and concepts in detail:
= “Correlator” on page 23

= “Correlator Store” on page 24

= “Correlator Templates” on page 25

Take time to read and understand these terms and concepts as they
appear throughout the procedures described later in this manual.

18 Chapter 2

HP OpenView Correlation Composer
HP OpenView Correlation Composer

HP OpenView Correlation Composer

The critical challenge for network and system operators today is dealing
with the massive amount of information related to network, system and
application problems. This information comes in many forms and the key
is for your management solution to accurately understand what is
important to present to your operators, what can be discarded, and what
is needed for use by specialists who may need to follow a “bread-crumb
trail” when diagnosing very complex problems.

The HP OpenView Correlation Composer (herein after referred to as
Composer) is a graphical user interface used to parametrize and create
problem specific Correlators. The problem specific Correlators uniquely
identify a unit of logic to be applied to an event or set of events. The
Composer enables users to tailor the event correlation behavior for
Correlators, that are shipped with OpenView products, and simplifies
the development of customer developed Correlators. Correlators can be
used out of the box or can be easily fine tuned to fit your environment
like a glove without any programming knowledge.

The Composer comes packaged with six Correlator Templates, that ease
the creation of correlation solutions by providing correlation models for
the most common correlation tasks. The Composer with the Correlator
Templates forms the basis for simple correlation tuning and
development.

The packaged Correlation Templates are:
= Enhance

= Multi-Source

= Rate

< Repeated

= Suppress

= Transient

In addition to the predefined Correlator Templates, that are explained in
the sections below, custom requirements can be configured using the
User-Defined Correlator Template.

Chapter 2

19

HP OpenView Correlation Composer

Basic Concepts

Basic Concepts

Listed below are some of the definitions that you should be familiar with
before defining Correlators.

Event

An event is an unsolicited notification, such as an SNMP trap or a CMIP
notification generated by an agent process in a managed object or by a
user action. Unsolicited notifications are referred so in the IP world.

Alarm

Event messages received from network elements are referred to as
Alarms. Event messages are referred so in the Telecommunications
world.

NOTE The terms Alarm and Event have been used interchangeably throughout
this document.
Output an Event
When an event is output, it is visible to the end user. If the event is
configured to be displayed, it will be listed in the Alarm Browser.
Discard an Event
When an event is discarded, it is not visible to the end user.

20 Chapter 2

Table 2-1

HP OpenView Correlation Composer
Basic Concepts

Event Type

The Event Type specifies the type of alarms that can be handled by the
Composer. The Event types supported by the Composer are listed below:

Supported Event Types

Event Type Description
CMIP CMIP based events
(0)V/0] OVO messages
SNMP Event traps
X733 X.733 based events

NOTE

The Composer supports only one Event Type for a Correlator Store.

OVO supports only OpC messages and NNM supports only SNMP event
traps.

CMIP and X733 Event Types are not supported at time of release.

Event Format

The network can receive events of different formats. The events can
differ depending on the event type. The following sections describe the
procedure to view events on the different platforms.

< Network Node Manager

The NNM Alarm Browser actively notifies the operator when an
important event occurs. You can browse through alarms to help you
diagnose problems. The Alarm Categories window contains push
buttons that correspond to each of the alarm categories. For more
details on how to view the SNMP events, refer to Managing Your
Network with HP OpenView Network Node Manager.

Chapter 2

21

HP OpenView Correlation Composer

Basic Concepts

OpenView Operations

The Message Browser window displays all incoming messages from
the OVO operator's managed environment. Double click on any
message to display the Message Details window, listing full details of
that particular message.

For more details refer to the HP OpenView Operations for UNIX
Concepts Guide.

ECS Engine Management (ecsngr)

The ECS Engine can log events as they arrive at the engine. The
event log file is an ASCII representation of the logged events in a
form that can be displayed and edited using conventional text editing
tools. To enable/disable logging of events that arrive at the engine,
execute

ecsmgr -1 og_events input on|of f

The input events log is written to ecsi n. evt 0. Output events log is
written to def aul t _sout . evt 0.

For more information on management of the ECS engine, refer to HP
OV ECS Administrator’s Guide.

Attributes

An alarm is a set of name value pairs where the name is referred to as an
attribute. For example:

In NNM, which handles SNMP traps, the attributes are
enterprise, agent-addr, specific-trap, variabl e bindi ngs
to name a few

In OVO, the attributes would be MessageText, Application,
(bj ect to name a few

Refer to Appendix C, “Event Attributes,” on page 237 for a list of
attributes for the standard Event Types.

The set of attributes that are visible within the Composer is
configurable. To add Custom Message Attributes (CMA) for OVO or to
add additional variable-bindings in NNM the configuration file should be
edited. For more information refer to, “Define Event Attributes” on

page 66.

22

Chapter 2

HP OpenView Correlation Composer
Basic Concepts

Correlator

A Correlator uniquely identifies a unit of correlation logic to be applied to
an event or a set of events. Every Correlator has three main sections:

1. Alarm Definition section

The Alarm Definition section is divided into five subsections:

= Alarm Sighature

The Alarm Signature (primary filter) forms the first level of
filtering based on event attributes. Further processing takes
place when an event matches all attributes set in the Alarm
Signature. The Alarm Signature is a set of data structures
constituting At t ri but e Nane, Qper at or and Val ue

e Variables

Variables are names assigned to values. Once assigned, the name
can be used in other sections of the Composer. There are two
types of variables:

— Global Constants - Global Constants are defined in the
Global Constants section and can be accessed by any
Correlator within the Correlator Store

— Correlator Specific Variables - Correlator Specific Variables
are defined in the Alarm Definition section of the Correlator
and can be accessed ONLY within the scope of that
Correlator

e Advanced Filter

This is an optional section. Alarms that have entered a
Correlator can be further filtered based on the Advanced Filter
Condition (secondary filter). This condition is typically used to
define filters based on external factors like topology. (Contrast
this to the Alarm Signature where the filter is defined purely on
event attributes.)

Chapter 2 23

HP OpenView Correlation Composer

Basic Concepts

= Message Key

The Message Key identifies the instance of the Correlator under
which the alarm is correlated, and is evaluated for each incoming
alarm that passes the Alarm Signature and Advanced Filter.
Alarms with identical Message Keys are correlated under the
same instance of the Correlator.

e Parameters

Parameters are specified to change the default behavior of the
basic Correlator Template. Typically the time period for which
the correlation is to be monitored is specified here.

2. New Alarm Section

The user configures the specifications of new alarms to be created or
altered in this section.

. Callback Section

A Correlator can result in events getting discarded or new events
being created. There are two types of callback functions:

e discard
e create

Everytime an event is discarded, the discard callback is invoked if
configured. Everytime an event is either altered or created by a
Correlator, the create callback is invoked if configured. This can be
used to create an audit trail.

Correlator Store

The Correlator Store is an ASCII file that stores the configured
Correlators. It is loaded at runtime to perform correlation.

24

Chapter 2

NOTE

In the NNM
environment

i

HP OpenView Correlation Composer
Correlator Templates

Correlator Templates

The Correlation Composer supports some predefined Correlator
Templates, which are explained in the sections below. Custom
Requirements can be configured using the User-Defined Correlator
Template.

Enhance Correlator Template
The Enhance Correlator Template can be used to:

= trigger the creation of one or more new alarms. Example - Create a
new alarm that enumerates the set of customers affected by a failed
entity.

« augment the information content of an alarm by modifying event
attributes of an alarm. For example, modify the severity of an alarm
depending on the customer who is affected.

By default, the alarm is enhanced only if no other Correlator has chosen
to discard the alarm. However, this default behavior may be overridden.

When an event is altered, a copy is made of the original event and then
the copy is modified. Also, the attribute uni que_i d changes when an
event is altered.

The UUID of the event changes when altered.

Multi-Source Correlator Template

The Multi-Source correlator Template is used to define a relationship
between an arbitrary number of alarms, potentially from different
sources that together form a logical set that identifies the problem. The
set is considered complete if all alarms configured arrive within the
specified time window.

Multi-Source Correlation can be used on set completion to:

Chapter 2

25

HP OpenView Correlation Composer

Correlator Templates

Example of
Multi-Source
correlation when
operating in
Model

Example of
Multi-Source
correlation when
operating in
Mode2

« discard a subset of alarms

< modify a subset of alarms with attributes defined from any or all of
the other alarms in the set

= create one or more new alarms with values called from attributes or
pre-defined variables from the other alarms in the set

The set on completion can operate in two modes:

< Mode 1: The Multi-Source Correlator Template operates in this mode
by default. When the set is deemed complete, the instance of the set
remains in a completed state for the duration of the time window.
This is typically used in a situation where all alarms from a source
can be discarded if caused by the failure of another entity. The
Multi-Source Correlator Template works in this mode when the Set
button is NOT checked.

When a BSC fails, all alarms emitted from the connected BTS can be
discarded. The set in this example will have two alarms:

e The BSC alarm
e The BTS alarm (which is marked for Discard)

When a BSC alarm and a BTS alarm are received the set is complete.
Subsequent BTS alarms are discarded until the time window expires.

= Mode 2: When Multi-Source correlation is configured to operate in
this mode, it is expected that alarms will arrive in pre-defined sets.
In this case the requirement is that the Correlator is applied as soon
as the set is completed, after which the instance of the alarm is
deleted.

When the power to a MSC is lost - it emits a Mains_Fail, a Aircon_Fail
and a Rectifier_Fail. The requirement is that if these alarms are received
from the MSC within 10 seconds, then all three can be discarded and a
new alarm must be created after set completion. Additionally, a
subsequent alarm belonging to the set that arrives within the same
window period, will need to wait for the other two before the second set is
deemed complete. To illustrate, if a Mains_Fail arrives immediately after
the first set is complete, the Mains_Fail will not be discarded till both the
Aircon_Fail and Rectifier_Fail alarms arrive.

26

Chapter 2

[S
ro
Bl

ol
",
.=

5

%

N
Yy

HP OpenView Correlation Composer
Correlator Templates

Rate Correlator Template

The Rate Correlator Template can be used to count the number of events
occurring within a specified time period. If the count equals the value
specified within the time period, the threshold is considered breached
and a new alarm is created. The Correlator can be configured to:

= discard all alarms (regardless of rate) and emit only the newly
created alarm when threshold is breached

< emit all alarms as they arrive and the newly created alarm (if any)
when the threshold is breached

Repeated Correlator Template

The Repeated Correlator Template can operate in one of the following
two modes:

< Mode 1: Duplicate alarms received within the window period of the
first alarm are discarded. Repeated correlation operates in this mode
by default.

If the Correlator determines that the incoming alarm is to be
discarded, the Correlator can also be optionally configured whether
or not the alarm participates in other correlations before it is
discarded.

The user can also choose to send an update alarm at the end of the
window period. This is typically used to create a new event
indicating the number of alarms discarded by the first alarm in the
window. Repeated correlation operates in this mode when the

Di scard Dupl i cat e button is checked.

< Mode 2: Duplicate alarms are not discarded when the Correlator has
been configured to operate in this mode. If there is a specification for
a new alarm to be created, a new alarm is created for every incoming
alarm. This mode is typically used to send a new alarm to replace the
previously sent one, with the count of duplicate alarms received so
far.

Suppress Correlator Template

The Suppress Correlator Template is used when a specific category of
alarms needs to be discarded. Alarms that match all the conditions in
both the Alarm Signatures and Advanced Filter will be discarded.

Chapter 2

27

HP OpenView Correlation Composer

Correlator Templates

Example

t=t=t=

Transient Correlator Template

A transient failure is when the state of a managed entity changes to
abnormal and then reverts to normal, in a short period of time. Transient
Correlation is typically used to detect transient failures and when a
transient failure is detected, associated events are discarded.

Additionally this model can be optionally used to monitor the rate of such
transient failures and create a new alarm if a configured threshold is
breached. (The threshold is considered breached if the number of
transient pairs equals the configured breach value)

Temperature_ON and Temperature_OFF alarms are generated when the
temperature of a router exceeds the threshold or falls below the
threshold. Transient correlation can be used to discard both the
Temperature_ON and Temperature_OFF alarms if the
Temperature_OFF alarm is received within 5 minutes of occurrence of
the Temperature_ON alarm.

User-Defined Correlator Template

The User-Defined Correlator Template is used to implement a
requirement when none of the other correlation models, either by itself
or in a combination, can meet the correlation requirement.

Alarms that meet the conditions specified in the Alarm Signature and
Advanced Filter will invoke the Input Function specified.

The Input function can be of any type, 'C', Perl or the built-in type. The
return value of the Input function determines the action to be taken on
the alarm, which could be to create new alarm, discard the alarm, hold
the alarm for a specified period and so on.

If the Input function requested that the alarm be held, then after the
specified period the output function is invoked. The return value of the
Output function determines the action to be taken on the alarm, which
could be to create a new alarm(s), discard the alarm, output the alarm
and so on.

28

Chapter 2

HP OpenView Correlation Composer
Modes of Correlation Composer

Modes of Correlation Composer

The Composer is designed to operate in two modes, namely:

< Developer’s Mode

The Composer Developer can set up, create or modify correlation
logic for the network environment. The Developer is responsible for
configuring the Composer, setting up Operator access rights using
Security files and deciding the area of operation for the Operator
using Namespace files.

Refer to Chapter 5, “Correlation Composer for the Developer,” on
page 119 for more information.

= Operator’'s Mode

The Composer’s Operator maintains correlation in the network. Each
operator handles a part of the correlation logic and is responsible for
this continuous maintenance. The Operator can refine the
correlation logic based on the network requirements. The Operator
has limited access to the Composer. The access is governed by the
permissions set by the Developer in the Security file and the area of
operation specified in the Namespace files.

So, while assigning a user’s role as Operator, appropriate conditions
and permissions must be set in order to enable the Operator to
efficiently manage the network. To simplify this task, Security files
and Namespace files are provided in order to link the Operator to
that portion of the network. In this manner, many operators can be
given access to different portions of the network by linking them to
Security and Namespace files.

Chapter 2 29

HP OpenView Correlation Composer
Correlator Template Evaluation Precedence

Correlator Template Evaluation Precedence

Each Correlator is implemented by a discrete decision-making
mechanism based on the Correlator Template used. If the filters of two
Correlators are defined such that they admit the same alarm, then both
the Correlators are applied to the alarm. When an event participates in
multiple Correlators, the following rules are applied to determine the
outcome:

= The order of Correlator evaluation is Suppress followed by Repeated,
all other Correlators(in parallel) and finally Enhance correlation.

< If the Suppress and Repeated Correlators choose to discard the
alarm, the user can optionally choose to allow the event to
participate in other Correlators before it is discarded.

= The Enhance Correlation is run last. The event is enhanced if and
only if no other Correlator decides to discard that event except when
‘Enhance Al ways’ is enabled in the Enhance correlator Template.

< Aneventis output if and only if no other Correlator has discarded it.

30 Chapter 2

Using the Correlation Composer

Chapter 3

31

Using the Correlation Composer

This chapter provides an overview and guide to using the Correlation
Composer.

NOTE All descriptions in this chapter are relative to the Composer having been
started in the Developer’s mode.

32 Chapter 3

Using the Correlation Composer
Getting Started

Getting Started

A typical configuration of the Correlator Store involves the following:

The first step is to clearly and fully understand the correlation
requirement. It would be helpful if this requirement is documented
in terms of distinct steps.

As part of the above exercise also document the set of alarms that
participates in the correlation. For example, if the requirement is to
discard node_down alarms from routers, then document how to
recognize the node_al ar mfrom the router. This involves recognizing
a node_down alarm(the attributes of the alarm to be examined to
determine if the alarm is a node_alarm) and then further examine
the attributes to be examined to determine if the node_down alarm is
from a router.

The first half, that is, recognizing a node_al ar m typically maps to
the Alarm Signature section. The second half, that is, recognizing a
router alarm would involve the Advanced Filter if there is no
attribute within the alarm to indicate that this alarm is from a
router.

The next step is to map the requirement to one or more of the
packaged Correlator Templates (including User-Defined). Refer to
Chapter 8, “Use Cases,” on page 159 for examples where multiple
Correlator Templates are used to meet a requirement.

Software Prerequisites

You need the following software to install and run the Composer.

You need to be running one of the following operating systems:

— HP-UX version 11.0, 11.11, 11.22 PA, or 11.221A
— RedHat Advanced Server 2.1

— Solaris 2.8 or 2.9

— Windows 2000, Windows XP, or Windows 2003

Java 1.4 or above must be installed on the machine where Composer
will be run.

Chapter 3

33

Using the Correlation Composer

Getting Started

Start the Composer

The method of starting the Composer depends on the environment in
which you want to invoke it. The following tables describe the various
methods of invoking the Composer.

Table 3-1 Starting the Correlation Composer
Environment Method
HP OpenView In the ECS Configuration Management GUI,
NNM select the row with Conposer and select the
[Modi fy] button.
Command Line e ovconposer - m o to start in Operator
mode
e ovconposer -md to start in Developer
mode.
Refer to the ovcomposer manpage for more
details.
Windows 1. Click on the [Start] button and point to
Pr ogr ans.
2. Select <program group>->Correl ati on
Conposer
When started the Correlation Composer window is displayed. Refer to
the figure below to see what the Composer looks like when a Correlator
Store is open.
34 Chapter 3

Using the Correlation Composer
Getting Started

Figure 3-1 The HP OpenView Correlation Composer
T1t|e Bar Standard Toolbar Ccy’elation Templates Toolbar

":: HF Open'fiew Correlation Composer (Developer Made) [ecshpt.india.hp.cam] - [fete fsharefconflecs!. . = E

B — ’123"%"”’3'
i anr | i
D)= 2| 9)| %])
Correlator Store
Enabled MType s Description 7
E OW_Chassis_Cizco Uzer L...|Monitors Cisco traps for three eror conditions: temperature, fan failure, an...
B 0w _MultipleReboots R ate Listens for cold5Start and wwarm5tart traps and creates a new alarm when N...
E Ow_Connector_Intermitte...[Rate Listens for OW_Inteface_Cown alarms from routers and awitches, and crea...
IDpened Carrelator Store fetcfoptfOWizharesconfiecs/CIBSNNMB azic. = I SHMP
L F
Status Bar Correlators
The opening panel consists of the standard menus and options required
to define Correlators. The standard tool bar consists of some of the most
frequently used menu options.
Help System To display the online help for the Composer, press F1. To display the
Help Table of Contents, select Hel p: Tabl e of Cont ent s from the menu.
Mouse To select an item, position the mouse pointer over the item and click the

left mouse button.

Click the right mouse button to pop up a menu of the frequently used
options.

Chapter 3 35

Using the Correlation Composer

Getting Started

Localized
Information

Correlator Stores can be opened independent of the locale in which they
were created. Correlator Stores developed in one locale can be opened,
modified and used seamlessly from another locale. User descriptions in
the Correlators written using English locale are visible in all the other
locales even if descriptions are not localized in the respective locale. This
helps the users to read and localize the descriptions, if they know both
English and the current locale language. Since the logic part is kept
separate from the language part, logic changes are seamless across
locales while the user description changes are private to each locale.

Exit the Composer

To close the Correlator Store file, click Fi | e: A ose. This closes only the
Correlator Store that is currently being configured.

To exit from the Composer session click, Fil e: Exi t.

Menu Commands

The following sections describe the active menu commands in the
Composer.

36

Chapter 3

File Menu

Using the Correlation Composer
Getting Started

~~ HP Open\iew Correlation Composer (Develope

- Correlations Options Help

M i

Sawe

Exit

Open...

Close...

Sawe A=,

1: fhomefovteste vsau/Asyne/Composear.fs

2 fetciopt'O0Ysh arefconffecsfcircuitsfComposerd
3: fhomesfovteste fexdractlab. f=

4: fhomefovteste wzaulfsyncta iz

Menu
Item Description
Name

New Creates an empty Correlator Store. If an existing
Correlator Store file is still open, Composer
closes this file. If you have not yet saved the file,
it prompts you to save it.

pen Displays the file browser to enable you to find
and open a previously saved Correlator Store.

d ose Closes the opened Correlator Store. If you have
not yet saved the file, Composer prompts you to
save it.

Save Saves the Correlator Store. This item is disabled
if the configuration file has not been modified
since the last save.

Save As Saves the Correlator Store to a different name.
Selecting this, displays the file browser in which
you enter the new file name.

Exi t Closes the Correlator Store and exits the

Composer. If the current configuration file has
unsaved changes, the Composer prompts you to
save the file before exiting.

Chapter 3

37

Using the Correlation Composer

Getting Started

In the NNM
environment

Only Save and Exi t options are available in the NNM environment.
NNM provides a set of built-in Correlator Stores to enable maintainance
of Correlators specific to that environment. All updates must be made to
these files. For more details on the Composer in the NNM environment
refer to Chapter 10, “Correlation Composer for NNM,” on page 205.

Correlations Menu

- HPF OpenWfiers Correlation Composer (Dreveloper bode)

e a3

"D I Global Constants f%ﬁ rﬁ]_)ﬂ "1z
Ferl File -L‘J i, J
C Librany Name
—_— rrelator Store
Ceploy

=1

Enhance

hAulti-Sourse
R ate
Repeated
Supprass
Transient
Uzer efined

Menu ltem Description
Name P

d obal Displays the Global Constant Definition

Const ant s window. This window enables you to enter the
constants that are global across the Correlator
Store.

Perl File Displays the Perl File Name window where
you specify the Perl file that contains the
Callback function.

C Library Displays the C Library Name window where

Nane you specify the C library name.

Depl oy Deploys the Correlator Store files to the ECS

engine. This option in enabled only when the

Composer is started in the Operator mode.

38

Chapter 3

Using the Correlation Composer
Getting Started

Menu Item C .
Description
Name
Correl ator Displays a submenu for selecting the kind of
Tenpl ates correlation.

Options Menu

File Correlations - Help

" " " "

0= E

Forcefully Unlock I".ﬂ. ’123_J ’_&%_J’ _:":K'j_J’ _:f:-._J
Appearance 3 @ ﬁc‘"—’ = ui)

File Histony

R o

HMNMB asic.fs Mar 20, 2004 G:51:58 2

(EFTTRREEE S -1 7 — e — P

E’ Ow_Chassis_Cisco Uzer ... (Monite

I ol B a s et

E’ ovw_Connector_Inter... |Rate Listen:

[+ O _hdultipleReboats [Rate |Listen:

N A Basic s

HHMB asic f=. default’ Apr 12, 2004 1C

[Dpened Carrelator Store fetefopt/Oiisharefconffecs/CIBYNHNMB azic f=

*

Menu Item Description

Forceful |y Provides mutually exclusive access to the

Unl ock Correlator Store. For more information
“Mutual Exclusive Access to Correlator Store
files” on page 141.

Appear ance Displays a submenu for selecting the kind of
Look and Feel of the interface.

File H story | Displays the File History window that
displays the list of recently opened files.

Vi ew Rest ore | Displays a submenu to select the version of

Backup backed up file. For more details refer to “View

Backup Files” on page 67.

Chapter 3

39

Using the Correlation Composer

Getting Started

Table 3-2

Example 3-1

Viewing Backed Up Correlator Store files

The Composer provides the ability to recover from a disaster by taking
regular backups of the Correlator Store files.

The Correlator Store file when created and saved the first time or opened
the first time, creates a default (if it does not exist already) backup file
which remains constant throughout the life of the Correlator Store.
Changes made to the Correlator Store file and when saved the first time
in the current session (involves the time between opening of the file and
closure of file) will form the contents of a backup file. The backed up file
is identified by the extension ‘. 1’ appended to the filename at the time
of Save. Consecutive first saves in future sessions results in the creation
of renewed backed up files identified with extensions . 2, .3 and so on.
Backed up files roll from . 1- >. 2->. 3 and so on. Backed Up files can be
edited by the user and group only. The tables below list the file
permissions for the Correlator Store and the Backed Up files.

File permissions for Correlator Store and Backed Up files

HP-UX, Solaris and Linux Windows

Correlator
Store

Backed
Up Files

Correlator
Store

Backed Up
Files

User

read+write

read+write

read+write

read+write

Group

read+write

read+write

read+write

read+write

Others

read

read

read+write

read+write

The number of backed up files that can be taken is configurable by the
user. By default, three backups will be taken for every Correlator Store
file. However, this number can be overridden by editing the configuration
file CO.conf. Refer to “Define Event Attributes” on page 66 for more
details.

Example of Rollback to Backed up files

Consider the Correlator Store file ATM.fs and assuming that the number
of backups taken is configured to 3.

1. A back up file ATM.fs.default is created when the Correlator Store is
created and saved or opened the first time. This file remains constant
throughout the life of ATM.fs.

40

Chapter 3

Using the Correlation Composer
Getting Started

2. Further edits made to the file and saved will constitute the file
ATM.fs. Note that, all the latest changes are reflected in this file.

3. Opening a new session (with ATM.fs) and saving it the first time in
the current session results in the movement of the existing ATM.fs to
ATM.fs.1 before writing the new changes to ATM.fs.

Session 1

ATM.fs.1

ATM.fs

ATM.fs.default

4. Further edits made to the file and saved will constitute ATM.fs.

5. Opening a new session (with ATM.fs) and saving it the first time in
the current session results in movement of

a. ATM.fs.1 to ATM.fs.2
b. existing ATM.fs to ATMS.fs.1

Session 2
ATM.fs.1 ATM.fs.2
ATM.fs.1
ATM.fs ol

ATM.fs.default

6. Opening a new session (with ATM.fs) and saving it the first time in
the current session results in the movement of

a. ATM.fs.2 to ATM.fs.3
b. ATM.fs.1 to ATM.fs.2
c. previous ATM.fs to ATM.fs.1
7. Edits made to this file and saved will constitute ATM.fs.

Chapter 3 41

Using the Correlation Composer

Getting Started

Session 3

ATM.fs.2 ATM.fs.3
ATM.fs.1 ATM.fs.2
ATM.fs.1

ATM.fs.default

ATM.fs

8. Opening a new session (with ATM.fs) and saving it the first time in
the current session results in rolling of the backup files to the next
version number.

Hence, the backed up file ATM.fs.3 (from session 3) is now updated
with new contents.

To open a backed up file, select Opt i ons->Vi ew Backup- ><Ver si on of
fil e>. Selecting this option displays the following message:

You are now viewi ng an archive version of the file. To
restore this version, select the Save button.

This message warns the user of viewing an older (backed up) version of
the file. If you want to make this backed file the latest file, save the file to
revert changes to the latest file. When you revert to the latest file,
consecutive backed up files roll down to accommodate new changes.

IMPORTANT It is recommended that the decision to revert changes to the latest file be
made judiciously, since there is always a threat that data can be
overwritten erroneously.

42 Chapter 3

Table 3-3

Help Menu

LA

j H FO |:-n"-.-"i-':l.r| Corelation Com p oser [:[:'-':'rr:I-:- |:n': Ml -:I-':l -

Using the Correlation Composer
Getting Started

'h ll m

File Carmelations Oplions -

Dl=alz

e i e
Table of Contents

=

About Correlation Composer |

Menu -
Item Description
Overvi ew | Displays the Composer Online Help.
Tabl e of Displays the Composer Online Help Table of
Content s Contents. You can also view the Help Index
from this window.
About Displays the current release and copyright

information for the Composer and associated
software.

Toolbar buttons

Standard Toolbar

The standard toolbar buttons provide shortcuts to frequently used menu

commands.

Ll=a|7]

The standard toolbar buttons and their functions are listed below:

Standard Toolbar Buttons

Toolbar Description
Button P
New Creates a new Correlator Store. Displays the Input

Event Type window to allow you to select the Input
Event Type.

Chapter 3

43

Using the Correlation Composer

Getting Started

Table 3-3

In the NNM
environment

Standard Toolbar Buttons (Continued)

Toolbar Description
Button P

oen Displays a file browser to enable you to find and
open a previously saved Correlator Store.

Save Saves the current Correlator Store. This item is
disabled if the Correlator Store has not been
modified since the last save.

Hel p Displays the Help contents of the Correlation
Composer.

Only Save and Hel p buttons are available in the NNM environment.
NNM provides a set of built-in Correlator Stores to enable maintainance
of Correlators specific to that environment. All updates must be made to
these files. For more details on the Composer in the NNM environment,
refer to Chapter 10, “Correlation Composer for NNM,” on page 205.

Correlator Templates Toolbar

The Correlator Templates Toolbar provides shortcuts to the various

Correlator Templates.

Ty
g2

5

123 |[Hrmr _;J i
il
G e R

The Correlator Templates and a brief description are listed below:

Table 3-4 Correlator Templates Buttons
Toolbar Button Description
Enhance Displays the Enhance Correlation window
to define parameters to add more
J:éﬁ information to an alarm before the alarm
i) is output.
Mil ti Source Displays the Multi Source Correlation
window to define events of different kinds
i and output events with enriched
_I.‘-.]-)__r_v., . .
o information.
44 Chapter 3

Table 3-4

Using the Correlation Composer
Getting Started

Correlator Templates Buttons (Continued)

Toolbar Button

Description

Rat e Displays the Rate Correlation window to
define parameters to maintain a count of
123 event arrival and output a new event
L based on this count.
Repeated Displays the Repeated Correlation
window to define parameters to discard
ﬁ events of similar type.
Suppr ess Displays the Suppress Correlation
window to define parameters to discard a
;&J certain class of events.
Transi ent Displays the Transient Correlation
window to define parameters and
L correlate based on some threshold values.
i,
User Defined Displays the User Defined Correlation

window. The users can define Correlators
based on their requirements.

Deploy Button

The Deploy button provides a shortcut to the Deploy the Correlator

Stores to the ECS engine.

Chapter 3

45

Using the Correlation Composer

Getting Started

Table 3-5

Deploy Button

Toolbar Button

Description

Depl oy

£8

Merges the Correlator Stores and
loads the merged Correlator Store
into the ECS engine. For more
details on the Deploy procedure
refer to “Deploying the Correlator
Store” on page 142.

46

Chapter 3

Figure 3-2

Using the Correlation Composer
Correlator Window

Correlator Window
A Correlator is defined and parameterized from the Correlator

configuration window. The following figure represents a typical
Correlator configuration window.

Correlator Window

Alarm Signature
Field | Operatar | Walue |
I | |
Variables
Name | Type | alue |
| | |
Advanced Filter
Name | Operator | alue |
Message Key
I
Parameters
Window Period
|| o0 hh[oo mmloo ss Count| Discard [

= g [Cancel J f Help 4

Chapter 3

47

Using the Correlation Composer
Correlator Window

The Correlator configuration is primarily divided into three sections:

1. Alarm Definition

2. New Alarm Creation

3. Callback Functions

In addition to the above three panels, a panel is provided to describe the
Correlator. The Correlator opens with the Description panel open.

1. Alarm Definition

The first section in the Correlator configuration is the Alarm Definition.
The Alarm Definition is provided from the Def i ni ti on panel in the
Correlator window. The Alarm Definition consists of the following
subsections described below.

e Alarm Sighature

The Alarm Signature(primary filter) is the first level of filtering
performed by the Composer. Alarms whose attributes match the
attribute specification specified in the Alarm Signature will be
processed further. The Alarm Signature is a set of tuples constituting

At tri but e name, Qper at or and Val ue.

The standard Event Attributes are listed in Appendix C, “Event
Attributes,” on page 237. Event Attributes vary depending on the
Event Type selected. To customize the list of attributes, refer to the

“Define Event Attributes” on page 66.

The Oper at or matches the At tri but e type to the Val ue entered.

Supported Operators are listed below

Table 3-6 Valid Operators

Operator Description Value must be one of

= Equals Integer, Float, String or
Object ID

= Not Equal Integer, Float, String or
Object ID

< Less than Integer or Float

> Greater than Integer or Float

48

Chapter 3

Table 3-6

Using the Correlation Composer
Correlator Window

Valid Operators (Continued)

Operator Description Value must be one of
<= Less than or equals Integer or Float
>= Greater than or equals Integer or Float
matches The pattern specified by Integer, Float, String or
value is matched against Object ID
the value contained in the
attribute
does NOT The pattern specified by Integer, Float, String or
nat ch value is NOT present in the | Object ID
attribute
isin Equals the list of values List?
list returned by the attributes
is NOTin | Isnotequal to any of the List
list values specified in the list

a. All values must be enclosed within square brackets([])

matches - If the pattern represented by Value is present in the
attribute. For regular pattern matching expressions refer to
Appendix D, “Pattern Matching,” on page 249.

Example - “1234510"(which is the value contained in the specified
attribute) nat ches “10”. Here the string pattern “10” is searched for
in the string “1234510".

Example - “1234510" mat ches “~10” returns False.

If the value extracted from the attribute is not a string, then the
value is converted to a string and the pattern is matched.

Example - If the attribute enterprise contains an Object ID,
1.2.3.4.5.6 and the requirement is to discard traps with an enterprise
Object ID of 1.2.3.4, then the following expression would meet the
above requirement

enterprise natches 1.2.3.4.

Chapter 3

49

Using the Correlation Composer
Correlator Window

In the NNM
environment

Internally 1.2.3.4 is converted to a string “1.2.3.4” and this pattern is
looked for in the string version of the enterprise. This however would
also match an enterprise id of 5.6.1.2.3.4 which is not the
requirement. The following ensures that the correct pattern is
matched:

enterprise natches “*1.2.3.4"
Note that the pattern is given as a string.

does NOT match - The string pattern represented by Value is not
present in the attribute. The does NOT nat ch operator is the
opposite of the mat ch operator.

Example - The Value “1020” must not be present in the attribute.
is in list - The value entered must be present in the list of values
Example-ais in list [a,b,c,d]

is NOT in list - The value entered must not be present in the list of
values entered.

— The attribute agent - addr in the SNMP trap is represented as a
string in the * .’ notation. For example, if the agent-addr is
passed to a function, it will be passed as “a.b.c.d” and NOT
a.b.c.d. If the agent-addr needs to be set while creating/altering
an alarm the variable carrying the agent-addr should also be in
the same format. For example, to set the agent-addr to an IP
address of 15.10.76.143, define a variable whose value is a string
like “15.10.76.143".

— variable bindings are a name value pair where the name is
always an Object ID. While specifying a new alarm that has
variable bindings both the name and the value for each variable
binding needs to be specified. variable bindings start with an
index of 0.

Automatic Variables

Apart from the standard Event Attributes and the user-defined
variables, there are some automatic variables maintained by the
Composer. The Automatic Variables maintained by the Composer are

50

Chapter 3

Table 3-7

Using the Correlation Composer
Correlator Window

— AlarmCnt - The AlarmCnt attribute maintains the count of the
number of alarms that entered the Correlator. For example, if the
correlation being used is Rate correlation, the attribute
AlarmCnt maintains the count of the number of alarms arriving.

The AlarmCnt variable is accessible while creating new alarms
and defining Callback functions in the New Alarms and
Callbacks sections respectively.

— CorrelationDuration - Correlation Duration is the actual time
taken for the Correlator to be applied. For example, while using
Rate correlation, a new alarm can be triggered when the rate
exceeds 5 in 30 minutes. But if the rate has been breached in the
10th minute, then the CorrelationDuration has the value 10
bound to it.

Variables

Variables are names given to values to be used while defining
Correlators or Global Constants. All attributes in the alarms can be
accessed as variables where the variable name is the attribute name.

Variable Types

Type Description

Const ant

Value entered by the user is bound to the variable
name

Ext r act Matched string is assigned to a variable

Functi on Represents data returned from a function

Combi ne Combination of two or more variables

Lookup Represents data returned from a datastore lookup

Constant - Constant values are used for reference while defining a
Correlator. The variable name is bound to the value specified in the
value field.

Example: A variable Err Str is bound to the value “ Tenper at ur e
H gh. Check for A/C Failure”. The variable Err Str can be used
locally within the Correlator under which the variable is declared.

Extract - Sub strings within the event attribute can be extracted.

Chapter 3

51

Using the Correlation Composer

Correlator Window

Example:

<. err_text> - <#.link_nun» on Signalling Set <#. set_ nunv
matches a message such as

Link Failure - 10 on Signalling Set 2

and assigns Link Failure to err_text, 10 tolink _num?2to
set _num

Refer to “Pattern-Matching” on page 251 for more examples on
pattern matching.

Function - The return value of a function can be bound to a name.
Functions can be called synchronously or asynchronously. Refer to
“Writing External Functions to be called as the Input/Output
functions of a User-Defined correlation” on page 112.

Example - Assume a variable X which is bound to the return value of
a function, say xyz. Also assume that xyz returns an integer. In this
case, the variable X would be bound to the integer value returned by
the function xyz.

In cases where functions return more than a single value, individual
elements can be accessed via the Built-In function get Byl ndex. For
example, lets say a function, nyFunct i on, returns 10, 20, 30 and this
is bound to a variable, say nyVari abl e. To access individual
elements use the Built-in function get Byl ndex. For more details on
Built-In functions, refer to Chapter, “Composer Built-in Functions,”
on page 147.

Combine - Variables can be combined to form a new variable by
using the Combine operator.

Example: The Combine operator concatenates variables to a single
string.

Assume the following variables defined with values as mentioned
— constant ‘Hello’

a
— b constant ‘Wirl d’

constant ‘Rate is’

|
o

|
a

constant 10
— e constant 20
Conbi ne [a b] resultsin“Hello Wrl d”

52

Chapter 3

NOTE

Using the Correlation Composer
Correlator Window

Conbine [c <A armnt>] resultsin“Rate is <A armnt >

When as integer and a string are combined the resultant output is a
string.

Conbi ne[10, 20] results in results in 1020

Lookup - Values from a Data Store! can be gueried and bound to
variables using the Lookup operator. Parameters for the Lookup are
one or more variables. The values referred to by these variables are
concatenated and the resulting value is used as the key in the
Lookup to the datastore.

The format of the Data Store is

ADD DATA(keyVal ue, ReturnVal ue)
where,

keyVal ue must be an integer or string, and
Ret ur nVal ue can be any datatype

The Data Store file can have multiple such lines. A comment begins
with two hyphens(--). The first line in the file must be the header
whose format is

#pat h#dat e#ver si on#0

Example - Assume the Data Store loaded, has one entry ADD

DATA(“ Over heat ed”, 80) . Also assume a variable X whose value is
“Overheated”. If X is used as a parameter to Lookup, the value
returned will be 80.

Using two variables Y and Z whose values are “Over”, “heated” would
result in a key value of “Overheated” and the same value 80 would be
returned.

1. The Data Store contains a table of global values. Unique keys
identify each table entry these keys are used to select a value from
the table.

Chapter 3

53

Using the Correlation Composer

Correlator Window

TIP Typically, the Data Store is used to hold static topological
information. (One could think of using scripts to run once a day, say
midnight, to create the datastore file and update the ECS engine
with the newly created file).

Rules for variable evaluation
By default, a variable is evaluated(via a function) when it is used. To
override this default behaviour, the user is given the choice to select
the point at which the variable can be evaluated. Following are the
different times at which the variable can be evaluated
— Default
The default behaviour of variables. The variable is evaluated
when it is used.
— EventIn
The variable is evaluated when the event participates in the
Correlator after having passed the primary and secondary filter
conditions.
— Correlator Creation
The variable is evaluated when the Correlator is instantiated.
For example, in Repeated Correlation, the variable is evaluated
when the Correlator is instantiated.
— Correlator Deletion
The variable is evaluated when the instance of the Correlator is
deleted.
Refer to the Table 3-8, “Correlator Creation and Deletion,” on
page 57. Note that all parameters other than the standard attributes
displayed in the pop up menu SHOULD be previously defined as
variables.
54 Chapter 3

IMPORTANT

Using the Correlation Composer
Correlator Window

A variable is evaluated ONLY once. For example, if a variable has
been flagged to be evaluated at Eventln but the variable is used in
the Advance Filter, then the variable gets evaluated when the
Advanced Filter is processed and is not re-evaluated when the event
enters the Correlator.

Functions flagged for evaluation at Eventln, Correlator Creation and
Correlator Deletion will ALWAYS be invoked synchronously.

An Asychronous function whose parameters have not yet been
evaluated at the point at which the function has been invoked,
cannot depend on a parameter that is evaluated through another
Asychronous function.

Chapter 3

55

Using the Correlation Composer

Correlator Window

Example of
Advanced
Filter

Advanced Filter

Events into a Correlator can be further filtered based on the
Advanced Filter(secondary filter) condition. The Advanced Filter is a
set of data structures constituting Nanme, (perator, Val ue.

Refer to “Alarm Signature” for Attributes and Operators supported.

The requirement is to generate a new alarm if a Router_Failure
alarm is received from a Core router.

Just by examining the Event Attributes, it is not possible to deduce if
the alarm is emitted from a Core router. To solve this problem, define
a variable, say i sCor eRout er . Let this variable be bound to the
return value of a function-Get | sRout er . This function takes the
agent - addr ess as its parameter and returns 1 if the router is a
Core router, else returns 0. In the Advanced Filter, define a
Correlator that checks if the variable, i sCor eRout er is set to 1 which
ensures that the Correlator is applied only to Core routers.

Message Key

The Correlator defined is merely a template to indicate the
interaction of alarms. For example, consider a Multi-Source
Correlator that has two alarms defined - a r out er _down and a

i nt erface_down alarm. The Correlator is configured such that the
rout er _down alarm suppresses individual i nt er f ace_down alarms
emitted from the same router. The idea here is that if a router fails,
then discard individual interface(component) failures from the same
router. The Correlator specified, however is generic in the sense that
it applies to all rout er _down and i nt er f ace_down alarms. It is
obvious that an i nt er f ace_down alarm should be suppressed only if
the router to which this interface belongs has also failed. The
mechanism to tie alarms together, in this case, the router down
alarm to the interface alarm from the same router, is the Message
Key. The Message Key is evaluated when the alarm enters the
Correlator. Alarms that evaluate to the same value of the Message
Key are correlated together. Taking the above example, the name of
the router could be used as a Message Key assuming that the router
name can be extracted from both the router and the interface down
alarms. The Message Key could be a physical entity like an interface,
a router OR a logical entity like a service, customer, PVC.

56

Chapter 3

Using the Correlation Composer
Correlator Window

When an alarm enters the Correlator (the event has passed both the
primary and secondary filters for the Correlator), the Message Key is
evaluated. If there does not exist an instance of the Correlator with
the evaluated Message Key, an instance of the Correlator is created
with the Message Key. This is referred to as Correlator Creation. On
the other hand, when the event comes in, if there exists an instance
of the Correlator for the same Message Key then the incoming alarm
is correlated under the Correlator for this Message Key. In other
words this alarm will be correlated with the other alarm(s) that
evaluated to the same Message Key. The Message Key is necessary
only when two or more alarms need to be related. For example, in
Suppress there is no requirement for a Message Key as the
Correlator will be applied to all alarms that meet the Alarm
Signature and Advanced Filter conditions.

The point at which an instance of the Correlator is deleted(referred
to as Correlator Deletion) is dictated by the semantics of the
correlation model.

Table 3-8 Correlator Creation and Deletion
Correlation Message Operational Point of Point of Correlator
Model Ke_y mode (if any) Correl_ator deletion
Required? creation
Enhance No NA NA
Multi-Source | Yes Mode 1 When the < When the time
first alarm window expires from
with a the time the last
Message event for this
Key for Message Key
which no entered the system
Correlator
has been
instantiated

Chapter 3

57

Using the Correlation Composer
Correlator Window

Table 3-8 Correlator Creation and Deletion (Continued)
Correlation Message Operational Point of Point of Correlator
Model Ke_y mode (if any) Correlf':\tor deletion
Required? creation
Mode 2 When the e When the set is
first alarm complete
with a = When the set is not
Message .
Key for complete - Time
’ Window after the
which no .
last alarm for this
Correlator
Message Key
has been entered the system
instantiated y
Rate Yes When the = At the point where
first alarm the rate is breached
with e When the time
Message ; .
Key for window expires from
) the time the last
which no .
event for this
Correlator
Message Key
has been entered the system
instantiated 4
Repeated Yes When the Time window after
first alarm Correlator instantiation
with a
Message
Key for
which no
Correlator
has been
instantiated
Suppress No NA NA

58

Chapter 3

Using the Correlation Composer
Correlator Window

Table 3-8 Correlator Creation and Deletion (Continued)
Correlation Message Operational Point of Point of Correlator
Model . mode (if any) Correlf':\tor deletion
Required? creation
Transient Yes No threshold When the < When a Clear alarm
specified first Fail comes within the
alarmwitha window period of the
Message Fail(immediately on
Key for getting a pair)
which no = When the window
Correlator . .
period expires
has been .
instantiated without a C_:Iear
alarm coming(no
pair detected)
Threshold < When threshold
specified number of pairs is
received in the Time
Window(at the point
of threshold being
breached)

e Threshold not
breached and the
threshold period
after the last pair
was created

User-Defined | NA NA NA NA

Examples of
Message Keys

— The requirement is to trigger a new alarm indicating that the

alarm rate is too high, when the number of alarms received from
the same router crosses 20 within 1 hour.

All events matching the Alarm Signature, are categorized as
Router Alarms. But there has to be a mechanism by which to
examine Router alarms emitted from the same router. To solve
this problem, assign the agent - addr ess as the Message Key.

— Monitor the rate at which interfaces on a router are failing.

Chapter 3

59

Using the Correlation Composer
Correlator Window

We have configured a Correlator called IF_Rate where the
Message Key = x+Interface Number (say varbind0), where x can
be some attribute. Refer to the figure below to understand the

example.

Figure 3-3 Message Key

otep 1

Ewent from
Routars,
with Interface
Mumber=0

otep 2

Ewent fram
Routara
T with Interface
Mumber=1

otep 3

Ewent from
Fouters,
with Interface
Number=0

EC3

Carrelator iz
instantisted with
Instance AD

EC3

Carrelator iz
inztantisted with
Instance AD

Carrelator iz
instantisted with
Instance A1

EC%

Correlator iz
instantisted with
Instance AQ

NN LN

Correlator iz
inztantisted with
Instance A1

60

Chapter 3

Using the Correlation Composer
Correlator Window

e Parameters

Parameters are set to change the default behavior of the basic
Correlator type. The functionality of the parameters can vary across
the different Correlator Templates. The functionality of these
parameters is discussed in Chapter 8, "Use Cases".

2. New Alarms Creation

The second section in the Correlator configuration is the New Alarm
Creation section. The New Alarm Creation specification is provided from
the New Al ar mpanel in the Correlator window. Correlators can include
definitions to trigger new alarms with information content that is useful
for the operator. For example, in the case of Repeated Correlation, a new
alarm can be output at the end of the window period, reporting the
number of alarms that arrived in this time period.

Figure 3-4 New Alarms section

Fate '_

Hame |

HNew Alarm Specification E

Alarm Ho1
MNew Alarm Definition

Hame | Walue |

enterprise

agent-addr

generic-trap

specific-trap

time-stamp

if Hewa if Erepioisagy if Mlestiagy f Delate o

B Feedback

CIEEZD *_cancel y ©_Help

New alarms can be created in two ways:

Chapter 3 61

Using the Correlation Composer

Correlator Window

NOTE

= Alter Specification

New alarms can be created by altering some of the attributes of the
existing alarm. The Alarm Specification is a tuple that constitutes
Fi el d, Mode and Val ue.

Field - It is the field that has to be altered. The Field is a drop down
menu and displays all attributes for the selected Event type. Refer to
Chapter C, “Event Attributes,” on page 237 for Event attributes.

Mode - There are two modes that can be used to alter the event’s
attributes.

— Replace
The new value replaces the event attribute of the original alarm.
— Append

The new value specified is appended to the existing event
attribute.

Value - The value of event’s attributes is appended or replaced with
new values.

The Al ter Specification tab will not be enabled if the
Correlation type being defined is Multi-Source.

The attributes displayed to alter an alarm, are always the attributes
of the last alarm that arrived. For example, while using Transient
correlation, the attributes displayed will always be that of the last
Clear Alarm.

< New Alarm Specification

New alarms can be created with all new attributes. The New Alarm
Specification is a tuple that constitutes Name and Val ue. The New
Alarm Specification displays all the mandatory attributes that have
to be entered to create a new alarm.

Additionally, the user is given the option to feedback the alarm into the
circuit. Select the Feedback button if the new event has to be fedback
into the circuit and participate in other Correlators.

62

Chapter 3

NOTE

Using the Correlation Composer
Correlator Window

The New Alarm tab is not available for Suppress Correlation, as there
are no new events that can be output.

3. Callback Functions

The third section in the Correlator configuration is the Callback
Functions section. The Callback Functions is provided from the

Cal | Backs panel in the Correlator window. An alarm can be discarded or
output after it has participated in correlation. Similarly, when a new
alarm is created, the user can optionally choose to invoke an external
function to perform user-specific functions like logging or issuing a
trouble ticket. The external function can be written in C, Perl or built-in
functions can be used and the parameters for the function are selected
from the Parameter List table. The location of the C or the Perl file
containing the external function is specified from the Composer. Callback
functions can be defined from the Cal | backs panel of the Correlator
window.

Chapter 3

63

Using the Correlation Composer
Correlator Window

Figure 3-5 Callback Function

Enhance

% Function Hame | E
Function Description | - J
Function Type |F'er| E
Function Usage |Defau|t l'l
@ Synchronous ﬂ Fevnchronous

Parameter List

Ma. | Farametars |

—t
\)

Function Definition

" ok [cancel ;, Help

64 Chapter 3

NOTE

Using the Correlation Composer
Correlator Window

Callback functions can be called at two instances:

= Create - The Callback function(if defined) is called when a new alarm
is created.

= Discard - The Callback function(if defined) is called when the alarm
is discarded.

The Create/Discard tabs are used to define when the Callback function
will be called.

The Create and Discard Callback functions can be called only
Synchronously.

For information on how to write Perl and C functions, refer to “Writing
External functions in C” on page 97 and “Writing External functions in
Perl” on page 105.

Chapter 3

65

Using the Correlation Composer

Define Event Attributes

Define Event Attributes

The configuration shipped with the Composer contains the Standard

Event Attributes as defined by the Event Type(SNMP, OpC). The user
can configure additional attributes by editing the configuration file
Q0 conf placed under the default directory where the Composer is
installed. The table below lists some examples

Operating Composer Configurationfile
System Installed director
y directory y
HP-UX [opt/ OV/ bi n [opt/ OV bin
Linux [opt/ OV/ bi n [opt/ OV bin
Solaris /opt/ OV/ bin /opt/ OV bin
Windows C\penViewbin | C\QpenVi ew bin

NOTE Root access is required to make any changes to the configuration file.
Why add additional attributes?
In NNM The default CO conf file contains vari abl e bi ndi ngs from 0 to 12. If
additional vari abl e bi ndi ngs need to be added, edit the CO conf file.
To edit the configuration file:
1. Open the file CQ conf in any standard text editor.
2. As an example. Search for the second occurrence of the string
“SNVP” and add the string for the varBind[13] in the same format.
To add the variable varBind[13] to the existing list, add
var Bi nd[13] - >nane and var Bi nd[13] - >val ue in two separate
lines.
Note that for each variable bindings, two entries need to be added -
one for the name and one for the value.
3. Save the file and close the file.
66 Chapter 3

In OVO

NOTE

Using the Correlation Composer
Define Event Attributes

Assume that a Custom Message Attribute(CMA) called Customer-1D
needs to be added.

1. Open the file CQ conf in any standard text editor.
2. As an example. Search for the second occurrence of the string” QoC'.
Add Qust oner -1 Din a new line.

3. Save the file and close the file.

View Backup Files

Composer provides an option to view backed up files. The number of
backed up files visible by the user is by default 3. This number can be
overridden by editing the field MAX_BACKUP in the configuration file,
CO.conf.

To edit the file,

= Replace the default number (3) under the heading MAX_BACKUP by
the number of backups files you would like to view.

The maximum number of backups that can taken for a Correlator Store
is 20.

The Composer must be restarted after any change is made to the
configuration file GQ conf .

Chapter 3

67

Using the Correlation Composer
Define Event Attributes

68 Chapter 3

Developing Correlators with
Composer

Chapter 4

69

Developing Correlators with Composer

This chapter provides a structured approach to creating a Correlator
Store file and contains:

= “Planning the configuration” on page 71
= “Correlator Store” on page 73

= “Correlators” on page 79

70 Chapter 4

Developing Correlators with Composer
Planning the configuration

Planning the configuration

A typical configuration of the Correlator Store involves defining the
various Correlation Templates, parameters and alarms required to be
provided as input to the circuit. To ensure a smooth configuration,
planning to cover the following is essential

Step 1

Step 2

Step 3

Step 4

Step 5

Step 6

Define Event Type: for which the Correlator Store is
being created. Refer to “Step 1: Event Type” on page 76

Define Global Constants: It is a set of values that is
defined globally for a set of Correlators. Refer to “Step
2: Define Global Constants” on page 77

Provide Alarm Definition: Create and define the
alarms to be correlated. Refer to “Step 3: Define Alarm
Definition” on page 79

Define New Alarm: Define the new alarm. Refer to
“Step 4: Define New Alarms” on page 87

Define Callback Functions: Provide Callback function
definitions. Refer to “Step 5: Callback Functions” on
page 91

Load Perl and C library: Provide Perl and C library
location. Refer to “Step 6: Load Perl and C Library” on
page 93

NOTE Step 2, Step 4 and Step 5 and optional. However it is recommended that
you follow the procedure as explained if you have to define any of the
parameters explained in the steps.

Chapter 4

71

Developing Correlators with Composer
Planning the configuration

Figure 4-1 Planning the Configuration

Define Slobal

| SelectEventType —— Constants

{ Provide Alarm A

Definltion |_"': Define New Alarms |

. o,
B r-’/.-,.r‘-.,r.
¢ %

i i 1 ."H.Frnwde Farl and E.. |
\ Define Callbacks I—l"l Library

The sections that follow describe the procedure to configure the
Correlator Store. It is recommended that you read and understand the
rest of this chapter to become familiar with the Correlation Composer.

For information on the menu items, dialog boxes and windows refer to
Chapter 3, “Using the Correlation Composer,” on page 31.

72

Chapter 4

Developing Correlators with Composer
Correlator Store

Correlator Store

A Correlator Store contains a set of Correlators which define correlation
requirements for the network.

Create and Save the Correlator Store
To create a new Correlator Store:

e Select Fi | e: Newfrom the menu.

e Click on the New icon in the Standard Toolbar

[

If a file is already open, the Composer prompts you to save the file. Note
that the default Event Type is SNMP. To change the Event Type refer to
“Step 1: Event Type” on page 76.

To save the Correlator Store file:
1. Select Fi | e: Save from the menu to display the file browser.
2. Enter the Correlator Store file name in the Fi | e panel.

3. Select [K] to save the file.

File Naming Restrictions

Use file names that start with a letter and contain only letters, digits and
underscore(_). For example: ny_confi gurati on is a valid file name. The
extension. f s is supplied automatically to the filename entered.

Location of Correlator Store

You can save a Correlator Store under any directory. Ensure that the
correct path is specified before saving the file.

Opening an existing Correlator Store

To view a Correlator Store file:

1. To select the filename that you want to open

Chapter 4

73

Developing Correlators with Composer
Correlator Store

e Click File:Open and select the Correlation Store name from the
file browser window.

e Click on the Open icon in the Standard Toolbar.

-}

=

2. The Open file browser window is displayed. Select the name of the
file you want to open.

3. Click [Open] . The Correlator Store file is displayed.

IMPORTANT Correlator Stores created in a Composer version prior to Version 3.3
must be migrated to the latest vesion. To migrate Correlator Stores refer
to “Migrate existing Correlator Stores” on page 75.

Modify an existing Correlator Store

Once you have created a Correlator Store, you can modify its properties
whenever required. To modify the Correlator Store:

1. Select Fi | e- >Qpen to open the Correlator Store. This opens the file
browser window.

2. Select the filename from the file browser window. The Correlator
Store with the Correlators is displayed.

3. To open a Correlator, you can do one of the following

e Select the Correlator in the table and double click the mouse
button. The Correlator window opens.

= Select the Correlator in the table and right click the mouse
button. From the menu displayed select Modi fy. The Correlator
window opens.

4. Make the required changes as you did when you created the file.

5. To save the changes, select Fi | e- >Save. The file is saved with the
same name.

74 Chapter 4

In the NNM
Environment

Developing Correlators with Composer
Correlator Store

To save the changes made into the different file, select Fi | e- >Save
As.

Only Save and Exi t options are available. NNM has a default Correlator
Store and all updates must be made to this file.

Migrate existing Correlator Stores

Correlator Stores created using Composer prior to Version 3.3 must be
migrated to the latest version. The csm gr at e script residing in the
directory $OV_CONTRI B/ ecs migrates Correlator Stores created prior to
version 3.3 to the latest version. To migrate to the lastest version, type

csmgrate.ovpl <Correlator Store name> -1ang
<ENQ.I SH JAPANESE| CH NESE> -0 <final Correl ator Store nane>

where,

<Correl ator Store name> is the name of the Correlator Store that
must be migrated

<ENGLISH | JAPANESE> is the native language of the Correlator Store
that must be migrated

<final Correl ator Store nane>is the name of the Correlator Store
after migration.

Chapter 4

75

Developing Correlators with Composer

Step 1: Event Type

NOTE

In the NNM
Environment

Step 1: Event Type

The Event Type decides the kind of events that will enter ECS. The event
types supported by the Composer are listed below

Table 4-1 Event Types supported
I?r\;i)r;t Description
oM P CMIP based events
ovo OVO messages
SNWP SNMP traps
X733 X.733 based events

The Event Type is selected at the time of creating the Correlator Store.
To select the Event Type

1. Select Fi | e->New. The | nput Event Type window is displayed

2. Select the Event Type from the list and click on [(K] .

The default Event Type is SNMP.

The Correlator Store can be created for one Event Type at a time. If you
want to change the Event Type, close the currently opened Correlator
Store and repeat Steps 1 and 2.

The Correlation Composer in the NNM environment does not allow the
Event Type to be changed.

76

Chapter 4

Developing Correlators with Composer
Step 2: Define Global Constants

Step 2: Define Global Constants

Values can be bound to names and referred to by this name while
defining Correlators.

Global Constants

The parameters that you enter to define the named value pairs can refer
to the global constants. For example, a named value called DEVI CE that
you have defined can have the event attribute

“eventI nfo.notificationldentifier”.

To define the Global Constants

1. Select Correl ati ons->d obal Constants from the Main Menu.
The d obal Constants Definition window is displayed.

Figure 4-2 Global Constants

Global Constant Definition

Global Constant Definition

3 Hame F L Yalue)

3

'"Help 4

[oK 4 [Cancel J

2. Enter the following data:

< Nane - this will be the name with which the constant will be
referred to.

e Val ue - this is the value for the Name.

Chapter 4 77

Developing Correlators with Composer
Step 2: Define Global Constants

These values can be referenced anywhere inside the Correlator
Store. The table below lists the value types

Table 4-2 Value types for Global Constants
Value Types

for global Example
constants

Integer 123

Float 123.45

String “1234” or ‘abcd’

oID 1.2.34

3. To add more Global Constants, right click the mouse button and
select [Add] . A new row is added to the Global Constants table.

4. When you have finished defining Global Constants, click on [(K] to
close the window.

TIP To delete any Global Constant, you can do one of the following

= select the Global Constant, right click the mouse button and select
[Del ete]

=select the Global Constant, and hit the [Del et e] key

78 Chapter 4

Figure 4-3

C

Developing Correlators with Composer
Step 3: Define Alarm Definition

Step 3: Define Alarm Definition

This step describes the procedure to define the Correlators.

Correlators

Define a new Correlator

Every Correlator has a Name that identifies it uniquely, Correlation
Description that states briefly what the correlation is expected to do and
the Correlator definition itself. Refer to “Defining the Correlator” on
page 80 on how to define a Correlator.

To create a new Correlator

e SelectCorrel ation: Correl ati on Tenpl at es. From the menu
displayed select the Correlator Template you would like to create.

The Correlator window is displayed. The flowchart below summarizes
the main tasks to define a Correlator.

Task flow to create a Correlator

nter Name and Provide the Alarm Declare Variables
Description Signature

Define Parameters Declare Message Provide Advanced
Key Filter Condition

Chapter 4

79

Developing Correlators with Composer
Step 3: Define Alarm Definition

Defining the Correlator
The following section describes the procedure to define a Correlator.

Follow the procedure given below to create and define a Correlator:

1. In the Correlator window enter the Correlator Name in the Nane text

box. Note that the alarm will be referred by this name throughout
the Correlator Store.

Naming Restrictions

Use names that start with a letter and contain only letters, digits
and underscore(). Usage of special characters like!, @, #, !, , & and
*is not allowed. For easier reference let the name indicate the
problem type. For example “Gener at or _CFF” is a valid name.

. Enter the Descri pti on of the alarm. The description can very briefly

state what the cause of the alarm can be and what the Correlator is
expected to do.

. Alarm Signature

Click on the Def i ni ti on tab. The Alarm Definition panel is
displayed. Define the Alarm Signature. Alarm Signature is a set of
values that specifies a filter. Select the Fi el d name from the
drop-down list.

Table C-1 lists the valid Event Attributes for the various Event
Types supported by the Composer.

. Select the Qper at or value from the drop-down list. For a list of valid

operators refer to Table 3-4 on page 43

. Enter the value of the field for which the Alarm Signature is

described. To enter a value, click in the value cell and type in the
value.

To select a Global Constant, double click in the Value cell. A pop up
menu displaying the previously defined constants is displayed.
Choose the constant from the menu displayed.

. Variables

Declare the Variables. Variables are names with associated values
that can be used inside the Correlator definition. Enter a name to the
variable.

80

Chapter 4

NOTE

7.

10.

11.

12.

Developing Correlators with Composer
Step 3: Define Alarm Definition

Select the variable type from the drop down menu. For a list of
variable types supported refer to Table 3-5 on page 46.

. Depending on the Variable type chosen, the value has to be entered.

Click inside the Value cell to enter the value. For a detailed
procedure on how to enter values for the different Variable types
refer to “Defining Variable Types” on page 81.

. Message Key

Define the Message Key. To enter the Message Key, click in the
Message Key box. A pop up menu displays all possible values. Select
the variable/attribute that you would like to declare as Message Key.

There is no Message Key required to be defined for the Suppress,
Enhance and User-Defined Correlations.

Parameters

Enter the parameters. Refer to Chapter 8, "Use Cases," for a
description of all the buttons in the parameters section.
Advanced Filter

Define the Advanced Filter(if any). Select the Attributes, Operator
and the Value from the pop up menu displayed in the respective
columns. Note that this is a non-editable field. All values to be
displayed must be previously defined.

Click [O] to complete the creation of the Correlator.

Defining Variable Types

The following sections provide procedures to assign values to Variables.

Constants Constant values are used for reference while defining a
Correlator. To define constant values:

1.

Click in the Value cell and enter the value. The value is displayed in
the cell.

Chapter 4

81

Developing Correlators with Composer
Step 3: Define Alarm Definition

While defining

variables in NNM

environment

Figure 4-4

Specification of Object IDs do not have the leading dot. For example,
1.2.3.4 is valid while.1.2.3.4 is not.

Combine A new variable can be defined, by combining two or more
previously defined variables, attributes or Global Constants. Follow the
procedure given below to combine values of two or more variables.

1. Click in the value cell. The Combine Definition window is displayed.

Combine Definition

Combine Definition - Parameter List———

Ma. | Farametars |
1 |

#F

ok [Cancel V] (] Help

2. The Parameter list has to be filled to combine the variables. Click on
the Parameters cell. A pop up menu displaying all attributes,
pre-defined variables and Global Constants is displayed.

3. Select the attribute or variables from the pop up menu. The selected
item is displayed in the parameters cell.

4. To add a variable or attribute to the list, right click the mouse button
and select Add. A new row is added. A pop up menu displaying all
attributes and variables is displayed when you click in the
Parameters cell. Select the variable/attribute/Global Constants that
you want to combine.

5. Repeat Step 4 to combine more variables/attributes.

82

Chapter 4

Developing Correlators with Composer
Step 3: Define Alarm Definition

Lookup A variable can represent data returned from a Datastore
lookup. The procedure is the same as when variables are to be combined.

Extract Pattern Event attribute values can be extracted and used
inside correlation definition. Follow the procedure described below to
define an extract pattern.

1. Select Extract from the drop down menu. Click in the value cell. The
Extract Pattern window is displayed.

Figure 4-5 Extract Pattern
Attribute Pattern Pattern Separator

|unique_id H | |

ok " Cancel 4 " Help

2. Select the attribute from which you want to extract a substring.

3. Enter the pattern in the pattern text box. Refer to Appendix D,
“Pattern Matching,” on page 249 for extract pattern examples.

4. Enter the pattern separator in the Pattern separator text field. The
Pattern Separator is by default an empty space.

5. Click on [O] to close the Extract Pattern window.

Function The variable type can be a function whose return value is
bound to the name of the Variable.

Chapter 4 83

Developing Correlators with Composer
Step 3: Define Alarm Definition

Figure 4-6 Function Definition window
Function
Fungtion Mame | E
Function Description I T |
Function Type |Eluiltin E
Function Uzage |Defau|t E
@ Synchronous ﬂ Asvnchronous
Parameter List
Ma. | Farameters |
— N
ISE S
Function Definition
=
=2
[ok 4 ' cangel ; " Halp 4
F
For information on how to write functions in Perl and C, refer to “Writing
External functions in Perl” on page 105 and “Writing External functions
in C” on page 97. To define the function
1. Select the Functi on Type from the drop down menu. The function
types are
= C function
= Perl function
e Built-in function
84 Chapter 4

NOTE

Developing Correlators with Composer
Step 3: Define Alarm Definition

Depending on the selection, the appropriate function names are
loaded in the Functi on Nane field. To enable loading of C or Perl
function names, refer to “Configuring
UserDevelopedFuncDetails.xml File” on page 103.

. Select or enter the Functi on Nane. This is the name of the function

to be called.

. Provide a brief description of the function in the Descri pti on tab. To

view the entire description window click on the [...] button.

While Perl and C functions are external functions to be supplied by
the user, built-in functions are packaged with the Composer.

You can also specify the library name while defining the function.
The function name can be prefixed with the C library name, where
this function resides. For example, if a function named

BSCNane() resides in a library called SNMPI i b, you could mention
function name as SN\VP i b: BSCNare()) in the Functi on Name text
box.

To refer to a function named f unct i onl in a Perl file User 1. pm enter
Wser 1: : functi onl. Refer to “Support for Multiple Perl files” on
page 107.

. Select the phase at which the external function has to be invoked.

The function can be invoked at the following phases:

« Default - The external function(written in Perl or C) is called.
= Event In - The function is called when the event enters ECS.

e Correlator Creation - The function is called when the Correlator
is instantiated.

= Correlator Deletion - The function is called when the instance of
the Correlator is deleted.

Refer to Table 3-8 on page 57 for details on Correlator Creation and
Deletion.

Select the option from the Functi on Usage drop down menu.

. Select the mode in which the function must be called, synchronously

or asynchronously. This option is not valid for Composer Built-in
functions i.e Built-In functions are always invoked synchronously.

Chapter 4

85

Developing Correlators with Composer
Step 3: Define Alarm Definition

Validating
Function
Definitions

NOTE

6. The parameters for the function must now be provided. Select the
parameters from the Parameter list's pop up menu.

7. Click on [] to complete the function definition.

To create a Callback function to be called while discarding the event,
click on the Di scard tab and repeat the above steps.

The details entered in the Function Definition window are validated
against the data in XML files. The Built-in functions are validated with
the data in $OvV_CONF/ ecs/ O B/ Bui | t | nFuncDet ai | s. xni file. This file
should not be edited as the built-in functions provided with ECS are not
extensible.

The C and Perl functions are validated with the data in

$OV_CONF/ ecs/ A B/ User Devel opedFuncDet ai | s. xni file. This file is
extensible and you can add details about the C and Perl functions that
have been developed (for more information, refer to “Configuring
UserDevelopedFuncDetails.xml File” on page 103).

For function definitions with fixed number of parameters, Composer
validates the number of parameters. For function definitions with
variable number of parameters, Composer checks for the presence of
minimum number of parameters. For example, the StoreStr () function
can hold variable number of parameters though the minimum number of
parameters is five.

If the number of parameters does not match the expected value, an error
message is displayed. You can then make the required modifications to
the function definition.

The data type of the parameter will not be validated.

86

Chapter 4

Developing Correlators with Composer
Step 4: Define New Alarms

Step 4: Define New Alarms

Correlators enable creating and alterating of alarms. New alarms can be
created in two ways:

= Alter Specification

New alarms can be created by altering the existing attributes of
alarms. Follow the steps given below to alter the attributes of any
alarm.

1. Click on the New Al ar s tab in the Correlator window. The New
Alarms panel opens. Note that the None option is chosen by
default.

2. Select Al ter Specification from the drop down menu. The
Alter Alarm Definition table is displayed.

Figure 4-7 Alter Alarm Specification

Hame |

lﬁlterSpecificatinn H
Alter Alarm Definition
Field | Mo de | Value |
| | |
B Feedback

Gt | cancel ; [Help 4

Chapter 4 87

Developing Correlators with Composer
Step 4: Define New Alarms

3. Select the attribute that you would like to alter from the drop
down menu in the Fi el d column.

4. Select the mode of alteration from the drop down menu in the
Mode Column. The two options are

— replace-replaces the existing event contents

— append-appends the new values to the existing contents of
the attribute

5. Select the variable that is to replace or be added to the attribute
contents from the pop up menu.

Note that any new values to be appended must have already
been defined in the Variables section of the Correlator.

< New Alarm Specification

New alarms can also be created for the outgoing event. Follow the
procedure given below to create a new alarm.

1. Select New Al ar m Speci fi cati on from the drop down menu in
the New Al ar ns panel. The New Al arm Defi ni ti on table is
displayed.

2. The New Al arm Defi ni ti on table displays all the mandatory
attributes that must be filled. Select values for the fields from
the pop-up list displayed.

The list of attributes are picked up from the configuration file
under <Conposer install directory>/ Q0 conf. If you need to
add more attributes, you must edit the CQ conf . Refer to “Define
Event Attributes” on page 66 for details on how to edit the
configuration file.

88 Chapter 4

Developing Correlators with Composer
Step 4: Define New Alarms

Figure 4-8 New Alarm Specification

|Newﬁxlarm Specification H
Alarm No1
New Alarm Definition
Hame | Value |
enterprize
agent-addr
generic-trap
specific-trap
time-stamp
(oHewiy (Frevicussy (oHexty (O Delete
'D Feedback
EoBE) | cancel ; [Help
L F

3. To add new attributes to the new alarm created, right click the
mouse button and select Add. A new row is added to the New
Al arm Def i ni ti on table.

4. Notice that the text “Al ar m Nunber: 1” is displayed on the right
hand top corner of the table. The Alarm number indicates the
number of the new alarm being created. You can navigate
through the list of alarms defined.

Refer to the table given below to understand the functionality of
the other buttons.

Chapter 4 89

Developing Correlators with Composer
Step 4: Define New Alarms

Table 4-3 New Alarm Definition
Button .
Name Description
Del ete Deletes the new alarm.
Feedback All alarms are fedback into the Composer.
New Creates a New Alarm. Displays a new New Alarm

Definition table.

Next Navigates through the alarms created. Displays the
contents of the succeeding alarm in the new alarms
list.

Pr evi ous Navigates through the alarms created. Displays the

contents of preceding alarm in the new alarms list.

90 Chapter 4

Developing Correlators with Composer
Step 5: Callback Functions

Step 5: Callback Functions

When a Correlator either discards an alarm or creates a new alarm, the
user can optionally choose to invoke a user-defined function,
implemented in either ‘C’, PERL or the built-in functions. Parameters to
these functions can be chosen from the set of variables defined for the
Correlator. Typically the callback functions are used to create audit
trails. For example when an event is deleted, a logging function can be
invoked. Follow the procedure given below to create a Callback function:

1. Click on the Cal | backs tab in the Correlator window. The
Cal | backs panel is displayed.

2. Enter the Function Name. This is the name of the Callback function
provided by the user.

3. Enter the Functi on Descri pti on. Provide a description that will
help you identify what the function does.

4. Select the Functi on Type from the drop down menu and the mode in
which the function must be called.

5. Select the time at which the Function is to be called from the
Functi on Usage drop down menu.

6. To select parameters to the external function, select the attributes
from the pop up menu displayed in the Parameters table.

7. To add more parameters to the function, right click the mouse button
and select the attributes from the pop up menu.

8. Click on [(X] to complete the Callback function definition.

Variables available to be used in Callbacks

All alarms have their attributes available via their corresponding alarm
names. Automatic Variables are available for access by the Create and
Discard Callback functions. The Create Callback can access the
attributes of the new alarm just created via the Automatic Variable
NewAl ar m The Discard Callback function’s automatic variables are
dependent on the Correlation Model chosen. The table below lists the
variables.

Chapter 4

91

Developing Correlators with Composer
Step 5: Callback Functions

Table 4-4 Automatic variables available to Discard Callbacks

Automatic variables available to
Model Discard Callback(can be used as
parameters to the Callback function)

Enhance None

Mul ti - Source The attributes of the discarded alarm is
available via the automatic variable
“Discarded”. (The attributes of the alarms
in the set will also be available via their
names as usual)

Rat e None
Repeat ed None
Suppr ess None
Transi ent The discard Callback is called only for the

Fail alarm. The Callback can access all the
attributes of the Clear alarm via the
automatic variable “Suppressor”

User - Def i ned None

92 Chapter 4

Developing Correlators with Composer
Step 6: Load Perl and C Library

Step 6: Load Perl and C Library

External functions can be written in Perl or C. The Composer must be
supplied with the names of the files where these functions reside. To
provide the name of the Perl file to the Composer, follow the given
procedure:

1. Select Correl ati ons->Per| Fil e from the Correlator Store window.
The Perl Fil e window is displayed.

2. Enter the name of the Perl file.
3. Click [K] to close the window.

The table below lists the default path for the Perl file containing the
external Perl functions. is $OvV_CONTRI B/ ecs/ ext ernal / per| .

Ogs;?;mg Default path
HP-UX $OV_CONTRI B/ ecs/ ext er nal / per |
Linux $OV_CONTRI B/ ecs/ ext er nal / per |
Solaris $OV_OONTRI B/ ecs/ ext er nal / per|
Windows %OV _CONTRI B% ecs\ ext er nal \ per|

To pick up Perl files from a different location, the relative path must be
specified in the Perl File window. Refer to “Writing External functions in
Perl” on page 105 for information on how multiple Perl files can be
referenced.

To set the default C library,

1. Select Correl ati ons->C Li brary Name from the Correlator Store
window. The C Li brary Name window is displayed.

2. Enter the name of the C library that contains the external function.
The default library for the C function is placed under
$OV_CONTRI B/ ecs/ ext ernal .

Chapter 4 93

Developing Correlators with Composer
Step 6: Load Perl and C Library

NOTE

Table 4-5

You can also specify the library name while defining the function.
The function name can be prefixed with the C library name, where

this function resides. For example, if a function named

BSCNane() resides in a library called SNMPI i b, you specify function
name as SNVPl i b: BSCNane() in the Functi on Nane text box.

Note that multiple libraries can be loaded in this way. The library

name entered in the C Li brary Nane window is the default library,
while the library name specified while defining the function can be a
completely different library.

C library naming conventions

Operating
Systems

CLibrary naming
convention

Example

HP-UX

. sl

SNWPI i b. sl

Linux

. SO

SNWPl i b. so

Solaris

. SO

SNVl i b. so

Windows

Ldl

SNWPI i b. dl |

3. Click [K] to close the window.

If the Composer encounters an error during Runtime, an error-trap is
displayed, describing the problem. Refer to “Troubleshooting the

Composer during Runtime” on page 195 for more details.

94

Chapter 4

Developing Correlators with Composer
Managing Correlators

Managing Correlators

Open an existing Correlator
To open an existing Correlator:

1. Select Fi | e: Open from the menu. The file browser displays all the
Correlator Stores that have been defined.

2. Enter the Correlator Store name in the Fi | e panel or select the
filename from the directory listing. The Correlator Store with all the
Correlators is displayed.

3. Select the Correlator which you want to open.
4. Double click on the Correlator. The Correlator window is displayed.
5. Select [K] to close the window.

If you have an existing Correlator Store open, the Composer closes it. If
the existing Correlator Store has unsaved changes, the Composer
prompts you to save the file.

Modify an existing Correlator

Once you have defined a Correlator, you can modify its properties
whenever required. To modify a Correlator:

1. Select the Correlator name from the table in the Correlator Store
window.

2. Right click the mouse button and select Modi fy from the menu. This
opens the Correlator window.

3. Make the required changes as were done while creating the record.
4. Save the changes.

Click [] at the bottom of the window to save the modified changes.
This closes the Correlator window and the control is returned to the
Correlator Store window.

TIP To modify the correlation record you can also:

Chapter 4 95

Developing Correlators with Composer

Managing Correlators

1. Select the correlation record that you would like to modify.

2.Double click the mouse button. The Correlation window with all data
configured is displayed.

Delete an existing Correlator
To delete a Correlator:

1. Select Correlator to be deleted from the table in the Correlator Store
window.

2. Right click the mouse button and select Del et e from the menu
displayed.

The selected correlation record is deleted from the Correlator Store
file.

TIP To delete a Correlator you can also:
1. Select the Correlator you want to delete.

2.Hit the [Del et e] key.

NOTE Deleting a Correlator sorts the remaining Correlators in alphabetical
order according to Correlator Name.
The Composer in the Operator’s mode does not allow creation of new
Correlators. Refer to Chapter 6, “Correlation Composer for the Operator,”
on page 137 for more information.

96 Chapter 4

Developing Correlators with Composer
Writing External functions in C

Writing External functions in C

This section describes how to write the C function such that it is
accessible from within the Composer. The procedure consists of two parts

1. Writing the C function using the guidelines as described in the next
section.

2. Create a shared library of the C function(s) and store the shared
library in the following location

For UNIX

$OV_CONTRI B/ ecs/ ext er nal
For Windows

%V_CONTRI B% ecs\ ext er nal

3. Configuring fi | eUser Devel opedFuncDet ai | s. xm file for ease of
use of the function definitions in Composer GUI.

NOTE The shared library is loaded by the runtime, the first time a function
within the shared library is invoked (as part of a Correlator). When a
shared library is loaded, the function _I ni t will be invoked if it exists.
The signature for _I ni t is exactly the same as that of other C functions.

Chapter 4 97

Developing Correlators with Composer
Writing External functions in C

Guidelines for writing a C function
Given below is the skeleton code for a function in 'C’

#i ncl ude <stdi o. h>
#i ncl ude <ECS/ GC_Val ues. h>
int testFunction(int argc,void ** argv,int reqld,int cndld, genc_callback *
cal | back)
{
int i =0;
char * str = NULL;
char * oid = NULL;
char nyStr[] = "some string ";
char nyGd[] = "1.2.3.4.5.6.7.8.9";
GC Val ues ** retVal ue = NULL;
GC Val ues * intVal = NULL;
GC Val ues * strVal = NULL;
GC Val ues * oidVal = NULL;
/* Do your own checking here - this exanmpl e checks if nunber of argunents is 3 */
if(argc '=3)

{
[* I nproper No. for argummets */
/* Allocate the space for returning the err string back to Conposer */
retValue = (GC_Val ues **)call oc(1, sizeof (GC_Val ues *));
GC_MAKEVALUE(GC_ERRSTR, "I nproper Argunents", strVal);
if(!strval)
{ [* just return */
cal I back(reqld, cndld, 0, NULL);
return ;
}
retVal ue[0] = strVval;
/* Do callback to notify the error */
cal | back(reqld, cndld, 1, &retValue);
return O;
}

/* Get the argunents passed to the function. The type of the argunents needs to
be defined by the function witer and its the resposibility of the Conposer user
to pass in the correct nunber and type.*/

/* Do not free these values, will be freed by caller when callback is called */

98 Chapter 4

Developing Correlators with Composer
Writing External functions in C

i =*(int *)argv[O];
str (char *)argv[1];
oid (char *)argv[2];

/* Cbject IDw Il be passed as string to the function */

/* Do your processing here */

/* processing is done-tinme to return back to the Conposer*/
/* THS is the second half */

/* Allocate space for 3 return values - one can return any nunber of retrun
values - the exanple return 3 */

retValue = (GC_Val ues **)cal |l oc(3, sizeof (GC_Val ues *));

/* Now create the wapper to pass back the values to Comnposer*/

GC_MAKEVALUE(GC | NTEGER, &, intVval); /* Integer*/

if(lintval)
{
/* Do Error handling */
}
GC_MAKEVALUE(GC_STRING, nyStr, strVal); /* String */
if(!strVval)
{

/* Do Error handling */
GC_FREEVALUE(i nt Val) ;

}
GC_MAKEVALUE(GC O D, nyGid, oidval); /* Cbject ID */
if(!oidval)
{
/* Do Error handling */
GC_FREEVALUE(i nt Val) ;
GC_FREEVALUE(strVal);
}
/* Set the 3 return values in the wapper */
retVal ue[0] = intVval;

retVal ue[1] = strVal;
retVal ue[2] = oidval;

/* Call the callback to give the value back to Conposer

1. Reqld

2. cmdld passed as the argunment to this function

3. Nunmber of returnvalues i.e. nunber of elements inthe
GC Val ues array

4. Address of the GC Val ues array */

Chapter 4 99

Developing Correlators with Composer
Writing External functions in C

cal | back(reqld, cndld, 3, &retValue);
return O;

Basic Structure

The signature of all functions that need to be invoked from the Composer
is as given below.

int func(int argc, void ** argv, int regld, int cndld,
genc_cal | back *cal | back)

where,
ar gc is the number of arguments passed in
ar gv is an array of pointers to the arguments

reql d and cndl d are opaque parameters and are used while calling the
Callback function.

cal | back is a pointer to a function that needs to be invoked on
completion and to pass back any return values to the Composer.

Writing the function

Writing a function consists of three distinct parts

1. the first part is getting the arguments passed from the Composer
2. the second part is the processing

3. the third part is to return a value or a set of values back into the
Composer

The first part is getting the arguments passed from the Composer. The
function can take any number of arguments of any type. It is the
responsibility of the user of the function to configure the Composer
correctly to ensure that the correct parameters are passed. In the
example above the function expects three parameters, an integer, a
string and an Object ID. The pointers to these parameters are in ar gv
and are accessed as argv[0], argv[1], argv[2].While accessing
these pointers, ensure that they are cast the right type.

Parameters passed MUST NOT be freed by the function. The freeing of
the space will be done when the Callback function is invoked.

100 Chapter 4

NOTE

Developing Correlators with Composer
Writing External functions in C

The table below lists the data type as received by the Composer.

Type passed from | Type as received by the C
the Composer function
Integer Integer
Float Float
String Char *
Object ID Char *
Time Integer

Once the parameters passed in have been accessed, the function needs to
process it. The function indicates completion of processing by invoking
the Callback function. This mechanism allows the freedom to the
function writer to process either synchronously or asynchronously. In
other words the function returning does not indicate function completion.
The user can choose to extract the arguments, queue them up for some
other thread to process it and return immediately. Post processing, the
Callback function can be invoked to return the values to the Composer
and simultaneously indicate completion(obviously the call to the
Callback will be made from a function other than the one that was
originally called). This is useful when(for example) the function needs to
go over the network to access data or when databases need to be
accessed, both of which take time. If the function being invoked takes
very little time, it is suggested that the Callback is called and then
returned.

If the function encounters an error at any point during it's processing,
the error is indicated by calling the Callback function with the error code
as shown in the example.

The Callback function must be called whether or not the function
succeeds or fails.

Returning values back - Returning values consists of four steps

1. allocating space for the return value

2. wrapping the return value

Chapter 4

101

Developing Correlators with Composer
Writing External functions in C

3. marshalling the return values

4. calling the Callback function

Step 1: Allocating space for the return value

Make the following calls to allocate space

retVal ue = (QC Val ues **)cal |l oc(X, si zeof (GC_Val ues *));
where Xis the number of return values that needs to be returned.

ret Val ue is defined like - QC Val ues ** retVal ue = NUL,;

Step 2: Wrapping the return value

Invoke the provided macro(present in the file GC_Val ues. h under the
directory $OV_HEADER/ ecs/ ECS on HP-UX, Solaris and Linux and
%V _HEADER% ecs\ ECS on Windows) - as shown below

GC_MAKEVALUE(GC_STRI NG, val ToReturn, strVal);
GC Val ues * strVal = NULL

where,

the first parameter is one of

e GC_INTEGER to return an integer

e GC_STRING to return a string

e GC_OID to return an Object ID(to return an Object ID, the
val ToRet ur n should be a string in the dot notation).
Example “1.2.3.4”

e GC_FLOAT to return a float

the second parameter val ToRet ur n holds the value to be returned

the third parameter st r Val is a pointer to the macro GC_Val ues

(Example, QC Val ues * strVal ;)

Step 3: Marshalling the return values

In Stepl, we allocated space. In Step 2, we wrapped the return values. In
this step we will tie the two. Assuming there are two values to be
returned, do the following

ret Val ue[0] = val ToRet urnl;

102 Chapter 4

Developing Correlators with Composer
Writing External functions in C

ret Val ue[1] = val ToRet urn2;

where r et Val ue is got in Stepl and val ToRet ur n1 and val ToRet ur n2
are got is Step2.

Step 4: Calling the Callback function

The last step is to indicate completion of processing and returning the
values to be returned. This is done as follows

cal | back(reqld, cmdld, 3, &etValue);
where,

cal | back is the pointer to a function which was passed as the fifth
parameter and r eql d and cndl d were the third and fourth parameters
passed in.

Configuring UserDevelopedFuncDetails.xml File

To eliminate the task of manually entering function details such as
name, signature, and call mode while creating a function definition, you
can configure the User Devel opedFuncDet ai | s. xni file.

This feature enhances usability as the function details can be accessed
readily from the Composer Ul. For example, accessing function details in
the Function Definition dialog box. The XML file is available in
$OV_CONF/ ecs/ A B/ directory. To configure the file:

1. Add function details to the XML file.

The details to be added for each function are:

Function Detail Description
Name The function name in the
(FunctionName) format:

Li br ar yNamre: Funct i onNane

Description Brief description of function
(FunctionDescription) | behaviour

Signature The function signature.
(FunctionSignature) Example:

add intl int2
intl int2 arethe integer
values to be added.

Chapter 4 103

Developing Correlators with Composer
Writing External functions in C

Function Detail

Description

Number of parameters
(No_Of_Args)

Number of parameters to be
added; -1 indicates variable
number of parameters

Minimum number of
parameters
(Min_No_Of_Args)

The minimum number of
parameters expected.
Applicable only if the number
of parameters is -1.

Type
(FunctionType)

Value can be C or Perl.

Usage
(FunctionUsage)

Value can be one of the
following:

Default

Correlator Creation
Correlator Deletion
Correlator Eventin

Function call mode

(FunctioncCall)

Value can be Asynchronous or
Synchronous

NOTE

2. Validate the updated XML file.

The XML file is validated for syntax and semantic errors when
Composer starts up. The function definitions are validated with the
corresponding XML schema file, f unct i on. xsd, located in the same
directory as the XML file. If no errors are found, the parser loads the

definitions into memory.

3. Errors, if any, will be reported on the command line or in a log file (if

XPL is enabled).

Composer supports this feature only in Developer mode.

If this feature is not used, you can manually enter the function details as

before.

104

Chapter 4

NOTE

WARNING

Developing Correlators with Composer
Writing External functions in Perl

Writing External functions in Perl

This section describes how to write a Perl function such that it is
accessible from within the Composer. The procedure consists of two parts

1. Writing the Perl function using the guidelines as described in the
next section.

2. Store the file in the following location
For UNIX
$OV_OONTRI B/ ecs/ ext er nal / per |
For NT
%V _CONTRI B% ecs/ ext er nal / per|

Only one Perl file can be loaded into the Composer at runtime. If
multiple Perl files are required refer to “Support for Multiple Perl files”
on page 107.

It is strongly recommended that the Perl functions are tested
outside the Composer. The embedded Perl interpreter is known
to exit on syntax/parse errors.

Guidelines for writing a Perl Function

The function or chPer| f unct i on in the skeleton given below contains
the key elements necessary to write a Perl function. The arguments are
passed to the function as an array and individual parameters can be
accessed as array elements. Object IDs are passed in as a string in the
dot notation format. Example “1.2.3.4”. As shown in the skeleton below
multiple return values can be returned. If an Object ID needs to be
returned it needs to be encapsulated before returning. Refer to the
skeleton below. Include the subroutine ecdl Encap given below if you
need to return an Object ID.

Chapter 4

105

Developing Correlators with Composer
Writing External functions in Perl

Function to encapsulate return values into ECS specific data types
Do not nodify
sub ecdl Encap

{

}

ny $x=$_[0];
ny $z=$_[1];
if("$z" eq "ECS_AD")
{ push @x,"ECS OD'; }

sub O chPerl Function

{

Get the arguments to the function
ny $arg0d = $ [0];
ny $argl = $ [1];
ny $arg2 = $ [2];

Do processing here

return val ue(s) back to the Conposer

Exanpl e of returning an int - uncomrent the next two lines & nodify
$retval = 10
$ret Val

Exanpl e of returning a string - uncoment the next two lines & nodify
$retVal = "Hello World";

$retVal;
Exanpl e of returning a multiple values - uncomrent the next four lines & nodify
@etVal ;
@etVal ;
$retVal[0] = "Hello World";
$retVal[1] = 10;
$retVal[2] = "This is the 3rd return val ue";
@etVal;
Exanpl e of returning a Gbject IDtype - O D. Uncomment the next 3 lines &
nodi fy

@etVal = ("1.2.3.4");
ecdl Encap(\ @etVal, "ECS O D");
return (\@etVal);
Exanpl e of multiple values, including OD. Unconment the next 5 Iines and

nodi fy

@etVal0 = ("1.2.3.4");

$retVall = 1;

return an | nteger

$retVal2 = "H there";

return an string

ecdl Encap(\ @etVal 0, "ECS O D");

106 Chapter 4

Developing Correlators with Composer
Writing External functions in Perl

return(\@etVal 0, $retVall, $retVal?2);
return a bject ID, int and a string

Support for Multiple Perl files

Composer supports multiple Perl files but it doesn't support multiple
perl files with more than one MAIN routine (BEGIN block). Consider two
files p. pmand t . pl as below,

p.pm
sub f {

ny $rv = "HELLO THERE! ! ";
return $rv;

}
1

t.pl

BEG N
push(@NC, 'd:\/openview/contrib\/ecs\/external\/");

}

use p;

Notice that,

e the Perlfilet. pl i ncl udes the file p. pmusing the keyword use

= only t.pl has the BEGIN block. The Composer expects Perl files to be
written in this manner

There should be one main perl file with a BEGIN block, which does
nothing or probably can do some initialization tasks and all the other
Perl files need to be 'included' in the main Perl file using keyword the
use. (as p. pmisincluded in the filet. pl using the statement use p;).

Consider two users creating individual Perl files. The first user develops
a set of Perl functions in user 1. pmand the second user develops a set of
Perl function in user 2. pm. Both these files must be included in the file
nai n. ovpl using the statements use userl; and use user?2;.

Now, only the file nai n. ovpl needs to be referred from the Composer.
Please note that if the files userl.pm and user2.pm are in a different
location than the file nai n. ovpl, then the file nai n. ovpl must specify
the statement

push(@NC, <location of perl file(s));

Chapter 4

107

Developing Correlators with Composer
Writing External functions in Perl

This statement enables the inclusion of search path(s) of Perl files.

If user 1. pmand user 2. pmhave clashing function names then the scope
resolution operator (: :) needs to be used while making the function call
like userl::f().

IMPORTANT All Perl files other than the main Perl file must have the extension . pm

Configuring UserDevelopedFuncDetails.xml File

To eliminate the task of manually entering function name and other
details whenever you create a function definition in Composer, you can
configure the User Devel opedFuncDet ai | s. xmi file. For more
information, refer to “Configuring UserDevelopedFuncDetails.xml File”
on page 103.

108 Chapter 4

NOTE

Developing Correlators with Composer
User Defined Correlation

User Defined Correlation

The User-Defined Correlator Template can be used to implement a
requirement when none of the other Correlator Templates, either by
itself or in a combination can meet the requirement. The procedure to
define the User-Defined Correlation is similar to defining other
Correlator Templates, in the sense that there is an Alarm Definition
section, the New Alarm section and the Callback section.

Concept of User-Defined function - The model for this correlation is as
follows:

The Input function is called when the event satisfies the Alarm
Signature and Advanced Filters. The Input function can be written in
Perl, C or the built-in functions like makelist. However, it is mandatory
that the return value be in the following format

flag, w ndow, al arm nask, optional val ues
where,

f1 ag is mandatory and indicates the action to be taken on the alarm.
Multiple values can be provided by bitoring the flags.

w ndowis mandatory and is valid only if the flags have one of the HOLD,
WEAKHOLD, PSEUDOHOLD set. It indicates the time in seconds after
which the output function will be invoked.

al ar m mask is mandatory and is used to control the set of alarms to be
created. In the New Alarm section several alarms can be defined.
However, in many cases only a subset to these new alarms need be
created. This mask is used to control the set of alarms to be created. For
example, if in the New Alarm section, five alarms have been defined and
the alarm mask is set to 3(last two bits are set) then the first and second
alarms are created.

This is valid only if the create option is chosen as part of the flag,
otherwise this value is ignored.

To create all alarms defined, use a mask of -1.

Chapter 4

109

Developing Correlators with Composer
User Defined Correlation

optional val ues - Any other values (other than the mandatory
values)returned will be bound to a variable called | nput Ret Val , that s,
if the function returned HOLD, 5, 10 then | nput Ret Val is bound to the
value 10 and can be used like any other variable. If the function returned
more than 1 optional value, like HOLD, 5, 10, 20, 30 then InputRetVal is
bound to a list that will contain 10, 20, 30. Individual elements can be
accessed using the built-in function get Byl ndex.

f1 ag can take one or more of the following values.

ALTER

CREATE

D SCARD
HOLD

PASSTHROUCH

WEAKHCOLD

PSEUDOHOLD

Alter the event as specified in the Alter Alarm
specification

Create a new event as specified in the New Alarm
specification

Discard the event

Hold the event for a time period as specified in the
window parameter, after which time the Output
function specified is invoked. If Hol d is specified then
the event is held for window period regardless of other
Correlators outputting the same event. At the window
period, the output function is invoked and it's return
value will determine the action to be taken on the
event.

Output the event. Note that the event will be output
ONLY if no other Correlator decides to DISCARD it or
HOLD.

Hold the event for the time period as specified in the
W ndowparameter. WEAKHOLD indicates that if other
Correlators output the event, the event will be output,
nevertheless a copy of the event is held and the output
function is invoked after W ndowseconds. Contrast this
with HOLD where the event is NOT output for atleast
window seconds.

Weakhold is typically used to invoke the output
function at the end of the window period, to send a new
alarm(either by creating or altering).

If specified, the event is NOT held, however the output
function is called after window seconds. If
PSEUDOHOLD is specified, then the output function
cannot return ALTER or CREATE. If you need to

110

Chapter 4

NOTE

Developing Correlators with Composer
User Defined Correlation

create/alter alarms in the output function then you
must use either WEAKHOLD or HOLD. Use
PSEUDOHOLD when the output function needs to be
called after window period typically to do cleanup.

The HOLD, PSEUDOHOLD and WEAKHOLD flags can be used only by
the Input function.

The table below provides the value of the flag.
Table 4-6 Flag values

flag name Value

HOLD

DISCARD

ALTER

(| N|PF

PASSTHROUGH

CREATE 16

PSEUDOHOLD 32

WEAKHOLD 64

Output functions are invoked when the flag returned by the Input
function is either HOLD, PSEUDOHOLD or WEAKHOLD. The function
is called after wi ndowseconds specified in the Input function. The return
value of the Output function must be of the form

flag, alarmnask, optional val ues
where,
fl ag is mandatory and indicates the action to be taken on the alarm

al ar m mask is mandatory and is used to control the set of alarms to be
created. Refer Input function for details.

optional val ues are any other values returned by the function and is
bound to a variable called Qut Put Ret Val . The Cut Put Ret Val is accessed
in a similar manner to the variable | nput Ret Val discussed earlier.

Chapter 4

111

Developing Correlators with Composer
User Defined Correlation

Writing External Functions to be called as the
Input/Output functions of a User-Defined correlation

The process of writing a function in C to be called as the Input or Output
function in the User-Defined Correlation, is exactly the same as that of
writing an external C or Perl function. The only difference is in the
return values. As explained above the Input function must return atleast
two values - the f | ag and the wi ndow per i od, while the output function
must return atleast one value - which is the f | ag. The skeleton for the
Input and Output functions are given below. Note that the values for the
flags are defined in GQC _Val ues. h(present under the directory
$OV_HEADER/ ecs/ ECS on HP-UX, Solaris and Linux and

%V _HEADER% ecs\ ECS on Windows)

#i ncl ude <stdio. h>

#i ncl ude <ECS/ GC_Val ues. h>

int InputFunction(int argc,void ** argv,int reqld,int cndld, genc_call back *
cal | back)

{

int flags = GC_VEAKHOLD| GC_PASSTHRU;

int window = 300 /* wi ndow period of 300 seconds */
int argl = 0, createMsk =0;

char * arg2 = NULL;

GC Val ues ** retVal ue = NULL;

GC Val ues * flagVal = NULL;

GC Val ues * maskVal = NULL;

GC Val ues * wi ndowval = NULL;

/* Do your own checking here */

/* Get the arguments passed to the function - assuming 2 paraneters are passed in
*/

argl
arg2

= *(int *)argv[O];

= (char *)argv[1];

/* Now that you have the paraneters passed in, do your processing here */
/* processing is done - tine to return back to the Composer */

/* THSis the second half */

/* Allocate space for 3 return values - one can return nore than 3 */
retValue = (GC_Val ues **)cal |l oc(3, sizeof (GC_Val ues *));

/* Now create the wapper to pass back the values to Comnposer*/

112 Chapter 4

Developing Correlators with Composer
User Defined Correlation

GC_MAKEVALUE(GC | NTEGER, &flag, flagVval); /* Integer */
GC_MAKEVALUE(GC_| NTEGER, &creat eMask, naskVal);
GC_MAKEVALUE(GC_| NTEGER, &wi ndow, wi ndowval);

/* Set the 3 return values in the wapper */
retVal ue[0] = flagVal;
retVal ue[1] = w ndowal ;

retVal ue[2] = maskVal ;

cal | back(reqld, cnmdld, 3, &retValue);
return O;

}

/* Skeleton for the Qutput function */
int Quput Function(int argc,void ** argv,int reqld,int cndld, genc_call back *
cal | back)

{
int flags = GC_CREATE;
int createMask=-1; /* create all new al arns defined */
int argl = 0;
GC _Val ues ** retValue = NULL;
GC Val ues * flagVal = NULL;
GC _Val ues * maskVal = NULL;

/* Do your own checking here */

/* Get the argunents passed to the function- assunming 1 argunent is passed in */
argl = *(int *)argv[O];

/* Now that you have the paraneters passed in, do your processing here */

/* processing is done - tine to return back to the Composer */

/* TH S is the second half */

/* Allocate space for 2 return values - one can return nore than 2 */
retValue = (GC_Val ues **)cal loc(2, sizeof(GC Values *));

/* Now create the wapper to pass back the values to Conposer*/

GC_MAKEVALUE(GC | NTEGER, &flag, flagVal); /* Integer */
GC_MAKEVALUE(GC_| NTEGER, &creat eMask, maskVal); /* Integer */

/* Set the 2 return values in the wapper */

retVal ue[0] = flagVal;

retVal ue[1] = naskVal ;

cal | back(reqld, cndld, 1, &retValue);
return O;

}

Chapter 4 113

Developing Correlators with Composer
Merging Correlator Store files

Merging Correlator Store files

The csmer ge tool is used to merge two Correlator Stores. Correlator
Stores may need to be merged in several cases. For example, when a
Correlator in the production environment needs to be updated with the
latest revision of the Correlator or when newly developed Correlators
need to be added into the production environment.

Within a Correlator Store, no two Global Constants or no two Correlators
can have the same name. Two Global Constants or Correlators with the
same name but with different values or Correlation logic is called a
clash. The merge will be automatic if there is no clash in names.
However, if there is a clash, then external input is required to continue
with the merge. External input is provided either interactively or by
specifying them in the Configuration file.

The tool is available under

e 3$0V_CONTRIB/ecs for HP-UX, Solaris and Linux
e %O0OV_CONTRIB%\ecs for Windows

NOTE The tool is implemented as a Perl script and requires a minimum
revision of Perl 5.6.
The csmer ge tool recognizes the following options:
csmner ge - nanespace NameSpace. conf <final Correlator Store
name>
csnerge -rmdesc <Correlator Store name> <final Correlator
Store nane>
csnmerge <filel> <file2> <final Correlator Store name>
-config <configuration fil enane>
The csmer ge -h command summarizes the usage of csner ge. You can
give only one command at a time. The csner ge command ignores all
commands except the first.

114 Chapter 4

Developing Correlators with Composer
Merging Correlator Store files

Merge Correlator Stores that are specified in the
Namespace

Correlators Stores listed in the NameSpace can merged by specifying the
name of the NameSpace file. All Correlators from the Correlator Stores
are prefixed with the Logical name (as mentioned in the NameSpace file)
of the Correlator Store as <Logi cal Name>_< Correl at or Name> in the
final Correlator Store. In the event there is an overlap of names of Global
Constants, the Global Constants are also prefixed with the Logical Name
of the Correlator Store. Hence it is important that Logical Names for
Correlators be unique.

When csrrer ge is invoked with the -namespace option, all Correlator
Stores are locked to enable merging. If the locking fails even for one of
the Correlator Stores, then the merge process fails.

To merge the Correlator Stores that are listed in the Namespace file,
type,

csmer ge - nanespace <Namespace fil ename> <final Correl ator
Store nane>

where,

Nanespace fil ename is the name of the Namespace file from which the
Correlator Store files will be picked

final Correlator Store name isthe name of the merged Correlator
Store

Remove User Description from Correlator Store

To remove the user description from a Correlator Store file, type

csnerge -rmdesc <Correlator Store nane> <destination
Correl ator Store nanme>

where,

Correl ator Store nane is the name of the Correlator Store from which
the user description is to be removed

destination Correlator Store nane is the name of the Correlator
Store without the user description

Chapter 4

115

Developing Correlators with Composer
Merging Correlator Store files

Merge Correlator Stores

Correlator Stores created and not listed in the NameSpace Configuration
file can also be merged to a single Correlator Store. To merge two these
Correlator Stores, type,

perl csnerge <filel> <file2> <nergedfile> -config
<configuration fil ename>

where,
filelandfil e2 are the Correlator Stores to be merged
ner gedfi | e is the resultant file after merger

configuration fil enane is the file, which if present, specifies which
values will be considered while merging the Correlator Stores. When this
option is specified, the user in NOT prompted for input and all
specifications is picked from the Configuration file.

For a given clash, one of following can happen:

= the definition is picked from Filel
= the definition is picked from File2

= both definitions are picked, but the name for one of them needs to
change

In the interactive mode(where is there is no Configuration file) the user
is prompted for input to decide which of the above needs to happen. In
the non-interactive mode, the Configuration file is used to resolve any
clashes.

Description of Configuration File

The format of the Configuration file is
deci sion-tag: <li st of comma separated names>

where,

deci si on-t ag is one of the following:

e (Qdobal _Constant _fromFil el - The Global Constant from Filel is
used into the nergedfil e

e (Qdobal _Constant _fromFil e2 - The Global Constant from File2 is
used into the nergedfil e

e Correlator _fromFil el - The Correlator from Filel is used in the
nmergedfil e

116

Chapter 4

Example

Example

Developing Correlators with Composer
Merging Correlator Store files

e Correlator_fromFile2-The Correlator from File2 is used in the
nergedfile

It is mandatory that punctuation rules be followed while creating the
Configuration file:

< Names must be separated by commas

= Every decision-tag must begin on a new line

= The decision-tag and the list of names must appear on the same line
= The decision-tag and the list of names must be separated by a *’

< Comments must be on new lines, prefixed with a # sign. So, each line
starting with # in the first column is read as a comment.

Assume Filel has a Global Constant called “Clash” with a value of 100
while File2 also has a global Constant “Clash” with a value of 200. The
two possibilities of why this happens is

The value of Global variable was deliberately changed to 200, in which
case the only global that will be in the merged file is “Clash” with a value
of 200. In this case the Configuration will look like

A obal _Constants_fromFil e2: d ash

The other possibility is that the names being the same was mere
coincidence, in which case both need to be added to the merged file and
name of one of the variables needs to change. In this case the
Configuration file is empty but the file needs to be present.The merge
tool automatically changes one of the names and adds both to the merged
file.

Shown below is an example of a Configuration file
G obal _Constant_fromFilel:a, b

G obal _Constant _from File2: x,y
Correlator_fromFilel:i,j
Correlator_fromFile2:mn

The above specifies to the merge tool that:

= if there is a clash for the Global Constants a or b, then the Global
Constants a and b in the merged file are taken from Filel

Chapter 4

117

Developing Correlators with Composer
Merging Correlator Store files

- if there is a clash for the Global Constants x or y, then the Global
Constants x and y in the merged file are taken from File2

= if there is a clash for the Correlators with names i or j, then the
Correlatorsi andj in the merged file are taken from Filel

« jf there is a clash for the Correlators with names mor n, then the
Correlators m and n in the merged file are taken from File2

Additionally it also specifies that if there is a name clash other than
those specified in the Configuration file, then both will be used in the
merged file after renaming one of them. The tool generates a unique
name by appending a‘_' to the name from File2. For example, if there is a
name clash for a Correlator with name z, then both Correlators are
added to the merged file. The Correlator from File2 is renamed to z_.

NOTE The default C library and the Perl filename is always taken from File2.

118 Chapter 4

5 Correlation Composer for the
Developer

Chapter 5 119

Correlation Composer for the Developer

This chapter explains the Composer’s Developer mode the related
concepts and terminology used. It also provides an overview of the
administrative tasks that need to be executed to ensure that the
Composer runs effectively and efficiently.

NOTE All tasks described in this chapter should be executed by the Correlator
Store Developer unless otherwise mentioned.

120 Chapter 5

Correlation Composer for the Developer
Composer in the Developer mode

Composer in the Developer mode

The Developer creates/modifies correlation logic for the network
environment and sets up access rights to Operators. This section
describes the tasks that must be performed by the Developer. The
Developer’s administrative tasks can be categorized as follows:

e Create or modify Correlator Store(s)

The primary responsibility of the Developer is to create/modify the
Correlator Store file. To create a Correlator Store file, refer to
Chapter 4, “Developing Correlators with Composer,” on page 69.

= Operator Access Configuration

The Developer defines Operator access by maintaining NameSpace
and Security files.

= Create the Deploy Configuration file
The Developer creates the Deploy Configuration file required to
deploy the correlation logic into the ECS engine.

Starting the Composer in Developer mode

To start the Composer in the Developer's mode, type

ovconposer -md

See Also ovcomposer manpage

Chapter 5 121

Correlation Composer for the Developer
Planning Operator’s Profiles

Step 1:
Step 2:
Step 3:

Step 4:

Planning Operator’s Profiles

This section provides easy to follow steps to plan the operator profile
configuration for the Composer. Use it in conjunction with the section
“Providing User Access”, to set up Operator profiles. You can plan your
Operator profile based on the examples in this chapter.

Planning the configuration can be divided into the following simple
steps:

Creating Correlator Stores.
Listing Correlator Stores.
Creating NameSpace and Security files.

Creating the Deploy Configuration file.

Step 1: Creating Correlator Stores

The Developer creates Correlator Store files in such a way that
correlators defined for set environments are grouped logically, that is, all
Correlators logically bound are put into one Correlator Store.

Step 2: Listing Correlator Store

Correlator Store files defining correlation logic must be made accessible
to Operators. A list of Correlator Stores to be displayed to the Operator is
created.

Step 3: Creating NameSpace and Security files

NameSpace

A NameSpace file contains a list of Correlator Store files, grouped
logically together to define Operator profiles. This grouping is
specifically used to assign access permissions to the Correlator Store files
to Operator profiles and has no other relevance. The list of Correlator
Stores specified in this file decides the area of operation within which the
Operator can work.

122

Chapter 5

NOTE

Correlation Composer for the Developer
Planning Operator’s Profiles

The NameSpace file is a simple ASCII file that can be edited using any
standard text editor. This file is a listing of name-values pairs of the
Correlator Store name versus the relative path of the location of this
Correlator Store.

To create/edit the NameSpace file, the user must have r oot access on the
machine where Composer is installed.

The general syntax for a NameSpace file is

<Logi cal Namel>=<Location of Correlator Store file>
<Logi cal Name2>=<Location of Correlator Store file>

where,

<Logi cal Nanel>,

<Logi cal Nane2> are the logical names of Correlator
Store files as will be displayed in the
Composer when started in the
Operator mode.

<Location of the Correlator

Store file> is the location of the Correlator Store
file relative to the directory
$OV_CONF/ ecs/ d B.

Following is a sample of the NameSpace file:

#comrent line:path relative to the $OV_CONF/ ecs/ClI B directory
ATMFATM atm f s

ov=OVv/ov.fs

Cl SCO=Cl SCJ ci sco. fs

Rules while creating a NameSpace file

The NameSpace file must be edited following the rules provided, in order
that access to the Correlator Store files is successful.

1. The location of the Correlator Store file on the right hand side of “="
is always relative to the directory $OV_CONF/ ecs/ O B.

Chapter 5

123

Correlation Composer for the Developer
Planning Operator’s Profiles

IMPORTANT

2. Correlator Store files present above the directory $Ov_CONF/ ecs/ Cl B
are not accessible. They must be present under a subdirectory
(typically, with the same name as that of the Correlator Store) or
under the directory $OV_CONF ecs/ Ol B.

. No blank space allowed before and after the

sign.
. Every entry for a logical name is made on a separate line.

. Logical names of Correlator Stores must be unique.

o o b~ W

. All file location paths specified must be on a single line and must not
flow over to the next line.

~

. Ensure that the file is saved with the extension . conf always.

8. All comments are preceded by the hash (#) symbol.

Ensure that the NameSpace file referenced in the Deploy Configuration
file (refer to “Step 4: Creating the Deploy Configuration file” on page 129)
is the same file passed with the - Noption when Composer is started
(refer ovcomposer manpage). If the filenames differ, then it leads to
creating one set of Correlator Stores and deploying a completely different
set of Correlator Stores.

Security File

The Security File of the Composer contains a list of fields/parameters
that can be edited by the Operator. Every Correlator Store file created,
has a corresponding Security file associated and is stored in the same
directory as that of the Correlator Store file.

A default Security file is created for every Correlator Store file saved the
first time. This file is stored in the same directory as the Correlator Store
file. The default Security file(<Correl ator Store fil ename>. sec,
where <Correl ator Store fil enane> is the name of the Correlator
Store for which the security file is created), allows all values of
Parameters in the Alarm Definition section of all Correlators to be
edited. The Security file contains a list of editable fields of Correlators.
Only the values of these fields can be changed by the Operator. The
Security file is a simple ASCII file and can be edited using any standard
text editor.

The general syntax of the Security file is as follows:

124

Chapter 5

Correlation Composer for the Developer
Planning Operator’s Profiles

ALL_TEMPLATE=TOK_LI ST
ALL_TEMPLATE=CORRELATOR STATUS
GLOBAL_CONSTANT=GC LI ST
CORRELATOR TEMPLATE=TOK_LI ST
CORRELATOR NAME=TOK_LI ST

where,

ALL TEMPLATE=TCK LI ST All Correlator Templates have access
to edit values of parameters listed.
TOK_LI ST can be any token identifier
listed in Table 5-2 on page 128.

However, any other condition specified
in the Security file will not be
overridden by this statement.

ALL TEMPLATE=CORRELATCR STATUS With this condition the Operator
can choose to enable or disable the
Correlator to participate in
correlation. If this condition is not
specified, the Operator is not
allowed to enable/disable
Correlators. However, by default
all Correlators will participate in
correlation if it is already enabled.

GLCBAL_CONSTANT=QC LI ST List of Global Constants whose values
can be edited. GC LI ST is the list of
Global Constants whose value can be
edited.

CORRELATCR TEMPLATE=TCK LI ST List of parameters for the specific
Correlator Template type for which
values can be edited. TOK LI ST can be
any token identifier listed in Table 5-2
on page 128 and
OORRELATOR _TEMPLATE is the
Correlator template names as listed in
Table 5-1 on page 127.

CORRELATCR NAME=TCK LI ST List of parameters for the specific
Correlator whose values can be edited.
CCORRELATCOR _NAME is the name of the

Chapter 5 125

Correlation Composer for the Developer
Planning Operator’s Profiles

Correlator and TCK LI ST is any token
identifier as specified in Table 5-2 on
page 128.

Following is a sample of the Security file:

OV_Chassi s_C sco=NEW ALARM
USER_DEFI NED=ALARM_ SI GNATURE
ALL_TEMPLATE=W NDOW

From the above example, the following can be interpreted:

= For the Correlator OV_Chassis_Cisco, parameters defined for New
Alarm creation can be edited.

= For all User Defined correlators the values in the Alarm Signature
section can be edited.

« For all Correlator Templates other than User Defined and the
Correlator OV_Chassis_Cisco, the value for the Window parameter
can be edited.

IMPORTANT To edit the value of Window parameter for the USER_DEFINED
template or the OV_Chassis_cisco Correlator, it must be specified
explicitly. Type,

OV_Chassi s_ci sco=NEW ALARM W NDOW
USER_DEFI NED=ALARM_ S| GNATURE, W NDOW

Rules while creating the Security File

The Security file must be created following the rules given below:

1. Every condition to be specified must be made on a separate line.
2. Token parameters are separated by commas.

3. No blank space is allowed before and after the commas used as
seperators for token identifiers.

4. All comments are preceded by the hash (#) symbol.

5. Save the fileas <Correl ator Store fil ename>. sec always in the
same directory where the Correlator Store is stored.

126 Chapter 5

Correlation Composer for the Developer
Planning Operator’s Profiles

6. The order of precendence for conditions in the Security file is the
Correlator Name, Correlator Template Type and finally the condition
for all templates.

This precedence is arrived at wholly to provide complete security and
to have a rigid control on the Correlator Store.

7. Editing values of Global Constants

To edit the values of Global Constants, use the token identifier
GLOBAL_CONSTANT. For example, if you want to provide
permission to the user to edit the values of the Global Constants pi ,
ti meout and creat eti e, type,

GLOBAL_CONSTANT=pi , ti neout, createtine

8. Editing values specific to Correlator Templates

Provide appropriate token identifiers to make specific changes to
values of attributes/variables in Correlators. All identifiers must be
specified in upper case. Follow the conventions provided in the tables
below while creating the Security file.

Table 5-1 Token Identifiers

Parameter Token ldentifier
All Correlator Templates ALL_TEMPLATE
Enhance Correlator Template ENHANCE
Global Constants GLOBAL_CONSTANT

Multi Source Correlator Template | MULTI_SOURCE

Rate Correlator Template RATE
Repeated Correlator Template REPEATED
Suppress Correlator Template SUPPRESS

Transient Correlator Template TRANSIENT

User Defined Correlator USER_DEFINED
Template

Chapter 5 127

Correlation Composer for the Developer
Planning Operator’s Profiles

Table 5-2 Token lIdentifiers for TOK_LIST

Parameter

Token ldentifier

Advanced Filter

ADVANCED_FILTER

Alarm Signature

ALARM_SIGNATURE

All parameters

ALL_PARAM

Alter Alarm parameters

ALTER_ALARM

‘Clear Alarm’ of Transient CLEAR_ALM
Correlator Template
Count of number of alarms of COUNT

Rate Correlator Template

Create Callback function
parameters

CRT_CALLBACK

Correlator Description

DESCRIPTION

Discard Callback function section

DIS_CALLBACK

Discard alarm in Rate Correlator
Template

DISCARD

Discard Duplicate in Repeated
Correlator Template

DISCARD_DUP

Discard Immediately in Repeated
Correlator Template

DISCARD_IMD

Discard alarms on set completion
in Multisource Correlator
Template

DISCARD_ON_SET

Enable Threshold of Transient
Correlator Template

ENABLE_THR

Enhance the alarm always of
Enhance Correlator Template

ENHANCE_ALWAYS

‘Input Function’ in User Defined
Correlation

INPUT_FUN

128

Chapter 5

Table 5-2

Correlation Composer for the Developer

Planning Operator’s Profiles

Token lIdentifiers for TOK_LIST

Parameter

Token ldentifier

Message Key

MESSAGE_KEY

New Alarm parameters

NEW_ALARM

‘Output Function’ in User
Defined Correlation

OUTPUT_FUN

Participate In Other Correlation
of Suppress Correlator Template

PAR_OTHCORR

Wait for Set completion in Multi SET

Source Correlator Template

Threshold Count of the Transient | THR_CNT
Correlator Template

‘Threshold Window’ of Transient | THR_WIN
Correlator Template

Variables VARIABLES

Want Original alarm of Enhance

WANT_ORIGINAL

Correlator Template

Time period WINDOW

Step 4: Creating the Deploy Configuration file

The Operator is finally responsible to ensure that the correlation logic be
loaded into the ECS engine. Refer to Chapter 6, “Correlation Composer
for the Operator,” on page 137 for a detailed procedure. Composer
provides this facility by the Deploy feature. However, the Deploy
configuration file is maintained by the Developer.

The deploy procedure invokes the csdepl oy and csrer ge scripts. These
scripts merge the Correlator Store files, removes user description from
the merged Correlator Store and then loads the file into the ECS engine.
These scripts can also be separately executed from the command prompt.
For more information on how Correlator Stores are merged refer to
“Merging Correlator Store files” on page 114.

Chapter 5

129

Correlation Composer for the Developer
Planning Operator’s Profiles

The deploy procedure refers to the Deploy Configuration file, that
constitutes the following:

< Name of the Correlator Store file after merge

= Path to where the NameSpace file for the associated Correlator Store
file(s) is present.

= Name of the logfile to which the logs while merging are written into.
= ECS Engine Instance to which the merged Correlator Store is loaded.

= Logical name of the merged Correlator Store file.

Creating and Updating Deploy Configuration files

The Deploy Configuration file contains information required by the ECS
engine at the time when the Correlator Store files are loaded into the
ECS engine. The Deploy Configuration file is an ASCII file to which the
above information can be added. A sample of the Deploy Configuration
file is shown below:

#Following is the default configuration file for the depl oy
operation fromconposer GJ in standal one operator Mode and NNM
CMG Mode.

#SUPPORT_DEPLOY_ON _GUI - determines if the depl oy should be
supported fromthe QU .(Not inplenented at the tine of this
rel ease)

#FI NAL_CS_NAME - path nane of the nerged Correlator Store to
which all the correlator store files configured in
NameSpace. conf file are nmerged in to.

#NAMESPACE _FI LE - pat h name of the NaneSpace. conf configuration
file used for depl oy operation.

#MERGE_LOG FILE - path nane of the log file where the nerge
process | ogs are kept.

#CS_LOG CAL_NAME - | ogical name of the correlator store | oaded
in the engine.

#ENG NG_| NSTANCE - instance nunber of the ECS Engine to which
the correlator store should be | oaded.

SUPPORT_DEPLOY_ON_GUI =yes

FI NAL_CS_NAME="$OV_CONF/ ecs/ ci rcui t s/ Conposer. f s"
NAMESPACE_FI LE="$OV_CONF/ ecs/ Cl B/ NameSpace. conf "

130

Chapter 5

Correlation Composer for the Developer
Planning Operator’s Profiles

MERGE_LOG FI LE="$0OV_LOd ecs/ csnerge. | 0g"”
ENG NE_I NSTANCE=1
CS_LOd CAL_NANME=Conposer

Rules while editing the Deploy Configuration file

A # sign precedes each comment. All text from the start of the
comment to the end of the current line is ignored.

File locations are always specified with the absolute path.
Environment variables can also be used while specifying file
locations.

File locations must be enclosed within quotes.
No blank space allowed before and after the “=" sign.
Parameters that must be given values are

SUPPORT_DEPLOY_ON QU The user is given the option to choose
enabling of deploy of the merged
Correlator Store via the GUI. This
feature is not supported at the time of
this release.

FI NAL_CS NAME Name of the merged Correlator Store
file
NAMESPACE FI LE Name of NameSpace file from which

the Correlator Stores are picked up
from.

MERGE LOG FI LE Name of the logfile to which the logs of
the Correlator Store merge are written
into.

ENG NE_| NSTANCE The ECS Engine instance number for
which the Correlator Store file will be
loaded.

CS LOd CAL_NAME Logical name of the merged Correlator
Store.

IMPORTANT Ensure that the NameSpace file referenced in the Deploy Configuration
file (refer to “Step 4: Creating the Deploy Configuration file” on page 129)
is the same file passed with the - Noption when Composer is started

Chapter 5

131

Correlation Composer for the Developer
Planning Operator’s Profiles

(refer ovcomposer manpage). If the filenames differ, then it leads to
creating one set of Correlator Stores and deploying a completely different
set of Correlator Stores.

132 Chapter 5

In the NNM
Environment

Step 1

Step 2

Correlation Composer for the Developer
Configuring the Operator

Configuring the Operator

Each Operator must have the following information set up for access to
the Composer:

= NameSpace file

= Security file associated to the Correlator Store

= Deploy Configuration file

For details on editing NameSpace and Security files in the NNM

environment refer to Chapter 10, “Correlation Composer for NNM,” on
page 205

Follow the steps given below to provide access to a Operator to access the
Correlator Store files.
Create the NameSpace file

A default NameSpace file is available at $Ov_CONF ecs/ Cl B. To override
the specifications present in the NameSpace file, do the following:

1. Copy the default NameSpace file to any local directory.

2. In the NameSpace file, list the names of Correlator Stores and the
path of the Correlation Store (relative to $OV_CONF/ecs/CIB).

Refer to “Rules while creating a NameSpace file” on page 123.

3. Save the file with extension .conf .

Create the Security file

A default Security file is created when the Correlator Store file is saved
the first time. This file is present in the same directory as the Correlator
Store. To override the specifications present in the Security file:

1. List the token identifiers and the parameters that can be edited.
Refer to “Rules while creating the Security File” on page 126.

2. Save the fileas <Correl ator Store fil ename>. sec. Ensure that
the file is stored in the same directory where the Correlator Store file
is stored.

Chapter 5

133

Correlation Composer for the Developer

Configuring the Operator

IMPORTANT It is the responsibility of the Developer to ensure that correct
permissions are provided to the file, so that this file is not
overwritten or edited erroneously.

Step 3: Create the Deploy Configuration file

IMPORTANT

A default Deploy Configuration file is available at $Ov_CONF/ ecs/ d B.
To override the specifications present in this file:

1. Copy the default Deploy Configuration file to any local directory.
2. Edit the file with values /names specific to your environment.
3. Save the file with the extension . conf .

The newly created NameSpace and Deploy Configuration files are bound
together based on the entry NAMESPACE FI LE in the Deploy
Configuration file. Hence, ensure that the correct NameSpace filename is
provided in the Deploy Configuration file.

After creating the configuration files for your environment, ensure that
the correct filenames with locations are specified at the time of startup of
Composer (refer to ovcomposer manpage). This is mandatory because if
no files are specified, then the Composer picks up the default
configuration files.

134

Chapter 5

NOTE

Correlation Composer for the Developer
Deploying the Correlator Store

Deploying the Correlator Store

The Developer deploys the Correlator Store into the ECS engine. Before
deploying, make a copy of the existing NameSpace. conf file, rename it,
and update it to contain the list of Correlator Stores you want to deploy.

The Deploy Configuration file (default file is
$OV_CONF/ ecs/ A B/ Devdepl oy. conf) should then be updated to refer to
the newly created namespace file.

The above changes are required only if you do not want to disturb the
existing configuration details in the NameSpace. conf file.

To load the Correlator Store file into the ECS engine, do one of the
following:

< Ensure that all Correlator Stores have been saved and closed. Select
pt i ons->Depl oy.

= Click the Depl oy icon.

The Deploy Status window appears and displays one of the following:

= If the deploy is successful, the Deploy Status window indicates
success.

« If an error occurred, the Depl oy Status window indicates failure.
To view the details of the error, select [Det ai | s] in the Depl oy
St at us window. To close the window, select [(K] .

Deploy from command prompt

The Correlator Stores can be deployed from the command prompt also
using the csdepl oy. ovpl script provided. The csdepl oy. ovpl script
refers to the Deploy configuration file required by the Composer. Refer to
“Step 4: Creating the Deploy Configuration file” on page 129 for details
on the Deploy configuration file. The csdepl oy script resides in the
$OV_BI Ndirectory. To deploy the Correlator Store, type

Chapter 5

135

Correlation Composer for the Developer
Deploying the Correlator Store

csdepl oy. ovpl -p <Deploy Configuration fil ename>
where,

<Depl oy Configuration fil ename> is the name of the Deploy
Configuration file. If no filename is specified, the default Deploy
Configuration file $OV_CONF/ ecs/ Cl B/ Devdepl oy. conf is selected.

The csdepl oy. ovpl -h command summarizes the usage of csdepl oy.

136 Chapter 5

6 Correlation Composer for the
Operator

Chapter 6 137

Correlation Composer for the Operator

This chapter describes:

= The role of the Operator and access rights.

= The procedure to access the Composer for the Operator.

138 Chapter 6

Correlation Composer for the Operator
Composer in the Operator mode

Composer in the Operator mode

Correlation logic is developed by the Correlator Store Developer who is
also responsible to provide access rights to the Operator. The Operator
has limited access on the Correlator Store files. These rights are
governed by the information provided in the Security and Namespace
files. The Operator:

e Cannot create new Correlators and hence no new Correlator Stores
too.

= Has access only to those files as specified in the NameSpace file. This
file is created and maintained by the Developer. Refer to “Planning
Operator’s Profiles” on page 122 for more details. Only those files
specified in the NameSpace files will be visible to the Operator in the
NameSpace table in the Composer.

= Can edit values of only those parameters that are specified in the
Security file. This file is created and maintained by the Developer.
Refer to “Planning Operator’s Profiles” on page 122 for more details.

e Can enable/disable Correlators in Correlator Stores.

Starting the Composer in Operator mode
To start the Composer in the Operator’'s mode, type
ovconposer -mo

The Composer in the Operator’s mode opens with the list of Correlator
Store files and the last modified time of the Correlator Store in the
NameSpace table.

Chapter 6 139

Correlation Composer for the Operator
Composer in the Operator mode

Figure 6-1 Composer in the Operator’s mode

"% HP OpenVfiew Correlation Compozer - [fetefopt/Oizhare/c onflecs/CIB/NNME azic 12]

o

File Correlations Options Help

ol=al2)

NameSpace Table Corfl
Hame |Ti|‘|‘|E5...| P P Hame & Y P
HNMB asic | B 0_Chassiz_Cisco Uzer Defined [Monite
Madalf dan 12 E 0 _Connector_|ntermittentStatus Rate LiEtensI
FollertPlus |Jan 12 | B OW_multipleReboots R ate Ligtensl
= m
[Dpened Cormelator Store fetefoptf/0Wisharefcontiecs/CIBYMNMB asic.fs I SHMF
. J

This section describes the functionality provided by the Composer in
order to maintain security while editing Correlator Store files. The main
functionality offered to Operators are:

e Mutual Exclusive Access to Correlator Store files

= Deploy the Correlator Store files

NOTE The following are assumed for the rest of this chapter:

1. The Developer has created the NameSpace file.

2.All references made to Correlator Store files are specified in the
NameSpace file

140 Chapter 6

Correlation Composer for the Operator
Composer in the Operator mode

Mutual Exclusive Access to Correlator Store files

To avoid overwriting of data in Correlator Stores due to concurrent
access by multiple users (Developers or Operators) the Composer
provides the facility to lock a file.

File locking for Correlator Stores functions in the following modes:

= Composer’s Operator mode
= Composer’s Developer mode
- Standalone Deploy script

= Correlator Store Deploy procedure. Refer to “Deploying the
Correlator Store” on page 142.

= Standalone Merge script when invoked with the -namespace option.
Refer to “Merging Correlator Store files” on page 114.

When a Correlator Store that is not currently in use is opened, a lock file
is created. The lock file is of the format <f i | enane>. | ock, where

<fi | ename> is the name of the Correlator Store. Acquiring a lock
provides total access on the Correlator Store file.

The creation of the lock file fails if the Correlator Store is in use. Each
mode operates differently in this situation. Refer to the following table:

Mode Action

Operator Composer displays an error message and opens
the file in read-only mode

Developer Composer displays an error message and
aborts the file open action

Standalone Deploy displays an error message and aborts the

script deploy action.

Deploy procedure displays an error message and aborts the
deploy action

Standalone merge displays an error message and aborts the

script merge action

The lock is removed when the Correlator Store is closed.

Chapter 6 141

Correlation Composer for the Operator
Composer in the Operator mode

NOTE

WARNING

If any of the above actions abort abruptly while a Correlator Store is
locked, use one of the following mechanisms to recover the Correlator
Store:

= In the Operator mode, select Opt i ons->For ceful | y Unl ock after
highlighting the locked Correlator Store.
The same can be done in the case of Deploy operation from the
Composer.

= In the Developer mode, the Developer can manually remove the lock
file, <Correl ator Store filenanme>.l ock file, which resides on the
same directory as the correlator store.
The same can be done in the case of abort during standalone deploy
and merge.

Though the user is allowed to make changes to the Correlator Store, the
Operator does not have mutual exclusive access to this file.

It is recommended that this option be chosen with caution as
there is always a possibility that important data could be lost
while multiple operators save the Correlator Store files.

Deploying the Correlator Store

The Operator deploys the Correlator Store into the ECS engine. To load
the Correlator Store file into the ECS engine, do one of the following:

< Ensure that all Correlator Stores have been saved and closed. Select
pt i ons->Depl oy.

= Click the Depl oy icon.

o

Lo |
=l =

The Deploy Status window appears and displays one of the following:

= If the deploy is successful, the Deploy Status window indicates
success.

142

Chapter 6

Correlation Composer for the Operator
Composer in the Operator mode

« If an error occurred, the Depl oy Status window indicates failure.
To view the details of the error, select [Det ai | s] in the Depl oy
St at us window. To close the window, select [(K] .

Deploy from command prompt

The Correlator Stores can be deployed from the command prompt also
using the csdepl oy. ovpl script provided. The csdepl oy. ovpl script
refers to the Deploy configuration file required by the Composer. Refer to
“Step 4: Creating the Deploy Configuration file” on page 129 for details
on the Deploy configuration file. The csdepl oy script resides in the
$OV_BI Ndirectory. To deploy the Correlator Store, type

csdepl oy. ovpl -p <Deploy Configuration fil ename>
where,

<Depl oy Configuration fil ename> is the name of the Deploy
Configuration file. If no filename is specified, the default Deploy
Configuration file $OvV_CONF/ ecs/ O B/ depl oy. conf is selected.

The csdepl oy. ovpl -h command summarizes the usage of csdepl oy.

Chapter 6

143

Correlation Composer for the Operator
Composer in the Operator mode

144 Chapter 6

7 Composer Built-In Functions

Chapter 7 145

Composer Built-In Functions

This chapter describes all the Built-In functions provided by the
Correlation Composer.

146 Chapter 7

Table 7-1

Composer Built-In Functions
Composer Built-in Functions

Composer Built-in Functions

The Composer comes bundled with built-in functions to perform simple
logging, retrieving and manipulation of event data. The table below lists
the built in functions along with their descriptions.

Composer Built-in functions

Function Description
Name
add Returns the sum of values that are passed to it
bi t and The bitwise and operation on its arguments
bitinv The bitwise inverse of the argument
bi t or True if either argument is true
bi t xor The bitwise exclusive-or of the two arguments
di v Integer divide
get Byl ndex | Returns from the specified element from the list
get Count er Returns the value stored in a counter
get Hour Returns the current hour
get M nut e Returns the current minute
get Mont h Returns the current month
get Ti me Returns the time(in seconds) since epoch
nakeLi st Returns a list that contains the set of arguments
passed to it
nod Returns the first integer modulus the second integer
mul Return the product of values passed to it
retrieve Retrieves a value stored previously
retrievstr Retrieves a string stored previously

Chapter 7

147

Composer Built-In Functions
Composer Built-in Functions

Table 7-1 Composer Built-in functions (Continued)

Function

Name Description

set Count er Stores the incremented value

store Stores a value based on a key
storeStr Stores the string value based on a key
sub Returns the difference of the values passed to it
add
Syntax add intl int2
Where:

intl and i nt 2 are integers.

Description The add function returns the sum of values passed to it
Example add 1 2 returns the value 3

bitand
Syntax bitand intl1 int2

Where:

intlandint2 areintegers.

Description The result is the integer value of a bitwise operation between the two
arguments.
Example bi tand 7 0 returns the value 0

bi tand 7 1 returns the value 1

bitinv

Syntax bitinv int

148 Chapter 7

Description

Example

Syntax

Description

Examples

Syntax

Description

Examples

Composer Built-In Functions
Composer Built-in Functions

Where:

i nt is an integer

The result is the integer value of a bitwise inversion of the argument.
The argument is treated as a 32 bit unsigned bit pattern.

bi tenv 1 returns the integer -2

bitor

bitor intl int2
Where:

intlandint2 areintegers.

The result is the integer value of a bitwise or operation between the two
arguments. The arguments are treated as 32 bit unsigned bit patterns.
bitor 7 0 returns the value 7.

bitor 7 1 returns the value 7.

bitor 8 1 returns the value 9.

bitxor

bitxor intl int2
Where:

intlandint2 are integers.

The result is the integer value of a bitwise excl usi ve or operation
between the two arguments. The arguments are treated as 32 bit
unsigned bit patterns.

bi txor 7 0 returns the integer 7.

bi txor 7 1 returns the integer 6.

bi t xor 8 1 returns the integer 9.

Chapter 7

149

Composer Built-In Functions
Composer Built-in Functions

div

Syntax intl divint2
Where:

i nt 1 is the integer dividend.
i nt 2 is the integer divisor.

Description The di v function divides i nt 1 by i nt 2 to produce an integer result.

Example 7 div 3resultsin?2
getBylndex

Syntax get Byl ndex |ist index failval ue
Where:

l'i st is a list of any data types
i ndex is the position from which the value is to be extracted
fail val ue is the value returned if the get Byl ndex function fails

Description The get Byl ndex function returns the element at i ndex position from the
[i st passed in. If i ndex number of elements do not exist, then the
function returns the f ai | val ue.

Typically the get Byl ndex function is used to retrieve individual
elements from the return value of the previous call to an external
function.

Examples Let there be a external function called get | nt er f aceDet ai | s which
returns the i nt erf aceName and i nt er face | P Addr ess and this return
value bound to a variable called det ai | s. To extract the IP address, the
getBylIndex function will be called as
get Byl ndex details 2 0
If the get Byl ndex function fails, the value returned is 0.

See Also = ‘“retrieve” on page 153
= “store” on page 156

150 Chapter 7

Syntax

Description

Examples

See Also

Syntax

Description

Syntax

Composer Built-In Functions
Composer Built-in Functions

getCounter

get Counter tolnit keyl, key2...
where,
tol ni t is the method in which the value will be retrieved.

keyl, key2,...are the keys based on which the value is retrieved.
Refer to “Concept of Keys” on page 158 to understand how the keys
function.

The get Count er function retrieves the counter values stored against the
keys. The value should have been stored previously using the
set Count er call with the same set of keys.

The field t ol ni t can take the following values

1 The stored value is returned and the storage memory
occupied by this value is freed.

0 The stored value is returned, but the storage space is
not deleted and further calls to retrieve will return the
stored value.

The example below illustrates the usage of the getCounter function.
get Counter 1 agent_addr arrival _tine.

The counter value stored under the keys agent _addr and arrival tine
are retrieved and the memory space occupied is freed.

= “setCounter” on page 155
getHour

get Hour ()

The get Hour function returns the current hour. The result is an integer
and value can be between 0-23. All time is represented in UTC.

getMinute

get M nut e()

Chapter 7

151

Composer Built-In Functions
Composer Built-in Functions

Description The get M nut e function returns the current minute. The result is an
integer and value can be between 0-59. All time is represented in UTC.
getMonth

Syntax get Mont h()

Description The get Mont h function returns the current month. The result is an
integer and value can be between 1-12.
getTime

Syntax getTine ()

Description The get Ti ne function returns the time in seconds since epoch(1 January
1970). The result is a string.
makeL.ist

Syntax makelL.ist ar gunent s
Where:
ar gunent s is the list of arguments that are passed to the function

Description The makelLi st function returns a list that contains the set of arguments
passed to it. Typically, this function is used as the input and/or output
function in the user-defined Correlators as these functions require a list
as the return type.

Examples makeLi st 10, 20, 30
mod

Syntax intl nod int2
Where:

i nt 1 andint 2 are both integers.
152 Chapter 7

Description

Examples

Syntax

Description

Examples

Syntax

Description

Composer Built-In Functions
Composer Built-in Functions

The result is the integer value of the remainder after dividing | nt 1 by
I nt 2.

7 nmod 3 returns the integer 1.

1 nod 1 returns the integer 0.

7 nmod (- 3)returns the integer 1.

(-7) nod 3returns the integer -1

mul

mul intl int2
Where:

intlandint2are two integers
The rmul function returns the product of the two values.

mul 3 4 returns 12

retrieve

retrievetolnit failval ue keyl, key2,...
Where:
tol ni t is the method in which the value will be retrieved.

fai | val ue is the value that is returned by the function if the retrieve
function fails.

keyl, key2,... are the keys based on which the value is retrieved.
Refer to “Concept of Keys” on page 158 to understand how keys function.

The retri eve function retrieves the values stored previously. It is
necessary that the values to be retrieved be called under the same keys
in the same order.

The parameter t ol ni t can take the values:

Chapter 7

153

Composer Built-In Functions
Composer Built-in Functions

1 The stored value is returned and the storage space
occupied by this value is freed and further calls to
retrieve, without a preceding call to store, will result in
an error, and the fai | val ue is returned.

0 The stored value is returned, but the storage space is
not deleted. Further calls to retrieve will return the
stored value.

The parameter f ai | val ue is the value returned if no value has been
previously stored against the keys specified.

Examples The following example illustrates the usage of the retrieve function
retrieve 1 0 agent_addr, Constants. Type2 SP
The values associated with the keys agent _addr and
Const ant s. Type2_SP are retrieved and the memory occupied is freed. If
the retrieve function fails, the value returned is 0. All further calls to
retrieve, without a preceding call to store, will result in an error and will
return the failvalue.
retrieve 0 O agent _addr, Constants. Type2 SP
The values associated with the keys agent _addr and
Const ant s. Type2_SP are retrieved, but the memory used for storage is
not deleted and all succeeding calls to retrieve will return the stored
value. If the retrieve function fails the value returned is 0.
See Also = ‘“store” on page 156
retrieveStr
Syntax retrieveStr tolnit failval ue keyl, key2,...
Where:
tol ni t is the method in which the value will be retrieved
fai | val ue is the value to be returned by the function if the retrieve
function fails.
keyl, key2,...are the keys based on which the value is retrieved.
Refer to “Concept of Keys” on page 158 to understand how keys function.
Description The retrieveStr function retrieves the value(as a string) stored
previously via the storeStr function based on the same set of keys.
154 Chapter 7

Example

See Also

Syntax

Description

Composer Built-In Functions
Composer Built-in Functions

The following example illustrates the usage of the retrieveStr function
retrieveStr 1 0 agent_addr arrival _time

The value associated with the keys agent _addr and arrival _tineis
retrieved(in string format) and the memory occupied is freed. If the
retrieve function fails, the value returned is 0.

= ‘“storeStr” on page 157

setCounter

set Counter tolnit increment w ndow keyl, key2,...
Where:

tol ni t is the method in which the value will be set.

i ncrenent is the increment value.

w ndowis the time period for which the value will be stored.

keyl, key2,... are the keys against which the values will be set. Refer
to “Concept of Keys” on page 158 to understand how keys function.

The set Count er function increments the value stored under the keys by
increment value. If no value has been previously stored then the value
passed is stored. The field tolnit can take the following parameters

0 The stored value is incriminated by the amount
specified in the increment value but the storage space
is not deleted and further calls to retrieve will return
the stored value.

1 The storage memory is reintialized, freed and the value
passed is returned. Note that, the return value is the
stored value.

2 If the resultant value after the operation(increment
added to the stored value) is zero the memory
associated is freed.

The value is stored for as long as the time specified in the window, after
which the value is backed out. For example, assume that the value in the
counter before an operation is 10 and a set Count er operation is done,

with an increment of 5 and a wi ndowof 3 seconds. Now, the counter value
will be 15. After 3 seconds the set Count er operation is reversed. In this

Chapter 7

155

Composer Built-In Functions
Composer Built-in Functions

example, it would result in 5 being decremeneted from the current
counter value. The wi ndowcan also be set to 0 which means the value is
stored till the keys are reintialized.

Examples The following example illustrates the usage of the setCounter function
set Counter 0 6 10 agent_addr arrival tine
If the value stored previously is 5, the new value that will now be stored
is 6+5=11. However, if there was no value stored previously, the value
stored will be 6 under the keys agent _addr and arri val _ti ne. The new
value is stored for a period of 10 seconds.

See Also = ‘“getCounter” on page 151
store

Syntax st ore val ue wi ndow keyl, key2,...
Where:
val ue is the value that is to be stored.
w ndowis the time period for which the value will be stored.
keyl, key2,... are the keys based on which the value is stored. Refer
to “Concept of Keys” on page 158 to understand how keys function.

Description The st or e function stores a value based on the key(s) for a given time
period or till another call to store. It is mandatory that there be at least
one key for the value being stored. Another call to store under the same
key(s) will overwrite the currently stored value. The parameter wi ndow
can also take the value
n The time in seconds.This value is stored for ‘n’ seconds.
-1 The value is stored forever.

Examples The following example illustrates the usage of the store function
store uuid agent _addr, Constants. Type2_ SP
The uui d specified in the event is stored under the keys agent _addr and
Const ant s. Type2_SP

See Also < ‘“retrieve” on page 153

156 Chapter 7

Syntax

Description

Examples

See Also

Composer Built-In Functions
Composer Built-in Functions

storeStr

storestr toAppend seperator val ue wi ndow keyl, key2,...
Where,

t oAppend parameter decides how the value will be stored.

seper at or is the field seperator.

val ue is the value to be stored.

wi ndowis the time period for which the value will be stored.

keyl, key2... are the keys based on which the value will be stored.
Refer to “Concept of Keys” on page 158 to understand how keys function.
The st oreStr function stores the stringified value based on the key(s)
for a specified time period.

The parameter toAppend can take the following values:

0 The value is appended to the existing value and is
stored based on the keys

1 The value is stored based on the keys. Any values
stored previously are erased and only the new value is
stored.

The parameter wi ndowcan also take the value
n The time in seconds.This value is stored for ‘n’ seconds.

-1 The value is stored forever.

The following examples illustrates the usage of the st oreStr function
storeStr 0 “:” Hello 10 agent _addr arrival tine
storeStr 0 “:” Wrld 5 agent_addr arrival _tine

Thefirst call to storeStr function stores the string “Hel | 0” for a
period of 10 seconds while the second call stores Wr | d for 5 seconds. A
call toretrieveStr will return Hel | o: Wor | d. After 5 seconds a call to
retrieveStr will returnHell oandacalltoretri eveStr after 10
seconds will return the failvalue.

= ‘“retrieveStr” on page 154

Chapter 7

157

Composer Built-In Functions
Composer Built-in Functions

Syntax

Description

Example

NOTE

sub

sub intl int2
Where:

i nt 1 andint 2 are the any two integers.
The sub function returns the difference of values passed to it

sub 20 10 returns the integer 10

Concept of Keys

For all the st ore and retri eve functions (that is, store, retri eve,
storeStr,retrieveStr) the value stored/retrieved is against the keys
passed into the function as parameters. The functions expect a minimum
of one key to be passed in. However, multiple keys can also be used.
When multiple keys are used the function internally would concatenate
the values referred to by these keys and create a single key.

For example, a key X which holds a value abc is equivalent to the set of
keys x, y, z where they hold values a, b, c respectively. Ensure the
order of the keys is maintained. Taking the above example, passing in
keys z, y, x would resultin a final key value of cba and NOT abc.

The store and r et ri eve functions use a global hash table. While this is
a powerful mechanism of passing data between Correlators, an incorrect
usage would result in Correlators overwriting each others spaces. For
example, consider Correlatorl stores a value against a key whose value
is abc, and Correlator2 stores a value against a key(s) whose value also
evaluates to abc. In such a situation, the value stored would be the last
value stored. To ensure that Correlators do not step on each other, keys
should be chosen such that they are unique. (a good way to ensure this is
to use the Correlator Name as part of the key)

The store and retri eve functions use a different hash table than that
ofastoreStr andretrieveStr.

158

Chapter 7

8 Use Cases

Chapter 8 159

Use Cases

This chapter provides use cases to help you understand the workflow
schema defined in the Correlation Composer. You can plan your system
configuration following the examples in this chapter. Use cases are
provided to define the following Correlator Templates:

“Case 1: Enhance Correlation” on page 161

e “Case 2: Multi-Source Correlation” on page 164
= “Case 3: Rate Correlation” on page 168

e “Case 4: Repeated Correlation” on page 172

= “Case 5: Suppress Correlation” on page 176

= “Case 6: Transient Correlation” on page 179

= “Case 7: Multi Event Correlation accessing external topology” on
page 185

NOTE All the examples of alarms used in this document used the SNMP
Trap-PDU format. The Composer however is format independent and
supports CMIP, OPC and X733 event types.

160 Chapter 8

Use Cases
Case 1: Enhance Correlation

Case 1: Enhance Correlation

Consider a Temperature alarm as shown below.

Tr ap- PDU

enterprise {1 2 3 4 995},

agent-addr internet : “\x0A\x00\x01\x7F"
generic-trap 6,

specific-trap 95,

time-stanp 414746291,

vari abl e- bi ndi ngs{
{

nane { 136141112 7 2 17 0},
val ue sinple : nunber : 95

Looking at the alarm, it is not immediately evident to the operator what
the problem could be. The requirement is to add a variable binding with
the string “Temperature of the device is too high - Please check for
air-conditioning and/or fan failure”

What you need to know?

1. How do you identify Temperature alarms?

All Temperature alert failure will have the following attributes
which will identify them

e enterprise issetto1.2.3.4.995
e generic-trapissetto6
e specific-trapis95
2. How do you differentiate a Temperature ON alarm from an

Temperature OFF alarm?

< ifthespecific-trapissetto95,itisan Temp ON alert

Chapter 8 161

Use Cases

Case 1: Enhance Correlation

NOTE

3. What do you do with the original alarm?

The user can choose to retain the original alarm along with the
enhanced alarm. The table below describes the functionality of the

buttons in the Enhance Correlator Template window.

Button Selected Functionality
Name
ént Yes The original alarm is output along with
Qi gi nal the enhanced alarm
No Only the enhanced alarm is output, the
original alarm is discarded.
Enhance Yes Alarms will be modified and output
A ways regardless of any other correlation
deciding to discard this alarm
No Alarms will be modified if no other

Correlator decides to discard this alarm

It is recommended that the [Enhance Al ways] button be selected with

caution, as this leads to Enhancing all alarms.

Follow the procedure given below to define the Enhance Correlator

Template:

1. Select Correl ati ons: Correl at or Tenpl at es- >Enhance from the
Correlator Store window. The Enhance Correlator Template window

opens.

2. Enter the Nane for the Correlator in the Name text box.

3. Enter the Description for the Correlator in the Descri pti on text box

of the Correlator window.

4. Enter the following values to define the Alarm Signature
e enterprise = 1.2.3.4.995
e generic-trap = 6

e gpecific-trap= 95

162

Chapter 8

Use Cases
Case 1: Enhance Correlation

5. Declare the variable errstr

a. Typeerrstr in the Name cell.
Select “Constant” from the Operator drop down menu

c. Enter the string in the Value field “Temperature of the device is
too high - Please check for air-conditioning and/or fan failure”

NOTE The above steps will hereinafter be referred as errstr const ant
<st r> or the equivalent of the above expression.

6. Click on the New Al ar s tab to alter the alarm. The New Alarm
panel opens.

7. Select Al ter Specification from the pop down menu. The Al ter
A arm Definition table is displayed.

8. Define the following attributes to alter the alarm

« selectvari abl e- bi ndi ngs[1] . val ue from the Fi el d drop down
menu

= select repl ace from the Mode drop down menu
« selecterrstr from the Value pop up menu
9. Click on [K] to complete the definition of the Correlator.

Notice that the correlation you have just defined is displayed in the
Correlator Store table.

Chapter 8 163

Use Cases
Case 2: Multi-Source Correlation

Case 2: Multi-Source Correlation

Between two switching entities there exist multiple redundant SS7
links, which together form a logical entity called a signalling set. If the
trunk between the two fails then an SS7 Link Set failure is received with
a SS7 failure alarm for each individual SS7 link. The requirement is to
suppress all individual SS7 failures and forward only the SS7 Link Set
failure.

A sample SNMP trap PDU for an SS7 Link failure could appear in an
event log as below:

Tr ap- PDUY{

enterprise{1l 2 3 4 997}

agent-addr internet ; “\x0A\x00\x01\x7F",

generic-trap 6,

specific trap 55,

time-stanp 414746291,

vari abl e- bi ndi ngs {

{

name {1 36 14 111 2 17 17 0},
value sinple : string “Link Failure -10 on Signalling set 2"

}

A sample SNMP trap PDU for an SS7 Link Set failure could appear in an
event log as below:

Tr ap- PDUY{
enterprise {1 36 14 1 999 9}
agent-addr internet : “\x0A\x00\x01\x7F",
generic-trap 6,
specific-trap 56,
time-stanp 414746291,
vari abl e- bi ndi ngs {
name { 136 14111 2 17 2 17 0},
value sinple :string :"Link Set Failure - 2~
}

}
}

164 Chapter 8

Use Cases
Case 2: Multi-Source Correlation

What you need to know?

1. How do you identify the SS7 Link failure alarms?

All SS7 Link failure alarms will have the following attributes that
can identify them:

e enterprisesetto1.2.3.4.997

e generic-trapsetto6

e sgspecific-trapsetto55

2. How do you identify the SS7 Link Set failure alarms?

All SS7 Link Set Failure alarms will have the following attributes
that can identify them:

e enterprise setto1.2.3.4.999

e generic-trapsetto6

e specific-trapsetto56

3. How do you identify the SS7 Link and SS7 Link Set failures are
emitted from the same device and belong to the same set?

= If the SS7 Link Set ID and the SS7 Link ID are the same AND
the agent addresses for both the failure alarms are the same,

then the SS7 Link failure belongs to the SS7 Link Set failure.

4. What do you with the various alarms?

Alarms can be discarded based on whether the set is complete or not.
The table below describes the functionality of the various buttons in
the Multi-Source Correlator Template window.

Button Selected Functionality
Name
Discard on | Yes The alarm will be discarded if the set
Set is complete, else will be forwarded
Conpl eti on -
No The alarm will be forwarded
regardless of set completion.

Chapter 8

165

Use Cases

Case 2: Multi-Source Correlation

Button

Selected Functionality
Name

W ndow Mandatory Field - The time period
Peri od within which all alarms of the set need

to arrive for the set to be considered
complete. The alarms can arrive in any
order.

Set No Operates in Mode 1. Refer to

“Multi-Source Correlator Template” on
page 25

Yes Operates in Mode 2. Refer to
“Multi-Source Correlator Template” on
page 25

Follow the procedure given below to define the Multi-Source Correlator
Template:

1.

Select Correl ati ons->Correl ati on Tenpl at es->Mil ti - Sour ce
from the Correlator Store window. The Multi-Source Correlator
opens.

. Enter the Nane of the Correlator and Descri pti on of the Correlator.

3. Enter the Description of the Correlator in the Descri pti on text box.

. Click on the Definition tab to open the Al arm Defi ni ti on panel.

Name the alarm. In the Nane panel on the left side of the window,
enter the name for the alarm-SS7 Link failure.

. Define the Al ar m S gnat ur e to identify the SS7 Link failure alarms

Enter the following values in the Al ar m Si gnat ur e table
e enterprise id=1.2.3.4.997
e generic trap=6

e specific trap=55

. Declare the following variables in the Vari abl es table

e SS7 Link ID extracted from var i abl e- bi ndi ngs[0] . val ue.
Enter the name of the variable- SS7 Link ID

166

Chapter 8

10.

11.

12.

Use Cases
Case 2: Multi-Source Correlation

= Type set to “Extract”. Enter *#-#<#.linkID>* in the Ext r act
Pat t er n window.

= Pattern Separator set to “#”

This extracts the SS7 Link ID and assigns the extracted numeral to
the variable |i nkl D

. Define the Message Key. Click on the Message Key text box. A pop

up menu is displayed. Select SS7 Link Failure->SS7 Link
ID->linkID.

. To create a set of the alarms, click the Set check box.

. If you want to alter the alarm, define the changes in the Al t er

Al arm Def i ni ti on table.

Repeat Steps 3 to 7 to define more alarms. Right click and select Add
to add a new alarm. In this case

= Define the Alarm Signature to identify the SS7 Link Set failure

— enterprise=1.3.6.1.4.1.999.9
— generic-trap =6
— speci fic-trap=56
= Declare a variable SS7 Link Set failure extracted from Vari abl e

Bi ndi ngs[0] . val ue. Enter the extract pattern =
*<S><#. set | D>

= Select the Message Key to SS7 Link Set Fail ure->SS7 Link
Set I D>setlD

Enter the following parameters in the Par anet er s Panel:

= Define the Window Period for which you want to monitor the
occurrences of the alarms.

= Select the Set Complete check box to emit the alarm only if the
set is complete. For example a Power Down alarm arriving after
an occurrence of a Power Up and Power Down pair will not be
emitted out until a Power ON alert is received.

Click on [&] to complete the definition of the Signature file. Notice
that the correlation you have just defined is displayed in the
Correlator Store table.

Chapter 8

167

Use Cases
Case 3: Rate Correlation

Case 3: Rate Correlation

Radio antennas frequently report failures during bad weather
conditions. The requirement is to discard all radio antenna failures if the
rate of failure is below the 5 failures in 30 minutes. If the rate exceeds
this threshold then forward the alarm to the browser after annotating
the alarm with the rate.

A sample SNMP trap PDU for an Antenna failure could appear in an
event log as below:

Tr ap- PDUY{

enterprise {1 2 3 4 998}

agent - addr i nternet
generic-trap 6,
specific trap 80,
time-stam 414746291,
vari abl e- bi ndi ngs{

{

“\ XOA\ x00\ x01\ x7F",

name{1 3 6 1 4 11 2 17 2 1 0},

val ue si npl e: nunber

b
{

2

nane { 1 36 14 11 2 17 2 2 0},
value sinple : string : “Ant#10#BTS#20"

What you need to know?

1. How do you identify the alarms for which the count will be
maintained?

A count will be maintained for alarms whose attributes have the
following values

enterprise is1.2.3.4.998
generic-trapis6
speci fic-trap is either 80

vari abl e- bi ndi ngs[0] . val ue is 2

168

Chapter 8

Use Cases
Case 3: Rate Correlation

. What do you with the alarms?

Duplicate alarms can be discarded. However, the correlation has to
be defined to monitor the time the alarm is discarded or output. The
table below describes the functionality of the buttons in the Rate
Correlator Template window.

Button Selected Functionality
Window N/A Mandatory Field - Time period for which
Period the alarm arrival rate is monitored
Count N/A Mandatory Field - The threshold count.

If the number of alarms exceeds
threshold count within the specified
Window Period then the rate threshold
is considered breached.

Discard Yes All alarms are discarded. Only the new

alarm, if created, is output.

No Alarms are not discarded. Additionally
the new alarm, if created, is output.

Follow the procedure given below to define the Rate Correlator Template:

1.

Select Correl ations: Correl ator Tenpl at es->Rat e from the
Correlator Store. The Rate Correlator Template window opens.

. Enter the Nane and Descri pti on for the Correlator.

. Click on the Defi ni ti on tab to display the Alarm Definition panel.

Enter the following values to identify the Alarm Signature
e enterprise
e generic-trap

e sgpecific-trap

. Declare the following variables

e ant - This is a variable that in combination of the extracted
pattern will specify the Antenna ID and BTS ID.

Chapter 8

169

Use Cases
Case 3: Rate Correlation

10.

11.

— Extract the Antenna ID and BTS from
vari abl e- bi ndi ngs[1] . val ue. In the extract pattern
window enter Ant <S><*, ant i d><S>Bt s<*. bt si d>

— In the Pattern Separator field, enter #

Two alarms are emitted from the same Antenna and BTS if their
corresponding anti d, btsid and agent-addr are the same.

= nkey - This is the unique field that will combine all the above
attributes into one and constitute the Message Key.

— Combine the attributes ant. antid, ant. btsid,
agent - addr

. Select the Message Key. Click in the MessageKey window. A pop up

menu displays all attributes and pre-defined variables. Select nkey
from the menu.

. Define the parameters for the correlation

e \Wndow Peri od =30 minutes
e (Count =5

. Select the Di scard button if the alarms are to be discarded. Though

the alarms are discarded, the count of alarm arrival is maintained.

. Before a new alarm is created, it is necessary to define the error

string that declares the problem. Define the following variables in
the Variable table

e strl constant “The threshol d has been breached for the
antenna ”

e str2 constant “from BTS’
e errstr conbine of strl, ant.antid, str2, ant.btsid

The above definition creates an errstr which will look like “ The
t hreshol d has been breached for the antenna 10 from BTS
20”

. Define the new alarm. Click on the New Al ar ns tab to alter the

alarm. The New Al ar mpanel opens.

Select New Al ar m Speci fi cati on from the drop down menu. The
New Al arm Defi ni tion table is displayed.

Select the following to define the change

170

Chapter 8

Use Cases
Case 3: Rate Correlation

e enterprise = enterprise

agent - addr

< agent-addr
e generic-trap = generic-trap

e specific-trap = specific-trap

e tine-stanp = tinme-stanp

= var Bi nd[0] - >name=var Bi nd[0] - >hane
e varBind[1l]->value = errstr

12. Click on [K] to complete the definition of the Correlator. Notice that
the Correlator you have just defined is displayed in the Correlator
Store table.

Chapter 8 171

Use Cases

Case 4: Repeated Correlation

Trap PDY

Case 4: Repeated Correlation

In general terms, duplicate alarms are messages that report the same
alarm. You can use Repeated Correlation to suppress duplicate messages
based on a variety of suppression types. Repeated Correlation is used to
monitor duplicate alarms arriving within the specified Window Period.

Routers generate a CPU-Hog alarm when the utilization exceeds the
threshold. The requirement is to pass only the first alarm for a given
router in a 30 minute time window and discard all other alarms received
in the same window. Additionally, at the end of the 30 minute period a
new alarm must be generated indicating the number of such alarms
received(and discarded)

A sample trap PDU could appear in a log as

enterprise {1 2 3 4 6},
agent - addr internet:”\x0A\ x00\ xO1\ x7F”",

generic-trap 6,

specific-trap 25,
time-stanp 41474291,
vari abl e-bindings { }

}
What you need to know?
1. How do you identify which alarms are duplicate?
All alarms with the following attributes are identified as Duplicate
alarms.
e enterpriseissetto1.2.3.4.6
e generic-trapissetto6
e specific-trapissetto?25
2. How do identify that the alarms are emitted from the same router?
Two alarms are said to be coming from the same router if the agent
address of the router from which they are emitted is the same.
172 Chapter 8

Use Cases
Case 4: Repeated Correlation

3. What do you want to do with the duplicate alarms?

Duplicate alarms can enter one of the following states

e Discarded

The event are discarded from ECS and are not available for
further correlation.

= Output

If the event is to be output, it should be further decided if this
event should take part in other correlations.

4. When should the alarms be discarded or output?

You can choose to discard or output alarms whenever required, based
on the Correlator definition. The table below describes the
functionality of the buttons in the Repeated Correlator Template

window.

Button

Selected

Functionality

W ndow
Peri od

Mandatory field - Time period for
which the alarm duplication is
monitored.

Di scard
Duplicate

Yes

Chooses Mode 1 of operation. Refer to
“Repeated Correlator Template” on
page 27

No

Chooses Mode 2 of operation. Refer to
“Repeated Correlator Template” on
page 27

D scard
| medi atel y

Yes

This is applicable only if the Discard
Duplicate button is chosen. The effect
of this is that all duplicate alarms will
be discarded without participating in
other correlations.

No

Duplicate alarms will be discarded only
after participating in other Correlators.

Chapter 8

173

Use Cases
Case 4: Repeated Correlation

Follow the procedure given below to define the Repeated Correlator
Template:

1. Select Correl ati ons->Correl at or Tenpl at es- >Repeat ed from the
Correlator Store window. The Repeated Correlator Template window
is displayed.

2. Enter the Name and Descri pt i on for the Correlator.

3. Click on the Defi ni ti on tab to display the Alarm Definition panel.
Enter the following values to define the Alarm Signature

e enterprise =1.2.3.4.6
e generic-trap==6
e specific-trap = 25
4. Declare the following variables

“

e str constant al arns discarded in 30 m nutes”
e errstr conbine of Alarmtnt and str
5. Select the Message Key = agent - addr

6. Define the Window period for which the alarm arrival must be
maintained. Enter 30 minutes in the Window Period field.

7. Check the[Di scard Duplicate] and[D scard | nmedi at el y]
buttons, as duplicate alarms are to be discarded as soon as they have
taken part in this correlation and you do not wish it to take part in
other correlations.

8. Define the new alarm. Click on the New Al ar ns tab. The New Alarm
panel is displayed.

9. Select New Al ar m speci fi cati on from the drop down menu. The
Create Alarm Definition table is displayed.

10. The table lists the mandatory fields to be filled for an event. Set the
following values:

e enterprise = enterprise
e agent-addr = agent-addr
e gQgeneric-trap = generic-trap

e sgpecific-trap = specific-trap

174 Chapter 8

Use Cases
Case 4: Repeated Correlation

e tine-stanp = tinme-stanp
e varBind[1l]->value = errstr

11. Click on [K] to complete the definition of the Correlator. Notice that
the Correlator you have just defined is displayed in the Correlator
Store table.

Chapter 8 175

Use Cases

Case 5: Suppress Correlation

Case 5: Suppress Correlation

Movement traps in general need investigation, however, if the movement
alarms are from exchanges emitted from the City offices, they can be
discarded as there is always movement and the alarm browser is filled
with these alarms. The requirement is to discard all movement alarms
emitted from the City offices.

A sample SNMP trap PD could appear in a log as

Trap PDU {

enterprise{l 2 3 4 999},

agent-addr internet : “\x0A\x00\x01\x7F",
generic-trap 6,

specific-trap 1,

time-stanp 414746291

vari abl e- bi ndi ngs{

{

name {1 36 141 11 2 17 2 1 0},
val ue sinple : nunber 2

8
{
name {13 6 1 4 1 11 2 17 2 2 0},
value sinple : “City-Bangal ore”
}
{
name {1 36 14 11 2 17 2 17 0},
value sinple : string : “There is novenent”
}
}
}
What you need to know?
1. How do you identify which alarms are to be Suppressed?
All movements will have the following attributes which will identify
them
e enterprise idissetto1.2.3.4.999
e generic trap issetto6
e specific trapissettol
176 Chapter 8

Use Cases
Case 5: Suppress Correlation

e variabl e bi ndings[1]. val ue will have the string “City”

e variabl e bi ndi ngs[2]. val ue will have the string “There is
Movement”.

2. What are the parameters to be configured and what do they mean?

The table below describes the functionality of the different buttons in
the Suppress Correlator Template window.

Button . .
a
Name Selected Functionality
Participate No The alarm does not participate in other
In Other correlations before it is discarded.
Correlation -
Yes The alarm takes part in other

correlations, before it is discarded.

a. Indicates if the button is chosen by the user. The effect of
selecting it or not selecting it, is described in the Functionality

column.

Follow the procedure given below to define the Suppress Correlator

Template:

1. Select Correl ati ons: Correl at or Tenpl at es- >Suppr ess from the
Correlator Store window. The Suppress Correlator Template window

opens.

2. Enter the name of the Correlator in the Nane text field.

3. Enter the description of the Correlator. The Descri pti on can briefly
state what the Correlator is expected to do.

4. Click on the Defi ni ti on tab to display the Alarm Definition panel.

Set the following values to define the Alarm Signature

e enterprise= 1.2.3.4.999

e generic-trap= 6

e gpecific-trap=1

e variable-bindings [2].value= “There is novenent”

e variabl e-bi ndings [1].val ue natches “Cty”

Chapter 8

177

Use Cases
Case 5: Suppress Correlation

5. Click [&] to complete the Correlator. Notice that the correlation you
have just defined is displayed in the Correlator Store table.

178 Chapter 8

Use Cases
Case 6: Transient Correlation

Case 6: Transient Correlation

PCM Links go out of synch frequently and a trap is generated indicating
a link failure. However, the two ends of the PCM link typically re-synch
within 1 second. The requirement is to hold the PCM Down alarm for a

period of 2 seconds and discard it if the PCM Up alarm is received within
this period. An additional requirement is that if 5 such link failures are
detected in a 30 minute period then a new alarm needs to be generated

indicating instability. The newly created alarm should indicate the time

taken for the breach to take place.

A sample trap PDU would appear in a log as:

Trap- PDU {

}

enterprise {1 2 3 4 999}

agent-addr internet : “\x0A\x00\x01\x7F",

genric-trap 6,
specific-trap 400,
time-stanp 414746291,
var i abl e- bi ndi ngs{

{

nane {1 36 14 11 2 17 2 1 0},
val ue sinple : nunber : 400

}
}

Trap- PDU {

}

enterprise {1 2 3 4 999}

agent-addr internet : “\x0A\x00\x01\x7F",

genric-trap 6,
specific-trap 400,
time-stanp 414746291,
var i abl e- bi ndi ngs{

{

name {1 36 14 11 2 17 2 1 0},
val ue sinple : nunber : 401

}
}

Chapter 8

179

Use Cases
Case 6: Transient Correlation

What you need to know?

1. How do you identify PCM trap alarms?

All PCM link alarms will have the following attributes which will
identify them

e enterprise issetto1.2.3.4.999
e generic-trapissetto6
= specific-trapiscontained in [400, 401]
2. How do you differentiate a PCM clear alarm from a PCM link failure

alarm?

e ifthespecific-trapissetto400,itisaPCM link failure alarm

e ifthespecific-trapissetto401, itisaPCM clear alarm

3. How do you know the alarms are coming from the same PCM link?

= vari abl e- bi ndi ngs[0] . val ue contains the PCM Link-1D

- if two alarms have the same agent - addr and same PCM
Link-1D, then they are coming from the PCM link

180 Chapter 8

Use Cases
Case 6: Transient Correlation

4, How is the time maintained?

It should be further decided what the time interval for correlation to
be monitored is and the time period for which a failure alarm waits
for a Clear alarm to arrive. The table below describes the
functionality of the various buttons in the Transient Correlator
Template window.

Button
Name

Selected

Functionality

W ndow
Peri od

Mandatory Field - The maximum time a
Failure alarm is held by the Composer
waiting for a Clear Alarm. If the Clear
alarm is received while the alarm is held,
both the Clear and Failure alarms are
discarded. If no Clear alarm is received in
this Window Period, the failure alarm is
forwarded. Typical hold periods are
between 1-10 minutes depending on the
severity of the problem.

Enabl e
Thr eshol d

Yes

Maintains a count of the number of alarm
pairs for the specified Threshold Window. If
the count equals the Threshold Count
within the Threshold Window, a new alarm
is created and forwarded.

No

No Count is maintained. The Threshold
Count and Threshold Windows are both
disabled.

Thr eshol d
Count

This button is enabled only when the
Enabl e Threshol d button has been
enabled. The number of alarm pairs, viz the
Failure and Clear alarms arriving

Thr eshol d
W ndow

This button is enabled only when the
Enabl e Thr eshol d button has been
enabled. The time period for which the
count is maintained

Follow the procedure given below to define the Transient Correlator

Template:

Chapter 8

181

Use Cases
Case 6: Transient Correlation

1. SelectCorrel ati ons: Correl at or Tenpl at es->Tr ansi ent from the
Correlator Store window. The Transient Correlator Template window
is displayed.

2. Enter the Nane and Descri pti on for the Correlator.

3. Click on the Def i ni ti on tab to display the Alarm Definition panel.
Enter the following values to identify the Alarm Signature

e enterprise = 1.2.3.4.999
e gQgeneric-trap=~6

e sgpecific-trapis in list [400, 401]

NOTE The Alarm Signature must be defined such that both the Clear and
Failure alarms will pass this condition.

4. Declare the following variables

e clear constant 401 to indicate what is the attribute of the
clear alarm that will differentiate it from the failure alarm.

5. Define the time period within which a clear alarm must arrive after
the failure alarm has arrived. In the Wndow Peri od, enter 2
seconds.

6. Define the clear alarm. Click on the d ear Al ar m button. The d ear
A ar mwindow opens. Select the following from the drop up menu
under the respective headings

e Atribute = Specific-trap
e perator = ‘=
e Value = clear

7. Define the Message Key. The Message Key is a combination of the
PCM Link-1D and the agent address(this is to identify uniquely the
PCMLink from which these alarms are emitted). A variable has to be
defined that contains this value. To declare this variable:

a. In the Variables table, enter PCMLink in the Name cell.

b. Select the Qperat or = Conbi ne. The Conbi ne Definition
window is displayed.

182 Chapter 8

10.

11.

12.

13.

Use Cases
Case 6: Transient Correlation

c. Select the parameters agent - addr and
vari abl e- bi ndi ngs[0] - >val ue from the pop up menu.

d. Close the Conbi ne Definition window.
This defines the Message Key.

. Select PCML.ink from the Message Key pop up menu.

. Define the new alarm that will be output. Prior to this some

variables containing the error string must be created. Declare the
following variables:

a. errstrl constant “Threshol d breached in "
errstr2 constant “seconds”
c. errstr = conbine of strl, CorrelationDuration, str2

Correl ati onDur ati on is an variable automatically generated by
the Composer to monitor the time taken for the threshold to be
breached.

Define the Threshold Window period. Enter the following values

e Click in the Enable Threshold checkbox.
e Threshold Count=5
e Threshold Window = 30 minutes

Define the new alarm that will be output. Click on the New Alarm
tab. The New Alarm panel is displayed.

Select New Alarm Definition from the drop down menu. The New
Alarm Definition table is displayed. Select the following values:

e enterprise = enterprise

= agent - addr agent - addr

e gQgeneric-trap = generic-trap

e gpecific-trap = specific-trap

e time-stanp = time-stanp

< var Bi nd[0] - >name=var Bi nd[0] - >hane
e varBind[1]->value = errstr

Click on [] to complete the definition of the Correlator.

Chapter 8

183

Use Cases
Case 6: Transient Correlation

Notice that the correlation you have just defined is displayed in the
Correlator Store table.

184 Chapter 8

Use Cases
Case 7: Multi Event Correlation accessing external topology

Case 7: Multi Event Correlation accessing
external topology

In a network, if an MSC fails and a BSC connected to the failed MSC also
fails within 5 minutes, then add a valid message to the BSC indicating
what the problem may be.

A sample SNMP trap PDU for an MSC Failure could appear in an event
log as below:

TrapPDU {
enterprise { 1 2 3 4 996},
agent-addr internet : “\x0A\x00\x01\x7F",
generic-trap 6,
specific-trap 65,
time-stanp 414746291,
vari abl e- bi ndi ngs {

{
name {1 3614111 2 17 2 17 0},

value sinple : string :”MSC Fail ure- M5C_| D=MSC1”

}
}
}
A sample SNMP trap PDU for an BSC Failure could appear in an event
log as below:
Trap PDU {
enterprise { 1 2 3 4 995},
agent-addr internet : “\x0A\x00\x01\x7F",
generic-trap 6,
specific-trap 66,
time-stanp 414746291,
vari abl e- bi ndi ngs {
{
name {1 36 14 111 2 17 2 17 0},
value sinple : string :”BSC Fail ure-BSC_| D=BSC1”
}
}
}

Chapter 8 185

Use Cases

Case 7: Multi Event Correlation accessing external topology

What you need to know?

1. How do you identify an MSC failure alarm?

All MSC failures will have the following attributes that can identify
them

e enterprise is1.2.3.4.996
e generic-trapis6

e sgpecific-trapis65

. How do you identify an BSC failure alarm?

All BSC failures will have the following attributes that can identify
them

e enterprise is1.2.3.4.995
e generic-trapis6

e specific-trapis66

. How do you know the MSC and BSC are connected?

Studying the alarms alone does not help identify how the alarms are
related to each other. An external application has to be invoked to be
able to understand the topology. A user defined function is written so
that it can extract the required information.

For example, in this case, a function get nane() is defined in such a
way that it takes the BSC ID as a parameter and returns the name of
the MSC to which it is connected. If the value returned is the same as
the MSC that emitted the failure alamr, then the two devices are
connected.

Follow the procedure given below to define the Multi-Source Correlator
Template:

1. Select Correl ati ons->Correl at or Tenpl at es->Mil ti - Sour ce

from the Correlator Store window. The Multi-Source Correlator
Template window opens.

2. Enter the Nare and Descri pti on of the Correlator.
3. Click on the Defi ni ti on tab to display the Alarm Definition panel.

186

Chapter 8

Use Cases
Case 7: Multi Event Correlation accessing external topology

Name the alarm. In the Nane panel on the left side of the window,
enter the name for the alarm - MSC Fai | ure.

. Declare the Al ar m Si gnat ur e to identify the MSC Failure alarms

Enter the following values in the Definition table
e enterprise =1.2.3.4.996
e gQeneric-trap =6

e sgspecific-trap = 65

. Define the variable - MBCLi nkl D

e MSC Link ID extracted from var i abl e- bi ndi ngs[0] . val ue.
Enter the name of the variable- MSC Link 1D

= Type set to “Extract”. Type *#- #<#. nscl D>*
= Pattern Separator set to “#”
This extracts the MSC Link ID and binds it to the variable nscl D.

. Define the Message Key. Click on the Message Key text box. A pop up

menu is displayed. Select M5C Fai | ur e- >MSCLi nkl D- >nscl D.

. If you would like to alter the alarm, define the changes in the Alter

Alarm Definition table.

. To add a new alarm, right click the mouse button in the Name panel

on the left and enter BSC Fai | ure. In this case
= Define the Alarm Signature to identify the BSC Fai | ure
— enterprise=1.2.3.4.995

— generic-trap==6
— specific-trap =66

e Declare a variable BSCLi nkl D extracted from
vari abl e- bi ndi ngs[0] . val ue.

= Select the Message Key to BSC Fai | ur e- >M5C\arre.

. To be able to identify how the MSC and BSC are connected, define a

function (say get name())that will perform the required operation. In
this case, you can define a function get nane() that takes the BSC
name as parameter and returns the name of the MSC to which it is
connected.

Chapter 8

187

Use Cases

Case 7: Multi Event Correlation accessing external topology

10. Declare the following variables:

str1 const ant “MSC”

str2 constant “has reported a failure. The BSC failure
us probably a result of this”

errstr conbine strl, nsclD, str2

11. Enter the following parameters in the Parameters Panel:

Define the Wndow Peri od for which you want to monitor the
occurrences of the alarms.

Select the Set check box to emit the alarm only if the set is
complete.

12. Define the new alarm. Click on the New Alarm tab. The New Alarm
panel is displayed.

13.

14.

Select New Alarm Definition from the drop down menu. The New
Alarm Definition is displayed. Select the following values:

enterprise = enterprise

agent - addr = agent - addr
generic-trap = generic-trap
specific-trap = specific-trap
time-stanp = tine-stanp

var Bi nd[0] - >name=var Bi nd[0] - >narre

var Bi nd[1] - >val ue = errstr

Click on [] to complete the definition of the Correlator.

Notice that the Correlator you have just defined is displayed in the
Correlator Store table.

188

Chapter 8

9 Troubleshooting the Composer
During Runtime

Chapter 9 189

Troubleshooting the Composer During Runtime

This chapter provides directions for troubleshooting the Correlation
Composer during runtime.

The following sources of information are useful to review before
beginning to debug problems.

Release Notes

The ECS Release Notes describe late changes in the software and can
help you resolve common faults. Refer to the Release Notes under
$OV_RELNOTES on HP-UX, Solaris and Linux and%OV_RELNOTES% on
Windows.

190 Chapter 9

NOTE

Troubleshooting the Composer During Runtime
Troubleshooting the Composer

Troubleshooting the Composer

The Correlation Composer provides the facility to enable tracing to
follow program and data flow. Tracing helps to debug a problem at a
faster speed. HP’s Cross Platform Library(XPL) has been used to
perform tracing. To enable tracing for the Correlation Composer, while
starting the Composer include the - Debug option. Type,

ovconposer -debug

The HP OpenView Tracing subsystem comes with a variety of tools for
controlling and monitoring trace messages. The most important
components to be used while tracing messages in the Composer are listed
below along with a brief description:

= Trace Server - The Trace Server is a process that provides an
interface between trace-enabled applications and tools wanting to
configure the tracing in those applications or monitor their trace
output

= Trace Configuration file - The Trace Configuration file contains the
tracing specifications like the application name being traced, location
of trace files, the kind of messages that you want to trace. Trace
configuration files are ASCII text files that can be viewed or modified
using a standard text editor

= Trace Monitor - A program, such ast racenon, or t r cnon that
receives messages forwarded by the default Trace Server and then
either displays them interactively or archives them to disk

It is assumed that the user is familiar with HP OpenView's XPL Tracing
methodology. For more information refer to the XPL documents.

Trace Configuration File

When an application initializes its trace configuration, it can get the
initial trace configuration information from a variety of places. There is a
well-defined order as to where the configuration code looks for the
application's trace configuration data.

Chapter 9

191

Troubleshooting the Composer During Runtime
Troubleshooting the Composer

TCF Version 3.2

APP: " ECSConposer"

The Trace Configuration file is available at the following locations
on HP-UX

$OV_CONF/ ecs/ CQ OVConpTrc. t cf

on Linux

$OV_OONF/ ecs/ OO OVConpTrc. t cf

on Solaris

$OV_OONF/ ecs/ OO OvConpTrc. t cf

on Windows

%V _CONF% ecs\ GO OvConpTrc. t cf

Following is a sample Trace Configuration file

SINK: File "c:\\openviewm\log\\composer.trc" / "flush=1; maxfil es=10; maxsi ze=10; "

TRACE: "ECSTrace"

"Event" Info Warn Error Devel oper Verbose / Location Stack

Ensure that the Trace Configuration file is present in the current
directory if static tracing is chosen. Also, follow the standards, like single
space, while editing the Trace Configuration file.

Basic structure

The Trace Configuration file has the following fields that must be filled

e TCF Version 3.2 - The version of the Trace Configuration file.
= APP - The application that is traced. In this case the Composer.

= SINK - The location of the tracing component, specifications of the
trace file. This location can be overridden.

e TRACE - The first argument is the trace component name and it
should be in double quotes. The second argument is the trace
category name and it should also be in double quotes. If you are using
one of the standard categories in the code, then it will be mapped to a
string value (which you supply here).

The trace file is in binary format and can be viewed using the Trace
Monitor utility. To view the binary file, start the Trace Monitor. Type

run trcnonon HPUX

192

Chapter 9

Troubleshooting the Composer During Runtime
Troubleshooting the Composer

run tracenon on Windows.
The Trace Monitor on Windows is a GUI.

Tracing in the NNM environment

Follow the procedure given below to enable tracing in the NNM
environment:

1. Check if the TraceServer is running. If it is not already running,
start the TraceServer. Refer to the XPL documents for more details.

2. Edit the Trace Configuration file. Following is a sample of the Trace
Configuration file on HP-UX

TCF Version 3.2

APP: " ECSConposer"

SI NK: Socket "<server nane>" ""

TRACE: "ECSTrace" "Event" Info Warn Error Devel oper Verbose

Following is a sample of the Trace Configuration file on Windows

TCF Version 3.2

APP: " ECSConposer"

SI NK: Socket "<server nane>" "node=<i p-address>;”

TRACE: "ECSTrace" "Event" Info Warn Error Devel oper Verbose

Contrast this with the Trace Configuration file discussed earlier
where the location of the trace file is specified. In this case, the name
of the Trace Server should be included in this file. The Trace
Configuration file is available at the following locations

on HP-UX

$OV_OONF/ ecs/ GO OVConpTr c_App. t cf
on Linux

$OV_OONF/ ecs/ GO OVConpTr c_App. t cf
on Windows

%V _CONF% ecs\ GO OVConpTr c_App. t cf

3. Associate the Trace Configuration file with the application that is
being traced. Type

trccfg -server <server-name> <configuration fil ename>

4. Monitor the trace output and view the trace output file created. To do
this, the Trace Monitor utility must be running. Type

Chapter 9

193

Troubleshooting the Composer During Runtime
Troubleshooting the Composer

run trcnonon HP-UX and Linux

run tracenon on Windows.
The Trace Monitor on Windows is a GUI.

5. Start the Correlation Composer.

194 Chapter 9

NOTE

Troubleshooting the Composer During Runtime
Troubleshooting the Composer during Runtime

Troubleshooting the Composer during
Runtime

Event Flow

A quick refresher on the event flow through the Composer would be
helpful before going into how to debug the Correlators.

An event that flows through the Composer circuit has the following
phases

1. On entering the circuit, the event is evaluated against the Alarm
Signature for all the Correlators. If the event passes none of them,
the event is output

2. The event is evaluated against the Advanced Filters for all the
Correlators for which the Alarm Signatures matched.

3. The logic for the Correlators for which the event passed both the
filters is executed, one after the other. Each Correlator returns what
needs to be done to the event.

4. All the actions of the individual Correlators that processed together
and the final outcome is dependent on the Correlators specified. If
the event is to be held then the event is forwarded to the event hold
mechanism.

Holding an event refers to all the three kinds of holds that is, Hol d,
WakHol d and PseudoHol d.

In the case of Vtak and PseudoHol d, different Correlators may ask
for different hold periods and the output logic of each of the
Correlators are executed at the requested times.

In the case of Hol d, if multiple Correlators ask for Hol d, then the
event is held for the longest duration requested.

5. If an event is held then it comes out after the period specified and all
Correlators that asked for the event to be held is executed. Each
Correlator returns what needs to be done to the event

Chapter 9

195

Troubleshooting the Composer During Runtime
Troubleshooting the Composer during Runtime

6. All the actions of the individual Correlators are processed together
and the final outcome is dependent on the Correlators specified.
Format of the Trace Message
The format of the trace file is as follows:

TRACE [interpreter]: Conposer : <tine stanp> 000000Z : <Event |d> : <Correlator
Name> : <lInformative Message>

The trace file has 6 fields separated by a“ : ' (colon), where

= The first field is always TRACE [interpreter]
= The second field is always " Conposer "

= The third field is a time stamp of the format yyyymmddhhmmss
followed by the time in milliseconds (which is always 000000Z)

= The fourth field is the event | d of the event being processed

= The fifth is either the name of the Correlator that is being processed
or "Common" if the trace message is part of the common processing of
events.

= The sixth field is the trace message.

Setup
Enable tracing
The following steps explain how to enable tracing on the system.
1. Turn on tracing in the Composer using the following command:
e In NNM
For UNIX

ecsngr -fact_update Conposer \
$OV_CONTRI B/ ecs/ CQ ConpTracen. fs

For Windows if Composer is installed on the C drive

ecsngr -fact_update Conposer \
%V _CONTRI B% ecs\ QO ConpTrace. fs

2. Turn tracing on for ECS
< For NNM

a. ecsmgr -i 1 -trace 65536

196 Chapter 9

NOTE

Troubleshooting the Composer During Runtime
Troubleshooting the Composer during Runtime

b. \! pndngr -Secss\; TOxffffffff
= For OVO

a. ecsmgr -i 1 -trace 65536
3. Pump the events through ECS by whatever mechanism

4. The trace file is created in

e For NNM - $OV_I og/ pmd. | 0g0 on HP-UX, Solaris and Linux and
%V _CONTRI B% pnd. | og0

Turning tracing ON will have an impact of performance and the trace file
size - so use it only when you need to debug.

Turn Off Tracing
To turn off tracing, type

ecsngr -fact _update Conposer \
/opt/ OVl contri b/ ecs/ QO ConpTracef.fs

Reading the Trace Message

After pumping in the event(s) grep for the string " Conposer" to get the
trace messages. There are trace messages printed when the event enters
each of the phases mentioned above:

1. The first phase is Alarm Signature processing - The start of
processing is demarcated by the string " Al arm Si gnat ur e
processi ng starting" and the end of this processing is demarcated
by " Al arm si gnat ure processi ng done". The lines between these
two contain information related to Alarm Signature processing.

2. The second phase is the Advanced Filter processing (assuming that
the filter criteria of atleast one Correlator was met). This section of
processing is demarcated by the strings, " Advanced si gnature
processi ng starting" and"Advanced signature processing
done".

3. Assuming the alarm passes the Advanced Filter then the individual
logic for the Correlators are invoked. Look for the strings " | nput
processi ng starting" and "l nput processi ng done". Between
these two points the input processing of the individual Correlators is

Chapter 9

197

Troubleshooting the Composer During Runtime
Troubleshooting the Composer during Runtime

10.

executed. Look for the strings "Executing |l ogic for the
Correlator - starting" and"Executing logic for the
Correl ator - done". The 5th field, "Correl at or Nane", will have
the name of the Correlator that is being executed. There may be a
number of such pairs depending on the number of Correlators to be
executed for the alarm.

. Look for the string "Deci sion after all the Correlators run"

to find out the fate of the event after all the Correlators have
processed it.

. If any of the Correlators decide to HOLD the event, the processing of

the event continues after the specified period. (In the meanwhile
other events may enter the system - check the EventID field to
ensure that you are looking at the trace messages for the right
event). Look for the strings "HOLD processi ng starting" and
"HOLD processi ng done" to find the demarcations for this phase.
(Note: There may multiple such phases depending on how many
Correlators requested for holding the event.)

. Look for the string "Deci sion after all the Correlators run"

to find out the fate of the event after all the Correlators have
processed it.

. The variables defined in a Correlator are periodically printed out as

the Correlator is being processed. Look for the string " The

vari abl es are" - below this line is the set of variables that were
defined for the Correlator and the value currently bound to it. If the
variable is yet to be evaluated it will show "Not Yet Eval uated".
Variables starting with " __ " maybe ignored as they are used
internally.

. To find invocation of synchronous functions look for " Cal | i ng". The

line will contain the function being called and the arguments being
passed to it.

. Look for the string "Ret urn val ue of the function" to find out

what the synchronous function returned.

For asynchronous functions look for " Asynchr onousl y i nvoki ng
function" to find out the function being invoked and the parameters
being passed to it. For return values from asynchronous functions
look for "Setting vari abl e". The string will indicate the variable
being set and for which Correlator. (Asynchronous functions are
handled by common code so field 5 in the trace message will be set to
" Common".

198

Chapter 9

Troubleshooting the Composer During Runtime
Troubleshooting the Composer during Runtime

11. To trace the flow of an event, type,

grep “Conposer” | grep <eventid>

where,

event i d is the “if” of the event that needs to be traced.
12. To trace the actions of a specific Correlator, type,

grep “Conposer” | grep <corr el at or narme>

where,

corr el at or nane is the name of the Correlator that needs to be
traced.

13. To trace the actions of a Correlator on a given event id, type,

grep “ Conposer” | grep <correl atorname> | grep <eventi d>

Checklist of faults Before attempting to diagnose a problem, consider whether one of the
following common situations may be the cause.

= Error messages

The Composer displays an error-trap when the Composer encounters
problems during processing. The sample error-trap sent by the
Composer is as shown below:

Trap- PDU {
enterprise {1 2 3 4},
agent -addr internet : “\x7F\ x00\x00\x01",
generic-trap 6,
specific-trap 5000,
time-stanp O,
var ai bl e-bi ndi ngs {

{
nanme{1 2 3 4 5},

val ue sinmple: string : “Correlator Name is unctionnotpresent : Event |nput -
Asynchronous function :'C function not found. Path = libEcho - function is
Hel | oWor | d”

}
}
}
Trap- PDU {

enterprise {1 2 3 4},

agent-addr internet : “\x7F\ x00\x00\x01",
generic-tra 6,

specific-trap 5000,

Chapter 9 199

Troubleshooting the Composer During Runtime
Troubleshooting the Composer during Runtime

time-stanp O,
var ai bl e- bi ndi ngs {
{
nane{1 2 3 4 5},

val ue sinple: string : “Asynchronous function call/s had errors or tines
out : Correlators affected are[annoNodeTi meQut | nput]”
}
}
}
The general form of the error string displayed is of the form
Correl ator Nane is Correl at or nane: wher e: r eason
where:
Corr el at or nane is the name of the Correlator that has caused the
error
wher e indicates at what point in the processing the Correlator
encountered the error and could be one of the following
— Post 'HOLD' - The logic of a Correlator may choose to HOLD an
event for a period of time. For example, a User-Defined Input
function may choose to HOLD the alarm for 10 seconds. After 10
seconds the event exits from the HOLD and the Post HOLD
processing begins. In this example, it would involve invoking the
Output function.
— Asynchronous User Defined Output
— Asynchronous variables used in alter/create
— Processing parameters for asynchronous functions
— Event Input - Asynchronous function
— Event Input
— Processing Advanced Filter
— Event Cleanup
reason is the cause of the problem. The section below describes
some of the commonly displayed error messages.
200 Chapter 9

Message

Cause

Message

Cause

Message

Cause

Troubleshooting the Composer During Runtime
Troubleshooting the Composer during Runtime

Some of the conventions used in the sample error messages are
explained below:

Convention Description

CORRELATORNAME The name of the Correlator that has
caused the problem

FUNCTI ONNAMVE The name of the function that is called

LI BRARYNAME The name of the library that contains
the user-supplied function

ARGUMENTS The parameters passed to the function

VAR ABLENAME The name of the variable being
evaluated

Commonly displayed error messages

Function returned an Error - Error returned is Path =
LI BRARYNAME - Function is FUNCTI ONAME: Function returned:
ERRCR STRI NG RETURNED BY THE FUNCTI ON

The called external function returned an error. The function was invoked
as part of a evaluating variable in the Correlator CORRELATCORNAME.

¢' Function not found: Path = LI BRARYNAME - Function is
FUNCTI ONAME

The C function could not be found in the library specified. Either the
library name or the function name specified is incorrect.

Argurrents to function is invalid Path = LI BRARYNAME -
Function is FUNCTI ONAME: Function returned: PARAMETERS TO
THE FUNCTI ON

The datatypes of the parameters passed to the function are invalid. The
valid data types that can be passed to a function are, integer, real, string,
Object ID, and time.

Chapter 9

201

Troubleshooting the Composer During Runtime
Troubleshooting the Composer during Runtime

Message Library not found Path = LI BRARYNAME - Function is
FUNCTI ONAME

Cause The library path is not found. You could have entered an incorrect
library name or the path specified is incorrect. Check the logs to see what
the problem is.

Message Function timed out Path = LI BRARYNAME - Function is
FUNCTI ONAME

Cause The called function returned but has not yet invoked the callback
function to indicate completion of processing.

Message Function timed outPath = LI BRARYNAME - Function is
FUNCTI ONAME

Cause The called function returned but has not yet invoked the callback
function to indicate completion of processing.

Message Function returned an Error - Error returned is Path =
LI BRARYNAME - Function is FUNCTI ONAME Function ret urned:
ERRCR STRI NG RETURNED BY THE FUNCTI ON

Cause The user supplied function returned an error while processing.

Message Unabl e to eval uate variable - VAR ABLENAME: No definition
seens to exist for variable VAR ABLENAME

Cause Incorrect usage of automatic variable is most likely the cause. For
example using OutputRetval as a parameter to the input function in
User-Defined correlation would result in this error.

202 Chapter 9

Message

Cause

Message

Cause

Message

Cause

Message

Cause

Message

Cause

Troubleshooting the Composer During Runtime
Troubleshooting the Composer during Runtime

Lookup entry not found for key KEYNAME Unable to eval uate
VAR ABLENAVE

The key for which a datastore lookup is being performed cannot be found
and hence the variable cannot be evaluated.

Asynchronous function call/s had errors or tined out:
Correlator is - CORRELATCRNAME: variables are -

VAR BALENAMES: Correlator is - CCRRELATORNAME: Vari abl es are
- VAR ABLENAME

The called function(s) has not returned values in the expected time. The

most likely cause is that the function invoked did not send a return
value.

Type mismatch while creating/altering the event. Attribute,
Val ue pair is: (ATTRI BUTENAME, VALUE BElI NG ASS|I G\NED)

The variable type being assigned to the attribute is incorrect. For

example assigning a string to the specific-trap. Refer to Table C-1 on
page 238.

Vari abl e Bi ndi ng val ue not specified for index | NDEXNUM

The value for the variable bindings with index number | NDEX NUMhas
not been provided.

Variabl e Bi nding Name not specified for index | NDEXNUM

The name for the variable bindings with index number | NDEXNUMhas not
been provided.

Chapter 9

203

Troubleshooting the Composer During Runtime
Troubleshooting the Composer during Runtime

204 Chapter 9

10 Correlation Composer for NNM

Chapter 10 205

Correlation Composer for NNM

This chapter contains information you require to efficiently use the HP
OpenView Correlation Composer in the NNM environment.

206 Chapter 10

Correlation Composer for NNM
Introduction

Introduction

In the NNM environment, Correlation Composer is available through the
ECS Configuration Window.

NNM provides a set of built-in Correlator Stores to enable maintenance
of Correlators specific to that environment. For information on these
Correlators refer to HP OpenView Network Node Manager’'s Managing
Your Network with HP OpenView Network Node Manager. These
Correlators are loaded and enabled when NNM is installed and can be
enabled or disabled at any time through the Correlation Composer
window.

Composer in the Operator Mode

To start the Correlation Composer in the NNM environment, do the
following.

1. In the Event Configuration window, select Edi t - >Event
Correl ati on. The web browser displaying the Correlations is
displayed.

2. Select the row with Composer and select the [Modi f y] button. The
Composer window is displayed. The Correlation Composer window
opens.

When the Composer is launched from NNM, permissions to certain
menus, Correlators, and Correlator fields are restricted. In particular,
operators will only be able to:

= View those Correlators defined for the listed NameSpaces. By
default, only the NNM built-in correlators are visible in the
Composer GUI.

= Edit those parameters defined as editable. By default, almost all of
the correlator parameters for the NNM built-in correlators are not
editable.

= Save changes made to the Correlators by clicking the Save shortcut
menu or selecting Fi | e- >Save. Saving a Correlator Store file saves it
to the $OV_CONF/ ecs/ A Bdirectory. You must deploy the Correlator
Store to apply its changes to the ECS engine.

Chapter 10

207

Correlation Composer for NNM

Introduction
= Deploy Correlator Stores to the ECS engine by clicking the Depl oy
shortcut menu or selecting Cor r el at i ons->Depl oy.
< Launch the Online help contents by clicking the Hel p shortcut menu
or selecting Hel p- >Tabl e of Contents.
Figure 10-1 Composer in the Operator’s mode

—

. “HP Openiiem Ceeslabian Compresr - [hipade cehpt! =iy bp com: M0 Daceisc e omgd T IRHNM B ¢ 1] T o

Fila Carmulaliors Oplaas Halp

e E"f

NameSpace Table Corretator Storg——— =
Hame m - Enabled Hams i~y
FiRMBae: JJan 1 E O Canfeelsi IMaimmaals Ll Ruits Libans Toi O _Iiafaes Dot
Fodel Jan 1 C4 |CW_Chassis_Cisos [User Cedingd |Moniloes Cleo aps for thiee
Fellwr® g -J‘n 1 | E U _MuylhpleReboois Haks Liengfor coldStart and mam
B
30

[Emlnld Conmilae Ghare e iR india. hip . o m R o o B T o s T Am T IBVHN M Basio 15 [SHMF

%
Jarea Applet \window

NNM built-in Correlator Stores Correlators for OV_Nodelf

The Composer in the NNM environment restricts the usage of some of
the menu options. The table summarizes the options available.

Menu Items available for Composer in NNM Environment

Table 10-1
Menu Item Description
Fi | e->Save Saves the Correlator Store. By default NNM ships four

Correlator Stores: NNMBasi c. f s, Nodel f. f s,
Pollerlintermttent.fs andPol | er Li nkDown. fs

Fil e->d ose

Closes the Correlator Store.

Fil e->Exi t

The Composer window is closed.

208

Chapter 10

Table 10-1

Correlation Composer for NNM
Introduction

Menu Items available for Composer in NNM Environment

Menu Item

Description

Correl ati ons->Qd obal
Const ant s

Opens the Global Constants window and allows to edit
the values of Global Constants that are declared
editable in the Security file. For more information on
the Security file refer to “Security File” on page 124.

Corr el ati ons- >Depl oy

Deploys the Correlator Stores listed in the NameSpace
file. By default the NameSpace file lists the Correlator
Stores OV_NNM BASI Cand OV_Nodel f. The Deploy
procedure involves merging the Correlator Stores into
a single Correlator Store and load this file into the
ECS engine. For more details on The Deploy procedure
refers to the Deploy Configuration file. for more details
on how to create the Deploy Configuration file refer to
“Step 4: Creating the Deploy Configuration file” on
page 129.

ot i ons-> Forceful ly
Unl ock

Provides mutually exclusive access to the Correlator
Store. For more details refer to “Mutual Exclusive
Access to Correlator Store files” on page 141.

pt | ons- >Appear ance

Displays a submenu for selecting the kind of Look and
Feel of the interface.

ot i ons->Vi ew Rest ore
Backup

Displays a submenu to select the version of backed up
file. For more details refer to “View Backup Files” on
page 67. In the NNM Environment, Backup files have
read and write permission for all.

Hel p- >Over vi ew

Displays the Composer Online Help.

Hel p->Tabl e
Contents

Displays the Composer Online Help Table of Contents.
You can also view the Help Index from this window.

Hel p- >About
Correl ati on Conposer

Displays the current release and copyright information
for the Composer and associated software.

Chapter 10

209

Correlation Composer for NNM
Introduction

Composer in the Developer Mode

The Composer in the Developer mode in the NNM environment operates
the same way it operates in the Standalone mode. To start the Composer
in the Developer mode, type

ovconposer -md

The Developer besides creating correlation logic also maintains
configuration files required by the Composer. The definitions provided in
these files govern how Composer functions in the NNM environment.

What are these files?

Default Configuration files required by the Composer are shipped along
with the product. The files for usage in the NNM environment are:

< NameSpace Configuration file

The default NameSpace file resides in the directory

$OV_CONF/ ecs/ A B. This file does not contain any entries and must
be edited by the NNM user. The listing in this file governs what will
be displayed in the Composer window.

Example 10-1 Enable the Operator to view the Correlator Stores

By default, when NNM is installed, a NameSpace file is placed on
the NNM system that provides access to the built-in NNM Correlator
Stores.

The NameSpace file resembles the text below:

#Coments begin with '#
#Configure this file as per your requirenments
#The format of the namespace.conf file is as follows:

#<l ogi cal nane>=<associ ated fil e>

#where,

#<l ogi cal name> is the | ogical nane as displayed in the nanmespace table when
#Correl ati on Conposer operates in Operator Nbde.

#<associated file >is the file associated with the logical name. Al the files
#are relative to $OV_CONF/ ecs/ CI B/ directory.

#Exanpl e

#0OV_Basi c=0OV_Basi ¢/ OV_Basic.fs

OV_NNM Basi c=NNMBasi c. f s

210 Chapter 10

Correlation Composer for NNM
Introduction

OV_Nodel f =Nodel f.fs

= Security file

A default security file is created for every Correlator Store when it is
saved. This file resides in the same directory where the Correlator
Store is saved. Typically, $Ov_CONF/ ecs/ A B and/or subdirectories
below it.

Example 10-2 Enable the Operator to edit the parameters W ndow Peri od and
the Count of alarms

If you want to provide the flexibility to the Operator to be able to edit
the values of Window Period and Count for the Correlator
OV_Connector _IntermttenStat us, edit the Security file

NNMVBasi ¢. sec.

The NNMBasic's Security file now resembles the text below:

#NOTE: No space between the comma seperating the variable fields
#ALL_TEMPLATE=ALL_PARAMS

OV_Connector _Interm ttentStatus=W NDOW COUNT
< Deploy Configuration file

The default Deploy Configuration file resides in the directory
$OV_CONF/ ecs/ O B. The entries in this file are the default entries

required by the Composer in the NNM environment.

Chapter 10 211

Correlation Composer for NNM
Built-In Function

Built-In Function

The following build-in function is provided to work only with SNMP
traps and can be used only in the NNM environment.

getOIDValue

Syntax get A Dval ue oid fail Val ue
Where:

oi d is the name of variable-binding for which the value is to be extracted

fai | Val ue is the value that is returned by the function if the retrieve
fails.

Description The get Q Dval ue function retrieves the value of the first occurance of
the corresponding name from the variable-bindings.

Examples Consider the Trap as

Tr ap- PDU

enterprise {1 2 3 4 995},

agent-addr internet : “\x0A\x00\x01\x7F"
generic-trap 6,

specific-trap 95,

time-stanp 414746291,

vari abl e- bi ndi ngs{

{

nane { 1361411127 2 17 0},
val ue sinple : nunber : 95

b

{
name {1 3614111 2 17 2 2 0},

value sinple : nunber : 96

b
{

212 Chapter 10

Correlation Composer for NNM
Built-In Function

nane {1 3 6 1 4 11 2 17 2 17 0},
val ue sinple : nunber 97

}

The statement such as
get(Mvalue 1.3.6.1.4.11.2.7.2.17.0 -1

returns the value 95 if the retrieve is successful, otherwise the function
returns -1. Note that the OID and failvalue must be declared as variables
in the Correlator definition section. Refer to “Function” on page 83 for
details on how to use Functions.

Chapter 10

213

Correlation Composer for NNM
Built-In Function

214 Chapter 10

A Ready Reckoner

Appendix A 215

Ready Reckoner

This chapter briefly provides information on the various sections to be
configured for the different Correlator Templates.

Note that this is only a quick reference and for any additional
information required, refer to the corresponding chapters. This chapter
discusses the following:

“Parameters for Correlator Templates” on page 217
“Flow of Events” on page 225
“Built-In functions” on page 226

“Terminology Flow” on page 224

216

Appendix A

Ready Reckoner
Parameters for Correlator Templates

Parameters for Correlator Templates

Enhance Correlator Template

Enhance Correlation defines parameters to add more information to an
alarm before it is output. The table below summarizes the functionality
of all the parameters in the Enhance Correlator Template window.

Table A-1 Enhance Correlator Template
Button Name Selection Selected Functionalit
Mandatory? Y
ant No Yes The original alarm is output
Qi gi nal along with the enhanced alarm
No Only the enhanced alarm is
output, the original alarm is
discarded.
Enhance No Yes Alarms will be modified and
A ways output regardless of any other
correlation deciding to discard
this alarm
No Alarms will be modified if and

only if no other Correlator
decides to discard this alarm.

Appendix A

217

Ready Reckoner
Parameters for Correlator Templates

Multi-Source Correlator Template

The Multi-Source Correlator Template is used to correlate events of
different kinds and output events with enhanced information. The table
below summarizes the functionality of all the parameters in the
Multi-Source Correlator Template window.

Table A-2 Multi-Source Correlator Template
Button Name Selection Selected Functionalit
Mandatory? 4
Di scard on No Yes The alarm will be discarded if
Set the set is complete, else will be
Conpl eti on forwarded
No The alarm will be forwarded

regardless of set completion.

W ndow Period | Yes Yes The time period within which
all alarms of the set need to
arrive for the set to be
considered complete. The
alarms can arrive in any order.

Set Yes No Operates in Mode 1. Refer to
“Multi-Source Correlator
Template” on page 25

Yes Operates in Mode 2. Refer to
“Multi-Source Correlator
Template” on page 25

218 Appendix A

Rate Correlator Template

Ready Reckoner
Parameters for Correlator Templates

The Rate Correlator Template maintains a count of event arrival and
outputs a new event based on this count. The table below summarizes
the functionality of all the parameters in the Rate Correlator Template

window.
Table A-3 Rate Correlator Template
Button Name Selection Selected Functionalit
Mandatory? 4

W ndow Peri od Yes Time period for which the
alarm arrival rate is monitored.

Count Yes The threshold count. If the
number of alarms exceeds
threshold count within the
specified Window Period then
the rate threshold is considered
breached.

D scard No Yes All alarms are discarded. Only
the new alarm, if created, is
output.

No Alarms are not discarded.

Additionally the new alarm, if
created, is output.

Appendix A

219

Ready Reckoner
Parameters for Correlator Templates

Table A-4

Repeated Correlator Template

The Repeated Correlator Template window is used to define parameters
to discard events of similar type. The table below summarizes the
functionality of all the parameters in the Repeated Correlator Template

window.

Repeated Correlator Template

Button Name

Selection
Mandatory?

Selected

Functionality

W ndow Peri od

Yes

Time period for which the
alarm duplication is monitored

Di scard
Dupl i cate

No

Yes

Chooses Mode 1 of operation.
Refer to “Repeated Correlator
Template” on page 27

No

Chooses Mode 2 of operation.
Refer to “Repeated Correlator
Template” on page 27

D scard
| medi atel y

No

Yes

This is applicable only if the
Discard Duplicate button is
chosen. The effect of this is that
all duplicate alarms will be
discarded without participating
in other correlations.

No

Duplicate alarms will be
discarded only after
participating in other
correlators.

220

Appendix A

Ready Reckoner
Parameters for Correlator Templates

Suppress Correlation Template

The Suppress Correlator Template allows a specific category of alarms to
be discarded.

A key point to be noted is that the New Alarm Creation tab in the
Correlator is disabled as there are no new alarms to be created.

The table below summarizes the functionality of all the parameters in
the Suppress Correlator Template window

Table A-5 Suppress Correlator Template
Selection . .
Button Name Mandatory? Selected Functionality
Participate in No Yes The alarm does not participate
Q her in other correlations before it is
Correl ation discarded.
No The alarm takes part in other
correlations, before it is
discarded.

Appendix A 221

Ready Reckoner
Parameters for Correlator Templates

Table A-6

Transient Correlation

Transient Correlation correlates events based on some threshold values.

A key point to be noted is New Alarms can be defined only after a
threshold value has been defined.

The table below summarizes the functionality of all the parameters in
the Transient Correlator Template window.

Transient Correlator Template

Button Name

Selection
Mandatory?

Selected

Functionality

W ndow Peri od

Yes

The maximum time a Failure
alarm is held by the Composer
waiting for a Clear Alarm. If the
Clear alarm is received while
the alarm is held, both the
Clear and Failure alarms are
discarded. If no Clear alarm is
received in this Window Period,
the failure alarm is forwarded.
Typical hold periods are
between 1-10 minutes
depending on the severity of the
problem.

Enabl e
Thr eshol d

No

Yes

Maintains a count of the
number of alarm pairs for the
specified threshold Window. If
the count equals the Threshold
Count within the Threshold
Window, a new alarm is created
and forwarded.

No

No Count is maintained. The
Threshold Count and Threshold
Windows are both disabled.

222

Appendix A

Ready Reckoner
Parameters for Correlator Templates

Table A-6 Transient Correlator Template (Continued)
Button Name Selection Selected Functionalit
Mandatory? 4
Threshol d Count | Yes, if Enabl e This button is enabled only
Threshol d when the Enabl e Threshol d
has been button has been enabled. The
selected number of alarm pairs, viz the
Failure and Clear alarms
arriving
Threshol d Yes, if Enabl e This button is enabled only
W ndow Threshol d when the Enabl e Threshol d
has been button has been enabled. The
selected time period for which the count

is maintained

Appendix A

223

Ready Reckoner
Terminology Flow

Terminology Flow

The figure below depicts the different sections of a Correlator.

Alarm Signature

wariahles
N Avanced Filter
Correlatar hessage Key
Stare Parameters
Contains
¢ Alarm Definition
g;rrrgalgffrri Create Mew
— Alarm
Correlator 2— ™ NE%“:L?;;” — ATEr Existng
Correlator 3——m Alarm
Callback
Functions
Create
L
Discard
Appendix A

224

Ready Reckoner
Flow of Events

Flow of Events

The figure below summarizes the Flow of Events.

Inzoming Bwert

| Check Alarm Signature
of all Comalators

WiET 1l all vanables used in
Adwvanced Fitter that depend on
Fsyne functions are evaluated

Evaluate warables used in
Advanced Filter and then
evaluate Advanced Filter

h 3
‘l Mo Comelator
Process Comelators matched - Output
that pas= fitters ewernt

Compute event flow bazsed
on result of all Comelators

.
Hald alarm for
specified pariod

|

Pracess Comelators +
that asked for HOLD Tizoard Evert &
Invoke Callback
Compute avent flow T
bazed on result of all
Camelators

L

Process Async warables

used in the Create/Mter
specification

I

Evaluate vwarables in the
specification and then
Cregte/&ter events and
inwoke Callbacks

.

= Feedbac
Required

Wo) Output the Event [+

Appendix A 225

Ready Reckoner
Built-In functions

Syntax

Syntax

Syntax

Syntax

Syntax

Built-In functions

add

add intl int2
Where:

intl andint 2 are integers

bitand

bitand intl int2
Where:

intlandint2 areintegers
bitinv

bitinv int
Where:

i nt is an integer

bitor

bitor intl int2
Where:

intlandint2 areintegers

bitxor

bitxor intl int2
Where:

226

Appendix A

Syntax

Syntax

Syntax

Ready Reckoner
Built-In functions

intlandint2 areintegers
div
intl divint2

Where:

i nt 1 is the integer dividend.

i nt 2 is the integer divisor.

getBylndex

get Byl ndex |ist index failval ue
Where:
li st is a list of any data types

i ndex is the position from which the value is to be extracted

fail val ue is the value extracted if the get Byl ndex function fails

getCounter

get Counter tolnit keyl, key2 ...

Where,

tol ni t is the method in which the value will be retrieved

keyl, key2,...are the keys based on which the value is retrieved
The field t ol ni t can take the following values

STCRE INT The stored value is returned and the storage memory
occupied by this value is freed.

STORE_ NO INT The stored value is returned, but the storage space is
not deleted and further calls to retrieve will return the
stored value.

Appendix A

227

Ready Reckoner
Built-In functions

getHour

Syntax get Hour ()

Description The get Hour function returns the current hour. The result is an integer
and value can be between 0-23. All time is represented in UTC.
getMinute

Syntax get M nut e()

Description The get M nut e function returns the current minute. The result is an
integer and value can be between 0-59. All time is represented in UTC.
getMonth

Syntax get Mont h()

Description The get Mont h function returns the current month. The result is an
integer and value can be between 1-12.
getTime

Syntax getTine ()

Description The get Ti ne function returns the time in seconds since epoch(1 January
1970). The result is a string.
makeL.ist

Syntax makel.ist ar gunent s
Where:
ar gunent s is the list of arguments that are passed to the function
mod

Syntax intl nod int2

228 Appendix A

Syntax

Syntax

Syntax

Syntax

Ready Reckoner
Built-In functions

Where:

i nt 1 andint 2 are both integers.

mul

mul intl int2
Where:

intlandint2are two integers

retrieve

retrieve tolnit failval ue keyl, key2,
Where:
tol ni t is the method in which the value will be retreived

fai | val ue is the value that is returned by the function if the retrieve
function fails.

keyl, key2, ... are the keys based on which the value is retrieved

retrieveStr

retrieveStr tolnit failval ue keyl, key2,...
Where:
tol ni t is the method in which the value will be retrieved

fai | val ue is the value to be returned by the function if the retrieve
function fails.

keyl, key2,...are the keys based on which the value is retrieved

setCounter

set Counter tolnit increment w ndow keyl, key2,...
Where:

tol ni t is the method in which the value will be set.

Appendix A

229

Ready Reckoner
Built-In functions

i ncr enent is the increment value.

w ndowis the time period for which the value will be stored.

keyl, key2,... are the keys against which the values will be set.
store

Syntax st ore val ue wi ndow keyl, key2,
Where:

val ue is the value that is to be stored

w ndowis the time period for which the value will be stored

keyl, key2, ... are the keys based on which the value is stored
storeStr

Syntax storeStr t oAppend seperator val ue wi ndow keyl, key2,
Where,

t oAppend parameter decides how the value will be stored
seper at or is the field seperator

val ue is the value to be stored

w ndowis the time period for which the value will be stored

keyl, key2 ... are the keys based on which the value will be stored

sub

Syntax sub intl int2
Where :

i nt 1 andint 2 are the any two integers

230 Appendix A

B Error Messages

This chapter provides a list of messages you may encounter while using
the Correlation Composer and the corrective action, if any, that you

should take to overcome the error.

Appendix B 231

Error Messages
Error Messages displayed while creating Correlator Store files

Error Messages displayed while creating
Correlator Store files

Message: No blank entry all oned

Cause You have left an entry blank
Action Enter valid values in the blank cell.
Message: Invalid Syntax

Cause You have entered some invalid characters like
consecutive blanks, commas or mismatched quotes.

Action Enter values without blank spaces, commas and
matched quotes.

Message: Variable in use, cannot delete

Cause You have tried to delete a variable which is used as a
input to define other variables.

Action Change the condition rule for the variable and delete
the variable.

Message: Variabl e Name cannot be Nul

Cause You have not entered the name for the Variable
Action Enter the name for the variable

Message: Duplicate Variable Nane

Cause Specified Variable Name already exists.
Action Provide a new name for the variable

Message: Variable Nanme in use, cannot renane

Cause You have tried to rename the variable which i used as
input while defining other variables

Action Change the condition rule for the variable and rename
the variable.

Message: Unspecified Correl ator Name
Cause You have not entered a name for the Correlator.

Action Enter a name for the Correlator.

232 Appendix B

Message:

Cause

Action

Message:

Cause

Action

Message:

Cause

Action

Message:

Cause

Action

Message:

Cause

Action

Message:

Cause

Action

Message:

Cause

Action

Error Messages
Error Messages displayed while creating Correlator Store files

Unspeci fied function nane

You have not entered the name for the function while
defining Callback functions

Enter the name of the function
Correlator nanme is invalid

You have entered a blank space or special characters in
the Correlator name text field.

Rename the Correlator name without any blank spaces
or special characters

Unspeci fi ed W ndowPer i od

The time period for which the correlation has to be
maintained has not been entered.

Enter the tim period for which the correlation has to be
entered in the Time Period window.

W ndowPeri od shoul d be integer only

You have tried to enter special characters or alphabets
in the Time Period window.

Renter the Time Period in numeric form only.
Unspeci fi ed Threshol dCount

In Transient correlation, you have tried to correlate
without specifying the count of the Failure and Clear
pairs after checking the Enable Threshold checkbox.

Enter the Threshold Count
Unspeci fi ed Threshol dW ndow

In Transient correlation, you have tried to correlate
without specifying the time period for which you want
to monitor the correlation.

Enter the time period for which you want to monitor
the correlation.

Dupli cate A arm Nane
Specified Correlator name already exists.

Enter a different name for the Correlator.

Appendix B

233

Error Messages
Error Messages displayed while creating Correlator Store files

Alarm Nane i s use, cannot del ete

Cause In Multi-Source correlation, you are trying to delete an
existing alarm whose attributes are being used to
create a new alarm.

Action Change the New Alarm Specification and delete the
alarm.

Message: Mnutes in WndowPeri od cannot be greater than 60.

Cause You have tried to enter the minute value greater than
60.
Action Covert minutes to hours and enter the value in the

Window Period field.
Message: Seconds in WndowPeri od cannot be greater than 60.
Cause You have entered the second value greater than 60.

Action Convert second value to minute and enter the value in
the Window Period field.

Message: Threshol d Count shoul d be integer only

Cause You have tried to enter special characters or alphabets
in the Threshold Count window.

Action Renter the Threshold Count in numeric form only.
Message: Look and Feel not supported

Cause You have tried to change the Look and Feel to
“Wndows” on an Unix machine.

Action Renter the Threshold Count in numeric form only.

Message: Unknown Event Type

Cause The Event type specified while starting the
Orchestrator from the command line is invalid.

Action Enter the valid Event Types namely, SNMP, CMIP,
OpC or X733.

234 Appendix B

Error Messages
Error Messages displayed while Deploying Correlator Store files

Error Messages displayed while Deploying
Correlator Store files

The following errors are displayed when you try to deploy the Correlator
Store into the ECS Engine.

Message: Merge failed: Cannot execute the csnerge script.

Cause The csmer ge script (that is invoked internally at the
time of deploy) could not be executed.

Action

Message: Cannot |oad the Correlator Store into the ECS
engi ne.

Cause The Correlator Store cannot be loaded into the ECS
engine.
Action Check if the ECS engine is running. If it is already

running, contact the Administrator for more details.

Message: Merge Failed. Correlator Stores are of different
Event Type.

Cause The csrmrer ge file is trying to merge Correlator Store
files created for different Event types.

Action Such files cannot be merged.

Message: Merge Failed. Correl ator Stores have different Perl
files.

Cause The Perl files are different in the Correlator Stores.

Action Include all Perl files into one main Perl file and
reference this while specifying the Perl filename.

Message: Merge Failed. Correlator Stores have different C
Li brari es.

Cause The C libraries are different in the Correlator Stores
Action Reference only one C library while specifying C library
name.

Message: Merge Failed. Cannot open file.

Appendix B

235

Error Messages
Error Messages displayed while Deploying Correlator Store files

Cause One of the Correlator Store files specified in the
Namespace files cannot be opened.

Action Check the file permissions. Change file permissions for
it to be visible appropriatly.

Message: Merge Failed. Destination File already exists.

Cause A Correlator Store file with the same name already
exists.

Action Provide a different name to the merged Correlator
Store.

236 Appendix B

C Event Attributes

This appendix contains the valid Event attributes for all the Event Types
supported by the Composer.

Appendix C 237

Event Attributes

Table C-1 Event Attributes
Message Attribute Type Description

CMIP

managedObjectClass String This is the registered class of the
managed object that emitted the event.

managedObjectinstance String This identifies the managed object
instance that emitted the event.

eventTime Time This is the time at which the event was
created by the managedobject emitting
it.

eventType Integer This is the registered NOTIFICATION
for the event.

eventinfo String This is the generic place-holder for
details of the specific event, as defined
by the eventType.

eventlInfo.probableCause Integer This is the probable cause of the alarm.

eventinfo.perceivedSeverity | Integer This is the perceived severity of the
alarm.

eventinfo.additionalText String This is the additional text that may be
extracted from the message received or
added as extra information to the alarm.

OpC

AACTION_ACK Boolean Defines whether or not the message is
acknowledged automatically on the OVO
management server after the
corresponding automatic action has
finished successfully.

AACTION_ANNOTATE Boolean Defines whether or not OVO creates

“start” and “end” annotations for
automatic actions.

238

Appendix C

Event Attributes

Table C-1 Event Attributes (Continued)
Message Attribute Type Description
AACTION_CALL String The command to use as automatic action

for the OVO message. Default: empty
string; max. length: 2000 chars.

AACTION_NODE String Defines the system on which the
automatic action runs. Default value:
the content ‘'NODENAME’; max. length:
254 chars

AACTION_STATUS Integer Defines the status of the automatic
action belonging to the current message.
Possible values are:

- 0-ACTION_UNDEF (default)

e 1- ACTION_DEF (default if
AACTION_CALL is defined)

e 2-ACTION_STARTED
= 3-ACTION_FINISHED

APPLICATION String Application name to use for the OVO
message. Default: empty string; max.
length: 32 chars.

CREATION_TIME Time The time the message was created. The
time is in UNIX format (seconds since
Epoch). Default: the (local) time when
the message was created.

FORWADED Read only. Defines whether or not
message is forwarded in an environment
configured with manager-to-manager
forwarding.

GROUP String The OVO message group to use for the
message. Default: empty string; max.
length: 32 chars.

Appendix C 239

Event Attributes

Table C-1 Event Attributes (Continued)
Message Attribute Type Description
INSTR_IF String The name of the external,

instruction-text interface. The external,
instruction-text interface must be
configured in OVO. Default: empty
string; max. length: 36 chars.

INSTR_IF_TYPE Integer Defines whether the internal OVO
instruction-text interface or an external
interface is used todisplay instructions
for the message. Possible values are:

- 0- INSTR_NOT_SET(default)

e 1-INSTR_FROM_OPC(instruction
stored in OVO database)

e 2-INSTR_FROM_OTHER
(instruction accesses via external
instruction-text interface)

INSTR_PAR String Parameters for the call to the external,
instruction-text interface. Default:
empty string; max. length: 254 chars.

MSGID String Read only. Unique identifier of the
message. Modified or newly created
messages will assume the 1D: ‘00000....

MSGSRC String Read only. This attribute specifies the
source of the message, example, the
name of the encapsulated logfile if the
message originated from logfile
encapsulation or the interface name if
the message was sent via an instance of
the Message-Stream Interface. Default:
empty string; no max. length.

240 Appendix C

Event Attributes

Table C-1 Event Attributes (Continued)
Message Attribute Type Description
MSGSRC_TYPE Integer Read only. Specifies the source type of

the message. Each source is represented
in one bit, for example, a message that
was generated by the logfile
encapsulator and then modified at the
Agent MSI will have ‘bit’ or
LOGFILE_SRC and AGTMSI_SRC set.

Possible values are:

e 1-CONSOLE_SRC (MPE/iX source)
e 2-OPCMSG_SRC

e 4-LOGFILE_SRC

e 8-MONITOR_SRC

e 16-SNMPTRAP_SRC

e 32-SVMSI_SRC (MSI on OVO
management server)

e 64 - AGTMSI_SRC (MSI on OVO
managed node)

e 128 -LEGLINK_SRC (Legacy Link
interface)

= 256 - SCHEDULE_SRC

MSGTEXT String Message text. Default: empty string; no
max. length.
MSGTYPE String This attribute is used to group messages

into subgroups, example, to denote the
occurrence of a specific problem.
Default: empty string; max. length: 36
ASCII chars, no spaces.

Appendix C 241

Event Attributes

Table C-1 Event Attributes (Continued)
Message Attribute Type Description
MSG_LOG_ONLY Boolean Inserts the message immediately into

the history-message log when the
message is received on the Management
Server. The message is not sent to any
operator. An Operator will only be able
to see the message when using the OVO
history message browser

MSI_OUTPUT Integer Defines the handling of the message in
the OVO Message Stream Interface.
Each value is representing one bit that
can be bitor’ed. Possible values are:

- 0-SV_MSI_NO_OUTPUT (default)
- 1-SV_MSI_DEVERT
- 2-SV_MSI_COPY

e 0-AGT_MSI_NO_OUTPUT
(default)

e 4-AGT_MSI_DIVERT
- 8-AGT_MSI_COPY

NODENAME String The name of the system on which the
message was created. The message is
only handled by the OVO management
server if NODENAME is part of the
OVO managed environment (OVO node
bank). Default: local node name; max.
length: 254 chars.

NOTIFICATION Boolean Forwards OVO messages from the OVO
management server to the OVO
Trouble-ticket Notification Service
interface(s), if the appropriate
notification interface(s) is/are configured
and active.

242 Appendix C

Event Attributes

Table C-1 Event Attributes (Continued)
Message Attribute Type Description
OBJECT String The “object” name to use for the OVO

message. Default: empty string; max.
length: 254 chars.

OPACTION_ACK Boolean Defines whether the message is
acknowledged automatically on the OVO
management server after the
corresponding operator-initiated action
has finished successfully.

OPACTION_ANNOTATE Boolean Defines whether or not OVO creates
“start” and “end” annotations for the
operator-initiated action.

OPACTION_CALL String Command to use as operator-initiated
action for the OVO message. Default:
empty string; max. length: 2000 chars.

OPACTION_NODE String Defines the system on which the
operator-initiated action should run.
Default value: NODENAME; max.
length: 254 chars.

OPACTION_STATUS Integer Defines the status of the
operator-initiated action belonging to
the current message. Possible values
are:

- 0-ACTION_UNDEF (default)

e 1-ACTION_DEF (default if
OPACTION_CALL is defined)

e 2-ACTION_STARTED
= 3-ACTION_FINISHED
= 4-ACTION_FAILED

Appendix C 243

Event Attributes

Table C-1 Event Attributes (Continued)

Message Attribute

Type

Description

ORIGMSGTEXT

String

The original message text. This
attribute allows you to set additional
source information for a message. It is
useful if the message text was
reformatted but the OVO operator needs
to have access to the original text.
Default: empty string; no max. length.

READ_ONLY

Read only. Defines whether or not a
message is forwarded as a “notification”
in an environment configured with
manager-to-manager forwarding.

RECEIVE_TIME

Time

Read only. Defines the time the message
was received by the management server.
The time is in UNIX format (seconds
since Epoch). This value is set by the
management server.

SERVICE_TIME

Time

This is the Service time of the message.

SEVERITY

Integer

The severity of the message. Possible
values are:

= 4-SEV_UNKNOWN
= 8-SEV_NORMAL

= 16 -SEV_WARNING
= 64-SEV_MINOR

= 128 -SEV_MAJOR

= 32-SEV_CRITICAL

TIME_ZONE_DIFF

Time

Read only. Defines the difference in
seconds between UTC and local time at
the time a message is created.

244

Appendix C

Event Attributes

Table C-1 Event Attributes (Continued)
Message Attribute Type Description
TROUBLETICKET Boolean Defines the forwarding of OVO

messages from the OVO management
server to the OVO trouble-ticket (TT)
interface, if the TT interface is
configured.

TROUBLETICKET_ACK Boolean Defines that the OVO management
server acknowledges the message
automatically if forwarding of the
message to the trouble ticket system
was successful.

UNMATCHED Boolean Defines whether or not the message
matched a condition.

SNMP

enterprise Object ID Identifies the network management
subsystem that generated the trap.

generic-trap Integer One of the predefined values in the
definition. Values must be between 1
and 6

specific-trap Integer A code that indicates the nature of the
trap more specifically than the
generic-trap number. Specific trap
numbers are defiend by the owning
enterprise and are meanigful only in
conjunction with the enterprise
attribute.

time-stamp Integer The number of time ticks, in hundreths
of a second, between the last
intialization of the device and the
generation of the trap. Genrally
meanigless for correlation purposes.

Appendix C 245

Event Attributes

Table C-1 Event Attributes (Continued)
Message Attribute Type Description
variable-bindings String, Additional information about the trap.
Integer The contents of this field is dependent
on the enterprise ID and specific-trap
values.
agent_addr Stringindot | The network address of the object that
notation generated the trap in the form of an
ECDL tuple.
X733
ServicePrimitive Integer Defines the service primitive of the
current event message.
Format Integer Defines the format of the current event
message.
ProcessName Integer
Invokedldentifier Integer
FmpType Integer
Mode Integer Defines the mode of the event message.
ManagedObijectClass String This is the field that indicates the

managed object class of the object
emitting the alarm.

ManagedObjectinstance String This field indicates the instance of the
MOC that emitted the alarm.

EventType Integer

EventTime Time This field indicates the date and time at

which the alarm was emitted. Mapping
information to this field is not
mandatory.

246 Appendix C

Event Attributes

Table C-1 Event Attributes (Continued)

Message Attribute

Type

Description

ProbableCause

Integer

This is the probable cause of the alarm.
X.721 and M.3100 are supported for
probable cause global variables. The
probable causes for each of these
formats are listed in Appendix C, “List
of Probable Causes,” on page 463 of this
manual.

PerceivedSeverity

Integer

This is the perceived severity of the
alarm.

BackedUpStatus

Integer

Defines the back up status of the ebeent
message. The valid values are:

< NotBackedUp
< BackedUp

TrendIndication

Integer

Defines the trend of the alarm severity
change. The valid values are:

e | essSevere
< NoChange

e MoreSevere

SpecificProblems

String

This is the specific problem that caused
the alarm. This corresponds to the
specific problems defined in the
managed object class definition.

NotificationIndentifier

Integer

This is a notification id generated by the
device that emitted the alarm.

Additional Text

String

This is the additional text that may be
extracted from the message received or
added as extra information to the alarm
being transferred to the FM Server.

AdditionallInformation

String

This is also additional information that
can be sent with the alarm to the FM
Server.

Appendix C

247

Event Attributes

Table C-1 Event Attributes (Continued)
Message Attribute Type Description
ERId Integer Internal use. Do NOT modify.
Alarmlid String Internal use. Do NOT modify.
CorResult Integer Internal use. Do NOT modify.
AdminState Integer Internal use. Do NOT modify.
TransientCount Integer Internal use. Do NOT modify.
RelatedCount Integer Internal use. Do NOT modify.
PortName String This is the name of the port at which the
alarm was received.

NetworkEquipShortname String This is the short name of the parent

network element of the object that

emitted the alarm.

248

Appendix C

D Pattern Matching

Appendix D 249

Pattern Matching

This chapter explains the Pattern Matching conditions provided by the
Composer.

250 Appendix D

" ERROR"

" <1 [WARNI NG >"

Pattern Matching
Pattern-Matching

Pattern-Matching

ECS provides a powerful text pattern-matching language that allows
logical testing for the existence of substrings and patterns. Parts of a
text string can be extracted and assigned to tags, which may be reused
within the same scope. This section describes the operators and syntax of
the pattern-matching language.

The pattern-matching language used in the match functions is the same
as that used in HP OpenView IT Operations.

Frequently, pattern-matching means simply scanning for a specific
substring in the target string. For example, to search for the substring
ERROR anywhere in the target string you search for the pattern:

Similarly, should you wish to match text not containing a specific
substring (for example, WARNING), you type:

This uses the not operator "! ", together with the chevrons "< >" that
must enclose all operators, and the square brackets "[]" that isolate
sub-patterns.

You control case-sensitivity with a separate argument to the Mat ch. nake
function.

Appendix D

251

Pattern Matching
Defining Match Expressions

Defining Match Expressions

< Ordinary Characters

Ordinary characters generally represent themselves. However, if any
of the following special characters are used they must be prefaced
with a backslash escape character (\) to mask their usual function.

[<> "3
< Expression Anchoring Characters (® and $)

If the caret () is used as the first character of the pattern, only
expressions discovered at the beginning of lines are matched. For
example, "*ab" matches the string " ab" in the line "abcde", but not
in the line " xabcde".

If the dollar sign is used as the last character of a pattern, only
expressions at the end of lines are matched. For example, " de$"
matches "de" in the line "abcde", but not in the string "abcdex".

If ~ and $ are not used as anchoring characters, that is, not as first or
last characters, they are considered as ordinary characters without
masking.

= Expressions Matching Multiple Characters

Patterns used to match strings consisting of an arbitrary number of
characters require one or more of the following expressions:

= <*>matches any string of zero or more characters (including
separators)

<n*> matches a string of n arbitrary characters (including separators)
= <#>matches a sequence of one or more digits
= <n#> matches a number composed of n digits
= <S> matches a sequence of one or more separator characters
= <nS> matches a string of n separators

= <@ matches any string that contains no separator characters, in
other words, a sequence of one or more non-separators; this can
be used for matching words.

252 Appendix D

Pattern Matching
Defining Match Expressions

Separator characters are configurable for each pattern. By default,
separators are the space and the tab characters. The separator string
is specified as the second element in the 3-tuple passed to the

Mat ch. make function.

Bracket ([and]) Expressions

The brackets ([and]) are used as delimiters to group expressions. To
increase performance, brackets should be avoided wherever they are
superfluous. In the pattern:

"ab[cd[ef] gh]"
all brackets are unnecessary—" abcdef gh" is equivalent.

Bracketed expressions are used frequently with the OR operator | ",
the NOT operator "! " and when using sub-patterns to assign strings
to tags.

The OR (|) Operator

Two expressions separated by the vertical bar character "| " matches
a string that is matched by either expression. For example,

"[ab] c]d"
This matches the string "abd" and the string " cd".
The NOT (!) Operator

The not operator "! " must be used with delimiting square brackets,
for example:

" <! [WARNI NG >"

The pattern above matches all text which does not contain the string
The not operator may also be used with complex sub-patterns:
“LN<*> R< 1[490][501[al b]]] >-<*>"

The above pattern makes it possible to generate a message for any
line connection other than from repeaters 490, 501a or 501b.
Therefore, the following would be matched:

"LN270: R300-427"

However, this string is not matched, because it refers to repeater
501a:

"LN270: R501a-800"

Appendix D

253

Pattern Matching
Defining Match Expressions

If the sub-pattern including the not operator does not find a match,
the not operator behaves like a <*>: it matches zero or more
arbitrary characters. For this reason, there is a difference between
the UNIX expression "[! 123] ", and the corresponding ECS pattern
matching expression: " <! [1] 2| 3] >". The ECS expression matches
any character or any number of characters, except 1, 2, or 3; the
UNIX expression matches any one character, except 1, 2, or 3.

The Mask (\) Operator

The backslash “\ ” is used to mask the special meaning of the
characters:

[1 <>] "8

A special character preceded by \ results in an expression that
matches the special character itself.

Because » and $ only have special meaning when placed at the
beginning and end of a pattern respectively, you need not mask them
when they are used within the pattern (in other words, not at
beginning or end).

The only exception to this rule is the tab character, which is specified
by entering “\ t ” into the pattern string.

254

Appendix D

Pattern Matching
Tags

Tags

Search patterns may use tags to identify part(s) of the target string. For
example, to compose a new string from selected parts of the target string.
define a tag, add “.t agnarme” before the closing chevron. The pattern:

Aerrno: <#.nunmber> - <*. error_text>
matches a string such as:
errno: 125 - device not in service

and assigns " 125" to the tag nunber and "devi ce not in service" to
the tag error _t ext. The tags may be accessed as members of a
dictionary.

Appendix D

255

Pattern Matching
Assignment Rules

Assignment Rules

In matching the pattern " <*. t agl><*. t ag2>" against the string
"abcdef ", it is not immediately clear which substring of the input string
is assigned to each tag. For example, it is possible to assign an empty
string to t ag1 and the whole input string to t ag2, as well as assigning
"a" totagl and "bcdef " totag2, and so forth.

The pattern-matching algorithm always scans both the input line and
the pattern definition (including alternative expressions) from left to
right. <*> expressions are assigned as few characters as possible. <#>,
<@, <S> expressions are assigned as many characters as possible.
Therefore, t agl will be assigned an empty string in the above example.

To match an input string such as:
“"this is error 100: big problent
use a pattern such as:

error <#.errnunber>:<* errtext>

In which:

e "100" is assigned to the tag err nunber
< "big probl ent is assigned to the tag errt ext

For performance and pattern readability purposes, you can specify a
delimiting substring between two expressions. In the above example, “:”
is used to delimit <#> and <*>.

Matching <@ wor d><#. nun® against "abc123" assigns "abc12" to wor d
and " 3" to num as digits are permitted for both <#>and <@, and the left
expression takes as many characters as possible.

Patterns without expression anchoring can match any substring within
the input line. Therefore, patterns such as:

“this is nunber<#. nunp"
are treated in the same way as:

"<*>this is nunber <#. nunp<*>"

256

Appendix D

Pattern Matching
Sub-Patterns Assignment

Sub-Patterns Assignment

In addition to being able to use a single operator, such as * or #, to assign
a string to a tag, you can also build up a complex sub-pattern composed
of a number of operators, according to the following pattern:

<[sub-pattern].tag>

For instance: <[r ack<#>. br d<#>] . hwar e>

In the example above, the period (.) between r ack<#> and br d<#>
matches a similar dot character, while the dot between] and hwar e is
necessary syntax. This pattern would match a string such as
"rack123. brd47" and assign the complete string to hwar e.

Other examples of sub-patterns are:
<[Error| Warni ng] . sev>

and

<[Error[<#.n><*.msg>]]. conpl et e>

In the first example above, any line with either the word “Error” or the
word “Warning” is assigned to the tag, sev. In the second example, any
line containing the word “Error” has the error number assigned to the
tag, n, and any further text assigned to nsg. Finally, both number and
text are assigned to conpl et e.

Appendix D

257

Pattern Matching
Examples of Pattern-matching Conditions

Examples of Pattern-matching Conditions

The following examples show some of the many ways in which the ECS
pattern-matching language can be used.

"Error"

Recognizes any message containing the keyword Err or at any place
in the message, when ExactCase is specified.

°" pani c"

Matches all messages containing pani c, Pani ¢, PAN Cat any place in
the text, when IgnoreCase is specified.

"1 ogon| | ogof f "

Uses the or operator to recognize any message containing the
keyword | ogon or | ogof f .

"Aswi tch: <*.nsg> errno<*><#.errnunr$"
Recognizes any message such as:
"switch: |lost service errno : 6"
or
"switch: service unavail able; errno 16"

In the first example, the string "1 ost servi ce errno" is assigned
to the tag nmsg. The digit 6 is assigned to the tag er r num Note the
way that the anchoring symbol is used to specify that the digit 6 will
only be matched if it is at the end of the line.

e"Nerrno[| =] <#.errnum> <*_ errtext>"
Matches strings such as:

"errno 6 - no such device or address "

or

"errno=12 not enough capacity.

258 Appendix D

Pattern Matching
Examples of Pattern-matching Conditions

Note the space before the or operator. The expression in square
brackets matches either this blank space, or the equals sign. The
space between <#. err nun®» and <*. errt ext > is used as a delimiter.
Although not strictly required for assignments to the tags shown
here, this space serves to increase performance.

e"Nsystem <*>:<* i d> "
Matches a line delimited by colons such as:
"system abc123: #103. 79a: 270295114730 "

and returns the third field in tag i d. The colon “: ” in the middle of
the pattern is used to delimit the string passed to i d from the
preceding string. The colon at the end of the pattern delimits the
string passed to i d from the succeeding field in the input pattern.
Here the colon is necessary to separate the strings, not merely to
enhance efficiency.

" "\W\arni ng: <*.text>on circuit<@circuit>$
Matches any message such as:
"WArning: too many errors on circuit 473-186"

and assigns "t oo many errors" totext,and"473-186" to
circuit.

Appendix D 259

Pattern Matching
Examples of Pattern-matching Conditions

260 Appendix D

Glossary

Advanced Filter Alarms that have entered
a rule, can be further filtered based on the
Advanced Filter Condition. This condition is
typically used to define filters based on
external factors like state and topology.

Alarm Signature The Alarm Signature
forms the first level of filtering based on
event attributes. Further processing takes
place when an event matches all attributes
set in the Alarm Signature. The Alarm
Signature is a set of data structures
consisting of At t ri but e name, per at or
and Val ue

Attributes An alarm is a set of name value
pairs where the name is referred to as an
attribute.

Callback Functions A correlation rule
applied to an event can result in the event
getting discarded or a new correlation being
output. User-defined functions can be
invoked to perform user specific functions
like logging of events. Callback functions can
be invoked at the time of creating a new
alarm or when the alarm is discarded.

Combine Variables are combined to form a

new variable by using the Combine operator.

Constant Constant values are used for
reference while defining a correlation rule.
The variable name is bound to the value
specified in the value field.

Correlation Correlation is the processing of
an event stream to improve its value,
perhaps by making it smaller and perhaps
by improving its information content. This
processing is performed on the basis of
relationships between events.

Correlation Composer The HP OpenView
Correlation Composer is a combination of a
packaged ECS circuit and the graphic user
interface used to parametrize and define
Correlation Rules to perform Event
Correlation.

Correlator A Correlator uniquely identifies
a unit of correlation logic to be applied to an
event or a set of events.

Correlator Store A Correlator Store
contains a set of Correlators which define
correlation requirement.

Enhance Enhance Correlation enables
event attributes of an event to be added,
deleted or changed after correlation,
resulting in a change of information content
of an event.

Event Correlation Services ECS can
identify and highlight changes in the state of
a network (by suppressing and correlating
event storms), and then pass on or generate
events which have more significance or a
higher value.

Extract Extract - Sub strings within the
event attribute can be extracted.

Function The return value of an user
defined function can be bound to a variable
name. The variable type can be a function
whose value will be associated to the name of
the variable.

Global Constants Values can be bound to
names and referred to by this name while
defining Correlation Rules.

Glossary

261

Glossary
Lookup

Lookup Values from datastore can be
guarried and bound to variables using the
Lookup operator. The return type of the
Lookup operator is always the same type as
the value in the Datastore. However, if more
than one parameter is specified, the return
value will be a combined string.

Message Key The message key identifies
the instance of the rule under which the
alarm is correlated after the alarm has
passed both the Alarm Signature and
Advanced Filter conditions.

Multi-Source Multi-Source correlation is
used to define a relationship between an
arbitrary number of alarms, potentially from
different sources, that together form a logical
set that identifies the problem. The set is
considered complete if all alarms configured
arrive within the specified time window.

Parameters Parameters are set to change
the default behavior of the basic rule type.
The functionality of the parameters can vary
across the different Correlation types.

Rate Rate correlation allows you to measure
the number of events occurring in a defined
window of time (called the threshold time)
and outputs an event with more information
content. The rate is maintained for a
particular category of events. However, if the
arrival rate exceed the threshold, it is
indicative of a serious problem and a new
alarm is created and forwarded.

Repeated Operators will not find it
necessary to receive alarms of the same kind
during a defined window of time. Similar

alarms can be eliminated and only an alarm
containing useful information can be passed
on.

Suppress Suppress Correlation is used
when a specific category of alarms has to be
discarded. The alarm signature specified
identifies these alarms.

Transient Alarms coming from the same
network element with the same probable
cause and specific problem within a specified
time period(window) are considered
transient. A period of time can be defined for
which this transience must occur i.e. you are
checking for the number of transient alarms
occurring in a threshold time. If the
transient suppression exceeds the threshold
then a new alarm will be generated and
forwarded to the operator notifying him of
threshold breach and the number of
transients suppressed in that window

Variables Variables are names given to
values to be used while defining the
Correlation Rule.

262

Glossary

	HP OpenView Correlation Composer’s Guide
	1 Introduction
	Scope
	Audience
	On-line documentation
	On-line Help

	2 HP OpenView Correlation Composer
	HP OpenView Correlation Composer
	Basic Concepts
	Event
	Alarm
	Output an Event
	Discard an Event
	Event Type
	Attribute
	Correlator
	Correlator Store

	Correlator Templates
	Enhance Correlator Template
	Multi-Source Correlator Template
	Rate Correlator Template
	Repeated Correlator Template
	Suppress Correlator Template
	Transient Correlator Template
	User-Defined Correlator Template

	Modes of Correlation Composer
	Correlator Template Evaluation Precedence

	3 Using the Correlation Composer
	Getting Started
	Software Prerequisites
	Start the Composer
	Exit the Composer
	Menu Commands
	Toolbar buttons

	Correlator Window
	1. Alarm Definition
	2. New Alarms Creation
	3. Callback Functions

	Define Event Attributes
	View Backup Files

	4 Developing Correlators with Composer
	Planning the configuration
	Correlator Store
	Create and Save the Correlator Store
	Opening an existing Correlator Store
	Modify an existing Correlator Store
	Migrate existing Correlator Stores

	Step 1: Event Type
	Step 2: Define Global Constants
	Global Constants

	Step 3: Define Alarm Definition
	Correlators

	Step 4: Define New Alarms
	Step 5: Callback Functions
	Step 6: Load Perl and C Library
	Managing Correlators
	Open an existing Correlator
	Modify an existing Correlator
	Delete an existing Correlator

	Writing External functions in C
	Writing External functions in Perl
	Support for Multiple Perl files

	User Defined Correlation
	Writing External Functions to be called as the Input/Output functions of a User-Defined correlation

	Merging Correlator Store files
	Merge Correlator Stores that are specified in the Namespace
	Remove User Description from Correlator Store
	Merge Correlator Stores

	5 Correlation Composer for the Developer
	Composer in the Developer mode
	Planning Operator’s Profiles
	Step 1: Creating Correlator Stores
	Step 2: Listing Correlator Store
	Step 3: Creating NameSpace and Security files
	Step 4: Creating the Deploy

	Configuring the Operator
	Deploying the Correlator Store
	Deploy from command prompt

	6 Correlation Composer for the Operator
	Composer in the Operator mode
	Mutual Exclusive Access to Correlator Store files
	Deploying the Correlator Store

	7 Composer Built-In Functions
	Composer Built-in Functions
	add
	bitand
	bitinv
	bitor
	bitxor
	div
	getByIndex
	getCounter
	getHour
	getMinute
	getMonth
	getTime
	makeList
	mod
	mul
	retrieve
	retrieveStr
	setCounter
	store
	storeStr
	sub
	Concept of Keys

	8 Use Cases
	Case 1: Enhance Correlation
	What you need to know?

	Case 2: Multi-Source Correlation
	What you need to know?

	Case 3: Rate Correlation
	What you need to know?

	Case 4: Repeated Correlation
	What you need to know?

	Case 5: Suppress Correlation
	What you need to know?

	Case 6: Transient Correlation
	What you need to know?

	Case 7: Multi Event Correlation accessing external topology
	What you need to know?

	9 Troubleshooting the Composer During Runtime
	Troubleshooting the Composer
	Tracing in the NNM environment

	Troubleshooting the Composer during Runtime

	10 Correlation Composer for NNM
	Introduction
	Composer in the Operator Mode
	Composer in the Developer Mode

	Built-In Function
	getOIDValue

	A Ready Reckoner
	Parameters for Correlator Templates
	Enhance Correlator Template
	Multi-Source Correlator Template
	Rate Correlator Template
	Repeated Correlator Template
	Suppress Correlation Template
	Transient Correlation

	Terminology Flow
	Flow of Events
	Built-In functions
	add
	bitand
	bitinv
	bitor
	bitxor
	div
	getByIndex
	getCounter
	getHour
	getMinute
	getMonth
	getTime
	makeList
	mod
	mul
	retrieve
	retrieveStr
	setCounter
	store
	storeStr
	sub

	B Error Messages
	Error Messages displayed while creating Correlator Store files
	Error Messages displayed while Deploying Correlator Store files

	C Event Attributes
	D Pattern Matching
	Pattern-Matching
	Defining Match Expressions
	Tags
	Assignment Rules
	Sub-Patterns Assignment
	Examples of Pattern-matching Conditions

	Glossary

