
Peregrine

PART NO: DGR-412-EN27
Get-Resources
Tailoring Kit Guide
Version 4.1.2—For Windows

© Copyright 2004 Peregrine Systems, Inc.

PLEASE READ THE FOLLOWING MESSAGE CAREFULLY BEFORE INSTALLING AND USING THIS PRODUCT. THIS
PRODUCT IS COPYRIGHTED PROPRIETARY MATERIAL OF PEREGRINE SYSTEMS, INC. (“PEREGRINE”). YOU
ACKNOWLEDGE AND AGREE THAT YOUR USE OF THIS PRODUCT IS SUBJECT TO THE SOFTWARE LICENSE AGREEMENT
BETWEEN YOU AND PEREGRINE. BY INSTALLING OR USING THIS PRODUCT, YOU INDICATE ACCEPTANCE OF AND
AGREE TO BE BOUND BY THE TERMS AND CONDITIONS OF THE SOFTWARE LICENSE AGREEMENT BETWEEN YOU AND
PEREGRINE. ANY INSTALLATION, USE, REPRODUCTION OR MODIFICATION OF THIS PRODUCT IN VIOLATION OF
THE TERMS OF THE SOFTWARE LICENSE AGREEMENT BETWEEN YOU AND PEREGRINE IS EXPRESSLY PROHIBITED.

Information contained in this document is proprietary to Peregrine Systems, Incorporated, and may be used or disclosed only with written
permission from Peregrine Systems, Inc. This book, or any part thereof, may not be reproduced without the prior written permission of
Peregrine Systems, Inc. This document refers to numerous products by their trade names. In most, if not all, cases these designations are
claimed as Trademarks or Registered Trademarks by their respective companies.

Peregrine Systems, AssetCenter, AssetCenter Web, BI Portal, Dashboard, Get-It, Peregrine Mobile, and ServiceCenter are registered trademarks
of Peregrine Systems, Inc. or its subsidiaries.

Microsoft, Windows, Windows NT, Windows 2000, SQL Server, and names of other Microsoft products referenced herein are trademarks or
registered trademarks of Microsoft Corporation.

This product includes software developed by the Apache Software Foundation (http://www.apache.org/). This product also contains

software developed by: Sun Microsystems, Inc., Netscape Communications Corporation, and InstallShield Software Corporation.

This document and the related software described in this manual are supplied under license or nondisclosure agreement and may be used or
copied only in accordance with the terms of the agreement. The information in this document is subject to change without notice and does
not represent a commitment on the part of Peregrine Systems, Inc. Contact Peregrine Systems, Inc., Customer Support to verify the date of the
latest version of this document. The names of companies and individuals used in the sample database and in examples in the manuals are
fictitious and are intended to illustrate the use of the software. Any resemblance to actual companies or individuals, whether past or present, is
purely coincidental. If you need technical support for this product, or would like to request documentation for a product for which you are

licensed, contact Peregrine Systems, Inc. Customer Support by email at support@peregrine.com. If you have comments or

suggestions about this documentation, contact Peregrine Systems, Inc. Technical Publications by email at

doc_comments@peregrine.com. This edition of the document applies to version 4.1.2 of the licensed program.
Peregrine Systems, Inc.
3611 Valley Centre Drive San Diego, CA 92130
Tel 800.638.5231 or 858.481.5000
Fax 858.481.1751
www.peregrine.com

http://www.apache.org/
mailto:support@peregrine.com
mailto:doc_comments@peregrine.com

Contents
Introducing the Get-Resources Tailoring Kit. 11

About this guide . 12

Conventions used in this guide. 13

Section I Setting up a Development Environment. 15

Chapter 1 Installing the Get-ResourcesTailoring Kit 17

Installing the Get-Resources Tailoring Kit 18

Opening the Get-Resources project 21

Setting up a tailoring environment 21

Setting up a development environment 22

Setting up a testing environment 22

Chapter 2 Using Peregrine Studio . 25

The Peregrine Studio interface . 26

Project Explorer . 27

Drag and drop. 29

Best practices . 31

Avoid changing form definitions outside of Peregrine Studio 31

Avoid enabling advanced options. 31

Avoid using the clean the target folders build option. 32

Clear your application server cache every time you build changes 32

Create new or change existing templates to apply global changes 32

Enable the HTTP listener and display form information options 33
Contents 3

Get-Resources
Set the color for your extension changes 34

View referenced components with the lookup button 35

Chapter 3 Peregrine Studio Projects and Packages 37

Peregrine Studio projects . 38

Project components . 39

Project component descriptions 39

Project files . 42

Building a project . 44

Build options . 44

Setting project build settings . 44

Peregrine Studio project packages. 46

Saving changes with package extensions 47

Activating and deactivating packages 48

Package dependencies . 49

Setting package dependencies . 49

Warnings for conflicts . 50

Deploying tailoring changes . 51

Deploying to Windows platforms. 52

Deploying to UNIX platforms . 52

Section II Understanding Project Components 53

Chapter 4 Peregrine Studio Components . 55

Adding components . 56

Types of form components . 67

Component template containers 67

Fieldsection containers . 68

Text edit fields. 69

Selectbox fields . 70

Hidden data fields . 72

Redirections. 73

Simple table . 74

Document table . 74

Table links . 75
4 Contents

Tailoring Kit Guide
Text columns . 76

Form columns. 77

Actions . 78

Chapter 5 Scripting . 81

Overview of scripts . 82

Types of scripts . 82

Where scripts are stored . 83

How scripts are used . 84

Editing an existing script . 86

Adding a custom script . 89

Date values in scripts . 90

Testing scripts . 91

Rhino JavaScript debugger . 91

URL queries. 92

Common message operations . 96

Using ECMAScript in an object oriented manner 99

ECMAScript implementation in Get-Resources 99

Name resolution in ECMAScript 99

Using the object prototype for object oriented programming 99

How to use object orientation for tailoring 103

Sample scripts . 104

General script samples . 104

Selecting a field from a schema . 104

Calling other scripts and combining the results 106

Form script sample. . 108

Creating an XML document from a schema 108

Working with dates in scripts . 110

References . 112

Sources for client-side JavaScript 112

JavaDocs for the main Archway package 112

Chapter 6 Document Schema Definitions . 113

Understanding document schema definitions. 114

How to use schemas . 115
Contents 5

Get-Resources
Schema extensions . 116

When to use schema extensions 116

Creating schema extensions . 117

Identifying the schema to extend 117

Locating the schema on the server 118

Creating the schema extension target folders and files 118

Editing the schema extension files. 120

Adding a new field to the Available Fields list 120

Hiding an existing field from the Available Fields list 122

Changing the label a field displays in the Available Fields list 123

Changing the list of forms where a field is visible 124

Changing the physical mapping of a field 126

Changing the type of form component a field uses 127

Adding subdocuments to the Available Fields list 128

Creating custom schemas . 132

Adding a schema to your Peregrine Studio project 133

Adding logical and physical mappings to your schema 133

Sample schema . 139

Schema elements and attributes . 140

<?xml>. . 140

<schema> . 140

<documents> . 140

<document> . 142

<attribute> . 146

<collection> . 151

Documents . 153

Subdocuments . 154

Section III Tailoring Procedures and Testing. 161

Chapter 7 Tailoring Tasks . 163

Tailoring workflow . 164

List of tailoring tasks . 165

Forms and form components . 165

DocExplorers . 165
6 Contents

Tailoring Kit Guide
Scripting . 166

Schemas . 166

Data validation . 166

Default values . 166

Translation . 167

Tailoring forms and components . 168

Changing a form’s title . 169

Changing a form’s instructions. 170

Changing a form’s onload script 171

Changing a form component’s label 171

Hiding a form component. . 172

Changing a form component to read-only 173

Changing the schema that a form component uses 174

Changing the document field that a form component uses 175

Displaying a form within a frameset. 178

Adding Get-Resources to an existing frameset 180

Displaying a script variable in a form component 180

Creating a portal component . 182

Tailoring Get-Resources forms . 186

Best Practices . 186

Changing the request summary screen 186

Changing the request line detail screen 189

Changing the catalog select list . 191

Changing the purchase order summary screen 194

Changing the purchase order line detail screen 196

Changing the request line selection list 199

Adding personalization . 201

Supporting personalization . 201

DocExplorer configuration required in Peregrine Studio 202

Adding a DocExplorer reference 202

Personalizing a DocExplorer reference 203

Adding personalization form components – lookup fields 204

Tailoring scripts . 208

Editing an existing script . 208

Adding a custom script . 211
Contents 7

Get-Resources
Extending Get-Resources scripts 212

Changing request behavior . 213

Example: adding a field from one schema to another schema 215

Changing purchase order behavior 218

Request line default values. . 220

Setting request line default values from catalog entries 220

Overview of the cart experience code 223

The ActivityCartExperience template 224

The cartexperience script . 225

The request interface scripts . 227

The catalog scripts . 227

Creating custom schemas . 229

Adding a schema to your Peregrine Studio project 230

Adding logical and physical mappings to your schema 230

Sample schema . 236

Adding data validation . 237

Making a field required . 237

Request validation . 238

Purchase order validation . 239

Assigning default values . 240

Setting request default values . 240

Setting request line default values to values in a request 241

Purchase order default values . 244

Purchase order line default values 244

Translating tailored modules . 245

Editing existing translation strings files 246

Adding new translation strings files 247

Configure Get-Resources to use new string files. 248

Appendix A Troubleshooting and FAQs . 249

Get-Resources Environment . 250

Out of memory error . 250

Cannot start Java – JRE must be installed 250

Peregrine Studio . 251

Cannot edit — components are displayed with grey background 251
8 Contents

Tailoring Kit Guide
Red exclamation point (conflict icon) displayed next to nodes 252

Scripting Errors . 254

Unable to find script file . 254

Script produces an ECMAScript error 255

ECMAScript error: undefined value or property 255

Tailoring Errors . 256

Script output not appearing in form component 256

Too few parameters error . 256

Get-Resources always goes to redirection form 257

Syntax error in FROM clause . 257

Index. 259
Contents 9

Get-Resources
10 Contents

Introducing the Get-Resources Tailoring
Kit
The Get-Resources Tailoring Kit includes:

Peregrine Studio

Source files for Get-Resources

The Get-Resources is intended for Web application developers who are
familiar with Extensible Markup Language (XML), ECMAScript, Structured
Query Language (SQL), and back-end database systems such as AssetCenter
and ServiceCenter.

Peregrine Studio is a graphical development tool that you can use to
customize Get-Resources. Get-Resources consists of a series of Web-based
interfaces that allow users to, for example, order and purchase goods, search
for requests, and submit purchase orders. The Peregrine Portal common
interface determines what portions of Get-Resources the user sees.

The Web-based interfaces are the result of the following components:

A collection of XML form definitions that provide the browser interfaces
for Get-Resources. The Get-Resources XML form definitions are created
with Peregrine Studio and then dynamically converted into HTML at
runtime.

A Web server to host the Get-Resources JSP content.
Introducing the Get-Resources Tailoring Kit 11

Get-Resources
A Java-enabled application server to run the Archway servlet and convert
XML form definitions into HTML. The Archway servlet routes and
formats data requests between Get-Resources and the back-end database.

A collection of ECMAScripts that allow for dynamic parsing and
formatting of Get-Resources data sent to and received from the client Web
browser.

The Get-Resources files produced during a build are the result of the
following Peregrine Studio components:

A project file that describes Get-Resources. Each project file contains only
the code necessary to produce and deploy Get-Resources.

A collection of XML form definitions that define the functionality of
Get-Resources. The Get-Resources XML form definitions are built in
Peregrine Studio and deployed to the application server at runtime.

A back-end database or application to store the data accessed by
Get-Resources forms, track workflow tasks, and store personalization
changes.

Document schema definitions used to format message objects between the
Archway servlet and the back-end database. All message objects are
formatted as XML documents.

ECMAScripts to generate and send message objects to the Archway servlet.
The messenger objects can be used to query the back-end database for
specific data and format the results for display in Get-Resources forms.

About this guide

This guide is intended for use by a developer who will be tailoring
Get-Resources from the source code provided with the tailoring kit.

This guide should be used in conjunction with several other manuals, which
are:

The Get-Resources installation, administration, and basic tailoring guides.

The back-end database documentation for your installation.

The application server documentation for your installation.
12 Introducing the Get-Resources Tailoring Kit

Tailoring Kit Guide
Conventions used in this guide
Screen shots in this guide are included as examples only. Get-Resources
forms are shown using the Classic theme.

The following documentation conventions are used in this guide:

Object Example

Button Click Next.

File name The login.jsp file

Sample script or XML code var msgTicket = new Message("Problem");
...
msgTicket.set("_event", "epmc");

The ellipsis (…) is used to indicate that portions of
a script have been omitted because they are not
needed for the current topic. Samples of code are
not entire files, but they are representative of the
information being discussed in a particular
section.

Menu option Select Start > Program Files.

Book title Refer to the Get-Resources Installation Guide.
About this guide 13

Get-Resources
14 Introducing the Get-Resources Tailoring Kit

SECTION
I S

E

etting up a Development
nvironment
This section describes how to install and use the Get-Resources Tailoring Kit
development environment.

This section includes:

Installing the Get-ResourcesTailoring Kit on page 17

Using Peregrine Studio on page 25

Peregrine Studio Projects and Packages on page 37
Setting up a Development Environment 15

Get-Resources
16 Section I—Setting up a Development Environment

CHAPTER
1 I
nstalling the Get-ResourcesTailoring Kit
The Get-Resources Tailoring Kit installation allows you to install a JDK,
Peregrine Studio, and the source files for Get-Resources.

Before you begin the installation, you should have already installed
Get-Resources and any application servers and back-end systems required.

This chapter covers the following topics:

Installing the Get-Resources Tailoring Kit on page 18

Opening the Get-Resources project on page 21

Setting up a tailoring environment on page 21
Installing the Get-ResourcesTailoring Kit 17

Get-Resources
Installing the Get-Resources Tailoring Kit

The following sections describe how to install the Get-Resources Tailoring
Kit on a Windows system.

Note: The Get-Resources Tailoring Kit does not run on UNIX, although files
built by the Tailoring Kit can be deployed to a UNIX system.

Tip: Do not install the Get-Resources Tailoring Kit on your production
system. Instead, install the tailoring kit on a development environment
and then deploy your changes to your production environment after
you have had a chance to test them.

To install the Get-Resources Tailoring Kit

1 Insert the Get-Resources installation CD into the CD-ROM drive.

The Get-Resources Tailoring Kit splash screen opens displaying a list of
installation options.

2 Install the required platform components for the Get-Resources Tailoring
Kit.
18 Chapter 1—Installing the Get-ResourcesTailoring Kit

Tailoring Kit Guide
Install JDK. Click this button to install the Java 2 SDK 1.3.1_05 on your
system.

Install Studio. Click this button to install Peregrine Studio version
2.2.0.1068 on your system.

3 Click Tailoring Kit.

The Get-Resources Tailoring Kit installer opens.

4 Click Next to continue.

The Choose Destination Location page opens.
Installing the Get-Resources Tailoring Kit 19

Get-Resources
5 Click Next to accept the default installation location, or click Browse to select
another installation location, and then click Next to continue.

The installer copies and deploys the files to your system and then the
InstallShield Wizard Complete page opens.

6 Click Finish to close the InstallShield Wizard.
20 Chapter 1—Installing the Get-ResourcesTailoring Kit

Tailoring Kit Guide
Opening the Get-Resources project

After the installation is complete, you can open the Get-Resources project in
Peregrine Studio using the following procedure.

Important: If you have not already received a Peregrine Studio
authorization file, contact Peregrine Customer Support. You
will need this file in order to edit your Get-Resources files.

To open the Get-Resources project in Peregrine Studio

1 Click Start > Programs > Peregrine > Studio > Peregrine Studio.

Peregrine Studio opens.

2 Click Tools > Authorization file.

3 In any text editor, open the authorization file provided for Peregrine Studio.

4 Copy the contents of the authorization file into the Authorization file dialog
box in Peregrine Studio.

5 Click OK.

6 Click File > Open project.

7 Browse to the location of your Get-Resources project file (.adw file). For
example:

C:\Program Files\Peregrine\Get-It Tailoring Kit\get-resources

8 Select your Get-Resources project file:

Get-Resources.adw

9 Click Open.

Setting up a tailoring environment

You can set up one or more development environments separately from your
production environment. A development environment lets you modify and
build Get-Resources on a separate computer system than your test or
production environments.
Opening the Get-Resources project 21

Get-Resources
Setting up a development environment
You need the following minimum components for a Get-Resources
Tailoring Kit development environment:

Peregrine Studio.

Java Runtime Environment 1.3 or later (necessary to run Studio), or the
Java Development Kit provided with your Web application installation.

Get-Resources Tailoring Kit (includes the Get-Resources source files).

Java SDK 1.2.2 or later if you want to create or edit your own wizards for
Peregrine Studio.

With this minimal development environment, you can modify
Get-Resources using the built-in Peregrine Studio tools and wizards. You can
then do one of the following:

Build your Get-Resources projects on the development computer and
copy the results to a production environment.

or

Enter the network path to the production environment in your Peregrine
Studio Build Settings.

Important: If you are using source control software to store your project
files, you will need to configure your Peregrine Studio to check
out and check in the source files. You can add your source
control settings from Tools > Options > Source control.

Setting up a testing environment
You need the following components to test or debug your modifications:

Peregrine Studio.

Java Runtime Environment 1.3 or later (necessary to run Peregrine
Studio).

Get-Resources Tailoring Kit (includes the Get-Resources source files).

If you want to create or edit your own wizards for Peregrine Studio, you
will need to install a Java SDK 1.2.2 or later. The Java 2 SDK Standard
Edition v1.3.1_05 is provided on the Get-Resources Tailoring Kit
installation CD.

An installed instance of Get-Resources including the following software:
22 Chapter 1—Installing the Get-ResourcesTailoring Kit

Tailoring Kit Guide
A Web server. Apache is provided on the Get-Resources installation
CD.

A Java-enabled application server. Tomcat is provided on the
Get-Resources installation CD.

JavaScript-enabled Web browser (necessary to view changes to
Get-Resources). See the latest compatibility matrix on the Peregrine
support site for a list of supported Web browsers.

With this testing environment, you can build and view your changes from a
single computer. To set up a testing environment, you must install both
Get-Resources and the Get-Resources Tailoring Kit. Refer to the
Get-Resources Installation Guide for instructions and requirements for
installing Get-Resources.

Tip: You can save multiple versions of Get-Resources in separate project
files. When you are ready to test a particular tailored version, you can
load the tailored project, build it, and deploy it to your test
environment.
Setting up a tailoring environment 23

Get-Resources
24 Chapter 1—Installing the Get-ResourcesTailoring Kit

CHAPTER
2 U
sing Peregrine Studio
This chapter provides an overview of the Peregrine Studio interface. For
more information about configuring or using Peregrine Studio, refer to the
Peregrine Studio online help.

This chapter covers the following topics:

The Peregrine Studio interface on page 26

Best practices on page 31
Using Peregrine Studio 25

Get-Resources
The Peregrine Studio interface

The Peregrine Studio interface includes:

Project Explorer

Properties window

Edit toolbar

General information display

Contextual help

Address

Package selector

Advanced information

All elements of the interface except the Project Explorer and the Properties
Window can be hidden by clearing them on the View menu.

Project Explorer

Properties window

Package selector
Address

General information Contextual help Advanced information

Edit toolbar
26 Chapter 2—Using Peregrine Studio

Tailoring Kit Guide
Project Explorer
The Project Explorer provides a hierarchal view of all the components that
comprise a Peregrine Studio project. The Project Explorer window displays
each component as a separate node within the tree.

Left-click a node

Click the node listing the component you want to change and the properties
of the component display in a window of the Properties pane.

Right-click a node

Right-click a node to display a list of context-sensitive options.

Group of
Modules

Module
Activity

Group of Templates

DocExplorer
Form

Actions
The Peregrine Studio interface 27

Get-Resources
The options listed in the following table are available for all nodes.

Menu item Description

New Provides a context-sensitive menu of allowed components
that you can add from the current node. The list of
components in this menu is dynamically updated for each
node of the Project Explorer tree.

Open Displays the properties of the selected component in a
window of the Properties pane.

Open in New
Window

Displays the properties of the selected component in a new
window of the Properties pane.

Rename Renames the selected node to the new name typed by the
user. This option will only be available when a package
extension has been activated as the save location for
changes.

Cut Removes the selected node, and all child nodes underneath,
and places a copy in the Windows clipboard.

Copy Copies the selected node, and all child nodes underneath, to
the Windows clipboard.

Paste Inserts the contents of the Windows clipboard. If the
clipboard contains a Studio component, it will be
automatically placed within the tree according to the type
of component it is.

Delete Deletes the selected node and all child nodes. This option
will only be available when a package extension has been
activated as the save location for changes.

Help Displays the Studio help system.

Export node Saves a copy of the selected node, and all child nodes
underneath, as an XML file, which can be imported into a
Studio project.

Import node Opens a user-selected XML file describing Studio nodes
and inserts it into the tree. The imported node will be
inserted below the node you right-clicked.

Add Bookmark Adds a bookmark link to the node you currently have open
in Studio. If you browse to another location and then want
to return to this node, click the Bookmarks tab in the
General Information window and select the appropriate
bookmark.
28 Chapter 2—Using Peregrine Studio

Tailoring Kit Guide
The following image shows how some of the common Peregrine Studio
components are displayed in a Peregrine Web application interface.

The address bar

You can use the Address Bar to navigate directly to any Peregrine Studio
project component. The address bar will display as a text box below the Edit
Toolbar.

To display the address bar

1 Open Peregrine Studio.

2 Click View > Address.

The Address Bar displays below the menus.

Drag and drop
Peregrine Studio supports drag and drop movement of components within
the Project Explorer. Changing the order of nodes in the Project Explorer will
change how the items are presented in the Peregrine Studio build.

FormForm component

Module

Activities
The Peregrine Studio interface 29

Get-Resources
To move a component within the Project Explorer

1 Click and hold the left mouse button over the name of the node you want to
move.

2 Drag the node to the new location in the Project Explorer tree.

The node appears underneath the component (of the same level) where you
drop the node.

Note: You cannot move components out of the order enforced by the DSD.
For example, you cannot move a form out of an activity and place it at
the same level as a module. You can, however, change the order of the
forms listed under an activity.
30 Chapter 2—Using Peregrine Studio

Tailoring Kit Guide
Best practices

The following recommendations will make tailoring projects easier and
reduce the amount of troubleshooting you need to do.

Avoid changing form definitions outside of Peregrine Studio
Although Get-Resources form definitions are XML files, the XML grammar
used to build them is specific to Peregrine Studio. If you make changes to the
Get-Resources form definitions outside of Peregrine Studio you risk
corrupting your project file and complicating your troubleshooting efforts.
If you want to view the XML form definitions, you can safely enable the
source view from within Peregrine Studio.

The source view does not support direct editing of the XML form definitions.
All XML source views are listed with a grey background which indicates that
the item is read-only.

To view the XML source code within Peregrine Studio

1 Select the node of the Web application or component you want to view from
the Project Explorer.

2 Click the Source view button (the blue capital A).

The XML source appears in the Properties window. The XML source code is
color coded as you define in the project settings.

Avoid enabling advanced options
The advanced options found in Tools > Options > Advanced change the way
your project is protected and built. In general, Peregrine recommends that
you avoid enabling all advanced options except the HTTP Listener. Enabling
any other options may overwrite needed source files in your Get-Resources
project and complicate your troubleshooting efforts. Furthermore, Peregrine
cannot support any changes you make to the source packages delivered with
Get-Resources.
Best practices 31

Get-Resources
Avoid using the clean the target folders build option
The Clean the target folders build option deletes all files in your build folder.
If you build directly into your application server’s deployment folder, using
this option will delete the files necessary to run Get-Resources and require
you to reinstall Get-Resources. You should only consider using this option if
you install the Get-Resources Tailoring Kit on a different machine than your
Get-Resources installation.

Clear your application server cache every time you build changes
To ensure that you always see the latest changes in your test environment,
Peregrine recommends that you clear your application server’s cache. This is
especially important if you use Tomcat 4.1.x as your application server.

Create new or change existing templates to apply global changes
Your Get-Resources project contains a Group of Templates node where you
can store and change preconfigured form components. Each form that uses
a template inherits the properties of the template. If you want to make global
changes to Get-Resources, search for the relevant templates in the Group of
Templates node. If you want to create a re-usable collection of form
components you can create a new template to store your changes. Any
template you create appears as an option in the New context-sensitive menu.

To add a template to a form

1 Click on the node that you want to add a template component.

2 Click Create and then select the template name from the list beneath the
horizontal rule. You can also Right-click on the node and select New.

The Create and New menus display only the templates that are valid for the
location you selected.

Important: Do not drag and drop or copy and paste a template into a form.
In order for Peregrine Studio to recognize the template you must
add the template form components from the New menu.
32 Chapter 2—Using Peregrine Studio

Tailoring Kit Guide
Enable the HTTP listener and display form information options
Using the HTTP Listener, you can click on the Form Information address
listed for a given form and the appropriate form properties will be displayed
in Peregrine Studio. This debugging feature allows you to navigate through
Get-Resources with a browser and quickly bring up any particular form that
needs modification.

Important: The HTTP Listener cannot bring up the administration, home
page forms, nor any Get-Resources forms that are built using
DocExplorer. The source code for these three modules is no
longer provided with the Get-Resources tailoring kit. You can
tailor such forms directly using Personalization.

To enable the HTTP Listener

1 Open Peregrine Studio.

2 Click Tools > Options > Advanced.

3 Select the Use listener check box from the HTTP Listener section.

4 Select the port number you want the HTTP listener to use (the default port
is 81), and then click OK.

5 Save your Peregrine Studio project.

6 Close and then re-open Peregrine Studio to initialize the HTTP listener.

7 Open the project file containing the form you want to change in Peregrine
Studio.

Note: Be sure to select or create a package extension in which to save any
changes.

To enable the Form Information functionality

1 Log in to Get-Resources as an administrator, or access the Admin module
directly from the Administrator login page (admin.jsp).

2 Click Admin > Settings to display the Settings form.

3 On the Logging tab, set the Show form info setting to true.

4 Click Save at the bottom of the form to activate your new settings.
Best practices 33

Get-Resources
5 On the Control Panel form of the Admin module, click Reset Server to
commit your changes.

6 Navigate to the form you want to tailor.

7 Click the Peregrine Studio address displayed in the Form Information
banner of the Web application form.

Peregrine Studio will appear as the active window and display the current
form’s properties page.

Set the color for your extension changes
By default, all changes or additions you make to your Peregrine Studio
project are highlighted with blue text. You can change the color Peregrine
Studio uses to indicate extension changes with the following procedures.

To change the color Peregrine Studio uses to indicate extension changes

1 Click Tools > Options > Appearance.

The appearance window opens.

2 From the Extension color drop-down box, select the color you want to use
to indicate changes to base packages originating from package extensions.

3 Click OK.

Click this link to open the
form in Studio.
34 Chapter 2—Using Peregrine Studio

Tailoring Kit Guide
Within the Project Explorer view, Peregrine Studio highlights each node of
the tree that contains a component that has been changed or added. This
allows you to navigate through the Project Explorer tree view and locate
where you have made changes and additions.

To view the changes made in a project

1 Select a node displayed with blue text to view the component properties.

2 Review the properties listed in the window displayed to the right of the
Project Explorer (the Properties window). Changes that were made to this
component will be displayed with blue text. If no blue text is displayed in the
Properties window, then the change or addition is in one of the child nodes
below the current node.

3 If necessary, expand any child nodes highlighted with blue text and review
the Properties window for changes.

View referenced components with the lookup button
Whenever an item links to or references another component, Peregrine
Studio displays a lookups button next to the field.

You can click this button to display the form, image, schema, or script that is
called by the reference.

Use Go to Previous View (the orange arrow pointing to the left) to return
to the component making the reference.
Best practices 35

Get-Resources
36 Chapter 2—Using Peregrine Studio

CHAPTER
3 P
eregrine Studio Projects and Packages
Peregrine Studio projects contain all of the packages that make up an
application. A new package must be created when you are making changes to
your project. You can then activate or deactivate packages depending on the
features you want to be included in your current project.

This chapter includes the following topics:

Peregrine Studio projects on page 38

Building a project on page 44

Peregrine Studio project packages on page 46

Warnings for conflicts on page 50

Deploying tailoring changes on page 51
Peregrine Studio Projects and Packages 37

Get-Resources
Peregrine Studio projects

Peregrine Studio saves all the source files for Get-Resources as a project file.
A Studio project file consists of the following components.

* ECMAScript is the core language standard shared between the JavaScript
and JScript libraries.

For a listing of where Peregrine Studio saves and builds these files, see Project
files on page 42.

Studio component Description

Get-Resources
components

The XML form definitions that specify the functionality of
the Get-Resources interface. The application server will
dynamically render the Get-Resources XML form
definitions as HTML when a specific form is requested.

ECMAScripts* ECMAScripts create and format message objects to the
Archway servlet. Get-Resources components will use
ECMA message objects to display and process data.

Document schema
definitions

The XML files that define how the Archway servlet should
format the ECMA message objects sent to and received
from back-end databases. Get-Resources components will
use the ECMA message objects to display and process data.

Presentation files Any supporting files such as images, client-side JavaScript,
hand-coded HTML or JSP files, or translation strings that
will be included with Get-Resources.

Stylesheets The Cascading Style Sheet (CSS) files that define the colors
and fonts that will be used in your Get-Resources pages.
38 Chapter 3—Peregrine Studio Projects and Packages

Tailoring Kit Guide
Project components
Peregrine Studio organizes project components into a hierarchy of parent
and child elements. The position of a project component determines the
individual properties it can have. Properties include, for example, what other
project components can be placed within the component and the type of
editor used to edit the component. All Peregrine Studio projects conform to
the hierarchy listed below:

Project component descriptions
This table lists and describes some of the common Peregrine Studio
components. For a complete list of the components that make up a Peregrine
Studio project, see Peregrine Studio Components.

Template

Group of modules

Module

Activity

Form

** Form components

Component Description

Project The project component:

is the container for all the elements that are part of
your current project file.
is always the top node of the Project Explorer tree.

is represented by an open package icon () in the
Peregrine Studio Project Explorer tree.

Templates (support files) The templates component:

is the container for all the common elements reused
throughout the project.

appears with a yellow cube icon () in the
Peregrine Studio Project Explorer tree.
Peregrine Studio projects 39

Get-Resources
Group of modules The group of modules component:

is the container for all the XML form definition files
and modules that make up Get-Resources.

appears with a double red cubes icon () in the
Peregrine Studio Project Explorer tree.
does not have any one dedicated graphical
representation in the built project.

Module The module component:

is a container for the activities and forms that make
up Get-Resources.

appears with a double red box icon () in the
Peregrine Studio Project Explorer tree.
appears as a text link on the navigation sidebar and
may also appear on the Get-Resources Home
Menu.

Note: The module component is usually where
access restrictions are defined. Setting access
restrictions limits a module to particular user roles.

Activity The activity component:

defines a particular task or action such as searching
for records, displaying records, or entering records.
is a container for a particular set of forms.
appears with a cube and two window panes icon
() in the Peregrine Studio Project Explorer tree.

appears as a text link on the navigation sidebar
(Activity Menu).

Form The form component:

is where Get-Resources user interfaces and displays
are defined.
appears with a cube and a single window pane icon
() in the Peregrine Studio Project Explorer tree.

Note: Typically, the system displays each form
component as a page in the main frame.

Component Description
40 Chapter 3—Peregrine Studio Projects and Packages

Tailoring Kit Guide
* Portal Components are available only in the portal module.

Form components Form components such as fields, actions, tables, and
lookups:

define the actual user interfaces and displays used in
a Get-Resources form.
appear with a variety of icons in the Peregrine
Studio Project Explorer Tree.
typically have a graphical element in a
Get-Resources form.

Group of scripts The group of scripts component:

is a container for all the server-side ECMAScripts
used by Get-Resources.
appears with a document with a yellow border icon
() in the Peregrine Studio Project Explorer tree.

Group of schemas The group of schemas component:

is a container for all the document schema
definitions that Get-Resources uses.

appears with a data store and document icon ()
in the Peregrine Studio Project Explorer tree.

Group of files The group of files component:

is a container for supplemental files that your Web
applications can use. You can store images,
client-side JavaScript, localized string files, or
initialization files here.

appears with a folder icon () in the Peregrine
Studio Project Explorer tree.

Group of Strings The group of strings component:

is a container for all the text strings that
Get-Resources uses.

appears with a globe icon () in the Peregrine
Studio Project Explorer tree.

Component Description
Peregrine Studio projects 41

Get-Resources
Project files
This table describes the files that make up a Studio project and the
information they contain. Items listed in italics are variables. To determine
the actual file name, replace the italic text with the component name.

Warning: Do not edit these files outside of Studio. Manual changes you make
outside of Studio will be lost during the build process.

Component Save and build location Contains

project Saved as:
C:\Program Files\Peregrine\
Get-It Tailoring Kit\get-resources\
project.adw

<package> names
Path to package.xml

package Saved as:
C:\Program Files\Peregrine\
Get-It Tailoring Kit\get-resources\
\package\package.xml

<package> name
<modules> name
<module> names
Path to module.xml
Schema Names
Path to schema.xml
Script Names
Path to script.xml
String Resources

modules Saved as:
C:\Program Files\Peregrine\
Get-It Tailoring Kit\get-resources\
\package\package.xml

<modules> name

module Saved as a single file:
C:\Program Files\Peregrine\
Get-It Tailoring Kit\get-resources\
\package\modules\module.xml

Built as a collection of forms:
C:\OAA\build\WEB-INF\apps\
package\forms\module\activity\
form.xml

<module> name
XML code for <activity>,
<form>, and <form>
components
42 Chapter 3—Peregrine Studio Projects and Packages

Tailoring Kit Guide
schema Saved as
C:\Program Files\Peregrine\
Get-It Tailoring Kit\get-resources\
\package\modules\Schemas\
schema.xml

Built as:
C:\OAA\build\WEB-INF\apps\
package\schema\schema.xml

XML code for <schema>

script Saved as:
C:\Program Files\Peregrine\
Get-It Tailoring Kit\get-resources\
\package\modules\
Scripts\script.xml

Built as:
C:\OAA\build\WEB-INF\apps\
package\jscript\script type\script.js

XML code for <script>

presentation
files

Saved as:
C:\Program Files\Peregrine\
Get-It Tailoring Kit\get-resources\
\package\modules\presentation\
presentation file.jsp

Built as:
C:\OAA\build\presentation file.jsp

Directory where
presentation files can be
stored to be included in a
Studio build.

strings Saved as:
C:\Program Files\Peregrine\
Get-It Tailoring Kit\get-resources\
\package\package.xml

Built as:
C:\OAA\build\WEB-INF\apps\
package\package_en.str

Text strings for English,
German, Spanish, Italian,
and French.

Component Save and build location Contains
Peregrine Studio projects 43

Get-Resources
Building a project

During the build process, Studio compiles all project files and copies them to
deployment folder you specified in your Peregrine Studio Build Settings.

Build options
Peregrine Studio offers the following build options from the Build menu:

Warning: The Clean the target folders option cleans the folders listed in your
build settings. If you build your project directly to your application
server, then using this option deletes your installation of
Get-Resources. It is recommended that you avoid using this
option if you have installed Get-Resources on your development
machine.

Setting project build settings
You can define the build settings option to define the file locations and file
formats used during the build process. Each Peregrine Studio project can
have its own project settings.

Build option Description

Clean the target folders Deletes the contents of the presentation and deployment
folders.

Build element Builds the currently selected element in the project
explorer. This element will not be rebuilt the next time a
differential build is performed.

Differential build Builds only those elements that have changed since the
last build.

Rebuild all Builds all elements of the project.

Stop Build Stops a currently running build process.
44 Chapter 3—Peregrine Studio Projects and Packages

Tailoring Kit Guide
To set project build settings

1 From the Build menu, select Project settings.

The Project Settings window opens.

2 Click the Build Variables tab.

3 Enter or browse to the proper directory for the following settings.

a Root Build Directory—This is the drive and folder you want to be root for
building Peregrine Studio projects. Whatever path you enter here
becomes the variable %var:ROOTBUILDDIR%.

b Presentation folder—This is the folder where your application server will
look for files to serve. If you are running an application server on the build
machine enter the full path to your application server context root here.
For example:
c:\Program Files\Peregrine\Common\Tomcat4\webapps\OAA
If you do not have an application server on the build machine, you may
enter any path where you want files deployed. Whatever path you enter
here becomes the variable %var:PRESENTATIONDIR%.

c Deployment folder—the folder where scripts, schemas, and XML form
definitions are located. You do not need to change the value of this setting.

Warning: Do not change this option.

d Temporary folder—the folder where Peregrine Studio will generate
temporary files used in the build process. You do not need to change the
value of this setting.
Building a project 45

Get-Resources
e Exclude files—a semicolon-separated list of files or directories that you
want Peregrine Studio to exclude from removing or rebuilding during a
build. You do not need to change the value of this setting.

f Character encoding—Not used. JSP encoding is determined by the
character encoding setting on the Settings page of the Admin module. You
do not need to change the value of this setting.

g Ejb User—Not used. Get-Resources does not use the rome adapter. You
do not need to change the value of this setting.

4 Click OK to save your settings.

Peregrine Studio project packages

Packages contain all the XML form definitions, ECMAScripts, and schemas
necessary to run Get-Resources. Your Get-Resources project is defined by
one or more packages, which are either system or extension packages:

System packages. The system packages provided by Peregrine define the
out of the box functionality of Get-Resources.

Extension packages. Any packages you create are called extensions.
Package extensions store all of your additions or modifications to the
existing system packages.

You can see the system packages and the extensions that make up your
project from the Package Activation toolbar. This view displays the active
packages that can be edited and built in your project. When a package is
activated, the changes or additions will be included in the build. When a
package is deactivated, the changes or additions will not be included in the
build. The modular design of packages allows you to decide which changes
and additions will be included or excluded from the build process.

Tip: Group similar Web application functions in the same package
extension. This will allow you to activate or deactivate groups of
functions using the Package Activation toolbar. For example, if you are
testing different interfaces with the same functionality, you may want to
save each interface in a different package extension. After you determine
which interface is better, you can implement the new interface by
activating that package extension and rebuilding the project.
46 Chapter 3—Peregrine Studio Projects and Packages

Tailoring Kit Guide
Packages are not displayed in the Project Explorer Project tree. The list of
available packages (packages that have been activated) is included in the
Package Explorer drop-down list located below the toolbar in Peregrine
Studio.

Saving changes with package extensions
All additions and changes to a project must be saved under a package
extension name. By default, all of the system packages that ship with
Get-Resources are write-protected and cannot be used as the save location
for your tailoring efforts. To tailor your installation you need to create one or
more new package extensions where your changes and additions will be
saved.

To create a new package extension

1 Open Peregrine Studio.

2 Click File > New package to start the Create New Package wizard.

3 Enter the name and package dependencies for the new package.

a Name. Enter a name for the new package extension. The package
extension name cannot contain spaces or special characters.

b Dependencies. Select the existing system package or packages that your
package extension will be dependent on. Select the system packages that
you want to make changes to as the package dependencies. Your new
package extension must be dependent on at least one existing package. See
Package dependencies on page 49 for more information on package
dependencies.

4 Click OK to complete the wizard.

5 Save your Peregrine Studio project file.

6 Close and then restart Peregrine Studio.

Any changes or additions you make to Get-Resources will now be saved in
your new package.
Peregrine Studio project packages 47

Get-Resources
Activating and deactivating packages
You can control the packages and package extensions that are part of
Get-Resources by activating or deactivating them from the Package
Activation menu. To include a package in Get-Resources installation,
activate the package, and then build the Studio project. To remove a custom
package from your installation, deactivate the package and delete it from the
following path:

C:\Program Files\Peregrine\Get-It Tailoring Kit\get-resources\package
name.

Tip: In some cases it is simpler to re-install Get-Resources than to delete
unwanted custom packages.

To activate a package

1 To display the package activation toolbar, click View, and then click Package
Selector.

The Package Activation toolbar is displayed.

2 Click the Package activation button ().

3 Select the checkbox next to the package name or names you want to activate.

4 Click OK.

All active packages will be included in the next build.

To deactivate a package

1 Click the Package activation button ().

2 Clear the check box next to the package name or names you want to
deactivate.

3 Click OK.

All deactivated packages will be excluded from the next build.

Important: Deactivating a package does not delete it from the Get-Resources
interface if you have already built it. To delete tailoring changes
you have already built you can either re-install or delete the XML
form definitions for your package extension.
48 Chapter 3—Peregrine Studio Projects and Packages

Tailoring Kit Guide
Package dependencies
Each package has a list of dependencies that define what other packages it can
make changes or additions to.

When you create a package extension, you must select the other packages
that your extension can change. You will only be able to make changes or
additions to the packages that are listed in your extension’s package
dependencies. If you try to make changes outside your extension’s
dependencies, you will produce a dependency conflict.

You can use the package dependency list to determine what other packages a
particular extension affects. This information is particularly useful if you are
trying to resolve conflicts in your projects.

Package dependencies are first defined by the New Package wizard when you
create a package. You can manually change the package dependencies using
the procedures described below.

Setting package dependencies
To set package dependencies

1 Go to Tools > Package Dependencies.

2 From the left pane, select the package name for which you want to set
dependencies.

The list of defined dependencies appears in the right pane.

3 Select the check boxes next to the package names you want to add as package
dependencies. Clear the check boxes next to the package names you want to
remove as package dependencies.

Note: Dependent packages activate or deactivate as a group. For example,
suppose you create a user extension called New_Interface that is
dependent on the Extension package. If you deactivate the Extension
package, you will also deactivate the New_Interface package. If you
activate the New_Interface package, you will also activate the Extension
package.

4 Click OK to set the dependencies.
Peregrine Studio project packages 49

Get-Resources
Warnings for conflicts

Peregrine Studio validates your project and ensures that there are no
conflicting instructions or missing components. If Peregrine Studio
encounters a conflict, it displays an exclamation point icon next to each
node that contains a conflicting component within the Project Explorer view.

Peregrine Studio will display a conflict warning if any of the following
conditions occur.

Two or more active project components describe the same thing. For
example, if you have two active package extensions that rename the same
button, you will create a resource conflict.

You make changes or additions to a package that is not defined as a
dependent package. For example, if you create a package called test that is
solely dependent on the package changes, then the test package cannot
make changes or additions to other packages, such as incidentmgt.
Attempting to make such changes will create a dependency conflict.

Resource conflicts
Resource conflicts occur when two or more activated package extensions
describe the same project components. For example, if the Extension package
extension adds a submit action to a form, then you will see a resource conflict
if another package extension (for example, called demo) also adds a submit
action to that form. The submit action on that form can only be described by
one package extension at a time.

Resolving resource conflicts

To resolve a resource conflict, you can either deactivate the package
extension with the conflicting project component or you can delete the
project component creating the conflict from one of the package extensions.
Continuing the example from above, you could either deactivate the demo
package extension or you could delete the submit action from the demo
package extension.
50 Chapter 3—Peregrine Studio Projects and Packages

Tailoring Kit Guide
Dependency conflicts
Dependency conflicts occur when you change a project component in a
packages that is not listed as a dependency for your current package
extension. For example, if the demo package extension is solely dependent on
the incidentmgt package, then the demo package extension cannot make
changes to the sharedtemplates package without creating a dependency
conflict.

Resolving dependency conflicts

To resolve a dependency conflict you can either add a dependency to the
package extension, or you can move the changes to another package
extension with the proper dependencies. Continuing the example above, you
could either make the demo package extension dependent on the
sharedtemplates package or you could move the changes from the demo
package extension to another package extension such as extension, which is
already dependent on the sharedtemplates package.

Viewing conflict information
The Advanced Information pane tells you whether you have a resource or a
dependency conflict.

To view conflict information

1 Select a node with an exclamation point icon displayed next to the name
from the Project Explorer view.

2 Click View > Advanced information.

A new information window will be displayed at the bottom of the Peregrine
Studio interface. This window displays information on the conflict.

For additional information about a particular project component and its
possible settings, refer to the Studio Introduction and the Studio online help.

Deploying tailoring changes

After you build your Peregrine Studio project file, you will need to deploy
your new files to the application server running Get-Resources. The
following sections describe how to deploy your tailoring changes to your test
and production environments.
Deploying tailoring changes 51

Get-Resources
Deploying to Windows platforms
You can deploy your tailoring changes directly over your Windows network.

To deploy tailoring changes on Windows platforms

1 Stop the application server on the target machine.

2 Copy the files from the Peregrine Studio deployment directory to the
application server’s deployment directory on the target server.

3 Restart the application server on the target machine.

Deploying to UNIX platforms
You can deploy your tailoring changes to UNIX platforms using whatever
cross-platform methods you have available such as FTP, shared drives, or
e-mail.
52 Chapter 3—Peregrine Studio Projects and Packages

SECTION
2 U
nderstanding Project Components
This section describes all the components that make a Get-Resources
tailoring project.

This section includes:

Peregrine Studio Components on page 55

Scripting on page 81

Document Schema Definitions on page 113
Understanding Project Components 53

Get-Resources
54 Section I—Understanding Project Components

CHAPTER
4 P
eregrine Studio Components
This chapter contains a list and description of all of the components you can
add to a Project in Studio. The information is grouped according to the menu
structure with which these components are presented in Studio, following
each component down to display all of the subcomponents available.

The menus displayed when you open the Get-Resources package in Peregrine
Studio may vary slightly from the menu options documented here. Menu
options change depending on the components you have created. For
example, you must have the folder called shared templates in your package
to enable DocExplorer Reference as a menu option.

This chapter covers the following topics:

Adding components on page 56

Types of form components on page 67
Peregrine Studio Components 55

Get-Resources
Adding components

To add components to your Project, right-click on the node to which you
want to add a component, and a menu of options is displayed.

Project > New >
Directory Object—not supported.

Group of Modules > New >

When you create a Group of Modules component, it includes a folder called
Explorers that contains default content for DocExplorer personalization
screens. It also includes a Group of Roles, which is a list of roles that are used
to control access rights. From the Group of Modules, you can create the
following:
56 Chapter 4—Peregrine Studio Components

Tailoring Kit Guide
Module—Get-Resources is organized into modules. Modules are often
determined by the role that a user will take in performing tasks. For
example, one module could be designed for employees who will be
opening requests for service. Another module could be for managers
approving requests. Modules are typically assigned specific access role
restrictions so that only those users who need to perform the module’s
task have permission to do so.

The Peregrine Portal > Activity—Each module should contain one or
more activities that define the steps users can take to complete the
module’s task. For example, a Request module could have activities for
browsing catalogs, reviewing a shopping cart, and filling out a request
form. Each activity is typically displayed in Get-Resources on a sidebar
menu at the left of a form. Activities are typically assigned specific
access role restrictions so that only those users who need to perform the
activity’s task have permission to do so.

Form—Defines a Get-Resources screen displayed as a page in a
browser. The typical form includes a title, instructions, form fields,
and one or more actions. Each form contains an onload script that
executes on the server side before the page is sent to the browser.
The script obtains form data that may be displayed within the form.
In turn, each form action leads to the display of the next form in
Get-Resources. Data entered in a form is submitted to the onload
script of the next form to be displayed.

Field >

Check Box—Allows the user to toggle a value on or off.

Selectbox—Allows the user to select a value from a list
displayed in a Combo Box field.
Adding components 57

Get-Resources
Date—Allows the user to view or enter a date. An optional calendar
form component (Date Picker) can be enabled or disabled (the default
is enabled) for users to enter dates. To define a start year for the
drop-down list or for the calendar form component, add a + or - sign
in front of a number. This number specifies the number of years before
or after the current year you want the start and end years to be.

Time—Allows the user to view or set a time value.

Timespan—Allows the user to view or edit a timespan value.

Date/Time—Allows the user to view or set a date and time
value. There is an optional calendar form component (Date
Picker) that can be enabled or disabled in Studio (the default
is enabled). See Date component.

Password—Allows the user to enter a password.

Radio Button—Allows the user to select one of several
choices presented by radio buttons.

To designate a
Date/Time calendar
year start and end, add
a + or - in front of a
number to specify the
number of years before
or after the current year
you want the start and
end years to be.

Enable or disable the
calendar form
component.
58 Chapter 4—Peregrine Studio Components

Tailoring Kit Guide
Spinner—Allows the user to enter a numerical value. The
control allows the number to be typed in directly. It also
allows the user to select a number by clicking on the spinner
buttons that increase and decrease the value.

Text Edit—Allows the user to display or edit a value in a plain
text field.

Text Area—Allows the user to enter text into a multiline edit
field.

Link—Displays a hyperlink that the user can click on to
navigate to another Web location or site.

Link Button—Displays an image button created out of
background images and text.

Image—Displays an image.

Composite—Allows the creation of a field that consists of
two or more fields placed next to each other.

Money—Allows the user to view or edit a monetary value.

Unit of Measure—Allows the user to view or edit a value that
is a unit of measure.

Enumerated Select—Allows the user to select a value from a
list displayed in a Combo Box field.

Lookup—Allows the user to enter a value by performing a
lookup operation. The lookup is done in a separate pop-up
window.

Attachments—Allows the user to view and add attachments
to a document.

Language—Allows the user to select their preferred language
from a list of supported languages.

Translated Value Field—Displays text returned by a
translation script function.

Hidden Data Field—Stores data obtained by the form’s
onload script without displaying it to the user. The data is
included when the form is submitted and the user navigates
to another form.

Component >

Treelink—Displays a treelink component.
Adding components 59

Get-Resources
Directory—Displays a directory component based on data
received from a document query to an adapter.

List Builder—Allows users to configure a list by selectively
adding items to a listbox from a list of choices.

Workflow—Displays a workflow diagram.

OAA Workflow—Displays a workflow diagram.

Stack—Displays a stack component.

SVG—Displays an SVG component.

Web Application Menu—Displays a menu of all registered
modules or packages in the current Web application.

HTML >

Blank Line—Adds a blank vertical line to the form.

Free-form HTML—Allows you to insert arbitrary HTML
into a form. Can also be used to insert client-side JavaScript
into a Web page, although large amounts of client-side
JavaScript should be moved to a presentation file that can be
imported by the page.

Import >

Static Import—Imports the text content of a file for
inclusion in a Web page. For example, you can import files
that define static HTML, JSP code or client-side JavaScript
functions.

External HTML Plugin—Includes dynamic content into the
form. At run time, the URL referenced by the plugin is
accessed by the server, returning contents which are then
inserted into the form.

Field Container >

Field Section—Aligns fields into a column. Displays all field
labels in an aligned column to the left of the fields. Fields can
be divided into groups by inserting Headers and Instructions
as needed. To display more than one column of fields, create
a Form Columns container and place a Field Section
container in each column.

Multicolumn Field Table—Organizes input fields into a
multi-column table. It is recommended that you use Form
Columns and Field Sections instead.
60 Chapter 4—Peregrine Studio Components

Tailoring Kit Guide
Entry Table with Field Instructions—Organizes input fields
into a multicolumn table with fields on the left and
instructions for each field on the right.

Component Template—Allows you to define a group of
form elements that can be reused in more than one form.
Changes to the template are propagated to all places where
the template is used.

Tabs—Adds tabs to a form, each pointing to different
content defined by a separate form.

Dynamic Menu—Displays a multicolumn menu based on
data received from a document query to an adapter.

Form Columns—Divides the form into columns, allowing
content to be grouped and organized.

Table >

Simple Table—Displays a list of documents resulting from a
query.

Document Table—Displays a list of documents resulting
from a query.

Tree—Displays a list of documents resulting from a query as
a tree.

Portal Component >

Component Editor—Generates fields elements used to
configure a specific portal component. Not intended for
general Get-Resources use.

Portal Header—Generates the portal page header. Not
intended for general Get-Resources use.

Corkboard Header—Generates header information needed
by any page that includes a corkboard. Not intended for
general Get-Resources use.

Corkboard Configurator—Generates a list of choices
containing all known portal components. The list can be used
to configure the components to display in a specific
corkboard container.

Corkboard—Displays the portal components chosen and
configured by each user.

Custom Configurator—Allows users to define their own
custom component configurators.
Adding components 61

Get-Resources
Document Explorer >

Search—Displays a personalized list of fields used to perform
document searches.

List—Displays a personalized table with the list of documents
found as a result of a search.

Detail—Displays a personalized view of a document detail.

Action >

Action—Displays a button for an action. The button can be
a link to another page or a submit action.

Default Action—Defines a form’s submit action when no
actual buttons are displayed.

Back—Navigates to the previous page of the Web
application.

Home—Navigates to the home page of the Web application.

Print—Prints the current Get-Resources form.

Close—Use to close pop-up windows.

Redirection—Redirects a page to a link depending on the result
of the onload script matched against the condition

Transition—Contains an onload script and redirect arguments. After
the script runs, execution is redirected according to the condition
returned by the script. The options available from the Transition
menu are the same as the Form menu, except there is no Action
option.

Group of Strings—List of multilingual strings.

Multilingual String—The name of the StringResource is the ID of
the string.

Group of Scripts—Server-side ECMAScripts.

Script—Server-side ECMAScript (JavaScript) file containing functions
used by Web application forms.

Header—Initial comments and imports required in this script file.

Function—Script function defining application logic executed on
the server. All functions that have public access should accept a
Message object as the single input parameter and return a Message
object as a response. For example:

function xyz(msg) {var msgResponse=new Message(); ...
return msgResponse;}
62 Chapter 4—Peregrine Studio Components

Tailoring Kit Guide
A script requires this public access interface if it is used as an onload
script for a form or if it is called directly via an Archway HTTP
message.

Group of Scripts—Server-side ECMAScripts.

Group of Triggers—A collection of triggers. This container is not used by
Get-Resources.

Trigger—Individual trigger for a document. This component is not
used by Get-Resources.

Message action—Message action executed by the trigger.

Workflow action—Workflow action executed by the trigger.

Script action—Script action executed by the trigger.

Bizdoc Java action—Java action executed by the trigger inside
Bizdoc.

Group of Triggers—Collection of triggers. This component is not used
by Get-Resources.

Trigger—Individual trigger for a document.

Group of Triggers—Collection of triggers.

Group of Schemas—Database schemas describing documents accessible
by Get-Resources. Schemas define the field table mapping between
Get-Resources and the back-end database.

Raw Schema—Description of a document’s mapping on a real
database.

Schema—not supported.

Group of Images—Folder containing the image files to be used in your
Web application.

Image—The image is loaded into the ImageData property as binary
data. The file name property is used only the first time to load the
image.

Group of Images—Folder containing image files.

Image—The image is loaded into the ImageData property as binary
data. The file name property is used only the first time to load the
image.

Group of Images—Folder containing image files.

Group of Presentation Files—Folder containing files copied directly to
the presentation folder for use within the Get-Resources Web server.
Adding components 63

Get-Resources
Text Presentation File—Any generic file in the Presentation folder that
is needed by the Web server, for example, client-side JavaScript, static
JSP files.

Binary Presentation File—Binary file outputted in the presentation
folder. Accessed by the Web server and used by the browser.

Group of Presentation Files—Folder containing files copied directly to
the presentation folder for use within the Get-Resources Web server.

Text Presentation File—Any generic file in the Presentation folder
that is needed by the Web server, for example, client-side
JavaScript, static JSP files.

Binary Presentation File—Binary file outputted in the presentation
folder. Accessed by the Web server and used by the browser.

Group of Presentation Files—Folder containing files copied
directly to the presentation folder for use within the Get-Resources
Web server.

Group of default DocExplorer screens—Folder containing default
content for DocExplorer Personalization screens.

Reference of a file—File object.

Directory Object—not supported.

Group of Portal Components—Components that appear in the portal
components menu and can be added to the home page by the user.

Portal Component

(contents)—The content of the portal component that is displayed.

(configure)—Allows configuration of a portal component.

Group of Files—A temporary container of miscellaneous files used by a
Web application. For example, string files and scriptpoller.ini files are
stored here.

String file—Temporary representation of a string file.

Ini file—Temporary representation of a scriptpoller.ini file.

Group of Strings—List of multilingual strings.

Multilingual String—The name of the StringResource is the ID of the
string.

Group of Roles—not supported.
64 Chapter 4—Peregrine Studio Components

Tailoring Kit Guide
Group of Style Sheets > New >

Style Sheet—Not supported.

Group of Roles—not supported.

Group of Files > New >

String file—Temporary representation of a string file.

Ini file—Temporary representation of a scriptpoller.ini file.

Group of Strings > New >

Multilingual string—The name of the StringResource is the ID of the
string.

Entities (collection of business objects) > New >

Entity—This component is not used by Get-Resources.

Interfaces > New >

Interface—Not supported.

System enumerations > New >

System enumeration—Describes a system enumeration, used to define
data attributes where the value stored is not the value displayed to the user.
This allows multilingual databases.

Value—Defines one value for a system enumeration.

Templates > New
Schema >Not supported.

Field Container

Component Template

Directory Object—not supported.

Group of Methods—Includes a list of methods. You can create new
methods under this element.

Method—Java Method. The name is not significant. You can add a
comment to the method.

Method—Java Method. The name is not significant. You can add a
comment to the method.

Message action— This component is not used by Get-Resources.
Adding components 65

Get-Resources
Workflow action— This component is not used by Get-Resources.

Bizdoc Java action— This component is not used by Get-Resources.

Script action— This component is not used by Get-Resources.

Trigger— This component is not used by Get-Resources.

Group of Images—Allows you to create a group of images.

Attribute— This component is not used by Get-Resources.

Reference— This component is not used by Get-Resources.

Contain—Contain an object as an embedded member.

Computed—Computed property.

Structure— This component is not used by Get-Resources.

Collection— This component is not used by Get-Resources.

Methods— This component is not used by Get-Resources.

Entity— This component is not used by Get-Resources.
66 Chapter 4—Peregrine Studio Components

Tailoring Kit Guide
Types of form components

The following sections describe some of the more commonly used form
components.

Component template containers
A component template is a special type of container used to store groups of
preconfigured form components. A component template allows you to reuse
the form components stored in the template throughout your project. After
you create a component template, the component template name appears in
the templates list of the Create and New menus. A component template
references all the child form components and attributes settings defined in
the template.

If you add a component template to Get-Resources and do not modify it,
Peregrine Studio saves the form components as links to the component
template. If you make changes to the form components in the template,
Peregrine Studio saves only the changes you have made and links to the form
components that you did not change.

Tip: Use component templates to re-use common elements of your forms.
For example, if several of your forms contain customized search
functionality, then you could create a component template that
automatically calls the correct search schema, queries your back-end
system, and displays the proper search fields.

To create a component template

1 Right click the Templates nodes and click New > Field Container >
Component Template.

Peregrine Studio adds a new component template node to the Project
Explorer Tree.

2 Enter the name for the component template.

3 Right click the new component template node and use the New option to add
form components.

4 Configure the form components you add to the template component.
Peregrine Studio uses these settings as the default settings of the template
component.

5 Save and build your Peregrine Studio project.
Types of form components 67

Get-Resources
The new template component appears as an option in the New menu.

Important: Do not copy and paste or drag and drop items between template
components. Instead add form components via the
context-sensitive or Create menus. Studio does not use the
linking features of template components on items that you copy
from existing template components.

To add a component template to a form

1 Right-click the form where you want the component template to be.

2 From the New menu, select the template you want to add.

Form components you can add to a component template

All except Action and Redirection.

Tip: You can use a component template as the container for any form
components that require a container. This is typically done for form
components such as hiddenfields where you are not concerned about
the display of the fields.

Attributes you can set for a component template

Title, Summary, Order, User Role Restrictions, and Dynamic Runtime
Restrictions.

Fieldsection containers
The fieldsection component is a container that aligns fields into a column.
The fieldsection component displays each field on its own line in the column
and aligns the field labels along the left of each field. Each fieldsection can
have a border that surrounds the columns and visually indicates that the
fields in the container are related. You can also add a header or instructions
to your fieldsection as well as add labels and instructions to the individual
fields in the fieldsection.

Tip: You can use the fieldsection form component to group and align related
input fields. For example, if you have several fields to input search
information, you can align the fields in a single fieldsection and add a
header and instructions that will apply to all fields.
68 Chapter 4—Peregrine Studio Components

Tailoring Kit Guide
To create a fieldsection

1 Right click the form where you want the fieldsection to be.

2 Click New > Field Container > Field section.

Form components you can add to a fieldsection

Field, Component, HTML, Header, Import, and Instructions.

If you select the Header or Instructions form components, Studio will display
the text editor screen for you to enter HTML code for your header and
instructions. Peregrine Studio will not check the validity of your HTML code.

Attributes you can set for a fieldsection

Title, Summary, Order, User Role Restrictions, Dynamic Runtime
Restrictions, Border, and Readonly.

If you plan on having multiple fieldsections in a form, you can use the border
Presentation property to display a line around a fieldsection to help visually
distinguish the fieldsection from other elements in your Web application
interface. You may also want to add a Form Columns layout container to
display your fieldsections in two or more facing columns rather than a single
column down the form.

Text edit fields
A text edit field provides a bordered field in which to display or enter a value
as plain text. Text edit fields can only be added to forms within a container
such as a component template or fieldsection.

The most common use for text edit fields is to provide a space for users to
enter keyboard input. A text edit field saves the text entered into a particular
schema field when a user submits the form.

Tip: To use a text edit field for text input, add an action to the form that
submits the field information to another form. Set the Document Field
attribute of the text edit field to the corresponding attribute name used
in the document schema.

You can also use text edit fields to display information by default. To display
information in a text edit field, create an onload server script that performs a
document query, and then map the text edit field to one of fields of the
schema.
Types of form components 69

Get-Resources
Tip: To use a text edit field to display of information by default, add a schema
to the parent form that defines the information to be displayed. Set the
Document Field attribute of the text edit field to the corresponding
attribute name used in the schema. Set the readonly attribute under
Presentation to Yes if you do not want users to change the information
displayed.

To create a text edit field

1 Right-click the container where you want the field to be. This displays the
context-sensitive menu.

2 Click New > Field > Text Edit.

Form components you can add to a text edit field

None.

Attributes you can set for a text edit field

Instructions, Label, Title, Document Field, Display Value, Max Characters,
and Data.

Selectbox fields
A selectbox provides a drop-down list box from which users can select
predefined values. You can add items to the selectbox in one of two ways:

Explicitly define the options. The selectbox always displays the options
you enter and always displays them in the order you define them in the
Order attribute.

Query your back-end database and generate an XML document that
provides the display options. The selectbox displays the options as defined
by the schema used to generate the XML document. Typically, the
selectbox uses the same schema as the form of which it is a part. If you
want to use a schema to display the options in a selectbox, then you must
set the Document field attribute to an attribute name in a schema.

Tip: Use the schema query method to avoid duplicating information that is
already stored in your back-end database. If you explicitly enter the
options in the selectbox, then you have to update, rebuild, and
re-deploy your project every time you change the list of selectbox
options. If you store the selectbox options on your database, however,
then you only need to change the database values, and your schema
query will automatically pick up any changes you make.
70 Chapter 4—Peregrine Studio Components

Tailoring Kit Guide
When you are working with selectboxes, keep in mind that:

You can only add selectbox fields within a container such as a component
template or fieldsection.

Users cannot add entries to selectbox fields. To implement such
functionality, you would need to write a client-side JavaScript to insert any
information added into your back-end databases.

Get-Resources uses selectbox fields to constrain user input to a list of
predefined items. The selectbox field saves the selected item to a particular
field when a user submits the form. The field used to save the information
must match a field defined in a document schema.

If you have a large number of selections for users to choose from you may
want to use a lookupfield in place of a selectbox. The advantage of using
lookupfields are:

they can be personalized

they are not loaded into memory until the lookupfield is selected, which
reduces the amount of time necessary to render the form.

To create a selectbox field

1 Right click the container where you want the field to be.

2 Click New > Field > Selectbox.

Form components you can add to a selectbox field

Option. The Option form component allows you to explicitly define the
entries displayed in the selectbox.

Attribute categories you can set for a selectbox field

Instructions, Label, Title, Document Field, Display Value, Size, Multiple
Selection, Permit Blank, Data, Presentation, Events, User Role Restrictions,
Dynamic Runtime Restrictions, Process, Presentation, and Databound.
Types of form components 71

Get-Resources
Databound attributes

The Databound attributes are where you will define what schema and
schema attributes provide the information for the selectbox. The following
list describes what information to enter in the Databound attributes.

Document. Enter the schema name you want to use to query and display
the information requested in the selectbox.

Values. Enter the attribute name from your schema that defines what
information you want to use to sort and identify the information in the
selectbox. This value can be identical to the displaylist attribute, but it is
recommended that you use the Id attribute name defined in the schema.
The Id attribute is the preferred choice because it is a unique value and
requires less memory to sort since it is only a number.

Captions. Enter the attribute name from your schema that defines what
database information you want displayed in the selectbox.

Hidden data fields
A hidden data field stores form information without displaying it to the user.
Get-Resources passes the information stored in a hidden data to other forms
when the form is submitted.

Tip: You can use hidden data fields to prevent users from having to input the
same information on multiple forms. For example, if a user enters
contact information in one form, then you can use hidden data fields to
store this contact information in later forms.

To create a hidden data field

1 Right click the container where you want the field to be.

2 Click New > Field > Hidden Data field.

Form components you can add to a hidden data field

None.

Attributes you can set for a hidden data field

Document Field, Display Value, Visible Flag, Unique Key Field, User Role
Restrictions, and Dynamic Runtime Restrictions.
72 Chapter 4—Peregrine Studio Components

Tailoring Kit Guide
Redirections
A redirection takes users to another form when the onload server script
generates a certain condition. A conditional redirection requires the parent
form to run a server script when it is loaded. To use a conditional redirection,
you must create a server script that checks for a particular condition and then
outputs a condition message when this condition occurs.

You can only add a redirection to a form; you cannot add a redirection to a
form component.

Tip: You can use a redirection to take users to a form when they enter
particular information or a particular result, such as when an error
occurs or when no results are generated.

To create a redirection

1 Right-click the form where you want the redirection to be.

The context-sensitive menu is displayed.

2 Click New > Redirection.

Form components you can add to a redirection

None.

Attribute categories you can set for a redirection

Visible flag, Condition, Frameset, HTTP Submit Method, Parameters, Target
(form, field, or URL), User Role Restrictions, and Dynamic Runtime
Restrictions.

Redirection attributes

For most redirections, the two most important attributes to set are the
condition and the target form.

Condition. Enter the message generated by your server script that activates
the redirection to another form. If there is no condition, the redirection
will activate every time the page is loaded. See Common message operations
on page 22 for more information on setting a condition.

Target form. Enter the full Peregrine Studio path to the form where the
user should be redirected.
Types of form components 73

Get-Resources
Simple table
A simple table is a container to display information generated from a schema
document query. The simple table form component only has two basic
functions by itself. The simple table form:

Calls the schema that will generate the table data, and

Describes how the data will be displayed in the columns of the table.

A simple table requires columns components in order to display data.

To create a simple table

1 Right-click the form where you want the table to be.

2 Click New > Table > Simple Table.

Form components you can add to a simple table

Link, Text Column, Entry Column, Spinner Column, Select Column, Radio
Button Column, Checkbox Column, Image Column, Link Column, and
Lookup Column.

Attributes you can set for a simple table

Visible Flag, Caption (en), Accessibility Title (en), Accessibility Summary
(en), Size, Preview, Order, Readonly, Required, Column Sorting, Border,
Process, Document, Data, Dynamic Headers and Columns, Instructions
(en), Events, User Role Restrictions, and Dynamic Runtime Restrictions.

The Document attribute defines the schema the simple table uses. You can
enter a schema name or select one from the drop-down list box.

Simple tables include a built interface to view large tables in smaller pages.
You can use the size attribute to set the number of rows to display on one
page. When users want to view more of the table results, they can click on the
next x rows button to view the next page of table rows. All simple tables
include the link icons to browse forward and backward in the table.

Document table
A document table is a container you can use to display any other form
component from within a table. The document table form component only
has two basic functions by itself. The document table form:

Calls the schema that will generate the table data, and

Describes how the data will be displayed in the columns of the table.
74 Chapter 4—Peregrine Studio Components

Tailoring Kit Guide
A document table requires columns components in order to display data.
Unlike the simple table, the document table only uses one type of column:
the formcolumn. However the formcolumn form component allows you to
add any other form component to your document table.

To create a document table

1 Right-click the form where you want the document table to be.

2 Click New > Table > Document Table.

Form components you can add to a document table

Column.

Attributes you can set for a simple table

Visible Flag, Accessibility Title (en), Accessibility Summary (en), Size,
Preview, Order, Border, Document, User Role Restrictions, and Dynamic
Runtime Restrictions.

The Document attribute defines the schema the document table uses. You
can enter a schema name or select one from the drop-down list box.

Document tables include a built interface to view large tables in smaller
pages. You can use the size attribute to set the number of rows to display on
one page. When users want to view more of the table results, they can click
on the next x rows button to view the next page of table rows. All document
tables include the link icons to browse forward and backward in the table.

Table links
A table link allows the user to click on a table row and be redirected to
another form. The table link also saves some field information about the row
the user selects and submits this information to the target form. Table links
are typically used for two functions:

To display more information about an item selected in the table, or

To copy certain information about the item selected in the table into a new
form such as, for example, the price of an item in a purchase request form.

To create a table link

1 Right-click the table where you want the table link to be.

2 Click New > Link > Table Link.
Types of form components 75

Get-Resources
Form components you can add to a table link

None.

Attributes you can set for a simple table

Visible Flag, Label (en), Title (en), Balloon (en), Style Class, Data, Image,
HTTP Submit Method, Parameters, Target (frame, form, field, script, or
URL), Events, User Role Restrictions, and Dynamic Runtime Restrictions.

Table link attributes

For most table links, the two most important attributes to set are the
Document field and the target form.

Document field. Enter the field that describes what information should be
passed when a table link is submitted. The Document Field attribute
should match the attribute name of an item in your schema. The attribute
is typically set to the Id schema attribute.

Target form. Enter the full Peregrine Studio path to the form where the
user should be redirected when they click on a table row.

Text columns
A text column displays the results of a document query in a table column as
plain text. Each text column displays one field of information from a
back-end database. The field must match an attribute name listed in the
document schema of the parent table.

When working with text columns, keep in mind that they:

Are always read-only and cannot be used to update information in the
back-end database.

Can only be added as child nodes of a simple table.

To create a text column

1 Right click the table where you want the text column to be.

2 Click New > Text Column.

Form components you can add to a text column

None.

Attributes you can set for a text column

Visible Flag, Order, Label (en), Title (en), Support Links, Data Type,
Document Field, Translation Function, Style Class, Events, User Role
Restrictions, and Dynamic Runtime Restrictions.
76 Chapter 4—Peregrine Studio Components

Tailoring Kit Guide
Text column attributes

For most text columns, the two most important attributes to set are the
Document field and the Label (en).

Document Field. Enter the field that describes what information should be
displayed in the text column. The Document Field attribute should match
the attribute name of an item in your schema.

Label (en). Enter the label you want displayed in the first row of the table
as the column heading. If you are using dynamic headers and columns,
you will want to leave this attribute blank.

Form columns
A form column is a container for any other form component you want to add
to a table. Unlike a text column, a form column can display any number of
fields of information from your back-end database. Each field, however,
must still match an attribute name listed in the document schema of the
parent table.

When working with form columns, keep in mind that they:

Can contain form components that insert or update information in your
back-end database.

Can only be added as child nodes of a document table.

To create a form column

1 Right click the document table where you want the text column to be.

2 Click New > Column.

Form components you can add to a form column

Any.

Attributes you can set for a form column

Visible Flag, Label (en), Order, User Role Restrictions, and Dynamic
Runtime Restrictions.
Types of form components 77

Get-Resources
Form column attributes

For most form columns, the two most important attributes to set are the
Label (en) and the User Role Restrictions.

Label (en). Enter the label you want displayed in the first row of the table
as the column heading. If you are using dynamic headers and columns,
leave this attribute blank.

User Role Restrictions. Enter the user role or roles that you want to have
access this form column. Only users with this access level will have access
to the form components in the column. If you do not want to set a user
role restriction, leave this attribute blank.

Actions
An action is a button that submits form information or follows a particular
link. The following is a list of the possible actions you can include in your
forms:

Action. Use to submit form information or follow a link.

Back. Use to navigate back to the previous form.

Close. Use to close pop-up windows.

Default Action. Use to define a form’s submit action when no buttons are
displayed in a form.

Home. Use to navigate to the portal home page.

Print. Use to print the current form.

To create an action

1 Right-click the form where you want the action to be.

2 Click New > Action and then click the action type you want to add.

Form components you can add to an action

None.

Attributes you can set for an action

Submit Form, Target (frame, form, field, script, or URL), Label (en), Title
(en), Balloon (en), Image, Parameter, HTTP Submit Method, Events, User
Role Restrictions, Dynamic Runtime Restrictions, Visible Flag, and
Presentation.
78 Chapter 4—Peregrine Studio Components

Tailoring Kit Guide
Action attributes

For most actions, the three most important attributes to set are the Image
Folder, Target form and the Label (en).

Image. Enter the file name of the image to be used for the button.

Target form. Enter the full Peregrine Studio path to the form where the
user should be redirected when they click on the button.

Label (en). Enter the label you want displayed in the button.
Types of form components 79

Get-Resources
80 Chapter 4—Peregrine Studio Components

CHAPTER
5 S
cripting
This chapter provides an overview of how scripts are put together and used.
You should be familiar with JavaScript and ECMAScript and should have
access to the JavaDocs provided with your Get-Resources installation.

This chapter covers the following topics:

Overview of scripts on page 82

Testing scripts on page 91

Common message operations on page 96

Using ECMAScript in an object oriented manner on page 99

Sample scripts on page 104

References on page 112
Scripting 81

Get-Resources
Overview of scripts

Get-Resources uses scripts to query back-end databases and to format the
results into XML documents based on schemas. Generally, you will only need
to create new scripts if you create new forms. Most customizations do not
require changes to the script, but rather to the schema that the script uses to
display data. When you need to create or make changes to a script, you must
have created or activated a writable package extension in which to save your
changes.

Tip: You can use the existing scripts as templates for your custom scripts. Try
and find a script that has similar functionality to what you want, and
then copy and paste the script into your Peregrine Studio project.

Types of scripts
Get-Resources uses two types of scripting to transfer and format data
between your back-end databases and Web application forms:

Server-side scripting—Server-side scripts run from a Web server.
Server-side scripts have access to both user-submitted form data and any
data generated by a back-end system. The output of server-side scripts can
be returned to both a back-end system and the remote browser. All
Get-Resources server-side scripts are written in ECMAScript. An example
of server-side scripting would be querying a back-end system for the list of
items associated with a particular order.

Client-side scripting—Client-side scripting runs from a
JavaScript-capable browser. Client-side scripts have access to user data
before it is submitted to a Web server and any back-end data that was
uploaded with the current Web page. The output of client-side scripts can
be used only by the client browser. All Get-Resources client-side scripts
are written in JavaScript. An example of using client-side scripting would
be updating the total price displayed on an order form when an amount is
entered in another field of the page.
82 Chapter 5—Scripting

Tailoring Kit Guide
Where scripts are stored
The following table describes how you can include both types of scripting
into your projects.

Peregrine Studio stores all server-side ECMAScripts as part of your project
file. At build time, Peregrine Studio copies the scripts into your application
server’s deployment folder and creates all necessary Get-Resources JSP pages.
At run time, the deployment application server executes the JSP pages along
with any server-side scripts called by the JSP pages and sends the output to
the client browser. The client browser will execute any client-side JavaScript
present in the rendered JSP page.

Script type Language used Where created and stored

Server-side ECMAScript You can author server-side scripts only in
Peregrine Studio. Each script then becomes an
object available for use throughout the project.

Client-side JavaScript You can author client-side scripts outside of
Peregrine Studio and add them to your project.
You can also include client-side scripts as part
of the HTML code stored with a form.
Overview of scripts 83

Get-Resources
How scripts are used
The Archway servlet supports several different methods to invoke and utilize
scripts within Get-Resources. The following sections describe the different
ways in which ECMAScript and JavaScript can be used within
Get-Resources.

Forms—server side
All Get-Resources forms support invoking onload server-side scripts.
Typically, the onload script creates an XML message to gather and format
information from a back-end database. The script message can contain
queries or updates to the database or to XML documents built from a
schema. The scripts typically use a schema, one or more input parameters,
and a back-end database query to create an XML document.

Many server onload scripts use one of the following API calls:
84 Chapter 5—Scripting

Tailoring Kit Guide
sendDocQuery—sends an SQL or XML document query to the back-end
database. Archway queries the record using the table and field information
supplied by the schema. The database then returns the results of the query
as an XML document formatted as defined in the schema.

sendDocInsert—sends an XML document to the back-end database that
describes a new record. Archway creates the new record in the database
using the table and field information supplied by the schema.

sendDocUpdate—sends an XML document to the back-end database that
describes an update to an existing database record. Archway updates the
record using the table and field information supplied by the schema.

sendDocDelete—sends an XML document to the back-end database that
describes a record in the database to be deleted. Archway deletes the
record using the table and field information supplied by the schema.

Get-Resources typically use the following ECMAScript syntax to refer to
schemas. For additional methods of formatting these messages, refer to the
JavaDocs API documentation provided with your Get-Resources
installation.

archway.sendDocQuery("adapter name", "schema name", input msg);
archway.sendDocInsert("adapter name", message object);
archway.sendDocUpdate("adapter name", message object);
archway.sendDocDelete("adapter name", message object);

For adapter name, enter the name for the back-end database adapter. The
adapter listed here will use the ODBC connection that you have defined in
the achway.ini file. For most applications, the adapter will be a two letter
name.

For schema name, enter the name defined in the <document
name="schema name"> element of the schema file.

For the input msg, enter the variable name of a message that OAA uses to
store input parameters for the ECMAScript function. The default input
message is the msg object that is defined in all onload functions. The input
message is the XML message containing the HTML page parameters.

For message object, enter a variable name of a message object containing a
schema name and any input parameters.

For example, the script sample below defines a variable called msgReturn that
sends a document query to ServiceCenter using the empdetail schema and any
input parameters stored in the msg message object. The variable msgReturn
then returns the result of the document query.
Overview of scripts 85

Get-Resources
var msgReturn = archway.sendDocQuery("sc", "empdetail", msg);
return msgReturn;

Client side
The browser handles all client-side scripting when a user views a Web
application.

Note: Peregrine does not provide customer support for custom client-side
scripts.

Editing an existing script
You can edit the ECMAScript in your project directly from the Peregrine
Studio interface.

Important: You may lose changes that you make to existing scripts when you
next upgrade.

To edit an existing script

1 Select the form in the Project Explorer.
86 Chapter 5—Scripting

Tailoring Kit Guide
2 Click the Script tab in the Properties window.
Overview of scripts 87

Get-Resources
3 In the Server Onload Script field, click the magnifying glass button () to

view the script in the Peregrine Studio text editor.

4 Make any changes to the script in the text editor.

5 Save your project.

6 Build your project file.

7 Restart your application server or set the File Change Monitor option from
the Administration page.

The script update is loaded into Get-Resources.
88 Chapter 5—Scripting

Tailoring Kit Guide
Adding a custom script
You can add custom scripts to your Peregrine Studio project for use by
forms, schemas, and form components.

To add a custom script

1 Determine what kind of script you want to create.

You can create the following types of script:

Form onload script. These are scripts run to gather data for
non-DocExplorer forms. Peregrine Studio stores form on-load scripts
underneath the first Group of Scripts node (Typically called Scripts or
ServerScripts).

Preexplorer. These are scripts run to manipulate the XML document that
the gets rendered in the Get-Resources interface. Peregrine Studio stores
preexplorer scripts underneath the Preexplorer Group of Scripts node.

Preload. These are scripts run to gather data for DocExplorer forms.
Peregrine Studio stores preload scripts underneath the Preload Group of
Scripts node.

Schema. These are scripts run before or after an adapter connects with the
back-end database. Peregrine Studio stores schema scripts underneath the
Schema Group of Scripts node.

2 Right-click the appropriate Group of Scripts node, point to New, and then
click Script.

Peregrine Studio creates a new script node underneath the Group of Scripts.

3 Type in the name of your script and press ENTER.

4 Right-click the new Script node, point to New, and then click Header.

Peregrine Studio creates a new Header node underneath the Script node.

5 Using the text editor window, type in the header information for your new
script.

6 Right-click the new Script node, point to New, and then click Function.

Peregrine Studio creates a new Function node underneath the Script node.

7 Using the text editor window, type in the function information for your new
script.

8 Save your project.

9 Build your project file.
Overview of scripts 89

Get-Resources
10 Restart your application server or set the File Change Monitor option from
the Administration page.

The new script is loaded into Get-Resources.

Date values in scripts
In server-side scripts, all dates in the XML messages must be passed using the
internal format YYYY-MM-DD. The format for timestamps is
YYYY-MM-DDTHH:mm:SS.SSSZ, where T is the letter T; HH specifies the
hours in 24 hour format, mm specifies the minutes, SS.SSS specifies the
number of seconds and milliseconds; and Z indicates the time zone.

An example of the format showing GMT:

"2004-02-19T16:58:23+00:00"

An example of the format using the name of the time zone:

"2004-03-29T07:00:00America/Los_Angeles"

Note: The names of time zones are defined in the Java.util.TimeZone class.

Timestamps are usually expressed in the GMT time zone. However, dates on
server machines need not be set to this format. The user interface
automatically converts dates to and from the local date format automatically
whenever date widgets or date columns are used.

When you set the date manually in an XML message, you may need to
manipulate its format. Use the DataFormatter.getArchwayDate and
DataFormatter.getArchwayDateTime functions.

The section Working with dates in scripts on page 110 contains several useful
examples of date manipulation.
90 Chapter 5—Scripting

Tailoring Kit Guide
Testing scripts

Get-Resources offers two means of testing your ECMAScript:

Rhino JavaScript Debugger

URL Queries

Rhino JavaScript debugger
You can now configure Get-Resources to send script output to the Rhino
JavaScript Debugger provided by Mozilla. The Rhino JavaScript Debugger
provides a graphical user interface for debugging interpreted JavaScript and
ECMAScript. When you enable the Rhino JavaScript Debugger, you can log
on to the Get-Resources server and see debugging information about your
installation as you browse through the Get-Resources interface.

Important: To use the Rhino JavaScript debugger your application server
cannot be configured to run as a service.

To enable the Rhino JavaScript debugger

1 Login to the Get-Resources administration page.

2 Click Settings > Logging tab.

3 For the Debug script option, select Yes.

4 Click Save to store your changes.

5 Login to the Get-Resources server.

6 Browse to the Get-Resources deployment directory. By default this directory
has the following path:

<application server>\<context>\WEB-INF

For <application server>, enter the installation path to your application
server. For example, C:\Program Files\Peregrine\Common\Tomcat4

For <context>, enter the path where you deployed the Get-Resources files.
For example, webapps\oaa.

7 Using any text editor, open the file local.xml.

8 Add the following line anywhere between the <settings> elements:

<showDebugger>true</showDebugger>

9 Save the file.
Testing scripts 91

Get-Resources
10 Copy the file rhinodebugger.jar from the Get-Resources Tailoring Kit
Installation CD to the following path on your test server:

<application server>\<context>\WEB-INF\lib

For <application server>, enter the installation path to your application
server.For example, C:\Program Files\Peregrine\Common\Tomcat4

For <context>, enter the path where you deployed Get-Resources the files.
For example, webapps\oaa.

11 Restart your application server.

The Rhino JavaScript Debugger appears the next time you start your
application server on this system.

For more information about the Rhino JavaScript Debugger, see the Mozilla
Web site:

http://www.mozilla.org/rhino/debugger.html

URL queries
You can test the output generated by your server-side onload scripts and
schemas by using URL queries to the Archway servlet.
92 Chapter 5—Scripting

Tailoring Kit Guide
Archway will invoke the server script or schema as an administrative user and
return the output as an XML document. Your browser will need an XML
renderer to display the output of the XML message.

Using URL queries can be useful for debugging your tailoring changes and
for using the Archway servlet without having to log into Get-Resources.

Note: Your browser may prompt you to save the XML output of the URL
query to an external file.

URL script
queries

Archway URL script queries use the following format:

http://server name/oaa/servlet/archway?script name.function name

For server name, enter the name of the Java-enabled Web server. If you are
testing the script from the computer running the Web server, you can use
the variable localhost as the server name.

The /oaa/servlet mapping assumes that you are using the default URL
mapping that Get-Resources automatically defines for the Archway
servlet. If you have defined another URL mapping, replace the servlet
mapping with the appropriate mapping name.

For script name, enter the name of the script you want to run.

For function name, enter the name of the function used by the script.

URL schema
queries

Archway URL schema queries use the following format:

http://server name/oaa/servlet/archway?adapter name.Querydoc
&_document=schema name

For adapter name, enter the name for the back-end database adapter the
schema uses. The adapter listed here will use the ODBC connection that
you have defined in the Admin module Settings page.

For schema name, enter the name defined in the <document name="schema
name"> element of the schema file.

The /oaa/servlet mapping assumes that you are using the default URL
mapping that Get-Resources automatically defines for the Archway
servlet. If you have defined another URL mapping, replace the servlet
mapping with the appropriate mapping name.
Testing scripts 93

Get-Resources
Your script output should be similar to this.

URL SQL
queries

Archway URL SQL queries use the following format:

http://server name/oaa/servlet/archway?adapter name.query&_table=
table name&field name=value&_[optional]=value

For adapter name, enter the name for the back-end database adapter the
schema uses. The adapter listed here will use the ODBC connection that
you have defined in the Admin module Settings page.

For table name, enter the SQL name of the table you want to query from
the back-end database.

For field name, enter the SQL name of the field you want to query from the
back-end database.

For value, enter the value you want to the field or optional parameter to
have.

For _[optional], enter any optional parameters to limit your query.
Examples include:

_return. Returns the values only of the fields you list.

_count. Specifies how many records you want returned with the query.
94 Chapter 5—Scripting

Tailoring Kit Guide
The /oaa/servlet mapping assumes that you are using the default URL
mapping that Get-Resources automatically defines for the Archway
servlet. If you have defined another URL mapping, replace the servlet
mapping with the appropriate mapping name.
Testing scripts 95

Get-Resources
Common message operations

The following section describes some common methods that server-side
scripts can be used to create XML messages. Refer to the JavaDocs (especially,
com.peregrine.oaa.core.Message) for more information about and examples of
XML message operations.

Create a new generic message. You can use archway.sendDocQuery() to create
a generic XML message. You can then add elements to the XML message
with other methods.

var msgQuery = new Message();
Creates an empty XML message called msgQuery.

Create a new message with a specific XML element tag. You can then use
archway.sendDocUpdate() and archway.sendDocInsert() to send the XML
message to the back-end database.

var msgRequest = new Message("Request");
Creates an XML message called msgRequest with the element <Request>.

Add a value to a particular XML element. You can use this method to add
a new element and value to the XML message.

msgQuery.add("LastName", "Jones");
Adds the value Jones to the element <LastName>. The output is in standard
XML format: <LastName>Jones</LastName>.

Set the value of an XML element. You can use this method to overwrite the
value of an existing element in the XML message.

msgQuery.set("LastName", "Jones");
Sets the value of the element <LastName> to Jones. The output is in
standard XML format: <LastName>Jones</LastName>.

Get the value of an element in the XML message. This method returns an
empty string "" if there is no value for the element.

var strName = msg.get("LastName");
Sets the variable strName to the value of the element <LastName> in the
XML message. For example, if the XML message contains the element
<LastName>Jones</LastName> then strName uses the value Jones.

Get all of the elements and values (the subdocument) listed under a
particular element in the XML message. This method returns an empty
string "" if there is no subdocument for the element.

var msgRequest = msg.getMessage("Request");
96 Chapter 5—Scripting

Tailoring Kit Guide
Sets the variable msgRequest to the subdocument listed under the element
<Request> in the XML message. For example, suppose the XML message
contains the following elements:

<Request>
<ID>1234</ID>
<LastName>Jones</LastName>
<Status>Approval</Status>

</Request>

Then, the msgRequest uses the subdocument:
<ID>1234</ID><LastName>Jones</LastName><Status>Approval</Status>.

Set a script condition when the script returns a particular XML message
result. You can use conditions to control when Peregrine Studio form
components such as redirections and access fields should be activated. For
example, the following script checks the value of the Name element:

if (msg.get("Name") == "")
{
msgResponse.setCondition("error");
return msgResponse;

}

This function searches the XML message for the value of the <Name>
element. If the value is empty, then the script sets the error condition.

Return the number of instances that a particular element appears in an
XML message. You can use this method to set a condition for further
actions. For example, the following script uses the getList method to set a
condition:

var list = msgResponse.getList("Location");
if (list.getLength() == 0)
msg.setCondition("noresults")
var i = 0;
for (i = 0;i < list.getLength(); i++)
{
// add function to process records in the list ...
}

Sets the variable list to the number of <Location> elements in the XML
message. If the number of instances is zero, then the script sets the noresults
condition, otherwise the script performs some other action.

Log the contents of a particular XML message. This method saves the
output of the script to the file archway.log. This is another way of
debugging your ECMAScript in addition to the Rhino JavaScript debugger
on page 91.
Common message operations 97

Get-Resources
Using a logging domain. You can use a logging domain to group log
messages from a particular component or script.

env.debuglog("Get-Resources", "sendDocQuery returned the
message ", msgResponse);

Without using a logging domain

env.debuglog("sendDocQuery returned the message ",
msgResponse);

Important: You must enable the Debug Logging option from the
Get-Resources administrative interface (Administration >
Settings > Logging tab).

Tip: Remove or comment out this method before deploying to your
production environment as script logging is CPU-intensive and
degrades server performance.
98 Chapter 5—Scripting

Tailoring Kit Guide
Using ECMAScript in an object oriented manner

ECMAScript implementation in Get-Resources
All Scripts defined in Peregrine Studio end up being loaded as one ECMA
script object. The functions defined in the Script are the object’s methods,
and the variables declared outside a function are the object’s attributes. This
implementation as an object is what enables you to use the dot syntax to call
scripts and functions.

Name resolution in ECMAScript
Every ECMAScript object has a special property: its prototype. A prototype is
an ECMA script object, and it is used in the property name resolution for the
object.

Every script is run within a scope that holds a set of objects and variables
declared in the same scope.

When you access a property or call a function in a given environment, ECMA
script tries to resolve the name in the current scope first (usually the
function’s context). If it does not find it, it tries in the current object's
prototype. If it does not find the property in the prototype, or in the
prototype’s prototype, the ECMAScript engine searches in the parent scope.

Using the object prototype for object oriented programming
The fact that ECMAScript looks up for a variable name or a function name
in the prototype if it does not find it in the object, gives some ability to define
a standard behavior as an object’s method, and make this object the
prototype for another object that can overwrite the behavior by providing a
method with the same name.
Using ECMAScript in an object oriented manner 99

Get-Resources
The following is an example that you can try with the ECMAScript command
line utility.

To use an object prototype

1 In the WEB-INF/lib folder, type java -jar js.jar to start the command line.

2 Create three objects, one for each class:

3 Try the start method for each of these objects:

function vehicle()
{
 function _start ()
 {
 print("starting " + this.getVehicleName())
 }
 this.start = _start;
 this.getVehicleName = new Function("return 'vehicle'; ");
}

function airplane()
{
 this.getVehicleName = new Function("return 'airplane'; ");
}
airplane.prototype = new vehicle();

function car(make)
{
 this.getVehicleName = new Function("return 'car ' + this.make;");
 this.make = make;
}
car.prototype = new vehicle();

var myVehicle = new vehicle();
var myPlane = new airplane();
var myHonda = new car("Honda");

js> myVehicle.start()
starting vehicle

js> myPlane.start()
starting airplane

js> myHonda.start()
starting car Honda
100 Chapter 5—Scripting

Tailoring Kit Guide
You can see that although the airplane class and the car class do not
implement the start method, start is found in their prototype. You can also
see that since these two classes overwrite the getVehicleName function, the
start method calls the method that was defined in the object. These are
standard behaviors in object-oriented languages.

Overwriting a method to extend the parent class method can be more
complicated in ECMA script.

To overwrite a method to extend the parent class method

1 Create a sports car class that derives from the car class, and extend the start
method to add a warm-up phase before the car actually starts.

2 Create an object for this class:

var myMaserati = new sportscar1("Maserati");

3 Call the start method:

function sportscar1(make)
{
 // other way to declare that the prototype for the
 // sportscar object is a car object. Contrary to
 // the other way, where only one vehicle object is the
 // prototype of all the car objects, here there will be
 // one car object per sportscar1 object.
 this.parentCar = new car(make);
 this.__proto__ = this.parentCar;
 // Extend the start function
 function _start()
 {
 print("warming up");
 this.parentCar.start();
 }
 this.start = _start;
 // Change also the vehicle name to reflect that this is
 //a sports car
 this.getVehicleName = new Function("return 'sports car ' +
this.make;");
}

js> myMaserati.start();
warming up
starting car Maserati
Using ECMAScript in an object oriented manner 101

Get-Resources
You can see that the new start method is called, that the start method
declared in vehicle is called as well. But the new getVehicleName was not
called, as the second line that was printed should show as starting sports car
Maserati. This is because using this.parentcar.start() changes the scope in
which the start function is called from the sportscar1 object to the parentcar
object (car class), and as a result the getVehicleName is resolved in the scope
of the car object. To change this behavior, a the parent function must be
called in a specific way that is illustrated in the following sportscar2 class.

To change the start method

1 Create an object for this class:

var myFerrari = new sportscar2("Ferrari");

2 Call the start method:

js> myFerrari.start();
warming up
starting sports car Ferrari

You can see that we now get the expected result. The code is using the apply
method of the Function object, and passes the object that will be used as this
first, and the arguments that were passed to the current function (_start).

function sportscar2(make)
{
 this.parentCar = new car(make);
 this.__proto__ = this.parentCar;
 // Extend the start function
 function _start()
 {
 print("warming up");
 this.parentCar.start.apply(this, arguments);
 }
 this.start = _start;
 // Change also the vehicle name to reflect that this is
 //a sports car
 this.getVehicleName = new Function("return 'sports car ' +
this.make;");
}

102 Chapter 5—Scripting

Tailoring Kit Guide
Note: The code uses this.parentCar instead of this.__proto__, which could
seem to be valid, but can cause an infinite recursive call if another class
deriving from sportscar2 extends the start method and calls it parent,
because this.__proto__ would still be evaluated against the derived
object, and the start function in sportscar2 would keep calling itself. It
is therefore preferable to store the parent object in a variable that is not
overwritten by the subclasses. Here, with a nomenclature that uses the
parent prefix and the parent class name, the uniqueness is ensured.
You can try if you want with a racecar class that would derive from
sportscar2 and overwrite the start function by calling the parent)

How to use object orientation for tailoring
In Get-Resources, objects are instantiated automatically from the script files
when they are loaded in memory. To implement the prototype hierarchy, the
__proto__ attribute must be set in a script file’s header.

For example:

The previous valueOf method returns a pointer to the requestinterfacebase
object. The line is equivalent to this.__proto__ = requestinterfacebase;.

If you need to call a parent method, you can specify it using the dot format.
For example:

As long as each object has a unique name, for example the script name, there
is no need to store the parent object in a member variable. In that respect,
using object orientation in Get-Resources is simpler than in the general case.

import requestinterfacebase;
this.__proto__ = requestinterfacebase.valueOf();

// Submit the request (Call the parent method)
var msgNewRequest = requestinterfacebase.saveRequest.apply
(this, arguments);
Using ECMAScript in an object oriented manner 103

Get-Resources
Sample scripts

The following sections provide sample server-side ECMAScripts and
descriptions that you can use as templates in Get-Resources. If you need help
with a client-side scripting, a list of suggested reference materials is provided
on page 112.

General script samples
You can use ECMAScript to serve a number of different functions such as
creating an XML document from a schema, running a SQL query, or
formatting the data received from a database query. The following samples
show some of the ways in which you can use ECMAScript to gather data.

Selecting a field from a schema
function getCityList (msg)
{
//Query sample database for the records using the citylist
//schema
var msgQuery=newMessage();
msgQuery.set(“_return”, “Name”);
var msgReturn=archway.sendDocQuery (“xx”,”citylist”, msgQuery);

return msgReturn;
}

Input

A message object, msg. This script does not typically have input from any
previous form. If you change this script to be part of a results form, then the
input message could contain form fields or values from a prior list form.
104 Chapter 5—Scripting

Tailoring Kit Guide
Output

The script produces an XML document built from the schema and adapter
specified in the sendDocQuery function. The XML output below is an
example of the kind of data that could be returned using a similar script.

Although the sendDocQuery function specifies only the <Name> element,
Archway automatically includes the <ID> element in the XML document
produced. This is expected behavior of the Archway servlet.

Description

This script gathers a list of city names for an employee search form. The
sendDocQuery function creates an XML document built from the citylist
schema and searches for the value of the <Name> element. You can use
parameters like “Name” in your script messages to limit or add to the list of
values returned by your schema query.

<recordset _count="-1" _countFound="3" _more="0" _start="0">
<citylist>
<Id>1</Id>
<Name>Burbank</Name>

</citylist>
<citylist>
<Id>2</Id>
<Name>London</Name>

</citylist>
<citylist>
<Id>3</Id>
<Name>Santa Clara</Name>

</citylist>
</recordset>
Sample scripts 105

Get-Resources
Calling other scripts and combining the results
function getSearchInfo(msg)
{
//Create empty variable msgResponse
var msgResponse = new Message();

//Call getDepList function and add results to msgResponse.
msgResponse.add(this.getDepList(msg));
// Call getCityList function and add results to msgResponse
msgResponse.add(this.getCityList(msg));

return msgResponse;
}

Input

A message object, msg. This script does not typically have input from any
previous form. If you change this script to be part of a results form, then the
input message could contain form fields or values from a prior list form.

Output

The script produces an XML document built from two other scripts,
getDepList and getCityList. Each script adds to the XML document stored in the
msgResponse variable by running a sendDocQuery function with a schema. The
XML output below is an example of the kind of data that could be returned
using a similar script.

<_doc>
<recordset _count="-1" _countFound="19" _more="0" _start="0">
<departmentlist>
<Id>1</Id>
<DepartmentName/>

</departmentlist>
<departmentlist>
<Id>2</Id>
<DepartmentName>Administration</DepartmentName>

</departmentlist>
<departmentlist>
<Id>3</Id>
<DepartmentName>Administrative Services</DepartmentName>

</departmentlist>
<departmentlist>
<Id>4</Id>
<DepartmentName>Burbank Agency</DepartmentName>

</departmentlist>
...
106 Chapter 5—Scripting

Tailoring Kit Guide
</recordset>
<recordset _count="-1" _countFound="3" _more="0" _start="0">
<citylist>
<Id>1</Id>
<Name>Burbank</Name>

</citylist>
<citylist>
<Id>2</Id>
<Name>London</Name>

</citylist>
<citylist>
<Id>3</Id>
<Name>Santa Clara</Name>

</citylist>
</recordset>
<_form>e_employeelookup_search_search.jsp</_form>
</_doc>

Description

This script generates the city and department names that a user can select
from in an employee search form. The .add function appends the output of
the getDepList and getCityList functions to the msgResponse variable. The two
script references use the relative naming convention (this) to indicate that the
functions called are part of the same script as getSearchInfo.
Sample scripts 107

Get-Resources
Form script sample
Most ECMAScripts run during a form’s onload processing. Typically, form
scripts query and format data for display in a Web application form, but you
can also use them to update existing database records or insert new ones. The
following samples show how to use server onload scripts to search a database
for employee information.

Creating an XML document from a schema
function getEmpList(msg)
{
//Add Department subdocument to the input message
var strReturn = msg.get("_return");
if (strReturn.length > 0)
msg.set("_return", strReturn + ";Department");

//In msg, set sort to LastName and then FirstName
msg.add("_sort", "LastName,FirstName");

//Query sample database for the records using the
//employeedetail schema and the criteria found in the msg object
var msgReturn = archway.sendDocQuery("xx", "employeedetail", msg);
//Test if the number of items returned is zero, if true set
//ListEmpty condition
if (msgReturn.get("_countFound") == "0")
msgReturn.setCondition("ListEmpty");

//Return the contents of the msgReturn variable
return msgReturn;
}

Input

A message object, msg. This script has an input message from a previous
search form. In this case, the input message is amended to include a
subdocument, Department, in addition to any other input data passed to the
script. This subdocument looks up the DepartmentName field data that the
database stores in a separate table. In addition to adding a subdocument, the
script sorts the input message by the LastName and FirstName elements. The
following XML demonstrates what the input message would look like if a
search were conducted on the CityName of Burbank (CityID=1).

<_doc>
<_form>e_employeelookup_employee_emplist.jsp</_form>
<_start>0</_start>
<_return>;employeedetail;CityName;OfficePhone;DepartmentName;
FirstName;LastName;Id;</_return>
<_count>10</_count>
108 Chapter 5—Scripting

Tailoring Kit Guide
<_ctxobj/>
<_ctxidfld/>
<_ctxidval/>
<CityID>1</CityID>
<search>1</search>
<_blankFields>;FirstName;false;LastName;false;DepartmentID;false
</_blankFields>
<__x>__y</__x>
<_callingform>e_employeelookup_search_search.jsp</_callingform>
<FirstName insertblank="false"/>
<LastName insertblank="false"/>
<DepartmentID insertblank="false"/>
</_doc>

Output

The script produces an XML document built from the schema and adapter
specified in the sendDocQuery function. The XML output below is an example
of the kind of data that could be returned using a similar script.

<recordset _count="10" _countFound="2" _more="0" _start="0">
<employeedetail>
<Id>10</Id>
<FirstName/>
<LastName>Burbank Agency</LastName>
<OfficePhone>(408) 422-5501</OfficePhone>
<CityName>Burbank</CityName>
<DepartmentID>16</DepartmentID>
<Department>
<DepartmentName>Sales</DepartmentName>

</Department>
</employeedetail>
<employeedetail>
<Id>11</Id>
<FirstName/>
<LastName>Burbank Unit</LastName>
<OfficePhone>(650) 572-9000</OfficePhone>
<CityName>Burbank</CityName>
<DepartmentID>19</DepartmentID>
<Department>
<DepartmentName>Technical Support</DepartmentName>

</Department>
</employeedetail>

<_form>e_employeelookup_employee_emplist.jsp</_form>
</recordset>

Description

This script displays the results list generated by the search form. The script
uses two functions to change the data in the msg input message object. The
first function checks the input message to determine the number of elements
returned by the search results. If there any search results to return, the script
Sample scripts 109

Get-Resources
adds the Department subdocument to the msg message object. The second
function sorts the input message by LastName and then FirstName. Using the
adapter name and document schema name, this script then runs a
SendDocQuery function to gather any search results that match those listed in
the input message. The script then checks the <_countfound> tag generated
by the query and determines if the return list is empty. If the list is empty, the
script sets the msgReturn variable to the ListEmpty condition. This condition
redirects users to the listempty form.

Working with dates in scripts
The following code samples demonstrate tasks related to date manipulation.

To get the string that corresponds to the current date

// Gets current date
var date = new Date();
// Gets the current date and time string
var strDateTime = DataFormatter.getArchwayDateTime(date.getTime());
// Get the current date string
var strDate = DataFormatter.getArchwayDate(date.getTime() -
date.getTimezoneOffset()*60000);

To get a date value from the internal OAA format

var strDAssignment = msg.get("dAssignment");
var lMsAssignment = DataFormatter.getDateTimeInMilliseconds(strDAssignment);

To get a date and time value from the internal OAA format

var strDtInvent = msg.get("dtInvent");
var lMsInvent = DataFormatter.getDateTimeInMilliseconds(strDtInvent);

Note that these numeric values are very convenient for comparing dates,
performing arithmetic calculations on dates (such as calculating a duration
and adding an amount of time to a date), and other tasks. From these
numeric values, you can get an ECMAScript Date object:

var dateAssignment = new Date(lMsAssignment);
var dateInvent = new Date(lMsInvent);

In addition, you can get a Java date object:
110 Chapter 5—Scripting

Tailoring Kit Guide
var jdateAssignment = new Packages.java.util.Date(lMsAssignment);
var jdateInvent = new Packages.java.util.Date(lMsInvent);

To display a date value in a user-friendly format

var strUserDtAssignment = user.getUserFormat(strDAssignment, "date", null);
var strUserDtInvent = user.getUserFormat(strDtInvent, "datetime", null);

To get the internal OAA format for a date and time

var strOAADtInvent1 = DataFormatter.getArchwayDateTime(lMsInvent);
var strOAADtInvent2 = DataFormatter.getArchwayDateTime(dateInvent.getTime());
var strOAADtInvent3 = DataFormatter.getArchwayDateTime(jdateInvent.getTime());

To get the internal OAA format for a date only

var strOAADAssignment1 = DataFormatter.getArchwayDate(lMsAssignment);
var strOAADAssignment2 =
DataFormatter.getArchwayDate(dateAssignment.getTime());
var strOAADAssignment3 =
DataFormatter.getArchwayDate(jdateAssignment.getTime());
Sample scripts 111

Get-Resources
References

This section contains reference material to help you with scripting.

Sources for client-side JavaScript
Devguru (JavaScript, VB script, HTML, etc.): http://www.devguru.com/

HTML Writer’s Guild: http://www.hwg.org/

JavaScript, The Definitive Guide, David Flanagan, 3rd Edition, O’Reilly
Publishing.

JavaScript articles at IRT.org: http://www.tech.irt.org/articles/script.htm

JavaScript Made Easy: http://www.easyjavascript.com/

JavaScript Source: http://javascriptsource.com/

JavaScript Source master list: http://javascript.internet.com/master-list/

Netscape’s Developer Site: http://developer.netscape.com

Netscape’s online JavaScript documentation:
http://developer.netscape.com/docs/manuals/index.html?content=
javascript.html

Web Monkey: http://www.webmonkey.com/

ZDNet JavaScript introduction:
http://www.zdnet.com/devhead/filters/0,,2133214,00.html

JavaDocs for the main Archway package
For in-depth information about the Archway servlet and all the functions it
supports, refer to the JavaDocs that are available on the Get-Resources
Tailoring Kit installation CD. The JavaDocs are located in the
\documentation\javadocs folder of your Get-Resources Tailoring Kit
installation CD. To view the docs, launch the index.html file from this folder.
112 Chapter 5—Scripting

CHAPTER
6 D
ocument Schema Definitions
This chapter describes document schema definitions and explains how they
map data between Get-Resources and the back-end database. In addition,
this chapter discusses how to use schema extensions to add new physical
mappings to existing schemas.

This chapter covers the following topics:

Understanding document schema definitions on page 114

How to use schemas on page 115

Schema extensions on page 116

Editing the schema extension files on page 120

Creating custom schemas on page 132

Schema elements and attributes on page 140
Document Schema Definitions 113

Get-Resources
Understanding document schema definitions

A document schema definition (also called a schema) is an XML file that
instructs the Archway Document Manager how to query back-end databases
and generate XML documents containing the query response. Schemas are
mapping tools that determine which XML tags used in dynamically created
documents map to the table and field names in a given back-end database.
These generated XML documents provide the data that Get-Resources
displays and processes.

All schemas consist of two types of definitions:

Base definitions—The schema entries that provide a logical mapping
between the XML tags generated in a document query to the
Get-Resources interface are collectively referred to as the schema base
definitions. The Archway Document Manager uses the base definitions to
generate XML tags based on the elements listed in the schema. The
Archway Document Manager converts the name value listed in an
<attribute> element into an XML tag of the same name.

Derived definitions—The schema entries that provide a physical mapping
between the XML tags generated in a document query to the table and
field names in the back-end database are collectively referred to as the
schema derived definitions. The Archway Document Manager queries the
tables and field names listed in the schema and creates an XML document
with the results of the query. The Archway Document Manager converts
the table and field values listed in the <document> and <attribute> elements
into a SQL query.

Note: The document schema definitions used by Peregrine Studio are not
the same as the schemas being proposed and developed by the W3C.

The base and derived definitions each have their own list of legal elements
and attributes. For more information on schema elements and attributes and
how to use them, refer to Schema elements and attributes on page 140.
114 Chapter 6—Document Schema Definitions

Tailoring Kit Guide
How to use schemas

You can use schemas to present and store data from your back-end database
in the Get-Resources interface. The Archway Document Manager uses
schemas to create XML documents when a form onload script requests data
from a back-end database. Typically, a form component such as a table or
input field displays the requested schema data, but a script may also use the
schema data to update or insert records in the back-end database as well.

You can tailor schemas in two ways:

Create schema extensions. A schema extension is a separate file listing only
the changes you make to an existing schema’s logical or physical
mappings. For example, you could create a schema extension to provide
updated physical mappings when you upgrade your back-end database.
Creating schema extensions is the preferred method of tailoring schemas
as your changes are stored in separate files that can be easily carried over
during an upgrade. For more information about schema extensions, see
your Get-Resources Administration Guide.

Create new schemas. You can create your own schemas to provide all form
components in your project access to the custom logical and physical
mappings you create for Get-Resources. For example, you could create a
new schema to query a collection of custom-created tables and fields that
you have added to your back-end database. While you can create new
schemas from any text editor without the Get-Resources Tailoring Kit,
you will need Peregrine Studio to configure and test any server onload
scripts and form components that use your custom-built schemas.

Important: Do not directly edit an existing schema as any changes you make
to existing logical and physical mappings will be overwritten
when you upgrade to a newer version of Get-Resources.
How to use schemas 115

Get-Resources
Schema extensions

You can create schema extensions to add new logical and physical mappings
to your existing schemas. Schema extensions allow you to save any additional
mappings in separate files that preserve the original schema files shipped by
Peregrine Systems. This separate file organization ensures that any upgrades
will not overwrite your tailoring changes.

When to use schema extensions
Schema extensions generally provide the most benefit when you use them to
extend existing DocExplorer schemas. Extending a schema allows you to do
the following tailoring tasks without the need to rebuild a project in
Peregrine Studio:

Add new fields to the Available Fields list.

Hide existing fields from the Available Fields list.

Change the label that a field displays in the Available Fields list.

Change the list of forms where a field displays.

Change the physical mapping of a field.

Change the type of data a field stores.

Add subdocuments to the personalization Available Fields list.

For instructions how to perform these schema extension tasks, see Creating
schema extensions on page 117.

There are some application tailoring tasks where you must use Peregrine
Studio to update schema information. These tasks include:

Call custom scripts from a schema.

Change the schema used by a non-DocExplorer form component.

Display any new fields that you add to a schema in non-DocExplorer form
components such as select fields or tables.

Change the schema used by a DocExplorer.

Add a new schema to your project.
116 Chapter 6—Document Schema Definitions

Tailoring Kit Guide
Creating schema extensions
You can create schema extensions outside of Peregrine Studio using any Text
editor. The following procedures outline the steps required to create a
schema extension.

To create schema extensions

Step 1 Identify the schema that you want to extend. See Identifying the schema to
extend on page 117.

Step 2 Locate the schema file on the Get-Resources server. See Locating the schema
on the server on page 118.

Step 3 Create the schema extension target folders and copy XML files. See Creating
the schema extension target folders and files on page 118.

Step 4 Edit the schema extension files to support the features you want. See Editing
the schema extension files on page 120.

Identifying the schema to extend
You can identify the schema used by a particular form directly from the
Get-Resources interface. Typically each form uses only one schema, but in
some cases a form will use a subdocument that references another schema.
The following procedures will help you determine what schema a particular
form uses.

To identify the schema used by a particular form

1 Enable Display form information from the Administration > Settings >
Logging tab page.

The Form information button displays in the banner bar of the
Get-Resources interface.

2 Browse to the form that you want to tailor.

3 Click the Display form information button.

The form information window opens.

4 Search for one of the following entries on the Script Input tab:

_docExplorerContext. The last value listed after a slash in this element is the
schema name. For example:
<_docExplorerContext>incident/ticketcontact</_docExplorerContext>

uses the the ticketcontact.xml schema file.
Schema extensions 117

Get-Resources
Note: In this example, ticketcontact.xml is a subdocument of the primary
schema document incident.xml. Only DocExplorers will use this
document/subdocument format.

_ctxschema. The value listed in this element is the schema name. For
example:
<_ctxschema>ticketcontact</_ctxschema>

uses the ticketcontact.xml schema file.

document.The value listed in this element is the schema name. For
example:
<document>savedRequest</document>
uses the savedRequest.xml schema file.

Locating the schema on the server
After you have determined the name of the schema you want to extend, you
can find it using your operating system’s file search function. The following
guidelines are provided to help narrow down your search:

All schemas files have a .XML extension

All schemas files are stored in the WEB-INF\apps folder of your application
server’s deployment directory. For example:
C:\Program Files\Peregrine\Common\Tomcat4\webapps\oaa

Creating the schema extension target folders and files
Schema extensions require two separate files in the same directory where you
found the source schema. For example:

C:\Program Files\Peregrine\Common\Tomcat4\webapps\oaa\WEB-INF\
apps\resources\Schemas
118 Chapter 6—Document Schema Definitions

Tailoring Kit Guide
Schema extension logical mappings. This file contains the schema base
definitions. These definitions determine the logical names and labels used
for each field. You must create this file in an sub folder of Schemas called
extensions, and it must have the same name as the schema that it extends.
For example:
Schemas\extensions\request.xml.

Schema extension physical mappings. This file contains the schema
derived definitions. These definitions determine the back-end database
tables and fields to which each logical name physically maps. You must
create this file in a sub folder of extensions that matches the adapter name
to your back-end database, and it must have the same name as the schema
that it extends. For example:
Schemas\extensions\ac\request.xml.

To create the schema extension target folders and files

1 Copy the schema XML source file. For example, request.xml.

2 Create two new folders as follows:

Create an extensions folder in the same directory where you found the
source schema. For example:

C:\Program Files\Peregrine\Common\Tomcat4\webapps\oaa\WEB-INF\
apps\resources\Schemas\extensions

Create an <adapter name> folder in the extension folder.

For <adapter name>, enter the abbreviation of the adapter used to connect
to your back-end database such as ac. For example:

C:\Program Files\Peregrine\Common\Tomcat4\webapps\oaa\WEB-INF\
apps\resources\Schemas\extensions\ac

3 Paste a copy of the source schema file in each of the two folders you created.
Schema extensions 119

Get-Resources
Editing the schema extension files

The edits that you need to do the schema extension files depend upon what
features you are trying to include. The following sections outline what edits
you need to perform for each feature.

Adding a new field to the Available Fields list on page 120.

Hiding an existing field from the Available Fields list on page 122.

Changing the label a field displays in the Available Fields list on page 123.

Changing the list of forms where a field is visible on page 124.

Changing the physical mapping of a field on page 126.

Changing the type of form component a field uses on page 127.

Adding subdocuments to the Available Fields list on page 128.

Adding a new field to the Available Fields list
You can add a field to any form that uses personalization. New fields display
as options in the personalization Available Fields list.

To add a new field to Available Fields list

1 Open the schema extension file in the extension folder.

This file is for your schema extension logical mappings.

2 Delete all the derived definitions listed in the bottom half of the original
schema.

The derived definitions section starts after the first </documents> element
and usually has a comment section describing what back-end databases and
versions the derivations apply to.

3 In the <document> section that remains, add a logical mapping <attribute>
element for each field you want to add to the list of Available Fields.

You must add each <attribute> element between the <document> tags:

a Add the required name and type attributes to each <attribute> element.

<documents name="base">
<document name="schema">
<attribute name="Contact" type="string" />

</document>
</documents>

Add new logical
mappings here
120 Chapter 6—Document Schema Definitions

Tailoring Kit Guide
b Add any optional attributes you want to use for each <attribute> element.

Refer to <attribute> on page 146 for additional information on the
<attribute> element.

4 Delete any other logical mappings that you will not be updating in the
physical mapping schema extension file.

Tip: List only the new logical mappings in your schema extension files.
Schema extension entries that duplicate entries in the source schema
may reduce your system performance.

5 Save the logical mappings schema extension file.

6 Open the schema extension file in the <adapter name> folder.

This file is for your schema extension physical mappings.

7 Delete all the base definitions listed in the top half of the original schema.

The base definitions section starts with the first <documents name="base" ...>
element and includes all entries up to the closing </documents> element.

8 Find the element <documents> that has the name and version attribute values
that match the adapter you want to use. For example, <documents name="ac"
version="4">.

If you cannot find a matching <documents> element entry for your adapter,
you must create one. See <documents> on page 140 for more information on
the requirements of a <documents> physical mapping.

9 Verify that the <document> element beneath your chosen adapter lists the
proper table and connection attributes required for your new fields.

If the attributes are not what your new fields require, you must edit the
attributes. See <document> on page 142 for more information on the
requirements of a <document> physical mapping.

10 Beneath the <document> element, add one physical mapping <attribute>
element for each entry you added in the logical mapping.

You must add each <attribute> element between the <document> tags:

a Add the required name and field attributes for each entry you defined in the
logical mapping.

<documents name="" version="4.0">
<document name="schema" table="table1">
<attribute name="Contact" field="contact_name" />

</document>
</documents>

Add new physical
mappings here
Editing the schema extension files 121

Get-Resources
b Add any optional attributes you want to use for the physical mapping.

See <attribute> on page 146 for more information on optional attributes of
the <attribute> element.

11 Delete any other physical mappings that you will not be updating in this
schema extension file.

Tip: List only the new physical mappings in your schema extension files.
Schema extension entries that duplicate entries in the source schema
may reduce your system performance.

12 Save the physical mappings schema extension file.

Hiding an existing field from the Available Fields list
You can hide a field from the list of Available Fields in personalized forms.
Hidden fields will not be available to any user regardless of user rights.

To hide an existing field from the Available Fields list

1 Open the schema extension file in the extension folder.

This file is for your schema extension logical mappings.

2 Delete all the derived definitions listed in the bottom half of the original
schema.

The derived definitions section starts after the first </documents> element
and usually has a comment section describing what back-end databases and
versions the derivations apply to.

3 Locate the logical mapping for the field you want to remove.

Use the label attribute to identify the proper field. For example, if the
DocExplorer Available Field you want to remove is called Contact, search the
<attribute> element that has the value label="Contact".

4 Add the following four attributes to the <attribute> element you want to
remove from the DocExplorer Available Fields list:

search="false"
list="false"
detail="false"
122 Chapter 6—Document Schema Definitions

Tailoring Kit Guide
create="false"

These settings tell DocExplorer to hide the field on the search, list, detail, and
create forms.

5 Delete any other logical mappings that you will not be updating in the
physical mapping schema extension file.

Tip: List only the new logical mappings in your schema extension files.
Schema extension entries that duplicate entries in the source schema
may reduce your system performance.

6 Save the logical mappings schema extension file.

7 If you will not be making any changes to the physical mappings in this
schema, you may delete the schema extension file in the <adapter name>
folder.

You only need to edit this file if you will define new physical mappings for
your DocExplorer fields.

Changing the label a field displays in the Available Fields list
You can change the label that appears in the Available Fields list of
personalized forms. Typically, you will only need to add labels to new fields
that you have added to a schema.

To change the label a field displays in the Available Fields list

1 Open the schema extension file in the extension folder.

You will define the logical mappings in this file.

2 Delete all the derived definitions listed in the bottom half of the original
schema.

The derived definitions section starts after the first </documents> element
and usually has a comment section describing what back-end databases and
versions the derivations apply to.

3 Locate the logical mapping for the field you want to change.

<documents name="base">
<document name="schema">
<attribute name="contact" label="Contact" search="false"
 list="false" detail="false" create="false" />

</document>
</documents>

Add search, list, detail,
and create attributes
Editing the schema extension files 123

Get-Resources
Use the label attribute to identify the proper field. For example, if the
DocExplorer Available Field you want to change is called Contact, search the
<attribute> element that has the value label="Contact".

4 Change the label attribute to the new desired value.

5 Delete any other logical mappings that you will not be updating in the
physical mapping schema extension file.

Tip: List only the new logical mappings in your schema extension files.
Schema extension entries that duplicate entries in the source schema
may reduce your system performance.

6 Save the logical mappings schema extension file.

7 If you will not be making any changes to the physical mappings in this
schema, you may delete the schema extension file in the <adapter name>
folder.

You only need to edit this file if you will define new physical mappings for
your DocExplorer fields.

Changing the list of forms where a field is visible
You can determine the list of DocExplorer forms in which a field is visible.
By default, a field is visible in all DocExplorer forms.

To change the list of forms where a field is visible

1 Open the schema extension file in the extension folder.

You will define the logical mappings in this file.

2 Delete all the derived definitions listed in the bottom half of the original
schema.

The derived definitions section starts after the first </documents> element
and usually has a comment section describing what back-end databases and
versions the derivations apply to.

3 Locate the logical mapping for the field you want to remove.

<documents name="base">
<document name="schema">
<attribute name="contact" type="string" label="Representative" />

</document>
</documents>

Update the label
attribute
124 Chapter 6—Document Schema Definitions

Tailoring Kit Guide
Use the label attribute to identify the proper field. For example, if the
DocExplorer Available Field you want to remove is called Contact, search the
<attribute> element that has the value label="Contact".

4 Change or add a true value for each DocExplorer form in which you want the
field to appear. For example, the following settings will have a field appear in
all DocExplorer forms:

search="true"
list="true"
detail="true"
create="true"

5 Delete any other logical mappings that you will not be updating in the
physical mapping schema extension file.

Tip: List only the new logical mappings in your schema extension files.
Schema extension entries that duplicate entries in the source schema
may reduce your system performance.

6 Save the logical mappings schema extension file.

7 If you will not be making any changes to the physical mappings in this
schema, you may delete the schema extension file in the <adapter name>
folder.

You only need to edit this file if you will define new physical mappings for
your DocExplorer fields.

<documents name="base">
<document name=”schema”>
<attribute name="contact" type=”string” label="Contact"
 search="true" list="false" detail="true" create="false" />

</document>
</documents>

Set search, list, detail,
and create attributes
Editing the schema extension files 125

Get-Resources
Changing the physical mapping of a field
You can change the physical mapping that a field uses to point to another
back-end database, table, or physical field.

To change the physical mapping of a field

1 Open the schema extension file in the extension folder.

You will define the logical mappings in this file.

2 Delete all the derived definitions listed in the bottom half of the original
schema.

The derived definitions section starts after the first </documents> element
and usually has a comment section describing what back-end databases and
versions the derivations apply to.

3 Locate the logical mapping for the field whose physical mapping you want to
change.

Use the label attribute to identify the proper field. For example, if the
DocExplorer Available Field you want to change is called Contact, search the
<attribute> element that has the value label="Contact".

4 Delete any other logical mappings that you will not be updating in the
physical mapping schema extension file.

Tip: List only the new logical mappings in your schema extension files.
Schema extension entries that duplicate entries in the source schema
may reduce your system performance.

5 Save the logical mappings schema extension file.

6 Open the schema extension file in the <adapter name> folder.

This file is for your schema extension physical mappings.

7 Delete all the base definitions listed in the top half of the original schema.

The base definitions section starts with the first <documents name=“base” ...>
element and includes all entries up to the first </documents> element.

8 Find the element <documents> that has the name and version attribute values
that match the adapter you want to use. For example, <documents name="ac"
version="4">.

If you cannot find a matching <documents> element entry for your adapter,
you must create one. See <documents> on page 140 for more information on
the requirements of a <documents> physical mapping.
126 Chapter 6—Document Schema Definitions

Tailoring Kit Guide
9 Verify that the <document> element beneath your chosen adapter lists the
proper table and connection attributes required for your new fields.

If the attributes are not what your new fields require, you must edit the
attributes. See <document> on page 142 for more information on the
requirements of a <document> physical mapping.

10 In the <document> section you selected, change the physical mapping
<attribute> element to match the new physical mapping you want.

The physical mapping <attribute> elements are between the <document> tags:

a Change the field attribute to the new physical mapping.

b Add any optional attributes you want to use for the physical mapping.

Refer to <attribute> on page 146 for more information on optional attributes
of the <attribute> element.

11 Delete any other physical mappings that you will not be updating in this
schema extension file.

Tip: List only the new physical mappings in your schema extension files.
Schema extension entries that duplicate entries in the source schema
may reduce your system performance.

12 Save the physical mappings schema extension file.

Changing the type of form component a field uses
You can change the type of form component a field uses by changing the type
attribute value in a schema extension. For a list of all possible types and the
form components they use, see <attribute> on page 146.

To change the type of form component a field uses

1 Open the schema extension file in the extension folder.

You will define the logical mappings in this file.

2 Delete all the derived definitions listed in the bottom half of the original
schema.

<documents name="ac" version="4.0">
<document name="schema" table="table1">
<attribute name="Contact" field="contact_name" />

</document>
</documents>

Change physical
mappings here
Editing the schema extension files 127

Get-Resources
The derived definitions section starts after the first </documents> element
and usually has a comment section describing what back-end databases and
versions the derivations apply to.

3 Locate the logical mapping for the field you want to change.

Use the label attribute to identify the proper field. For example, if the
DocExplorer Available Field you want to change is called Contact, search the
<attribute> element that has the value label="Contact".

4 Change the type attribute to the new desired value.

5 Delete any other logical mappings that you will not be updating in the
physical mapping schema extension file.

Tip: List only the new logical mappings in your schema extension files.
Schema extension entries that duplicate entries in the source schema
may reduce your system performance.

6 Save the logical mappings schema extension file.

7 If you will not be making any changes to the physical mappings in this
schema, you may delete the schema extension file in the <adapter name>
folder.

You only need to edit this file if you will define new physical mappings for
your DocExplorer fields.

Adding subdocuments to the Available Fields list
You can add a subdocument to add a lookup form component that
references information from another schema. Subdocuments have two
different formats depending upon the results returned by the schema query.
For more information on the schema elements and formats used with
subdocuments, see Subdocuments on page 154.

To add subdocuments to the Available Fields list

1 Open the schema extension file in the extension folder.

This file is for your schema extension logical mappings.

<documents name="base">
<document name="schema">
<attribute name="contact" type="string" label="Contact" />

</document>
</documents>

Update the type attribute
128 Chapter 6—Document Schema Definitions

Tailoring Kit Guide
2 Delete all the derived definitions listed in the bottom half of the original
schema.

The derived definitions section starts after the first </documents> element
and usually has a comment section describing what back-end databases and
versions the derivations apply to.

3 In the <document> section that remains, add one of the following sets of
elements for each subdocument you want to add to the list of Available
Fields:

4 Delete any other logical mappings that you will not be updating in the
physical mapping schema extension file.

Tip: List only the new logical mappings in your schema extension files.
Schema extension entries that duplicate entries in the source schema
may reduce your system performance.

5 Save the logical mappings schema extension file.

Element Condition for use Subdocument requirements

<document> Use if the subdocument query
always returns one and only one
result for each requested element
in the subdocument. For
example, a contact should only
have one name.

Required attributes

name

Optional attributes

docname

<collection> Use if the subdocument query
can return more than one result
for each requested element in the
subdocument. For example, a
contact can have multiple
requests open in his name.

Required attributes

name

Required elements

<document>

<documents name="base">
<document name="schema">
<attribute name="contact" type="string" label="Contact" />
...
<document name="address" docname="external_schema" />
...
<collection name="telephone_numbers">
<document name="telephone_number" />

</collection>
...

</document>
</documents>

Subdocument with one
result – address

Subdocument with
multiple results –
telephone numbers
Editing the schema extension files 129

Get-Resources
6 Open the schema extension file in the <adapter name> folder.

This file is for your schema extension physical mappings.

7 Delete all the base definitions listed in the top half of the original schema.

The base definitions section starts with the first <documents name=“base” ...>
element and includes all entries up to the first </documents> element.

8 Find the element <documents> that has the name and version attribute values
that match the adapter you want to use. For example, <documents name="ac"
version="4">.

If you cannot find a matching <documents> element entry for your adapter,
you must create one. See <documents> on page 140 for more information on
the requirements of a <documents> physical mapping.

9 Verify that the <document> element beneath your chosen adapter lists the
proper table and connection attributes required for your new fields.

If the attributes are not what your fields require, you must edit the attributes.
See <document> on page 142 for more information on the requirements of a
<document> physical mapping.
130 Chapter 6—Document Schema Definitions

Tailoring Kit Guide
10 Beneath the <document> element, add one of the following sets of elements
for each logical subdocument that you added:

11 Delete any other physical mappings that you will not be updating in this
schema extension file.

Tip: List only the new physical mappings in your schema extension files.
Schema extension entries that duplicate entries in the source schema
may reduce your system performance.

12 Save the physical mappings schema extension file.

Element Condition for use Subdocument requirements

<document> Use if the subdocument query
always returns one and only one
result for each requested element
in the subdocument. For
example, a contact should only
have one name.

Required attributes

table
field
joinfield
joinvalue

Optional attributes

docname

<collection> Use if the subdocument query
can return more than one result
for each requested element in the
subdocument. For example, a
contact can have multiple
requests open in his name.

Required attributes

name

Required elements

<document>

<documents name="" version="4.0">
<document name="schema" table="table1">
<attribute name="contact" field="contact_name"/>
...
<document name="address" table="table2" joinfield="addressee"
 joinvalue="id" />
...
<collection name="telephone_numbers">
<document name="telephone_number" table="table3"
 joinfield="contact" joinvalue="id" />

</collection>
...

</document>
</documents>

Subdocument maps to
external table – table2

Subdocument maps to
external table – table3
Editing the schema extension files 131

Get-Resources
Creating custom schemas

You can create custom schemas to instruct the Archway Document Manager
how to query, update, or insert information to your back-end databases. A
custom schema give you complete control over the logical and physical
mappings used by your forms.

Tip: For most tailoring tasks, you can accomplish the same results using a
schema extension. For more information on schema extensions, see
Schema extensions on page 116.

If you want to create custom schemas you will need to use Peregrine Studio
to add the custom schema to your project and then to configure other project
components to use the custom schema. Deploying a custom schema will also
require building and copying project files to your Get-Resources server. The
following procedures outline how to create a custom schema.

Step 1 Create or activate a package extension to save your changes in Peregrine
Studio.

Step 2 Add a new schema file to your Peregrine Studio project.

Step 3 Add logical and physical mappings to your schema file.

Step 4 Configure other project components to use your custom schema.

Step 5 Rebuild your Get-Resources project.

Step 6 Deploy your new Get-Resources project files.
132 Chapter 6—Document Schema Definitions

Tailoring Kit Guide
Adding a schema to your Peregrine Studio project
You can only add a custom schema to a group of schemas node. This node will
also be a child element of a group of modules node, and typically has the name
Schemas.

To add a schema to your Peregrine Studio project

1 Right-click the group of schemas node to which you want to add a schema.

This node will be underneath the group of modules node for Get-Resources.
If your project contains more than one group of modules, choose the one
that has a group of schemas node.

2 Point to New, and then click Raw Schema.

A new node appears with the name Schema.

3 Rename your schema using the following conventions.

Schema naming conventions
Each custom schema you create should have a unique name to prevent data
errors from naming conflicts. Your custom schema name should meet the
following criteria:

The schema name is unique from any other schema name in the Peregrine
Studio project.

The schema name is unique from any attribute name mapping within the
schema.

Adding logical and physical mappings to your schema
After you have added a new schema to your Peregrine Studio project, you are
ready to add logical and physical mappings. Studio displays the content of
your custom schema in a text editor window. You can use the text editor
window to review and edit the XML source code of your schema. You can
also use any text editor to edit your schema.

Note: If you use an external text editor to edit your custom schema,
Peregrine Studio will not pick up the changes until the next time you
open the project file.
Creating custom schemas 133

Get-Resources
All schemas must have both a logical and a physical mapping section. The
logical mapping section is where you define what names and labels
Get-Resources uses for fields in the user interface. The physical mapping
section is where you define what back-end database tables and fields are used
by each logical mapping. The following sections describe how to create the
logical and physical mapping sections.

Creating the logical mappings
Step 1 Add the XML namespace element and the two <schema> elements. See

Adding required schema elements on page 134.

Step 2 Add two <documents> elements for the logical mappings. See Adding logical
mapping <documents> elements on page 134.

Step 3 Add two <document> elements to define the schema name. See Adding logical
mapping <document> elements on page 135.

Step 4 Add one <attribute> element for each logical mapping you want to create. See
Adding logical mapping <attribute> elements on page 135.

Adding required schema elements

1 Add an <?xml> element to the top of the file:

<?xml version="1.0"?>

This element declares that the file uses the XML namespace.

2 Add two <schema> elements underneath the namespace declaration:

<schema>
</schema>

These elements notify the Archway Document Manager that this file is a
schema. All schema definitions must be enclosed between these two
elements.

Adding logical mapping <documents> elements

1 Add two <documents> elements between the <schema> element containers:

<documents>
</documents>

These elements are the container for the logical mappings.

2 Add the name attribute to the <documents> element:

<documents name="base">
134 Chapter 6—Document Schema Definitions

Tailoring Kit Guide
The attribute value name="base" is required. This attribute value notifies the
Archway Document Manager that this section is for logical mappings.

Adding logical mapping <document> elements

1 Add two <document> elements between the <documents> element containers:

<document>
</document>

These elements are the container for the schema document.

2 Add the name attribute to the <document> element:

<document name="schema_name">

For schema_name, enter the same name you selected when adding the
schema to the Peregrine Studio project. This attribute value must match the
file name of the schema (without the .xml extension) or an error will occur.
The Archway Document Manager uses this attribute value to create an XML
document of the same name.

Adding logical mapping <attribute> elements

1 Add one <attribute> element between the <document> elements for each
logical mapping you want to create:

<attribute />

Note: You can use the standard XML self-closing tag syntax <element /> with
the <attribute> element. You can also close every <attribute> element
with a </attribute> element if you want.

2 Add a name attribute to each <attribute> element:

<attribute name="sample" />

The Archway Document Manager uses this attribute value to create an XML
element in any document message built from this schema. For example, the
Archway Document Manager would convert this attribute into the XML
element <sample>.

3 Add a type attribute to each <attribute> element:

<attribute name="sample" type="string" />

Get-Resources uses this attribute value to determine how to render the field
in the user interface. For more information about the type attribute, see
<attribute> on page 146.
Creating custom schemas 135

Get-Resources
4 Add any optional attributes to the <attribute> elements.

For more information about the attributes available for the <attribute>
element, see <attribute> on page 146.

Creating the physical mappings
Step 1 Add two <documents> elements for each adapter you want to support. See

Adding physical mapping <documents> elements on page 136.

Step 2 Add two <document> elements to define the back-end database table name.
See Adding physical mapping <document> elements on page 137.

Step 3 Add one <attribute> element for each logical mapping you created. See
Adding physical mapping <attribute> elements on page 138.

Adding physical mapping <documents> elements

1 Add another set of <document> elements between the <schema> element
containers:

These elements are the container for the physical mappings.

2 Add the name attribute to the <documents> element:

<documents name="adapter_name">

For adapter_name, enter the abbreviation of the adapter you want to use to
connect to your back-end database such as ac.

3 Add the version attribute to the <documents> element if you plan to add
different physical mappings for each version of your back-end database:

<documents name="ac" version="4">

<?xml version="1.0"?>
<schema>
<documents name="base">
<document name="schema_name">
<attribute name="Id" type="id">
<attribute name="sample" type="string" />

</document>
</documents>

<documents>
</documents>

</schema>

Add a second set of
<documents> elements
here
136 Chapter 6—Document Schema Definitions

Tailoring Kit Guide
Important: You can skip to the next section if you are not going to provide
different physical mappings for multiple versions of your
back-end database.

4 If you want to provide physical mappings for each version of your back-end
database, repeat steps 1 through 3 for each version you want to support.

You must provide a different value for the version attribute for each set of
<documents> elements.

Adding physical mapping <document> elements

1 Add another two <document> elements between the physical mapping
<documents> element containers:

These elements are the container for the back-end database table to be
queried.

2 Add the name attribute to the <document> element:

<document name="table_name">

For table_name, enter the SQL name of the table you want to map to. The
Archway Document Manager uses this attribute value to query the back-end
database table.

3 Add any optional attributes to the <document> element that you want to use
to connect to the back-end database or to run process scripts.

For more information about the attributes available for the <document>
element, see <document> on page 142.

<?xml version="1.0"?>
<schema>
<documents name="base">
<document name="schema_name">
<attribute name="Id" type="id">
<attribute name="sample" type="string" />

</document>
</documents>

<documents name="ac">
<document>
<document/>

</documents>

</schema>

Add a second set of
<document> elements
here
Creating custom schemas 137

Get-Resources
Adding physical mapping <attribute> elements

1 Add one <attribute> element between the physical mapping <document>
elements for each logical mapping you created:

<attribute />

Note: You can use the standard XML self-closing tag syntax <element /> with
the <attribute> element. You can also close every <attribute> element
with a </attribute> element if you want.

2 Add the identical name attribute to each <attribute> element as you defined in
the logical mappings:

<attribute name="sample" />

Each logical mapping <attribute> element must have a matching physical
mapping <attribute> element. The Archway Document Manager uses this
value to determine which logical name maps to a particular back-end
database field.

3 Add a field attribute to each <attribute> element:

<attribute name="sample" field="field_name" />

For field_name, enter the SQL name of the field you want to map to. The
Archway Document Manager uses this attribute value to query the back-end
database field.

4 Add any optional attributes to the <attribute> elements.

For more information about the attributes available for the <attribute>
element, see <attribute> on page 146.
138 Chapter 6—Document Schema Definitions

Tailoring Kit Guide
Sample schema
The following is a sample schema that you can use for as a template for your
own custom schemas.

<?xml version="1.0"?>
<schema>

<!--==
Logical Mappings: XML elements and data types defined
==-->
<documents name="base">
<document name="sample">
<attribute name="Id" type="number">
<attribute name="contact" type="string" label="Contact" />

</document>
</documents>

<!--==
Physical Mappings: Logical names mapped to SQL names
==-->
<documents name="ac">
<document name="sample" table="amRequest">
<attribute name="Id" field="lReqId" />
<attribute name="contact" field= "lEmplDeptId" />

<document/>
</documents>

</schema>

Physical mapping uses
same attribute elements

XML namespace

Logical mappings always
use name="base"
Document name
determines schema name.
This schema is sample.xml

Physical mapping lists
adapter name
Creating custom schemas 139

Get-Resources
Schema elements and attributes

All schemas use a standard set of XML elements and attributes that the
Archway Document Manager recognizes. The following sections describe the
XML elements and associated attributes that you can use to create valid
schemas.

<?xml>
The <?xml> element is the standard XML namespace identifier. This element
should always include the version attribute. All schemas require that this be
the first element listed.

<schema>
The <schema> element is a required element of all schemas. The <schema>
element functions as a container for the logical and physical mappings. The
<schema> element does not have any attributes.

<documents>
Two sets of <documents> elements are required for each schema. One set of
<documents> elements is the container for the logical mappings and the other
set of <documents> elements is the container for the physical mappings.

Use in logical mapping
All schemas require one <documents> element where the name attribute has
the value name="base". When this element has this name value, it becomes the
container for the logical mappings.

Required
attributes

name. This attribute identifies the <documents> element container used by
the logical mappings. This attribute must have the value name="base".
140 Chapter 6—Document Schema Definitions

Tailoring Kit Guide
Optional
attributes

None. There are no optional attributes for the logical mapping portion of
the schema.

Use in physical mapping
All schemas require at least one <documents> element where the name
attribute has the value of an adapter name such as name="ac". You can add
one <documents> element for each adapter you want to provide physical
mappings for. You can also support multiple versions of the same adapter if
you use the version attribute.

Required
attributes

name. This attribute determines what adapter the schema uses to make
connections to the back-end database. The value of this attribute must be
an adapter name such as name="ac".

Optional
attributes

version. This attribute determines what version of the back-end database is
required to use the physical mappings defined in this container. The value
of this attribute must be a number recognized by the adapter.

The Archway Document Manager uses the following rules to match the
back-end database to the version listed in this attribute:

<?xml version="1.0"?>
<schema>

<documents name="base">
...

</documents>

...

Logical mappings always
use name="base"

<?xml version="1.0"?>
<schema>

...

<documents name="ac" version="3">
...

</documents>

<documents name="ac" version="4">
...

</documents>

...

You can add a
<documents> element
for each adapter

Each <documents>
element can describe a
different version
Schema elements and attributes 141

Get-Resources
If the <documents> element has no version attribute, then the Archway
Document Manager accepts the physical mappings in this element if it
cannot find another matching value.

If the <documents> element has a version attribute value greater than the
version number of the back-end database, then the Archway Document
Manager ignores the physical mappings in this element.

If the <documents> element has a version attribute value less than the
version number of the back-end database, then the Archway Document
Manager accepts the physical mappings in this element if it cannot find
a higher matching value.

If the <documents> element has a version attribute value equal to the
version number of the back-end database, then the Archway Document
Manager accepts the physical mappings in this element.

<document>
You must add at least two sets of <document> elements to create a valid
schema – one set for the logical mappings and another set for the physical
mappings. You can add additional <document> elements in the physical
mapping section if you want to support multiple adapters or multiple
versions of the same back-end database.

Use in logical mapping
The logical mapping section uses the <document> elements as a container for
the XML document that the Archway Document Manager produces. All
XML elements produced by this schema will be child elements of the
<document> element.

Required
attributes

name. This attribute determines what XML element the Archway
Document Manager generates as the top-level element in any generated
document using this schema. The value of this attribute must match the
file name of the schema (without the .xml extension).

Optional
attributes

ACLcreate. This attribute determines the default access control list for
DocExplorer forms that use this schema. The value of this attribute must
be a capability word. Users who meet or exceed the capability word listed
in this attribute will see a Create button in DocExplorer forms that use this
schema.
142 Chapter 6—Document Schema Definitions

Tailoring Kit Guide
ACLdelete. This attribute determines the default access control list for
DocExplorer forms that use this schema. The value of this atrribute must
be a capability word. Users who meet or exceed the capability word listed
in this attribute will see a Delete button in DocExplorer forms that use this
schema.

ACLupdate. This attribute determines the default access control list for
DocExplorer forms that use this schema. The value of this atrribute must
be a capability word. Users who meet or exceed the capability word listed
in this attribute will be able to edit fields in DocExplorer detail forms that
use this schema.

create. This attribute determines if a subdocument using this element is
visible in DocExplorer create forms. The value of this attribute must be
either true or false. Set the value to create="true" if you want this
subdocument to be available on DocExplorer create forms. Set the value
to create="false" if you want to prevent this subdocument from being
available on DocExplorer create forms.

detail. This attribute determines if a subdocument using this element is
visible in DocExplorer detail forms. The value of this attribute must be
either true or false. Set the value to detail="true" if you want this
subdocument to be available on DocExplorer detail forms. Set the value to
detail="false" if you want to prevent this subdocument from being available
on DocExplorer detail forms.

docname. This attribute defines the external schema that you want the
Archway Document Manager to use to create a subdocument. The value
of this attribute must match the file name of the schema (without the .xml
extension) that you want to use for the subdocument. You only need this
attribute if you want to create a subdocument using an another schema.

label. This attribute determines what name the schema has in DocExplorer
forms that use this schema. The value of this attribute can be any text
string. Typically, you will want to set this value to a user-friendly name
describing the content of the schema.

list. This attribute determines if a subdocument using this element is
visible in DocExplorer list forms. The value of this attribute must be either
true or false. Set the value to list="true" if you want this subdocument to be
available on DocExplorer list forms. Set the value to search="false" if you
want to prevent this subdocument from being available on DocExplorer
list forms.
Schema elements and attributes 143

Get-Resources
loadscript. This attribute determines what ECMAScript runs when this
schema is used in a DocExplorer form. The value of this attribute must be
the Peregrine Studio name of the ECMAScript you want to run. You can
use this script to load additional data for use by DocExplorer forms. This
script uses the same XML message input as the form onload script. See
Document Schema Extensions for examples of loadscripts.

preexplorer. This attribute determines what ECMAScript runs when this
schema is used in a DocExplorer form. The value of this attribute must be
the Peregrine Studio name of the ECMAScript you want to run. You can
use this script to make formatting changes to the XML message rendered
by DocExplorer forms. See your Get-Resources deployment for examples
of pre-explorer scripts. Pre-explorer scripts are located at the following
path:
<application server>\oaa\WEB-INF\apps\<package>\jscript\preexplorer

search. This attribute determines if a subdocument using this element is
visible in DocExplorer search forms. The value of this attribute must be
either true or false. Set the value to search="true" if you want this
subdocument to be available on DocExplorer search forms. Set the value
to search="false" if you want to prevent this subdocument from being
available on DocExplorer search forms.

subtypeprop. This attribute determines whether this element inherits the
attribute properties of the parent <collection> element. The value of this
attribute must be inherit if you use the attribute at all. If you want this
element to inherit the attribute properties set the value to
subtypeprop="inherit". If you want to specify the attribute properties for this
element, do not include a subtypeprop attribute.

Use in physical mapping
The physical mapping section uses the <document> elements to define the
SQL name of the back-end database table.

Required
attributes

name. This attribute determines what XML element the Archway
Document Manager matches to a back-end database table. The value of
this attribute must match the file name of the schema (without the .xml
extension).

table. This attribute identifies the table in the back-end database that the
schema uses.The value of this attribute must be the SQL name of the table
you want to use for source data. Each <document> element can only have
one table attribute. To use data from other tables, you can create
subdocuments within your schema.
144 Chapter 6—Document Schema Definitions

Tailoring Kit Guide
Optional
attributes

attachtable. This attribute identifies the ServiceCenter table where
references to attachments are located. The value of this attribute must be
the SQL name of SerivceCenter table you want to use.

Note: You can only use this attribute when you are using ServiceCenter as
your back-end database.

field. This attribute identifies the field in the back-end database that you
want the schema to use for document queries. The value of this attribute
must be the SQL name of the field you want to use for the data source. You
only need this attribute if you want to create a subdocument within your
schema. You can also set this attribute to _null if there is no physical
mapping for this document in your back-end database.

insert. This attribute identifies the event name to be sent to ServiceCenter
when Get-Services inserts (creates) a new record. The value of this
attribute must be the SQL name of the ServiceCenter event.

Note: You can only use this attribute when you are using ServiceCenter as
your back-end database.

joinfield. This attribute identifies the field in the back-end database that
you want the schema to use to query for additional information in another
schema or table. The value of this attribute must be the SQL name of the
field you want to use for the source data. You only need this attribute if
you want to create a subdocument within your schema. The joinfield
attribute defines what field will be the selection criteria in a SQL WHERE
clause. The SQL equivalent of the joinfield is:

SELECT <field> FROM <external table> WHERE <joinfield>=<joinvalue>

If you do not provide a joinfield value, then the Archway Document
Manager uses the field listed for the <attribute name="Id"> element as the
joinfield.

joinvalue. This attribute identifies the <attribute> element that has the value
you want to use to query for additional information in another schema or
table. The value of this attribute must be the name of an <attribute> element
in the current schema. You only need this attribute if you want to create a
subdocument within your schema. The joinvalue attribute defines what
value a field must have in a SQL WHERE clause. The SQL equivalent of the
joinvalue is:

SELECT <field> FROM <external table> WHERE <joinfield>=<joinvalue>
Schema elements and attributes 145

Get-Resources
If you do not provide a joinvalue value, then the Archway Document
Manager uses the value returned for the <attribute name="Id"> element as
the joinvalue.

link. This attribute identifies the field in the back-end database that you
want the schema to use to query for additional information in a table with
lookup or link fields. The value of this attribute must be the SQL name of
the field you want to use for the source data. You only need this attribute
if you want to create a subdocument within your schema. In most cases,
the link attribute is the same as the joinfield attribute. This value will only
be different if the SQL name of the link field in the source table is different
from the SQL name from the target field in the target table.

preprocess. This attribute determines what ECMAScript runs before the
Archway Document Manager connects to the back-end database. The
value of this attribute must be the Peregrine Studio name of the
ECMAScript you want to run. You can use this script to format the request
sent to the back-end database. For example, you can add additional SQL
commands or validate that all required fields are listed in the request. See
your Get-Resources deployment for examples of pre-process scripts.
Pre-process scripts are located at the following path:
<application server>\oaa\WEB-INF\apps\<package>\jscript\schema

postprocess. This attribute determines what ECMAScript runs after the
Archway Document Manager receives a response from the back-end
database. The value of this attribute must be the Peregrine Studio name of
the ECMAScript you want to run. You can use this script to format the
response sent from the back-end database. For example, you can sort the
data by a particular criteria or return an error message if no records are
found. See your Get-Resources deployment for examples of post-process
scripts. Post-process scripts are located at the following path:
<application server>\oaa\WEB-INF\apps\<package>\jscript\schema

update. This attribute identifies the event name to be sent to ServiceCenter
when Get-Resources updates an existing record. The value of this attribute
must be the SQL name of the ServiceCenter event.

Note: You can only use this attribute when you are using ServiceCenter as
your back-end database.

<attribute>
You must add at least two sets of <attribute> elements to create a valid schema
– one set for the logical mappings and another set for the physical mappings.
146 Chapter 6—Document Schema Definitions

Tailoring Kit Guide
Use in logical mapping
The logical mapping sections use the <attribute> elements to create an XML
element in any document message built from this schema.

Required
attributes

name. This attributes determines the XML tag that the Archway Document
Manager generates when it uses the schema. The value of this attribute can
be any string value. For example, if you set the value to name="contact" then
the Archway Document Manager creates a <contact> XML tag. You must
define at least one <attribute> element where the name attribute has the
value name="Id". This <attribute> element is required to uniquely identify
each record returned by a schema query.

type. This attribute determines what data format the elements uses as well
as how Get-Resources renders the data in the user interface. The value of
this attribute must be one of the following strings:

attachment—This element is a path and file name to an attachment.
Get-Resources renders this element as a collection of attachment
controls.

boolean—This element is a true or false string. Get-Resources renders
this element as a check box.

date—This element is a date listing. Get-Resources renders this element
as a date edit control that includes a popup calendar.

datetime—This element is a combined date and time listing.
Get-Resources renders this element as a time edit control.

id—This element is a number that uniquely describes a back-end
database record. Get-Resources renders this element as a single-line
edit field.

image—This element is an image. Get-Resources renders this element
as an imagefield.

link—This element is a subdocument described elsewhere in the
schema. Get-Resources renders this element as a lookup field.

memo—This element is a text string. Get-Resources renders this
element as a multi-line edit box.

money—This element is a currency amount. Get-Resources renders this
element as a money field that includes a currency selection tool.

number—This element is an integer. Get-Resources renders this
element as an editfield with spinner buttons.
Schema elements and attributes 147

Get-Resources
preload—This element is an executable script. Get-Resources runs the
script listed in this element.

string—This element is text. Get-Resources renders this element as an
editfield.

time—This element is a time listing. Get-Resources renders this element
as a time edit control.

url—This element is a Web site address. Get-Resources renders this
element as an HREF link icon.

Note: The Archway Document Manager does not validate that the contents
of an element matches the type attribute listed for it.

Optional
attributes

access. This attribute determines whether the field described by this
element accepts updates or inserts in the back-end database or whether it
is a read-only field. The value of this attribute must be either r or null. Set
the value to access="r" if you want to make this element read-only. Clear
the value or remove the attribute if you want to enable updates and inserts
to this field.

ACLcreate. This attribute determines the default access control list for
DocExplorer forms that use this element. The value of this atrribute must
be a capability word. Users who meet or exceed the capability word listed
in this attribute will see this element in DocExplorer create forms that use
this schema.

ACLdetail. This attribute determines the default access control list for
DocExplorer forms that use this element. The value of this atrribute must
be a capability word. Users who meet or exceed the capability word listed
in this attribute will see this element in DocExplorer detail forms that use
this schema.

ACLlist. This attribute determines the default access control list for
DocExplorer forms that use this element. The value of this atrribute must
be a capability word. Users who meet or exceed the capability word listed
in this attribute will see this element in DocExplorer list forms that use this
schema.

ACLsearch. This attribute determines the default access control list for
DocExplorer forms that use this element. The value of this atrribute must
be a capability word. Users who meet or exceed the capability word listed
in this attribute will see this element in DocExplorer search forms that use
this schema.
148 Chapter 6—Document Schema Definitions

Tailoring Kit Guide
create. This attribute determines if the element is visible in DocExplorer
create forms. The value of this attribute must be either true or false. Set the
value to create="true" if you want this field to be available on DocExplorer
create forms. Set the value to create="false" if you want to prevent this field
from being available on DocExplorer create forms.

detail. This attribute determines if the element is visible in DocExplorer
detail forms. The value of this attribute must be either true or false. Set the
value to detail="true" if you want this field to be available on DocExplorer
detail forms. Set the value to detail="false" if you want to prevent this field
from being available on DocExplorer detail forms.

label. This attribute determines what name the element has in
DocExplorer Available Field list. The value of this attribute can be any text
string. Typically, you will want to set this value to a user-friendly name
describing the content of the field.

list. This attribute determines if the element is visible in DocExplorer list
forms. The value of this attribute must be either true or false. Set the value
to list="true" if you want this field to be available on DocExplorer list forms.
Set the value to search="false" if you want to prevent this field from being
available on DocExplorer list forms.

required. This attribute determines if this element requires a value in order
to insert or update a record in the back-end database. The value of this
attribute must be either true or false. Set the value to required="true" if you
want to make the element a required input field when it is added to
DocExplorer forms.

search. This attribute determines if the element is visible in DocExplorer
search forms. The value of this attribute must be either true or false. Set the
value to search="true" if you want this field to be available on DocExplorer
search forms. Set the value to search="false" if you want to prevent this field
from being available on DocExplorer search forms.

Use in physical mapping
The physical mapping sections use the <attribute> elements to define the
fields in the back-end database that map to each logical mapping.

Required
attributes

name. This attributes determines the XML tag in which the Archway
Document Manager places query results. The value of this attribute must
match an element defined in the logical mapping section.
Schema elements and attributes 149

Get-Resources
field. This attribute identifies the field in the back-end database that you
want the schema to use for document queries. The value of this attribute
must be the SQL name of the field you want to use for the data source. You
can also set this attribute to _null if there is no physical mapping for this
field in your back-end database.

Optional
attributes

link. This attribute identifies a lookup or link value to another table. The
value of this attribute must be the SQL name of the link. You will only
need this attribute if you want to query information from a field in one
table that links to another field in a linked table. The link attribute defines
what field is the selection criteria in a SQL WHERE clause. The SQL
equivalent of the link is:

SELECT <linkfield> FROM <linktable> WHERE <link>=<field>

linkfield. This attribute identifies the target field called by a lookup or link
value to another table. The value of this attribute must be the SQL name
of the target field. You will only need this attribute if you want to query
information from a field in one table that links to another field in a linked
table. The linkfield attribute defines what field is selected. The SQL
equivalent of the link is:

SELECT <linkfield> FROM <linktable> WHERE <link>=<field>

linkkey. This attribute identifies the field, lookup, or link that connects two
fields in linked tables. The value of this attribute must be the SQL name of
the linking field. You will only need this attribute if you want to query
information from a field in one table that links to another field in a linked
table. The linkkey attribute defines what field is selected. The SQL
equivalent of the link is:

SELECT <linkfield> FROM <linktable> WHERE <linkkey>=<field>

If you do not define a linkkey value, then the Archway Document Manager
uses the link attribute as the linkkey.

linktable. This attribute identifies the target table called by a lookup or link
value. The value of this attribute must be the SQL name of the target table.
You will only need this attribute if you want to query information from a
field in one table that links to another field in a linked table. The linktable
attribute defines what table is named in a SQL FROM clause. The SQL
equivalent of the linktable is:

SELECT <linkfield> FROM <linktable> WHERE <link>=<field>

linktype. This attribute defines how the Archway Document Manager
performs document inserts and updates. The value of this attribute must
be either soft or hard:
150 Chapter 6—Document Schema Definitions

Tailoring Kit Guide
soft—The Archway Document Manager queries the back-end database
using the locations listed in the linktable and linkfield attributes, and sets
the link attribute to the value to the query result.

hard—The Archway Document Manager creates a new record in the
back-end database at the location listed in the linktable and linkfield
attributes. The Archway Document Manager retrieves the linkkey value
for the new record and saves it in the field listed in the link attribute.

If you do not specify a linktype value, then it defaults to soft. You will only
need this attribute if you want to query information from a field in one
table that links to another field in a linked table.

<collection>
This is an optional element that you can use to create subdocuments where
more than one item can be returned for the document you query. For
example, you can create a set of <collection> elements to query for all the
requests that a particular user has open. In database terminology, a
<collection> element returns the records from an intersection table. You must
add one set of <collection> elements for each multiple item subdocument you
want to create.

Use in logical mapping
The logical mapping section uses the <collection> elements to create the XML
elements that the subdocuments use.

Required
attributes

name. This attribute determines what XML element the Archway
Document Manager generates as the top-level element in any generated
document using this schema. The value of this attribute must match the
file name of the schema (without the .xml extension) that the
subdocument uses.

Optional
attributes

ACLcreate. This attribute determines the default access control list for
DocExplorer forms that use this subdocument. The value of this attribute
must be a capability word. Users who meet or exceed the capability word
listed in this attribute will see a Create button in DocExplorer forms that
use this schema.
Schema elements and attributes 151

Get-Resources
ACLdelete. This attribute determines the default access control list for
DocExplorer forms that use this subdocument. The value of this atrribute
must be a capability word. Users who meet or exceed the capability word
listed in this attribute will see a Delete button in DocExplorer forms that
use this schema.

ACLupdate. This attribute determines the default access control list for
DocExplorer forms that use this subdocument. The value of this atrribute
must be a capability word. Users who meet or exceed the capability word
listed in this attribute will be able to edit fields in DocExplorer detail forms
that use this schema.

create. This attribute determines if a subdocument using this element is
visible in DocExplorer create forms. The value of this attribute must be
either true or false. Set the value to create="true" if you want this
subdocument to be available on DocExplorer create forms. Set the value
to create="false" if you want to prevent this subdocument from being
available on DocExplorer create forms.

detail. This attribute determines if a subdocument using this element is
visible in DocExplorer detail forms. The value of this attribute must be
either true or false. Set the value to detail="true" if you want this
subdocument to be available on DocExplorer detail forms. Set the value to
detail="false" if you want to prevent this subdocument from being available
on DocExplorer detail forms.

label. This attribute determines what name the subdocument has in
DocExplorer forms that use this schema. The value of this attribute can be
any text string. Typically, you will want to set this value to a user-friendly
name describing the content of the schema.

list. This attribute determines if a subdocument using this element is
visible in DocExplorer list forms. The value of this attribute must be either
true or false. Set the value to list="true" if you want this subdocument to be
available on DocExplorer list forms. Set the value to search="false" if you
want to prevent this subdocument from being available on DocExplorer
list forms.

search. This attribute determines if a subdocument using this element is
visible in DocExplorer search forms. The value of this attribute must be
either true or false. Set the value to search="true" if you want this
subdocument to be available on DocExplorer search forms. Set the value
to search="false" if you want to prevent this subdocument from being
available on DocExplorer search forms.
152 Chapter 6—Document Schema Definitions

Tailoring Kit Guide
Use in physical mapping
The physical mapping section uses the <collection> elements to define the
SQL name of the back-end database table.

Required
attributes

name. This attribute determines what XML element the Archway
Document Manager matches to a back-end database table. The value of
this attribute must match the file name of the schema (without the .xml
extension).

Optional
attributes

None. There are no optional attributes for the physical mapping portion
of a <collection> element.

Documents
The Archway Document Manager uses schemas to create documents, which
are XML messages created from the following components:

Schema logical definitions. The schema logical definitions determine what
XML elements make up the generated document.

The return values of database queries. The Archway Document Manager
uses the schema physical mappings to create database queries. The return
values of these queries determine the content of the elements and
attributes of the generated document.

ECMAScript formatting. ECMAScripts can modify a document before
and after any queries have been made to the back-end database.

The final output of these three processes is an XML document that the
Archway Document Manager renders as HTML in the Get-Resources
interface.

You can see the raw Get-Resources XML documents by enabling the Show
form information option from the Administration settings. The form
information window displays the following document information:

Script Input. This tab displays the document submitted to the current
form from the output of a previous form. For example, a list form displays
the output of a prior search form. This document is passed to the form
onload script as an input parameter.
Schema elements and attributes 153

Get-Resources
Script Output. This tab displays the document generated by the output of
the current form’s onload script. Typically, each onload script invokes a
schema that queries the back-end database for relevant information. For
example, a service form will invoke a database query through the incident
schema.

PreXSL. This tab displays the document after the Archway servlet has
processed the document and prepared it to be rendered by the client-side
browser.

Subdocuments
Each Get-Resources form typically maps to one schema, which in turn maps
to one table in the back-end database. In order to collect and represent data
from multiple schema and database sources, you must create subdocuments.

Subdocuments are XML messages added to the current document that query
additional schemas and tables. You can create subdocuments in one of two
ways:

You can add a new <document> element inside an existing <document>
element if the result of the query will be one and only one subdocument.

You can add a <collection> element inside an existing <document> element
if the result of the query will be a collection of one or more subdocuments.

The following sections examples of each method.

Creating subdocuments with the <Document> element
Each <document> element is intended to return one subdocument, that is,
one record set. For example, you can create subdocument to query for the
contact name for a specific request, but each request should only have one
contact name.
154 Chapter 6—Document Schema Definitions

Tailoring Kit Guide
Schema

The following schema segment illustrates how to add a subdocument using
the <document> element.

XML Output

The Archway Document Manager produces an XML document with the
following structure. You can view such documents from the Script Input and
Script Output tabs of the Form Information window. The values stored in the
XML elements vary depending on the actual user record you select.

<documents name="base">
<document name="Request" label="Request"...>
<attribute name="Id" type="id".../>
<attribute name="Number" type="string" label="Number".../>
<attribute name="Purpose" type="string" label="Purpose".../>
...
<document name="EndUser" docname="Employee" label="End User"/>
...

<document>
<documents>

<documents name="ac" version="4">
<document name="Request" table="amRequest"...>
<attribute name="Id" field="lReqId"/>
<attribute name="Number" field="ReqNumber"/>
<attribute name="Purpose" field="ReqPurpose"/>

...
<document name="EndUser" docname="Employee" table="amEmplDept"
 field="lUserId" link="lUserId" joinfield="lEmplDeptId"
 joinvalue="EndUserId"/>
...

<document>
<documents>

Logical mapping for
subdocument – EndUser

Physical mapping for
subdocument – EndUser

<Request>
<Id>32097</Id>
<Number>REQ000042</Number>
<Purpose>Purpose 1</Purpose>
...
<EndUserId>15630</EndUserId>
...

</Request>

Elements from schema
mapping – Id, AssetTag

Joinvalue – EndUserId
Schema elements and attributes 155

Get-Resources
Creating subdocuments with the <Collection> element
Each <collection> element is intended to return more than one
subdocument or record set. For example, you can create a query to return all
the requests belonging to a particular contact.
156 Chapter 6—Document Schema Definitions

Tailoring Kit Guide
Schema

The following schema segment illustrates how to add a subdocument using
the <collection> element.
Schema elements and attributes 157

Get-Resources
<documents name="base">
<document name="Request" label="Request"...>
<attribute name="Id" type="id".../>
<attribute name="Number" type="string" label="Number".../>
<attribute name="Purpose" type="string" label="Purpose".../>
...
<collection name="RequestLines" label="Composition">
<document name="RequestLine"/>

</collection>
...

<document>
<documents>

<documents name="ac" version="4">
<document name="Request" table="amRequest"...>
<attribute name="Id" field="lReqId"/>
<attribute name="Number" field="ReqNumber"/>
<attribute name="Purpose" field="ReqPurpose"/>
...
<!-- No physical mapping for the RequestLines collection. -->
...

<document>
<documents>

<documents name="base">
<document name="RequestLine" label="Request Line"...>
<attribute name="Id" type="id" search="false" list="false"
 detail="false" create="false" />
...
<collection name="RequestLines" label="Composition" detail="true"
 create="true">
<document name="RequestLine" table="_null"/>

</collection>
...

<document>
<documents>

<documents name="ac" version="4.0">
<document name="RequestLine" table="amReqLine"...>
<attribute name="Id" field="lReqLineId" />
...
<collection name="RequestLines" label="Composition">
<document name="RequestLine" table="_null"
 joinfield="lParentId" />

</collection>
...

<document>
<documents>

Logical mapping for
subdocuments –
RequestLine

No physical mapping for
subdocuments –
RequestLine. Therefore,
physical mapping
defaults to that listed in
RequestLine schema

Logical mapping for
RequestLine schema

Logical mapping for
subdocuments –
RequestLine

Physical mapping for
subdocuments –
RequestLines
158 Chapter 6—Document Schema Definitions

Tailoring Kit Guide
XML Output

The Archway Document Manager produces an XML document with the
following structure. You can view such documents from the Script Input and
Script Output tabs of the Form Information window. The values stored in the
XML elements vary depending on the actual user record you select.

<Request>
<Id>32098</Id>
<Number>REQ000043</Number>
<Purpose>Purpose 2</Purpose>
...
<RequestLines _count="-1" _countFound="3" _more="0" _start="0">
<RequestLine>
<Id>32100</Id>
<RequestId>32098</RequestId>
<RequestNumber>REQ000043</RequestNumber>
...

</RequestLine>

<RequestLine>
<Id>32101</Id>
<RequestId>32098</RequestId>
<RequestNumber>REQ000043</RequestNumber>
...

</RequestLine>

<RequestLine>
<Id>32102</Id>
<RequestId>32098</RequestId>
<RequestNumber>REQ000043</RequestNumber>
...

</RequestLine>
</RequestLines>

</Request>

Elements from schema
mapping – Id, AssetTag

Subdocuments –
RequestLine
Schema elements and attributes 159

Get-Resources
160 Chapter 6—Document Schema Definitions

SECTION
3 T
ailoring Procedures and Testing
This section lists and describes all the tailoring and testing procedures
necessary to tailoring your Get-Resources project.

This section includes:

Tailoring Tasks on page 163

Troubleshooting and FAQs on page 249
Tailoring Procedures and Testing 161

Get-Resources
162 Section I—Tailoring Procedures and Testing

CHAPTER
7 T
ailoring Tasks
The following chapter lists all the tailoring tasks you can perform with the
Get-Resources tailoring kit.

This chapter covers the following topics:

Tailoring workflow on page 164

List of tailoring tasks on page 165

Tailoring forms and components on page 168

Tailoring Get-Resources forms on page 186

Adding personalization on page 201

Tailoring scripts on page 208

Creating custom schemas on page 229

Adding data validation on page 237

Assigning default values on page 240

Translating tailored modules on page 245
Tailoring Tasks 163

Get-Resources
Tailoring workflow

You can use this flowchart to determine how to tailor Get-Resources.

Start

Is there
an Admin
setting?

Login to admin.jsp,
change the setting,

and reset the
server.

Enable User Self-Registration
Enable Change Password
Enable Automatic Login
Enable Integrated Windows Authenication
Enable/Disable Personalization
Assign Global Capability Words
Set a maximum row count on tables

Is a portal
component
available?

Enable and
personalize the

portal component

Change theme
Add/Remove content from portal page
Perform and save document searches
Change time zone

Is
personalization

available?

Create a schema
extension and then

use
Personalization to

tailor the form

Use
Personalization to

tailor the form

Is there a
personalization

setting?

Are you
adding a field

or script?

Use Peregrine
Studio to tailor the

form

Add or hide a field on the Available Fields column
Display or hide a field on a particular Personalization form
Change a field's attribute type (string, boolean, number, etc.)
Call a script in addition to the form onload script

Add a field on a form
Remove a field from a form
Make a field read-only or required
Change a field's label
Change a form's title or instructions
Set permissions to update, create, delete documents on a form.

Add custom forms to your project
Add form components to a form without Personalization
Change the schema used by a form component
Change the onload script launched by a form
Create a new schema

Are you
tailoring a
theme?

Create a custom
theme and change

the images and
XSL files as

needed

Change the images used in a theme
Change the size or number of frames
Change the layout of frames
Change how form components are rendered (XSL)
Change the style sheet

Yes

No

Yes

No

Yes

No

Yes Yes

No

YesNo

No

Finish

Sample Tailoring Tasks
164 Chapter 7—Tailoring Tasks

Tailoring Kit Guide
List of tailoring tasks

The following sections list the tailoring tasks you can perform with the
Get-Resources Tailoring Kit and Peregrine Studio.

Forms and form components
You can tailor forms and form components in the following ways:

Changing a form’s title on page 169

Changing a form’s instructions on page 170

Changing a form’s onload script on page 171

Changing a form component’s label on page 171

Hiding a form component on page 172

Changing a form component to read-only on page 173

Changing the schema that a form component uses on page 174

Changing the document field that a form component uses on page 175

Displaying a form within a frameset on page 178

Adding Get-Resources to an existing frameset on page 180

Displaying a script variable in a form component on page 180

Creating a portal component on page 182

Tailoring Get-Resources forms on page 186

Best Practices on page 186

Changing the request summary screen on page 186

Changing the catalog select list on page 191

Changing the purchase order summary screen on page 194

Changing the purchase order line detail screen on page 196

Changing the request line selection list on page 199

DocExplorers
You can use Peregrine Studio to add and customize DocExplorers in the
following ways:

Adding personalization on page 201

Adding a DocExplorer reference on page 202
List of tailoring tasks 165

Get-Resources
Personalizing a DocExplorer reference on page 203

Adding personalization form components – lookup fields on page 204

Scripting
You can use the following scripting methods for tailoring:

Editing an existing script on page 208

Adding a custom script on page 211

Changing request behavior on page 213

Example: adding a field from one schema to another schema on page 215

Changing purchase order behavior on page 218

Schemas
You can tailor schemas in the following ways:

Adding logical and physical mappings to your schema on page 230

Adding a schema to your Peregrine Studio project on page 230

Data validation
You can use Peregrine Studio to add data validation in the following ways:

Adding data validation on page 237

Making a field required on page 237

Setting request line default values from catalog entries on page 220

Purchase order validation on page 239

Purchase order line default values on page 244

Request validation on page 238

Purchase order validation on page 239

Default values
You can use Peregrine Studio to assign default values to items in the
following ways:

Setting request default values on page 240

Setting request default values on page 240

Request line default values on page 220
166 Chapter 7—Tailoring Tasks

Tailoring Kit Guide
Purchase order default values on page 244

Setting request line default values from catalog entries on page 220

Setting request line default values to values in a request on page 241

Purchase order default values on page 244

Purchase order line default values on page 244

Translation
You can translate your tailored forms in the follow ways.

Editing existing translation strings files on page 246

Adding new translation strings files on page 247
List of tailoring tasks 167

Get-Resources
Tailoring forms and components

Each page displayed in Get-Resources consists of a form and several form
components. Each form also has the following supporting elements:

An onload script that gathers the data that the form displays or processes
information from the previous form.

A schema, which maps to fields in the database and determines what
information to display.

For a complete list of each component available in Studio, see Peregrine
Studio Components.

You can change a form’s title, instructions, onload script, and component
labels. You can also hide a form component and make a form read-only.

To tailor Get-Resources forms

Step 1 Open the project file you want to tailor in Peregrine Studio.

Step 2 Select or create a package extension in which to save your changes.

Step 3 Open your browser and log in to Get-Resources.

Step 4 Navigate to the form you want to tailor by doing one of the following:

Click the Studio address in the Form Information banner. Peregrine
Studio will appear as the active window and display the current form’s
properties page.

In Peregrine Studio, locate the form in the Project Explorer.

Step 5 Modify the Get-Resources form in Peregrine Studio.

Step 6 Save the project file.

Step 7 Rebuild the project file.

Tip: If you have only made changes to one or more forms in an activity or

module, use the Differential Build option () to build just the
components that have changed. This option will reduce the time needed
to build your Peregrine Studio project.

Step 8 Restart your application server to clear the cache.

Step 9 Refresh the browser to reload the form you modified.
168 Chapter 7—Tailoring Tasks

Tailoring Kit Guide
Step 10 Review your changes and test the added functionality.

Tip: If you want to test new access right settings for your components, log on
to Get-Resources with several different users with different access rights.

Changing a form’s title
Each form displays a title at the top of the navigation menu. If you want to
change or remove the title displayed for a particular form, set the following
form properties.

To change a form title

1 Open the form’s properties in Peregrine Studio.

2 In the Title (en) field, enter the new form title

3 Click the check mark button () at the right of the field to accept the new

title.

4 Save and build your project file.
Tailoring forms and components 169

Get-Resources
Changing a form’s instructions
Most forms display a set of instructions at the top of the frame. You can
change the instructions to match any changes you make to the form’s
interface.

To change form instructions

1 Select the form in the Project Explorer.

2 Select the Instructions tab in the Properties window.

3 In the Instructions (en) field, enter the new form instructions.

4 Click the check mark button () at the right of the field to accept the new

form instructions.

5 Save and build your project file.
170 Chapter 7—Tailoring Tasks

Tailoring Kit Guide
Changing a form’s onload script
A form’s onload script gathers all the data that the form displays, or processes
information from the previous form. Many onload scripts also invoke
schemas to present back-end database information in a format that is easier
to map to particular form fields or form components.

To change the onload script invoked by a form

1 Select the form in Studio.

2 Click the Script tab in the Properties window.

3 In the Server Onload Script field, enter or select the script you want to invoke
when this form is loaded. You can use the drop-down list to select any of the
scripts saved in your project file.

4 Save and build your project file.

5 Restart your application server.

Changing a form component’s label
Many form components contain a label that is displayed next to or above the
form component. Some of the most commonly configured form
components are the field form components (check box, select box, edit field,
and so forth).

To change a component label (field label)

1 Select the form in the Project Explorer.

2 On the General tab, select the Label (en) field, enter the new form component
label, and press ENTER.

3 Save your project.
Tailoring forms and components 171

Get-Resources
4 Build your project file.

Hiding a form component
All form components have a Visible flag property that hides or displays the
component in the Web application interface. If you want to remove a form
component from the interface but still have it available in Peregrine Studio,
you can toggle the form component’s Visible flag to No. This prevents the
form component from being part of the next Peregrine Studio build.
Non-visible (and thus non-built) form components are displayed with a red
X over the form component icon in the Project Explorer tree.

To hide a form component in the interface

1 Select the form in the Project Explorer.

2 On the Advanced tab, clear the Visible flag option.

3 Save your project.
172 Chapter 7—Tailoring Tasks

Tailoring Kit Guide
4 Build your project file.

Changing a form component to read-only
Certain form components such as edit fields and text areas are available for
users to enter and change information. If you want to restrict these form
components so that they only display data, you can set the readonly attribute
for the form component. The data displayed by a readonly form component
will no longer have a bounding box or area to indicate that it can be edited or
changed.

You can change a form component back to its original state by removing the
readonly attribute.

To make a form component read-only

1 Select the form in the Project Explorer.

2 On the General tab, select the Readonly check box.

3 Save your project.
Tailoring forms and components 173

Get-Resources
4 Build your project file.

Changing the schema that a form component uses
Certain form components such as selectfields and simple tables use a schema
to determine what information to display. You can change the information
these form components display by changing the schema defining the
document fields. In some cases you may also need to change other form
component attributes that depend on the fields defined in the schema.

To change the schema that a form component uses

1 Select the form in the Project Explorer.

2 Click the Advanced tab.
174 Chapter 7—Tailoring Tasks

Tailoring Kit Guide
3 In the Databound section, select the Document field, and enter or select the
name of the schema that you want to use as the source document for this
form component.

4 Save and build your project file.

Changing the document field that a form component uses
Certain form components such as selectfields and table columns use a
particular document field of a schema to determine what information to
display. You can change the information these form components display by
changing the document fields these components use.

Note: The list of document fields available to a form component is
determined by the schema used. Peregrine Studio does not validate the
document field you select.

To change the document field that a form component uses

1 Select the form component in Peregrine Studio to display the component’s
properties.
Tailoring forms and components 175

Get-Resources
2 In the Document Field field, enter the name of the field in the XML message
where this form component’s information is stored.

Note: The field you select must be defined as an attribute in the schema
defined in the form component’s properties.

3 Save your project.

4 Build your project file.

Format of document field name
The Document Field attribute of forms is always mapped to an element in the
Message object returned by the form’s onload script.

The Archway servlet formats Message objects as XML files using the tag
definitions and back-end database table and field information that the
schemas provide.

The Document Field attribute of a form component must map to an
<attribute> element in a schema.
176 Chapter 7—Tailoring Tasks

Tailoring Kit Guide
You can specify the Document Field attribute that a form component uses in
one of several ways:

If the Document Field attribute has a unique <attribute> name in the
schema, you can list just the <attribute> name.

If the Document Field attribute is repeated in the schema, you must
specify the nested <document> name or names and the <attribute> name.
The <document> name and the <attribute> name must be separated by a
slash character (/).

If the Document Field attribute is part of a nested <document> element,
you have the choice of either listing the <attribute> name by itself or
specifying some or all of the path using the syntax of
<documents>/<document>/<attribute>. This syntax allows Web application
developers to specify as much or as little of the document path as is needed
to create a field attribute mapping.

Example

Suppose you are creating a form where users can review and submit asset
requests. A typical asset request may be formatted as the following XML
message:

<request>
 <Number>012345</Number>
 <Purpose>Asset Management</Purpose>
 <EndUser>
 <FirstName>Michaela</FirstName>
 <LastName>Tossi</LastName>
 </EndUser>
 <Requester>
 <FirstName>Richard</FirstName>
 <LastName>Hartke</LastName>
 </Requester>
</request>

In this case, the <FirstName> and <LastName> tags are repeated in two
different sections of the XML message. To display these tags in a form, you
will need to specify more of the document path when you enter the path of
the Document Field attribute. The entries below illustrate the minimum
document path needed for the Document Field attribute in a form
component.

Number
Purpose
EndUser/FirstName
EndUser/LastName
Requester/FirstName
Tailoring forms and components 177

Get-Resources
Requester/LastName

You can also specify the Document Field attribute path using all the elements
of the XML message. The following entries illustrate the full document path
that can be used for the Document Field attribute in a form component.

request/Number
request/Purpose
request/EndUser/FirstName
request/EndUser/LastName
request/Requester/FirstName
request/Requester/LastName

The number of elements that you must specify in the document path is
determined by how you set up your schemas.

Displaying a form within a frameset
You can display forms within multiple frames by creating a special frameset
form. All frames within a frameset form will be displayed within the frame
normally reserved for forms.

To display forms within a frameset

1 Right-click the activity where you want the frameset form to be, point to
New, and then click Form.

2 Click the Others tab.

3 Select Frameset from the Formtype drop-down list box.

4 Enter row and column sizes in the Frameset pane.
178 Chapter 7—Tailoring Tasks

Tailoring Kit Guide
Note: You can use percentage to describe frameset size properties.

5 Create a new form for each frame in the frameset form.

6 Create a redirection under the frameset form for each target form in the
frameset.

7 Save your project.

8 Build your project file.

To display the form title within a frameset

1 Open the frameset form’s component properties in Studio.

2 Create a new server onload script within your project.

3 Add the following lines to the script:

top.setTitle(“My Title Text”);

Where My Title Text is the title you want to display at the top of the frameset.

4 Open the component properties page for the target form within the frameset.

5 Click the Script tab.
Tailoring forms and components 179

Get-Resources
6 Select the server script you created in step 2.

7 Save your project.

8 Build your project file.

Adding Get-Resources to an existing frameset
You can add Get-Resources to an existing frameset to incorporate into your
corporate intranet. To do this, you will need to edit a JavaScript file within
your project file and add a reference to Get-Resources to the parent frameset.

To add Get-Resources to an existing frameset

1 Open the following file in a text editor:

<tomcat installation>\webapps\oaa\js\setDomain.js

or locate the file in the equivalent directory in your application server.

2 Add the following line to the bottom of the script:

setDomain(server name);

where server name is the name of the server where the parent frameset is
located.

3 Save the file.

4 Add the following line to each JSP file that will include Get-Resources in a
frameset. These files must be saved on the server listed in step 2.

<script language="JavaScript" SRC="js/setDomain.js">
</script>

5 Save the updated JSP files.

Displaying a script variable in a form component
You can use script variables to reuse information gathered from other forms
in form components such as form titles and instructions.
180 Chapter 7—Tailoring Tasks

Tailoring Kit Guide
All script variables begin with a double dollar sign notation and then display
the variable name in parentheses; for example, $$(FirstName). All variable
names map to an XML element name in the script output of a form. Thus the
script variables $$(FirstName) and $$(LastName) map to the elements
<FirstName> and <LastName> in the XML output of a script.

The contents of each variable are displayed in the form title.

Note: You must select the Display form information option from
Administration > Settings in order to see the Script Input and Script
Output options.

Variable names can also include schema attribute names or nested elements
names using a slash notation. For example, the buyer script uses the
$$(Price/currency) variable to pass information from the currency attribute
of the <Price> element. Using the sample data, the $$(Price/currency)
variable would pass 1119.00 for the <Price> and USD for the currency
attribute.
Tailoring forms and components 181

Get-Resources
Creating a portal component
Portal components are special forms that display on the Peregrine Portal
home page within special portal frames. To create your own portal
components you need:

Get-Resources packages and source code (included with the
Get-Resources tailoring kit)

Peregrine Studio

To create a portal component

1 Open the Get-Resources project in Peregrine Studio.

2 Right-click the Group of Modules node to which you want to add a portal
component and then select New > Group of Portal Components.

You do not have to add another Group of Portal Components if one already
exists in your project.

3 Right-click the Group of Portal Components node from the navigation tree
and select New > Portal Component.

4 Enter the following properties for the portal component:

a Label (en). Enter the name you want the portal component to have in the
Add/Remove content page.

b Column type. Select either wide or narrow. This setting determines the
size of the portal frame where Get-Resources displays the portal
component.

c Height of IFRAME. Enter a height value if you plan to display this portal
component from WebSphere Portal Server.

5 Right-click on the new portal component and select New > Contents.

A standard form page is added.

6 Enter any form components, onload scripts, parameters, or access
restrictions you want the portal component to have.

Tip: You can use existing Get-Resources portal components as a template.

Keep in mind the following considerations:

Portal components have less space then normal forms to display
information. You should design your form component to fit in either a
narrow or wide portal component frame.
182 Chapter 7—Tailoring Tasks

Tailoring Kit Guide
Portal components cannot include the redirection form component. If
you want to direct users to another form or HTML page, you will need to
use the Business View Authoring tool.

You can import a static JSP or HTML page into a portal component.

Note: The procedures listed in step 7 through step 11 are optional. You do
not have to provide a configuration form for your portal components.

7 Right-click on the new portal component and select New > Configure.

A standard form page is added.

8 On the configure form, enter the relative URL to form you want to use to
configure your portal component in the Alternative HREF field.

The URL should use the following format:

e_moduleName_activtyName_formName.do?property=value

For moduleName enter the module where your configuration form resides.

For activityName enter the activity name where your configuration form
resides.

For formName, enter the name of your configuration form.

For property, enter any URL query you want to submit with the URL. This is
an optional part of the URL and can be ignored if your configuration form
does not require it. Typically, only DocExplorer forms require a property
entry.

For example:

e_helpdesk_status_myPortalComp.do

9 Create a new form matching the Peregrine Studio address you entered in
step 8.

This form will be the target configuration form of the Alternates HREF
setting.

10 Define the following settings for your configuration form.

a Server OnLoad Script. This script must either be set to or call the
portal.editComponent script.

Important: You can only have one server onload script per portal
component that runs from either the contents or the configure
form.
Tailoring forms and components 183

Get-Resources
If you call the portal.editComponent function from a custom script you
must adhere to the following script conventions:

Your custom script must include code similar to the following:

Your custom script must preserve the value of the _Id variable that the
portal.editComponent function passes to it.

b Save action. You must add a save action to your configuration form that
has a target-form of portal.edit.save.

c No sidebar navigation. All of the out-of-the-box Get-Resources portal
component configuration forms do not display in the navigation sidebar.
If you want to follow this convention, then clear the Force display of
sidebar menu option on the Others tab.

d Optional fields for configuration. All of the following fields are available
from the portal.editComponent script. You can use them as document
fields in your form components.

_column. Determines whether the component displays in a wide or
narrow frame.

_title. The title you want to display for the portal component.

_originalTitle. The default name of the portal component that users can
restore to. This field is typically used as a hidden field and should not
be visible to users.

DtLastModify. The date the portal component was last modified to keep
track opf changes or revisions. This field is typically used as a hidden
field and should not be visible to users.

11 Add any additional form components you want to use to configure your
portal component.

12 Save your project file.

13 Build your project and deploy your updated Get-Resources files to your
application server’s presentation folder.

//Contents of your custom script

...

//Combine the messages from your function and portal.editComponent
Msg.add(yourMsg);
Msg = env.execute(“portal.editComponent”,Msg);
return Msg;

Do not return the Msg
until after you have
called
portal.editComponent
184 Chapter 7—Tailoring Tasks

Tailoring Kit Guide
Important: You must add an adapter name entry to the Alias for field in the
PortalDB tab in order for Get-Resources to display portal
components. This setting is available from the Administration
page (admin.jsp).
Tailoring forms and components 185

Get-Resources
Tailoring Get-Resources forms

The following sections describe how to tailor particular Get-Resources
forms. In most cases, you can use personalization to add, remove, or change
form content. Each section that requires manual tailoring has its own
instructions.

Best Practices
The following general tips will enhance the ability to upgrade your project:

Tailor the screens using personalization (the wrench icon) whenever
possible.

Avoid using studio to patch existing files. Get-Resources provides ways to
extend the existing schemas and to locally change the product’s behavior
by deriving some scripts.

Changing the request summary screen
There are two main areas of this screen:

The request detail information section (upper section).

The list of selected items section (lower section).

Request
detail
information

List of selected
items
186 Chapter 7—Tailoring Tasks

Tailoring Kit Guide
You customize each area with a different method.

The request detail information section
Use personalization (the wrench icon) to change the display. If you do not
find a field that you need with personalization, you must first add it to the
Request schema. To display a subdocument (such as User information), you
might have to extend the corresponding schema as well.

The list of selected items section
You cannot personalize this list, which means that you must use Peregrine
Studio to make any changes.

Warning: This type of change will not upgrade automatically, and requires
you to merge your changes during an upgrade. Therefore, you
need to carefully weigh the need for a change in this area versus the
ease of upgrade.

Changing all lists of selected items

Changing individual lists of selected items

Schema Used

RequestLine

Tailor the following component To change

Project.Templates.newcart.newcatalog.doctable Items listed in all request
and purchase order
summaries.

Tailor the following component To change

Project.resources.request.build.
requestsummary.newcart.newcatalog.doctable

Request checkout screen.

Project.resources.approve.approvedetail.
requestsummary.newcart.newcatalog.doctable

Show Approval List
activity.

Project.resources.request.requeststatus.
requestsummary.newcart.newcatalog.doctable

Request summary in the
My submitted requests
and My requests history
activity.
Tailoring Get-Resources forms 187

Get-Resources
By default, you can add any form component that uses a document field from
the RequestLine schema. If you do not find the fields you want to display in
this schema, you must create a schema extension to add the fields you want.
In some cases, however, the field that you want to add is part of another
schema, such as Product. In this case, you will want to create a script
extension to merge the document fields between the two schemas
RequestLine and Product. See Example: adding a field from one schema to
another schema on page 215 for instructions on how to create a script
extension to add a field to RequestLine from another schema.

You can add read-only or editable form components to this list from
Peregrine Studio.

For an editable form component that you add to this list, you must create
both a editable and a read-only version of the form component.
Get-Resources determines which form component to display based the result
of the form component’s access field.

Step 1 Create an editable form component. See Adding an editable form component
on page 188.

Step 2 Create a read-only version of the editable form component. See Adding the
read-only version of the editable form component on page 188.

Step 3 Build and deploy your changes.

Adding an editable form component
To add an editable form component

1 Create a new form component in Peregrine Studio.

2 Select the form component from the Project Navigator.

3 From the properties page, click the Access tab.

4 Enter the following values:

Access Field. Enter _bReadOnly.

Access Value. Leave empty.

Adding the read-only version of the editable form component
To add the read-only version of the editable form component

1 Create a second identical form component in Peregrine Studio.

2 Select the form component from the Project Navigator.
188 Chapter 7—Tailoring Tasks

Tailoring Kit Guide
3 From the properties page, click the Access tab.

4 Enter the following values:

Access Field. Enter _bReadOnly.

Access Value. Enter true.

Note: When creating a new request, the field that you added might be blank.
If you want the default information pre-populated instead, see Request
line default values on page 220.

Changing the request line detail screen
The Request line detail screen opens:

When you look at the catalog item details.

After clicking on Configure for a catalog item.

When looking at the details of an item from the selected item list in the
Request summary screen.

When looking at the details of a subline item (from the Composition table
in one of the screens previously listed).

You can personalize these screens and change their content using
personalization. If you do not find the fields that you need on the
personalization screen, you must first create a schema extension to add fields
to the RequestLine schema.

Request line detail screens have more than one layout. The detail shown
depends on two criteria:

The line item subtype

bundle

off catalog

cable

work order

contract

training

ShopDirect

other

The DocExplorer context
Tailoring Get-Resources forms 189

Get-Resources
Called from the catalog item list

Called from the selected item list (from the Request summary page)

Called from a subline item list (as part of a bundle)

One screen definition is saved for every combination of these two criteria.
For example, a Cable detail screen can be configured differently when you
select the detail from the catalog list than when you select it from the selected
item list, or when you select it as part of a bundle (showing as a subitem).
Likewise, a Training detail item can be personalized independently from a
Cable detail.

Adding or removing subtypes from request line item details
You can add or remove subtypes from request line items by creating a custom
ECMAScript function. You may use the existing function
getLineItemSubType as a template. This function computes the subtype
based on a line item’s content.

To ensure an easier upgrade, you should create a custom request interface
script to add or remove subtypes (see Adding personalization on page 201).
Within your custom script, you can use any line item field listed in the
RequestLine schema to determine the item’s subtype.

The ECMAScript
getLineItemSubType
function for

Peregrine Studio address

ServiceCenter Project.cartexperience.Scripts.requestinterfacebase.
getLineItemSubType

AssetCenter Project.resources.NewScripts.acrequestinterface.
getLineItemSubType
190 Chapter 7—Tailoring Tasks

Tailoring Kit Guide
If you want to add a subtype to the subtypes provided with Get-Resources,
then your custom function needs to first check for new subtypes and then call
the existing getLineItemSubType function to determine the out-of-box
subtypes.

If you do not use the out-of-box subtypes in Get-Resources, you can modify
your custom script by adding new subtypes to your getLineItemSubType
function. You can use the following existing scripts as templates for subtypes.

Changing the catalog select list
The Catalog select list screen opens:

When you look at the catalog item list.

function getLineItemSubType(msgLineItem)
{
var strSubType = "";
// Try to determine your custom subtype here
...

// If you did not find anything you were looking for in the
// msgLineItem you can default to the parent behavior (shown here
// for AssetCenter 4)
if (strSubType == "")
strSubType = ac4requestinterface.getLineItemSubType.apply
(this, arguments);

// Here, you can re-map the out-of-box subtypes that you
// do not want any more, to another subtype. For example
// if you do not care about the cable subtype:
if (strSubType == "cable")
strSubType == "catalogbase"

return strSubType;
}

Type in your code here
to determine the
subtype based on the
msgLineItem attribute
values

Call the out-of-the box
script if your code
cannot determine the
subtype

Using this back-end Use this script as a template

AssetCenter ac4requestinterface or
ac3requestinterface

ServiceCenter screquestinterface
Tailoring Get-Resources forms 191

Get-Resources
When you look at the bundle list.

You cannot personalize this list, which means that you must use Peregrine
Studio to make any changes.

Warning: This type of change will not upgrade automatically, and requires
you to merge your changes during an upgrade. Therefore, you
need to carefully weigh the need for a change in this area versus the
ease of upgrade.

Catalog items in a
bundle list
192 Chapter 7—Tailoring Tasks

Tailoring Kit Guide
Changing all lists of selected items

Changing individual lists of selected items

Schema used

Product

By default, you can add any form component that uses a document field from
the Product schema. If you do not find the fields you want to display in this
schema, you must create a schema extension to add the fields you want.

Tailor the following component To change

Project.Templates.newcatalog.doctable All catalog screens that
are used when building
a new request or a new
purchase order.
The list of selected
items in the Request
summary screen and
Purchase order
summary screen.

Tailor the following component To change

Project.resources.request.build.itemlist.
newcatalog.doctable

Create a new request
activity.

Project.resources.approve.approvedetail.itemlist.newc
atalog.doctable

Show Approval List
activity.
Tailoring Get-Resources forms 193

Get-Resources
Changing the purchase order summary screen
There are two main areas of this screen:

The purchase order detail information (upper section).

The list of selected items (lower section).

You customize each area with a different method.

The purchase order detail information section
Use personalization (the wrench icon) to change the display. If you do not
find a field that you need on the personalization screen, you must first add it
to the GRPurchaseOrder schema. To display a subdocument (such as User
information), you might have to extend the corresponding schema as well.

The list of selected items section
You cannot personalize this list, which means that you must use Peregrine
Studio to make any changes.

Warning: This type of change will not upgrade automatically, and requires
you to merge your changes during an upgrade. Therefore, you
need to carefully weigh the need for a change in this area versus the
ease of upgrade.

List of
selected items

Purchase
order detail
information
194 Chapter 7—Tailoring Tasks

Tailoring Kit Guide
Changing all lists of selected items

Changing individual lists of selected items

Schema used

GRPOLine

By default, you can add any form component that uses a document field from
the GRPOLine schema. If you do not find the fields you want to display in this
schema, you must create a schema extension to add the fields you want.

You can add read-only or editable form components to this list from
Peregrine Studio.

For an editable form component that you add to this list, you must create
both an editable and a read-only version of the form component.
Get-Resources determines which form component to display based the result
of the form component’s access field.

Step 1 Create an editable form component. See Adding an editable form component
on page 196.

Step 2 Create a read-only version of the editable form component. See Adding the
read-only version of the editable form component on page 196.

Step 3 Build and deploy your changes.

Tailor the following component To change

Project.Templates.newcart.newcatalog.doctable All request or purchase
order summaries.

Tailor the following component To change

Project.resources.buyer.createnewpo.requestsummary.
newcart.newcatalog.doctable

The following activities:

Create a new PO
My saved purchase
orders in preparation
POs to review

Project.resources.buyer.postatus.requestsummary.
newcart.newcatalog.doctable

My submitted purchase
orders activity.
Tailoring Get-Resources forms 195

Get-Resources
Adding an editable form component
To add an editable form component

1 Create a new form component in Peregrine Studio.

2 Select the form component from the Project Navigator.

3 From the properties page, click the Access tab.

4 Enter the following values:

Access Field. Enter _bReadOnly.

Access Value. Leave empty.

Adding the read-only version of the editable form component
To add the read-only version of the editable form component

1 Create a second identical form component in Peregrine Studio.

2 Select the form component from the Project Navigator.

3 From the properties page, click the Access tab.

4 Enter the following values:

Access Field. Enter _bReadOnly.

Access Value. Enter true.

Note: When creating a new purchase order, the field that you added might
be blank. If you want the default information pre-populated instead,
see Request validation on page 238 and Purchase order line default
values on page 244.

Changing the purchase order line detail screen
The Purchase order line detail screen opens:

When you select an item’s details or you click Configure from the Select
an item to add to the cart screen (first screen of the Create a new PO
activity).

When looking at the details of an item from the selected item list in the
Purchase order summary screen.

When looking at the details of a subline item (from the Composition table
in one of the screens previously listed).
196 Chapter 7—Tailoring Tasks

Tailoring Kit Guide
You can personalize these screens and change their content using
personalization. If you do not find the fields that you need on the
personalization screen, you must first create a schema extension to add fields
to the GRPOLine schema.

Purchase order line detail screens have more than one layout. The detail
shown depends on two criteria:

The line item subtype

bundle

off catalog

cable

work order

contract

training

ShopDirect

other.

The DocExplorer context

Called from the Select an item to add to the cart screen

Called from the selected item list (on the Purchase order summary
screen)

Called from a subline item list (as part of a bundle)

One screen definition is saved for every combination of these two criteria.
For example, a Cable detail screen can be configured differently when you
select the detail from the catalog list than when you select it from the selected
item list, or when you select it as part of a bundle (showing as a subitem).
Likewise, a Training detail item can be personalized independently from a
Cable detail.
Tailoring Get-Resources forms 197

Get-Resources
Adding or removing subtypes from purchase order line item
details
You can add or remove subtypes from purchase order line items by creating
a custom ECMAScript function. You may use the existing function
getLineItemSubType as a template. This function computes the subtype
based on a line item’s content.

To ensure an easier upgrade, you should create a custom request interface
script to add or remove subtypes (see Adding personalization on page 201).
Within your custom script, you can use any line item field listed in the
OrderLine schema to determine the item’s subtype.

If you want to add a subtype to the subtypes provided with Get-Resources,
then your custom function needs to first check for new subtypes and then call
the existing getLineItemSubType function to determine the out-of-box
subtypes.

The ECMAScript
getLineItemSubType
function for

Peregrine Studio address

AssetCenter Project.resources.NewScripts.acporderinterface.getLi
neItemSubType

function getLineItemSubType(msgLineItem)
{
var strSubType = "";
// Try to determine your custom subtype here
...

// If you did not find anything you were looking for in the
// msgLineItem you can default to the parent behavior (shown here
// for AssetCenter 4)
if (strSubType == "")
strSubType = acporderinterface.getLineItemSubType.apply
(this, arguments);

// Here, you can re-map the out-of-box subtypes that you
// do not want any more, to another subtype. For example
// if you do not care about the cable subtype:
if (strSubType == "cable")
strSubType == "catalogbase"

return strSubType;
}

Type in your code here
to determine the
subtype based on the
msgLineItem attribute
values

Call the out-of-the box
script if your code
cannot determine the
subtype
198 Chapter 7—Tailoring Tasks

Tailoring Kit Guide
Changing the request line selection list
The request line selection list opens:

In the Select an item to add to the cart screen of purchase orders.

You cannot personalize this list, which means that you must use Peregrine
Studio to make any changes.

Warning: This type of change will not upgrade automatically, and requires
you to merge your changes during an upgrade. Therefore, you
need to carefully weigh the need for a change in this area versus the
ease of upgrade.

Request line select list
Tailoring Get-Resources forms 199

Get-Resources
Changing individual lists of selected items

Schema used

RequestLine

By default, you can add any form component that uses a document field from
the RequestLine schema. If you do not find the fields you want to display in
this schema, you must create a schema extension to add the fields you want.

Tailor the following component To change

Project.resources.buyer.createnewpo.itemlist.newcatal
og.doctable

Create a new PO activity
200 Chapter 7—Tailoring Tasks

Tailoring Kit Guide
Adding personalization

DocExplorers allow end users a means to create and customize searches of
Get-Resources data. From the end-user perspective, personalization is a
collection of standard forms that allow users to change part of the interface
to suit their needs. The administrator determines which forms and features
of personalization each user has by setting global personalization rights and
by granting individual users capability words to do additional
personalization.

From an application developer’s perspective, a DocExplorer is a template
activity that allows for the rapid development of Get-Resources changes
without the need to rebuild a Peregrine Studio project for every change
made. A DocExplorer enables you to add or remove fields, change the layout
of a form, and change interface elements such as headers and buttons in real
time using the browser interface.

Supporting personalization
Personalization of Get-Resources is provided in two ways:

End-users can use personalization for all forms that have been built using
Document Explorers (DocExplorers). Personalization allows authorized
users to change the appearance and functionality of Get-Resources
directly from the Web interface.

Developers can use Peregrine Studio to add personalization capabilities to
their own Get-Resources forms by creating new DocExplorers. This
functionality can be enabled only by using Peregrine Studio.

To add Personalization capabilities to Get-Resources, you must have these
components:

An AssetCenter or ServiceCenter back-end database. Personalization
requires you to store each user’s login rights and personalization changes
in a back-end database.

Adapter aliases defined for the following tabs on the Get-Resources
Administration settings page:

Portal

PortalDB
Adding personalization 201

Get-Resources
A user account with personalization rights enabled. A user’s login profile
determines the level of personalization rights Get-Resources grants to the
user. A user’s personalization rights determine not only what personalized
components can be seen and changed, but also determines whether other
users will see their personalization changes.

A configured DocExplorer activity to provide personalization in the
Get-Resources Peregrine Studio project. You must configure each
DocExplorer activity with an adapter name and a schema name. A
DocExplorer can only use one schema at a time.

DocExplorer configuration required in Peregrine Studio
In order for users to use a DocExplorer from the Web interface, you must
define at least two settings in Peregrine Studio:

The schema the DocExplorer uses. The schema determines what database
tables and fields are available to query.

The adapter the DocExplorer uses to connect to the back-end database.

You can use any of the existing schemas provided with Get-Resources or
create your own schema entries. For more information on schemas, see the
Document Schema Definitions chapter.

Adding a DocExplorer reference
A DocExplorer Reference is the preferred method for adding a DocExplorer
to a Peregrine Studio project. A DocExplorer Reference is a special template
that redirects users to a full DocExplorer activity with two parameters: the
schema and adapter to be used. You can use a DocExplorer Reference to call
any generic DocExplorer functionality.

To add a DocExplorer Reference

1 Right-click on a Module component in your project. Select New >
DocExplorerReference.

2 Enter a name for your new DocExplorer Reference activity. The default name
is DocExplorerReference.

3 Expand the DocExplorerReference activity.

4 Click on the setup form.

5 On the form properties page, click the General tab and enter the following
required information:
202 Chapter 7—Tailoring Tasks

Tailoring Kit Guide
Title (en).

6 Select the redirect action.

7 On the properties page, click the Link Params tab.

8 Enter the parameters you want to use in the Param field. By default, this field
has the following value:

_docExplorerContext=<DOCUMENT_NAME>&_DocExplorerBackend=<TARGET_NAME>
&_docExplorerSubType=<SUBTYPE_INSTANCE>

Replace <DOCUMENT_NAME> with the schema name you want the
DocExplorer to use. This is a required parameter.

Replace <TARGET_NAME> with the adapter alias you want the DocExplorer to
use. For example, enter ac for the AssetCenter adapter for Get-Resources.
This is a required parameter.

Replace <SUBTYPE_INSTANCE> with the personalization form subtype
you want to invoke or leave blank to use no subtype. This is an optional
parameter.

Warning: Do not change the target form of the redirect action. This action
must go to docExplorer.default.start.

9 Save your project.

10 Click the Differential build of project button to rebuild your project.

Personalizing a DocExplorer reference
After you have added a DocExplorer Reference, you can make changes to this
activity directly from the Get-Resources Web interface.

To personalize DocExplorer pages

1 Log in to Get-Resources.

2 Click the activity name for your Document Explorer from the navigation
sidebar. By default, the Document Explorer will be called DocExplorer.

Important: The first time you access a Document Explorer, the interface will
display a blank search form.

3 Click the wrench icon on the upper right of the interface.

4 Make your changes to the search form, and then click Save.
Adding personalization 203

Get-Resources
Your personalized search form is displayed.

5 Click Search to display the results list form.

6 Click the wrench icon from the upper right of the interface.

7 Make your changes to the list form, and then click Save.

8 Click on any of the results displayed in your personalized list form to go to
the detail form.

9 Click the wrench icon from the upper right of the interface.

10 Make your changes to the detail form, and then click Save.

11 If you have user rights to create documents, click the activity name for your
Document Explorer from the navigation sidebar to return to the search form.

12 Click Create to display the create form.

13 Click the wrench icon from the upper right of the interface. Make your
changes to the create form, and then click Save.

Adding personalization form components – lookup fields
To personalize your custom forms, add lookup fields to them. Lookup fields
use some of the Personalization features found in a DocExplorer template
activity.

Note: Lookup fields are already part of the DocExplorer template activity, so
you need not add them there. Add lookup fields to the custom forms
that you have manually built in Peregrine Studio.

You can add two types of lookup fields to your custom forms:

Field Lookup. See Field lookup on page 204.

Subdocument Lookup. See Subdocument lookup on page 206.

Field lookup
You can use the field lookup form component to select the value of one (and
only one) particular field of a schema. The Lookup field queries the back-end
database for all the values of a pre-defined field, and displays those values in
a list. For example, when opening an asset request, create a lookup field for a
Name field to list all the employee names in the back-end database.

To add a field lookup to a form

1 Right click the form to which you want to add a lookup field.
204 Chapter 7—Tailoring Tasks

Tailoring Kit Guide
2 Go to New > Field > Lookup.

3 Enter the following settings for the Data attributes:

Display Field—the label you want displayed for the lookup field in the
Get-Resources form. If you do not enter a value for this parameter, the
label defaults to the Document Field parameter described below.

Document Field—the name of the field you want to use as the unique key
for your query. In a field lookup, the value of this field must match the
field name portion of the Document Path in step 4. This value is posted to
the onload script when a particular lookup entry is selected.

Unique Key Field - required if the lookup is added in a document table.
Uniquely identifies the field lookup for each row of the table.

4 Enter settings for the following DocExplorer Adapter attributes:

Adapter—the name of the back-end database adapter you want to use to
lookup the information.

Document Path—the name of the schema and field that you want to
lookup. The naming convention used with this parameter is schema
name.field name with a period (.) between them. For example, the entry
employee.name will lookup the name field from the employee schema.

5 Enter the following setting for the Link Parameters attribute:

Target Form—enter docExplorer.fieldlookup.start as the form name. This
value enables personalization if the end-user has sufficient personalization
rights.

6 Click the Differential build of project button to rebuild your project.

7 Log in to Get-Resources, browse to the updated form, and click the

magnifying glass lookup icon () to display a pop-up lookup form.

The lookup field displays a list of values that match the Document Path you
entered in step 3 above.

8 If you want to change the field used for the lookup, click the Personalize this
page link and select the new field you want to use.
Adding personalization 205

Get-Resources
Subdocument lookup
You can use a subdocument lookup form component to select all the field
values that are part of a subdocument record. (A subdocument typically has
its own schema.) A subdocument lookup returns the value of each field
defined in the external schema. Any other form components that use the
information in the subdocument fields are automatically updated. For
example, you could use a subdocument lookup to update several fields such
as address, state, zip, and country by selecting a single location.

Tip: Use subdocument lookups to quickly change multiple fields on a form.

To add a subdocument lookup to a form

1 Right click the form to which you want to add the lookup.

2 Go to New > Field > Lookup.

3 Enter the following settings for the Data attribute:

Display Field—the label you want displayed for the lookup field in the
Get-Resources form. Required. If you do not enter a valid value for this
parameter, an error occurs.

Document Field—the name of the field you want to use as the unique key
to query the subdocument. The value of this field is used to look up all
other document fields in the subdocument. This value is posted to the
onload script when a particular lookup entry is selected.

Unique Key Field - Required if the lookup is added to a document table.
Uniquely identifies the subdocument lookup for each row of the table.

4 Enter settings for the following for the DocExplorer Adapter attributes:

Adapter—the name of the back-end database adapter you want to use to
lookup the information.

Document Path—the name of the schema and subdocument that you
want to lookup. The naming convention for the path is:
schema name.subdocument name with a period (.) between them. For
example, the entry employee.location looks up the location subdocument
from the employee schema.

5 Enter the following setting for the Link Parameters attribute:

Target Form. Enter docExplorer.documentlookup.init as the form name.

6 Click the Differential build of project button to rebuild your project.

7 Log in to your Web application, browse to the updated form and click the

magnifying glass lookup icon () to display a pop-up lookup form.
206 Chapter 7—Tailoring Tasks

Tailoring Kit Guide
The lookup field will display a list of values that match the Document Path
you entered in step 3 above.

8 If you want to change the subdocument used for the lookup, click the
Personalize this page link and select the new subdocument you want to use.
Adding personalization 207

Get-Resources
Tailoring scripts

Although you do not have to use Peregrine Studio to edit or add scripts in
your project, the text editor, cross reference checking mechanism, and
project navigator make Peregrine Studio a full-featured development
platform. The following sections describe how to change scripts from within
Peregrine Studio.

Editing an existing script
You can edit the ECMAScript in your project directly from the Peregrine
Studio interface.

Tip: You may lose changes that you make directly to existing scripts when
you next upgrade. If you want to change an existing script consider
using a schema extension to call your custom script in addition to the
existing script.

To edit an existing script

1 Select the form in the Project Explorer.
208 Chapter 7—Tailoring Tasks

Tailoring Kit Guide
2 Click the Script tab in the Properties window.
Tailoring scripts 209

Get-Resources
3 In the Server Onload Script field, click the magnifying glass button () to

view the script in the Peregrine Studio text editor.

4 Make any changes to the script in the text editor.

5 Save your project.

6 Build your project file.

7 Restart your application server or set the File Change Monitor option from
the Administration page.

Tip: Turn off the File Change Monitor setting on your production system to
increase performance.

The script update is loaded into Get-Resources.
210 Chapter 7—Tailoring Tasks

Tailoring Kit Guide
Adding a custom script
You can add custom scripts to your Peregrine Studio project for use by
forms, schemas, and form components.

To add a custom script

1 Determine what kind of script you want to create.

You can create the following types of script:

Form onload script. These are scripts run to gather data for
non-DocExplorer forms. Peregrine Studio stores form on-load scripts
underneath the first Group of Scripts node (Typically called Scripts or
ServerScripts).

Preexplorer. These are scripts run to manipulate the XML document that
the gets rendered in the Get-Resources interface. Peregrine Studio stores
preexplorer scripts underneath the Preexplorer Group of Scripts node.

Preload. These are scripts run to gather data for DocExplorer forms.
Peregrine Studio stores preload scripts underneath the Preload Group of
Scripts node.

Schema. These are scripts run before or after an adapter connects with the
back-end database. Peregrine Studio stores schema scripts underneath the
Schema Group of Scripts node.

2 Right-click the appropriate Group of Scripts node, point to New, and then
click Script.

Peregrine Studio creates a new script node underneath the Group of Scripts.

3 Type in the name of your script and press ENTER.

4 Right-click the new Script node, point to New, and then click Header.

Peregrine Studio creates a new Header node underneath the Script node.

5 Using the text editor window, type in the header information for your new
script.

6 Right-click the new Script node, point to New, and then click Function.

Peregrine Studio creates a new Function node underneath the Script node.

7 Using the text editor window, type in the function information for your new
script.

8 Save your project.

9 Build your project file.
Tailoring scripts 211

Get-Resources
10 Restart your application server or set the File Change Monitor option from
the Administration page.

The new script is loaded into Get-Resources.

Extending Get-Resources scripts
Using a script extension, you can override some of the out-of-box behavior
without modifying the scripts that are shipped with Get-Resources. Using a
script extension ensures that upgrades to later releases are easy by keeping
your changes separate from existing Get-Resources functionality.

You can use script extensions to:

Change the request behavior

Determine how data is retrieved from the back-end database

Determine how data is written to the database.

Add or hide actions on a Get-Resources page

Determine if data is displayed in read-only fields

Create data validation rules

Set default values
212 Chapter 7—Tailoring Tasks

Tailoring Kit Guide
Changing request behavior
You can change the way the request and request line items work by creating
a custom request interface script.

To change the request behavior

1 Open the Get-Resources project file in Peregrine Studio.

2 Right-click a group of scripts node, and then click New > Script.

For example, you could select the following group of scripts:

Project.resources.NewScripts

3 Give your script a unique name. For example, myrequestinterface.

4 Right-click your new script node, and then click New > Header.

Right-click on the
NewScripts node and
then click New >
Script.
Tailoring scripts 213

Get-Resources
You can accept the default Header name Header.

5 Use the following table to determine the script name that your custom script
needs to import.

6 Use the Peregrine Studio text editor to add a ECMAScript header that
imports and makes a prototype of the script specific to your back-end
database. For example:

7 Edit the existing getRequestInterface ECMAScript function to call your
custom script name.

The existing script has the following Peregrine Studio address:

Project.resources.NewScripts.requestexperience.getRequestInterface.

You can delete checks for the back-end database versions from the
getRequestInterface function since you already imported the necessary
script for your back-end database version in a previous step. For example,
your finished script might look like:

8 Use the following table to determine the script name that your back-end uses
to display the status of a request.

Back-end database Script name

AssetCenter 3 ac3requestinterface

AssetCenter 4 ac4requestinterface

ServiceCenter 4 or 5 sc4requestinterface

import sc4requestinterface;
this.__proto__ = sc4requestinterface.valueOf();

Script name must
match that used for
your back-end
database

Back-end database Script name

AssetCenter 3 ac3activerequestinterface

function getRequestInterface(msg)
{
return “myrequestinterface“;

}

Return the name of
your custom script
214 Chapter 7—Tailoring Tasks

Tailoring Kit Guide
9 Edit the display status script you selected above in Peregrine Studio to
include a call to your custom script name. For example:

10 You can now add the new functions to your custom script as described in the
request sections. For example, Changing the request line detail screen on
page 189.

You can copy the existing request interface functions into your custom
script.

11 Save and build your Get-Resources project file.

Example: adding a field from one schema to another schema
If you want to display a field from a previous schema query in another
schema, you can create a script extension to extract the value of a field from
one document and insert it in another. For example, suppose you want to
display the supplier part number you queried in a product summary in your
purchase request summary. By default, the schema that builds request
summary documents, RequestLine, does not contain a field to store or
display the supplier part number. You can extend the RequestLine schema to
add a field for supplier part number and then use a script extension to add
the value you want from the Product schema.

To add a field from one schema to another schema

1 Select a field from or add a field to the schema that you want to be the source
of the information displayed.

AssetCenter 4 ac4activerequestinterface

ServiceCenter 4 or 5 sc4activerequestinterface

Back-end database Script name

import myrequestinterface;
this.__proto__ = myrequestinterface.valueOf();

Script name must
match your custom
script name
Tailoring scripts 215

Get-Resources
For example, you can use a schema extension to add a field for supplier part
number to the Product schema. This field queries the supplier part number
as part of a product summary or product detail page. For more information
on creating schema extensions, refer to the Get-Resources Administration
Guide.

2 Add a field to the schema that you want to be the target of the information to
display.

For example, you can use a schema extension to add a field for supplier part
number to the RequestLine schema. This field will store and save
information on the supplier part number when it is updated by your script
extension. For more information on creating schema extensions, refer to the
Get-Resources Administration Guide.

Schema extension logical mapping

<documents name="base">
<document name="Product" label="Product">
<attribute name="SupplierPartNumber" type="string"
 label="Supplier Part"/>

</document>
</documents>

Schema extension physical mapping

<documents name="ac" version=”4.1”>
<document name="Product" table="amCatRef">
<attribute name="SupplierPartNumber" field=”Ref”/>

</document>
</documents>

This entry adds a field
called
SupplierPartNumber to
the Product schema

This entry defines
what field will be
queried in your
back-end database

Schema extension logical mapping

<documents name="base">
<document name="RequestLine" label="Req Line" ... >
<attribute name="SupplierPartNumber" type="string"
 label="Supplier Part"/>

</document>
</documents>

Schema extension physical mapping

<documents name="ac" version=”4.1”>
<document name="RequestLine" table="amReqLine" ... >
<attribute name="SupplierPartNumber" field=”CatalogRef.Ref”/>

</document>
</documents>

This entry adds a
matching field to the
RequestLine schema

This entry defines
where the field will be
saved in your back-end
database
216 Chapter 7—Tailoring Tasks

Tailoring Kit Guide
Note: The <attribute> names do not have to match between the two schemas.
This example uses matching field names to indicate that the fields
store the same content.

3 Create a script extension to copy the value from the source field to the target
field.

For example, you can create a script extension of the catalogbase script to
read the value of the Product document’s SupplierPartNumber field and add it
to the RequestLine document’s SupplierPartNumber field.

You can use the following information to create your script extension. For
more information of creating script extensions, see Adding personalization on
page 201.

The mycatalog header must import the sccatalog script:

Add a getNewRequestLine function to mycatalogbase.

4 Use Peregrine Studio to add or configure a form component to display the
value of the field.

Script setting Value

Script to extend catalogbase

Sample script extension mycatalogbase

import catalogbase;
this.__proto__ = catalogbase.valueOf();

Import catalogbase

function getNewRequestLine(msg)
{
// Call the parent function to build the out-of-box request line
// document
var msgReqLine = catalogbase.getNewRequestLine.apply
(this, arguments);
// Read the value of a field from the Product schema and add it to
// a field in the RequestLine schema
msgReqLine.add("SupplierPartNumber", msgItem.get
(“SupplierPartNumber“));

return msgReqLine;
}

Call the catalogbase
script to create the
request line document

Adds the field value in
MsgItem to the field
value in
msgRequestLine
Tailoring scripts 217

Get-Resources
For example, you can add a textedit form component to the
Project.Templates.newcart.newcatalog.doctable template and then map the form
component to the SupplierPartNumber field.

Changing purchase order behavior
You can change the way the purchase orders and purchase order line items
work by creating a custom request interface script.

1 Open the Get-Resources project file in Peregrine Studio.

2 Expand the resources group of modules node.

3 Expand the NewScripts node.

4 Right-click the NewScripts node, and then click New > Script.

Right-click on the
NewScripts node and
then click New >
Script.
218 Chapter 7—Tailoring Tasks

Tailoring Kit Guide
5 Give your script a unique name. For example, myporderinterface.

6 Right-click your new script node, and then click New > Header.

You can accept the default Header name Header.

7 Use the Peregrine Studio text editor to add a ECMAScript header that
imports and makes a prototype of the acporderinterface script. For example:

8 Edit the existing getRequestInterface ECMAScript function to call your
custom script name.

The existing script has the following Peregrine Studio address:

Project.resources.NewScripts.purchaseorderexperience.
getRequestInterface.

You can delete checks for the back-end database versions from the
getRequestInterface function. For example, your finished script might look
like:

9 Edit the existing ac4submittedporderinterface script in Peregrine Studio to
make your custom script its prototype. For example:

10 You can now add the new functions to your custom script as described in the
purchase order sections. For example, Changing the purchase order line detail
screen on page 196.

You can copy the existing request interface functions into your custom script
from one of the following scripts:

acporderinterface

requestinterfacebase

11 Save and build your Get-Resources project file.

import acporderinterface;
this.__proto__ = acporderinterface.valueOf();

Script name must be
acporderinterface

function getRequestInterface(msg)
{
return "myporderinterface";

}

Return the name of
your custom script

import myporderinterface;
this.__proto__ = myporderinterface.valueOf();

Script name must
match your custom
script name
Tailoring scripts 219

Get-Resources
Request line default values
You can set the request line default values in two places:

As the user selects catalog entries

In the getRequestDefaultValues function

Setting request line default values from catalog entries
Get-Resources generates a document using the RequestLine schema as a user
selects items from the catalog. This document is updated with default values
every time the user shows a catalog entry detail or clicks the Configure, Add,
or Add Selected buttons. By setting the default values at these times, users can
review the values before they decide whether to add the item to their request.
This also allows Get-Resources to set default values that depend on the
catalog entry without having to re-query the catalog information later.

The default values presented on the Request line screen are defined in the
getNewRequestLine function of the catalog script. The catalog script can also
display a filtered list of items based on the category, quick search, and
advanced search criteria parameters entered.

The catalogbase script implements the basic catalog functionality. There are
additional scripts that extend the catalogbase script to add more specific
catalog functionality:

ac3productcatalog

ac4bundlecatalog

sccatalog

offcatalog.

To change the generated request line document

Step 1 Identify the catalog script used to generate the request line detail you want to
change. See Identifying the catalog script that builds a request line detail on
page 221.

Step 2 Create a new script that extends the identified catalog script. See Creating an
extension of the existing catalog script on page 221.

Step 3 Make Get-Resources call your new script. See Calling your extended script on
page 223.
220 Chapter 7—Tailoring Tasks

Tailoring Kit Guide
Identifying the catalog script that builds a request line detail
1 Enable the show form info setting from the Administration > Settings page.

2 Go to a request line detail screen. For example:

Create a request

Select a category

Select one of the items on the catalog item list

3 Click the form information button.

The form information window opens.

4 Click the Script Input tab.

5 Search for the <CatalogId> element.

The value listed between the <CatalogId> elements is the name of the catalog
script that generated the request line document.

Creating an extension of the existing catalog script
You can create a script extension to preserve the original script function
provided with Get-Resources. This method improves the upgrade process for
your installation.

Use the following information to create your script extension. For more
information of creating script extensions, see Adding personalization on
page 201.

The mycatalog header must import the sccatalog script:

Script setting Value

Script to extend sccatalog

Sample script extension mycatalog

import sccatalog;
this.__proto__ = sccatalog.valueOf();

Import sccatalog
Tailoring scripts 221

Get-Resources
Add a getNewRequestLine function to mycatalog.

The RequestLine schema defines the structure of the request line document.
Refer to this schema to determine what fields are available for default values
and format settings.

function getNewRequestLine(msg)
{
// Call the parent function to build the out-of-box request line
// document
var msgReqLine = sccatalog.getNewRequestLine.apply
(this, arguments);
// Set the default values you want. Here let's say that the default
// requested quantity is 2 instead of 1
msgReqLine.set("Quantity", "2", false);

return msgReqLine;
}

Call the sccatalog
script to create the
request line document

Sets the Quantity field
to 2
222 Chapter 7—Tailoring Tasks

Tailoring Kit Guide
Calling your extended script
Use the following information to have Get-Resources call your script
extension. For more information of creating script extensions, see Adding
personalization on page 201.

Customize the getCatalogId and getDefaultSearchCatalogId methods:

Overview of the cart experience code
The cart experience code allows you to do the following:

Create new requests

Create new purchase orders

Review a request details

Review purchase order details

Script setting Value

Script to extend sccatalog

Sample script extension mycatalog

Functions to customize getCatalogId

getDefaultSearchCatalogId

function getCatalogId(msg)
{
// Call the parent method
var strCatalogId = sc4requestinterface.getCatalogId.apply
(this, arguments);
// Override the result only if the parent method returns sccatalog
if (strCatalogId == "sccatalog")
strCatalogId = "mycatalog";

return strCatalogId;
}

function getDefaultSearchCatalogId(msg)
{
// Call the parent method
var strCatalogId = sc4requestinterface.getDefaultSearchCatalogId.
apply(this, arguments);
// Override the result only if the parent method returns sccatalog
if (strCatalogId == "sccatalog")
strCatalogId = "mycatalog";

return strCatalogId;
}

Call your custom script
if the catalog Id is
sccatalog

Call your custom script
if the search catalog Id
is sccatalog
Tailoring scripts 223

Get-Resources
Display request line items

Display purchase order line items.

Select a request types

Select item categories

Select catalog items

The Get-Resources cart experience code is organized in four layers:

The ActivityCartExperience template defines the screen flow.

The cartexperience script controls the screen flow and checks that all of
the fields, messages, and so on are passed to the screen. The actual data
gathering and interactions with the back-end are handled by the
requestinterface script.

The requestinterfacebase script, and any scripts you create to extend it,
are responsible for interacting with the back-end, implementing business
rules, and describing the actions that are possible on requests and
purchase orders. It is also responsible for listing what request categories,
item categories, and catalogs are available.

The catalogbase script, and any scripts you create to extend it, are
responsible for retrieving the list of catalog entries and building a request
or purchase order line upon request. The catalog scripts can be called by a
request interface script or by the cartexperience script, however, the
cartexperience script always gets the name of the catalog script from the
request interface script.

The ActivityCartExperience template
You can create your own request activity using the CartExperience template.

To create a CartExperience activity

1 Open your Get-Resources project in Peregrine Studio.

2 Expand the resources group of modules node.

3 Select a module to add the new activity to

4 Right-click the module and then click ActivityCartExperience.

A new activity node appears underneath the selected module.

5 Rename the new activity.

6 Expand the new activity node and then expand the first form setuprequest.
224 Chapter 7—Tailoring Tasks

Tailoring Kit Guide
7 Select the start action form component.

8 Click the Link properties tab from the properties page.

9 Click the Param attribute and locate the _cartExperience entry.

10 Replace the value <Set your cart experience script name here> with the name of
your cart experience script. For example,

_cartExperience=mycartexperience

You can create a custom cart experience script that is similar to
requestexperience, requeststatusexperience, or purchaseorderexperience
scripts. Your custom cart experience script must contain an init function and
a getRequestInterface function that returns the name of a request interface
script (the name of the script that extends requestinterfacebase).

The cartexperience script
The cartexperience script generates and manages the data for the screens
found in the ActivityCartExperience template. This script has at least one
function for each screens in the ActivityCartExperience template.

The script is responsible to maintain the context information used in the cart
experience activity. This context information is stored in an ECMAScript
user object, one object per activity. The cartexperience.getCartSession
method returns this context object for the current activity. The Message
parameter passes _module and _activity elements that uniquely identify the
current activity. These two parameters are always set in onload messages.

The main context object attributes are:

Attribute name Attribute type Description

strCartExperience ECMAScript String The name of the cart experience
script declared in the setuprequest
screen of ActivityCartExperience.

strRequestInterface ECMAScript String The name of the request interface
script used to interact with the
database in this activity.
Tailoring scripts 225

Get-Resources
msgRequestCategory Message An XML document containing
some information about the
current request type. If a request
category was selected it contains at
least an Id attribute, and optionally
a SubType attribute (that controls
how the checkout screen
personalization is saved).

msgRequestContent Message An XML document containing the
request or purchase order
document being edited. The
document format depends on the
schema that the request interface
uses.

strApprovalId ECMAScript String The workflow task Id that the
approver will either approve or
deny. This string is set only when in
the approval activity

strCategoryId ECMAScript String The id of the last item category that
was selected in this activity.

strCatalogId ECMAScript String The name of the last catalog used to
display the list of items. It is used
mainly when the users click the
Add more items button.

strCallingListForm ECMAScript String The form name
(<module>.<activity>.<formname
>) from which the current activity
was called. It is used to go back to
the caller screen, when you click the
Back to List or Discard Changes
button.

strCallingListParam ECMAScript String Parameters that need to be passed
back to the caller screen.

msgCurrentLineItem Message An XML document containing the
last request or purchase order line
item for which details were
presented. The document format
depends on the schema that the
request interface uses.

Attribute name Attribute type Description
226 Chapter 7—Tailoring Tasks

Tailoring Kit Guide
The request interface scripts
A request interface script is a script that extends the existing
requestinterfacebase script.

There is only one request interface script used in a given activity.

In most functions, you can get the context object by calling
cartexperience.getCartSession. You can store information for the current
activity in this context object as needed. Just add your own parameters when
needed.

The noticeable functions where the context object cannot be retrieved are the
getRequestDefaultValues and validateRequest functions. They only take a
request or purchase order message as a parameter.

The catalog scripts
A catalog script is a script that extends the existing catalogbase script.

A catalog script name is always retrieved through a request interface script,
by calling the getCatalogId function. Before using this script, you need to call
the request interface’s getCatalogScript function, which loads the script in
memory if needed.

There are three major functions in a catalog script:

Script Function

getItemListStyle Returns a constant that the cartexperience script uses to
determine what style to display a selected catalog. The list
style can be a list of items (the default view in catalogs) or
a detail (as implemented in the offcatalog script). Other
values are reserved for a future use.
Tailoring scripts 227

Get-Resources
getItemList Returns a list of catalog items. This script must use the
query parameters passed into the message when coming
from the advanced search screen. It must also use the
_searchText parameter passed in when performing a quick
search. The quick search is the search box at the top of the
item category and catalog list screens.

getNewRequestLine Builds a request or purchase order line from a catalog item.
This script must add all the needed sub-documents and, if
necessary, add the item's composition. Every subline item
must have its own Id, that can be set using the following
formula:
env.getUniqueId() + "_" +
Math.round(10000*Math.random())
There are two special parameters that can be set in this
function to change the way a line item or a subline item is
saved:

DoNotSave. If set to true, the function does not save the
line item. This flag is set for example with AssetCenter
3.x on the subitems, because AssetCenter adds them
automatically with the main line item.
DoNotSavePrices. If set to true, the function does not
save the prices stored in the document, but will let the
back-end set its own default values when the line item is
saved.

Script Function
228 Chapter 7—Tailoring Tasks

Tailoring Kit Guide
Creating custom schemas

You can create custom schemas to instruct the Archway Document Manager
how to query, update, or insert information to your back-end databases. A
custom schema gives you complete control over the logical and physical
mappings used by your forms.

Tip: For most tailoring tasks, you can accomplish the same results using a
schema extension. For more information on schema extensions, see the
Get-Resources Administration Guide.

If you want to create custom schemas you will need to use Peregrine Studio
to add the custom schema to your project and then to configure other project
components to use the custom schema. Deploying a custom schema will also
require building and copying project files to your Get-Resources server. The
following procedures outline how to create a custom schema.

Step 1 Create or activate a package extension to save your changes in Peregrine
Studio. See the Peregrine Studio Projects and Packages chapter.

Step 2 Add a new schema file to your Peregrine Studio project. See Adding a schema
to your Peregrine Studio project on page 230.

Step 3 Add logical and physical mappings to your schema file. See Adding logical and
physical mappings to your schema on page 230.

Step 4 Configure other project components to use your custom schema. See
Tailoring forms and components on page 168.

Step 5 Rebuild your Get-Resources project. See the Peregrine Studio Projects and
Packages chapter.

Step 6 Deploy your new Get-Resources project files. See the Peregrine Studio Projects
and Packages chapter.
Creating custom schemas 229

Get-Resources
Adding a schema to your Peregrine Studio project
You can only add a custom schema to a group of schemas node. This node will
also be a child element of a group of modules node, and typically has the name
Schemas.

To add a schema to your Peregrine Studio project

1 Right-click the group of schemas node to which you want to add a schema.

This node will be underneath the group of modules node for Get-Resources.
If your project contains more than one group of modules, choose the one
that has a group of schemas node.

2 Point to New, and then click Raw Schema.

A new node appears with the name Schema.

3 Rename your schema using the following conventions.

Schema Naming Conventions
Each custom schema you create should have a unique name to prevent data
errors from naming conflicts. Your custom schema name should meet the
following criteria:

The schema name is in all lower case.

The schema name is unique from any other schema name in the Peregrine
Studio project.

The schema name is unique from any attribute name mapping within the
schema.

Adding logical and physical mappings to your schema
After you have added a new schema to your Peregrine Studio project, you are
ready to add logical and physical mappings. Studio displays the content of
your custom schema in a text editor window. You can use the text editor
window to review and edit the XML source code of your schema. You can
also use any text editor to edit your schema.

Note: If you use an external text editor to edit your custom schema,
Peregrine Studio will not pick up the changes until the next time you
open the project file.
230 Chapter 7—Tailoring Tasks

Tailoring Kit Guide
All schemas must have both a logical and a physical mapping section. The
logical mapping section is where you define what names and labels
Get-Resources uses for fields in the user interface. The physical mapping
section is where you define what back-end database tables and fields are used
by each logical mapping. The following sections describe how to create the
logical and physical mapping sections.

Creating the logical mappings
Step 1 Add the XML namespace element and the two <schema> elements. See

Adding required schema elements on page 231.

Step 2 Add two <documents> elements for the logical mappings. See Adding logical
mapping <documents> elements on page 231.

Step 3 Add two <document> elements to define the schema name. See Adding logical
mapping <document> elements on page 232.

Step 4 Add one <attribute> element for each logical mapping you want to create. See
Adding logical mapping <attribute> elements on page 232.

Adding required schema elements

1 Add an <?xml> element to the top of the file:

<?xml version="1.0"?>

This element declares that the file uses the XML namespace.

2 Add two <schema> elements underneath the namespace declaration:

<schema>
</schema>

These elements notify the Archway Document Manager that this file is a
schema. All schema definitions must be enclosed between these two
elements.

Adding logical mapping <documents> elements

1 Add two <documents> elements between the <schema> element containers:

<documents>
</documents>

These elements are the container for the logical mappings.

2 Add the name attribute to the <documents> element:

<documents name="base">
Creating custom schemas 231

Get-Resources
The attribute value name="base" is required. This attribute value notifies the
Archway Document Manager that this section is for logical mappings.

Adding logical mapping <document> elements

1 Add two <document> elements between the <documents> element containers:

<document>
</document>

These elements are the container for the schema document.

2 Add the name attribute to the <document> element:

<document name="schema_name">

For schema_name, enter the same name you selected when adding the
schema to the Peregrine Studio project. This attribute value must match the
file name of the schema (without the .xml extension) or an error will occur.
The Archway Document Manager uses this attribute value to create an XML
document of the same name.

Adding logical mapping <attribute> elements

1 Add one <attribute> element between the <document> elements for each
logical mapping you want to create:

<attribute/>

Note: You can use the standard XML self-closing tag syntax <element /> with
the <attribute> element. You can also close every <attribute> element
with a </attribute> element if you want.

2 Add a name attribute to each <attribute> element:

<attribute name="sample"/>

The Archway Document Manager uses this attribute value to create an XML
element in any document message built from this schema. For example, the
Archway Document Manager would convert this attribute into the XML
element <sample>.

3 Add a type attribute to each <attribute> element:

<attribute name="sample" type="string"/>

Get-Resources uses this attribute value to determine how to render the field
in the user interface. For more information about the type attribute, see the
Document Schema Definitions chapter.
232 Chapter 7—Tailoring Tasks

Tailoring Kit Guide
4 Add any optional attributes to the <attribute> elements.

For more information about the attributes available for the <attribute>
element, see the Document Schema Definitions chapter.

Creating the physical mappings
Step 1 Add two <documents> elements for each adapter you want to support. See

Adding physical mapping <documents> elements on page 233.

Step 2 Add two <document> elements to define the back-end database table name.
See Adding physical mapping <document> elements on page 234.

Step 3 Add one <attribute> element for each logical mapping you created. See
Adding physical mapping <attribute> elements on page 235.

Adding physical mapping <documents> elements

1 Add another set of <document> elements between the <schema> element
containers:

These elements are the container for the physical mappings.

2 Add the name attribute to the <documents> element:

<documents name="adapter_name">

For adapter_name, enter the abbreviation of the adapter you want to use to
connect to your back-end database such as ac.

3 Add the version attribute to the <documents> element if you plan to add
different physical mappings for each version of your back-end database:

<documents name="ac" version="4">

<?xml version="1.0"?>
<schema>
<documents name="base">
<document name="schema_name">
<attribute name="Id" type="id"/>
<attribute name="sample" type="string"/>

</document>
</documents>

<documents>
</documents>

</schema>

Add a second set of
<documents> elements
here
Creating custom schemas 233

Get-Resources
Important: You can skip to the next section if you are not going to provide
different physical mappings for multiple versions of your
back-end database.

4 If you want to provide physical mappings for each version of your back-end
database, repeat steps 1 through 3 for each version you want to support.

You must provide a different value for the version attribute for each set of
<documents> elements.

Adding physical mapping <document> elements

1 Add another two <document> elements between the physical mapping
<documents> element containers:

These elements are the container for the back-end database table to be
queried.

2 Add the name attribute to the <document> element:

<document name="table_name">

For table_name, enter the SQL name of the table you want to map to. The
Archway Document Manager uses this attribute value to query the back-end
database table.

3 Add any optional attributes to the <document> element that you want to use
to connect to the back-end database or to run process scripts.

For more information about the attributes available for the <document>
element, see the Document Schema Definitions chapter.

<?xml version="1.0"?>
<schema>
<documents name="base">
<document name="schema_name">
<attribute name="Id" type="id"/>
<attribute name="sample" type="string"/>

</document>
</documents>

<documents name="ac">
<document>
<document/>

</documents>

</schema>

Add a second set of
<document> elements
here
234 Chapter 7—Tailoring Tasks

Tailoring Kit Guide
Adding physical mapping <attribute> elements

1 Add one <attribute> element between the physical mapping <document>
elements for each logical mapping you created:

<attribute/>

Note: You can use the standard XML self-closing tag syntax <element /> with
the <attribute> element. You can also close every <attribute> element
with a </attribute> element if you want.

2 Add the identical name attribute to each <attribute> element as you defined in
the logical mappings:

<attribute name="sample"/>

Each logical mapping <attribute> element must have a matching physical
mapping <attribute> element. The Archway Document Manager uses this
value to determine which logical name maps to a particular back-end
database field.

3 Add a field attribute to each <attribute> element:

<attribute name="sample" field="field_name"/>

For field_name, enter the SQL name of the field you want to map to. The
Archway Document Manager uses this attribute value to query the back-end
database field.

4 Add any optional attributes to the <attribute> elements.

For more information about the attributes available for the <attribute>
element, see the Document Schema Definitions chapter.
Creating custom schemas 235

Get-Resources
Sample schema
The following is a sample schema that you can use for as a template for your
own custom schemas.

<?xml version="1.0"?>
<schema>

<!--==
Logical Mappings: XML elements and data types defined
==-->
<documents name="base">
<document name="sample">
<attribute name="Id" type="number"/>
<attribute name="contact" type="string" label="Contact"/>

</document>
</documents>

<!--==
Physical Mappings: Logical names mapped to SQL names
==-->
<documents name="ac">
<document name="sample" table="amRequest"/>
<attribute name="Id" field="lReqId" />
<attribute name="contact" field= "lEmplDeptId"/>

<document/>
</documents>

</schema>

Physical mapping uses
same attribute elements

XML namespace

Logical mappings always
use name="base"
Document name
determines schema name.
This schema is sample.xml

Physical mapping lists
adapter name
236 Chapter 7—Tailoring Tasks

Tailoring Kit Guide
Adding data validation

You can have Get-Resources validate field values in one of two ways:

Make an input field required. Users will not be able to submit a form until
they have entered all required fields.

Add a custom validation script or function. If you want to check the
validity of the data users submit, you must create a validation script or
function.

Making a field required
Personalization forms allows you to mark fields as required, forcing users to
fill in a value for that field in order to proceed to the following page.

To make a field required

1 Login to Get-Resources with a user account that has getit.personalization.admin
rights.

The user must have advanced personalization rights to save changes as
default.

2 Navigate to the form you want to personalize, and then click the
personalization wrench icon.

The Personalize Document Detail window opens.

3 From the Current Configuration window, double-click the field or
subdocument that you want to require.

The field or subdocument properties window opens.

4 Select one of the following options:

Subdocument. For a subdocument, select the Required option under the
Explorer Options section.

Field. For a field, toggle the Required option to Yes.

5 Click Set as Default to save your changes as the default view for all users.

All users who can see this form now see the required field or lookup.
Adding data validation 237

Get-Resources
Request validation
The validateRequest function validates user requests as part of the
acrequestinterface script. Get-Resources calls this script before saving a
request to the database from the Request summary screen. The only
parameter is the document generated by the Request schema. The function
must return the request message. Furthermore it must set an error condition
and add an explanation to the user object if the request is not valid.

Peregrine recommends that you extend the validateRequest function with a
custom script rather than updating the function directly. For more
information of extending scripts, see Adding personalization on page 201.

Important: If you edit the validateRequest function directly, then you will
need to maintain the request validation for any changes to the
request schema and validation scripts that Peregrine makes in
future versions of Get-Resources.
238 Chapter 7—Tailoring Tasks

Tailoring Kit Guide
For example, the following sample adds a validateRequest function to the
myrequestinterface custom script. This function checks to see if the user
actually populated the Purpose field before saving. See Adding
personalization on page 201 for more information about this sample custom
script.

Purchase order validation
To validate the purchase order before it is saved, you can extend the
validateRequest function defined in the acporderinterface script. See
Request validation on page 238 for an example extension.

function validateRequest(msgRequest)
{
var bValid = true;
// Check that the purpose was actually set by the user
if (msgRequest.get("Purpose", false) == "Enter Purpose")
{
// If purpose is default, then add an user message retrieved
// from a string file
user.addMessage(IDS.get("resources", "my_error_message"));
bValid = false;

}
// Call the out-of-box (parent) script
msgRequest = sc4requestinterface.validateRequest.apply
(this, arguments);

if (!bValid)
 {

// If bValid is false, then set an error condition to prevent
// Get-Resources from updating the database
msgRequest.setCondition("error");

}
return msgRequest;

}

Check Purpose field for
default value

Set user message to
custom error message

Call the parent script
for your back-end
database

Set error condition if
bValid is false
Adding data validation 239

Get-Resources
Assigning default values

Setting request default values
The default values presented on the Request summary screen are defined in
the getRequestDefaultValues function of the commonrequestinterface
script.

This script is called on a new request before presenting the Request summary
screen, and also, as the request is saved for the first time in the database. This
script’s only parameter is the message generated from the Request schema.
The function must return the full request document, with the default values
set. It can modify the request document directly and send it back, or work on
a copy of the request document and send the copy back.

It is this function’s responsibility to make sure that a value is empty before
setting a default value.

Warning: Failure to observe this rule could result in the function overwriting
user entries.

Peregrine recommends that you extend the getRequestDefaultValues
function with a custom script rather than updating the function directly. For
more information of extending scripts, see Adding personalization on
page 201.

While extending the getRequestDefaultValues function, implement the
default values you want and call the out-of-box function to fill in any
remaining default values. The advantages of this approach are:

Less code to maintain on your end.

Smoother upgrades for future releases.

Important: If you edit the out-of-the-box getRequestDefaultValues
function directly, then you will need to maintain the default
values for any new fields Peregrine adds to the request schema in
future versions of Get-Resources.
240 Chapter 7—Tailoring Tasks

Tailoring Kit Guide
For example, the following sample adds a getRequestDefaultValues function
to the myrequestinterface custom script. This function changes the default
values for the Purpose and RequestedFor fields. See Adding personalization
on page 201 for more information about this sample custom script.

Setting request line default values to values in a request
You can reuse any values entered in a prior request as default values in line
item documents. For example, if you set the End User field in a request, you
can re-use the value of this field for all line items that do not have another
value explicitly defined.

Peregrine recommends that you extend the getRequestDefaultValues
function with a custom script rather than updating the function directly. For
more information of extending scripts, see Adding personalization on
page 201.

// Set the default values in the request according to the values
// already set in msgRequest
function getRequestDefaultValues(msgRequest)
{
// Set the RequestedFor Date default two weeks from now
if (msgRequest.get("RequestedFor", false) == "")
{
var date = Calendar.getInstance();
date.add(Calendar.DATE, 14);
msgRequest.set("RequestedFor",
DataFormatter.getArchwayDate(date.getTime().getTime()), false);

}

// Set the default purpose to upgrade
if (msgRequest.get("Purpose", false) == "")
{
msgRequest.set("Purpose", "Enter Purpose", false);

}

// Call the out-of-box (parent) script that will set the remaining
// default values
msgRequest = sc4requestinterface.getRequestDefaultValues.apply
(this, arguments);

return msgRequest;
}

Sets the RequestedFor
date to 14 days

Sets the Purpose to
Enter Purpose

Calls the parent script
for your back-end
database
Assigning default values 241

Get-Resources
While extending the getRequestDefaultValues function, implement the
default values you want and call the out-of-box function to fill in any
remaining default values. The advantages of this approach are:

Less code to maintain on your end.

Smoother upgrades for future releases.
242 Chapter 7—Tailoring Tasks

Tailoring Kit Guide
For example, you can extend the getRequestDefaultValues function to
update the EndUser fields in the RequestLines collection based on the value
of the End User field in the request document.

function getRequestDefaultValues(msgRequest)
{
...
// Call the out-of-box (parent) script that will set the remaining
// default values
msgRequest = sc4requestinterface.getRequestDefaultValues.apply
(this, arguments);

// Comment out the line below to enable the request line default
// values if (false)
{
var strEndUser = msgRequest.get("EndUserId", false);
var msgEndUser = msgRequest.getMessage("EndUser", false);
// Get the message corresponding to the collection for Request
// Lines
var msgReqLines = msgRequest.getMessage("RequestLines", false);
// Test if the collection exists
if (msgReqLines)
{
// The collection exists, get the list of request lines
var list = msgReqLines.getList("RequestLine", false);
// Browse the request lines to set their default values
for (var i = 0; i < list.getLength(); i ++)
{
// Get the request line for index i
var msgReqLine = list.getMessage(i);
// If there is no end user set, set it to the request's
var strRLEndUser = msgReqLine.get("EndUserId", false);
var strDefValRLEndUser = msgReqLine.get("_DefValEndUserId",
false);
if ((strRLEndUser == "" || strRLEndUser ==
strDefValRLEndUser) && strEndUser != strRLEndUser)
{
// set the end user id
msgReqLine.set("EndUserId", strEndUser, false);
msgReqLine.set("_DefValEndUserId", strEndUser, false);
// set the EndUser subdocument, used to display the values.
msgReqLine.remove("EndUser", false);
if (msgEndUser)
msgReqLine.add(msgEndUser);

}
}

}
}
return msgRequest;

}

Previous examples
truncated

Call to request default
values

Set EndUserId to value
returned in message
request

Gather request values
for EndUserId and
EndUser
Assigning default values 243

Get-Resources
Purchase order default values
To set the purchase order default value, you can extend the
getRequestDefaultValues function defined in the acporderinterface script.
See Setting request default values on page 240 for an example extension.

Purchase order line default values
You can set the purchase order line default values in two places:

As the user selects approved request line items.

As the purchase order default values are being set

Setting purchase order line default values as the user selects
request line items
You can set default values on the purchase order default lines page that
depend on the request lines. To do so, you must:

Extend the getNewRequestLine function located in the
acrequestlinescatalog script with a similar function in your own catalog
script (for example, myreqlinecatalog). This function should return a
GRPOLine document as defined in the GRPOLine schema.

Extend the getCatalogId and getDefaultSearchCatalogId functions located
in the acporderinterface script with similar functions in your own request
interface script (for example, myporderinterface). You can have these
functions return to your custom catalog script (for example,
myreqlinecatalog).

For an example of how to extend these scripts and functions, refer to Setting
request line default values from catalog entries on page 220.

Setting purchase order line default values with the purchase
order values
You can set default values for purchase order line items that depend on the
purchase order values. To do so, you must:

Extend the getRequestDefaultValues function located in the
acporderinterface script with a similar function in your own purchase
order interface script. This function should check the documents returned
by the OrderLines collection and set the default values based on the
purchase order values.
244 Chapter 7—Tailoring Tasks

Tailoring Kit Guide
For an example of how to extend these scripts and functions, refer to Setting
request line default values to values in a request on page 241.

Translating tailored modules

Out-of-box, all Get-It web applications are provided in English. You can
order translated versions of Get-Resources by purchasing a language pack.
Get-Resources 4.1.2 language packs are available in the following languages:

French

Italian

German

Note: Refer to the Peregrine support web site to determine the current
availability of Get-Resources language packs.

If you tailor your installation of Get-Resources, you will need to translate any
strings that you added. The following sections describe how you can translate
your tailored modules.

If you have a language pack version of Get-Resources, you will need to edit
the existing string files for these applications and add any new strings that
resulted from your tailoring efforts. For more information on the process,
refer to Editing existing translation strings files on page 246.

If you do not have a language pack version of Get-Resources and you want to
create a new translation, refer to the instructions in Adding new translation
strings files on page 247.

To configure Get-Resources to use your new translation, refer to Configure
Get-Resources to use new string files on page 248.
Translating tailored modules 245

Get-Resources
Editing existing translation strings files
You can make edits, additions, and deletions to string files outside of
Peregrine Studio using any text editor or standard translation software.

To edit an existing translation string file

1 Open the English string file for your Peregrine Studio project in a text editor
or translation program.

You can find all the translation string files in the application server’s
deployment directories:

<application server install>\webapps\oaa\WEB-INF\strings

<application server install>\webapps\oaa\WEB-INF\apps\<application
group of modules name>

Note: The English string file will have the ISO-639 two letter abbreviation
EN in the file name.

All strings files have a STR file extension.

2 Search for any new text that you added to your tailored Peregrine Studio
project.

The string file uses the format illustrated below:

String_label, "translated string"

Where String_label is the Peregrine Studio name given to the string, and

Where translated string is the actual value of the string to be translated.

For example if you added a new button, you might look for:

EMPLOOKUP_EMPLOYEELOOKUP_SEARCH_LABEL, "Search"

3 Copy the entire line containing the English string.

4 Open the string file for the target language in which you want to add a
translation.

Note: The string file will use the ISO-639 two letter abbreviation for the
language in the file name.

5 Paste the copied English string into the target string file. You can paste the
string at the end of the string file.
246 Chapter 7—Tailoring Tasks

Tailoring Kit Guide
6 Change the "translated string" portion of the new string to the target language
of your translation. For example, to change the string listed above to French,
you might enter the following:

EMPLOOKUP_EMPLOYEELOOKUP_SEARCH_LABEL, "Recherche"

7 Save the new string file.

The new translation strings will be available as soon as you stop and restart
the application server.

Adding new translation strings files
You can add new string files to provide additional language support to
Get-Resources. The translation process can be accomplished using any text
editor or standard translation software.

Important: Peregrine does not support any user translated versions of
Get-Resources.

To edit an existing translation string file

1 Open the English string file for your Peregrine Studio project in a text editor
or translation program.

You can find all the translation string files in your application server’s
installation directory:

<application server install>\webapps\oaa\WEB-INF\strings

<application server install>\webapps\oaa\WEB-INF\apps\<application
group of modules name>

Note: The English string file will have the ISO-639 two letter abbreviation
EN in the file name.

All strings files have a STR file extension.

2 Copy the entire the English string file.

3 Create a new string file for the target language in which you want to add a
translation.

Note: The string file must use the ISO-639 two letter abbreviation for the
language in the file name.

4 Paste the copied English string file into the new file.
Translating tailored modules 247

Get-Resources
5 Change the "translated string" portion of each string to the target language of
your translation.

6 Save the new string file.

The new translation strings will be available as soon as you stop and restart
the application server.

Configure Get-Resources to use new string files
1 Log in as an administrator (the administrator login page is located at

admin.jsp).

2 Click Settings.

3 Click the Common tab.

4 Enter the two letter ISO-639 language code for the languages you want to
support in the Locales field. The first code entered will be the default
language used. The other languages you define will be available in a
drop-down list.

5 In the Content type encoding field, enter the character encoding to be used
for the display language. The following table lists some of the common
character encoding formats.

6 Click Save at the bottom of the Settings form to save your changes.

7 On the Console form, click Reset Server to implement your changes.

Users will now be able to select the display language for their session used
when they login to the Peregrine OAA Platform.

Character Encoding Character Set

ISO-8859-1 U.S. and Western European character sets. This is
the default character set used by Studio.

Shift_JIS Japanese character set

ISO-8859-2 Polish and Czech character set
248 Chapter 7—Tailoring Tasks

APPENDIX

8
 Troubleshooting and FAQs
This appendix contains troubleshooting information for Peregrine Studio
and tailoring tasks.

This chapter covers the following topics:

Get-Resources Environment on page 250

Peregrine Studio on page 251

Scripting Errors on page 254

Tailoring Errors on page 256
Troubleshooting and FAQs 249

Get-Resources
Get-Resources Environment

This section describes warnings or errors that can be generated while running
a Get-Resources in your system environment.

Out of memory error
Problem

Your application server has run out of memory resources.

Solution

Get-Resources run best on a system with a minimum of 512 MB of RAM. If
you cannot add more physical memory to your machine, you can increase
the virtual memory space used on your Windows system. Adding virtual
memory will require more hard disk space and may degrade system
performance as cached information is saved to and retrieved from the hard
disk. Refer to your Windows help for information on setting or changing
virtual memory.

Cannot start Java – JRE must be installed
Problem

Peregrine Studio produces an error message when you attempt to create a
package or build a project.

Cannot start Java (‘jvm.dll’ not found). The JRE (Java Runtime
Environment) must be installed ...

Solution

Install a dedicated copy of the Java 2 SDK for Peregrine Studio to use. You
can install the Java 2 SDK from the Get-Resources Tailoring Kit installation
CD.
250 Chapter 8—Troubleshooting and FAQs

Tailoring Kit Guide
Peregrine Studio

This section describes common problems with write protections, conflicts,
and build errors generated with Peregrine Studio.

Cannot edit — components are displayed with grey background
Problem

Peregrine Studio displays some or all of your project components with a grey
background, and you cannot make or save changes to the project
components.

Solution

Peregrine Studio uses the grey background to indicate that an item is write
protected. The most common reasons that Peregrine Studio components are
write protected are:

A write-protected package is selected in the package selector.

The project (.adw) file is set to read-only.
Peregrine Studio 251

Get-Resources
Packages delivered by Peregrine are write-protected. You must save all of
your changes and additions to a user-created package extensions. If the
package selection box displays one of the Peregrine Studio default packages,
then your project will be write protected until you create and activate a new
package extension in which to save your changes.

Red exclamation point (conflict icon) displayed next to nodes
Problem

Peregrine Studio displays a conflict icon next to one or more of your project
components, and you cannot build the project. The conflict could be the
result of multiple packages attempting to change or modify the same
component, or the conflict could be the result of improperly defined package
dependencies.

Solution

To resolve the conflict you should first view more information about the
nodes displaying the conflict icon.

To view information about a conflict

1 Select a node with an exclamation point icon displayed next to the name
from the Project Explorer view.

2 Click View > Advanced Information. Peregrine Studio displays a new
information window at the bottom of the interface. This window displays
information on the conflict.
252 Chapter 8—Troubleshooting and FAQs

Tailoring Kit Guide
The information on selection will tell you whether you have a resource or a
dependency conflict.

Resource conflicts

Resource conflicts occur when two or more project components describe the
same thing. To resolve a resource conflict, delete or reconfigure one of the
project components that is creating the conflict. If the conflicting
components are part of separate package extensions, you can choose to
deactivate one of the package extensions to resolve the conflict.

Dependency conflicts

Dependency conflicts occur when a package extension attempts to modify a
package that is not listed as a dependent package. To resolve the conflict you
can choose one of two solutions:

Add the package you want to modify as a package dependency of the
conflicting package extension.

Move the changes in the conflicting package extension to another package
extension that already has the proper package dependencies.

Conflict icon

Information about the conflict
Peregrine Studio 253

Get-Resources
Scripting Errors

Information about scripting errors is displayed as text at the top of the main
frame and in the archway.log file.

Unable to find script file
Problem

The following error message is displayed when you select a form:

Unable to find script file for <name>

This message will also appear in the archway.log file.

Solution

This error message is usually the result of an invalid script file name or
adapter name.

Verify in Peregrine Studio that the form is calling a valid script file name. In
particular make sure that the script name does not use mixed case. Script file
names should be in all lower case. If you copied a script from another form
or Web application you may have renamed the script incorrectly.

Verify that the script calls a valid adapter. If the <name> value is the name of
a new adapter defined in the script file, then define the new adapter in the
Admin Settings module, stop and restart your application server, and then
restart the Archway server (using the Admin Control Panel) to correct the
problem.

If you have verified that the script file exists and uses the proper adapter, then
stop and restart your application server. This will refresh the adapter settings.
254 Chapter 8—Troubleshooting and FAQs

Tailoring Kit Guide
Script produces an ECMAScript error
Problem

An ECMAScript Error is displayed with the script name, source code, and
line number of the error when a form is displayed.

Solution

Open Peregrine Studio, review the error-producing script for typos, and
verify that it uses the correct function and schema names. For example, you
might have a function where msg is incorrectly listed as nsg. Correct any
errors and rebuild the project.

Note: ECMAScript is case sensitive and will return an error message if the
case does not match the object called.

Tip: If you have enabled the HTTP listener in Peregrine Studio, you can click
on the underlined script name listed at the top of the error message to
go directly to the script and line number of the error. Peregrine Studio
must be open for the hyperlink to work.

ECMAScript error: undefined value or property
Problem

The following error is displayed when you select a form:

ECMAScript Error: Error Message: Runtime error Function called on undefined value
or property

This error will also be displayed in the archway.log file.

Solution

Verify that the form calls the proper script name in the server onload script
attribute. Also check that the script name contains no typos and that it is
listed with the proper case. If the script name listed in the form is correct,
there is a possibility that there is a script name conflict. Each script in your
project needs a unique name. Try renaming your script to a new name,
updating the server onload script attribute, and rebuilding your project. If
renaming the script fixes the problem then you had a script name conflict.
Scripting Errors 255

Get-Resources
Tailoring Errors

The following sections describe some of the common errors associated with
tailoring Get-Resources. Refer to the sections below for solutions to common
tailoring problems.

Script output not appearing in form component
Problem

Data is not displayed in your Get-Resources form component. This problem
could be the result of a faulty script that is not generating an XML document
or the result of form components that are not properly mapped to the fields
of the generated XML document.

Solution

Verify whether your script is generating an XML document by enabling the
Show form information option and then looking at the contents of the Script
Output tab. If the script is working properly, you should see your
Get-Resources data encoded as in the XML document displayed on the Script
Output page. If you do not see an XML document, then your script has an
error.

If you can see data displayed in the Script Output tab, then the problem is
how you have mapped the form components to the XML fields. View the
form component properties from Peregrine Studio, and verify that the
Document Field attribute of the form component maps to an XML tag
displayed in the Script Output tab.

Too few parameters error
Problem

The following error message is displayed when you select a form:

ERROR:...: ***SQL Exception caught***

The script output displays the following error:

-3010: [...][...] Too few parameters. Expected 1.

These messages will also appear in the archway.log file.
256 Chapter 8—Troubleshooting and FAQs

Tailoring Kit Guide
Solution

There is an incorrect field mapping or typo in the schema used in this form.
Review the schemas used by this form and verify that there are no typos. Also
verify that all the attributes defined in the schema map to valid fields in the
back-end database. The value in the field attribute must match the field name
of the back-end database. This is particularly important for the ID attribute,
which must map to a unique numerical value that identifies each record.

Get-Resources always goes to redirection form
Problem

You have defined a redirection to another form in Get-Resources and the
source form always takes users to the redirection form regardless of the
search conditions and results.

Solution

Validate that the Condition attribute of the redirection is not blank. The
Condition value should match the value defined by the setCondition
function of your form’s ECMAScript. If the Condition attribute is left blank,
the default action is to redirect to the target form regardless of the returned
results.

Syntax error in FROM clause
Problem

The following error message is displayed when you select a form:

ERROR:...: ***SQL Exception caught***

The script output displays the following error:

-3506 [...][...] Syntax error in FROM clause.

This error will also be displayed in the archway.log file.

Solution

The schema name you defined for the form is wrong. The schema name
could be listed incorrectly in two places:

The form’s onload script may refer to the wrong schema name.

The <document name=value> does not match the schema file name.
Tailoring Errors 257

Get-Resources
258 Chapter 8—Troubleshooting and FAQs

Index
A
actions. See form components
activity component 40
adding

subdocument lookups 206
Archway

scripts 84
Archway Document Manager

and schemas 115
AssetCenter 201
authorization file

Peregrine Studio 21

B
bookmarks, adding in Studio 28
build options 45–46

build directory 45
character encoding 46
EJB user 46
exclude files 46
presentation folder 45
temporary directory 45

C
cart experience 223
cascading style sheets 38
component template 67–68
components

group of files component 41
group of modules component 40
group of schemas component 41

group of scripts component 41
group of strings component 41
hierarchy of 39
in Peregrine Studio 55
module component 40
relationships among 40–41

conflicts
defined 50
resolving 50–51, 253

creating
package extensions 47
schemas 133, 230

D
data validation

for purchase order 239
for request summary 238
methods of 237
tailoring tasks 166

dates, manipulating in scripts 90
default values

for purchase order 244
for purchase order line 244
for request line 220
for request summary 240
tailoring tasks 166

dependencies
setting for packages 49

dependency conflicts. See Conflicts
deployment directory 45
development environment
Index 259

Get-Resources
requirements for 22
DocExplorer Reference

adding 202
DocExplorers

tailoring tasks 165
Document field

format of names 176
document schema definitions. See schemas

E
ECMAScript 83
errors

sysntax error in FROM clause 257
too few parameters 256
Unable to find script file 254
undefined value or property 255

F
field labels, changing 171
field lookup 204
fields

making required 237
fields. See form components
fieldsection component 68
form component 40
form components

action 41, 78–79
changing schemas 174
common 67–79
component template 67
date picker 58
described 41
document table 74–75
field form components 171
fields 41
fieldsection 68–69
form columns 77–78
hidden data field 72
hiding 172
labels 171
lookups 41
making read-only 173
names in 176–178
redirection 73
selectbox 70–72

simple table 74
table link 75–76
tables 41
tailoring 168–169
tailoring tasks 165
text columns 76–77
text edit 69–70

forms
changing instructions 170
changing onload scripts 171
changing titles 169
server-side 84–85
tailoring tasks 165

framesets
displaying forms in 178

G
Get-Resources forms 186–200

catalog select list 191
purchase order line detail 196
purchase order summary 194
request line detail 189
request line selection 199
request summary 186

group of scripts component 41

H
HTTP Listener 33
HTTP listener

enabling in Peregrine Studio 33

I
installation

tailoring kit 18
instructions, changing in forms 170
interface components. See Form components 41
ISO character encoding. See character encoding

J
JavaDocs 112
JavaScript 83

L
lookup fields

adding 204
260 Index

Tailoring Kit Guide
subdocument lookups 206
lookups. See form components

M
messages, scripts 96

N
nodes 29, 252

group of schemas node 133, 230

O
onload scripts

changing in forms 171
defined 171

P
package extensions 47–49
packages

activating 48
deactivating 48
defined 46
dependencies 49

Peregrine Studio
authorization file 21

Personalization
lookup fields 204
requirements 201
with DocExplorers 201

Portal components
creating 182

presentation files 38
Project Explorer 29
projects

See also Web applications
components of 38
conflicts within 51
files within 42

R
resource conflicts. See conflicts
Rhino JavaScript Debugger 91–92

S
schema elements

 151

schema template example 139, 236
schemas

adding logical and physical mappings 133,
230

Archway Document Manager and 115
changing in form components 174
creating 133, 230
creating your own 132, 229
defined 114
document fields 175
elements 140–159
extension folders 119
extensions 116–131
identifying schema used 117
locating 118
sample 139, 236
tailoring tasks 166
testing from a URL 93–94
uses for extensions 120
using with DocExplorers 202

scripts
adding to Peregrine Studio project 89, 211
cartexperience 225
catalog 227
client-side 82
creating XML message objects 96
displaying variables in form components 180
ECMAScript 83
editing 86, 208
extending the request interface script

 213–219
extensions of 212
format of variables 181
JavaScript 83
list of references 112
object oriented usage 99
onload scripts 84–85
prototype property 99
request interface 227
roles of 84
samples 104–110
server scripts 83
server-side 82
tailoring tasks 166
testing from a URL 92–93
Index 261

Get-Resources
uses for 82
ServiceCenter 201
source files

opening in Peregrine Studio 21
string files

translating 246, 247
subdocument lookup field 206

T
tables. See form components
tailoring

common form components 67–79
form components 168–169

tailoring kit
installation 18

tailoring tasks 165
templates

ActivityCartExperience 224
templates component 39
testing environment

requirements for 22
titles, changing in forms 169
translating

tailored modules 245
troubleshooting

cannot start Java 250
conflicts 252
JRE must be installed 250
Read-only components 251
redirections 257
script error 255
script error Unable to find script file 254
script error undefined value or property 255
sysntax error in FROM clause 257
too few parameters 256
virtual memory error 250

U
UNIX

deploying tailoring changes to 52
URL

querying scripts and schemas from 92

V
variables

referring to XML attributes 181
visible flag

hiding form components 172

W
Web applications

viewing changes 35

X
XML

creating message objects from scripts 96
example of Document field names 177
example of script variable name 181
viewing source code 31
262 Index

	Contents
	Introducing the Get-Resources Tailoring Kit
	About this guide
	Conventions used in this guide

	Setting up a Development Environment
	Installing the Get-ResourcesTailoring Kit
	Installing the Get-Resources Tailoring Kit
	Opening the Get-Resources project
	Setting up a tailoring environment
	Setting up a development environment
	Setting up a testing environment

	Using Peregrine Studio
	The Peregrine Studio interface
	Project Explorer
	Drag and drop

	Best practices
	Avoid changing form definitions outside of Peregrine Studio
	Avoid enabling advanced options
	Avoid using the clean the target folders build option
	Clear your application server cache every time you build changes
	Create new or change existing templates to apply global changes
	Enable the HTTP listener and display form information options
	Set the color for your extension changes
	View referenced components with the lookup button

	Peregrine Studio Projects and Packages
	Peregrine Studio projects
	Project components
	Project component descriptions
	Project files

	Building a project
	Build options
	Setting project build settings

	Peregrine Studio project packages
	Saving changes with package extensions
	Activating and deactivating packages
	Package dependencies
	Setting package dependencies

	Warnings for conflicts
	Deploying tailoring changes
	Deploying to Windows platforms
	Deploying to UNIX platforms

	Understanding Project Components
	Peregrine Studio Components
	Adding components
	Types of form components
	Component template containers
	Fieldsection containers
	Text edit fields
	Selectbox fields
	Hidden data fields
	Redirections
	Simple table
	Document table
	Table links
	Text columns
	Form columns
	Actions

	Scripting
	Overview of scripts
	Types of scripts
	Where scripts are stored
	How scripts are used
	Editing an existing script
	Adding a custom script
	Date values in scripts

	Testing scripts
	Rhino JavaScript debugger
	URL queries

	Common message operations
	Using ECMAScript in an object oriented manner
	ECMAScript implementation in Get-Resources
	Name resolution in ECMAScript
	Using the object prototype for object oriented programming
	How to use object orientation for tailoring

	Sample scripts
	General script samples
	Selecting a field from a schema
	Calling other scripts and combining the results
	Form script sample
	Creating an XML document from a schema
	Working with dates in scripts

	References
	Sources for client-side JavaScript
	JavaDocs for the main Archway package

	Document Schema Definitions
	Understanding document schema definitions
	How to use schemas
	Schema extensions
	When to use schema extensions
	Creating schema extensions
	Identifying the schema to extend
	Locating the schema on the server
	Creating the schema extension target folders and files

	Editing the schema extension files
	Adding a new field to the Available Fields list
	Hiding an existing field from the Available Fields list
	Changing the label a field displays in the Available Fields list
	Changing the list of forms where a field is visible
	Changing the physical mapping of a field
	Changing the type of form component a field uses
	Adding subdocuments to the Available Fields list

	Creating custom schemas
	Adding a schema to your Peregrine Studio project
	Adding logical and physical mappings to your schema
	Sample schema

	Schema elements and attributes
	<?xml>
	<schema>
	<documents>
	<document>
	<attribute>
	<collection>
	Documents
	Subdocuments

	Tailoring Procedures and Testing
	Tailoring Tasks
	Tailoring workflow
	List of tailoring tasks
	Forms and form components
	DocExplorers
	Scripting
	Schemas
	Data validation
	Default values
	Translation

	Tailoring forms and components
	Changing a form’s title
	Changing a form’s instructions
	Changing a form’s onload script
	Changing a form component’s label
	Hiding a form component
	Changing a form component to read-only
	Changing the schema that a form component uses
	Changing the document field that a form component uses
	Displaying a form within a frameset
	Adding Get-Resources to an existing frameset
	Displaying a script variable in a form component
	Creating a portal component

	Tailoring Get-Resources forms
	Best Practices
	Changing the request summary screen
	Changing the request line detail screen
	Changing the catalog select list
	Changing the purchase order summary screen
	Changing the purchase order line detail screen
	Changing the request line selection list

	Adding personalization
	Supporting personalization
	DocExplorer configuration required in Peregrine Studio
	Adding a DocExplorer reference
	Personalizing a DocExplorer reference
	Adding personalization form components - lookup fields

	Tailoring scripts
	Editing an existing script
	Adding a custom script
	Extending Get-Resources scripts
	Changing request behavior
	Example: adding a field from one schema to another schema
	Changing purchase order behavior
	Request line default values
	Setting request line default values from catalog entries
	Overview of the cart experience code
	The ActivityCartExperience template
	The cartexperience script
	The request interface scripts
	The catalog scripts

	Creating custom schemas
	Adding a schema to your Peregrine Studio project
	Adding logical and physical mappings to your schema
	Sample schema

	Adding data validation
	Making a field required
	Request validation
	Purchase order validation

	Assigning default values
	Setting request default values
	Setting request line default values to values in a request
	Purchase order default values
	Purchase order line default values

	Translating tailored modules
	Editing existing translation strings files
	Adding new translation strings files
	Configure Get-Resources to use new string files

	Troubleshooting and FAQs
	Get-Resources Environment
	Out of memory error
	Cannot start Java - JRE must be installed

	Peregrine Studio
	Cannot edit - components are displayed with grey background
	Red exclamation point (conflict icon) displayed next to nodes

	Scripting Errors
	Unable to find script file
	Script produces an ECMAScript error
	ECMAScript error: undefined value or property

	Tailoring Errors
	Script output not appearing in form component
	Too few parameters error
	Get-Resources always goes to redirection form
	Syntax error in FROM clause

	Index

