HP Software

() |

invent

Unified Correlation Analyzer

User Guide

Edition: 1.3

For the HP-UX Itanium Operating System

January 2010

© Copyright 2010 Hewlett-Packard Company

Legal Notices

Warranty

The information contained herein is subject to change without notice. The only warranties for HP
products and services are set forth in the express warranty statements accompanying such products and
services. Nothing herein should be construed as constituting an additional warranty. HP shall not be
liable for technical or editorial errors or omissions contained herein.

License Requirement and U.S. Government Legend

Confidential computer software. Valid license from HP required for possession, use or copying.
Consistent with FAR 12.211 and 12.212, Commercial Computer Software, Computer Software
Documentation, and Technical Data for Commercial Items are licensed to the U.S. Government under
vendor's standard commercial license.

Copyright Notices

© Copyright 2010 Hewlett-Packard Development Company, L.P.

Trademark Notices
Adobe®, Acrobat® and PostScript® are trademarks of Adobe Systems Incorporated.

HP-UX Release 10.20 and later and HP-UX Release 11.00 and later (in both 32 and 64-bit
configurations) on all HP 9000 computers are Open Group UNIX 95 branded products.

Java™ jsa U.S. trademark of Sun Microsystems, Inc.

Microsoft® , Windows® and Windows NT® are U.S. registered trademarks of Microsoft Corporation.
Oracle® isaregistered U.S. trademark of Oracle Corporation, Redwood City, California.

UNIX® isaregistered trademark of The Open Group.

X/Open® is aregistered trademark, and the X device is atrademark of X/Open Company Ltd. in the
UK and other countries.

Contents

PrEIACE .. nnnes 9
Chapter 1 INtrodUCTIONooo o 13
Chapter 2 QUICK Start GUIAEuuiiee e 15

2.1 SHAIM-UD coiiiiec e 15

2.2 Basic System Configuration............cuuueiiiiiiiiiiiee e 17

2.3 Running the UCA ApPlICAtiONS...........uuiiiiieiiiiiiee et 17

P S 1111 (o (0111 o PO P T OPPPRP PPN 18
Chapter 3 System DeSCIIPLIONuuuiiieieiieieeiiiee e 19

Bl SHALE MESH e e 19

G0 |V =T o 1@]] 1T o £ PEERR 19

3.3 Mesh Object RelationNShiPsoccoiiiiiiiiiiie e 20

3.3.1 Composition or Parent-Child.............cccooiiiiiiiiii e 20

3.3.2 Aggregation or UNcle-Nephew............oeeiiiiiiiiic e 21

3.3.3 ASSOCIALION OF PEEI-PEENeiiiiiiiiieiiiiie ettt 21

3.34 SPECIAIZALION ...ceie i 21

34 MEtaMOAEL ... e e a e e e 21

3.5 Model Builder and Model Database............ooocuuviieiiiiiiiiiiiiiiiee e 22

3.6 EXample State MESN......ccuuiiiiieii i 23

3.7 Data Collector and EVENt MANAGETcccceeiiiiuuiiiiieeeeeieiinieeeeeeesssninneeeeeeeennnnes 25

3.8 AffECtEU ODJECES. . eeiiiiiii it a e 26

3.9 INFEIrENCE ENQINE ...coiiiiiiiiie et a e e e e e e 28

3.10 Notification Manager and Remote Handler..........ccccccoooiivieiiiee e 29
Chapter 4 The UCA Home Page and System Managerccceevvvvvnnnnnnn. 31

4.1 Starting the Tomcat ‘Minimal Web Server ..., 31

4.2 Starting the SyStem ManNaQErcoccciviiiiiee e e e 31

4.3 Adding, Modifying and Deleting USErS........cccooviiiiiiieieeciciieiieee e sesiieeeeaee s 33

4.4 SEArtiNg UCA ...ttt a e a e 34

A5 SEOPPING UCA L.ttt e e e e s a e e 35

4.6 Configuring the Metamodel............cooiiiiiiiiiiee e 36

4.7 Loading Data into the MOAelcooiiiiiiiiiee e 36

T B I = To] g [0] 1 ox J PR 36

4.9 MAINTENANCE. ...ttt e ettt e e e e e s e aab e e e e e e e e e s aanbbeeaaaaaeas 38

410 TOOIS et 39
Chapter 5 Defining the Metamodel ... 44

5.1 Example Class MOAELoooiiiiiiiiiiiiiii et 44

5.2 AUOMALIC CrEALIONccoiiiiiiiiiiiie ettt st e e s srbe e e e 45

5.3 MaNUAI Creation........ceiiiiiiiii ittt ee ettt e st e e st e e e s snbe e e e s snbeeeeenes 46

5.4 Metamodel DeSign PatternsS.........coccuvviiiiiee i e e 51

54.1 EQUIPMENT TIEE ...ttt e e e e 52
5.4.2 NOFMAIISE ...t e e e e e aee s 53
5.4.3 LINK HANGIET ... e 54
5.4.4 Physical-LOGICal VEE.......c.oi ettt e e 55
Chapter 6 Creating the Model Database Using the System Manager....... 57
6.1 Generating the Model Database Structurecccccoovevvveeiiee e 57
6.2 Populating the Model Database...........cceveeiiiiiiiiiiieee e 58
6.2.1 INitial POPUIALION.cciiiiii e 58
6.2.2 Updating the Databaseeeeiiiiiiiiiiiiiiieee e 60
Chapter 7 The UCA APPlICAtIONScoi i 62
7.1 The SCeNArio MANAGETeeiiiiiiiiiiiiieet ettt e e et e e e e e e s sabbeaeeeaeeeaaanne 63
7.1.1 IMIENU BB ...ttt e et s et s bt e e e e nnnnnes 64
7.1.2 TOOI BAI ..ttt 65
7.1.3 Scenario BUIIAEr TIEEociiiiiiie et 66
7.1.4 Scenarios, Filters, Mappings and Rules Summary LiSt...........cccccceeeennnnes 67
7.1.5 SEATUS BAI ... 67
7.2 The MESH VIBWETeviiiiii ittt 67
7.2.1 MEINU BT .o 68
7.2.2 TOOI BAY ...ttt ettt e e e e e e e e b e e e e e e e aaae 68
7.2.3 (oo (=] B I TP UTTTT TR 69
7.2.4 LTS T @] o] = od 1 SRR 70
7.2.5 Notifications VIieWer Dialogcuuveeiiiiiiiiiiiee e ee e e e e 71
7.2.6 SEATUS BAI ... 72
Chapter 8 Creating Scenarios, Filters, Mappings and Rules 73
ST RS Tt =T o oV o S PP TPPRPT 73
ST A || (= = TP UPUPPT 74
8.2.1 Using user-Defined event fields in a filter ..., 76
8.2.2 Y g T aTo g TN 1L =T ¢ R 76
8.2.3 Using the Regular Expression Wizard with Filters...........ccccovvvveveeiiiinneen, 78
SRS T |V = o] o1 o < J PP UPUPPT 79
8.3.1 Using the Regular Expression Wizard with Mappings........cccccceeeeeiiiiiinen. 82
8.4 RUIBS ... 85
8.4.1 Rules and user-defined event fields ... 87
8.5 RUIE tEMPIALES ...ttt e e 88
8.5.1 Templated RUIES ... 88
8.5.2 RUIBSELS ... 89
8.5.3 USING @ TUIESEL ...ttt e e e e e e e e e e s aees 90
8.5.4 Generating the rules from the rule template ..., 90
8.6 Deploying Scenarios, Filters, Mappings and Rulesccccccovviiiiieieinnnns 90
Chapter 9 Configuring Rules and ACtIONScoooeviiiiiiiiiiiiiie e 92
0.1 FOMMAL. .. 92
9.1.1 SHUCTUIE <. s 92
9.1.2 RUIE CONAILIONS....cuiieiiiieirei e e 93
9.1.3 ACHIONS ..ot 94
9.2 Example RUIES @Nd ACHIONSccooiiiiiiiiiiiie et 96
9.2.1 Correlation Scenario - DTV Site Power Failurecccccoiiiiiiieennnes 96
9.2.2 Correlation Scenario - DTV Service IMpact..........cccocvvveveeeesiiciiineeee e 115

9.2.3 Correlation Scenario - DTV MaiNtENANCEoeveeeiieeveiie et eeeeees 117

Chapter 10 Alarm INtErfacescooieii i 117
10.1 Local SOCKEet INtEITACEccciiiiiieiiiiiie e 118
10.2 WeDb Service INTErfaCE.cciiuiiiii i 118
10.3 Supported EVENt MESSAQES.oicuureiiieaee ittt e e e e ettt e e e e e e e siibeee e e e e e e e anes 118
10.3.1 User-defined event fieldsueeeiiiiiiiiii e 119
10.3.2 EVENEMESSAQE ...cooieieee e ettt 119
10.3.3 Event State Change MESSAQESccceeviiiiriiiiieeeisiiiiieeee e e e s s snreaeeeee e e e e 121
Chapter 11 Data and calculator objectS......cccooevviiviiiiiiiii e, 125
11.1 Data ObjJect AttrIBULESveiiii e 125
1111 RAW DALIA c.eeiiiiiiiie ettt 125
11,12 DENVEA DALAcceiiieiiiiieie ettt e e e e e e e e e e e e e aaaes 125
11.1.3 LASt CRANQGE FEASONeeiiiiei ittt e e e ettt e e et e e e e e e e sabbe e e e e e e e e aanes 125
11114 BASE ClaSS...ciiiiiiiii ittt 126
11.1.5 UNIQUE FEFEIENCE ...uueeiiieeee ettt e e e e s ar e e e e e e e ennes 126
110,68 TIMEE STALE ..eeeiiiie ettt ettt e et e e e e e e e e s e e e e e e e e e e aanes 126
11.2.7 Timer state Changedoooiiuiiiiiii e 126
11.2 Data ObJeCt LIfECYCIE ..uuuiiiiiii it 126
11.2.1 Initialise Data ODJECE......cciieiiiiiiiiiiee e 126
11.2.2 PopuUlate raw data.........coooiiiiiiiiiiiiieaae e 128
11.2.3 Populate derived data..........occcuuieiiiiioiiiiiie e 128
2 S D T- | v- We] o] [Tox A= Tox o] o 1SR 128
11.3 Calculator obJeCt lIfECYCIEcciieeiieiiiiee e 129
11.3.1 Calculator ConfiguIationc..uueiiiieiiiiiiiieie e 129
11.3.2 Calculator ACLIONSeeiiiieiiiiiie e e e e 130
11.4 Example data 0bjeCct SCENANIO.........uuviiiieiiiiciiiiiie e e e 131
11.4.1 Example Rule Conditions for ‘create data object’............cccoevcvvvvvvreeninnnns 131
11.4.2 Example Rule Conditions for ‘refresh data object'............cccocciiieiiernnnnns 132
11.4.3 Example Rule Conditions for ‘perform calculation’...............cccoeeeieennnnns 132
Chapter 12 Time Dependent Event Correlation...........cccceeeveeeiiiiiiiiiinnnnnnn. 133
12.1 Relative and absolute time comparisSon OpPerators.ccccceeviviiiieeeeeeennnnns 133
12.2 COUNEAOWN TIMEIS ...iiiiiiiiitee e ettt e e ettt e e e e e e et e e e e e e e e snnbeaeeaaeeeaannes 134
12.3 System Operating MOUEScoccvuiiiiieie e 136
12.3.1 Standalone MOAE........cooouiiiiiiiiiie e 136
12.3.2 RESIHIENE MOUE ... e e 136
Chapter 13 Resynchronization with Event SOUICescccevvvvevvvvnnnnnnn. 138
13.1 Event ReSYNChroNiZationcccuuiiiiieeiiiiciiiiie e s e e e e e e e e 138
13.2 Primary/Standalone Server Initial Resynchronization...............occcoeinnnnns 139
13.3 Primary/Secondary Inter-System Resynchronizationcccccocveeieininnns 142
13.4 Server Resynchronization Following Connection Re-establishment............. 144
13.5 Replay Event List CONStIUCLION.........cciiiiiiiiiiiiiiie e e e 145
Chapter 14 Value PacKsoovuuiiiiie e 146
I 0t R 1 1 o o [T £ o o PP TRPPR 146
I I T XY o 1o o OSSR 147
14.2.1 INtErNaAl STTUCKUIE ... e e 147
T4.2.2 ACHONS ...ttt ettt e e e e et e e e e e e e e e e e e e e e e e e aane 147
14.2.3 CONfIQUIALION.cciiiiiieie e e s e e e e e e e s e e e e e e e s e nnnes 147

I R Y o To [£ 147

L1A.2.5 RUIBS ..ottt ettt sttt et nane s 147
I S Yol o £ TP TP T PPPUPPRPPPT 147
14.2.7 VP MaANIfESt...uei it 147
14.3 Value pack LIfECYCIEuvveeieeee i 149
14.3.1 Value Pack Deployment PrOCESS......ccoiiiuuiiiiieaeeiiieieeee e e e e 149
14.3.2 Start UP PrOCEAUIEeeiiiiie it e ettt e et e e e e e e e ee e e e e e e e nanes 150
14.3.3 Inventory and Mesh Update EVENLS..........ccccceeeeeiiiiiiieiee e 151
14.4 Deploying @ VAlUE PACKcccieeiiiiiiiiiiiee e s seceeee e e e s s s e e e s s s snrrar e e e e e s e e 151
1441 HOW O DEPIOY ..ottt e e e e e 151
14.4.2 HOW O UN-0EPI0Y ...t 152
14.4.3 Listing all active value PACKScceeeiiiiiiiiiiiee e e 152
14.4.4 Deploying a value pack ONn Start UP........ccccuveereeersiiciniienee e e seiieeeeee e e 152
14.5 Supplied Value PACKScoiiiiiiiei e 153
1451 SYSIEM GCHONS....coiieieieii ettt e e e e e e e e e e e 153
14.5.2 RESIIENCE ..ooiveieeie ettt 153
14,6 ASSUMPLIONS. . .uuiiiiiieeiiiitieereee e e s sstetee e e e e e s ssstnae e e e e eesssnsteaeeraeeessannsreneeeaeeesannns 153
G R A\ Fo 0 =T o 1= (ol 153
14.7 CUIreNt LIMITAtIONS ... iieie ettt e e e e e e e s s e e s e b eesaaa e 153
Chapter 15 Reference Informationoiiieiiiiiiiiiiiiiii e 154
15.1 ODbject TYPE ALHDULESoeiiiiiiiiiee e 154
L0 0 R @ 1o = S PO P PP TTOURRN 154
700 7 @1 o1 [o I 10U o OSSR 156
15.1.3 ASSOCIAtE GIOUP ...oovevriieeeeeeiiiiitieeeeeesssaeintereeeaessssnteneereeeesssnnssnneneeeessannnns 158
15.2.4 NOUFICAION ..eeeiiiieiiiteeee e e e e 160
L0 ST T 1T | S TSRO P ORI 162
I15.1.6 SYS BIM et ———————— 163
15.2 ACHONS ittt 166
15.2.1 External and Synthetic Alarm RePOItS.........ccoieiiiiiiiiiiieeeiniiiieeeee e 166

15.2.2 ACHON GFOUPS ..oeiiiiiiiieetee e e ettt e ettt e e e e e s bbb e e e e e e e e annbeeeeeaaeeaaaanns 168

Figures

Figure 1 - The UCA NOME PAGE -..eeeiiiiiiiiitiiieit ettt ettt a et e e e e e e e sabbaeeeaa e e e aans 16
Figure 2 - The UCA SYStEM MaNAGETuuuiiiieeeieiiiiiiieeeeeesesiteeeeeeeesssnnsresreeeesssnnnsaneeeeessanns 17
Figure 3 - UCA AIrCIIECIUIEvviiiiiie et ee ettt e e s e e e e e e e e e e e e e e s snananeeeeeeeaanns 19
Figure 4 - The UCA HOME PAJE ...uiviieeii ettt ettt e e e e e s et r e e e e e s snananeeaaeeenanns 32
Figure 5 - The System Manager USErs Tabcccocciiiiiiie it re e 34
Figure 6 - The Status tab showing the system started............ccccvveeeei i 35
Figure 7 - The System Manager — DIiagnOStiCS tabcceveeiiiiiiiiiiieee e 36
Figure 8 - The System Manager — Maintenance tabooocuviiiiiiii i 38
Figure 9 - The System Manager — TOOIS 1Acooiiiiiiiiiiii e 40
Figure 10 - The Fired RUIES VIBWETuuiiiiiieeeieeeie ettt e e e e 41
Figure 11 - The Working MeMOIY VIBWETccccoiiiiiiiiiieeie ettt et e e ee e e e 42
Figure 12 - The Working Memory Object Details WINdOWccoooeiiiiiiiiiiiiiiiiiiiiieeeeeee 43
Figure 13 — The Model Tab — Importing an XMI File.........cooiiiiiiiie e 46
Figure 14 — The Model Tab — meta-model management...........ccccceeeeiveciiieieee e 57
Figure 15 — The Data-load Tab — inventory managementccceeeevieeiiieeieeeeecceiiiieeeee e 59
Figure 16 - The Applications LOGIN PAQEccuviiiiiiiiiiiiiiee ettt e et e e e ee e e e e 62
Figure 17 - The UCA ApPliCatioNS PAgE.......uuviiieiiiiiiiiiiiiie s ceiie e s siteee e e e e ee e e e e 63
Figure 18 - The SCeNario MANAQGET..........ccuuuriiieeeeieicieiee et e e e s s st er e e e e e s st e e ae e e e s sntaraeeeaaeaeannns 64
FIguUre 19 - The MESH VIBWETuviiiiie ettt et e e e e e s r e e e e e s eaaaaeeeaaeeeaanns 68
Figure 20 - The Search for InStances dialogoouuveiiiiiiiii e 70
Figure 21 - The Create Alarm didlogueiiiiiaiiiii et 70
Figure 22 - The Notifications VIEWer DIalogocuviiiiiiaiiiiiiieeee e 72
Figure 23 - The Add New SCenario DIi@logcouuiuiiiiiiiaaiiiieiee e a e 73
Figure 24 - The Add New Filter DIialogueeeiiaaiiiiiiiiiiie et 75
Figure 25 - The Add New Mapping DialOgccceeiiiciiiiiiiie i e e ee e e e 82
Figure 26 - The Add New RUIE DiIal0g........cuuuiiiiiiiiiiiiiieiie et e e s e e e e e e 86
Figure 27 - The Validation Errors DialOgceeeeeiiiiiiiiieiie e ieciiiie e e e st e e e e e e sniraaeeee e e e 91
Figure 28 - Operators and EXPrESSIONS.uuuviiieeiiiciiiiieeteesisiiiirereesesssssssreereeeesssnsnsaereeeeessnns 94

Preface

This User Guide covers the following topics:

An introduction to the concepts used in correlation for problem detection, service impact
and root cause analysis

A ‘quick start’ guide to starting up, configuring and shutting down the system.

A description of the UCA architecture and the fundamental concepts at the heart of the
system.

Use of the UCA System Manager GUI.

Defining the UCA metamodel.

Creating the UCA model database.

A detailed description of the UCA Scenario Manager and Mesh Viewer GUIs.

A description of how to use the Scenario Manager GUI to create and deploy scenarios,
filters, mappings and rules.

An in-depth description of how to configure UCA rules and actions.

A description of the UCA alarm interfaces.

Reference information on object types and their attributes.

This guide forms part of the set of UCA documentation, the other guides are listed as part of the
associated documents further in this guide.

Intended Audience
This document is aimed at the following personnel:
¢ Network Management Customers
e Solution Architects
e System Integrators
e Solution Developers

o Software Development Engineers

Supported Software

The supported software referred to in this document is as follows:

Product Version Operating Systems
Unified Correlation Analyzer 1.0 HP-UX 11.31 for Itanium

Typographical Conventions

Couri er Font:

e Source code and examples of file contents.

e Commands that you enter on the screen.

e Pathnames
o Keyboard key names
Italic Text:

e Filenames, programs and parameters.

e The names of other documents referenced in this manual.

Bold Text:

e Tointroduce new terms and to emphasize important words.

italicised red text:

e Important or particularly noteworthy information

it'sagood ideato create a shortcut to
é) this URL on the web browser’s

Hints and Tipse.g. tool bar

e Hintsdisplayed as a boxed text wth a ‘thumbs up’ graphic

Acronyms and definitions

The following acronyms are used in this documentation:

Acronym Definition

ER Early release (Beta version of the
product)

MO Managed Object

MR Manufacturing Release

M SL Management Specification Language

0oC Operation Context

0S Operating System

e

UCA Unified Correlation Analyzer

Associated Documents

e HP UCA Ingtallation and Configuration Guide

10

e HP UCA Advanced Configuration and Troubleshooting Guide
e HP UCA TeMIP Integration
e HP UCA TeMIP Client

For afull list of TeMIP user documentation, refer to Appendix A of the TeMIP
Product Family Introduction.

e HP TeMIP Client Installation and Configuration Guide

HP TeMIP Web Services Installation and Configuration Guide
HP TeMIP Software Customization Guide.

TeMIP-Service Manager OSSJ Trouble Ticket Liaison — Installation &
Configuration Guide

TeMIP-Service Manager OSSJ Trouble Ticket Liaison - TeMIP Liaison
Adapter System Integration Guide

HP Service Manager — Installation Guide

Support

Please visit our HP Software Web site at: www.hp.com/go/hpsoftwaresupport for

contact information, and details about HP Software products, services, and support.

The Software support area of the Software Web site includes the following:
» Downloadable documentation
e Troubleshooting information
» Patches and updates
» Problem reporting
e Training information

e Support program information

11

12

Chapter 1 Introduction

Managed networks exist everywhere — obvious exampl es include tel ecommunications networks,
utilities providing water, gas and electricity and TV and radio broadcast networks.

Recognising that such networks are built from equipment that can fail, manufacturers of network
components usually build in self-monitoring systems of various levels of complexity, or at least
provide a capability for an external system to monitor their current status. Depending on the level of
sophistication and redundancy built in to the network component, low level failures and errors may be
handled automatically with only a cursory event report to the outside world that something has
happened. On the other hand, less resilient equipment may deliver a constant stream of event reports as
its status changes.

Regardless of the level of sophistication of the individual network components, a managed network
will usually employ centralised or regionalised management capabilitiesto allow network operatorsto
monitor the status and performance and to re-configure the network in response to changing operational
needs or failures.

This arrangement works well if the managed network can be monitored and maintained by a reasonable
number of experienced network operations personnel. Under these circumstances, human operators are
responsible for correlating the streams of state change events and performance information received
from individual network components and, based on their experience of operating that network under a
range of operational and fault conditions, adjusting the operational parameters to provide the required
level of serviceto their customers.

A major problem arises however when the size and complexity of the network exceeds the capability of
the operators to correlate the streams of information received fromit. In this situation, network
operators often turn to event correlation systems in an attempt to automate some of the analysis
workload and speed up fault resolution times.

Event correlation systems typically break down into two types:

e Out-of-the-box solutions, providing arange of standardised network and equipment
models and problem analyses for commonly available technologies e.g. IP
Communications Networks.

e Rule-based, low-level correlation toolkits, based on Inference Engine technol ogy,
suitable for constructing localised stream-based correlations.

Each of these types of system has their own advantages and disadvantages. The former are
characterised by rapid deployment but at significant cost, targeted at specific technol ogies where the
investment in developing the correlation solution is justified by the number of similar installations that
may benefit from the technology. The major problem however is that the manufacturer determines the
range of correlations available and developing user-defined correlations is often technically beyond the
ability of the user. Users are also reliant on the supplier providing a continual stream of equipment
models as new versions or types are introduced into the market place.

Users of low-level toolkit based solutions benefit from the ability to develop and deploy stream-based
correlations from point sourcesin the network e.g. for event de-duplication or counting over time.
Unfortunately, more complex correlations such as those requiring knowledge of the implicit
relationships between network components and how their states change over a period of time, result in
an explosion in complexity. Typically, the size of the rule base quickly becomes unmanageable and
often requires additional, expensive software development to achieve the desired result.

UCA combines the best of both of these approaches, making use of data-driven network models and
simple yet powerful high-level rules to achieve complex correlations. A user with problem domain
knowledge can quickly and easily construct correlations for any type of network using the visual tools
provided. Thisis achieved without having to invest in understanding proprietary technologies or
recourse to complex rules and expensive and time-consuming software devel opment.

The design of UCA takes asiits starting point the mental process followed by an experienced network
operator when trying to solve a particular problem. Typically, this process involves assimilating state
and performance change events provided by the network management system into a conceptual model
of the managed network and analysing the resulting mental picture to work out what the problem with
the network is. Once this has been done, the underlying root cause of the problem can be investigated
and resolved and the impact on managed services (and associated Service Level Agreements)
determined through correlation. The operator will often have to take into account the diversity of

13

network equipment and variation in reported detail when assimilating event data - effectively applying
a‘normalisation’ process to the information received from the network management systems.
The following diagram summarises this process:

. Problem Resolution SLA Impact
A v A
e o X0 .
- Root . -
In{/oorlrﬂr?\t‘laon Cause ?:qr";; Information
. Analysis P Value
Correlation (:
Problem Detection - N ----- » Problem
Analysis Report

Normalisation
Assimilation :

f

State & Performance Change Events
From Managed Network

In essence, the network operator is acting as an information normaliser, analyser and correlator,
condensing large volumes of low value information and generating small amounts of high value
information e.g. what the problem is, what the root causeis (and how to fix it) and finally what the
impact is on managed services.
UCA achieves the same result as the human operator - quickly, reliably, efficiently and automatically,
vastly improving fault resolution times and reducing service impact.

14

Chapter 2 Quick Start Guide

This chapter provides a high-level guide to starting up and using the system. A detailed explanation for
each of the featuresintroduced in this section is provided in subsequent chapters.

2.1 Start-up

1. Onthe server, start the UCA server asfollows:

cd $UCA _HOVE/ bin
uca_start

2. Using aweb browser (such as Internet Explorer 6 or 7 or Firefox 2) on aclient machine,
navigate to the URL http://hosthame:18080/uca where hostname is the DNS name or
| P address of the server machine.

it'sagood ideato create a shortcut to
é’ this URL on the web browser’ s tool bar

The UCA home page will be displayed (see below).
The two main buttons on this page are:

e UCA Applications—thisis used to access to all authorised applications,
according to role. e.g. the Scenario Manager and / or the Mesh Viewer (see later
chapters for details).

e UCA Manager — thisinvokes the System Manager GUI (see below). A user
must have manager role privilege to invoke this GUI.

In addition, the two links at the bottom left of the page are:
e Manage Tomcat —thisis used to access the standard Tomcat Manager web

page
e Run ArgoUML —thisrunsthe ArgoUML design tool.

15

&

Applications button
Manager button

-
—

Tomcat Manager &
ArgoUML shortcuts

A

Figurel - The UCA home page

3. Click onthe UCA Manager button.

4. Enter syst emasthe username and sy st emas the password.

Oncelogged in as ‘system’, it is strongly recommended that the username and / or
password for the ‘system’ user ischanged. A currently logged on user cannot
modify their own details, so to do this, in the System Manager GUI select the
Userstab, create a new user with manager role. Then exit the System Manager
GUI and restart it, logging on asthe newly added user. Finally select the original
system user and enter the new username and / or password details and click on
Update.

The UCA System Manager GUI will now be as shown below.

16

Figure2 - The UCA System M anager

2.2 Basic System Configuration
1. Fromthe Userstab, users may be added with relevant roles, modified or deleted as
appropriate.
2. Fromthe Model tab, new metamodels may be:

created manually

loaded from alocal directory

saved to alocal directory

imported from an XMI file (previoudly created with ArgoUML)
added to the metamodel Library,

deployed into active use

Details are provided in later chapters

3. Fromthe Data-load tab, model data may be loaded from CSV filesinto the model
database. Details are provided in later chapters.

2.3 Running the UCA Applications

1. Fromthe UCA home page click on the UCA Applications button.
2. Enter avalid username and password in the corresponding web page.

3. The UCA applications web page will be displayed showing the Scenario M anager
button and / or the M esh Viewer button, depending on the roles configured for the
associated username.

17

4. Clicking on the Scenario Manager button will invoke the Scenario Manager GUI. This
isused for creating and maintaining scenarios, filters, mappings and rules and deploying
them into active use (see later chapters for details).

5. Clicking on the M esh Viewer button will invoke the Mesh Viewer GUI. Thisis used for
real-time monitoring of events within the UCA state mesh, viewing ‘notifications’ and
viewing the model data (see later chapters for details).

2.4 Shutdown

1. From the Status tab, select Shutdown

18

Chapter 3 System Description

This chapter provides a detailed description of the UCA architectural components and describes the
fundamental modelling concepts, with the aid of various examples, at the heart of UCA.
The UCA system architecture is shown in the following diagram:

External
Inventory . Model Alarm
DB DB Source

A

Mesh
Builder LTS
Event DB Handler
—

1 Meta-

<_.‘

v v Model
— bata [Event A State ry Notlfll)c;tlon
Alarm »| Collector | VTS | Mesh H o >
Sources > iyr—— H nference v -
H N
: Objects | | & > Engine | 5| Notification f E
vy SsSs H A Manager H
L] L] - L] L]
- L] - L] -
L] L] L - L]
= ROLLLLLLLLELEEEL LLLIEETEER LT FERETTL -
] * = - =
o o* . siafammnsanunannEnEnnannnnn s nn
Flli_e;s & “’0 . "‘0 E y g
M .
P Ryiés Poet o*

)R -4 . v
Scenario Mesh System
Manager Viewer Manager GUI
GUI GUI

Figure 3 - UCA Architecture

The sections below provide a general description of the function and operation of each component of
the system.

3.1 State Mesh

Fundamental to the operation of UCA isthe state mesh. At its simplest level, it isa structural model of
the managed network it is attached to. It incorporates a set of objects, each representing some (physical
and / or logical) component of the managed network, linked together by a set of navigable (associative,
containment and / or inheritance) relationships. On a more complex level, the state mesh is also a state
model of the managed network, maintaining in real-time the current state of each modelled object and
providing pre-defined or rule-driven paths for states to propagate between the component objects.
From the point of view of the user, the availability of the state mesh considerably simplifies the whole
process of constructing rule-based event correlations. Thisis because it handles the following tasks that
are traditionally the responsibility of the defined rule-base in simpler systems:
e Dynamic establishment and maintenance of relationships between modelled network
components.
¢ Dynamic establishment and propagation of state information between modelled network
components.

3.2 Mesh Objects

UCA provides avery flexible modelling capability and places no restrictions on the type of objects that
can be modelled in the state mesh. In addition, there is no need for a one to one correspondence
between the model types supported in UCA compared with those available in the event source because
incoming events can be re-mapped to one or more destination objects of any specified type.

19

This degree of flexibility is achieved in part because UCA uses a single type of object —amesh object
—to provide the underlying implementation of any type of modelled entity. A mesh object is
characterized by three attributes:
e Base Class—the fundamental or ‘super-class’ of entity that it represents e.g. Transmitter
e Sub Class—the specialized or ‘sub-class' of entity that it represents e.g. Digital
Transmitter, Analogue Transmitter
e Unique Reference — an identifier that uniquely identifies the object. Note that depending
on mapping configuration and availability of information in the incoming event or an
external source, thisvalue may be a Fully Distinguished Name (FDN) i.e. unique
throughout the entire system e.g. Site_66_Transmitter_3, or a Relative Distinguished
Name (RDN) i.e. unique throughout all instances of objects of this base classrelativeto a
parent object e.g. Transmitter_3, achild of Site_66.

This has considerable advantages for users because an event source, for example a network
management system, can model monitored elements at arelatively coarse level, and events can be
mapped to a more fine-grained model supported by UCA provided sufficient information is available
e.g. inthe event itself or an external database, to allow the mapping to occur. This potentially reduces
the complexity (and cost) of implementation of a new event source system. It also removes the need to
‘re-engineer’ an existing source system when amodel is added or extended. Finally, it allows more
complex analyses to be carried out by UCA than would otherwise be possible using the event source
model alone.

UCA can also model elements from which events are not directly received by an event sourcee.g. a
fibre connecting two ports, or a service implemented by a number of components that may never
directly receive alarm or performance events. This capability allows UCA to build and maintain a
complete correlation model. It isalso possible for UCA to infer and modify the state of such objects
and assign aproblem ‘root cause’ or ‘service impact’ directly to them.

Because there are no restrictions on the types of objects that can be modelled, UCA is able to support
objects that represent any kind of physical, logical, service or abstract entity. Examples of non-physical
entities include timeslots on a communications link, a mobile network ‘drive trial’ carried out over a set
of pre-defined network cells or a cross-domain service implemented from a number of network
components and sub-services.

3.3 Mesh Object Relationships

The ability to flexibly model network entities is an important feature of UCA, however the value of
such a modeling capability is limited without the corresponding ability to model relationships between
those entities. For this reason, UCA provides comprehensive support for implementing relationships
between mesh objects to complement those found in monitored networks. The types of relationship
supported by UCA are described in the following sections.

3.3.1 Composition or Parent-Child

In composition relationships, one class of object is the parent of another and effectively ‘owns’ the
child object. Another way to express thistype of relationship isto consider the lifetime of the child
object —if it cannot exist without its parent or should be destroyed when its parent is destroyed, then
thisis an example of such arelationship. An example of this might be Communication Ports (children)
implemented by an Interface Card (parent) — the Ports cannot exist without the Card. A child object
will always have a parent object and may itself have zero or more children of its own, although circular
relationships are not allowed.

A parent object may have zero or more children of any number of types e.g. a Network Element might
have the capacity for 10 Interface Cards and 2 PSUs and may be initially configured with a single PSU
and no Interface Cards. The practical implementation within UCA is more flexible till, in that while a
child object must have a parent (and can have one and only one parent at any time), the type or instance
of parent abject can be configured at state mesh build-time. This means that a child type can be
configured with a choice of different types of parent object, with the actual type and instance being
defined by the model dataload. An example of thisis a Network Element that may be parented by a
Network i.e. standalone, or by another Network Element i.e. a lave element.

Significantly, child objects can also be ‘re-parented’ by dynamically updating the parent type and / or
object in the state mesh at runtime. Finally, child objects can be added and removed dynamically at

20

runtime, so in the example above, Interface Cards and a PSU can be added to the Network Element as
they are configured into the actual network.

3.3.2 Aggregation or Uncle-Nephew

In aggregation relationships, one class of object (an uncle object) has an interest in the state of another
sub-ordinate object and effectively ‘contains' the nephew object. The important differentiator
compared to composition is that both the uncle and nephew objects can exist independently of the other
—the relationship implies a measure of optionality and is weaker.

As with compositions, an object that is a nephew may itself be an uncle of some other object and the
relationships may be configured at build or runtime, although again circular relationships are not
allowed.

The range of possible combinations of this typeiswider than that provided by composition. A nephew
object can have zero or more unclesand / or an uncle can have zero or more nephews. In atypical
application an object will have a parent and may have one or more uncles — a good example of this
situation is where aBearer Link carries Voice and Signalling Channel traffic simultaneously in its
Timedots. The Bearer Link acts as the parent for the Timeslots — they cannot exist without it. At the
same time, the Voice and Signalling Channels carried in the Timeslots act as uncles — they are
interested in the state of the Timeslots but they are not the owners.

3.3.3 Association or Peer-Peer

In association relationships one object has an interest in the state of another object, but neither object
has sufficient interest to warrant a composition or aggregation relationship. Thistype of relationship is
the weakest that may exist between objects and again implies optionality.

One peer may be associated with zero or more peers of the same or different types. An example of a
relationship of thistype isthat of a Cable joining two Communications Ports. The object representing
the Cableisinterested in the state of the Ports at each of its ends and an associative relationship would
be used in thisinstance. Again, UCA provides the capability to construct associative relationships at
build or run-time with the usual proviso that circular relationships are not allowed.

3.3.4 Specialization

Thistype of relationship is different from the previousthree in that it isimplemented as an attribute of
the mesh object itself, rather than between instances. Each mesh object type possesses a Sub Class
attribute that defines its specialization relative to other mesh objects of the same base class. This allows
UCA to support some of the characteristics of object inheritance i.e. polymorphism and specialization.
For example, there may exist in a monitored network a number of Transmitters with different Sub
Classes e.g. 100W_Transmitter, 200W_Transmitter and 300W_Transmitter. I nstances of each type are
clearly Transmitters (base class = Transmitter) and the group of all affected Transmitter objects may be
subject to rules that operate at the base class level i.e. they are treated as polymorphs and their
specialization isignored. Alternatively, more detailed rules may be defined to operate only on instances
of asingle specialization by defining the required Sub Class condition as well.

3.4 Metamodel

While the state mesh is of considerable value in reducing solution complexity, this advantage would be
lost if the model had to be re-implemented by the user each time a new or updated model was required.
For this reason, UCA uses an automatic data-driven approach to its construction and maintenance
Central to thisideais the metamodel that defines for the state mesh:

e al possible classes or types of model object that it could contain

e al possiblerelationshipsthat could exist between classes of model object

e al possible pre-defined state propagations that could exist between classes of model

object

The best method to capture the metamodel structure during system configuration is for the user to

construct a UML class diagram (with some additional stereotypes defined to handle state propagation).
The file containing the metamodel is then simply an XML representation of that class diagram and the
required syntax is described fully in later sections of this guide. Users are free to manually define their
own metamodel directly in XML. Alternatively, UCA provides the capability to automatically convert

21

aUML class diagram (exported in XMI format from a suitable UML modelling tool) directly into the
required XML format. This processisillustrated below.

UML Class
Diagram

UML Class
Diagram in
CASE tool

Manual
Translation

'
1

)

\
\

\
1

v

XMI Conversion
Tool

Metamodel
(XML) File

3.5 Model Builder and Model Database

The metamodel by itself defines only those model classes, relationships and automatic state
propagations that the system could support. To create a state mesh that the system can operate on
reguires the user to provide a set of instance data, describing the actual model objects and

relationships that exist between those objects.

Normally, thisinstance datais stored in the UCA model database. Because the structure of the model
database will vary with each type of user model (e.g. different classes and types and numbers of

relationships), UCA automatically generates the table structures from the metamodel. UCA can aso be
used to easily load the instance data into the model database. More typically, a batch process would be
used to regularly update the model database with the latest instance data e.g. through a CSV file import

from an external network inventory database.

When UCA is started, its model builder uses the metamodel as atemplate of instructions to create the
state mesh. Subsequently, each time the model database is updated, the model builder is automatically
triggered (again using the metamodel as a managing template) and the state mesh is brought inline with
the new data load. The entire processisillustrated below.

22

UML Class

UML Class Diagram in
Diagram CASE tool
v ,
\
Manual XMI Conversion
Translation \ Tool
\
h |
Metamodel
(XML) File
H Generation
: \
[}
i
H Model Database Table &
] agn . .
Model : Mod|f|ca.t|c_)r_1 Trigger
Construction | Definitions
[}
Template ! Automatic
! Table
! Configuration
\ 4 y
Initial & Update Import &
Model Instance Data
Builder Model
, Database
Automatic
Construction &
Update
Topology
Mesh

3.6 Example State Mesh

At thispoint it is useful to consider an example to understand how the various parts are constructed and
what the resulting state mesh actually looks like. The following diagram illustrates the components of a
simple communications network.

External
Data
Source

Network
Element

Card

Port

Port

Network Network
Element Element
Card Card
Port Port Port Port
Link Link

The example network operates in the following manner: Network Elements responsible for providing
communications through the network have interface Cards with a number of communications Ports.

Joining together Ports with Links creates a communications path through the network.

The first task isto construct the metamodel for this system. As described above, the simplest way to do
thisisto draw the equivalent UML class diagram. Before this can be completed however it is necessary

23

to consider what kind of automatic state propagations are required. To help decide this, the correlations
that UCA isrequired to perform must be considered. For the purposes of this example, they are:

e Report a Card failure when all of its Ports have reported a hardware error.

¢ Report aLink failure when the Ports at both ends have lost the communications signal.

To detect thefirst condition, a Card will need to know the state of each of its child Ports. Therefore, the
simplest choiceisto automatically propagate the state of a Port to its parent Card. The second condition
issimilar in that a Link object will need to know the state of all the Portsthat it is attached to. Again,
the obvious choice is to automatically propagate the state of a Port to its associated Link.

The resulting UML class diagram with annotations (red arrows) to show the required automatic state
propagationsis as follows:

Network
Element

J

Card

T

Port > Link
2 0.1

The arrows in the diagram are for illustration purposes only. In practice, aUML CASE tool requires

the definition of stereotypes on affected relationships to add support for automatic state propagation.

Following processing of the UML class model to create the metamodel and its combination with user
supplied instance data, the state mesh would possess the internal structure shown below.

24

Me_Sh Base Class = Me_Sh Base Class = Base Class = Me_Sh
Object Network Element Object Network Element Network Element Object
Child Members =1 Child Members = 1 Members =1 Child
Group Group Group
M?Sh Base Class = M?Sh Base Class = Base Class = M?Sh
Object Card Object Card Card Object
Child Members = 2 Child Members = 2 Members = 2 Child
Group Group Group
4' |4 Members = 2 4' |4 Members = 2 4' |4
I
Mesh Mesh —p | Associate | q— Mesh Mesh —p | Associate | q— Mesh Mesh
Object Object Group Object Object Group Object Object
Base Class = Port I I Base Class = Port I I Base Class = Port
Associate Associate Associate Associate
Group Group Group Group
Members = 1 | | Members = 1 Members = 1 | | Members = 1
Mesh Mesh
Object Object
Base Class = Link Base Class = Link

The model builder has added a number of ‘helper’ objects (child and associate groups) to the model to
assist with the management of containment and associative rel ationships defined in the metamodel.
These group objects serve to keep alist of child or associate mesh objects attached to a mesh object —
the thick lines denote the mesh object to which the group belongs and the thin lines denote the mesh
objects that they hold on behalf of that mesh object. Notice that each group object maintains a count of
the mesh objectsit isresponsible for.

The red arrows denote the relationships defined in the metamodel for which automatic state
propagation is defined. Notice that the model builder has configured the model such that automatic
state propagation only exists between mesh objects that originate state change reports and the group(s)
to which they belong, rather than to the mesh objects that own those groups. One of the most important
features of group objectsis that they are capable of maintaining a real-time state count of the mesh
objects they contain i.e. total failed and degraded members. If automatic state propagation is enabled
e.g. for Port mesh objects in the above diagram, then a group object’ s state counts will be automatically
updated each time the state of one of the mesh objectsit contains is updated.

Based on the relationships defined in the metamodel diagram, Port objects (represented by mesh
objects with a base class = Port) are owned by Card objects (represented by mesh objects with a base
class = Card) and they have appropriate child group objects to manage them. Also, Port objects are
associated with Link objects (hence the associate group objects — one at each end of the associative
relationship because it is potentially bi-directional). Because of this dual relationship, a state change of
a Port mesh object will be simultaneously reported to both its parent’s child group object and its
associate’ s associate group object.

3.7 Data Collector and Event Manager

Mesh objects in the state mesh are state aware in that they can exist in one of three possible states -
normal, degraded and failed, and can propagate this information to other objectsif required. UCA is
driven by events gathered from the monitored network and therefore needs a mechanism that allows
them to modify the states of mesh objects in the state mesh. The process and information flow
employed by UCA is shown below.

25

Event
Database

Y

4
XML Alarm Data Collector Event Manager State Mesh
Report -
Filter &

External | Mapping
Source ¥l Engine -

Received

Alarm g
Reports Retaine: .
p Alarm - Unique 1D
Reports - Class

W Mapping - Target State

> Filter g Mapping

Mapping I

v

Discarded
Alarm

The first component in this mechanism is the UCA Data Collector. Thisisresponsible for providing an
external interface into which alarms from an external source are delivered. To accommodate wide
variations in the type and content of alarms from different sources, UCA has a well-defined XML input
format, derived from the CCITT ITU X.733 standard. Alarm reports delivered to UCA must conform
to thisformat. UCA respondsto ‘alarmraise’, ‘alarm clear’ and ‘alarm termination’ reports received
from external sources.
Once the Data Collector receives alarm reports, a hierarchical set of filters (configured through the
Scenario Manager) is applied in turn to fields within them. The filters are necessary to remove unused
alarms — network management systems are sometimes not selective in the reports they deliver and
unwanted reports consume val uable system resources for no benefit. Continuing with the example
communications network model described above, that system'’s filters would be configured to retain
only those alarm reports that signify the onset and recovery of a hardware failure or loss of
communications signal on a Port.
Alarms are also subjected to a mapping (again, configured through the Scenario Manager). The
following actions are performed during a mapping:
e aunique object identifier is extracted from one or more fields of the alarm
e atarget mesh object islocated in the state mesh with a specified base class and a name
equal to the extracted unique identifier
e thealarmreport is attached to the target mesh object (if it is a Raise report) or removed
from the target object (if it isa Clear or Terminate report). Alarm reports attached to a
mesh object are held in its current problems list.

Alarm reports that pass to the end of afilter chain are mapped according to the mapping definition(s) at
the end of the chain and stored in the UCA event database by the Event Manager for future reference.
Each alarm report is assigned a target state (normal, degraded or failed) defined in the mapping and
each time an alarm report is attached to or removed from a mesh object in the state mesh, the system
will re-evaluate the mesh object’s overall state. Thiswill be set to the highest state of all attached alarm
reports or normal if none remain.

3.8 Affected Objects

Alarm reports that pass the system’ sfilters and are then mapped to target mesh objectsin the state
mesh can result in one or more state-related changes. These include:

26

e Target mesh objects may change their overal state.

e If automatic state propagation is activated and the overall state of atarget mesh object is
changed, state counts maintained by any group objects containing that mesh object will
be updated.

Mesh and group objectsin the state mesh altered in either of these ways are termed affected objects and
they have a special significance. UCA will insert target mesh objects whose state has changed from
normal (as aresult an alarm report being mapped onto them) into each of the working memories of the
UCA inference engine (there may be one or more working memories defined). Similarly, group objects
whose degraded or failed member counts have increased from zero (as aresult of an alarm report being
mapped onto a contained target mesh object and automatic state propagation taking place) will also be
introduced into each of the working memories.

Alternatively, if atarget mesh object or group object is already inserted in the working memories (asa
result of a previous state change) then UCA will update its state or affected member counts
respectively.

Finally, if atarget mesh object is already inserted and all attached alarm reports are removed, then its
state will return to normal and it will be updated in the working memories. Similarly, a group object
whose affected member counts have all returned to zero will also be updated in the working memories.
Note that under these conditions, neither of these object typesis automatically removed at this stage
from the working memories. This method of operation has been chosen specifically to alow the user an
opportunity to build rules that depend on objects returning to the normal state.

Using the previous example of a simple communications network, the following diagram illustrates the
process of creating affected objects and insertion into working memories when an alarm report is
received.

Base Class = Mesh
Network Element Object

Child Members =1

Group
Affected |
Objects ., BaseCassS Mesh
.J e, Card Object Inference
s e, — Engine

Members = 2
Failed = 1

Members = 2
Failed =1

Base Class = Port

Mesh ssociate A .
Object (Group | Object Working
I Base Class = Port Memories
Associate Associate
Group Group
Members = 1 | | Members = 1
v
Object

Base Class = Link

Following a Port failure in the actual network, an alarm report received by the system is mapped onto
an equivalent Port target mesh object in the state mesh. UCA uses the target state from the mapping to
set the state of the Port target mesh object to failed, resulting in its automatic insertion into the
inference engine’s working memories. Automatic state propagation from the Port target mesh object to
its containing child and associate groups has also incremented their failed member counts above zero,
causing them also to be automatically inserted into the working memories. Note that mesh and group

27

objects that are inserted into the working memories remain part of the state mesh and continue to be
attached to their unaffected counterparts by their existing relationships.

The UCA Mesh Viewer GUI allows a user to view and monitor the state mesh in real-time. It provides
a comprehensive, navigable view of all target mesh objectsin the currently loaded model and also
maintains a dynamically updated list of mesh objects that are in non-normal states.

3.9 Inference Engine

The purpose of the inference engine is to provide an efficient and highly optimised decision-making
tool that can be controlled by a set of user-defined rules to infer information about the condition of the
monitored network. It achieves this by evaluating affected objects that have been inserted or updated in
its working memories against the specific set of rules defined for each such working memory. Once a
rule has been satisfied, the system will carry out one or more actions (chosen from alist of actions
during rule configuration).

It isimportant to clearly understand the relationship between objects in the state mesh and affected
objects in the working memories, asillustrated in the following diagram.

Objectsthat are part of the state mesh always remain so, regardless of their state. Affected objects
represent a sub-set of objects in the state mesh that are in anon-normal condition and as aresult have
been temporarily inserted into the working memories, where they have in turn become visible to the
rules controlling the inference engine. Objects that are part of the state mesh (and not affected objects)
are normally invisible to the inference engine (because they are not inserted into the working
memories). There is one exception to this rule however, which is that they are indirectly accessible to
rules and their resulting actions where they can be reached by navigating the relationships between
them and affected objects that are visible to the inference engine.

Rules are created with the Scenario Manager and comprise arbitrarily complex ‘when (rule istrue) then
(do action)’ constructs. The system takes care of translating these constructsinto the low-level rules
language that the inference engine understands and automatically deploys them into the specified
working memory. A major benefit of this approach is that most users can create rules using familiar
concepts and terminology e.g. “is there a card where 100% of the ports have failed”, without the need
to understand the complicated language syntax and associated programming techniques normally
associated with inference engines.

Rules created in this way may have general conditionsto test for the existence or otherwise of affected
objects in the working memory e.g. when (thereisa not a Card) then (...). Alternatively, they may have
anumber of specific conditions that are compared with the attributes of affected objects e.g. when
(thereis a Port object with state Failed) then (...).

Rules may also be targeted, for example aimed at the existence of a particular affected mesh object in
the working memory e.g. when (there is a Card whose name starts with “ABC”) then (...).
Alternatively, they may operate at the class level, in which case they will be applied equally to all
affected mesh objects of the defined type (and / or subtype) that satisfy their conditions e.g. when
(thereisa Card of subtype SDH) then (...). Rules may also be defined to operate on affected group
objects e.g. when (there is a group owned by a Card where 100% of its Port members have failed) then
(-..).

When all of the conditions attached to arule are satisfied, they are placed on alist of rules waiting to be
‘fired’ or executed. The inference engine will remove and execute the next rule on the list, carrying out
one or more actions associated with it. After each ruleisfired, the remaining rules on the agenda are re-
evaluated to seeif they are till valid (any that have become invalid as a result of the previousrule
execution are removed without being processed). An important characteristic of inference enginesis
that once arule hasfired for a particular set of conditions, it will not do so again until a change has
happened and those conditions are again satisfied. This prevents a rule from firing continuously when a
particular set of conditions remains true.

Rules may be assigned a priority that can be used to control the order in which satisfied rules are
removed from the list and executed. For example, UCA is used with a set of low priority ‘ maintenance’
rules whose actions are responsible for removing affected objects (mesh and group objects) from the
working memory when they return to their normal state. By setting the priority of these rules at alow
level, the user is provided with the opportunity to define higher priority rules that detect normal state
objects and carry out some other action before they are removed from the working memory.

UCA provides a comprehensive range of pre-defined actions, including the ability to:

28

e Create, acknowledge, demote, terminate and clear alarms in the originating network
management system, depending on its ability to support such operations.

e Modify the state of mesh objectsin the state mesh.

e Create, modify and delete ‘ notifications' attached to mesh objects, designed to report
significant events to users via the Notification Dialog (see Mesh Viewer GUI details).

e Associate contributory alarm reports responsible for the creation of affected objectsto
notifications.

¢ Identify mesh objectsin the state mesh that may be affected by a problem in another part
of the model and associate their sympathetic alarm reports to a notification.

e Execute user-defined scripts on both the local and remote platforms and to incorporate
the resultsinto further correlation scenarios.

In addition, it is possible for a user to define additional actionsto carry out special tasks. These require
the creation of additional action functions written in Java using the UCA API, and to add action
function details to the UCA action properties files to enable them to be accessed from the Scenario
Manager.

Certain actions, including those that initiate notifications and allow user-defined scripts to be executed,
create corresponding dynamic objects in specific working memories. These dynamic objects
(notification and script (proxy) objects) are visible to rules defined in those working memories and
allow usersto construct correlations that depend on their existence or attributes.

The properties of notification objects are such that they may exist in a maximum of two working
memories at any time — typically they are created in a source working memory (context) and may be
made visible in a destination working memory (context). This powerful concept allows for
‘communication’ of the results of a correlation in a source context (with a certain set of rules) to drive
another correlation (with adifferent set of rules) in a destination context. Updates to a notification
object are obviously made visible to the rules in both the source and destination working memories.

A script (proxy) object is created by an action when the corresponding script is first executed and
(depending on configuration) may persist past the execution lifetime of the script itself, recording the
status and results of its execution for usein later stages of a correlation. Scripts executed by actions are
launched in separate threads to avoid contention and blocking and only exist in the source working
memory.

The UCA System Manager GUI also provides a Fired Rules dialog for users to monitor the execution
of rules and their associated actions (thisinformation is also stored in the UCA notification database
and is available for subsequent analysis).

The UCA Mesh Viewer also provides a Notification dialog to allow users to examine the set of
notifications associated with an object (again, the information contained in each Notification is stored
in the notification database and is available for analysis).

3.10 Notification Manager and Remote
Handler

It isthe responsibility of the UCA Notification Manager to handle any interactions between UCA and
external systems, including:
e Manipulation of alarm reports in the external network management system viathe
Remote Handler.
e Execution of scriptsin separate threads on the local platform.
e Execution of scriptsin separate threads on local and remote platforms via the Remote
Handler.
e Updating corresponding script dynamic objects with execution status, exit codes and
results from locally and remotely executed scripts.
e Managing external system interactions on behalf of user-defined actions e.g.
starting/stopping SLA monitoring for service impact correlations.

Operation of the Notification Manager and Remote Handler areillustrated in the following diagram.

29

UCA Remote
Platform Platform

Network
Managemern
System

Remote
Script Handler

Notification H Remote
) - Manager === P ander
Script (411 . Web
(Proxy)

. -
Local Executior Services
v 4

Coow] i e

Network
Managemern
System

Inference Engine

Working Memary

UCA provides asimple, flexible API to manage external interactions from within the rules/action
context.

The Remote Handler is normally executed as a separate process on system restart. It provides the
ability to interface to external systems and execute scripts on both local and remote platforms, returning
results and output information back to UCA. It utilises web services to minimise communications
problems associated with firewalls between the UCA and remote system and again requires
straightforward integration with remote applications.

UCA may also directly execute scripts on the local platform without the need for a Remote Handler.

30

Chapter 4 The UCA Home Page and
System Manager

4.1 Starting the Tomcat ‘Minimal Web Server’

UCA uses Tomcat for:
e serving static web pages
e serving dynamic web pages, using JSP
¢ handling web services requests from the client, executing the appropriate Java code and sending
the response, as appropriate. i.e. using Tomcat asa‘ servlet container’.
¢ handling role-based authentication to web pages and UCA applications

In order for UCA to start up, Tomcat must be running. In addition, when UCA is shut down, Tomcat must be
forced to release all of itsresources. This could be done manually, but UCA provides a‘minimal web server’
called tomcatserver to automatically control this.

After UCA has been installed and configured, tomcatser ver must to be started. This only needs to be done once
and under normal circumstances tomcatserver should never need to be stopped.

tomcatserver is started as follows:

For HP-UX
cd $UCA HOVE/ bin
./ tontat server. sh

tomcatserver actually listens on a port (defined by the tomcatser ver .port property in the uca.propertiesfile)
for web services requests - accepting ‘start’ and ‘ stop’ requests that have the effect of starting and stopping
Tomcat itself. When tomcatserver isfirst started, it automatically starts Tomcat.

When UCA is shutdown from the System Manager GUI (see the following section), a‘stop’ followed by a‘ start’
reguest is automatically sent to tomcatserver — this has the effect of stopping and re-starting Tomcat.

As mentioned above, once tomcatser ver is started, normally nothing more needs to be done by a user other than
to interact with the UCA GUIs. However, should Tomcat need to be stopped or started manually, this can be
done asfollows:

For HP-UX
cd $UCA _HOVE/ bin
./tontat.sh stop or ./tontat.sh start

4.2 Starting the System Manager

Assuming the system isinstalled and properly configured (see the HP UCA Installation and Configuration
Guide for details), and tomcatserver has been started as described above, entering the following URL in aweb
browser will result in the UCA Home Page being shown, as follows:

http://hosthame: 18080/uca

where hostname is the DNS name or |P address of the server machine on which UCA isinstalled. Note that it is
possible to configure a port other than 18080 for use by UCA — see the HP UCA Installation and Configuration
Guide for details.

31

Figure 4 - The UCA Home Page

Clicking on the UCA Manager button will invoke a username / password dialog. When UCA isfirst installed, a
username and password of ‘system’ and ‘system’ is pre-configured with ‘ manager’ role. Entering this username
and password will cause the UCA Manager GUI to be displayed with the ‘ Status' tab selected, as follows

32

The status tab shows details on the left hand side of all the major UCA software components and their current
status. The green tick indicates that the component is running and the red cross indicates that the component is
not started. In normal circumstances, Tomcat and the ‘Manager Server Web Service' should always be running.
Note that during start-up, the web applications will temporarily be shown with a yellow question mark symbol;
thisindicates that Tomcat has deployed the service but it has yet to be initiated.

The tabs across the top of the window provide access to a number of different system management features.
Certain operations, such as defining and loading the model, can only be performed when the system is not
started, whilst others can only be done when the system is running. For this reason, tabs are enabled or disabled
depending on the running state of the system. The table below summarises the state of the tabs depending on the
state of the system.

Tab System not started System started
Status Enabled Enabled
Users Enabled Enabled
Model Enabled disabled
Data-load Enabled disabled
Diagnostics enabled (see 1.) Enabled
Maintenance enabled (see 2.) Enabled
Tools Disabled Enabled

1. viewing and enabling/disabling pre/post filter event logging is disabled
2. mesh update and archive update settings disabled

4.3 Adding, Modifying and Deleting Users

New users may be added or existing users modified or deleted from the ‘Users’ tab.

To add anew user:
e Enter ausername and password (the password must be at |least 6 characters long)
e Select the appropriate role(s)
e Select New

33

Theroles are uses as follows:

e manager —auser must have manager role to invoke the System Manager GUI
administrator - a user must have administrator role to invoke the Scenario Manager GUI
operator - auser must have operator role to invoke the Mesh Viewer GUI
read-only — with read-only role, a user cannot deploy scenarios, filters, mappings or rules from the
Scenario Manager GUI.
tester — a user with tester role may invoke the Scenario Manager and Mesh Viewer GUIs. In
addition, from the Mesh Viewer GUI, the user may inject a set of alarms from an externa file
(using the ‘Inject alarms from file’ File pull-down menu) or inject a single user-specified alarm by
right-clicking an item in the I nstances tree and selecting the ‘ create alarm’ popup menu item.

To update an existing user:
e Select the username from the list in the left panel
e Update the username, password or roles as appropriate. Note that, for security reasons, the
existing (or a new) password must be re-entered for the update to successfully apply.
e Select Update

Note that a user currently logged on to the System Manager cannot remove manager role from
hisher own details. To do this, you must exit the System Manager GUI and restart it, logging on
asa different user (with manager role privilege), then select the original user and remove
manager role.

To delete an existing user:
e Select the username from the list in the left panel
e Select Delete

Note that a user currently logged on to the System Manager cannot delete his’her own entry. To
do this, you must exit the System Manager GUI and restart it, logging on as a different user
(with manager role privilege), then select the original user and deleteit.

Figure5 - The System Manager Users Tab

4.4 Starting UCA

From the Status tab of the Scenario Manager, click on the Startup button. Following a confirmation prompt,
each of the sub-systems will then be started and the icons next to each sub-system will change to reflect their

34

status. Progressis described in the text area on the right side of the window and any error messages will be
displayed here and / or in the status bar area at the bottom of the window. UCA is fully started up when a green
tick appears against each sub-system, as shown below.

Figure 6 - The Statustab showing the system started

4.5 Stopping UCA

Before the system is stopped, all Scenario Manager and Mesh Viewer GUIsin use by all users should be
closed.

From the Status tab of the Scenario Manager, click on the Shutdown button. Following a confirmation prompt,
each of the sub-systems will then be shut down and the icons next to each sub-system will change to reflect their
status. Progressis described in the text area on the right hand side of the window and any error messages will be
displayed here and / or in the status bar area at the bottom of the window. UCA is fully shut down when a green
tick appears against ‘ Tomcat’ and ‘Manager Server web service' and ared cross appears against all other sub-
components. Note that during the shut-down process, Tomcat is automatically re-started (see Starting the Tomcat
‘Minimal Web Server’ section above) — this may take 15 to 20 seconds depending on the capability of the server.
Shutting down the system will cause any corresponding session on a user’s web browser to end. This means
that if a user has any UCA web pages displayed and the system is shut down, then those pages will become
‘stale’ and the page must be re-loaded after UCA has been re-started.

% It is recommended that the web browser is closed

after UCA has been shut-down and re-opened after
UCA isre-started — thisisimportant prior tore-
starting the Scenario Manager GUI or Mesh
Viewer GUI after a system re-start.

35

4.6 Configuring the Metamodel

The Model tab of the Scenario Manager provides all the functions necessary for a user to configure the
metamodel structure used by UCA to fulfil all the needs of the set of required scenarios. Chapter 5 provides
details of how this metamodel is constructed and used within UCA.

4.7 Loading Data into the Model

The Data-load tab of the Scenario Manager provides functions that may be used to load data from CSV text files
into the UCA model database. Chapter 6 provides details of how thisis performed.

4.8 Diagnostics
The UCA diagnostic facilities are accessed from the Diagnostics tab of the System Manager GUI.

Figure7 - The System M anager — Diagnosticstab

Within this tab, the following information can be displayed:
e The contents of the centralised UCA exception log.
e The contents of the non-empty Tomcat logs.
e The contents of the pre-filter event log.
e The contents of the post-filter event log.

Since these log files can be large, the number of linesto display from these logs may be selected.

To view the exception log details:
e Select the ‘exception log’ radio button
e Select the desired number of linesto display inthe ‘View last’ spinner (between 1 and 500)
e Click the View L og button.

To view a non-empty Tomcat log:
e Select the Tomcat log radio button
e Select the desired Tomcat log file from the drop-down list of filenames.
e Select the desired number of linesto display inthe ‘View last’ spinner (between 1 and 500)

36

e Click the View L og button.

The pre-filter event log maintains alist of all incoming events befor e they have passed through the Filters, in the
same format as described in section 10.3.2. Thislog fileis a useful source of eventsto replay into the system (for
example using the UCA Event Injector tool).

To view the pre-filter event log details:
e Select the pre-filter event log radio button (the system must have been started in order to view the
pre-filter event log)
e Select the desired number of linesto display inthe ‘View last’ spinner (between 1 and 500)
e Click the View L og button.

The post-filter event log maintains alist of al incoming events after they have passed through the Filters. The
detailsin thislog arein asimilar format to section 10.3.2, but with the following tags added:

e <uniqueReference>

e <baseClass>

o <status>

e <pathToMapping>

The uniqueReference tag contains the value of the uniqueReference after mapping has been performed
(see Section 8.3).

The baseClass tag contains the value of the baseClass after mapping has been performed (see Section
8.3).

The status tag contains the val ue of the status after mapping has been performed (see Section 8.3).
The pathToMapping tag contains a separated list of numbers, each enclosed in square brackets. The
numbers represent the internal unique Ids for each filter in the Scenario Builder Tree (see section
7.1.1). The tag val ue represents the path that the event took through the hierarchy of filters. It is useful
to analyse the pathToMapping values to optimise the position of the filtersin the Scenario Builder

Tree. An example log entry in the post-filter event log is as follows:
<Event >
<uni queRef er ence>10001</ uni queRef er ence>
<based ass>Si t e</ baseC ass>
<st at us>f ai | ed</ st at us>
<pat hToMappi ng>[- 1] [3074555833] [- 1] [3074520804] [3074519544] </ pat hToMappi ng>
<addi ti onal Text >Site Power Fail ure</additional Text>
<al ar mlype>Equi pnent Al ar nx/ al ar nType>
<dat aType>X. 733</ dat aType>
<event | d>1003</ event | d>
<event Rank>ori gi nal </ event Rank>
<nmod ass>Sit e</ nod ass>
<nmol nst ance>10001</ nol nst ance>
<origi nati ngTi me>2005- 06- 10 12: 16: 32</ori gi nati ngTi ne>
<pr obabl eCause>Power Pr obl enx/ pr obabl eCause>
<severity>critical </severity>
<syst enl ass>si doni s_nms</ syst enCl ass>
<syst enl nst ance>V5</ syst enl nst ance>
</ Event >

To view the post-filter event log details:
e Select the post-filter event log radio button (the system must have been started in order to view
the post-filter event log)
e Select the desired number of linesto display in the ‘View last’ spinner (between 1 and 500)
e Click the View L og button.

To enable or disable pre-filter event logging:
e Ensurethe enable pre-filter logging checkbox isticked / un-ticked (the system must have been
started in order to enable or disable the pre-filter event log).

To enable or disable post-filter event logging:
e Ensurethe enable post-filter logging checkbox isticked / un-ticked (the system must have been
started in order to enable or disable the post-filter event log

37

4.9 Maintenance

The UCA maintenance facilities are accessed from the Maintenance tab of the System Manager GUI.

Figure 8 - The System Manager — M aintenance tab

Within this tab, the following actions can be performed:
e Configure the automatic Mesh update settings
Manually apply a Mesh update
Configure the automatic notification and event database archive settings
Manually apply a notification and event database archive
Reset read/write access to the Scenario Manager

Any model datathat isinserted, deleted or modified in the UCA model database may be automatically
propagated into the in-memory state mesh according to a configurable schedule (see sections 3.5 and 6.2.2 for
further details).

To configure the automatic model update settings:
e Inthe Mesh Update Settings area, use the ‘update mesh’ hours and minutes spinners to set the
number of hours and minutes after midnight that you wish automatic Mesh updating to start.
¢ Inthe Mesh Update Settings area, use the ‘and ther eafter every’ spinner to set the interval, in
hours and minutes, at which automatic Mesh updating is to be repeated.
e Click the Apply button in the mesh update settings area to apply the settings.

The default settings are to start at midnight and repeat once every 24 hours.

To manually force the in-memory state mesh to immediately update according to any recent model database
changes:
¢ Inthe Mesh Update Settings area, click the Update M esh Now button

UCA maintains many different types of datain its event and notification database tables. Without adequate
management, these tables will grow bigger over time and will eventually reach available capacity. UCA provides
the facility to intelligently archive this data (i.e. redundant data that is no longer needed by any outstanding
correlation) and free up event and / or notification database space. This process occurs in two stages:

38

e Event processing istemporarily suspended and the event and notification databases are analysed
to identify redundant data.

e Event processing isresumed and the previously identified redundant datais archived as alow
priority background task.

Archiving may be configured to run on a scheduled basis. A user may also manually force an immediate archive
of data.

The data that is archived comprises:
e Eventsreceived from external sources.
Notifications
Fired rule actions that have been configured to be logged in the notification database.
Contributory Event Lists
Affected Object Lists
Sympathetic Event Lists

The datais archived as separate, time-stamped CSV filesin the ‘archives' directory under the UCA installation
directory. The format of these filesis such that they can be easily re-imported into another UCA database
instance using standard database tools.

To configure the automatic archive update settings:
¢ Inthe Archive Update Settings area, use the ar chive database spinner to set the number of hours
and minutes after midnight that you wish automatic archiving to start.
¢ Inthe Archive Update Settings area, use the and ther eafter every spinner to set theinterval, in
hours and minutes, at which automatic archiving is to be repeated.
e Click the Apply button in the Archive Update Settings area to apply the settings.

The default settings are to start at 1.00 a.m. and repeat once every 24 hours.

To manually force the archiving of the event and notification databases to happen immediately:
¢ Inthe Archive Update Settings area, click the ‘ Archive Now’ button

Only one user at atimeis allowed full read-write access to the Scenario Manager GUI. Thisisto stop
simultaneous deployments of Scenarios, Filters, Mappings and Rules from interfering with each other. The
UCA manager database maintains details of who the current read-write user is. Once a user is granted read-write
access, no other users can use the GUI to deploy data until the user with the ‘read-write’ lock has exited the GUI.
Should afailure ever occur at a client machine running the Scenario Manager GUI, it is conceivable that this
‘lock’ could be left in the * granted’ state in the manager database. Should this ever occur, the lock status may be
cleared so that a user may again be granted read-write access via the Scenario Manager GUI.

To reset read/write access to the Scenario Manager:
e Inthe Other Settings area, click the Reset button next to reset read/write accessto Scenario
Manager GUI.

4.10 Tools

UCA provides a number of useful facilities and tools, accessed from the Tools tab of the System Manager GUI,
to assist during the rules devel opment stage.

39

Figure9 - The System Manager — Toolstab

Within this tab, the following actions can be performed:
e Removeall currently active rules from the inference engine.
Clear the contents of all working memories monitored by the inference engine.
Clear the event database.
Clear the notification database.
Refresh the dynamic property values (key / value pairs). This causes the UCA rules engine to re-
scan the key / value properties held in the ‘mg_properties’ database table.
e View details of all the fired rule actions that have been logged in the UCA notification database.
e Graphically view the working memory contents.

During the testing stage of rule development, it may be necessary to remove all the currently active rules from
the inference engine in case they are behaving in an unexpected manner. In this sense, this facility actsasa
‘panic’ button to immediately stop and remove all rules.

Thereisaso afacility to clear all objects from all working memories within the inference engine. This
essentially ‘resets’ the memories and is useful during the development and test stage, e.g. before starting a
particular test run of sample alarms. During the reset process, mesh and group objects are returned to their
normal states and all attached alarm reports are removed. All primary & marker notifications and script (proxies)
are removed and destroyed.

Toremove al currently active rules from the inference engine:
¢ Inthe Rules Engine area, click the Remove Rules button.

After use, it is recommended that the system be shut down and re-started.

To clear the contents of all the working memories:
¢ Inthe Rules Engine area, click the Clear M emory button.

UCA aso providesthe facility to clear the contents of the event and notification databases. Again, thisis useful
during the development and test stage, e.g. before starting a particular test run to de-clutter the system of any
existing events or notifications.

To clear the event database:

40

e Inthe Databases area, click the Clear button next to ‘ clear event database’.

To clear the notification database:
e |nthe Databases areg, click the Clear button next to ‘clear notification database’ .

UCA supports the use of ‘dynamic properties . A dynamic property isakey / value pair set up in the UCA
‘mg_properties database table. These key / value pairs are accessible to rules. When the value of a dynamic
property is changed in the database, any rules using that dynamic property will not be aware of the changein
value. To make the rules aware of any changes to the dynamic properties:

e Inthe Databases area, click the Refresh button next to ‘refresh key/value pairs'.

The UCA System Manager provides two graphical toolsthat are very useful during rule development and
testing. These are:

e The'Fired Rules viewer.
e The‘Working Memory Viewer’

TheFired Rules Viewer

Thisviewer is used to view al the details of the rules that have fired (where database logging has been selected
in the associated actions), together with details of any contributory events associated with the fired rules and the
actions that have been carried out. All columns are re-sizable and movable and their headers may be clicked on
to toggle the sort order.

To view the fired rules details:
¢ IntheViewersarea, click the View ... button next to view all fired rules.

Figure 10 - The Fired Rules Viewer

Thetop table of the Fired Rules Viewer lists details of each fired rule. The details provided are:
e TheUnique Id of thefired rule.
e Thetextual name of the rule. Rules fired from trigger conditions start with “TRIGGER_" and rules
fired from teardown conditions start with “TEARDOWN _".
The mnemonic or short-hand name of the fired action.
The time the action was fired.
The originating and target contexts associated with the action.
Thetrigger or teardown object’s base class.
Thetrigger or teardown object’s unique reference.

When arow in the fired rulestable is selected, details of the associated contributory events are shown on the
bottom table. Note also that a single rule firing may result in more than one row in the fired rulestable i.e. there
isarow in thetable for each logged action rather than each fired rule.

To refresh the view of fired rules details:

41

e Click the Refresh button.

To number of fired rules may be very large. To limit thisin the viewer, the maximum number of most recent
fired rules details may be set. To set the maximum number to view:
e Select the required number (minimum 1, maximum 200, default 100) from the ‘Limit results to’
spinner. Thiswill take effect after the ‘ Refresh’ button is clicked.

TheWorking Memory Viewer
Thisviewer is used to view al the details of the objects within the inference engine's working memories. The
table columns are re-sizable and movable and their headers may be clicked on to toggle the sort order.

To view the working memory details:
e IntheViewersarea, click the‘View ..." button next to ‘view working memory’.

To ‘Contexts and Object Tree' shows, for each named context i.e. working memory, the different object types
that may be inserted. These object types are displayed as nodes under a parent branch, where the parent branch
represents the context name. The object types are;
e notifications
mesh objects
child groups
associate groups
script objects
time objects
system objects
system key / value pairs

Contexts and Objects Tree Objects Summary Table

Figure 11 - The Working Memory Viewer

When an object type node is selected in the tree, the * Objects Summary Tree’ will display summary information
for all objects of that type for the associated working memory. The summary details vary depending on the
object type selected.

To view details of any items listed in the * Objects Summary Tre€',
e double-click the associated row in the ‘ Objects Summary Tre€', or

42

e right-click the associated row in the ‘ Objects Summary Tree' and select view details ... fromthe
pop-up menu.

When an object type of ‘notifications' has been selected in the * Contexts and Object Tree', right-clicking an
object in the associated ‘ Objects Summary Tree' will show an additional pop-up menu item — ‘show marker
notifications'. The effect of thisisto replace the contents of the ‘ Objects Summary Tree' with a summary of all
the marker notifications associated with the notification that had been selected. When the marker notifications
are displayed, right-clicking one will display a pop-up menu, similar to normal notifications, but with ‘back to
parent notification’ instead of ‘show marker notifications'. Selecting ‘back to parent notification” will return to
the display of normal notifications, as previously displayed.

To refresh the view of fired working memory details:
e Click the Refresh button.

Figure 12 - The Working Memory Object Details window

43

Chapter 5 Defining the Metamodel

This chapter describes in detail the various aspects of building and deploying the UCA metamodel. In essence, a
UCA metamodel isaUML class diagram in the form of an XML file. Although the XML could be created
manually, UCA provides a feature that allows a UML class diagram that represents the metamodel to be
imported and automatically converted into the UCA XML format.

Toillustrate the complete process of building and deploying a metamodel, an example correlation model of a
simple digital TV broadcast network is used.

5.1 Example Class Model

The following diagram illustrates the UML class model of asimple digital TV broadcast network that will be
converted into an equivalent UCA metamodel.

Z4duplicates==
Model

DT WHetwod
-
. .
[l
Semice
;ﬂﬂpropaga‘te} “<=propagafe=>
Site
<<duplicates=»
hultiplex
<<propagapes s
<<propagager>
<<propagate
<propagate== <<duplicates=x <sduplicatess»
BroadeastEquipment BasebandLink [Propagatess Compositelink
<<propagages
<propagate== “=amners»
L E
SignalLlinkEquipment aner

<Zpropagatex»

<<propagafe=>
TeleoLink

Spners:

The <<propagate>> text in the diagram denote those rel ationships on which automatic state propagation is
required (the <<propagate>> text is placed at the ‘from’ end of the relationship).

The Model classis atop-level container classthat must exist in any model converted into a UCA metamodel. It
exists to identify the model loaded into UCA and acts as a top-level container for all other classesin the model.
In the example, it contains the DTV Network class that itself acts a container (directly or indirectly) for all classes
inthe DTV network model. The Model class may act as a parent to any number of child classes but is uniquein
that it does not itself have a parent class.

The model shown allows for an arbitrary hierarchy of broadcasting Sites, each of which can contain

Signal LinkEquipment classes (representing fixed communications link equipment) and BroadcastEquipment
classes (representing on-air broadcast communications link equipment). BroadcastEquipment objects can be
joined together by TelcoLink and BasebandLink objects, either separately or at a higher level by
CompositeLinks between the Sites themselves. The Multiplex class represents a multiplexed digital TV
transmission channel carried over afixed, on-air or composite Link. Finally, the Service class represents a digital
TV service, comprised of one or more components from the Multiplex that it is carried over. This compact set of

44

objectsisal thisisrequired to create amodel network of broadcasting sites and is sufficient to perform simple
correlationson a DTV network. A fragment from an example model network composed from objects of these
classes is shown below:

Relay Site Relay Site Relay Site

Multiplex Multiplex

Composite Composite Composite : Composite
e I g T

5.2 Automatic Creation

UCA provides afeature that converts a metamodel in the form of a UML class diagram into the UCA metamodel
XML syntax. The class diagram can be created in a UML case tool that supports the export of class diagramsin
XMI 1.2, UML version 1.4. Because of UML tool idiosyncrasies and inconsistent compliance to standards, UCA
currently supports asingle UML tool (ArgoUML) for this purpose. Thistool can be invoked from the link at the
bottom of the UCA home page.
When creating the class diagram in the UML casetool, UML ‘ Stereotypes’ and ‘ Tagged Values' are used as
follows:

e ‘duplicates isdefined as a Stereotype on a class

e ‘propagate isdefined as a Stereotype on arelationship endpoint

e ‘owner’ isdefined as a Stereotype on an association relationship endpoint

e ‘hops isdefined asaTagged Value on an association relationship endpoint

e ‘metamodelName’ and ‘metamodelVersion’ are defined using Tagged Values on the ‘Model’

class.

The class diagram must have ‘Model’ defined as the top-level class.

To automatically convert the UML class diagram to the corresponding UCA XML syntax, the following steps
are needed:
e Createthe UML class diagram, making use of UML stereotypes and tagged val ues as described
above (sections below described the meaning of ‘duplicates’, ‘ propagate’, ‘owner’ and ‘hops').
e Export the UML class diagram as an XM file. With ArgoUML, this can be done from the ‘File ->
Export as XMI’ menu.
e Fromthe Model tab of the UCA System Manager GUI, select Import
e Locate and select the XM file exported from ArgoUML.

45

Import an
XMl file

o

Figure 13— TheModel Tab —Importing an XM1 File

If the import is successful, information will be shown in the status bar area. If the import fails for any reason, an
error message in red text will be displayed in the status bar area.

5.3 Manual Creation

The UCA metamodel may be created manually, either using a separate text file editor or from within the Model
tab of the System Manager GUI.
If the System Manager GUI is used, clicking on the ‘New’ button will display atemplate XML definition,
including standard header and DTD definition. The user may then manually edit the XML within the section
marked as:
<net anodel netanodel Nanme="xxxx" netanodel Versi on="x. x">

insert all <elenent>...</elenent> definitions here
</ met anodel >

If a separate text editor is used, then the XML metamodel file may be read in to the text area of the System
Manager’'s Model tab by selected ‘Open ..." and locating and selecting the appropriate file. In addition, any
model file created or read in to the text area of the Model tab may be saved to alocal file by selecting ‘Save ...".
The metamodel XML file for the example digital TV broadcast network model is listed below:

<?xm version="1.0" encodi ng="UTF-8" standal one="yes" ?>

<! DOCTYPE net anodel [
<! ELEMENT et anodel (el ement +) >
<I ATTLI ST nmet anpodel netanpdel Name CDATA #REQUI RED net anpodel Ver si on CDATA
#REQUI RED>
<! ELEMENT el enent (parent | relative | associate | child)*>
<I ATTLI ST el enent type NMIOKEN #REQUI RED dupl i cat es (TRUE| FALSE)
#REQUI RED>
<! ELEMENT parent (class, propagate)>
<!l ELEMENT child (class, propagate)>
<I ELEMENT associ ate (cl ass, propagate, hops)>
<I ATTLI ST associ ate owner (TRUE| FALSE) #REQUI RED>
<! ELEMENT rel ative (class, propagate)>
<! ELEMENT cl ass (#PCDATA) >
<! ELEMENT pr opagat e (#PCDATA) >
<! ELEMENT hops (#PCDATA) >

46

1>

<net anodel net anodel Name="Si doni s DTV Mt anpdel " net anodel Versi on="1.0">

<el ement type="DTVNetwor k" duplicates="FALSE">
<par ent >
<cl ass>Model </ cl ass>
<pr opagat e>FALSE</ pr opagat e>
</ par ent >
<chi | d>
<cl ass>BasebandLi nk</ cl ass>
<pr opagat e>FALSE</ pr opagat e>
</ child>
<chi | d>
<cl ass>Si te</ cl ass>
<pr opagat e>FALSE</ pr opagat e>
</ child>
<chi | d>
<cl ass>Conposi t eLi nk</ cl ass>
<pr opagat e>FALSE</ pr opagat e>
</ child>
<chi | d>
<cl ass>Servi ce</ cl ass>
<pr opagat e>FALSE</ pr opagat e>
</ child>
<chi | d>
<cl ass>Mul ti pl ex</ cl ass>
<pr opagat e>FALSE</ pr opagat e>
</child>
<chi | d>
<cl ass>Tel coLi nk</ cl ass>
<pr opagat e>FALSE</ pr opagat e>
</child>
</ el enent >

<el enent type="BasebandLi nk" dupl i cat es="TRUE">
<par ent >
<cl ass>DTVNet wor k</ cl ass>
<pr opagat e>FALSE</ pr opagat e>
</ par ent >
<par ent >
<cl ass>Conposi t eLi nk</ cl ass>
<pr opagat e>TRUE</ pr opagat e>
</ par ent >
<rel ative>
<cl ass>Mul ti pl ex</ cl ass>
<pr opagat e>TRUE</ pr opagat e>
</relative>
<associ ate owner ="TRUE" >
<cl ass>Br oadcast Equi pment </ cl ass>
<pr opagat e>FALSE</ pr opagat e>
<hops>0</ hops>
</ associ at e>
</ el enent >

<el enent type="Site" duplicates="FALSE">
<par ent >
<cl ass>DTVNet wor k</ cl ass>
<pr opagat e>FALSE</ pr opagat e>
</ par ent >
<par ent >
<cl ass>Si te</cl ass>
<pr opagat e>TRUE</ pr opagat e>
</ par ent >
<chi | d>
<cl ass>Si te</cl ass>
<pr opagat e>FALSE</ pr opagat e>
</ chil d>
<chi | d>

47

<cl ass>Br oadcast Equi prment </ cl ass>
<pr opagat e>FALSE</ pr opagat e>

</ chil d>

<chi | d>
<cl ass>Si gnal Li nkEqui prent </ cl ass>
<pr opagat e>FALSE</ pr opagat e>

</ chil d>

<associ ate owner ="FALSE" >
<cl ass>Conposi t eLi nk</ cl ass>
<pr opagat e>FALSE</ pr opagat e>
<hops>0</ hops>

</ associ at e>

</ el enent >

<el enent type="ConpositeLink" duplicates="TRUE">
<par ent >
<cl ass>DTVNet wor k</ cl ass>
<pr opagat e>FALSE</ pr opagat e>
</ par ent >
<chi | d>
<cl ass>BasebandLi nk</ cl ass>
<pr opagat e>FALSE</ pr opagat e>
</ chil d>
<chi | d>
<cl ass>Tel coLi nk</ cl ass>
<pr opagat e>FALSE</ pr opagat e>
</ chil d>
<rel ative>
<cl ass>Mul ti pl ex</ cl ass>
<pr opagat e>TRUE</ pr opagat e>
</relative>
<associ at e owner =" TRUE" >
<cl ass>Si te</cl ass>
<pr opagat e>FALSE</ pr opagat e>
<hops>0</ hops>
</ associ at e>
</ el emrent >

<el ement type="Tel coLi nk" duplicates="FALSE">
<parent >
<cl ass>Conposi t eLi nk</ cl ass>
<pr opagat e>TRUE</ pr opagat e>
</ par ent >
<parent >
<cl ass>DTVNet wor k</ cl ass>
<pr opagat e>FALSE</ pr opagat e>
</ par ent >
<associ ate owner =" TRUE" >
<cl ass>Si gnal Li nkEqui prent </ cl ass>
<pr opagat e>FALSE</ pr opagat e>
<hops>0</ hops>
</ associ at e>
</ el enent >

<el erment type="Miltiplex" duplicates="TRUE">
<par ent >
<cl ass>DTVNet wor k</ cl ass>
<pr opagat e>FALSE</ pr opagat e>
</ par ent >
<chi | d>
<cl ass>BasebandLi nk</ cl ass>
<pr opagat e>FALSE</ pr opagat e>
</ chil d>
<chi l d>
<cl ass>Conposi t eLi nk</ cl ass>
<pr opagat e>FALSE</ pr opagat e>
</ chil d>
<rel ative>
<cl ass>Servi ce</ cl ass>

48

<pr opagat e>TRUE</ pr opagat e>
</relative>
</ el enent >

<el ement type="Service" duplicates="FALSE">
<par ent >
<cl ass>DTVNet wor k</ cl ass>
<pr opagat e>FALSE</ pr opagat e>
</ par ent >
<chi | d>
<cl ass>Mul ti pl ex</ cl ass>
<pr opagat e>FALSE</ pr opagat e>
</ child>
</ el enent >

<el ement type="Broadcast Equi prent" dupl i cat es="FALSE" >
<parent >
<cl ass>Si t e</ cl ass>
<pr opagat e>TRUE</ pr opagat e>
</ par ent >
<parent >
<cl ass>Br oadcast Equi prment </ cl ass>
<pr opagat e>TRUE</ pr opagat e>
</ par ent >
<chi | d>
<cl ass>Br oadcast Equi prment </ cl ass>
<pr opagat e>FALSE</ pr opagat e>
</ chil d>
<associ ate owner ="FALSE" >
<cl ass>BasebandLi nk</ cl ass>
<pr opagat e>TRUE</ pr opagat e>
<hops>1</ hops>
</ associ at e>
</ el enent >

<el enent type="Signal Li nkEqui prent" dupl i cat es="FALSE" >
<par ent >
<cl ass>Si te</cl ass>
<pr opagat e>TRUE</ pr opagat e>
</ par ent >
<associ at e owner =" FALSE" >
<cl ass>Tel coLi nk</ cl ass>
<pr opagat e>TRUE</ pr opagat e>
<hops>1</ hops>
</ associ at e>
</ el enent >

</ met anodel >

Before describing the structure and syntax of a metamodel file in some detail, it should be noted that whilst it is
possible to include examples of class specializationsinto a UML class diagram, such information would not be
included in the equivalent metamodel file. Thisis because the build (run-time data load) provides the
specialization i.e. the definition of the Sub Class attribute for each sub-type.

The first section of the file contains XML header and DTD information together with the opening <metamodel >
tag. This contains mandatory metamodel Name and metamodelVer sion attributes for the metamodel itself:

<net anodel net anopdel Nane="Si doni s DTV Metanodel " net anodel Versi on="1.0">

Each distinct class described in the metamodel class diagram requires an entry in the XML file bounded by the

<element> </element> tag pair. For example, the DTV Network class has the following entry:
<el ement type="DTVNetwor k" duplicates="FALSE">

</ el ement >

49

The <element> tag has two attributes: the type or base class name and whether or not duplicates are allowed.
Both are mandatory and the latter field is normally FALSE, however it is set to TRUE when the same object can
be loaded with different unique references e.g. if it has a number of alias names.
Within the <element> </element> tag pair, additional tag pairs may be defined, specifying the possible types of
relationships that objects of thistype can enter into. In addition, a relationship must be defined in each class that
participatesin that relationship i.e. at both ends, and this must be done in context. For example, with a
parent/child relationship, the parent class defines a <child> relationship and the child class defines an equivalent
<parent> relationship. The additional tag pairs are:
<parent> </parent>. Thistag pair isrequired at least once in every aggregated or child class (because every
class has a parent) and defines the parent class type in a composite relationship. It contains two additional tag
pairs:

<class>{PARENT BASE CL ASS}</class>, the base class of the parent

<propagate>{ TRUE|FAL SE}</propagate>, whether automatic state propagation is required

to the parent object

e.g.

<el ement type="Site" duplicates="FALSE">
<par ent >
<cl ass>DTVNet wor k</ cl ass>
<pr opagat e>FALSE</ pr opagat e>
</ parent >

</ el emrent >
Note that the top-most class in a state mesh - usually some type of network - has a parent class
of Model, for which UCA automatically generates the required support and no entry is
required in the XML file.

<relative> </relative>. Thistag pair isused in a contained or nephew class and defines the containing or uncle
class type in a containment relationship (hence the name <relative>). It contains two additional tag pairs:
<class>{RELATIVE BASE CLASS}</class>, the base class of the relative
<propagate>{ TRUE|FAL SE}</propagate>, whether automatic state propagation is required
to the relative

eg.
<el emrent type="Miltiplex" duplicates="TRUE">

<relative>
<cl ass>Servi ce</cl ass>
<pr opagat e>TRUE</ pr opagat e>
</relative>
</ el emrent >

Note in this exampl e that the duplicates attribute is set to TRUE. This alows a Multiplex
object to be data loaded several timesif it supports more than one Service uncle object (only
one uncle object can be specified at atimein asingle dataload block). Also note that the
propagate attribute is set to TRUE. This means that any state change on a Multiplex object
will be propagated automatically to all Service uncle objects.

<child> </child>. Thistag pair is used in a composite (or parent) class OR in an aggregate (or uncle) class. Ina
composite relationship, it defines the child class type. In an aggregate relationship, it defines the contained or
nephew classtype. It contains two additional tag pairs:
<class>{CHILD BASE CLASSINEPHEW BASE CL ASS}</class>, the base class of the
child or nephew class.
<propagate>{ TRUE|FAL SE}</propagate>, whether automatic state propagation is required
to the child or nephew
e.g. Nephew
<el ement type="Service" duplicates="FALSE">
<chi | d>
<cl ass>Mul ti pl ex</ cl ass>
<pr opagat e>FALSE</ pr opagat e>
</child>
</ el enent >

Note that in this example the duplicates attribute is set to FALSE. Thisis because a Service
object is only loaded once even though it may have many Multiplex nephew objects

50

e.g. Child
<el ement type="Site" duplicates="FALSE">

<chi | d>
<cl ass>Si te</cl ass>
<pr opagat e>FALSE</ pr opagat e>

</ chil d>

<chi | d>
<cl ass>Br oadcast Equi prment </ cl ass>
<pr opagat e>FALSE</ pr opagat e>

</ chil d>

<chi | d>
<cl ass>Si gnal Li nkEqui prent </ cl ass>
<pr opagat e>FALSE</ pr opagat e>

</ chil d>

</e|en€ﬁ{>
Note that a Site parent object may singly or simultaneously have a number of different types of

child object, including other Site objects (this allows a hierarchy of Sites as defined in the
metamodel UML class diagram).

<associate> </associate>. Thistag pair isused in ‘associate’ or peer classes and defines the peer classtypein an
association relationship. The <associate> tag has an owner attribute that defines the class type at one end only of
an association relationship as the nominal owner, i.e. set to TRUE. Obvioudly, the class type at the other end of
the same relationship must have this attribute set to FALSE. The purpose of thistag isto force the bi-directional
relationship in the state mesh to be constructed from the ‘owning’ end only. The <associate> </associate> tag
pair contains three additional tag pairs:

<class>{PEER BASE CLASS}</class>, the base class of the remote peer class.

<propagate>{ TRUE|FAL SE}</propagate>, whether automatic state propagation is required

to the remote peer

<hops>{0|n}</hops>, the extent of automatic state propagation, usually O or 1 objects (0

means don’t propagate to associate, even if propagate attribute is set to TRUE. 1 means

propagate to associate and no further if propagate attribute is set to TRUE).

e.g. Relationship owner, BasebandLink objects does not propagate state changes to associate

BroadcastEquipment objects
<el emrent type="BasebandLi nk" dupli cates="TRUE">

<associ ate owner ="TRUE" >
<cl ass>Br oadcast Equi prment </ cl ass>
<pr opagat e>FALSE</ pr opagat e>
<hops>0</ hops>
</ associ at e>
</ el emrent >

e.g. Relationship non-owner, BroadcastEquipment objects propagate state changes to associate

BasebandLink objects.
<el ement type="Broadcast Equi pment" dupl i cat es="FALSE" >

<associ at e owner =" FALSE" >
<cl ass>BasebandLi nk</ cl ass>
<pr opagat e>TRUE</ pr opagat e>
<hops>1</ hops>
</ associ at e>
</ el ement >

5.4 Metamodel Design Patterns

Developing UCA solutions in a number of application areas has resulted in the use of some common design
patterns for metamodel components. The following sections describe some of the more useful examples using
annotated UML class diagrams and where appropriate, associated correlation models.

51

5.4.1 Equipment Tree

The Equipment Tree pattern describes a common arrangement for building hierarchical network equipment
modelsin UCA and includes annotations for model-driven state propagation between equipment layers. The
following UML class diagramsiillustrate the general form of the pattern and an example Equipment Tree
metamodel fragment for a telecommunications Network Element containing a hierarchical arrangement of sub-
components:

General Form Example Equipment Tree

Equipment | 1..* Network
Element

| | M
| Rack

Function Container

The general form of the pattern allows the user to construct an arbitrarily complex layered equipment model
including model -driven state propagation between the layers. The example Equipment Tree illustrates how the
general form may be used to construct a specialisation for a particular application domain and this would
normally be used as part of a UCA metamodel.

A correlation model, based on the example Equipment Treg, isillustrated in the following diagram to show how
the pattern specialisation would be used in practice.

52

----------------------) O Rule-Driven State

Propagation
Rack Group
Rack

/é Rule-Driven S:N«
il Propagation =~ SNgoooooomo------omeg

i E Automatic Model-Driven : Y |
: : State Propagation ! |
E Shelf i E Shelf :
b e- ; @ Rule-Driven State L ... !
neintieinieelalelnleieleleintal Propagation Hinininteiniisieiuinintisiaiiatat

i Automatic Model-Driven ! '
: State Propagation ! 1 E

card
III) © Rule-Driven State

T) Propagation _____ (T
| e | |
i ' Model-Driven ! '

Automatic Model-Driven
State Propagation

State Propagation

The import facility provided with UCA may be used to convert the Equipment Tree UML class model (in XML
format) into a UCA metamodel, capable of supporting the correlation model including automatic model-driven
state propagation.

The user isthen left to construct and deploy the simple rules and actions necessary to handl e the propagation of
state changes between layers of the model and carry out consequent actions. For example, a design choice might
be to build into rule @ an assumption that a Card has failed when 75% of the Ports on that Card have themselves
failed. Aswell asreporting the failure into the enclosing Shelf, the designer could instigate an action to attempt
an automatic reset of the Card itself.

The important point to consider is that the combination of automatic model-driven state propagations and the
flexibility of user-defined rule-driven state propagations allows the correlation designer to achieve avery
flexible handling and reporting structure. In addition, the single metamodel definition and accompanying
rulefaction set will apply equally to all Network Elements for which datais loaded into UCA, regardless of the
actual number of Ports, Cards, Racks and Shelvesin each instance.

5.4.2 Normaliser

Networks are constructed from a diverse range of components within and across the ranges of equipment
supplied by different manufacturers. For simple correlation scenarios or test implementations, it may be
advantageous to provide individual correlation models for each variation, however as the extent of the
implementation increases it becomes important to adopt techniques that promote simplification and re-use and
minimise the maintenance effort.
One technique that can be usefully employed at the lowest level of the correlation ‘pyramid’ isto normalise this
diversity into acommon logical representation that then drives the correlation layers above in a uniform manner.
Diversity at thislevel usually manifestsitself in the following ways:
e Alarm reports received from network equipment vary widely in their reporting standard,
complexity and severity (even in different revisions of the same equipment supplied by a
manufacturer).

53

e The complexity of the logical implementation model for the same type of equipment varies widely
across product ranges and manufacturers. The result is that the same problems are often reported in
completely different ways.

UCA supports the normalisation of this diversity into acommon logical form using the Normaliser pattern
described in the following UML class diagrams.

General Form Example Normalisation
Container Card
1..*Tf 1..*Tf
Normalised > Associate Port —> Link
Object 2 1
Specialised Specialised Subclass Subclass
Object Type 1 Object Type 2 Type A Type B

N] L

Alarm Report)
Type B

Mapping Targets Alarm Report === | 5 pport
Mapping Targets

The Normaliser pattern is derived from the widely used class form of the Adapter pattern. It achievesthe
normalisation process through two mechanisms:;

e Diverse alarm reports are mapped onto instances of the specialised object typesin the correlation
model, using the comprehensive target object mapping capabilities provided by UCA. The
mapping is configured such that regardless of the type of alarm report, it causes the same state
change to be applied to the target object.

e Specialised object types (reflecting the diversity of the network implementation) are provided with
a common base class that serves asthe normalised ‘logical’ driver for correlation at higher levels.
The state change caused by mapping alarm reports onto a specialised object affects the
encapsulated base class instance equally.

The Rules that drive higher-level correlations are then written to operate on instances of objects with the
common base class — they effectively ignore the diversity and look only for objects of the base classtypein
working memory (rather than their subclass type which reflects their diversity).

Of particular interest in the example normalisation model shown above isthe extralevel of diversity in the Type
B specialised object type. The Type A subclass has alarm reports attached directly by UCA as described above.
In contrast, the Type B subclass has alarm reports attached to its set of SubPorts (because it does not itsel f
directly generate alarm reports and mapping those from the SubPorts to the owning Type B instance would not
achieve the correct effect).

In order to achieve the required normalisation from Type B objects, the designer isrequired to provide asimple
rule to detect when the required proportion of Type B SubPorts have themselves changed state and a
corresponding action to force the owning Type B subclass instance to the failed state. Once this has been
implemented however, the correlation scenario will operate equally with either Type A or Type B objects.

5.4.3 Link Handler

Most communication networks are constructed at the equipment level from a mesh of control or switching
elements and some type of transport medium to communicate information or switch resources between them e.g.
radio link, fibre optic cable. In general, thislevel of complexity isinsufficient to provide the level of resilience to
failure required by modern service level agreements or to support the diverse range of services offered.

In practice therefore, these types of network employ alogical network model above the physical level,
supporting a number of layers of increasing abstraction (and usually complexity). A common characteristic of

54

each layer however isthat it is dependent on alower layer for service and correlation scenarios usualy involve
determining the effect of a problem at alower layer on those above.

The practical problem in constructing these scenariosis surprisingly not the issue of modelling the inter-layer
dependencies or associated state propagations but that of obtaining a suitable generic ‘driver’ from the physical
layer to provide an initial trigger. Thisis because the physical links e.g. cables, radio links, fibres etc. on which
logical links are carried do not themselves generate Alarm Reports. In general, the only vaguely useful Alarm
Reports are those reported against the equipment at each end of the physical links and by themselves they are
unsuitable for reliably triggering a scenario. Thisis because the receipt of an Alarm Report from one end of a
link is not always areliable indicator of link failure.

The purpose of the Link Handler pattern istwofold. It provides the connection between physical equipment and
associated link problems and supports the generation of areliable generic ‘driver’ into the logical layer above.
The general form of the pattern and a metamodel fragment that employsit (from the DTV network example
included with UCA) are illustrated in the following UML class diagrams.

General Form Example Link Handler
Service
Logical Link Multiplex
Physical <+— Link Termination Baseband <+— Broadcast
Link 1 2 Point Link 1 2 Equipment
Composite Composite
Receiver Transmitter

The pattern operates in two stages. First, Alarm Reports delivered against the Link Termination Point objects
result in state changes that are propagated to a Physical Link object using automatic model-driven state
propagation. One or more rules provided by the correlation designer detect when the ends of the Physical Link
have attained the required combination of states e.g. failed + failed or failed + degraded (as required by the
correlation scenario) and the consequent action forces the state of the Physical Link to failed. Next, automatic
model -driven state propagation reports the state change of the Physical Link upwardsto the carried Logical Link,
thus achieving the requirement to provide a generic ‘driver’ into that layer.

The example Link Handler illustrates how this pattern may be incorporated into the UCA metamodel. The
structure shown actually reports a Baseband Link (i.e. the Physical Link) failure up to the Multiplex transported
over it, which in turn reports a problem to the Services carried on the Multiplex. It also utilises the Normaliser
pattern to handle equipment diversity, using the Broadcast Equipment base class to represent the Composite
Receiver and Transmitter objects at either end of the Baseband Link and thus simplifying the implementation.

5.4.4 Physical-Logical Vee

The Physical-Logical Vee pattern isin fact a combination of the Equipment Tree (Physical) and Link Handler
(Logical) patterns described above and forms the basis of many correlation scenarios that operate on
communications networks. The pattern allows a designer to implement scenarios that simultaneously handle two
important aspects of correlation analysis — problem detection on the (physical) equipment level and impact
analysis on the (logical) serviceimpact level. The following UML class diagram illustrates the general form of
the pattern and shows the practical application of it inthe DTV network metamodel.

55

General Form

Logical Physical

Logical Link Equipment
Container

1L Tt

Example Physical Logical Vee

Service

&
4

DTV
Network

Multiplex

¢
1x| 4

<&
A

Site

Physical <+— Link Termination
Link 1 2 Point

Baseband
Link

1..*’f

Considering the general form, alarm reports attached to Link Termination Points have two simultaneous effects.
State changes are propagated directly upwards to the Equipment Container in the physical arm of the ‘Vee',
allowing the designer to construct problem detection correlation scenarios. The same state changes are
propagated towards the Physical Link and consequential state changes are propagated upwards to the Logical
Link in thelogical arm of the ‘Vee', allowing the designer to build simultaneous service impact correlation
scenarios. Of particular interest in this pattern is the simultaneous use of relative, parent and peer relationshipsto

achieve the desired results.

The metamodel fragment shown is taken directly from the included DTV network example and illustrates a

practical application of this pattern.

Broadcast
Equipment

56

Chapter 6 Creating the Model Database
Using the System Manager

One of the purposes of the UCA metamodel isto act as atemplate for structuring the UCA model database. The
classes and relationships defined within the metamodel drive the whole process of setting up the structure of the
tables within the UCA model database. Assuming the metamodel is defined, UCA automates the entire process
of generating these tables and defining their structure. Once the model database tables have been created, the
remaining task is to populate these tables with actual model data.

This chapter describes the process of creating and populating the model database tables.

6.1 Generating the Model Database Structure

Before a metamodel can be ‘deployed’ (i.e. used to automatically create the model database tables), it must first
be added to the metamodel library within UCA. Thislibrary acts as a storage repository for deployable
metamodels. Any number of them may be stored in the library but only one metamodel can be deployed into
active use at any time.
e To store the metamodel currently displayed in the text area of the Model tab of the System
Manager, select ‘Add ...", supply adescription and additional information that distinguishes this
metamodel, then select ‘OK’.
e Toview the current set of deployable metamodels stored in the metamodel library, select ‘ Manage
..." from the Model tab. Thiswill list the details of all metamodels within the library.
e To view the contents of a particular metamodel stored in the metamodel library, select ‘Manage
..." from the Modél tab, select the metamodel of interest and click on ‘Open’. The metamodel will
then be listed in the text area of the System Manager’s Model tab.
e Todeploy ametamodel into active use, select ‘Manage ..." from the Model tab, select the
required metamodel to deploy and click on ‘Deploy’. Note that thisis a destructive operation - all
data held in the model database will be destroyed. After accepting the warning confirmation, a
dialog will prompt for the model database maximum field size — enter avalue at |least as big as the
largest data item (usually the Unique Reference) expected to fill a model database field during
population and click on ‘OK’. The model database tables will then be automatically created from
the metamodel.

Figure 14 — The M odel Tab — meta-model management

57

The fragment below illustrates the type of definition generated within the model database from the metamodel
for a CompositeLink class.

Note that the ‘create table’ statement will vary according to the types of relationship defined for the classin the
metamodel. The Relative and Associate sections marked in the example above will only exist if the class
participates in composition and association rel ationships respectively. On the other hand, the Parent and Class
Section will always exist (a class always has a parent even if it the special top level Model class).

Even though a class can have any number of composition and association relationships, only one set of datais
allowed for these sections per row in the appropriate model database table. To allow data loading of these
multiple relationships for a given target object, the user simply provides multiple data sets with the same Parent
and Class attribute values and different Relative and/or Associate attributes. Further, to prevent the model
builder reporting errors for duplicate entries for the same instance of a class, the user isrequired to set the
duplicates attribute in the metamodel for the classto TRUE. The model builder then constructs a single target
object instance but correctly sets up the multiple Relative and/or Associate relationships as required.

CREATE TABLE UCA. MD_COWPOSI TELI NK (

"Parent _Ref" varchar2(250) default '', Parent
"Parent _Subcl ass" varchar2(250) default '', Section
"Parent O ass" varchar2(250) default '',

"Rel ative_Ref" varchar2(250) default '', Relative
"Rel ati ve_Subcl ass" varchar2(250) default "', Section

"Rel ative_Cl ass" varchar2(250) default "',

"A Associ ate_Ref" varchar2(250) default '',

"A Associ at e_Subcl ass" varchar2(250) default "',

"A Associ ate_C ass" varchar?2(250) default "', >~ Associate

"Z Associate_Ref" varchar2(250) default '', Section

"Z Associ ate_Subcl ass" varchar2(250) default '',

"Z Associ ate_C ass" varchar2(250) default "', .<

"Cl ass_Nane" varchar2(250) default '' NOT NULL,

"Subcl ass_Nane" varchar2(250) default '' NOT NULL,

"I nstance_Nane" varchar2(250) default "' NOT NULL,

"Uni que_Ref" varchar2(250) default "' NOT NULL, Class

"Service_State" varchar2(20) > Section
default 'IN_SERVICE NOT NULL,

"I mportance" varchar2(5) default '0' NOT NULL,

"Latitude" varchar2(20) default '0" NOT NULL,

"Longi tude" varchar2(20) default '0'" NOT NULL Y,

) TABLESPACE UCA;

6.2 Populating the Model Database

Once the UCA model database tables have been created, they must be popul ated with real data representing the
actual Sites, CompositeLinks etc. There are two aspectsto this:
e Theinitia data population, starting from empty tables
e The‘day-to-day’ updating of the tables due, for example, to periodic inventory changesin an
operational network.

The following sections describe the two processes involved.

6.2.1 Initial Population

There are many possible techniques for populating the model database tables with data. For example, if Comma
Separated Vaue (CSV) datafiles are to be imported then Oracle’'s SQL* Loader or the PostgreSQL COPY
command might be used. Alternatively, table data may be directly imported using facilities provided with the
DBMS.
Alternatively, UCA provides a facility for CSV fileimport intended for use when arelatively small (tens of
thousands) number of objects are to be imported. To use this facility, select the Data-load tab in the UCA
Manager (note that loading UCA with an initial set of model data can only be done when UCA is not started).
e Theavailable classes of model data, as defined in the metamodel, will be listed on the left side.
Theright side liststhe CSV files available for import. Files available for import are those in the
‘import’ subdirectory of the UCA installation directory on the server. Files may be uploaded to

58

this directory from a client using the Upload ... button on the Data-load tab or manually copied in
from another location. These files may also be deleted from the server by selecting the file and
then clicking the Delete button.

e When creating CSV filesto import, it is useful to know the exact order of fieldsto use on each line
of CSV data. To assist with this, clicking the CSV Help button will list all the tables, field names,
types and sizes.

e Toassociate aclasswith aCSV file, select the class on the left of the window and the associated
CSV file on theright. Then click on Associate. Details for this class/ file association will then be
listed in the text area at the bottom of the window. Repeat this process for al classes and CSV files
to be associated.

e Finaly, toimport all the CSV files for each class, click on the Import button. Y ou will be given
the choice of over-writing existing table data or appending the new data to the existing data.

Figure 15 — The Data-load Tab —inventory management

Below is an example where multiple rows of data are provided for a single instance of an object to configure
multiple Relative relationships to different ‘uncle’ objects, as described at the end of the preceding section. Each
Multiplex object islisted several timesto allow a number of Relative relationships to be defined to different
uncle Service objects. Thisisillustrated in the following fragment of the example network:

59

Service 1

Service 2

Multiplex.csv row N /’/ Service 3
Multiplex.csv row N+1 -~ Service 4
Multiplex.csv row N+2 -~~~ -
Multiplex.csv row N+3 -7~

Multiplex

"= Baseband Link =

6.2.2 Updating the Database

Once the model database has been populated with target object and relationship instance data, the UCA system

may be started as described previoudly.

Assuming that the UCA system is operational, the model database may be updated at any time, with the effect

that the state mesh will be dynamically updated and any ongoing correlations automatically resolved as far as

possible to maintain system consistency. The dynamic update mechanism isillustrated below:
For efficiency the UCA system is designed to gather a set of model database updates over a
configurable period and apply them in a single operation. Therefore, the state mesh will only be
updated at those times defined by system configuration e.g. once an hour at 30 minutes past the hour.
This means that changes applied to the model database are unlikely to be applied to the state mesh
immediately unless this coincides with the next state mesh update time or the user selects the ‘Update
Mesh Now’ option in the UCA System Manager Maintenance tab. The frequency of update will have
been configured by the system administrator (using the UCA System Manager Maintenance tab - see
the HP UCA Installation and Configuration Guide for details). The time and frequency should be
chosen to provide a balance between operational needs and system efficiency, bearing in mind that an
update requires the system to temporarily suspend (and buffer) the processing of alarm reports.

60

Population &
Update Service
> Model

External
Inventory
Service

Database

Insert,
Update & l Current Set Current

Delete Update | ypgate Table Configurable

Triggers Table —¥) Changeover
X T

/ Table #1 / et

SetPrevious /o 0 o e e
Update Table

X Model
> Updater

Update Update I
Table #1 Table #2
Insert A Insert E I
Insert Z Delete F |
Delete C Delete X |
Update D |
1
|

Update State
Mesh & Resolve
Correlation

Mapped

State
Marm ——p{ Buffer || >C > Mesh
Reports

Control Buffer
Processing

When a change is applied to any model database table during the ‘ gathering’ period, details of the change will be
recorded in aspecial ‘Update’ table. At the next update time, any changes recorded in the ‘ Update’ table are
applied to the state mesh. To ensure that updates are not lost during this operation, the system maintains a pair of
‘Update’ tablesthat are used alternately — while one set of updatesis being applied, any new updates will be
recorded in the alternate ‘ Update’ table. If for consistency reasonsit isimportant that a set of updates should not
be split between two successive updates, care should be taken to ensure that a model database update is not
carried out close to an update time.

It is then the responsibility of the user to implement and configure aregularly repeated task e.g. a‘cron’ or batch
job, to extract a set of updates from the external inventory service and apply these to the appropriate model
database tables. As described above, the state mesh will then be automatically updated at the next update time.

61

Chapter 7 The UCA Applications

UCA provides three main Graphical User Interface (GUI) applications:
e the System Manager
e the Scenario Manager
e theMesh Viewer

The System Manager is used for system administration, model loading, diagnostics and maintenance and is
covered in Chapter 4 and the HP UCA Installation and Configuration Guide.

The Scenario Manager is used for defining and deploying scenarios, filters, mappings and rules. The Mesh
viewer is used for viewing the structure and contents of the model as well as the real-time state of mesh events
and notifications. These two GUIs are described in detail in the following chapters.

To invoke the Scenario Manager or Mesh Viewer, click on the UCA Applications button in the UCA Home
Page. A web page will be displayed requesting a username and password, as follows:

Figure 16 - The Applications L ogin Page

After entering avalid username and password and clicking on the Logon button, a page will be displayed
showing the UCA applications that the user is authorised to use, as shown below (see section 4.3 for details of
how roles affect allowed applications).

To start the Scenario Manager or the Mesh Viewer, click on the appropriate button.

62

Authorised

/ applications

Figure 17 - The UCA Applications Page

7.1 The Scenario Manager

This section describes the features available in the Scenario Manager in terms of the basic menu items, toolbar
items, pop-up menu options and so on. A detailed description of how to actually configure the scenarios, filters,
mappings and rulesis provided in the subsequent chapters.

The Scenario Manager is used for:

creating, modifying and deleting scenarios, filters, mappings and rules

validating the ‘ correctness’ of scenarios before deploying them

deploying a set of scenarios, filters, mappings and rules into active use

listing details of previous deployments

maintaining and using a ‘library’ of deployments

The following screenshot shows the Scenario Manager with the main component areas labelled.

63

Menu Bar Tool Bar

Status Bar

Scenario Builder Scenarios, Filters, Maps &
Tree Rules Summary List

Figure 18 - The Scenario M anager

7.1.1 Menu Bar

The following menu items are available;

File — New— Scenario
File — New— Filter

File — New— Mapping
File — New— Rule

File — Open from local file
File — Save to local file

File — Save multiple scenarios
File — Print— Table Summary

File — Print— Tree Summary
File — Print— All Details as XML

File — Exit

Server — Load Data

Server — Validate Data

Server — Deploy Data

Opens the ‘Add New Scenario’ dialog box.

Opens the ‘Add New Filter’ dialog box.

Opens the ‘Add New Mapping’ dialog box.

Opens the ‘Add New Rule’ dialog box.

Opens a local file of scenarios, filters, mappings and rules.
Saves the current set of scenarios, filters, mappings and rules
to alocdl file.

Saves a selection of scenarios from the scenario builder tree.
Prints the current contents of the Scenarios, Filters, Mappings
and Rules Summary Ligt..

Prints the current contents of the Scenario Builder Tree.
Prints all details of all configured scenarios, filters, mappings
and rulesin XML format.

Exits the application.

Loads the currently deployed scenarios, filters, mappings and
rules from the server into view, replacing all currently
displayed data.

Validates the scenarios, filters, mappings and rules in the
Scenario Builder Tree. Data cannot be deployed until it has
been validated.

Deploys the validated scenarios, filters, mappings and rules
in the Scenario Builder Tree to the server. The user is

64

prompted to enter a description and additional information
related to the deployment.

Server — Show Deployments Shows the ‘Deployments’ dialog listing details of username,

date, description and additional information for every
deployment. A deployment may be selected in the
‘Deployments’ dialog and Opened, so that the Scenario
Builder Tree and Summary List contents are replaced with of
the selected deployment.

Server — Show Library Shows the ‘Scenario Library’ dialog listing details of

username, date, description and additional information for
each scenario exported to the library. An exported scenario
may be selected in the ‘Scenario Library’ dialog and Merged,
so that the scenario contents are merged into the scenarios
branch of the Scenario Builder Tree.

View — Look and Feel — ... Changes the look and feel of the GUI according to those

supported on the client platform eg. CDE/Motif, Windows,
Metal.

View — Toggle tree node Ids Toggles the display of the internal unique Ids for each

scenario, filter, mapping and rule in the Scenario Builder
Tree.

Tools — Purge Summary Table Deletes all scenarios, filters, mappings and rules in the

Summary List that are not in the Scenario Builder Tree.

Tools — allow rules to loop? Enables or disables the looping of rules using the JBoss Rules

internal looping activation / deactivation.

Help — Scenario Manager Help Displays Scenario Manager help information in a web page.
Help — Sidonis web site Displays the Sidonis web page.
Help — About Displays a dialog showing the UCA and Scenario Manager

version numbers.

7.1.2 Tool Bar

Clicking on an icon in the tool bar performs the action as follows:

Icon

Action

Opens a local file of scenarios, filters, mappings and rules.

Saves the current set of scenarios, filters, mappings and rules to a local file.

Loads the currently deployed scenarios, filters, mappings and rules from the server into
view, replacing all currently displayed data.

Validates the scenarios, filters, mappings and rules in the Scenario Builder Tree. Data
cannot be deployed until it has been validated.

Deploys the validated scenarios, filters, mappings and rules in the Scenario Builder Tree to
the server. The user is prompted to enter a description and additional information related to
the deployment.

Shows the ‘Deployments’ dialog listing details of username, date, description and
additional information for every deployment. A deployment may be selected in the
‘Deployments’ dialog and Opened, so that the Scenario Builder Tree and Summary List
contents are replaced with of the selected deployment.

Shows the “Scenario Library’ dialog listing details of username, date, description and
additional information for each scenario exported to the library. An exported scenario may
be selected in the ‘Scenario Library’ dialog and Merged, so that the scenario contents are
merged into the scenarios branch of the Scenario Builder Tree.

Opens the ‘Add New Scenario’ dialog box.

65

Opens the ‘Add New Filter’ dialog box.

Opens the ‘Add New Mapping’ dialog box.

Opens the ‘Add New Rule’ dialog box.

Opens the “‘Create New Rule Set’ dialog box (see description of ‘Rule Templates’).

The toolbar may be dragged and repositioned on the top, left or right side of the GUI or may be detached
completely.

7.1.3 Scenario Builder Tree

Scenarios, filters, mappings and rules listed in the ‘Summary List’ may be dragged and dropped into position in
the Scenario Builder Tree. The tree represents all scenarios, filters, mappings and rules that will be deployed into
live use. When dropping an item into the tree, the following constraints apply:

only scenarios can be dropped onto the tree root node, i.e. the ‘scenarios’ node

a filter may be dropped under the “filters and mappings’ node

a filter may be dropped under another filter

a mapping may be dropped under a filter provided the filter has no other filter ‘children’ nodes
underneath it.

e arule may be dropped under the ‘rules’ node

When the tree is configured with a set of scenarios, filters, mappings and rules, it may be validated and
subsequently deployed (providing it is valid).

Pop-up Menu Options

The following pop-up menu items are available by right-clicking a node in the Scenario Builder Tree:

All nodes:
fully expand / collapse — expands or collapses all descendent nodes below the
selected node, provided there are descendents to expand
or collapse.

All nodes except the root node:

move down — moves the selected node down one (provided it is possible
to do so), but maintaining the same level of nesting.
move up — moves the selected node up one (provided it is possible to

do so0), but maintaining the same level of nesting.

The *scenarios’ root node:

un-highlight all — removes the red highlighting from any nodes highlighted
in the tree (see the ‘highlight” pop-up menu item available
for the Summary List rows).

import from library — Opens the ‘Scenario Library’ dialog listing details of
username, date, description and additional information for
each scenario exported to the library. An exported
scenario may be selected in the ‘Scenario Library’ dialog
and Merged, so that the scenario contents are merged into
the scenarios branch of the tree.

Scenario nodes:
export to library — exports the currently selected scenario and all its
associated filters, mappings and rules to the scenario
library. The user is prompted via a dialog for a description
and additional information to be associated with the
exported scenario.

Scenarios, filters, mappings and rules nodes:

66

Delete from tree — removes the selected item from the tree, but not from the
Summary List.

7.1.4 Scenarios, Filters, Mappings and Rules Summary List

When a new scenario, filter, mapping or rule is first created, it appears as an item in the ‘Scenarios, Filters,
Mappings and Rules Summary List’. Thereafter, it may be viewed, modified, duplicated, highlighted in the
Scenario Builder tree, or deleted. Any row in the Summary List may be dragged and dropped into the Scenario
Builder tree, according to the constraints described above. The Summary List shows details of the item’s type
(scenario, filter, mapping or rule), description and modification date. The columns are re-sizable and movable
and their headers may be clicked on to toggle the sort order.

Pop-up Menu Options

The following pop-up menu items are available by right-clicking a row in the Summary List:

view / modify — opens the appropriate dialog box for viewing or
modifying the selected scenario, filter, mapping or rule.
create copy - makes a copy of the selected scenario, filter, mapping or

rule. The new copy will have the same Description but
preceded with ‘copy of ’.

highlight — highlights in red the selected scenario, filter, mapping or
rule in the Summary List. Also all occurrences of the
selected scenario, filter, mapping or rule are highlighted
in red in the Scenario Builder tree. This is useful if the
tree is very large and it is difficult to spot all nodes related
to an item selected in the summary list.

un-highlight - un-highlights a previously highlighted scenario, filter,
mapping or rule in the Summary List. Also all
occurrences of the selected scenario, filter, mapping or
rule are un-highlighted in the Scenario Builder tree.

delete — deletes the selected scenario, filter, mapping or rule from
the Summary List. If the item has been copied to the
Scenario Builder tree, all such occurrences will also be
deleted. Note that once an item has been deleted in this
way, it will have been be permanently removed. A
safeguard would be to create a backup copy on the local
disk of all scenarios, filters, mappings and rules by
clickingonthe toolbar button.

Double-clicking with the left mouse button on a
row in the Summary List has the same effect as
é selecting the ‘view / modify’ pop-up menu item.

7.1.5 Status Bar

The Status Bar displays informational and warning messages — these are shown in the left hand area. Warning
messages are highlighted with a red background. The progress of various operations is shown in the progress bar
area on the right hand side of the Status Bar.

7.2 The Mesh Viewer

The Mesh Viewer is used for:
e Viewing in real-time the state of the mesh objects.
e Viewing in real-time the notification details associated with the displayed mesh objects.
e Viewing the full hierarchy of mesh objects in the state mesh, in terms of a model tree of classes,
subclasses, instances and instance details.
e Navigating around the model tree.

The screenshot below shows the Mesh Viewer with the main components areas labelled.

67

7.2.1 Menu Bar

The following menu items are avai
File — Inject alarms

File — Exit
View — Look and F
View — Pause

View — Filter

lable:

from file Allows a user with ‘tester’ role privilege to select an XML
file of alarms to inject into UCA.
Exits the application.

eel — ... Changes the look and feel of the GUI according to those
supported on the client platform eg. CDE/Motif, Windows,
Metal.
Pauses the update of the Mesh Object List. See the ‘pause’
icon description under the Toolbar section below.
Filters the objects displayed in the Mesh Object List. See the
“filter’ icon description under the Toolbar section below.

Help — Mesh Viewer Help Displays Mesh Viewer help information in a web page.

Help — HP web site
Help — About

Displays the HP web page.
Displays a dialog showing the UCA and Mesh Viewer
version numbers.

Menu Bar Tool Bar Model Tree — classes, Mesh Obiect List

//

—
—
—
—

/ subclasses, instances &
instance details

Status Bar

7.2.2 Tool Bar

Figure 19 - The Mesh Viewer

Clicking on an icon in the tool bar performs the action as follows:

Icon

Action

Displays the Notifications Viewer Dialog (see below), showing notification details
associated with the object currently selected in the associated Mesh Object List.

Toggles the pausing / un-pausing of the Mesh Object List. When paused, updates to the

68

Mesh Object List are received but not displayed. When un-paused, the Mesh Object List
will work as normal i.e. the correct state of the failed or degraded Mesh Objects will be
displayed dynamically. When the display is paused, the menu bar will change colour and
the pause icon will change.

Enables display filtering of failed or degraded Mesh Obijects in the Mesh Object List. When
selected, the tool bar will display text boxes to allow entry of the filtering conditions.
Filtering may be performed on all columns or any individual column. The filtering criteria
can include regular expressions, in which case the regular expression wizard can be used.
When filtering is de-selected, the display will revert to normal un-filtered behaviour.

The toolbar may be dragged and repositioned on the top, left or right side of the GUI or may be detached
completely.

7.2.3 Model Tree

The Model Tree is split into four re-sizable sections — classes, subclasses, instances and instance details. Each
section displays a tree structure.

The classes tree is essentially the parent-child relationship information between the classes as described by the
metamodel. When a class node is selected, the subclasses tree shows all the subclass types (as derived from the
actual model data) related to that class.

When a subclass node is selected, the instances tree shows all the mesh object instances (as derived from the
actual model data) related to that subclass. If there are a large number of instances, they are presented one
‘page’ at a time. The pages may be navigated one page forward, one page backward and back to the first page by

selecting b , € and respectively from just below the instances tree.

When an instance node is selected, the instance details tree shows all the mesh object instance details (as derived
from the actual model data) related to that instance. The instance’s details include not just information about
specific attributes, such as importance, latitude, longitude etc., but model relationship data. For example, there
will be a tree branch showing the Parent details in terms of parent class, parent subclass and parent instance.
There may also be a branch showing similar ‘relative’ or ‘associate’ details, depending on whether the instance
has relatives or associates defined in the metamodel and data has been provided for them in the model database.

If a parent, relative or associate instance node is selected in this tree and the “* button is clicked, the Model Tree
will change to display the class, subclass, instance and instance details associated with that node. Subsequently,

one that was navigated from using the “* button).

Pop-up Menu Options

The following pop-up menu item is available by right-clicking a node in the subclasses tree:

find instances ... — opens the Search dialog, as shown below. This dialog is
used to specify an instance hame (or names) to search for.
An exact instance name or a wild-carded expression may
be entered as the search criteria. When the OK button is
clicked, the instances tree will show those instances
related to the currently selected subclass, according to the
search value entered.

69

Figure 20 - The Search for Instances dialog

After displaying ‘searched for instances’, to reset

the list of displayed instances to the full set,

% CTRL-click the subclass node to deselect it, then
re-select it with a left mouse-click.

The following pop-up menu items are available by right-clicking a node in the instances tree:

show all notifications ... — Displays the Notifications Viewer Dialog (see below),
showing notification details associated with the object
whose class, subclass and instance is currently selected in
the associated trees.

Create alarm — Displays the Create Alarm Dialog (see below), allowing a
user with ‘tester’ role privilege to enter all alarm fields for
an alarm to be injected into UCA.

Figure 21 - The Create Alarm dialog

7.2.4 Mesh Object List

When a mesh object changes state to failed or degraded, the Mesh Object List will update in real-time to display
details of that object, including its status (failed or degraded), class name, subclass name and the instance’s
unique reference, as well as the timestamp that the GUI received the update. If an object represented in the
Mesh Object List is associated with one or more notification, the leftmost column will show either the icon
orthe icon, depending on whether the associated notification(s) are normal or locked. When a mesh object
changes state from failed or degraded back to normal, the corresponding row will be removed from the Mesh
Object List.

When an item in the list is selected, its corresponding class, subclass, instance and instance details are
highlighted in the Model Tree.

The columns in the Mesh Obiject List are re-sizable and movable and their headers may be clicked on to toggle
the sort order.

Pop-up Menu Options

The following pop-up menu item is available by right-clicking a row in the Mesh Object List:

70

highlight object in model — highlights the class, subclass, instance and instance details
in the Model Tree associated with the object in the
selected row

show all notifications ... — Displays the Notifications Viewer Dialog (see below),
showing notification details associated with the object
whose class, subclass and instance is currently selected in
the associated trees.

Double-clicking with the left mouse button on arow
in the Mesh Object List has the same effect as

% selecting the ‘ show all notifications ..." pop-up menu
item.

7.2.5 Notifications Viewer Dialog

The notifications viewer dialog provides useful dynamic information about notification(s) and data related to
those notifications. It isused for:

e Viewing current notificationsin real-time. A notification is an indication of the problem detected
and isthe result of an action being fired from arule.

e Viewing details of contributory events associated with a notification. A contributory event is an
event that contributed to the problem i.e. it is an event that is wholly or partially indicative of the
problem.

e Viewing details of the affected objects associated with a notification. An affected object represents
a mesh object within the model that has been affected as a by-product of the problem e.g.
downstream sites affected by a main site failure.

e Viewing details of sympathetic events associated with an affected object. A sympathetic event
represents an event that has occurred as a by-product of the problem e.g. an event from a
downstream site that was generated as a result of a main site failure.

To view the notification(s) associated with afailed or degraded mesh object, double click arow in the Mesh
Object List (or right click the row and select ‘ show all notifications ...".

To view the notification(s) associated with an object in the Model tree, select the desired class, subclass and
instance nodes, then right-click the instance node and select ‘ show al notifications' from the pop-up menu.

The screenshot below shows the Notifications Viewer Dialog with the main components areas labelled.

From the Notifications Viewer Dialog, the following operations may be performed:
select a notification in the Notifications Table — this will display all
contributory events and
affected objects associated with
the notification.
select an affected object in the Affected Objects Table — this will display all sympathetic
events associated with the
affected object.
The columnsin the Notifications Viewer Dialog tables are re-sizable and movable and their headers may be
clicked on to toggle the sort order.

Note that all information presented in the Notifications Viewer Dialog is potentially available to be passed on to
an external system, for examplein the form of a‘master’ problem alarm together with the event details that
might be used to de-clutter an alarm display in a network management system.

71

Notifications
Table

Contributory
Events Table

N

Affected
Objects Table

Sympathetic
Events Table

NN

Figure 22 - The Notifications Viewer Dialog

The Notifications Viewer Dialog updates dynamically with any changes to the notification details.

Note that only a single Notifications Viewer Dialog can be displayed at any one time. If the dialog isinvoked
for a different object, then any currently displayed Notifications Viewer Dialog will be replaced with the new
one.

7.2.6 Status Bar

The Status Bar displays informational and warning messages — these are shown in the left hand area. Warning
messages are highlighted with ared background. The progress of various operationsis shown in the progress bar
area on the right hand side of the Status Bar.

72

Chapter 8 Creating Scenarios, Filters,
Mappings and Rules

8.1 Scenarios

Scenarios provide a container for a set of filters, mappings and rules. A scenario typically represents a set of
filters, mappings and rules that are a logical, self-contained grouping e.g. a scenario might relate to handling
power failures, for dealing with SDH correlations or simply for housekeeping purposes. One of the key attributes
of a scenario is its ‘context name’. A ‘context name’ essentially relates to a “working memory” within the
inference engine component of UCA. Being able to have separate working memories is very useful to demarcate
groups of rules that must be kept independent of each other. Any number of scenarios may be created and each
one may have a different context name if desired; alternatively, they may all have the same context name, or
there may be some sharing the same context and others with different ones. The idea of a context name (i.e.
essentially a working memory) therefore allows potentially conflicting logical correlations to execute in
isolation, if required, or to co-exist in the same context. Furthermore, ‘Notifications’ provide a user-defined and
controllable communications path between contexts, allowing hierarchies of correlations to be constructed.

To create a new scenario:

e Clickonthe button in the UCA Scenario Manager toolbar or select File — New —
Scenario from the menu-bar.

e Inthe ‘Add New Scenario’ dialog, enter a description, some additional information and a
context name.

e Click on the OK button.

Figure 23 - The Add New Scenario Dialog

The new scenario will be listed in the Scenarios, Filters, Mappings and Rules Summary List in the
UCA Scenario Manager.

To view an existing scenario:
e Double-click the scenario in the Scenarios, Filters, Mappings and Rules Summary List in the
UCA Scenario Manager, or right-click the scenario and select the view / modify pop-up menu
item.

To modify an existing scenario:
e Double-click the scenario in Scenarios, Filters, Mappings and Rules Summary List in the UCA
Scenario Manager, or right-click the scenario and select the view / modify pop-up menu item.
e Make the necessary changes and click OK.

To include a scenario in a deployment:
e If the scenario is to be included in the set of scenarios, filters, mappings and rules for an active
deployment, it must be dragged from the Scenarios, Filters, Mappings and Rules Summary List

73

and dropped onto the root node (i.e. the ‘scenarios’ node) of the Scenario Builder Tree. Once
this has been done, the new scenario will be shown in the tree with two automatically created
sub-nodes — “filters and mappings’ and ‘rules’, as shown in the following example.

To remove a scenario from a deployment:

e If the scenario is to be removed from the set of scenarios, filters, mappings and rules for an
active deployment, right-click the scenario in the Scenario Builder Tree and select delete from
tree in the pop-up menu. Note that when this is done, all children nodes underneath the
removed node will also disappear from the tree.

8.2 Filters

UCA supports a powerful and highly configurable alarm filtering capability. Alarms may be allowed to pass into
the system based on filter conditions applied to any combination of any event fields (see section 10.3.2 for the
available event fields). The filter conditions include the operators: ‘equals’, ‘not equals’, ‘contains’, ‘does not
contain’, ‘starts with’, ‘ends with’ and ‘matches’.
The ‘matches’ filter condition operator allows use of a regular expression. In addition to entering an expression
directly, a graphical ‘regular expression wizard’ is provided that allows a user to create regular expression
statements without needing any knowledge of regular expression syntax.
Filter conditions are grouped according to conditional logic, including:

e All conditions being satisfied

e Any conditions being satisfied

e Any conditions not being satisfied
None of the conditions being satisfied

Any of these logic groups may be contained in any other logic group. In this way it is possible to effectively
create arbitrarily complex logic expressions.

To create a new filter:

e Click on the button in the UCA Scenario Manager toolbar or select File — New — Filter
from the menu-bar.

e Inthe ‘Add New Filter’ dialog, enter a description.

e Inthe ‘Add New Filter’ dialog, right-click the tree root node (‘Pass alarms when ...”) and
select the required logic group from the ‘condition P’ sub-menu.

e Right-click the logic group that will have been added to the tree and select either ‘insert new
filter condition’ or ‘condition P ‘ from the pop-up menu.

o If “insert new filter condition’ was selected, select the required field and operator values from
the drop down lists and enter (or select from a drop-down list) the value, as shown in the
example screenshot below.

74

Figure 24 - The Add New Filter Dialog

e If ‘condition P ‘ was selected, select the required logic group sub-menu item.

e Continue to build new filter statements and logic groupsin this manner as necessary.

e Tomodify or delete afilter statement or logic group, right-click on the associated tree node
item and select ‘modify’ or ‘delete’ as appropriate.

The example screenshot below shows a reasonably complex filter that will allow eventsinto the
system provided the severity is‘critical’ and the alarmType is ‘ communicationsAlarm’ and the
additional Text either starts with ‘alarm ***’ or it starts with ‘event ***’,

e Finaly, to complete the filter definition, click on the OK button.

The new filter will now be listed in the Scenarios, Filters, Mappings and Rules Summary List in
the UCA Scenario Manager.

To view an existing filter:
e Double-click thefilter in the Scenarios, Filters, Mappings and Rules Summary List in the UCA
Scenario Manager, or right-click the filter and select the view / modify pop-up menu item.

75

To modify an existing filter:
e Double-click thefilter in the Scenarios, Filters, Mappings and Rules Summary List in the UCA
Scenario Manager, or right-click the filter and select the view / modify pop-up menu item.

e Make the necessary changes and click OK.

To include afilter in a deployment:

e If thefilter isto beincluded in the set of scenarios, filters, mappings and rules for an active
deployment, it must be dragged from the Scenarios, Filters, Mappings and Rules Summary List
and dropped onto either the ‘filters and mappings node, or underneath an existing filter in the
Scenario Builder Tree. Once this has been done, the new filter will be shown in the tree. The
example below shows two filters, one below the other.

To remove afilter from a deployment:

e If thefilter isto be removed from the set of scenarios, filters, mappings and rules for an active
deployment, right-click the filter in the Scenario Builder Tree and select ‘delete from tree’ in
the pop-up menu. Note that when thisis done, all children nodes underneath the removed
node will also disappear from the tree.

8.2.1 Using user-Defined event fields in a filter

It is possible to include user-defined event fields in filter conditions. User-defined fields are found on the drop-
down, listed after the default event fields.
An example filter is shown below:

8.2.2 Arranging Filters

When dragging afilter to the Scenario Builder Tree, it may be placed underneath the ‘filter and mappings node
or underneath an existing filter. A filter at the same ‘level’ as ancther filter isits ‘sibling’; afilter below another
filter isits ‘child'. For example, in the screenshot below, filter2 isachild of filter 1; filterd isasibling of filter2;
filter3 isasibling of filterl.
When an event is being tested against the filters in the Scenario Builder Tree, the following order of processing
takes place:

e Theevent istested against the first filter of the first scenario.

76

o If the event passes the filter then the next child filter will be tested against. If thereis no child
filter, then a mapping must have been reached (see below).

e If an event failsto pass afilter, then the next sibling filter is examined. If thereis no sibling filter,
then the whole process is repeated for the next scenario, if thereisone.

e If amapping is reached then the event is allowed into the system ready to be mapped and the
whole filtering process repeated for the next scenario, if thereis one.

e Theentire process ends when a mapping is reached or there are no more sibling filtersto test
against.

For example, as shown in the screenshot below, an incoming event would first be tested against the ‘ Sidonis
NMS Alarm’ filter. If the event passed the filter, it would be tested against the * Sidonis NM S Site Raise Alarm’
filter. If the event passed this filter it would be mapped using the * Site Problem’ mapping, otherwise it would be
tested against the ‘ Sidonis NM S Site Cleared Alarm’. The whole process would then be repeated for the ‘DTV
Service Impact’ scenario followed by the ‘DTV Maintenance' scenario.

77

8.2.3 Using the Regular Expression Wizard with Filters

When adding a new filter statement during the filter definition process described above, some fields allow the
‘matches’ operator to be selected from the drop-down list. If ‘matches’ is selected, aregular expression value
may be entered in the value field. Alternatively, the ‘Wizard >>>' button may be selected, in which case the
Regular Expression Wizard will be started. Thiswizard allows a user to automatically generate aregular
expression without the need to know any regular expression syntax.

When the Regular Expression Wizard starts, the first page allows the user to define some sample text to apply
the regular expression to and the second pageis for defining the match conditions and viewing their effect on the

sample text.

For example, suppose the additonal Text field of an alarm contained the text

WO BATH 00X/ 00/ XYZ123 AT-6 TIME 070202 1230 PAGE 1
*** ALARM 855 O1/ APT "BATH 00X/ 0"U 070202 1230

DI G TAL PATH QUALITY SUPERVI SI ON

SF

DI P DI PPART SFL QsV

BEURS 1 1 181

END

and you wish to filter dlarms using aregular expression looking for the particular pattern of text:

“xxx ALARM followed by

one or nore spaces followed by

one or nore digit characters followed by
one or nore spaces followed by

the text “O1” followed by

any text, excluding a line term nator followed by
the text “DI A TAL PATH QUALI TY SUPERVI SI ON’

then you would use the Wizard as follows:

Enter the above text into the area on the right size of the window. The text may be typed into the
text area. It may also be pasted from the current copy/paste buffer or read in from alocal file,
using the buttons on the | eft.

The next stage isto define the match conditions. Clicking the Next button will display the screen
that allows the conditions to be specified and their effect to be displayed, as shown below.

To define the match conditions, right-click the ‘ Text contains ..." root node in the tree on the left
side and select the desired ‘condition P submenu item, i.e. either ‘all items in the following order
..." or ‘any of the following items ...". In this case, select ‘all itemsin the following order ...".
Thetree node ‘all itemsin the following order ..." will be inserted under the root node. Right-click
this node and select insert new expression.

Inthe ‘Add New Expression’ dialog, select the appropriate drop-down menu items.

Repeat this procedure using the right-click menu items to add, modify or delete nodes until al the
expressions have been specified. Remember that match conditions may be nested under each other
(similar to the logic expressions for Filters), if desired. Aseach expression isentered in the tree,
the sample text on the right will be highlighted in blue to reflect the current matching. The
screenshot below shows the whole tree of expressions for the example pattern of text.

78

e Finaly, click the Finish button and the actual regular expression will be automatically generated
and inserted into the filter statement value field. For the example, the regular expression would

be:

\ ¥\ ** ALARM s+\ d+\ s+OL. +\ nDI G TAL PATH QUALI TY SUPERVI SI ON

For more details on the advanced use of regular expressions, see the
Java documentation for the Pattern class at

% http://java.sun.com/javase/6/docs/api/java/util/regex/Pattern.html

Advanced Options

There are two advanced options that may be set for the entire set of expressionsin the tree. To select an
advanced option, right-click the ‘text contains ...” tree root node and select the desired ‘advanced options P

submenu item.

The effect of each advanced options menu itemiis:
enable multiline mode —

case insensitive (Unicode) —

8.3 Mappings

By default, the expressions “ t he begi nni ng of
the text” and“the end of the text” ignore
line terminators and only match at the beginning and the
end, respectively, of the entire text sequence. If ‘enable
multiline mode’ issetthen“t he begi nni ng of

t he text” matchesatthe beginning of text and after
any line terminator (except at the end of the text). When
inmultilinemode“t he end of the text”
matches just before a line terminator (and the end of the
input text).

Enables Unicode-aware case-insensitive matching.

Once an alarm has passed though the filter(s), it must be mapped. The purpose of mapping is threefold:

e Objectsin the system are identified by their unique reference field. During data-load, all objects
get stored within the UCA model database with their unique reference filled in. One of the
functions of mapping isto relate the object the incoming event refers to with a corresponding
Mesh Object. In the simplest case, there might be a one-to-one mapping of an event field with the
corresponding object’ s unique reference. However, the situation may be far more complicated,
involving extracting parts of many of the event fields and combining them to form a corresponding
identifier to match to a unique reference. So the primary purpose of mapping isto extract avalue

79

from the event that represents the unique reference of an object. UCA supports very flexible
mapping of unique references from events. A unique reference may be mapped from an event
directly from one of the event’ sfields, or it may be mapped from multiple parts of one or more
fields, combining those parts in any order and with any prefix or suffix.

It is not enough to just map the event’s unique reference. The event also needs to be mapped to an
appropriate class. The classes that an event can be mapped to are essentially those defined in the
metamodel.

Finally, the event must also be mapped to a status — normal, degraded or failed. Typicaly, afilter
that passes a non-clear severity event will be followed by a mapping that maps to a status of failed
or degraded; similarly, afilter that passes a clear severity event will be followed by a mapping that
maps to a status of normal.

The result of mapping isto affect a corresponding Mesh Object, as described in sections 3.7 and 3.8.

UCA supportsincoming events formatted as XML messages with a number of tags, each of which represents an
event field — the following shows an example event (further details of the event format are provided in Chapter

<Event >

<event Rank>ori gi nal </ event Rank>

<syst enC ass>si doni s_nnms</ syst enCl ass>

<syst em nst ance>V5</ syst em nst ance>

<event | d>1003</ event | d>

<dat aType>X. 733</ dat aType>

<ori gi nati ngTi me>2005- 06- 10 12: 16: 32</ori gi nati ngTi me>

<mod ass>Sit e</ npC ass>

<nmol nst ance>10001</ nol nst ance>

<severity>critical </severity>

<al ar niType>Equi pnent Al ar nx/ al ar nType>

<pr obabl eCause>Power Pr obl enx/ pr obabl eCause>

<addi ti onal Text>Site Power Fail ure</additional Text>
</ Event >

Animportant field is the eventld, which uniquely defines the particular event. Typically, a non-clear severity
event will be received with a particular eventld and the event will be mapped to failed or degraded status and to a
particular base class and with its unique reference mapped from one or more fields. Subsequently, a clear

severity event will be received with the same eventld as the original non-clear severity event and thiswill be
mapped to normal status and the same base class and unique reference as the associated non-clear severity event.
However, there are two special cases to be aware of:

1. If the eventld, mapped base class and mapped unique reference of a clear event do not match
with a previoudly stored non-clear event, an alternative method is used to determine which
Mesh Objects are effected:

In this case the Mesh Object(s) with the same Alarm Type, Probable Cause, Specific
Problems and Additional Text will be cleared (i.e. their status set to ‘normal’).

2. Ifitisnot possible for an external system to supply the clear event with enough information
to allow the unique reference to be mapped, then the external system must send an ‘event
state change’ message instead (see 10.3.3). This message contains a subset of the standard
event fields, but it adds the ‘updateState’ field to indicate that this message essentially
updates a previous one. An example of such as message is as follows:

<EBEvent >
<event Rank>ori gi nal </ event Rank>
<systenC ass>si doni s_nns </systenCl ass>
<syst eml nst ance>V5</ syst em nst ance>
<event | d>1003</ event | d>
<dat aType>X. 733</ dat aType>
<ori gi nati ngTi me>2005- 06- 10 12: 16: 34</ori gi nati ngTi me>
<updat eSt at e>t er m nat ed</ updat eSt at e>
</ Event >

But the question remains, for such a message how would you specify the mapping to a Base
Class and unique reference? The answer isthat in the ‘ Add New Mapping’ dialog (see
below), the ‘ Lookup Unique Reference by matching Event Id’ tick-box is selected. This

forces the system to lookup a raise event in the UCA event database with the same eventld
and it uses that event’s Base Class and unique reference.

To create a new mapping:

Clickonthe button in the UCA Scenario Manager toolbar or select File — New —
Mapping from the menu-bar.

In the ‘Add New Mapping’ dialog, enter a description.

Select the appropriate class to map to from the ‘Map to class’ drop-down list.

Select the appropriate status to map to from the ‘Map to status’ drop-down list.

If the message being mapped is an ‘event state change’ message (see description above), select
the ‘Lookup Unique Reference by matching Event Id’ tick-box, otherwise the unique reference
mapping details must be supplied.

Finally, to complete the mapping definition, click on the OK button.

Mapping the Unique Reference

¢ Inthe ‘Add New Mapping’ dialog, right-click the tree root node (‘Map UniqueReference
using items in following order ...”) and select ‘add new mapping statement’. The ‘Add
New Mapping Statement’ dialog will be opened.

e In the drop-down list, select the desired event field to map from.

o Ifthe selected field’s contents are to be mapped in their entirety into the unique reference,
select the “directly’ tick-box and click the OK button.

e Otherwise, click the Wizard >> button in order to create expressions that define the match
and extraction criteria. Advanced users may select the ‘advanced’ tick-box and enter these
criteria into the ‘Match Expression’ and ‘Token Expression’ boxes directly without using
the wizard. See below for details of how to use the regular expression Wizard for
mappings. Click the OK button.

e The new mapping statement will now be displayed under the root of the tree in the *Add
New Mapping’ dialog, as in the following screenshot:

81

Figure 25 - The Add New M apping Dialog

o |f text needsto be extracted from a number of event fields in order to define the unique
reference, then continue the process of adding new mapping statements. The value of the
extracted unique reference will be the concatenation of the mapping statements. If fixed
text delimiters need to be placed between any mapping statements, then right-click then tree
root node and select ‘add fixed text’ and supply the desired text. For example, in the
following mapping, if the event’s mol nstance field was “10001” and the systemClass was
“si doni s_nns”, then the mapped unique reference would be
“10001***si doni s_nns”.

e Mapping statements in the tree may be moved up or down, modified or deleted by right-
clicking the node and selecting the appropriate pop-up menu item.

The new mapping will now be listed in the Scenarios, Filters, Mappings and Rules Summary List
in the UCA Scenario Manager.

To view an existing mapping:
e Double-click the mapping in the Scenarios, Filters, Mappings and Rules Summary List in the
UCA Scenario Manager, or right-click the mapping and select the view / modify pop-up menu
item.

To modify an existing mapping:
e Double-click the mapping in the Scenarios, Filters, Mappings and Rules Summary List in the
UCA Scenario Manager, or right-click the mapping and select the view / modify pop-up menu
item.
e Make the necessary changes and click OK.

To include a mapping in a deployment:

e If the mapping isto be included in the set of scenarios, filters, mappings and rules for an active
deployment, it must be dragged from the Scenarios, Filters, Mappings and Rules Summary List
and dropped underneath an existing filter in the Scenario Builder Tree. Once this has been
done, the new mapping will be shown in the tree. Note that multiple mappings may be dropped
underneath the same filter.

To remove a mapping from a deployment:
e If the mapping isto be removed from the set of scenarios, filters, mappings and rules for an
active deployment, right-click the mapping in the Scenario Builder Tree and select delete from
treein the pop-up menu.

8.3.1 Using the Regular Expression Wizard with Mappings

When adding a new mapping statement during the mapping definition process described above, the ‘Wizard
>>>' putton may be selected, in which case the Regular Expression Wizard will be started. Thiswizard allows a
user to:

82

e automatically generate aregular expression, without the need to know any regular expression
syntax, that is used to match text against

e automatically construct a ‘token expression’ that determines how multiple matched items are
joined together to form a complete piece of text

When the Regular Expression Wizard starts, the first page allows the user to define some sample text to apply
the regular expression to. The second page is for defining the match conditions, viewing their effect on the
sample text and defining which pieces of matched text should be extracted to form the unique reference. The
third page is used to re-order the extracted items, if required, and set any desired fixed text prefixes or suffixes
between the items.

As an example, suppose the additonal Text field of an alarm contained the text

WO BATH 00X/ 00/ XYZ123 AT-6 TIME 070202 1230 PAGE 1
*** ALARM 855 O1/ APT "BATH 00X/ 0"U 070202 1230

DI G TAL PATH QUALITY SUPERVI SI ON

SF

DI P DI PPART SFL QsV

BEURS 1 1 181

END

and you wish to map the unique reference so that is formed by trying to match the text highlighted in blue below:

WO BATH 00X/ 00/ XYZ123 AT-6 TIME 070202 1230 PAGE 1
*** ALARM 855 OL/ APT "BATH 00X/ 0" U 070202 1230

DI G TAL PATH QUALI TY SUPERVI SI ON

SF

DI P DI PPART SFL @5

BEURS 1 1 181

END

and the actual text you wish to extract for the unique reference is as highlighted in red below:

WD BATH 00X/ 00/ XYZ123 AT-6 TIME 070202 1230 PAGE 1
*xx ALARM 855 OL/ APT "BATH 00X/ 0" U 070202 1230

DI G TAL PATH QUALI TY SUPERVI SI ON

SF

DI P DI PPART SFL O3}

BEURS 1 1 181

END

Furthermore, the text you wish to extract is not simply to be “ BEURS181”, but it should be “ 181" followed
“BEURS", and with “ BEURS" prefixed with “ - - - “ . i.e. the mapped unique reference from the example would
end up being “ 181- - BEURS181" .

Then you would use the Wizard as follows:;

Enter the sample alarm text into the area on the right size of the window. The text may be typed
into the text area. It may also be pasted from the current copy/paste buffer or read in from alocal
file, using the buttons on the | eft.

Click the ‘Next’ button to display the page that allows the match and extraction conditions to be
specified.

To define the match conditions, right-click the ‘ Text contains ..." root node in the tree on the left
side and select the desired ‘condition P submenu item, i.e. either ‘all items in the following order
..." or ‘any of the following items ...". In this case, select ‘all itemsin the following order ...".
Thetree node ‘all itemsin the following order ..." will be inserted under the root node. Right-click
this node and select ‘insert new expression’.

Inthe ‘Add New Expression’ dialog, select the appropriate drop-down menu items.

Repeat this procedure using the right-click menu items to add, modify, move up/down or delete
nodes until all the expressions have been specified. Remember that match conditions may be
nested under each other (similar to the logic expressions for Filters), if desired. Aseach
expression is entered in the tree, the sample text on the right will be highlighted in blue to reflect
the current matching.

Next, you must identify which expressions relate to the text items you wish to extract. For example
the tree node item ‘ one or more of a non-whitespace character’ relates to the text “ BEURS” and the
final tree node ‘one or more of adigit character’ relatesto the digits“ 181" . To identify the parts
to be extracted, right-click the associated tree node and select ‘extract’ from the pop-up menu item.

83

When thisis done, the associated sample text will be highlighted in red, as shown in the screenshot
below:

¢ Click the Next button to display the page that allows you to re-order the extracted items, if
required, and set any fixed text prefixes or suffixes.

e Inthetop half of the page, right-click “ 181" and select the ‘move up’ pop-up menu item. The
bottom half of the window shows exactly what the final result of the whole matching and
extraction would be.

e Inthetop half of the page, right-click “ BEURS” and select the ‘ set prefix’ pop-up menu item and
enter “ - - - “ inthe dialog. Again, the bottom half of the window shows exactly what the final
result will be, inthiscase“ 181- - - BEURS" .

e Finaly, click the Finish button and the actual match regular expression and ‘token’ regular
expression will be automatically generated and inserted into the mapping ‘Match Expression’ and
‘Token Expression’ fields. For the example, these would be:

BV s+(\ S+)\ s+ d+\ s+ d+\ s+(\ d+)
and
$2---%1

For advanced users who wish to specify the ‘Match Expression’ and ‘ Token Expression’ fields without using the
wizard, the ‘Match Expression’ is simply the regular expression, with match groups enclosed in round brackets.
The ‘Token Expression’ defines the match groups in order of extraction as $1, $2, $3 etc. and orders these
groups as appropriate, with any required fixed text prefixes or suffixes.

For more details on the advanced use of regular expressions, see the
Java documentation for the Pattern class at
http://java.sun.com/javase/6/docs/api/java/util/regex/Pattern.html

84

&

Advanced Options

There are two advanced options that may be set for the entire set of expressions in the tree. To select an
advanced option, right-click the ‘text contains ...” tree root node and select the desired ‘advanced options P ¢
submenu item. The advanced options are the same as those when using the regular expression wizard for filters —
see for 8.2.3 details.

8.4 Rules

Rules are central to the whole operation of UCA. Once events have passed through the filters and the mappings
have been performed, the UCA rules engine operates on the basis of consequent state changes to mesh objects.
There are four aspects to consider when defining a rule using the UCA Scenario Manager:
e The trigger conditions — these consist of rule statements that specify the conditions under which
the trigger actions will be performed.
e The trigger actions — these are the actions (e.g. raise a root cause alarm) that are performed when
the rule triggers i.e. the trigger conditions are satisfied.
e The teardown conditions — these consist or rule statements that specify the conditions under which
the teardown actions will be performed.
e The teardown actions — these are the actions (e.g. clear a root cause alarm) that are performed
when the rule tears down i.e. the teardown conditions are satisfied.

This section provides a basic overview of how to create rules and actions, whereas Chapter 9 provides extensive
details, supplemented with examples and many screenshots of how to configure them.

To create a new rule:

Click on the button in the UCA Scenario Manager toolbar or select File — New — Rule
from the menu-bar.

In the ‘Add New Rule’ dialog, enter a description and a priority. Priority may be from 0 to 100,
with 0 being lowest priority and 100 highest, and represents the order in which satisfied rules
are processed by the rules engine.

In the Trigger Conditions tab, right-click the tree root node and select the ‘insert object
existence condition’ pop-up menu item.

In the ‘Add New Rule Object Condition’ dialog, select the object type (e.g. ‘a Notification’,
‘an Associate Group’ etc.) and condition (“exists’ or ‘does not exist”) from the drop down
menus and click on OK.

The new ‘object existence condition” will be automatically added under the tree root node.
Right-click the “object existence condition’ that was added to the tree and select ‘insert
attribute conditions’ from the pop-up menu.

In the ‘Add New Rule Attribute Condition’ dialog, select the appropriate items from the drop-
down lists (or enter the values, depending on the attribute and condition selected), as
appropriate for the rule trigger condition.

Click on the OK button to add the new rule attribute condition.

Continue adding new rule attribute conditions as above.

Rule attribute conditions may be modified, deleted, moved up or moved down by right-clicking
the associated tree node and selecting the appropriate pop-up menu item.

Continue adding new ‘object existence conditions’ together with their associated ‘rule attribute
conditions’, as above. An example set of rule trigger conditions is shown in the screenshot
below.

‘Object existence conditions’ in the tree may be deleted, moved up or moved down by right-
clicking the associated tree node and selecting the appropriate pop-up menu item. Note that
deleting an’ object existence condition’ from the tree will also delete all its child nodes, i.e.
all its associated ‘rule attribute conditions’.

85

Figure 26 - The Add New Rule Dialog

Select the Trigger Actions tab to define the action(s) to be associated with the trigger
conditions.

Select the required action in the left side of the screen and click the > button. In the resulting
‘Add Trigger Action’ dialog, enter the appropriate values and click the OK button. The action
will be removed from the left hand list and will appear on the right hand list.

Repeat this for all actions to be added.

To modify an action in the right hand list, double-click it or right-click and select ‘modify’
from the pop-up menu item.

Action will be performed in the order that they are shown in the right hand list — top to bottom.
To re-position an action in the right hand list, right-click the action and select move up or
move down from the pop-up menu item.

To remove an action in the right hand list” select it and click on the button. The action will
then re-appear in the left hand list.

Repeat the entire above procedure to specify the teardown conditions and teardown actions in a
similar way, but using the ‘Teardown Conditions’ and ‘Teardown Actions’ tabs.
Finally, to complete the rule definition, click on the OK button.

The new rule will now be listed in the Scenarios, Filters, Mappings and Rules Summary List in the
UCA Scenario Manager.

To view an existing rule:

Double-click the rule in the Scenarios, Filters, Mappings and Rules Summary List in the UCA
Scenario Manager, or right-click the rule and select the view / modify pop-up menu item.

86

To modify an existing rule:

e Double-click therulein the Scenarios, Filters, Mappings and Rules Summary List in the UCA
Scenario Manager, or right-click the rule and select the view / modify pop-up menu item.
e Make the necessary changes and click OK.

To include arulein adeployment:

e |If theruleisto beincluded in the set of scenarios, filters, mappings and rules for an active
deployment, it must be dragged from the Scenarios, Filters, Mappings and Rules Summary List
and dropped onto the ‘rules’ node in the Scenario Builder Tree. Once this has been done, the
rule will be shown in the tree. The example below shows five rulesin a particular scenario.

To remove arule from a deployment:

e If theruleisto be removed from the set of scenarios, filters, mappings and rules for an active

deployment, right-click the rulein the Scenario Builder Tree and select ‘delete from tree’ in the
pop-up menu.

8.4.1 Rules and user-defined event fields

User-defined event fields are also accessible for use in rules. Each user-defined event field is accessible viathe
‘last event’ raised on a Mesh Object.

An example rule utilising a user-defined event field is shown below:

87

8.5 Rule templates

8.5.1 Templated Rules

Rules can be created as described in the above section, but they can also be created using ‘templates’. A
‘templated rule’ acts like a pattern for generating actual rules later on. In atemplate rule, the rule conditions and
actions are defined as usual but the actual values used in the conditions and action fields are not supplied when
the template is defined, but instead ‘variable names' are used in their place and the actual values for the variables
are supplied later. Collections of ‘templated rules’ are very useful for addressing general purpose situations, for
example commonly seen state propagation rules. A collection of templated rules can be used again and again;
each time the actual rules are generated from the templates, different values for the ‘variables' may be used.

The key points to be aware of when templating arule are:
e Any rulecan be ‘templated’
e You cantemplate arule strigger / teardown attribute conditions
e Youcantemplate arule strigger / teardown actions

To template arule strigger / teardown attribute condition, select the ‘ use template attribute? checkbox when
adding or modifying arule' s attribute condition. When thisis done, instead of supplying a value in the attribute
condition, you will be prompted to enter atemplate attribute name and description. The template attribute name
actslike a‘variable' for which you will later supply a value. The description is useful to help clarify the meaning
of the template attribute name.

To template arule strigger / teardown action, right click adesired action field and in the resulting ‘Action
Template Item’ dialog, select the ‘ use template attribute? checkbox and enter a value for the template attribute
name and description, as above.

Y ou can use the same val ue for the template attribute name for many conditions and actions in many template
rules.

88

e Any rule can be template
e You cantemplate:
- trigger / teardown rule
attribute conditions —>
- actions

right-click arule action field

to get the template dialog e.g. “baseClass’ might be a
sensible template attribute
name here

Attribute names act like ‘variables for
which you later supply avalue

For example, wherever you' ve used
“baseClass’, the actual value for this (eg.
NetworkElement™) will later be
substituted as the value in the expression
wherever “baseClass’ occurs.

Any rule that uses template attribute names, either in its rule attribute conditions or action fields, is a ‘templated
rule’. It will appear in the GUI with anicon like this:

8.5.2 Rulesets

A Ruleset is simply a container for rules that have been templated.

To create aruleset, select the % icon in the Scenario Manager toolbar. Once you have clicked thisicon you
can drag any templated rule into the resulting RuleSet dialog.

When a RuleSet has been created, it will show up in the Summary List table on the right side of the Scenario
Manager like this:

A Ruleset acts as the vehicle for generating the actual rules from the template set of rules.

89

8.5.3 Using aruleset

To use a RuleSet, drag it to the Rules folder of a Scenario in the Scenario Builder tree on the left of the Scenario
Manager.

When the RuleSet is dropped on to the tree, a “Create Rule Template” dialog box will appear

All templated rule attribute conditions and action fields from the template rules in the dragged RuleSet will show
up in the list, as in the following example:

This dialog is used to supply the actual values to be substituted in place of the template names in the templated
rules within the Ruleset.

You must supply a value for each name in this dialog e.g. for “baseClass” the actual value you might enter could
be “NetworkElement”.

8.5.4 Generating the rules from the rule template

When all values have been supplied in the Rule Template Dialog box and “OK?” clicked, a set of new rules will
be automatically generated. These new rules will appear in the Scenario Manager GUI under the new Rule
Template (which itself appears under the “Rules” folder in the tree), like this:

You can right-click on the Rule Template in the tree and view or modify the set of values to re-generate new
rules based on the new values.
You can also right-click on any of the auto-generated rules and view (read-only) its details.

8.6 Deploying Scenarios, Filters, Mappings and
Rules

Once the Scenario Builder Tree has been set up with all the scenarios, filters, mappings and rules, it may be
deployed into active use. However, the deployment must first be validated.
To validate a deployment:

e clickthe button on the Scenario Manager toolbar.

e The validation will check that the Scenario Builder Tree is valid (e.g. that mappings exist under
filters etc.) and that the rules engine considers the rules to be valid.

o If the deployment validates correctly, the status bar will show “Status: the validation was
successful”. Otherwise the “Validation Errors’ dialog will open, showing the translated rules
code with details of the errors, including the line and column numbers where the error(s)
occurred.

90

Figure 27 - The Validation Errors Dialog

e The translated rules code In the “Validation Errors’ dialog is annotated with comments that
match the text in the Trigger / Teardown Conditions trees of the Add or View / Modify Rule
dialogs. This allows precise location of which part of which rule has not validated.

The set of scenarios, filters, mappings and rules can only be deployed after they have been successfully
validated. After validation, to deploy the scenarios, filters, mappings and rules present in the Scenario Builder
Tree:

e clickthe button on the Scenario Manager toolbar.

¢ Inthe ‘Deployment Details’ dialog, enter a description and additional information that
describes this deployment and click OK

A warning may be raised when using value packs (see section Chapter 14) that include rules.
This will only happen if the new deployment does not include rules for every value pack that
incorporates rules.

To show details of previous deployments, or to open a previous deployment into the Scenario Manager, click the

button on the tool-bar or select ‘Show Deployments’ from the Server menu.
To show details of scenarios added to the ‘Scenario Library’, or to merge a scenario form the ‘Scenario Library’

into the existing set of scenarios, click the button on the toolbar or select ‘Show Library’ from the Server
menu.

Details of using the ‘Show Deployments’, ‘Scenario Library’, exporting a scenario to the library and importing a
scenario from the library are provided in section 7.1.

91

Chapter 9 Configuring Rules and
Actions

Rule conditions and corresponding actions are defined together to form a block. These rule condition-action
blocks (commonly referred to as Rules with a capital R) are further divided into two sections; atrigger section
that reacts to the departure of one or more objects from the normal statei.e. ‘onthe way in’, and a teardown or
recovery section that reacts to the return of one or more objects to the normal statei.e. ‘on the way out’. In
practice either the trigger or teardown section may be left undefined if they are not required.

9.1 Format

Rule condition-action blocks (Rules) as a whole are assigned a priority in the range 0 to 100. Satisfied Rules
with higher priority i.e. more positive, are executed ahead of others on the inference engine agenda with lower
priority. Thisalows the user to force one Rule to execute ahead of another. A useful technique to adopt when
designing correlations that rely on this feature is to construct a state diagram for the object(s) involved. Priorities
may then be used to force a particular path in the state diagram ahead of another if there is an equal choice.

9.1.1 Structure

Each section of a Rule (trigger or teardown) consists conceptually of a set of object existence conditions sub-
divided into clauses (each potentially referring to a different Object, Associate or Child Group, Notification or
Script and containing one or more attribute conditions) that are evaluated by the inference engine and one or
more consequential actions to carry out when al of those object existence conditions are satisfied. The genera
format of each section of aRuleis:

(Clause 1) When an Associate Group|Child Group|Object|Notification|Script exists/does not exist with:

Attributel Comparison Operator Expression (istrue)
Attribute2 Assignment Operator VariableX

(Clause 2) And (optionally)
When an Associate Group|Child Group|Object|Notification|Script exists/does not exist with:

Attributel Comparison Operator Expression|VariableX (istrue)
Attribute? Assignment Operator ~ VariableY

(Clause N) And (optionally) ...
Then

Actionl (Argument List)
Action2 (Argument List)

When object existence conditions are evaluated, the inference engine begins evaluating the first clause and
proceeds until it encounters an attribute condition that is not yet satisfied or al of the clauses are satisfied. If an
attribute condition isinvalid and is subsequently satisfied, evaluation continues from that point onwards
(previoudly satisfied attribute conditions are not re-eval uated unless the object is removed and re-inserted into a
working memory). When all of the clauses are satisfied, the associated action(s) are executed. If an object is
removed from a working memory before all of the object existence conditions are satisfied, then knowledge of
all previoudly satisfied attribute conditions is discarded.
A genera principle for object existence conditions that is a direct consequence of the use of generalised objects
in the state mesh isthat for a given object type, it is usually necessary to:
¢ Identify the specific class of generalised object (or that of its parent and/or the objects it contains)
e Evaluate one or more conditions relating to the identified object.

92

It isalso important to realise that unless specifically made so, object existence conditions are non-specific and
operate at the class level so that they will operate for any and all matching instances that are encountered in
working memory.

A limitation of the underlying use of the JBoss Rules 3 inference engineis that variablesinitialised in a clause
may not be evaluated in the same clause. This limitation may be lifted in later releases of UCA.

Where non-existence in working memory of an Associate or Child Group, Object, Notification or Script with
particular attributesistested in aclause, it isimportant to note that a reference to that (non-existent) item cannot
be used in an action (because by definition it does not exist and therefore it has anull object reference). Further,
it isalso not possible to store the value of an attribute in a non-existent item in alocal variable (again because the
system istesting that it does not exist and therefore would not have an attribute value to store in the variable).
However, attribute evaluation conditions for a non-existent item may be evaluated against local variables
(provided they were initialised in a previous clause for an object that exists).

9.1.2 Rule Conditions
9.1.2.1 Object Types

UCA supports the evaluation of the following object types in object existence condition clauses:
e Objects (both static mesh object components of the state mesh & dynamically created alarm
collectors)
Child Group
Associate Group
Notification
Script

The Object type is a generic name to describe static long-lived mesh object components of the state mesh and
dynamically created short-lived alarm collectors (designed to hold a set of transient events from one or more
stream sources). In practice, Objects are implemented using the same type of Java object but in addition to
lifetime considerations, the former aso differ in that they have relationships to surrounding objects defined,
whereas alarm collectors exist in isolation from other components of the state mesh.

9.1.2.2 Attributes

Each supported object type has a number of attributes that may be evaluated by attribute comparison operatorsin
aclause. Each attribute has a type and some object types support a common subset of attributes. Section 12.1
lists the supported attributes, their types and a brief description of their purpose for each object type.

93

9.1.2.3 Operators and Expressions

Each attribute type (String, Integer, Boolean, Enum, Object, Child Group, Associate Group) may be eval uated

using an operator against an expression. The following table lists the supported operators for each attribute type

and the required expression type.
String Integer Boolean | Enum

Child Associate Expression
Group Group Type

Is (equal to) v String

Is not (equal to) v String

Contains v String

Does not 4 String

contain

Starts with v String

Ends with v String

Is (equal to) v I nteger

Is not (equal to) v I nteger

Is greater than v I nteger

Is greater than v Integer

or equal to

Islessthan v I nteger

Isless than or v Integer

equal to

Is greater than v Integer

valuein

(variable)

Is greater than v Integer

or equal to value

in (variable)

Isless than or v Integer

equal to valuein

(variable)

Islessthan v Integer

valuein

(variable)

Is (equal to) v Boolean

Is not (equal to) v Boolean

Is (equal to) 4 Enumeratio
n

Is not (equal to) 4 Enumeratio
n

(Group) 4 v Mesh

contains Object

(Group) does 4 v Mesh

not contain Object

Isstored in 4 v 4 4 v v Assigning

[assignment Object

operator] Type

Figure 28 - Operatorsand Expressions

The ‘stored in’ operator is the only assignment operator (all others are conditional) and may be utilised to store
the current value of an attribute or expression into alocal variable (whose type is automatically determined from
that of the assigning object’ s type). The scope of alocal variable isthe remainder of the Rule section (trigger or
teardown) in which it is declared, beginning with the next rule clause (if one exists) or the following action(s).

9.1.3 Actions

Once the object existence conditions of a Rule are satisfied, one or more consequential actions may be executed.
The system supplies a comprehensive set of pre-defined actions to choose from and additional user-defined
actions may be created as required.

94

(Mesh) Objects and Child & Associate Groups can exist outside working memory (regardless of their current
state, they are till part of the state mesh). (Alarm collector) Objects, Notifications and Scripts only exist inside
working memory — they are transient objects that exist for the purpose of collecting alarm streams, reporting a
correlation notification or managing a script execution respectively.
Notifications are of interest in that they carry two sets of references to Objects. The ‘originating’ reference (base
class and unique reference) is normally used to identify the Object whose ‘problem’ isthe reason for its
existence e.g. anon-NORMAL state. The ‘owning’ reference (base class and unique reference) is used to
identify the object that it is currently associated with. This allows Notification objects to work in two ways:
e Asaprimary indicator of a problem — both originating and owning references refer directly to a
‘problem’ Object.
e Asasecondary marker on another Object affected by the ‘ problem’ Object — the originating
reference refersto the ‘problem’ Object, while the ‘owning’ reference refersto the ‘ affected’
Object.

Given these features, Notifications can be used for the purpose of constructing correlations where it is necessary
to link Objects indirectly affected by a problem to the source Object. Thisisillustrated in the following diagram:

Alarm
Alarm Report
Report "
Problem : Affected :
Object H Object H
Originating
Originating Owning Reference Owning
Reference Reference Reference
Primary Indicator Secondary Marker

The arrangement shown in the diagram above illustrates how UCA may be used to gather sympathetic alarms
from Objects affected by a failure elsewhere in the state mesh. Assuming that an action has created the primary
Notification object against the ‘ problem’ Object, then another action (usually produced specifically for that
purpose) can identify potentially affected Objects and attach secondary marker Notification objects to them, in
turn referring back to the ‘problem’ Object. Once thislink is constructed, then any sympathetic alarm reports
attached to the ‘affected’ Object may be tied to the original problem.

One of the purposes of building notificationsis to report useful information back to the user via notification
reports on the Notification Viewer GUI. Notification objects by themselves do not achieve this purpose. To
make a notification report visible on the GUI, a notification record needs to be created in the UCA notification
database. The separation of these two functionsis necessary to alow flexibility in the use of Notifications —
often the problem they represent does not need to be visible to users viathe GUI, particularly where they are
used as an intermediate step in a correlation that may involve severa levels of the model.

When a notification report is displayed on the Notification Viewer GUI, it will often be accompanied by alist
one or more alarm reports. Typically, an action that sets out to create a notification report will carry out the
following operations:

e Build an event list of existing contributory alarm report records in the notification database
associated with the problem Object (recall that all alarm reports that pass the input filters are
stored in the event database).

e Build aNoatification record in the notification database and attach the contributory event list. This
will result in an automatic display of a notification report and accompanying contributory alarm
reports from the event list on the GUI.

e Build an equivalent primary indicator Notification object in working memory from the notification
record to support further processing.

If the correlation requires the attachment of affected Objects and their sympathetic alarm reports to a notification
report that is already displayed on the Notification Viewer GUI, then a slightly different approach is adopted in
relation to the notification database. The following operations will be necessary for each affected Object:

95

e Build (or append to) an event list of existing sympathetic alarm report records in the notification
database using the affected Objects as the source of the alarm reports. The sympathetic event list is
attached to the notification record on the problem Object.

e Build (or append to) alist of affected Object records in the notification database using the affected
Objects themselves. Again, the affected Object list is attached to the notification record on the
problem Object.

e Build an equivalent secondary marker Notification object in working memory from the affected
Object (for the ‘owning’ Object reference) and the problem Object (for the ‘originating’ Object
reference).

An additional action may add late arriving alarm reports to the sympathetic event list as required, allowing the
notification report to gather further alarm reports over an extended period.
The types of action available depend on the rule-action block section in which they are initiated. Section 12.2
describesin detail the currently supported set of actions available to each rule-action block section (Trigger and
Teardown).
Actions often require configuration parameters to be supplied from the objects associated with rule clauses.
Objectsthat participate in rule clauses are automatically assigned names depending on their type and position in
the set of clauses. The following naming convention is adopted:

e Objects; name = objNN
Associate Groups; name = assocNN
Child Groups; name = childNN
Notifications; name = notifNN
Scripts; name = scriptNN

Where NN is an integer, beginning at 0 and incrementing independently for each type, so if arule contained two
Object clauses and a Notification clause, then these objects would be automatically assigned the names; obj0,
obj1 and notif0.

During action configuration, the user may also be given the option to provide message text (literalsenclosed in “
“ or rule condition variable names) or other additional values. Generally, the user is also given the option to
record action execution in the notification database (which resultsin the data being presented on the Fired Rules
GUI). The only exception to thisis the situation where an action creates a Notification object and it must be
recorded in the notification database — in this instance, the user is not given the option. For efficiency, itis
recommended that once initial testing has been completed that the absolute minimum number of action execution
logs are created, consistent with user audit trail maintenance requirements.

9.2 Example Rules and Actions

The DTV example included with the UCA installation contains a set of Rules designed to implement the
following correlation scenarios:

e DTV Site Power Failure— Createsa DTV Site Power Failure primary Notification, identifies
the downstream DTV Sites and Receivers affected by an upstream DTV Site Power failure,
attaches marker Notifications to the downstream DTV Sites and Receivers and gathers any
sympathetic alarms under the primary Notification.

e DTV Service Impact - Identifiesthe DTV Services affected by localised Receiver problems.

e DTV Maintenance — Handles the retraction of normal Objects & Groups from the DTV
context.

e DTV2 Natifications - Creates an additional Notification (in response to the creation of DTV
Site Power Failure Notifications) that ‘ straddles’ two working memory contexts, DTV &
DTV2. It also handles retraction of normal Objects & Groups from the DTV 2 context. The
primary purposeisto illustrate the technique for linking correlations in separate contexts.

The following sections describe in some detail the Rules that implement the first of these
scenarios and illustrate some of the important features of the remainder.

9.2.1 Correlation Scenario - DTV Site Power Failure

The starting point for definition of a correlation scenario is often the identification of a problem in the monitored
network that would benefit from automated correlation analysis. Typically that network problem is characterised
by a set of contributory events that are symptomatic of the problem. In addition, there may be an additional set of
sympathetic events that occur at other locations in the network as an indirect result of the problem. It is also

96

necessary to establish the target requirements for the correlation itself i.e. what is the desired outcome of the
correlation.
Inthe DTV Site Power Failure scenario, the target correlation requirements are;

e Detect aDTV Sitethat has undergone a power failure and report a Notification.

e Gather any sympathetic events from downstream DTV Sites & Receivers under the
Notification.

Definition of the Rules to perform such a correlation scenario usually begins with injection of an example set of
contributory and sympathetic eventsinto UCA using the UCA Event Injector tool. Thisin turnis driven by one
or more files containing XML representations of the contributory and sympathetic events. These event files may
be hand crafted or created using some automated tranglation process from existing event histories. A much more
convenient alternative isto enable pre-filter logging in UCA and to either instruct the event source system(s) to
replay the required events from their own histories or to simply wait for the problem to re-occur. The resulting
log files may then be used directly with the UCA Event Injector tool. A major advantage of using the Event
Injector in thisway is that the captured problem events can be replayed repeatedly during initial testing.
It should also be noted that use of an example event set in thisway isjust the first step in developing arobust
correlation. Any production quality correlation will need to be tested with several other examples of problem
events (particularly where they occur in a different order) and ultimately be connected to alive system over a
suitable period to ensure that actual problem occurrences are reliably correlated.
The DTV example includes a set of events that are characteristic of aDTV Site power failure and when injected,
cause UCA to report the following problemsin the UCA Mesh Viewer:

e Site 10001 has undergone a power failure.

e Asaresult of the power failure of Site 10001 (and consequential loss of transmission
capability), component Receivers at downstream Sites 10006 & 10025 have detected aloss
of signal from their respective upstream transmitters.

The location of these events on the example DTV network model is shown below.

Site

Child Group
Site
A

Alarm

BroadcastEq
Site10006 -RX-1

Site Child Group | BroadcastEq Child Group

10006 BroadcastEq. | Site10006-RX BroadcastEq.

/

BroadcastEq
Site10006 -RX-2

Alarm

Child Group
Site
A

Alarm

BroadcastEq
Site10025-RX-1

Site Child Group | BroadcastEq Child Group

|
10025 BroadcastEq. | Site10025-RX BroadcastEq. \

BroadcastEq
Site10025-RX-2

Alarm

Assuming that a minimal scenario (without Rules) to handle DTV Site power failures has been deployed in UCA
(the preceding chapter describes in detail how to achieve this and the reader is encouraged to examine the
scenarios, filters and mapsin the supplied example for the actual configurations required), then the presence of

97

these events causes the equivalent mesh objects to change state, resulting in the following display on the UCA
Mesh Viewer.

At this point with such a minimal scenario (no Rules have been defined) UCA will not attempt to carry out any
type of correlation.

Thefirst requirement for the correlation scenario is the detection of afailed DTV Site object and the creation of
aprimary Notification reporting the failure.

To satisfy this requirement, a Rule needs to be defined to locate failed Site objects with the correct attribute
values. A simple way to evaluate the necessary object existence conditions isto examine the failed Site object in
the UCA Working Memory Viewer — see below (recall that the Site 10001 object will be automatically be
inserted into the DTV working memory context when the incoming event causes it to adopt the failed state).

98

The detailed attribute values for the failed Site 10001 Object in the DTV context are shown below.

The user should consider that except in special circumstances, Rules are normally intended to operate at multiple
locations throughout the network, rather than at specific positions. The choice of attribute conditions to test for in
object existence condition clauses (i.e. the constraints) should then be made specific enough to identify the

99

correct type of Object, Associate or Child Group, Notification or Script in the required state, without un-

necessarily limiting the scope of the search (for example by NOT testing for a particular unique reference which

limits the Rule to operate at asingle location). To this end, a single object existence condition clause (to locate

an Object) with the following (naive) set of attribute conditions should be sufficient to locate failed Site Objects:
e Baseclass(i.e. type) is Site.

e Stateisfailed.

In practice, an additional object existence condition clause will be needed to exclude those situations where a
primary Natification has already been created on the failed Site object. This additional restriction will prevent a
new Notification being created each time any attribute of the failed Site Object is updated (causing a naive Rule
to be re-evaluated).

To begin definition of a suitable Rule (using the UCA Scenario Manager), the option to create anew Ruleis
selected (as described in the previous chapter) and an empty Ruleis created. In this case, a Rule has been created
with a name of ‘Detect Site Problem’ and a priority of 10 (a useful starting point — it can be adjusted later if
required). Thisisillustrated below:

As described previoudly, a Rulein fact provides for both trigger and teardown object existence conditions and
corresponding actions.

Thefirst step in defining a new Ruleis normally to define the trigger conditions. In practice thisis achieved by
selecting the Trigger Conditions tab and entering one or more object existence condition clauses - recall that
each such clause constrains the Rule to test for the existence or otherwise of an Object, Associate or Child
Group, Notification or script in a working memory). In this example, the first clause will be required to locate
failed Site Objects, so the object existence condition must be set to check for the existence of an Object. Thisis
achieved as follows:

100

First, the option is chosen to insert an empty object instance condition clause into the trigger conditions of the
empty Rule:

Then, the ' Object exists' condition is added:

Once an empty object existence condition clause for an Object is created, then the individual attribute conditions
can be applied as follows:

101

First, the option is chosen to insert new attribute conditions into the empty object existence condition clause:

Next, the required attribute type to evaluate in the condition is selected. In this exampleit is ‘base class':

102

Then, the evaluation operator to apply to the attribute is selected. In this example the ‘is' operator is used (i.e. to
test for String equality, since base class attributes are Strings):

Finally, the required base class name is selected from the available choices. In this example, the ‘ Site’ nameis
used.

103

The end result is an object existence condition clause that the inference engine will use to search for all Objects
whose base classis Site.

Because it will be necessary to exclude Site Objects that already have Notifications on them, the next attribute
condition records the unique reference of the located Site Object in alocal variable called ‘uRef’ for usein the
next clause.

104

The final attribute condition for this object existence condition clause forces the inference engine to only
consider those Sites that arein the ‘failed’ state.

The next object existence condition clause in the trigger conditions is responsible for ensuring that the inference
engine only locates failed Sites that do not already have a primary Notification on them. Thisis achieved by
adding a clause that checks for the non-existence of an attached primary Notification as follows:

105

The attribute conditions for this clause are chosen such that they would identify an existing primary Notification
on the failed Site Object identified in the first clause (and remember that the clause for this Notification is
checking that it DOES NOT exist, so therule WILL NOT fireif amatching Notification is found). The unique
reference of the previoudy located failed Site object (stored in the local variable ‘uRef’ in thefirst clause) is
used in this clause to ensure that a primary Notification on the same failed Site Object does not exist.

The completed trigger conditions are shown below:

Note that the originating unique reference of the Notification is also evaluated against the same Site Object
unique reference to ensure that only those failed Sites with existing primary Notifications are excluded (recall
that primary notifications have identical ‘originating’ and ‘owning’ unique references whereas marker
Notifications have different unique references). Thisis done to allow another instance of the same correlation
that originates further up the broadcast chain (and which may had previously created a marker Notification on
the now failed Site) to co-exist with anew correlation on the failed Site.

So far, the Rule trigger conditions will only detect a failed Site without an existing primary Notification. The
correlation requirement is such that a primary Notification is to be created when this set of trigger conditionsis
satisfied and thisis achieved by executing a corresponding action. The action may be defined by selecting the
Trigger Actions tab and selecting the trigger action to ‘ create notification against object’. Thisis shown below:

The Add Trigger Action dialogue allows the action to be configured in a number of ways:

106

e Current Context i.e. the working memory in which the Rule will search for objects that match
itstrigger object existence conditions and also in which it will insert the corresponding
Notification object.

e Target context i.e. an additional working memory in which the Notification will also be
inserted. This may be the same as the Current Context in which case it has no effect.

o Object refersto the Site Object identified in the trigger conditions. Asthereisonly one such
Object identified in this example, its name will be ‘obj0’ according to the previously
described naming conventions.

e Time Span (Seconds) allows the user to specify a maximum age (relative to the time at which
the Rule triggers) of contributory events attached to the identified Object that should be
added to the contributory events list of the Notification. In this example, avalue of 0 signifies
that all non-Normal events attached to the identified Object should be attached.

o Message isthe text message that will appear in the equivalent notification entry in the UCA
Notification Viewer.

Note that the ‘' Log Action to Database? checkbox is greyed out. This means that the Rule trigger and associated
Notification creation will always be recorded in the UCA notification database.
Once configured, this action will appear inthe list of trigger actions, as shown below:

As described previoudly, an equivalent set of teardown conditions and associated teardown actions are usually
defined to allow the correlation to correctly handle network recovery. Based on the original correlation
reguirements, the scenario is expected to close a primary Notification if the affected Site Object no longer exists
in the failed state (i.e. it could be degraded or normal). Based on this description, the corresponding teardown
conditions are shown below:

107

The object existence condition clauses are subtly different from the trigger case. In particular, thefirst clause is
designed to locate an existing primary Notification and to remember the unique reference of the Siteto which it
is attached.

The second aobject existence clause searches for a Site Object that is no longer in the failed statei.e. has become
degraded or normal as aresult of network recovery, and uses the same Site Object unique reference as that of the
Notification located by the first clause. In this situation, the priority of the Detect Site Problem Rule becomes
important because the DTV Maintenance Rules responsible for removing normal Objects and Groups from the
DTV context execute by default at priority O. If this Rule al'so had a priority of 0, then an unpredictable race-
condition could exist in which the time order of placing satisfied Rules onto the inference engine agenda would
become important, leading to unpredictable correlation recovery behaviour. By setting the priority of this Ruleto
10, it is guaranteed to execute before the appropriate Maintenance Rule with consequent predictable behaviour.
The corresponding action to remove the Notification when the Site Object is no longer failed is shown below:

The Add Teardown Action dialogue allows the action to be configured in a number of ways:
e Current Context i.e. the working memory in which the Rule will search for objects that match
its teardown object existence conditions and also from which it will remove the
corresponding Notification object.

e Target context i.e. an additional working memory from which the Notification will also be
removed. This may be the same as the Current Context in which case it has no effect.

108

o Object refersto the Site Object identified in the teardown conditions. Asthere isonly one
such Object identified in this example, its name will be ‘obj0" according to the previoudy
described naming conventions.

o Notification refersto the Site Notification identified in the teardown conditions. Asthereis
only one such Noatification identified in this example, its name will be ‘notif0’ according to
the previously described naming conventions.

Note that the ‘Log Action to Database? checkbox is active. This means that the Rule teardown and associated
Notification closure may be recorded in the UCA notification database if required. Given that the corresponding
trigger action was recorded in the UCA notification database, it is normally prudent for the purposes of
maintaining a consistent audit trail to record the clearance as well.

Once configured, this action will appear in the list of teardown actions, as shown below:

The effect of the Detect Site Problem Rule on the DTV Network example model isto attach a primary
Notification to afailed Site, asillustrated in the following diagram:

109

Notification

Site

\\>| Rule: Detect Site Problem

Child Group

Alarm

BroadcastEq
Site10006-RX-1

Site
A
Site |] Child Group
10006 BroadcastEq. |
1
H
1
1
1
1
1
:
Child Group
Site
A
Site | | Child Group
10025 BroadcastEq. |

BroadcastEq
Site10006-RX-2

Alarm

Alarm

To satisfy the remaining requirements for this correlation scenario, a number of additional Rules have been
provided in the supplied example. These additional Rules are effectively chained together and their execution is

Broadcasttq | | Child Group /
Site10006-RX BroadcastEq. \
Broadcasttq | | Child Group |
Site10025-RX BroadcastEq. \

BroadcastEq
Site10025-RX-1

triggered by the creation of the primary Notification.

Thefirst of these additional Rules (Annotate Downstream Sites) attaches marker Notifications to downstream
Site and Receiver Objects (Composite & Component) in anticipation of the arrival of sympathetic events, so that
they may later be gathered under the primary Notification. The effect of this Rule on the DTV Network example

model is shown below:

BroadcastEq
Site10025-RX-2

Alarm

110

Notification

Site

/
! /
— 4 /
Child Group /
Site / {
A / !/
4 /
¥ 1
[warer]|
2
Site |] Child Group
10006 BroadcastEq. |
] 1
: /
g /
: {
Child Group 7
Site I
A I
14
Site | | Child Group
10025 BroadcastEq. |

The action used to create and attach the marker Notifications onto the model is an example of a user-supplied

\ VAN S N
\ AW N SEREN -
\ AN\ \\ ~
v N ~
\ D So
\ \ \ N ~
\ \ \ \
\ \
- 2 \ N\ BroadcastEq
\ = Site10006-RX-1
BroadcastEq Child Group
Site10006-RX " BroadcastEq.
\ N q‘ \ BroadcastEq
\ \ % Site10006-RX-2
[
\ \
\ \
\ \
\ \
\ 4
T
\
2 BroadcastEq
Site10025-RX-1
BroadcastEq Child Group
Site10025-RX BroadcastEq.
d :\ BroadcastEq
] Site10025-RX-2

action that has been created specifically to locate potentially affected downstream Objects. A bi-product of this
discovery isthat the Affected Objectslist for the primary Notification is populated and this information appears
in the UCA Notification Viewer when the primary Notification details are examined.

By way of a convenience to users, the next Rule (Degrade Downstream Sites) forces downstream Sites to the

degraded state, so that they appear as degraded objectsin the UCA Mesh Viewer. The effect of this Rule on the
DTV Network example model is shown in the following diagram:

111

Notification

Site

Child Group
Site

A Alarm

’ el
Site10006-RX-1
S| osite || Child Group | Broadcasttq | | Child Group
P 10006 BroadcastEq. | Site10006-RX BroadcastEq.
S‘X]Ig:;t'c : AN BroadcastEq
i Site10006-RX-2
1 N
= [ater
i
Child Group
Site

| [ruesoograde Downstean ses | [varer
’ el
\ - BroadcastEq

Site10025-RX-1
\q; Site Child Group | BroadcastEq Child Group |

. 10025 BroadcastEq. | Site10025-RX BroadcastEq.
sm;?;:'c ~ BroadcastEq
Iz

Of particular interest is the fact that the Rule is designed to operate at a single affected Site. The inference engine
however will automatically identify all Siteswhereit isvalid and the result for this example isthat it will be
triggered twice — once at Site 10006 and again at Site 10025.

Thefinal Rulein this correlation scenario (Attach Sympathetic Alarmsto Failed Site Notification) identifies any
locationsin the DTV Network example model having marker Notifications where sympathetic alarms have
appeared. The associated action attaches these sympathetic events to the primary Notification. Again thisisa
Rule that is written to operate at a single location and in this exampl e the inference engine automatically
identifies the four Receivers on which sympathetic events are attached. Again thisis summarised by the
following DTV Network example model:

112

Site 440

\
! I\
i Il‘ \
: 1" 1
i i N
' \ ~
' [S
— 1 \\ Se
Child Group \ ~So
Site LELXY Sea
LI IEN T
L
\
- v - BroadcastEq
PR WPY Site10006RX-1
_______ Child Group |, BroadcastEq ———__] Chnild Group
- BroadcastEq [\ Site10006RX BroadcastEq
' \J AN BroadcastEq
i N S
: \ N S - PET l
i \ ~ ~
: \ e S ——
Child Group \ So
Site ~ - [
\
' !
\ Alarm
\ B
\ _ roadcastEq
Site10025RX-1
Child Group ‘\ BroadcastEq Child Group

"""" BroadcastEq [~ Site10025RX """ BroadcastEq
BroadcastEq
- — Site10025R%-2

~
. |

The results of this correlation scenario are visible on various UCA user interfaces.

Of particular interest to a scenario developer isthe UCA Fired Rules Viewer. Aslong aslogging to the UCA
notification database has been enabled for the actions executed, the time-ordered sequence of individual Rule
actionsis available, as shown below for this example.

While this feature provides an in-depth view of the actions execution sequence, it incurs a processing overhead
that may in certain circumstances prove onerous. The recommended use of this feature isto enable action
logging as required only during the correlation development phase. Once deployed into a production
environment, action logging should be scaled back to alevel where it provides sufficient information to satisfy
auditing requirements.

The current state of Objects affected by received events or modified by Rule actionsis shown in the UCA Mesh
Viewer. Thisinformation is likely to be of interest to both a Rule developer and a network operator asit givesa
near real-time view of the state of the monitored network, augmented by forced state changes provided by
correlation scenarios. For the DTV Network example provided with UCA, the Mesh Viewer output is shown
below:

113

In this example, the states of Site 10001 and the individual Receivers at Sites 10006 & 10025 have been affected
by the received events (recall their mappings were configured to cause the target object to adopt the failed state).
In response to the ‘ Degrade Downstream Site’ Rule described above, the states of Site 10006 & Site 10025 have
been modified to degraded. This reflects the fact that both of these downstream Sites are effectively ‘ off-line’
because Site 10001 has failed, but they have suffered no actual failure themselves.

The blue arrow icon next to Site 10001 in the above display reports that one or more notifications are present
against this abject. Using the UCA Notification Viewer, these notifications can be examined, as shown below:

The notification created by the Rulesin the correlation scenario described above has been selected in this
screenshot and as a result, the contributory events and affected objects are also displayed.

114

9.2.2 Correlation Scenario - DTV Service Impact

The DTV Network example provided with UCA includesa DTV Service Impact correlation scenario that
operates concurrently with (but independently from) the DTV Site Failure correlation scenario.

The DTV Service Impact correlation scenario is required to detect when the Broadcast Equipment at either end
of aBaseband Link between two Sites has failed, thereby affecting the state of DTV services broadcast from the
subtending Site. In order to provide a more realistic example, the DTV Network model allows for redundancy in
transmitting and receiving equipment at each end of the Baseband Link by modelling its endpoints as a
redundant entity e.g. a Composite Receiver is built from one or more child Receivers. The result is that failure of
a Broadcast Equipment endpoint only occurs when al of the child components have failed.

In the included example, the DTV Service Impact correlation scenario is triggered by the same individual
Receiver failure events that are regarded as sympathetic events by the DTV Site Failure correlation scenario,
however for the former they are regarded as contributory events. Thisillustrates the fact that carefully designed
concurrent scenarios can utilise the same events for different purposes without conflict. Further, the DTV
Service Impact correlation scenario implementation isimplemented in alocation independent manner so that it
can operate equally well for transmitter and receiver failures.

The DTV Network example model before any correlation Rules have triggered is shown in the following
diagram, including the events attached to the Receiver objects.

Service
Sidonis_TV_Channell

Service
Sidonis_TV_Channel2

Service
Sidonis_TV_Channel3

Service
Sidonis_TV_Channel4

Child Group Child Group Child Group Child Group
Multiplex Multiplex Multiplex Multiplex
Site Multiplex
10001 Sidonis_TV_Site_10006_Site_10024
Child_Group Child Group
Site BasebandLink
A Y
Site Child Group .
-------- BasebandLink
10006 BroadcastEq Site_10006_Site_10025
) A
Child Group
Site Assoc Group
BroadcastEq
BroadcastEq
e B
BroadcastEq
Site10025RX-1
Site | | Child Group | Broadcasttq [| Child Group
10025 BroadcastEq | Site10025RX BroadcastEq

BroadcastEq
Site10025RX-2

Alarm

Thefirst Rule to trigger in this correlation scenario detects failure of the composite Broadcast Equipment at one
end of the Baseband Link. Because 100% of the child Receivers has failed at Site 10025, the action forces the
Composite Receiver to fail by associating a synthetic failure event. Thisisillustrated in the following DTV
Network model diagram.

115

Service Service Service Service

Sidonis_TV_Channell Sidonis_TV_Channel2 Sidonis_TV_Channel3 Sidonis_TV_Channel4
Child Group Child Group Child Group Child Group
Multiplex Multiplex Multiplex Multiplex
Site Multiplex
10001 Sidonis_TV_Site_10006_Site_10024
Ch”g.fm“p Child Group
'Te BasebandLink
Site Child Group .
-------- BasebandLink
10006 BroadcastFq Site_10006_Site_10025
i A
Child Group
Site Assoc Group
BroadcastEq
BroadcastEq
Site10006TX 7
BroadcastEq
Site10025RX-1
Site | | Child Group | BroadcastEq Child Group
10025 BroadcastEq Site10025RX BroadcastEq

Synthetic
Alarm

BroadcastEq
Site10025RX-2

Consideration of this scenario in fact shows to be an example of the Physical-Logical Vee design pattern
described earlier. Physical equipment failures, in this case Receivers and in turn their containing Composite
Receiver; cause the associate Baseband Link to fail. Thisisin turn propagated up through the logical branch of
the DTV Network Model to the DTV Services. Thisisillustrated in the following diagram.

116

Service
Sidonis_TV_Channell
Synthetic
Alarm

Service Service Service
Sidonis_TV_Channel2 Sidonis_TV_Channel3 Sidonis_TV_Channel4

Synthetic Synthetic Synthetic

Child Group Child Group Child Group
Multiplex

Multiplex Multiplex
Failed Count =1 Failed Count = 1 Failed Count =1

Child Group
Multiplex

Failed Count = 1

Site Multiplex
10001 Sidonis_TV_Site_10006_Site_10024

|
Child Group -
Site BasebandLink

A

Failed Count = 1
Site Child Group ;
-------- BasebandLink
10006 BroadcastEq Site_10006_Site_10025 Alarm
A f
Site _
Assoc Group
A BroadcastEq /
BroadcastEq / | Failed Count =1

Site10006TX

BroadcastEq
. Site10025RX-1
Site Child Group BroadcastEq Child Group

10025 BroadcastEq Site10025RX BroadcastEq
BroadcastEq
Alarm -

Child Group

9.2.3 Correlation Scenario - DTV Maintenance

This scenario differs from the previous examples for anumber of reasons:
e The purpose of each Ruleisto retract components of the state mesh in the normal state from
the working memory associated with the DTV context.

e Each Rule possesses only teardown conditions and actions and operates at priority O,
allowing higher priority Rules to evaluate normal state mesh components before they are
retracted.

e For syntactic reasons (a scenario must have at least one filter and map), this scenario includes
a‘default’ filter and map. In practice, the conditions chosen for each are unlikely to occur in
practice and are simply chosen to provide a ‘ placeholder’ filter and map chain. No alarm
reports are intended to pass the default filter and map chain.

Chapter 10 Alarm Interfaces

UCA offers a number of options to gather alarm reports, illustrated in the following diagram.

117

Alarm Report TCP/IP Data
Source System > Collector
Firewall
Web
Alarm Report | TCP/IP Remote Services Data
Source System Collector [|T = 4 Collector
Firewall

Web Services

Alarm Report Data

Fm———————— 2D

If the alarm report source system is able to obtain TCP/IP connectivity to the platform on which the UCA Data
Collector executes, then alarm reports may be delivered directly via a socket interface.

If the alarm report source system is remotely located from the UCA platform or afirewall exists between the two
systems, then the Remote Collector in combination with the Data Collector may be used. The Remote Collector
connects to the Data Collector using an XMLRPC Web Services connection. The remote source then connects to
the Remote Collector viaa TCP/IP socket as normal.

Alternatively, adirect XMLRPC Web Services connection may be opened by the source system to the Data
Collector.

10.1 Local Socket Interface

The Data Collector supports a TCP/IP socket interface and listens for incoming connections from alarm report
sources on a pre-defined port (by default 6666, but this may be configured in the uca.propertiesfile).

The Data Collector functions as a socket server and the remote system must be configured to connect as a socket
client. The remote system is responsible for establishing and maintaining the connection with the Data Collector.

10.2 Web Service Interface

The Data Collector aso supports a web service interface. One advantage of establishing a Web Services
connection isthat it may more easily traverse afirewall. It also provides for the possibility of gathering alarm
report information across an intranet or even the Internet.

To maintain compatibility with an existing socket interface implementation, UCA provides a Remote Collector
that implements a TCP/IP socket to Web Service proxy adapter. If the Remote Collector is executed on a
platform accessible to the source system, it automatically establishes a Web Services connection to the Data
Collector. The source system then connects to the TCP/IP socket interface provided by the Remote Collector as
described in the previous section. Details of configuring and launching the Remote Collector are provided in the
API Related documentation.

10.3 Supported Event Messages

Many network management systems raise alarm reports with a given severity (eg. critical, major, minor). When
the alarm condition ceases, the network management system then raises an identical alarm report but with
severity ‘cleared’ to indicate that the problem condition has finished. However, some systems do not produce
clear alarm reportsin this way — they raise a‘ state change’ type of alarm report that simply contains the id of the
original alarm report to be cleared. UCA accommodates both types of alarm clearance mechanism by supporting
two forms of input message, relating to:

118

e Alarm creation reports (for all alarm severitiesincluding ‘cleared’).
e Alarm state change reports (where the new state is ‘terminated’).

For both cases, the input data received by UCA isin the form of an XML message stream. The stream consists
of aseries of messages enclosed in XML <Event> </Event> tags. The transmitted XML data stream must
not contain any XML header information and since it is streamed, it is not dynamically associated with any
schema or DTD document. The tags within an alarm report are based on the alarm fields defined in the ITU-T
X.733 specification. User-defined tags, also called user-defined alarm fields, are also supported and are
described in the subsequent section.

10.3.1 User-defined event fields

User-defined event fields are defined in the filefi | t er fi el d. properti es and must have a“user.” prefix.
For example, the user-defined field, resourceText, is defined as follows:

user.resourceText : String,conditionkey.string,val uekey.default,true

The property value in this case defines the type, condition key, value key and editable flag for the user-defined
type ‘resourceText’.

An example event message would contain the configured event field, thus:

<Event >

<resourceText >Further operational information.</resourceText>

</ Event >

10.3.2 Event Message

Each event message consists of a stream of XML data formatted as follows. The order of the tags within the
<Event>...</Event> tagsis unimportant:
<Event >
<event Rank></ event Rank>
<syst end ass></ syst enCl ass>
<syst em nst ance></ syst em nst ance>
<event | d></ event | d>
<dat aType></ dat aType>
<ori gi nati ngTi me></ori gi nati ngTi ne>
<nmod ass></ noCl ass>
<npol nst ance></ nol nst ance>
<severity></severity>
<al ar nifype></ al ar mype>
<pr obabl eCause></ pr obabl eCause>
<speci fi cProbl ens></ speci fi cProbl ens>
<addi t i onal Text ></ addi ti onal Text >
<addi ti onal Text Tagl></ addi ti onal Text Tagl>
<addi t i onal Text Tag2></ addi ti onal Text Tag2>
<addi t i onal Text Tag3></ addi ti onal Text Tag3>
<addi ti onal Text Tag4></ addi ti onal Text Tag4>
<addi ti onal Text Tag5></ addi ti onal Text Tag5>
<addi ti onal Text Tag6></ addi ti onal Text Tag6>
</ Event >

NOTE: All tags are case-sensitive.

The tags have the following meaning:

Tag Name Description of Tag Value Mandatory
eventRank If thisisanew alarm report from an external source yes

system, then set to “original”. If the alarm report has

resulted from an Action that UCA executed e.g. raising a

root cause alarm, then the value is“master”. In all

normal circumstances, an external alarm system should

119

Tag Name

Description of Tag Value
use “original”.

Mandatory

systemClass

The generic type of the alarm source system, e.g.
“sidonis nhms’ etc.

yes

systeml nstance

A string that uniquely identifies the identity of the alarm
source system, e.g. “v1.0.1-02".

yes

eventld

A string that uniquely identifiesthe alarm report ID eg
“ 2311“

yes

dataType

This should be set to “X.733"

yes

originatingTime

For alarm reports that are not of ‘cleared’ severity, this
isthe time the alarm report was raised as reported by the
source system. For ‘cleared’ severity alarm reports, the
time that the alarm report was cleared on the source
system.

Theformatis“YYYY-MM-DD hh:mm:ss’ where DD
= day in month (1-31)

MM = month in year (1-12)

YYYY = year eg. 2006

hh = hour in day (0- 23)

mm = minute in hour (0-59)

ss = second in minute (0-59).

yes

moClass

The value of the managed object class associated with
the alarm report e.g. “ Site, or “BroadCastEquipment”

yes

mol nstance

The value of the managed object instance associated
with the alarm report e.g. “10006” or “Site_10006-BX-
AIS-RX-2"

yes

severity

One of the ITU-T X.733 severity enumerations, namely:
critical, major, minor, warning, indeterminate or cleared

yes

aarmType

One of the ITU-T X.733 alarmType enumerations,
namely: communicationsAlarm, equipmentAlarm,
processingAlarm, qualityOf ServiceAlarm or
environmental Alarm

yes

probableCause

One of the ITU-T X.733 probableCause enumerations,
namely: adapterError, applicationSubsystemFailure,
bandwidthReduced, call EstablishmentError,
communicationsProtocol Error,
communicationsSubsystemFailure,
configurationOrCustomizationError, congestion,
corruptData, cpuCyclesLimitExceeded,

dataSetOrM odemError, degradedSignal, dTE-
DCElnterfaceError, enclosureDoorOpen,
equipmentMalfunction, excessiveVibration, fileError,
fireDetected, floodDetected, framingError,

heatingOrV entilationOrCoolingSystemProblem,
humidityUnacceptable, inputOutputDeviceError,
inputDeviceError, IANError, leakDetected,

localNodeT ransmissionError, |0ssOf Frame,
lossOfSignal, material SupplyExhausted,
multiplexerProblem, outOfMemory, outputDeviceError,
performanceDegraded, powerProblem,
pressureUnacceptable, processorProblem, pumpFailure,
gueueSizeExceeded, receiveFailure, receiverFailure,
remoteNodeT ransmissionError,
resourceAtOrNearingCapacity, responseTimeExcessive,
retransmissionRateExcessive, softwareError,
softwareProgramAbnormally Terminated,
softwareProgramError, storageCapacityProblem,
temperatureUnacceptabl e, thresholdCrossed,
timingProblem, toxicL eakDetected, transmitFailure,
transmitterFailure, underlyingResourceUnavailable or

yes

120

Tag Name Description of Tag Value Mandatory
versionMismatch
specificProblems A text string that further qualifies the alarm problem. no
additional Text A text string that provides additional useful information | yes
related to the alarm. All white space and linefeed
characters will be maintained. Thisfield normally
contains the ‘main body’ or raw text of the original
alarm report raised by the alarm source system.
additional TextTagl | If used, these may be used to add any extrainformation no
-6 to qualify the alarm report.

Note:
e [f anyfield containsan XML meta-character such as> or < then the character or the whole
field should be surrounded by <![CDATA[and]]>
¢ No field should contain a value with single quotesi.e. a‘ character.

The following is an exampl e section of a data stream over the UCA input interface:
<Event >

</ Event >
<EBEvent >
<event Rank>ori gi nal </ event Rank>
<syst enCl ass>HP_nns</ syst enCl ass>
<syst em nst ance>V5</ syst enl nst ance>
<event | d>1003</ event | d>
<dat aType>X. 733</ dat aType>
<ori gi nati ngTi me>2005- 06- 10 12: 16: 32</ori gi nati ngTi ne>
<mC ass>Sit e</ noC ass>
<nol nst ance>10001</ nol nst ance>
<severity>critical </severity>
<al ar nirype>Equi pnent Al ar nx/ al ar nifype>
<pr obabl eCause>Power Pr obl enx/ pr obabl eCause>
<addi tional Text>Site Power Fail ure</additional Text>
</ Event ><Event >

</ Event >

10.3.3 Event State Change Messages

The system supports two different kinds of event state change message: terminate and attributeV alueChanged
(AVC).
For a state change event, each XML message in the stream of datais formatted as follows. The order of the tags
within the <Event>...</Event> tags is unimportant:
<Event >

<event Rank></ event Rank>

<syst enCl ass></ syst enCCl ass>

<syst em nst ance></ syst enl nst ance>

<event | d></ event | d>

<dat aType></ dat aType>

<ori gi nati ngTi me></ori gi nati ngTi me>

<updat eSt at e></ updat eSt at e>

</ Event >

NOTE: All tags are case-sensitive.
The tags have the following meaning:

Tag Name Description of Tag Value Mandatory
eventRank If thisisanew alarm report from an external source yes
system, then set to “original”. If the alarm report has

121

Tag Name Description of Tag Value Mandatory
resulted from an Action that UCA executed e.g. raising a
root cause alarm, then the value is“master”. In all
normal circumstances, an external alarm system should
use“original”.

systemClass The generic type of the alarm source system, e.g. yes
“sidonis hms” etc.
systeminstance | A string that uniquely identifies the identity of thealarm | yes
source system, e.g. “v1.0.1-02".

eventld A string that uniquely identifies the alarm report ID eg yes
“2311”
dataType This should be set to “X.733" yes

originatingTime | For alarm reports that are not of ‘cleared’ severity, this yes
isthe time the alarm report was raised as reported by the
source system. For ‘cleared’ severity alarm reports, the
time that the alarm report was cleared on the source
system.

Theformatis“YYYY-MM-DD hh:mm:ss” where DD
= day in month (1-31)

MM = month in year (1-12)

YYYY = year eg. 2006

hh = hour in day (0- 23)

mm = minute in hour (0-59)

ss = second in minute (0-59).

updateState Either ‘terminated’ or ‘attributeValueChanged’ yes

The following is an exampl e section of a data stream over the UCA input interface for a terminate event:
<Event >

</ Event >
<Event >
<event Rank>ori gi nal </ event Rank>
<systenC ass> HP_nns </systenCl ass>
<syst em nst ance>V5</ syst eml nst ance>
<event | d>1003</ event | d>
<dat aType>X. 733</ dat aType>
<ori gi nati ngTi me>2004- 01- 27 14:50: 54</ ori gi nati ngTi me>
<updat eSt at e>t er m nat ed</ updat eSt at e>
</ Event >
<Event >

</ Event >

The following is an exampl e section of a data stream over the UCA input interface for an attributeV alueChanged
(AVC) event:
<Event >

</ Event >
<Event >
<event Rank>ori gi nal </ event Rank>
<syst enC ass> si doni s_nns </systenCl ass>
<syst em nst ance>V5</ syst enl nst ance>
<event |1 d>1003</ event | d>
<dat aType>X. 733</ dat aType>
<ori gi nati ngTi me>2004- 01- 27 14:50: 54</ ori gi nati ngTi me>
<updat eSt at e>at t ri but eVal ueChanged</ updat eSt at e>
<severity>nmgj or</severity>
</ Event >

122

<Event >

</ Event >

10.3.3.1Terminate messages

The eventld field is used to locate the existing event in the database and the terminate event is
reported to the associated Mesh Object or Notification.

10.3.3.2AVC (Attribute Value Changed) messages

The eventld field is used to locate an existing event in the database and an update event is
reported to the associated Mesh Object or Notification.

The following fields are available for update: severity, probableCause, specificProblems,
additional Text, additional Text1, additional Text2, additional Text3, additional Text4,
additional Text5, additional Text6 and any custom fields.

Theoriginal field values for these fields are also retained in the database.

10.3.3.3Auto-bypass filters and mappings

It is possible to configure the system such that the event state change messages bypass the filters
and mapping. This means that no filter or map isrequired to enable state change messages.
Thisisuseful when there are few event change state messages entering the system. For high-
volume scenarios, the bypass should be disabled so that unnecessary events can be filtered. The
default state is disabled.

To enable the filter and mapping bypass, please set the following property in

uca. properti es:

aut omati c. updat e. handl i ng : true

123

124

Chapter 11 Data and calculator objects

A dataobject istypically used to interrogate an external database and hold the returned raw datain alist of pre-
configured key/value pairs for further processing within the system. The key/value pair will also have atype. For
example, for a smart metering application we may want to store meter readings using the key ‘ meterReading’,
the value read from the database and with type ‘long’ i.e. a 64-bit signed integer.

One data object isinstantiated per affected object. The data object is created by a custom rule trigger action.

The data object utilizes a calculator object (one per context) to perform processing on the raw data.

Through configuration it is possible to expose derived fields to the rules engine so that rules can interrogate the
derived values and perform further actions.

A basic schematic is shown below:

11.1 Data Object Attributes

A data object can be viewed in the working memory by double clicking on the data object instance, as identified
by its base class and unique reference. The data object attributes will be listed in the dialog box and brief
descriptions of each are listed below.

11.1.1 Raw Data

This attribute consists of alist of key/value pairs which represent the raw data as populated from the external
database via a RemoteHandler call and call-back mechanism. The data keys are defined in the Data Object
configuration file.

11.1.2 Derived Data
This attribute consists of alist of key/value pairs which represent the derived data as populated by calculations
performed on the raw data. The derived data keys are defined in the Data Object configuration file.

11.1.3 Last change reason

Thisisan enumeration of one of the following values: initialising, data-available, derived-data-available.
‘Initialising’ means that the data object has been instantiated but does not yet have any raw data.
‘Data-available’ means that the object has been filled with raw data.

‘Derived-data-available’ means that cal culations have been performed on the raw data.

125

11.1.4 Base class
Thisfield represents the base class of the data object.

11.1.5 Unique reference

Thisfield represents the unigue reference of the data object.

11.1.6 Timer state

The associated timer state: an enumeration of undefined, initialised, running, suspended, expired, completed.
A refresh rule will detect the ‘expired’ statei.e. the refresh countdown has reached zero.

11.1.7 Timer state changed
A flag indicating that the timer has changed state.

11.2 Data Object Lifecycle

A schematic of the data object lifecycle is shown below:

A data object has very distinct partstoits lifecycle: initialisation followed by a cycle of dataretrieval and
derived data calculation/storage.

11.2.1 Initialise Data Object
11.2.1.1Rule trigger action

The action ‘ create data object’ must be inserted as atrigger action on arule.

When the rule is actually constructed in the GUI, the type of the data object is specified. When the rule is fired,
the data type will be created for the associated Mesh Object.

If adatatype already exists for the Mesh Object, the action will be ignored.

11.2.1.2Data Object Configuration

The following file snippet shows an example data object configuration (for afictional smart meter data object):

126

<met aDat aCbj ect type="snart Meter">
<dat aMappi ngs>
<dat aMappi ng from="net er Val ue" to="current MeterVal ue"/ >
</ dat aMappi ngs>

<dat aTupl es>
<tupl e name="neter Val ue" type="Ilong" />
<t upl e nanme="previ ousMet er Val ue" type="long" />
<tupl e name="ti nestanp" type="long"/>
<t upl e name="previ ousTi nest anp" type="1Iong"/>
</ dat aTupl es>

<out put Tupl es>
<t upl e nanme="usageChangePercent" type="double" />
</ out put Tupl es>

<dat aSour ce name="smart Met eri ng" user="neterUser"
pass="net er Passwor d" connecti ons="10" dbns="postgresql ">
<driverd ass>
org. postgresql. Driver
</driverd ass>
<connectionUr| >
j dbc: postgresql://1ocal host/smart Metering
</ connectionUr| >
</ dat aSour ce>
</ met aDat ahj ect >

dataMappings element
It is possible for a database field name to a stored under a different key name using the mappings as defined in
this XML section.

dataTuples element
The raw data keys as taken from the database are defined in this section of XML. Supported types are: boolean,
int, long, float, double, string.

outputTuples element
The derived data keys as populated by calculations are defined in this section of XML. Supported types are:
boolean, int, long, float, double, string.

dataSource element
The data source for the external database is defined in this section of XML.

Note - The configuration file can be found in pr oper ti es/ dat a- confi g. xni
11.2.1.3Create Associated Timer

Thefinal part of the data object initialisation is the creation of an associated timer to perform the countdown for
arefresh of the raw data. Thisisachieved using arule to detect when the timer state is expired. A trigger action
isincluded in the rule to create a countdown timer to repeat infinitely i.e. until the data object is removed.

The action details are as follows:

127

11.2.2 Populate raw data

A rule must be created which contains the ‘refresh data object’ trigger action. This action will detect an expired
countdown timer and make a call to the remote handler to interrogate the external database. Please refer to the
Remote Handler Specification for more information on this call.

The call-back mechanism from the Renot eHandl er will result in the sending of aDat aRef r eshEvent to
the event manager, which will refresh the raw data stored in the key/value pairs.

11.2.3 Populate derived data

The derived datais populated by an action called from arule. The action in question is the ‘ perform cal cul ation’
action which specifies the data object for which the calculation is to take place, and aso the desired calculation
name.

Multiple calculation actions can exist per rule and calculation actions can be split across many rules with
different priorities. The only proviso is that the final calculation action must be preceded by a‘finish
calculations' action. This action informs the data object that it can validate the derived data and be updated in the
working memory.

11.2.4 Data object actions

The following actions are available from the rule action dropdown list, under the category ‘ measurement
handling’:

create data object This action is used to create a data object of the specified type, for agiven
Mesh Object.

refresh data object This action is used to refresh a data object of the specified type, for agiven
Mesh Object.

remove data object Thisaction is used to remove a data object of the specified type, for agiven
Mesh Object.

11.2.4.1Example data object action

The screenshot below shows the create data object trigger action:

128

11.3 Calculator object lifecycle

A schematic of the calculator object lifecycle is shown below:

The calculator uses an expression evaluator (called ‘ Janino’) to compile the configured expressionsinto byte-
code for evaluation at runtime. The expressions must conform to the correct syntax to prevent compilation
errors, which would be reported to the exception log at run-time.

A calculator object will perform calculations with the raw data supplied from data objects. The derived datais
then stored in the data object.

11.3.1 Calculator Configuration

When the system first starts-up the calculator expressions are compiled and then held in memory for use by the
calculator object in each working memory.
The following file snippet shows an example calculator expression for cal culating the percentage change
between two values:
<expressi on>
<nane>Cal cul at e Usage Change</ nanme>
<expr essi onVal ue>
(et er Val ue/ pr evi ousMet er Val ue) *100
</ expr essi onVal ue>
<i nput s>
<i nput >

129

<name>net er Val ue</ nane>
<type>l ong</type>
</i nput >
<i nput >
<name>pr evi ousMet er Val ue</ nane>
<type>l ong</type>
</i nput >
</i nput s>
<out put >
<name>usageChangePer cent </ nane>
<t ype>doubl e</ type>
</ out put >
</ expr essi on>
Multiple expressions can be configured in this manner in the same configuration file

11.3.1.1name element

This XML element is the unique name of the calculation, which is used in the rule dialog for action ‘ perform
calculation'.

11.3.1.2expressionValue element

This XML element is the actual (mathematical) expression to evaluate.
11.3.1.3inputs element

This XML element describes the input val ue key-names to the expression.
11.3.1.40utput element

This XML element describes the output value key-name from the expression.

The configuration file can be found in pr operti es/ cal cul at or-functi ons. xnl

11.3.2 Calculator Actions

The following actions are available from the rule action dropdown list under the category ‘ measurement
handling’:

perform calculation Thisaction is used to perform a specified calculation on the data object for a
given Mesh Object.

report all calculations ~ Thisaction is used to report that all the calculations have finished on the

finished data object for a given Mesh Object. Each calculation requires a trigger

action to actually perform the calculation, followed by a‘finish
calculations' action to inform the data object that al the calculations have
been completed. At this point, the data object will changeits state to
indicate that the derived datais available for further processing.

11.3.2.1Example calculation action

The action ‘perform calculation’ is shown below for the data type ‘ smartMeter’ and calculation name ‘ Calculate
Usage Change':

130

11.4 Example data object scenario

The series of screenshots shown below show an example scenario in which a data object is created (rule
conditions 1), refreshed (rule conditions 2) and for which a calculation is performed (rule conditions 3).

11.4.1 Example Rule Conditions for ‘create data object’

131

11.4.2 Example Rule Conditions for ‘refresh data object’

11.4.3 Example Rule Conditions for ‘perform calculation’

132

Chapter 12 Time Dependent Event
Correlation

UCA offers the following capabilities and features to enable the construction of time dependent
correlations:
e Time bounded event processing actions, offering comprehensive support for time dependent
correlations on event streams.

o Rélative and absolute time comparison operators for evaluating the time attributes model,
alarm and correlation objects

¢ |ndependently controllable, countdown Timer objects (one per model or correlation object)

In addition, UCA includes sophisticated time compression a gorithms for providing rapid
resynchronization with event sources while maintaining the accuracy of both existing and historical time-
dependent correlations.

For correct operation of aresilient UCA configuration, it isimportant that the system time clocks of both
servers are closely aligned. For thisreason, it is essential to make use of an operating system time
synchronization protocol e.g. NTP.

The following sections describe each of the time dependent correlation features.

12.1 Relative and absolute time comparison
operators

UCA provides a comprehensive set of comparison operators to eval uate absol ute date and/or time (Date
attributes) of model, alarm and correlation objects against the current UCA ‘clock’ time (itself a Date) or
relative to another date and/or time. Each use of atime comparison operator is re-evaluated once a second
until the object is retracted or the condition is satisfied.

UCA ‘clock’ time is not the system hardware clock. In fact it isimplemented as an event driven software
clock with a granularity of one second and is advanced by internal ‘tick’ messages generated by the
system hardware clock. Thisimpliesthat under circumstances, the ‘clock’ time may lag behind actual
time as measured by the system clock, in particular where event buffering occurs. This does not affect the
accuracy of the time dependent correlations because they are driven by the UCA ‘clock’ and eventually
each ‘tick’ message will be processed allowing apparent and actual time to be re-aligned. At any time, the
‘clock’ time (referred to as ‘ apparent’ time) and the actual time may be examined using the Time object
in the Working Memory Viewer.

It should also be noted that during resynchronization processes involving event replay in ‘ compressed
time’, the current UCA ‘clock’ time will be adjusted to an earlier time and then continuously advanced by
the system to establish historically accurate time dependent correlations for the resynchronizing event
source. During this process, all other time dependent correlations for other event sources will be ‘frozen’
(to preserve their accuracy asthe UCA ‘clock’ is adjusted).

The following table lists the time comparison operators and illustrates their use with the “ Creation Time”
attribute of a Notification although they may be used with any attribute of the Date type. Where
<Variable> is specified, thisimplies that a previous ‘ stored in’ assignment operation has been carried out
to initialise the variable with another Date value or an integer offset value in seconds.

is before [Creation Time] is before <Absolute Time>

is after [Creation Time] is after <Absolute Time>

plus offset is older than current time [Creation Time] plus offset <x seconds> is older than
current time

plus offset is younger than current time [Creation Time] plus offset <x seconds> is younger than
current time

minus offset is older than current time [Creation Time] minus offset <x seconds> is older than
current time

minus offset is younger than current time | [Creation Time] minus offset <x seconds> is younger than
current time

isolder than valuein [Creation Time] is older than value in <Variable>

133

is younger than valuein [Creation Time] is younger than value in <Variable>
plus offset (in variable) is older than [Creation Time] plus offset in <Variable> is older than
current time current time
plus offset (in variable) is younger than [Creation Time] plus offset in <Variable> is younger than
current time current time
minus offset (in variable) is older than [Creation Time] minus offset in <Variable> is older than
current time current time
minus offset (in variable) isyounger than | [Creation Time] minus offset in <Variable> is younger than
current time current time

12.2 Countdown Timers

UCA supports the concept of a countdown Timer object that may be dynamically created and attached to
objects using rule actions. Each global (System), model (Mesh Object & Child/AssociateGroups) and
correlation (Notification, Script, Data & Calculation) object may have a single Timer object attached to
them. Note however that the System object timer isreserved for use with the Resilience packageand is
therefore not normally available for user-defined correlations.
Each Timer object operates with a granularity of one second and is driven by the UCA ‘clock’ with the
implications described in the previous section.
Each model or correlation object is provided with two attributes that allow an associated Timer to be used
in conjunction with it:

e Anenumerated current timer state (undefined means that the Timer has not been created)

e A boolean timer update flag reporting if the last update applied to the object was atimer state
change.

A typical useisto construct arule that waits for the Timer associated with an object to adopt a particular
state, although this must always be guarded with an additional test on the timer update flag to prevent
unwanted rule firings. The timer update flag is necessary because any update to an object in aWorking
Memory context effectively refreshes all of the values of that object. Correct use of the update flag alows
auser to distinguish between atimer state change and any other attribute change on that object.
Timers are created, maintained and destroyed by rule actions and their existence and current state can be
examined viathe list maintained by the global time object visible in the Working Memory Viewer.
Timers consume system resources and should be used only when necessary.
Timers have the following properties:
e They aredriven by the UCA ‘clock’ with a granularity of one second and as aresult their first
cycle may last between N-1 and N seconds (where N is the timer period). Subsequent cycles will
last N seconds.

e They are capable of operating in ‘one-shot’, counted (i.e. they time-out N times) or infinitely
repeating modes.

e They may be created and then started automatically or manually
e They may be suspended, resumed, stopped and re-initialised
e They can exist in each of the following states:
0 Undefined —a Timer has not been defined for the owning object
o Initialised —aTimer has been defined but has not yet been started or has been re-
initialised
0 Running- adefined Timer has been started
0 Suspended — a previously running Timer has been temporarily suspended

0 Expired —arunning Timer has reached the end of its current cycle and timed-out or has
been stopped

0 Completed —aone-shot or counted Timer has exhausted the number of operating cycles
or has been stopped

e Their start times may be aligned to the following time boundaries:
0 Unaligned —in fact aligned to the one second boundaries defined by the UCA *clock’

134

0 Minute— aigned to minute boundaries, implying that the first cycle will be truncated to
incur atime-out at the next minute boundary

0 Hour —aligned to hour boundaries, implying that the first cycle will be truncated to
incur atime-out at the next hour boundary

o0 Day - aigned to day boundaries, implying that the first cycle will be truncated to incur
atime-out at the next day boundary

A comprehensive description of the facilities offered by Timersis contained in the section describing
Time related actions later in this guide.

135

12.3 System Operating Modes

12.3.1 Standalone Mode

The following diagram illustrates UCA operating in a standalone configuration. Note that UCA may be operated
in standal one configuration with or without the resilience heartbeat generated by the UCA Generic Collector.
The current operating mode is set using the system.mode property in the uca.propertiesfile. Detailed
descriptions of the Remote Handler and Generic Collector are provided in the UCA Remote Handler Interface
and Generic Collector Interface specifications respectively.

Network Management
System Platform
UCA Generic
Collector <«_| Heartbeat response +
~. hormal & expedited
"\ outputs
Heartbeat v ;
UCA System Flatform Remote Platform
Remote Remote Remote
Handler Handler Handler
(started via (Explicit (Explicit
Rule Action) Launch) Launch)
v v —
UCA Web Services

12.3.2 Resilient Mode

The following diagram illustrates UCA operating in aresilient configuration. In this example, NMS platform A
isthe primary and UCA platforms A & B form aresilient primary/secondary ‘ hot standby pair’. Remote
Handlers used in aresilient configuration are normally run via Resilience Package rule actions.

The Remote Handler running on the primary UCA machine is normally operated with outputs enabled (allowing
communication with the primary NMS), while that on the secondary is normally operated with outputs disabled
(although expedited alarms reporting for example local platform problems may still be sent to the primary
NMS). Remote Handlers running on both primary and secondary UCA machines will normally be connected to
the UCA Generic Collector on the primary NMS platform, allowing each system to report an individual
heartbeat response.

136

Primary Secondary

Network Management A Heartbeat Network Management B
ear response +
System Platform * expedited outputs System Platform
UCA Generic Tl / UCA Generic
Collector RN Collector
<«
y Heartbeat \
UCA A System Platform ' UCA B System Platform
> ,,"\ Heartbeat B >
e response + 1
- normal &
Remote expedited Remote
Handler outputs Handler
(started via (started via
Rule Action) Rule Action)
UCA Web Services UCA Web Services
Primary Secondary

If aUCA failover occurs, the above configuration is modified to enable outputs from the Remote Handler on the
new primary UCA platform, as shown below.

Secondary
Network Management A Heartbeat Network Management B
System Platform response + System Platform
< norma}l &
UCA Generic Sxpectted UCA Generic
- puts
Collector ~. Collector
I~ NS
Heartbeat
“\ UCA B System Platform
Remote
Handler
(started via
Rule Action)
UCA Web Services
Primary

If an NM S failover occurs, each UCA instance expects the new NMS primary system to start a new instance of
the UCA Generic Collector. Rules in the Resilience package automatically detect the new heartbeat source and
will issue instructions to the Remote Handler instance to close the existing connection to the old Generic

Collector and attach to the new Generic Collector.

137

Chapter 13 Resynchronization with
Event Sources

13.1 Event Resynchronization

In certain operating configurations, it isimportant for a UCA server to undergo a process of
resynchronization with one or more event sources e.g. an NMS. Resynchronization usually involves
retrieving copies of all outstanding events from a source and then replaying them to re-establish the
current event state. Depending on the type of correlation required, resynchronization may involve
additional processing to resolve differences between the source and the prior event history stored in the
UCA server Event database.

Typical scenarios where resynchronization may be required are:

e A UCA Primary or Standalone server is started for the first time. In this situation, the server will
have no prior event history and may need to resynchronize with multiple external event sources.
Depending on the type of correlation required, it may be necessary to replay the
resynchronization eventsin ‘compressed time’ to re-establish and maintain the correct temporal
correlations. ‘ Compressed time’ event replay is atechnique whereby for a given event source,
the UCA ‘clock’ is set back to just before the first resynchronization event and then eventsin the
resynchronization stream are replayed as fast as possible (the UCA *clock’ being automatically
advanced during this process). In this way, temporal correlations are correctly handled without
the delay involved in replaying events at their original delivery times and the mechanism ensures
that events from other sources and associated correlations remain unaffected. Alternatively,
‘compressed time' event replay may be dispensed with in situations where strict accuracy of
temporal correlationsis not required or a minor variation from expected behavior can be
tolerated on startup e.g. stream-based correlations.

e A UCA Secondary server (re)connectsto a UCA Primary server in a hot standby resilient
configuration. In this situation, sophisticated inter-server resynchronization with ‘compressed
time’ event replay and ‘1D matching’ is necessary to establish and maintain a common view of
current correlations on both servers. In essence, all of the existing event and correlation
knowledge on the Primary server is copied to the Secondary server and the resynchronization
process ensures (as far as possible) that both Primary and Secondary servers present the same
correlation views on completion. ‘ID matching' is a technique employed to ensure that the same
correlation artifacts e.g. Notifications, have the same unique identifiers on both servers. Thisis
donein an attempt to make UCA failover seamless with regard to the event sources. Once
synchronized, both servers are then driven independently by dual outputs from a single Generic
Collector.

e When aUCA server (Primary, Secondary or Standalone) re-connects to an event source, either
following failure and re-establishment of a particular communications link or restart of the event
source system. Again, this process may optionally involve ‘compressed time’ event replay to re-
establish and maintain the correct temporal correlations.

Resynchronization processing is handled automatically by built-in functionality in the UCA servers
although it is the integrators responsibility to ensure that a Generic Collector specialization interfacesto
and manages individual event sources and requests UCA to deliver the required behaviour.

Where a hot-standby resilient configuration is required, an optional package of rules (the Resilience
Package) is required to control the special inter-server resynchronization features. This package must be
deployed and configured on both Primary and Secondary UCA servers.

During resynchronization involving ‘ compressed time'event replay, a UCA Primary or Standalone server
will adopt a policy of actively preventing certain Remote Handler outputs (e.g. alarm raise requests, script
executions) being generated by correlations triggered by the replay of historical events which already
existed in the UCA server Events database. In contrast, previously unseen events delivered during
resynchronization that trigger new correlations will be allowed to generate such Remote Handler outputs.
This policy has been implemented in an attempt to prevent unwanted or ‘duplicate’ outputs being
generated during the process. In contrast, resynchronization of a Secondary UCA server under any
circumstances will not generate any outputs because they are globally disabled at the Remote Handler
level (provided the integrator has implemented the output enable/disable call-outs)..

138

The following sections describe the resynchronization process for both Primary/Standalone and

Secondary servers.

13.2 Primary/Standalone Server Initial

Resynchronization

A UCA Primary (for Primary read Standalone if only one system is used) system initial resynchronization

involving ‘compressed time’ event replay is summarized in the following sequence diagram:

Event Source 1 Event Source 2 SpecificCollector GenericCollector

StateWVise Server

RemoteHandler

|

|

|

I

|

i

|
sendResyncCycleStart -

—
Secondary Resynch Started delay

requestResync

| requestResynchronisation

CYCLE_START

sendResyncStart

START(Class,Instance)

Request Resync

Replay messages

Replay messages

T
Replay messages |

Resychronisation T

with Event

Source 1

I
Finished replaying

sendResyncFinish

FINISH(Class,Instance)

completedResync

completedResync

l

|
.
[}
|
|
|
|
|
|
|
|
|
|
|
|
1
|
|
|
|
|
|
|
I
|
!
i
completedResync(Rqle,Class,Instance)

sendResyncStart

START(Class Instance)

Replay messages

Replay messages

T
I
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
I
|
|
|
|
I
|
I
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
!

Resychronisation |~)
with Event
Source 2

sendResyncFinish

FINISH(Class, Instance)

sendResyncCycleFinish

completedResync

completedResync

ync(Rdle,Cla

J

CYCLE_FINISH

The following sequence of tasksis carried out on initial resynchronization of a Primary system with one

Or more event sources:

|
I
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
I
|
|
|
|
|
|
|
-t
|
|
|
|
|
|
|
|
|
|
T
|
|
|
|
|
|
|
|
|
|
|
|
Lt
i
|
|
|
T
|
|
|
|
|
|
|
|
|

T
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
L
L
I
|
I
A
T
|
|
|
|
|
|
|
|
|

\
I
|
|
|
|
|
|
|
|
|
|
|
|
1
|
|
|
|
|
|
|
|
|
|
¥

gl
|
|
|
|
|
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Primary-Secondary
resynchronisation
blocked

o By default (configurable in uca.properties), the Event and Notification databases are preserved

on asystem restart.

o A request isissued by the Primary’s Server viaits Remote Handler and Generic Collector

specialization (i.e. Specific Collector in the above diagram) to begin resynchronization with
all available event sources (provided that a UCA Primary-Secondary inter-server

resynchronization is not already underway). This request takes the form of a Java RMI
function call [requestResync()] issued from its Remote Handler REQUEST _RESYNC

callout to its Generic Collector ManagementlF. In the default Generic Collector

implementation provided with UCA, this call simply prints the request on the system

console. It isthe responsibility of the integrator to provide a specific implementation (e.g. a

Specific Collector) that interfaces with the event source(s) and respondsto this call as

required.

o For aPrimary system (not Standalone), its Specific Collector must also execute a Secondary
Resynchronization delay on receipt of requestResync(), before attempting to proceed with the
source resynchronization process. Its purposeis to provide a window in which the Primary
system waits to determine if a Secondary system has concurrently issued a higher priority

inter-system resynchronization request. This request (in the form of a Java RMI function call

[secondaryResyncStarted()] is sent from the Secondary’ s Remote Handler

SECONDARY_RESYNC STARTED callout to the Primary’s Generic Collector

139

Managementl F). If such arequest is received, it must be processed ahead of the outstanding
source resynchronization request as described in the following section. Assuming that such a
request has not been received during the delay period, the Primary’s Specific Collector isfree
to proceed with a source resynchronization (the Secondary system isthen actively prevented
from issuing an inter-system resynchronization request until the complete source
resynchronization cycle is completed).

e The Primary’s Specific Collector sendsa CY CLE_START event to the Primary’s Server with
the following attributes:

(0]

(0]

(0]

(0]

(0]

systemClass = “GenericCollector”
systemlnstance = “V1.0"
eventRank = “resync’

moClass = “ System”

molnstance = “CYCLE_START”

e The CYCLE_START event is automatically consumed by the Primary’s Server (no filters or
maps are required) and causes it to begin a source resynchronization cycle from one or more
individua sources.

e ThePrimary’s Specific Collector will carry out in turn the following resynchronization
seguence involving one or more event sources.

o The Primary’s Specific Collector requests a pre-defined event source to begin

delivering a resynchronization stream of events.

0 When the event stream is ready for delivery, the Primary’ s Specific Collector must

send a START event to the Primary’s Server with the following attributes:
= gystemClass = event source type name e.g. “NMS’
= gystemlnstance = event source instance name e.g. “ Source 1"
= eventRank = “resync”
= moClass = “System”
= molnstance = “START”

0 The START event is automatically consumed by the Primary’s Server (no filters or

maps are required) and causes it to begin buffering any subsequent
resynchronization events received from the defined event source in a special area of
the Events database. ‘Live’ eventsreceived from all other event sources will be
buffered in a memory-resident events buffer until the complete resynchronization
operation is completed, whereupon normal processing isresumed. For this reason,
the memory configuration of the Primary’s Server TomCat JVM (set in the
CATALINA_OPTS environment variable) must have been previously set to allow
sufficient heap memory resources to accommodate the largest anticipated set of
buffered ‘live’ events from all sources. Memory usage during resynchronization
testing may be monitored by examining the Primary’s System object from the
Working Memory Viewer and adjusted as required.

o The Primary’s Specific Collector will then deliver the set of outstanding

(resynchronization) events from the defined event source to the server, which in turn
stores them in the Events database. Note that it is no longer necessary for the
Specific Collector to know which server to send the events to; thisis automatically
handled by the underlying Generic Collector implementation using its knowledge of
the currently attached server(s). As described above, ‘live’ events from other event
sources will be buffered in memory.

0 When the outstanding (resynchronization) event stream from the defined event source

is exhausted, the Primary’s Specific Collector must send a FINISH event to the
Primary’s Server with the following attributes:

= systemClass = event source type name

140

= systemlnstance = event source instance name
= eventRank = “resync”

= moClass = “System”

= molnstance = “FINISH”

0 The FINISH event is automatically consumed by the Primary’s Server (no filters or
maps are required) and causes it to construct atime ordered ‘replay’ list of events
for the defined event source, including time advance events. The ‘replay’ eventslist
contains the following types of events:

= Time advance events

= Alarmraise & clear events, corresponding to historical raise and clear events
(from the defined event source) that existed in the Events database prior to
the resynchronization process

Alarm raise events, corresponding to new raise events received in the
resynchronization stream (from the defined event source).

Alarm update events, derived from differences between previously active
historical events and matching but updated raise events received in the
resynchronization stream (both types from the defined event source)

Alarm clearance events, derived from the necessity to automatically close
previously active historical raise events that were not present in the
resynchronization stream (both types from the defined event source)

o ThePrimary’s Server locks the Timers associated with all existing correlations (to
prevent the ‘ compressed time' replay process from inadvertently triggering temporal
correlations associated with other event sources). It then sets the UCA ‘clock’ to the
second boundary before the first replay event and initiates the ‘ compressed time'
event replay process, during which the contents of the ‘replay’ eventslist are
delivered asfast as possible for processing.

o Each time atime advance event is encountered, the UCA ‘apparent time’ is advanced
by the specified number of 1 second steps and the fireAllRules() on the Rules
Engine method is called after each 1 second step. In this way, time dependent
correlations for the event source only are correctly handled during the accelerated

replay.

0 Whenthe ‘replay’ eventslist is exhausted (and ‘apparent time' has advanced to the
time at which the ‘ compressed time’ event replay process began), the Primary’s
Server unlocks all previously locked Timers, ceases to buffer live events and begins
to process the contents of the live events buffer. Asthis buffer itself includestime
advance events, the ‘apparent time’ at the end of the outstanding event replay
processis gradually advanced to match the ‘actual time’ until the system catches up
with reality!

o Finaly, the Primary’s Server reports defined source resynchronization completion via
its Remote Handler to its Specific Collector. This report takes the form of a Java
RMI function call [completedResync()] issued from its Remote Handler callout to
its Generic Collector ManagementlF. In the default Generic Collector
implementation provided with UCA, this call simply prints the request on the
system console. It is the responsibility of the integrator to provide a specific
implementation e.g. in a Specific Collector, that recognizes that resynchronization
with the defined source is complete and allows it to continue with the next available
source.

o The Primary’s Specific Collector repeats the above sequence for the remaining event
SOurces.

e The Primary’s Specific Collector sendsa CY CLE_FINISH event to the Primary’s Server with
the following attributes:

o systemClass = “GenericCollector”

141

0 systemlnstance = “V1.0"
0 eventRank = “resync’
0 moClass = “System”
0 molnstance =“CYCLE_FINISH”

e The CYCLE_FINISH event is automatically consumed by the Primary’s Server (no filters or
maps are required) and causes it to complete a source resynchronization cycle from one or
more individual sources. From this point on, a Secondary system may request an inter-system
resynchronization.

o Finaly, the UCA Primary system is now resynchronized with its event source(s) and is
processing events received in real-time. Thisisthe normal steady state.

As stated previously, depending on the correlation requirements, the ‘time compressed’ event replay
process may be ignored. Thisis simply achieved by not sending the START and FINISH events
described in the sequence above and is the responsibility of the integrator to configure when building the
Specific Collector. It is also then the responsibility of the integrator to ensure that events are gathered
from one or more sources, time ordered and replayed as a composite sequence if required.

13.3 Primary/Secondary Inter-System

Resynchronization

Primary/Secondary inter-system resynchronization involving ‘ compressed time' event replay and ‘1D matching’
is summarized in the following sequence diagram:

142

The following sequence of tasks (controlled by the Resilience Package of rules) is carried out when a Secondary
server attempts to resynchronize with a Primary server:

e Assuming that the Generic Collector has been configured to deliver HEARTBEAT messages
to both Primary and Secondary servers and that the Primary server has aready restarted and
resynchronized with its event source(s), then the Primary server will be in the
IN_SERVICE:PROCESSING state, processing live events.

e On startup of the Secondary’s Server (in the UNKNOWN role), it waitsin the
OFFLINE:DISCARDING state to receive a HEARTBEAT message from the Generic
Collector. The HEARTBEAT message informs the second server that the other server isin
the Primary role. The second server then adopts the Secondary role and and enters the
RESYNCING:DISCARDING state, discarding any live events sent to it by the Generic
Collector.

e The Secondary’s Server issues arequest to the Primary’ s Generic Collector to issue a BLOCK
message. This request takes the form of a Java RMI function call [requestBlock()] issued
from the Secondary’ s Remote Handler REQUEST BLOCK callout to the Primary’s Generic
Collector Managementl F.The purpose of the BLOCK message isto halt live event
processing in both the Primary and Secondary servers at exactly the same point in their
respective event streams. The Primary’s Generic Collector can guarantee to issue the
BLOCK message to both servers at this point because it is responsible for duplication and
delivery of each event. The BLOCK message has the following attributes:

= gystemClass = “GenericCollector”
= systemlnstance = “V1.0"
= eventRank = “resync”
= moClass = “System”
= molnstance = “BLOCK”
o Asaresult of receiving the BLOCK message, the Primary’s Server will:

o Enter the BLOCKED:BUFFERING state and begin buffering live events from all
event sources in memory.

o Archivethe Event & Notification databases to remove any information that is no
longer needed by active events or correlations.

o On completion of the archive process, enter the
BLOCKEDARCHIVED:BUFFERING state and report its new state to the
Secondary’s Server.

o Wait until informed by the Secondary’s Server that it can resume processing of live
events. While waiting, live events are buffered in memory and for this reason, the
memory configuration of the Primary’s Server TomCat JVM (set in the
CATALINA_OPTS environment variable) must have been previoudy set to allow
sufficient heap memory resources to accommodate the largest anticipated set of
buffered events. Memory usage during inter-system resynchronization testing may
be monitored by examining the Primary’s System object from the Working Memory
Viewer and adjusted as required.

0 Resume processing of buffered ‘live’ events (starting with those buffered in memory)
when instructed by the Secondary’ s Server.

o Asaresult of receiving the BLOCK message, the Secondary’ s Server will:

o Enter the BLOCKED:BUFFERING state and wait for the Primary’ s Server to inform
it that it has completed the archive process. Any ‘live’ events will be buffered in
memory and for this reason, the memory configuration of the Secondary’s Server
TomCat VM (set inthe CATALINA_OPTS environment variable) must have been
previously set to alow sufficient heap memory resources to accommodate the
largest anticipated set of buffered events. Memory usage during inter-system
resynchronization testing may be monitored by examining the Secondary’s System
object from the Working Memory Viewer and adjusted as required.

143

0 When instructed by the Primary’s Server that archiving is complete, it will retrieve

details of all current Events, Notifications and the current values of all ID counters
used on the Primary’s Server. The latter are used to re-initialize the ID countersin
the Secondary’s Server. It will also retrieve the Primary Server’s ‘clock’ time and
set the Secondary Server’s ‘clock’ time to the same value. In order to prevent
subsequent drift between the Primary’s and Secondary’s Servers, it is essential to
configure a time synchronization protocol between them e.g. NTP.

o Build the ‘replay’ eventslist for all event sources and on completion, instruct the

Primary’s Server to re-commence live event processing.

0 The Secondary’s Server will then commence ‘ compressed time' event replay

processing using the ‘replay’ eventslist created above. Note that wherever possible,
details of the equivalent existing Notifications retrieved from the Primary’ s Server
will be used to re-construct the equivalent Notifications on the Secondary’ s Server,
thus preserving the correspondence of Notification 1Ds between the Servers.

0 On completion of the ‘compressed time' event replay processing, the Secondary’s

Server will adopt the IN_SERVICE:PROCESSING state and begin processing
‘live’ events (starting with those buffered in memory).

13.4 Server Resynchronization Following
Connection Re-establishment

Server resynchronization following connection re-establishment and involving ‘ compressed time’ event
replay is summarized in the following sequence diagram:

The following sequence of tasksis carried out when a server attempts to resynchronize with an event source
following connection loss and re-establishment:
o Either the event source notifies the Generic Collector specialization that connectivity to the
event source has been re-established or the Generic Collector itself re-establishes
connectivity to the event source.

o The Generic Collector specialization sends a RESET message to the server to automatically
generate clear events for all outstanding raise events in the Event database previously

received

from the defined event source. The RESET message has the following attributes:
systemClass = event source type name
systeml nstance = event source instance name
eventRank = “resync”
moClass = “System”
mol nstance = “RESET”

144

e When the event stream is ready for delivery, processing proceeds as described for the
Primary/Standalone initial resynchronization scenario with the delivery of a START

message.

e Again and depending on the correlation requirements, the ‘time compressed’ event replay
process may be ignored. This is simply achieved by not sending the START and FINISH
events described in the sequence above and is the responsibility of the integrator to configure
when building the Generic Collector specialization.

In a UCA resilient configuration utilizing two servers operating in hot-standby, it will be necessary for each
server to undergo the resynchronization process described above following connection re-establishment. This
implies that the Generic Collector spec ialization is responsible for instructing both servers to undergo
resynchronization and for delivering the START/Events/FINISH messages simultaneously to each server.

13.5 Replay Event List Construction

The following flow-chart summarises the algorithm used to construct the ‘Replay’ event list.

L J

145

Chapter 14 Value Packs

14.1 Introduction

A value pack isa collection of information, such as rules, actions etc. that can be packaged up to usefully support
ageneric capability. For example avalue pack might generically address problem identification and impact
analysis for atelecoms SDH network, or a general purpose power failure scenario within adigital TV broadcast
network.

To be more specific, avalue pack bundles the following information:

e Actions User defined actions can be included in a value pack. Once a value pack
isloaded, user actions will be available to all running rules.
e Meta-modéd Each value pack can have its own meta-model. A value pack meta-model

is merged into any currently deployed meta-models and can have classes
with an ‘External’ stereotype to link with other value packs or deployed
models.

e Filtersand Rules Each value pack can have its own ‘scenarios’ XML filesthat will get
merged and deployed into the system.

e Scripts A value pack must supply any scriptsthat it runslocally.
e Configuration A value pack can supply its own system properties that will be available
to al rules.

When UCA is started al previously activated value packs will be initialised in memory.
All system functions are in a single system value pack.

146

14.2 Description

14.2.1 Internal structure

A value pack is adirectory with a known structure that has been put into the ‘valuepacks' directory of the
deployed UCA application.
Thetop level structure for avalue pack is:
e actions adirectory that contains the action classes
e configuration adirectory that contains the value pack properties and any other developer
propertiesfiles

e models contains the meta model files.

e rules the scenarios XML files.

e Cripts scripts that are run by the value pack rules

e vp-manifest.xml containsthe value pack group, name, version and description

14.2.2 Actions

The actions directory can contain:
e Theaction code as one or more jar files[name].jar.
e The[name]_declarations.properties propertiesfile.
e The[name]_classloader.properties propertiesfile.

14.2.3 Configuration

The configuration directory will contain the system.properties file.

14.2.4 Models

The models directory will contain the meta-model files, these can be UCA XML or ‘XMI’ files. All modelsin
this directory will be loaded.
e Multiplefilesin the ‘ valuepacks’VPName/models’ directory will be loaded
e Meta-model files can bein either Argo XMI or UCA XML format (the former will be converted to
the | atter)
e Anexterna nodein the meta-model must be prefixed by a namespace e.g.
com.name.product.vp.IPLink
o All top level nodes must have 'Model' as the parent

14.2.5 Rules

The rules directory will contain the scenarios XML files as exported by the Scenario Manager. All XML filesin
the directory will be loaded.

VP rules can consist of new scenarios (which will be deployed as such) and also individual rules (which will be
added to thelist).

14.2.6 Scripts

This contains scripts used in the ‘runScripts’ action.

Note that the 'valuepack' directory isused as the scripts base directory.

It isusua to include the value pack path and scripts directory for use in VP rules as a system property. e.g
example-1.0/scripts/ascript. This prevents any hard-coding of script pathsin rules.

14.2.7 VP Manifest

The vp-manifest.xml file contains information about the value pack such as name, group and version. A manifest
file must be included into the value pack directory structure. An exampleis given below:

147

<?xm version="1.0" encodi ng="UTF-8""?>
<val uepack vp-format-version="1.0">

<gr oup>com HP</ gr oup>

<nane>t est </ nane>

<versi on>1. 0</ ver si on>

<description>A test denonstration val ue pack. </ description>
</ val uepack>

148

14.3 Value pack Lifecycle

The VP lifecycle is shown below:

VIP unzipped to
valuepacks!

Auto-deploy | cold-deplay | hot-daploy

DEPLOY

DatalzadMesh update—ey

ACTIVE —initial dataload

Auto-undegloy | cold-undeploy | hot-undeploy

INACTIVE

The VP moves from a ‘deploy’ stateto an ‘active’ state through the process of auto-deploy, cold-deploy or hot-
deploy. Once the database tables have been updated, the active VP will always be activated by the system on
start-up. In the case of hot-deployment, the VP will be automatically activated dynamically.

An active VP may then be deactivated through a process of auto-deploy, cold-deploy or hot-undeploy. The
database tables will be removed but the VP files remain on the file system.

14.3.1 Value Pack Deployment process

Value pack ‘deployment’ can be divided into three distinct phases: deployment, initialisation and activation.
In the deployment phase the database entries are written. For multiple deployments, the VPs are deployed in
priority order (O=highest priority, 20=lowest priority)

In the initialisation phase the rules are compiled and merged with the current rulebase.

In the activation phase all value pack components are loaded into memory. The mesh will not be updated with
the inventory for a VP until the inventory isloaded and a mesh update event isfired.

149

Hot-deploy single

1
L 4 l r
Metamodal
Rules DEFLOY WRITE. > DB
System Froperies
h 4
Actions .| Compile/merge
Metamodsl INITIALISE - Tl
TOMCAT VM
ActivationEvent
Stop event
processing TOPOLOGY SERVER WM
L 2
Actions
Metamaodel e
Rules L
Syslem Properties

L 4

Rezume evant
processing

14.3.2 Start up procedure

When the system starts-up, the currently active VPs are loaded before the deployment of any new VPs.
The diagram below outlines the start-up process:

150

Start-up:
Active VPs

m
¥
Actions
Matamodeal INITIALISE
TOMCAT Wi
ActivationEvant
Stog even!
processing TOPOLOGY SERVER WM
h
Actions
Metamodel | 5 eqyyaTE | [Mesh
Rules
Systam Propertias

Resuma event
Processing

The mesh is updated with the inventory currently in the database for each VP. Please note that only the currently
activated VPs will be data loaded.

VPsthat are cold-deployed can have inventory added before a system start-up to allow them to be data-loaded in
this manner.

VPsthat are hot-deployed will not be data-loaded and will require an inventory load and mesh update event.

14.3.3 Inventory and Mesh Update Events

The inventory manager can be used to add inventory for the classes contained in the VP. Thisis useful for newly
hot-deployed VPs which will not have been data loaded.

See the section on data-loading via the System Manager (and / or the inventory _manager Python script
documentation for further information on how to data-load inventory.

After the database has been populated, a mesh update (scheduled or otherwise) will load the newly |oaded
inventory in the mesh.

14.4 Deploying a value pack

Value packs are not deployed by default and must be deployed and un-deployed with the scripts provided on a
running instance of the application.

Deploying and un-deploying a value pack must be done on each machine separately within aresilient pair. For
both deploy and undeploy the UCA instance must be running and started.

14.4.1 How to Deploy

Deploying a value pack involves two steps:
a. Copyingthe value pack zip file to the server and unzipping it into the vp/ directory.

b. Using the bin/vp-deployer.sh script.

Usage: vp-depl oy. sh command [path] user password

151

conmand list | hot-deploy | cold-deploy | hot-undeploy | cold-
undeploy (note - only use hot-* when the systemis
runni ng)

pat h relative path of the value pack in the 'val uepacks'
subdirectory [only for depl oy/ undepl oy]

username the UCA usernane e.g. system
password the UCA password e.g. system
options preserve-inventory (use on hot-depl oy/ hot-undepl oy only)

force (use on hot- or col d-depl oy/ undepl oy)
no-resync (use on hot-depl oy/ undepl oy)

Note — the path will usually be the name and version of the valuepack i.e. example-1.0

Hot deploy
The hot-deploy command will deploy avalue pack into a running system. Any deployment errors will be output

to the console. If the value pack is already installed, the user will be informed.
e Theonly VP that should be at priority O isthe System value pack
o If the manifest isincorrect for any of the VPs to be deployed, the entire process will be aborted
e The VP deployment script will only work on 'localhost' i.e. you must use it on the UCA server
only

Cold deploy
The cold-deploy command will deploy a value pack on a system on which only the manager server is running.

14.4.2 How to Un-deploy

To un-deploy avalue pack again use the bin/vp-deployer .sh script. Thiswill remove all the components of the
value pack from the instance.

hot-undeploy
The hot-deploy command will un-deploy avalue pack from arunning system. Any un-deployment errors will be
output to the console. If the value pack is not installed, the user will be informed.

cold-undeploy
The cold-undeploy command will un-deploy a value pack from a system on which only the manager server is

running.

Note — | the case you undeploy and then re-deploy the same valuepack and you want to preserve the instances
corresponding to the valuepack model; you have to use the ‘ preserve-inventory’ option. By using this option the
instance inventory will be kept unchanged.

14.4.3 Listing all active value packs

The ‘list” command (on both a running and non-running system) will output alist of all active value packs.

14.4.4 Deploying a value pack on start up

A value pack can be ‘auto’ deployed when UCA is started up by including the empty file ‘DEPLOY’ inthe
value pack directory. A value pack will only be deployed the first time this file is detected since the file will be
renamed to avoid repeated auto-depl oyment.

If the ‘DEPLOY’ fileis detected for afor avalue pack that is already deployed then the value pack will be
deactivated and then reactivated.

152

14.5 Supplied value packs

14.5.1 System actions

The system actions are deployed as a VP with the highest priority. This consists of asingle jar file containing the
system actions and all configuration files.

14.5.2 Resilience

For resilient configurations licensed to use the ‘Resilience VP, the Resilience VP will load all the rules, actions,
properties and scripts.
However, the following manual configuration changes will still be necessary:

e Set the correct values in configuration/system.properties for the host and peer before loading the

VP

e Edit the uca.properties and set the 'system.mode’ property before restarting

e Edit the remotehandler.properties

e Edit the genericcollector.properties

14.6 Assumptions

14.6.1 Namespace

e The namespace is defined as the concatenation of both the group and name information held in the
VP manifest file

e Thenamespace is not case-sensitive (i.e. it will aways be converted to lower case only) therefore
com.name.vp.example and com.name.vp.EXAMPLE refer to the same namespace

e Individual class names with a VP are case sensitive with respect to data-loading, so if aclassis
delcared as ‘IPLink’ in the namespace ‘ com.company.product.vp’, then the fully qualified namein
the inventory would be com.company.product.vp.IPLink (i.e. not the lower case variant)

e The namespace information is used when generating the inventory tablesin the database. For
example com.name.vp.IPLink will create the database table md_com_name _vp_iplink

Class Names
¢ Class names must not contain the underscore character since thisis the escaped class name for VPs

M etamodel
e Itispossibleto start a system with no metamodels deployed since VPs can be hot deployed into an
‘empty’ system. Therefore, if no metamodel has been loaded, a default Model-only metamodel
will be used by the system

14.7 Current Limitations

e Thereiscurrently no support for VP updates
e Oracle tables names longer than 30 chars are currently not supported
e Actions can be hot deployed but NOT hot undeployed or hot updated; UCA will need to be
restarted to pick-up the new changes. Currently, this leads to two issues:
- Undeploying and re-deploying a VP with actions will not pick-up the changes to the actions
until arestart
- Using an action in anon-VP rule and undeploying that VP will have the effect that the action
will continue to work until the systemis restarted, at which point it will fail to work.
e Ruleswill require re-compilation — you must change the import and re-compile against the latest
codebase

153

Chapter 15 Reference Information

15.1

Object Type Attributes

15.1.1 Object

Attribute Name Type Purpose

Base Class String Base class name selected from list of classes
defined in metamodel

Sub Class String Sub (derived) class name

Instance String Friendly name or alias

Unique Reference String Unique identifier

State Enumeration Selected from list of possible states (hormal,
degraded, failed)

Service State Enumeration Selected from list of possible service states (in
service, commissioning, out of service, in
mai ntenance)

Current Problem Integer Number of synthetic and external alarm reports

List Entry Count currently attached to this mesh object

(Current Total

Event Count)

Current Problem Enumeration Selected from a list of possible values (increased,

List Entry Count unchanged, decreased)

Changed (Current

Tota Event Count

Trend)

Total Synthetic Integer Number of synthetic alarm reports currently

(Degraded + Failed) attached to this mesh object

Event Count

Total Synthetic Enumeration Selected from a list of possible values (increased,

(Degraded + Failed) unchanged, decreased)

Event Count

Changed

External Event Integer Number of external alarm reports currently

Count attached to this mesh object

External Event Enumeration Selected from a list of possible values (increased,

Count Changed unchanged, decreased)

Degraded Synthetic Integer Number of synthetic alarm reports with degraded

Event Count target state currently attached to this mesh object

Degraded Synthetic Enumeration Selected from a list of possible values (increased,

Event Count unchanged, decreased)

Changed

Failed Synthetic Integer Number of synthetic alarm reports with failed

Event Count target state currently attached to this mesh object

Failed Synthetic Enumeration Selected from a list of possible values (increased,

Event Count unchanged, decreased)

Changed

Parent Base Class String Parent mesh object base class name, as for Base
Class

Parent Sub Class String Parent mesh object sub (derived) class name

Parent Instance String Parent mesh object friendly name or alias

Parent Unique String Parent mesh object unique identifier

Reference

Parent Mesh Object Mesh Object Parent mesh object reference e.g. obj0

Grandparent Base String Grandparent mesh object base class name, as for

Class

Base Class

154

Attribute Name Type Purpose

Grandparent Sub String Grandparent mesh object sub (derived) class name

Class

Grandparent String Grandparent mesh object friendly name or alias

I nstance

Grandparent String Grandparent mesh object unique identifier

Unique Reference

Grandparent Mesh Mesh Object Grandparent mesh object reference e.g. obj0

Object

I mportance Enumeration Chosen from a list of possible values (unknown,
gold, silver, bronze)

Parent State Enumeration Selected from list of possible states (normal,
degraded, failed)

Grandparent State Enumeration Selected from list of possible states (normal,
degraded, failed)

Timer State Enumeration Selected from a list of possible values (undefined,
initialised, running, suspended, expired,
completed)

Timer State Boolean Selected from true or false

Changed

Last Event Creation Date Time a which the latest event mapped to this

Time object wasraised in UCA

Last Event Date Time at which the latest event mapped to this

Originating Time object was raised in the originating system

Last Event MO String The name of the Managed Object in the originating

Instance system on which the latest event mapped to this
object was raised

Last Event MO String The unique identifier assigned by the originating

External Event ID system to the latest event mapped to this object

Last Event String Contents of the Additional Text field of the latest

Additional Text alarm report

(Last Event

Additional Data)

Last Event String Contents of the Probable Cause field of the latest

Probable Cause alarm report

Last Event Severity Enumeration Contents of the Severity field of the latest alarm
report

Last Event Previous Enumeration Contents of the Severity field of the previous alarm

Severity report

Update pending Integer The number of outstanding alarm update events

count

155

15.1.2 Child Group

Attribute Name Type Purpose

Base Class String Base class name of the mesh objects held in this
group, selected from list of classes defined in
metamodel

Parent Base Class String Parent mesh object base class name selected
from list of classes defined in metamodel

Parent Sub Class String Parent mesh object sub (derived) class name

Parent Instance String Parent mesh object friendly name or alias

Parent Unique String Parent mesh object unique identifier

Reference

Parent Mesh Object Mesh Object Parent mesh object reference

Grandparent Base String Grandparent mesh object base class name

Class selected from list of classes defined in
metamodel

Grandparent Sub String Grandparent mesh object sub (derived) class

Class name

Grandparent String Grandparent mesh object friendly name or alias

Instance

Grandparent String Grandparent mesh object unique identifier

Unique Reference

Grandparent Mesh Mesh Object Grandparent mesh object reference

Object

Member Count Integer Number of member mesh objectsin group

Normal Count Integer Number of normal member mesh objectsin
group

Normal Count Enumeration Selected from alist of possible values (increased,

Changed unchanged, decreased)

Normal Percentage Integer in Percentage of member mesh objects in group that

range 0 —100% are normal

Normal Percentage Enumeration Selected from alist of possible values (increased,

Changed unchanged, decreased)

Degraded Count Integer Number of degraded member mesh objectsin
group

Degraded Count Enumeration Selected from alist of possible values (increased,

Changed unchanged, decreased)

Degraded Integer in Percentage of member mesh objects in group that

Percentage range 0 —100% are degraded

Degraded Enumeration Selected from alist of possible values (increased,

Percentage unchanged, decreased)

Changed

Failed Count Integer Number of failed member mesh objectsin group

Failed Count Enumeration Selected from alist of possible values (increased,

Changed unchanged, decreased)

Failed Percentage Integer in Percentage of member mesh objects in group that

range 0 —100% arefailed

Failed Percentage Enumeration Selected from alist of possible values (increased,

Changed unchanged, decreased)

List Of Children Child Group Reference to Child Group

External Event Integer Number of external (non-synthetic) events on

Count members of this group

Synthetic Event Integer Number of synthetic (non-external) events on

Count members of this group

Total (External & Integer Number of synthetic & external eventson

Synthetic) Event
Count

members of this group

156

Attribute Name Type Purpose

Timer State Enumeration Selected from alist of possible values
(undefined, initialised, running, suspended,
expired, completed)

Timer State Boolean Selected from true or false
Changed

157

15.1.3 Associate Group

Attribute Name Type Purpose

Base Class String Base class name of the mesh objects held in this
group, selected from list of classes defined in
metamodel

Parent Base Class String Parent mesh object base class name selected
from list of classes defined in metamodel

Parent Sub Class String Parent mesh object sub (derived) class name

Parent Instance String Parent mesh object friendly name or alias

Parent Unique String Parent mesh object unique identifier

Reference

Parent Mesh Mesh Object Parent mesh object reference

Object

Grandparent Base String Grandparent mesh object base class name

Class selected from list of classes defined in
metamodel

Grandparent Sub String Grandparent mesh object sub (derived) class

Class name

Grandparent String Grandparent mesh object friendly name or alias

Instance

Grandparent String Grandparent mesh object unique identifier

Unique Reference

Grandparent Mesh Mesh Object Grandparent mesh object reference

Object

Member Count Integer Number of member mesh objectsin group

Normal Count Integer Number of normal member mesh objectsin
group

Normal Count Enumeration Selected from alist of possible values

Changed

(increased, unchanged, decreased)

Normal Percentage

Integer inrange 0
—100%

Percentage of member mesh objects in group
that are normal

Normal Percentage Enumeration Selected from allist of possible values

Changed (increased, unchanged, decreased)

Degraded Count Integer Number of degraded member mesh objectsin
group

Degraded Count Enumeration Selected from alist of possible values

Changed (increased, unchanged, decreased)

Degraded Integer inrange 0 Percentage of member mesh objectsin group

Percentage —100% that are degraded

Degraded Enumeration Selected from allist of possible values

Percentage (increased, unchanged, decreased)

Changed

Failed Count Integer Number of failed member mesh objectsin
group

Failed Count Enumeration Selected from alist of possible values

Changed (increased, unchanged, decreased)

Failed Percentage

Integer inrange 0
—100%

Percentage of member mesh objects in group
that are failed

Failed Percentage Enumeration Selected from alist of possible values
Changed (increased, unchanged, decreased)
Hops Integer Number of ‘hops' to propagate state changes to

peers

List Of Associates

Associate Group

Reference to Associate Group

Timer State Enumeration Selected from alist of possible values
(undefined, initialised, running, suspended,
expired, completed)

Timer State Boolean Selected from true or false

Changed

158

159

15.1.4 Notification

Attribute Name Type Purpose

Notification Type Enumeration Selected from list of possible types(primary,
marker, problem report, service impact, root
cause)

Notification Rank Integer Severity or Importance of the notification, in
range 1 to 10 (1 = highest)

Base Class String Base class name of mesh object that Notification
is owned by, selected from list of classes defined
in metamodel

Unique Reference String Unique identifier of mesh object that Notification
is owned by

Context Name String Name of the ‘target’ context in which this
Notification may also be inserted

Originating Base String Base class name of mesh object that Notification

Class originates from (same as Base Classif thisisa
primary Notification), selected from list of classes
defined in metamodel

Originating String Unique identifier of originating mesh object

Unique Reference

Originating String Name of the context in which this Notification is

Context Name inserted

Notification ID Integer Unique numerical identifier (-1 if marker
Notification)

Notification Enumeration Selected from list of possible states (not created,

Master Alarm pending, present, terminated) — reports existence

Status or otherwise of master alarm report from NMS

Associated String Unique identifier of an associated Trouble Ticket

Trouble Ticket ID (empty if none present)

Associated Enumeration Selected from list of possible states (not created,

Trouble Ticket pending, present, closed)

Status

Associated Enumeration Selected from list of possible visibilities

Trouble Visibility (unknown, visible, hidden)

Associated Boolean Selected from true or false

Trouble Ticket

State Changed

Notification Boolean Indicates whether attached alarm reports have

Alarms Demoted been demoted under master alarm report in NMS

Administrative Integer Selected from list of possible states (active,

State locked, no action)

Event List Size Integer Current alarm report list size of mesh object that
Notification is attached to

Original Problem Integer Previous alarm report list size of mesh object that

List Size Notification is attached to

Build Time Date Time that Notification object was created

Current Time Date The current UCA system time

Notification Integer Unique numerical identifier (Notification ID of

Owner ID primary Notification if thisis a marker
Notification, otherwise identical to Notification
ID)

Notification Boolean Indicatesif Base Class and Originating Base Class

Common Base fields are identical (do not rely on thisas atest for

Classes aprimary Notification)

Notification Boolean Indicatesif Unique Reference and Originating

Common Unique Unique Reference fields areidentical (if true, then

References thisis a primary Notification)

Attribute Name Type Purpose

Notification Boolean Indicatesif Context Name and Originating

Common Context Context Name are identical

Names

Timer State Enumeration Selected from alist of possible values
(undefined, initialised, running, suspended,
expired, completed)

Timer State Boolean Selected from true or false

Changed

Notification Date Time that the Notification object was created

Creation Time

Notification Date Time that the Notification object was

Locked Time administratively locked

Notification String Message associated with Notification

Message

161

15.1.5 Script

Attribute Name Type Purpose

Script Name String Name of script file to execute

Script Owner String Base class name of mesh object that originated this

Base Class Script selected from list of classes defined in
metamodel

Script Owner String Unique identifier of mesh aobject that originated this

Unique Reference Script

Script State Enumeration Selected from list of possible states (initialising,
running, finished)

Script Status Enumeration Selected from list of possible status (normal, error)

Script Exit Code Integer Script return code

Script Output String Latest Script stdout text

Script Error String Latest Script stderr text

Timer State Enumeration Selected from alist of possible values (undefined,
initialised, running, suspended, expired, completed)

Timer State Boolean Selected from true or false

Changed

162

15.1.6 System

Attribute Name Type Purpose

Platform Average Integer in UCA server platform average CPU load

CPU range 0 —100%

Platform Disk #1 Integer in UCA server platform disk #1 free space

Free Space range 0 —100%

Platform Disk #2 Integer in UCA server platform disk #2 free space

Free Space range 0 —100%

Platform Database | Integer in UCA server platform database tablespace used

Percentage range 0 —100%

Tablespace Used

Platform OS Integer in UCA server platform physical memory used

Physical Memory range 0 —100%

Used

Platform OS Integer in UCA server platform swap memory used

Swap Memory range 0 —100%

Used

System VM Integer in UCA system VM heap memory used

Heap Memory range 0 —100%

Used

System VM Integer in UCA system JVM non-heap memory used

Non-Heap range 0 —100%

Memory Used

TomCat VM Integer in UCA TomCat JVM heap memory used

Heap Memory range 0 —100%

Used

TomCat VM Integer in UCA TomCat VM non-heap memory used

Non-Heap range 0 —100%

Memory Used

Latest String UCA system latest Information exception text

Information

Exception Text

Latest Warning String UCA system latest Warning exception text

Exception Text

Latest Non- String UCA system latest Non-Recoverable exception

Recoverable text

Exception Text

Latest Fatal String UCA system latest Fatal exception text

Exception Text

Server |dentfier String Either “A” or “B”

Server Operating Enumeration Selected from alist of possible values (standalone,

Mode resilient)

Server Resync Boolean Selected from true or false

Cycle Running

Server Operating Enumeration Selected from alist of possible values (singleton,

Role primary, secondary, unknown)

Server Operating Enumeration Selected from alist of possible values (offling, in

State service, archiving, updating, resyncing, blocked,
blocked and archived, closed down, unknown)

Server Event Enumeration Selected from alist of possible values (discarding,

Processing Mode pending, buffering, gathering, processing)

Peer Server Boolean Selected from true or false

Resync Cycle

Running

Server Event Enumeration Selected from alist of possible values (normal,

Activity missing, unknown)

163

Attribute Name Type Purpose

Local (this) Enumeration Selected from alist of possible values (normal,

Server to Peer timeout, failed, bad arguments, unknown)

Server Link State

Peer (Server) Enumeration Selected from alist of possible values (singleton,

Operating Role primary, secondary, unknown)

Peer Server Enumeration Selected from alist of possible values (offling, in

Operating State service, archiving, updating, resyncing, blocked,
blocked and archived, closed down, unknown)

Current NMS String DNS Name or |P Address of current NMS

Heartbeat Source Heartbeat Source (Platform on which Generic
Collector is running)

PreviousNMS String DNS Name or |P Address of previousNMS

Heartbeat Source Heartbeat Source (Platform on which Generic
Collector is running)

Current & Boolean Selected from true or false

Previous

Heartbeat Sources

Are Same

Heartbeat From Boolean Selected from true or false

Generic Collector

(onNMS) Late

State of Link Enumeration Selected from alist of possible values (normal,

between Generic failed, unknown)

Collector (on

NMS) and Local

(this) Server

State of Link Enumeration Selected from alist of possible values (normal,

between Generic failed, unknown)

Collector (on

NMS) and Peer

Server

Local (this) Enumeration Selected from alist of possible values (singleton,

Server Role primary, secondary, unknown)

reported by

Generic Collector

(on NMS)

Peer Server Role Enumeration Selected from alist of possible values (singleton,

reported by primary, secondary, unknown)

Generic Collector

(on NMS)

Older Than Peer Boolean Selected from true or falseif System Time of Local
(this) Server isolder than System Time of Peer
Server

Timer State Enumeration Selected from alist of possible values (undefined,
initialised, running, suspended, expired, completed)

Last Update Type Enumeration Selected from alist of possible values (unknown,

system status, peer status, timer status, event
activity status, heartbeat status, platform attributes,
information exception, warning exception, non-
recoverable exception, fatal exception)..

The’Last Update Type' attribute is an indicator that allows the user to identify which sub-group of attributesin
the System object were last updated. The following table lists the possible values of the ‘ Last Update Type'

indicator and the associated attributes that may have been updated:

Last Update Type Attributes Updated
Indicator
system status Server Operating Role
Server Operating State
Server Event Processing Mode
Server Resync Cycle Running
peer status Local (this) Server to Peer Server Link State
Peer Server Operating Role
Peer Server Operating State
Older Than Peer
Peer Server Resync Cycle Running
Timer status Timer State
event activity status Server Event Activity
heartbeat status Current NM S Heartbeat Source

Previous NM S Heartbeat Source

Current & Previous Heartbeat Sources Are Same

Heartbeat From Generic Collector (on NMS) Late

State of Link between Generic Collector (on NMS) and Local (this)
Server

State of Link between Generic Collector (on NMS) and Peer Server
Local (this) Server Role reported by Generic Collector (on NMS)
Peer Server Role reported by Generic Collector (on NMS)

platform attributes

Platform Average CPU

Platform Disk #1 Free Space

Platform Disk #2 Free Space

Platform Database Tablespace Used
Platform Physical Memory Used
Platform Swap Memory Used

System VM Heap Memory Used
System VM Non-Heap Memory Used
TomCat VM Heap Memory Used
TomCat VM Non-Heap Memory Used

information exception

Latest Information Exception Text

warning exception

Latest Warning Exception Text

non-recoverable exception

Latest Non-Recoverable Exception Text

Fatal exception

Latest Fatal Exception Text

165

15.2 Actions

15.2.1 External and Synthetic Alarm Reports

UCA processes alarm reports from two distinct sources:
e External alarm reports are those that originate from an external NM S and as aresult of the
filtering and mapping process are attached to target mesh objects in the state mesh.

e Synthetic alarm reports originate from actions carried out by UCA in response to Rules
firing. They are the mechanism by which UCA artificially modifies the state of mesh objects
in the state mesh.

Each mesh object maintains a current problem list and this may simultaneously contain both external and
synthetic alarm reports. The overall state of a mesh object is determined by the highest state of any alarm reports
attached to it (external and synthetic).
External alarm reports are uniquely identifiable and UCA is able to identify the full details of the original alarm
report received from the external NM S using the event database. In contrast, synthetic alarm reports do not have
aunique identifier and simply serve to modify the state of an object.
A mesh object may, as aresult of ‘overlapping’ or simultaneous correlations contain any humber of synthetic
alarm reports of the same or different severity.
To aid with processing simultaneous correl ations, each mesh object maintains a number of alarm report counts
and trend indicators. These include:

e Current problem list count — the sum of all external and synthetic alarm reportsin the current

problem list.

e Current problem list count changed — the trend in the current problem list count (increased,
unchanged, decreased).

e Externa event count - the sum of al external alarm reportsin the current problem list.

e External event count changed - the trend in the external event list count (increased,
unchanged, decreased).

e Synthetic degraded event count — the sum of all synthetic degraded alarm reportsin the
current problem list.

e Synthetic degraded event count changed — the trend in the synthetic degraded event count
(increased, unchanged, decreased).

e Synthetic failed event count — the sum of all synthetic failed alarm reportsin the current
problem list.

e Synthetic failed event count changed — the trend in the synthetic failed event count
(increased, unchanged, decreased).

166

The following table summarises the values of these attributes under varying conditions:

External
Alarm
Raise

Current
Problem

List
Count

Current
Problem

List Count

Changed

External
Event
Count

External

Event Count

Changed

increased

Synthetic
Degraded
Event
Count

(as before)

Synthetic
Degraded
Event
Count
Changed
unchanged

Synthetic
Failed
Event
Count

(as before)

Synthetic
Failed
Event
Count
Changed
unchanged

External
Alarm
Clear

decreased

decreased

(as before)

unchanged

(as before)

unchanged

Synthetic
Degraded
Raise

increased

(as before)

unchanged

+1

increased

(as before)

unchanged

Synthetic
Degraded
Clear

decreased

(as before)

unchanged

decreased

(as before)

unchanged

Synthetic
Failed
Raise

+1

increased

(as before)

unchanged

(as before)

unchanged

+1

increased

Synthetic
Failed
Clear

decreased

(as before)

unchanged

(as before)

unchanged

decreased

167

15.2.2 Action Groups

The Trigger and Teardown Action tabsin the UCA Scenario Manager contain a number of action groups. Each
such group gathers together those actions that are logically related e.g. timer management. The following
illustrations show the available groups and give examples of the actions that are contained within them:

Each group may simultaneously contain symmetric actions (where the same action is avail able from both Trigger
and Teardown rules) e.g. Run Script, and asymmetric actions (where complementary or opposite actions only
made availablein Trigger or Teardown rules) e.g. Lock Notification. In addition, the Housekeeping group is
only available from Teardown Rules.

Depending on system configuration, the Resilience group may not be available in a standalone system and the
User-defined actions group may be extended with user-supplied actions.

The following sections describe the currently available set of system actions.

168

15.2.2.1 Housekeeping

Remove Object In Normal State from WM
State M esh M odel

Mesh
Object
Fired Rule Viewer M nemonic
tearRemoveM ONormState WM
Summary

If loop detection is active, the requested action istested and if aloop is detected the action is aborted.

This action removes the supplied (mesh) object from the current context (working memory). If the object was
dynamically created it is also destroyed, otherwise it continuesto exist in the state mesh.

Thisactionis normally called from alow-priority housekeeping rule in the current context after all other
processing has been completed and the supplied object has returned to the normal state.

Scenario Manager Configuration Dialogue

-« The context (working memory) in which the triggering

rule is deployed and where the mesh object is inserted.

o The mesh object to remove from the current context.

e——————— Optionto record action execution details in the database.

169

Remove Associate Group In Normal State From WM
State M esh M odel

Associate
Group

Fired Rules Viewer M nemonic

tearRemoveAssocGrpNormState

Summary

If loop detection is active, the requested action istested and if aloop is detected the action is aborted.

This action removes the supplied associate group from the current context (working memory) although it
continues to exist in the state mesh.

Thisaction is normally called from alow-priority housekeeping rule in the current context after all other
processing has been completed and there are no longer any degraded or failed associate group member objects.
Scenario Manager Configuration Dialogue

The context (working memory) in which the triggering
rule is deployed and where the associate group is

o« inserted.

The associate group to remove from the current context.
Option to record action execution details in the database.
.—

170

Remove Child Group In Normal State from WM
State M esh M odel

Child
Group

Fired Rules Viewer M nemonic
tearRemoveChildGrpNormState WM

Summary
If loop detection is active, the requested action istested and if aloop is detected the action is aborted.

This action removes the supplied child group from the current context (working memory) although it continues
to exist in the state mesh.

Thisactionis normally called from alow-priority housekeeping rule in the current context after all other
processing has been completed and there are no longer any degraded or failed child group member objects.
Scenario Manager Configuration Dialogue

The context (working memory) in which the triggering rule
is deployed and where the child group isinserted.

@— The child group to remove from the current context.

Option to record action execution details in the database.

171

15.2.2.2 Notification Handling

Create Notification Against Object
State M esh M odel

«— Originator

<_
Mesh Owner
Object Notification

~-

Alarm ,
Object Pt
! <" Current

event list

Fired Rules Viewer M nemonics
trigCreateNotM O
tearCreateNotM O

Summary

If loop detection is active, the requested action istested and if aloop is detected the action is aborted.

This action builds a contributory events list in the database from the active alarm reports attached to the supplied
(mesh) object, creates a notification record in the database and attaches the contributory eventslist to it.

An ‘active’ notification report with alist of contributory events (alarm reports) is automatically displayed on the

Notification Viewer GUI.

A new notification object (of the requested type and rank) is created and isinserted into the current context
(working memory) and an optional target context. Note that both the originating and owning object referencesin
the notification object are set to the supplied object (it is a primary notification object). The current event list is
aso initialised with the contents of the contributory events list.

Scenario Manager Configuration Dialogue

TA™N

XN

The context (working memory) in which the triggering ruleis
deployed, where the supplied mesh object isinserted and
where the new notification object will be inserted.

An alternative context in which the new notification object
may also inserted (if un-used, set as Current Context).

The (mesh) object providing zero or more active alarm reports
that both originates and owns the new notification object.

The maximum age of active alarm reportsin the object that
will be added to the contributory eventslist (0 = use al active
alarm reports).

(Optional) message to be displayed in the notification report
on the Notification Viewer GUI.

Type and rank of notification object to create.

172

Create Notification Against Object Using Latest Event
State M esh M odel

Fired Rules Viewer M nemonic

trigCreateNotM OL atestEvent

tearCreateNotM OL atestEvent

Summary

If loop detection is active, the requested action istested and if aloop is detected the action is aborted.

This action builds a contributory events list in the database from the latest active alarm report attached to the
supplied (mesh) object, creates a notification record in the database and attaches the contributory eventslist to it.
An ‘active’ notification report with a single contributory event (alarm report) is automatically displayed on the
Notification Viewer GUI.

A new notification object (of the requested type and rank) is created and isinserted into the current context
(working memory) and an optional target context. Note that both the originating and owning object referencesin
the notification object are set to the supplied object (it is a primary notification object). The current event list is
also initialised with the contents of the contributory events list.

Scenario Manager Configuration Dialogue

The context (working memory) in which the triggering
rule is deployed, where the supplied mesh object is

inserted and where the new notification object will be
inserted.

An dternative context in which the new notification
object may also inserted (if un-used, set as Current
Context).

@—— The (mesh) abject providing the latest active alarm
report, that both originates and owns the new
notification object.

(Optional) message to be displayed in the notification
report on the Notification Viewer GUI.

Type and rank of notification object to create.

173

Update Notification Against Object
State M esh M odel

<« Originator

4_
Mesh Owner
Object | Notification
""
SUEET < Current

event list

Fired Rules Viewer M nemonics

trigUpdateNotM O

tearUpdateNotMO

Summary

If loop detection is active, the requested action istested and if aloop is detected the action is aborted.

This action updates the contributory event list attached to the notification record in the database for the supplied
notification object, using the latest active alarm report attached to the supplied (mesh) object

The contributory eventslist of the notification report associated with the supplied notification object is
automatically updated with the new alarm report on the Notification Viewer GUI.

The event list count and trend attributes of the supplied notification object are updated in the current context
(working memory) & (if used) optional target context. The current event list is also updated in line with the
contents of the contributory eventslist.

Optionally, the message to be displayed in the notification report on the Notification Viewer GUI may be
replaced or additional information may be appended.

Optionaly (and if it is present), the Master Alarm associated with the supplied notification object may be
updated with the details of the latest active alarm report attached to the supplied (mesh) object.

Scenario Manager Configuration Dialogue

The context (working memory) in which the triggering

rule is deployed and the supplied mesh & notification
/ objects are inserted.

An alternative context in which the supplied notification
PR

object may also inserted (if un-used, set as Current
Context).

‘\ The object providing an additional active alarm report that
both originates and owns the supplied notification object.

The notification object to be updated.
(Optional) updated/replacement message to be displayed in
the notification report on the Notification Viewer GUI.

M essage modification options

{ unchanged|append|repl ace}

Option to append the latest active alarm report to the
Master Alarm associated with the notification (if present)

// //

Option to record action execution details in the database.

174

Update Notification Against Object Parent
State M esh M odel

Originator

«-"" Current
event list

Fired Rules Viewer M nemonic

trigUpdateN otM OParent

tearUpdateNotM OParent

Summary

If loop detection is active, the requested action istested and if aloop is detected the action is aborted.

This action updates the contributory event list attached to the notification record in the database for the supplied
notification object, using the latest active alarm report attached to the supplied (mesh) object

The contributory eventslist of the notification report associated with the supplied notification object is
automatically updated with the new alarm report on the Notification Viewer GUI.

The event list count and trend attributes of the supplied notification object are updated in the current context
(working memory) & (if used) optional target context. The current event list is also updated in line with the
contents of the contributory eventslist.

Optionally, the message to be displayed in the notification report on the Notification Viewer GUI may be
replaced or additional information may be appended.

Optionaly (and if it is present), the Master Alarm associated with the supplied notification object may be
updated with the details of the latest active alarm report attached to the supplied (mesh) object.

175

Scenario Manager Configuration Dialogue

N

B
—

The context (working memory) in which the triggering
rule is deployed and the supplied mesh & notification
objects are inserted.

An alternative context in which the supplied notification
object may also inserted (if un-used, set as Current
Context).

The object providing an additional active alarm report
whose parent mesh object both originates and owns the
supplied notification object.

The natification object to be updated.
(Optional) updated/replacement message to be displayed in
the notification report on the Notification Viewer GUI.

M essage modification options

{ unchanged|append|repl ace}

Option to append the latest active alarm report to the
Master Alarm associated with the notification (if present)
Option to record action execution details in the database.

176

Remove Notification Against Object
State M esh M odel

1: Originator
Mesh Owner
Object Notification
Fired Rules Viewer M nemonics

trigRemoveNotMO

tearRemoveNotM O

Summary

If loop detection is active, the requested action istested and if aloop is detected the action is aborted.

This action closes the notification record in the database associated with the supplied primary notification object.
The status of the notification report associated with the supplied notification object is automatically set to
‘closed’ on the Notification Viewer GUI.

The supplied notification object is detached from the supplied (mesh) object and removed from the current
context (working memory) & (if used) optional target context. The notification object is then destroyed.

Scenario Manager Configuration Dialogue

The context (working memory) in which the triggering
rule is deployed and the supplied mesh & notification
objects are inserted.

An alternative context in which the supplied notification
object may also inserted (if un-used, set as Current
Context).

The (mesh) object that owns the supplied notification
object.

TN

The natification object to be removed and destroyed.

Option to record action execution details in the database.

177

Create Marker Notification Against Object
State Mesh Model

Fired Rules Viewer Mnemonic

trigCreateMarkerNotMO

Summary

If loop detection is active, the requested action is tested and if a loop is detected the action is aborted.

This action attempts to create a new marker notification against the supplied (mesh) object, associated to the
supplied primary notification. The new marker notification is inserted into the current context (working memory)
& (if used) optional target context.

The supplied (mesh) object is added to the affected objects list maintained for the primary notification in the
Notification database.

Scenario Manager Configuration Dialogue

The context (working memory) in which the triggering
rule is deployed and the supplied marker notification
/ object is inserted.
An alternative context in which the supplied marker
notification object may also inserted (if un-used, set as
— Current Context).
.\ The (mesh) object to which the new marker notification is
\ attached
The primary notification object to which the new marker
notification is associated

Option to record action execution details in the database.

178

Remove Marker Notification Against Object
State M esh M odel

Marker
Notification

Fired Rules Viewer M nemonic

tearRemoveM arkerNot

Summary

If loop detection is active, the requested action istested and if aloop is detected the action is aborted.

This action removes the supplied marker notification from the current context (working memory) & (if used)
optional target context and it is then destroyed.

Scenario M anager Configur ation Dialogue

The context (working memory) in which the triggering
./ rule is deployed and the supplied marker notification
object isinserted.

’\ An alternative context in which the supplied marker
notification object may also inserted (if un-used, set as
Current Context).

-\ The marker notification object to be removed.

Option to record action execution details in the database.

179

Create Notification Against Associate Group Parent
State M esh M odel

<« Originator
<+— Owner

Notification

Associate
Group

<--~_ Current
event list

Fired Rules Viewer M nemonic
trigCreateNotAssocGrpParent

Summary

If loop detection is active, the requested action istested and if aloop is detected the action is aborted.

This action builds a contributory event list in the database from the active alarm reports attached to the (mesh)
objects contained in the supplied associate group, creates a notification record in the database and attaches the

contributory event list to it.
An active notification report with alist of contributory events (alarm reports) is automatically displayed on the

Notification Viewer GUI.
A new notification object (of the requested type and rank) is created and isinserted into the current context

(working memory) and an optional target context. Note that both the originating and owning object referencesin
the notification object are set to the associate group’s parent object (it is a primary notification object). The
current event list is also initialised with the contents of the contributory eventslist.

Scenario Manager Configuration Dialogue

The context (working memory) in which the triggering
rule is deployed, where the supplied associate group is

inserted and where the new notification object will be
inserted.

An alternative context in which the new notification object
o— May also inserted (if un-used, set as Current Context).

®—___ The associate group whose member objects will provide
zero or more active alarm reports and whose parent object

\ both originates and owns the new notification object.

(Optional) message to be displayed in the notification
report on the Notification Viewer GUI.

Type and rank of notification object to create

180

Remove Notification Against Associate Group Parent
State M esh M odel

«— Originator
<+—— Owner

Notification

Associate
Group

<--~_ Current
event list

Fired Rules Viewer M nemonic
tearRemoveNotA ssocGrpParent

Summary

If loop detection is active, the requested action istested and if aloop is detected the action is aborted.

This action closes the notification record in the database associated with the supplied primary notification object.
The status of the notification report associated with the supplied notification object is automatically set to
‘closed’ on the Notification Viewer GUI.

The supplied notification object is detached from the supplied associate group’s parent (mesh) object and
removed from the current context (working memory) & (if used) optional target context. The notification object

isthen destroyed.

Scenario Manager Configuration Dialogue

The context (working memory) in which the triggering
rule is deployed and the supplied associate group &
notification objects are inserted.

.\ An alternative context in which the supplied notification
object may also inserted (if un-used, set as Current

Context).
The associate group whose parent (mesh) object owns the
supplied notification object.

.\ The notification object to be removed and destroyed.
Option to record action execution details in the database.

181

Create Notification Against Referenced Associate Group Parent

State M esh M odel
- Mesh
Originator——» ;
<+— Owner Object

Notification

J

Associate
Group

< Current
event list

Fired Rules Viewer M nemonic
trigCreateN otRef AssocGrpParent

Summary

If loop detection is active, the requested action istested and if aloop is detected the action is aborted.

This action builds a contributory event list in the database from the active alarm reports attached to the (mesh)
objects contained in the supplied associate group, creates a notification record in the database and attaches the

contributory event list to it.
An active notification report with alist of contributory events (alarm reports) is automatically displayed on the

Notification Viewer GUI.
A new notification object (of the requested type and rank) is created and isinserted into the current context

(working memory) and an optional target context. Note that the originating object reference in the notification
object is set to the supplied object while the owning object reference is set to the associate group’ s parent object.

The current event list is also initialised with the contents of the contributory eventslist.
Scenario Manager Configuration Dialogue

The context (working memory) in which the triggering
rule is deployed, where the supplied mesh object and
associate group are inserted and where the new notification

object will be inserted.

®—_ Analternative context in which the new notification object
may also inserted (if un-used, set as Current Context).

\ The associate group whose member objects will provide
zero or more active alarm reports and whose parent object

owns the new notification object.

The object that originates the new notification object.

(Optional) message to be displayed in the notification
report on the Notification Viewer GUI.
Type and rank of notification object to create

182

Remove Notification Against Referenced Associate Group Parent
State M esh M odel

Mesh

Originator——»
g Object

<+—— Owner

Notification

Associate
Group

<--~_ Current
event list

Fired Rules Viewer M nemonic
tearRemoveN otRef AssocGrpParent

Summary
If loop detection is active, the requested action istested and if aloop is detected the action is aborted.

This action closes the notification record in the database associated with the supplied primary notification object.
The status of the notification report associated with the supplied notification object is automatically set to
‘closed’ on the Notification Viewer GUI.

The supplied notification object is detached from the supplied associate group’s parent (mesh) object and
removed from the current context (working memory) & (if used) optional target context. The notification object

isthen destroyed.
Scenario Manager Configuration Dialogue

The context (working memory) in which the triggering
rule is deployed and the supplied mesh object, associate
group and natification object are inserted.

- An alternative context in which the supplied notification
object may also inserted (if un-used, set as Current

Context).
The associate group whose parent (mesh) object owns the

supplied notification object.

k The (mesh) object that originates the notification object.

‘\ The notification object to be removed and destroyed.
Option to record action execution details in the database.

183

Create Notification Against Associate Group Grandparent

State M esh M odel
«— Originator
Mesh <+—— Owner

(o JlwlMll Notification

Child
Group

A

Mesh
Object

Associate

Group ,
Fired Rules Viewer M nemonic

,"' Current
Object event list
trigCreateN otAssocGrpGparent

Summary
If loop detection is active, the requested action istested and if aloop is detected the action is aborted.
This action builds a contributory event list in the database from the active alarm reports attached to the (mesh)

objects contained in the supplied associate group, creates a notification record in the database and attaches the

contributory event list to it.
An active notification report with alist of contributory events (alarm reports) is automatically displayed on the

Notification Viewer GUI.
A new notification object (of the requested type and rank) is created and isinserted into the current context
(working memory) and an optional target context. Note that both the originating and owning object referencesin

the notification object are set to the associate group’ s grandparent object (it is a primary notification object)._The
current event list is also initialised with the contents of the contributory eventslist.

184

Scenario Manager Configuration Dialogue

The context (working memory) in which the triggering
rule is deployed, where the supplied associate group is
inserted and where the new notification object will be

—— inserted.
An alternative context in which the new notification object

.\ may also inserted (if un-used, set as Current Context).
The associate group whose member objects will provide

zero or more active alarm reports and whose grandparent
object both originates and owns the new notification

object.

(Optional) message to be displayed in the notification
report on the Notification Viewer GUI.

Type and rank of notification object to create

Remove Notification Against Associate Group Grandparent

State M esh M odel
«— Originator
Mesh | € Owner

Object [M\e]i}jleF=11lel

Child
Group

1
)

]

]

1

1

]

1

)
]
1
A '
1
]
1
'
)

1

1

]

]

)
[

Mesh
Object

[]
1
!
]

Associate
Group ,

AEUE | “current
Object event list

Fired Rules Viewer M nemonic
tearRemoveNotA ssocGrpGparent

Summary
If loop detection is active, the requested action istested and if aloop is detected the action is aborted.
This action closes the notification record in the database associated with the supplied primary notification object.

185

The status of the notification report associated with the supplied notification object is automatically set to

‘closed’ on the Notification Viewer GUI.
The supplied notification object is detached from the supplied associate group’s grandparent (mesh) object and

removed from the current context (working memory) & (if used) optional target context. The notification object

isthen destroyed.

Scenario Manager Configuration Dialogue

The context (working memory) in which the triggering
rule is deployed and the supplied associate group &
notification objects are inserted.

An alternative context in which the supplied notification
object may also inserted (if un-used, set as Current

.\ Context).
The associate group whose grandparent (mesh) object
owns the supplied notification object.
'\ The notification object to be removed and destroyed.

Option to record action execution details in the database.

Create Notification Against Child Group Parent
State M esh M odel

«—— Originator
<+— Owner

Notification

S|

. ‘,/'Current
ORI < event list

Fired Rules Viewer M nemonic
trigCreateNotChildGrpParent

Summary

If loop detection is active, the requested action istested and if aloop is detected the action is aborted.

This action builds a contributory event list in the database from the active alarm reports attached to the (mesh)
objects contained in the supplied child group, creates a notification record in the database and attaches the

contributory event list to it.
An active notification report with alist of contributory events (alarm reports) is automatically displayed on the

Notification Viewer GUI.
A new notification object (of the requested type and rank) is created and isinserted into the current context

(working memory) and an optional target context. Note that both the originating and owning object referencesin
the notification object are set to the child group’s parent object (it is a primary notification object). The current

event list isalso initialised with the contents of the contributory eventslist.

186

Scenario Manager Configuration Dialogue

The context (working memory) in which the triggering

./ rule is deployed, where the supplied child group isinserted
and where the new notification object will be inserted.

‘\ An alternative context in which the new notification object
may also inserted (if un-used, set as Current Context).

or more active alarm reports and whose parent object both
originates and owns the new notification object.
(Optional) message to be displayed in the notification
report on the Notification Viewer GUI.

\ The child group whose member objects will provide zero

Type and rank of notification object to create

Update Notification Against Child Group Parent
State M esh M odel

Originator
<+—— QOwner

Notification

J

bi ‘,x"Current
ST 47 event list

Fired Rules Viewer M nemonics
trigUpdateNotChildGrpParent
tearUpdateNotChildGrpParent

Summary
If loop detection is active, the requested action istested and if aloop is detected the action is aborted.

This action updates the contributory event list attached to the notification record in the database for the supplied
notification object, using the latest new active alarm report attached to each (mesh) object contained in the
supplied child group.

The contributory events list of the notification report associated with the supplied notification object is
automatically updated with the new alarm report on the Notification Viewer GUI.

The event list count and trend attributes of the supplied notification object are updated in the current context
(working memory) & (if used) optional target context. The current event list is also updated in line with the

contents of the contributory eventslist.
Optionally, the message to be displayed in the notification report on the Notification Viewer GUI may be

replaced or additional information may be appended.
Optionaly (and if it is present), the Master Alarm associated with the supplied notification object may be

updated with the details of the latest active alarm reports attached to each (mesh) object contained in the supplied
child group.

Scenario Manager Configuration Dialogue

187

/////T\

The context (working memory) in which the triggering
rule is deployed and the supplied child group &
notification objects are inserted.

An alternative context in which the supplied notification
object may also inserted (if un-used, set as Current
Context).

The child group containing one or more objects which may
provide their latest new active alarm report, whose parent
object both originates and owns the supplied notification
object.

The notification object to be updated.

M essage modification options

{ unchanged|append|repl ace}

Option to append the latest active alarm reports to the
Master Alarm associated with the notification (if present)

Option to record action execution details in the database.

188

Remove Notification Against Child Group Parent
State M esh M odel

«— Originator
<+— Owner

Notification

Obi ’,x"Current
ject B event list

Fired Rules Viewer M nemonic
tearRemoveNotChildGrpParent

Summary

If loop detection is active, the requested action istested and if aloop is detected the action is aborted.

This action closes the notification record in the database associated with the supplied primary notification object.
The status of the notification report associated with the supplied notification object is automatically set to

‘closed’ on the Notification Viewer GUI.
The supplied notification object is detached from the supplied child group’ s parent (mesh) object and removed

from the current context (working memory) & (if used) optional target context. The notification object is then

destroyed.

Scenario Manager Configuration Dialogue

The context (working memory) in which the triggering

/ rule is deployed and the supplied child group &
notification objects are inserted.

.\ An aternative context in which the supplied notification
object may also inserted (if un-used, set as Current

Context).

The child group whose parent (mesh) object owns the
supplied notification object.

\ The notification object to be removed and destroyed.
Option to record action execution details in the database.

189

Create Notification Against Child Group Grandparent

State M esh M odel
<«— Originator
4_
Mesh Owner
Child
Group]
5 ;
Mesh '
Object i

" Current
event list

Fired Rules Viewer M nemonic

trigCreateNotChildGrpGparent
If loop detection is active, the requested action istested and if aloop is detected the action is aborted

Summary
Thisaction builds a contri butory event list in the database from the active alarm reports attached to the (mesh)
objects contained in the supplied child group, creates a notification record in the database and attaches the

contributory event list to it.
An active notification report with alist of contributory events (alarm reports) is automatically displayed on the

Notification Viewer GUI.
A new notification object (of the requested type and rank) is created and isinserted into the current context
(working memory) and an optional target context. Note that both the originating and owning object referencesin

the notification object are set to the child group’ s grandparent object (it is a primary notification object). The
current event list is also initialised with the contents of the contributory eventslist.

190

Scenario Manager Configuration Dialogue

The context (working memory) in which the triggering
rule is deployed, where the supplied child group is inserted
e and where the new notification object will be inserted.

An alternative context in which the new notification object
may also inserted (if un-used, set as Current Context).

The child group whose member objects will provide zero
or more active alarm reports and whose grandparent object
both originates and owns the new notification object.

._
\ (Optional) message to be displayed in the notification
report on the Notification Viewer GUI.

Type and rank of notification object to create

191

Remove Notification Against Child Group Grandparent
State M esh M odel
«— Originator

4_
Mesh Owner
Child
Group

1
1
]
[}
'
[
1
}
]
i
I
'
1
I
1
1)
I
1
[}
!
I
[l
]
1
1
'

1
[

" Current
event list

Fired Rules Viewer M nemonic

tearRemoveNotChildGrpGparent
If loop detection is active, the requested action istested and if aloop is detected the action is aborted

Summary
This action closes the notification record in the database associated with the supplied primary notification object
The status of the notification report associated with the supplied notification object is automatically set to

‘closed’ on the Notification Viewer GUI.
The supplied notification object is detached from the supplied child group’ s grandparent (mesh) object and
removed from the current context (working memory) & (if used) optional target context. The notification object

isthen destroyed.

192

Scenario Manager Configuration Dialogue

The context (working memory) in which the triggering
rule is deployed and the supplied child group &
notification objects are inserted.

An alternative context in which the supplied notification
object may also inserted (if un-used, set as Current
Context).

The child group whose grandparent (mesh) object owns
the supplied notification object.

The notification object to be removed and destroyed.

////\

Option to record action execution details in the database.

193

Force Removal Of Notification Against Object

State M esh M odel
Notification

Fired Rules Viewer M nemonic
trigForceRemNotM O
tearForceRemNotM O

Summary
If loop detection is active, the requested action istested and if aloop is detected the action is aborted.

This action closes the notification record in the database associated with the supplied primary notification object.
The status of the notification report associated with the supplied notification object is automatically set to
‘closed’ on the Notification Viewer GUI.

The supplied notification object is removed from the current context (working memory) and is then destroyed

Scenario Manager Configuration Dialogue

The context (working memory) in which the triggering
./ ruleis deployed and the supplied notification object is
inserted.

* The natification object to be removed.
Option to record action execution details in the database.
-

194

Append Event To Notification Sympathetic Event List
State M esh M odel

Mesh)
Object Primary Marker
Notification Notification
Master alarm i j
unique |dent|f|er+ Sympathetic

Alarm " Current
Alarm - .
Object Object event list

Fired Rules Viewer M nemonic

trigAppEventNotSymList

Summary

If loop detection is active, the requested action istested and if aloop is detected the action is aborted.

The purpose of this action isto associate the latest sympathetic alarm report in the supplied (mesh) object’s
current event list with a‘master’ alarm report in an external NMS.

The action also supports the option to build this association only if the latest sympathetic alarm report’sEMS
originating time (or alternatively its creation time in this system) lies within a configurable time exclusion
window either side of the primary notification object’s creation time

This action updates the current problem list size in the supplied marker notification (attached to the supplied
object).

If the sympathetic alarm report lies within the exclusion time window (or the exclusion time window is not
used):

The sympathetic alarm report is also added to a sympathetic event list attached to the
notification record in the database associated with the supplied primary notification object.
The sympathetic alarm list in the notification report associated with the primary notification
object is automatically updated on the Notification Viewer GUI.
If the option to append the sympathetic alarm report to an existing Master Alarm is chosen
(and the Master Alarm is present):
A sympathetic alarm report request (including the ‘ master’ alarm report external
NMS reference) is sent to the external NM S via the Remote Handler’s
REPORT_SYMPATHETIC_ALARMS callout function. The effect in the external
NMS depends on the level of integration and its inherent capabilities.
If the sympathetic alarm enrichment option is chosen, alist of the primary notification’s
contributory alarm report external NM S references, together with the sympathetic alarm
report’s external NM S reference is sent to the external NM S via the Remote Handler’s
ENRICH_SYMPATHETIC_ALARMS callout function. The effect in the external NMS
depends on the level of integration and its inherent capabilities.
On successful completion of the action, the ‘ child alarms demoted’ attribute in the supplied marker notification
object is set to true and this may be evaluated by additional rules.

195

Scenario Manager Configuration Dialogue

The context (working memory) in which the triggering rule is deployed and where the mesh and primary &
marker notification objects are inserted.

An alternative context in which the mesh and primary & marker notification objects may also be inserted (if
un-used, set as Current Context).

The mesh object whose current event list contains the latest sympathetic alarm report.
The primary notification object containing the external NM S *master’ alarm report refereqce.

The marker notification object whose current event list is updated with the latest sympathet m report,

Time exclusion
Time exclusion

indoyv early limit (in seconds before primary notification creation time).
ndow late |imit (in seconds after primary notification creatipn time).

Option to append $ympatheti¢ alarm report to primary notification master alarm if present.
Option to enrich primary notifjcation contributory alarm reports with details of sympathetic alarm report.

Option to record action execution details in the database.

196

Update Notification Rank
State M esh M odel

Notification

Fired Rules Viewer M nemonic

trigUpdateNotRank

tearUpdateNotRank

Summary

If loop detection is active, the requested action istested and if aloop is detected the action is aborted.

This action updates the rank of the notification record in the database associated with the supplied primary
notification object.

The rank of the notification report associated with the supplied notification object is automatically updated on
the Notification Viewer GUI.

The rank of the supplied notification object is updated in the current context (working memory) and in the
optional target context (if used)

Scenario Manager Configuration Dialogue

The context (working memory) in
which thetriggering rule is deployed
and the supplied child group &
notification objects are inserted

An alternative context in which the
supplied notification object may also
inserted (if un-used, set as Current
Context).

.—
\ The natification object whose rank is
to be updated.
Updated rank value

Option to record action executino
details in the database.

197

15.2.2.3 State Propagation

Force Object To Degraded State Via Notification
State M esh M odel

Notification

Synthetic
Alarm
Object

Fired Rules Viewer M nemonic

trigForceM ODegViaNotif

Summary

If loop detection is active, the requested action istested and if aloop is detected the action is aborted.

This action attempts to locate the (mesh) object that owns the supplied notification. It then creates and attaches a
synthetic alarm report to the object (with atarget state of degraded) to attempt to force it to the degraded state.
Note that the object may not actually change state if it is already degraded or failed; however the synthetic alarm
report will remain attached and may affect the future state of the object as other attached alarm reports are
cleared.

Scenario Manager Configuration Dialogue

The context (working memory) in which the triggering
rule is deployed and the supplied notification object is
inserted.

./ The notification object owned by the target object.

./ Option to record action execution details in the database.

198

Force Object To Failed State Via Notification
State M esh M odel

Notification

Synthetic
Alarm
Object

Fired Rules Viewer M nemonic

trigForceM OFailedViaNotif

Summary

If loop detection is active, the requested action istested and if aloop is detected the action is aborted.

This action attempts to locate the (mesh) object that owns the supplied notification. It then creates and attaches a
synthetic alarm report to the object (with atarget state of failed) to attempt to force it to the failed state.

Note that the object may not actually change state if it is aready failed; however the synthetic alarm report will
remain attached and may affect the future state of the object as other attached alarm reports are cleared.

Scenario Manager Configuration Dialogue

The context (working memory) in which the triggering
./rule is deployed and the supplied notification object is
inserted.

./ The natification object owned by the target object.
./Option to record action execution detailsin the database.

199

Force Degraded Object To Failed State
State M esh M odel

Synthetic Synthetic
Alarm Alarm

Object Object

Fired Rules Viewer M nemonic

trigForceM OStateChange

Summary

If loop detection is active, the requested action istested and if aloop is detected the action is aborted.

This action creates and attaches a synthetic alarm report to the (mesh) object (with atarget state of failed) to
attempt to force it to the failed state. A common use of this action isto force an already degraded object to the
failed state.

Note that the object may not actually change state if it is aready failed; however the synthetic alarm report will
remain attached and may affect the future state of the object as other attached alarm reports are cleared.

Scenario Manager Configuration Dialogue

The context (working memory) in which the triggering
rule is deployed and the supplied mesh object isinserted.

The mesh object to be forced to the failed state.

./

Option to record action execution details in the database.

200

Force Named Object To Change State
State M esh M odel

Non Service
Affected

Service
Affected

Synthetic

Synthetic
Alarm
Object

Alarm
Object

Fired Rules Viewer M nemonic

trigForceNamedM O

Summary

If loop detection is active, the requested action istested and if aloop is detected the action is aborted.

The purpose of this action isto attempt to force a state change on a (mesh) object for which the triggering rule
does not have an existing (mesh) object reference and so has to provide an explicit class and instance name.
The action first verifies that the explicitly named (mesh) object currently existsin the system. If it does not exist,
then an exception is reported and the action is aborted.

If the ‘Is Service Affected’ option is chosen, this action creates and attaches a synthetic alarm report to the
(mesh) object (with atarget state of failed) to attempt to force it to the failed state.

If the ‘Is Service Affected’ option is not chosen, this action creates and attaches a synthetic alarm report to the
(mesh) object (with atarget state of degraded) to attempt to force it to the degraded state.

Note that the object may not actually change state if it is aready failed; however the synthetic alarm report will
remain attached and may affect the future state of the object as other attached alarm reports are cleared.

Scenario Manager Configuration Dialogue

The base class of the mesh object to be forced to change
&— gate (literal or stored in arule variable).
The unique reference of the mesh object to be forced to
change state (literal or stored in arule variable).
o— Option to treat as ‘ service affecting’
Option to record action execution details in the database.

201

Reset Object to Normal State
State M esh M odel

Fired Rules Viewer M nemonic

tearForceFailedM ONormState

Summary

If loop detection is active, the requested action istested and if aloop is detected the action is aborted.

If the option is selected, this action attemptsto clear all synthetic alarm reports (with atarget state of degraded
and/or failed) from the supplied (mesh) object.

If the option is selected, this action attempts to un-map i.e. remove from the Current Problem List, any
associated external alarm reports.

If no alarm reports remain in the objects Current Problem Ligt, it will automatically return to the normal state.

Scenario Manager Configuration Dialogue

The context (working memory) in which theruleis
deployed and the supplied (mesh) object isinserted

The target (mesh) object to which the synthetic and/or
®&— externa alarm reports are attached.

® Option to clear al attached synthetic alarm reports

- Option to un-map all attached external alarm reports

&— Optiontorecord action execution detailsin the

database.

202

Force Parent Object To Degraded State Via Associate Group
State M esh M odel

Synthetic
Alarm
Object

Associate
Group

Fired Rules Viewer M nemonic

trigForceParentDegViaAssoc

Summary

If loop detection is active, the requested action istested and if aloop is detected the action is aborted.

This action attempts to locate the parent (mesh) object that owns the supplied associate group. It then creates and
attaches a synthetic alarm report to the object (with atarget state of degraded) to attempt to force it to the
degraded state.

Note that the object may not actually change state if it is already degraded or failed; however the synthetic alarm
report will remain attached and may affect the future state of the object as other attached alarm reports are
cleared.

Scenario Manager Configuration Dialogue

The context (working memory) in which the triggering
./ rule is deployed and the supplied associate group is
inserted.

®—— The associate group owned by the target object.

Option to record action execution details in the database.

203

Force Parent Object To Failed State Via Associate Group
State M esh M odel

Synthetic
Alarm
Object

Mesh
Object

Associate
Group

Fired Rules Viewer M nemonic

trigForceParentFailedViaAssoc

Summary

If loop detection is active, the requested action istested and if aloop is detected the action is aborted.

This action attempts to locate the parent (mesh) object that owns the supplied associate group. It then creates and
attaches a synthetic alarm report to the object (with atarget state of failed) to attempt to force it to the failed
state.

Note that the object may not actually change state if it is aready failed; however the synthetic alarm report will
remain attached and may affect the future state of the object as other attached alarm reports are cleared.

Scenario Manager Configuration Dialogue

The context (working memory) in which the triggering
'/ rule is deployed and the supplied associate group is
inserted.

The associate group owned by the target object.
Option to record action execution details in the database.

204

Force Parent Object To Degraded State Via Child Group
State M esh M odel

Synthetic
Alarm
Object

Fired Rules Viewer M nemonic

trigForceParentDegViaChild

Summary

If loop detection is active, the requested action istested and if aloop is detected the action is aborted.

This action attempts to locate the parent (mesh) object that owns the supplied child group. It then creates and
attaches a synthetic alarm report to the object (with atarget state of degraded) to attempt to force it to the
degraded state.

Note that the object may not actually change state if it is already degraded or failed; however the synthetic alarm
report will remain attached and may affect the future state of the object as other attached alarm reports are
cleared.

Scenario Manager Configuration Dialogue

The context (working memory) in which the triggering
0/ rule is deployed and the supplied child group isinserted.

®—— The child group owned by the target object.

Option to record action execution details in the database.

205

Force Parent Object To Failed State Via Child Group
State M esh M odel

Synthetic
Alarm
Object

Fired Rules Viewer M nemonic

trigForceParentFailedViaChild

Summary

If loop detection is active, the requested action istested and if aloop is detected the action is aborted.

This action attempts to locate the parent (mesh) object that owns the supplied child group. It then creates and
attaches a synthetic alarm report to the object (with atarget state of failed) to attempt to force it to the failed
state.

Note that the object may not actually change state if it is aready failed; however the synthetic alarm report will
remain attached and may affect the future state of the object as other attached alarm reports are cleared.

Scenario Manager Configuration Dialogue

The context (working memory) in which the triggering
./ rule is deployed and the supplied child group isinserted.

The child group owned by the target object.

e— Optionto record action execution detailsin the database.

206

Force DegradedObject To Normal State
State M esh M odel

Synthetic
Alarm
Object

Fired Rules Viewer M nemonic

tearForceDegM ONormState

Summary

If loop detection is active, the requested action istested and if aloop is detected the action is aborted.

This action attempts to clear a synthetic alarm report (with a target state of degraded) from the supplied (mesh)
object.

Following clearance and if no other alarm reports with degraded or failed target state are attached to the supplied
object, it will automatically return to the normal state.

Scenario Manager Configuration Dialogue

The context (working memory) in which the triggering
/ ruleis deployed and the supplied (mesh) object is inserted.

The target (mesh) object to which at least one synthetic
alarm report with atarget state of degraded is attached.

Option to record action execution details in the database.

R

207

Force Failed Object To Normal State
State M esh M odel

Synthetic
Alarm
Object

Fired Rules Viewer M nemonic

tearForcefailedM ONormState

Summary

If loop detection is active, the requested action istested and if aloop is detected the action is aborted.

This action attempts to clear a synthetic alarm report (with a target state of failed) from the supplied (mesh)
object.

Following clearance and if no other alarm reports with degraded or failed target state are attached to the supplied
object, it will automatically return to the normal state.

Scenario Manager Configuration Dialogue

The context (working memory) in which the triggering
/ rule is deployed and the supplied (mesh) object isinserted.

./ The target (mesh) object to which at least one synthetic
alarm report with atarget state of failed is attached.

- Option to record action execution details in the database.

208

Forced Failed Object To Degraded State
State M esh M odel

Synthetic Synthetic
Alarm Alarm
Object Object

Fired Rules Viewer M nemonic
tearForceM OStateChange
Summary
If loop detection is active, the requested action istested and if aloop is detected the action is aborted.
This action attempts to clear a synthetic alarm report (with a target state of failed) from the supplied (mesh)
object. It iscommonly used to return an object that also has a synthetic alarm report (with atarget state of
degraded) to the degraded state.
Following clearance and if:
e atleast oneaarm report with a target state of degraded is attached to the target object;

e no other alarm reports with a target state of failed are attached to the supplied object;
It will automatically return to the degraded state.

Scenario Manager Configuration Dialogue

The context (working memory) in which the triggering
rule is deployed and the supplied (mesh) object isinserted.

c/ The target (mesh) object to which at least two synthetic

./ alarm reports with target states of degraded and failed are
attached.

.\ Option to record action execution details in the database.

209

Force Named Object To Normal State
State M esh M odel

Non Service
Affected

Service
Affected

Synthetic

Synthetic
Alarm
Object

Alarm
Object

Fired Rules Viewer M nemonic

trigForceNamedM O

Summary

If loop detection is active, the requested action istested and if aloop is detected the action is aborted.

The purpose of this action isto attempt to force a state change back to the normal state on a (mesh) object for
which the triggering rule does not have an existing (mesh) object reference and so has to provide an explicit class
and instance name.

The action first verifies that the explicitly named (mesh) object currently existsin the system. If it does not exist,
then an exception is reported and the action is aborted.

If the (mesh) object isin the failed state, this action sends a clear failed synthetic alarm report to the (mesh)
object to attempt to force it to the normal state.

If the (mesh) object isin the degraded state, this action sends a clear degraded synthetic alarm report to the
(mesh) object to attempt to force it to the degraded state.

Note that the object may not actually change state if other non-normal alarm reports are associated with it;
however the system will attempt to clear and remove one synthetic alarm report of the specified severity.

Scenario Manager Configuration Dialogue

The base class of the mesh object to be forced to the
/ normal state (literal or stored in arule variable).

The unique reference of the mesh object to be forced to the
0/ normal state (literal or stored in arule variable).

.\Option to record action execution details in the database.

210

Reset Object to Normal State
State M esh M odel

Fired Rules Viewer M nemonic

tearForceFailledM ONormState

Summary

If loop detection is active, the requested action istested and if aloop is detected the action is aborted.

If the option is selected, this action attemptsto clear all synthetic alarm reports (with atarget state of degraded
and/or failed) from the supplied (mesh) object.

If the option is selected, this action attempts to un-map i.e. remove from the Current Problem List, any
associated external alarm reports.

If no alarm reports remain in the objects Current Problem Ligt, it will automatically return to the normal state.
Scenario Manager Configuration Dialogue

The context (working memory) in which the
triggering rule is deployed and the supplied (mesh)
object isinserted.

The target (mesh) object to which the synthetic and/or
external alarm reports are attached.

Option to clear al attached synthetic alarm reports

Option to un-map all attached external alarm reports

.
.\
.\
15.2.2.4 T

Option to record action execution detailsin the
database.

211

Script Handling

Run Script
State M esh M odel

Script

Fired Rules Viewer M nemonics

trigRunScript

tearRunScript

Summary

If loop detection is active, the requested action istested and if aloop is detected the action is aborted.

This action builds a new script object in the current context (working memory). The script object acts as a proxy
object for the actual script and to preserve concurrency automatically executes the requested script in a separate
thread of execution. Depending on configuration, the actual script may be executed directly by the Notification
Manager on the host platform or remotely via an instance of the Remote Handler (using the RUN_SCRIPT
callout function) which in turn may be running on the local and/or remote platforms.

Once the script has finished executing (and again depending on configuration) the script object may remainin
the current context. At this point completion status, normal and error outputs and return codes are available to be
evaluated by rules deployed in the current context.

Alternatively, the script object may be automatically removed from the current context and destroyed on script
completion.

Scenario Manager Configuration Dialogue

The context (working memory) in which the

./ triggering rule is deployed.

The base class (literal or stored in arule variable) of

the owning mesh object.

The unique reference (literal or stored inarule
*~—— variable) of the owning mesh object.

.\ The name of the script file to execute. The file must
be executable and reside in the UCA_HOME/scripts
directory on the target platform.

Optional arguments (literal values or stored in rule
variables). Gapsin the argument list are not

wn

supported - use “”.

Option to execute the script remotely viathe

._/‘ Remote Handler on alocal and/or remote platform.

&—— Option to automatically remove & destroy the script
object from the current context on script

completion.
.\ Option to record action execution details in the

database.

212

End Script
State M esh M odel

Script

Fired Rules Viewer M nemonics
trigendScript
tearEndScript

Summary
If loop detection is active, the requested action istested and if aloop is detected the action is aborted.

This action removes the supplied script object from the current context (working memory) and terminates the
thread of execution it isrunning in. The script object is then destroyed.

Scenario Manager Configuration Dialogue

The context (working memory) in which the triggering
rule is deployed and the supplied script object is inserted.

The script object to terminate and remove.

Option to record action execution details in the database.

I

213

15.2.2.5 Alarm Handling

Raise Alarm
State M esh M odel

Master alarm & Notification
unique identifiers

'// I \\\‘ A Master alarm
~_ Master alarm § 05261) . e
; ; rn Jec unique identifier
NMS Alarm Rl =~ —— Ty —
Object [—— Notification Object |l Notification

Notification‘\ / Notification Master alarm\ / Master alarm
unique identifier unique identifier unique identifier unique identifier
NMS NMS

Fired Rules Viewer M nemonics

trigRaiseAlarm

tearRaiseAlarm

Summary

If loop detection is active, the requested action istested and if aloop is detected the action is aborted.

If the option to create a master alarm report in the NMS is chosen, the master alarm PENDING optionissetin
the supplied notification object and it is updated in the chosen context(s).

This action submits an alarm creation request to the external NM S via the Remote Handler RAISE_ ALARM
callout function. The alarm creation request is targeted at the (mesh) object to which the supplied notification
object is attached.

Depending on the level of integration with the external NM S and the intended use of the new alarm e.g. creation
of amaster alarm report, the unique identifier of the supplied notification object may or may not be passed in the
alarm creation request.

If the external NM S subsequently delivers a master alarm report to the system in direct response to the creation
reguest and it includes the notification object unique identifier, the master alarm report (with its own external
NMS unique identifier) may be mapped (automatically or manually) directly into the originating notification
object itself rather than the targeted (mesh) object.

An alternative Remote Handler integration, again triggered on receipt of a master alarm creation regquest, may
artificially generate a system-specific external NM S master alarm report unique identifier and set thisdirectly in
the supplied notification object, without the need for the actual external master alarm report to be delivered back
to the system and mapped onto the originating notification. This mechanism still requires the system to send the
generated system-specific master alarm report unique identifier along with the creation request out to the
external NMS, so that it can (in subsequent requests from the system) associate the generated system-specific
master alarm report unique identifier with the equivalent identifier for the actual external NMS alarm report.
Regardless of integration technique, this optional ability to map generated alarms to notification objectsis useful
for the creation and handling of ‘ master’ alarms. These are typically used to act as an artificial indicator of a
problem, often on an object that may not otherwise report events. They may also act as a container for
contributory and/or sympathetic alarms since the existence of this mapped ‘ master’ alarm report in a notification
object may be evaluated in rules using the ‘ master alarm status' attribute and further actions may attach
contributory and/or sympathetic alarmsto it. Existence of the ‘ master’ alarm report therefore implies that the
system has access to the ‘ master’ alarm’s external NM S unique identifier, since it will need to issue instructions
to the external NM S to carry out such operations.

214

Scenario Manager Configuration Dialogue

///////\

The context (working memory) in which
the triggering rule is deployed and the
supplied notification object is inserted.

An aternative context in which the
supplied notification object may also be
inserted (if un-used, set as Current
Context).

The notification object attached to the
targeted (mesh) object.

X.733 Event Type for the new alarm
report.

X.733 Probable Cause for the new alarm
report.

X.733 Perceived Severity for the new
alarm report.

Optional Additional Text messageto be
inserted into the alarm report in the
external NM S e.g. creation reason.
Option to create a normal or master alarm
report.

Option to record action execution detailsin
the database.

215

Update Alarm Field In Latest Alarm
State Mesh Model

Fired Rules Viewer Mnemonic

trigUpdateAlarmField

Summary

If loop detection is active, the requested action is tested and if a loop is detected the action is aborted.

This action attempts to retrieve details of the latest alarm report from the supplied (mesh) object and if
successful, an update alarm request is sent to the external NMS via the Remote Handler’s UPDATE_ALARM
callout function.

The update pending flag is set on the alarm object representing the alarm report and the update pending count is
incremented in the supplied (mesh) object. When the alarm report update is received from the external NMS, the
update pending flag is cleared on the alarm object representing the alarm report and the update pending count is
decremented in the supplied (mesh) object.

When the alarm field to be updated is chosen, the new field value entered will override the existing alarm field
value unless either or both of the Append or Prefix are selected.

Scenario Manager Configuration Dialogue

The context (working memory) in which the
triggering rule is deployed and the supplied
(mesh) object is inserted.

An alternative context in which the supplied
(mesh) object may also be inserted (if un-

./ used, set as Current Context).

e— The (mesh) object whose latest alarm report is
to be updated.

The field in the alarm report to be updated.

The new field value to be used to update the
alarm report. This will replace the existing
value unless the one or both of the Append or
Prefix options are selected

)]/

Optional additional information to control
how the field in the alarm is to be updated

Option to append the new field value to the
existing field value..

Option to prefix the existing field value with
the new field value.

216

Update Alarm Field In Master Alarm
State Mesh Model

Fired Rules Viewer Mnemonic
trigUpdateAlarmFieldForNotif

Summary

If loop detection is active, the requested action is tested and if a loop is detected the action is aborted.
This action attempts to retrieve details of the master alarm report from the supplied primary notification object
and if successful, an update alarm request is sent to the external NMS via the Remote Handler’s

UPDATE_ALARM callout function.

The update pending flag is set on the alarm object representing the master alarm report. When the master alarm
report update is received from the external NMS, the update pending flag is cleared on the alarm object

representing the master alarm report.

When the alarm field to be updated is chosen, the new field value entered will override the existing alarm field

value unless either or both of the Append or Prefix are selected.

Scenario Manager Configuration Dialogue

AR

The context (working memory) in which the
triggering rule is deployed and the supplied
notification object is inserted.

An alternative context in which the supplied
notification object may also be inserted (if un-
used, set as Current Context).

The notification object whose master alarm
report is to be updated.

The field in the alarm report to be updated.

The new field value to be used to update the
alarm report. This will replace the existing
value unless one or both of the Append or
Prefix options are selected

Optional additional information to control
how the field in the alarm is to be updated
This will replace the existing value unless the
one or both of the Append or Prefix options
are selected.

Option to append the new field value to the
existing field value.

Option to prefix the existing field value with
the new field value.

Option to record action execution details in
the database.

217

Acknowledge Latest Object Alarm
State M esh M odel

NMS

Fired Rules Viewer M nemonics

trigAckLatestAlarm

tearAckLatestAlarm

Summary

If loop detection is active, the requested action istested and if aloop is detected the action is aborted.

This action sends an acknowledge alarm request to the external NM S via the Remote Handler's
ACKNOWLEDGE_CAUSAL_ALARM callout function. It includes the external NM S alarm report unique
identifier extracted from the latest alarm report received by the supplied (mesh) object.

Scenario Manager Configuration Dialogue

The context (working memory) in which the
triggering rule is deployed and the supplied mesh

/ object isinserted.

The mesh object containing the latest alarm report.

e— Optional Additional Text message to be inserted
into the alarm report in the externa NMS e.g.

\ acknowledgement reason.
Option to record action execution details in the

database.

218

Terminate Latest Object Alarm
State M esh M odel

NMS

Fired Rules Viewer M nemonic

trigTermLatestAlarm

tearTermLatestAlarm

Summary

If loop detection is active, the requested action istested and if aloop is detected the action is aborted.

This action sends a terminate alarm request to the external NM S via the Remote Handler’'s
TERMINATE_CAUSAL_ALARM calout function. It includes the external NM S alarm report unique identifier
extracted from the latest alarm report received by the supplied (mesh) object.

Scenario Manager Configuration Dialogue

The context (working memory) in which the
triggering rule is deployed and the supplied mesh
object isinserted.

g

The mesh object containing the latest alarm report.

Optional Additional Text message to be inserted
into the alarm report in the externa NMS e.g.

termination reason.
.\ Option to record action execution detailsin the

database.

219

Terminate Master Alarm
State M esh M odel

Master alarm
unique identifier
Object |Ry Notification
\ / Master alarm

unique identifier
NMS

Fired Rules Viewer M nemonic

trigTermMasterAlarm

tearTermMasterAlarm

Summary

If loop detection is active, the requested action istested and if aloop is detected the action is aborted.

This action examines the supplied notification object for the presence of a‘master’ alarm report.

If a‘master’ alarm report has never been received, arecord is added to this effect in the action log in the
database and processing is terminated.

If a‘master’ alarm report has been received but is not attached to the supplied notification object, arecord is
added to this effect in the action log in the database and processing is terminated.

An alarm termination request is sent to the external NM S via the Remote Handler
TERMINATE_MASTERALARM callout function. The alarm termination request isimplicitly targeted at the
equivalent alarm report maintained by the external NMS, identified by the previously received ‘master’ alarm
external NM S unique identifier held in the supplied notification object.

Scenario Manager Configuration Dialogue

The context (working memory) in which the triggering
rule is deployed and the supplied notification object is
inserted.

The notification object attached to the targeted (mesh)
.\ object.
Optional Additional Text message to be appended to the
alarm report in the external NM S e.g. termination reason.
.\ Option to record action execution details in the database.

o——

220

Clear Alarm
State M esh M odel

Master alarm
NEldaal | unique identifier
Object [R i Notification
\ / X.733 clearance

or master alarm
NMS unique identifier

Fired Rules Viewer M nemonic

trigClearAlarm

tearClearAlarm

Summary

If loop detection is active, the requested action istested and if aloop is detected the action is aborted.

If the option to create a master alarm report in the NMS is chosen, the master alarm PENDING optionissetin
the supplied notification object and it is updated in the chosen context(s).

This action sends an alarm clearance request to the external NM S via the Remote Handler CLEAR_ALARM
callout function.

Depending on the level of integration with the external NM S and the availability or otherwise of a previously
received or generated external NM S ‘master’ alarm unique identifier in the supplied notification object, the
Remote Handler integration must adopt an appropriate technique to clear an existing alarm in the external NMS.
This may vary from an X.733-style alarm clearance relying solely on the supplied fields to a closure based on an
external NM S ‘master’ alarm unique identifier. An alarm clearance request may clear alarm reports on (mesh)
objects or ‘master’ alarm reports on notification objects.

Scenario Manager Configuration Dialogue

The context (working memory) in which the
triggering rule is deployed and the supplied
notification object isinserted.

An alternative context in which the supplied

notification object may also be inserted (if
./ un-used, set as Current Context).

The notification object attached to the
®&—— targeted (mesh) object.

X.733 Event Type for the clearance dlarm

report.

\ X.733 Probable Cause for the clearance
alarm report.

\ X.733 Perceived Severity for the clearance
alarm report.

Optional Additional Text message to be
inserted into the alarm report in the external
NMS e.g. clearance reason.

Option to clear anormal or master dlarm
report.

/

Option to record action execution detailsin
the database.

221

Associate Marker Notification Alarms to Master
State M esh M odel

Mesh _
Object Prlmary
Notification
A/Master alarm i /

unique identifier /
a v

Marker
Notification

NMS

Alarm Alarm [Curreinl'.[t
Object event lis

Fired Rules Viewer M nemonic

trigAssociateM arkerAlarmsToM aster

Summary

If loop detection is active, the requested action istested and if aloop is detected the action is aborted.

The purpose of this action isto associate one or more alarm reports in the supplied marker notification’s current
event list with a“‘master’ alarm report in an extermal NMS.

This action examines the supplied primary notification object for the presence of a‘master’ alarm report.

If a‘master’ alarm report has never been received, arecord is added to this effect in the action log in the
database and processing is terminated.

If a‘master’ alarm report has been received but is not attached to the supplied notification object, arecord is
added to this effect in the action log in the database and processing is terminated.

For each alarm object in the supplied marker notification object’s current event list, an alarm demotion request
(including the ‘master’ alarm report external NM S reference) is sent to the external NM S via the Remote
Handler’'sDEMOTE_CHILD_ALARMS callout function. The effect in the external NM S depends on the level
of integration and its inherent capabilities.

On successful completion of the action, the ‘ child alarms demoted’ attribute in the supplied marker notification
object is set to true and this may be evaluated by additional rules.

Scenario Manager Configuration Dialogue

The context (working memory) in which the triggering
rule is deployed and where the primary and marker
notification objects are inserted.

An alternative context in which the primary and marker
notification objects may also be inserted (if un-used, set as
Current Context).

The primary notification containing the external NM'S
‘master’ alarm report reference.

The marker notification object whose current event list
contains the set of alarm reports to be associated with the
‘master’ alarm report.

///\\

Option to record action execution details in the database.

222

Dissociate Marker Notification Alarms From Master
State M esh M odel

Mesh
Object Primary Marker
Notification Notification
A/Master alarm /

unique identifier i /

NMS

Alarm Alarm [Curretnltt
Object event lis

Fired Rules Viewer M nemonic

tearDissociateM arkerAlarmsFromM aster

Summary

If loop detection is active, the requested action istested and if aloop is detected the action is aborted.

The purpose of this action isto dissociate one or more alarm reports in the supplied marker notification’s current
event list from a‘master’ alarm report in an extermal NMS.

This action examines the supplied primary notification object for the presence of a‘master’ alarm report.

If a‘master’ alarm report has never been received, arecord is added to this effect in the action log in the
database and processing is terminated.

If a‘master’ alarm report has been received but is not attached to the supplied notification object, arecord is
added to this effect in the action log in the database and processing is terminated.

For each alarm object in the supplied marker notification object’s current event list, an alarm promotion request
(including the ‘master’ alarm report external NM S reference) is sent to the external NM S viathe UCA Remote
Handler’sPROMOTE_CHILD_ALARMS callout function. The effect in the external NM S depends on the level
of integration with UCA and its inherent capabilities.

On successful completion of the action, the ‘ child alarms demoted’ attribute in the supplied marker notification
object is set to false and this may be evaluated by additional rules.

Scenario Manager Configuration Dialogue

The context (working memory) in which the triggering
rule is deployed and where the primary and marker
notification objects are inserted.

An alternative context in which the primary and marker
./ notification objects may also be inserted (if un-used, set as
Current Context).

The primary notification containing the external NMS
0\ ‘master’ alarm report reference.

The marker notification object whose current event list

contains the set of alarm reports to be promoted from

under the ‘master’ alarm report.

Option to record action execution details in the database.

223

Associate Object Alarms To Master

State M esh M odel
Mesh _
Object Primary
Notification

A/Master alarm | Alarm

unique identifier i Object
Alarm
Object
trigAssoci ateObj ectAlarmsT oM aster
Summary
If loop detection is active, the requested action istested and if aloop is detected the action is aborted.
The purpose of this action isto associate one or more alarm reports in the supplied (mesh) object’s current event
list with a“master’ alarm report in an extermal NMS.
This action examines the supplied primary notification object for the presence of a‘master’ alarm report.
If a‘master’ alarm report has never been received, arecord is added to this effect in the action log in the
database and processing is terminated.
If a‘master’ alarm report has been received but is not attached to the supplied notification object, arecord is
added to this effect in the action log in the database and processing is terminated.
For each alarm object in the supplied object’s current event list, an alarm demotion request (including the
‘master’ alarm report external NM S reference) is sent to the external NM S viathe Remote Handler’s
DEMOTE_CHILD_ALARMS callout function. The effect in the external NM S depends on the level of
integration and its inherent capabilities.

Mesh
Object

NMS

Fired Rules Viewer M nemonic

Scenario Manager Configuration Dialogue

The context (working memory) in which the triggering
rule is deployed and where the mesh and primary

/ notification objects are inserted.
.—

The primary notification object containing the external
NMS ‘master’ alarm report reference.

The (mesh) object whose current event list contains the set
of alarm reports to be associated with the ‘master’ alarm
report.

Option to record action execution details in the database.

224

Dissociate Object Alarms From Master
State M esh M odel

Primary
Notification

]
A/Master alarm |

unique identifier i

NMS

Fired Rules Viewer M nemonic

tearDissociateObjectAlarmsFromM aster

Summary

If loop detection is active, the requested action istested and if aloop is detected the action is aborted.

The purpose of this action isto dissociate one or more alarm reports in the supplied (mesh) object’s current event
list from a‘master’ alarm report in an extermal NMS.

This action examines the supplied primary notification object for the presence of a‘master’ alarm report.

If a‘master’ alarm report has never been received, arecord is added to this effect in the action log in the
database and processing is terminated.

If a‘master’ alarm report has been received but is not attached to the supplied notification object, arecord is
added to this effect in the action log in the database and processing is terminated.

For each alarm object in the supplied object’s current event list, an alarm promotion request (including the
‘master’ alarm report external NM S reference) is sent to the external NM S viathe UCA Remote Handler’s
PROMOTE_CHILD_ALARMS cdllout function. The effect in the external NM S depends on the level of
integration with UCA and itsinherent capabilities.

Scenario Manager Configuration Dialogue

The context (working memory) in which the triggering
rule is deployed and where the mesh and primary
notification objects are inserted.

The primary notification object containing the external

./ NMS ‘master’ alarm report reference.

The mesh object whose current event list contains the set
of alarm reports to be promoted from under the ‘ master’

.\ alarm report.

Option to record action execution details in the database.

225

Associate Alarms
State M esh M odel

Primary Secondary

Fired Rules Viewer M nemonic

trigAssociateAlarms

Summary

If loop detection is active, the requested action istested and if aloop is detected the action is aborted.

The action attempts to obtain the latest alarm report from each of the supplied (mesh) objects.

If the latest alarm reports are not obtainable from either of the supplied (mesh) objects, arecord is added to this
effect in the action log in the database and processing is terminated.

An alarm associate reguest (including both alarm report external NM S references) is sent to the external NMS
viathe Remote Handler’'s DEMOTE_CHILD_ALARMS callout function. The association request will attempt
to make the latest alarm report from the secondary (mesh) object a child of the latest alarm report from the
primary (mesh) object. The effect in the external NM S depends on the level of integration and its inherent
capabilities.

Scenario Manager Configuration Dialogue

The context (working memory) in which the triggering
rule is deployed and where the primary and secondary

./ (mesh) objects are inserted.

The primary (mesh) object whose current event list
contains the parent external NM S alarm reference.

.\ The secondary (mesh) object whose current event list
o\ contains the child external NMS alarm reference.
Option to record action execution details in the database.

——

226

Dissociate Alarms
State M esh M odel

Primary Secondary

Fired Rules Viewer M nemonic

tearDissociateAlarms

Summary

If loop detection is active, the requested action istested and if aloop is detected the action is aborted.

The action attempts to obtain the latest alarm report from each of the supplied (mesh) objects.

If the latest alarm reports are not obtainable from either of the supplied (mesh) objects, arecord is added to this
effect in the action log in the database and processing is terminated.

An alarm dissociation request (including both alarm report external NM S references) is sent to the external NM S
viathe Remote Handler’'s DEMOTE_CHILD_ALARMS callout function. The dissociation request will attempt
to remove the latest alarm report from the secondary (mesh) object as a child of the latest alarm report from the
primary (mesh) object. The effect in the external NM S depends on the level of integration and its inherent
capabilities.

Scenario Manager Configuration Dialogue

The context (working memory) in which the triggering
rule is deployed and where the primary and secondary
(mesh) objects are inserted.

The primary (mesh) object whose current event list
®——— contains the parent external NM S alarm reference.

.\ The secondary (mesh) object whose current event list
.\ contains the child external NM S alarm reference.
Option to record action execution details in the database.

227

Associate CPL Alarms

State M esh M odel

Primary

Fired Rules Viewer M nemonic
trigAssociateCPL Alarms

Summary
If loop detection is active, the requested action istested and if aloop is detected the action is aborted.

The action attempts to obtain the latest alarm report from the Primary mesh object and the CPL (Contributing
Problem List) of the Secondary mesh object.

If the either are not obtainable from the supplied (mesh) objects, arecord is added to this effect in the action log
in the database and processing is terminated.

An alarm associate reguest (including both alarm report external NM S references) is sent to the external NM S
viathe Remote Handler’s DEMOTE_CHILD_ALARMS callout function for each alarmin the CPL. The
association request will attempt to make the alarm reports from the secondary (mesh) object a child of the latest
alarm report from the primary (mesh) object. The effect in the external NM S depends on the level of integration
and itsinherent capabilities.

Scenario Manager Configuration Dialogue

The context (working memory) in which the triggering
rule is deployed and where the primary and secondary

./ (mesh) objects are inserted.

®&—— Theprimary (mesh) object whose current event list
contains the parent external NM S alarm reference.

The secondary (mesh) object whose current event list

‘\ contains the child external NM S alarm reference.

Option to record action execution details in the database.

228

Dissociate CPL Alarms
State M esh M odel

Primary

Fired Rules Viewer M nemonic
tearDissociateCPLAlarms

Summary
If loop detection is active, the requested action istested and if aloop is detected the action is aborted.

The action attempts to obtain the latest alarm report from the Primary mesh object and the CPL (Contributing
Problem List) of the Secondary mesh object.

If the either are not obtainable from the supplied (mesh) objects, arecord is added to this effect in the action log
in the database and processing is terminated.

An alarm dissociation request (including both alarm report external NM S references) is sent to the external NM S
viathe Remote Handler’'s DEMOTE_CHILD_ALARMS callout function. The dissociation request will attempt
to remove the alarm reports from the secondary (mesh) object CPL as a child of the latest alarm report from the
primary (mesh) object. The effect in the external NM S depends on the level of integration and its inherent
capabilities.

Scenario Manager Configuration Dialogue

The context (working memory) in which the triggering
rule is deployed and where the primary and secondary

./ (mesh) objects are inserted.

®—— The primary (mesh) object whose current event list
contains the parent external NM S alarm reference.
.\ The secondary (mesh) object whose current event list

.\ contains the child external NM S alarm reference.
Option to record action execution details in the database.

229

Forward Last Alarm
State M esh M odel
N/A

Fired Rules Viewer M nemonics
trigForwardLastAlarm
tearForwardLastAlarm

Summary
If loop detection is active, the requested action istested and if aloop is detected the action is aborted.

The action attempts to obtain the latest alarm report the supplied (mesh) object and in turn attempts to retrieve
the original alarm report details from the Alarms database.

The alarm report details are sent on to the destination external NM S via the Remote Handler's

FORWARD LAST_ALARM callout function.

If the latest alarm report is of cleared severeity and the option to remove cleared alarmsis checked in the action
dialogue, the cleared alarm will be automatically removed from the Alarms database.

Scenario Manager Configuration Dialogue

The context (working memory) in which the triggering
rule is deployed and where the (mesh) object is inserted.

The (mesh) object whose last alarm report isto be
forwarded to the destination external NMS

Option to automatically remove the last alarm report from
the Alarm database if its severity is cleared.

Option to record action execution details in the database.

[x\\

230

Remove Accumulated Alarms
State M esh M odel
N/A

Fired Rules Viewer M nemonics
trigRemoveA ccumulatedAlarms
tearRemoveA ccumulatedAlarms

Summary
If loop detection is active, the requested action istested and if aloop is detected the action is aborted.

This action attempts to prevent the build-up of accumulated external alarms on a (mesh) abject in the situation
where alarm clears are never received from the source system. It is normally used when the count of external
alarmsin the target (mesh) object’s Current Problem List has reached or exceeded a threshold value.

The action has been designed to be as flexible as possible and may be used in a number of aternate
configurations, depending on the capabilities of the source system and individual user requirements. It may be
safely used in combination with the Forward Last Alarm action, provide that action is executed at a higher
priority to avoid false triggers. Care should also be taken to ensure that the effect of each option isfully
understood and that combinations of options are chosen to avoid conflict.

The following diagram illustrates the effect of the various configuration options on information flows within and
between the connected systems:

Alarm

Database
Source | Generic i Data - Event ___ Topology Remote __ Destination
System Collector Collector Manager Server Handler System

}

The action attemptsto retrieve the Current Problem List (CPL) from the supplied originating (mesh) object.
If thelistisvalid (i.e. contains at least on external alarm):
The Mesh Object Alarm Retention option is applied to the CPL to identify the Oldest or
Newest alarm if required. If an entry isidentified, it is excluded from further processing and
will be left unmodified in the (mesh) object’s CPL on completion of the action.
Each of the non-excluded alarmsin the CPL is subjected to the following processing:
If thealarm’sevent ID isinvalid (e.g. it isa sympathetic alarm), then it isignored and
an exception is reported.
If acknowledgement (or acknowledgement & termination) of thealarmisrequired in
the Source System according to the Source System Event Update option, an
acknowledgement callout is delivered to the Remote Handler. It is the responsibility
of the integrator to ensure that the appropriate operation is carried out on the Source
System in response to the callout.
If termination (or acknowledgement & termination) of the alarmis required in the
Source System according to the Source System Event Update option, a termination
callout is delivered to the Remote Handler. It isthe responsibility of the integrator to
ensure that the appropriate operation is carried out on the Source System in response
to the callout. Note: termination of an alarm in the Source System would normally be
expected to result in an equivalent alarm update message being received by the

231

system, in turn causing the alarm to be terminated (and therefore closed) within the
system.
Whenever the Source System Event Update option is exercised, extra text may be
appended to the end of the Additional Text field of the alarm in the Source System
using the Additional Text dialogue field.
If clearance of the alarm in the Alarms database is required according to the Event
Database Modification option, the relevant entry is updated to close the alarm and the
originating time of the clearance is set to be the current time.
If removal of the alarm in the Alarms database is required according to the Event
Database Modification option, .the relevant entry is removed.
If internal generation of a clearance alarmis required for the alarm according to the
Automatically Generate Clear Alarms checkbox:
If the subsequent generated alarm clearance is NOT required to be forwarded
by the Remote Handler according to the Forward Automatically Generated
Clear Alarms To Remote Handler checkbox, the system will prepend
“IGNORE:" to any text from the Additional Text dialogue field (the Forward
Last Alarm action will subsequently ignore any alarm clearance whose
Additional Text field starts with “IGNORE:").
The alarm clearance will be automatically generated and sent internally to
the system Event Manager where it will be processed, resulting in the alarm
being removed from the CPL of the supplied (mesh) object.

Scenario Manager Configuration Dialogue

The context (working memory) in which the
triggering rule is deployed and where the (mesh)

/object isinserted.

The (mesh) object whose Current Problem List
o« (CPL) isto be processed.

Option to retain none, oldest or newest alarm in the
CPL. Note oldest or newest alarms are not
processed by the action.

Option to leave the processed alarmsin the CPL
unchanged, acknowledged, terminated or
acknowledged & terminated in the Source System.

Optional extratext to append to the Additional
Text field of alarms that are modified in the Source
System.

Option to leave the processed alarmsin CPL
unchanged, cleared or cleared & removed in the
Alarms database.

Option to automatically generate clear alarms for
the processed alarmsin the CPL.

Option to forward automatically generated clear
for the processed alarmsin the CPL.

/////

Option to record action execution details in the
database.

232

Raise Expedited Alarm
State Mesh Model

Fired Rules Viewer Mnemonic

trigRaiseExpeditedAlarm

tearRaiseExpeditedAlarm

Summary

If loop detection is active, the requested action is tested and if a loop is detected the action is aborted.

This action submits an alarm creation request to the external NMS via the Remote Handler
RAISE_EXPEDITED_ALARM callout function. The purpose of this callout is to allow a system to report a
host platform resource problem e.g. disk space exhaustion, to the external NMS. This implies that an expedited
alarm creation request should be carried out even if the system is operating in secondary mode (when its Remote
handler outputs are normally turned off, thus preventing the standard alarm creation mechanism from being used
for this purpose). The supplied notification is that created by rules in a user-supplied host platform problem
detection scenario and may contain additional information relevant to the detected problem.

Depending on the level of integration with the external NMS and the intended use of the new alarm, the unique
identifier of the supplied notification object may or may not be passed in the expedited alarm creation request,
although it is not intended that this action will create a master alarm as described in the Raise Alarm action.

Scenario Manager Configuration Dialogue

The context (working memory) in which
the triggering rule is deployed and the
supplied notification object is inserted.

The notification object attached to the

./ targeted (mesh) object.
X.733 Event Type for the new alarm

e report
N X.733 Probable Cause for the new alarm
report.

X.733 Perceived Severity for the new
alarm report.

.\ Optional Additional Text message to be

inserted into the alarm report in the
external NMS e.g. creation reason.

Option to record action execution details in
the database.

233

Clear Expedited Alarm
State Mesh Model

Fired Rules Viewer Mnemonic

trigClearExpeditedAlarm

tearClearExpeditedAlarm

Summary

If loop detection is active, the requested action is tested and if a loop is detected the action is aborted.

This action submits an alarm clearance request to the external NMS via the Remote Handler
CLEAR_EXPEDITED_ALARM callout function. The purpose of this callout is to allow a system to report the
resolution of a host platform resource problem e.g. disk space exhaustion, to the external NMS. This implies that
an expedited alarm clearance request should be carried out even if the system is operating in secondary mode
(when its Remote handler outputs are normally turned off, thus preventing the standard alarm clearance
mechanism from being used for this purpose). The supplied notification is that created by rules in a user-supplied
host platform problem detection scenario and may contain additional information relevant to resolution of the
previously detected problem.

Scenario Manager Configuration Dialogue

The context (working memory) in which
the triggering rule is deployed and the
supplied notification object is inserted.

The notification object attached to the
targeted (mesh) object.

X.733 Event Type for the clearance alarm
report.

/ X.733 Probable Cause for the clearance
alarm report.

X.733 Perceived Severity for the clearance
alarm report.

Optional Additional Text message to be
inserted into the cleared alarm report in the
external NMS e.g. clearance reason.

Option to record action execution details in
the database.

234

15.2.2.6 Timer Management

Create Countdown Timer
State Mesh Model

Fired Rules Viewer Mnemonics

trigCreateCountdownTimer

tearCreateCountdownTimer

Summary

If loop detection is active, the requested action is tested and if a loop is detected the action is aborted.

This action attempts to create a hew countdown timer object that is associated with the supplied owner object
(may be a (mesh) object, a child group object, an associate group object, a notification object, a script object, a
data object or a system object (reserved for use by the Resilience package). Only one timer is currently allowed
per owner object and the timer resolution is 1 second.

The new timer may be created and optionally not started (state = INITIALISED) or automatically started (state =
RUNNING). A running timer may be suspended (state = SUSPENDED), resumed (state = RUNNING) and re-
initialised (state = INITIALISED) at any time.

When the countdown timer reaches the end of a cycle, it will inform the owning object that a cycle has
completed (state = TIMEOUT).

When all cycles are completed, the timer will cease to operate (state = COMPLETED) unless re-initialised.

Scenario Manager Configuration Dialogue

The new countdown timer owning object
The number of countdown cycles that the timer will

execute before stopping. A value of 0 causes the
timer execute an infinite number of countdown
cycles

e Theduration of a countdown timer cycle in seconds

.\First countdown cycle synchronisation options

{none|minute|hour|day}

0 Option to automatically start the new timer once
created

.\Option to record action execution details in the

database.

235

Start Initialised/Restart Running Countdown Timer

State Mesh M odel

N/A

Fired Rules Viewer M nemonics

trigStartCountdownTimer

tearStartCountdownTimer

Summary

If loop detection is active, the requested action istested and if aloop is detected the action is aborted.

This action attempts to start an INITIALISED or restart a RUNNING countdown timer object that is associated
with the supplied owner object.

In each case, the synchronisation setting for the timer object istaken into account when determining the
remaining time to the first or next timeout. Unless the resynchronisation = NONE option was chosen, this will
result in the current cycle duration being less than or equal to the cycle duration as the system will synchronise
the timer object cycle with the next synchronisation boundary.

Scenario Manager Configuration Dialogue

@———— The countdown timer owning object

e— Optionto record action execution details in the database.

236

Suspend Running Countdown Timer

State Mesh M odel

N/A

Fired Rules Viewer M nemonics

trigSuspendCountdownTimer

tear SuspendCountdownTimer

Summary

If loop detection is active, the requested action istested and if aloop is detected the action is aborted.

This action attempts to suspend a RUNNING countdown timer object that is associated with the supplied owner
object. If successful, the timer state is set to SUSPENDED and the countdown is stopped at the current point in
the cycle.

Scenario Manager Configuration Dialogue

®—— The countdown timer owning object

@——— Qption to record action execution details in the database.

237

Resume Suspended Countdown Timer

State Mesh M odel

N/A

Fired Rules Viewer M nemonics

trigSuspendCountdownTimer

tear SuspendCountdownTimer

Summary

If loop detection is active, the requested action istested and if aloop is detected the action is aborted.

This action attempts to resume a SUSPENDED countdown timer object that is associated with the supplied
owner object. If successful, the timer state is set to RUNNING and the countdown is resumed at the current point
inthe cycle.

Scenario Manager Configuration Dialogue

@——— The countdown timer owning object

Option to record action execution details in the database.
.—

238

Re-Initialise Countdown Timer

State Mesh M odel

N/A

Fired Rules Viewer M nemonics

trigReinitialiseCountdownTimer

tearReinitialiseCountdownTimer

Summary

If loop detection is active, the requested action istested and if aloop is detected the action is aborted.
The number of remaining cycles for the countdown timer object is reset to the original number of countdown
cycles that were specified when it was first created.

This action attempts to set the timer stateto INITIALISED i.e. not currently running.

Scenario Manager Configuration Dialogue

@——— The countdown timer owning object

®——— Option to record action execution details in the database.

239

Delete Countdown Timer
State M esh M odel

N/A

Fired Rules Viewer M nemonics
trigDel eteCountdownTimer
tearDeleteCountdownTimer

Summary
If loop detection is active, the requested action istested and if aloop is detected the action is aborted.

This action attempts to delete the timer object that is associated with the supplied owning object.

Scenario Manager Configuration Dialogue

@—————— The countdown timer owning object

®——— Option to record action execution details in the database.

240

15.2.2.7Analysis

Perform Standard Root Cause Analysis

State M esh M odel
Not applicable.

Fired Rules Viewer M nemonics
trigPerformStandardRootCauseAnalysis
tearPerformStandardRootCauseAnalysis

Summary
This action provides a standard root cause analysis tool whose purpose is to identify and report those

problemsin a network that are the root cause(s) of a service impact. It operates on a state mesh,
normally beginning at a (mesh) object that represents the impacted service. It offers standard root
cause analysis with very few options; if greater flexibility is required the Perform Root Cause Analysis
provides a much finer degree of control over the analysis.
The following description of the root cause analyser algorithm includes references to the various
configuration options (in bold underlined type) at the points at which they affect the flow of processing.
The root cause analyser begins afirst stage of discovery processing at the supplied (mesh) object that
has suffered the service impact. It descends recursively through the state mesh, searching for (mesh)
objects whose state has been affected directly or indirectly by underlying network problems. Objects
that satisfy the following search criteria are added to a Non-Normal Objects List (NNOL):

e In Service Objects

e Degraded Objects
e Failed Objects

Objects that match the following criteria are excluded from the Non-Normal Objects List (NNOL):
e Commissioning Objects

e Out Of Service Objects

¢ In Maintenance Objects

The recursive search automatically descends through parent-child relationships and uncle-nephew
(relative) relationships below the supplied (mesh) object until the lowest level of the state mesh is
reached at which point it stops. If the Follow Associate L inks option is checked, the analysis will
traverse an associative relationship between peer (mesh) objects, before continuing down through the
state mesh.

At the end of the search phase, the analyser hasidentified the set of non-normal(mesh) objects that may
have directly or indirectly affected the state of the supplied (mesh) object. Once this phase of operation
is complete, the root cause analyser begins a second analytical phase of processing:

e TheNon-Normal ObjectsList (NNOL) entries are processed in turn and each NNOL object is
compared with thelist of current (non-marker) notifications. Where an NNOL object is also
found to have an associated notification, the rank of the notification is compared with the
worst notification rank seen so far and if it exceeds this value, it becomes the new worst rank.

e TheNNOL entries are again processed in turn and each entry is compared with the list of
current (non-marker) notifications.

0 Ifan NNOL object isfound to have an associated notification:

= If the Only Include Worst Ranked Problem Reports option is unchecked
or the rank of the current notification is equal to the worst rank:

e Thenotification is added to the Problem Reports List

e Theeventsin the notification’s contributory eventslist are added to
the Contributory Events List.

e The associated master alarm external NMS alarm ID (if present)
together with the notification 1D are added to the Master Alarm List

241

If an object in the NNOL does not have an associated notification or no contributory
events were added to the Contributory Events List:

= The NNOL object is added to the Affected Objects List
= The NNOL object is added to the Markers List.

= Any events attached to the NNOL object are added to the Sympathetic
EventsList.

e A root cause notification is built and:

(0]

A contributory eventslist is built in the Notification database from the Contributory
Events List constructed previously.

A new notification is built in the Notification database using the contributory events
list in the database.

The Affected Objects List constructed previously is added to the new notificationin
the Notification database.

A new notification object is constructed and if the Deliver Results To Remote
Handler option is checked, the RCA Pending flag in the new notification object is
Set.

If there are entries in the Sympathetic Events List constructed previously, they are
added to the sympathetic eventslist for the new natification in the Notification
database.

The new notification object is inserted into the Working Memories (Contexts) defined
in Current Context & Target Context

A marker notification object is created (tied to the new notification object created
above) for each entry in the Markers List

o |If theDeliver Results To Remote Handler option is checked, for the String based remote

handler:

(o]

Details of the new notification object (Base Class, Unique Reference, M essage and
Notification ID) are added to Alarm Raise block

An entry is added to the Alarm Raise block for each entry in the Problem Reports List
(Base Class, Unique Reference, Rank and the external NM S events I1Ds of each of the
contributory events in the notification)

An entry is added to the Alarm Raise block for each entry in the Contributory Events
List (the external NM S events I D)

An entry is added to the Alarm Raise block for each entry in the Sympathetic Events
List (the external NM S events I D)

An entry is added to the Alarm Raise block for each entry in the Affected Objects List
(Base Class, Unigue Reference)

A Raise Alarm request is passed to the Notification Manager for delivery to all
attached Remote Handlers

e |If the Deliver Results To Remote Handler option is checked, for the XML based remote
handler see the Remote Handler XML specification for details.

242

Scenario Manager Configuration Dialogue

243

Update Standard Root Cause Analysis
State Mesh M odel
Not applicable.

Fired Rules Viewer M nemonics
trigUpdateStandardRootCauseAnalysis
tearUpdateStandardRootCauseAnalysis

Summary
This action updates the results of a previous root cause analysis. It operates on a state mesh, normally

beginning at a (mesh) object that represents the impacted service and updates the notification created by
the previous analysis. It offers standard root cause analysis with very few options; if greater flexibility
isrequired the Update Root Cause Analysis provides a much finer degree of control over the analysis.
The following description of the root cause analyser algorithm in update mode includes references to
the various configuration options (in bold underlined type) at the points at which they affect the flow of
processing.
The root cause analyser begins afirst stage of discovery processing at the supplied (mesh) object that
has suffered the service impact. It descends recursively through the state mesh, searching for (mesh)
objects whose state has been affected directly or indirectly by underlying network problems. Objects
that satisfy the following search criteria (set in the configuration dialogue) are added to a Non-Normal
ObjectsList (NNOL):

e In Service Objects

e Degraded Objects
e Failed Objects

Objects that match the following criteria are excluded from the Non-Normal Objects List (NNOL):
e Commissioning Objects

e Out Of Service Objects
e In Maintenance Objects

The recursive search automatically descends through parent-child relationships and uncle-nephew
(relative) relationships below the supplied (mesh) object until the lowest level of the state mesh is
reached at which point it stops. If the Follow Associate L inks option is checked, the analysis will
traverse an associative relationship between peer (mesh) objects, before continuing down through the
state mesh.

At the end of the search phase, the analyser has identified the set of non-normal (mesh) objects that may
have directly or indirectly affected the state of the supplied (mesh) object. Once this phase of operation
is complete, the root cause analyser begins a second analytical phase of processing:

e TheNon-Normal ObjectsList (NNOL) entries are processed in turn and each NNOL object is
compared with thelist of current (non-marker) notifications. Where an NNOL object isalso
found to have an associated notification, the rank of the notification is compared with the
worst notification rank seen so far and if it exceeds this value, it becomes the new worst rank.

e The NNOL entries are again processed in turn and each entry is compared with the list of
current (non-marker) notifications.

0 IfanNNOLobject isfound to have an associated natification:

= If theOnly Include Worst Ranked Problem Reports option is unchecked
or the rank of the current notification is equal to the worst rank :

e Thenotification is added to the Problem Reports List

e Theeventsin the notification’s contributory eventslist are added to
the Contributory Events List.

e The associated master alarm external NMS alarm ID (if present)
together with the notification 1D are added to the Master Alarm List

o0 If anobjectinthe NNOL does not have an associated notification or no contributory
events were added to the Contributory Events List:

244

= The NNOL object isadded to the Affected Objects List
= The NNOL object is added to the Markers List.

= Any events attached to the NNOL object are added to the Sympathetic
EventsList.

e A root cause notification is built and:

(0]

A contributory eventslist is built in the Notification database from the Contributory
Events List constructed previously.

A new notification is built in the Notification database using the contributory events
list in the database.

The Affected Objects List constructed previously is added to the new notificationin
the Notification database.

A new notification object is constructed and if the Deliver Results To Remote
Handler option is checked, the RCA Pending flag in the new notification object is
Set.

If there are entries in the Sympathetic Events List constructed previously, they are
added to the sympathetic eventslist for the new natification in the Notification
database.

The new notification object is inserted into the Working Memories (Contexts) defined
in Current Context & Target Context

A marker notification object is created (tied to the new notification object created
above) for each entry in the Markers List

e The Notification message is updated if required in the Working Memory contexts.

e TheRoot Cause Natification is updated in the database:

(0]

Any new eventsin the Contributory Events List constructed previoudy are added to
the contributory eventslist attached to the existing notification in the Notification
database

Any new entriesin the Affected Objects List constructed previously are added to the
affected objects list attached to the existing notification in the Notification database.

The message attached to the existing notification in the Notification database is
updated is required

o If theDeliver Results To Remote Handler option is checked, for the String based remote

handler:

(0]

Details of the new notification object (Base Class, Unique Reference, M essage and
Notification ID) are added to Alarm Raise block

An entry is added to the Alarm Raise block for each entry in the Problem Reports List
(Base Class, Unique Reference, Rank and the external NM S events I1Ds of each of the
contributory events in the notification)

An entry is added to the Alarm Raise block for each entry in the Contributory Events
List (the external NM S events I D)

An entry is added to the Alarm Raise block for each entry in the Sympathetic Events
List (the external NM S events I D)

An entry is added to the Alarm Raise block for each entry in the Affected Objects List
(Base Class, Unigue Reference)

A Raise Alarm request is passed to the Notification Manager for delivery to all
attached Remote Handlers

o |If theDeliver Results To Remote Handler option is checked, for the XML based remote
handler see the Remote Handler XML specification for details.

245

Scenario Manager Configuration Dialogue

246

Perform Root Cause Analysis

State M esh M odel
Not applicable.

Fired Rules Viewer M nemonics
trigPerformRootCauseAnalysis
tearPerformRootCauseAnalysis

Summary
This action encapsulates a very flexible root cause analysis tool whose purposeisto identify and report

those problemsin a network that are the root cause(s) of a service impact. It operates on a state mesh,
normally beginning at a (mesh) object that represents the impacted service.
The detailed behaviour of the root cause analyser is highly configurable and uses a large number of
options supplied by the Scenario Manager configuration dialogue. The following description of the root
cause analyser algorithm includes references to the various configuration options (in bold underlined
type) at the points at which they affect the flow of processing.
The root cause analyser begins afirst stage of discovery processing at the supplied (mesh) object that
has suffered the service impact. It descends recursively through the state mesh, searching for (mesh)
objects whose state has been affected directly or indirectly by underlying network problems. Objects
that satisfy the following search criteria (set in the configuration dialogue) are added to a Non-Normal
ObjectsList (NNOL):

e Includeln Service Objects (default true)

Include Commissioning Objects (default false)
e Include Out Of Service Objects (default false)
e Includeln Maintenance Objects (default false)
e Include Degraded Objects (default true)

e Include Failed Objects (default true)

The recursive search automatically descends through parent-child relationships and uncle-nephew
(relative) relationships below the supplied (mesh) object until the lowest level of the state mesh is
reached at which point it stops. If the Follow Associate L inks option is checked, the analysis will
traverse an associative relationship between peer (mesh) objects, before continuing down through the
state mesh.

At the end of the search phase, the analyser hasidentified the set of non-normal(mesh) objects that may
have directly or indirectly affected the state of the supplied (mesh) object. Once this phase of operation
is complete, the root cause analyser begins a second analytical phase of processing:

e TheNon-Normal ObjectsList (NNOL) entries are processed in turn and each NNOL object is
compared with thelist of current (non-marker) notifications. Where an NNOL object isalso
found to have an associated notification, the rank of the notification is compared with the
worst notification rank seen so far and if it exceeds this value, it becomes the new worst rank.

e The NNOL entries are again processed in turn and each entry is compared with the list of
current (non-marker) notifications.

0 Ifan NNOL object isfound to have an associated notification:

= If theOnly Include Worst Ranked Problem Reports option is unchecked
or the rank of the current notification is equal to the worst rank :

e |If theBuild Problem ReportsList option is checked, the
notification is added to the Problem Reports List

e |If theBuild Contributory EventsList option is checked, the
events in the naotification’s contributory events list are added to the
Contributory Events List.

e If theBuild Master AlarmsList optionis checked, the associated
master alarm external NMS alarm ID (if present) together with the
notification ID are added to the Master Alarm List

247

(0]

If an object in the NNOL does not have an associated notification or no contributory
events were added to the Contributory Events List:

= |f the Build Affected ObjectsList optionis checked, the NNOL object is
added to the Affected Objects List

= If the Attach Marker Notificationsto Affected Objects option is checked,
the NNOL object is added to the Markers List.

= |f both the Build Affected ObjectsList & Build Sympathetic EventsList
options are checked, any events attached to the NNOL object are added to
the Sympathetic Events List.

e |f the Build Root Cause Notification option is checked:

(0]

A contributory eventslist is built in the Notification database from the Contributory
Events List constructed previously.

A new notification is built in the Notification database using the contributory events
list in the database.

If the Build Affected Objects L ist option is checked, the Affected Objects List
constructed previously is added to the new notification in the Notification database.

A new notification object is constructed and if the Deliver Results To Remote
Handler option is checked, the RCA Pending flag in the new notification object is
Set.

If the Build Affected Objects L ist option is checked and there are entriesin the
Sympathetic Events List constructed previously, they are added to the sympathetic
eventslist for the new notification in the Notification database.

The new notification object is inserted into the Working Memories (Contexts) defined
in Current Context & Target Context

If the Attach M arker Notificationsto Affected Objects option is checked, a marker
notification object is created (tied to the new notification object created above) for
each entry in the Markers List

e |If theDeliver Results To Remote Handler option is checked:

(o]

Details of the new notification object (Base Class, Unique Reference, M essage and
Notification ID) are added to Alarm Raise block

An entry is added to the Alarm Raise block for each entry in the Problem Reports List
(Base Class, Unique Reference, Rank and the external NM S events I1Ds of each of the
contributory eventsin the notification)

An entry is added to the Alarm Raise block for each entry in the Contributory Events
List (the external NM S events I D)

An entry is added to the Alarm Raise block for each entry in the Sympathetic Events
List (the external NM S events I D)

An entry is added to the Alarm Raise block for each entry in the Affected Objects List
(Base Class, Unique Reference)

A Raise Alarm request is passed to the Notification Manager for delivery to all
attached Remote Handlers

e Enrich Contributory Alarms option — not yet supported

o If theBuild Master Alarm List optionis checked, all entriesin the Master Alarms List are
added to the Master Alarms block

Scenario Manager Configuration Dialogue

248

249

Update Root Cause Analaysis

State M esh M odel

Not applicable.

Fired Rules Viewer M nemonics

trigUpdateRootCauseAnalysis
tearUpdateRootCauseAnalysis

Summary
This action updates the results of a previous root cause analysis. It operates on a state mesh, normally

beginning at a (mesh) object that represents the impacted service and updates the notification created by
the previous analysis.
The detailed behaviour of the root-cause analyser is highly configurable and uses alarge number of
options supplied by a Scenario Manager configuration dialogue. The following description of the root
cause analyser algorithm in update mode includes references to the various configuration options (in
bold underlined type) at the points at which they affect the flow of processing.
The root cause analyser begins afirst stage of discovery processing at the supplied (mesh) object that
has suffered the service impact. It descends recursively through the state mesh, searching for (mesh)
objects whose state has been affected directly or indirectly by underlying network problems. Objects
that satisfy the following search criteria (set in the configuration dialogue) are added to a Non-Normal
ObjectsList (NNOL):

e Includeln Service Objects (default true)

e Include Commissioning Objects (default false)
e Include Out Of Service Objects (default false)
e Includeln Maintenance Objects (default false)
e Include Degraded Objects (default true)

e Include Failed Objects (default true)

The recursive search automatically descends through parent-child relationships and uncle-nephew
(relative) relationships below the supplied (mesh) object until the lowest level of the state mesh is
reached at which point it stops. If the Follow Associate L inks option is checked, the analysis will
traverse an associative relationship between peer (mesh) objects, before continuing down through the
state mesh.

At the end of the search phase, the analyser has identified the set of non-normal (mesh) objects that may
have directly or indirectly affected the state of the supplied (mesh) object. Once this phase of operation
is complete, the root cause analyser begins a second analytical phase of processing:

e TheNon-Normal ObjectsList (NNOL) entries are processed in turn and each NNOL object is
compared with thelist of current (non-marker) notifications. Where an NNOL object is also
found to have an associated notification, the rank of the notification is compared with the
worst notification rank seen so far and if it exceeds this value, it becomes the new worst rank.

e The NNOL entries are again processed in turn and each entry is compared with the list of
current (non-marker) notifications.

0 If an NNOLobject isfound to have an associated natification:

= If the Only Include Worst Ranked Problem Reports option is unchecked
or the rank of the current notification is equal to the worst rank :

e |If theBuild Problem ReportsList optionis checked, the
notification is added to the Problem Reports List

e |If theBuild Contributory EventsList option is checked, the
events in the notification’s contributory events list are added to the
Contributory Events List.

250

(0]

e If theBuild Master AlarmsList option is checked, the associated
master alarm external NMS alarm ID (if present) together with the
notification ID are added to the Master Alarm List

If an object in the NNOL does not have an associated notification or no contributory
events were added to the Contributory Events List:

= |f the Build Affected ObjectsList optionis checked, the NNOL object is
added to the Affected Objects List

= If the Attach Marker Notificationsto Affected Objects option is checked,
the NNOL object is added to the Markers List.

= | both the Build Affected ObjectsList & Build Sympathetic EventsList
options are checked, any events attached to the NNOL object are added to
the Sympathetic Events List.

o |If the Update Root Cause Notification In WM option is checked:

(0]

The Notification message is updated if required in the Working Memory contexts.

e |f the Update Root Cause Natification In Database option is checked:

(0]

Any new eventsin the Contributory Events List constructed previously are added to
the contributory eventslist attached to the existing notification in the Notification
database

If the Build Affected Objects L ist option is checked, any new entriesin the Affected
Objects List constructed previoudy are added to the affected objectslist attached to
the existing notification in the Notification database.

The message attached to the existing notification in the Notification database is
updated is required

If the Attach M arker Notificationsto Affected Objects option is checked, new
marker notification objects are created (tied to the notification object) for each new
entry in the Markers List

e If theDeliver Results To Remote Handler option is checked:

(0]

Details of the originating (mesh) object (Base Class, Unique Reference) and updated
notification object (new M essage, Notification ID, Notification Type, Notification
Rank and master alarm external NMS event ID —if present) are added to Alarm
Update block

An entry is added to the Alarm Update block for each entry in the Problem Reports
List (Base Class, Unique Reference, Rank and the external NM S events IDs of each
of the contributory eventsin the Notification)

An entry is added to the Alarm Update block for each entry in the Contributory
Events List (the external NM S events D)

An entry is added to the Alarm Update block for each entry in the Sympathetic Events
List (the external NM S events I D)

An entry is added to the Alarm Update block for each entry in the Affected Objects
List (Base Class, Unique Reference)

A Update Alarm request is passed to the Notification Manager for delivery to all
attached Remote Handlers

Enrich Contributory Alar ms option — not yet supported

If the Build Master Alarm List option is checked, all entriesin the Master Alarms
List are added to the Master Alarms block

251

Scenario Manager Configuration Dialogue

252

Perform Problem Extent Analysis

State M esh M odel
Not applicable.

Fired Rules Viewer M nemonics
trigPerformProblemExtentAnalysis
tearPerformProblemExtentAnalysis

Summary
This action encapsul ates a very flexible problem extent analysis tool whose purposeisto identify and

report those (mesh) objects that are affected by a problem at alower level in alayered network. It
operates on a state mesh, normally beginning at a (mesh) object that has been previously identified as a
problem source (and therefore already has a primary notification attached). It is particularly useful for
analysing upwardly divergent network models with the purpose of identifying affected objects and
annotating them with marker notifications for the purposes of gathering sympathetic alarms.
The detailed behaviour of the problem extent analyser is highly configurable and uses a number of
options supplied by the Scenario Manager configuration dialogue. The following description of the
problem extent analyser algorithm includes references to the various configuration options (in bold
underlined type) at the points at which they affect the flow of processing.
The problem analyser begins search processing at the supplied problem source (mesh) object, on which
the supplied primary notification also exists. It ascends recursively through the state mesh, beginning
with itsimmediate parent and/or relative (mesh) objects, search for (mesh) objects whose state has been
affected directly or indirectly by the originating problem. Objects that satisfy the following search
criteria (set in the configuration dialogue) are added to an Affected Objects List (AOL):

e Include Degraded Objects (default true)

e Include Failed Objects (default true)
e UseParent Object (default true)

e Attach Marker Notification To Parent Object (default true)
e UseRelative Objects (default true)
e Attach Marker Notifications To Relative Objects (default true)

e Attach Marker Notifications To Associate Objects (default true)

The search for affected objects starts at the supplied problem source (mesh) object and ascends
recursively through the parent (if Use Parent Object is selected) and/or relative (mesh) objects (if Use
Relative Objects option is selected).

If the (mesh) object currently being evaluated is not normal (and satisfies the | nclude Degraded
Objectsor Include Failed Objectstest criteria) it is added to the AOL.

If amarker natification (linked to the supplied primary notification) isrequired (either from Attach
Marker Notification To Parent Object or Attach Marker Notifications To Relative Objects), itis
created and added to the (mesh) object.

If the Attach M arker Notifications To Associate Objects option is chosen, then all associate (mesh)
objects of the supplied (mesh) object are added to the AOL and marker notifications are created and
added to them, again linked to the supplied primary notification.

If state propagation from the current (mesh) object is enabled to its parent (mesh) object, the recursive
analysis continues in this direction until the network extremity is reached.

If state propagation from the current (mesh) object is enabled to its relative (mesh) objects, the recursive
analysis continues in this direction until the network extremity is reached.

At the end of the search phase, the analyser has identified those (mesh) objects that have been affected
by the original problem and the resulting AOL is added to the supplied primary notification.

253

Scenario Manager Configuration Dialogue

-

The context (working memory) in which
the triggering rule is deployed and where
any new marker notification objects will
be inserted.

An alternative context in which any new
marker notification objects may also be
inserted (if un-used, set as Current
Context).

The supplied problem source (mesh)
object

The primary notification object attached
to the problem source (mesh) object.

Options to include affected objects that
arein the failed and degraded states.

Options to include parent (mesh) objects
and attach marker notification objects to
them.

Optionsto include relative (mesh)
objects and attach marker notification
objects to them

Option to include associate (mesh)
objects and attach marker notifications
to them.

254

Broadcast Analysis Refresh Request

State M esh M odel
Not applicable.

Fired Rules Viewer M nemonics
trigBroadcastAnalysi sRefreshRequest
tearBroadcastAnalysi sRefreshRequest

Summary
This action encapsulates a very flexible tool whose purpose isto identify and deliver an analysis

(refresh) request to those (mesh) objects that may be affected by a problem at alower level in alayered
network. It operates on a state mesh, normally beginning at alow level (mesh) object that has been
previoudly identified as a problem source. It is particularly useful for identifying target (service) objects
in higher network layers on which an initial or an updated root cause analysis needs to be performed.
The detailed behaviour of the broadcast toal is highly configurable and uses a number of options
supplied by the Scenario Manager configuration dialogue. The following description of the broadcast
algorithm includes references to the various configuration options (in bold underlined type) at the points
at which they affect the flow of processing.
The broadcast tool begins search processing at the supplied problem source (mesh) object. It ascends
recursively through the state mesh, beginning with itsimmediate parent and/or relative (mesh) objects,
and searches for target (mesh) objects that may have been affected directly or indirectly by the
originating problem. Objects that satisfy the following search criteria (set in the configuration dialogue)
have their Analysis Refresh Required attribute set to true:

e Target Base Class (required)

e Target Sub Class (optional)

e Include Degraded Obijects (default true)
e Include Failed Objects (default true)

e UseParent Object (default true)

e UseRelative Objects (default true)

The search for affected objects starts at the supplied problem source (mesh) object and ascends
recursively through the parent (if Use Parent Object is selected) and/or relative (mesh) objects (if Use
Relative Objects option is selected).

If the (mesh) object currently being evaluated is not normal (and satisfies the | nclude Degraded
Objectsor Include Failed Objectstest criteria) and is of the Target Base Class and optionally the
Target Sub Class, thenits Analysis Refresh Required attribute is set to true .

If state propagation from the current (mesh) object is enabled to its parent (mesh) object, the recursive
analysis continuesin this direction until the network extremity is reached.

If state propagation from the current (mesh) object is enabled to its relative (mesh) objects, the recursive
analysis continuesin this direction until the network extremity is reached.

255

Scenario Manager Configuration Dialogue

e——— Thesupplied problem source (mesh)
object
&—— Thetarget (mesh) object base class

e The(optional) target (mesh) object sub
class (leave empty if all sub classes are

Options to include affected objects that

arein the failed and degraded states.

.\ Option to include parent (mesh) objects.

Option to include relative (mesh)
objects.

Option to record action execution details
in the datahase

256

Acknowledge Analysis Refresh Request

State M esh M odel
Not applicable.

Fired Rules Viewer M nemonics
trigAcknowledgeAnal ysi sRefreshRequest
tearAcknowledgeA nalysisRefreshRequest

Summary
This action provides afacility to set the Analysis Refresh Required attribute of atarget (mesh) object to false. It

isnormally used once an initial or updated Root Cause Analysis on the target (mesh) object has been carried out
(usually in response to the Analysis Refresh Required attribute having been previously set to true).

Scenario Manager Configuration Dialogue

The (mesh) object whose Analysis Refresh Required
o atibute requires setting to

-—— Option to record action execution details in the database.

257

Ticket Handling
The Trouble Ticketing actions are specific to the HP UCA TeMIP Integration document.
Please refere to this documentation for full explanation and examples..

258

15.2.2.8Measurement Handling

Create Data Object
State M esh M odel

To Be Completed
Fired Rules Viewer M nemonic
trigCreateDataObject

Summary
To Be Completed

Scenario Manager Configuration Dialogue
To Be Completed

259

Refresh Data Object Raw Data
State M esh M odel

To Be Completed

Fired Rules Viewer M nemonic
trigRefreshDataObject

Summary
To Be Completed

Scenario Manager Configuration Dialogue
To Be Completed

260

Perform Derived Data Calculation On Data Object
State M esh M odel

To Be Completed

Fired Rules Viewer M nemonic
trigPerformCalculation

Summary
To Be Completed

Scenario Manager Configuration Dialogue
To Be Completed

261

Report Derived Data Calculation On Data Object Completed
State M esh M odel

To Be Completed

Fired Rules Viewer M nemonic
trigReportCal cul ationFinished

Summary
To Be Completed

Scenario Manager Configuration Dialogue
To Be Completed

262

Remove Data Object
State M esh M odel

To Be Completed

Fired Rules Viewer M nemonic
tearRemoveDataObject

Summary
To Be Completed

Scenario Manager Configuration Dialogue
To Be Completed

263

15.2.2.9Statistics

Refresh Statistics Object Raw Data
State M esh M odel

To Be Completed

Fired Rules Viewer M nemonic
trigStatisticsRefresh

Summary
To Be Completed

Scenario Manager Configuration Dialogue
To Be Completed

264

Perform Derived Data Calculation On Statistics Object
State M esh M odel

To Be Completed

Fired Rules Viewer M nemonic
trigStatisticsPerformCal culation

Summary
To Be Completed

Scenario Manager Configuration Dialogue
To Be Completed

265

Report Derived Data Calculation On Statistics Object Completed
State M esh M odel

To Be Completed

Fired Rules Viewer M nemonic
trigStatisticsCal cul ationsFinished

Summary
To Be Completed

Scenario Manager Configuration Dialogue
To Be Completed

266

15.2.2.10 User Defined

Notify Objects Affected By Site Failure
State M esh M odel
Not applicable.

Fired Rules Viewer M nemonic
trigNotObj SiteFailure

Summary
Thisaction is an example of a user action and isused in the DTV example supplied with UCA.

If loop detection is active, the requested action istested and if aloop is detected the action is aborted.

The action performs arecursive search, starting from the supplied failed Site (mesh) object, identifying
potentially impacted Dual Receiver, Receiver and child Site objects. Each located object is added to alist of
impacted objects and a marker notification object is attached (with the ‘originating’ object reference set to the
original failed Site).

The action recursively repeats the search for each child Site object located, thusit is able to follow chains of
Sites.

When the search is completed, the impacted objectslist is added to the failed notification record on the failed
Site in the database (identified using the supplied marker notification), causing them to be displayed on the
Notification Viewer GUI under the original Site failure notification report.

Scenario Manager Configuration Dialogue

The context (working memory) in which the triggering rule
is deployed and where the mesh and notification objects are
inserted.

®— An alternative context in which the mesh and notification
objects may also beinserted (if un-used, set as Current

0\ Context).

.~ _ The failed Site mesh object.
The notification object attached to the failed Site mesh
object..

Option to record action execution details in the database.

267

