
1

HP Software

Unified Correlation Analyzer

User Guide

Edition: 1.3

For the HP-UX Itanium Operating System

January 2010

© Copyright 2010 Hewlett-Packard Company

2

Legal Notices

Warranty

The information contained herein is subject to change without notice. The only warranties for HP
products and services are set forth in the express warranty statements accompanying such products and
services. Nothing herein should be construed as constituting an additional warranty. HP shall not be
liable for technical or editorial errors or omissions contained herein.

License Requirement and U.S. Government Legend

Confidential computer software. Valid license from HP required for possession, use or copying.
Consistent with FAR 12.211 and 12.212, Commercial Computer Software, Computer Software
Documentation, and Technical Data for Commercial Items are licensed to the U.S. Government under
vendor's standard commercial license.

Copyright Notices

© Copyright 2010 Hewlett-Packard Development Company, L.P.

Trademark Notices

Adobe®, Acrobat® and PostScript® are trademarks of Adobe Systems Incorporated.

HP-UX Release 10.20 and later and HP-UX Release 11.00 and later (in both 32 and 64-bit
configurations) on all HP 9000 computers are Open Group UNIX 95 branded products.

Java™ is a U.S. trademark of Sun Microsystems, Inc.

Microsoft® , Windows® and Windows NT® are U.S. registered trademarks of Microsoft Corporation.

Oracle® is a registered U.S. trademark of Oracle Corporation, Redwood City, California.

UNIX® is a registered trademark of The Open Group.

X/Open® is a registered trademark, and the X device is a trademark of X/Open Company Ltd. in the
UK and other countries.

3

Contents

Preface ...9

Chapter 1 Introduction ...13

Chapter 2 Quick Start Guide ..15
2.1 Start-up ..15

2.2 Basic System Configuration...17

2.3 Running the UCA Applications...17

2.4 Shutdown ...18

Chapter 3 System Description...19
3.1 State Mesh...19

3.2 Mesh Objects ...19

3.3 Mesh Object Relationships ..20

3.3.1 Composition or Parent-Child...20

3.3.2 Aggregation or Uncle-Nephew..21

3.3.3 Association or Peer-Peer..21

3.3.4 Specialization..21

3.4 Metamodel ...21

3.5 Model Builder and Model Database...22

3.6 Example State Mesh..23

3.7 Data Collector and Event Manager..25

3.8 Affected Objects...26

3.9 Inference Engine..28

3.10 Notification Manager and Remote Handler..29

Chapter 4 The UCA Home Page and System Manager31
4.1 Starting the Tomcat ‘Minimal Web Server’ ..31

4.2 Starting the System Manager ..31

4.3 Adding, Modifying and Deleting Users...33

4.4 Starting UCA ..34

4.5 Stopping UCA ..35

4.6 Configuring the Metamodel..36

4.7 Loading Data into the Model ..36

4.8 Diagnostics...36

4.9 Maintenance...38

4.10 Tools ..39

Chapter 5 Defining the Metamodel ..44
5.1 Example Class Model ..44

5.2 Automatic Creation ..45

5.3 Manual Creation...46

4

5.4 Metamodel Design Patterns...51

5.4.1 Equipment Tree ..52

5.4.2 Normaliser...53

5.4.3 Link Handler..54

5.4.4 Physical-Logical Vee...55

Chapter 6 Creating the Model Database Using the System Manager.......57
6.1 Generating the Model Database Structure ..57

6.2 Populating the Model Database...58

6.2.1 Initial Population..58

6.2.2 Updating the Database ...60

Chapter 7 The UCA Applications...62
7.1 The Scenario Manager ..63

7.1.1 Menu Bar ..64

7.1.2 Tool Bar ..65

7.1.3 Scenario Builder Tree ...66

7.1.4 Scenarios, Filters, Mappings and Rules Summary List67

7.1.5 Status Bar ...67

7.2 The Mesh Viewer ...67

7.2.1 Menu Bar ..68

7.2.2 Tool Bar ..68

7.2.3 Model Tree..69

7.2.4 Mesh Object List ...70

7.2.5 Notifications Viewer Dialog ...71

7.2.6 Status Bar ...72

Chapter 8 Creating Scenarios, Filters, Mappings and Rules73
8.1 Scenarios ...73

8.2 Filters ...74

8.2.1 Using user-Defined event fields in a filter ...76

8.2.2 Arranging Filters..76

8.2.3 Using the Regular Expression Wizard with Filters......................................78

8.3 Mappings..79

8.3.1 Using the Regular Expression Wizard with Mappings................................82

8.4 Rules ..85

8.4.1 Rules and user-defined event fields ...87

8.5 Rule templates ...88

8.5.1 Templated Rules...88

8.5.2 Rulesets ..89

8.5.3 Using a ruleset ..90

8.5.4 Generating the rules from the rule template ...90

8.6 Deploying Scenarios, Filters, Mappings and Rules ...90

Chapter 9 Configuring Rules and Actions..92
9.1 Format..92

9.1.1 Structure ...92

9.1.2 Rule Conditions...93

9.1.3 Actions ..94

9.2 Example Rules and Actions ...96

9.2.1 Correlation Scenario - DTV Site Power Failure ..96

9.2.2 Correlation Scenario - DTV Service Impact..115

5

9.2.3 Correlation Scenario - DTV Maintenance...117

Chapter 10 Alarm Interfaces ..117
10.1 Local Socket Interface ...118

10.2 Web Service Interface..118

10.3 Supported Event Messages...118

10.3.1 User-defined event fields ..119

10.3.2 Event Message ...119

10.3.3 Event State Change Messages ..121

Chapter 11 Data and calculator objects..125
11.1 Data Object Attributes..125

11.1.1 Raw Data ..125

11.1.2 Derived Data ...125

11.1.3 Last change reason ..125

11.1.4 Base class...126

11.1.5 Unique reference ..126

11.1.6 Timer state ..126

11.1.7 Timer state changed ...126

11.2 Data Object Lifecycle ...126

11.2.1 Initialise Data Object ...126

11.2.2 Populate raw data ...128

11.2.3 Populate derived data...128

11.2.4 Data object actions ...128

11.3 Calculator object lifecycle ..129

11.3.1 Calculator Configuration ...129

11.3.2 Calculator Actions ..130

11.4 Example data object scenario..131

11.4.1 Example Rule Conditions for ‘create data object’.....................................131

11.4.2 Example Rule Conditions for ‘refresh data object’....................................132

11.4.3 Example Rule Conditions for ‘perform calculation’132

Chapter 12 Time Dependent Event Correlation..133
12.1 Relative and absolute time comparison operators...133

12.2 Countdown Timers...134

12.3 System Operating Modes ..136

12.3.1 Standalone Mode..136

12.3.2 Resilient Mode ..136

Chapter 13 Resynchronization with Event Sources138
13.1 Event Resynchronization ...138

13.2 Primary/Standalone Server Initial Resynchronization....................................139

13.3 Primary/Secondary Inter-System Resynchronization142

13.4 Server Resynchronization Following Connection Re-establishment144

13.5 Replay Event List Construction..145

Chapter 14 Value Packs ...146
14.1 Introduction ..146

14.2 Description ...147

14.2.1 Internal structure ...147

14.2.2 Actions ..147

14.2.3 Configuration...147

6

14.2.4 Models ..147

14.2.5 Rules...147

14.2.6 Scripts ...147

14.2.7 VP Manifest...147

14.3 Value pack Lifecycle ..149

14.3.1 Value Pack Deployment process..149

14.3.2 Start up procedure ..150

14.3.3 Inventory and Mesh Update Events..151

14.4 Deploying a value pack..151

14.4.1 How to Deploy...151

14.4.2 How to Un-deploy ...152

14.4.3 Listing all active value packs ..152

14.4.4 Deploying a value pack on start up...152

14.5 Supplied value packs ...153

14.5.1 System actions..153

14.5.2 Resilience ...153

14.6 Assumptions...153

14.6.1 Namespace...153

14.7 Current Limitations...153

Chapter 15 Reference Information ..154
15.1 Object Type Attributes ...154

15.1.1 Object..154

15.1.2 Child Group...156

15.1.3 Associate Group ...158

15.1.4 Notification ..160

15.1.5 Script ...162

15.1.6 System ..163

15.2 Actions ...166

15.2.1 External and Synthetic Alarm Reports..166

15.2.2 Action Groups ...168

7

Figures

Figure 1 - The UCA home page ...16
Figure 2 - The UCA System Manager ..17
Figure 3 - UCA Architecture ...19
Figure 4 - The UCA Home Page ..32
Figure 5 - The System Manager Users Tab ...34
Figure 6 - The Status tab showing the system started ...35
Figure 7 - The System Manager – Diagnostics tab ..36
Figure 8 - The System Manager – Maintenance tab ..38
Figure 9 - The System Manager – Tools tab..40
Figure 10 - The Fired Rules Viewer..41
Figure 11 - The Working Memory Viewer...42
Figure 12 - The Working Memory Object Details window ..43
Figure 13 – The Model Tab – Importing an XMI File..46
Figure 14 – The Model Tab – meta-model management ...57
Figure 15 – The Data-load Tab – inventory management ...59
Figure 16 - The Applications Login Page ...62
Figure 17 - The UCA Applications Page...63
Figure 18 - The Scenario Manager...64
Figure 19 - The Mesh Viewer ...68
Figure 20 - The Search for Instances dialog ..70
Figure 21 - The Create Alarm dialog ..70
Figure 22 - The Notifications Viewer Dialog ...72
Figure 23 - The Add New Scenario Dialog...73
Figure 24 - The Add New Filter Dialog ...75
Figure 25 - The Add New Mapping Dialog ...82
Figure 26 - The Add New Rule Dialog..86
Figure 27 - The Validation Errors Dialog ..91
Figure 28 - Operators and Expressions..94

8

9

Preface

This User Guide covers the following topics:
 An introduction to the concepts used in correlation for problem detection, service impact

and root cause analysis
 A ‘quick start’ guide to starting up, configuring and shutting down the system.
 A description of the UCA architecture and the fundamental concepts at the heart of the

system.
 Use of the UCA System Manager GUI.
 Defining the UCA metamodel.
 Creating the UCA model database.
 A detailed description of the UCA Scenario Manager and Mesh Viewer GUIs.
 A description of how to use the Scenario Manager GUI to create and deploy scenarios,

filters, mappings and rules.
 An in-depth description of how to configure UCA rules and actions.
 A description of the UCA alarm interfaces.
 Reference information on object types and their attributes.

This guide forms part of the set of UCA documentation, the other guides are listed as part of the
associated documents further in this guide.

Intended Audience

This document is aimed at the following personnel:

 Network Management Customers

 Solution Architects

 System Integrators

 Solution Developers

 Software Development Engineers

Supported Software

The supported software referred to in this document is as follows:

Product Version Operating Systems

Unified Correlation Analyzer 1.0 HP-UX 11.31 for Itanium

10

Typographical Conventions

Courier Font:

 Source code and examples of file contents.

 Commands that you enter on the screen.

 Pathnames

 Keyboard key names

Italic Text:

 Filenames, programs and parameters.

 The names of other documents referenced in this manual.

Bold Text:

 To introduce new terms and to emphasize important words.

italicised red text:

 Important or particularly noteworthy information

Hints and Tips e.g.

 Hints displayed as a boxed text wth a ‘thumbs up’ graphic

Acronyms and definitions

The following acronyms are used in this documentation:

Acronym Definition

ER
Early release (Beta version of the
product)

MO Managed Object

MR Manufacturing Release

MSL Management Specification Language

OC Operation Context

OS Operating System

TeMIP
Telecommunications Management
Information Platform

UCA Unified Correlation Analyzer

Associated Documents

 HP UCA Installation and Configuration Guide

it’s a good idea to create a shortcut to
this URL on the web browser’s
toolbar

11

 HP UCA Advanced Configuration and Troubleshooting Guide

 HP UCA TeMIP Integration

 HP UCA TeMIP Client

For a full list of TeMIP user documentation, refer to Appendix A of the TeMIP
Product Family Introduction.

 HP TeMIP Client Installation and Configuration Guide

 HP TeMIP Web Services Installation and Configuration Guide

 HP TeMIP Software Customization Guide.

 TeMIP-Service Manager OSSJ Trouble Ticket Liaison – Installation &
Configuration Guide

 TeMIP-Service Manager OSSJ Trouble Ticket Liaison - TeMIP Liaison
Adapter System Integration Guide

 HP Service Manager – Installation Guide

Support

Please visit our HP Software Web site at: www.hp.com/go/hpsoftwaresupport for
contact information, and details about HP Software products, services, and support.

The Software support area of the Software Web site includes the following:

• Downloadable documentation

• Troubleshooting information

• Patches and updates

• Problem reporting

• Training information

• Support program information

12

13

Chapter 1 Introduction
Managed networks exist everywhere – obvious examples include telecommunications networks,
utilities providing water, gas and electricity and TV and radio broadcast networks.
Recognising that such networks are built from equipment that can fail, manufacturers of network
components usually build in self-monitoring systems of various levels of complexity, or at least
provide a capability for an external system to monitor their current status. Depending on the level of
sophistication and redundancy built in to the network component, low level failures and errors may be
handled automatically with only a cursory event report to the outside world that something has
happened. On the other hand, less resilient equipment may deliver a constant stream of event reports as
its status changes.
Regardless of the level of sophistication of the individual network components, a managed network
will usually employ centralised or regionalised management capabilities to allow network operators to
monitor the status and performance and to re-configure the network in response to changing operational
needs or failures.
This arrangement works well if the managed network can be monitored and maintained by a reasonable
number of experienced network operations personnel. Under these circumstances, human operators are
responsible for correlating the streams of state change events and performance information received
from individual network components and, based on their experience of operating that network under a
range of operational and fault conditions, adjusting the operational parameters to provide the required
level of service to their customers.
A major problem arises however when the size and complexity of the network exceeds the capability of
the operators to correlate the streams of information received from it. In this situation, network
operators often turn to event correlation systems in an attempt to automate some of the analysis
workload and speed up fault resolution times.
Event correlation systems typically break down into two types:

 Out-of-the-box solutions, providing a range of standardised network and equipment
models and problem analyses for commonly available technologies e.g. IP
Communications Networks.

 Rule-based, low-level correlation toolkits, based on Inference Engine technology,
suitable for constructing localised stream-based correlations.

Each of these types of system has their own advantages and disadvantages. The former are
characterised by rapid deployment but at significant cost, targeted at specific technologies where the
investment in developing the correlation solution is justified by the number of similar installations that
may benefit from the technology. The major problem however is that the manufacturer determines the
range of correlations available and developing user-defined correlations is often technically beyond the
ability of the user. Users are also reliant on the supplier providing a continual stream of equipment
models as new versions or types are introduced into the market place.
Users of low-level toolkit based solutions benefit from the ability to develop and deploy stream-based
correlations from point sources in the network e.g. for event de-duplication or counting over time.
Unfortunately, more complex correlations such as those requiring knowledge of the implicit
relationships between network components and how their states change over a period of time, result in
an explosion in complexity. Typically, the size of the rule base quickly becomes unmanageable and
often requires additional, expensive software development to achieve the desired result.
UCA combines the best of both of these approaches, making use of data-driven network models and
simple yet powerful high-level rules to achieve complex correlations. A user with problem domain
knowledge can quickly and easily construct correlations for any type of network using the visual tools
provided. This is achieved without having to invest in understanding proprietary technologies or
recourse to complex rules and expensive and time-consuming software development.
The design of UCA takes as its starting point the mental process followed by an experienced network
operator when trying to solve a particular problem. Typically, this process involves assimilating state
and performance change events provided by the network management system into a conceptual model
of the managed network and analysing the resulting mental picture to work out what the problem with
the network is. Once this has been done, the underlying root cause of the problem can be investigated
and resolved and the impact on managed services (and associated Service Level Agreements)
determined through correlation. The operator will often have to take into account the diversity of

14

network equipment and variation in reported detail when assimilating event data - effectively applying
a ‘normalisation’ process to the information received from the network management systems.
The following diagram summarises this process:

Normalisation

Problem Detection

Root
Cause

Analysis

Service
Impact

State & Performance Change Events
From Managed Network

Problem
Report

SLA ImpactProblem Resolution

Analysis

Correlation

Assimilation

Information
Volume

Information
Value

Normalisation

Problem Detection

Root
Cause

Analysis

Service
Impact

State & Performance Change Events
From Managed Network

Problem
Report

SLA ImpactProblem Resolution

Analysis

Correlation

Assimilation
Normalisation

Problem Detection

Root
Cause

Analysis

Service
Impact

Normalisation

Problem Detection

Root
Cause

Analysis

Service
Impact

State & Performance Change Events
From Managed Network

Problem
Report

SLA ImpactProblem Resolution

Analysis

Correlation

Assimilation

Information
Volume

Information
Volume

Information
Value

Information
Value

In essence, the network operator is acting as an information normaliser, analyser and correlator,
condensing large volumes of low value information and generating small amounts of high value
information e.g. what the problem is, what the root cause is (and how to fix it) and finally what the
impact is on managed services.
UCA achieves the same result as the human operator - quickly, reliably, efficiently and automatically,
vastly improving fault resolution times and reducing service impact.

15

Chapter 2 Quick Start Guide
This chapter provides a high-level guide to starting up and using the system. A detailed explanation for
each of the features introduced in this section is provided in subsequent chapters.

2.1 Start-up
1. On the server, start the UCA server as follows:

cd $UCA_HOME/bin
uca_start

2. Using a web browser (such as Internet Explorer 6 or 7 or Firefox 2) on a client machine,
navigate to the URL http://hostname:18080/uca where hostname is the DNS name or
IP address of the server machine.

The UCA home page will be displayed (see below).
The two main buttons on this page are:

 UCA Applications – this is used to access to all authorised applications,
according to role. e.g. the Scenario Manager and / or the Mesh Viewer (see later
chapters for details).

 UCA Manager – this invokes the System Manager GUI (see below). A user
must have manager role privilege to invoke this GUI.

In addition, the two links at the bottom left of the page are:
 Manage Tomcat – this is used to access the standard Tomcat Manager web

page
 Run ArgoUML – this runs the ArgoUML design tool.

it’s a good idea to create a shortcut to
this URL on the web browser’s toolbar

16

Figure 1 - The UCA home page

3. Click on the UCA Manager button.

4. Enter system as the username and system as the password.

The UCA System Manager GUI will now be as shown below.

Once logged in as ‘system’, it is strongly recommended that the use
password for the ‘system’ user is changed. A currently logged on u
modify their own details, so to do this, in the System Manager GUI
Users tab, create a new user with manager role. Then exit the Syste
GUI and restart it, logging on as the newly added user. Finally sele
system user and enter the new username and / or password details
Update.
rname and / or
ser cannot
select the
m Manager
ct the original
and click on

Applications button

Manager button

Tomcat Manager &
ArgoUML shortcuts

17

Figure 2 - The UCA System Manager

2.2 Basic System Configuration
1. From the Users tab, users may be added with relevant roles, modified or deleted as

appropriate.

2. From the Model tab, new metamodels may be:

- created manually
- loaded from a local directory
- saved to a local directory
- imported from an XMI file (previously created with ArgoUML)
- added to the metamodel Library,
- deployed into active use

Details are provided in later chapters

3. From the Data-load tab, model data may be loaded from CSV files into the model
database. Details are provided in later chapters.

2.3 Running the UCA Applications
1. From the UCA home page click on the UCA Applications button.

2. Enter a valid username and password in the corresponding web page.

3. The UCA applications web page will be displayed showing the Scenario Manager
button and / or the Mesh Viewer button, depending on the roles configured for the
associated username.

18

4. Clicking on the Scenario Manager button will invoke the Scenario Manager GUI. This
is used for creating and maintaining scenarios, filters, mappings and rules and deploying
them into active use (see later chapters for details).

5. Clicking on the Mesh Viewer button will invoke the Mesh Viewer GUI. This is used for
real-time monitoring of events within the UCA state mesh, viewing ‘notifications’ and
viewing the model data (see later chapters for details).

2.4 Shutdown
1. From the Status tab, select Shutdown

19

Chapter 3 System Description
This chapter provides a detailed description of the UCA architectural components and describes the
fundamental modelling concepts, with the aid of various examples, at the heart of UCA.
The UCA system architecture is shown in the following diagram:

Figure 3 - UCA Architecture

The sections below provide a general description of the function and operation of each component of
the system.

3.1 State Mesh
Fundamental to the operation of UCA is the state mesh. At its simplest level, it is a structural model of
the managed network it is attached to. It incorporates a set of objects, each representing some (physical
and / or logical) component of the managed network, linked together by a set of navigable (associative,
containment and / or inheritance) relationships. On a more complex level, the state mesh is also a state
model of the managed network, maintaining in real-time the current state of each modelled object and
providing pre-defined or rule-driven paths for states to propagate between the component objects.
From the point of view of the user, the availability of the state mesh considerably simplifies the whole
process of constructing rule-based event correlations. This is because it handles the following tasks that
are traditionally the responsibility of the defined rule-base in simpler systems:

 Dynamic establishment and maintenance of relationships between modelled network
components.

 Dynamic establishment and propagation of state information between modelled network
components.

3.2 Mesh Objects
UCA provides a very flexible modelling capability and places no restrictions on the type of objects that
can be modelled in the state mesh. In addition, there is no need for a one to one correspondence
between the model types supported in UCA compared with those available in the event source because
incoming events can be re-mapped to one or more destination objects of any specified type.

Sources

Data
Collector

Scenario

Manager

GUI

Event DB

Inference

Engine

Notification

DB

Alarm

Source

Notification

Manager

Remote

Handler

Mesh

Viewer

GUI

System

Manager GUI

Meta-

Model

External
Inventory

DB
Import

State

Mesh

Mesh

Builder

Model

DB

Event
Manager

Filters &

Maps
Rules

Affected

Objects

Alarm
Sources

20

This degree of flexibility is achieved in part because UCA uses a single type of object – a mesh object
– to provide the underlying implementation of any type of modelled entity. A mesh object is
characterized by three attributes:

 Base Class – the fundamental or ‘super-class’ of entity that it represents e.g. Transmitter
 Sub Class – the specialized or ‘sub-class’ of entity that it represents e.g. Digital

Transmitter, Analogue Transmitter
 Unique Reference – an identifier that uniquely identifies the object. Note that depending

on mapping configuration and availability of information in the incoming event or an
external source, this value may be a Fully Distinguished Name (FDN) i.e. unique
throughout the entire system e.g. Site_66_Transmitter_3, or a Relative Distinguished
Name (RDN) i.e. unique throughout all instances of objects of this base class relative to a
parent object e.g. Transmitter_3, a child of Site_66.

This has considerable advantages for users because an event source, for example a network
management system, can model monitored elements at a relatively coarse level, and events can be
mapped to a more fine-grained model supported by UCA provided sufficient information is available
e.g. in the event itself or an external database, to allow the mapping to occur. This potentially reduces
the complexity (and cost) of implementation of a new event source system. It also removes the need to
‘re-engineer’ an existing source system when a model is added or extended. Finally, it allows more
complex analyses to be carried out by UCA than would otherwise be possible using the event source
model alone.
UCA can also model elements from which events are not directly received by an event source e.g. a
fibre connecting two ports, or a service implemented by a number of components that may never
directly receive alarm or performance events. This capability allows UCA to build and maintain a
complete correlation model. It is also possible for UCA to infer and modify the state of such objects
and assign a problem ‘root cause’ or ‘service impact’ directly to them.
Because there are no restrictions on the types of objects that can be modelled, UCA is able to support
objects that represent any kind of physical, logical, service or abstract entity. Examples of non-physical
entities include timeslots on a communications link, a mobile network ‘drive trial’ carried out over a set
of pre-defined network cells or a cross-domain service implemented from a number of network
components and sub-services.

3.3 Mesh Object Relationships
The ability to flexibly model network entities is an important feature of UCA, however the value of
such a modeling capability is limited without the corresponding ability to model relationships between
those entities. For this reason, UCA provides comprehensive support for implementing relationships
between mesh objects to complement those found in monitored networks. The types of relationship
supported by UCA are described in the following sections.

3.3.1 Composition or Parent-Child

In composition relationships, one class of object is the parent of another and effectively ‘owns’ the
child object. Another way to express this type of relationship is to consider the lifetime of the child
object – if it cannot exist without its parent or should be destroyed when its parent is destroyed, then
this is an example of such a relationship. An example of this might be Communication Ports (children)
implemented by an Interface Card (parent) – the Ports cannot exist without the Card. A child object
will always have a parent object and may itself have zero or more children of its own, although circular
relationships are not allowed.
A parent object may have zero or more children of any number of types e.g. a Network Element might
have the capacity for 10 Interface Cards and 2 PSUs and may be initially configured with a single PSU
and no Interface Cards. The practical implementation within UCA is more flexible still, in that while a
child object must have a parent (and can have one and only one parent at any time), the type or instance
of parent object can be configured at state mesh build-time. This means that a child type can be
configured with a choice of different types of parent object, with the actual type and instance being
defined by the model data load. An example of this is a Network Element that may be parented by a
Network i.e. standalone, or by another Network Element i.e. a slave element.
Significantly, child objects can also be ‘re-parented’ by dynamically updating the parent type and / or
object in the state mesh at runtime. Finally, child objects can be added and removed dynamically at

21

runtime, so in the example above, Interface Cards and a PSU can be added to the Network Element as
they are configured into the actual network.

3.3.2 Aggregation or Uncle-Nephew

In aggregation relationships, one class of object (an uncle object) has an interest in the state of another
sub-ordinate object and effectively ‘contains’ the nephew object. The important differentiator
compared to composition is that both the uncle and nephew objects can exist independently of the other
– the relationship implies a measure of optionality and is weaker.
As with compositions, an object that is a nephew may itself be an uncle of some other object and the
relationships may be configured at build or runtime, although again circular relationships are not
allowed.
The range of possible combinations of this type is wider than that provided by composition. A nephew
object can have zero or more uncles and / or an uncle can have zero or more nephews. In a typical
application an object will have a parent and may have one or more uncles – a good example of this
situation is where a Bearer Link carries Voice and Signalling Channel traffic simultaneously in its
Timeslots. The Bearer Link acts as the parent for the Timeslots – they cannot exist without it. At the
same time, the Voice and Signalling Channels carried in the Timeslots act as uncles – they are
interested in the state of the Timeslots but they are not the owners.

3.3.3 Association or Peer-Peer

In association relationships one object has an interest in the state of another object, but neither object
has sufficient interest to warrant a composition or aggregation relationship. This type of relationship is
the weakest that may exist between objects and again implies optionality.
One peer may be associated with zero or more peers of the same or different types. An example of a
relationship of this type is that of a Cable joining two Communications Ports. The object representing
the Cable is interested in the state of the Ports at each of its ends and an associative relationship would
be used in this instance. Again, UCA provides the capability to construct associative relationships at
build or run-time with the usual proviso that circular relationships are not allowed.

3.3.4 Specialization

This type of relationship is different from the previous three in that it is implemented as an attribute of
the mesh object itself, rather than between instances. Each mesh object type possesses a Sub Class
attribute that defines its specialization relative to other mesh objects of the same base class. This allows
UCA to support some of the characteristics of object inheritance i.e. polymorphism and specialization.
For example, there may exist in a monitored network a number of Transmitters with different Sub
Classes e.g. 100W_Transmitter, 200W_Transmitter and 300W_Transmitter. Instances of each type are
clearly Transmitters (base class = Transmitter) and the group of all affected Transmitter objects may be
subject to rules that operate at the base class level i.e. they are treated as polymorphs and their
specialization is ignored. Alternatively, more detailed rules may be defined to operate only on instances
of a single specialization by defining the required Sub Class condition as well.

3.4 Metamodel
While the state mesh is of considerable value in reducing solution complexity, this advantage would be
lost if the model had to be re-implemented by the user each time a new or updated model was required.
For this reason, UCA uses an automatic data-driven approach to its construction and maintenance
Central to this idea is the metamodel that defines for the state mesh:

 all possible classes or types of model object that it could contain
 all possible relationships that could exist between classes of model object
 all possible pre-defined state propagations that could exist between classes of model

object

The best method to capture the metamodel structure during system configuration is for the user to
construct a UML class diagram (with some additional stereotypes defined to handle state propagation).
The file containing the metamodel is then simply an XML representation of that class diagram and the
required syntax is described fully in later sections of this guide. Users are free to manually define their
own metamodel directly in XML. Alternatively, UCA provides the capability to automatically convert

22

a UML class diagram (exported in XMI format from a suitable UML modelling tool) directly into the
required XML format. This process is illustrated below.

3.5 Model Builder and Model Database
The metamodel by itself defines only those model classes, relationships and automatic state
propagations that the system could support. To create a state mesh that the system can operate on
requires the user to provide a set of instance data, describing the actual model objects and
relationships that exist between those objects.
Normally, this instance data is stored in the UCA model database. Because the structure of the model
database will vary with each type of user model (e.g. different classes and types and numbers of
relationships), UCA automatically generates the table structures from the metamodel. UCA can also be
used to easily load the instance data into the model database. More typically, a batch process would be
used to regularly update the model database with the latest instance data e.g. through a CSV file import
from an external network inventory database.
When UCA is started, its model builder uses the metamodel as a template of instructions to create the
state mesh. Subsequently, each time the model database is updated, the model builder is automatically
triggered (again using the metamodel as a managing template) and the state mesh is brought inline with
the new data load. The entire process is illustrated below.

Metamodel
(XML) File

UML Class
Diagram in
CASE tool

XMI Conversion
Tool

UML Class
Diagram

Manual
Translation

Metamodel
(XML) File

UML Class
Diagram in
CASE tool

XMI Conversion
Tool

UML Class
Diagram

Manual
Translation

23

Metamodel
(XML) File

UML Class
Diagram in
CASE tool

XMI Conversion
Tool

UML Class
Diagram

Manual
Translation

Model Database Table &
Modification Trigger

Definitions

Generation

Model
Database

Automatic
Table

Configuration

Model
Builder

Model
Construction

Template

Initial & Update
Instance Data

External
Data

Source

Import &
Update

Topology
Mesh

Automatic
Construction &

Update

Metamodel
(XML) File

UML Class
Diagram in
CASE tool

XMI Conversion
Tool

UML Class
Diagram

Manual
Translation

Metamodel
(XML) File

UML Class
Diagram in
CASE tool

XMI Conversion
Tool

UML Class
Diagram

Manual
Translation

Model Database Table &
Modification Trigger

Definitions

Generation

Model
Database

Automatic
Table

Configuration

Model
Builder

Model
Construction

Template

Initial & Update
Instance Data

External
Data

Source

Import &
Update

Topology
Mesh

Automatic
Construction &

Update

3.6 Example State Mesh
At this point it is useful to consider an example to understand how the various parts are constructed and
what the resulting state mesh actually looks like. The following diagram illustrates the components of a
simple communications network.

Network
Element

Card

Link Link

Network
Element

Port Port

Card

Port Port

Network
Element

Port Port

Card

Network
Element

Card

Link Link

Network
Element

Port Port

Card

Network
Element

Port Port

Card

Port Port

Network
Element

Port Port

Card

Network
Element

Port Port

Card

The example network operates in the following manner: Network Elements responsible for providing
communications through the network have interface Cards with a number of communications Ports.
Joining together Ports with Links creates a communications path through the network.
The first task is to construct the metamodel for this system. As described above, the simplest way to do
this is to draw the equivalent UML class diagram. Before this can be completed however it is necessary

24

to consider what kind of automatic state propagations are required. To help decide this, the correlations
that UCA is required to perform must be considered. For the purposes of this example, they are:

 Report a Card failure when all of its Ports have reported a hardware error.
 Report a Link failure when the Ports at both ends have lost the communications signal.

To detect the first condition, a Card will need to know the state of each of its child Ports. Therefore, the
simplest choice is to automatically propagate the state of a Port to its parent Card. The second condition
is similar in that a Link object will need to know the state of all the Ports that it is attached to. Again,
the obvious choice is to automatically propagate the state of a Port to its associated Link.
The resulting UML class diagram with annotations (red arrows) to show the required automatic state
propagations is as follows:

Network
Element

Card

Port Link

1..*

1..*

2 0..1

Network
Element

Card

Port Link

1..*

1..*

2 0..1

The arrows in the diagram are for illustration purposes only. In practice, a UML CASE tool requires
the definition of stereotypes on affected relationships to add support for automatic state propagation.
Following processing of the UML class model to create the metamodel and its combination with user
supplied instance data, the state mesh would possess the internal structure shown below.

25

Child
Group

Mesh
Object

Mesh
Object

Child
Group

Mesh
Object

Associate
Group

Associate
Group

Associate
Group

Mesh
Object

Associate
Group

Associate
Group

Associate
Group

Mesh
Object

Child
Group

Mesh
Object

Mesh
Object

Child
Group

Mesh
Object

Child
Group

Mesh
Object

Mesh
Object

Child
Group

Mesh
Object

Members = 1 Members = 1 Members = 1

Members = 2
Members = 2 Members = 2

Members = 2 Members = 2

Members = 1 Members = 1 Members = 1 Members = 1

Base Class =
Card

Base Class =
Network Element

Mesh
Object

Mesh
Object

Base Class = Port

Base Class = Link

Base Class =
Network Element

Base Class =
Network Element

Base Class =
Card

Base Class =
Card

Mesh
Object

Base Class = Port Base Class = Port

Base Class = Link

Child
Group

Mesh
Object

Mesh
Object

Child
Group

Mesh
Object

Associate
Group

Associate
Group

Associate
Group

Mesh
Object

Associate
Group

Associate
Group

Associate
Group

Mesh
Object

Child
Group

Mesh
Object

Mesh
Object

Child
Group

Mesh
Object

Child
Group

Mesh
Object

Mesh
Object

Child
Group

Mesh
Object

Members = 1 Members = 1 Members = 1

Members = 2
Members = 2 Members = 2

Members = 2 Members = 2

Members = 1 Members = 1 Members = 1 Members = 1

Base Class =
Card

Base Class =
Network Element

Mesh
Object

Mesh
Object

Base Class = Port

Base Class = Link

Base Class =
Network Element

Base Class =
Network Element

Base Class =
Card

Base Class =
Card

Mesh
Object

Base Class = Port Base Class = Port

Base Class = Link

The model builder has added a number of ‘helper’ objects (child and associate groups) to the model to
assist with the management of containment and associative relationships defined in the metamodel.
These group objects serve to keep a list of child or associate mesh objects attached to a mesh object –
the thick lines denote the mesh object to which the group belongs and the thin lines denote the mesh
objects that they hold on behalf of that mesh object. Notice that each group object maintains a count of
the mesh objects it is responsible for.
The red arrows denote the relationships defined in the metamodel for which automatic state
propagation is defined. Notice that the model builder has configured the model such that automatic
state propagation only exists between mesh objects that originate state change reports and the group(s)
to which they belong, rather than to the mesh objects that own those groups. One of the most important
features of group objects is that they are capable of maintaining a real-time state count of the mesh
objects they contain i.e. total failed and degraded members. If automatic state propagation is enabled
e.g. for Port mesh objects in the above diagram, then a group object’s state counts will be automatically
updated each time the state of one of the mesh objects it contains is updated.
Based on the relationships defined in the metamodel diagram, Port objects (represented by mesh
objects with a base class = Port) are owned by Card objects (represented by mesh objects with a base
class = Card) and they have appropriate child group objects to manage them. Also, Port objects are
associated with Link objects (hence the associate group objects – one at each end of the associative
relationship because it is potentially bi-directional). Because of this dual relationship, a state change of
a Port mesh object will be simultaneously reported to both its parent’s child group object and its
associate’s associate group object.

3.7 Data Collector and Event Manager
Mesh objects in the state mesh are state aware in that they can exist in one of three possible states -
normal, degraded and failed, and can propagate this information to other objects if required. UCA is
driven by events gathered from the monitored network and therefore needs a mechanism that allows
them to modify the states of mesh objects in the state mesh. The process and information flow
employed by UCA is shown below.

26

The first component in this mechanism is the UCA Data Collector. This is responsible for providing an
external interface into which alarms from an external source are delivered. To accommodate wide
variations in the type and content of alarms from different sources, UCA has a well-defined XML input
format, derived from the CCITT ITU X.733 standard. Alarm reports delivered to UCA must conform
to this format. UCA responds to ‘alarm raise’, ‘alarm clear’ and ‘alarm termination’ reports received
from external sources.
Once the Data Collector receives alarm reports, a hierarchical set of filters (configured through the
Scenario Manager) is applied in turn to fields within them. The filters are necessary to remove unused
alarms – network management systems are sometimes not selective in the reports they deliver and
unwanted reports consume valuable system resources for no benefit. Continuing with the example
communications network model described above, that system’s filters would be configured to retain
only those alarm reports that signify the onset and recovery of a hardware failure or loss of
communications signal on a Port.
Alarms are also subjected to a mapping (again, configured through the Scenario Manager). The
following actions are performed during a mapping:

 a unique object identifier is extracted from one or more fields of the alarm
 a target mesh object is located in the state mesh with a specified base class and a name

equal to the extracted unique identifier
 the alarm report is attached to the target mesh object (if it is a Raise report) or removed

from the target object (if it is a Clear or Terminate report). Alarm reports attached to a
mesh object are held in its current problems list.

Alarm reports that pass to the end of a filter chain are mapped according to the mapping definition(s) at
the end of the chain and stored in the UCA event database by the Event Manager for future reference.
Each alarm report is assigned a target state (normal, degraded or failed) defined in the mapping and
each time an alarm report is attached to or removed from a mesh object in the state mesh, the system
will re-evaluate the mesh object’s overall state. This will be set to the highest state of all attached alarm
reports or normal if none remain.

3.8 Affected Objects
Alarm reports that pass the system’s filters and are then mapped to target mesh objects in the state
mesh can result in one or more state-related changes. These include:

ReportsReports

External

Source

Data Collector

Filter &
Mapping
Engine

XML Alarm

Report
XML Alarm

Report

Filter

Filter

Filter

Filter

Filter

Filter

Mapping

Received
Alarm

Reports

Discarded
Alarm

Mapping

Mapping

Event

Database

State Mesh

Object

Retained
Alarm

Reports

- Unique ID
- Class
- Target State

Object
Object

Object
Object

Object

Object
Object

Object

XML Alarm

Report
XML Alarm

Report

XML Alarm

Report
XML Alarm

Report

Filter

Filter

Filter

Filter

Filter

Filter

Mapping

Received
Alarm

Reports

Discarded
Alarm

Mapping

Mapping

Event Manager

Event

Database

Object

Retained
Alarm

Reports

- Unique ID
- Class
- Target State

Object
Object

Object
Object

Object

Object
Object

Object

27

 Target mesh objects may change their overall state.
 If automatic state propagation is activated and the overall state of a target mesh object is

changed, state counts maintained by any group objects containing that mesh object will
be updated.

Mesh and group objects in the state mesh altered in either of these ways are termed affected objects and
they have a special significance. UCA will insert target mesh objects whose state has changed from
normal (as a result an alarm report being mapped onto them) into each of the working memories of the
UCA inference engine (there may be one or more working memories defined). Similarly, group objects
whose degraded or failed member counts have increased from zero (as a result of an alarm report being
mapped onto a contained target mesh object and automatic state propagation taking place) will also be
introduced into each of the working memories.
Alternatively, if a target mesh object or group object is already inserted in the working memories (as a
result of a previous state change) then UCA will update its state or affected member counts
respectively.

Finally, if a target mesh object is already inserted and all attached alarm reports are removed, then its
state will return to normal and it will be updated in the working memories. Similarly, a group object
whose affected member counts have all returned to zero will also be updated in the working memories.
Note that under these conditions, neither of these object types is automatically removed at this stage
from the working memories. This method of operation has been chosen specifically to allow the user an
opportunity to build rules that depend on objects returning to the normal state.
Using the previous example of a simple communications network, the following diagram illustrates the
process of creating affected objects and insertion into working memories when an alarm report is
received.

Inference
Engine

Mesh

Object

Associate

Group

Associate

Group

Associate

Group

Mesh

Object

Mesh

Object

Child

Group

Mesh
Object

Mesh
Object

Child
Group

Mesh

Object

Members = 1

Members = 2
Failed = 1

Members = 1 Members = 1
Alarm
Report

Members = 2
Failed = 1

Affected
Objects

Working
Memories

Base Class =
Network Element

Base Class =
Card

Base Class = Port

Base Class = Port

Base Class =

Inference
Engine

Mesh

Object

Associate

Group

Associate

Group

Associate

Group

Mesh

Object

Mesh

Object

Child

Group

Mesh
Object

Mesh
Object

Child
Group

Mesh

Object

Members = 1

Members = 2
Failed = 1

Members = 1 Members = 1
Alarm
Report

Members = 2
Failed = 1

Affected
Objects

Working

Base Class =
Network Element

Base Class =
Card

Base Class = Port

Base Class = Port

Base Class = Link

Following a Port failure in the actual network, an alarm report received by the system is mapped onto
an equivalent Port target mesh object in the state mesh. UCA uses the target state from the mapping to
set the state of the Port target mesh object to failed, resulting in its automatic insertion into the
inference engine’s working memories. Automatic state propagation from the Port target mesh object to
its containing child and associate groups has also incremented their failed member counts above zero,
causing them also to be automatically inserted into the working memories. Note that mesh and group

28

objects that are inserted into the working memories remain part of the state mesh and continue to be
attached to their unaffected counterparts by their existing relationships.
The UCA Mesh Viewer GUI allows a user to view and monitor the state mesh in real-time. It provides
a comprehensive, navigable view of all target mesh objects in the currently loaded model and also
maintains a dynamically updated list of mesh objects that are in non-normal states.

3.9 Inference Engine
The purpose of the inference engine is to provide an efficient and highly optimised decision-making
tool that can be controlled by a set of user-defined rules to infer information about the condition of the
monitored network. It achieves this by evaluating affected objects that have been inserted or updated in
its working memories against the specific set of rules defined for each such working memory. Once a
rule has been satisfied, the system will carry out one or more actions (chosen from a list of actions
during rule configuration).
It is important to clearly understand the relationship between objects in the state mesh and affected
objects in the working memories, as illustrated in the following diagram.

Objects that are part of the state mesh always remain so, regardless of their state. Affected objects
represent a sub-set of objects in the state mesh that are in a non-normal condition and as a result have
been temporarily inserted into the working memories, where they have in turn become visible to the
rules controlling the inference engine. Objects that are part of the state mesh (and not affected objects)
are normally invisible to the inference engine (because they are not inserted into the working
memories). There is one exception to this rule however, which is that they are indirectly accessible to
rules and their resulting actions where they can be reached by navigating the relationships between
them and affected objects that are visible to the inference engine.
Rules are created with the Scenario Manager and comprise arbitrarily complex ‘when (rule is true) then
(do action)’ constructs. The system takes care of translating these constructs into the low-level rules
language that the inference engine understands and automatically deploys them into the specified
working memory. A major benefit of this approach is that most users can create rules using familiar
concepts and terminology e.g. “is there a card where 100% of the ports have failed”, without the need
to understand the complicated language syntax and associated programming techniques normally
associated with inference engines.
Rules created in this way may have general conditions to test for the existence or otherwise of affected
objects in the working memory e.g. when (there is a not a Card) then (…). Alternatively, they may have
a number of specific conditions that are compared with the attributes of affected objects e.g. when
(there is a Port object with state Failed) then (...).
Rules may also be targeted, for example aimed at the existence of a particular affected mesh object in
the working memory e.g. when (there is a Card whose name starts with “ABC”) then (…).
Alternatively, they may operate at the class level, in which case they will be applied equally to all
affected mesh objects of the defined type (and / or subtype) that satisfy their conditions e.g. when
(there is a Card of subtype SDH) then (…). Rules may also be defined to operate on affected group
objects e.g. when (there is a group owned by a Card where 100% of its Port members have failed) then
(…).
When all of the conditions attached to a rule are satisfied, they are placed on a list of rules waiting to be
‘fired’ or executed. The inference engine will remove and execute the next rule on the list, carrying out
one or more actions associated with it. After each rule is fired, the remaining rules on the agenda are re-
evaluated to see if they are still valid (any that have become invalid as a result of the previous rule
execution are removed without being processed). An important characteristic of inference engines is
that once a rule has fired for a particular set of conditions, it will not do so again until a change has
happened and those conditions are again satisfied. This prevents a rule from firing continuously when a
particular set of conditions remains true.
Rules may be assigned a priority that can be used to control the order in which satisfied rules are
removed from the list and executed. For example, UCA is used with a set of low priority ‘maintenance’
rules whose actions are responsible for removing affected objects (mesh and group objects) from the
working memory when they return to their normal state. By setting the priority of these rules at a low
level, the user is provided with the opportunity to define higher priority rules that detect normal state
objects and carry out some other action before they are removed from the working memory.
UCA provides a comprehensive range of pre-defined actions, including the ability to:

29

 Create, acknowledge, demote, terminate and clear alarms in the originating network
management system, depending on its ability to support such operations.

 Modify the state of mesh objects in the state mesh.
 Create, modify and delete ‘notifications’ attached to mesh objects, designed to report

significant events to users via the Notification Dialog (see Mesh Viewer GUI details).
 Associate contributory alarm reports responsible for the creation of affected objects to

notifications.
 Identify mesh objects in the state mesh that may be affected by a problem in another part

of the model and associate their sympathetic alarm reports to a notification.
 Execute user-defined scripts on both the local and remote platforms and to incorporate

the results into further correlation scenarios.

In addition, it is possible for a user to define additional actions to carry out special tasks. These require
the creation of additional action functions written in Java using the UCA API, and to add action
function details to the UCA action properties files to enable them to be accessed from the Scenario
Manager.
Certain actions, including those that initiate notifications and allow user-defined scripts to be executed,
create corresponding dynamic objects in specific working memories. These dynamic objects
(notification and script (proxy) objects) are visible to rules defined in those working memories and
allow users to construct correlations that depend on their existence or attributes.
The properties of notification objects are such that they may exist in a maximum of two working
memories at any time – typically they are created in a source working memory (context) and may be
made visible in a destination working memory (context). This powerful concept allows for
‘communication’ of the results of a correlation in a source context (with a certain set of rules) to drive
another correlation (with a different set of rules) in a destination context. Updates to a notification
object are obviously made visible to the rules in both the source and destination working memories.
A script (proxy) object is created by an action when the corresponding script is first executed and
(depending on configuration) may persist past the execution lifetime of the script itself, recording the
status and results of its execution for use in later stages of a correlation. Scripts executed by actions are
launched in separate threads to avoid contention and blocking and only exist in the source working
memory.
The UCA System Manager GUI also provides a Fired Rules dialog for users to monitor the execution
of rules and their associated actions (this information is also stored in the UCA notification database
and is available for subsequent analysis).
The UCA Mesh Viewer also provides a Notification dialog to allow users to examine the set of
notifications associated with an object (again, the information contained in each Notification is stored
in the notification database and is available for analysis).

3.10 Notification Manager and Remote
Handler

It is the responsibility of the UCA Notification Manager to handle any interactions between UCA and
external systems, including:

 Manipulation of alarm reports in the external network management system via the
Remote Handler.

 Execution of scripts in separate threads on the local platform.
 Execution of scripts in separate threads on local and remote platforms via the Remote

Handler.
 Updating corresponding script dynamic objects with execution status, exit codes and

results from locally and remotely executed scripts.
 Managing external system interactions on behalf of user-defined actions e.g.

starting/stopping SLA monitoring for service impact correlations.

Operation of the Notification Manager and Remote Handler are illustrated in the following diagram.

30

UCA provides a simple, flexible API to manage external interactions from within the rules/action
context.
The Remote Handler is normally executed as a separate process on system restart. It provides the
ability to interface to external systems and execute scripts on both local and remote platforms, returning
results and output information back to UCA. It utilises web services to minimise communications
problems associated with firewalls between the UCA and remote system and again requires
straightforward integration with remote applications.
UCA may also directly execute scripts on the local platform without the need for a Remote Handler.

Notification
Manager

Remote
Handler

Network
Management

System

Network
Management

System

External
Application
e.g. SLA
Manager

External
Application
e.g. SLA
Manager

Working Memory

Inference Engine

Action
Action
Action

Action
Action

Rule

Script
Proxy

Script
Script
Script

Script
Script
Script

Web
Services

Remote
Platform

Remote
Handler

Web Services

Script
Script
Script

Local Execution

Script
Proxy
Script
(Proxy)

Notification
Manager

Remote
Handler

Network
Management

System

Network
Management

System

External
Application
e.g. SLA
Manager

External
Application
e.g. SLA
Manager

Working Memory

Inference Engine

Action
Action
Action

Action
Action
Action

Action
Action

Rule
Action
Action

Rule

Script
Proxy

Script
Script
Script

Script
Script
Script

Script
Script
Script

Script
Script
Script

Web
Services

Remote
Platform

Remote
Handler

Web Services

Script
Script
Script

Script
Script
Script

Local Execution

Script
Proxy
Script
(Proxy)

UCA
Platform

31

Chapter 4 The UCA Home Page and
System Manager

4.1 Starting the Tomcat ‘Minimal Web Server’
UCA uses Tomcat for:

 serving static web pages
 serving dynamic web pages, using JSP
 handling web services requests from the client, executing the appropriate Java code and sending

the response, as appropriate. i.e. using Tomcat as a ‘servlet container’.
 handling role-based authentication to web pages and UCA applications

In order for UCA to start up, Tomcat must be running. In addition, when UCA is shut down, Tomcat must be
forced to release all of its resources. This could be done manually, but UCA provides a ‘minimal web server’
called tomcatserver to automatically control this.
After UCA has been installed and configured, tomcatserver must to be started. This only needs to be done once
and under normal circumstances tomcatserver should never need to be stopped.
tomcatserver is started as follows:

For HP-UX
cd $UCA_HOME/bin
./tomcatserver.sh

tomcatserver actually listens on a port (defined by the tomcatserver.port property in the uca.properties file)
for web services requests - accepting ‘start’ and ‘stop’ requests that have the effect of starting and stopping
Tomcat itself. When tomcatserver is first started, it automatically starts Tomcat.
When UCA is shutdown from the System Manager GUI (see the following section), a ‘stop’ followed by a ‘start’
request is automatically sent to tomcatserver – this has the effect of stopping and re-starting Tomcat.
As mentioned above, once tomcatserver is started, normally nothing more needs to be done by a user other than
to interact with the UCA GUIs. However, should Tomcat need to be stopped or started manually, this can be
done as follows:

For HP-UX
cd $UCA_HOME/bin
./tomcat.sh stop or ./tomcat.sh start

4.2 Starting the System Manager
Assuming the system is installed and properly configured (see the HP UCA Installation and Configuration
Guide for details), and tomcatserver has been started as described above, entering the following URL in a web
browser will result in the UCA Home Page being shown, as follows:
http://hostname:18080/uca
where hostname is the DNS name or IP address of the server machine on which UCA is installed. Note that it is
possible to configure a port other than 18080 for use by UCA – see the HP UCA Installation and Configuration
Guide for details.

32

Figure 4 - The UCA Home Page

Clicking on the UCA Manager button will invoke a username / password dialog. When UCA is first installed, a
username and password of ‘system’ and ‘system’ is pre-configured with ‘manager’ role. Entering this username
and password will cause the UCA Manager GUI to be displayed with the ‘Status’ tab selected, as follows

33

The status tab shows details on the left hand side of all the major UCA software components and their current
status. The green tick indicates that the component is running and the red cross indicates that the component is
not started. In normal circumstances, Tomcat and the ‘Manager Server Web Service’ should always be running.
Note that during start-up, the web applications will temporarily be shown with a yellow question mark symbol;
this indicates that Tomcat has deployed the service but it has yet to be initiated.
The tabs across the top of the window provide access to a number of different system management features.
Certain operations, such as defining and loading the model, can only be performed when the system is not
started, whilst others can only be done when the system is running. For this reason, tabs are enabled or disabled
depending on the running state of the system. The table below summarises the state of the tabs depending on the
state of the system.

Tab System not started System started

Status Enabled Enabled
Users Enabled Enabled
Model Enabled disabled
Data-load Enabled disabled
Diagnostics enabled (see 1.) Enabled
Maintenance enabled (see 2.) Enabled
Tools Disabled Enabled

1. viewing and enabling/disabling pre/post filter event logging is disabled

2. mesh update and archive update settings disabled

4.3 Adding, Modifying and Deleting Users
New users may be added or existing users modified or deleted from the ‘Users’ tab.
To add a new user:

 Enter a username and password (the password must be at least 6 characters long)
 Select the appropriate role(s)
 Select New

34

The roles are uses as follows:
 manager – a user must have manager role to invoke the System Manager GUI
 administrator - a user must have administrator role to invoke the Scenario Manager GUI
 operator - a user must have operator role to invoke the Mesh Viewer GUI
 read-only – with read-only role, a user cannot deploy scenarios, filters, mappings or rules from the

Scenario Manager GUI.
 tester – a user with tester role may invoke the Scenario Manager and Mesh Viewer GUIs. In

addition, from the Mesh Viewer GUI, the user may inject a set of alarms from an external file
(using the ‘Inject alarms from file’ File pull-down menu) or inject a single user-specified alarm by
right-clicking an item in the Instances tree and selecting the ‘create alarm’ popup menu item.

To update an existing user:
 Select the username from the list in the left panel
 Update the username, password or roles as appropriate. Note that, for security reasons, the

existing (or a new) password must be re-entered for the update to successfully apply.
 Select Update

Note that a user currently logged on to the System Manager cannot remove manager role from
his/her own details. To do this, you must exit the System Manager GUI and restart it, logging on
as a different user (with manager role privilege), then select the original user and remove
manager role.

To delete an existing user:
 Select the username from the list in the left panel
 Select Delete

Note that a user currently logged on to the System Manager cannot delete his/her own entry. To
do this, you must exit the System Manager GUI and restart it, logging on as a different user
(with manager role privilege), then select the original user and delete it.

Figure 5 - The System Manager Users Tab

4.4 Starting UCA
From the Status tab of the Scenario Manager, click on the Startup button. Following a confirmation prompt,
each of the sub-systems will then be started and the icons next to each sub-system will change to reflect their

35

status. Progress is described in the text area on the right side of the window and any error messages will be
displayed here and / or in the status bar area at the bottom of the window. UCA is fully started up when a green
tick appears against each sub-system, as shown below.

Figure 6 - The Status tab showing the system started

4.5 Stopping UCA
Before the system is stopped, all Scenario Manager and Mesh Viewer GUIs in use by all users should be
closed.
From the Status tab of the Scenario Manager, click on the Shutdown button. Following a confirmation prompt,
each of the sub-systems will then be shut down and the icons next to each sub-system will change to reflect their
status. Progress is described in the text area on the right hand side of the window and any error messages will be
displayed here and / or in the status bar area at the bottom of the window. UCA is fully shut down when a green
tick appears against ‘Tomcat’ and ‘Manager Server web service’ and a red cross appears against all other sub-
components. Note that during the shut-down process, Tomcat is automatically re-started (see Starting the Tomcat
‘Minimal Web Server’ section above) – this may take 15 to 20 seconds depending on the capability of the server.
Shutting down the system will cause any corresponding session on a user’s web browser to end. This means

that if a user has any UCA web pages displayed and the system is shut down, then those pages will become

‘stale’ and the page must be re-loaded after UCA has been re-started.

 It is recommended that the web browser is closed
after UCA has been shut-down and re-opened after
UCA is re-started – this is important prior to re-
starting the Scenario Manager GUI or Mesh
Viewer GUI after a system re-start.

36

4.6 Configuring the Metamodel
The Model tab of the Scenario Manager provides all the functions necessary for a user to configure the
metamodel structure used by UCA to fulfil all the needs of the set of required scenarios. Chapter 5 provides
details of how this metamodel is constructed and used within UCA.

4.7 Loading Data into the Model
The Data-load tab of the Scenario Manager provides functions that may be used to load data from CSV text files
into the UCA model database. Chapter 6 provides details of how this is performed.

4.8 Diagnostics
The UCA diagnostic facilities are accessed from the Diagnostics tab of the System Manager GUI.

Figure 7 - The System Manager – Diagnostics tab

Within this tab, the following information can be displayed:
 The contents of the centralised UCA exception log.
 The contents of the non-empty Tomcat logs.
 The contents of the pre-filter event log.
 The contents of the post-filter event log.

Since these log files can be large, the number of lines to display from these logs may be selected.

To view the exception log details:
 Select the ‘exception log’ radio button
 Select the desired number of lines to display in the ‘View last’ spinner (between 1 and 500)
 Click the View Log button.

To view a non-empty Tomcat log:
 Select the Tomcat log radio button
 Select the desired Tomcat log file from the drop-down list of filenames.
 Select the desired number of lines to display in the ‘View last’ spinner (between 1 and 500)

37

 Click the View Log button.

The pre-filter event log maintains a list of all incoming events before they have passed through the Filters, in the
same format as described in section 10.3.2. This log file is a useful source of events to replay into the system (for
example using the UCA Event Injector tool).

To view the pre-filter event log details:
 Select the pre-filter event log radio button (the system must have been started in order to view the

pre-filter event log)
 Select the desired number of lines to display in the ‘View last’ spinner (between 1 and 500)
 Click the View Log button.

The post-filter event log maintains a list of all incoming events after they have passed through the Filters. The
details in this log are in a similar format to section 10.3.2, but with the following tags added:

 <uniqueReference>
 <baseClass>
 <status>
 <pathToMapping>

The uniqueReference tag contains the value of the uniqueReference after mapping has been performed
(see Section 8.3).
The baseClass tag contains the value of the baseClass after mapping has been performed (see Section
8.3).
The status tag contains the value of the status after mapping has been performed (see Section 8.3).
The pathToMapping tag contains a separated list of numbers, each enclosed in square brackets. The
numbers represent the internal unique Ids for each filter in the Scenario Builder Tree (see section
7.1.1). The tag value represents the path that the event took through the hierarchy of filters. It is useful
to analyse the pathToMapping values to optimise the position of the filters in the Scenario Builder
Tree. An example log entry in the post-filter event log is as follows:

<Event>
<uniqueReference>10001</uniqueReference>
<baseClass>Site</baseClass>
<status>failed</status>
<pathToMapping>[-1][3074555833][-1][3074520804][3074519544]</pathToMapping>
<additionalText>Site Power Failure</additionalText>
<alarmType>EquipmentAlarm</alarmType>
<dataType>X.733</dataType>
<eventId>1003</eventId>
<eventRank>original</eventRank>
<moClass>Site</moClass>
<moInstance>10001</moInstance>
<originatingTime>2005-06-10 12:16:32</originatingTime>
<probableCause>PowerProblem</probableCause>
<severity>critical</severity>
<systemClass>sidonis_nms</systemClass>
<systemInstance>V5</systemInstance>

</Event>

To view the post-filter event log details:
 Select the post-filter event log radio button (the system must have been started in order to view

the post-filter event log)
 Select the desired number of lines to display in the ‘View last’ spinner (between 1 and 500)
 Click the View Log button.

To enable or disable pre-filter event logging:
 Ensure the enable pre-filter logging checkbox is ticked / un-ticked (the system must have been

started in order to enable or disable the pre-filter event log).

To enable or disable post-filter event logging:
 Ensure the enable post-filter logging checkbox is ticked / un-ticked (the system must have been

started in order to enable or disable the post-filter event log

38

4.9 Maintenance
The UCA maintenance facilities are accessed from the Maintenance tab of the System Manager GUI.

Figure 8 - The System Manager – Maintenance tab

Within this tab, the following actions can be performed:
 Configure the automatic Mesh update settings
 Manually apply a Mesh update
 Configure the automatic notification and event database archive settings
 Manually apply a notification and event database archive
 Reset read/write access to the Scenario Manager

Any model data that is inserted, deleted or modified in the UCA model database may be automatically
propagated into the in-memory state mesh according to a configurable schedule (see sections 3.5 and 6.2.2 for
further details).

To configure the automatic model update settings:
 In the Mesh Update Settings area, use the ‘update mesh’ hours and minutes spinners to set the

number of hours and minutes after midnight that you wish automatic Mesh updating to start.
 In the Mesh Update Settings area, use the ‘and thereafter every’ spinner to set the interval, in

hours and minutes, at which automatic Mesh updating is to be repeated.
 Click the Apply button in the mesh update settings area to apply the settings.

The default settings are to start at midnight and repeat once every 24 hours.

To manually force the in-memory state mesh to immediately update according to any recent model database
changes:

 In the Mesh Update Settings area, click the Update Mesh Now button

UCA maintains many different types of data in its event and notification database tables. Without adequate
management, these tables will grow bigger over time and will eventually reach available capacity. UCA provides
the facility to intelligently archive this data (i.e. redundant data that is no longer needed by any outstanding
correlation) and free up event and / or notification database space. This process occurs in two stages:

39

 Event processing is temporarily suspended and the event and notification databases are analysed
to identify redundant data.

 Event processing is resumed and the previously identified redundant data is archived as a low
priority background task.

Archiving may be configured to run on a scheduled basis. A user may also manually force an immediate archive
of data.

The data that is archived comprises:
 Events received from external sources.
 Notifications
 Fired rule actions that have been configured to be logged in the notification database.
 Contributory Event Lists
 Affected Object Lists
 Sympathetic Event Lists

The data is archived as separate, time-stamped CSV files in the ‘archives’ directory under the UCA installation
directory. The format of these files is such that they can be easily re-imported into another UCA database
instance using standard database tools.

To configure the automatic archive update settings:
 In the Archive Update Settings area, use the archive database spinner to set the number of hours

and minutes after midnight that you wish automatic archiving to start.
 In the Archive Update Settings area, use the and thereafter every spinner to set the interval, in

hours and minutes, at which automatic archiving is to be repeated.
 Click the Apply button in the Archive Update Settings area to apply the settings.

The default settings are to start at 1.00 a.m. and repeat once every 24 hours.

To manually force the archiving of the event and notification databases to happen immediately:
 In the Archive Update Settings area, click the ‘Archive Now’ button

Only one user at a time is allowed full read-write access to the Scenario Manager GUI. This is to stop
simultaneous deployments of Scenarios, Filters, Mappings and Rules from interfering with each other. The
UCA manager database maintains details of who the current read-write user is. Once a user is granted read-write
access, no other users can use the GUI to deploy data until the user with the ‘read-write’ lock has exited the GUI.
Should a failure ever occur at a client machine running the Scenario Manager GUI, it is conceivable that this
‘lock’ could be left in the ‘granted’ state in the manager database. Should this ever occur, the lock status may be
cleared so that a user may again be granted read-write access via the Scenario Manager GUI.

To reset read/write access to the Scenario Manager:
 In the Other Settings area, click the Reset button next to reset read/write access to Scenario

Manager GUI.

4.10 Tools
UCA provides a number of useful facilities and tools, accessed from the Tools tab of the System Manager GUI,
to assist during the rules development stage.

40

Figure 9 - The System Manager – Tools tab

Within this tab, the following actions can be performed:
 Remove all currently active rules from the inference engine.
 Clear the contents of all working memories monitored by the inference engine.
 Clear the event database.
 Clear the notification database.
 Refresh the dynamic property values (key / value pairs). This causes the UCA rules engine to re-

scan the key / value properties held in the ‘mg_properties’ database table.
 View details of all the fired rule actions that have been logged in the UCA notification database.
 Graphically view the working memory contents.

During the testing stage of rule development, it may be necessary to remove all the currently active rules from
the inference engine in case they are behaving in an unexpected manner. In this sense, this facility acts as a
‘panic’ button to immediately stop and remove all rules.

There is also a facility to clear all objects from all working memories within the inference engine. This
essentially ‘resets’ the memories and is useful during the development and test stage, e.g. before starting a
particular test run of sample alarms. During the reset process, mesh and group objects are returned to their
normal states and all attached alarm reports are removed. All primary & marker notifications and script (proxies)
are removed and destroyed.

To remove all currently active rules from the inference engine:
 In the Rules Engine area, click the Remove Rules button.

After use, it is recommended that the system be shut down and re-started.

To clear the contents of all the working memories:
 In the Rules Engine area, click the Clear Memory button.

UCA also provides the facility to clear the contents of the event and notification databases. Again, this is useful
during the development and test stage, e.g. before starting a particular test run to de-clutter the system of any
existing events or notifications.

To clear the event database:

41

 In the Databases area, click the Clear button next to ‘clear event database’.

To clear the notification database:
 In the Databases area, click the Clear button next to ‘clear notification database’.

UCA supports the use of ‘dynamic properties’. A dynamic property is a key / value pair set up in the UCA
‘mg_properties’ database table. These key / value pairs are accessible to rules. When the value of a dynamic
property is changed in the database, any rules using that dynamic property will not be aware of the change in
value. To make the rules aware of any changes to the dynamic properties:

 In the Databases area, click the Refresh button next to ‘refresh key/value pairs’.

The UCA System Manager provides two graphical tools that are very useful during rule development and
testing. These are:

 The ‘Fired Rules’ viewer.
 The ‘Working Memory Viewer’

The Fired Rules Viewer
This viewer is used to view all the details of the rules that have fired (where database logging has been selected
in the associated actions), together with details of any contributory events associated with the fired rules and the
actions that have been carried out. All columns are re-sizable and movable and their headers may be clicked on
to toggle the sort order.

To view the fired rules details:
 In the Viewers area, click the View … button next to view all fired rules.

Figure 10 - The Fired Rules Viewer

The top table of the Fired Rules Viewer lists details of each fired rule. The details provided are:
 The Unique Id of the fired rule.
 The textual name of the rule. Rules fired from trigger conditions start with “TRIGGER_” and rules

fired from teardown conditions start with “TEARDOWN_”.
 The mnemonic or short-hand name of the fired action.
 The time the action was fired.
 The originating and target contexts associated with the action.
 The trigger or teardown object’s base class.
 The trigger or teardown object’s unique reference.

When a row in the fired rules table is selected, details of the associated contributory events are shown on the
bottom table. Note also that a single rule firing may result in more than one row in the fired rules table i.e. there
is a row in the table for each logged action rather than each fired rule.

To refresh the view of fired rules details:

42

 Click the Refresh button.

To number of fired rules may be very large. To limit this in the viewer, the maximum number of most recent
fired rules details may be set. To set the maximum number to view:

 Select the required number (minimum 1, maximum 200, default 100) from the ‘Limit results to’
spinner. This will take effect after the ‘Refresh’ button is clicked.

The Working Memory Viewer
This viewer is used to view all the details of the objects within the inference engine’s working memories. The
table columns are re-sizable and movable and their headers may be clicked on to toggle the sort order.

To view the working memory details:
 In the Viewers area, click the ‘View …’ button next to ‘view working memory’.

To ‘Contexts and Object Tree’ shows, for each named context i.e. working memory, the different object types
that may be inserted. These object types are displayed as nodes under a parent branch, where the parent branch
represents the context name. The object types are:

 notifications
 mesh objects
 child groups
 associate groups
 script objects
 time objects
 system objects
 system key / value pairs

Figure 11 - The Working Memory Viewer

When an object type node is selected in the tree, the ‘Objects Summary Tree’ will display summary information
for all objects of that type for the associated working memory. The summary details vary depending on the
object type selected.

To view details of any items listed in the ‘Objects Summary Tree’,
 double-click the associated row in the ‘Objects Summary Tree’, or

Contexts and Objects Tree Objects Summary Table

43

 right-click the associated row in the ‘Objects Summary Tree’ and select view details … from the
pop-up menu.

When an object type of ‘notifications’ has been selected in the ‘Contexts and Object Tree’, right-clicking an
object in the associated ‘Objects Summary Tree’ will show an additional pop-up menu item – ‘show marker
notifications’. The effect of this is to replace the contents of the ‘Objects Summary Tree’ with a summary of all
the marker notifications associated with the notification that had been selected. When the marker notifications
are displayed, right-clicking one will display a pop-up menu, similar to normal notifications, but with ‘back to
parent notification’ instead of ‘show marker notifications’. Selecting ‘back to parent notification’ will return to
the display of normal notifications, as previously displayed.

To refresh the view of fired working memory details:
 Click the Refresh button.

Figure 12 - The Working Memory Object Details window

44

Chapter 5 Defining the Metamodel
This chapter describes in detail the various aspects of building and deploying the UCA metamodel. In essence, a
UCA metamodel is a UML class diagram in the form of an XML file. Although the XML could be created
manually, UCA provides a feature that allows a UML class diagram that represents the metamodel to be
imported and automatically converted into the UCA XML format.
To illustrate the complete process of building and deploying a metamodel, an example correlation model of a
simple digital TV broadcast network is used.

5.1 Example Class Model
The following diagram illustrates the UML class model of a simple digital TV broadcast network that will be
converted into an equivalent UCA metamodel.

The <<propagate>> text in the diagram denote those relationships on which automatic state propagation is
required (the <<propagate>> text is placed at the ‘from’ end of the relationship).
The Model class is a top-level container class that must exist in any model converted into a UCA metamodel. It
exists to identify the model loaded into UCA and acts as a top-level container for all other classes in the model.
In the example, it contains the DTVNetwork class that itself acts a container (directly or indirectly) for all classes
in the DTV network model. The Model class may act as a parent to any number of child classes but is unique in
that it does not itself have a parent class.
The model shown allows for an arbitrary hierarchy of broadcasting Sites, each of which can contain
SignalLinkEquipment classes (representing fixed communications link equipment) and BroadcastEquipment
classes (representing on-air broadcast communications link equipment). BroadcastEquipment objects can be
joined together by TelcoLink and BasebandLink objects, either separately or at a higher level by
CompositeLinks between the Sites themselves. The Multiplex class represents a multiplexed digital TV
transmission channel carried over a fixed, on-air or composite Link. Finally, the Service class represents a digital
TV service, comprised of one or more components from the Multiplex that it is carried over. This compact set of

45

objects is all this is required to create a model network of broadcasting sites and is sufficient to perform simple
correlations on a DTV network. A fragment from an example model network composed from objects of these
classes is shown below:

Relay Site Relay Site Relay Site

Composite

Tx Tx

Composite

Rx Rx

Composite

Tx Tx

Composite

Rx Rx
Baseband LinkBaseband Link

Service 1

Service 2

Service 3

Service 4

Service 1

Service 2

Service 3

Service 4

Multiplex Multiplex
Relay Site Relay Site Relay Site

Composite

Tx Tx

Composite

Rx Rx

Composite

Rx Rx

Composite

Tx Tx

Composite

Tx Tx

Composite

Rx Rx

Composite

Rx Rx
Baseband LinkBaseband Link

Service 1

Service 2

Service 3

Service 4

Service 1

Service 2

Service 3

Service 4

Service 1

Service 2

Service 3

Service 4

Multiplex Multiplex

5.2 Automatic Creation
UCA provides a feature that converts a metamodel in the form of a UML class diagram into the UCA metamodel
XML syntax. The class diagram can be created in a UML case tool that supports the export of class diagrams in
XMI 1.2, UML version 1.4. Because of UML tool idiosyncrasies and inconsistent compliance to standards, UCA
currently supports a single UML tool (ArgoUML) for this purpose. This tool can be invoked from the link at the
bottom of the UCA home page.
When creating the class diagram in the UML case tool, UML ‘Stereotypes’ and ‘Tagged Values’ are used as
follows:

 ‘duplicates’ is defined as a Stereotype on a class
 ‘propagate’ is defined as a Stereotype on a relationship endpoint
 ‘owner ’ is defined as a Stereotype on an association relationship endpoint
 ‘hops’ is defined as a Tagged Value on an association relationship endpoint
 ‘metamodelName’ and ‘metamodelVersion’ are defined using Tagged Values on the ‘Model’

class.

The class diagram must have ‘Model’ defined as the top-level class.

To automatically convert the UML class diagram to the corresponding UCA XML syntax, the following steps
are needed:

 Create the UML class diagram, making use of UML stereotypes and tagged values as described
above (sections below described the meaning of ‘duplicates’, ‘propagate’, ‘owner’ and ‘hops’).

 Export the UML class diagram as an XMI file. With ArgoUML, this can be done from the ‘File ->
Export as XMI’ menu.

 From the Model tab of the UCA System Manager GUI, select Import ….
 Locate and select the XMI file exported from ArgoUML.

46

Figure 13 – The Model Tab – Importing an XMI File

If the import is successful, information will be shown in the status bar area. If the import fails for any reason, an
error message in red text will be displayed in the status bar area.

5.3 Manual Creation
The UCA metamodel may be created manually, either using a separate text file editor or from within the Model
tab of the System Manager GUI.
If the System Manager GUI is used, clicking on the ‘New’ button will display a template XML definition,
including standard header and DTD definition. The user may then manually edit the XML within the section
marked as:
<metamodel metamodelName="xxxx" metamodelVersion="x.x">

insert all <element>...</element> definitions here
</metamodel>

If a separate text editor is used, then the XML metamodel file may be read in to the text area of the System
Manager’s Model tab by selected ‘Open …’ and locating and selecting the appropriate file. In addition, any
model file created or read in to the text area of the Model tab may be saved to a local file by selecting ‘Save …’.
The metamodel XML file for the example digital TV broadcast network model is listed below:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<!DOCTYPE metamodel [
<!ELEMENT metamodel (element+)>

<!ATTLIST metamodel metamodelName CDATA #REQUIRED metamodelVersion CDATA
#REQUIRED>

<!ELEMENT element (parent | relative | associate | child)*>
<!ATTLIST element type NMTOKEN #REQUIRED duplicates (TRUE|FALSE)

#REQUIRED>
<!ELEMENT parent (class, propagate)>
<!ELEMENT child (class, propagate)>
<!ELEMENT associate (class, propagate, hops)>

<!ATTLIST associate owner (TRUE|FALSE) #REQUIRED>
<!ELEMENT relative (class, propagate)>
<!ELEMENT class (#PCDATA)>
<!ELEMENT propagate (#PCDATA)>
<!ELEMENT hops (#PCDATA)>

Import an
XMI file

47

]>

<metamodel metamodelName="Sidonis DTV Metamodel" metamodelVersion="1.0">

<element type="DTVNetwork" duplicates="FALSE">
<parent>

<class>Model</class>
<propagate>FALSE</propagate>

</parent>
<child>

<class>BasebandLink</class>
<propagate>FALSE</propagate>

</child>
<child>

<class>Site</class>
<propagate>FALSE</propagate>

</child>
<child>

<class>CompositeLink</class>
<propagate>FALSE</propagate>

</child>
<child>

<class>Service</class>
<propagate>FALSE</propagate>

</child>
<child>

<class>Multiplex</class>
<propagate>FALSE</propagate>

</child>
<child>

<class>TelcoLink</class>
<propagate>FALSE</propagate>

</child>
</element>

<element type="BasebandLink" duplicates="TRUE">
<parent>

<class>DTVNetwork</class>
<propagate>FALSE</propagate>

</parent>
<parent>

<class>CompositeLink</class>
<propagate>TRUE</propagate>

</parent>
<relative>

<class>Multiplex</class>
<propagate>TRUE</propagate>

</relative>
<associate owner="TRUE">

<class>BroadcastEquipment</class>
<propagate>FALSE</propagate>
<hops>0</hops>

</associate>
</element>

<element type="Site" duplicates="FALSE">
<parent>

<class>DTVNetwork</class>
<propagate>FALSE</propagate>

</parent>
<parent>

<class>Site</class>
<propagate>TRUE</propagate>

</parent>
<child>

<class>Site</class>
<propagate>FALSE</propagate>

</child>
<child>

48

<class>BroadcastEquipment</class>
<propagate>FALSE</propagate>

</child>
<child>

<class>SignalLinkEquipment</class>
<propagate>FALSE</propagate>

</child>
<associate owner="FALSE">

<class>CompositeLink</class>
<propagate>FALSE</propagate>
<hops>0</hops>

</associate>
</element>

<element type="CompositeLink" duplicates="TRUE">
<parent>

<class>DTVNetwork</class>
<propagate>FALSE</propagate>

</parent>
<child>

<class>BasebandLink</class>
<propagate>FALSE</propagate>

</child>
<child>

<class>TelcoLink</class>
<propagate>FALSE</propagate>

</child>
<relative>

<class>Multiplex</class>
<propagate>TRUE</propagate>

</relative>
<associate owner="TRUE">

<class>Site</class>
<propagate>FALSE</propagate>
<hops>0</hops>

</associate>
</element>

<element type="TelcoLink" duplicates="FALSE">
<parent>

<class>CompositeLink</class>
<propagate>TRUE</propagate>

</parent>
<parent>

<class>DTVNetwork</class>
<propagate>FALSE</propagate>

</parent>
<associate owner="TRUE">

<class>SignalLinkEquipment</class>
<propagate>FALSE</propagate>
<hops>0</hops>

</associate>
</element>

<element type="Multiplex" duplicates="TRUE">
<parent>

<class>DTVNetwork</class>
<propagate>FALSE</propagate>

</parent>
<child>

<class>BasebandLink</class>
<propagate>FALSE</propagate>

</child>
<child>

<class>CompositeLink</class>
<propagate>FALSE</propagate>

</child>
<relative>

<class>Service</class>

49

<propagate>TRUE</propagate>
</relative>

</element>

<element type="Service" duplicates="FALSE">
<parent>

<class>DTVNetwork</class>
<propagate>FALSE</propagate>

</parent>
<child>

<class>Multiplex</class>
<propagate>FALSE</propagate>

</child>
</element>

<element type="BroadcastEquipment" duplicates="FALSE">
<parent>

<class>Site</class>
<propagate>TRUE</propagate>

</parent>
<parent>

<class>BroadcastEquipment</class>
<propagate>TRUE</propagate>

</parent>
<child>

<class>BroadcastEquipment</class>
<propagate>FALSE</propagate>

</child>
<associate owner="FALSE">

<class>BasebandLink</class>
<propagate>TRUE</propagate>
<hops>1</hops>

</associate>
</element>

<element type="SignalLinkEquipment" duplicates="FALSE">
<parent>

<class>Site</class>
<propagate>TRUE</propagate>

</parent>
<associate owner="FALSE">

<class>TelcoLink</class>
<propagate>TRUE</propagate>
<hops>1</hops>

</associate>
</element>

</metamodel>

Before describing the structure and syntax of a metamodel file in some detail, it should be noted that whilst it is
possible to include examples of class specializations into a UML class diagram, such information would not be
included in the equivalent metamodel file. This is because the build (run-time data load) provides the
specialization i.e. the definition of the Sub Class attribute for each sub-type.
The first section of the file contains XML header and DTD information together with the opening <metamodel>
tag. This contains mandatory metamodelName and metamodelVersion attributes for the metamodel itself:

.

.
<metamodel metamodelName="Sidonis DTV Metamodel" metamodelVersion="1.0">

Each distinct class described in the metamodel class diagram requires an entry in the XML file bounded by the
<element> </element> tag pair. For example, the DTVNetwork class has the following entry:

<element type="DTVNetwork" duplicates="FALSE">
...

</element>

50

The <element> tag has two attributes: the type or base class name and whether or not duplicates are allowed.
Both are mandatory and the latter field is normally FALSE, however it is set to TRUE when the same object can
be loaded with different unique references e.g. if it has a number of alias names.
Within the <element> </element> tag pair, additional tag pairs may be defined, specifying the possible types of
relationships that objects of this type can enter into. In addition, a relationship must be defined in each class that
participates in that relationship i.e. at both ends, and this must be done in context. For example, with a
parent/child relationship, the parent class defines a <child> relationship and the child class defines an equivalent
<parent> relationship. The additional tag pairs are:
<parent> </parent>. This tag pair is required at least once in every aggregated or child class (because every
class has a parent) and defines the parent class type in a composite relationship. It contains two additional tag
pairs:

<class>{PARENT BASE CLASS}</class>, the base class of the parent
<propagate>{TRUE|FALSE}</propagate>, whether automatic state propagation is required
to the parent object
e.g.
<element type="Site" duplicates="FALSE">

<parent>
<class>DTVNetwork</class>

<propagate>FALSE</propagate>
</parent>
...

</element>

Note that the top-most class in a state mesh - usually some type of network - has a parent class
of Model, for which UCA automatically generates the required support and no entry is
required in the XML file.

<relative> </relative>. This tag pair is used in a contained or nephew class and defines the containing or uncle
class type in a containment relationship (hence the name <relative>). It contains two additional tag pairs:

<class>{RELATIVE BASE CLASS}</class>, the base class of the relative
<propagate>{TRUE|FALSE}</propagate>, whether automatic state propagation is required
to the relative
e.g.
<element type="Multiplex" duplicates="TRUE">
...

<relative>
<class>Service</class>
<propagate>TRUE</propagate>

</relative>
</element>

Note in this example that the duplicates attribute is set to TRUE. This allows a Multiplex
object to be data loaded several times if it supports more than one Service uncle object (only
one uncle object can be specified at a time in a single data load block). Also note that the
propagate attribute is set to TRUE. This means that any state change on a Multiplex object
will be propagated automatically to all Service uncle objects.

<child> </child>. This tag pair is used in a composite (or parent) class OR in an aggregate (or uncle) class. In a
composite relationship, it defines the child class type. In an aggregate relationship, it defines the contained or
nephew class type. It contains two additional tag pairs:

<class>{CHILD BASE CLASS|NEPHEW BASE CLASS}</class>, the base class of the
child or nephew class.
<propagate>{TRUE|FALSE}</propagate>, whether automatic state propagation is required
to the child or nephew
e.g. Nephew

<element type="Service" duplicates="FALSE">
...
<child>

<class>Multiplex</class>
<propagate>FALSE</propagate>

</child>
</element>

Note that in this example the duplicates attribute is set to FALSE. This is because a Service
object is only loaded once even though it may have many Multiplex nephew objects

51

e.g. Child
<element type="Site" duplicates="FALSE">

...
<child>

<class>Site</class>
<propagate>FALSE</propagate>

</child>
<child>

<class>BroadcastEquipment</class>
<propagate>FALSE</propagate>

</child>
<child>

<class>SignalLinkEquipment</class>
<propagate>FALSE</propagate>

</child>
...

</element>

Note that a Site parent object may singly or simultaneously have a number of different types of
child object, including other Site objects (this allows a hierarchy of Sites as defined in the
metamodel UML class diagram).

<associate> </associate>. This tag pair is used in ‘associate’ or peer classes and defines the peer class type in an
association relationship. The <associate> tag has an owner attribute that defines the class type at one end only of
an association relationship as the nominal owner, i.e. set to TRUE. Obviously, the class type at the other end of
the same relationship must have this attribute set to FALSE. The purpose of this tag is to force the bi-directional
relationship in the state mesh to be constructed from the ‘owning’ end only. The <associate> </associate> tag
pair contains three additional tag pairs:

<class>{PEER BASE CLASS}</class>, the base class of the remote peer class.
<propagate>{TRUE|FALSE}</propagate>, whether automatic state propagation is required
to the remote peer
<hops>{0|n}</hops>, the extent of automatic state propagation, usually 0 or 1 objects (0
means don’t propagate to associate, even if propagate attribute is set to TRUE. 1 means
propagate to associate and no further if propagate attribute is set to TRUE).

e.g. Relationship owner, BasebandLink objects does not propagate state changes to associate
BroadcastEquipment objects

<element type="BasebandLink" duplicates="TRUE">
...

<associate owner="TRUE">
<class>BroadcastEquipment</class>
<propagate>FALSE</propagate>
<hops>0</hops>

</associate>
</element>

e.g. Relationship non-owner, BroadcastEquipment objects propagate state changes to associate
BasebandLink objects.

<element type="BroadcastEquipment" duplicates="FALSE">
...

<associate owner="FALSE">
<class>BasebandLink</class>
<propagate>TRUE</propagate>
<hops>1</hops>

</associate>
</element>

5.4 Metamodel Design Patterns
Developing UCA solutions in a number of application areas has resulted in the use of some common design
patterns for metamodel components. The following sections describe some of the more useful examples using
annotated UML class diagrams and where appropriate, associated correlation models.

52

5.4.1 Equipment Tree

The Equipment Tree pattern describes a common arrangement for building hierarchical network equipment
models in UCA and includes annotations for model-driven state propagation between equipment layers. The
following UML class diagrams illustrate the general form of the pattern and an example Equipment Tree
metamodel fragment for a telecommunications Network Element containing a hierarchical arrangement of sub-
components:

Network
Element

Rack

Shelf

1..*

1..*

Card

Port

1..*

1..*

General Form

Equipment

Function

1..*

Container

Example Equipment Tree

Network
Element

Rack

Shelf

1..*

1..*

Card

Port

1..*

1..*

Network
Element

Rack

Shelf

1..*

1..*

Card

Port

1..*

1..*

General Form

Equipment

Function

1..*

Container

Equipment

Function

1..*

Container

Example Equipment Tree

The general form of the pattern allows the user to construct an arbitrarily complex layered equipment model
including model-driven state propagation between the layers. The example Equipment Tree illustrates how the
general form may be used to construct a specialisation for a particular application domain and this would
normally be used as part of a UCA metamodel.
A correlation model, based on the example Equipment Tree, is illustrated in the following diagram to show how
the pattern specialisation would be used in practice.

53

Automatic
Model-Driven

State Propagation

Automatic Model-Driven
State Propagation

 Rule-Driven State

Propagation

Port 1 Port 2

Port Group

Card

Card Group

Port 1 Port 2

Port Group

Card

Card Group

Shelf

Shelf Group

Shelf

Shelf Group

Automatic Model-Driven
State Propagation

 Rule-Driven State

Propagation

Rack

Rack Group

Network Element

Automatic Model-Driven
State Propagation

 Rule-Driven State

Propagation

 Rule-Driven State

Propagation

Automatic
Model-Driven

State Propagation

Automatic Model-Driven
State Propagation

 Rule-Driven State

Propagation

Port 1 Port 2

Port Group

Card

Card Group

Port 1 Port 2

Port Group

Card

Card Group

Shelf

Shelf Group

Shelf

Shelf Group

Automatic Model-Driven
State Propagation

 Rule-Driven State

Propagation

Rack

Rack Group

Network Element

Automatic Model-Driven
State Propagation

 Rule-Driven State

Propagation

 Rule-Driven State

Propagation

The import facility provided with UCA may be used to convert the Equipment Tree UML class model (in XML
format) into a UCA metamodel, capable of supporting the correlation model including automatic model-driven
state propagation.
The user is then left to construct and deploy the simple rules and actions necessary to handle the propagation of
state changes between layers of the model and carry out consequent actions. For example, a design choice might
be to build into rule an assumption that a Card has failed when 75% of the Ports on that Card have themselves
failed. As well as reporting the failure into the enclosing Shelf, the designer could instigate an action to attempt
an automatic reset of the Card itself.
The important point to consider is that the combination of automatic model-driven state propagations and the
flexibility of user-defined rule-driven state propagations allows the correlation designer to achieve a very
flexible handling and reporting structure. In addition, the single metamodel definition and accompanying
rule/action set will apply equally to all Network Elements for which data is loaded into UCA, regardless of the
actual number of Ports, Cards, Racks and Shelves in each instance.

5.4.2 Normaliser

Networks are constructed from a diverse range of components within and across the ranges of equipment
supplied by different manufacturers. For simple correlation scenarios or test implementations, it may be
advantageous to provide individual correlation models for each variation, however as the extent of the
implementation increases it becomes important to adopt techniques that promote simplification and re-use and
minimise the maintenance effort.
One technique that can be usefully employed at the lowest level of the correlation ‘pyramid’ is to normalise this
diversity into a common logical representation that then drives the correlation layers above in a uniform manner.
Diversity at this level usually manifests itself in the following ways:

 Alarm reports received from network equipment vary widely in their reporting standard,
complexity and severity (even in different revisions of the same equipment supplied by a
manufacturer).

54

 The complexity of the logical implementation model for the same type of equipment varies widely
across product ranges and manufacturers. The result is that the same problems are often reported in
completely different ways.

UCA supports the normalisation of this diversity into a common logical form using the Normaliser pattern
described in the following UML class diagrams.

Subclass
Type A

Subclass
Type B

Example Normalisation

1..*

Port

1

Link

Card

2

1..*

Type B
SubPort

1..*

Type B
SubPort

General Form

Specialised
Object Type 1

Specialised
Object Type 2

1..*

Normalised
Object

Container

Associate

Alarm Report
Mapping Targets Alarm Report

Mapping Targets

The Normaliser pattern is derived from the widely used class form of the Adapter pattern. It achieves the
normalisation process through two mechanisms:

 Diverse alarm reports are mapped onto instances of the specialised object types in the correlation
model, using the comprehensive target object mapping capabilities provided by UCA. The
mapping is configured such that regardless of the type of alarm report, it causes the same state
change to be applied to the target object.

 Specialised object types (reflecting the diversity of the network implementation) are provided with
a common base class that serves as the normalised ‘logical’ driver for correlation at higher levels.
The state change caused by mapping alarm reports onto a specialised object affects the
encapsulated base class instance equally.

The Rules that drive higher-level correlations are then written to operate on instances of objects with the
common base class – they effectively ignore the diversity and look only for objects of the base class type in
working memory (rather than their subclass type which reflects their diversity).
Of particular interest in the example normalisation model shown above is the extra level of diversity in the Type
B specialised object type. The Type A subclass has alarm reports attached directly by UCA as described above.
In contrast, the Type B subclass has alarm reports attached to its set of SubPorts (because it does not itself
directly generate alarm reports and mapping those from the SubPorts to the owning Type B instance would not
achieve the correct effect).
In order to achieve the required normalisation from Type B objects, the designer is required to provide a simple
rule to detect when the required proportion of Type B SubPorts have themselves changed state and a
corresponding action to force the owning Type B subclass instance to the failed state. Once this has been
implemented however, the correlation scenario will operate equally with either Type A or Type B objects.

5.4.3 Link Handler

Most communication networks are constructed at the equipment level from a mesh of control or switching
elements and some type of transport medium to communicate information or switch resources between them e.g.
radio link, fibre optic cable. In general, this level of complexity is insufficient to provide the level of resilience to
failure required by modern service level agreements or to support the diverse range of services offered.
In practice therefore, these types of network employ a logical network model above the physical level,
supporting a number of layers of increasing abstraction (and usually complexity). A common characteristic of

55

each layer however is that it is dependent on a lower layer for service and correlation scenarios usually involve
determining the effect of a problem at a lower layer on those above.
The practical problem in constructing these scenarios is surprisingly not the issue of modelling the inter-layer
dependencies or associated state propagations but that of obtaining a suitable generic ‘driver’ from the physical
layer to provide an initial trigger. This is because the physical links e.g. cables, radio links, fibres etc. on which
logical links are carried do not themselves generate Alarm Reports. In general, the only vaguely useful Alarm
Reports are those reported against the equipment at each end of the physical links and by themselves they are
unsuitable for reliably triggering a scenario. This is because the receipt of an Alarm Report from one end of a
link is not always a reliable indicator of link failure.
The purpose of the Link Handler pattern is twofold. It provides the connection between physical equipment and
associated link problems and supports the generation of a reliable generic ‘driver’ into the logical layer above.
The general form of the pattern and a metamodel fragment that employs it (from the DTV network example
included with UCA) are illustrated in the following UML class diagrams.

General Form

Physical
Link

Logical Link

Link Termination
Point21

Example Link Handler

Baseband
Link

Multiplex

Broadcast
Equipment21

Service

Composite
Receiver

Composite
Transmitter

General Form

Physical
Link

Logical Link

Link Termination
Point21

Example Link Handler

Baseband
Link

Multiplex

Broadcast
Equipment21

Service

Composite
Receiver

Composite
Transmitter

The pattern operates in two stages. First, Alarm Reports delivered against the Link Termination Point objects
result in state changes that are propagated to a Physical Link object using automatic model-driven state
propagation. One or more rules provided by the correlation designer detect when the ends of the Physical Link
have attained the required combination of states e.g. failed + failed or failed + degraded (as required by the
correlation scenario) and the consequent action forces the state of the Physical Link to failed. Next, automatic
model-driven state propagation reports the state change of the Physical Link upwards to the carried Logical Link,
thus achieving the requirement to provide a generic ‘driver’ into that layer.
The example Link Handler illustrates how this pattern may be incorporated into the UCA metamodel. The
structure shown actually reports a Baseband Link (i.e. the Physical Link) failure up to the Multiplex transported
over it, which in turn reports a problem to the Services carried on the Multiplex. It also utilises the Normaliser
pattern to handle equipment diversity, using the Broadcast Equipment base class to represent the Composite
Receiver and Transmitter objects at either end of the Baseband Link and thus simplifying the implementation.

5.4.4 Physical-Logical Vee

The Physical-Logical Vee pattern is in fact a combination of the Equipment Tree (Physical) and Link Handler
(Logical) patterns described above and forms the basis of many correlation scenarios that operate on
communications networks. The pattern allows a designer to implement scenarios that simultaneously handle two
important aspects of correlation analysis – problem detection on the (physical) equipment level and impact
analysis on the (logical) service impact level. The following UML class diagram illustrates the general form of
the pattern and shows the practical application of it in the DTV network metamodel.

56

General Form

Physical
Link

Logical Link

Link Termination
Point21

Example Physical Logical Vee

Baseband
Link

Multiplex

21

Service

1..*

Equipment
Container

Broadcast
Equipment

1..*

Site

1..*

DTV
NetworkLogical Physical

General Form

Physical
Link

Logical Link

Link Termination
Point21

Example Physical Logical Vee

Baseband
Link

Multiplex

21

Service

1..*

Equipment
Container

1..*

Equipment
Container

Broadcast
Equipment

1..*

Site

1..*

Site

1..*

DTV
Network

1..*

DTV
NetworkLogical Physical

Considering the general form, alarm reports attached to Link Termination Points have two simultaneous effects.
State changes are propagated directly upwards to the Equipment Container in the physical arm of the ‘Vee’,
allowing the designer to construct problem detection correlation scenarios. The same state changes are
propagated towards the Physical Link and consequential state changes are propagated upwards to the Logical
Link in the logical arm of the ‘Vee’, allowing the designer to build simultaneous service impact correlation
scenarios. Of particular interest in this pattern is the simultaneous use of relative, parent and peer relationships to
achieve the desired results.
The metamodel fragment shown is taken directly from the included DTV network example and illustrates a
practical application of this pattern.

57

Chapter 6 Creating the Model Database
Using the System Manager

One of the purposes of the UCA metamodel is to act as a template for structuring the UCA model database. The
classes and relationships defined within the metamodel drive the whole process of setting up the structure of the
tables within the UCA model database. Assuming the metamodel is defined, UCA automates the entire process
of generating these tables and defining their structure. Once the model database tables have been created, the
remaining task is to populate these tables with actual model data.
This chapter describes the process of creating and populating the model database tables.

6.1 Generating the Model Database Structure
Before a metamodel can be ‘deployed’ (i.e. used to automatically create the model database tables), it must first
be added to the metamodel library within UCA. This library acts as a storage repository for deployable
metamodels. Any number of them may be stored in the library but only one metamodel can be deployed into
active use at any time.

 To store the metamodel currently displayed in the text area of the Model tab of the System
Manager, select ‘Add …’, supply a description and additional information that distinguishes this
metamodel, then select ‘OK’.

 To view the current set of deployable metamodels stored in the metamodel library, select ‘Manage
…’ from the Model tab. This will list the details of all metamodels within the library.

 To view the contents of a particular metamodel stored in the metamodel library, select ‘Manage
…’ from the Model tab, select the metamodel of interest and click on ‘Open’. The metamodel will
then be listed in the text area of the System Manager’s Model tab.

 To deploy a metamodel in to active use, select ‘Manage …’ from the Model tab, select the
required metamodel to deploy and click on ‘Deploy’. Note that this is a destructive operation - all
data held in the model database will be destroyed. After accepting the warning confirmation, a
dialog will prompt for the model database maximum field size – enter a value at least as big as the
largest data item (usually the Unique Reference) expected to fill a model database field during
population and click on ‘OK’. The model database tables will then be automatically created from
the metamodel.

Figure 14 – The Model Tab – meta-model management

58

The fragment below illustrates the type of definition generated within the model database from the metamodel
for a CompositeLink class.
Note that the ‘create table’ statement will vary according to the types of relationship defined for the class in the
metamodel. The Relative and Associate sections marked in the example above will only exist if the class
participates in composition and association relationships respectively. On the other hand, the Parent and Class
Section will always exist (a class always has a parent even if it the special top level Model class).
Even though a class can have any number of composition and association relationships, only one set of data is
allowed for these sections per row in the appropriate model database table. To allow data loading of these
multiple relationships for a given target object, the user simply provides multiple data sets with the same Parent
and Class attribute values and different Relative and/or Associate attributes. Further, to prevent the model
builder reporting errors for duplicate entries for the same instance of a class, the user is required to set the
duplicates attribute in the metamodel for the class to TRUE. The model builder then constructs a single target
object instance but correctly sets up the multiple Relative and/or Associate relationships as required.

CREATE TABLE UCA.MD_COMPOSITELINK (
"Parent_Ref" varchar2(250) default '',
"Parent_Subclass" varchar2(250) default '',
"Parent_Class" varchar2(250) default '',
"Relative_Ref" varchar2(250) default '',
"Relative_Subclass" varchar2(250) default '',
"Relative_Class" varchar2(250) default '',
"A_Associate_Ref" varchar2(250) default '',
"A_Associate_Subclass" varchar2(250) default '',
"A_Associate_Class" varchar2(250) default '',
"Z_Associate_Ref" varchar2(250) default '',
"Z_Associate_Subclass" varchar2(250) default '',
"Z_Associate_Class" varchar2(250) default '',
"Class_Name" varchar2(250) default '' NOT NULL,
"Subclass_Name" varchar2(250) default '' NOT NULL,
"Instance_Name" varchar2(250) default '' NOT NULL,
"Unique_Ref" varchar2(250) default '' NOT NULL,
"Service_State" varchar2(20)

default 'IN_SERVICE' NOT NULL,
"Importance" varchar2(5) default '0' NOT NULL,
"Latitude" varchar2(20) default '0' NOT NULL,
"Longitude" varchar2(20) default '0' NOT NULL

) TABLESPACE UCA;

6.2 Populating the Model Database
Once the UCA model database tables have been created, they must be populated with real data representing the
actual Sites, CompositeLinks etc. There are two aspects to this:

 The initial data population, starting from empty tables
 The ‘day-to-day’ updating of the tables due, for example, to periodic inventory changes in an

operational network.

The following sections describe the two processes involved.

6.2.1 Initial Population

There are many possible techniques for populating the model database tables with data. For example, if Comma
Separated Value (CSV) data files are to be imported then Oracle’s SQL*Loader or the PostgreSQL COPY
command might be used. Alternatively, table data may be directly imported using facilities provided with the
DBMS.
Alternatively, UCA provides a facility for CSV file import intended for use when a relatively small (tens of
thousands) number of objects are to be imported. To use this facility, select the Data-load tab in the UCA
Manager (note that loading UCA with an initial set of model data can only be done when UCA is not started).

 The available classes of model data, as defined in the metamodel, will be listed on the left side.
The right side lists the CSV files available for import. Files available for import are those in the
‘import’ subdirectory of the UCA installation directory on the server. Files may be uploaded to

Relative
Section

Associate
Section

Parent
Section

Class
Section

59

this directory from a client using the Upload … button on the Data-load tab or manually copied in
from another location. These files may also be deleted from the server by selecting the file and
then clicking the Delete button.

 When creating CSV files to import, it is useful to know the exact order of fields to use on each line
of CSV data. To assist with this, clicking the CSV Help button will list all the tables, field names,
types and sizes.

 To associate a class with a CSV file, select the class on the left of the window and the associated
CSV file on the right. Then click on Associate. Details for this class / file association will then be
listed in the text area at the bottom of the window. Repeat this process for all classes and CSV files
to be associated.

 Finally, to import all the CSV files for each class, click on the Import button. You will be given
the choice of over-writing existing table data or appending the new data to the existing data.

Figure 15 – The Data-load Tab – inventory management

Below is an example where multiple rows of data are provided for a single instance of an object to configure
multiple Relative relationships to different ‘uncle’ objects, as described at the end of the preceding section. Each
Multiplex object is listed several times to allow a number of Relative relationships to be defined to different
uncle Service objects. This is illustrated in the following fragment of the example network:

60

Baseband Link

Service 1

Service 2

Service 3

Service 4

Multiplex

Multiplex.csv row N

Multiplex.csv row N+1

Multiplex.csv row N+2

Multiplex.csv row N+3

Baseband Link

Service 1

Service 2

Service 3

Service 4

Service 1

Service 2

Service 3

Service 4

Multiplex

Multiplex.csv row N

Multiplex.csv row N+1

Multiplex.csv row N+2

Multiplex.csv row N+3

6.2.2 Updating the Database

Once the model database has been populated with target object and relationship instance data, the UCA system
may be started as described previously.
Assuming that the UCA system is operational, the model database may be updated at any time, with the effect
that the state mesh will be dynamically updated and any ongoing correlations automatically resolved as far as
possible to maintain system consistency. The dynamic update mechanism is illustrated below:

For efficiency the UCA system is designed to gather a set of model database updates over a
configurable period and apply them in a single operation. Therefore, the state mesh will only be
updated at those times defined by system configuration e.g. once an hour at 30 minutes past the hour.
This means that changes applied to the model database are unlikely to be applied to the state mesh
immediately unless this coincides with the next state mesh update time or the user selects the ‘Update
Mesh Now’ option in the UCA System Manager Maintenance tab. The frequency of update will have
been configured by the system administrator (using the UCA System Manager Maintenance tab - see
the HP UCA Installation and Configuration Guide for details). The time and frequency should be
chosen to provide a balance between operational needs and system efficiency, bearing in mind that an
update requires the system to temporarily suspend (and buffer) the processing of alarm reports.

61

When a change is applied to any model database table during the ‘gathering’ period, details of the change will be
recorded in a special ‘Update’ table. At the next update time, any changes recorded in the ‘Update’ table are
applied to the state mesh. To ensure that updates are not lost during this operation, the system maintains a pair of
‘Update’ tables that are used alternately – while one set of updates is being applied, any new updates will be
recorded in the alternate ‘Update’ table. If for consistency reasons it is important that a set of updates should not
be split between two successive updates, care should be taken to ensure that a model database update is not
carried out close to an update time.
It is then the responsibility of the user to implement and configure a regularly repeated task e.g. a ‘cron’ or batch
job, to extract a set of updates from the external inventory service and apply these to the appropriate model
database tables. As described above, the state mesh will then be automatically updated at the next update time.

Insert,

Update &

Delete

Triggers

Model

Database

External

Inventory

Service

Population &

Update Service

Current

Update

Table

Table #1

Configurable

Changeover

Timer

Update

Table #1

Insert A

Insert Z

Delete C

Update D

Update

Table #2

Insert E

Delete F

Delete X

Model

Updater

Mesh
Buffer

Mapped

Alarm

Reports

Set Current
Update Table

Set Previous
Update Table

Control Buffer
Processing

Insert,

Update &

Delete

Triggers

Model

Database

External

Inventory

Service

Population &

Update Service

Current

Update

Table

Table #1

Current

Update

Table

Table #1

Configurable

Changeover

Timer

Update

Table #1

Insert A

Insert Z

Delete C

Update D

Update

Table #1

Insert A

Insert Z

Delete C

Update D

Update

Table #2

Insert E

Delete F

Delete X

State
Mapped

Alarm

Reports

Set Current
Update Table

Update State
Mesh & Resolve
Correlation

Set Previous
Update Table

Control Buffer
Processing

62

Chapter 7 The UCA Applications
UCA provides three main Graphical User Interface (GUI) applications:

 the System Manager
 the Scenario Manager
 the Mesh Viewer

The System Manager is used for system administration, model loading, diagnostics and maintenance and is
covered in Chapter 4 and the HP UCA Installation and Configuration Guide.
The Scenario Manager is used for defining and deploying scenarios, filters, mappings and rules. The Mesh
viewer is used for viewing the structure and contents of the model as well as the real-time state of mesh events
and notifications. These two GUIs are described in detail in the following chapters.
To invoke the Scenario Manager or Mesh Viewer, click on the UCA Applications button in the UCA Home
Page. A web page will be displayed requesting a username and password, as follows:

Figure 16 - The Applications Login Page

After entering a valid username and password and clicking on the Logon button, a page will be displayed
showing the UCA applications that the user is authorised to use, as shown below (see section 4.3 for details of
how roles affect allowed applications).
To start the Scenario Manager or the Mesh Viewer, click on the appropriate button.

63

Figure 17 - The UCA Applications Page

7.1 The Scenario Manager
This section describes the features available in the Scenario Manager in terms of the basic menu items, toolbar
items, pop-up menu options and so on. A detailed description of how to actually configure the scenarios, filters,
mappings and rules is provided in the subsequent chapters.
The Scenario Manager is used for:

 creating, modifying and deleting scenarios, filters, mappings and rules
 validating the ‘correctness’ of scenarios before deploying them
 deploying a set of scenarios, filters, mappings and rules into active use
 listing details of previous deployments
 maintaining and using a ‘library’ of deployments

The following screenshot shows the Scenario Manager with the main component areas labelled.

Authorised
applications

64

7.1.1 Men

The following

Scenario Builder Scenarios, Filters, Maps &
u Bar

menu items are av
File → New→ Sce
File → New→ Filt
File → New→ Ma
File → New→ Rul
File → Open from
File → Save to loc

File → Save multip
File → Print→ Tab

File → Print→ Tre
File → Print→ All

File → Exit
Server → Load Da

Server → Validate

Server → Deploy D

Menu Bar

r

Tool Bar Tree Rules Summary List
Status Ba
Figure 18 - The Scenario Manager

ailable:
nario Opens the ‘Add New Scenario’ dialog box.
er Opens the ‘Add New Filter’ dialog box.
pping Opens the ‘Add New Mapping’ dialog box.
e Opens the ‘Add New Rule’ dialog box.
local file Opens a local file of scenarios, filters, mappings and rules.
al file Saves the current set of scenarios, filters, mappings and rules

to a local file.
le scenarios Saves a selection of scenarios from the scenario builder tree.
le Summary Prints the current contents of the Scenarios, Filters, Mappings

and Rules Summary List..
e Summary Prints the current contents of the Scenario Builder Tree.
 Details as XML Prints all details of all configured scenarios, filters, mappings

and rules in XML format.
Exits the application.

ta Loads the currently deployed scenarios, filters, mappings and
rules from the server into view, replacing all currently
displayed data.

 Data Validates the scenarios, filters, mappings and rules in the
Scenario Builder Tree. Data cannot be deployed until it has
been validated.

ata Deploys the validated scenarios, filters, mappings and rules
in the Scenario Builder Tree to the server. The user is

65

prompted to enter a description and additional information
related to the deployment.

Server → Show Deployments Shows the ‘Deployments’ dialog listing details of username,
date, description and additional information for every
deployment. A deployment may be selected in the
‘Deployments’ dialog and Opened, so that the Scenario
Builder Tree and Summary List contents are replaced with of
the selected deployment.

Server → Show Library Shows the ‘Scenario Library’ dialog listing details of
username, date, description and additional information for
each scenario exported to the library. An exported scenario
may be selected in the ‘Scenario Library’ dialog and Merged,
so that the scenario contents are merged into the scenarios
branch of the Scenario Builder Tree.

View → Look and Feel → … Changes the look and feel of the GUI according to those
supported on the client platform eg. CDE/Motif, Windows,
Metal.

View → Toggle tree node Ids Toggles the display of the internal unique Ids for each
scenario, filter, mapping and rule in the Scenario Builder
Tree.

Tools → Purge Summary Table Deletes all scenarios, filters, mappings and rules in the
Summary List that are not in the Scenario Builder Tree.

Tools → allow rules to loop? Enables or disables the looping of rules using the JBoss Rules
internal looping activation / deactivation.

Help → Scenario Manager Help Displays Scenario Manager help information in a web page.
Help → Sidonis web site Displays the Sidonis web page.
Help → About Displays a dialog showing the UCA and Scenario Manager

version numbers.

7.1.2 Tool Bar
Clicking on an icon in the tool bar performs the action as follows:

Icon Action

Opens a local file of scenarios, filters, mappings and rules.

Saves the current set of scenarios, filters, mappings and rules to a local file.

Loads the currently deployed scenarios, filters, mappings and rules from the server into
view, replacing all currently displayed data.

Validates the scenarios, filters, mappings and rules in the Scenario Builder Tree. Data
cannot be deployed until it has been validated.

Deploys the validated scenarios, filters, mappings and rules in the Scenario Builder Tree to
the server. The user is prompted to enter a description and additional information related to
the deployment.

Shows the ‘Deployments’ dialog listing details of username, date, description and
additional information for every deployment. A deployment may be selected in the
‘Deployments’ dialog and Opened, so that the Scenario Builder Tree and Summary List
contents are replaced with of the selected deployment.

Shows the ‘Scenario Library’ dialog listing details of username, date, description and
additional information for each scenario exported to the library. An exported scenario may
be selected in the ‘Scenario Library’ dialog and Merged, so that the scenario contents are
merged into the scenarios branch of the Scenario Builder Tree.

Opens the ‘Add New Scenario’ dialog box.

66

Opens the ‘Add New Filter’ dialog box.

Opens the ‘Add New Mapping’ dialog box.

Opens the ‘Add New Rule’ dialog box.

Opens the ‘Create New Rule Set’ dialog box (see description of ‘Rule Templates’).

The toolbar may be dragged and repositioned on the top, left or right side of the GUI or may be detached
completely.

7.1.3 Scenario Builder Tree
Scenarios, filters, mappings and rules listed in the ‘Summary List’ may be dragged and dropped into position in
the Scenario Builder Tree. The tree represents all scenarios, filters, mappings and rules that will be deployed into
live use. When dropping an item into the tree, the following constraints apply:

 only scenarios can be dropped onto the tree root node, i.e. the ‘scenarios’ node
 a filter may be dropped under the ‘filters and mappings’ node
 a filter may be dropped under another filter
 a mapping may be dropped under a filter provided the filter has no other filter ‘children’ nodes

underneath it.
 a rule may be dropped under the ‘rules’ node

When the tree is configured with a set of scenarios, filters, mappings and rules, it may be validated and
subsequently deployed (providing it is valid).

Pop-up Menu Options

The following pop-up menu items are available by right-clicking a node in the Scenario Builder Tree:

All nodes:
fully expand / collapse → expands or collapses all descendent nodes below the

selected node, provided there are descendents to expand
or collapse.

All nodes except the root node:
move down → moves the selected node down one (provided it is possible

to do so), but maintaining the same level of nesting.
move up → moves the selected node up one (provided it is possible to

do so), but maintaining the same level of nesting.

The ‘scenarios’ root node:
un-highlight all → removes the red highlighting from any nodes highlighted

in the tree (see the ‘highlight’ pop-up menu item available
for the Summary List rows).

import from library → Opens the ‘Scenario Library’ dialog listing details of
username, date, description and additional information for
each scenario exported to the library. An exported
scenario may be selected in the ‘Scenario Library’ dialog
and Merged, so that the scenario contents are merged into
the scenarios branch of the tree.

Scenario nodes:
export to library → exports the currently selected scenario and all its

associated filters, mappings and rules to the scenario
library. The user is prompted via a dialog for a description
and additional information to be associated with the
exported scenario.

Scenarios, filters, mappings and rules nodes:

67

Delete from tree → removes the selected item from the tree, but not from the
Summary List.

7.1.4 Scenarios, Filters, Mappings and Rules Summary List
When a new scenario, filter, mapping or rule is first created, it appears as an item in the ‘Scenarios, Filters,
Mappings and Rules Summary List’. Thereafter, it may be viewed, modified, duplicated, highlighted in the
Scenario Builder tree, or deleted. Any row in the Summary List may be dragged and dropped into the Scenario
Builder tree, according to the constraints described above. The Summary List shows details of the item’s type
(scenario, filter, mapping or rule), description and modification date. The columns are re-sizable and movable
and their headers may be clicked on to toggle the sort order.

Pop-up Menu Options

The following pop-up menu items are available by right-clicking a row in the Summary List:
view / modify → opens the appropriate dialog box for viewing or

modifying the selected scenario, filter, mapping or rule.
create copy → makes a copy of the selected scenario, filter, mapping or

rule. The new copy will have the same Description but
preceded with ‘copy of ’.

highlight → highlights in red the selected scenario, filter, mapping or
rule in the Summary List. Also all occurrences of the
selected scenario, filter, mapping or rule are highlighted
in red in the Scenario Builder tree. This is useful if the
tree is very large and it is difficult to spot all nodes related
to an item selected in the summary list.

un-highlight → un-highlights a previously highlighted scenario, filter,
mapping or rule in the Summary List. Also all
occurrences of the selected scenario, filter, mapping or
rule are un-highlighted in the Scenario Builder tree.

delete → deletes the selected scenario, filter, mapping or rule from
the Summary List. If the item has been copied to the
Scenario Builder tree, all such occurrences will also be
deleted. Note that once an item has been deleted in this
way, it will have been be permanently removed. A
safeguard would be to create a backup copy on the local
disk of all scenarios, filters, mappings and rules by
clicking on the toolbar button.

7.1.5 Status Bar
The Status Bar displays informational and warning messages – these are shown in the left hand area. Warning
messages are highlighted with a red background. The progress of various operations is shown in the progress bar
area on the right hand side of the Status Bar.

7.2 The Mesh Viewer
The Mesh Viewer is used for:

 Viewing in real-time the state of the mesh objects.
 Viewing in real-time the notification details associated with the displayed mesh objects.
 Viewing the full hierarchy of mesh objects in the state mesh, in terms of a model tree of classes,

subclasses, instances and instance details.
 Navigating around the model tree.

The screenshot below shows the Mesh Viewer with the main components areas labelled.

Double-clicking with the left mouse button on a
row in the Summary List has the same effect as
selecting the ‘view / modify’ pop-up menu item.

68

7.2.1 Menu Bar
The following menu items are available:

File → Inject alarms from file Allows a user with ‘tester’ role privilege to select an XML
file of alarms to inject into UCA.

File → Exit Exits the application.
View → Look and Feel → … Changes the look and feel of the GUI according to those

supported on the client platform eg. CDE/Motif, Windows,
Metal.

View → Pause Pauses the update of the Mesh Object List. See the ‘pause’
icon description under the Toolbar section below.

View → Filter Filters the objects displayed in the Mesh Object List. See the
‘filter’ icon description under the Toolbar section below.

Help → Mesh Viewer Help Displays Mesh Viewer help information in a web page.
Help → HP web site Displays the HP web page.
Help → About Displays a dialog showing the UCA and Mesh Viewer

version numbers.

Figure 19 - The Mesh Viewer

7.2.2 Tool Bar
Clicking on an icon in the tool bar performs the action as follows:

Icon Action

Displays the Notifications Viewer Dialog (see below), showing notification details
associated with the object currently selected in the associated Mesh Object List.

Toggles the pausing / un-pausing of the Mesh Object List. When paused, updates to the

Menu Bar Model Tree – classes,
subclasses, instances &
instance details

Mesh Object List

Status Bar

Tool Bar

69

Mesh Object List are received but not displayed. When un-paused, the Mesh Object List
will work as normal i.e. the correct state of the failed or degraded Mesh Objects will be
displayed dynamically. When the display is paused, the menu bar will change colour and
the pause icon will change.

Enables display filtering of failed or degraded Mesh Objects in the Mesh Object List. When
selected, the tool bar will display text boxes to allow entry of the filtering conditions.
Filtering may be performed on all columns or any individual column. The filtering criteria
can include regular expressions, in which case the regular expression wizard can be used.
When filtering is de-selected, the display will revert to normal un-filtered behaviour.

The toolbar may be dragged and repositioned on the top, left or right side of the GUI or may be detached
completely.

7.2.3 Model Tree
The Model Tree is split into four re-sizable sections – classes, subclasses, instances and instance details. Each
section displays a tree structure.
The classes tree is essentially the parent-child relationship information between the classes as described by the
metamodel. When a class node is selected, the subclasses tree shows all the subclass types (as derived from the
actual model data) related to that class.
When a subclass node is selected, the instances tree shows all the mesh object instances (as derived from the
actual model data) related to that subclass. If there are a large number of instances, they are presented one
‘page’ at a time. The pages may be navigated one page forward, one page backward and back to the first page by
selecting , and respectively from just below the instances tree.
When an instance node is selected, the instance details tree shows all the mesh object instance details (as derived
from the actual model data) related to that instance. The instance’s details include not just information about
specific attributes, such as importance, latitude, longitude etc., but model relationship data. For example, there
will be a tree branch showing the Parent details in terms of parent class, parent subclass and parent instance.
There may also be a branch showing similar ‘relative’ or ‘associate’ details, depending on whether the instance
has relatives or associates defined in the metamodel and data has been provided for them in the model database.
If a parent, relative or associate instance node is selected in this tree and the button is clicked, the Model Tree
will change to display the class, subclass, instance and instance details associated with that node. Subsequently,
if the button is clicked, the Model Tree will revert to the object that was previously navigated from (i.e. the
one that was navigated from using the button).

Pop-up Menu Options

The following pop-up menu item is available by right-clicking a node in the subclasses tree:
find instances … → opens the Search dialog, as shown below. This dialog is

used to specify an instance name (or names) to search for.
An exact instance name or a wild-carded expression may
be entered as the search criteria. When the OK button is
clicked, the instances tree will show those instances
related to the currently selected subclass, according to the
search value entered.

70

Figure 20 - The Search for Instances dialog

The following pop-up menu items are available by right-clicking a node in the instances tree:
show all notifications … → Displays the Notifications Viewer Dialog (see below),

showing notification details associated with the object
whose class, subclass and instance is currently selected in
the associated trees.

Create alarm → Displays the Create Alarm Dialog (see below), allowing a
user with ‘tester’ role privilege to enter all alarm fields for
an alarm to be injected into UCA.

Figure 21 - The Create Alarm dialog

7.2.4 Mesh Object List
When a mesh object changes state to failed or degraded, the Mesh Object List will update in real-time to display
details of that object, including its status (failed or degraded), class name, subclass name and the instance’s
unique reference, as well as the timestamp that the GUI received the update. If an object represented in the
Mesh Object List is associated with one or more notification, the leftmost column will show either the icon
or the icon, depending on whether the associated notification(s) are normal or locked. When a mesh object
changes state from failed or degraded back to normal, the corresponding row will be removed from the Mesh
Object List.
When an item in the list is selected, its corresponding class, subclass, instance and instance details are
highlighted in the Model Tree.
The columns in the Mesh Object List are re-sizable and movable and their headers may be clicked on to toggle
the sort order.

Pop-up Menu Options

The following pop-up menu item is available by right-clicking a row in the Mesh Object List:

After displaying ‘searched for instances’, to reset
the list of displayed instances to the full set,
CTRL-click the subclass node to deselect it, then
re-select it with a left mouse-click.

71

highlight object in model → highlights the class, subclass, instance and instance details
in the Model Tree associated with the object in the
selected row

show all notifications … → Displays the Notifications Viewer Dialog (see below),
showing notification details associated with the object
whose class, subclass and instance is currently selected in
the associated trees.

7.2.5 Notifications Viewer Dialog

The notifications viewer dialog provides useful dynamic information about notification(s) and data related to
those notifications. It is used for:

 Viewing current notifications in real-time. A notification is an indication of the problem detected
and is the result of an action being fired from a rule.

 Viewing details of contributory events associated with a notification. A contributory event is an
event that contributed to the problem i.e. it is an event that is wholly or partially indicative of the
problem.

 Viewing details of the affected objects associated with a notification. An affected object represents
a mesh object within the model that has been affected as a by-product of the problem e.g.
downstream sites affected by a main site failure.

 Viewing details of sympathetic events associated with an affected object. A sympathetic event
represents an event that has occurred as a by-product of the problem e.g. an event from a
downstream site that was generated as a result of a main site failure.

To view the notification(s) associated with a failed or degraded mesh object, double click a row in the Mesh
Object List (or right click the row and select ‘show all notifications …’.
To view the notification(s) associated with an object in the Model tree, select the desired class, subclass and
instance nodes, then right-click the instance node and select ‘show all notifications’ from the pop-up menu.

The screenshot below shows the Notifications Viewer Dialog with the main components areas labelled.

From the Notifications Viewer Dialog, the following operations may be performed:
select a notification in the Notifications Table → this will display all

contributory events and
affected objects associated with
the notification.

select an affected object in the Affected Objects Table → this will display all sympathetic
events associated with the
affected object.

The columns in the Notifications Viewer Dialog tables are re-sizable and movable and their headers may be
clicked on to toggle the sort order.

Note that all information presented in the Notifications Viewer Dialog is potentially available to be passed on to
an external system, for example in the form of a ‘master’ problem alarm together with the event details that
might be used to de-clutter an alarm display in a network management system.

Double-clicking with the left mouse button on a row
in the Mesh Object List has the same effect as
selecting the ‘show all notifications …’ pop-up menu
item.

72

Figure 22 - The Notifications Viewer Dialog

The Notifications Viewer Dialog updates dynamically with any changes to the notification details.

Note that only a single Notifications Viewer Dialog can be displayed at any one time. If the dialog is invoked
for a different object, then any currently displayed Notifications Viewer Dialog will be replaced with the new
one.

7.2.6 Status Bar

The Status Bar displays informational and warning messages – these are shown in the left hand area. Warning
messages are highlighted with a red background. The progress of various operations is shown in the progress bar
area on the right hand side of the Status Bar.

Notifications
Table

Contributory
Events Table

Affected
Objects Table

Sympathetic
Events Table

73

Chapter 8 Creating Scenarios, Filters,
Mappings and Rules

8.1 Scenarios
Scenarios provide a container for a set of filters, mappings and rules. A scenario typically represents a set of
filters, mappings and rules that are a logical, self-contained grouping e.g. a scenario might relate to handling
power failures, for dealing with SDH correlations or simply for housekeeping purposes. One of the key attributes
of a scenario is its ‘context name’. A ‘context name’ essentially relates to a ‘working memory’ within the
inference engine component of UCA. Being able to have separate working memories is very useful to demarcate
groups of rules that must be kept independent of each other. Any number of scenarios may be created and each
one may have a different context name if desired; alternatively, they may all have the same context name, or
there may be some sharing the same context and others with different ones. The idea of a context name (i.e.
essentially a working memory) therefore allows potentially conflicting logical correlations to execute in
isolation, if required, or to co-exist in the same context. Furthermore, ‘Notifications’ provide a user-defined and
controllable communications path between contexts, allowing hierarchies of correlations to be constructed.
To create a new scenario:

 Click on the button in the UCA Scenario Manager toolbar or select File → New →
Scenario from the menu-bar.

 In the ‘Add New Scenario’ dialog, enter a description, some additional information and a
context name.

 Click on the OK button.

Figure 23 - The Add New Scenario Dialog

The new scenario will be listed in the Scenarios, Filters, Mappings and Rules Summary List in the
UCA Scenario Manager.

To view an existing scenario:
 Double-click the scenario in the Scenarios, Filters, Mappings and Rules Summary List in the

UCA Scenario Manager, or right-click the scenario and select the view / modify pop-up menu
item.

To modify an existing scenario:
 Double-click the scenario in Scenarios, Filters, Mappings and Rules Summary List in the UCA

Scenario Manager, or right-click the scenario and select the view / modify pop-up menu item.
 Make the necessary changes and click OK.

To include a scenario in a deployment:
 If the scenario is to be included in the set of scenarios, filters, mappings and rules for an active

deployment, it must be dragged from the Scenarios, Filters, Mappings and Rules Summary List

74

and dropped onto the root node (i.e. the ‘scenarios’ node) of the Scenario Builder Tree. Once
this has been done, the new scenario will be shown in the tree with two automatically created
sub-nodes – ‘filters and mappings’ and ‘rules’, as shown in the following example.

To remove a scenario from a deployment:
 If the scenario is to be removed from the set of scenarios, filters, mappings and rules for an

active deployment, right-click the scenario in the Scenario Builder Tree and select delete from
tree in the pop-up menu. Note that when this is done, all children nodes underneath the
removed node will also disappear from the tree.

8.2 Filters
UCA supports a powerful and highly configurable alarm filtering capability. Alarms may be allowed to pass into
the system based on filter conditions applied to any combination of any event fields (see section 10.3.2 for the
available event fields). The filter conditions include the operators: ‘equals’, ‘not equals’, ‘contains’, ‘does not
contain’, ‘starts with’, ‘ends with’ and ‘matches’.
The ‘matches’ filter condition operator allows use of a regular expression. In addition to entering an expression
directly, a graphical ‘regular expression wizard’ is provided that allows a user to create regular expression
statements without needing any knowledge of regular expression syntax.
Filter conditions are grouped according to conditional logic, including:

 All conditions being satisfied
 Any conditions being satisfied
 Any conditions not being satisfied
 None of the conditions being satisfied

Any of these logic groups may be contained in any other logic group. In this way it is possible to effectively
create arbitrarily complex logic expressions.

To create a new filter:

 Click on the button in the UCA Scenario Manager toolbar or select File → New → Filter
from the menu-bar.

 In the ‘Add New Filter’ dialog, enter a description.
 In the ‘Add New Filter’ dialog, right-click the tree root node (‘Pass alarms when …’) and

select the required logic group from the ‘condition ►’ sub-menu.
 Right-click the logic group that will have been added to the tree and select either ‘insert new

filter condition’ or ‘condition ►‘ from the pop-up menu.
 If ‘insert new filter condition’ was selected, select the required field and operator values from

the drop down lists and enter (or select from a drop-down list) the value, as shown in the
example screenshot below.

75

Figure 24 - The Add New Filter Dialog

 If ‘condition ►‘ was selected, select the required logic group sub-menu item.
 Continue to build new filter statements and logic groups in this manner as necessary.
 To modify or delete a filter statement or logic group, right-click on the associated tree node

item and select ‘modify’ or ‘delete’ as appropriate.

The example screenshot below shows a reasonably complex filter that will allow events into the
system provided the severity is ‘critical’ and the alarmType is ‘communicationsAlarm’ and the
additionalText either starts with ‘alarm ***’ or it starts with ‘event ***’.

 Finally, to complete the filter definition, click on the OK button.

The new filter will now be listed in the Scenarios, Filters, Mappings and Rules Summary List in
the UCA Scenario Manager.

To view an existing filter:
 Double-click the filter in the Scenarios, Filters, Mappings and Rules Summary List in the UCA

Scenario Manager, or right-click the filter and select the view / modify pop-up menu item.

76

To modify an existing filter:
 Double-click the filter in the Scenarios, Filters, Mappings and Rules Summary List in the UCA

Scenario Manager, or right-click the filter and select the view / modify pop-up menu item.
 Make the necessary changes and click OK.

To include a filter in a deployment:
 If the filter is to be included in the set of scenarios, filters, mappings and rules for an active

deployment, it must be dragged from the Scenarios, Filters, Mappings and Rules Summary List
and dropped onto either the ‘filters and mappings’ node, or underneath an existing filter in the
Scenario Builder Tree. Once this has been done, the new filter will be shown in the tree. The
example below shows two filters, one below the other.

To remove a filter from a deployment:
 If the filter is to be removed from the set of scenarios, filters, mappings and rules for an active

deployment, right-click the filter in the Scenario Builder Tree and select ‘delete from tree’ in
the pop-up menu. Note that when this is done, all children nodes underneath the removed
node will also disappear from the tree.

8.2.1 Using user-Defined event fields in a filter

It is possible to include user-defined event fields in filter conditions. User-defined fields are found on the drop-
down, listed after the default event fields.
An example filter is shown below:

8.2.2 Arranging Filters

When dragging a filter to the Scenario Builder Tree, it may be placed underneath the ‘filter and mappings’ node
or underneath an existing filter. A filter at the same ‘level’ as another filter is its ‘sibling’; a filter below another
filter is its ‘child’. For example, in the screenshot below, filter2 is a child of filter 1; filter4 is a sibling of filter2;
filter3 is a sibling of filter1.
When an event is being tested against the filters in the Scenario Builder Tree, the following order of processing
takes place:

 The event is tested against the first filter of the first scenario.

77

 If the event passes the filter then the next child filter will be tested against. If there is no child
filter, then a mapping must have been reached (see below).

 If an event fails to pass a filter, then the next sibling filter is examined. If there is no sibling filter,
then the whole process is repeated for the next scenario, if there is one.

 If a mapping is reached then the event is allowed into the system ready to be mapped and the
whole filtering process repeated for the next scenario, if there is one.

 The entire process ends when a mapping is reached or there are no more sibling filters to test
against.

For example, as shown in the screenshot below, an incoming event would first be tested against the ‘Sidonis
NMS Alarm’ filter. If the event passed the filter, it would be tested against the ‘Sidonis NMS Site Raise Alarm’
filter. If the event passed this filter it would be mapped using the ‘Site Problem’ mapping, otherwise it would be
tested against the ‘Sidonis NMS Site Cleared Alarm’. The whole process would then be repeated for the ‘DTV
Service Impact’ scenario followed by the ‘DTV Maintenance’ scenario.

78

8.2.3 Using the Regular Expression Wizard with Filters

When adding a new filter statement during the filter definition process described above, some fields allow the
‘matches’ operator to be selected from the drop-down list. If ‘matches’ is selected, a regular expression value
may be entered in the value field. Alternatively, the ‘Wizard >>>’ button may be selected, in which case the
Regular Expression Wizard will be started. This wizard allows a user to automatically generate a regular
expression without the need to know any regular expression syntax.
When the Regular Expression Wizard starts, the first page allows the user to define some sample text to apply
the regular expression to and the second page is for defining the match conditions and viewing their effect on the
sample text.
For example, suppose the additonalText field of an alarm contained the text

WO BATH/00X/00/XYZ123 AT-6 TIME 070202 1230 PAGE 1
*** ALARM 855 O1/APT "BATH/00X/0"U 070202 1230
DIGITAL PATH QUALITY SUPERVISION
SF
DIP DIPPART SFL QSV
BEURS 1 1 181
END

and you wish to filter alarms using a regular expression looking for the particular pattern of text:
“*** ALARM” followed by
one or more spaces followed by
one or more digit characters followed by
one or more spaces followed by
the text “O1” followed by
any text, excluding a line terminator followed by
the text “DIGITAL PATH QUALITY SUPERVISION”

then you would use the Wizard as follows:
 Enter the above text into the area on the right size of the window. The text may be typed into the

text area. It may also be pasted from the current copy/paste buffer or read in from a local file,
using the buttons on the left.

 The next stage is to define the match conditions. Clicking the Next button will display the screen
that allows the conditions to be specified and their effect to be displayed, as shown below.

 To define the match conditions, right-click the ‘Text contains …’ root node in the tree on the left
side and select the desired ‘condition ►‘ submenu item, i.e. either ‘all items in the following order
…’ or ‘any of the following items …’. In this case, select ‘all items in the following order …’.

 The tree node ‘all items in the following order …’ will be inserted under the root node. Right-click
this node and select insert new expression.

 In the ‘Add New Expression’ dialog, select the appropriate drop-down menu items.
 Repeat this procedure using the right-click menu items to add, modify or delete nodes until all the

expressions have been specified. Remember that match conditions may be nested under each other
(similar to the logic expressions for Filters), if desired. As each expression is entered in the tree,
the sample text on the right will be highlighted in blue to reflect the current matching. The
screenshot below shows the whole tree of expressions for the example pattern of text.

79

 Finally, click the Finish button and the actual regular expression will be automatically generated
and inserted into the filter statement value field. For the example, the regular expression would
be:

*** ALARM\s+\d+\s+O1.+\nDIGITAL PATH QUALITY SUPERVISION

Advanced Options
There are two advanced options that may be set for the entire set of expressions in the tree. To select an
advanced option, right-click the ‘text contains …’ tree root node and select the desired ‘advanced options ►‘
submenu item.

The effect of each advanced options menu item is:
enable multiline mode → By default, the expressions “the beginning of

the text” and “the end of the text” ignore
line terminators and only match at the beginning and the
end, respectively, of the entire text sequence. If ‘enable
multiline mode’ is set then “the beginning of
the text” matches at the beginning of text and after
any line terminator (except at the end of the text). When
in multiline mode “the end of the text”
matches just before a line terminator (and the end of the
input text).

case insensitive (Unicode) → Enables Unicode-aware case-insensitive matching.

8.3 Mappings
Once an alarm has passed though the filter(s), it must be mapped. The purpose of mapping is threefold:

 Objects in the system are identified by their unique reference field. During data-load, all objects
get stored within the UCA model database with their unique reference filled in. One of the
functions of mapping is to relate the object the incoming event refers to with a corresponding
Mesh Object. In the simplest case, there might be a one-to-one mapping of an event field with the
corresponding object’s unique reference. However, the situation may be far more complicated,
involving extracting parts of many of the event fields and combining them to form a corresponding
identifier to match to a unique reference. So the primary purpose of mapping is to extract a value

For more details on the advanced use of regular expressions, see the
Java documentation for the Pattern class at
http://java.sun.com/javase/6/docs/api/java/util/regex/Pattern.html

80

from the event that represents the unique reference of an object. UCA supports very flexible
mapping of unique references from events. A unique reference may be mapped from an event
directly from one of the event’s fields, or it may be mapped from multiple parts of one or more
fields, combining those parts in any order and with any prefix or suffix.

 It is not enough to just map the event’s unique reference. The event also needs to be mapped to an
appropriate class. The classes that an event can be mapped to are essentially those defined in the
metamodel.

 Finally, the event must also be mapped to a status – normal, degraded or failed. Typically, a filter
that passes a non-clear severity event will be followed by a mapping that maps to a status of failed
or degraded; similarly, a filter that passes a clear severity event will be followed by a mapping that
maps to a status of normal.

The result of mapping is to affect a corresponding Mesh Object, as described in sections 3.7 and 3.8.

UCA supports incoming events formatted as XML messages with a number of tags, each of which represents an
event field – the following shows an example event (further details of the event format are provided in Chapter
10):

<Event>
<eventRank>original</eventRank>
<systemClass>sidonis_nms</systemClass>
<systemInstance>V5</systemInstance>
<eventId>1003</eventId>
<dataType>X.733</dataType>
<originatingTime>2005-06-10 12:16:32</originatingTime>
<moClass>Site</moClass>
<moInstance>10001</moInstance>
<severity>critical</severity>
<alarmType>EquipmentAlarm</alarmType>
<probableCause>PowerProblem</probableCause>
<additionalText>Site Power Failure</additionalText>

</Event>

An important field is the eventId, which uniquely defines the particular event. Typically, a non-clear severity
event will be received with a particular eventId and the event will be mapped to failed or degraded status and to a
particular base class and with its unique reference mapped from one or more fields. Subsequently, a clear
severity event will be received with the same eventId as the original non-clear severity event and this will be
mapped to normal status and the same base class and unique reference as the associated non-clear severity event.
However, there are two special cases to be aware of:

1. If the eventId, mapped base class and mapped unique reference of a clear event do not match
with a previously stored non-clear event, an alternative method is used to determine which
Mesh Objects are effected:

- In this case the Mesh Object(s) with the same Alarm Type, Probable Cause, Specific
Problems and Additional Text will be cleared (i.e. their status set to ‘normal’).

2. If it is not possible for an external system to supply the clear event with enough information
to allow the unique reference to be mapped, then the external system must send an ‘event
state change’ message instead (see 10.3.3). This message contains a subset of the standard
event fields, but it adds the ‘updateState’ field to indicate that this message essentially
updates a previous one. An example of such as message is as follows:

<Event>
<eventRank>original</eventRank>
<systemClass>sidonis_nms </systemClass>
<systemInstance>V5</systemInstance>
<eventId>1003</eventId>
<dataType>X.733</dataType>
<originatingTime>2005-06-10 12:16:34</originatingTime>
<updateState>terminated</updateState>

</Event>

But the question remains, for such a message how would you specify the mapping to a Base
Class and unique reference? The answer is that in the ‘Add New Mapping’ dialog (see
below), the ‘Lookup Unique Reference by matching Event Id’ tick-box is selected. This

81

forces the system to lookup a raise event in the UCA event database with the same eventId
and it uses that event’s Base Class and unique reference.

To create a new mapping:
 Click on the button in the UCA Scenario Manager toolbar or select File → New →

Mapping from the menu-bar.
 In the ‘Add New Mapping’ dialog, enter a description.
 Select the appropriate class to map to from the ‘Map to class’ drop-down list.
 Select the appropriate status to map to from the ‘Map to status’ drop-down list.
 If the message being mapped is an ‘event state change’ message (see description above), select

the ‘Lookup Unique Reference by matching Event Id’ tick-box, otherwise the unique reference
mapping details must be supplied.

 Finally, to complete the mapping definition, click on the OK button.

Mapping the Unique Reference
 In the ‘Add New Mapping’ dialog, right-click the tree root node (‘Map UniqueReference

using items in following order …’) and select ‘add new mapping statement’. The ‘Add
New Mapping Statement’ dialog will be opened.

 In the drop-down list, select the desired event field to map from.
 If the selected field’s contents are to be mapped in their entirety into the unique reference,

select the ‘directly’ tick-box and click the OK button.
 Otherwise, click the Wizard >> button in order to create expressions that define the match

and extraction criteria. Advanced users may select the ‘advanced’ tick-box and enter these
criteria into the ‘Match Expression’ and ‘Token Expression’ boxes directly without using
the wizard. See below for details of how to use the regular expression Wizard for
mappings. Click the OK button.

 The new mapping statement will now be displayed under the root of the tree in the ‘Add
New Mapping’ dialog, as in the following screenshot:

82

Figure 25 - The Add New Mapping Dialog

 If text needs to be extracted from a number of event fields in order to define the unique
reference, then continue the process of adding new mapping statements. The value of the
extracted unique reference will be the concatenation of the mapping statements. If fixed
text delimiters need to be placed between any mapping statements, then right-click then tree
root node and select ‘add fixed text’ and supply the desired text. For example, in the
following mapping, if the event’s moInstance field was “10001” and the systemClass was
“sidonis_nms”, then the mapped unique reference would be
“10001***sidonis_nms”.

 Mapping statements in the tree may be moved up or down, modified or deleted by right-
clicking the node and selecting the appropriate pop-up menu item.

The new mapping will now be listed in the Scenarios, Filters, Mappings and Rules Summary List
in the UCA Scenario Manager.

To view an existing mapping:
 Double-click the mapping in the Scenarios, Filters, Mappings and Rules Summary List in the

UCA Scenario Manager, or right-click the mapping and select the view / modify pop-up menu
item.

To modify an existing mapping:
 Double-click the mapping in the Scenarios, Filters, Mappings and Rules Summary List in the

UCA Scenario Manager, or right-click the mapping and select the view / modify pop-up menu
item.

 Make the necessary changes and click OK.

To include a mapping in a deployment:
 If the mapping is to be included in the set of scenarios, filters, mappings and rules for an active

deployment, it must be dragged from the Scenarios, Filters, Mappings and Rules Summary List
and dropped underneath an existing filter in the Scenario Builder Tree. Once this has been
done, the new mapping will be shown in the tree. Note that multiple mappings may be dropped
underneath the same filter.

To remove a mapping from a deployment:
 If the mapping is to be removed from the set of scenarios, filters, mappings and rules for an

active deployment, right-click the mapping in the Scenario Builder Tree and select delete from
tree in the pop-up menu.

8.3.1 Using the Regular Expression Wizard with Mappings

When adding a new mapping statement during the mapping definition process described above, the ‘Wizard
>>>’ button may be selected, in which case the Regular Expression Wizard will be started. This wizard allows a
user to:

83

 automatically generate a regular expression, without the need to know any regular expression
syntax, that is used to match text against

 automatically construct a ‘token expression’ that determines how multiple matched items are
joined together to form a complete piece of text

When the Regular Expression Wizard starts, the first page allows the user to define some sample text to apply
the regular expression to. The second page is for defining the match conditions, viewing their effect on the
sample text and defining which pieces of matched text should be extracted to form the unique reference. The
third page is used to re-order the extracted items, if required, and set any desired fixed text prefixes or suffixes
between the items.

As an example, suppose the additonalText field of an alarm contained the text
WO BATH/00X/00/XYZ123 AT-6 TIME 070202 1230 PAGE 1
*** ALARM 855 O1/APT "BATH/00X/0"U 070202 1230
DIGITAL PATH QUALITY SUPERVISION
SF
DIP DIPPART SFL QSV
BEURS 1 1 181
END

and you wish to map the unique reference so that is formed by trying to match the text highlighted in blue below:
WO BATH/00X/00/XYZ123 AT-6 TIME 070202 1230 PAGE 1
*** ALARM 855 O1/APT "BATH/00X/0"U 070202 1230
DIGITAL PATH QUALITY SUPERVISION
SF
DIP DIPPART SFL QSV
BEURS 1 1 181
END

and the actual text you wish to extract for the unique reference is as highlighted in red below:
WO BATH/00X/00/XYZ123 AT-6 TIME 070202 1230 PAGE 1
*** ALARM 855 O1/APT "BATH/00X/0"U 070202 1230
DIGITAL PATH QUALITY SUPERVISION
SF
DIP DIPPART SFL QSV
BEURS 1 1 181
END

Furthermore, the text you wish to extract is not simply to be “BEURS181”, but it should be “181” followed
“BEURS”, and with “BEURS” prefixed with “---“. i.e. the mapped unique reference from the example would
end up being “181--BEURS181”.

Then you would use the Wizard as follows:
 Enter the sample alarm text into the area on the right size of the window. The text may be typed

into the text area. It may also be pasted from the current copy/paste buffer or read in from a local
file, using the buttons on the left.

 Click the ‘Next’ button to display the page that allows the match and extraction conditions to be
specified.

 To define the match conditions, right-click the ‘Text contains …’ root node in the tree on the left
side and select the desired ‘condition ►‘ submenu item, i.e. either ‘all items in the following order
…’ or ‘any of the following items …’. In this case, select ‘all items in the following order …’.

 The tree node ‘all items in the following order …’ will be inserted under the root node. Right-click
this node and select ‘insert new expression’.

 In the ‘Add New Expression’ dialog, select the appropriate drop-down menu items.
 Repeat this procedure using the right-click menu items to add, modify, move up/down or delete

nodes until all the expressions have been specified. Remember that match conditions may be
nested under each other (similar to the logic expressions for Filters), if desired. As each
expression is entered in the tree, the sample text on the right will be highlighted in blue to reflect
the current matching.

 Next, you must identify which expressions relate to the text items you wish to extract. For example
the tree node item ‘one or more of a non-whitespace character’ relates to the text “BEURS” and the
final tree node ‘one or more of a digit character’ relates to the digits “181”. To identify the parts
to be extracted, right-click the associated tree node and select ‘extract’ from the pop-up menu item.

84

When this is done, the associated sample text will be highlighted in red, as shown in the screenshot
below:

 Click the Next button to display the page that allows you to re-order the extracted items, if
required, and set any fixed text prefixes or suffixes.

 In the top half of the page, right-click “181” and select the ‘move up’ pop-up menu item. The
bottom half of the window shows exactly what the final result of the whole matching and
extraction would be.

 In the top half of the page, right-click “BEURS” and select the ‘set prefix’ pop-up menu item and
enter “---“ in the dialog. Again, the bottom half of the window shows exactly what the final
result will be, in this case “181---BEURS”.

 Finally, click the Finish button and the actual match regular expression and ‘token’ regular
expression will be automatically generated and inserted into the mapping ‘Match Expression’ and
‘Token Expression’ fields. For the example, these would be:

QSV\s+(\S+)\s+\d+\s+\d+\s+(\d+)

and

$2---$1

For advanced users who wish to specify the ‘Match Expression’ and ‘Token Expression’ fields without using the
wizard, the ‘Match Expression’ is simply the regular expression, with match groups enclosed in round brackets.
The ‘Token Expression’ defines the match groups in order of extraction as $1, $2, $3 etc. and orders these
groups as appropriate, with any required fixed text prefixes or suffixes.

For more details on the advanced use of regular expressions, see the
Java documentation for the Pattern class at
http://java.sun.com/javase/6/docs/api/java/util/regex/Pattern.html

85

Advanced Options

There are two advanced options that may be set for the entire set of expressions in the tree. To select an
advanced option, right-click the ‘text contains …’ tree root node and select the desired ‘advanced options ►‘
submenu item. The advanced options are the same as those when using the regular expression wizard for filters –
see for 8.2.3 details.

8.4 Rules
Rules are central to the whole operation of UCA. Once events have passed through the filters and the mappings
have been performed, the UCA rules engine operates on the basis of consequent state changes to mesh objects.
There are four aspects to consider when defining a rule using the UCA Scenario Manager:

 The trigger conditions – these consist of rule statements that specify the conditions under which
the trigger actions will be performed.

 The trigger actions – these are the actions (e.g. raise a root cause alarm) that are performed when
the rule triggers i.e. the trigger conditions are satisfied.

 The teardown conditions – these consist or rule statements that specify the conditions under which
the teardown actions will be performed.

 The teardown actions – these are the actions (e.g. clear a root cause alarm) that are performed
when the rule tears down i.e. the teardown conditions are satisfied.

This section provides a basic overview of how to create rules and actions, whereas Chapter 9 provides extensive
details, supplemented with examples and many screenshots of how to configure them.

To create a new rule:

 Click on the button in the UCA Scenario Manager toolbar or select File → New → Rule
from the menu-bar.

 In the ‘Add New Rule’ dialog, enter a description and a priority. Priority may be from 0 to 100,
with 0 being lowest priority and 100 highest, and represents the order in which satisfied rules
are processed by the rules engine.

 In the Trigger Conditions tab, right-click the tree root node and select the ‘insert object
existence condition’ pop-up menu item.

 In the ‘Add New Rule Object Condition’ dialog, select the object type (e.g. ‘a Notification’,
‘an Associate Group’ etc.) and condition (‘exists’ or ‘does not exist’) from the drop down
menus and click on OK.

 The new ‘object existence condition’ will be automatically added under the tree root node.
 Right-click the ‘object existence condition’ that was added to the tree and select ‘insert

attribute conditions’ from the pop-up menu.
 In the ‘Add New Rule Attribute Condition’ dialog, select the appropriate items from the drop-

down lists (or enter the values, depending on the attribute and condition selected), as
appropriate for the rule trigger condition.

 Click on the OK button to add the new rule attribute condition.
 Continue adding new rule attribute conditions as above.
 Rule attribute conditions may be modified, deleted, moved up or moved down by right-clicking

the associated tree node and selecting the appropriate pop-up menu item.
 Continue adding new ‘object existence conditions’ together with their associated ‘rule attribute

conditions’, as above. An example set of rule trigger conditions is shown in the screenshot
below.

 ‘Object existence conditions’ in the tree may be deleted, moved up or moved down by right-
clicking the associated tree node and selecting the appropriate pop-up menu item. Note that
deleting an’ object existence condition’ from the tree will also delete all its child nodes, i.e.
all its associated ‘rule attribute conditions’.

86

Figure 26 - The Add New Rule Dialog

 Select the Trigger Actions tab to define the action(s) to be associated with the trigger
conditions.

 Select the required action in the left side of the screen and click the button. In the resulting
‘Add Trigger Action’ dialog, enter the appropriate values and click the OK button. The action
will be removed from the left hand list and will appear on the right hand list.

 Repeat this for all actions to be added.
 To modify an action in the right hand list, double-click it or right-click and select ‘modify’

from the pop-up menu item.
 Action will be performed in the order that they are shown in the right hand list – top to bottom.
 To re-position an action in the right hand list, right-click the action and select move up or

move down from the pop-up menu item.
 To remove an action in the right hand list’ select it and click on the button. The action will

then re-appear in the left hand list.

 Repeat the entire above procedure to specify the teardown conditions and teardown actions in a
similar way, but using the ‘Teardown Conditions’ and ‘Teardown Actions’ tabs.

 Finally, to complete the rule definition, click on the OK button.

The new rule will now be listed in the Scenarios, Filters, Mappings and Rules Summary List in the
UCA Scenario Manager.

To view an existing rule:
 Double-click the rule in the Scenarios, Filters, Mappings and Rules Summary List in the UCA

Scenario Manager, or right-click the rule and select the view / modify pop-up menu item.

87

To modify an existing rule:
 Double-click the rule in the Scenarios, Filters, Mappings and Rules Summary List in the UCA

Scenario Manager, or right-click the rule and select the view / modify pop-up menu item.
 Make the necessary changes and click OK.

To include a rule in a deployment:
 If the rule is to be included in the set of scenarios, filters, mappings and rules for an active

deployment, it must be dragged from the Scenarios, Filters, Mappings and Rules Summary List
and dropped onto the ‘rules’ node in the Scenario Builder Tree. Once this has been done, the
rule will be shown in the tree. The example below shows five rules in a particular scenario.

To remove a rule from a deployment:
 If the rule is to be removed from the set of scenarios, filters, mappings and rules for an active

deployment, right-click the rule in the Scenario Builder Tree and select ‘delete from tree’ in the
pop-up menu.

8.4.1 Rules and user-defined event fields

User-defined event fields are also accessible for use in rules. Each user-defined event field is accessible via the
‘last event’ raised on a Mesh Object.
An example rule utilising a user-defined event field is shown below:

88

8.5 Rule templates

8.5.1 Templated Rules

Rules can be created as described in the above section, but they can also be created using ‘templates’. A
‘templated rule’ acts like a pattern for generating actual rules later on. In a template rule, the rule conditions and
actions are defined as usual but the actual values used in the conditions and action fields are not supplied when
the template is defined, but instead ‘variable names’ are used in their place and the actual values for the variables
are supplied later. Collections of ‘templated rules’ are very useful for addressing general purpose situations, for
example commonly seen state propagation rules. A collection of templated rules can be used again and again;
each time the actual rules are generated from the templates, different values for the ‘variables’ may be used.

The key points to be aware of when templating a rule are:
 Any rule can be ‘templated’
 You can template a rule’s trigger / teardown attribute conditions
 You can template a rule’s trigger / teardown actions

To template a rule’s trigger / teardown attribute condition, select the ‘use template attribute?’ checkbox when
adding or modifying a rule’s attribute condition. When this is done, instead of supplying a value in the attribute
condition, you will be prompted to enter a template attribute name and description. The template attribute name
acts like a ‘variable’ for which you will later supply a value. The description is useful to help clarify the meaning
of the template attribute name.
To template a rule’s trigger / teardown action, right click a desired action field and in the resulting ‘Action
Template Item’ dialog, select the ‘use template attribute?’ checkbox and enter a value for the template attribute
name and description, as above.
You can use the same value for the template attribute name for many conditions and actions in many template
rules.

89

Any rule that uses template attribute names, either in its rule attribute conditions or action fields, is a ‘templated
rule’. It will appear in the GUI with an icon like this:

8.5.2 Rulesets

A Ruleset is simply a container for rules that have been templated.

To create a ruleset, select the icon in the Scenario Manager toolbar. Once you have clicked this icon you
can drag any templated rule into the resulting RuleSet dialog.
When a RuleSet has been created, it will show up in the Summary List table on the right side of the Scenario
Manager like this:

A Ruleset acts as the vehicle for generating the actual rules from the template set of rules.

 Any rule can be template
 You can template:

- trigger / teardown rule
attribute conditions

- actions

right-click a rule action field
to get the template dialog e.g. “baseClass” might be a

sensible template attribute
name here

Attribute names act like ‘variables’ for
which you later supply a value
For example, wherever you’ve used
“baseClass”, the actual value for this (eg.
NetworkElement”) will later be
substituted as the value in the expression
wherever “baseClass” occurs.

90

8.5.3 Using a ruleset
To use a RuleSet, drag it to the Rules folder of a Scenario in the Scenario Builder tree on the left of the Scenario
Manager.
When the RuleSet is dropped on to the tree, a “Create Rule Template” dialog box will appear
All templated rule attribute conditions and action fields from the template rules in the dragged RuleSet will show
up in the list, as in the following example:

This dialog is used to supply the actual values to be substituted in place of the template names in the templated
rules within the Ruleset.
You must supply a value for each name in this dialog e.g. for “baseClass” the actual value you might enter could
be “NetworkElement”.

8.5.4 Generating the rules from the rule template
When all values have been supplied in the Rule Template Dialog box and “OK” clicked, a set of new rules will
be automatically generated. These new rules will appear in the Scenario Manager GUI under the new Rule
Template (which itself appears under the “Rules” folder in the tree), like this:

You can right-click on the Rule Template in the tree and view or modify the set of values to re-generate new
rules based on the new values.
You can also right-click on any of the auto-generated rules and view (read-only) its details.

8.6 Deploying Scenarios, Filters, Mappings and
Rules

Once the Scenario Builder Tree has been set up with all the scenarios, filters, mappings and rules, it may be
deployed into active use. However, the deployment must first be validated.
To validate a deployment:

 click the button on the Scenario Manager toolbar.
 The validation will check that the Scenario Builder Tree is valid (e.g. that mappings exist under

filters etc.) and that the rules engine considers the rules to be valid.
 If the deployment validates correctly, the status bar will show “Status: the validation was

successful”. Otherwise the ‘Validation Errors’ dialog will open, showing the translated rules
code with details of the errors, including the line and column numbers where the error(s)
occurred.

91

Figure 27 - The Validation Errors Dialog

 The translated rules code In the ‘Validation Errors’ dialog is annotated with comments that
match the text in the Trigger / Teardown Conditions trees of the Add or View / Modify Rule
dialogs. This allows precise location of which part of which rule has not validated.

The set of scenarios, filters, mappings and rules can only be deployed after they have been successfully
validated. After validation, to deploy the scenarios, filters, mappings and rules present in the Scenario Builder
Tree:

 click the button on the Scenario Manager toolbar.
 In the ‘Deployment Details’ dialog, enter a description and additional information that

describes this deployment and click OK

A warning may be raised when using value packs (see section Chapter 14) that include rules.
This will only happen if the new deployment does not include rules for every value pack that
incorporates rules.

To show details of previous deployments, or to open a previous deployment into the Scenario Manager, click the
button on the tool-bar or select ‘Show Deployments’ from the Server menu.

To show details of scenarios added to the ‘Scenario Library’, or to merge a scenario form the ‘Scenario Library’
into the existing set of scenarios, click the button on the toolbar or select ‘Show Library’ from the Server
menu.
Details of using the ‘Show Deployments’, ‘Scenario Library’, exporting a scenario to the library and importing a
scenario from the library are provided in section 7.1.

92

Chapter 9 Configuring Rules and
Actions

Rule conditions and corresponding actions are defined together to form a block. These rule condition-action
blocks (commonly referred to as Rules with a capital R) are further divided into two sections; a trigger section
that reacts to the departure of one or more objects from the normal state i.e. ‘on the way in’, and a teardown or
recovery section that reacts to the return of one or more objects to the normal state i.e. ‘on the way out’. In
practice either the trigger or teardown section may be left undefined if they are not required.

9.1 Format
Rule condition-action blocks (Rules) as a whole are assigned a priority in the range 0 to 100. Satisfied Rules
with higher priority i.e. more positive, are executed ahead of others on the inference engine agenda with lower
priority. This allows the user to force one Rule to execute ahead of another. A useful technique to adopt when
designing correlations that rely on this feature is to construct a state diagram for the object(s) involved. Priorities
may then be used to force a particular path in the state diagram ahead of another if there is an equal choice.

9.1.1 Structure

Each section of a Rule (trigger or teardown) consists conceptually of a set of object existence conditions sub-
divided into clauses (each potentially referring to a different Object, Associate or Child Group, Notification or
Script and containing one or more attribute conditions) that are evaluated by the inference engine and one or
more consequential actions to carry out when all of those object existence conditions are satisfied. The general
format of each section of a Rule is:
(Clause 1) When an Associate Group|Child Group|Object|Notification|Script exists|does not exist with:

Attribute1 Comparison Operator Expression (is true)
Attribute2 Assignment Operator VariableX

…
(Clause 2) And (optionally)
When an Associate Group|Child Group|Object|Notification|Script exists|does not exist with:

Attribute1 Comparison Operator Expression|VariableX (is true)
Attribute2 Assignment Operator VariableY

…
…
…

(Clause N) And (optionally) …
Then

Action1 (Argument List)
Action2 (Argument List)
…

When object existence conditions are evaluated, the inference engine begins evaluating the first clause and
proceeds until it encounters an attribute condition that is not yet satisfied or all of the clauses are satisfied. If an
attribute condition is invalid and is subsequently satisfied, evaluation continues from that point onwards
(previously satisfied attribute conditions are not re-evaluated unless the object is removed and re-inserted into a
working memory). When all of the clauses are satisfied, the associated action(s) are executed. If an object is
removed from a working memory before all of the object existence conditions are satisfied, then knowledge of
all previously satisfied attribute conditions is discarded.
A general principle for object existence conditions that is a direct consequence of the use of generalised objects
in the state mesh is that for a given object type, it is usually necessary to:

 Identify the specific class of generalised object (or that of its parent and/or the objects it contains)
 Evaluate one or more conditions relating to the identified object.

93

It is also important to realise that unless specifically made so, object existence conditions are non-specific and
operate at the class level so that they will operate for any and all matching instances that are encountered in
working memory.
A limitation of the underlying use of the JBoss Rules 3 inference engine is that variables initialised in a clause
may not be evaluated in the same clause. This limitation may be lifted in later releases of UCA.
Where non-existence in working memory of an Associate or Child Group, Object, Notification or Script with
particular attributes is tested in a clause, it is important to note that a reference to that (non-existent) item cannot
be used in an action (because by definition it does not exist and therefore it has a null object reference). Further,
it is also not possible to store the value of an attribute in a non-existent item in a local variable (again because the
system is testing that it does not exist and therefore would not have an attribute value to store in the variable).
However, attribute evaluation conditions for a non-existent item may be evaluated against local variables
(provided they were initialised in a previous clause for an object that exists).

9.1.2 Rule Conditions

9.1.2.1 Object Types

UCA supports the evaluation of the following object types in object existence condition clauses:
 Objects (both static mesh object components of the state mesh & dynamically created alarm

collectors)
 Child Group
 Associate Group
 Notification
 Script

The Object type is a generic name to describe static long-lived mesh object components of the state mesh and
dynamically created short-lived alarm collectors (designed to hold a set of transient events from one or more
stream sources). In practice, Objects are implemented using the same type of Java object but in addition to
lifetime considerations, the former also differ in that they have relationships to surrounding objects defined,
whereas alarm collectors exist in isolation from other components of the state mesh.

9.1.2.2 Attributes

Each supported object type has a number of attributes that may be evaluated by attribute comparison operators in
a clause. Each attribute has a type and some object types support a common subset of attributes. Section 12.1
lists the supported attributes, their types and a brief description of their purpose for each object type.

94

9.1.2.3 Operators and Expressions

Each attribute type (String, Integer, Boolean, Enum, Object, Child Group, Associate Group) may be evaluated
using an operator against an expression. The following table lists the supported operators for each attribute type
and the required expression type.

Operator String Integer Boolean Enum Child
Group

Associate
Group

Expression
Type

Is (equal to) String
Is not (equal to) String
Contains String
Does not
contain

 String

Starts with String
Ends with String
Is (equal to) Integer
Is not (equal to) Integer
Is greater than Integer
Is greater than
or equal to

 Integer

Is less than Integer
Is less than or
equal to

 Integer

Is greater than
value in
(variable)

 Integer

Is greater than
or equal to value
in (variable)

 Integer

Is less than or
equal to value in
(variable)

 Integer

Is less than
value in
(variable)

 Integer

Is (equal to) Boolean
Is not (equal to) Boolean
Is (equal to) Enumeratio

n
Is not (equal to) Enumeratio

n
(Group)
contains

 Mesh
Object

(Group) does
not contain

 Mesh
Object

Is stored in
[assignment
operator]

 Assigning
Object
Type

Figure 28 - Operators and Expressions

The ‘stored in’ operator is the only assignment operator (all others are conditional) and may be utilised to store
the current value of an attribute or expression into a local variable (whose type is automatically determined from
that of the assigning object’s type). The scope of a local variable is the remainder of the Rule section (trigger or
teardown) in which it is declared, beginning with the next rule clause (if one exists) or the following action(s).

9.1.3 Actions

Once the object existence conditions of a Rule are satisfied, one or more consequential actions may be executed.
The system supplies a comprehensive set of pre-defined actions to choose from and additional user-defined
actions may be created as required.

95

(Mesh) Objects and Child & Associate Groups can exist outside working memory (regardless of their current
state, they are still part of the state mesh). (Alarm collector) Objects, Notifications and Scripts only exist inside
working memory – they are transient objects that exist for the purpose of collecting alarm streams, reporting a
correlation notification or managing a script execution respectively.
Notifications are of interest in that they carry two sets of references to Objects. The ‘originating’ reference (base
class and unique reference) is normally used to identify the Object whose ‘problem’ is the reason for its
existence e.g. a non-NORMAL state. The ‘owning’ reference (base class and unique reference) is used to
identify the object that it is currently associated with. This allows Notification objects to work in two ways:

 As a primary indicator of a problem – both originating and owning references refer directly to a
‘problem’ Object.

 As a secondary marker on another Object affected by the ‘problem’ Object – the originating
reference refers to the ‘problem’ Object, while the ‘owning’ reference refers to the ‘affected’
Object.

Given these features, Notifications can be used for the purpose of constructing correlations where it is necessary
to link Objects indirectly affected by a problem to the source Object. This is illustrated in the following diagram:

Mesh Object Mesh Object

Notification Notification

Originating
Reference

Originating
Reference

Owning
Reference

Owning
Reference

Primary Indicator Secondary Marker

Problem
Object

Affected
Object

Alarm
Report

Alarm
Report

Alarm
ReportAlarm

Report

Mesh Object Mesh Object

Notification Notification

Originating
Reference

Originating
Reference

Owning
Reference

Owning
Reference

Primary Indicator Secondary Marker

Problem
Object

Affected
Object

Alarm
Report

Alarm
Report

Alarm
ReportAlarm

Report

The arrangement shown in the diagram above illustrates how UCA may be used to gather sympathetic alarms
from Objects affected by a failure elsewhere in the state mesh. Assuming that an action has created the primary
Notification object against the ‘problem’ Object, then another action (usually produced specifically for that
purpose) can identify potentially affected Objects and attach secondary marker Notification objects to them, in
turn referring back to the ‘problem’ Object. Once this link is constructed, then any sympathetic alarm reports
attached to the ‘affected’ Object may be tied to the original problem.
One of the purposes of building notifications is to report useful information back to the user via notification
reports on the Notification Viewer GUI. Notification objects by themselves do not achieve this purpose. To
make a notification report visible on the GUI, a notification record needs to be created in the UCA notification
database. The separation of these two functions is necessary to allow flexibility in the use of Notifications –
often the problem they represent does not need to be visible to users via the GUI, particularly where they are
used as an intermediate step in a correlation that may involve several levels of the model.
When a notification report is displayed on the Notification Viewer GUI, it will often be accompanied by a list
one or more alarm reports. Typically, an action that sets out to create a notification report will carry out the
following operations:

 Build an event list of existing contributory alarm report records in the notification database
associated with the problem Object (recall that all alarm reports that pass the input filters are
stored in the event database).

 Build a Notification record in the notification database and attach the contributory event list. This
will result in an automatic display of a notification report and accompanying contributory alarm
reports from the event list on the GUI.

 Build an equivalent primary indicator Notification object in working memory from the notification
record to support further processing.

If the correlation requires the attachment of affected Objects and their sympathetic alarm reports to a notification
report that is already displayed on the Notification Viewer GUI, then a slightly different approach is adopted in
relation to the notification database. The following operations will be necessary for each affected Object:

96

 Build (or append to) an event list of existing sympathetic alarm report records in the notification
database using the affected Objects as the source of the alarm reports. The sympathetic event list is
attached to the notification record on the problem Object.

 Build (or append to) a list of affected Object records in the notification database using the affected
Objects themselves. Again, the affected Object list is attached to the notification record on the
problem Object.

 Build an equivalent secondary marker Notification object in working memory from the affected
Object (for the ‘owning’ Object reference) and the problem Object (for the ‘originating’ Object
reference).

An additional action may add late arriving alarm reports to the sympathetic event list as required, allowing the
notification report to gather further alarm reports over an extended period.
The types of action available depend on the rule-action block section in which they are initiated. Section 12.2
describes in detail the currently supported set of actions available to each rule-action block section (Trigger and
Teardown).
Actions often require configuration parameters to be supplied from the objects associated with rule clauses.
Objects that participate in rule clauses are automatically assigned names depending on their type and position in
the set of clauses. The following naming convention is adopted:

 Objects; name = objNN
 Associate Groups; name = assocNN
 Child Groups; name = childNN
 Notifications; name = notifNN
 Scripts; name = scriptNN

Where NN is an integer, beginning at 0 and incrementing independently for each type, so if a rule contained two
Object clauses and a Notification clause, then these objects would be automatically assigned the names; obj0,
obj1 and notif0.
During action configuration, the user may also be given the option to provide message text (literals enclosed in “
“ or rule condition variable names) or other additional values. Generally, the user is also given the option to
record action execution in the notification database (which results in the data being presented on the Fired Rules
GUI). The only exception to this is the situation where an action creates a Notification object and it must be
recorded in the notification database – in this instance, the user is not given the option. For efficiency, it is
recommended that once initial testing has been completed that the absolute minimum number of action execution
logs are created, consistent with user audit trail maintenance requirements.

9.2 Example Rules and Actions
The DTV example included with the UCA installation contains a set of Rules designed to implement the
following correlation scenarios:

 DTV Site Power Failure – Creates a DTV Site Power Failure primary Notification, identifies
the downstream DTV Sites and Receivers affected by an upstream DTV Site Power failure,
attaches marker Notifications to the downstream DTV Sites and Receivers and gathers any
sympathetic alarms under the primary Notification.

 DTV Service Impact - Identifies the DTV Services affected by localised Receiver problems.

 DTV Maintenance – Handles the retraction of normal Objects & Groups from the DTV
context.

 DTV2 Notifications - Creates an additional Notification (in response to the creation of DTV
Site Power Failure Notifications) that ‘straddles’ two working memory contexts, DTV &
DTV2. It also handles retraction of normal Objects & Groups from the DTV2 context. The
primary purpose is to illustrate the technique for linking correlations in separate contexts.

The following sections describe in some detail the Rules that implement the first of these
scenarios and illustrate some of the important features of the remainder.

9.2.1 Correlation Scenario - DTV Site Power Failure

The starting point for definition of a correlation scenario is often the identification of a problem in the monitored
network that would benefit from automated correlation analysis. Typically that network problem is characterised
by a set of contributory events that are symptomatic of the problem. In addition, there may be an additional set of
sympathetic events that occur at other locations in the network as an indirect result of the problem. It is also

97

necessary to establish the target requirements for the correlation itself i.e. what is the desired outcome of the
correlation.
In the DTV Site Power Failure scenario, the target correlation requirements are:

 Detect a DTV Site that has undergone a power failure and report a Notification.

 Gather any sympathetic events from downstream DTV Sites & Receivers under the
Notification.

Definition of the Rules to perform such a correlation scenario usually begins with injection of an example set of
contributory and sympathetic events into UCA using the UCA Event Injector tool. This in turn is driven by one
or more files containing XML representations of the contributory and sympathetic events. These event files may
be hand crafted or created using some automated translation process from existing event histories. A much more
convenient alternative is to enable pre-filter logging in UCA and to either instruct the event source system(s) to
replay the required events from their own histories or to simply wait for the problem to re-occur. The resulting
log files may then be used directly with the UCA Event Injector tool. A major advantage of using the Event
Injector in this way is that the captured problem events can be replayed repeatedly during initial testing.
It should also be noted that use of an example event set in this way is just the first step in developing a robust
correlation. Any production quality correlation will need to be tested with several other examples of problem
events (particularly where they occur in a different order) and ultimately be connected to a live system over a
suitable period to ensure that actual problem occurrences are reliably correlated.
The DTV example includes a set of events that are characteristic of a DTV Site power failure and when injected,
cause UCA to report the following problems in the UCA Mesh Viewer:

 Site 10001 has undergone a power failure.

 As a result of the power failure of Site 10001 (and consequential loss of transmission
capability), component Receivers at downstream Sites 10006 & 10025 have detected a loss
of signal from their respective upstream transmitters.

The location of these events on the example DTV network model is shown below.

Assuming that a minimal scenario (without Rules) to handle DTV Site power failures has been deployed in UCA
(the preceding chapter describes in detail how to achieve this and the reader is encouraged to examine the
scenarios, filters and maps in the supplied example for the actual configurations required), then the presence of

Site
10001

Site
10006

Site
10025

Child Group
Site

Child Group
Site

Child Group
BroadcastEq.

Child Group
BroadcastEq.

BroadcastEq
Site10006-RX

BroadcastEq
Site10006-RX-1

BroadcastEq
Site10006-RX-2

Child Group
BroadcastEq.

Child Group
BroadcastEq.

BroadcastEq
Site10025-RX

BroadcastEq
Site10025-RX-1

BroadcastEq
Site10025-RX-2

Alarm

Alarm

Alarm

Alarm

Alarm

Site
10001

Site
10006

Site
10025

Child Group
Site

Child Group
Site

Child Group
BroadcastEq.

Child Group
BroadcastEq.

BroadcastEq
Site10006-RX

BroadcastEq
Site10006-RX-1

BroadcastEq
Site10006-RX-2

Child Group
BroadcastEq.

Child Group
BroadcastEq.

BroadcastEq
Site10025-RX

BroadcastEq
Site10025-RX-1

BroadcastEq
Site10025-RX-2

Alarm

Alarm

Alarm

Alarm

Alarm

98

these events causes the equivalent mesh objects to change state, resulting in the following display on the UCA
Mesh Viewer.

At this point with such a minimal scenario (no Rules have been defined) UCA will not attempt to carry out any
type of correlation.
The first requirement for the correlation scenario is the detection of a failed DTV Site object and the creation of
a primary Notification reporting the failure.
To satisfy this requirement, a Rule needs to be defined to locate failed Site objects with the correct attribute
values. A simple way to evaluate the necessary object existence conditions is to examine the failed Site object in
the UCA Working Memory Viewer – see below (recall that the Site 10001 object will be automatically be
inserted into the DTV working memory context when the incoming event causes it to adopt the failed state).

99

The detailed attribute values for the failed Site 10001 Object in the DTV context are shown below.

The user should consider that except in special circumstances, Rules are normally intended to operate at multiple
locations throughout the network, rather than at specific positions. The choice of attribute conditions to test for in
object existence condition clauses (i.e. the constraints) should then be made specific enough to identify the

100

correct type of Object, Associate or Child Group, Notification or Script in the required state, without un-
necessarily limiting the scope of the search (for example by NOT testing for a particular unique reference which
limits the Rule to operate at a single location). To this end, a single object existence condition clause (to locate
an Object) with the following (naïve) set of attribute conditions should be sufficient to locate failed Site Objects:

 Base class (i.e. type) is Site.

 State is failed.

In practice, an additional object existence condition clause will be needed to exclude those situations where a
primary Notification has already been created on the failed Site object. This additional restriction will prevent a
new Notification being created each time any attribute of the failed Site Object is updated (causing a naïve Rule
to be re-evaluated).
To begin definition of a suitable Rule (using the UCA Scenario Manager), the option to create a new Rule is
selected (as described in the previous chapter) and an empty Rule is created. In this case, a Rule has been created
with a name of ‘Detect Site Problem’ and a priority of 10 (a useful starting point – it can be adjusted later if
required). This is illustrated below:

As described previously, a Rule in fact provides for both trigger and teardown object existence conditions and
corresponding actions.
The first step in defining a new Rule is normally to define the trigger conditions. In practice this is achieved by
selecting the Trigger Conditions tab and entering one or more object existence condition clauses - recall that
each such clause constrains the Rule to test for the existence or otherwise of an Object, Associate or Child
Group, Notification or script in a working memory). In this example, the first clause will be required to locate
failed Site Objects, so the object existence condition must be set to check for the existence of an Object. This is
achieved as follows:

101

First, the option is chosen to insert an empty object instance condition clause into the trigger conditions of the
empty Rule:

Then, the ‘Object exists’ condition is added:

Once an empty object existence condition clause for an Object is created, then the individual attribute conditions
can be applied as follows:

102

First, the option is chosen to insert new attribute conditions into the empty object existence condition clause:

Next, the required attribute type to evaluate in the condition is selected. In this example it is ‘base class’:

103

Then, the evaluation operator to apply to the attribute is selected. In this example the ‘is’ operator is used (i.e. to
test for String equality, since base class attributes are Strings):

Finally, the required base class name is selected from the available choices. In this example, the ‘Site’ name is
used.

104

The end result is an object existence condition clause that the inference engine will use to search for all Objects
whose base class is Site.

Because it will be necessary to exclude Site Objects that already have Notifications on them, the next attribute
condition records the unique reference of the located Site Object in a local variable called ‘uRef’ for use in the
next clause.

105

The final attribute condition for this object existence condition clause forces the inference engine to only
consider those Sites that are in the ‘failed’ state.

The next object existence condition clause in the trigger conditions is responsible for ensuring that the inference
engine only locates failed Sites that do not already have a primary Notification on them. This is achieved by
adding a clause that checks for the non-existence of an attached primary Notification as follows:

106

The attribute conditions for this clause are chosen such that they would identify an existing primary Notification
on the failed Site Object identified in the first clause (and remember that the clause for this Notification is
checking that it DOES NOT exist, so the rule WILL NOT fire if a matching Notification is found). The unique
reference of the previously located failed Site object (stored in the local variable ‘uRef’ in the first clause) is
used in this clause to ensure that a primary Notification on the same failed Site Object does not exist.
The completed trigger conditions are shown below:

Note that the originating unique reference of the Notification is also evaluated against the same Site Object
unique reference to ensure that only those failed Sites with existing primary Notifications are excluded (recall
that primary notifications have identical ‘originating’ and ‘owning’ unique references whereas marker
Notifications have different unique references). This is done to allow another instance of the same correlation
that originates further up the broadcast chain (and which may had previously created a marker Notification on
the now failed Site) to co-exist with a new correlation on the failed Site.
So far, the Rule trigger conditions will only detect a failed Site without an existing primary Notification. The
correlation requirement is such that a primary Notification is to be created when this set of trigger conditions is
satisfied and this is achieved by executing a corresponding action. The action may be defined by selecting the
Trigger Actions tab and selecting the trigger action to ‘create notification against object’. This is shown below:

The Add Trigger Action dialogue allows the action to be configured in a number of ways:

107

 Current Context i.e. the working memory in which the Rule will search for objects that match
its trigger object existence conditions and also in which it will insert the corresponding
Notification object.

 Target context i.e. an additional working memory in which the Notification will also be
inserted. This may be the same as the Current Context in which case it has no effect.

 Object refers to the Site Object identified in the trigger conditions. As there is only one such
Object identified in this example, its name will be ‘obj0’ according to the previously
described naming conventions.

 Time Span (Seconds) allows the user to specify a maximum age (relative to the time at which
the Rule triggers) of contributory events attached to the identified Object that should be
added to the contributory events list of the Notification. In this example, a value of 0 signifies
that all non-Normal events attached to the identified Object should be attached.

 Message is the text message that will appear in the equivalent notification entry in the UCA
Notification Viewer.

Note that the ‘Log Action to Database?’ checkbox is greyed out. This means that the Rule trigger and associated
Notification creation will always be recorded in the UCA notification database.
Once configured, this action will appear in the list of trigger actions, as shown below:

As described previously, an equivalent set of teardown conditions and associated teardown actions are usually
defined to allow the correlation to correctly handle network recovery. Based on the original correlation
requirements, the scenario is expected to close a primary Notification if the affected Site Object no longer exists
in the failed state (i.e. it could be degraded or normal). Based on this description, the corresponding teardown
conditions are shown below:

108

The object existence condition clauses are subtly different from the trigger case. In particular, the first clause is
designed to locate an existing primary Notification and to remember the unique reference of the Site to which it
is attached.
The second object existence clause searches for a Site Object that is no longer in the failed state i.e. has become
degraded or normal as a result of network recovery, and uses the same Site Object unique reference as that of the
Notification located by the first clause. In this situation, the priority of the Detect Site Problem Rule becomes
important because the DTV Maintenance Rules responsible for removing normal Objects and Groups from the
DTV context execute by default at priority 0. If this Rule also had a priority of 0, then an unpredictable race-
condition could exist in which the time order of placing satisfied Rules onto the inference engine agenda would
become important, leading to unpredictable correlation recovery behaviour. By setting the priority of this Rule to
10, it is guaranteed to execute before the appropriate Maintenance Rule with consequent predictable behaviour.
The corresponding action to remove the Notification when the Site Object is no longer failed is shown below:

The Add Teardown Action dialogue allows the action to be configured in a number of ways:
 Current Context i.e. the working memory in which the Rule will search for objects that match

its teardown object existence conditions and also from which it will remove the
corresponding Notification object.

 Target context i.e. an additional working memory from which the Notification will also be
removed. This may be the same as the Current Context in which case it has no effect.

109

 Object refers to the Site Object identified in the teardown conditions. As there is only one
such Object identified in this example, its name will be ‘obj0’ according to the previously
described naming conventions.

 Notification refers to the Site Notification identified in the teardown conditions. As there is
only one such Notification identified in this example, its name will be ‘notif0’ according to
the previously described naming conventions.

Note that the ‘Log Action to Database?’ checkbox is active. This means that the Rule teardown and associated
Notification closure may be recorded in the UCA notification database if required. Given that the corresponding
trigger action was recorded in the UCA notification database, it is normally prudent for the purposes of
maintaining a consistent audit trail to record the clearance as well.
Once configured, this action will appear in the list of teardown actions, as shown below:

The effect of the Detect Site Problem Rule on the DTV Network example model is to attach a primary
Notification to a failed Site, as illustrated in the following diagram:

110

To satisfy the remaining requirements for this correlation scenario, a number of additional Rules have been
provided in the supplied example. These additional Rules are effectively chained together and their execution is
triggered by the creation of the primary Notification.
The first of these additional Rules (Annotate Downstream Sites) attaches marker Notifications to downstream
Site and Receiver Objects (Composite & Component) in anticipation of the arrival of sympathetic events, so that
they may later be gathered under the primary Notification. The effect of this Rule on the DTV Network example
model is shown below:

Site
10001

Site
10006

Site
10025

Child Group
Site

Child Group
Site

Child Group
BroadcastEq.

Child Group
BroadcastEq.

BroadcastEq
Site10006-RX

BroadcastEq
Site10006-RX-1

BroadcastEq
Site10006-RX-2

Child Group
BroadcastEq.

Child Group
BroadcastEq.

BroadcastEq
Site10025-RX

BroadcastEq
Site10025-RX-1

BroadcastEq
Site10025-RX-2

Alarm

Notification

Rule: Detect Site Problem

Alarm

Alarm

Alarm

Alarm

Site
10001

Site
10006

Site
10025

Child Group
Site

Child Group
Site

Child Group
BroadcastEq.

Child Group
BroadcastEq.

BroadcastEq
Site10006-RX

BroadcastEq
Site10006-RX-1

BroadcastEq
Site10006-RX-2

Child Group
BroadcastEq.

Child Group
BroadcastEq.

BroadcastEq
Site10025-RX

BroadcastEq
Site10025-RX-1

BroadcastEq
Site10025-RX-2

Alarm

Notification

Rule: Detect Site Problem

Alarm

Alarm

Alarm

Alarm

111

The action used to create and attach the marker Notifications onto the model is an example of a user-supplied
action that has been created specifically to locate potentially affected downstream Objects. A bi-product of this
discovery is that the Affected Objects list for the primary Notification is populated and this information appears
in the UCA Notification Viewer when the primary Notification details are examined.
By way of a convenience to users, the next Rule (Degrade Downstream Sites) forces downstream Sites to the
degraded state, so that they appear as degraded objects in the UCA Mesh Viewer. The effect of this Rule on the
DTV Network example model is shown in the following diagram:

NotificationNotification

Site
10001

Site
10006

Site
10025

Child Group
Site

Child Group
Site

BroadcastEq
Site10006-RX-1

BroadcastEq
Site10006-RX-2

Child Group
BroadcastEq.

BroadcastEq
Site10025-RX-1

BroadcastEq
Site10025-RX-2

Alarm

Rule: Annotate Downstream Sites

Marker

Marker

Marker

Marker

Marker

Marker

Marker

Marker

Child Group
BroadcastEq.

BroadcastEq
Site10006-RX

Child Group
BroadcastEq.

Child Group
BroadcastEq.

BroadcastEq
Site10025-RX

Alarm

Alarm

Alarm

Alarm

Site
10001

Site
10006

Site
10025

Child Group
Site

Child Group
Site

BroadcastEq
Site10006-RX-1

BroadcastEq
Site10006-RX-2

Child Group
BroadcastEq.

BroadcastEq
Site10025-RX-1

BroadcastEq
Site10025-RX-2

Alarm

Rule: Annotate Downstream Sites

Marker

Marker

Marker

Marker

Marker

Marker

Marker

Marker

Child Group
BroadcastEq.

BroadcastEq
Site10006-RX

Child Group
BroadcastEq.

Child Group
BroadcastEq.

BroadcastEq
Site10025-RX

Alarm

Alarm

Alarm

Alarm

112

Of particular interest is the fact that the Rule is designed to operate at a single affected Site. The inference engine
however will automatically identify all Sites where it is valid and the result for this example is that it will be
triggered twice – once at Site 10006 and again at Site 10025.
The final Rule in this correlation scenario (Attach Sympathetic Alarms to Failed Site Notification) identifies any
locations in the DTV Network example model having marker Notifications where sympathetic alarms have
appeared. The associated action attaches these sympathetic events to the primary Notification. Again this is a
Rule that is written to operate at a single location and in this example the inference engine automatically
identifies the four Receivers on which sympathetic events are attached. Again this is summarised by the
following DTV Network example model:

Notification

Synthetic

Synthetic

Notification

Synthetic

Synthetic

Site
10001

Site
10006

Site
10025

Child Group
Site

Child Group
Site

Child Group
BroadcastEq.

Child Group
BroadcastEq.

BroadcastEq
Site10006-RX

BroadcastEq
Site10006-RX-1

BroadcastEq
Site10006-RX-2

Child Group
BroadcastEq.

Child Group
BroadcastEq.

BroadcastEq
Site10025-RX

BroadcastEq
Site10025-RX-1

BroadcastEq
Site10025-RX-2

Alarm

Rule: Degrade Downstream Sites

Marker

Marker

Marker

Marker

Marker

Marker

Marker

MarkerRule: Degrade Downstream Sites

Alarm

Alarm

Alarm

Alarm

Alarm

Alarm

Site
10001

Site
10006

Site
10025

Child Group
Site

Child Group
Site

Child Group
BroadcastEq.

Child Group
BroadcastEq.

BroadcastEq
Site10006-RX

BroadcastEq
Site10006-RX-1

BroadcastEq
Site10006-RX-2

Child Group
BroadcastEq.

Child Group
BroadcastEq.

BroadcastEq
Site10025-RX

BroadcastEq
Site10025-RX-1

BroadcastEq
Site10025-RX-2

Alarm

Rule: Degrade Downstream Sites

Marker

Marker

Marker

Marker

Marker

Marker

Marker

MarkerRule: Degrade Downstream Sites

Alarm

Alarm

Alarm

Alarm

Alarm

Alarm

113

The results of this correlation scenario are visible on various UCA user interfaces.
Of particular interest to a scenario developer is the UCA Fired Rules Viewer. As long as logging to the UCA
notification database has been enabled for the actions executed, the time-ordered sequence of individual Rule
actions is available, as shown below for this example.

While this feature provides an in-depth view of the actions execution sequence, it incurs a processing overhead
that may in certain circumstances prove onerous. The recommended use of this feature is to enable action
logging as required only during the correlation development phase. Once deployed into a production
environment, action logging should be scaled back to a level where it provides sufficient information to satisfy
auditing requirements.

The current state of Objects affected by received events or modified by Rule actions is shown in the UCA Mesh
Viewer. This information is likely to be of interest to both a Rule developer and a network operator as it gives a
near real-time view of the state of the monitored network, augmented by forced state changes provided by
correlation scenarios. For the DTV Network example provided with UCA, the Mesh Viewer output is shown
below:

NotificationNotification

Site
10001

Site
10006

Site
10025

Child Group
Site

Child Group
Site

Child Group
BroadcastEq.

BroadcastEq
Site10006-RX

BroadcastEq
Site10006-RX-1

BroadcastEq
Site10006-RX-2

Child Group
BroadcastEq.

Child Group
BroadcastEq.

BroadcastEq
Site10025-RX

BroadcastEq
Site10025-RX-1

BroadcastEq
Site10025-RX-2

Alarm

Marker

Marker

Marker

Marker

Marker

Marker

Marker

Synthetic
Alarm

Synthetic
Alarm

Alarm

Alarm

Alarm

Alarm

Alarm

Rule: Attach Sympathetic Alarms To Failed Site Notification

Rule: Attach Sympathetic Alarms To Failed Site Notification

Rule: Attach Sympathetic Alarms To Failed Site Notification

Rule: Attach Sympathetic Alarms To Failed Site Notification

Child Group
BroadcastEq.

Marker

Site
10001

Site
10006

Site
10025

Child Group
Site

Child Group
Site

Child Group
BroadcastEq.

BroadcastEq
Site10006-RX

BroadcastEq
Site10006-RX-1

BroadcastEq
Site10006-RX-2

Child Group
BroadcastEq.

Child Group
BroadcastEq.

BroadcastEq
Site10025-RX

BroadcastEq
Site10025-RX-1

BroadcastEq
Site10025-RX-2

Alarm

Marker

Marker

Marker

Marker

Marker

Marker

Marker

Synthetic
Alarm

Synthetic
Alarm

Alarm

Alarm

Alarm

Alarm

Alarm

Rule: Attach Sympathetic Alarms To Failed Site Notification

Rule: Attach Sympathetic Alarms To Failed Site Notification

Rule: Attach Sympathetic Alarms To Failed Site Notification

Rule: Attach Sympathetic Alarms To Failed Site Notification

Child Group
BroadcastEq.

Marker

114

In this example, the states of Site 10001 and the individual Receivers at Sites 10006 & 10025 have been affected
by the received events (recall their mappings were configured to cause the target object to adopt the failed state).
In response to the ‘Degrade Downstream Site’ Rule described above, the states of Site 10006 & Site 10025 have
been modified to degraded. This reflects the fact that both of these downstream Sites are effectively ‘off-line’
because Site 10001 has failed, but they have suffered no actual failure themselves.
The blue arrow icon next to Site 10001 in the above display reports that one or more notifications are present
against this object. Using the UCA Notification Viewer, these notifications can be examined, as shown below:

The notification created by the Rules in the correlation scenario described above has been selected in this
screenshot and as a result, the contributory events and affected objects are also displayed.

115

9.2.2 Correlation Scenario - DTV Service Impact

The DTV Network example provided with UCA includes a DTV Service Impact correlation scenario that
operates concurrently with (but independently from) the DTV Site Failure correlation scenario.
The DTV Service Impact correlation scenario is required to detect when the Broadcast Equipment at either end
of a Baseband Link between two Sites has failed, thereby affecting the state of DTV services broadcast from the
subtending Site. In order to provide a more realistic example, the DTV Network model allows for redundancy in
transmitting and receiving equipment at each end of the Baseband Link by modelling its endpoints as a
redundant entity e.g. a Composite Receiver is built from one or more child Receivers. The result is that failure of
a Broadcast Equipment endpoint only occurs when all of the child components have failed.
In the included example, the DTV Service Impact correlation scenario is triggered by the same individual
Receiver failure events that are regarded as sympathetic events by the DTV Site Failure correlation scenario,
however for the former they are regarded as contributory events. This illustrates the fact that carefully designed
concurrent scenarios can utilise the same events for different purposes without conflict. Further, the DTV
Service Impact correlation scenario implementation is implemented in a location independent manner so that it
can operate equally well for transmitter and receiver failures.
The DTV Network example model before any correlation Rules have triggered is shown in the following
diagram, including the events attached to the Receiver objects.

The first Rule to trigger in this correlation scenario detects failure of the composite Broadcast Equipment at one
end of the Baseband Link. Because 100% of the child Receivers has failed at Site 10025, the action forces the
Composite Receiver to fail by associating a synthetic failure event. This is illustrated in the following DTV
Network model diagram.

Child Group
BasebandLink

Child Group
Multiplex

Service
Sidonis_TV_Channel2

Service
Sidonis_TV_Channel1

Service
Sidonis_TV_Channel3

Child Group
Multiplex

Child Group
Multiplex

Multiplex
Sidonis_TV_Site_10006_Site_10025

BasebandLink
Site_10006_Site_10025

Assoc Group
BroadcastEq

BroadcastEq
Site10006-TX

Service
Sidonis_TV_Channel4

Child Group
Multiplex

Site
10001

Site
10006

Site
10025

Child Group
Site

Child Group
Site

Child Group
BroadcastEq.

Child Group
BroadcastEq.

BroadcastEq
Site10025-RX

BroadcastEq
Site10025-RX-1

BroadcastEq
Site10025-RX-2

Child Group
BroadcastEq.

BroadcastEq
Site10025-RX-1

BroadcastEq
Site10025-RX-2

Alarm

Alarm

116

Consideration of this scenario in fact shows to be an example of the Physical-Logical Vee design pattern
described earlier. Physical equipment failures, in this case Receivers and in turn their containing Composite
Receiver; cause the associate Baseband Link to fail. This is in turn propagated up through the logical branch of
the DTV Network Model to the DTV Services. This is illustrated in the following diagram.

Alarm

Child Group
BasebandLink

Child Group
Multiplex

Service
Sidonis_TV_Channel2

Service
Sidonis_TV_Channel1

Service
Sidonis_TV_Channel3

Child Group
Multiplex

Child Group
Multiplex

Multiplex
Sidonis_TV_Site_10006_Site_10025

BasebandLink
Site_10006_Site_10025

Assoc Group
BroadcastEq

BroadcastEq
Site10006-TX

Service
Sidonis_TV_Channel4

Child Group
Multiplex

Site
10001

Site
10006

Site
10025

Child Group
Site

Child Group
Site

Child Group
BroadcastEq.

Child Group
BroadcastEq.

BroadcastEq
Site10025-RX

BroadcastEq
Site10025-RX-1

BroadcastEq
Site10025-RX-2

Child Group
BroadcastEq.

BroadcastEq
Site10025-RX-1

BroadcastEq
Site10025-RX-2

Alarm

BroadcastEq
Site10025-RX

Rule: Detect Dual Receiver Failure

Synthetic
Alarm

117

9.2.3 Correlation Scenario - DTV Maintenance

This scenario differs from the previous examples for a number of reasons:
 The purpose of each Rule is to retract components of the state mesh in the normal state from

the working memory associated with the DTV context.

 Each Rule possesses only teardown conditions and actions and operates at priority 0,
allowing higher priority Rules to evaluate normal state mesh components before they are
retracted.

 For syntactic reasons (a scenario must have at least one filter and map), this scenario includes
a ‘default’ filter and map. In practice, the conditions chosen for each are unlikely to occur in
practice and are simply chosen to provide a ‘placeholder’ filter and map chain. No alarm
reports are intended to pass the default filter and map chain.

Chapter 10 Alarm Interfaces
UCA offers a number of options to gather alarm reports, illustrated in the following diagram.

Alarm

Rule: Detect Service Failure

Alarm

Rule: Detect Service Failure

Child Group
BasebandLink

Child Group
Multiplex

Service
Sidonis_TV_Channel2

Service
Sidonis_TV_Channel1

Service
Sidonis_TV_Channel3

Child Group
Multiplex

Child Group
Multiplex

Multiplex
Sidonis_TV_Site_10006_Site_10025

BasebandLink
Site_10006_Site_10025

Assoc Group
BroadcastEq

BroadcastEq
Site10006-TX

Service
Sidonis_TV_Channel4

Child Group
Multiplex

Site
10001

Site
10006

Site
10025

Child Group
Site

Child Group
Site

Child Group
BroadcastEq.

Child Group
BroadcastEq.

BroadcastEq
Site10025-RX

BroadcastEq
Site10025-RX-1

BroadcastEq
Site10025-RX-2

Child Group
BroadcastEq.

BroadcastEq
Site10025-RX-1

BroadcastEq
Site10025-RX-2

Alarm

BroadcastEq
Site10025-RX

Synthetic
Alarm

Rule: DetectBasebandLinkFailure

BasebandLink
Site_10006_Site_10025

Failed Count = 1

Synthetic
Alarm

Multiplex
Sidonis_TV_Site_10006_Site_10025

Rule: Detect Multiplex Failure

Failed Count = 1

Synthetic
Alarm

Service
Sidonis_TV_Channel2

Service
Sidonis_TV_Channel1

Service
Sidonis_TV_Channel3

Service
Sidonis_TV_Channel4

Synthetic
Alarm

Synthetic
Alarm

Synthetic
Alarm

Synthetic
Alarm

Failed Count = 1Failed Count = 1Failed Count = 1Failed Count = 1

Child Group
BasebandLink

Child Group
Multiplex

Service
Sidonis_TV_Channel2

Service
Sidonis_TV_Channel1

Service
Sidonis_TV_Channel3

Child Group
Multiplex

Child Group
Multiplex

Multiplex
Sidonis_TV_Site_10006_Site_10025

BasebandLink
Site_10006_Site_10025

Assoc Group
BroadcastEq

BroadcastEq
Site10006-TX

Service
Sidonis_TV_Channel4

Child Group
Multiplex

Site
10001

Site
10006

Site
10025

Child Group
Site

Child Group
Site

Child Group
BroadcastEq.

Child Group
BroadcastEq.

BroadcastEq
Site10025-RX

BroadcastEq
Site10025-RX-1

BroadcastEq
Site10025-RX-2

Child Group
BroadcastEq.

BroadcastEq
Site10025-RX-1

BroadcastEq
Site10025-RX-2

Alarm

BroadcastEq
Site10025-RX

Synthetic
Alarm

Rule: DetectBasebandLinkFailure

BasebandLink
Site_10006_Site_10025

Failed Count = 1

Synthetic
Alarm

Multiplex
Sidonis_TV_Site_10006_Site_10025

Rule: Detect Multiplex Failure

Failed Count = 1

Synthetic
Alarm

Service
Sidonis_TV_Channel2

Service
Sidonis_TV_Channel1

Service
Sidonis_TV_Channel3

Service
Sidonis_TV_Channel4

Synthetic
Alarm

Synthetic
Alarm

Synthetic
Alarm

Synthetic
Alarm

Failed Count = 1Failed Count = 1Failed Count = 1Failed Count = 1

118

If the alarm report source system is able to obtain TCP/IP connectivity to the platform on which the UCA Data
Collector executes, then alarm reports may be delivered directly via a socket interface.
If the alarm report source system is remotely located from the UCA platform or a firewall exists between the two
systems, then the Remote Collector in combination with the Data Collector may be used. The Remote Collector
connects to the Data Collector using an XMLRPC Web Services connection. The remote source then connects to
the Remote Collector via a TCP/IP socket as normal.
Alternatively, a direct XMLRPC Web Services connection may be opened by the source system to the Data
Collector.

10.1 Local Socket Interface
The Data Collector supports a TCP/IP socket interface and listens for incoming connections from alarm report
sources on a pre-defined port (by default 6666, but this may be configured in the uca.properties file).
The Data Collector functions as a socket server and the remote system must be configured to connect as a socket
client. The remote system is responsible for establishing and maintaining the connection with the Data Collector.

10.2 Web Service Interface
The Data Collector also supports a web service interface. One advantage of establishing a Web Services
connection is that it may more easily traverse a firewall. It also provides for the possibility of gathering alarm
report information across an intranet or even the Internet.
To maintain compatibility with an existing socket interface implementation, UCA provides a Remote Collector
that implements a TCP/IP socket to Web Service proxy adapter. If the Remote Collector is executed on a
platform accessible to the source system, it automatically establishes a Web Services connection to the Data
Collector. The source system then connects to the TCP/IP socket interface provided by the Remote Collector as
described in the previous section. Details of configuring and launching the Remote Collector are provided in the
API Related documentation.

10.3 Supported Event Messages
Many network management systems raise alarm reports with a given severity (eg. critical, major, minor). When
the alarm condition ceases, the network management system then raises an identical alarm report but with
severity ‘cleared’ to indicate that the problem condition has finished. However, some systems do not produce
clear alarm reports in this way – they raise a ‘state change’ type of alarm report that simply contains the id of the
original alarm report to be cleared. UCA accommodates both types of alarm clearance mechanism by supporting
two forms of input message, relating to:

Source System CollectorSource System Collector

Alarm Report
Source System

Alarm Report

Alarm Report
Source System

Data
Collector

Data
Collector

Data

Remote
Collector

Web
Services

TCP/IP

TCP/IP

Firewall

Firewall

Alarm Report
Source System

Alarm Report

Alarm Report
Source System

Data
Collector

Data
Collector

Data

Remote
Collector

TCP/IP

TCP/IP

Firewall

Firewall

Web Services

119

 Alarm creation reports (for all alarm severities including ‘cleared’).
 Alarm state change reports (where the new state is ‘terminated’).

For both cases, the input data received by UCA is in the form of an XML message stream. The stream consists
of a series of messages enclosed in XML <Event> …. </Event> tags. The transmitted XML data stream must
not contain any XML header information and since it is streamed, it is not dynamically associated with any
schema or DTD document. The tags within an alarm report are based on the alarm fields defined in the ITU-T
X.733 specification. User-defined tags, also called user-defined alarm fields, are also supported and are
described in the subsequent section.

10.3.1 User-defined event fields

User-defined event fields are defined in the file filterfield.properties and must have a “user.” prefix.
For example, the user-defined field, resourceText, is defined as follows:
user.resourceText : String,conditionkey.string,valuekey.default,true
The property value in this case defines the type, condition key, value key and editable flag for the user-defined
type ‘resourceText’.
An example event message would contain the configured event field, thus:
<Event>

...
<resourceText>Further operational information.</resourceText>
...

</Event>

10.3.2 Event Message

Each event message consists of a stream of XML data formatted as follows. The order of the tags within the
<Event>…</Event> tags is unimportant:
<Event>

<eventRank></eventRank>
<systemClass></systemClass>
<systemInstance></systemInstance>
<eventId></eventId>
<dataType></dataType>
<originatingTime></originatingTime>
<moClass></moClass>
<moInstance></moInstance>
<severity></severity>
<alarmType></alarmType>
<probableCause></probableCause>
<specificProblems></specificProblems>
<additionalText></additionalText>
<additionalTextTag1></additionalTextTag1>
<additionalTextTag2></additionalTextTag2>
<additionalTextTag3></additionalTextTag3>
<additionalTextTag4></additionalTextTag4>
<additionalTextTag5></additionalTextTag5>
<additionalTextTag6></additionalTextTag6>

</Event>

NOTE: All tags are case-sensitive.

The tags have the following meaning:

Tag Name Description of Tag Value Mandatory
eventRank If this is a new alarm report from an external source

system, then set to “original”. If the alarm report has
resulted from an Action that UCA executed e.g. raising a
root cause alarm, then the value is “master”. In all
normal circumstances, an external alarm system should

yes

120

Tag Name Description of Tag Value Mandatory
use “original”.

systemClass The generic type of the alarm source system, e.g.
“sidonis_nms” etc.

yes

systemInstance A string that uniquely identifies the identity of the alarm
source system, e.g. “v1.0.1-02”.

yes

eventId A string that uniquely identifies the alarm report ID eg
“2311”

yes

dataType This should be set to “X.733” yes
originatingTime For alarm reports that are not of ‘cleared’ severity, this

is the time the alarm report was raised as reported by the
source system. For ‘cleared’ severity alarm reports, the
time that the alarm report was cleared on the source
system.
The format is “YYYY-MM-DD hh:mm:ss” where DD
= day in month (1-31)
MM = month in year (1-12)
YYYY = year eg. 2006
hh = hour in day (0- 23)
mm = minute in hour (0-59)
ss = second in minute (0-59).

yes

moClass The value of the managed object class associated with
the alarm report e.g. “Site, or “BroadCastEquipment”

yes

moInstance The value of the managed object instance associated
with the alarm report e.g. “10006” or “Site_10006-BX-
AIS-RX-2”

yes

severity One of the ITU-T X.733 severity enumerations, namely:
critical, major, minor, warning, indeterminate or cleared

yes

alarmType One of the ITU-T X.733 alarmType enumerations,
namely: communicationsAlarm, equipmentAlarm,
processingAlarm, qualityOfServiceAlarm or
environmentalAlarm

yes

probableCause One of the ITU-T X.733 probableCause enumerations,
namely: adapterError, applicationSubsystemFailure,
bandwidthReduced, callEstablishmentError,
communicationsProtocolError,
communicationsSubsystemFailure,
configurationOrCustomizationError, congestion,
corruptData, cpuCyclesLimitExceeded,
dataSetOrModemError, degradedSignal, dTE-
DCEInterfaceError, enclosureDoorOpen,
equipmentMalfunction, excessiveVibration, fileError,
fireDetected, floodDetected, framingError,
heatingOrVentilationOrCoolingSystemProblem,
humidityUnacceptable, inputOutputDeviceError,
inputDeviceError, lANError, leakDetected,
localNodeTransmissionError, lossOfFrame,
lossOfSignal, materialSupplyExhausted,
multiplexerProblem, outOfMemory, outputDeviceError,
performanceDegraded, powerProblem,
pressureUnacceptable, processorProblem, pumpFailure,
queueSizeExceeded, receiveFailure, receiverFailure,
remoteNodeTransmissionError,
resourceAtOrNearingCapacity, responseTimeExcessive,
retransmissionRateExcessive, softwareError,
softwareProgramAbnormallyTerminated,
softwareProgramError, storageCapacityProblem,
temperatureUnacceptable, thresholdCrossed,
timingProblem, toxicLeakDetected, transmitFailure,
transmitterFailure, underlyingResourceUnavailable or

yes

121

Tag Name Description of Tag Value Mandatory
versionMismatch

specificProblems A text string that further qualifies the alarm problem. no
additionalText A text string that provides additional useful information

related to the alarm. All white space and linefeed
characters will be maintained. This field normally
contains the ‘main body’ or raw text of the original
alarm report raised by the alarm source system.

yes

additionalTextTag1
- 6

If used, these may be used to add any extra information
to qualify the alarm report.

no

Note:
 If any field contains an XML meta-character such as > or < then the character or the whole

field should be surrounded by <![CDATA[and]]>
 No field should contain a value with single quotes i.e. a ‘ character.

The following is an example section of a data stream over the UCA input interface:
<Event>

.

.
</Event>
<Event>

<eventRank>original</eventRank>
<systemClass>HP_nms</systemClass>
<systemInstance>V5</systemInstance>
<eventId>1003</eventId>
<dataType>X.733</dataType>
<originatingTime>2005-06-10 12:16:32</originatingTime>
<moClass>Site</moClass>
<moInstance>10001</moInstance>
<severity>critical</severity>
<alarmType>EquipmentAlarm</alarmType>
<probableCause>PowerProblem</probableCause>
<additionalText>Site Power Failure</additionalText>

</Event><Event>
.
.

</Event>

10.3.3 Event State Change Messages

The system supports two different kinds of event state change message: terminate and attributeValueChanged
(AVC).
For a state change event, each XML message in the stream of data is formatted as follows. The order of the tags
within the <Event>…</Event> tags is unimportant:
<Event>

<eventRank></eventRank>
<systemClass></systemClass>
<systemInstance></systemInstance>
<eventId></eventId>
<dataType></dataType>
<originatingTime></originatingTime>

<updateState></updateState>
</Event>

NOTE: All tags are case-sensitive.
The tags have the following meaning:

Tag Name Description of Tag Value Mandatory
eventRank If this is a new alarm report from an external source

system, then set to “original”. If the alarm report has
yes

122

Tag Name Description of Tag Value Mandatory
resulted from an Action that UCA executed e.g. raising a
root cause alarm, then the value is “master”. In all
normal circumstances, an external alarm system should
use “original”.

systemClass The generic type of the alarm source system, e.g.
“sidonis_nms” etc.

yes

systemInstance A string that uniquely identifies the identity of the alarm
source system, e.g. “v1.0.1-02”.

yes

eventId A string that uniquely identifies the alarm report ID eg
“2311”

yes

dataType This should be set to “X.733” yes
originatingTime For alarm reports that are not of ‘cleared’ severity, this

is the time the alarm report was raised as reported by the
source system. For ‘cleared’ severity alarm reports, the
time that the alarm report was cleared on the source
system.
The format is “YYYY-MM-DD hh:mm:ss” where DD
= day in month (1-31)
MM = month in year (1-12)
YYYY = year eg. 2006
hh = hour in day (0- 23)
mm = minute in hour (0-59)
ss = second in minute (0-59).

yes

updateState Either ‘terminated’ or ‘attributeValueChanged’ yes

The following is an example section of a data stream over the UCA input interface for a terminate event:
<Event>

.

.
</Event>
<Event>

<eventRank>original</eventRank>
<systemClass> HP_nms </systemClass>

<systemInstance>V5</systemInstance>
<eventId>1003</eventId>
<dataType>X.733</dataType>
<originatingTime>2004-01-27 14:50:54</originatingTime>
<updateState>terminated</updateState>

</Event>
<Event>

.

.
</Event>

The following is an example section of a data stream over the UCA input interface for an attributeValueChanged
(AVC) event:
<Event>

.

.
</Event>
<Event>

<eventRank>original</eventRank>
<systemClass> sidonis_nms </systemClass>

<systemInstance>V5</systemInstance>
<eventId>1003</eventId>
<dataType>X.733</dataType>
<originatingTime>2004-01-27 14:50:54</originatingTime>
<updateState>attributeValueChanged</updateState>
<severity>major</severity>

</Event>

123

<Event>
.
.

</Event>

10.3.3.1Terminate messages

The eventId field is used to locate the existing event in the database and the terminate event is
reported to the associated Mesh Object or Notification.

10.3.3.2AVC (Attribute Value Changed) messages

The eventId field is used to locate an existing event in the database and an update event is
reported to the associated Mesh Object or Notification.
The following fields are available for update: severity, probableCause, specificProblems,
additionalText, additionalText1, additionalText2, additionalText3, additionalText4,
additionalText5, additionalText6 and any custom fields.
The original field values for these fields are also retained in the database.

10.3.3.3Auto-bypass filters and mappings

It is possible to configure the system such that the event state change messages bypass the filters
and mapping. This means that no filter or map is required to enable state change messages.
This is useful when there are few event change state messages entering the system. For high-
volume scenarios, the bypass should be disabled so that unnecessary events can be filtered. The
default state is disabled.
To enable the filter and mapping bypass, please set the following property in
uca.properties:
automatic.update.handling : true

124

125

Chapter 11 Data and calculator objects
A data object is typically used to interrogate an external database and hold the returned raw data in a list of pre-
configured key/value pairs for further processing within the system. The key/value pair will also have a type. For
example, for a smart metering application we may want to store meter readings using the key ‘meterReading’,
the value read from the database and with type ‘long’ i.e. a 64-bit signed integer.
One data object is instantiated per affected object. The data object is created by a custom rule trigger action.
The data object utilizes a calculator object (one per context) to perform processing on the raw data.

Through configuration it is possible to expose derived fields to the rules engine so that rules can interrogate the
derived values and perform further actions.
A basic schematic is shown below:

11.1 Data Object Attributes
A data object can be viewed in the working memory by double clicking on the data object instance, as identified
by its base class and unique reference. The data object attributes will be listed in the dialog box and brief
descriptions of each are listed below.

11.1.1 Raw Data

This attribute consists of a list of key/value pairs which represent the raw data as populated from the external
database via a RemoteHandler call and call-back mechanism. The data keys are defined in the Data Object
configuration file.

11.1.2 Derived Data

This attribute consists of a list of key/value pairs which represent the derived data as populated by calculations
performed on the raw data. The derived data keys are defined in the Data Object configuration file.

11.1.3 Last change reason

This is an enumeration of one of the following values: initialising, data-available, derived-data-available.
‘Initialising’ means that the data object has been instantiated but does not yet have any raw data.
‘Data-available’ means that the object has been filled with raw data.
‘Derived-data-available’ means that calculations have been performed on the raw data.

126

11.1.4 Base class

This field represents the base class of the data object.

11.1.5 Unique reference

This field represents the unique reference of the data object.

11.1.6 Timer state

The associated timer state: an enumeration of undefined, initialised, running, suspended, expired, completed.
A refresh rule will detect the ‘expired’ state i.e. the refresh countdown has reached zero.

11.1.7 Timer state changed

A flag indicating that the timer has changed state.

11.2 Data Object Lifecycle
A schematic of the data object lifecycle is shown below:

A data object has very distinct parts to its lifecycle: initialisation followed by a cycle of data retrieval and
derived data calculation/storage.

11.2.1 Initialise Data Object

11.2.1.1Rule trigger action

The action ‘create data object’ must be inserted as a trigger action on a rule.
When the rule is actually constructed in the GUI, the type of the data object is specified. When the rule is fired,
the data type will be created for the associated Mesh Object.
If a data type already exists for the Mesh Object, the action will be ignored.

11.2.1.2Data Object Configuration

The following file snippet shows an example data object configuration (for a fictional smart meter data object):

127

<metaDataObject type="smartMeter">
<dataMappings>

<dataMapping from="meterValue" to="currentMeterValue"/>
</dataMappings>

<dataTuples>
<tuple name="meterValue" type="long" />
<tuple name="previousMeterValue" type="long" />
<tuple name="timestamp" type="long"/>
<tuple name="previousTimestamp" type="long"/>

</dataTuples>

<outputTuples>
<tuple name="usageChangePercent" type="double" />

</outputTuples>

<dataSource name="smartMetering" user="meterUser"
pass="meterPassword" connections="10" dbms="postgresql">

<driverClass>
org.postgresql.Driver

</driverClass>
<connectionUrl>

jdbc:postgresql://localhost/smartMetering
</connectionUrl>

</dataSource>
</metaDataObject>

dataMappings element
It is possible for a database field name to a stored under a different key name using the mappings as defined in
this XML section.

dataTuples element
The raw data keys as taken from the database are defined in this section of XML. Supported types are: boolean,
int, long, float, double, string.

outputTuples element
The derived data keys as populated by calculations are defined in this section of XML. Supported types are:
boolean, int, long, float, double, string.

dataSource element
The data source for the external database is defined in this section of XML.

Note - The configuration file can be found in properties/data-config.xml

11.2.1.3Create Associated Timer

The final part of the data object initialisation is the creation of an associated timer to perform the countdown for
a refresh of the raw data. This is achieved using a rule to detect when the timer state is expired. A trigger action
is included in the rule to create a countdown timer to repeat infinitely i.e. until the data object is removed.
The action details are as follows:

128

11.2.2 Populate raw data

A rule must be created which contains the ‘refresh data object’ trigger action. This action will detect an expired
countdown timer and make a call to the remote handler to interrogate the external database. Please refer to the
Remote Handler Specification for more information on this call.
The call-back mechanism from the RemoteHandler will result in the sending of a DataRefreshEvent to
the event manager, which will refresh the raw data stored in the key/value pairs.

11.2.3 Populate derived data

The derived data is populated by an action called from a rule. The action in question is the ‘perform calculation’
action which specifies the data object for which the calculation is to take place, and also the desired calculation
name.
Multiple calculation actions can exist per rule and calculation actions can be split across many rules with
different priorities. The only proviso is that the final calculation action must be preceded by a ‘finish
calculations’ action. This action informs the data object that it can validate the derived data and be updated in the
working memory.

11.2.4 Data object actions

The following actions are available from the rule action dropdown list, under the category ‘measurement
handling’:

create data object This action is used to create a data object of the specified type, for a given
Mesh Object.

refresh data object This action is used to refresh a data object of the specified type, for a given
Mesh Object.

remove data object This action is used to remove a data object of the specified type, for a given
Mesh Object.

11.2.4.1Example data object action

The screenshot below shows the create data object trigger action:

129

11.3 Calculator object lifecycle
A schematic of the calculator object lifecycle is shown below:

The calculator uses an expression evaluator (called ‘Janino’) to compile the configured expressions into byte-
code for evaluation at runtime. The expressions must conform to the correct syntax to prevent compilation
errors, which would be reported to the exception log at run-time.
A calculator object will perform calculations with the raw data supplied from data objects. The derived data is
then stored in the data object.

11.3.1 Calculator Configuration

When the system first starts-up the calculator expressions are compiled and then held in memory for use by the
calculator object in each working memory.
The following file snippet shows an example calculator expression for calculating the percentage change
between two values:
<expression>

<name>Calculate Usage Change</name>
<expressionValue>

(meterValue/previousMeterValue)*100
</expressionValue>
<inputs>

<input>

130

<name>meterValue</name>
<type>long</type>

</input>
<input>

<name>previousMeterValue</name>
<type>long</type>

</input>
</inputs>
<output>

<name>usageChangePercent</name>
<type>double</type>

</output>
</expression>
Multiple expressions can be configured in this manner in the same configuration file

11.3.1.1name element

This XML element is the unique name of the calculation, which is used in the rule dialog for action ‘perform
calculation’.

11.3.1.2expressionValue element

This XML element is the actual (mathematical) expression to evaluate.

11.3.1.3inputs element

This XML element describes the input value key-names to the expression.

11.3.1.4output element

This XML element describes the output value key-name from the expression.

The configuration file can be found in properties/calculator-functions.xml

11.3.2 Calculator Actions

The following actions are available from the rule action dropdown list under the category ‘measurement
handling’:

perform calculation This action is used to perform a specified calculation on the data object for a
given Mesh Object.

report all calculations
finished

This action is used to report that all the calculations have finished on the
data object for a given Mesh Object. Each calculation requires a trigger
action to actually perform the calculation, followed by a ‘finish
calculations’ action to inform the data object that all the calculations have
been completed. At this point, the data object will change its state to
indicate that the derived data is available for further processing.

11.3.2.1Example calculation action

The action ‘perform calculation’ is shown below for the data type ‘smartMeter’ and calculation name ‘Calculate
Usage Change’:

131

11.4 Example data object scenario
The series of screenshots shown below show an example scenario in which a data object is created (rule
conditions 1), refreshed (rule conditions 2) and for which a calculation is performed (rule conditions 3).

11.4.1 Example Rule Conditions for ‘create data object’

132

11.4.2 Example Rule Conditions for ‘refresh data object’

11.4.3 Example Rule Conditions for ‘perform calculation’

133

Chapter 12 Time Dependent Event
Correlation
UCA offers the following capabilities and features to enable the construction of time dependent
correlations:

 Time bounded event processing actions, offering comprehensive support for time dependent
correlations on event streams.

 Relative and absolute time comparison operators for evaluating the time attributes model,
alarm and correlation objects

 Independently controllable, countdown Timer objects (one per model or correlation object)

In addition, UCA includes sophisticated time compression algorithms for providing rapid
resynchronization with event sources while maintaining the accuracy of both existing and historical time-
dependent correlations.
For correct operation of a resilient UCA configuration, it is important that the system time clocks of both
servers are closely aligned. For this reason, it is essential to make use of an operating system time
synchronization protocol e.g. NTP.
The following sections describe each of the time dependent correlation features.

12.1 Relative and absolute time comparison
operators
UCA provides a comprehensive set of comparison operators to evaluate absolute date and/or time (Date
attributes) of model, alarm and correlation objects against the current UCA ‘clock’ time (itself a Date) or
relative to another date and/or time. Each use of a time comparison operator is re-evaluated once a second
until the object is retracted or the condition is satisfied.
UCA ‘clock’ time is not the system hardware clock. In fact it is implemented as an event driven software
clock with a granularity of one second and is advanced by internal ‘tick’ messages generated by the
system hardware clock. This implies that under circumstances, the ‘clock’ time may lag behind actual
time as measured by the system clock, in particular where event buffering occurs. This does not affect the
accuracy of the time dependent correlations because they are driven by the UCA ‘clock’ and eventually
each ‘tick’ message will be processed allowing apparent and actual time to be re-aligned. At any time, the
‘clock’ time (referred to as ‘apparent’ time) and the actual time may be examined using the Time object
in the Working Memory Viewer.
It should also be noted that during resynchronization processes involving event replay in ‘compressed
time’, the current UCA ‘clock’ time will be adjusted to an earlier time and then continuously advanced by
the system to establish historically accurate time dependent correlations for the resynchronizing event
source. During this process, all other time dependent correlations for other event sources will be ‘frozen’
(to preserve their accuracy as the UCA ‘clock’ is adjusted).
The following table lists the time comparison operators and illustrates their use with the “Creation Time”
attribute of a Notification although they may be used with any attribute of the Date type. Where
<Variable> is specified, this implies that a previous ‘stored in’ assignment operation has been carried out
to initialise the variable with another Date value or an integer offset value in seconds.
Operator Use
is before [Creation Time] is before <Absolute Time>
is after [Creation Time] is after <Absolute Time>
plus offset is older than current time [Creation Time] plus offset <x seconds> is older than

current time
plus offset is younger than current time [Creation Time] plus offset <x seconds> is younger than

current time
minus offset is older than current time [Creation Time] minus offset <x seconds> is older than

current time
minus offset is younger than current time [Creation Time] minus offset <x seconds> is younger than

current time
is older than value in [Creation Time] is older than value in <Variable>

134

is younger than value in [Creation Time] is younger than value in <Variable>
plus offset (in variable) is older than
current time

[Creation Time] plus offset in <Variable> is older than
current time

plus offset (in variable) is younger than
current time

[Creation Time] plus offset in <Variable> is younger than
current time

minus offset (in variable) is older than
current time

[Creation Time] minus offset in <Variable> is older than
current time

minus offset (in variable) is younger than
current time

[Creation Time] minus offset in <Variable> is younger than
current time

12.2 Countdown Timers
UCA supports the concept of a countdown Timer object that may be dynamically created and attached to
objects using rule actions. Each global (System), model (Mesh Object & Child/AssociateGroups) and
correlation (Notification, Script, Data & Calculation) object may have a single Timer object attached to
them. Note however that the System object timer is reserved for use with the Resilience package and is
therefore not normally available for user-defined correlations.
Each Timer object operates with a granularity of one second and is driven by the UCA ‘clock’ with the
implications described in the previous section.
Each model or correlation object is provided with two attributes that allow an associated Timer to be used
in conjunction with it:

 An enumerated current timer state (undefined means that the Timer has not been created)

 A boolean timer update flag reporting if the last update applied to the object was a timer state
change.

A typical use is to construct a rule that waits for the Timer associated with an object to adopt a particular
state, although this must always be guarded with an additional test on the timer update flag to prevent
unwanted rule firings. The timer update flag is necessary because any update to an object in a Working
Memory context effectively refreshes all of the values of that object. Correct use of the update flag allows
a user to distinguish between a timer state change and any other attribute change on that object.
Timers are created, maintained and destroyed by rule actions and their existence and current state can be
examined via the list maintained by the global time object visible in the Working Memory Viewer.
Timers consume system resources and should be used only when necessary.
Timers have the following properties:

 They are driven by the UCA ‘clock’ with a granularity of one second and as a result their first
cycle may last between N-1 and N seconds (where N is the timer period). Subsequent cycles will
last N seconds.

 They are capable of operating in ‘one-shot’, counted (i.e. they time-out N times) or infinitely
repeating modes.

 They may be created and then started automatically or manually

 They may be suspended, resumed, stopped and re-initialised

 They can exist in each of the following states:

o Undefined – a Timer has not been defined for the owning object

o Initialised – a Timer has been defined but has not yet been started or has been re-
initialised

o Running- a defined Timer has been started

o Suspended – a previously running Timer has been temporarily suspended

o Expired – a running Timer has reached the end of its current cycle and timed-out or has
been stopped

o Completed – a one-shot or counted Timer has exhausted the number of operating cycles
or has been stopped

 Their start times may be aligned to the following time boundaries:

o Unaligned – in fact aligned to the one second boundaries defined by the UCA ‘clock’

135

o Minute – aligned to minute boundaries, implying that the first cycle will be truncated to
incur a time-out at the next minute boundary

o Hour – aligned to hour boundaries, implying that the first cycle will be truncated to
incur a time-out at the next hour boundary

o Day - aligned to day boundaries, implying that the first cycle will be truncated to incur
a time-out at the next day boundary

A comprehensive description of the facilities offered by Timers is contained in the section describing
Time related actions later in this guide.

136

12.3 System Operating Modes

12.3.1 Standalone Mode
The following diagram illustrates UCA operating in a standalone configuration. Note that UCA may be operated
in standalone configuration with or without the resilience heartbeat generated by the UCA Generic Collector.
The current operating mode is set using the system.mode property in the uca.properties file. Detailed
descriptions of the Remote Handler and Generic Collector are provided in the UCA Remote Handler Interface
and Generic Collector Interface specifications respectively.

12.3.2 Resilient Mode
The following diagram illustrates UCA operating in a resilient configuration. In this example, NMS platform A
is the primary and UCA platforms A & B form a resilient primary/secondary ‘hot standby pair’. Remote
Handlers used in a resilient configuration are normally run via Resilience Package rule actions.
The Remote Handler running on the primary UCA machine is normally operated with outputs enabled (allowing
communication with the primary NMS), while that on the secondary is normally operated with outputs disabled
(although expedited alarms reporting for example local platform problems may still be sent to the primary
NMS). Remote Handlers running on both primary and secondary UCA machines will normally be connected to
the UCA Generic Collector on the primary NMS platform, allowing each system to report an individual
heartbeat response.

UCA System Platform

Network Management
System Platform

Remote
Handler

(started via
Rule Action)

Remote
Handler
(Explicit
Launch)

Remote Platform

Remote
Handler
(Explicit
Launch)

UCA Generic
Collector

Heartbeat response +
normal & expedited
outputs

UCA Web Services

Heartbeat

137

If a UCA failover occurs, the above configuration is modified to enable outputs from the Remote Handler on the
new primary UCA platform, as shown below.

If an NMS failover occurs, each UCA instance expects the new NMS primary system to start a new instance of
the UCA Generic Collector. Rules in the Resilience package automatically detect the new heartbeat source and
will issue instructions to the Remote Handler instance to close the existing connection to the old Generic
Collector and attach to the new Generic Collector.

Network Management A
System Platform

UCA Generic
Collector

Network Management B
System Platform

UCA Generic
Collector

UCA B System Platform

Remote
Handler

(started via
Rule Action)

UCA Web Services

Heartbeat

Secondary

Primary

Heartbeat
response +
normal &
expedited
outputs

Network Management A
System Platform

UCA Generic
Collector

Network Management B
System Platform

UCA Generic
Collector

UCA A System Platform

Remote
Handler

(started via
Rule Action)

UCA Web Services

UCA B System Platform

Remote
Handler

(started via
Rule Action)

UCA Web Services

Heartbeat response +
expedited outputs

Heartbeat

Primary

Secondary

Secondary

Heartbeat
response +
normal &
expedited
outputs

Primary

138

Chapter 13 Resynchronization with
Event Sources

13.1 Event Resynchronization
In certain operating configurations, it is important for a UCA server to undergo a process of
resynchronization with one or more event sources e.g. an NMS. Resynchronization usually involves
retrieving copies of all outstanding events from a source and then replaying them to re-establish the
current event state. Depending on the type of correlation required, resynchronization may involve
additional processing to resolve differences between the source and the prior event history stored in the
UCA server Event database.

Typical scenarios where resynchronization may be required are:
 A UCA Primary or Standalone server is started for the first time. In this situation, the server will

have no prior event history and may need to resynchronize with multiple external event sources.
Depending on the type of correlation required, it may be necessary to replay the
resynchronization events in ‘compressed time’ to re-establish and maintain the correct temporal
correlations. ‘Compressed time’ event replay is a technique whereby for a given event source,
the UCA ‘clock’ is set back to just before the first resynchronization event and then events in the
resynchronization stream are replayed as fast as possible (the UCA ‘clock’being automatically
advanced during this process). In this way, temporal correlations are correctly handled without
the delay involved in replaying events at their original delivery times and the mechanism ensures
that events from other sources and associated correlations remain unaffected. Alternatively,
‘compressed time’ event replay may be dispensed with in situations where strict accuracy of
temporal correlations is not required or a minor variation from expected behavior can be
tolerated on startup e.g. stream-based correlations.

 A UCA Secondary server (re)connects to a UCA Primary server in a hot standby resilient
configuration. In this situation, sophisticated inter-server resynchronization with ‘compressed
time’ event replay and ‘ID matching’ is necessary to establish and maintain a common view of
current correlations on both servers. In essence, all of the existing event and correlation
knowledge on the Primary server is copied to the Secondary server and the resynchronization
process ensures (as far as possible) that both Primary and Secondary servers present the same
correlation views on completion. ‘ID matching’ is a technique employed to ensure that the same
correlation artifacts e.g. Notifications, have the same unique identifiers on both servers. This is
done in an attempt to make UCA failover seamless with regard to the event sources. Once
synchronized, both servers are then driven independently by dual outputs from a single Generic
Collector.

 When a UCA server (Primary, Secondary or Standalone) re-connects to an event source, either
following failure and re-establishment of a particular communications link or restart of the event
source system. Again, this process may optionally involve ‘compressed time’ event replay to re-
establish and maintain the correct temporal correlations.

Resynchronization processing is handled automatically by built-in functionality in the UCA servers
although it is the integrators responsibility to ensure that a Generic Collector specialization interfaces to
and manages individual event sources and requests UCA to deliver the required behaviour.
Where a hot-standby resilient configuration is required, an optional package of rules (the Resilience
Package) is required to control the special inter-server resynchronization features. This package must be
deployed and configured on both Primary and Secondary UCA servers.
During resynchronization involving ‘compressed time’event replay, a UCA Primary or Standalone server
will adopt a policy of actively preventing certain Remote Handler outputs (e.g. alarm raise requests, script
executions) being generated by correlations triggered by the replay of historical events which already
existed in the UCA server Events database. In contrast, previously unseen events delivered during
resynchronization that trigger new correlations will be allowed to generate such Remote Handler outputs.
This policy has been implemented in an attempt to prevent unwanted or ‘duplicate’ outputs being
generated during the process. In contrast, resynchronization of a Secondary UCA server under any
circumstances will not generate any outputs because they are globally disabled at the Remote Handler
level (provided the integrator has implemented the output enable/disable call-outs)..

139

The following sections describe the resynchronization process for both Primary/Standalone and
Secondary servers.

13.2 Primary/Standalone Server Initial
Resynchronization
A UCA Primary (for Primary read Standalone if only one system is used) system initial resynchronization
involving ‘compressed time’ event replay is summarized in the following sequence diagram:

The following sequence of tasks is carried out on initial resynchronization of a Primary system with one
or more event sources:

 By default (configurable in uca.properties), the Event and Notification databases are preserved
on a system restart.

 A request is issued by the Primary’s Server via its Remote Handler and Generic Collector
specialization (i.e. Specific Collector in the above diagram) to begin resynchronization with
all available event sources (provided that a UCA Primary-Secondary inter-server
resynchronization is not already underway). This request takes the form of a Java RMI
function call [requestResync()] issued from its Remote Handler REQUEST_RESYNC
callout to its Generic Collector ManagementIF. In the default Generic Collector
implementation provided with UCA, this call simply prints the request on the system
console. It is the responsibility of the integrator to provide a specific implementation (e.g. a
Specific Collector) that interfaces with the event source(s) and responds to this call as
required.

 For a Primary system (not Standalone), its Specific Collector must also execute a Secondary
Resynchronization delay on receipt of requestResync(), before attempting to proceed with the
source resynchronization process. Its purpose is to provide a window in which the Primary
system waits to determine if a Secondary system has concurrently issued a higher priority
inter-system resynchronization request. This request (in the form of a Java RMI function call
[secondaryResyncStarted()] is sent from the Secondary’s Remote Handler
SECONDARY_RESYNC_STARTED callout to the Primary’s Generic Collector

140

ManagementIF). If such a request is received, it must be processed ahead of the outstanding
source resynchronization request as described in the following section. Assuming that such a
request has not been received during the delay period, the Primary’s Specific Collector is free
to proceed with a source resynchronization (the Secondary system is then actively prevented
from issuing an inter-system resynchronization request until the complete source
resynchronization cycle is completed).

 The Primary’s Specific Collector sends a CYCLE_START event to the Primary’s Server with
the following attributes:

o systemClass = “GenericCollector”

o systemInstance = “V1.0”

o eventRank = “resync”

o moClass = “System”

o moInstance = “CYCLE_START”

 The CYCLE_START event is automatically consumed by the Primary’s Server (no filters or
maps are required) and causes it to begin a source resynchronization cycle from one or more
individual sources.

 The P rimary’s Specific Collector will carry out in turn the following resynchronization
sequence involving one or more event sources:

o The Primary’s Specific Collector requests a pre-defined event source to begin
delivering a resynchronization stream of events.

o When the event stream is ready for delivery, the Primary’s Specific Collector must
send a START event to the Primary’s Server with the following attributes:

 systemClass = event source type name e.g. “NMS”

 systemInstance = event source instance name e.g. “Source_1”

 eventRank = “resync”

 moClass = “System”

 moInstance = “START”

o The START event is automatically consumed by the Primary’s Server (no filters or
maps are required) and causes it to begin buffering any subsequent
resynchronization events received from the defined event source in a special area of
the Events database. ‘Live’ events received from all other event sources will be
buffered in a memory-resident events buffer until the complete resynchronization
operation is completed, whereupon normal processing is resumed. For this reason,
the memory configuration of the Primary’s Server TomCat JVM (set in the
CATALINA_OPTS environment variable) must have been previously set to allow
sufficient heap memory resources to accommodate the largest anticipated set of
buffered ‘live’ events from all sources. Memory usage during resynchronization
testing may be monitored by examining the Primary’s System object from the
Working Memory Viewer and adjusted as required.

o The Primary’s Specific Collector will then deliver the set of outstanding
(resynchronization) events from the defined event source to the server, which in turn
stores them in the Events database. Note that it is no longer necessary for the
Specific Collector to know which server to send the events to; this is automatically
handled by the underlying Generic Collector implementation using its knowledge of
the currently attached server(s). As described above, ‘live’ events from other event
sources will be buffered in memory.

o When the outstanding (resynchronization) event stream from the defined event source
is exhausted, the Primary’s Specific Collector must send a FINISH event to the
Primary’s Server with the following attributes:

 systemClass = event source type name

141

 systemInstance = event source instance name

 eventRank = “resync”

 moClass = “System”

 moInstance = “FINISH”

o The FINISH event is automatically consumed by the Primary’s Server (no filters or
maps are required) and causes it to construct a time ordered ‘replay’ list of events
for the defined event source, including time advance events. The ‘replay’ events list
contains the following types of events:

 Time advance events

 Alarm raise & clear events, corresponding to historical raise and clear events
(from the defined event source) that existed in the Events database prior to
the resynchronization process

 Alarm raise events, corresponding to new raise events received in the
resynchronization stream (from the defined event source).

 Alarm update events, derived from differences between previously active
historical events and matching but updated raise events received in the
resynchronization stream (both types from the defined event source)

 Alarm clearance events, derived from the necessity to automatically close
previously active historical raise events that were not present in the
resynchronization stream (both types from the defined event source)

o The Primary’s Server locks the Timers associated with all existing correlations (to
prevent the ‘compressed time’ replay process from inadvertently triggering temporal
correlations associated with other event sources). It then sets the UCA ‘clock’ to the
second boundary before the first replay event and initiates the ‘compressed time’
event replay process, during which the contents of the ‘replay’ events list are
delivered as fast as possible for processing.

o Each time a time advance event is encountered, the UCA ‘apparent time’ is advanced
by the specified number of 1 second steps and the fireAllRules() on the Rules
Engine method is called after each 1 second step. In this way, time dependent
correlations for the event source only are correctly handled during the accelerated
replay.

o When the ‘replay’ events list is exhausted (and ‘apparent time’ has advanced to the
time at which the ‘compressed time’ event replay process began), the Primary’s
Server unlocks all previously locked Timers, ceases to buffer live events and begins
to process the contents of the live events buffer. As this buffer itself includes time
advance events, the ‘apparent time’ at the end of the outstanding event replay
process is gradually advanced to match the ‘actual time’ until the system catches up
with reality!

o Finally, the Primary’s Server reports defined source resynchronization completion via
its Remote Handler to its Specific Collector. This report takes the form of a Java
RMI function call [completedResync()] issued from its Remote Handler callout to
its Generic Collector ManagementIF. In the default Generic Collector
implementation provided with UCA, this call simply prints the request on the
system console. It is the responsibility of the integrator to provide a specific
implementation e.g. in a Specific Collector, that recognizes that resynchronization
with the defined source is complete and allows it to continue with the next available
source.

o The Primary’s Specific Collector repeats the above sequence for the remaining event
sources.

 The Primary’s Specific Collector sends a CYCLE_FINISH event to the Primary’s Server with
the following attributes:

o systemClass = “GenericCollector”

142

o systemInstance = “V1.0”

o eventRank = “resync”

o moClass = “System”

o moInstance = “CYCLE_FINISH”

 The CYCLE_FINISH event is automatically consumed by the Primary’s Server (no filters or
maps are required) and causes it to complete a source resynchronization cycle from one or
more individual sources. From this point on, a Secondary system may request an inter-system
resynchronization.

 Finally, the UCA Primary system is now resynchronized with its event source(s) and is
processing events received in real-time. This is the normal steady state.

As stated previously, depending on the correlation requirements, the ‘time compressed’ event replay
process may be ignored. This is simply achieved by not sending the START and FINISH events
described in the sequence above and is the responsibility of the integrator to configure when building the
Specific Collector. It is also then the responsibility of the integrator to ensure that events are gathered
from one or more sources, time ordered and replayed as a composite sequence if required.

13.3 Primary/Secondary Inter-System
Resynchronization

Primary/Secondary inter-system resynchronization involving ‘compressed time’ event replay and ‘ID matching’
is summarized in the following sequence diagram:

143

The following sequence of tasks (controlled by the Resilience Package of rules) is carried out when a Secondary
server attempts to resynchronize with a Primary server:

 Assuming that the Generic Collector has been configured to deliver HEARTBEAT messages
to both Primary and Secondary servers and that the Primary server has already restarted and
resynchronized with its event source(s), then the Primary server will be in the
IN_SERVICE:PROCESSING state, processing live events.

 On startup of the Secondary’s Server (in the UNKNOWN role), it waits in the
OFFLINE:DISCARDING state to receive a HEARTBEAT message from the Generic
Collector. The HEARTBEAT message informs the second server that the other server is in
the Primary role. The second server then adopts the Secondary role and and enters the
RESYNCING:DISCARDING state, discarding any live events sent to it by the Generic
Collector.

 The Secondary’s Server issues a request to the Primary’s Generic Collector to issue a BLOCK
message. This request takes the form of a Java RMI function call [requestBlock()] issued
from the Secondary’s Remote Handler REQUEST_BLOCK callout to the Primary’s Generic
Collector ManagementIF.The purpose of the BLOCK message is to halt live event
processing in both the Primary and Secondary servers at exactly the same point in their
respective event streams. The Primary’s Generic Collector can guarantee to issue the
BLOCK message to both servers at this point because it is responsible for duplication and
delivery of each event. The BLOCK message has the following attributes:

 systemClass = “GenericCollector”

 systemInstance = “V1.0”

 eventRank = “resync”

 moClass = “System”

 moInstance = “BLOCK”

 As a result of receiving the BLOCK message, the Primary’s Server will:

o Enter the BLOCKED:BUFFERING state and begin buffering live events from all
event sources in memory.

o Archive the Event & Notification databases to remove any information that is no
longer needed by active events or correlations.

o On completion of the archive process, enter the
BLOCKEDARCHIVED:BUFFERING state and report its new state to the
Secondary’s Server.

o Wait until informed by the Secondary’s Server that it can resume processing of live
events. While waiting, live events are buffered in memory and for this reason, the
memory configuration of the Primary’s Server TomCat JVM (set in the
CATALINA_OPTS environment variable) must have been previously set to allow
sufficient heap memory resources to accommodate the largest anticipated set of
buffered events. Memory usage during inter-system resynchronization testing may
be monitored by examining the Primary’s System object from the Working Memory
Viewer and adjusted as required.

o Resume processing of buffered ‘live’ events (starting with those buffered in memory)
when instructed by the Secondary’s Server.

 As a result of receiving the BLOCK message, the Secondary’s Server will:

o Enter the BLOCKED:BUFFERING state and wait for the Primary’s Server to inform
it that it has completed the archive process. Any ‘live’ events will be buffered in
memory and for this reason, the memory configuration of the Secondary’s Server
TomCat JVM (set in the CATALINA_OPTS environment variable) must have been
previously set to allow sufficient heap memory resources to accommodate the
largest anticipated set of buffered events. Memory usage during inter-system
resynchronization testing may be monitored by examining the Secondary’s System
object from the Working Memory Viewer and adjusted as required.

144

o When instructed by the Primary’s Server that archiving is complete, it will retrieve
details of all current Events, Notifications and the current values of all ID counters
used on the Primary’s Server. The latter are used to re-initialize the ID counters in
the Secondary’s Server. It will also retrieve the Primary Server’s ‘clock’ time and
set the Secondary Server’s ‘clock’ time to the same value. In order to prevent
subsequent drift between the Primary’s and Secondary’s Servers, it is essential to
configure a time synchronization protocol between them e.g. NTP.

o Build the ‘replay’ events list for all event sources and on completion, instruct the
Primary’s Server to re-commence live event processing.

o The Secondary’s Server will then commence ‘compressed time’ event replay
processing using the ‘replay’ events list created above. Note that wherever possible,
details of the equivalent existing Notifications retrieved from the Primary’s Server
will be used to re-construct the equivalent Notifications on the Secondary’s Server,
thus preserving the correspondence of Notification IDs between the Servers.

o On completion of the ‘compressed time’ event replay processing, the Secondary’s
Server will adopt the IN_SERVICE:PROCESSING state and begin processing
‘live’ events (starting with those buffered in memory).

13.4 Server Resynchronization Following
Connection Re-establishment
Server resynchronization following connection re-establishment and involving ‘compressed time’ event
replay is summarized in the following sequence diagram:

The following sequence of tasks is carried out when a server attempts to resynchronize with an event source
following connection loss and re-establishment:

 Either the event source notifies the Generic Collector specialization that connectivity to the
event source has been re-established or the Generic Collector itself re-establishes
connectivity to the event source.

 The Generic Collector specialization sends a RESET message to the server to automatically
generate clear events for all outstanding raise events in the Event database previously
received from the defined event source. The RESET message has the following attributes:

 systemClass = event source type name

 systemInstance = event source instance name

 eventRank = “resync”

 moClass = “System”

 moInstance = “RESET”

145

 When the event stream is ready for delivery, processing proceeds as described for the
Primary/Standalone initial resynchronization scenario with the delivery of a START
message.

 Again and depending on the correlation requirements, the ‘time compressed’ event replay
process may be ignored. This is simply achieved by not sending the START and FINISH
events described in the sequence above and is the responsibility of the integrator to configure
when building the Generic Collector specialization.

In a UCA resilient configuration utilizing two servers operating in hot-standby, it will be necessary for each
server to undergo the resynchronization process described above following connection re-establishment. This
implies that the Generic Collector spec ialization is responsible for instructing both servers to undergo
resynchronization and for delivering the START/Events/FINISH messages simultaneously to each server.

13.5 Replay Event List Construction
The following flow-chart summarises the algorithm used to construct the ‘Replay’ event list.

146

Chapter 14 Value Packs

14.1 Introduction
A value pack is a collection of information, such as rules, actions etc. that can be packaged up to usefully support
a generic capability. For example a value pack might generically address problem identification and impact
analysis for a telecoms SDH network, or a general purpose power failure scenario within a digital TV broadcast
network.
To be more specific, a value pack bundles the following information:

 Actions User defined actions can be included in a value pack. Once a value pack
is loaded, user actions will be available to all running rules.

 Meta-model Each value pack can have its own meta-model. A value pack meta-model
is merged into any currently deployed meta-models and can have classes
with an ‘External’ stereotype to link with other value packs or deployed
models.

 Filters and Rules Each value pack can have its own ‘scenarios’ XML files that will get
merged and deployed into the system.

 Scripts A value pack must supply any scripts that it runs locally.
 Configuration A value pack can supply its own system properties that will be available

to all rules.

When UCA is started all previously activated value packs will be initialised in memory.
All system functions are in a single system value pack.

147

14.2 Description

14.2.1 Internal structure

A value pack is a directory with a known structure that has been put into the ‘valuepacks’ directory of the
deployed UCA application.
The top level structure for a value pack is:

 actions a directory that contains the action classes
 configuration a directory that contains the value pack properties and any other developer

properties files
 models contains the meta model files.
 rules the scenarios XML files.
 scripts scripts that are run by the value pack rules
 vp-manifest.xml contains the value pack group, name, version and description

14.2.2 Actions

The actions directory can contain:
 The action code as one or more jar files [name].jar.
 The [name]_declarations.properties properties file.
 The [name]_classloader.properties properties file.

14.2.3 Configuration

The configuration directory will contain the system.properties file.

14.2.4 Models

The models directory will contain the meta-model files, these can be UCA XML or ‘XMI’ files. All models in
this directory will be loaded.

 Multiple files in the ‘valuepacks/VPName/models/’ directory will be loaded
 Meta-model files can be in either Argo XMI or UCA XML format (the former will be converted to

the latter)
 An external node in the meta-model must be prefixed by a namespace e.g.

com.name.product.vp.IPLink
 All top level nodes must have 'Model' as the parent

14.2.5 Rules

The rules directory will contain the scenarios XML files as exported by the Scenario Manager. All XML files in
the directory will be loaded.
VP rules can consist of new scenarios (which will be deployed as such) and also individual rules (which will be
added to the list).

14.2.6 Scripts

This contains scripts used in the ‘runScripts’ action.
Note that the 'valuepack' directory is used as the scripts base directory.
It is usual to include the value pack path and scripts directory for use in VP rules as a system property. e.g
example-1.0/scripts/ascript. This prevents any hard-coding of script paths in rules.

14.2.7 VP Manifest

The vp-manifest.xml file contains information about the value pack such as name, group and version. A manifest
file must be included into the value pack directory structure. An example is given below:

148

<?xml version="1.0" encoding="UTF-8"?>
<valuepack vp-format-version="1.0">

<group>com.HP</group>
<name>test</name>
<version>1.0</version>
<description>A test demonstration value pack.</description>

</valuepack>

149

14.3 Value pack Lifecycle
The VP lifecycle is shown below:

The VP moves from a ‘deploy’ state to an ‘active’ state through the process of auto-deploy, cold-deploy or hot-
deploy. Once the database tables have been updated, the active VP will always be activated by the system on
start-up. In the case of hot-deployment, the VP will be automatically activated dynamically.
An active VP may then be deactivated through a process of auto-deploy, cold-deploy or hot-undeploy. The
database tables will be removed but the VP files remain on the file system.

14.3.1 Value Pack Deployment process

Value pack ‘deployment’ can be divided into three distinct phases: deployment, initialisation and activation.
In the deployment phase the database entries are written. For multiple deployments, the VPs are deployed in
priority order (0=highest priority, 20=lowest priority)
In the initialisation phase the rules are compiled and merged with the current rulebase.
In the activation phase all value pack components are loaded into memory. The mesh will not be updated with
the inventory for a VP until the inventory is loaded and a mesh update event is fired.

150

14.3.2 Start up procedure

When the system starts-up, the currently active VPs are loaded before the deployment of any new VPs.
The diagram below outlines the start-up process:

151

The mesh is updated with the inventory currently in the database for each VP. Please note that only the currently
activated VPs will be data loaded.
VPs that are cold-deployed can have inventory added before a system start-up to allow them to be data-loaded in
this manner.
VPs that are hot-deployed will not be data-loaded and will require an inventory load and mesh update event.

14.3.3 Inventory and Mesh Update Events

The inventory manager can be used to add inventory for the classes contained in the VP. This is useful for newly
hot-deployed VPs which will not have been data loaded.
See the section on data-loading via the System Manager (and / or the inventory_manager Python script
documentation for further information on how to data-load inventory.
After the database has been populated, a mesh update (scheduled or otherwise) will load the newly loaded
inventory in the mesh.

14.4 Deploying a value pack
Value packs are not deployed by default and must be deployed and un-deployed with the scripts provided on a
running instance of the application.
Deploying and un-deploying a value pack must be done on each machine separately within a resilient pair. For
both deploy and undeploy the UCA instance must be running and started.

14.4.1 How to Deploy

Deploying a value pack involves two steps:
a. Copying the value pack zip file to the server and unzipping it into the vp/ directory.

b. Using the bin/vp-deployer.sh script.

Usage: vp-deploy.sh command [path] user password

152

command list | hot-deploy | cold-deploy | hot-undeploy | cold-
undeploy (note - only use hot-* when the system is
running)

path relative path of the value pack in the 'valuepacks'
subdirectory [only for deploy/undeploy]

username the UCA username e.g. system

password the UCA password e.g. system

options preserve-inventory (use on hot-deploy/hot-undeploy only)
force (use on hot- or cold-deploy/undeploy)
no-resync (use on hot-deploy/undeploy)

Note – the path will usually be the name and version of the valuepack i.e. example-1.0

Hot deploy
The hot-deploy command will deploy a value pack into a running system. Any deployment errors will be output
to the console. If the value pack is already installed, the user will be informed.

 The only VP that should be at priority 0 is the System value pack
 If the manifest is incorrect for any of the VPs to be deployed, the entire process will be aborted
 The VP deployment script will only work on 'localhost' i.e. you must use it on the UCA server

only

Cold deploy
The cold-deploy command will deploy a value pack on a system on which only the manager server is running.

14.4.2 How to Un-deploy

To un-deploy a value pack again use the bin/vp-deployer.sh script. This will remove all the components of the
value pack from the instance.

hot-undeploy
The hot-deploy command will un-deploy a value pack from a running system. Any un-deployment errors will be
output to the console. If the value pack is not installed, the user will be informed.

cold-undeploy
The cold-undeploy command will un-deploy a value pack from a system on which only the manager server is
running.

Note – I the case you undeploy and then re-deploy the same valuepack and you want to preserve the instances
corresponding to the valuepack model; you have to use the ‘preserve-inventory’ option. By using this option the
instance inventory will be kept unchanged.

14.4.3 Listing all active value packs

The ‘list’ command (on both a running and non-running system) will output a list of all active value packs.

14.4.4 Deploying a value pack on start up

A value pack can be ‘auto’ deployed when UCA is started up by including the empty file ‘DEPLOY’ in the
value pack directory. A value pack will only be deployed the first time this file is detected since the file will be
renamed to avoid repeated auto-deployment.
If the ‘DEPLOY’ file is detected for a for a value pack that is already deployed then the value pack will be
deactivated and then reactivated.

153

14.5 Supplied value packs

14.5.1 System actions

The system actions are deployed as a VP with the highest priority. This consists of a single jar file containing the
system actions and all configuration files.

14.5.2 Resilience

For resilient configurations licensed to use the ‘Resilience VP’, the Resilience VP will load all the rules, actions,
properties and scripts.
However, the following manual configuration changes will still be necessary:

 Set the correct values in configuration/system.properties for the host and peer before loading the
VP

 Edit the uca.properties and set the 'system.mode' property before restarting
 Edit the remotehandler.properties
 Edit the genericcollector.properties

14.6 Assumptions

14.6.1 Namespace

 The namespace is defined as the concatenation of both the group and name information held in the
VP manifest file

 The namespace is not case-sensitive (i.e. it will always be converted to lower case only) therefore
com.name.vp.example and com.name.vp.EXAMPLE refer to the same namespace

 Individual class names with a VP are case sensitive with respect to data-loading, so if a class is
delcared as ‘IPLink’ in the namespace ‘com.company.product.vp’, then the fully qualified name in
the inventory would be com.company.product.vp.IPLink (i.e. not the lower case variant)

 The namespace information is used when generating the inventory tables in the database. For
example com.name.vp.IPLink will create the database table md_com_name_vp_iplink

Class Names
 Class names must not contain the underscore character since this is the escaped class name for VPs

Metamodel
 It is possible to start a system with no metamodels deployed since VPs can be hot deployed into an

‘empty’ system. Therefore, if no metamodel has been loaded, a default Model-only metamodel
will be used by the system

14.7 Current Limitations
 There is currently no support for VP updates
 Oracle tables names longer than 30 chars are currently not supported
 Actions can be hot deployed but NOT hot undeployed or hot updated; UCA will need to be

restarted to pick-up the new changes. Currently, this leads to two issues:
- Undeploying and re-deploying a VP with actions will not pick-up the changes to the actions

until a restart
- Using an action in a non-VP rule and undeploying that VP will have the effect that the action

will continue to work until the system is restarted, at which point it will fail to work.
 Rules will require re-compilation – you must change the import and re-compile against the latest

codebase

154

Chapter 15 Reference Information

15.1 Object Type Attributes

15.1.1 Object

Attribute Name Type Purpose
Base Class String Base class name selected from list of classes

defined in metamodel
Sub Class String Sub (derived) class name
Instance String Friendly name or alias
Unique Reference String Unique identifier
State Enumeration Selected from list of possible states (normal,

degraded, failed)
Service State Enumeration Selected from list of possible service states (in

service, commissioning, out of service, in
maintenance)

Current Problem
List Entry Count
(Current Total
Event Count)

Integer Number of synthetic and external alarm reports
currently attached to this mesh object

Current Problem
List Entry Count
Changed (Current
Total Event Count
Trend)

Enumeration Selected from a list of possible values (increased,
unchanged, decreased)

Total Synthetic
(Degraded + Failed)
Event Count

Integer Number of synthetic alarm reports currently
attached to this mesh object

Total Synthetic
(Degraded + Failed)
Event Count
Changed

Enumeration Selected from a list of possible values (increased,
unchanged, decreased)

External Event
Count

Integer Number of external alarm reports currently
attached to this mesh object

External Event
Count Changed

Enumeration Selected from a list of possible values (increased,
unchanged, decreased)

Degraded Synthetic
Event Count

Integer Number of synthetic alarm reports with degraded
target state currently attached to this mesh object

Degraded Synthetic
Event Count
Changed

Enumeration Selected from a list of possible values (increased,
unchanged, decreased)

Failed Synthetic
Event Count

Integer Number of synthetic alarm reports with failed
target state currently attached to this mesh object

Failed Synthetic
Event Count
Changed

Enumeration Selected from a list of possible values (increased,
unchanged, decreased)

Parent Base Class String Parent mesh object base class name, as for Base
Class

Parent Sub Class String Parent mesh object sub (derived) class name
Parent Instance String Parent mesh object friendly name or alias
Parent Unique
Reference

String Parent mesh object unique identifier

Parent Mesh Object Mesh Object Parent mesh object reference e.g. obj0
Grandparent Base
Class

String Grandparent mesh object base class name, as for
Base Class

155

Attribute Name Type Purpose
Grandparent Sub
Class

String Grandparent mesh object sub (derived) class name

Grandparent
Instance

String Grandparent mesh object friendly name or alias

Grandparent
Unique Reference

String Grandparent mesh object unique identifier

Grandparent Mesh
Object

Mesh Object Grandparent mesh object reference e.g. obj0

Importance Enumeration Chosen from a list of possible values (unknown,
gold, silver, bronze)

Parent State Enumeration Selected from list of possible states (normal,
degraded, failed)

Grandparent State Enumeration Selected from list of possible states (normal,
degraded, failed)

Timer State Enumeration Selected from a list of possible values (undefined,
initialised, running, suspended, expired,
completed)

Timer State
Changed

Boolean Selected from true or false

Last Event Creation
Time

Date Time at which the latest event mapped to this

object was raised in UCA
Last Event
Originating Time

Date Time at which the latest event mapped to this
object was raised in the originating system

Last Event MO
Instance

String The name of the Managed Object in the originating
system on which the latest event mapped to this
object was raised

Last Event MO
External Event ID

String The unique identifier assigned by the originating
system to the latest event mapped to this object

Last Event
Additional Text
(Last Event
Additional Data)

String Contents of the Additional Text field of the latest
alarm report

Last Event
Probable Cause

String Contents of the Probable Cause field of the latest
alarm report

Last Event Severity Enumeration Contents of the Severity field of the latest alarm
report

Last Event Previous
Severity

Enumeration Contents of the Severity field of the previous alarm
report

Update pending
count

Integer The number of outstanding alarm update events

156

15.1.2 Child Group

Attribute Name Type Purpose
Base Class String Base class name of the mesh objects held in this

group, selected from list of classes defined in
metamodel

Parent Base Class String Parent mesh object base class name selected
from list of classes defined in metamodel

Parent Sub Class String Parent mesh object sub (derived) class name
Parent Instance String Parent mesh object friendly name or alias
Parent Unique
Reference

String Parent mesh object unique identifier

Parent Mesh Object Mesh Object Parent mesh object reference
Grandparent Base
Class

String Grandparent mesh object base class name
selected from list of classes defined in
metamodel

Grandparent Sub
Class

String Grandparent mesh object sub (derived) class
name

Grandparent
Instance

String Grandparent mesh object friendly name or alias

Grandparent
Unique Reference

String Grandparent mesh object unique identifier

Grandparent Mesh
Object

Mesh Object Grandparent mesh object reference

Member Count Integer Number of member mesh objects in group
Normal Count Integer Number of normal member mesh objects in

group
Normal Count
Changed

Enumeration Selected from a list of possible values (increased,
unchanged, decreased)

Normal Percentage Integer in
range 0 –100%

Percentage of member mesh objects in group that
are normal

Normal Percentage
Changed

Enumeration Selected from a list of possible values (increased,
unchanged, decreased)

Degraded Count Integer Number of degraded member mesh objects in
group

Degraded Count
Changed

Enumeration Selected from a list of possible values (increased,
unchanged, decreased)

Degraded
Percentage

Integer in
range 0 –100%

Percentage of member mesh objects in group that
are degraded

Degraded
Percentage
Changed

Enumeration Selected from a list of possible values (increased,
unchanged, decreased)

Failed Count Integer Number of failed member mesh objects in group
Failed Count
Changed

Enumeration Selected from a list of possible values (increased,
unchanged, decreased)

Failed Percentage Integer in
range 0 –100%

Percentage of member mesh objects in group that
are failed

Failed Percentage
Changed

Enumeration Selected from a list of possible values (increased,
unchanged, decreased)

List Of Children Child Group Reference to Child Group
External Event
Count

Integer Number of external (non-synthetic) events on
members of this group

Synthetic Event
Count

Integer Number of synthetic (non-external) events on
members of this group

Total (External &
Synthetic) Event
Count

Integer Number of synthetic & external events on
members of this group

157

Attribute Name Type Purpose
Timer State Enumeration Selected from a list of possible values

(undefined, initialised, running, suspended,
expired, completed)

Timer State
Changed

Boolean Selected from true or false

158

15.1.3 Associate Group

Attribute Name Type Purpose
Base Class String Base class name of the mesh objects held in this

group, selected from list of classes defined in
metamodel

Parent Base Class String Parent mesh object base class name selected
from list of classes defined in metamodel

Parent Sub Class String Parent mesh object sub (derived) class name
Parent Instance String Parent mesh object friendly name or alias
Parent Unique
Reference

String Parent mesh object unique identifier

Parent Mesh
Object

Mesh Object Parent mesh object reference

Grandparent Base
Class

String Grandparent mesh object base class name
selected from list of classes defined in
metamodel

Grandparent Sub
Class

String Grandparent mesh object sub (derived) class
name

Grandparent
Instance

String Grandparent mesh object friendly name or alias

Grandparent
Unique Reference

String Grandparent mesh object unique identifier

Grandparent Mesh
Object

Mesh Object Grandparent mesh object reference

Member Count Integer Number of member mesh objects in group
Normal Count Integer Number of normal member mesh objects in

group
Normal Count
Changed

Enumeration Selected from a list of possible values
(increased, unchanged, decreased)

Normal Percentage Integer in range 0
–100%

Percentage of member mesh objects in group
that are normal

Normal Percentage
Changed

Enumeration Selected from a list of possible values
(increased, unchanged, decreased)

Degraded Count Integer Number of degraded member mesh objects in
group

Degraded Count
Changed

Enumeration Selected from a list of possible values
(increased, unchanged, decreased)

Degraded
Percentage

Integer in range 0
–100%

Percentage of member mesh objects in group
that are degraded

Degraded
Percentage
Changed

Enumeration Selected from a list of possible values
(increased, unchanged, decreased)

Failed Count Integer Number of failed member mesh objects in
group

Failed Count
Changed

Enumeration Selected from a list of possible values
(increased, unchanged, decreased)

Failed Percentage Integer in range 0
–100%

Percentage of member mesh objects in group
that are failed

Failed Percentage
Changed

Enumeration Selected from a list of possible values
(increased, unchanged, decreased)

Hops Integer Number of ‘hops’ to propagate state changes to
peers

List Of Associates Associate Group Reference to Associate Group
Timer State Enumeration Selected from a list of possible values

(undefined, initialised, running, suspended,
expired, completed)

Timer State
Changed

Boolean Selected from true or false

159

160

15.1.4 Notification

Attribute Name Type Purpose
Notification Type Enumeration Selected from list of possible types(primary,

marker, problem report, service impact, root
cause)

Notification Rank Integer Severity or Importance of the notification, in
range 1 to 10 (1 = highest)

Base Class String Base class name of mesh object that Notification
is owned by, selected from list of classes defined
in metamodel

Unique Reference String Unique identifier of mesh object that Notification
is owned by

Context Name String Name of the ‘target’ context in which this
Notification may also be inserted

Originating Base
Class

String Base class name of mesh object that Notification
originates from (same as Base Class if this is a
primary Notification), selected from list of classes
defined in metamodel

Originating
Unique Reference

String Unique identifier of originating mesh object

Originating
Context Name

String Name of the context in which this Notification is
inserted

Notification ID Integer Unique numerical identifier (-1 if marker
Notification)

Notification
Master Alarm
Status

Enumeration Selected from list of possible states (not created,
pending, present, terminated) – reports existence
or otherwise of master alarm report from NMS

Associated
Trouble Ticket ID

String Unique identifier of an associated Trouble Ticket
(empty if none present)

Associated
Trouble Ticket
Status

Enumeration Selected from list of possible states (not created,
pending, present, closed)

Associated
Trouble Visibility

Enumeration Selected from list of possible visibilities
(unknown, visible, hidden)

Associated
Trouble Ticket
State Changed

Boolean Selected from true or false

Notification
Alarms Demoted

Boolean Indicates whether attached alarm reports have
been demoted under master alarm report in NMS

Administrative
State

Integer Selected from list of possible states (active,
locked, no action)

Event List Size Integer Current alarm report list size of mesh object that
Notification is attached to

Original Problem
List Size

Integer Previous alarm report list size of mesh object that
Notification is attached to

Build Time Date Time that Notification object was created
Current Time Date The current UCA system time
Notification
Owner ID

Integer Unique numerical identifier (Notification ID of
primary Notification if this is a marker
Notification, otherwise identical to Notification
ID)

Notification
Common Base
Classes

Boolean Indicates if Base Class and Originating Base Class
fields are identical (do not rely on this as a test for
a primary Notification)

Notification
Common Unique
References

Boolean Indicates if Unique Reference and Originating
Unique Reference fields are identical (if true, then
this is a primary Notification)

161

Attribute Name Type Purpose
Notification
Common Context
Names

Boolean Indicates if Context Name and Originating
Context Name are identical

Timer State Enumeration Selected from a list of possible values
(undefined, initialised, running, suspended,
expired, completed)

Timer State
Changed

Boolean Selected from true or false

Notification
Creation Time

Date Time that the Notification object was created

Notification
Locked Time

Date Time that the Notification object was
administratively locked

Notification
Message

String Message associated with Notification

162

15.1.5 Script

Attribute Name Type Purpose
Script Name String Name of script file to execute
Script Owner
Base Class

String Base class name of mesh object that originated this
Script selected from list of classes defined in
metamodel

Script Owner
Unique Reference

String Unique identifier of mesh object that originated this
Script

Script State Enumeration Selected from list of possible states (initialising,
running, finished)

Script Status Enumeration Selected from list of possible status (normal, error)
Script Exit Code Integer Script return code
Script Output String Latest Script stdout text
Script Error String Latest Script stderr text
Timer State Enumeration Selected from a list of possible values (undefined,

initialised, running, suspended, expired, completed)
Timer State
Changed

Boolean Selected from true or false

163

15.1.6 System

Attribute Name Type Purpose
Platform Average
CPU

Integer in
range 0 –100%

UCA server platform average CPU load

Platform Disk #1
Free Space

Integer in
range 0 –100%

UCA server platform disk #1 free space

Platform Disk #2
Free Space

Integer in
range 0 –100%

UCA server platform disk #2 free space

Platform Database
Percentage
Tablespace Used

Integer in
range 0 –100%

UCA server platform database tablespace used

Platform OS
Physical Memory
Used

Integer in
range 0 –100%

UCA server platform physical memory used

Platform OS
Swap Memory
Used

Integer in
range 0 –100%

UCA server platform swap memory used

System JVM
Heap Memory
Used

Integer in
range 0 –100%

UCA system JVM heap memory used

System JVM
Non-Heap
Memory Used

Integer in
range 0 –100%

UCA system JVM non-heap memory used

TomCat JVM
Heap Memory
Used

Integer in
range 0 –100%

UCA TomCat JVM heap memory used

TomCat JVM
Non-Heap
Memory Used

Integer in
range 0 –100%

UCA TomCat JVM non-heap memory used

Latest
Information
Exception Text

String UCA system latest Information exception text

Latest Warning
Exception Text

String UCA system latest Warning exception text

Latest Non-
Recoverable
Exception Text

String UCA system latest Non-Recoverable exception
text

Latest Fatal
Exception Text

String UCA system latest Fatal exception text

Server Identfier String Either “A” or “B”
Server Operating
Mode

Enumeration Selected from a list of possible values (standalone,
resilient)

Server Resync
Cycle Running

Boolean Selected from true or false

Server Operating
Role

Enumeration Selected from a list of possible values (singleton,
primary, secondary, unknown)

Server Operating
State

Enumeration Selected from a list of possible values (offline, in
service, archiving, updating, resyncing, blocked,
blocked and archived, closed down, unknown)

Server Event
Processing Mode

Enumeration Selected from a list of possible values (discarding,
pending, buffering, gathering, processing)

Peer Server
Resync Cycle
Running

Boolean Selected from true or false

Server Event
Activity

Enumeration Selected from a list of possible values (normal,
missing, unknown)

164

Attribute Name Type Purpose
Local (this)
Server to Peer
Server Link State

Enumeration Selected from a list of possible values (normal,
timeout, failed, bad arguments, unknown)

Peer (Server)
Operating Role

Enumeration Selected from a list of possible values (singleton,
primary, secondary, unknown)

Peer Server
Operating State

Enumeration Selected from a list of possible values (offline, in
service, archiving, updating, resyncing, blocked,
blocked and archived, closed down, unknown)

Current NMS
Heartbeat Source

String DNS Name or IP Address of current NMS
Heartbeat Source (Platform on which Generic
Collector is running)

Previous NMS
Heartbeat Source

String DNS Name or IP Address of previous NMS
Heartbeat Source (Platform on which Generic
Collector is running)

Current &
Previous
Heartbeat Sources
Are Same

Boolean Selected from true or false

Heartbeat From
Generic Collector
(on NMS) Late

Boolean Selected from true or false

State of Link
between Generic
Collector (on
NMS) and Local
(this) Server

Enumeration Selected from a list of possible values (normal,
failed, unknown)

State of Link
between Generic
Collector (on
NMS) and Peer
Server

Enumeration Selected from a list of possible values (normal,
failed, unknown)

Local (this)
Server Role
reported by
Generic Collector
(on NMS)

Enumeration Selected from a list of possible values (singleton,
primary, secondary, unknown)

Peer Server Role
reported by
Generic Collector
(on NMS)

Enumeration Selected from a list of possible values (singleton,
primary, secondary, unknown)

Older Than Peer Boolean Selected from true or false if System Time of Local
(this) Server is older than System Time of Peer
Server

Timer State Enumeration Selected from a list of possible values (undefined,
initialised, running, suspended, expired, completed)

Last Update Type Enumeration Selected from a list of possible values (unknown,
system status, peer status, timer status, event
activity status, heartbeat status, platform attributes,
information exception, warning exception, non-
recoverable exception, fatal exception)..

165

The ’Last Update Type’ attribute is an indicator that allows the user to identify which sub-group of attributes in
the System object were last updated. The following table lists the possible values of the ‘Last Update Type’
indicator and the associated attributes that may have been updated:

Last Update Type
Indicator

Attributes Updated

system status Server Operating Role
Server Operating State
Server Event Processing Mode
Server Resync Cycle Running

peer status Local (this) Server to Peer Server Link State
Peer Server Operating Role
Peer Server Operating State
Older Than Peer
Peer Server Resync Cycle Running

Timer status Timer State
event activity status Server Event Activity
heartbeat status Current NMS Heartbeat Source

Previous NMS Heartbeat Source
Current & Previous Heartbeat Sources Are Same
Heartbeat From Generic Collector (on NMS) Late
State of Link between Generic Collector (on NMS) and Local (this)
Server
State of Link between Generic Collector (on NMS) and Peer Server
Local (this) Server Role reported by Generic Collector (on NMS)
Peer Server Role reported by Generic Collector (on NMS)

platform attributes Platform Average CPU
Platform Disk #1 Free Space
Platform Disk #2 Free Space
Platform Database Tablespace Used
Platform Physical Memory Used
Platform Swap Memory Used
System JVM Heap Memory Used
System JVM Non-Heap Memory Used
TomCat JVM Heap Memory Used
TomCat JVM Non-Heap Memory Used

information exception Latest Information Exception Text
warning exception Latest Warning Exception Text
non-recoverable exception Latest Non-Recoverable Exception Text
Fatal exception Latest Fatal Exception Text

166

15.2 Actions

15.2.1 External and Synthetic Alarm Reports

UCA processes alarm reports from two distinct sources:
 External alarm reports are those that originate from an external NMS and as a result of the

filtering and mapping process are attached to target mesh objects in the state mesh.

 Synthetic alarm reports originate from actions carried out by UCA in response to Rules
firing. They are the mechanism by which UCA artificially modifies the state of mesh objects
in the state mesh.

Each mesh object maintains a current problem list and this may simultaneously contain both external and
synthetic alarm reports. The overall state of a mesh object is determined by the highest state of any alarm reports
attached to it (external and synthetic).
External alarm reports are uniquely identifiable and UCA is able to identify the full details of the original alarm
report received from the external NMS using the event database. In contrast, synthetic alarm reports do not have
a unique identifier and simply serve to modify the state of an object.
A mesh object may, as a result of ‘overlapping’ or simultaneous correlations contain any number of synthetic
alarm reports of the same or different severity.
To aid with processing simultaneous correlations, each mesh object maintains a number of alarm report counts
and trend indicators. These include:

 Current problem list count – the sum of all external and synthetic alarm reports in the current
problem list.

 Current problem list count changed – the trend in the current problem list count (increased,
unchanged, decreased).

 External event count - the sum of all external alarm reports in the current problem list.

 External event count changed - the trend in the external event list count (increased,
unchanged, decreased).

 Synthetic degraded event count – the sum of all synthetic degraded alarm reports in the
current problem list.

 Synthetic degraded event count changed – the trend in the synthetic degraded event count
(increased, unchanged, decreased).

 Synthetic failed event count – the sum of all synthetic failed alarm reports in the current
problem list.

 Synthetic failed event count changed – the trend in the synthetic failed event count
(increased, unchanged, decreased).

167

The following table summarises the values of these attributes under varying conditions:

Event Current
Problem
List
Count

Current
Problem
List Count
Changed

External
Event
Count

External
Event Count
Changed

Synthetic
Degraded
Event
Count

Synthetic
Degraded
Event
Count
Changed

Synthetic
Failed
Event
Count

Synthetic
Failed
Event
Count
Changed

External
Alarm
Raise

+1 increased +1 increased (as before) unchanged (as before) unchanged

External
Alarm
Clear

-1 decreased -1 decreased (as before) unchanged (as before) unchanged

Synthetic
Degraded
Raise

+1 increased (as before) unchanged +1 increased (as before) unchanged

Synthetic
Degraded
Clear

-1 decreased (as before) unchanged -1 decreased (as before) unchanged

Synthetic
Failed
Raise

+1 increased (as before) unchanged (as before) unchanged +1 increased

Synthetic
Failed
Clear

-1 decreased (as before) unchanged (as before) unchanged -1 decreased

168

15.2.2 Action Groups

The Trigger and Teardown Action tabs in the UCA Scenario Manager contain a number of action groups. Each
such group gathers together those actions that are logically related e.g. timer management. The following
illustrations show the available groups and give examples of the actions that are contained within them:

Each group may simultaneously contain symmetric actions (where the same action is available from both Trigger
and Teardown rules) e.g. Run Script, and asymmetric actions (where complementary or opposite actions only
made available in Trigger or Teardown rules) e.g. Lock Notification. In addition, the Housekeeping group is
only available from Teardown Rules.
Depending on system configuration, the Resilience group may not be available in a standalone system and the
User-defined actions group may be extended with user-supplied actions.
The following sections describe the currently available set of system actions.

169

15.2.2.1 Housekeeping

Remove Object In Normal State from WM
State Mesh Model

Mesh
Object

Fired Rule Viewer Mnemonic
tearRemoveMONormStateWM
Summary
If loop detection is active, the requested action is tested and if a loop is detected the action is aborted.
This action removes the supplied (mesh) object from the current context (working memory). If the object was
dynamically created it is also destroyed, otherwise it continues to exist in the state mesh.
This action is normally called from a low-priority housekeeping rule in the current context after all other
processing has been completed and the supplied object has returned to the normal state.
Scenario Manager Configuration Dialogue

The context (working memory) in which the triggering
rule is deployed and where the mesh object is inserted.

The mesh object to remove from the current context.
Option to record action execution details in the database.

170

Remove Associate Group In Normal State From WM
State Mesh Model

Associate
Group

Fired Rules Viewer Mnemonic
tearRemoveAssocGrpNormState
Summary
If loop detection is active, the requested action is tested and if a loop is detected the action is aborted.
This action removes the supplied associate group from the current context (working memory) although it
continues to exist in the state mesh.
This action is normally called from a low-priority housekeeping rule in the current context after all other
processing has been completed and there are no longer any degraded or failed associate group member objects.
Scenario Manager Configuration Dialogue

The context (working memory) in which the triggering
rule is deployed and where the associate group is
inserted.

The associate group to remove from the current context.
Option to record action execution details in the database.

171

Remove Child Group In Normal State from WM
State Mesh Model

Child
Group

Fired Rules Viewer Mnemonic
tearRemoveChildGrpNormStateWM
Summary
If loop detection is active, the requested action is tested and if a loop is detected the action is aborted.
This action removes the supplied child group from the current context (working memory) although it continues
to exist in the state mesh.

This action is normally called from a low-priority housekeeping rule in the current context after all other
processing has been completed and there are no longer any degraded or failed child group member objects.
Scenario Manager Configuration Dialogue

The context (working memory) in which the triggering rule

is deployed and where the child group is inserted.

The child group to remove from the current context.

Option to record action execution details in the database.

172

15.2.2.2 Notification Handling

Create Notification Against Object
State Mesh Model

Fired Rules Viewer Mnemonics
trigCreateNotMO
tearCreateNotMO
Summary
If loop detection is active, the requested action is tested and if a loop is detected the action is aborted.
This action builds a contributory events list in the database from the active alarm reports attached to the supplied
(mesh) object, creates a notification record in the database and attaches the contributory events list to it.
An ‘active’ notification report with a list of contributory events (alarm reports) is automatically displayed on the
Notification Viewer GUI.
A new notification object (of the requested type and rank) is created and is inserted into the current context
(working memory) and an optional target context. Note that both the originating and owning object references in
the notification object are set to the supplied object (it is a primary notification object). The current event list is
also initialised with the contents of the contributory events list.

Scenario Manager Configuration Dialogue

The context (working memory) in which the triggering rule is
deployed, where the supplied mesh object is inserted and
where the new notification object will be inserted.

An alternative context in which the new notification object
may also inserted (if un-used, set as Current Context).

The (mesh) object providing zero or more active alarm reports
that both originates and owns the new notification object.

The maximum age of active alarm reports in the object that
will be added to the contributory events list (0 = use all active
alarm reports).

(Optional) message to be displayed in the notification report
on the Notification Viewer GUI.

Type and rank of notification object to create.

Mesh
Object Notification

Originator
Owner

Alarm
Object

Current
event list

Mesh
Object Notification
Mesh
Object Notification

Originator
Owner

Alarm
Object

Current
event list

173

Create Notification Against Object Using Latest Event
State Mesh Model

Fired Rules Viewer Mnemonic
trigCreateNotMOLatestEvent
tearCreateNotMOLatestEvent
Summary
If loop detection is active, the requested action is tested and if a loop is detected the action is aborted.
This action builds a contributory events list in the database from the latest active alarm report attached to the
supplied (mesh) object, creates a notification record in the database and attaches the contributory events list to it.
An ‘active’ notification report with a single contributory event (alarm report) is automatically displayed on the
Notification Viewer GUI.
A new notification object (of the requested type and rank) is created and is inserted into the current context
(working memory) and an optional target context. Note that both the originating and owning object references in
the notification object are set to the supplied object (it is a primary notification object). The current event list is
also initialised with the contents of the contributory events list.

Scenario Manager Configuration Dialogue

The context (working memory) in which the triggering
rule is deployed, where the supplied mesh object is
inserted and where the new notification object will be
inserted.

An alternative context in which the new notification
object may also inserted (if un-used, set as Current
Context).
The (mesh) object providing the latest active alarm
report, that both originates and owns the new
notification object.

(Optional) message to be displayed in the notification
report on the Notification Viewer GUI.

Type and rank of notification object to create.

174

Update Notification Against Object
State Mesh Model

Mesh
Object Notification

Originator
Owner

Alarm
Object

Current
event list

Mesh
Object Notification
Mesh
Object Notification

Originator
Owner

Alarm
Object

Current
event list

Fired Rules Viewer Mnemonics
trigUpdateNotMO
tearUpdateNotMO
Summary
If loop detection is active, the requested action is tested and if a loop is detected the action is aborted.
This action updates the contributory event list attached to the notification record in the database for the supplied
notification object, using the latest active alarm report attached to the supplied (mesh) object
The contributory events list of the notification report associated with the supplied notification object is
automatically updated with the new alarm report on the Notification Viewer GUI.
The event list count and trend attributes of the supplied notification object are updated in the current context
(working memory) & (if used) optional target context. The current event list is also updated in line with the
contents of the contributory events list.
Optionally, the message to be displayed in the notification report on the Notification Viewer GUI may be
replaced or additional information may be appended.
Optionally (and if it is present), the Master Alarm associated with the supplied notification object may be
updated with the details of the latest active alarm report attached to the supplied (mesh) object.

Scenario Manager Configuration Dialogue

The context (working memory) in which the triggering
rule is deployed and the supplied mesh & notification
objects are inserted.

An alternative context in which the supplied notification
object may also inserted (if un-used, set as Current
Context).

The object providing an additional active alarm report that
both originates and owns the supplied notification object.

The notification object to be updated.
(Optional) updated/replacement message to be displayed in
the notification report on the Notification Viewer GUI.

Message modification options
{unchanged|append|replace}
Option to append the latest active alarm report to the
Master Alarm associated with the notification (if present)

Option to record action execution details in the database.

175

Update Notification Against Object Parent
State Mesh Model

Mesh
Object

Child
Group

Mesh
Object Notification

Originator
Owner

Alarm
Object Current

event list

Mesh
Object

Child
Group

Mesh
Object Notification

Originator
Owner

Alarm
Object Current

event list

Fired Rules Viewer Mnemonic
trigUpdateNotMOParent
tearUpdateNotMOParent
Summary
If loop detection is active, the requested action is tested and if a loop is detected the action is aborted.
This action updates the contributory event list attached to the notification record in the database for the supplied
notification object, using the latest active alarm report attached to the supplied (mesh) object
The contributory events list of the notification report associated with the supplied notification object is
automatically updated with the new alarm report on the Notification Viewer GUI.
The event list count and trend attributes of the supplied notification object are updated in the current context
(working memory) & (if used) optional target context. The current event list is also updated in line with the
contents of the contributory events list.
Optionally, the message to be displayed in the notification report on the Notification Viewer GUI may be
replaced or additional information may be appended.
Optionally (and if it is present), the Master Alarm associated with the supplied notification object may be
updated with the details of the latest active alarm report attached to the supplied (mesh) object.

176

Scenario Manager Configuration Dialogue
The context (working memory) in which the triggering
rule is deployed and the supplied mesh & notification
objects are inserted.

An alternative context in which the supplied notification
object may also inserted (if un-used, set as Current
Context).

The object providing an additional active alarm report
whose parent mesh object both originates and owns the
supplied notification object.

The notification object to be updated.
(Optional) updated/replacement message to be displayed in
the notification report on the Notification Viewer GUI.

Message modification options
{unchanged|append|replace}
Option to append the latest active alarm report to the
Master Alarm associated with the notification (if present)
Option to record action execution details in the database.

177

Remove Notification Against Object
State Mesh Model

Mesh
Object Notification

Originator
Owner

Mesh
Object Notification
Mesh
Object Notification

Originator
Owner

Fired Rules Viewer Mnemonics
trigRemoveNotMO
tearRemoveNotMO
Summary
If loop detection is active, the requested action is tested and if a loop is detected the action is aborted.
This action closes the notification record in the database associated with the supplied primary notification object.
The status of the notification report associated with the supplied notification object is automatically set to
‘closed’ on the Notification Viewer GUI.
The supplied notification object is detached from the supplied (mesh) object and removed from the current
context (working memory) & (if used) optional target context. The notification object is then destroyed.

Scenario Manager Configuration Dialogue

The context (working memory) in which the triggering
rule is deployed and the supplied mesh & notification
objects are inserted.

An alternative context in which the supplied notification
object may also inserted (if un-used, set as Current
Context).
The (mesh) object that owns the supplied notification
object.

The notification object to be removed and destroyed.

Option to record action execution details in the database.

178

Create Marker Notification Against Object
State Mesh Model

Fired Rules Viewer Mnemonic
trigCreateMarkerNotMO
Summary
If loop detection is active, the requested action is tested and if a loop is detected the action is aborted.
This action attempts to create a new marker notification against the supplied (mesh) object, associated to the
supplied primary notification. The new marker notification is inserted into the current context (working memory)
& (if used) optional target context.
The supplied (mesh) object is added to the affected objects list maintained for the primary notification in the
Notification database.
Scenario Manager Configuration Dialogue

Fired Rules Viewer Mnemonic

The context (working memory) in which the triggering
rule is deployed and the supplied marker notification
object is inserted.

An alternative context in which the supplied marker
notification object may also inserted (if un-used, set as
Current Context).

The (mesh) object to which the new marker notification is
attached

The primary notification object to which the new marker
notification is associated

Option to record action execution details in the database.

179

Remove Marker Notification Against Object
State Mesh Model

Marker
Notification

Mesh
Object

Marker
Notification

Mesh
Object

Fired Rules Viewer Mnemonic
tearRemoveMarkerNot
Summary
If loop detection is active, the requested action is tested and if a loop is detected the action is aborted.
This action removes the supplied marker notification from the current context (working memory) & (if used)
optional target context and it is then destroyed.

Scenario Manager Configuration Dialogue

The context (working memory) in which the triggering
rule is deployed and the supplied marker notification
object is inserted.

An alternative context in which the supplied marker
notification object may also inserted (if un-used, set as
Current Context).

The marker notification object to be removed.

Option to record action execution details in the database.

180

Create Notification Against Associate Group Parent
State Mesh Model

Mesh
Object

Associate
Group

Mesh
Object Notification

Originator
Owner

Alarm
Object

Current
event list

Mesh
Object

Associate
Group

Mesh
Object Notification

Originator
Owner

Mesh
Object

Associate
Group

Mesh
Object Notification

Originator
Owner

Alarm
Object

Current
event list

Fired Rules Viewer Mnemonic
trigCreateNotAssocGrpParent
Summary
If loop detection is active, the requested action is tested and if a loop is detected the action is aborted.
This action builds a contributory event list in the database from the active alarm reports attached to the (mesh)
objects contained in the supplied associate group, creates a notification record in the database and attaches the
contributory event list to it.
An active notification report with a list of contributory events (alarm reports) is automatically displayed on the
Notification Viewer GUI.
A new notification object (of the requested type and rank) is created and is inserted into the current context
(working memory) and an optional target context. Note that both the originating and owning object references in
the notification object are set to the associate group’s parent object (it is a primary notification object). The
current event list is also initialised with the contents of the contributory events list.

Scenario Manager Configuration Dialogue

The context (working memory) in which the triggering
rule is deployed, where the supplied associate group is
inserted and where the new notification object will be
inserted.

An alternative context in which the new notification object
may also inserted (if un-used, set as Current Context).

The associate group whose member objects will provide
zero or more active alarm reports and whose parent object
both originates and owns the new notification object.

(Optional) message to be displayed in the notification
report on the Notification Viewer GUI.

Type and rank of notification object to create

181

Remove Notification Against Associate Group Parent
State Mesh Model

Mesh
Object

Associate
Group

Mesh
Object Notification

Originator
Owner

Alarm
Object

Current
event list

Mesh
Object

Associate
Group

Mesh
Object Notification

Originator
Owner

Mesh
Object

Associate
Group

Mesh
Object Notification

Originator
Owner

Alarm
Object

Current
event list

Fired Rules Viewer Mnemonic
tearRemoveNotAssocGrpParent
Summary
If loop detection is active, the requested action is tested and if a loop is detected the action is aborted.
This action closes the notification record in the database associated with the supplied primary notification object.
The status of the notification report associated with the supplied notification object is automatically set to
‘closed’ on the Notification Viewer GUI.
The supplied notification object is detached from the supplied associate group’s parent (mesh) object and
removed from the current context (working memory) & (if used) optional target context. The notification object
is then destroyed.

Scenario Manager Configuration Dialogue

The context (working memory) in which the triggering
rule is deployed and the supplied associate group &
notification objects are inserted.

An alternative context in which the supplied notification
object may also inserted (if un-used, set as Current
Context).
The associate group whose parent (mesh) object owns the
supplied notification object.

The notification object to be removed and destroyed.

Option to record action execution details in the database.

182

Create Notification Against Referenced Associate Group Parent
State Mesh Model

Mesh
Object

Associate
Group

Mesh
Object Notification

Originator
Owner

Mesh
Object

Alarm
Object

Current
event list

Mesh
Object

Associate
Group

Mesh
Object Notification

Originator
Owner

Mesh
Object

Mesh
Object

Associate
Group

Mesh
Object Notification

Originator
Owner

Mesh
Object

Alarm
Object

Current
event list

Fired Rules Viewer Mnemonic
trigCreateNotRefAssocGrpParent
Summary
If loop detection is active, the requested action is tested and if a loop is detected the action is aborted.
This action builds a contributory event list in the database from the active alarm reports attached to the (mesh)
objects contained in the supplied associate group, creates a notification record in the database and attaches the
contributory event list to it.
An active notification report with a list of contributory events (alarm reports) is automatically displayed on the
Notification Viewer GUI.
A new notification object (of the requested type and rank) is created and is inserted into the current context
(working memory) and an optional target context. Note that the originating object reference in the notification
object is set to the supplied object while the owning object reference is set to the associate group’s parent object.
The current event list is also initialised with the contents of the contributory events list.
Scenario Manager Configuration Dialogue
The context (working memory) in which the triggering
rule is deployed, where the supplied mesh object and
associate group are inserted and where the new notification
object will be inserted.

An alternative context in which the new notification object
may also inserted (if un-used, set as Current Context).

The associate group whose member objects will provide
zero or more active alarm reports and whose parent object
owns the new notification object.

The object that originates the new notification object.

(Optional) message to be displayed in the notification
report on the Notification Viewer GUI.

Type and rank of notification object to create

183

Remove Notification Against Referenced Associate Group Parent
State Mesh Model

Mesh
Object

Associate
Group

Mesh
Object Notification

Originator
Owner

Mesh
Object

Alarm
Object

Current
event list

Mesh
Object

Associate
Group

Mesh
Object Notification

Originator
Owner

Mesh
Object

Mesh
Object

Associate
Group

Mesh
Object Notification

Originator
Owner

Mesh
Object

Alarm
Object

Current
event list

Fired Rules Viewer Mnemonic
tearRemoveNotRefAssocGrpParent
Summary
If loop detection is active, the requested action is tested and if a loop is detected the action is aborted.
This action closes the notification record in the database associated with the supplied primary notification object.
The status of the notification report associated with the supplied notification object is automatically set to
‘closed’ on the Notification Viewer GUI.
The supplied notification object is detached from the supplied associate group’s parent (mesh) object and
removed from the current context (working memory) & (if used) optional target context. The notification object
is then destroyed.
Scenario Manager Configuration Dialogue

The context (working memory) in which the triggering
rule is deployed and the supplied mesh object, associate
group and notification object are inserted.

An alternative context in which the supplied notification
object may also inserted (if un-used, set as Current
Context).
The associate group whose parent (mesh) object owns the
supplied notification object.

The (mesh) object that originates the notification object.

The notification object to be removed and destroyed.

Option to record action execution details in the database.

184

Create Notification Against Associate Group Grandparent
State Mesh Model

Mesh
Object

Child
Group

Mesh
Object Notification

Mesh
Object

Associate
Group

Originator
Owner

Alarm
Object

Current
event list

Mesh
Object

Child
Group

Mesh
Object Notification

Mesh
Object

Associate
Group

Originator
Owner

Mesh
Object

Child
Group

Mesh
Object Notification

Mesh
Object

Associate
Group

Originator
Owner

Alarm
Object

Current
event list

Fired Rules Viewer Mnemonic
trigCreateNotAssocGrpGparent
Summary
If loop detection is active, the requested action is tested and if a loop is detected the action is aborted.
This action builds a contributory event list in the database from the active alarm reports attached to the (mesh)
objects contained in the supplied associate group, creates a notification record in the database and attaches the
contributory event list to it.
An active notification report with a list of contributory events (alarm reports) is automatically displayed on the
Notification Viewer GUI.
A new notification object (of the requested type and rank) is created and is inserted into the current context
(working memory) and an optional target context. Note that both the originating and owning object references in
the notification object are set to the associate group’s grandparent object (it is a primary notification object). The
current event list is also initialised with the contents of the contributory events list.

185

Scenario Manager Configuration Dialogue

Remove Notification Against Associate Group Grandparent
State Mesh Model

Mesh
Object

Child
Group

Mesh
Object Notification

Mesh
Object

Associate
Group

Originator
Owner

Alarm
Object

Current
event list

Mesh
Object

Child
Group

Mesh
Object Notification

Mesh
Object

Associate
Group

Originator
Owner

Mesh
Object

Child
Group

Mesh
Object Notification

Mesh
Object

Associate
Group

Originator
Owner

Alarm
Object

Current
event list

Fired Rules Viewer Mnemonic
tearRemoveNotAssocGrpGparent
Summary
If loop detection is active, the requested action is tested and if a loop is detected the action is aborted.
This action closes the notification record in the database associated with the supplied primary notification object.

The context (working memory) in which the triggering
rule is deployed, where the supplied associate group is
inserted and where the new notification object will be
inserted.

An alternative context in which the new notification object
may also inserted (if un-used, set as Current Context).
The associate group whose member objects will provide
zero or more active alarm reports and whose grandparent
object both originates and owns the new notification
object.
(Optional) message to be displayed in the notification

report on the Notification Viewer GUI.
Type and rank of notification object to create

186

The status of the notification report associated with the supplied notification object is automatically set to
‘closed’ on the Notification Viewer GUI.
The supplied notification object is detached from the supplied associate group’s grandparent (mesh) object and
removed from the current context (working memory) & (if used) optional target context. The notification object
is then destroyed.

Scenario Manager Configuration Dialogue

Create Notification Against Child Group Parent
State Mesh Model

Mesh
Object

Child
Group

Mesh
Object Notification

Originator
Owner

Alarm
Object

Current
event list

Mesh
Object

Child
Group

Mesh
Object Notification

Originator
Owner

Mesh
Object

Child
Group

Mesh
Object Notification

Originator
Owner

Alarm
Object

Current
event list

Fired Rules Viewer Mnemonic
trigCreateNotChildGrpParent
Summary
If loop detection is active, the requested action is tested and if a loop is detected the action is aborted.
This action builds a contributory event list in the database from the active alarm reports attached to the (mesh)
objects contained in the supplied child group, creates a notification record in the database and attaches the
contributory event list to it.
An active notification report with a list of contributory events (alarm reports) is automatically displayed on the
Notification Viewer GUI.
A new notification object (of the requested type and rank) is created and is inserted into the current context
(working memory) and an optional target context. Note that both the originating and owning object references in
the notification object are set to the child group’s parent object (it is a primary notification object). The current
event list is also initialised with the contents of the contributory events list.

The context (working memory) in which the triggering
rule is deployed and the supplied associate group &
notification objects are inserted.

An alternative context in which the supplied notification
object may also inserted (if un-used, set as Current
Context).

The associate group whose grandparent (mesh) object
owns the supplied notification object.
The notification object to be removed and destroyed.

Option to record action execution details in the database.

187

Scenario Manager Configuration Dialogue

Update Notification Against Child Group Parent
State Mesh Model

Mesh
Object

Child
Group

Mesh
Object Notification

Originator
Owner

Alarm
Object

Current
event list

Mesh
Object

Child
Group

Mesh
Object Notification

Originator
Owner

Mesh
Object

Child
Group

Mesh
Object Notification

Originator
Owner

Alarm
Object

Current
event list

Fired Rules Viewer Mnemonics
trigUpdateNotChildGrpParent
tearUpdateNotChildGrpParent
Summary
If loop detection is active, the requested action is tested and if a loop is detected the action is aborted.
This action updates the contributory event list attached to the notification record in the database for the supplied
notification object, using the latest new active alarm report attached to each (mesh) object contained in the
supplied child group.
The contributory events list of the notification report associated with the supplied notification object is
automatically updated with the new alarm report on the Notification Viewer GUI.
The event list count and trend attributes of the supplied notification object are updated in the current context
(working memory) & (if used) optional target context. The current event list is also updated in line with the
contents of the contributory events list.
Optionally, the message to be displayed in the notification report on the Notification Viewer GUI may be
replaced or additional information may be appended.
Optionally (and if it is present), the Master Alarm associated with the supplied notification object may be
updated with the details of the latest active alarm reports attached to each (mesh) object contained in the supplied
child group.

Scenario Manager Configuration Dialogue

The context (working memory) in which the triggering
rule is deployed, where the supplied child group is inserted
and where the new notification object will be inserted.

An alternative context in which the new notification object
may also inserted (if un-used, set as Current Context).

The child group whose member objects will provide zero
or more active alarm reports and whose parent object both
originates and owns the new notification object.
(Optional) message to be displayed in the notification
report on the Notification Viewer GUI.

Type and rank of notification object to create

188

The context (working memory) in which the triggering
rule is deployed and the supplied child group &
notification objects are inserted.

An alternative context in which the supplied notification
object may also inserted (if un-used, set as Current
Context).

The child group containing one or more objects which may
provide their latest new active alarm report, whose parent
object both originates and owns the supplied notification
object.
The notification object to be updated.
Message modification options
{unchanged|append|replace}
Option to append the latest active alarm reports to the
Master Alarm associated with the notification (if present)

Option to record action execution details in the database.

189

Remove Notification Against Child Group Parent
State Mesh Model

Mesh
Object

Child
Group

Mesh
Object Notification

Originator
Owner

Alarm
Object

Current
event list

Mesh
Object

Child
Group

Mesh
Object Notification

Originator
Owner

Mesh
Object

Child
Group

Mesh
Object Notification

Originator
Owner

Alarm
Object

Current
event list

Fired Rules Viewer Mnemonic
tearRemoveNotChildGrpParent
Summary
If loop detection is active, the requested action is tested and if a loop is detected the action is aborted.
This action closes the notification record in the database associated with the supplied primary notification object.
The status of the notification report associated with the supplied notification object is automatically set to
‘closed’ on the Notification Viewer GUI.
The supplied notification object is detached from the supplied child group’s parent (mesh) object and removed
from the current context (working memory) & (if used) optional target context. The notification object is then
destroyed.

Scenario Manager Configuration Dialogue

The context (working memory) in which the triggering
rule is deployed and the supplied child group &
notification objects are inserted.

An alternative context in which the supplied notification
object may also inserted (if un-used, set as Current
Context).

The child group whose parent (mesh) object owns the
supplied notification object.
The notification object to be removed and destroyed.

Option to record action execution details in the database.

190

Create Notification Against Child Group Grandparent
State Mesh Model

Mesh
Object

Child
Group

Mesh
Object Notification

Mesh
Object

Child
Group

Originator
Owner

Alarm
Object

Current
event list

Mesh
Object

Child
Group

Mesh
Object Notification

Mesh
Object

Child
Group

Originator
Owner

Mesh
Object

Child
Group

Mesh
Object Notification

Mesh
Object

Child
Group

Originator
Owner

Alarm
Object

Current
event list

Fired Rules Viewer Mnemonic
trigCreateNotChildGrpGparent
Summary
If loop detection is active, the requested action is tested and if a loop is detected the action is aborted.
This action builds a contributory event list in the database from the active alarm reports attached to the (mesh)
objects contained in the supplied child group, creates a notification record in the database and attaches the
contributory event list to it.
An active notification report with a list of contributory events (alarm reports) is automatically displayed on the
Notification Viewer GUI.
A new notification object (of the requested type and rank) is created and is inserted into the current context
(working memory) and an optional target context. Note that both the originating and owning object references in
the notification object are set to the child group’s grandparent object (it is a primary notification object). The
current event list is also initialised with the contents of the contributory events list.

191

Scenario Manager Configuration Dialogue

The context (working memory) in which the triggering
rule is deployed, where the supplied child group is inserted
and where the new notification object will be inserted.

An alternative context in which the new notification object
may also inserted (if un-used, set as Current Context).

The child group whose member objects will provide zero
or more active alarm reports and whose grandparent object
both originates and owns the new notification object.

(Optional) message to be displayed in the notification
report on the Notification Viewer GUI.
Type and rank of notification object to create

192

Remove Notification Against Child Group Grandparent
State Mesh Model

Mesh
Object

Child
Group

Mesh
Object Notification

Mesh
Object

Child
Group

Originator
Owner

Alarm
Object

Current
event list

Mesh
Object

Child
Group

Mesh
Object Notification

Mesh
Object

Child
Group

Originator
Owner

Mesh
Object

Child
Group

Mesh
Object Notification

Mesh
Object

Child
Group

Originator
Owner

Alarm
Object

Current
event list

Fired Rules Viewer Mnemonic
tearRemoveNotChildGrpGparent
Summary
If loop detection is active, the requested action is tested and if a loop is detected the action is aborted.
This action closes the notification record in the database associated with the supplied primary notification object.
The status of the notification report associated with the supplied notification object is automatically set to
‘closed’ on the Notification Viewer GUI.
The supplied notification object is detached from the supplied child group’s grandparent (mesh) object and
removed from the current context (working memory) & (if used) optional target context. The notification object
is then destroyed.

193

Scenario Manager Configuration Dialogue

The context (working memory) in which the triggering
rule is deployed and the supplied child group &
notification objects are inserted.

An alternative context in which the supplied notification
object may also inserted (if un-used, set as Current
Context).

The child group whose grandparent (mesh) object owns
the supplied notification object.

The notification object to be removed and destroyed.

Option to record action execution details in the database.

194

Force Removal Of Notification Against Object
State Mesh Model

Mesh
Object Notification
Mesh
Object Notification

Fired Rules Viewer Mnemonic
trigForceRemNotMO
tearForceRemNotMO
Summary
If loop detection is active, the requested action is tested and if a loop is detected the action is aborted.
This action closes the notification record in the database associated with the supplied primary notification object.
The status of the notification report associated with the supplied notification object is automatically set to
‘closed’ on the Notification Viewer GUI.
The supplied notification object is removed from the current context (working memory) and is then destroyed

Scenario Manager Configuration Dialogue

The context (working memory) in which the triggering
rule is deployed and the supplied notification object is
inserted.

The notification object to be removed.
Option to record action execution details in the database.

195

Append Event To Notification Sympathetic Event List
State Mesh Model

Alarm
Object

Primary
Notification

Mesh
Object

Master alarm
unique identifier

Marker
Notification

Sympathetic
Alarm
Object

NMS

Current
event list

Mesh
Object

Alarm
Object

Primary
Notification

Mesh
Object

Master alarm
unique identifier

Marker
Notification

Sympathetic
Alarm
Object

NMS

Current
event list

Mesh
Object

Fired Rules Viewer Mnemonic
trigAppEventNotSymList
Summary
If loop detection is active, the requested action is tested and if a loop is detected the action is aborted.
The purpose of this action is to associate the latest sympathetic alarm report in the supplied (mesh) object’s
current event list with a ‘master’ alarm report in an external NMS.
The action also supports the option to build this association only if the latest sympathetic alarm report’s EMS
originating time (or alternatively its creation time in this system) lies within a configurable time exclusion
window either side of the primary notification object’s creation time
This action updates the current problem list size in the supplied marker notification (attached to the supplied
object).
If the sympathetic alarm report lies within the exclusion time window (or the exclusion time window is not
used):

The sympathetic alarm report is also added to a sympathetic event list attached to the
notification record in the database associated with the supplied primary notification object.
The sympathetic alarm list in the notification report associated with the primary notification
object is automatically updated on the Notification Viewer GUI.
If the option to append the sympathetic alarm report to an existing Master Alarm is chosen
(and the Master Alarm is present):

A sympathetic alarm report request (including the ‘master’ alarm report external
NMS reference) is sent to the external NMS via the Remote Handler’s
REPORT_SYMPATHETIC_ALARMS callout function. The effect in the external
NMS depends on the level of integration and its inherent capabilities.

If the sympathetic alarm enrichment option is chosen, a list of the primary notification’s
contributory alarm report external NMS references, together with the sympathetic alarm
report’s external NMS reference is sent to the external NMS via the Remote Handler’s
ENRICH_SYMPATHETIC_ALARMS callout function. The effect in the external NMS
depends on the level of integration and its inherent capabilities.

On successful completion of the action, the ‘child alarms demoted’ attribute in the supplied marker notification
object is set to true and this may be evaluated by additional rules.

196

Scenario Manager Configuration Dialogue

The context (working memory) in which the triggering rule is deployed and where the mesh and primary &
marker notification objects are inserted.

An alternative context in which the mesh and primary & marker notification objects may also be inserted (if
un-used, set as Current Context).

The mesh object whose current event list contains the latest sympathetic alarm report.

The primary notification object containing the external NMS ‘master’ alarm report reference.

The marker notification object whose current event list is updated with the latest sympathetic alarm report.

Option to use time exclusion window.

Option to use the sympathetic alarm report’s EMS originating time (checked) or the UCA creation time
(unchecked) in conjunction with the time exclusion window.

Time exclusion window early limit (in seconds before primary notification creation time).
Time exclusion window late limit (in seconds after primary notification creation time).

Option to append sympathetic alarm report to primary notification master alarm if present.

Option to enrich primary notification contributory alarm reports with details of sympathetic alarm report.

Option to record action execution details in the database.

197

Update Notification Rank
State Mesh Model

Mesh
Object Notification
Mesh
Object Notification

Fired Rules Viewer Mnemonic
trigUpdateNotRank
tearUpdateNotRank
Summary
If loop detection is active, the requested action is tested and if a loop is detected the action is aborted.
This action updates the rank of the notification record in the database associated with the supplied primary
notification object.
The rank of the notification report associated with the supplied notification object is automatically updated on
the Notification Viewer GUI.
The rank of the supplied notification object is updated in the current context (working memory) and in the
optional target context (if used)

Scenario Manager Configuration Dialogue

The context (working memory) in
which the triggering rule is deployed
and the supplied child group &
notification objects are inserted

An alternative context in which the
supplied notification object may also
inserted (if un-used, set as Current
Context).

The notification object whose rank is
to be updated.

Updated rank value

Option to record action executino
details in the database.

198

15.2.2.3 State Propagation

Force Object To Degraded State Via Notification
State Mesh Model

Mesh
Object Notification

Synthetic
Alarm
Object

Mesh
Object Notification

Synthetic
Alarm
Object

Fired Rules Viewer Mnemonic
trigForceMODegViaNotif
Summary
If loop detection is active, the requested action is tested and if a loop is detected the action is aborted.
This action attempts to locate the (mesh) object that owns the supplied notification. It then creates and attaches a
synthetic alarm report to the object (with a target state of degraded) to attempt to force it to the degraded state.
Note that the object may not actually change state if it is already degraded or failed; however the synthetic alarm
report will remain attached and may affect the future state of the object as other attached alarm reports are
cleared.

Scenario Manager Configuration Dialogue

The context (working memory) in which the triggering
rule is deployed and the supplied notification object is
inserted.

The notification object owned by the target object.

Option to record action execution details in the database.

199

Force Object To Failed State Via Notification
State Mesh Model

Mesh
Object Notification

Synthetic
Alarm
Object

Mesh
Object Notification

Synthetic
Alarm
Object

Fired Rules Viewer Mnemonic
trigForceMOFailedViaNotif
Summary
If loop detection is active, the requested action is tested and if a loop is detected the action is aborted.
This action attempts to locate the (mesh) object that owns the supplied notification. It then creates and attaches a
synthetic alarm report to the object (with a target state of failed) to attempt to force it to the failed state.
Note that the object may not actually change state if it is already failed; however the synthetic alarm report will
remain attached and may affect the future state of the object as other attached alarm reports are cleared.

Scenario Manager Configuration Dialogue

The context (working memory) in which the triggering
rule is deployed and the supplied notification object is
inserted.

The notification object owned by the target object.
Option to record action execution details in the database.

200

Force Degraded Object To Failed State
State Mesh Model

Mesh
Object

Synthetic
Alarm
Object

Mesh
Object

Synthetic
Alarm
Object

Mesh
Object

Synthetic
Alarm
Object

Mesh
Object

Synthetic
Alarm
Object

Mesh
Object

Synthetic
Alarm
Object

Mesh
Object

Synthetic
Alarm
Object

Fired Rules Viewer Mnemonic
trigForceMOStateChange
Summary
If loop detection is active, the requested action is tested and if a loop is detected the action is aborted.
This action creates and attaches a synthetic alarm report to the (mesh) object (with a target state of failed) to
attempt to force it to the failed state. A common use of this action is to force an already degraded object to the
failed state.
Note that the object may not actually change state if it is already failed; however the synthetic alarm report will
remain attached and may affect the future state of the object as other attached alarm reports are cleared.

Scenario Manager Configuration Dialogue

The context (working memory) in which the triggering
rule is deployed and the supplied mesh object is inserted.

The mesh object to be forced to the failed state.

Option to record action execution details in the database.

201

Force Named Object To Change State
State Mesh Model

Fired Rules Viewer Mnemonic
trigForceNamedMO
Summary
If loop detection is active, the requested action is tested and if a loop is detected the action is aborted.
The purpose of this action is to attempt to force a state change on a (mesh) object for which the triggering rule
does not have an existing (mesh) object reference and so has to provide an explicit class and instance name.
The action first verifies that the explicitly named (mesh) object currently exists in the system. If it does not exist,
then an exception is reported and the action is aborted.
If the ‘Is Service Affected’ option is chosen, this action creates and attaches a synthetic alarm report to the
(mesh) object (with a target state of failed) to attempt to force it to the failed state.
If the ‘Is Service Affected’ option is not chosen, this action creates and attaches a synthetic alarm report to the
(mesh) object (with a target state of degraded) to attempt to force it to the degraded state.
Note that the object may not actually change state if it is already failed; however the synthetic alarm report will
remain attached and may affect the future state of the object as other attached alarm reports are cleared.

Scenario Manager Configuration Dialogue

The base class of the mesh object to be forced to change
state (literal or stored in a rule variable).
The unique reference of the mesh object to be forced to
change state (literal or stored in a rule variable).
Option to treat as ‘service affecting’
Option to record action execution details in the database.

Mesh
Object

Non Service
Affected

Mesh
Object

Synthetic
Alarm
Object

Synthetic
Alarm
Object

Service
Affected

Mesh
Object

Non Service
Affected

202

Reset Object to Normal State
State Mesh Model

Fired Rules Viewer Mnemonic
tearForceFailedMONormState
Summary
If loop detection is active, the requested action is tested and if a loop is detected the action is aborted.
If the option is selected, this action attempts to clear all synthetic alarm reports (with a target state of degraded
and/or failed) from the supplied (mesh) object.
If the option is selected, this action attempts to un-map i.e. remove from the Current Problem List, any
associated external alarm reports.
If no alarm reports remain in the objects Current Problem List, it will automatically return to the normal state.

Scenario Manager Configuration Dialogue

Mesh
Object

Synthetic
Alarm
Object

Synthetic
Alarm
Object

Alarm
ObjectAlarm

Object

The context (working memory) in which the rule is
deployed and the supplied (mesh) object is inserted

The target (mesh) object to which the synthetic and/or
external alarm reports are attached.

Option to clear all attached synthetic alarm reports

Option to un-map all attached external alarm reports

Option to record action execution details in the
database.

203

Force Parent Object To Degraded State Via Associate Group
State Mesh Model

Mesh
Object

Associate
Group

Synthetic
Alarm
Object

Mesh
Object

Associate
Group

Synthetic
Alarm
Object

Fired Rules Viewer Mnemonic
trigForceParentDegViaAssoc
Summary
If loop detection is active, the requested action is tested and if a loop is detected the action is aborted.
This action attempts to locate the parent (mesh) object that owns the supplied associate group. It then creates and
attaches a synthetic alarm report to the object (with a target state of degraded) to attempt to force it to the
degraded state.
Note that the object may not actually change state if it is already degraded or failed; however the synthetic alarm
report will remain attached and may affect the future state of the object as other attached alarm reports are
cleared.

Scenario Manager Configuration Dialogue

The context (working memory) in which the triggering
rule is deployed and the supplied associate group is
inserted.

The associate group owned by the target object.

Option to record action execution details in the database.

204

Force Parent Object To Failed State Via Associate Group
State Mesh Model

Mesh
Object

Associate
Group

Synthetic
Alarm
Object

Mesh
Object

Associate
Group

Synthetic
Alarm
Object

Fired Rules Viewer Mnemonic
trigForceParentFailedViaAssoc
Summary
If loop detection is active, the requested action is tested and if a loop is detected the action is aborted.
This action attempts to locate the parent (mesh) object that owns the supplied associate group. It then creates and
attaches a synthetic alarm report to the object (with a target state of failed) to attempt to force it to the failed
state.
Note that the object may not actually change state if it is already failed; however the synthetic alarm report will
remain attached and may affect the future state of the object as other attached alarm reports are cleared.

Scenario Manager Configuration Dialogue

The context (working memory) in which the triggering
rule is deployed and the supplied associate group is
inserted.

The associate group owned by the target object.
Option to record action execution details in the database.

205

Force Parent Object To Degraded State Via Child Group
State Mesh Model

Mesh
Object

Child
Group

Synthetic
Alarm
ObjectMesh

Object

Child
Group

Synthetic
Alarm
Object

Fired Rules Viewer Mnemonic
trigForceParentDegViaChild
Summary
If loop detection is active, the requested action is tested and if a loop is detected the action is aborted.
This action attempts to locate the parent (mesh) object that owns the supplied child group. It then creates and
attaches a synthetic alarm report to the object (with a target state of degraded) to attempt to force it to the
degraded state.
Note that the object may not actually change state if it is already degraded or failed; however the synthetic alarm
report will remain attached and may affect the future state of the object as other attached alarm reports are
cleared.

Scenario Manager Configuration Dialogue

The context (working memory) in which the triggering
rule is deployed and the supplied child group is inserted.

The child group owned by the target object.

Option to record action execution details in the database.

206

Force Parent Object To Failed State Via Child Group
State Mesh Model

Mesh
Object

Child
Group

Synthetic
Alarm
ObjectMesh

Object

Child
Group

Synthetic
Alarm
Object

Fired Rules Viewer Mnemonic
trigForceParentFailedViaChild
Summary
If loop detection is active, the requested action is tested and if a loop is detected the action is aborted.
This action attempts to locate the parent (mesh) object that owns the supplied child group. It then creates and
attaches a synthetic alarm report to the object (with a target state of failed) to attempt to force it to the failed
state.
Note that the object may not actually change state if it is already failed; however the synthetic alarm report will
remain attached and may affect the future state of the object as other attached alarm reports are cleared.

Scenario Manager Configuration Dialogue

The context (working memory) in which the triggering
rule is deployed and the supplied child group is inserted.

The child group owned by the target object.

Option to record action execution details in the database.

207

Force DegradedObject To Normal State
State Mesh Model

Mesh
Object

Synthetic
Alarm
Object

Mesh
Object

Synthetic
Alarm
Object

Fired Rules Viewer Mnemonic
tearForceDegMONormState
Summary
If loop detection is active, the requested action is tested and if a loop is detected the action is aborted.
This action attempts to clear a synthetic alarm report (with a target state of degraded) from the supplied (mesh)
object.
Following clearance and if no other alarm reports with degraded or failed target state are attached to the supplied
object, it will automatically return to the normal state.

Scenario Manager Configuration Dialogue

The context (working memory) in which the triggering
rule is deployed and the supplied (mesh) object is inserted.

The target (mesh) object to which at least one synthetic
alarm report with a target state of degraded is attached.

Option to record action execution details in the database.

208

Force Failed Object To Normal State
State Mesh Model

Mesh
Object

Synthetic
Alarm
Object

Mesh
Object

Synthetic
Alarm
Object

Fired Rules Viewer Mnemonic
tearForceFailedMONormState
Summary
If loop detection is active, the requested action is tested and if a loop is detected the action is aborted.
This action attempts to clear a synthetic alarm report (with a target state of failed) from the supplied (mesh)
object.
Following clearance and if no other alarm reports with degraded or failed target state are attached to the supplied
object, it will automatically return to the normal state.

Scenario Manager Configuration Dialogue

The context (working memory) in which the triggering
rule is deployed and the supplied (mesh) object is inserted.

The target (mesh) object to which at least one synthetic
alarm report with a target state of failed is attached.

Option to record action execution details in the database.

209

Forced Failed Object To Degraded State
State Mesh Model

Mesh
Object

Synthetic
Alarm
Object

Mesh
Object

Synthetic
Alarm
Object

Mesh
Object

Synthetic
Alarm
Object

Mesh
Object

Synthetic
Alarm
Object

Mesh
Object

Synthetic
Alarm
Object

Mesh
Object

Synthetic
Alarm
Object

Fired Rules Viewer Mnemonic
tearForceMOStateChange
Summary
If loop detection is active, the requested action is tested and if a loop is detected the action is aborted.
This action attempts to clear a synthetic alarm report (with a target state of failed) from the supplied (mesh)
object. It is commonly used to return an object that also has a synthetic alarm report (with a target state of
degraded) to the degraded state.
Following clearance and if:

 at least one alarm report with a target state of degraded is attached to the target object;

 no other alarm reports with a target state of failed are attached to the supplied object;

It will automatically return to the degraded state.

Scenario Manager Configuration Dialogue

The context (working memory) in which the triggering
rule is deployed and the supplied (mesh) object is inserted.

The target (mesh) object to which at least two synthetic
alarm reports with target states of degraded and failed are
attached.
Option to record action execution details in the database.

210

Force Named Object To Normal State
State Mesh Model

Fired Rules Viewer Mnemonic
trigForceNamedMO
Summary
If loop detection is active, the requested action is tested and if a loop is detected the action is aborted.
The purpose of this action is to attempt to force a state change back to the normal state on a (mesh) object for
which the triggering rule does not have an existing (mesh) object reference and so has to provide an explicit class
and instance name.
The action first verifies that the explicitly named (mesh) object currently exists in the system. If it does not exist,
then an exception is reported and the action is aborted.
If the (mesh) object is in the failed state, this action sends a clear failed synthetic alarm report to the (mesh)
object to attempt to force it to the normal state.
If the (mesh) object is in the degraded state, this action sends a clear degraded synthetic alarm report to the
(mesh) object to attempt to force it to the degraded state.
Note that the object may not actually change state if other non-normal alarm reports are associated with it;
however the system will attempt to clear and remove one synthetic alarm report of the specified severity.

Scenario Manager Configuration Dialogue

The base class of the mesh object to be forced to the
normal state (literal or stored in a rule variable).

The unique reference of the mesh object to be forced to the
normal state (literal or stored in a rule variable).

Option to record action execution details in the database.

Mesh
Object

Synthetic
Alarm
Object

Synthetic
Alarm
Object

Service
Affected

Mesh
Object

Non Service
Affected

211

Reset Object to Normal State
State Mesh Model

Fired Rules Viewer Mnemonic
tearForceFailedMONormState
Summary
If loop detection is active, the requested action is tested and if a loop is detected the action is aborted.
If the option is selected, this action attempts to clear all synthetic alarm reports (with a target state of degraded
and/or failed) from the supplied (mesh) object.
If the option is selected, this action attempts to un-map i.e. remove from the Current Problem List, any
associated external alarm reports.
If no alarm reports remain in the objects Current Problem List, it will automatically return to the normal state.
Scenario Manager Configuration Dialogue

15.2.2.4

Mesh
Object

Synthetic
Alarm
Object

Synthetic
Alarm
Object

Alarm
ObjectAlarm

Object

The context (working memory) in which the
triggering rule is deployed and the supplied (mesh)
object is inserted.

The target (mesh) object to which the synthetic and/or
external alarm reports are attached.

Option to clear all attached synthetic alarm reports

Option to un-map all attached external alarm reports

Option to record action execution details in the
database.

212

Script Handling

Run Script
State Mesh Model

Script

Fired Rules Viewer Mnemonics
trigRunScript
tearRunScript
Summary
If loop detection is active, the requested action is tested and if a loop is detected the action is aborted.
This action builds a new script object in the current context (working memory). The script object acts as a proxy
object for the actual script and to preserve concurrency automatically executes the requested script in a separate
thread of execution. Depending on configuration, the actual script may be executed directly by the Notification
Manager on the host platform or remotely via an instance of the Remote Handler (using the RUN_SCRIPT
callout function) which in turn may be running on the local and/or remote platforms.
Once the script has finished executing (and again depending on configuration) the script object may remain in
the current context. At this point completion status, normal and error outputs and return codes are available to be
evaluated by rules deployed in the current context.
Alternatively, the script object may be automatically removed from the current context and destroyed on script
completion.

Scenario Manager Configuration Dialogue

The context (working memory) in which the
triggering rule is deployed.

The base class (literal or stored in a rule variable) of
the owning mesh object.
The unique reference (literal or stored in a rule
variable) of the owning mesh object.

The name of the script file to execute. The file must
be executable and reside in the UCA_HOME/scripts
directory on the target platform.

Optional arguments (literal values or stored in rule
variables). Gaps in the argument list are not
supported - use “”.

Option to execute the script remotely via the
Remote Handler on a local and/or remote platform.

Option to automatically remove & destroy the script
object from the current context on script
completion.
Option to record action execution details in the
database.

213

End Script
State Mesh Model

Script

Fired Rules Viewer Mnemonics
trigEndScript
tearEndScript
Summary
If loop detection is active, the requested action is tested and if a loop is detected the action is aborted.
This action removes the supplied script object from the current context (working memory) and terminates the
thread of execution it is running in. The script object is then destroyed.

Scenario Manager Configuration Dialogue

The context (working memory) in which the triggering
rule is deployed and the supplied script object is inserted.

The script object to terminate and remove.

Option to record action execution details in the database.

214

15.2.2.5 Alarm Handling

Raise Alarm
State Mesh Model

Fired Rules Viewer Mnemonics
trigRaiseAlarm
tearRaiseAlarm
Summary
If loop detection is active, the requested action is tested and if a loop is detected the action is aborted.
If the option to create a master alarm report in the NMS is chosen, the master alarm PENDING option is set in
the supplied notification object and it is updated in the chosen context(s).
This action submits an alarm creation request to the external NMS via the Remote Handler RAISE_ALARM
callout function. The alarm creation request is targeted at the (mesh) object to which the supplied notification
object is attached.
Depending on the level of integration with the external NMS and the intended use of the new alarm e.g. creation
of a master alarm report, the unique identifier of the supplied notification object may or may not be passed in the
alarm creation request.
If the external NMS subsequently delivers a master alarm report to the system in direct response to the creation
request and it includes the notification object unique identifier, the master alarm report (with its own external
NMS unique identifier) may be mapped (automatically or manually) directly into the originating notification
object itself rather than the targeted (mesh) object.
An alternative Remote Handler integration, again triggered on receipt of a master alarm creation request, may
artificially generate a system-specific external NMS master alarm report unique identifier and set this directly in
the supplied notification object, without the need for the actual external master alarm report to be delivered back
to the system and mapped onto the originating notification. This mechanism still requires the system to send the
generated system-specific master alarm report unique identifier along with the creation request out to the
external NMS, so that it can (in subsequent requests from the system) associate the generated system-specific
master alarm report unique identifier with the equivalent identifier for the actual external NMS alarm report.
Regardless of integration technique, this optional ability to map generated alarms to notification objects is useful
for the creation and handling of ‘master’ alarms. These are typically used to act as an artificial indicator of a
problem, often on an object that may not otherwise report events. They may also act as a container for
contributory and/or sympathetic alarms since the existence of this mapped ‘master’ alarm report in a notification
object may be evaluated in rules using the ‘master alarm status’ attribute and further actions may attach
contributory and/or sympathetic alarms to it. Existence of the ‘master’ alarm report therefore implies that the
system has access to the ‘master’ alarm’s external NMS unique identifier, since it will need to issue instructions
to the external NMS to carry out such operations.

Notification

NMS

Notification
unique identifier

Notification
unique identifier

Master alarm & Notification
unique identifiers

Notification

NMS

Master alarm
unique identifier

Master alarm
unique identifier

Alarm
Object

NMS Alarm
Object Notification

NMS

Notification
unique identifier

Notification
unique identifier

Master alarm & Notification
unique identifiers

Notification

NMS

Master alarm
unique identifier

Master alarm
unique identifier

Master alarm
unique identifier
Master alarm

unique identifier

Alarm
Object
Alarm
Object

Alarm
Object

NMS Alarm
Object

Master alarm
unique identifier
Master alarm

unique identifier

215

Scenario Manager Configuration Dialogue

The context (working memory) in which
the triggering rule is deployed and the
supplied notification object is inserted.

An alternative context in which the
supplied notification object may also be
inserted (if un-used, set as Current
Context).

The notification object attached to the
targeted (mesh) object.

X.733 Event Type for the new alarm
report.
X.733 Probable Cause for the new alarm
report.

X.733 Perceived Severity for the new
alarm report.

Optional Additional Text message to be
inserted into the alarm report in the
external NMS e.g. creation reason.
Option to create a normal or master alarm
report.

Option to record action execution details in
the database.

216

Update Alarm Field In Latest Alarm
State Mesh Model

Fired Rules Viewer Mnemonic
trigUpdateAlarmField
Summary
If loop detection is active, the requested action is tested and if a loop is detected the action is aborted.
This action attempts to retrieve details of the latest alarm report from the supplied (mesh) object and if
successful, an update alarm request is sent to the external NMS via the Remote Handler’s UPDATE_ALARM
callout function.
The update pending flag is set on the alarm object representing the alarm report and the update pending count is
incremented in the supplied (mesh) object. When the alarm report update is received from the external NMS, the
update pending flag is cleared on the alarm object representing the alarm report and the update pending count is
decremented in the supplied (mesh) object.

When the alarm field to be updated is chosen, the new field value entered will override the existing alarm field
value unless either or both of the Append or Prefix are selected.

Scenario Manager Configuration Dialogue

The context (working memory) in which the
triggering rule is deployed and the supplied
(mesh) object is inserted.

An alternative context in which the supplied
(mesh) object may also be inserted (if un-
used, set as Current Context).

The (mesh) object whose latest alarm report is
to be updated.

The field in the alarm report to be updated.

The new field value to be used to update the
alarm report. This will replace the existing
value unless the one or both of the Append or
Prefix options are selected

Optional additional information to control
how the field in the alarm is to be updated

Option to append the new field value to the
existing field value..

Option to prefix the existing field value with
the new field value.

217

Update Alarm Field In Master Alarm
State Mesh Model

Fired Rules Viewer Mnemonic
trigUpdateAlarmFieldForNotif
Summary
If loop detection is active, the requested action is tested and if a loop is detected the action is aborted.
This action attempts to retrieve details of the master alarm report from the supplied primary notification object
and if successful, an update alarm request is sent to the external NMS via the Remote Handler’s
UPDATE_ALARM callout function.
The update pending flag is set on the alarm object representing the master alarm report. When the master alarm
report update is received from the external NMS, the update pending flag is cleared on the alarm object
representing the master alarm report.

When the alarm field to be updated is chosen, the new field value entered will override the existing alarm field
value unless either or both of the Append or Prefix are selected.

Scenario Manager Configuration Dialogue

The context (working memory) in which the
triggering rule is deployed and the supplied
notification object is inserted.

An alternative context in which the supplied
notification object may also be inserted (if un-
used, set as Current Context).

The notification object whose master alarm
report is to be updated.

The field in the alarm report to be updated.

The new field value to be used to update the
alarm report. This will replace the existing
value unless one or both of the Append or
Prefix options are selected
Optional additional information to control
how the field in the alarm is to be updated
This will replace the existing value unless the
one or both of the Append or Prefix options
are selected.
Option to append the new field value to the
existing field value.
Option to prefix the existing field value with
the new field value.

Option to record action execution details in
the database.

218

Acknowledge Latest Object Alarm
State Mesh Model

Mesh
Object

Alarm
ObjectNMS

Mesh
Object

Alarm
ObjectNMS

Fired Rules Viewer Mnemonics
trigAckLatestAlarm
tearAckLatestAlarm
Summary
If loop detection is active, the requested action is tested and if a loop is detected the action is aborted.
This action sends an acknowledge alarm request to the external NMS via the Remote Handler’s
ACKNOWLEDGE_CAUSAL_ALARM callout function. It includes the external NMS alarm report unique
identifier extracted from the latest alarm report received by the supplied (mesh) object.

Scenario Manager Configuration Dialogue

The context (working memory) in which the
triggering rule is deployed and the supplied mesh
object is inserted.

The mesh object containing the latest alarm report.

Optional Additional Text message to be inserted
into the alarm report in the external NMS e.g.
acknowledgement reason.

Option to record action execution details in the
database.

219

Terminate Latest Object Alarm
State Mesh Model

Mesh
Object

Alarm
ObjectNMS

Mesh
Object

Alarm
ObjectNMS

Fired Rules Viewer Mnemonic
trigTermLatestAlarm
tearTermLatestAlarm
Summary
If loop detection is active, the requested action is tested and if a loop is detected the action is aborted.
This action sends a terminate alarm request to the external NMS via the Remote Handler’s
TERMINATE_CAUSAL_ALARM callout function. It includes the external NMS alarm report unique identifier
extracted from the latest alarm report received by the supplied (mesh) object.

Scenario Manager Configuration Dialogue

The context (working memory) in which the
triggering rule is deployed and the supplied mesh
object is inserted.

The mesh object containing the latest alarm report.

Optional Additional Text message to be inserted
into the alarm report in the external NMS e.g.
termination reason.

Option to record action execution details in the
database.

220

Terminate Master Alarm
State Mesh Model

Alarm
Object Notification

NMS

Master alarm
unique identifier

Master alarm
unique identifierAlarm

Object Notification

NMS

Master alarm
unique identifier

Master alarm
unique identifier

Fired Rules Viewer Mnemonic
trigTermMasterAlarm
tearTermMasterAlarm
Summary
If loop detection is active, the requested action is tested and if a loop is detected the action is aborted.
This action examines the supplied notification object for the presence of a ‘master’ alarm report.
If a ‘master’ alarm report has never been received, a record is added to this effect in the action log in the
database and processing is terminated.
If a ‘master’ alarm report has been received but is not attached to the supplied notification object, a record is
added to this effect in the action log in the database and processing is terminated.
An alarm termination request is sent to the external NMS via the Remote Handler
TERMINATE_MASTERALARM callout function. The alarm termination request is implicitly targeted at the
equivalent alarm report maintained by the external NMS, identified by the previously received ‘master’ alarm
external NMS unique identifier held in the supplied notification object.

Scenario Manager Configuration Dialogue

The context (working memory) in which the triggering
rule is deployed and the supplied notification object is
inserted.

The notification object attached to the targeted (mesh)
object.
Optional Additional Text message to be appended to the
alarm report in the external NMS e.g. termination reason.
Option to record action execution details in the database.

221

Clear Alarm
State Mesh Model

Alarm
Object Notification

NMS

X.733 clearance
or master alarm
unique identifier

Master alarm
unique identifierAlarm

Object Notification

NMS

X.733 clearance
or master alarm
unique identifier

Master alarm
unique identifier

Fired Rules Viewer Mnemonic
trigClearAlarm
tearClearAlarm
Summary
If loop detection is active, the requested action is tested and if a loop is detected the action is aborted.
If the option to create a master alarm report in the NMS is chosen, the master alarm PENDING option is set in
the supplied notification object and it is updated in the chosen context(s).
This action sends an alarm clearance request to the external NMS via the Remote Handler CLEAR_ALARM
callout function.
Depending on the level of integration with the external NMS and the availability or otherwise of a previously
received or generated external NMS ‘master’ alarm unique identifier in the supplied notification object, the
Remote Handler integration must adopt an appropriate technique to clear an existing alarm in the external NMS.
This may vary from an X.733-style alarm clearance relying solely on the supplied fields to a closure based on an
external NMS ‘master’ alarm unique identifier. An alarm clearance request may clear alarm reports on (mesh)
objects or ‘master’ alarm reports on notification objects.

Scenario Manager Configuration Dialogue

The context (working memory) in which the
triggering rule is deployed and the supplied
notification object is inserted.

An alternative context in which the supplied
notification object may also be inserted (if
un-used, set as Current Context).
The notification object attached to the
targeted (mesh) object.
X.733 Event Type for the clearance alarm
report.
X.733 Probable Cause for the clearance
alarm report.

X.733 Perceived Severity for the clearance
alarm report.

Optional Additional Text message to be
inserted into the alarm report in the external
NMS e.g. clearance reason.

Option to clear a normal or master alarm
report.

Option to record action execution details in
the database.

222

Associate Marker Notification Alarms to Master
State Mesh Model

Alarm
Object

Primary
Notification

Mesh
Object

Master alarm
unique identifier

Marker
Notification

Alarm
ObjectAlarm
Object

NMS

Current
event list

Alarm
Object

Primary
Notification

Mesh
Object

Master alarm
unique identifier

Marker
Notification

Alarm
ObjectAlarm
Object

NMS

Current
event list

Fired Rules Viewer Mnemonic
trigAssociateMarkerAlarmsToMaster
Summary
If loop detection is active, the requested action is tested and if a loop is detected the action is aborted.
The purpose of this action is to associate one or more alarm reports in the supplied marker notification’s current
event list with a ‘master’ alarm report in an extermal NMS.
This action examines the supplied primary notification object for the presence of a ‘master’ alarm report.
If a ‘master’ alarm report has never been received, a record is added to this effect in the action log in the
database and processing is terminated.
If a ‘master’ alarm report has been received but is not attached to the supplied notification object, a record is
added to this effect in the action log in the database and processing is terminated.
For each alarm object in the supplied marker notification object’s current event list, an alarm demotion request
(including the ‘master’ alarm report external NMS reference) is sent to the external NMS via the Remote
Handler’s DEMOTE_CHILD_ALARMS callout function. The effect in the external NMS depends on the level
of integration and its inherent capabilities.
On successful completion of the action, the ‘child alarms demoted’ attribute in the supplied marker notification
object is set to true and this may be evaluated by additional rules.

Scenario Manager Configuration Dialogue

The context (working memory) in which the triggering
rule is deployed and where the primary and marker
notification objects are inserted.

An alternative context in which the primary and marker
notification objects may also be inserted (if un-used, set as
Current Context).

The primary notification containing the external NMS
‘master’ alarm report reference.

The marker notification object whose current event list
contains the set of alarm reports to be associated with the
‘master’ alarm report.

Option to record action execution details in the database.

223

Dissociate Marker Notification Alarms From Master
State Mesh Model

Alarm
Object

Primary
Notification

Mesh
Object

Master alarm
unique identifier

Marker
Notification

Alarm
ObjectAlarm
Object

NMS

Current
event list

Alarm
Object

Primary
Notification

Mesh
Object

Master alarm
unique identifier

Marker
Notification

Alarm
ObjectAlarm
Object

NMS

Current
event list

Fired Rules Viewer Mnemonic
tearDissociateMarkerAlarmsFromMaster
Summary
If loop detection is active, the requested action is tested and if a loop is detected the action is aborted.
The purpose of this action is to dissociate one or more alarm reports in the supplied marker notification’s current
event list from a ‘master’ alarm report in an extermal NMS.
This action examines the supplied primary notification object for the presence of a ‘master’ alarm report.
If a ‘master’ alarm report has never been received, a record is added to this effect in the action log in the
database and processing is terminated.
If a ‘master’ alarm report has been received but is not attached to the supplied notification object, a record is
added to this effect in the action log in the database and processing is terminated.
For each alarm object in the supplied marker notification object’s current event list, an alarm promotion request
(including the ‘master’ alarm report external NMS reference) is sent to the external NMS via the UCA Remote
Handler’s PROMOTE_CHILD_ALARMS callout function. The effect in the external NMS depends on the level
of integration with UCA and its inherent capabilities.
On successful completion of the action, the ‘child alarms demoted’ attribute in the supplied marker notification
object is set to false and this may be evaluated by additional rules.

Scenario Manager Configuration Dialogue

The context (working memory) in which the triggering
rule is deployed and where the primary and marker
notification objects are inserted.

An alternative context in which the primary and marker
notification objects may also be inserted (if un-used, set as
Current Context).

The primary notification containing the external NMS
‘master’ alarm report reference.

The marker notification object whose current event list
contains the set of alarm reports to be promoted from
under the ‘master’ alarm report.

Option to record action execution details in the database.

224

Associate Object Alarms To Master
State Mesh Model

Alarm
Object

Primary
Notification

Mesh
Object

Master alarm
unique identifier

Mesh
Object

Alarm
Object

Alarm
ObjectNMS

Alarm
Object

Primary
Notification

Mesh
Object

Master alarm
unique identifier

Mesh
Object

Alarm
Object

Alarm
ObjectNMS

Fired Rules Viewer Mnemonic
trigAssociateObjectAlarmsToMaster
Summary
If loop detection is active, the requested action is tested and if a loop is detected the action is aborted.
The purpose of this action is to associate one or more alarm reports in the supplied (mesh) object’s current event
list with a ‘master’ alarm report in an extermal NMS.
This action examines the supplied primary notification object for the presence of a ‘master’ alarm report.
If a ‘master’ alarm report has never been received, a record is added to this effect in the action log in the
database and processing is terminated.
If a ‘master’ alarm report has been received but is not attached to the supplied notification object, a record is
added to this effect in the action log in the database and processing is terminated.
For each alarm object in the supplied object’s current event list, an alarm demotion request (including the
‘master’ alarm report external NMS reference) is sent to the external NMS via the Remote Handler’s
DEMOTE_CHILD_ALARMS callout function. The effect in the external NMS depends on the level of
integration and its inherent capabilities.

Scenario Manager Configuration Dialogue
The context (working memory) in which the triggering
rule is deployed and where the mesh and primary
notification objects are inserted.

The primary notification object containing the external
NMS ‘master’ alarm report reference.

The (mesh) object whose current event list contains the set
of alarm reports to be associated with the ‘master’ alarm
report.
Option to record action execution details in the database.

225

Dissociate Object Alarms From Master
State Mesh Model

Alarm
Object

Primary
Notification

Mesh
Object

Master alarm
unique identifier

Mesh
Object

Alarm
Object

Alarm
ObjectNMS

Alarm
Object

Primary
Notification

Mesh
Object

Master alarm
unique identifier

Mesh
Object

Alarm
Object

Alarm
ObjectNMS

Fired Rules Viewer Mnemonic
tearDissociateObjectAlarmsFromMaster
Summary
If loop detection is active, the requested action is tested and if a loop is detected the action is aborted.
The purpose of this action is to dissociate one or more alarm reports in the supplied (mesh) object’s current event
list from a ‘master’ alarm report in an extermal NMS.
This action examines the supplied primary notification object for the presence of a ‘master’ alarm report.
If a ‘master’ alarm report has never been received, a record is added to this effect in the action log in the
database and processing is terminated.
If a ‘master’ alarm report has been received but is not attached to the supplied notification object, a record is
added to this effect in the action log in the database and processing is terminated.
For each alarm object in the supplied object’s current event list, an alarm promotion request (including the
‘master’ alarm report external NMS reference) is sent to the external NMS via the UCA Remote Handler’s
PROMOTE_CHILD_ALARMS callout function. The effect in the external NMS depends on the level of
integration with UCA and its inherent capabilities.

Scenario Manager Configuration Dialogue

The context (working memory) in which the triggering
rule is deployed and where the mesh and primary
notification objects are inserted.

The primary notification object containing the external
NMS ‘master’ alarm report reference.

The mesh object whose current event list contains the set
of alarm reports to be promoted from under the ‘master’
alarm report.

Option to record action execution details in the database.

226

Associate Alarms
State Mesh Model

Fired Rules Viewer Mnemonic
trigAssociateAlarms
Summary
If loop detection is active, the requested action is tested and if a loop is detected the action is aborted.
The action attempts to obtain the latest alarm report from each of the supplied (mesh) objects.
If the latest alarm reports are not obtainable from either of the supplied (mesh) objects, a record is added to this
effect in the action log in the database and processing is terminated.
An alarm associate request (including both alarm report external NMS references) is sent to the external NMS
via the Remote Handler’s DEMOTE_CHILD_ALARMS callout function. The association request will attempt
to make the latest alarm report from the secondary (mesh) object a child of the latest alarm report from the
primary (mesh) object. The effect in the external NMS depends on the level of integration and its inherent
capabilities.

Scenario Manager Configuration Dialogue

Mesh
Object

Mesh
Object

Latest
Alarm
Object

Latest
Alarm
Object

Primary Secondary

The context (working memory) in which the triggering
rule is deployed and where the primary and secondary
(mesh) objects are inserted.

The primary (mesh) object whose current event list
contains the parent external NMS alarm reference.

The secondary (mesh) object whose current event list
contains the child external NMS alarm reference.
Option to record action execution details in the database.

Dissociate Alarms
State Mesh Model

Fired Rules Viewer Mnemonic
tearDissociateAlarms
Summary
If loop detection is active, the requested action is tested and if a loop is detected the action is aborted.
The action attempts to obtain the latest alarm report from each of the supplied (mesh) objects.
If the latest alarm reports are not obtainable from either of the supplied (mesh) objects, a record is added to this
effect in the action log in the database and processing is terminated.
An alarm dissociation request (including both alarm report external NMS references) is sent to the external NMS
via the Remote Handler’s DEMOTE_CHILD_ALARMS callout function. The dissociation request will attempt
to remove the latest alarm report from the secondary (mesh) object as a child of the latest alarm report from the
primary (mesh) object. The effect in the external NMS depends on the level of integration and its inherent
capabilities.

Scenario Manager Configuration Dialogue

Mesh
Object

Mesh
Object

Latest
Alarm
Object

Latest
Alarm
Object

Primary Secondary
The context (working memory) in which the triggering
rule is deployed and where the primary and secondary
(mesh) objects are inserted.

The primary (mesh) object whose current event list
contains the parent external NMS alarm reference.

The secondary (mesh) object whose current event list
contains the child external NMS alarm reference.
227

Option to record action execution details in the database.

228

Associate CPL Alarms

State Mesh Model

Fired Rules Viewer Mnemonic
trigAssociateCPLAlarms

Summary
If loop detection is active, the requested action is tested and if a loop is detected the action is aborted.
The action attempts to obtain the latest alarm report from the Primary mesh object and the CPL (Contributing
Problem List) of the Secondary mesh object.
If the either are not obtainable from the supplied (mesh) objects, a record is added to this effect in the action log
in the database and processing is terminated.
An alarm associate request (including both alarm report external NMS references) is sent to the external NMS
via the Remote Handler’s DEMOTE_CHILD_ALARMS callout function for each alarm in the CPL. The
association request will attempt to make the alarm reports from the secondary (mesh) object a child of the latest
alarm report from the primary (mesh) object. The effect in the external NMS depends on the level of integration
and its inherent capabilities.

Scenario Manager Configuration Dialogue

CPL
Alarm

Objects

Mesh
Object

Mesh
Object

Latest
Alarm
Object

CPL
Alarm

Objects

Primary Secondary
The context (working memory) in which the triggering
rule is deployed and where the primary and secondary
(mesh) objects are inserted.

The primary (mesh) object whose current event list
contains the parent external NMS alarm reference.

The secondary (mesh) object whose current event list
contains the child external NMS alarm reference.

Option to record action execution details in the database.

229

Dissociate CPL Alarms
State Mesh Model

Fired Rules Viewer Mnemonic
tearDissociateCPLAlarms

Summary
If loop detection is active, the requested action is tested and if a loop is detected the action is aborted.
The action attempts to obtain the latest alarm report from the Primary mesh object and the CPL (Contributing
Problem List) of the Secondary mesh object.
If the either are not obtainable from the supplied (mesh) objects, a record is added to this effect in the action log
in the database and processing is terminated.
An alarm dissociation request (including both alarm report external NMS references) is sent to the external NMS
via the Remote Handler’s DEMOTE_CHILD_ALARMS callout function. The dissociation request will attempt
to remove the alarm reports from the secondary (mesh) object CPL as a child of the latest alarm report from the
primary (mesh) object. The effect in the external NMS depends on the level of integration and its inherent
capabilities.

Scenario Manager Configuration Dialogue

CPL
Alarm

Objects

Mesh
Object

Mesh
Object

Latest
Alarm
Object

CPL
Alarm

Objects

Primary Secondary

The context (working memory) in which the triggering
rule is deployed and where the primary and secondary
(mesh) objects are inserted.

The primary (mesh) object whose current event list
contains the parent external NMS alarm reference.
The secondary (mesh) object whose current event list
contains the child external NMS alarm reference.
Option to record action execution details in the database.

230

Forward Last Alarm
State Mesh Model
N/A

Fired Rules Viewer Mnemonics
trigForwardLastAlarm
tearForwardLastAlarm

Summary
If loop detection is active, the requested action is tested and if a loop is detected the action is aborted.
The action attempts to obtain the latest alarm report the supplied (mesh) object and in turn attempts to retrieve
the original alarm report details from the Alarms database.
The alarm report details are sent on to the destination external NMS via the Remote Handler’s
FORWARD_LAST_ALARM callout function.
If the latest alarm report is of cleared severeity and the option to remove cleared alarms is checked in the action
dialogue, the cleared alarm will be automatically removed from the Alarms database.

Scenario Manager Configuration Dialogue

The context (working memory) in which the triggering
rule is deployed and where the (mesh) object is inserted.

The (mesh) object whose last alarm report is to be
forwarded to the destination external NMS
Option to automatically remove the last alarm report from
the Alarm database if its severity is cleared.

Option to record action execution details in the database.

231

Remove Accumulated Alarms
State Mesh Model
N/A

Fired Rules Viewer Mnemonics
trigRemoveAccumulatedAlarms
tearRemoveAccumulatedAlarms

Summary
If loop detection is active, the requested action is tested and if a loop is detected the action is aborted.
This action attempts to prevent the build-up of accumulated external alarms on a (mesh) object in the situation
where alarm clears are never received from the source system. It is normally used when the count of external
alarms in the target (mesh) object’s Current Problem List has reached or exceeded a threshold value.
The action has been designed to be as flexible as possible and may be used in a number of alternate
configurations, depending on the capabilities of the source system and individual user requirements. It may be
safely used in combination with the Forward Last Alarm action, provide that action is executed at a higher
priority to avoid false triggers. Care should also be taken to ensure that the effect of each option is fully
understood and that combinations of options are chosen to avoid conflict.
The following diagram illustrates the effect of the various configuration options on information flows within and
between the connected systems:

Data
Collector

Event
Manager

Topology
Server

Remote
Handler

Generic
Collector

Destination
System

Source
System

Alarm
Database

The action attempts to retrieve the Current Problem List (CPL) from the supplied originating (mesh) object.
If the list is valid (i.e. contains at least on external alarm):

The Mesh Object Alarm Retention option is applied to the CPL to identify the Oldest or
Newest alarm if required. If an entry is identified, it is excluded from further processing and
will be left unmodified in the (mesh) object’s CPL on completion of the action.
Each of the non-excluded alarms in the CPL is subjected to the following processing:

If the alarm’s event ID is invalid (e.g. it is a sympathetic alarm), then it is ignored and
an exception is reported.
If acknowledgement (or acknowledgement & termination) of the alarm is required in
the Source System according to the Source System Event Update option, an
acknowledgement callout is delivered to the Remote Handler. It is the responsibility
of the integrator to ensure that the appropriate operation is carried out on the Source
System in response to the callout.
If termination (or acknowledgement & termination) of the alarm is required in the
Source System according to the Source System Event Update option, a termination
callout is delivered to the Remote Handler. It is the responsibility of the integrator to
ensure that the appropriate operation is carried out on the Source System in response
to the callout. Note: termination of an alarm in the Source System would normally be
expected to result in an equivalent alarm update message being received by the

232

system, in turn causing the alarm to be terminated (and therefore closed) within the
system.
Whenever the Source System Event Update option is exercised, extra text may be
appended to the end of the Additional Text field of the alarm in the Source System
using the Additional Text dialogue field.
If clearance of the alarm in the Alarms database is required according to the Event
Database Modification option, the relevant entry is updated to close the alarm and the
originating time of the clearance is set to be the current time.
If removal of the alarm in the Alarms database is required according to the Event
Database Modification option, .the relevant entry is removed.
If internal generation of a clearance alarm is required for the alarm according to the
Automatically Generate Clear Alarms checkbox:

If the subsequent generated alarm clearance is NOT required to be forwarded
by the Remote Handler according to the Forward Automatically Generated
Clear Alarms To Remote Handler checkbox, the system will prepend
“IGNORE:“ to any text from the Additional Text dialogue field (the Forward
Last Alarm action will subsequently ignore any alarm clearance whose
Additional Text field starts with “IGNORE:”).
The alarm clearance will be automatically generated and sent internally to
the system Event Manager where it will be processed, resulting in the alarm
being removed from the CPL of the supplied (mesh) object.

Scenario Manager Configuration Dialogue

The context (working memory) in which the
triggering rule is deployed and where the (mesh)
object is inserted.

The (mesh) object whose Current Problem List
(CPL) is to be processed.

Option to retain none, oldest or newest alarm in the
CPL. Note oldest or newest alarms are not
processed by the action.
Option to leave the processed alarms in the CPL
unchanged, acknowledged, terminated or
acknowledged & terminated in the Source System.

Optional extra text to append to the Additional
Text field of alarms that are modified in the Source
System.

Option to leave the processed alarms in CPL
unchanged, cleared or cleared & removed in the
Alarms database.

Option to automatically generate clear alarms for
the processed alarms in the CPL.
Option to forward automatically generated clear
for the processed alarms in the CPL.

Option to record action execution details in the
database.

233

Raise Expedited Alarm
State Mesh Model

Fired Rules Viewer Mnemonic
trigRaiseExpeditedAlarm
tearRaiseExpeditedAlarm
Summary
If loop detection is active, the requested action is tested and if a loop is detected the action is aborted.
This action submits an alarm creation request to the external NMS via the Remote Handler
RAISE_EXPEDITED_ALARM callout function. The purpose of this callout is to allow a system to report a
host platform resource problem e.g. disk space exhaustion, to the external NMS. This implies that an expedited
alarm creation request should be carried out even if the system is operating in secondary mode (when its Remote
handler outputs are normally turned off, thus preventing the standard alarm creation mechanism from being used
for this purpose). The supplied notification is that created by rules in a user-supplied host platform problem
detection scenario and may contain additional information relevant to the detected problem.
Depending on the level of integration with the external NMS and the intended use of the new alarm, the unique
identifier of the supplied notification object may or may not be passed in the expedited alarm creation request,
although it is not intended that this action will create a master alarm as described in the Raise Alarm action.

Scenario Manager Configuration Dialogue

The context (working memory) in which
the triggering rule is deployed and the
supplied notification object is inserted.

The notification object attached to the
targeted (mesh) object.
X.733 Event Type for the new alarm
report.
X.733 Probable Cause for the new alarm
report.
X.733 Perceived Severity for the new
alarm report.

Optional Additional Text message to be
inserted into the alarm report in the
external NMS e.g. creation reason.

Option to record action execution details in
the database.

234

Clear Expedited Alarm
State Mesh Model

Fired Rules Viewer Mnemonic
trigClearExpeditedAlarm
tearClearExpeditedAlarm
Summary
If loop detection is active, the requested action is tested and if a loop is detected the action is aborted.
This action submits an alarm clearance request to the external NMS via the Remote Handler
CLEAR_EXPEDITED_ALARM callout function. The purpose of this callout is to allow a system to report the
resolution of a host platform resource problem e.g. disk space exhaustion, to the external NMS. This implies that
an expedited alarm clearance request should be carried out even if the system is operating in secondary mode
(when its Remote handler outputs are normally turned off, thus preventing the standard alarm clearance
mechanism from being used for this purpose). The supplied notification is that created by rules in a user-supplied
host platform problem detection scenario and may contain additional information relevant to resolution of the
previously detected problem.

Scenario Manager Configuration Dialogue

The context (working memory) in which
the triggering rule is deployed and the
supplied notification object is inserted.

The notification object attached to the
targeted (mesh) object.
X.733 Event Type for the clearance alarm
report.
X.733 Probable Cause for the clearance
alarm report.
X.733 Perceived Severity for the clearance
alarm report.

Optional Additional Text message to be
inserted into the cleared alarm report in the
external NMS e.g. clearance reason.

Option to record action execution details in
the database.

235

15.2.2.6 Timer Management

Create Countdown Timer
State Mesh Model

Fired Rules Viewer Mnemonics
trigCreateCountdownTimer
tearCreateCountdownTimer
Summary
If loop detection is active, the requested action is tested and if a loop is detected the action is aborted.
This action attempts to create a new countdown timer object that is associated with the supplied owner object
(may be a (mesh) object, a child group object, an associate group object, a notification object, a script object, a
data object or a system object (reserved for use by the Resilience package). Only one timer is currently allowed
per owner object and the timer resolution is 1 second.
The new timer may be created and optionally not started (state = INITIALISED) or automatically started (state =
RUNNING). A running timer may be suspended (state = SUSPENDED), resumed (state = RUNNING) and re-
initialised (state = INITIALISED) at any time.
When the countdown timer reaches the end of a cycle, it will inform the owning object that a cycle has
completed (state = TIMEOUT).
When all cycles are completed, the timer will cease to operate (state = COMPLETED) unless re-initialised.

Scenario Manager Configuration Dialogue

The new countdown timer owning object

The number of countdown cycles that the timer will
execute before stopping. A value of 0 causes the
timer execute an infinite number of countdown
cycles
The duration of a countdown timer cycle in seconds

First countdown cycle synchronisation options
{none|minute|hour|day}
Option to automatically start the new timer once
created

Option to record action execution details in the
database.

236

Start Initialised/Restart Running Countdown Timer
State Mesh Model
N/A
Fired Rules Viewer Mnemonics
trigStartCountdownTimer
tearStartCountdownTimer
Summary
If loop detection is active, the requested action is tested and if a loop is detected the action is aborted.
This action attempts to start an INITIALISED or restart a RUNNING countdown timer object that is associated
with the supplied owner object.
In each case, the synchronisation setting for the timer object is taken into account when determining the
remaining time to the first or next timeout. Unless the resynchronisation = NONE option was chosen, this will
result in the current cycle duration being less than or equal to the cycle duration as the system will synchronise
the timer object cycle with the next synchronisation boundary.

Scenario Manager Configuration Dialogue

The countdown timer owning object

Option to record action execution details in the database.

237

Suspend Running Countdown Timer
State Mesh Model
N/A
Fired Rules Viewer Mnemonics
trigSuspendCountdownTimer
tearSuspendCountdownTimer
Summary
If loop detection is active, the requested action is tested and if a loop is detected the action is aborted.
This action attempts to suspend a RUNNING countdown timer object that is associated with the supplied owner
object. If successful, the timer state is set to SUSPENDED and the countdown is stopped at the current point in
the cycle.

Scenario Manager Configuration Dialogue

The countdown timer owning object

Option to record action execution details in the database.

238

Resume Suspended Countdown Timer
State Mesh Model
N/A
Fired Rules Viewer Mnemonics
trigSuspendCountdownTimer
tearSuspendCountdownTimer
Summary
If loop detection is active, the requested action is tested and if a loop is detected the action is aborted.
This action attempts to resume a SUSPENDED countdown timer object that is associated with the supplied
owner object. If successful, the timer state is set to RUNNING and the countdown is resumed at the current point
in the cycle.

Scenario Manager Configuration Dialogue

The countdown timer owning object
Option to record action execution details in the database.

239

Re-Initialise Countdown Timer
State Mesh Model
N/A
Fired Rules Viewer Mnemonics
trigReinitialiseCountdownTimer
tearReinitialiseCountdownTimer
Summary
If loop detection is active, the requested action is tested and if a loop is detected the action is aborted.
The number of remaining cycles for the countdown timer object is reset to the original number of countdown
cycles that were specified when it was first created.
This action attempts to set the timer state to INITIALISED i.e. not currently running.

Scenario Manager Configuration Dialogue

The countdown timer owning object

Option to record action execution details in the database.

240

Delete Countdown Timer
State Mesh Model
N/A
Fired Rules Viewer Mnemonics
trigDeleteCountdownTimer
tearDeleteCountdownTimer
Summary
If loop detection is active, the requested action is tested and if a loop is detected the action is aborted.
This action attempts to delete the timer object that is associated with the supplied owning object.

Scenario Manager Configuration Dialogue

The countdown timer owning object

Option to record action execution details in the database.

241

15.2.2.7Analysis

Perform Standard Root Cause Analysis

State Mesh Model
Not applicable.

Fired Rules Viewer Mnemonics
trigPerformStandardRootCauseAnalysis
tearPerformStandardRootCauseAnalysis

Summary
This action provides a standard root cause analysis tool whose purpose is to identify and report those
problems in a network that are the root cause(s) of a service impact. It operates on a state mesh,
normally beginning at a (mesh) object that represents the impacted service. It offers standard root
cause analysis with very few options; if greater flexibility is required the Perform Root Cause Analysis
provides a much finer degree of control over the analysis.
The following description of the root cause analyser algorithm includes references to the various
configuration options (in bold underlined type) at the points at which they affect the flow of processing.
The root cause analyser begins a first stage of discovery processing at the supplied (mesh) object that
has suffered the service impact. It descends recursively through the state mesh, searching for (mesh)
objects whose state has been affected directly or indirectly by underlying network problems. Objects
that satisfy the following search criteria are added to a Non-Normal Objects List (NNOL):

 In Service Objects

 Degraded Objects

 Failed Objects

Objects that match the following criteria are excluded from the Non-Normal Objects List (NNOL):
 Commissioning Objects

 Out Of Service Objects

 In Maintenance Objects

The recursive search automatically descends through parent-child relationships and uncle-nephew
(relative) relationships below the supplied (mesh) object until the lowest level of the state mesh is
reached at which point it stops. If the Follow Associate Links option is checked, the analysis will
traverse an associative relationship between peer (mesh) objects, before continuing down through the
state mesh.
At the end of the search phase, the analyser has identified the set of non-normal(mesh) objects that may
have directly or indirectly affected the state of the supplied (mesh) object. Once this phase of operation
is complete, the root cause analyser begins a second analytical phase of processing:

 The Non-Normal Objects List (NNOL) entries are processed in turn and each NNOL object is
compared with the list of current (non-marker) notifications. Where an NNOL object is also
found to have an associated notification, the rank of the notification is compared with the
worst notification rank seen so far and if it exceeds this value, it becomes the new worst rank.

 The NNOL entries are again processed in turn and each entry is compared with the list of
current (non-marker) notifications.

o If an NNOL object is found to have an associated notification:

 If the Only Include Worst Ranked Problem Reports option is unchecked
or the rank of the current notification is equal to the worst rank:

 The notification is added to the Problem Reports List

 The events in the notification’s contributory events list are added to
the Contributory Events List.

 The associated master alarm external NMS alarm ID (if present)
together with the notification ID are added to the Master Alarm List

242

o If an object in the NNOL does not have an associated notification or no contributory
events were added to the Contributory Events List:

 The NNOL object is added to the Affected Objects List

 The NNOL object is added to the Markers List.

 Any events attached to the NNOL object are added to the Sympathetic
Events List.

 A root cause notification is built and:

o A contributory events list is built in the Notification database from the Contributory
Events List constructed previously.

o A new notification is built in the Notification database using the contributory events
list in the database.

o The Affected Objects List constructed previously is added to the new notification in
the Notification database.

o A new notification object is constructed and if the Deliver Results To Remote
Handler option is checked, the RCA Pending flag in the new notification object is
set.

o If there are entries in the Sympathetic Events List constructed previously, they are
added to the sympathetic events list for the new notification in the Notification
database.

o The new notification object is inserted into the Working Memories (Contexts) defined
in Current Context & Target Context

o A marker notification object is created (tied to the new notification object created
above) for each entry in the Markers List

 If the Deliver Results To Remote Handler option is checked, for the String based remote
handler:

o Details of the new notification object (Base Class, Unique Reference, Message and
Notification ID) are added to Alarm Raise block

o An entry is added to the Alarm Raise block for each entry in the Problem Reports List
(Base Class, Unique Reference, Rank and the external NMS events IDs of each of the
contributory events in the notification)

o An entry is added to the Alarm Raise block for each entry in the Contributory Events
List (the external NMS events ID)

o An entry is added to the Alarm Raise block for each entry in the Sympathetic Events
List (the external NMS events ID)

o An entry is added to the Alarm Raise block for each entry in the Affected Objects List
(Base Class, Unique Reference)

o A Raise Alarm request is passed to the Notification Manager for delivery to all
attached Remote Handlers

 If the Deliver Results To Remote Handler option is checked, for the XML based remote
handler see the Remote Handler XML specification for details.

243

Scenario Manager Configuration Dialogue

244

Update Standard Root Cause Analysis
State Mesh Model

Not applicable.

Fired Rules Viewer Mnemonics
trigUpdateStandardRootCauseAnalysis
tearUpdateStandardRootCauseAnalysis

Summary
This action updates the results of a previous root cause analysis. It operates on a state mesh, normally
beginning at a (mesh) object that represents the impacted service and updates the notification created by
the previous analysis. It offers standard root cause analysis with very few options; if greater flexibility
is required the Update Root Cause Analysis provides a much finer degree of control over the analysis.
The following description of the root cause analyser algorithm in update mode includes references to
the various configuration options (in bold underlined type) at the points at which they affect the flow of
processing.
The root cause analyser begins a first stage of discovery processing at the supplied (mesh) object that
has suffered the service impact. It descends recursively through the state mesh, searching for (mesh)
objects whose state has been affected directly or indirectly by underlying network problems. Objects
that satisfy the following search criteria (set in the configuration dialogue) are added to a Non-Normal
Objects List (NNOL):

 In Service Objects

 Degraded Objects

 Failed Objects

Objects that match the following criteria are excluded from the Non-Normal Objects List (NNOL):
 Commissioning Objects

 Out Of Service Objects

 In Maintenance Objects

The recursive search automatically descends through parent-child relationships and uncle-nephew
(relative) relationships below the supplied (mesh) object until the lowest level of the state mesh is
reached at which point it stops. If the Follow Associate Links option is checked, the analysis will
traverse an associative relationship between peer (mesh) objects, before continuing down through the
state mesh.
At the end of the search phase, the analyser has identified the set of non-normal (mesh) objects that may
have directly or indirectly affected the state of the supplied (mesh) object. Once this phase of operation
is complete, the root cause analyser begins a second analytical phase of processing:

 The Non-Normal Objects List (NNOL) entries are processed in turn and each NNOL object is
compared with the list of current (non-marker) notifications. Where an NNOL object is also
found to have an associated notification, the rank of the notification is compared with the
worst notification rank seen so far and if it exceeds this value, it becomes the new worst rank.

 The NNOL entries are again processed in turn and each entry is compared with the list of
current (non-marker) notifications.

o If an NNOLobject is found to have an associated notification:

 If the Only Include Worst Ranked Problem Reports option is unchecked
or the rank of the current notification is equal to the worst rank :

 The notification is added to the Problem Reports List

 The events in the notification’s contributory events list are added to
the Contributory Events List.

 The associated master alarm external NMS alarm ID (if present)
together with the notification ID are added to the Master Alarm List

o If an object in the NNOL does not have an associated notification or no contributory
events were added to the Contributory Events List:

245

 The NNOL object is added to the Affected Objects List

 The NNOL object is added to the Markers List.

 Any events attached to the NNOL object are added to the Sympathetic
Events List.

 A root cause notification is built and:

o A contributory events list is built in the Notification database from the Contributory
Events List constructed previously.

o A new notification is built in the Notification database using the contributory events
list in the database.

o The Affected Objects List constructed previously is added to the new notification in
the Notification database.

o A new notification object is constructed and if the Deliver Results To Remote
Handler option is checked, the RCA Pending flag in the new notification object is
set.

o If there are entries in the Sympathetic Events List constructed previously, they are
added to the sympathetic events list for the new notification in the Notification
database.

o The new notification object is inserted into the Working Memories (Contexts) defined
in Current Context & Target Context

o A marker notification object is created (tied to the new notification object created
above) for each entry in the Markers List

 The Notification message is updated if required in the Working Memory contexts.

 The Root Cause Notification is updated in the database:

o Any new events in the Contributory Events List constructed previously are added to
the contributory events list attached to the existing notification in the Notification
database

o Any new entries in the Affected Objects List constructed previously are added to the
affected objects list attached to the existing notification in the Notification database.

o The message attached to the existing notification in the Notification database is
updated is required

 If the Deliver Results To Remote Handler option is checked, for the String based remote
handler:

o Details of the new notification object (Base Class, Unique Reference, Message and
Notification ID) are added to Alarm Raise block

o An entry is added to the Alarm Raise block for each entry in the Problem Reports List
(Base Class, Unique Reference, Rank and the external NMS events IDs of each of the
contributory events in the notification)

o An entry is added to the Alarm Raise block for each entry in the Contributory Events
List (the external NMS events ID)

o An entry is added to the Alarm Raise block for each entry in the Sympathetic Events
List (the external NMS events ID)

o An entry is added to the Alarm Raise block for each entry in the Affected Objects List
(Base Class, Unique Reference)

o A Raise Alarm request is passed to the Notification Manager for delivery to all
attached Remote Handlers

 If the Deliver Results To Remote Handler option is checked, for the XML based remote
handler see the Remote Handler XML specification for details.

246

Scenario Manager Configuration Dialogue

247

Perform Root Cause Analysis

State Mesh Model
Not applicable.

Fired Rules Viewer Mnemonics
trigPerformRootCauseAnalysis
tearPerformRootCauseAnalysis

Summary
This action encapsulates a very flexible root cause analysis tool whose purpose is to identify and report
those problems in a network that are the root cause(s) of a service impact. It operates on a state mesh,
normally beginning at a (mesh) object that represents the impacted service.
The detailed behaviour of the root cause analyser is highly configurable and uses a large number of
options supplied by the Scenario Manager configuration dialogue. The following description of the root
cause analyser algorithm includes references to the various configuration options (in bold underlined
type) at the points at which they affect the flow of processing.
The root cause analyser begins a first stage of discovery processing at the supplied (mesh) object that
has suffered the service impact. It descends recursively through the state mesh, searching for (mesh)
objects whose state has been affected directly or indirectly by underlying network problems. Objects
that satisfy the following search criteria (set in the configuration dialogue) are added to a Non-Normal
Objects List (NNOL):

 Include In Service Objects (default true)

 Include Commissioning Objects (default false)

 Include Out Of Service Objects (default false)

 Include In Maintenance Objects (default false)

 Include Degraded Objects (default true)

 Include Failed Objects (default true)

The recursive search automatically descends through parent-child relationships and uncle-nephew
(relative) relationships below the supplied (mesh) object until the lowest level of the state mesh is
reached at which point it stops. If the Follow Associate Links option is checked, the analysis will
traverse an associative relationship between peer (mesh) objects, before continuing down through the
state mesh.
At the end of the search phase, the analyser has identified the set of non-normal(mesh) objects that may
have directly or indirectly affected the state of the supplied (mesh) object. Once this phase of operation
is complete, the root cause analyser begins a second analytical phase of processing:

 The Non-Normal Objects List (NNOL) entries are processed in turn and each NNOL object is
compared with the list of current (non-marker) notifications. Where an NNOL object is also
found to have an associated notification, the rank of the notification is compared with the
worst notification rank seen so far and if it exceeds this value, it becomes the new worst rank.

 The NNOL entries are again processed in turn and each entry is compared with the list of
current (non-marker) notifications.

o If an NNOL object is found to have an associated notification:

 If the Only Include Worst Ranked Problem Reports option is unchecked
or the rank of the current notification is equal to the worst rank :

 If the Build Problem Reports List option is checked, the
notification is added to the Problem Reports List

 If the Build Contributory Events List option is checked, the
events in the notification’s contributory events list are added to the
Contributory Events List.

 If the Build Master Alarms List option is checked, the associated
master alarm external NMS alarm ID (if present) together with the
notification ID are added to the Master Alarm List

248

o If an object in the NNOL does not have an associated notification or no contributory
events were added to the Contributory Events List:

 If the Build Affected Objects List option is checked, the NNOL object is
added to the Affected Objects List

 If the Attach Marker Notifications to Affected Objects option is checked,
the NNOL object is added to the Markers List.

 If both the Build Affected Objects List & Build Sympathetic Events List
options are checked, any events attached to the NNOL object are added to
the Sympathetic Events List.

 If the Build Root Cause Notification option is checked:

o A contributory events list is built in the Notification database from the Contributory
Events List constructed previously.

o A new notification is built in the Notification database using the contributory events
list in the database.

o If the Build Affected Objects List option is checked, the Affected Objects List
constructed previously is added to the new notification in the Notification database.

o A new notification object is constructed and if the Deliver Results To Remote
Handler option is checked, the RCA Pending flag in the new notification object is
set.

o If the Build Affected Objects List option is checked and there are entries in the
Sympathetic Events List constructed previously, they are added to the sympathetic
events list for the new notification in the Notification database.

o The new notification object is inserted into the Working Memories (Contexts) defined
in Current Context & Target Context

o .If the Attach Marker Notifications to Affected Objects option is checked, a marker
notification object is created (tied to the new notification object created above) for
each entry in the Markers List

 If the Deliver Results To Remote Handler option is checked:

o Details of the new notification object (Base Class, Unique Reference, Message and
Notification ID) are added to Alarm Raise block

o An entry is added to the Alarm Raise block for each entry in the Problem Reports List
(Base Class, Unique Reference, Rank and the external NMS events IDs of each of the
contributory events in the notification)

o An entry is added to the Alarm Raise block for each entry in the Contributory Events
List (the external NMS events ID)

o An entry is added to the Alarm Raise block for each entry in the Sympathetic Events
List (the external NMS events ID)

o An entry is added to the Alarm Raise block for each entry in the Affected Objects List
(Base Class, Unique Reference)

o A Raise Alarm request is passed to the Notification Manager for delivery to all
attached Remote Handlers

 Enrich Contributory Alarms option – not yet supported

 If the Build Master Alarm List option is checked, all entries in the Master Alarms List are
added to the Master Alarms block

Scenario Manager Configuration Dialogue

249

250

Update Root Cause Analaysis

State Mesh Model
Not applicable.

Fired Rules Viewer Mnemonics
trigUpdateRootCauseAnalysis
tearUpdateRootCauseAnalysis

Summary
This action updates the results of a previous root cause analysis. It operates on a state mesh, normally
beginning at a (mesh) object that represents the impacted service and updates the notification created by
the previous analysis.
The detailed behaviour of the root-cause analyser is highly configurable and uses a large number of
options supplied by a Scenario Manager configuration dialogue. The following description of the root
cause analyser algorithm in update mode includes references to the various configuration options (in
bold underlined type) at the points at which they affect the flow of processing.
The root cause analyser begins a first stage of discovery processing at the supplied (mesh) object that
has suffered the service impact. It descends recursively through the state mesh, searching for (mesh)
objects whose state has been affected directly or indirectly by underlying network problems. Objects
that satisfy the following search criteria (set in the configuration dialogue) are added to a Non-Normal
Objects List (NNOL):

 Include In Service Objects (default true)

 Include Commissioning Objects (default false)

 Include Out Of Service Objects (default false)

 Include In Maintenance Objects (default false)

 Include Degraded Objects (default true)

 Include Failed Objects (default true)

The recursive search automatically descends through parent-child relationships and uncle-nephew
(relative) relationships below the supplied (mesh) object until the lowest level of the state mesh is
reached at which point it stops. If the Follow Associate Links option is checked, the analysis will
traverse an associative relationship between peer (mesh) objects, before continuing down through the
state mesh.
At the end of the search phase, the analyser has identified the set of non-normal (mesh) objects that may
have directly or indirectly affected the state of the supplied (mesh) object. Once this phase of operation
is complete, the root cause analyser begins a second analytical phase of processing:

 The Non-Normal Objects List (NNOL) entries are processed in turn and each NNOL object is
compared with the list of current (non-marker) notifications. Where an NNOL object is also
found to have an associated notification, the rank of the notification is compared with the
worst notification rank seen so far and if it exceeds this value, it becomes the new worst rank.

 The NNOL entries are again processed in turn and each entry is compared with the list of
current (non-marker) notifications.

o If an NNOLobject is found to have an associated notification:

 If the Only Include Worst Ranked Problem Reports option is unchecked
or the rank of the current notification is equal to the worst rank :

 If the Build Problem Reports List option is checked, the
notification is added to the Problem Reports List

 If the Build Contributory Events List option is checked, the
events in the notification’s contributory events list are added to the
Contributory Events List.

251

 If the Build Master Alarms List option is checked, the associated
master alarm external NMS alarm ID (if present) together with the
notification ID are added to the Master Alarm List

o If an object in the NNOL does not have an associated notification or no contributory
events were added to the Contributory Events List:

 If the Build Affected Objects List option is checked, the NNOL object is
added to the Affected Objects List

 If the Attach Marker Notifications to Affected Objects option is checked,
the NNOL object is added to the Markers List.

 If both the Build Affected Objects List & Build Sympathetic Events List
options are checked, any events attached to the NNOL object are added to
the Sympathetic Events List.

 If the Update Root Cause Notification In WM option is checked:

o The Notification message is updated if required in the Working Memory contexts.

 If the Update Root Cause Notification In Database option is checked:

o Any new events in the Contributory Events List constructed previously are added to
the contributory events list attached to the existing notification in the Notification
database

o If the Build Affected Objects List option is checked, any new entries in the Affected
Objects List constructed previously are added to the affected objects list attached to
the existing notification in the Notification database.

o The message attached to the existing notification in the Notification database is
updated is required

o .If the Attach Marker Notifications to Affected Objects option is checked, new
marker notification objects are created (tied to the notification object) for each new
entry in the Markers List

 If the Deliver Results To Remote Handler option is checked:

o Details of the originating (mesh) object (Base Class, Unique Reference) and updated
notification object (new Message, Notification ID, Notification Type, Notification
Rank and master alarm external NMS event ID – if present) are added to Alarm
Update block

o An entry is added to the Alarm Update block for each entry in the Problem Reports
List (Base Class, Unique Reference, Rank and the external NMS events IDs of each
of the contributory events in the Notification)

o An entry is added to the Alarm Update block for each entry in the Contributory
Events List (the external NMS events ID)

o An entry is added to the Alarm Update block for each entry in the Sympathetic Events
List (the external NMS events ID)

o An entry is added to the Alarm Update block for each entry in the Affected Objects
List (Base Class, Unique Reference)

o A Update Alarm request is passed to the Notification Manager for delivery to all
attached Remote Handlers

o Enrich Contributory Alarms option – not yet supported

o If the Build Master Alarm List option is checked, all entries in the Master Alarms
List are added to the Master Alarms block

252

Scenario Manager Configuration Dialogue

253

Perform Problem Extent Analysis

State Mesh Model
Not applicable.

Fired Rules Viewer Mnemonics
trigPerformProblemExtentAnalysis
tearPerformProblemExtentAnalysis

Summary
This action encapsulates a very flexible problem extent analysis tool whose purpose is to identify and
report those (mesh) objects that are affected by a problem at a lower level in a layered network. It
operates on a state mesh, normally beginning at a (mesh) object that has been previously identified as a
problem source (and therefore already has a primary notification attached). It is particularly useful for
analysing upwardly divergent network models with the purpose of identifying affected objects and
annotating them with marker notifications for the purposes of gathering sympathetic alarms.
The detailed behaviour of the problem extent analyser is highly configurable and uses a number of
options supplied by the Scenario Manager configuration dialogue. The following description of the
problem extent analyser algorithm includes references to the various configuration options (in bold
underlined type) at the points at which they affect the flow of processing.
The problem analyser begins search processing at the supplied problem source (mesh) object, on which
the supplied primary notification also exists. It ascends recursively through the state mesh, beginning
with its immediate parent and/or relative (mesh) objects, search for (mesh) objects whose state has been
affected directly or indirectly by the originating problem. Objects that satisfy the following search
criteria (set in the configuration dialogue) are added to an Affected Objects List (AOL):

 Include Degraded Objects (default true)

 Include Failed Objects (default true)

 Use Parent Object (default true)

 Attach Marker Notification To Parent Object (default true)

 Use Relative Objects (default true)

 Attach Marker Notifications To Relative Objects (default true)

 Attach Marker Notifications To Associate Objects (default true)

The search for affected objects starts at the supplied problem source (mesh) object and ascends
recursively through the parent (if Use Parent Object is selected) and/or relative (mesh) objects (if Use
Relative Objects option is selected).
If the (mesh) object currently being evaluated is not normal (and satisfies the Include Degraded
Objects or Include Failed Objectstest criteria) it is added to the AOL.
If a marker notification (linked to the supplied primary notification) is required (either from Attach
Marker Notification To Parent Object or Attach Marker Notifications To Relative Objects), it is
created and added to the (mesh) object.
If the Attach Marker Notifications To Associate Objects option is chosen, then all associate (mesh)
objects of the supplied (mesh) object are added to the AOL and marker notifications are created and
added to them, again linked to the supplied primary notification.
If state propagation from the current (mesh) object is enabled to its parent (mesh) object, the recursive
analysis continues in this direction until the network extremity is reached.
If state propagation from the current (mesh) object is enabled to its relative (mesh) objects, the recursive
analysis continues in this direction until the network extremity is reached.
At the end of the search phase, the analyser has identified those (mesh) objects that have been affected
by the original problem and the resulting AOL is added to the supplied primary notification.

254

Scenario Manager Configuration Dialogue

The context (working memory) in which
the triggering rule is deployed and where
any new marker notification objects will
be inserted.

An alternative context in which any new
marker notification objects may also be
inserted (if un-used, set as Current
Context).

The supplied problem source (mesh)
object

The primary notification object attached
to the problem source (mesh) object.

Options to include affected objects that
are in the failed and degraded states.

Options to include parent (mesh) objects
and attach marker notification objects to
them.

Options to include relative (mesh)
objects and attach marker notification
objects to them

Option to include associate (mesh)
objects and attach marker notifications
to them.

255

Broadcast Analysis Refresh Request

State Mesh Model
Not applicable.

Fired Rules Viewer Mnemonics
trigBroadcastAnalysisRefreshRequest
tearBroadcastAnalysisRefreshRequest

Summary
This action encapsulates a very flexible tool whose purpose is to identify and deliver an analysis
(refresh) request to those (mesh) objects that may be affected by a problem at a lower level in a layered
network. It operates on a state mesh, normally beginning at a low level (mesh) object that has been
previously identified as a problem source. It is particularly useful for identifying target (service) objects
in higher network layers on which an initial or an updated root cause analysis needs to be performed.
The detailed behaviour of the broadcast tool is highly configurable and uses a number of options
supplied by the Scenario Manager configuration dialogue. The following description of the broadcast
algorithm includes references to the various configuration options (in bold underlined type) at the points
at which they affect the flow of processing.
The broadcast tool begins search processing at the supplied problem source (mesh) object. It ascends
recursively through the state mesh, beginning with its immediate parent and/or relative (mesh) objects,
and searches for target (mesh) objects that may have been affected directly or indirectly by the
originating problem. Objects that satisfy the following search criteria (set in the configuration dialogue)
have their Analysis Refresh Required attribute set to true:

 Target Base Class (required)

 Target Sub Class (optional)

 Include Degraded Objects (default true)

 Include Failed Objects (default true)

 Use Parent Object (default true)

 Use Relative Objects (default true)

The search for affected objects starts at the supplied problem source (mesh) object and ascends
recursively through the parent (if Use Parent Object is selected) and/or relative (mesh) objects (if Use
Relative Objects option is selected).
If the (mesh) object currently being evaluated is not normal (and satisfies the Include Degraded
Objects or Include Failed Objects test criteria) and is of the Target Base Class and optionally the
Target Sub Class, then its Analysis Refresh Required attribute is set to true .
If state propagation from the current (mesh) object is enabled to its parent (mesh) object, the recursive
analysis continues in this direction until the network extremity is reached.
If state propagation from the current (mesh) object is enabled to its relative (mesh) objects, the recursive
analysis continues in this direction until the network extremity is reached.

256

Scenario Manager Configuration Dialogue
The supplied problem source (mesh)
object
The target (mesh) object base class

The (optional) target (mesh) object sub
class (leave empty if all sub classes are
required)

Options to include affected objects that
are in the failed and degraded states.

Option to include parent (mesh) objects.

Option to include relative (mesh)
objects.

Option to record action execution details

in the database.

257

Acknowledge Analysis Refresh Request

State Mesh Model
Not applicable.

Fired Rules Viewer Mnemonics
trigAcknowledgeAnalysisRefreshRequest
tearAcknowledgeAnalysisRefreshRequest

Summary
This action provides a facility to set the Analysis Refresh Required attribute of a target (mesh) object to false. It
is normally used once an initial or updated Root Cause Analysis on the target (mesh) object has been carried out
(usually in response to the Analysis Refresh Required attribute having been previously set to true).

Scenario Manager Configuration Dialogue

The (mesh) object whose Analysis Refresh Required
attribute requires setting to

Option to record action execution details in the database.

258

Ticket Handling
The Trouble Ticketing actions are specific to the HP UCA TeMIP Integration document.
Please refere to this documentation for full explanation and examples..

259

15.2.2.8Measurement Handling

Create Data Object
State Mesh Model

To Be Completed
Fired Rules Viewer Mnemonic
trigCreateDataObject

Summary
To Be Completed

Scenario Manager Configuration Dialogue
To Be Completed

260

Refresh Data Object Raw Data
State Mesh Model

To Be Completed
Fired Rules Viewer Mnemonic
trigRefreshDataObject

Summary
To Be Completed

Scenario Manager Configuration Dialogue
To Be Completed

261

Perform Derived Data Calculation On Data Object
State Mesh Model

To Be Completed
Fired Rules Viewer Mnemonic
trigPerformCalculation

Summary
To Be Completed

Scenario Manager Configuration Dialogue
To Be Completed

262

Report Derived Data Calculation On Data Object Completed
State Mesh Model

To Be Completed
Fired Rules Viewer Mnemonic
trigReportCalculationFinished

Summary
To Be Completed

Scenario Manager Configuration Dialogue
To Be Completed

263

Remove Data Object
State Mesh Model

To Be Completed
Fired Rules Viewer Mnemonic
tearRemoveDataObject

Summary
To Be Completed

Scenario Manager Configuration Dialogue
To Be Completed

264

15.2.2.9Statistics

Refresh Statistics Object Raw Data
State Mesh Model

To Be Completed
Fired Rules Viewer Mnemonic
trigStatisticsRefresh

Summary
To Be Completed

Scenario Manager Configuration Dialogue
To Be Completed

265

Perform Derived Data Calculation On Statistics Object
State Mesh Model

To Be Completed
Fired Rules Viewer Mnemonic
trigStatisticsPerformCalculation

Summary
To Be Completed

Scenario Manager Configuration Dialogue
To Be Completed

266

Report Derived Data Calculation On Statistics Object Completed
State Mesh Model

To Be Completed
Fired Rules Viewer Mnemonic
trigStatisticsCalculationsFinished

Summary
To Be Completed

Scenario Manager Configuration Dialogue
To Be Completed

267

15.2.2.10 User Defined

Notify Objects Affected By Site Failure
State Mesh Model
Not applicable.

Fired Rules Viewer Mnemonic
trigNotObjSiteFailure

Summary
This action is an example of a user action and is used in the DTV example supplied with UCA.
If loop detection is active, the requested action is tested and if a loop is detected the action is aborted.
The action performs a recursive search, starting from the supplied failed Site (mesh) object, identifying
potentially impacted DualReceiver, Receiver and child Site objects. Each located object is added to a list of
impacted objects and a marker notification object is attached (with the ‘originating’ object reference set to the
original failed Site).
The action recursively repeats the search for each child Site object located, thus it is able to follow chains of
Sites.
When the search is completed, the impacted objects list is added to the failed notification record on the failed
Site in the database (identified using the supplied marker notification), causing them to be displayed on the
Notification Viewer GUI under the original Site failure notification report.

Scenario Manager Configuration Dialogue

The context (working memory) in which the triggering rule
is deployed and where the mesh and notification objects are
inserted.

An alternative context in which the mesh and notification
objects may also be inserted (if un-used, set as Current
Context).

The failed Site mesh object.
The notification object attached to the failed Site mesh
object..

Option to record action execution details in the database.

