
HP TeMIP Software

HP Unified Correlation Analyzer

TeMIP Integration Documentation

Edition: 1.3

for the HP UNIX (11.31) Operating System

December 2009

© Copyright 2009 Hewlett-Packard Company

2

Legal Notices

Warranty

Hewlett-Packard makes no warranty of any kind with regard to this manual, including, but not limited
to, the implied warranties of merchantability and fitness for a particular purpose. Hewlett-Packard
shall not be held liable for errors contained herein or direct, indirect, special, incidental or
consequential damages in connection with the furnishing, performance, or use of this material.

A copy of the specific warranty terms applicable to your Hewlett-Packard product can be obtained
from your local Sales and Service Office.

Restricted Rights Legend

Use, duplication or disclosure by the U.S. Government is subject to restrictions as set forth in
subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause in DFARS
252.227-7013.

Hewlett-Packard Company

United States of America

Rights for non-DOD U.S. Government Departments and Agencies are as set forth in FAR 52.227-
19(c)(1,2).

Copyright Notices

©Copyright 2000-2002 Hewlett-Packard Company, all rights reserved.

No part of this document may be copied, reproduced, or translated to another language without the
prior written consent of Hewlett-Packard Company. The information contained in this material is
subject to change without notice.

Trademark Notices

Adobe® and Acrobat® are trademarks of Adobe Systems Incorporated.

HP-UX Release 10.20 and later and HP-UX Release 11.00 and later (in both 32 and 64-bit
configurations) on all HP 9000 computers are Open Group UNIX 95 branded products.

Java™ is a U.S. trademark of Sun Microsystems, Inc.

Microsoft® is a U.S. registered trademark of Microsoft Corporation.

Netscape is a U.S. trademark of Netscape Communications Corporation.

NMOS™ is a trademark of RiverSoft Technologies Limited.

Oracle® is a registered U.S. trademark of Oracle Corporation, Redwood City, California.

Oracle7™ and Oracle7 Server™ are trademarks of Oracle Corporation, Redwood City, California.

PostScript® is a trademark of Adobe Systems Incorporated.

Riversoft™ is a trademark of RiverSoft Technologies Limited.

UNIX® is a registered trademark of The Open Group.

Windows® and Windows NT® are U.S. registered trademarks of Microsoft Corporation.

X/Open® is a registered trademark, and the X device is a trademark of X/Open Company Ltd. in the
UK and other countries.

All other product names are the property of their respective trademark or service mark holders and are
hereby acknowledged.

3

Contents

Contents ..3

Figures...6

Preface...7

Chapter 1 Foreword ..10

Chapter 2 Main features ...11

Chapter 3 Global picture ..12

Chapter 4 Installation ...13

Chapter 5 Models and data-load..14

Chapter 6 TeMIP Collector ...15

6.1 Role ...15

6.1.1 Basic principles..15

6.1.2 Startup and resynchronization ...15

6.1.3 Collection monitoring and retries ...16

6.2 Basic Configuration..16

6.3 Running the TeMIP Collector...16

6.4 Advance TeMIP Collector Configuration....................................17

6.4.1 TeMIP Collector properties file ..17

6.4.2 TeMIP Collector XML configuration file..................................19

6.4.3 Log4j file ..25

6.5 TeMIP Collector Tools ...26

6.5.1 runCollector ...26

6.5.2 stopCollector..26

6.5.3 resyncCollector..27

6.5.4 sourceManager..27

Chapter 7 TeMIP Remote Handler ...28

7.1 Role ...28

7.2 Basic Configuration..28

7.3 Running the TeMIP Remote handler ...28

7.4 Call-outs...29

7.4.1 Raise Master alarm ...29

4

7.4.2 Raise Root Cause Alarm ...29

7.4.3 Update Root Cause Alarm...30

7.4.4 Clear Alarm..30

7.4.5 Update Alarm...30

7.5 Advance TeMIP Remote Handler Configuration30

7.5.1 TeMIP Remote Handler RH generic part property file30

7.5.2 TeMIP Remote Handler generic logging property file32

7.5.3 TeMIP Remote Handler specific property file32

7.5.4 TeMIP Remote Handler specifc Web service configuration file33

7.5.5 TeMIP Remote Handler specific logging property file............33

7.6 UCA Alarm Object Custom fields...34

7.6.1 Remote Handler configuration ...34

7.6.2 UCA Scenario Manager Configuration35

7.6.3 TeMIP Client configuration ..36

Chapter 8 TeMIP Client...37

Chapter 9 TeMIP Service Manager OSS/J Trouble Ticket Support...........38

9.1 Overview..38

9.2 Architecture..38

9.3 UCA Trouble Ticket Actions...40

9.3.1 Create TeMIP Trouble Ticket...40

9.3.2 Close TeMIP Trouble Ticket ..40

9.3.3 Cancel TeMIP Trouble Ticket ..41

9.4 Mapping Template Files...41

9.5 Basic Example ...42

9.5.1 Model...42

9.5.2 Create a TT Associated to a Master Alarm............................43

9.5.3 Clear all alarms and Close associated TT44

Chapter 10 Problem detection example (hello world)................................45

10.1 Description...45

10.2 Play this scenario step by step ..46

10.2.1 Problem Detection example directory layout46

10.2.2 Start UCA ..48

10.2.3 Deploy the Problem Detection value-pack.............................50

10.2.4 Dataload instances into the UCA...51

10.2.5 Starting the engine ..53

10.2.6 Check deployed rules ..58

10.2.7 Load the test MSL ...60

10.2.8 Create the demo Operation Context61

10.2.9 Start the TeMIP-UCA integration processes..........................61

10.2.10 Simulate events ...62

10.2.11 Navigate through correlated alarms.......................................63

5

Chapter 11 Service impact and RCA example..65

11.1 Model ...65

11.2 Transmission problem detection ..66

11.3 Radio problem detection and Service Impact67

11.4 Severity increase ...68

11.5 Final picture ...69

Glossary ..71

6

Figures

Figure 1: interactions between components...12
Figure 2: Basic principles of TeMIP Collector ..15
Figure 3: Update Alarm customized action dialog box ...36
Figure 4: Example of UCA / OSS-J Integration ..39
Figure 5: Trouble Ticket example, Meta Model ..42
Figure 6: Create Trouble Ticket with associated alarms ..43
Figure 7: Close Trouble Ticket ...44
Figure 8: pattern detection: all BTS of a site are down ..45
Figure 9: Desired output in TeMIP alarm handling window..46
Figure 10: ProblemDetection UML model ..47
Figure 11: UCA home page..49
Figure 12: UCA system manager window ..50
Figure 13: UCA data-load window..51
Figure 14: Class/Instance file association ..52
Figure 15: Import csv dialog ...53
Figure 16: UCA status after startup ..54
Figure 17: Updated data-load counters ..55
Figure 18: adding a new demo user ...56
Figure 19: UCA applications startup page..57
Figure 20: UCA's Mesh Viewer window ...58
Figure 21: UCA's Scenario Manager window...59
Figure 22: Scenario manager with the ProblemDetection rules loaded60
Figure 23: Mesh Viewer after the BTS alarms reception..62
Figure 24: Fired Rules Viewer after the BTS alarms reception..63
Figure 25: new SITE alarm created in TeMIP ..63
Figure 26: Alarm navigation example ...64
Figure 27: Service Impact example, Meta Model ...65
Figure 28: Service Impact model, Instantiation ..66
Figure 29: Transmission problem detection ...67
Figure 30: New transmission alarm in TeMIP ..67
Figure 31: Radio problem detection, and service impact up to UMT service...........................68
Figure 32: New Radio Problem and Service Impact alarms in TeMIP68
Figure 33: Severity escalation on Service ..69
Figure 34: Severity escalation in TeMIP...69
Figure 35: Service impact scenario, final picture..69
Figure 36: Service impact scenario, alarms correlated in TeMIP...70

7

Preface

Intended Audience

This document is aimed at the following personnel:

Delivery teams installing and using the TeMIP-UCA integration.

Software Versions

The term UNIX is used as a generic reference to the operating system, unless
otherwise specified.

The software versions referred to in this document are as follows:

TeMIP UNIX Windows Java

6.x HP-UX Itanium (11.31) NT

XP, Vista

Windows server

1.6.x

Typographical Conventions

Courier Font:

 Source code and examples of file contents.

 Commands that you enter on the screen.

 Pathnames

 Keyboard key names

Italic Text:

 Filenames, programs and parameters.

 The names of other documents referenced in this manual.

Bold Text:

 To introduce new terms and to emphasize important words.

Associated Documents

The following documents contain useful reference information:

 HP UCA Advanced Configuration and Troubleshooting Guide

 HP UCA User Guide

 TeMIP-Service Manager OSSJ Trouble Ticket Liaison - User Guide

 TeMIP-Service Manager OSSJ Trouble Ticket Liaison – Installation &
Configuration Guide

8

 TeMIP-Service Manager OSSJ Trouble Ticket Liaison - TeMIP Liaison
Adapter System Integration Guide

 HP Service Manager – Installation Guide

Also, for a full list of TeMIP user documentation, refer to Appendix A of the HP
TeMIP Product Family Introduction.

Support

For any request on this kit, please e-mail to:

TeMIP-Product-Management@hp.com

Terms and Acronyms

Table 1 - List of Terms and Acronyms

UCA Unified Correlation Analyzer: new software for the NGOSS
market, doing topology based alarm correlation and service
impact

OC TeMIP Operation Context
AO TeMIP Alarm Object or

UCA Affected Object
TeMIP
Adapter

The adaptation software between UCA and TeMIP.
Essentially composed of the Collector and Remote Handler
applications (see beyond).

TWS TeMIP Web Service: the north-bound web-service interface to
perform TeMIP calls

Call-out The output of UCA. The call-outs are XML packets
containing structured information. They are handled by the
TeMIP Remote Handler, which map them to TeMIP
directives.

Rule The core of UCA is a JBoss rules engine.
Master
Alarm

A new alarm created by UCA, usually grouping other TeMIP
alarms together. UCA has the ability to group alarms together
by creating a new one.

Contributory
alarm/event

Alarms that contribute to a problem or service impact. They
are the conditions, necessary and sufficient, to trigger the
creation of a new master alarm.

Sympathetic
alarm/event

Side effects of a problem or service impact. The resulting
alarms are correlated to the master but are marked as
“sympathetic” alarms. Often, the sympathetic alarms can
arrive after the problem detection: they are therefore called
“late arriving” sympathetic.

Correlation
Tag

A new custom AO attribute, filled for master alarms created
by UCA. Example values are “Service Impact”, “Problem
Report”, “Root Cause Alarm”.

(Association) Or simply Category for short. It’s a new column added in the

9

Category Alarm Handling Window when the operator navigates from
one alarm to the other. Its value is contextual regarding the
source alarm. Example values are: “Contributory”,
“Sympathetic”, “Master”. The Category field qualifies an
association between alarms and not an alarm. In particular, it
is not an alarm attribute, even though it appears as such in the
client window.

State Mesh The internal network topology representation maintained in
UCA. The mesh objects are loaded in database, and also in
memory to maintain their state, and be visible to the rules
engine.

Mesh object One element of the state mesh.
Notification Logical object used in UCA attached to a mesh object. A

notification holds contributory and sympathetic events and can
be associated to a newly created master alarm.

Instance
Name

A mesh object attribute containing a TeMIP entity
specification, making a correspondence with a TeMIP object.

Unique
Reference

The unique identifier of a state mesh object in UCA.

RCA Root Cause Analysis
SI Service Impact
PR Problem Report
MSL Management Specification Language: the modelling language

for TeMIP
FCL Framework Command Line: the command line language of

TeMIP
AHFM Alarm Handling Functional Module
ACS Alarm Collection Service

10

Chapter 1 Foreword

This document is not the UCA user’s guide nor an installation guide (these are
available separately in the relevant documentation directory), but an overall
description of the current integration between UCA and TeMIP.
It is assumed that you already have a significant knowledge of TeMIP and UCA to
understand the wording (jargon) and general concepts used in this TeMIP integration
description.

Since nothing replaces a simple use case to understand what a product can do, a basic
“Problem Detection” sample scenario is proposed as a “hello world” step-by-step
example, to eventually start with a concrete demonstration and see what UCA does
live.

11

Chapter 2 Main features

UCA, which stands for Unified Correlation Analyzer, is a universal correlation
engine, not specifically dedicated to TeMIP, which can be plugged to any
management system to act as an external analyzer and service impact engine.
However, it is currently tightly integrated with TeMIP to perform topology-based
correlation and service impact. It can be seen as a replacement of TSM (TeMIP
Service Monitor). It has also some problem detection or root cause analysis (*)
abilities.

* We know that these words may have different meanings for various people, so we
use them here in their intuitive sense. They will be defined later in more details, with
examples.

UCA has no real operator user interfaces and can then be seen as a “black-box”
engine. On the other hand, it has a rich development GUI and environment. When
used for TeMIP, the output of the analysis is therefore sent back to TeMIP as new
alarms, alarm enrichment, or the creation of associations between alarms, so that
the results are directly visible in the Alarm Handling window of the TeMIP Client.
For instance, new “service impact” alarms can be created in a dedicated Operation
Context. Thus the number of alarms can be drastically reduced and only “root cause”
or “service affecting” alarms can be displayed, with a drill-down facility to the other
alarms, part of the problem but redundant.

As the AHFM does not yet manage associations between alarms natively, we have
emulated this feature with additional AO attributes maintaining a list of “parents” and
“children” alarms. Furthermore, a dedicated TeMIP client plug-in allows the operator
to navigate through the resulting graphs or trees of alarms.

We don’t reflect yet the calculated mesh states values in TeMIP or in a dedicated GUI
(even though the mesh viewer GUI is available for rules developers).

The UCA integration makes an extensive use of the TeMIP Web Service (TWS)
interface to TeMIP, which is therefore a necessary prerequisite for the integration.

UCA and TeMIP can be located on the same host or distributed. UCA itself can be
made redundant (resilience) for fault tolerance and high availability.

12

Chapter 3 Global picture

The integration between TeMIP and UCA is composed of three software components:
a “Collector”, a “Remote Handler” and a TeMIP Client plug-in. The Collector and
Remote Handler are two Java processes exchanging data between TeMIP and UCA
through web-service interfaces. The Collector and Remote Handler applications are
sometimes called the TeMIP “adapter” for UCA. The TeMIP Client plug-in displays
alarm associations computed by UCA, and allows navigating through associated
alarms (parent-child relationships).

Figure 1: interactions between components

The TeMIP Collector is responsible for collecting alarms coming from some selected
OCs, mapping them to the relevant XML format and forwarding them to UCA.
The TeMIP Remote Handler listens to the output of UCA, in the form of so called
“call-outs” and maps them to TeMIP directives (mainly). The Remote Handler can
also execute user defined scripts to perform any desired user defined actions.

TWS
subscribe

events

call-outs

events

directives

requests

TeMIP host

UCA host

UCA
TeMIP

Remote Handler

TeMIP
Collector TeMIP

13

Chapter 4 Installation

The TeMIP adapter is natively bundled with the UCA kit. HP-UX Itanium is the only
officially supported platform (even though UCA can also run on Windows or Linux).

On HP-UX Itanium, an automated setup procedure is available. On windows and
Linux, some manual configuration steps (editing files) are required.

Two correlation “examples” are present in the kit as sample Value Packs (a set of files
for rules, data-load, MSL and FCL scripts) demonstrating a simple use case. They are
useful to test the correct behaviour of the system but also (and essentially) to serve as
example to see how to write rules, populate the state mesh, and use UCA.

The TeMIP Client plug-in is part of the TeMIP Client V6.1 Level 1 or upper version.

For the TeMIP-UCA integration to work, the TeMIP Web Services Manufacturing
Release V600L01E, or upper, must be installed on the TeMIP side (at least on one
director).

Currently, the Collector and Remote Handler processes must run on the same UCA
host.

The following custom TeMIP Alarm Object attributes are added in the TeMIP
dictionary for UCA:

10051 Parents
10052 Children
10053 Correlation Tag
10054 UCA Notif Key
10061 UCA Custom Field1
10062 UCA Custom Field2
10063 UCA Custom Field3
10064 UCA Custom Field4
10065 UCA Custom Field5
10066 UCA Custom Field6
10067 UCA Custom Field7
10068 UCA Custom Field8
10069 UCA Custom Field9

14

Chapter 5 Models and data-load

There is no real constraint of model alignment between UCA and TeMIP: the two can
work on fairly different, or on the contrary very similar, models.

In particular, no one-to-one mapping between TeMIP entities and UCA mesh objects
is imposed. For instance, TeMIP can manage a typical network model made of
managed objects and network equipment classes, while UCA can exhibit more
abstract service or “domain logic” models, used for correlation and analysis.

UCA’s mesh objects are loaded from files or native SQL commands (please refer to
the UCA user’s guide for more details). During the so-called “data-load” phase, the
neighbourhood of an object (i.e. the relationships with the sibling objects in the mesh)
must be made explicit, and a unique reference name must be given to each object. In
addition, the object can also be given an “alias” or so-called “instance name”. The
TeMIP integration makes use of this mesh object “instance name” attribute to hold a
TeMIP entity specification, and therefore eventually link the UCA mesh object with a
corresponding TeMIP instance. It is the responsibility of the integrator to populate
theses “instance name” fields with the relevant TeMIP information during the UCA
data-load phase. This entity specification value is then used by the Remote Handler
when creating new alarms in TeMIP, to set the Managed Object mandatory attribute
of the alarm. By default, if no “instance name” is given to the UCA mesh object, the
TeMIP director name (“mcc 0“) is used. This default value can be changed by
configuration.

Here is example of a UCA data-load file, where the TeMIP entity specification is
highlighted (the first line describes the file data-load columns format):

#Parent_Ref,Parent_Subclass,Parent_Class,Relative_Ref,Rel
ative_Subclass,Relative_Class,Class_Name,Subclass_Name,In
stance_Name,Unique_Ref,Service_State,Importance,Latitude,
Longitude
Sprint 3 Model,V1.0,Model,ServiceComponent Sprint 3
Model,V1.0,Model,,,ServiceComponent,NetworkElement,Gatewa
y,NetworkElement
.gateway_1,gateway_1_unique_ref,IN_SERVICE,1,0,0

So for instance, if one UCA rule raises an alarm on the “gateway_1_unique_ref”
object, the Managed Object of the resulting alarm will be set to “NetworkElement
.gateway_1”. The Operation Context where to create the alarm is provided in the rule
itself.

For more details on the CSV file format and the data-load phase, please refer to the
UCA user guide.
On real projects, with big topologies and daily updates, UCA and TeMIP can be
populated and synchronized with the help of the Unified Topology Manager tool
(UTM). Please to the product documentation for more details.

15

Chapter 6 TeMIP Collector

6.1 Role

The TeMIP collector subscribes to a list TeMIP Operation Contexts (through the
TeMIP Alarm Collection Server module) and transforms incoming AHFM
configuration events, such as object creations or attributes value changes, into UCA
events formatted in XML. The Subscribe call is made through the TeMIP Web-
Service (TWS) interface. The TeMIP Collector runs on the UCA server hosts and is
monitored (e.g started or stopped automatically) by the UCA server.

6.1.1 Basic principles

The TeMIP Collector is an alarm forwarder between TeMIP and the UCA server. It is
bound on one side on the TeMIP ACS (Alarm Collection Server) via the TeMIP Web
Services (TWS); and on the other side on the UCA server by using the Generic
Collector API. It Processes TeMIP alarms from TeMIP to give them a format suitable
for being processed by the UCA server as UCA events.

Figure 2: Basic principles of TeMIP Collector

6.1.2 Startup and resynchronization

When the TeMIP Collector starts, it performs a full re-synchronization before
listening for normal incoming live event flow.

TeMIP Server

ACS

AH FM

TWS

TeMIP Collector

TeMIP

UCA Server

UCA
Engine

Alarm Processing

TeMIP collector

16

The resynchronization consists in collecting all pending alarms from the configured
TeMIP Operation contexts (all alarms that are not terminated, by using the summarize
results of the Subscribe ACS directive) and sending them between two specific
marker events (begin of synchronization/End of synchronization) to the UCA server.
On receipt of the resynchronization flow the UCA server reprocesses all the received
events using a time contraction algorithm which ensures that the UCA server internal
data (mesh and database) are in synch with the alarms states contained in the TeMIP
Operation Contexts.
During this phase, the UCA server resynchronizes its event database with the TeMIP
Operation Context alarm database. The associate rules are executed as if these alarm
state changes (new alarm, state changes, termination) were received in a normal
collection flow. The UCA server ensures that the rules execution do not lead to alarm
duplication in TeMIP.

When the re-synchronization phase is over, the collector starts reporting the live
events coming from normal (Getevent) ACS alarm collection.

6.1.3 Collection monitoring and retries

The TeMIP Collector is based on the TeMIP Web Service Client layer. This layer
provides facilities for monitoring and - if required - re-establishing a collection to
TeMIP when this collection has been interrupted
This is typically the case when the TEMIP application is stopped and restarted, but
also if only parts of the TeMIP application are down for maintenance or for temporary
unavailability (TWS, ACS, Alarm Handling).
In such case some retries are performed until the full collection chain is operational
again. The collection is re-established and a full re-synchronization is performed
again (as in the case of a TeMIP collector start).

6.2 Basic Configuration

The TeMIP Collector configuration is done through the UCA setup script that must be
run after the installation (Refer to the “UCA installation guide” for that).
Another section “6.4 Advance TeMIP Collector Configuration” gives full details on
all configurations properties.

6.3 Running the TeMIP Collector

In a ‘normal’ production environment, the UCA server is capable of starting
automatically the TeMIP collector and Remotehandler processes thanks to a set of
rules called ‘Resilience rules’. These rules also insure the event resynchronization and
are performed automatically at UCA server startup.

17

However, in some specific cases (troubleshooting, development) one can have the
need of starting the collector and remote handler manually.
This can be achieved by setting the following uca property (uca.properties file) as:

system.mode=standalone

and by using the following command to start the collector:

$UCA_HOME/collector_TeMIP/bin/runCollector.sh

6.4 Advance TeMIP Collector Configuration

This section gives the full details of all configurable parameters of the TeMIP
collector. These parameters are located in two different configuration files. One is a
properties file that drives the TEMIP collector behavior and its integration within the
UCA system, the second is an XML configuration file dedicated to the TeMIP
collection configuration.
The TeMIP Collector is controlled by 3 configuration files.

6.4.1 TeMIP Collector properties file

The file
$UCA_HOME/collector_TeMIP/configuration/temipcollector.properties

(which is a symbolic link to a file located in the /var/opt/uca directory) contains the
customizable variables driving the UCA event collector for TeMIP and specifically its
connection with the UCA server.

All the properties defined in this file have default values set for a TeMIP collector
running in a ‘standard’ configuration (i.e the remote handler is running on the same
host than the UCA server, standard communication ports used).

Here is the detailed list of supported properties driving the connection to UCA server:

date.timezone The timezone in which the StateWise systems
operate.
Default setting : GMT

date.format The date/time format expected by the StateWise
DataCollector on both Server A & B.
Default setting : yyyy-MM-dd HH:mm:ss

genericcollector.hostname Should be set to the DNS name or IP address of
the host on which the GenericCollector or its
derivative is intended to run.
Default setting : localhost

managementservice.rmiport The RMI port number used by the UCA server
Management service.
Note: this should match the setting of the
remoteHandler_TeMIP properties on each UCA
server.

18

Default setting : 18083
managementservice.name The RMI name of the Management service.

Note: this should match the setting of the
remoteHandler_TeMIP properties on each UCA
server.
Default setting : Management_Service

aserver.hostname The DNS Name or IP Address of the UCA A
server platform.
Default setting : localhost

aserver.ipport The IP Port number used by the UCA A
DataCollector
Default setting : 6666

bserver.hostname DNS Name or IP Address of the UCA B server
platform.
A value of ‘none’ means no server B present.
Default setting : none

bserver.ipport IP Port number used by the UCA B
DataCollector
Default setting : 6666

heartbeat.period Number of seconds between two heartbeat
messages to UCA servers.
Default setting : 10

History.flushdivider How many heart beats elapse between flushes of
the notification history.
Default setting: 0

socket.connectiontimeout UCA DataCollector input socket timeout in
milliseconds.
Default setting : 250

autostart.rmiregistry Flag controlling the rmiregistry auto-start.
Default setting : true

webservice.username The username for the UCA webservice
endpoints.
Default setting : system

webservice.password The password for the UCA webservice
endpoints.
Default setting : system

datacollection.webservice The name of the data collector's webservice on
each peer.
Default setting : datacollector/service

webservice.port The port number of the data collectors
webservice on each peer
Default setting : 18080

buffer.size The number of events that can be buffered
waiting to send to StateWise server sockets.
Default setting : 1000

throttle.size The number of events that can be buffered
before the generic collector starts
throttling input.
Default setting : 100

19

throttle.sleep How long the generic collector will throttle
input for in milliseconds.
Default setting: 10

secondary.resync.delay Secondary resync delay, when sending a
CYCLE_START there is the possibility of
it racing a secondary resync start message. This
property determines, in seconds, how long
sendResyncCycleStart method waits for a
secondary resync start to come in after sending a
CYCLE_START.
Default setting: 6

list of supported properties driving the TeMIP specific features.

Collector_TeMIP.alarmTerm
inationPolicy

Flag controlling the event termination policy.
 A value of ‘ClearAndTerminate’ means that a

termination event will be sent to the UCA
server on both Clear Alarms and Terminated
Alarms.

 A Value of ‘TerminateOnly’ means that the
terminate event will be forwarded only on
receipt of terminated Alarm.

Default Value: ClearAndTerminated
uca.userDefAttr.notificat
ionKey

Alarm Custom attribute that will hold the UCA
notification key.
Default Setting: UCA_notif_key

6.4.2 TeMIP Collector XML configuration file

The file
$UCA_HOME/collector_TeMIP/configuration/TeMIP_configuration.xml

contains the customizable variables driving the Web service Client configuration for
the connection to TeMIP. This file holds two different sections:

 The TeMIP Director Information
 The TeMIP Collection Information

6.4.2.1 TeMIP Director Information

<Authentication>
<UserName>user</UserName>
<Password></Password>

</Authentication>
<Axis>

<RepositoryPath>conf/repository</RepositoryPath>
<XmlPath>conf/axis2.xml</XmlPath>

</Axis>
<DirectorConfiguration>

<MachineName>supra.fra.hp.com</MachineName>
<TeMIPDirectorEntity>.temip.FM2_temip</TeMIPDire

20

ctorEntity>
<TWSServerPort>7180</TWSServerPort>

</DirectorConfiguration>
<CallParameters>

<BulkSize>150</BulkSize>
<CallMaxDuration>5000</CallMaxDuration>
<CallTimeOut>600000</CallTimeOut>

</CallParameters>
<EntityFiltering>

<ToUpper>false</ToUpper>
<ToLower>false</ToLower>
<Trim>true</Trim>
<FilterDot>true</FilterDot>
<FilterDoubleQuote>true</FilterDoubleQuote>

</EntityFiltering>

<Authentication/> Defines the authentication
parameters to connect to the TeMIP
Web Service North Bound Interface.
Refer to the TWS User
Documentation for authentication
policies.

<Axis/> Internal parameter, do not change
it

<DirectorConfiguration/> Defines the TeMIP Director
information required to access the
Web Service North Bound Interface

<CallParameters/> Defines the parameters used for
each TeMIP Call.

<EntityFiltering/> Defines the way TeMIP instances
name will be filtered on the whole
application. For instance,
depending on the follwing
parameter, a TeMIP entity define
in TeMIP as ‘.myinstance’ can be
used in UCA as ‘MYINSTANCE’.

Authentication

<UserName/> User used for all TeMIP calls

<Password/> To ease the usage of the
authentication, one basic security
implementation is provided with
the PWCallback class (See Note
below).
If you choose the “no Security”
mode or if you customize the
“OutflowSecurity” with a specific
class (using a tier authentication
tool for instance), this parameter
is not required.
Optional parameter.

Note

For authentication policies, refer to the TWS User Documentation and also the
Security configuration file located at:

$UCA_HOME\collector_TeMIP\configuration\axis2.xml

21

Example of configuration in Low Security Mode:

<module ref="rampart" />

<parameter name="OutflowSecurity">
<action>

<items>UsernameToken Timestamp</items>
<passwordCallbackClass>com.hp.temip.temip_ws.common.p

wcallback.PWCallback</passwordCallbackClass>
<passwordType>PasswordText</passwordType>

</action>
</parameter>

The com.hp.temip.temip_ws.common.pwcallback.PWCallback class is a
minimal security implementation using the User/Password parameters given in the
TeMIP_configuration.xml file. Where

 The Username tag defines the UNIX user name

 The Password tag is the Unix password for this user.

One can customize or implement differently depending on its specific security
constraints. In this case, it is not mandatory to specify the password in the
configuration file.

Axis2

<RepositoryPath/> Internal parameter, do not change
it

<XmlPath/> Internal parameter, do not change
it

DirectorConfiguration

<MachineName/> The TeMIP director IP address or
name.
Example:
16.133.155.256 or
Machine.fra.hp.com

<TeMIPDirectorEntity/> The name of the TeMIP Director
Example:
.temip.DIRECTOR1_director

<TWSServerPort/> The port configured for the TeMIP
Web Server North Interface.
Example: 7180

Note

For authentication policies, refer to the TWS User Documentation and This next
section is related to the configuration of the TeMIP director that hosts the Web
Services server.

The MachineName represents the TeMIP director IP address or name.

Example: 16.133.155.256 or Machine.fra.hp.com

The TeMIPDirectorEntity is the name of the TeMIP entity on that director

Example: .temip.ibis_temip

22

Note: the TeMIP entity name can be obtained by issuing the following command with
an FCL_PM : “SHOW temip * “

The TWSServerPort is The port configured for the TeMIP Web Server Interface
(default is 7180).

Note that even if your TeMIP platform is distributed and has several directors, only
one TWS access point may be defined. After this point the standard TeMIP call
dispatching will be used.

CallParameters

<BulkSize/> Passed to the Web server during a
TeMIP call.
Defines the maximum size of TeMIP
Call reply packet during Web
Service communication. Refer to
TWS Documentation for more
information.
Example: 20

<CallMaxDuration/> Passed to the Web server during a
TeMIP call.
It is the maximum time in
millisecond before sending the
bulk reply to the client, even if
the bulk is not yet to its
“BulkSize”.
Example: 5000

<CallTimeOut/> Passed to the Web server during a
TeMIP call.
It is the time after one inactive
call is removed from the server.
Example: 600000

EntityFiltering

<ToUpper/> Transform the TeMIP entity name to
Upper Case in UCA.

<ToLower/> Transform the TeMIP entity name to
Lower Case in UCA.

<Trim/> Trim the TeMIP entity name in UCA.

<FilterDot/> Remove all dot ‘.’ occurrence in
the TeMIP entity name while
transferring information to UCA.

<FilterDoubleQuote/> Remove all Double Quote ‘”’
occurrence in the TeMIP entity
name while transferring
information to UCA.

6.4.2.2 TeMIP Collection information

<OperationContexts>
<OperationContext>temip_op</OperationContext>

</OperationContexts>
<CustomAttributes>

23

<CustomAttribute>
<Attribute>Custom Field1</Attribute>
<Datatype>XmlString</Datatype>

</CustomAttribute>
<CustomAttribute>

<Attribute>Parents</Attribute>
<Datatype>XmlString</Datatype>

</CustomAttribute>

</CustomAttributes>
<QueueSize>100</QueueSize>
<PassingClasses>

<ClassHierarchy>
<Class>BOX</Class>

</ClassHierarchy>

</PassingClasses>
<DiscriminatorConstruct>

<BlockingSubFilters>
<BlockingSubFilter>

<FilterItem>
<attribute>Perceived
Severity</attribute>
<operator>equality</operator>
<value>Indeterminate</value>

</FilterItem>
</BlockingSubFilter>

</BlockingSubFilters>
<PassingSubFilters>

<PassingSubFilter>
<FilterItem>

<attribute>Additional Text</attribute>
<operator>present</operator>
<value></value>

</FilterItem>
</PassingSubFilter>

</PassingSubFilters>

</DiscriminatorConstruct>

<OperationContexts/> List of Operation Context
<OperationContext/> subscribed in
the Alarm Collection

<CustomAttributes/> List of Customized Attributes
that need to be decoded during
Alarm reception

<QueueSize/> Internal parameter, for a Message
Queue.
Example: 100

<PassingClasses/> Optional parameter.
List of <ClassHierarchy/>
representing the entities that
are effectively
created/transferred to UCA.
Internally, this parameter
defines a piece of Discriminator
Construct applied to Managed
Object attribute.
If not present, all entities and
associated alarms are transferred
to UCA.

<DiscriminatorConstruct/> Optional parameter
Defines the Discriminator
Construct (Filter) parameter
applied to all alarms coming
through the TeMIP Service Console
Collection.

24

If not present, all alarms are
transferred to UCA.

Linked with the <PassingClasses/>
tag.

For additional information, refer
to TeMIP Filtering Guide.

OperationContexts

<OperationContext/> An Operation Context name
Example: demo_oper

CustomAttributes

<CustomAttribute/> A Custom Attribute that needs to
be decoded and transferred to UCA
during Alarm reception.

CustomAttribute

<Attribute/> The Attribute Name as described
in the TeMIP metadata (TeMIP
Dictionary Presentation name).

<Datatype/> Datatype of the Attribute.
Supported Datatypes:
“XmlDecimal", "XmlString",
"XmlBoolean", "EntitySpec",
"EntitySet", "BinAbsTime"

PassingClasses

<ClassHierarchy/> Sequence of <Class/> representing
a path to a TeMIP class or
subclass.

ClassHierarchy

<Class/> The name of the TeMIP class

DiscriminatorConstruct

<BlockingSubFilters/> Optional parameter
List of <BlockingSubFilter/>.
Alarms matching the criterias are
not forwarded to UCA.

<PassingSubFilters/> Optional parameter
List of < PassingSubFilters />.
Only alarms matching the
criterias are forwarded to UCA.

25

BlockingSubFilters

<BlockingSubFilter/> List of <FilterItem/>

BlockingSubFilter

<FilterItem/> Defines the minimal information
to specify a TeMIP filter

FilterItem
<attribute/> The TeMIP Attributes that is

subject to filtering as described
in the TeMIP metadata (TeMIP
Dictionary Presentation name).
Example: ‘Perceived Severity’

<operator/> The operator used to evaluate
Should be part of the list:
"initialstring", "finalstring",
"anystring", "present",
"equality", "greaterOrEqual",
"lessorEqual", "match" or
"matchsyno"

<value/> The value evaluated with the
operator. Depends on the datatype
of the attribute.
Example: ‘Indeterminate’

PassingSubFilters

<PassingSubFilter/> List of <FilterItem/>

PassingSubFilter

<FilterItem/> Defines the minimal information
to specify a TeMIP filter

6.4.3 Log4j file

The file :
$UCA_HOME/collector_TeMIP/configuration/log4j.properties
is the standard Log4j configuration file for the TeMIP collector.
The syntax for log4j configuration is not given here, but can easily been found on the
Internet.

26

6.5 TeMIP Collector Tools

This is a set of tools for TeMIPCollector administration purpose. These tools are used
to start/stop the collector or make some dynamic configuration such as adding a new
collection source (Operation Context) or making a re-synchronization of all active
sources.

All these tools are based on JMX communication and as such need a JMX port to be
specified. This port is the JMX port used by the TeMIPCollector which is by default
9999 but can be changed by positioning the UCA_COLLECTOR_JMX_PORT
environment variable to another value before starting the TeMIPCollector
(runCollector command).
All other tools must use the same value for a correct behavior.

All the TeMIP Collector tools are located under the
$UCA_HOME/collector_TeMIP/bin directory.

All the TeMIPCollector commands require the UCA_HOME environment
variable to be defined on both Unix and Windows.

6.5.1 runCollector

This is the command for starting the TeMIP collector.

Usage :

On Unix :
runCollector.sh

On Windows:
runCollector.bat

Description:
Start the TeMIP Collector.

6.5.2 stopCollector

This is the command used to stop the TeMIP Collector.

Usage :

On Unix :
stopCollector.sh

On Windows:
stopCollector.bat

Description:
Stop properly the TeMIP Collector. A stop request is sent to the TeMIP Collector

via a JMX bean request. The Collector stops the Collection by cancelling the pending
TeMIP Calls. This allows to properly releasing the TeMIP resources allocated by the

27

TeMIP Alarm collection chain. The TeMIP Collector process exits when all
collections are cancelled.

6.5.3 resyncCollector

This is the Command used to resynchronize the UCA server with the collection
sources.

Usage :

On Unix :
resyncCollector.sh

On Windows:
resyncCollector.bat

Description:
By using this command, the TeMIPCollector fully re-initializes its collection

sources. On the TeMIP side this means the collection is restarted (including the
summarize operation). On the UCA server side, all the summarized alarms are sent
back as ‘resync’ event, forcing the UCA server to make a full resynchronization.

6.5.4 sourceManager

This is the command used to dynamically add/remove a new TeMIP source
(Operation Context) as collection source.

Usage :

On Unix :
sourceManager.sh -add|-remove source_name

On Windows:
sourceManager.bat -add|-remove source_name

Description:
This command allows adding or removing dynamically a TeMIP operation

Context to the set of monitored Operation Context. When a new Operation Context is
successfully added, the standard summarize operation is performed leading to a re-
synchronization of the summarized alarms on the UCA server side.

Options:
-add : to add monitoring of an additional operation context
-remove : to remove monitoring of an Operation context.
Source_name : operation context name.

Warning: invoking this command doesn’t update the Operation Context list in the
TeMIPCollector configuration file.

28

Chapter 7 TeMIP Remote Handler

7.1 Role

The TeMIP Remote Handler listens to call-outs from the UCA server and maps them
to TeMIP directives, for example for creating new high-level alarms (i.e. “master”
alarms) or grouping alarms together (association).

7.2 Basic Configuration

As for the Collector, a default configuration is made by the UCA setup.sh script run
after then installation.

This configuration is sufficient most of the times. However, if a finer configuration is
needed, the TeMIP Remote Handler is controlled by 5 configuration files:

RH generic part property file:
$UCA_HOME/jars/configuration/remotehandler
.properties

This is the configuration file that controls
the connection to the UCA server.

RH generic part logging property file:
$UCA_HOME/jars/configuration/remotehandler
.logging.properties

This is the logging configuration file for the
generic (i.e common to all remote handlers)
part of the TeMIP Remote Handler.

RH TeMIP specific property file:
$UCA_HOME/remoteHandler_TeMIP/configuratio
n/temipremotehandler.properties

This is the configuration file that controls
all actions towards TeMIP.

RH TeMIP specific logging property file
$UCA_HOME/remoteHandler_TeMIP/configuratio
n/log4j.properties

This is the logging configuration file for the
TeMIP specific part of the Remote handler

RH TeMIP specifc Web service configuration file:
$UCA_HOME/remoteHandler_TeMIP/configuratio
n/TeMIP_configuration.xml

This is the configuration file that configures
the Web service Client connection to
TeMIP

Another section “7.5 Advance TeMIP Remote Handler Configuration” gives full
details on all configurations properties.

7.3 Running the TeMIP Remote handler

In a ‘normal’ production environment, the UCA server is capable of starting
automatically the TeMIP collector and Remotehandler processes thanks to the
‘Resilience’ set of rules.
However, in some specific cases (troubleshooting, development) one can need to start
the collector and remote handler manually.
This can be achieved by setting the following uca property (uca.properties file) as:

system.mode=standalone

29

and by using the following command to start the remoteHandler:

$UCA_HOME/collector_TeMIP/bin/runRemoteHandlerTeMIP.sh

When started manually, it is strongly recommended to start the Remote Handler
before the Collector in order to guarantee that no actions will be missed during the
resynchronization phase.

7.4 Call-outs

The purpose of a UCA Remote Handler is to listen to call-outs and map them to
TeMIP directives. They are essentially Alarm Object directives, to create new alarms,
update alarms, or demote alarms below previously created ones.

This section describes what the TeMIP remote handler does for the main standard
UCA call-outs. For the description of the call-outs themselves, please refer the UCA
Remote Handler API documentation.

7.4.1 Raise Master alarm

This call-out results in the creation of a new Alarm in TeMIP. The Correlation Tag
attribute is set to the UCA notification type value (retrieved with a request to UCA as
not present in the call-out).
The contributory events and sympathetic events are associated to the newly created
alarm. Their “category” fields in the Children AO attribute are marked respectively as
contributory or the sympathetic.

This is the principal means of correlating alarms together. A new “complex event” is
created to group a bunch of contributory events together.

7.4.2 Raise Root Cause Alarm

This call-out results in the creation of a new Alarm in TeMIP. The Correlation Tag
attribute is set to the UCA notification type value given in the action dialog (retrieved
with a request to UCA as not present in the call-out).
The contributory events, sympathetic events, and master alarms are associated to the
newly created alarm. Their “category” fields in the Children AO attribute are marked
respectively.
The Problem Report list is discarded.

This call-out is the result of the “Perform Root Cause Analysis” UCA action, which is
a high value-added algorithm for doing topology based analysis.

30

7.4.3 Update Root Cause Alarm

The content of this call-out is similar to the “Raise Root Cause” alarm one.
No new alarm is created when receiving this call-out. Only new associated alarms are
added to the previously created master alarm (with a previous “raise root cause alarm”
call-out).

7.4.4 Clear Alarm

This call-out results in a Clear_Alarm directive on the given Alarm Id.

7.4.5 Update Alarm

These call-out results in one or several Set directives on the given Alarm Object
attributes.
Even though TeMIP supports only an “overwrite” policy for the Set directive (except
for the Operator Note attribute), the Remote Handler emulates the “prefix” or
“append” policies for a finer control of alarm modifications.

AO User-defined attributes can also be populated to enrich the alarm with UCA
information (please refer to the AO Custom Fields chapter).

7.5 Advance TeMIP Remote Handler
Configuration

This section gives the full details of all configurable parameters of the TeMIP Remote
Handler. These parameters are located in two different configuration files. One is a
properties file that drives the TEMIP remote Handler behavior and its integration
within the UCA system, the second is an XML configuration file dedicated to the
TeMIP Web Service configuration.

7.5.1 TeMIP Remote Handler RH generic part property
file

The file:
$UCA_HOME/jars/configuration/remotehandler.properties is the
configuration file that handles the configuration of the connection to the UCA server.
All the properties defined in this file have default values set for a remote handler
running in a ‘standard’ configuration (i.e the remote handler is running on the same
host than the UCA server, standard communication ports used).

31

Here is the detailed list of supported properties:

verbose.reports Control flag for verbose reporting (true|false).
Default setting : true

eventmanager.webservice The full URI of the EventManager web
service, including the host, port and name of
the EventManager web service end-point.
Default value:
http://localhost:18080/eventmanager/service

notificationmanager.webservi
ce

The full URI of the NotificationManager web
service, including the host, port and name of
the NotificationManager web service end-
point.
Default value:
http://localhost:18080/notificationmanager/ser
vice

notificationuiserver.webserv
ice

The full URI of the NotificationUIServer web
service, including the host, port and name of
the NotificationUIServer web service end-
point.
Default value:
http://localhost:18080/notificationuiserver/ser
vice

rulesserver.webservice The full URI of the RulesServer web service,
including the host, port and name of the
RulesServer web service end-point.
Default value:
http://localhost:18080/rulesserver/service

datacollector.webservice The full URI of the DataCollection web
service, including the host, port and name of
the DataCollection web service end-point.
Default value:
http://localhost:18080/datacollector/service

scripts.directory Path to scripts directory on the host the
remote handler is running on.
Default value: scripts.

management.rmiport The HeartbeatResponse RMI registry port
(usually 18083 but may be changed if
conflicts occur on platform running the
generic collector engine)
Note: this is only used for resilient StateWise
configurations
Default value: 18083

management.service The HeartbeatResponse RMI service name
provided by the generic collector engine.
Note: this is only used for resilient StateWise
configurations
Default value: Management_Service

buffer.size The RMI call buffer size
Default value: 10

throttle.size The number of rmi commands that can be

32

buffered before the remote handler starts
Default values: 3

Throttle.sleep How long the remote handler will throttle rmi
commands in milliseconds
Default value 10

All other properties within this file should not be changed.

7.5.2 TeMIP Remote Handler generic logging property
file

The file :
$UCA_HOME/jars/configuration/remotehandler.logging.properties

is the standard Log4j configuration file for the TeMIP generic part of the TeMIP
remoteHandler.

7.5.3 TeMIP Remote Handler specific property file

The file
$UCA_HOME/remoteHandler_TeMIP/configuration/temipremoteha
ndler.properties (which is a symbolic link to a file in the /var/opt/uca
directory) contains the customizable variables driving the TeMIP Remote Handler.

All properties in this file are commented out, meaning that the system default values
are used. To change one of these properties, remove the comment sign at the
beginning of the lign and set the new value.

List of supported properties driving the TeMIP configuration
temip.default_oc Operation Context where new alarms are

created.
The Operation context is usually specified in
the ‘raise alarm’ action but if it is missing this
value will be used.
Default value: oc

temip.default_mo Default manage object of newly created
alarms.
The Managed Object is usually specified in
loaded topology (Instance_Name attribute of
a mesh object) but if it is missing this value
will be used.
Default value: mcc 0

List of supported properties driving the configuration for Trouble Ticket directives.
temip.tt.user User name given in Trouble Ticket directives.

Default value: temip.
temip.tt.server.name TT Server name

Global class TeMIP TT_SERVER of the
JSR91_FM and represents the Trouble Ticket

33

Server
Default value:TT_SERVER SM

temip.tt.template.create OSS-J Mapping Template file for the Create
TT operation in Trouble Ticket.
Default value:
createTroubleTicketByValueRequest.xml

temip.tt.template.associate OSS-J Mapping Template file for the Create
TT operation in Trouble Ticket.
Default value:
setTroubleTicketByValueRequest.xml

temip.tt.template.dissociate OSS-J Mapping Template file for the Create
TT operation in Trouble Ticket.
Default value:
trySetTroubleTicketsByValuesRequest.xml

temip.tt.template.close OSS-J Mapping Template file for the Create
TT operation in Trouble Ticket.
Default value:
closeTroubleTicketByKeyRequest.xml

temip.tt.template.cancel OSS-J Mapping Template file for the Create
TT operation in Trouble Ticket.
Default value:
cancelTroubleTicketByKeyRequest.xml

7.5.4 TeMIP Remote Handler specifc Web service
configuration file

The file
$UCA_HOME/remoteHandler_TeMIP/configuration/TeMIP_configuration.xml

addresses the TeMIP Web Service Client configuration points. This file holds mainly
the TeMIP Director Information required by the TeMIP Remote Handler.

This TeMIP web service client configuration file is usually the same than the one used
for the TeMIP Collector. You can refer to the dedicated Collector configuration
section for more details.
Note that the Collection section is not required within this files because very specific
to the collector.

7.5.5 TeMIP Remote Handler specific logging property
file

The file :
$UCA_HOME/remoteHandler_TeMIP/configuration/log4j.properties

is the standard Log4j configuration file for the TeMIP specific part of the TeMIP
remoteHandler.

34

7.6 UCA Alarm Object Custom fields

Nine TeMIP Alarm Object Fields have been reserved in the TeMIP dictionary for
UCA users. They all have string values that can be set from rules through the “Update
Alarm” action. Albeit the TeMIP MSL presentation name for these attribute is “UCA
Custom Field X” in the TeMIP dictionary, the visible field name in the “Update
Alarm” action dialog box can be easily be changed with configuration to a more
meaningful name (e.g “temperature” or whatever) . The TeMIP Remote Handler is
then responsible for mapping the UCA meaningful name to the corresponding generic
TeMIP name.

The registered AO custom fields are the following:

10061 UCA Custom Field1
10062 UCA Custom Field2
10063 UCA Custom Field3
10064 UCA Custom Field4
10065 UCA Custom Field5
10066 UCA Custom Field6
10067 UCA Custom Field7
10068 UCA Custom Field8
10069 UCA Custom Field9

You can perfectly keep these default names in the actions. If you prefer using more
meaningful names in your UCA rules, two configuration steps are necessary:
customize the “Update Alarm” action dialog box, and customize the TeMIP Remote
Handler.

7.6.1 Remote Handler configuration

The file TeMIP remote handler configuration file:
$UCA_HOME/statewise/remoteHandler_TeMIP/configuration/temipremotehandler.p
roperties contains the following properties to define the AO custom fields aliases
(they are all commented by default):

temip.ao.ucacustomfield1.alias :
temip.ao.ucacustomfield2.alias:
temip.ao.ucacustomfield3.alias :
temip.ao.ucacustomfield4.alias :
temip.ao.ucacustomfield5.alias :
temip.ao.ucacustomfield6.alias :
temip.ao.ucacustomfield7.alias :
temip.ao.ucacustomfield8.alias :
temip.ao.ucacustomfield9.alias :

If you wish to give a friendly name to one of the free UCA custom AO field, provide
its name to the corresponding property value. For example:

35

temip.ao.ucacustomfield1.alias : myUcaStatus
temip.ao.ucacustomfield1.alias : myUcaText

This is sufficient for the TeMIP Remote Handler to know how to map the incoming
UCA event change notification (i.e “callout” result of the Update Alarm action) to the
corresponding TeMIP AO attribute.

7.6.2 UCA Scenario Manager Configuration

To make the meaningful name visible in the UpdateAlarm dialog box you need to edit
the “gui.fieldname” property in the file:
$UCA_HOME/properties/actiondialogkey.properties. The value for this property is
comma separated list of event field name. Just add your new user friendly name there.
For instance:

gui.fieldname : combobox,Event Field
Name,true,eventRank,systemClass,systemInstance,eventId,dataType,originatingTime,
\
updateState,moClass,moInstance,severity,alarmType,probableCause,specificProblems
,\
additionalText,additionalTextTag1,additionalTextTag2,additionalTextTag3,\
additionalTextTag4,additionalTextTag5,additionalTextTag6,\
primoEvento,ultimoEvento,nomoApparato,rete,descrAllarme,journal,campo2,\
myUcaStatus, myUcaText

36

Figure 3: Update Alarm customized action dialog box

7.6.3 TeMIP Client configuration

Finally, it is also easy to customize the TeMIP Client Alarm Handling column names
to reflect these new friendly names for the operator. Please refer to the TeMIP client
documentation.

37

Chapter 8 TeMIP Client

The TeMIP Client plug-in is part of the TeMIP Client V6.1 Level 1 kit, or upper
version. Pease refer to the TeMIP Client UCA User’s Guide for a detailed
documentation.

38

Chapter 9 TeMIP Service Manager
OSS/J Trouble Ticket Support

9.1 Overview

The HP UCA / TeMIP-Service Manager OSS-J Trouble Ticket Liaison provides an
end-to-end integrated service management solution in the trouble ticket domain based
on a OSS/J JSR91 interface.

OSS/J JSR91 defines and standardizes a set of XML and Java APIs that facilitate the
integration of OSS products with each other and makes it almost seamless. The OSS
Trouble Ticket API is focused on defining a standard API that facilitates the data
exchange among TT and non-TT components within the context of incident
management.

One or more alarm objects in TeMIP can be associated with one or more trouble
tickets through a case object, while trouble tickets can be mapped into incidents in
HPSM. The TeMIP UCA-SM OSS/J Liaison manages these relationships, using the
OSS/J JSR91 specification to communicate with these applications. It is based on 2
OSS/J Adapters:

The HP OSS/J Trouble Ticket Server Adapter for Service Manager
The HP OSS/J Trouble Ticket Client Adapter for TeMIP and UCA

Unified Correlation Analyzer can use the OSS/J JSR91 interface to perform Trouble
Ticket Operations like:
 Create Trouble Ticket
 Close Trouble Ticket
 Cancel Trouble Ticket

New UCA actions are available in the scenario designer user interface to integrate this
trouble ticket rules in correlation scenarios.

9.2 Architecture

39

Figure 4: Example of UCA / OSS-J Integration

HP TeMP is the Network Management Platform
HP UCA is the Unified Correlation Analyzer product in charge of the topology based
correlation. It contains 2 parts: Collector in charge of collecting events from TeMIP
and sending them to UCA correlation Engine, and the Remote Handler in charge of
executing actions defined in the correlation rules.
HP JSR91 FM is the TeMIP Function Module, used to interface to TeMIP Server.
(entity TT_SERVER)
HP OSS-J JSR91 Client Adapter is an adapter built to processes the JSR91 requests
and TT Server notifications.
HP OSS-J Server Adapters is the JSR91 Adapter connection to the Application
server where TT Server is deployed
HP Service Manager is the TT Server Manager that manages incidents.
HP TeMIP Client OSS-J Plug-in is the JSR91 Plug-in provides the user interface to
the trouble ticket management operations. It interfaces between TeMIP Client and the
JSR91 adapter through a socket communication, constructs a well-formed JSR91
request and sends it to the JSR91 adapter.

Note: OSS/J only supports today HP Service Manager as TT server.

40

UCA is only interface to the JSR91_FM directly to execute TT directives via the
TeMIP Web Service interface to the TeMIP Entity TT_SERVER (global class of the
JSR91_FM and represents the Trouble Ticket Server).

Please refer to the User documentation of HP SM OSS-J Trouble Tickets to have all
the details on the OSS-J support in TeMIP.

9.3 UCA Trouble Ticket Actions

Specific Actions have been implemented to integrate OSS-J in UCA scenario
designer.

9.3.1 Create TeMIP Trouble Ticket

This action creates a new case in the TT Server associating a list of alarms
contributory and sympathetic.

Arguments Mandatory Description
Notification Yes UCA Notification identifier

Include contributory
alarms

No Checked if the contributory alarms are included in
the Trouble ticket

Include sympathetic
alarms

No Checked if the sympathetic alarms are included in the
Trouble ticket

Selected Alarms Yes The alarm list of alarms associated to the case. The
first alarm is considered as the mapping alarm for the
template file, and parents correlated alarms

Template File No Mapping Template file used for the create TT
operation.. A default Template File will be used if
this argument is empty
(createTroubleTicketByValueRequest.xml)

User Input Yes This is an optional arguments dependant of the
Mapping Template File. The user Input should be in
the XML format.

Log Action to
Database

No This means that the Rule and
associated action will be recorded in the UCA
notification database

9.3.2 Close TeMIP Trouble Ticket

Arguments Mandatory Description
Notification Yes UCA Notification identifier

Template File No Mapping Template file used for the close TT

41

operation.. A default Template File will be used if
this argument is empty
(closeTroubleTicketByKeyRequest.xml)

User Input Yes This is an optional arguments dependant of the
Mapping Template File. The user Input should be in
the XML format.

Log Action to
Database

No This means that the Rule and
associated action will be recorded in the UCA
notification database

9.3.3 Cancel TeMIP Trouble Ticket

Arguments Mandatory Description
Notification Yes UCA Notification identifier

Template File No Mapping Template file used for the close TT
operation.. A default Template File will be used if
this argument is empty
(cancelTroubleTicketByKeyRequest.xml)

User Input Yes This is an optional arguments dependant of the
Mapping Template File. The user Input should be in
the XML format.

Log Action to
Database

No This means that the Rule and
associated action will be recorded in the UCA
notification database

9.4 Mapping Template Files

Mapping files are used to provide an efficient way to map alarm object information
and incident case information (value association, function association or script
association)
Mapping Template Files are in charge of the translation between the OSS-J Domain
model and the HP SM incident model.
This Mapping enables operators to customize their mapping rules according to their
business logic.

The OSS/J request template XML files are used to provide a default template when
making the request. When making the request if user doesn’t provide a value for a
specific attribute, it will be filled in by the default value in the template.

42

The template files are located in the /etc/hp/ism/adapters/jsr91adapter/templates
directory

It is recommended to read the complete documentation about Mapping in the OSS-J
product to fully understand the feature. Any invalid template will fail a UCA trouble
ticket operation.

9.5 Basic Example

9.5.1 Model

Imagine we have a simple model describing a site and 3 network equipments (cells).
Each time a Master alarm is created by correlation rule, we want to automatically
create a Trouble Ticket with the associated alarms hierarchy.

Figure 5: Trouble Ticket example, Meta Model

43

9.5.2 Create a TT Associated to a Master Alarm

Figure 6: Create Trouble Ticket with associated alarms

1. Alarms Mapping rules generate state changes
2. Automatic Model-Driven State Propagation on NE Child Group
3. Rule-Driven Alarm creation: Raises an Problem Alarm on the Site when a

Primary Notification is created and associate a contributory alarm (cell1)
4. Rule-Driven TT creation: Create a TT on the site If an Alarm exist and no

Ticket Associated

44

9.5.3 Clear all alarms and Close associated TT

Figure 7: Close Trouble Ticket

1. Clearance received on all cells.
2. Automatic Model-Driven State Propagation on NE Child Group. Status back

to normal.
3. Rule-Driven Alarm clearance: Master alarm is automatically cleared
4. Rule-Driven TT creation: Close TT if all associated alarms are cleared.

45

Chapter 10 Problem detection
example (hello world)

10.1Description

This example can be considered as a “hello world” scenario to start with UCA and test
its effective integration with TeMIP. It is inspired from a very simplified GSM
network management situation.

Imagine you have 3 base stations (BTS) on a GSM radio site (SITE). The BTS are
managed by TeMIP and we receive alarms on them: indicating “BTS down”.

We then want to detect the situation where all BTS of the site are down, and create a
new alarm for this “problem”. This is what we call a typical “problem detection”
case: detect a pattern of alarms and make a single visible unit out of it, usually a new
alarm grouping all the others.

Site

BTS2BTS1 BTS3

Figure 8: pattern detection: all BTS of a site are down

If we translate this in a fault management vision, we would like to create a new alarm
representing this problem, and which group all the underlying alarms under it.

46

Site Down Alarm

BTS1 down

BTS2 down

BTS3 down

Figure 9: Desired output in TeMIP alarm handling window

Reversely, if one of the BTS alarm is cleared, the Site Alarm is then cleared
automatically by UCA.

Note that this alarm can also be seen a “root cause alarm”, for instance if the cause of
the BTS down alarms is a power failure in the site.
New created alarms (master alarms), have a “Correlation Tag” attribute set to
associated Notification type in UCA (refer to UCA user’s guide) indicating for
instance “Root Cause” or “Service Impact”.

10.2Play this scenario step by step

As a “hello world” example, we provide hereunder a detailed step by step procedure
in order to run the scenario, and eventually discover UCA. This procedure is given for
a UNIX system but is easily adaptable for a Windows one.

For an easier deployment/un-deployment of the complete example, this scenario is
implemented as an UCA Value-pack. The following sections describe how to load the
value pack, dataload instances for making a real test with TeMIP alarms.

10.2.1 Problem Detection example directory layout
As any other valuePacks, the Problem Detection example is delivered as a directory
tree located under the $UCA_HOME/valuepacks directory.

The Problem Detection example directory hierarchy is made of a set of mandatory
directories plus a set of directories containing data specific to this value-pack.

Mandatory files and directories:

vp-manifest.xml
models
actions

rules

47

The vp-manifest.xml file is the Problem Detection value pack description file. It
contains the name and description of the value-pack and also the name space to which
it belongs.

The models directory contains the UML model that is loaded in UCA.
Two files are delivered :
ProblemDetection_model.xmi : The model is in the xmi format.
ProblemDetection_model.zargo : Editable format with the zargo editor

Note: if you are curious you may also have a look at the UML representation of
the model by using the ArgoUML tool shipped with UCA, with a hyperlink at the
bottom of the home page. It is a very basic generic representation of a telecom
network. We use only a part of it in the scenario.

Figure 10: ProblemDetection UML model

48

This model is almost generic and could be applied to many network topologies. It is
mainly based on containment relations (the black diamonds in the picture above
indicate a UML composition relationship). A network is made of Sites that contain
Network Element, that contain Cards, etc…

The actions directory is a mandatory directory that contains the specific actions that
may have been developed for this value-pack. In the case of Problem Detection the
rules are base on the standard system actions and thus this directory remains empty.

The rules directory contains the rules that implement the Problem detection scenario
and that have to be loaded in UCA.

Specific files and directories:

The dataload directory contains the csv files used to populate UCA’s topology mesh.
Each file corresponds to a model class.

The fcl directory contains TeMIP scripts to simulate the incoming events to be able to
play the scenario.

The msl directory contains the TeMIP part of the model, as a set of MSL files to be
loaded. These new classes are needed in the TeMIP dictionary essentially because
new alarms are created by UCA with a Managed Object that has to be present.

In the following sections, the file names are given with a path relative to this current
ProblemDetection value-pack directory.

10.2.2 Start UCA
UCA is embedded in a tomcat server that should be started first:

su - uca
$UCA_HOME/bin/tomcatserver.sh

Note: it’s important to log first as the uca user so that the UCA_HOME,
JAVA_HOME and CATALINA_HOME environment variables are correctly
assigned.

UCA’s graphical user interfaces are all web based. Once the tomcat server has been
started, you can open the UCA home page at the following URL:

http://<uca host name>:18080/uca/

Note: the port number depends on your configuration, the default value is given here.
Also, make sure that the host name is reachable from your client host (where the
browser is executing). Usually, the server name must be fully qualified with a domain
name. You can also give directly the IP address instead if you know it!

49

Figure 11: UCA home page

50

From the UCA home page, press the “Manager” button to launch the System Manager
applet window. Use system/system as login/password to log in.

Note: The System Manager application is executed thanks to the “Java Web Start”
utility that should therefore be installed on the client system. This a prerequisite for
using UCA.

Figure 12: UCA system manager window

10.2.3 Deploy the Problem Detection value-pack

The Problem detection example deployment in UCA is made by using the
vp_deploy.sh command line tool.

As the “uca” user, execute the following command:

vp_deploy.sh cold-deploy ProblemDetection system system
VP deployed ok
#
By doing so, both the Problem detection model and rules are deployed in UCA server.

The effective deployment can be check with the following command:
vp_deploy.sh list system system

51

10.2.4 Dataload instances into the UCA

UCA instances (objects corresponding to the UCA model) are loaded through the GUI
before starting up the engine. In the System Manager, select the “Data-load” tab.

Figure 13: UCA data-load window

Note: UCA must be shutdown to have access to the models and Data-Load tabs. To
stop the engine, go in the “Status” tab and press the “Shutdown” button. Once the
data-load is complete, press “Startup”. This sequence is different from the “uca_start”
and “uca_stop” utilities, which also stops and starts the tomcat server.

The left pane shows the count of objects currently loaded for the various classes in the
Model.

Instances are organized by classes and loaded through comma-separated values files
(CSV), to be found in the ProblemDetection/dataload directory.

Press the “Upload” button to add a file in the library. Do this for the following classes:

Network.csv
NetworkElement.csv
Site.csv

52

Then we need to associate one file to its corresponding class.
In the “Available classes” list select the “Network” line by clicking on it: it will
remain highlighted. Then select “Network.csv” in the “Available files” list (which has
been filled by the previous upload phase).
Once both lines are highlighted, press the “Associate” button.
You should see the “Class and Import File Association” section updated with the new
association.
Not that no data-load has been achieved yet (until you press “Import”) and that the
counters are still at 0.

Figure 14: Class/Instance file association

Repeat the operation on the NetworkElement.csv and Site.csv files
(logically associated with the NetworkElement and Site classes respectively).

Now, press the “Import” button to perform the data-load.

When prompted, make sure to check the “Delete the table(s) contents before
importing” and “The CSV file(s) have a first-line header row” options before pressing
“OK”.

53

Figure 15: Import csv dialog

If the parsing of the files is correct, the import is silent. Note that the object counters
will remain to 0 as long as we don’t start the system, which is the next section!

10.2.5 Starting the engine

In the System Manager window, select now the “Status” tab, and press the “Startup”
button. All UCA components statuses should go green.

54

Figure 16: UCA status after startup

And if you go back to the “Data-load” tab, you should notice that the counters have
changed.

55

Figure 17: Updated data-load counters

Once the system has been started, we can now browse the state mesh to visualize the
current states of the objects and deploy new rules to implement correlation scenarios.
We do this be using applications called the “Mesh Viewer” and the “Scenario
Manager”.

We suggest that you create a new user in the UCA system, with the good credentials
to use the applications for this demo. To do this, simply choose the “Users” tab in the
System Manager and fill in the form as shown.

56

Figure 18: adding a new demo user

Now, log in the applications page with your new demo user (or else): open the UCA
home page (URL: http://<uca host name>:18080/uca/) and press the “Applications”
button. You will be asked for a username and password.
And you should now see:

57

Figure 19: UCA applications startup page

Press the “Mesh Viewer” button to launch the Mesh Viewer applet.

58

Figure 20: UCA's Mesh Viewer window

In the left pane, you can browse through the currently loaded objects.
The right part is used to display the object with a failed or degraded state.

10.2.6 Check deployed rules

Back in the Applications page, press now the “Scenario Manager” button to launch
the Scenario Manager applet. It is the development user interface to edit, load or see
rules.

59

Figure 21: UCA's Scenario Manager window

To Check the deployed rules, click on the “Load Current Deployment From Server”
button (red arrow icon).

60

Figure 22: Scenario manager with the ProblemDetection rules
loaded

You can see that two scenarios are deployed in the server:
 Resilience Failover and recovery – which a system scenario used for internal

processes monitoring
 Site Problem Detection – which is our current example.

The ProblemDetection example configuration is now completed on the UCA side.

We will now configure the TeMIP side in the next sections.

10.2.7 Load the test MSL

The ProblemDetection will create new a TeMIP alarm on the Site object, and BTS
alarms will be created. We therefore need these new classes in the TeMIP dictionary.
To do see, execute the following commands from the temip or root account.

cd msl
load_msl.sh

You can eventually check with the TeMIP dictionary browser (mcc_dap_browser)
that the new Site, BSS and BTS classes are present in the dictionary.

61

10.2.8 Create the demo Operation Context

Create the Operation Context in TeMIP

cd fcl
manage do create_oc.cmd

This command creates a new Operation Context named “oc”.

10.2.9 Start the TeMIP-UCA integration processes

Please refer to the TeMIP Collector and TeMIP Remote Handler sections to see how
to configure these two components that make the link between TeMIP and UCA.
(You may already have done this during the UCA setup phase).

Usually, they are started automatically after the uca_start command.

Check with the uca_show command:

su – uca
uca_show

In case your server is configured in “Standalone” mode (not the default) the processes
are not started automatically. In this case only, here is how to start them.

The TeMIP Remote Handler must be started before the Collector so that when the
first alarms come in, and rules triggered by UCA, the Remote Handler is ready to
execute output actions to TeMIP.

To start the TeMIP Remote Handler manually, use the following start-up script:

su – uca
$UCA_HOME/remoteHandler_TeMIP/bin/runRemoteHandlerTeMIP.sh

Edit the $UCA_HOME/collector_TeMIP/TeMIP_configuration.xml file
for the TeMIP collector to add the Operation Context “oc” in the collector operation
context list, as follows:

<OperationContexts>
<OperationContext>oc</OperationContext>

</OperationContexts>

Once configured (mainly with the correct hostname and OC to monitor), start the
Collector with the following script, being the uca user:

su – uca
$UCA_HOME/collector_TeMIP/bin/runCollector.sh

62

10.2.10 Simulate events

At this stage, everything should be in place to be able to run the demonstration
example.

There are fcl scripts to let you send the events and trigger the rules.

Emit the first BTS alarm, and eventually check the Mesh Viewer that the bts-1 object
is failed.

cd fcl
manage do send_bts1_down.cmd

Then, send the 2 remaining BTS alarms:

manage do send_bts2_down.cmd
manage do send_bts3_down.cmd

Here, the rules should have fired and should see the Site object with a failed state in
the Mesh Viewer.

Figure 23: Mesh Viewer after the BTS alarms reception

63

You can also launch the “Fired Rules Viewer” from the System Manager “Tools tab”.
You will then see the 2 rules that have fired for this scenario:

Figure 24: Fired Rules Viewer after the BTS alarms reception

And finally, more importantly, in the TeMIP Client you should see the new SITE
alarm created by UCA, with the Correlation Tag attribute equal to
“PROBLEMREPORT”.
It means that our scenario has achieved its problem detection target. The 3 BTS down
alarms have been replaced by a unique SITE problem alarm grouping the 3 others.

Figure 25: new SITE alarm created in TeMIP

10.2.11 Navigate through correlated alarms

If you double-click on the SITE alarm, you can navigate to the contributory alarms of
the problem, which are the BTS alarms.

64

Figure 26: Alarm navigation example

Notice the “Category” column added to the tabular view.
You can also go back to the “parent” problem alarm by using the navigation buttons
(yellow arrows).

65

Chapter 11 Service impact and RCA
example

This is a more elaborated scenario, based on a service impact phase on a UMTS
service, followed by a “root cause analysis” phase to retrieve all alarms participating
to this service degradation.

Of course, one can use the step by step description detailed for the previous example
to run this scenario. The steps are exactly the same, and the example directory is
structured in the same way.

11.1Model

The model is somehow the following one (you can see the full UML one in the model
directory):

UMTS Service

NetworkElement Connection

Equipment Equipment

Figure 27: Service Impact example, Meta Model

The model is fairly generic and can be reused for many other network representations,
even though the class names does match very well with the reality. For instance, in
our example, the “Cell” objects of the UMTS network become instances of the
“Equipment” class, what is not very logical.
This is a typical trade-off to do: re-use an existing simple and generic model and use
the UCA sub classing concept (please refer to the UCA user’s guide for details), or
write a new specialized model each time, which strictly match the network topology.
Working on a specialized model can ease the rules writing, since the domain specific
logic (e.g SDH) is easier to express, whereas using a generic model enables re-
usability, especially rules templates and patterns.

In the example, the model is instantiated with the following mesh objects populated,
with their relationships.

66

UMTS_Service

NodeB Connection

Cell2 If
1

Cell1 Cell3 If
2

Radio
part

Transmission part

Figure 28: Service Impact model, Instantiation

The idea of the scenario is to have a service relying on two separate part of the
infrastructure: a radio part and a transmission part. The service can be affected if
either one or the other part is down. In each sub-system, we implement problem
detection rules to detect either a radio problem (one or several cells down) or a
transmission problem (two ends of a connection down). If a problem is detected, it is
propagated up to the service, to generate a new Service Impact alarm in TeMIP.

11.2Transmission problem detection

A Connection is modelled as an “Associate Group” with two ends, which represent
network interfaces. The connection is detected as down when its two end interfaces
are down.

67

UMTS_Service

NodeB Connection

Cell2 If
1

Cell1 Cell3 If
2

New PR on
connection

2 ifs down

Figure 29: Transmission problem detection

In TeMIP, a new Problem Report alarm is created on the Connection managed Object.
This Problem Report alarm associates the two initial Interface Down alarms, marked
as “Contributory” to the problem.

Transmission Problem (PR)

If1 down

If2 down

Figure 30: New transmission alarm in TeMIP

11.3Radio problem detection and Service
Impact

On the radio part, we also have a problem detection pattern in place. It is trigged when
we receive a “cell down” alarm. A new Problem Report alarm is then created in the
NodeB managed object. The state of the NodeB is then propagated to the above
UMTS service. Because this one is now degraded a new Service Impact alarm is
therefore created in turn into TeMIP.

68

UMTS_Service

NodeB Connection

Cell2 If1Cell1 Cell3 If2

New PR on
NodeB

New SI on
UMT_SERVICE

Figure 31: Radio problem detection, and service impact up to
UMT service

In the end, we have the following linkage between alarms in TeMIP. The operator
sees only one alarm.

Service Impact Alarm

Radio Problem Report

Cell1 down

Figure 32: New Radio Problem and Service Impact alarms in
TeMIP

11.4Severity increase
Now, if all cells related to a NodeB are down, we wish to increase the severity of the
Radio Problem and UMTS Service Impact alarms to critical.

69

UMTS_Service

NodeB Connection

Cell2 If
1

Cell1 Cell3 If
2

Update on
service alarm

100%

Figure 33: Severity escalation on Service

Service Impact Alarm

Cell1 down

Cell2 down

Cell3 down

Radio Problem Report

Figure 34: Severity escalation in TeMIP

11.5 Final picture

Finally, as a “cross domain” example, we can see that both the Radio and
Transmission problem participate to the same service degradation.

UMTS_Service

NodeB Connection

Cell2 If1Cell1 Cell3 If2

Figure 35: Service impact scenario, final picture

Thanks to UCA, this is now visible in TeMIP with the following alarm hierarchy.

70

Service Impact Alarm

Cell1 down

Cell2 down

Transmission Problem

If1 down

If2 down

Cell3 down

Radio Problem Report

Figure 36: Service impact scenario, alarms correlated in TeMIP

In the end in TeMIP, the operator sees only one alarm, the one on the service, from
which he can drill-down to the associated alarms. In the picture above, the alarms
with a white font are the ones created by UCA, whereas the ones with a black font are
the 4 ones received initially in TeMIP and "demoted" under the new created ones
(master).

71

Glossary

This glossary contains definitions of terminology used in the TeMIP User
Documentation set.

Access Module (AM)

A Management Module that provides access to, and information about, a specific
global class, or several related global classes, of network elements.

Agent

The portion of an entity that performs management procedures on behalf of a
director, receiving requests from, and returning responses to, the director. TeMIP
supplies off-the-shelf Agent functionality for OSI networks through a dedicated
Presentation Module, the OSI PM.

Alarm

A condition or occurrence in a managed network that is recognized as requiring
notification to a user for further analysis, possibly leading to corrective action.

Alarm Objects

Alarm Objects are entities derived from alarms generated by network elements,
which can be handled and manipulated using AH NT. Alarms that satisfy the Alarm
Handling filtering criteria are transformed into Alarm Objects.

Attribute

A piece of information that describes an entity such as a status or a characteristic. A
property of an alarm object. An attribute has a value.

Alarm Rule

A user-defined logic statement that specifies an alarm condition to be detected and
passed to the Notification FM.

CCITT

International Telegraph and Telephone Consultative Committee (Comité Consultatif
International Télégraphique et Téléphonique). Now the ITU-T.

Collection domain

A domain used for event and alarm collection, which is therefore associated with an
Operation Context. See also Visualization Domain.

Dictionary

The dictionary is a shared information store available to all management modules. It
is replicated on each director.

The dictionary contains the definitions of all global classes, including their child
classes, their attributes, their events, and the directives that they support.

Director

A software system that interacts with a user, initiates management operations on
behalf of the user, coordinates management activities with entities, and provides high-
level management applications.

72

Discriminator

An OSI-compliant data structure that filters the received event reports, allowing only
those that satisfy the specified criteria to be passed through.

Domain

A collection of network elements grouped together for management purposes. See
also Visualization domain and Collection domain.

Domain Hierarchy

A set of domains comprising one domain that contains one or more sub domains,
each of which can contain other sub domains, and so on.

Entity Model

An entity is an item in a model stored in a database, representing a real-world object
or concept. The TeMIP Entity Model exists for the purpose of network management.
It provides a framework for extensible architectures for managed objects.

The only network management actions currently initiated by an entity as opposed to
by a director, are the processing of events into event reports and the forwarding of
event reports.

Entity Hierarchy

A set of entities defined in the TeMIP management model comprising one ancestor
entity and all its descendants.

Event

An occurrence of a normal or abnormal condition detected by a network element that
might be of interest for network management.

Event Log

An OSI-compliant object that handles the storing of event data in a given repository.

Filters

In an Alarm Handling context, filters allow for the specification of criteria that alarm
objects must meet in order to have a handling function performed. Filter patterns are
used to determine whether or not an alarm object should appear in the alarm list. The
filter pattern is expressed in terms of the presence or value of certain attributes of the
alarm object, and is satisfied if it evaluates to TRUE.

FM

Function Module. A management module that is designed to perform a specific
function, usually concerning network data retrieved using Access Modules. Each
TeMIP FM provides services that can be used by Presentation Modules and other
FMs.

Framework Command Line (FCL)

A user interface comprising a command line and command language, which
essentially duplicates the services of the iconic map but without its graphical
representations. The FCL commands are used to apply management functions to
managed objects. They are specifically useful when there is a requirement to manage
a network from a non-graphical terminal.

Icon

The graphical representation of a network element or other entity on the iconic map.

Iconic Map

A user interface comprising a collection of icons representing a managed network or
part of one, displayed against a backdrop with other graphical objects in a window.

73

The iconic map is displayed by a dedicated Presentation Module called the Iconic
Map PM. It has menus and toolbars used to apply management functions to the
displayed items.

Managed Object

A network element that is managed.

Microsoft Foundation Classes (MFC)

Microsoft’s Foundation Classes (MFC) provide a base framework of object-oriented
code to build an application upon. Application development using the TAL can
involve the use of Microsoft Foundation Classes.

Motif

Motif is an industry standard graphical user interface, as defined by the IEEE 1295
specification. It provides you with the industry's most widely used environment for
standardizing application presentation on a wide range of platforms. Motif is the
leading user interface for the UNIX based operating system. Motif uses the X
Window System as its communication protocol and low-level (that is, drawing boxes
and the like) display interface. Application development using the TAL Local can
involve the use of Motif.

Operation Context

An independent and self-contained view of a management domain that defines an
instance of alarm handling to achieve a specific management objective.

OSS-J

Operational Support System through Java. It defines and standardizes a set of XML
and Java APIs that facilitate the integration of OSS products with each other and
makes it almost seamless.

Presentation Application

An application that uses the TAL to present TeMIP information in a user interface.

Presentation Module

The TeMIP module that provides a user interface.

Rogue Wave Tools.h++

Rogue Wave Tools.h++ is a C++ class foundation library that provides C++ data
structures. Time, date, string, linked lists and many fundamental structures that are
required for working with the TAL are included in this library.

TeMIP Framework

Digital object-oriented management product (framework and applications).

TeMIP Framework (Integrated) Application

An application on top of the TeMIP Framework, mainly a PM.

TeMIP Operator or User

The owner (in the OS sense) of an application process invocation.

TTR

Trouble Ticketing Report. Raised against one or more alarm reports to initiate repair
actions.

75

