
HP Configuration Management

Application Manager and Configuration
Server

Software Version: 5.10

REXX Programming Guide

Manufacturing Part Number: T3424-90126

Document Release Date: October 2007

Software Release Date: October 2007

Legal Notices

Warranty

The only warranties for HP products and services are set forth in the express warranty
statements accompanying such products and services. Nothing herein should be construed as
constituting an additional warranty. HP shall not be liable for technical or editorial errors or
omissions contained herein.

The information contained herein is subject to change without notice.

Restricted Rights Legend

Confidential computer software. Valid license from HP required for possession, use or
copying. Consistent with FAR 12.211 and 12.212, Commercial Computer Software, Computer
Software Documentation, and Technical Data for Commercial Items are licensed to the U.S.
Government under vendor's standard commercial license.

Copyright Notices

© Copyright 1998-2007 Hewlett-Packard Development Company, L.P.

Trademark Notices

Linux is a registered trademark of Linus Torvalds.

Microsoft®, Windows®, and Windows® XP are U.S. registered trademarks of Microsoft
Corporation.

OpenLDAP is a registered trademark of the OpenLDAP Foundation.

PREBOOT EXECUTION ENVIRONMENT (PXE) SERVER
Copyright © 1996-1999 Intel Corporation.

TFTP SERVER
Copyright © 1983, 1993
The Regents of the University of California.

OpenLDAP
Copyright 1999-2001 The OpenLDAP Foundation, Redwood City, California, USA.
Portions Copyright © 1992-1996 Regents of the University of Michigan.

OpenSSL License
Copyright © 1998-2001 The OpenSSLProject.

2

Original SSLeay License
Copyright © 1995-1998 Eric Young (eay@cryptsoft.com)

DHTML Calendar
Copyright Mihai Bazon, 2002, 2003

3

Documentation Updates

This guide’s title page contains the following identifying information:

• Software Version number, which indicates the software version

• Document release date, which changes each time the document is updated

• Software release date, which indicates the release date of this version of the software

To check for recent updates or to verify that you are using the most recent edition, visit the
following URL:

ovweb.external.hp.com/lpe/doc_serv/

You will also receive updated or new editions if you subscribe to the appropriate product
support service. Contact your HP sales representative for details.

Table 1 lists new features added for the Configuration Management v 5.10 release.

Table 1 New Feature

Chapter Version Changes

6 5.10 Page 254, REXX variables and CM object values:
Example 2, fixed typo:
number_variables = value(object || 'vars') - 1

Table 2 indicates changes made to this document for earlier releases.

Table 2 Document changes

Chapter Version Changes

Global 5.00 For version 5.00, Radia was rebranded to Configuration
Management (CM). This may not include the names of
individual modules, variables, or functions included in this
guide.

Global 3.1 Beginning with version 3.1 of the Radia Clients, the name of the
REXX Interpreter changed from EDMPNLWR.EXE to
RADPNLWR.EXE. All references to EDMPNLWR throughout
the guide have changed accordingly

4

http://ovweb.external.hp.com/lpe/doc_serv/

Chapter Version Changes

3 3.1 Page 38, The CM REXX Executable: new section.

4 3.1 Page 48, ADDRESS: edited environment parameter – removed
EDMWIN, Mac, and DOS references; edited note. Added WITH
redirect parameter to table. Added 2 new examples: 5 and 6.

5 3.1 Page 155, DATE: syntax modified.

5 3.1 Page 155, DATE Parameters table: option parameter changed
to out-option; two new parameters: date_string and
in_option.

5 3.1 Page 198, POPEN: new section.

5 3.1 Page 222, TIME: syntax modified.

5 3.1 Page 222, TIME Parameters table: option parameter changed to
out_option; two new parameters added: time_string and in_option.

6 3.1 Page 283, NVDOBJECTS new extension.

6 3.1 Page 285, NVDPATHS new extension.

6 3.1 Page 268, EDMGETV new extension.

6 3.1 Page 287 and 288, RADGET and RADSET: Radia 3.1 Client
support adds two new extensions. RADGET and RADSET
expand the functions of EDMGET and EDMSET, respectively,
by permitting reading and writing of objects from different
directories.

6 3.1 Page 291, RXXCommandKill: new extension.

6 3.1 Page 292, RXXCommandSpawn: new extension.

6 3.1 Page 293, RXXCommandWait: new extension.

6 3.1 Page 294, RXXOSEndOfLineString: new extension.

6 3.1 Page 295, RXXOSEnvironmentSeparator: new extension.

5

Chapter Version Changes

6 3.1 Page 296, RXXOSName: new extension.

6 3.1 Page 297, RXXOSPathSeparator: new extension.

6 3.1 Page 298, RXXSleep: new extension.

6 3.1 Page 299, WinMessageBox: new extension.

6 3.1

Page 302, WinGetVersion: new extension.

6

Support

You can visit the HP Software support web site at:

www.hp.com/go/hpsoftwaresupport

This Web site provides contact information and details about the products, services, and
support that HP Software offers.

HP Software online software support provides customer self-solve capabilities. It provides a
fast and efficient way to access interactive technical support tools needed to manage your
business. As a valued support customer, you can benefit by using the support site to:

• Search for knowledge documents of interest

• Submit and track support cases and enhancement requests

• Download software patches

• Manage support contracts

• Look up HP support contacts

• Review information about available services

• Enter into discussions with other software customers

• Research and register for software training

Most of the support areas require that you register as an HP Passport user and sign in.
Many also require a support contract.

To find more information about access levels, go to:

http://h20230.www2.hp.com/new_access_levels.jsp

To register for an HP Passport ID, go to:

http://h20229.www2.hp.com/passport-registration.html

7

Syntax Notes

When an instruction keyword can have more than one value, the options are
stacked within brackets as in the TRACE instruction:

TRACE [option]
 [[VALUE] expression]

Type only one of the choices. For example:

TRACE E

When a required operand can have more than one value, the options are
stacked in the same manner as for optional operands. As with optional
operands, you type only one of the choices. The syntax diagram for the
NUMERIC instruction illustrates a combination of required and optional
operands that can have more than one value:

NUMERIC DIGITS [expr1]
 FORM [SCIENTIFIC]
 [ENGINEERING]
 [[VALUE] expr2]
 FUZZ [expr3]

These characters must be typed exactly as shown in the syntax diagrams.

• Literal strings are delimited by either single or double quotes.

• Hexadecimal strings are delimited by single or double quotes followed
immediately by the character x.

Binary strings are delimited by single or double quotes followed immediately
by the character b.

The table below describes terms that may be used interchangeably
throughout this book, as well as in other HP publications.

8

Contents

1 Introduction .. 19

Introduction to CM REXX..20

About This Book..20

Chapter 2: Language..21
Chapter 3: Operations..21
Chapter 4: Instructions..21
Chapter 5: Built-In Functions ...21
Chapter 6: Using Extensions...21
Chapter 7: Registry Manipulation Functions ..22
Appendix A: Message Summary ...22
Appendix B: Programming Hints..22
Appendix C: System Limitations ..22
Bibliography ...22

2 Language ... 23

What is a Clause? ...24

Clause Syntax Notes ..26
What is a Symbol? ..27

What is an Expression? ..29

Comparative Operators ...31
Normal Comparative Operators ...31
Strict Comparative Operators ..31

What is a Function?..32

What are Special Variables? ..33

What are Condition Traps? ..34

9

What is an Input/Output Operation? ..35

What is Parsing?...36

3 Operations ... 37

The CM REXX Executable ...38

The RADPNLWR Executable ..38

Invoking RADPNLWR...38
RADPNLWR Log Files...40

Executing a REXX Method from Windows ...41

Coding CM REXX Programs..42

Including External Functions and Subroutines...42
Executing Host Commands ...42

4 Instructions.. 45

Overview of REXX Instructions...46

Quick Reference ..46

ADDRESS ...48

ARG ...53

CALL ...55

DO 60

DROP...65

EXIT ..67

IF 69

INTERPRET ...72

ITERATE...73

LEAVE...74

10 Contents

NOP ...75

NUMERIC...76

PARSE...79

Parsing Templates ...81
Parsing by Words ...82
Parsing by Patterns ...83
Parsing by Position ..84
Parsing with Placeholders ...87
Putting it All Together...88

PROCEDURE ...89

PULL ...93

PUSH...95

QUEUE ...97

RETURN ...99

SAY..102

SELECT ..104

SIGNAL...106

TRACE...110

UPPER ..117

5 Built-In Functions .. 119

Built-In Functions Overview ...120

General Rules for Built-In Functions ...122
ABBREV..124

ABS..126

ADDRESS ...127

ARG ...128

Contents 11

BITAND...130

BITOR ...131

BITXOR...132

B2X ..133

CENTER..134

CHARIN ..136

CHAROUT ..138

CHARS ..140

CHDIR...141

COMPARE ..142

CONDITION ...144

COPIES ...146

CUSERID ..148

C2D..149

C2X ..150

DATATYPE...152

DATE...155

DELSTR ..159

DELWORD..161

DIGITS ..163

D2C..164

D2X ..165

ERRORTEXT ..166 T

FIND..168

12 Contents

FORM ..170

FORMAT ...171

FUZZ..175

GETCWD...176

GETENV ...177

INDEX...178

INSERT ...180

JUSTIFY ...181

LASTPOS ..182

LEFT..184

LENGTH ...186

LINEIN..187

LINEOUT..189

LINES..191

LOWER ...193

MAX...194

MIN..195

OVERLAY ...196

POPEN ..198

POS..200

PUTENV ...202

QUEUED...203

RANDOM ..204

REVERSE ...206

Contents 13

RIGHT ...207

SIGN..209

SOURCELINE ..210

SPACE...211

STREAM ...213

STRIP ..215

SUBSTR ..217

SUBWORD..219

SYMBOL ...220

TIME ...222

TRACE...225

TRANSLATE ..226

TRUNC..228

UPPER ..229

USERID...230

VALUE ..231

VERIFY ...233

WORD..236

WORDINDEX ...237

WORDLENGTH ...238

WORDPOS ..239

WORDS ...241

XRANGE ...242

X2B ..244

14 Contents

X2C ..245

X2D..247

6 Using Extensions ... 249

CM Agent REXX Methods..250

Overview of CM REXX Extensions..250

REXX, CM, Objects and Object Paths/Folders...250
Using Extensions ..251

Function Calls and Return Values..252
Identifying Variables ...253
REXX variables and CM object values ...254

The CM REXX Extension List ...258

EDMADD ..259

EDMATTR...261

EDMBLD...263

EDMCMD..264

EDMDELHEAP ..265

EDMDELVAR...266

EDMFREE ..267

EDMGET...268

EDMGETV ..270

EDMLOC...271

EDMRST ...272

EDMSET ...273

EDMSORT ..275 T

GET_CHILD_OBJ ..276

Contents 15

LOAD_CHILDREN ..277

NOWAIT..282

NVDOBJECTS..283

NVDPATHS ..285

NvdVerQueryValueStringFileInfo ..286

RADGET..287

RADSET ..290

RXXCommandKill ..291

RXXCommandSpawn ...292

RXXCommandWait ..293

RXXOSEndOfLineString ...294

RXXOSEnvironmentSeparator..295

RXXOSName...296

RXXOSPathSeparator..297

RXXSleep...298

WinMessageBox..299

WinExpandEnvironmentStrings ...301

WinGetVersion..302

7 Registry Manipulation Functions .. 305

Registry Manipulation Functions..306

WinRegCloseKey...308

WinRegCreateKey ..309

WinRegDeleteKey...311

16 Contents

WinRegDeleteValue..312

WinRegEnumKey ...313

WinRegEnumValue ..315

WinRegOpenKey...317

WinRegQueryInfoKey ..319

WinRegQueryValue..321

WinRegSetValue...323

A Message Summary .. 325

CM REXX Messages ...325

B Programming Hints .. 335

Invoking a Built-in Function Like an Instruction..335

Failure to Use Commas with CALL and PARSE ARG ..335

With CALL..335
With PARSE ARG..336

Incorrect Use of Continuation..337

Incorrect CALL Syntax ..337

Failure to Enclose Command Arguments Within Quotes..338

Failure to Close a File ..338

C System Limitations.. 339

Implementation-Specific Limits ..339

Contents 17

Bibliography ... 341

Index ... 343

18 Contents

1 Introduction

This chapter introduces you to CM REXX by first comparing this language to
shell programs and programming languages. It then provides an overview of
the REXX Programming Guide and an explanation of its conventions.

19

Introduction to CM REXX

CM REXX is an implementation of the REXX programming language as
described in The REXX Language: A Practical Approach to Programming by
M.F. Cowlishaw (1990: Prentice Hall).

CM REXX is an interpreted language that provides a simple way to
customize various aspects of CM processing.

REXX programs are easy to write, understand, and modify. User-friendly
standard features and a simple syntax enable rapid development and testing.
These features include:

• Natural data-typing (nothing to declare)

• Dynamic scoping

• Built-in trace facilities

CM REXX methods (programs) are portable across multiple platforms.

CM REXX conforms to the ANSI standard X3.274:1996, "Programming
Language REXX."

About This Book

The CM REXX Programming Guide is a reference manual for the CM REXX
programming language, and a guide for creating CM REXX methods. CM
REXX methods are the procedures you write to customize processing for your
CM-managed computing environment.

This guide describes the features, operation, and syntax of CM REXX, as well
as the built-in functions that can be called by a program.

This section provides you with an overview of this programming guide, so you
can quickly turn to the information you need to start writing CM REXX
procedures for your installation. The following chapter summaries should
help you find the information you need quickly and easily.

20 Chapter 1

Introduction 21

Chapter 2: Language

This chapter summarizes the language structure for those not already
familiar with it. The basic elements, terminology, and concepts of CM REXX
are presented in a concise format for review and reference.

Chapter 3: Operations

This chapter presents details on the execution of CM REXX programs. It also
covers such implementation-specific topics as access to external functions,
subroutines, and host command execution.

Chapter 4: Instructions

This chapter explains selected instructions that are provided in the CM
REXX programming language. CM REXX instructions consist of one or more
clauses that are identified by keywords, and are recognized only after
meeting specific conditions.

Chapter 5: Built-In Functions

This chapter explores the powerful set of built-in functions found in CM
REXX. These functions are part of the language and are always available to
be called by any program.

Chapter 6: Using Extensions

This chapter teaches you how to use the REXX function extensions of CM
when you customize CM processing for your CM environment.

Chapter 7: Registry Manipulation Functions

This chapter describes CM REXX functions that enable you to inspect and
manipulate the Windows Registry.

Appendix A: Message Summary

This appendix lists and describes all the messages that may be generated by
CM REXX. This is a valuable resource for interpreting any error messages
you encounter while compiling and executing CM REXX programs.

Appendix B: Programming Hints

This appendix identifies the common programming mistakes to avoid when
writing CM REXX programs.

Appendix C: System Limitations

This appendix documents six implementation-specific limitations of CM
REXX.

Bibliography

This appendix lists some additional reference books on the REXX language.

22 Chapter 1

2 Language

CM REXX is implemented according to the language definition contained in
The REXX Language: A Practical Approach to Programming, by M. F.
Cowlishaw (1990: Prentice Hall). The elements of the language are described
in detail by Cowlishaw. This chapter summarizes the language structure.

23

What is a Clause?

The basic element of the CM REXX language is the clause. A clause is
composed of one or more tokens preceded or followed by zero or more blanks
and optionally terminated by a semicolon. Tokens in a clause can be any of
the following:

• Literal string

• Hexadecimal string

• Binary string

• Symbol

• Operator

• Special character

The following table lists the tokens and their meanings.

Table 2.1 ~ Tokens and their Meanings

Token Explanation

literal string A literal string is a sequence that can include any character. It is enclosed in single or
double quotes. A literal string that includes no characters is known as a null string.
Examples include:

'Hello world!'
"What's in a name?"
'' /* Null string */

hexadecimal
string

A hexadecimal string is a series of hexadecimal digits grouped in pairs, enclosed in
quotes, and followed immediately by the character 'x' (upper- or lowercase). The pairs
of hexadecimal digits can be optionally separated by one or more blanks. Examples
include:

'c1c3'x
"abcdef"X
'61 62 63'x
""x

24 Chapter 2

Language 25

Table 2.1 ~ Tokens and their Meanings

Token Explanation

binary string A binary string is a series of binary digits grouped in fours, enclosed in quotes, and
followed immediately by the character 'b' (upper- or lowercase). The groups of binary
digits can be optionally separated by one or more blanks. Examples include:

'0001'b
'10011001'B
"1111 0000"b
''b

symbol A symbol is any group of alphanumeric characters. Symbols can also include the
characters ".", "|", "?", and "_". If a symbol begins with a digit, it can also include the
letter "e" (upper- or lowercase) followed optionally by a plus or minus sign ("+" or "-")
and one or more digits. A symbol can be a constant, a keyword, or a variable,
depending upon the context in which it is used. Additional details are provided in the
section entitled What is a Symbol on page 27. Examples include:

abc
data.1
new_data
17
31416E-4

operator An operator is a character used to indicate operations in expressions. For a complete
list of operators supported in CM REXX, see What is an Expression on page 29.
Examples include:

+
-
>
>>
=

special characters Special characters include both the operator characters and the characters ".", ";",
":", "(", and ")". Special characters function as token delimiters.

A CM REXX clause can be any of the following types:

• Instruction

• Label

• Null clause

The following table lists the types of clauses and their meanings.

Table 2.2 ~ Clauses and their Meanings

Clause Explanation

instruction An instruction describes an action to be performed by the interpreter. Instructions can be any
of the following:

assignment An instruction of the form symbol = expression, that assigns a value to a
variable.

keyword An instruction that begins with a keyword that identifies the operation to be
performed; examples of instruction keywords include PARSE, DO, CALL, and
RETURN.

command An instruction comprised simply of an expression, which is evaluated and
passed to an external environment for processing.

label A label is a clause composed of a single symbol followed by a colon. Labels identify the target
of CALL or SIGNAL instructions or the beginning of an internal function.

null clause A null clause is any clause comprised only of blanks or comments.

Clause Syntax Notes

A comment is any sequence of characters preceded by a forward slash and an
asterisk
(/*) and followed by an asterisk and a backward slash (*/). Comments can
appear anywhere in the program and can be nested.

A clause in a CM REXX program can span more than one line. Continuation
is indicated by a comma. The comma is replaced by a blank when the lines
are concatenated during program execution.

26 Chapter 2

Language 27

For example, the program fragment:

list_of_months = Jan Feb Mar Apr May Jun Jul,
 Aug Sep Oct Nov Dec
say list_of_months

produces the following output:

JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC

What is a Symbol?

A symbol in CM REXX is any group of characters A-Z, a-z, 0-9, ".", "|", "?", or
"_". The meaning of a symbol is derived from its context. The following table
lists the types of symbols and their meanings.

Table 2.3 ~ Symbols and their Meanings

Symbol Explanation

compound symbol A compound symbol does not begin with a digit, contains at least one embedded
period, and cannot end with a period. The name begins with a stem (see description of
stem symbols) followed by a period, followed by a tail. The tail can be a constant
symbol, a simple symbol, or null. Before a compound symbol is used, the values of any
simple symbols in the tail are substituted, creating the derived name of the compound
symbol. The default value of a compound symbol is one of the following:

The value assigned to the stem.
The symbol name translated to uppercase
if no value has been assigned to the stem.

Examples include:

data.1 = 5
say data.1

Output is 5; the tail is a constant symbol so this compound symbol does not have a
derived name.

x = 3
data.3 = 7
say data.x

Output is 7; the value of the simple symbol x is substituted to produce the derived
name data.3, which has been assigned the value 7.

Table 2.3 ~ Symbols and their Meanings

Symbol Explanation

A constant symbol begins with a digit and can include the letter e followed optionally
by a plus or minus sign and one or more digits. The value of a constant symbol cannot
be changed. Examples include:

10
3.1416
15e-3

constant symbol

simple symbol A simple symbol does not begin with a numeric digit and does not contain any
embedded periods. Its default value (i.e., when no value is assigned to the symbol) is
the symbol itself, translated to uppercase. A simple symbol can be used as a variable
and can be assigned a value. Examples include:

list
file1
Date

stem A stem does not begin with a numeric digit and contains only one period, which must
be the last character. It can be assigned a value, which effectively assigns that value
to all compound symbols that begin with this stem. Stems can represent a collection
(or array) of variables. Examples of stems and their use include:

list. /* a stem whose value is "LIST." */
list. = animals
list.3 = 'cows'
say list.1 list.new list.3

The output is:

ANIMALS ANIMALS cows

since only the compound symbol list.3 has been assigned a value different from the
value assigned to the stem. The value assigned to the stem is uppercase, because the
value of the variable ANIMALS is undefined, and the default value of an undefined
variable is the variable's name in uppercase.

28 Chapter 2

Language 29

What is an Expression?

A CM REXX clause can contain one or more expressions. An expression
consists of one or more terms and zero or more operators. The operators
specify the operations to be performed on the terms.

The terms in an expression can be any of the following:

• Function call

• Literal string

• Operator

• Sub-expression

• Symbol

The following table lists the types of expressions and their meanings.

Table 2.4 ~ Expressions and their Meanings

Expression Explanation

function calls Function calls are of the form:

function_name([expression]

 [,[expression]] ...)

where function_name can be a symbol or a string.

literal strings Literal strings are treated as constants.

operators Operators can be grouped into four categories:

Arithmetic
Comparative
Concatenation
Logical

sub-expression A sub-expression is any expression enclosed in parentheses.

symbols Symbols are translated to uppercase and can be treated as constants or variables.
Symbols that do not begin with a digit can be the name of a variable, in which case the
value of that variable is used in the expression.

The following table lists the types of operators and their meanings.

Table 2.5 ~ Operators and their Meanings

Operator Explanation

arithmetic
operators

Arithmetic operators are used to perform operations on numbers. CM REXX supports
the following arithmetic operators:

+ addition

- subtraction

* multiplication

/ division

% integer division (returns integer portion of result)

/ remainder (not modulo - can be negative)

** exponentiation (raise to a whole number power)

comparative
operators

Comparative operators compare two terms and return the value '1' if the result is true
or the value '0' if the result is false. There are two types of comparative operators:
normal and strict.

Two terms must be absolutely identical to be strictly equal. In other words, there must
be the same number of leading or trailing blanks in both terms, no padding is
performed before the comparison is made, and the comparison is based on the
internal character representation of the platform where the program is executed.

For strict less-than and greater-than comparisons, the collating sequence of the
internal character representation is used. Thus, these results can be platform-
dependent. Further, for strict comparisons, if string1 is shorter than string2 and is
also a leading sub-string of string2, string1 is considered strictly less than string2.

concatenation
operators

Concatenation operators combine two strings to form a single string. Concatenation
can be indicated in any of the following ways:

|| concatenate with no intervening blanks

blank concatenate with one blank between strings

abuttal concatenate with no intervening blanks

It is important to remember that concatenation is implied when two adjacent terms are
not separated by some other operator.

logical operators Logical operators take one or two logical values as their operands and return a logical
result - 1 (true) or 0 (false). CM REXX supports the following logical operators:

& and; returns 1 if both terms are true

| or; returns 1 if either term is true

&& exclusive or; returns 1 if either (but not both) terms are true

\ or ^ not; 1 becomes 0 or 0 becomes 1

30 Chapter 2

Language 31

Comparative Operators

CM REXX supports the following comparative operators:

Normal Comparative Operators

= Equal

^=, \=, /=, <>, >< not equal

> greater than

< less than

>=, ^<, \<, /<, greater than or equal (not less than)

<=, ^>, \>, />, less than or equal (not greater than)

Strict Comparative Operators

== strictly equal (identical)

^==, \==, /==, strictly not equal

>> strictly greater than

<< strictly less than

>>=, ^<<, \<<, /<<, strictly greater than or equal

<<=, ^>>, \>>, />>, strictly less than or equal

What is a Function?

A function is a program or subroutine that accepts zero or more arguments
and returns a single value. A function call in CM REXX is an expression of
the form:

function_name([expression] [, [expression]] ...)

A function call can be used in any expression wherever any other term would
be valid. The argument expressions can also be function calls. There cannot
be intervening blanks between function_name and the opening parenthesis.
The presence of such blanks would cause the expression to be interpreted as
two unrelated symbols or expressions. CM REXX supports three types of
functions:

• Built-in

• Internal

• External

The following table lists the types of functions and their meanings.

Table 2.6 ~ Functions and their Meanings

Function Explanation

built-in functions Built-in functions are part of the language and are always available. These functions
are documented in Chapter 5: Built-in Functions.

internal functions Internal functions are subroutines contained within the program and identified by a
label. Internal functions are always available to the program that includes them. An
internal function must return control to the main program.

external functions External functions are stand-alone routines that can be called by a CM REXX program.
They must be written in CM REXX. Functions are available to any program.

CM REXX locates the external function either in the current working directory, or in a
directory on the current PATH.

This is discussed in detail in Chapter 3: Operations.

32 Chapter 2

Language 33

What are Special Variables?

RC, RESULT, and SIGL are special variables whose values can be set
automatically during execution of a CM REXX program.

The following table lists the types of special variables and their meanings.

Table 2.7 ~ Special Variables and their Meanings

Special Variable Explanation

RC Set to the return code from a command.

RESULT Set to the value returned by a called subroutine. If no value is specified on the
RETURN statement in the subroutine, RESULT is dropped.

SIGL Set to the line number of the last instruction that caused a jump to a label. This
could result from a CALL or SIGNAL instruction, an internal function call, or a
trapped condition.

What are Condition Traps?

While the flow of execution in a program is normally controlled by the
instructions in the program, CM REXX recognizes certain conditions that can
alter the flow. Condition traps can be set in a program so that execution flow
is automatically altered whenever one of these conditions is encountered. The
CALL and SIGNAL instructions allow you to enable or disable condition
traps and to specify the action to be taken if a condition is raised when the
trap is enabled.

The following table lists the types of conditions that can be trapped and their
meaning.

Table 2.8 ~ Conditions Traps and their Meanings

Condition Trap Explanation

ERROR Indicates an error condition during execution of a command or that the specified
host command environment was not found.

FAILURE Indicates that execution of a command failed or that the specified host command
environment was not found.

HALT Indicates detection of an external interrupt or termination signal.

LOSTDIGITS Indicates that the result of a numeric operation has to be rounded to fit within the
current numeric digits setting. The LOSTDIGITS condition can only be trapped with
SIGNAL ON. It cannot be trapped with CALL ON.

NOTREADY Indicates an error during an I/O operation.

NOVALUE Indicates that a symbol referenced in an expression or in a PARSE, PROCEDURE, or
DROP instruction has not been assigned a value.

SYNTAX Indicates a syntax error during program execution. The SYNTAX condition can only
be trapped with SIGNAL ON. It cannot be trapped with CALL ON.

34 Chapter 2

Language 35

What is an Input/Output Operation?

Input and output operations in CM REXX are implemented according to the
I/O model defined by Cowlishaw in The REXX Language: A Practical
Approach to Programming, (1990: Prentice Hall). This includes both
character input and output streams and the external data queue. All of the
following instructions and built-in functions for performing I/O, as defined by
Cowlishaw, are included in CM REXX.

The following table lists the types of input/output operations and their
meanings.

Table 2.9 ~ Input/Output Operations and their Meanings

Input/Output
Operation

Explanation

CHARIN Read characters from an input stream.

CHAROUT Write characters to an output stream. Optionally, if the output stream is a
file and no output string is specified, perform a close operation on the file.

CHARS Return the number of characters remaining in an input stream.

LINEIN Read one line from an input stream.

LINEOUT Write one line to an output stream. Optionally, if the output stream is a
file and no output string is specified, perform a close operation on the file.

LINES Return the number of lines remaining in the input stream.

PARSE LINEIN Read one line from the default input stream.

PARSE PULL Read one line from the external data queue or, if the queue is empty,
from the default input stream.

PULL Same as PARSE PULL except that the data is automatically converted to
uppercase.

PUSH Write one line to the top of the external data queue.

QUEUE Write one line to the end of the external data queue.

QUEUED Return the number of lines remaining on the external data queue.

SAY Write one line to the default output stream.

STREAM Return a string describing the state of the specified input or output stream
or perform operations on the stream.

Note

Transient I/O streams include the standard input, the standard output, and pipes, including
named pipes. Persistent I/O streams are disk files. The default input stream is the standard
input (STDIN). The default output stream is the standard output (STDOUT). Using CM REXX
I/O functions with pipes allows you to write filter programs for use with other commands or
programs.

What is Parsing?

One of the strengths of the REXX language is its extensive and flexible string
manipulation capability. Besides the built-in functions that perform string
operations, CM REXX includes the PARSE instruction that provides a
generalized and powerful mechanism for assigning portions of a string to
variables.

The general form of the PARSE instruction is:

PARSE [UPPER] keyword [expression] template

where: template is defined by the programmer and describes the way in
which the string is to be separated and assigned to variables.

Note

A detailed syntax diagram and description of the PARSE instruction can be found in Chapter
4: Instructions, which also includes extensive examples of the power and flexibility of
PARSE.

36 Chapter 2

3 Operations

This chapter discusses the CM REXX Executable program
(RADREXXW.EXE), as well as the CM REXX Interpreter and Panel Manager
program, RADPNLWR.

37

The CM REXX Executable

The CM REXX executable executes CM REXX programs. To invoke a CM
REXX command, use the following format:

RADREXXW ProgramName Arguments

Note that arguments are passed as a string.

The RADPNLWR Executable

The CM executable RADPNLWR serves two functions:

• RADPNLWR is the CM Panel Manager that displays and processes the
responses to CM dialogs.

• RADPNLWR is the CM REXX Interpreter that executes CM REXX
programs and methods.

Note

The terms dialogs, dialog boxes, and panels are used interchangeably in this manual.

Invoking RADPNLWR

The command syntax options for invoking RADPNLWR are given below.

RADPNLWR <panel-object-name in current IDMLIB directory>

RADPNLWR <REXX-program-name with fully qualified path>

RADPNLWR

You can invoke RADPNLWR with one parameter, or with zero parameters.
The parameter can be either the name of a panel object, or the fully qualified
path and name of a REXX program to execute.

38 Chapter 3

Operations 39

When invoked with a parameter consisting of a panel object name,
RADPNLWR locates the designated panel object in the current IDMLIB
directory, and uses it to display the dialog it defines. The panel object name
must be eight characters or less. The current IDMLIB directory is the
directory identified by the IDMLIB setting in the NVD.INI file.

When invoked with a parameter consisting of a REXX program name,
RADPNLWR launches the REXX program.

When invoked with zero parameters, RADPNLWR refers to the ZMASTER
object located in the current IDMLIB directory to determine what action to
take. If the ZPANEL variable contains the name of a panel object in the
current IDMLIB directory, the dialog defined by the panel object is displayed.
If there is no panel object specified in ZMASTER.ZPANEL, RADPNLWR
exits.

The following table summarizes the variables in ZMASTER that
RADPNLWR refers to or sets:

Table 3.1 ~ ZMASTER Variables

ZMASTER Variable Usage

ZPANEL The name of the panel object for the dialog to be displayed. RADPNLWR looks
for this object in the current IDMLIB location. The object name can have a
maximum of eight characters.

ZPCONT A REXX program executed by RADPNLWR can set this variable to 1 to indicate
that RADPNLWR will continue execution after the REXX program exits. When
control is returned to RADPNLWR from the REXX program, RADPNLWR will
display the panel identified by the ZPANEL variable. If the value of ZPCONT is
0 when RADPNLWR regains control from a REXX program it has just
executed, RADPNLWR exits.

ZPHEAPNO REXX programs executed by RADPNLWR can set this variable to the heap
number in a multi-heap object associated with a list box or drop-down list
control that identifies the initial value for the control when RADPNLWR
displays the panel. This value will be displayed as the default value of the
drop-down list, or the initially highlighted selection in a list box.

Note: This value is only useful if there is only one control in the dialog
whose data source is a multi-heap object, because the ZPHEAPNO value will
be used to identify the default for all controls in a dialog whose data source
is a multi-heap object.

ZPREXEC The fully qualified path and name of the REXX program to execute when the
current dialog terminates.

Table 3.1 ~ ZMASTER Variables

ZMASTER Variable Usage

ZPSEL Contains the heap number in a multi-heap object that is associated with the
control that was last manipulated by the user (whose data source is a multi-
heap object, e.g., a drop-down list or list box), containing the value last
selected by the user. For example, the data source of a list box is a multi-
heap object. When the user selects one of the items in the list box,
RADPNLWR places the heap number (in the data source object) that contains
the value that the user selected, into the ZPSEL variable.

Note: This value is only reliable if there is only one control in the dialog
whose data source is a multi-heap object, because only the most recent user
selection is recorded in ZPSEL, and there is no way to tell which control was
the most recently selected.

RADPNLWR Log Files

Each execution of RADPNLWR generates the following ASCII log files in the
IDMLOG location on the client, which defaults to C:\Program
Files\Hewlett-Packard\CM\Log when the CM Agent is installed. The
IDMLOG location is specified in the IDMLOG setting in NVD.INI.

• NEWPANEL.LOG
This log audits the startup of RADPNLWR to the point where a panel is
displayed or a REXX program is launched.

• PNLREXX.LOG
This log audits the REXX program interpreted by RADPNLWR.

• <panel-name>.log
This log audits a panel displayed by RADPNLWR. There is one log for
each panel displayed. For example, if RADPNLWR displays a panel
named PINSCOMP.EDM, the log file produced would be named
PINSCOMP.LOG.

New log files are written each time you run a REXX method. Copy the logs to
an alternate file if the contents of the log need to be retained for later use.

40 Chapter 3

Executing a REXX Method from Windows

To execute a REXX method from the Windows Run dialog box

1 Launch the Run dialog box.

2 Type the full path of RADPNLWR followed by a space and the fully
qualified name of the REXX program you want to execute. (Include the
full path if the REXX program is not located in the same directory as
RADPNLWR.) Click OK.

The CM REXX method you specified will execute.

Operations 41

Coding CM REXX Programs

A CM REXX program is contained in a text file with the .REX extension (for
example, HWINFO.REX). You may write your REXX programs with the text
editor of your choice.

CM REXX is designed to be portable across all platforms supported by CM.
Ensure portability of your REXX program by following these two guidelines:

• The name of the program may be up to eight characters in length and has
a .REX extension (for example: HWINFO.REX).

• The program does not contain platform-specific functions or host
commands.

Including External Functions and Subroutines

CM REXX supports the use of functions or subroutines that are external to
the program being executed. The following search order is used to locate
external functions and subroutines:

1 Current working directory.

2 Directories specified in the PATH associated with the current command
environment.

If your program includes an external function or subroutine call for which the
file is not found in one of these locations, a message similar to the following
appears:

Error 43 on line in filename: Routine not found

Executing Host Commands

There are a number of options for executing host commands in CM REXX.
Which execution option you choose depends on the command to be executed
and whether you need access to output from the commands for further
processing.

42 Chapter 3

Operations 43

• Command output is directed to STDOUT (Standard Output Stream). This
is normally the display screen.

• If you require the output for later use, redirect STDOUT, and possibly
STDERROR (Standard Error Stream), to a file.

• Execute a host command directly by including the command as a clause
in the program. The command may or may not be enclosed in quotes;
however, we strongly recommend that you always enclose host commands
in quotes. Quotes ensure that a host command is treated as such and they
eliminate any risk of a host command being mistaken for a program
variable with the same name as the host command, or any of its
operands. Quotes also ensure the case-sensitivity of the host command.

• Use the ADDRESS instruction to specify the name of the host command
environment that is to process the command. The default host command
environment is the native operating system (EDMWIN by default, for
CM).

Table 3.2 ~ Host Command Environments

Host Command Environment

CMD Windows 95, Windows 98, Windows NT 4.0

EDMWIN Windows 95, Windows 98, Windows NT 4.0

Note

Command output is directed to the standard output (STDOUT), normally the display screen.
You must redirect the standard output to a file if the output is required for later use.

4 Instructions

REXX instructions consist of one or more clauses that are identified by
keywords, and are recognized only after meeting specific conditions. Selected
instructions that are provided in CM REXX are explained in this chapter.

45

Overview of REXX Instructions

A REXX instruction is one or more clauses that can be specified to:

• Control the program flow,

• Manipulate data, or

• Affect the external environment.

An instruction is identified by a keyword and is recognized only when the
following conditions are met:

• The keyword is the first token in the clause.

• The second token does not begin with an equals sign (=) (which implies
assignment) or with a colon (:) (which indicates a label).

Instruction keywords are reserved when used in the context described above.
Certain sub-keywords (such as WHILE or WHEN) are reserved within the
context of particular instructions (such as DO or SELECT). Although
instruction keywords and sub-keywords are not reserved outside this context,
it is good programming practice not to use them as labels or as variables.

Instruction keywords and sub-keywords are not case-sensitive. Further,
adjacent blanks have no effect other than to separate the keyword from
surrounding tokens.

Quick Reference

The following instructions are provided in CM REXX and explained in this
chapter:

46 Chapter 4

Instructions 47

Table 4.1 ~ Quick Reference to Instructions

Instruction Description

ADDRESS Specifies the external environment for the execution of host commands.

ARG Retrieves the argument strings of a program or an internal routine and puts them into
variables.

CALL Invokes a routine or controls the trapping of certain conditions.

DO Groups instructions together. Such an instruction group can be executed zero or more
times depending on a conditional value and/or a repetitor.

DROP Restores one or more variables to the un-initialized state. In the un-initialized state, the
value of a variable is equal to the name of the variable in uppercase.

EXIT Unconditionally leave a program. As an option, it can also return a result to the caller.

IF Conditionally executes an instruction or an instruction group, or selects between
alternative instructions or instruction groups.

INTERPRET Executes dynamically created instructions.

LEAVE Modifies the flow of control within a repetitive DO loop.

NOP Controls the precision and format of numbers used in arithmetic operations.

NUMERIC Controls the precision and format of numbers used in arithmetic operations.

PARSE Assigns data to variables according to the REXX parsing rules and the specified template.

PROCEDURE In an internal routine, protects the caller's variables from modification during execution of
the routine. Also ensures that the subroutine's variables are in their un-initialized state
each time the routine is called.

PULL Simply a short form of PARSE UPPER PULL [template]. Reads a line from the CM REXX
program stack. If the program stack is empty, PULL reads from the default character
input stream (STDIN).

PUSH Places a string at the top of the CM REXX program stack. Data are stacked in LIFO (last-
in-first-out) order.

QUEUE Places a string at the bottom of the CM REXX program stack. Data is stacked in FIFO
(first-in-first-out) order.

RETURN Return control from a REXX program or internal routine to its caller. Optionally, can also
return a value.

SAY Writes a line to the default character output stream.

SELECT Conditionally execute one of several alternative instructions.

SIGNAL Causes an abnormal change in the flow of control or controls the trapping of certain
conditions.

TRACE Traces execution flow in a program and is used primarily for debugging.

UPPER Converts one or more variables to uppercase.

ADDRESS

Syntax ADDRESS [environment [expr1]] [WITH redirect]
 [[VALUE] expr2]

Description The ADDRESS instruction specifies the external environment for the execution of host commands.

Parameters

Parameter Explanation

environment Name of host command environment for subsequent host commands. Normally, the
default host command environment is the native operating system, though this cannot be
the case for applications that embed CM REXX as a macro language. The following
additional host command environments are normally supported: UNIX, sh, csh, ksh,
command, CMD, and DOS.

unix UNIX

sh The Unix Bourne shell; used for commands that are available only in the
Bourne shell or for command syntax specific to the Bourne shell; this is
the default shell used by the default host command environment (Unix).

csh The Unix C shell; used for commands that are available only in the C shell
or for command syntax specific to the C shell.

ksh The UNIX Korn shell; used for commands that are available only in the
Korn shell or for command syntax specific to the Korn shell.

command A special host command environment that bypasses normal shell
expansions; used for commands with operands that would normally be
expanded by the shell, such as "*"; no shell is used; the command is
executed directly; because no shell is invoked, piping (|), redirection (>,
>>, <, etc.), filename expansions (using *, ?, [], etc.), and back
grounding (&) are unavailable.

CMD The NetWare, OS/2, Windows NT, and Windows 95 shells.
Note: Currently, CM supports the standard ‘out of the box’ environments, including
COMMAND, CMD and the UNIX variants.

expr1 Host command to be executed. This can be a literal string or an expression that evaluates
to a host command. When expr1 is specified, ADDRESS sends a single command to the
specified environment. If expr1 is omitted, ADDRESS causes a change to the default
host command environment, which persists until it is explicitly changed again or until the
program exits, whichever comes first.

When a new host command environment is specified, this becomes the primary host
command environment. CM REXX retains the previous environment name as the alternate
environment. Repeated execution of ADDRESS without operands has the effect of a
toggle between the primary and alternate environments.

ADDRESS
[VALUE] expr2

Equivalent to ADDRESS environment. expr2 is an expression that evaluates to the name
of a host command environment. If expr2 does not begin with a symbol or a literal
string (if it starts with a special character), you may omit the sub-keyword VALUE.

48 Chapter 4

Instructions 49

Parameter Explanation

WITH redirect redirect represents the keyword syntax that supports I/O redirection. This extended
format is only available with Address CMD or UNIX (sh, ksh, csh), and not COMMAND. In
the case of Windows, the redirection only works if the command executing is a "console"
command that writes output to standard output. Most Windows commands do not write
to "standard output." For example the command "xcopy" writes to "standard output" but
Notepad does not.

Syntax is as follows:

INPUT PULL

 STEM stem_name

 STREAM file

 NORMAL

OUTPUT [REPLACE] PUSH

 [APPEND] QUEUE

 STEM stem_name

 STREAM file

 NORMAL

ERROR [REPLACE] PUSH

 [APPEND] QUEUE

 STEM stem_name

 STREAM file

 NORMAL

INPUT specifies redirection of standard input for the command. OUTPUT specifies
redirection of standard output. ERROR specifies redirection of standard error. These
keywords may be used individually or in any combination. When used in combination, the
instruction has the form:

address UNIX cmd with input ikey output okey error ekey

where cmd is the command to be executed and ikey, okey, and ekey are additional
keywords for input, output, and error, respectively.

REPLACE indicates that command standard output or standard error should replace
existing data in the target specified. This is the default. APPEND indicates that command
standard output or standard error should be appended to existing data in the target
specified.

The remaining keywords indicate the source (for input) or target (for output and error) of
I/O redirection.

PULL causes command input to be taken from the REXX program stack. PUSH and
QUEUE redirect command output or error to the REXX program stack in the same
manner as the PUSH and QUEUE instructions. These keywords are REXX extensions to
the ANSI standard and should not be used if portability to other platforms is a
consideration.

STEM specifies that the source of command input or the target of output or error is a

Parameter Explanation

stem in the current program.

stem_name is the name of the stem to be used. It must be specified in the form stem.,
the trailing "." being required to distinguish it from an ordinary variable.

For INPUT, you must set stem_name.0 to the number of elements in the stem.
stem_name.1 through stem_name.n contain the data to be redirected. For OUTPUT or
ERROR, stem_name.0 is set automatically to the number of elements created in the
stem. stem_name.1 through stem_name.n contain the data returned from the command.

STREAM specifies that the source of command input or the target of output or error is a
file stream. file specifies the name of the file. It is recommended that file be enclosed in
quotes (UNIX filenames are case sensitive and may also contain characters that would
cause them to appear to REXX as an expression).

NORMAL resets the source of command input or the target of output or error back to
the terminal. When NORMAL is specified, it must be the only keyword following INPUT,
OUTPUT, or ERROR.

Usage Notes

Applications that embed CM REXX as a macro language can define
additional host command environments and/or set a different default.

The current setting of ADDRESS is accessible through the ADDRESS built-in
function, described in detail in Chapter 5: Built-In Functions.

Any host command sent to the default host command environment, or to one
of the automatically recognized environments, creates a new process to
execute the command. When the command completes, the created process
terminates. If the command changes an attribute that is unique for each
process (such as current working directory), the change is associated with the
created process only, and has no effect on the process in which CM REXX is
running.

Example 1

The following program fragment captures the output of the MS-DOS "dir"
command in a file for later use.

address CMD 'dir > filelist'

50 Chapter 4

Instructions 51

Example 2

The following program fragment executes a C shell command to capture the
session command history in a file for later use.

cmd_list = '/tmp/cmd.history'
address csh 'history >' cmd_list

Example 3

The following program fragment alternates between two host command
environments to execute commands that are specific to those environments.

cmd_list = '/tmp/cmd.history'
home_file_list = '/tmp/home.list'
here_file_list = '/tmp/here.list'
sales_file_list = '/tmp/sales.list'
address UNIX
'ls -l >' here_file_list
address csh

Example 4

In the following line, ~ is C-shell short hand for $HOME.

'ls -l ~/reports >' home_file_list
address /* resets environment name to UNIX */
'ls -l > /home/sales/reports'
address /* resets environment name to CSH */
'history >' cmd_list

Example 5

The following program fragment captures the output of the UNIX "ls -l"
command in a file for later use.

address UNIX 'ls -l' with output stream 'files'

Example 6

The following program scans a Windows directory for *.txt files and places
the output of the dir command in the stem variable Text.

/*--*/
/* L i s t D i r */
/*--*/
Trace Off
Cmd = "Dir /b *.txt"
Text.0 = 0
Address CMD Cmd With Output Replace Stem Text.
Do tt = 1 to Text.0
 Say Text.tt
End tt
Exit 0

52 Chapter 4

Instructions 53

ARG

Syntax ARG [template]

Description The ARG instruction retrieves the argument strings of a program or an internal routine and puts
them into variables.

Parameters

Parameter Explanation

template The parsing template that defines how the argument strings are assigned to variables.
For details on parsing templates, refer to the PARSE instruction in this chapter. If
template is omitted, the ARG instruction has no effect.

Usage Notes

The ARG instruction is simply a short form of PARSE UPPER [ARG
template]. Thus, characters in the argument strings are translated to
uppercase and then parsed into variables according to normal parsing rules
(refer to the PARSE instruction in this chapter for details). Use PARSE ARG
to preserve the case of the argument strings.

As with the PARSE instruction, ARG can be used repeatedly with different
templates to separate the argument strings in different ways.

The argument strings and information about the argument strings are also
accessible from the ARG built-in function, described in Chapter Five: Built-In
Functions.

Example 1

The following program, named "bday", accepts a single argument for use in
an output string.

arg who
say 'Happy birthday,' who'!'

If the user types "bday Susan"
the output is "Happy birthday, SUSAN!"

If the user types "bday Jean Luc"
the output is "Happy birthday, JEAN LUC!"

Example 2

The following program fragment accepts a maximum of two arguments for
processing; the third and subsequent arguments are discarded.

arg order_number part_number .
if order_number = '' then
 call display_order_list
if part_number = '' then
 call display_parts_list

Example 3

The following program fragment illustrates repeated use of ARG to separate
the argument strings in different ways.

today = date(s)
say today
call breakup today
exit
breakup:
arg thisdate
arg year +4 month +2 day
arg +2 yr +2 +1 mo +1 +1 dy
say thisdate
say year month day
say yr mo dy
return

The output is:

19940303
19940303
1994 03 03
94 3 3

54 Chapter 4

CALL

Syntax CALL name [expr] [, [expr]] ...
 ON condition [NAME trapname]
 OFF condition

Description The CALL instruction invokes a routine or controls the trapping of certain conditions.

Parameters

Parameter Explanation

name Names the subroutine to be invoked. It can refer to any of these types of routines:

Internal routine Any subroutine or function contained within the current program and
identified by a label.

Built-in function One of the CM REXX built-in functions described in Chapter Five: Built-
In Functions or one of the CM-specific functions described in Chapter
Six: Using Extensions.

External routine An external program written in REXX or a function written in a
language other than REXX that has been added to the CM REXX
interpreter, or that is part of an application that embeds CM REXX as
a macro language.

expr Any valid REXX expression. The expressions are evaluated from left to right with the
results passed to the called routine as arguments.

ON, OFF Sub-keywords of CALL that control the trapping of certain conditions. ON enables a
condition trap. OFF disables a condition trap. Using CALL in this manner is similar to the
use of SIGNAL.

condition

NAME trapname

Simple symbols which are taken as constants.

Usage Notes

name must be either a symbol or a literal string. If it is a literal string, it can
refer only to a built-in function or an external routine, since the search for
internal routines is bypassed.

If the routine returns a value, it is assigned to the special variable RESULT.
If the routine does not return a value, RESULT is dropped.

If name is an internal routine, all variables are available to both the
subroutine and the caller. Use the PROCEDURE instruction, described in
this chapter, to protect variables in the caller from undesired or unexpected
modification by the called routine. The EXPOSE option of the PROCEDURE

Instructions 55

instruction allows you to make selected variables from the caller available to
the subroutine.

If name is an internal routine, the special variable SIGL is set to the line
number of the CALL instruction when control is passed to the subroutine. If
the routine uses the PROCEDURE instruction, you must EXPOSE SIGL if
the line number of the CALL instruction is to be available for debugging
purposes while in the subroutine.

An internal routine can call other internal routines or external routines.
Eventually, a subroutine must exit, or return control to its caller using a
RETURN instruction.

The following conditions can be controlled using the CALL instruction:

Condition Explanation

ERROR Indicates an error condition during execution of a command, or that the specified host
command environment was not found.

FAILURE Indicates that execution of a command failed, or that the specified host command
environment was not found.

HALT Indicates detection of an external interrupt or termination signal.

NOTREADY Indicates an error during an I/O operation.

The following state information is saved when making a call to an internal
subroutine, and is restored when control is returned to the caller:

State Information Explanation

Status of DO loops and
other structures

Executing a SIGNAL in the subroutine does not deactivate DO loops in the
caller.

ADDRESS settings Both the primary and alternate ADDRESS of the caller are unaffected by
ADDRESS commands in the subroutine.

CONDITION traps Use of CALL, or SIGNAL ON or OFF, in the subroutine does not change the
settings in the caller.

CONDITION information This is the information accessed by the CONDITION built-in function.

NUMERIC settings Settings of precision, format, or fuzz factor in the subroutine do not affect the
caller.

TRACE settings All TRACE settings, including the interactive TRACE state, are restored when
control is returned to the caller.

56 Chapter 4

Instructions 57

State Information Explanation

Elapsed time clocks The subroutine can inherit an elapsed time clock from the caller and may reset
it during execution without affecting the caller's clock; thus, an elapsed time
clock started by the subroutine is not available to the caller.

Using CALL to control condition traps differs from using SIGNAL in the
following ways:

• condition is the name of the condition to be detected. If a condition trap
is enabled, when that condition occurs, control is passed to one of the
following:

— to the label specified by trapname, if NAME trapname is specified,
or

— to the label that matches condition, if NAME trapname is not
specified.

• CALL cannot be used with the NOVALUE or SYNTAX conditions.

• State information is preserved across the CALL so the trap routine can
return to the caller, which can resume execution; with SIGNAL, program
execution terminates when the trap routine completes.

Example 1

The following program fragment illustrates calling an internal subroutine
which returns a value.

if date('w') = 'Friday' then call week_report
if result = 0 then say 'Report Generated'
 else say 'Error' result 'from report program'
exit
week_report:
status = 0
: /* Some processing, during which status gets a non-zero value */
: /* if something goes wrong */
return status

Example 2

The following program fragment illustrates nested calls of internal and
external routines.

parse arg first second .
call sub1 first
call sub2 second
exit
sub1:
arg what_to_do
 :
 :
call sub3
if result > 0 then call extern1
return
sub2:
parse arg a '*' b .
 :
 :
return b
sub3:
 :
 :
return

Example 3
The following program fragment uses CALL to control condition traps.

call on error
call on halt name interrupt
address edmwin 'holycow'
 :
i = 1
do 100000
 i = i + 5
 say i
 end
exit
error:
say 'Error condition detected at line' sigl
return
interrupt:
say 'Ctl-C detected; exiting at your request'
exit

58 Chapter 4

Instructions 59

Because the EDMWIN environment does not have a command named
"holycow" (and assuming there is no program in your PATH named
"holycow"), this program detects the ERROR condition, displays the message,
and resumes execution following the ADDRESS instruction. If the user decides
to press CTL-C (an interrupt signal) during the long DO loop, the HALT
condition is detected, messages are printed, and the program terminates.

Example 4
This program illustrates the use of CALL and SIGNAL together to implement
a multi-way call. The program might be named "doit".

parse arg what .

say 'starting in main'
who_to_call = 'aaa'
call multi who_to_call, what

say 'back in main'
exit
multi: procedure
say 'now entering multi'
if arg(2) = '' then signal value arg(1)
 else do
 say 'still in multi, arg is' arg(2)
 return
 end

say 'better not see this line'
return
aaa:
say 'now in aaa'
return

If the program is executed by typing doit, then the output is:

starting in main
now entering multi
now in aaa
back in main

If the program is executed by typing doit go, then the output is:

starting in main
now entering multi
still in multi, arg is go
back in main

DO

Syntax DO [repetitor] [conditional]
 [instr_list]
END [symbol]

Description The DO instruction is used to group instructions together. Such an instruction group can be
executed zero or more times depending on a conditional value and/or a repetitor.

Usage Notes

A DO instruction group consists of the DO instruction followed by one or
more instruction clauses, and then the keyword END. The END keyword
must begin a new clause. instr_list represents the instruction clauses
included in the group. Any CM REXX instruction can appear in the group,
including the DO instruction.

conditional can be any of the following, as explained in the following table:

• WHILE exprl

• UNTIL exprl

Parameter Explanation

exprl exprl is any expression that evaluates to 0 or 1. exprl is evaluated for each pass
through the loop using the current values for all variables. The instruction group is
repeated WHILE exprl evaluates to 1 or UNTIL exprl evaluates to 1.

WHILE A WHILE condition is evaluated at the beginning of the loop. Thus, if the condition is
already satisfied at the start of the first iteration, the instruction group is never executed.

UNTIL An UNTIL condition is evaluated at the end of the loop but before the control value, if
any, is incremented.

The WHILE and UNTIL keywords are reserved within the context of a DO
instruction. This means that they cannot be used in any of the expressions.

Execution of a DO loop can also be modified by the execution of a LEAVE or
ITERATE instruction.

60 Chapter 4

Instructions 61

Repetitor may be any of the following, as explained in the following table:

• exprn

• name= exprn [TO exprn] [BY exprn] [FOR exprn]

• FOREVER

Parameter Explanation

exprn exprn is any expression that evaluates to a number. It is rounded before use according
to the current setting of NUMERIC DIGITS. When used alone or with the FOR keyword,
exprn must evaluate to a non-negative whole number.

name name is a control variable. It can be any valid symbol. name is assigned an initial value
at the beginning of the loop and is stepped BY a specified increment TO a maximum
value or FOR a designated number of iterations. The value of the control variable can be
altered within the loop, but this is not normally considered to be good programming
practice. Also, if the control value is a compound symbol such as "I.J", altering "J" within
the loop changes the control variable and can have an unexpected and undesirable effect
on the result. Again, this is not normally considered to be good programming practice.

TO, BY, and
FOR

TO, BY, and FOR can be used in any combination and in any order. They are evaluated in
the order in which they appear in the DO instruction clause. The default value for BY
exprn is 1. The expressions associated with TO, BY, and FOR are evaluated only once—
when the DO instruction is first executed. The TO condition and the FOR count are
checked at the beginning of each iteration of the loop. If the TO condition is already
satisfied at the start of the first iteration, the instruction group is never executed.

The TO, BY, and FOR keywords are reserved within the context of a DO instruction. This
means that they cannot be used in any of the expressions that appear in conjunction with
the specification of a control variable.

FOREVER The FOREVER keyword indicates that the instruction group should be repeated until an
instruction (such as LEAVE or RETURN) is executed to exit the loop.

repetitor and conditional can be used separately or in combination to
control the number of times an instruction group is executed.

Example 1

The following program fragment illustrates the simplest form of the DO loop.
If the user types Q, the program prints a message and exits; otherwise,
processing proceeds.

say 'Enter menu selection or Q to quit'
pull reply
if reply = 'Q' then do
 say 'Exiting at your request'
 exit
 end
else call do_selection reply

Example 2

The following program fragment illustrates a simple repetitive DO loop.

say 'Enter number of rows to process'
pull reply
if datatype(reply, 'W') then do reply
 line = linein('datafile')
 call mangle_it line
 end

Example 3

The following program fragment illustrates the use of the WHILE conditional
to force continued prompting for user input until something valid is entered.
It also illustrates the use of DO loops within DO loops.

list = 'REXX C FORTRAN LISP PL/I'
thislang = ''
do while thislang = ''
 say 'What language for this program?'
 pull thislang
 if wordpos(thislang, list) = 0 then do
 say ''
 say 'Invalid selection:' thislang
 say 'Must be one of the following:' list
 thislang = ''
 say ''
 end
end

62 Chapter 4

Instructions 63

Example 4

The following program fragment illustrates the use of DO FOREVER. It
repeatedly displays a menu for the user to select processing options until the
user chooses the QUIT option.

do forever
 'clear'
 say ''
 say ' 1 Enter sales data'
 say ' 2 Consolidate by region'
 say ' 3 Consolidate by product line'
 say ' 4 Consolidate by salesman'
 say ' 5 Statistical analyses'
 say ' 6 Monthly report'
 say ' Q Quit'
 say ''
 say 'Select processing option'
 pull option
 if option = 'Q' then leave
 interpret 'call process.'option
 end
exit

Example 5

The following program illustrates nested DO loops. It finds all primes between
1 and n, where n is the calling argument. If n is not specified, the default is
5000; the calls to time('e') make this program suitable for use as a
benchmark.

call time 'e'
arg n
if n = '' then n = 5000
 /* Calculate all non-primes in the range and mark non-primes */
 /* in an array. */
do i = 2 to n%2
 do j = 2 to n%i
 k = i * j
 a.k = 0
 end
 end
 /* Look through the array and display all the primes found. */
 /* */
do i = 1 to n
 if a.i \= 0 then say i

 end
say time('e')

64 Chapter 4

Instructions 65

DROP

Syntax DROP varlist

Description The DROP instruction restores one or more variables to the un-initialized state. In the un-
initialized state, the value of a variable is equal to the name of the variable in uppercase.

Parameters

Parameter Explanation

varlist varlist specifies the variables to be dropped. varlist is one or more symbols separated
by blanks. The symbols must be valid variable names. If a symbol is enclosed in
parentheses, it is a variable reference; and its value is treated as a subsidiary variable
list. The subsidiary list cannot include a variable reference, that is, it must be a list of
symbols representing valid variables, separated by blanks. varlist can include the same
variable more than once. It can also contain variables that have never been assigned a
value.

Usage Notes

Variables are dropped from left to right, with variables in subsidiary lists
dropped as soon as the variable reference is found. If a subroutine drops a
variable that has been exposed from the caller, then the caller's variable is
dropped. If a variable in varlist is a stem, then all variables that begin with
that stem are dropped.

Example 1
x = 10
drop x
say x

The output is:

X

Example 2
x.a = 'cow'
x.b = 'pig'
drop x.
say x.b

The output is:

X.B

Example 3
list = 'a b x.'
a = 10; b = 12; c = 14
y. = 'unknown animal'; y.12 = 'pony'
drop (list) c
say y.b

The output is:

unknown animal

Example 4

The following program fragment illustrates the relationship between the
value returned by the SYMBOL function and DROPped variables.

x = 100
say symbol('x')
drop x
say symbol('x')

The output is

VAR
LIT

Example 5

The following program fragment illustrates using DROP and SYMBOL together
instead of setting a flag to test for successful processing.

drop testvar
do i = 1 to lines('in_file')
 line = linein('in_file')
 if word(line, 5) \= 'temp' then
 testvar = word(line, 5)

end
if symbol('testvar') \= 'LIT' then
 say 'Good data'
 else say 'All temps'

66 Chapter 4

Instructions 67

EXIT

Syntax EXIT [expression]

Description The EXIT instruction is used to unconditionally leave a program. As an option, it can also return a
result to the caller.

Parameters

Parameter Explanation

expression expression is any valid CM REXX expression. Its value is returned to the caller as a
character string.

Usage Notes

When the EXIT instruction is executed, the program terminates immediately.
If an external subroutine is executing, EXIT and RETURN have the same
effect of returning control to the caller.

It is not absolutely necessary to include an EXIT instruction at the end of
your program. EXIT is implied when there are no more instructions to
execute. If, however, a program contains internal subroutines, it is important
to include an EXIT instruction at the end of the main program. In the
absence of such an EXIT, the program would fall through into the first
internal subroutine.

Example 1
say 'Hello world'
exit

This is identical to the one-line program:

say 'Hello world'

Example 2

The following program fragment illustrates returning a value on the exit
instruction.

exitrc = 0
do i = 1 to 3
 interpret 'call report.'i
 if result \= 0 then exitrc = 4

 end
exit exitrc

Example 3

The following program fragment illustrates the use of exit to terminate a
program when an unexpected condition occurs. It generates a report that can
only be run on the last day of the month, so if the user is running this
program on any other day, it terminates automatically. It also illustrates the
use of exit to terminate the main program to avoid falling through into the
first internal routine.

months = 'January February March April May',
 'June July August September October',
 'November December'
days='31 leap() 31 30 31 30 31 31 30 31 30 31'
this_month = wordpos(date('m'), months)
if left(date(), 2) \= word(days, this_month)
 then exit
call setup
call do_report
exit
leap:

The function to calculate the number of days in February is:

:
:
return howmany

68 Chapter 4

Instructions 69

IF

Syntax IF expression [;] THEN [;] instruction [ELSE [;] instruction]

Description The IF instruction is used to conditionally execute an instruction or an instruction group, or to
select between alternative instructions or instruction groups.

Parameters

Parameter Explanation

expression expression must evaluate to 0 or 1.

instruction instruction can be an assignment, a command, or an instruction, including IF and
SELECT constructs and DO groups.

THEN The keyword THEN followed by an instruction is required whenever the IF instruction is
used. If the value of expression is 1, then the instruction following THEN is executed. If
instruction is DO, then an instruction group is executed. If the value of expression is
0, the THEN instruction is bypassed. It is not necessary for the keyword THEN to begin
a new clause.

ELSE The keyword ELSE indicates alternative processing to occur when the value of
expression is 0. The keyword ELSE must begin a new clause in the program. If it
appears on the same line as the THEN instruction, a semicolon must be present to
terminate the THEN instruction.

Usage Notes

Optional semicolons in the syntax diagram indicate that the following
component can appear on the same line as the preceding component (with or
without the presence of a semicolon) or can appear on a new line in the
program without changing the behavior of the IF instruction.

Use the NOP instruction to indicate that nothing is to be executed following a
THEN or ELSE. A null clause is not an instruction in CM REXX, so putting
an extra semicolon after THEN or ELSE results in Error 1: Incomplete
DO/SELECT/IF or Error 8: Unexpected THEN or ELSE.

Example 1
The simplest form of IF:

rc = linein('data.file')
if rc \= 0 then say 'Error reading data.file'

Example 2
The following program fragment still uses the simplest form of IF but uses a
function that evaluates to 0 or 1 as the conditional expression.

val = 'abc'
if datatype(val, 'l') then
 upper_val = translate(val)

Example 3
The following program illustrates alternative processing using ELSE.

say 'Enter menu selection (1, 2, or 3)'
pull answer
if datatype(answer, 'W') then call mysub
 else call error1

Example 4
The following program fragment extends the previous example to illustrate
the use of a more complex conditional expression.

say 'Enter menu selection (1-8)'
pull answer
if \datatype(answer, 'w') | answer < 1 | ,
 answer > 8 then call error1
 else call mysub

70 Chapter 4

Instructions 71

Example 5
The following program fragment illustrates execution of a DO loop within an
IF instruction.

list = 'REXX C FORTRAN LISP PL/I'
say 'What language for this program?'
pull thislang
if wordpos(thislang, list) = 0 then do
 say ''
 say 'Invalid selection:' thislang
 say 'Must be one of the following:' list
end

INTERPRET

Syntax INTERPRET expression

Description The INTERPRET instruction executes dynamically created instructions.

Parameters

Parameter Explanation

expression expression is any valid expression that evaluates to one or more CM REXX instructions.
It is executed just as if it were a line inserted into the program.

Usage Notes

For instructions such as DO, IF, or SELECT, expression must include the
complete instruction construct. If expression evaluates to a DO instruction
which includes a LEAVE or ITERATE instruction, the complete DO-END
construct must still be present.

Label clauses are not permitted in the expression to be interpreted.

Example 1
say 'Enter region for this report'
pull reply
do_prog = 'call report.'reply
interpret do_prog

If the user enters East, the variable do_prog evaluates to call
report.east. The INTERPRET instruction executes the CALL instruction.

Example 2

The following program fragment illustrates a similar use of INTERPRET
without the intermediate variable; it calls a different subroutine for each day
of the week.

today = date('w')
interpret 'call report_'today

72 Chapter 4

Instructions 73

ITERATE

Syntax ITERATE [name]

Description The ITERATE instruction modifies the flow of control within a repetitive DO loop.

Parameters

Parameter Explanation

name name is the name of the control variable for the loop to be iterated. name must refer to
the control variable for a currently active loop. Except for case, name must exactly
match the symbol specifying the control variable on the DO instruction. Substitution for
compound variables does not occur in this case. If name is omitted, then the innermost
active loop is iterated.

Usage Notes

When an ITERATE instruction is encountered, processing of the DO
instruction list stops, and control is returned to the DO clause in the same
manner as if the END keyword had been encountered.

If more than one active loop uses the same control variable, then the
innermost loop is iterated. All active loops inside the loop selected for
iteration are terminated.

Example

The following program fragment outputs all the odd numbers between 1 and
10.

do i = 1 to 10
 if i//2 = 0 then iterate
 say i
 end

The output is:

1
3
5
7
9

LEAVE

Syntax LEAVE [name]

Description The LEAVE instruction causes an immediate exit from one or more repetitive DO loops.

Parameters

Parameter Explanation

name name is the name of the control variable for the loop to be terminated. name must refer
to the control variable for a currently active loop. Except for case, name must exactly
match the symbol specifying the control variable on the DO instruction. Substitution for
compound variables does not occur in this case. Control passes to the instruction
immediately following the END keyword which matches the selected DO. If name is
omitted, the innermost active loop is terminated.

Usage Notes

Execution of the DO instruction list terminates and control passes to the
instruction immediately following the END keyword as if the END had been
encountered and termination conditions had been satisfied normally. If there
is a control variable for the loop, it retains the value it had at the time the
LEAVE instruction was executed.

If more than one active loop uses the same control variable, then the
innermost loop is terminated. All active loops inside the loop selected for
termination are also terminated.

Example

The following program fragment illustrates the use of LEAVE to end a DO
FOREVER loop.

do forever
 say ' 1 Enter sales data'
 say ' 2 Consolidate by region'
 say ' 3 Consolidate by product line'
 say ' Q Quit'
 say 'Select processing option'
 pull option
 if option = 'Q' then leave
 interpret 'call process.'option
 end

74 Chapter 4

Instructions 75

NOP

Syntax NOP

Description The NOP instruction is a dummy instruction. Because the NOP instruction has no effect, it is
useful within IF or SELECT instructions.

Example

The following program fragment uses NOP in a SELECT instruction where an
OTHERWISE clause is required, but no OTHERWISE processing is desired.

parse arg startup_option rest
select
 when startup_option = 1 then
 call lookup rest
 when startup_option = 2 then
 call gen_report rest
 when startup_option = 3 then
 call newdata rest
 otherwise nop
 end

NUMERIC

Syntax NUMERIC DIGITS [expr1]

 FORM [SCIENTIFIC]

 [ENGINEERING]

 [VALUE] expr2
 FUZZ [expr3]

Description The NUMERIC instruction controls the precision and format of numbers used in arithmetic
operations.

Parameters

Parameter Explanation

DIGITS DIGITS controls the precision for arithmetic operations and for the evaluation of
arithmetic functions.

expr1 expr1 specifies the number of significant digits in the result of arithmetic operations or
functions. expr1 must evaluate to a positive whole number that is greater than the
current setting of NUMERIC FUZZ. If necessary, it is rounded according to the current
setting of NUMERIC DIGITS before it is used.

If expr1 is omitted, the default value is 9. The current maximum value for expr1 in CM
REXX is 10.

FORM Controls the format used for exponential notation. The format must be one of the
following:

SCIENTIFIC Only one, non-zero digit appears before the decimal point.

ENGINEERING The exponent (power of ten) is always expressed as a multiple of
three. The number of digits before the decimal point is adjusted as
necessary to meet this criterion.

[VALUE]expr2 expr2 must evaluate to either SCIENTIFIC or ENGINEERING. The
form is set to the value of expr2.

FUZZ Controls the number of digits, at full precision, that are ignored for numeric comparisons.

expr3 expr3 specifies the number of digits to ignore. expr3 must evaluate to a non-negative
whole number that is less than the current setting of NUMERIC DIGITS. If necessary, it is
rounded according to the current setting of NUMERIC DIGITS before it is used.

If expr3 is omitted, the default value is 0.

Usage Notes

It should be noted that small values of NUMERIC DIGITS can produce
unexpected or undesirable results in some cases since the setting affects all
computations. For example, the execution of a DO loop can be altered by
unexpected rounding of the repetitor expression or the value of a control
variable.

76 Chapter 4

Instructions 77

The current setting of NUMERIC DIGITS is accessible using the DIGITS
built-in function described in Chapter Five: Built-In Functions.

The NUMERIC FORM setting can also be specified by evaluating an
expression that follows the sub-keyword VALUE. expr2 must evaluate to
either SCIENTIFIC or ENGINEERING. The VALUE sub-keyword can be
omitted if expr2 does not begin with a literal string or a symbol.

The current setting of NUMERIC FORM is accessible using the FORM built-
in function described in Chapter Five: Built-In Functions.

NUMERIC FUZZ effectively reduces the precision used for numeric
comparisons to the value:

NUMERIC DIGITS - NUMERIC FUZZ

The current setting of NUMERIC FUZZ is accessible using the FUZZ built-in
function described in Chapter Five: Built-In Functions.

Example 1

The following program fragment illustrates the results of various settings of
NUMERIC DIGITS.

x = 123456789
do i = digits() by -2 for 3
 numeric digits i
 say 'Digits:' digits() ' - ' format(x)
 end

The output is:

Digits: 9 - 123456789
Digits: 7 - 1.234568E+8
Digits: 5 - 1.2346E+8

Example 2

The following program fragment illustrates the effect of NUMERIC FORM
ENGINEERING on the output of the previous example.

numeric form engineering
x = 123456789
do i = digits() by -2 for 3
 numeric digits i
 say 'Digits:' digits() ' - ' format(x)
 end

The output is:

Digits: 9 - 123456789
Digits: 7 - 123.4568E+6
Digits: 5 - 123.46E+6

Example 3

The following program fragment illustrates the effect of NUMERIC FUZZ.

numeric digits 6
x = 123456; y = 123455; z = 123451
if x = y then say 'True'; else say 'False'
numeric fuzz 1
if x = y then say 'True'; else say 'False'
if x = z then say 'True'; else say 'False'

The output is:

False
True
False

78 Chapter 4

PARSE

Syntax PARSE [UPPER] ARG [template]
 LINEIN
 PULL
 SOURCE
 VALUE [expr] WITH
 VAR name
 VERSION

Description The PARSE instruction assigns data to variables according to the REXX parsing rules and the
specified template.

Parameters

Parameter Explanation

template is a list of symbols separated by blanks or patterns. The symbols are the
names of variables to which data are assigned. If template is omitted, variables are not
set but data are prepared for parsing in one of the following ways:

• for LINEIN or PULL
A line is removed from a character stream or the CM REXX
program stack.

• for VALUE
expr is evaluated.

• for VAR
If the variable does not have a value, the NOVALUE
condition is raised.

A detailed discussion of parsing templates is presented below.

template

ARG Indicates that the data to be parsed is the argument strings passed to the program,
subroutine, or function.

LINEIN Indicates that the data to be parsed is the next line from the default character input
stream. PARSE LINEIN is simply a short form of:

PARSE VALUE LINEIN() WITH [template]

PULL Indicates that the data to be parsed is one of the following:

If data is available on the CM REXX program stack, the next string on the stack is parsed.

If no data is available on the program stack, data is taken from the default character
input stream (STDIN). If no data is available on the default character input stream, the
program pauses for input.

Instructions 79

Parameter Explanation

SOURCE Indicates that the data to be parsed is a special string that identifies and describes the
source of the program being executed. The SOURCE string is fixed and contains the
following tokens:

• The system where the program is running for CM REXX. This
is the native operating system.

• How the program was invoked. This is COMMAND,
FUNCTION, or SUBROUTINE.

• The full path name of the program.
• The name of the program without the path—the default host

command environment. Normally this is the native operating
system, but it can be different in applications that embed CM
REXX as a macro language.

For example, the following code in the program test5.rex, running on a Windows NT 4.0
system, located in the C:\Program Files\Hewlett-Packard\CM directory, and
executed from a DOS box command line:

parse source x

results in x being set to:

NT COMMAND C:\PROGRA~1\Hewlett-Packard\CM\TEST5.REX
TEST5.REX EDMWIN

VALUE Indicates that the data to be parsed is the result of evaluating expr. The keyword WITH
is required to indicate the end of expr. WITH is therefore reserved in this context and
cannot be included in expr.

VAR Indicates that the data to be parsed is the value of the variable specified by name.
name must be a symbol that is a valid variable name in the current program. The
variable is not changed unless it also appears in the template.

80 Chapter 4

Instructions 81

Parameter Explanation

VERSION Indicates that the data to be parsed is a special string describing this version of CM
REXX. The VERSION string is fixed and contains the following tokens:

language name The first four characters are "REXX" with the
remainder of the token being implementation-
dependent.

language level This indicates the degree of compliance with the
language level definitions in The REXX Language by
Cowlishaw. Language level 4.00 indicates full
compliance with the second edition (1990) of this
reference.

release date (three tokens) The release date of this implementation in the same
format as the default for the DATE built-in function
(dd Mmm yyyy).

For example, the following code:

parse version x

results in x being set to:

REXX:Open-REXX:285:Open-REXX:ASCII
:SingleThread:StaticLink 4.00 13 Nov 1998

Parsing Templates

A parsing template is a symbolic pattern by which a string is broken up
(parsed) and assigned to variables. A string can be split by words (delimited
by blanks), by matching specific string patterns, or by explicit numeric
position. Portions of the string can also be skipped or discarded. The template
can include any combination of:

• Symbols
The variable names to which the data is assigned.

• Patterns
Character string for which a match is sought.

• Positional patterns
Absolute or relative column numbers within the string.

• Placeholder symbols
The ".", indicating that data are to be discarded.

Parsing by Words

The simplest form of parsing templates is comprised only of symbols. The
string is separated into words with one word assigned to each variable. One
possible exception is the last variable in the template, which can be assigned
more than one word if the number of symbols in the template does not exactly
match the number of words in the string.

Usage Notes

Leading and trailing blanks are removed from all tokens except the last. For
the last token, one leading blank (the delimiter) is removed but all other
leading and trailing blanks are retained.

Example 1
string = 'Hello world'
parse var string first second

The result is:

first == 'Hello'
second == 'world'

Example 2
string = 'Once upon a time in the west'
parse var string first second rest

The result is:

first == 'Once'
second == 'upon'
rest == 'a time in the west'

Example 3
string = 'Long ago and far away '
parse var string first second rest

The result is:

first == 'Long'
second == 'ago'
rest = ' and far away '

82 Chapter 4

Instructions 83

Parsing by Patterns

Another method of parsing involves matching a pattern string. This can be
useful in parsing strings that contain delimiters other than blanks between
words. The pattern is specified in the template as a literal string or as a
variable that is set to a literal string. If the pattern is specified as a variable,
the variable name must be enclosed in parentheses in the template to
distinguish it from the symbols to which data is to be assigned. The string to
be parsed is separated so that all characters preceding the pattern are placed
into a variable.

Usage Notes

When pattern matching is used, only the pattern itself is discarded. If there
are any blanks following the pattern, they become leading blanks on the next
token.

Example 1
string = 'red, green, blue'
parse var string color1 ',' color2 ',' color3

The result is:

color1 == 'red'
color2 == ' green'
color3 == ' blue'

Example 2
string = 'time and time again'
parse upper var string a 'and' b

The result is:

a == 'TIME'
b == ' TIME AGAIN'

Example 3
parse arg x ',' y

If the argument string passed to this program is "4,3", then

x == '4'
y == '3'

Example 4
delim = 'or'
string = 'You or me or them?'
parse var string a (delim) b (delim) c

The result is:

a == 'You'
b == ' me'
c == ' them?'

Example 5

The following program fragment extends the idea of using a variable name as
the pattern to show how to parse a series of strings that may include
different delimiters.

str.0 = 3
str.1 = 'Numbers : 1414 : 2753 : 1816'
str.2 = 'Names - Tom - Dick - Harry'
str.3 = 'Cars # Ford # BMW # Toyota'
do i = 1 to str.0
 parse var str.i what x rest
 parse var rest a (x) b (x) c
 say what':' a b c
 end

The output is:

Numbers: 1414 2753 1816
Names: Tom Dick Harry
Cars: Ford BMW Toyota

Parsing by Position

When parsing by position, the template includes column numbers where the
next token begins. These can be absolute or relative column numbers. Using
relative column numbers permits re-positioning of the starting point for the
next token and even allows you to re-parse in a different manner data which
has already been assigned to variables.

Usage Notes

The value of a positional pattern is specified in the template as a whole
number or as a variable that is set to a whole number. If the positional

84 Chapter 4

Instructions 85

pattern is specified as a variable, the variable name must be enclosed in
parentheses in the template to distinguish it from the symbols to which data
is to be assigned.

A positional pattern that is not preceded by a sign, or that is preceded by an
equals sign (=), is an absolute positional pattern. A positional pattern that is
preceded by a plus or minus sign is a relative positional pattern.

When an absolute positional pattern appears in the template, the preceding
variable receives all data up to, but not including, that absolute position. The
next variable receives data beginning at the specified absolute position.

When a relative positional pattern appears in the template, the starting
position for the next assignment is calculated by adding or subtracting the
specified value from the last matched position.

Use "+0" as a relative positional pattern to assign data without moving the
start point for the next assignment.

Example 1

The following program fragment gives the instruction to move to the 5th
column and assign the rest of the string to variable "y".

x = 1234567890
parse var x 5 y

The result is:

y = '567890'

Example 2

The following program fragment gives the instruction to assign the data up to
column 3 to "y", then move forward 4 columns and assign the rest of the
string to "z".

x = 1234567890
parse var x y 3 +4 z

The result is:

y = '12'
z = '7890'

Example 3

The following program fragment gives the instruction to assign the data up to
column four to "a"; to assign the data in the next five columns to "b"; to move
forward one column and assign the rest of the string to "c".

x = 'abcdefghijklmnop'
parse var x a 4 b +5 +1 c

The result is:

a == 'abc'
b == 'defgh'
c == 'jklmnop'

Example 4

The following program fragment gives the instruction to assign the data up to
column four to "a", to move back two columns and assign the rest of the
string to "b"; move to column one and assign the next four columns to "c".

x = abcdefgh
parse var x a 4 -2 b 1 c +4

The result is:

a == 'ABC'
b == 'BCDEFGH'
c == 'ABCD'

86 Chapter 4

Instructions 87

Example 5
s.0 = 3
s.1 = 'A:1414:2753:1816'
s.2 = 'B-Tom-Dick-Harry'
s.3 = 'C#Ford#BMW#Toyota'
do i = 1 to s.0
 parse var s.i what 2 x +1 a (x) b (x) c
 say what':' a b c
 end

The output is:

A: 1414 2753 1816
B: Tom Dick Harry
C: Ford BMW Toyota

Example 6

The following program fragment gives the instruction to move to column
three; assign the rest of the string to "a" but don't move the parsing position;
assign the next three characters to "b"; move forward one column; assign the
rest of the string to "c".

x = 1234567890
parse var x 3 a +0 b +3 +1 c

The result is:

a == '34567890'
b == '345'
c == '7890'

Parsing with Placeholders

Parsing templates can also include placeholder symbols. The placeholder
symbol is the period ("."). If a period is encountered in a template, data that
would normally be assigned to a variable at that point is discarded.

Example 1

The output of the following program fragment:

x = 'How are you'
parse var x a . b
say a b 'be?'

is:

"How you be?"

Example 2

The output of the following program fragment:

x = 'one potato two potato three potato four'
parse var x a . b . c . rest
say a b c rest

is:

one two three four

Putting it All Together

Parsing templates can include any combination of the elements discussed
above. This makes PARSE an extremely powerful and flexible tool for
manipulating data.

88 Chapter 4

Instructions 89

PROCEDURE

Syntax PROCEDURE [EXPOSE varlist]

Description The PROCEDURE instruction is used in an internal routine to protect the caller's variables from
modification during execution of the routine. It also has the effect of ensuring that the
subroutine's variables are in their un-initialized state each time the routine is called.

Parameters

Parameter Explanation

PROCEDURE If present, the PROCEDURE instruction must be the first instruction following the label. All
variables used in the subroutine are then local to that routine. When a RETURN
instruction is executed, all these local variables are dropped and the caller's variables are
restored.

EXPOSE The EXPOSE sub-keyword allows you to selectively expose variables from the caller's
environment for manipulation by the subroutine.

varlist varlist is the list of variables to be exposed. varlist is one or more symbols separated by
blanks. The symbols must be valid variable names. If a symbol is enclosed in
parentheses, it is a variable reference; and its value is treated as a subsidiary variable
list. The subsidiary list cannot include a variable reference, that is, it must be a list of
symbols, representing valid variables, separated by blanks. varlist can include the same
variable more than once. It can also contain variables that have never been assigned a
value.

Usage Notes

It is not necessary for an internal routine to include a PROCEDURE
instruction. If it does not, then all the variables of the caller are visible to,
and can be modified by, the subroutine. Using PROCEDURE protects the
caller's variables from modification by the subroutine.

Variables are exposed from left to right. When a variable reference is
encountered, the variable itself is exposed first, with variables in subsidiary
lists exposed as soon as the variable reference is found. If a variable in
varlist is a stem, then all variables that begin with that stem are exposed.

Consideration should be given to the order in which variables are exposed. If
a variable is to be used to expose a compound variable, then it must be
exposed before the compound variable.

Example 1

The following program fragment illustrates the effect of not using PROCEDURE
in an internal subroutine.

x = 10; y = 20; z = 30
call blotz
say y
exit
blotz:
say y
return

The output is:

20
20

Example 2

The following program fragment illustrates the effect of PROCEDURE alone.

x = 10; y = 20; z = 30
call blotz
say y
exit
blotz:
procedure
say y
return

The output is:

Y
20

90 Chapter 4

Instructions 91

Example 3
The following program fragments illustrate the effect of EXPOSing a variable
and how modifications to the variable affect its value on return to the caller.

For the following:

x = 10; y = 20; z = 30
call blotz
say y
exit
blotz:
procedure expose y
say y
return

The output is:

20
20

For the following:

x = 10; y = 20; z = 30
call blotz
say y
exit
blotz:
procedure expose y
say y
drop y
return

The output is:

20
Y

For the following:

x = 10; y = 20; z = 30
call blotz
say y
exit blotz:
procedure expose y
say y
y = x
return

The output is:

20
X

The variable x was not exposed so y was assigned the value of the un-
initialized symbol x.

Example 4

The following program fragment illustrates the use of variable references and
the exposure of compound variables.

a = 1; b = 2; c = 3
x = 10; y = 20; z = 30
p. = 'unknown value'
p.1 = 100; p.2 = 200; p.3 = 300

blotz_list = 'a b c'
call blotz
say p.b
exit
blotz:
procedure expose (blotz_list) p.b
p.b
b = 4
return

The output is:

200
unknown value

92 Chapter 4

Instructions 93

PULL

Syntax PULL [template]

Description The PULL instruction reads a line from the CM REXX program stack. If the program stack is
empty, PULL reads from the default character input stream (STDIN). The PULL instruction is
simply a short form of PARSE UPPER PULL [template].

Parameters

Parameter Explanation

template template is the parsing template that defines how the data are assigned to variables.
For details on parsing templates, refer to the PARSE instruction on page 79. If template
is omitted, the data read by PULL are simply discarded. This is functionally equivalent to
using PULL, where the template is comprised solely of the placeholder symbol.

Usage Notes

The data read are translated to uppercase and then parsed into variables
according to normal parsing rules (refer to the PARSE instruction in this
chapter for details). Use PARSE PULL to preserve the case of the data.

The number of lines currently available in the program stack is accessible
with the QUEUED built-in function described in Chapter Five: Built-In
Functions.

Example 1
The following program fragment processes all data currently available on the
CM REXX program stack.

do j = 1 while queued() > 0
 pull order.j . amount.j .
 end

Example 2
The following program fragment assumes that no data are on the program
stack and that PULL will read from STDIN, normally the terminal.

say 'Type a menu option or "Q" to quit'
pull reply
if reply = 'Q' then exit

The test is valid regardless of the case in which the user types q since PULL
converts to uppercase.

94 Chapter 4

Instructions 95

PUSH

Syntax PUSH [expression]

Description The PUSH instruction places a string at the top of the CM REXX program stack. Data are stacked
in LIFO (last-in-first-out) order.

Parameters

Parameter Explanation

expression expression is evaluated and the result placed on the program stack. If expression is
omitted, a null string is placed on the stack.

Usage Notes

Use the QUEUE instruction, described in this chapter, to place data at the
bottom of the program stack.

The number of lines currently available in the program stack is accessible
with the QUEUED built-in function described in Chapter Five: Built-In
Functions.

Example 1
The following example places not nice at the top of the program stack.

and = 'not'
shove = 'nice'
push and shove

Example 2
The following program fragment illustrates the use of PUSH to place
something on the stack for use by a subroutine.

parse arg input
push input
if datatype(input, 'num') then call numeric
 else call char
 :
exit
numeric: procedure
parse pull value
 :
return

char: procedure
parse pull string
 :
return

96 Chapter 4

Instructions 97

QUEUE

Syntax QUEUE [expression]

Description The QUEUE instruction places a string at the bottom of the CM REXX program stack. Data is
stacked in FIFO (first-in-first-out) order.

Parameters

Parameter Explanation

expression expression is evaluated and the result placed on the program stack. If expression is
omitted, a null string is placed on the stack.

Usage Notes

Use the PUSH instruction, described in this chapter, to place data at the top
of the program stack.

The number of lines currently available in the program stack is accessible
with the QUEUED built-in function described in Chapter Five: Built-In
Functions.

Example 1

The following example places how much longer? at the bottom of the
program stack.

for = 'how much'
entry = 'longer?'
queue for entry

Example 2

The following program fragment illustrates use of the stack to remove a block
of lines from a file in place⎯no intermediate file.

pull start_line block_size
do start_line - 1
 queue linein('data.txt')
 end
do block_size
 tossit = linein('data.txt')
 end
do until lines('data.txt') = 0
 queue linein('data.txt')
 end
pull first
call lineout 'data.txt', first, 1
do queued()
 pull next
 call lineout 'data.txt', next
 end
call lineout 'data.txt'

98 Chapter 4

Instructions 99

RETURN

Syntax RETURN [expression]

Description The RETURN instruction is used to return control from a REXX program or internal routine to its
caller. It can also, optionally, return a value.

Parameters

Parameter Explanation

expression expression is the value to be returned to the caller. expression can evaluate to any
character string, including the null string.

Usage Notes

If the program is external, the effect of RETURN is identical to that of the
EXIT instruction.

If the program was invoked by the CALL instruction, it is being executed as a
subroutine. In this case, the return value is optional. When control returns to
the caller, the special variable RESULT is set to the value of expression. If
expression is omitted, the special variable RESULT is dropped.

If the program was invoked as a function, it must return a value. This value
(the result of the function) is used in the original expression at the point
where the function was invoked.

Example 1

The following program fragment illustrates the simplest use of RETURN in an
internal routine invoked as a subroutine.

say 'Please select a processing option (1-8)'
pull reply
interpret 'call option.'reply
 :
 :
exit
option.1:
procedure expose (list1)
 :
 :
return
option.2:
 :
 :

Example 2

The following program fragment illustrates returning a value from a
subroutine.

say 'Please select a processing option (1-8)'
pull reply
if reply \= 'Q' then do
 interpret 'call option.'reply
 if result \= 0 then signal disaster
 end
exit
option.1:
procedure expose (list1)
status = 0
 : /* If something goes wrong in here, an */
 : /* appropriate message is displayed & */
 : /* status is set to a non-zero value. */
return status
 :
 :
disaster:
say 'Unrecoverable error in option:' reply
say 'Processing terminated'
exit

100 Chapter 4

Instructions 101

Example 3

The following program fragment illustrates the use of RETURN in an internal
routine invoked as a function.

months = 'January February March April May',
 'June July August September October',
 'November December'
days='31 leap() 31 30 31 30 31 31 30 31 30 31'
 :
 :
exit
leap:

The leap() function calculates the number of days in February…

 :
 :
return how many

SAY

Syntax SAY [expression]

Description The SAY instruction writes a line to the default character output stream.

Parameters

Parameter Explanation

expression expression is evaluated and the result is written to the default output stream. If
expression is omitted, the result is a null string.

Usage Notes

The default character output stream is the standard output (STDOUT), and
is normally the terminal unless the standard output has been redirected.

The SAY instruction is equivalent to:

CALL LINEOUT , [expression]

In the case of SAY, however, the special variable RESULT is not set.

To view terminal output on the screen in Windows environments, you must
use the WinMessageBox function. See this function for more information.

Example 1

The following program fragment writes the string Hello world to the
standard output, normally the terminal.

say 'Hello world'

Example 2

The output of the following program fragment:

say 'Enter amount of sale'
 pull amount
 say 'Commission is:' amount * .06

is 6% of the sale amount entered.

102 Chapter 4

Instructions 103

Example 3
retcode = linein('data.txt')
if retcode \= 0 then
 say 'Error reading "data.txt"'

If the read operation fails, the message is displayed.

SELECT

Syntax SELECT
when_list
 [OTHERWISE [;] instr_list]
 END

Description The SELECT instruction is used to conditionally execute one of several alternative instructions.

Parameters

Parameter Explanation

SELECT A SELECT instruction consists of the SELECT instruction followed by one or more WHEN
clauses, optionally followed by an OTHERWISE clause, and terminated by the keyword
END. The END keyword must begin a new clause.

when_list when_list defines the conditions under which each alternative is selected.

OTHERWISE The keyword OTHERWISE indicates alternative processing to occur when none of the
WHEN expressions evaluates to 1. instr_list is one or more instructions to be executed if
the OTHERWISE path is chosen. If instr_list is omitted, this is equivalent to using the
NOP instruction.

Usage Notes

when_list is made up of one or more constructs in the following syntax:

WHEN expression [;] THEN [;] instruction

Parameter Explanation

expression expression must evaluate to 0 or 1.

instruction instruction can be an assignment, a command, or an instruction, including the DO, IF,
or SELECT instruction.

THEN The keyword THEN followed by an instruction is required whenever the WHEN keyword is
used. If the value of expression is 1, then the instruction following THEN is executed. If
instruction is DO, then an instruction group is executed. If the value of expression is
0, then instruction is bypassed and the next WHEN expression is evaluated. It is not
necessary for the keyword THEN to begin a new clause.

Optional semicolons in the syntax diagrams indicate that the following
component can appear on the same line as the preceding component (with or
without the presence of a semicolon), or can appear on a new line in the
program without changing the behavior of the SELECT instruction.

104 Chapter 4

Instructions 105

If you are certain that one of the WHEN alternatives will be executed, the
OTHERWISE clause can be omitted; however, this is generally not
considered good programming practice. If none of the WHEN expressions
evaluates to 1, absence of an OTHERWISE clause results in Error 7: WHEN
or OTHERWISE expected. If present, the keyword OTHERWISE must begin
a new clause in the program.

Use the NOP instruction to indicate that nothing is to be executed following a
THEN or OTHERWISE. A null clause is not an instruction in CM REXX, so
putting an extra semicolon after the THEN results in an error.

Example 1

The following program fragment illustrates the use of NOP with SELECT. If a
line begins with a comment character (#) followed by a space, no action is
taken.

do while lines('parms.txt') \= 0
 dowhat = word(linein('parms.txt'), 1)
 select
 when dowhat = 'Monthly' then call report
 when dowhat = '#' then nop
 when dowhat = 'Weekly' then call add_data
 otherwise interpret 'call' dowhat
 end
 end

Example 2

The following program fragment illustrates the use of SELECT to choose
among alternative processing options.

parse arg startup_option rest
select
 when startup_option = 1 then
 call lookup rest
 when startup_option = 2 then
 call gen_report rest
 when startup_option = 3 then
 call newdata rest
 otherwise call edit
 end

SIGNAL

Syntax SIGNAL label
 [VALUE] expression
 ON condition [NAME trapname]
 OFF condition

Description The SIGNAL instruction causes an abnormal change in the flow of control or controls the trapping
of certain conditions.

Parameters

Parameter Explanation

label label is the label name to which control is passed. It must be a symbol (which is
treated literally) or a literal string. label must be a valid label name in the current
program.

Usage Notes

As an alternative, the label name can be derived from the expression
following the keyword VALUE. expression must evaluate to a valid label
name in the current program. The keyword VALUE can be omitted if
expression does not begin with a symbol or a literal string.

When control passes to the specified label, all active DO, IF, SELECT, and
INTERPRET instructions are immediately terminated and cannot be
reactivated. The line number of the SIGNAL instruction is assigned to the
special variable SIGL.

The ON and OFF sub-keywords of SIGNAL control the trapping of certain
conditions. ON enables a condition trap. OFF disables a condition trap. Using
SIGNAL in this manner is similar to the use of CALL except that control is
not returned to the program executing the SIGNAL.

condition is the name of the condition to be detected. If a condition trap is
enabled, when that condition occurs, control is passed to one of the following:

• to the label specified by trapname, if NAME trapname is specified.

• to the label that matches condition, if NAME trapname is not
specified.

106 Chapter 4

Instructions 107

Both condition and trapname are single symbols which are taken as
constants.

The following conditions can be controlled using the SIGNAL instruction:

Condition Explanation

ERROR Indicates an error condition during execution of a command or that the specified host
command environment was not found.

FAILURE Indicates that execution of a command failed or that the specified host command
environment was not found.

HALT Indicates detection of an external interrupt or termination signal.

NOTREADY Indicates an error during an I/O operation.

NOVALUE Indicates that a symbol referenced in an expression or in a PARSE, PROCEDURE, or
DROP instruction has not been assigned a value.

SYNTAX Indicates a syntax error during program execution.

Using SIGNAL to control condition traps differs from using CALL in the
following ways:

• All conditions can be trapped with SIGNAL; CALL cannot be used with
the NOVALUE and SYNTAX conditions.

• SIGNAL does not return control to the program that executed the
SIGNAL. With CALL, state information is preserved across the CALL so
the trap routine can return to the caller, which can resume execution.

Example

The following program fragment illustrates the use of SIGNAL to set up traps
for all conditions.

signal on error
signal on failure
signal on halt name interrupt
signal on notready
signal on novalue name uhoh
say 'Enter host command environment'
parse pull hce
say 'Enter command to run'
parse pull cmd
say 'Enter filename to read'
parse pull file
line = linein(file)
address hce 'more /home/'userid()'/.login'
"'"cmd"'"
i = 1
do 100000
 i = i + 5
 say i
 end
a = b
exit
error:
say 'Error detected at line' sigl; exit
failure:
say condition('c') 'detected at line' sigl;exit
interrupt:
say 'Ctl-C detected'; exit
notready:
say 'File' file 'not found'; exit
uhoh:
say 'Oops, no value in line' sigl; exit

• If the user names a non-existent host environment, the failure exit is
taken.

• If the execution of the user's command failed in any way, the error exit is
taken.

• If the user names a file that does not exist or for which read permission
has not been granted, the notready exit is taken.

• If the user presses CTL-C during the long DO loop, the halt exit is taken.

108 Chapter 4

Instructions 109

• If the program ever gets to the line that reads a = b, the novalue exit is
taken.

TRACE

Syntax TRACE [option]
 [VALUE] expression

Description The TRACE instruction traces execution flow in a program and is used primarily for debugging.

Parameters

Parameter Explanation

option option specifies the level of tracing to occur. Alternatively, the level can be taken from
the value of expression. The keyword VALUE can be omitted if expression does not
begin with a symbol or a literal string. If no trace level is specified or if option or
expression evaluate to a null string, the default is N.

Usage Notes

option (or the value of expression) can be one of the following:

Trace Option Explanation

A (All) Trace all clauses before execution.

C (Commands) Trace all commands before execution; if the command results in error or failure, show
the return code as well.

E (Error) Trace (after execution) any command that results in error; show the return code as
well.

F (Failure) Trace (after execution) any command that results in failure; show the return code as
well; this is identical to TRACE N.

I (Intermediates) Trace all clauses before execution; show intermediate results of expressions as well as
substituted names; show final results of expressions; show values assigned as the
result of ARG, PARSE, or PULL instructions.

L (Labels) Trace only labels; this is particularly useful for observing the flow to and from internal
routines.

N (Normal) Trace only commands that result in failure. Show the return code. This is the default
trace level.

O (Off) Nothing is traced; interactive tracing is disabled.

R (Results) Trace all clauses before execution; show the final results of expressions; show values
assigned as the result of ARG, PARSE, or PULL instructions.

Trace output is automatically formatted according to its logical depth of
nesting within the program. If TRACE R or TRACE I is specified, results are

110 Chapter 4

Instructions 111

indented an additional two spaces and are enclosed in double quotes so that
leading and trailing blanks can be easily identified. The first clause traced on
any line is preceded by its line number.

All trace output lines have a three-character prefix to indicate the type of
data. The following prefixes are used for all trace settings:

Line Prefix Explanation

- Source of the clause (the data that is actually in the program).

+++ Trace message; this could include error or failure return codes, prompts at interactive
trace startup, a syntax error during interactive trace, or a traceback from a syntax error
during execution.

>>> Result of an expression, the value assigned to a variable during parsing, or the return
value from a subroutine or function call.

>.> Value assigned to a placeholder during parsing.

The following additional prefixes are used when TRACE I is in effect:

Line Prefix Explanation

>V> Contents of a variable.

>L> Literal (constant symbol, un-initialized variable, or literal string).

>F> Result of a function call.

>P> Result of a prefix operation.

>O> Result of an operation on two terms.

>C> Compound variable; traced after substitution and before use.

Example 1

The following program fragment includes various kinds of REXX clauses;
output is shown from specifying each of the trace options as a calling
argument; the program is named "traceit.rex". The file infile.txt has one line
with the number 123 starting in column 1.

trace value arg(1)
 file = 'infile.txt'
 line = linein(file)
 x = word(line, 1)
 if datatype(x) = 'NUM' then do
 y = x + 456 / 100
 say y
 end
 call Subrtn
 if result > 4 then address edmwin 'copy
 infile.txt outfile.txt'
 exit

 Subrtn:
 say now in subroutine
 return 4

Example 2
Logged output from: RADPNLWR traceit.rex a

Termout EDM000010 99.202 14:09:15 4 *-* file = 'infile.txt'
EDM000010 99.202 14:09:15 5 *-* line = linein(file)
EDM000010 99.202 14:09:15 6 *-* x = word(line, 1)
EDM000010 99.202 14:09:15 7 *-* if datatype(x) = 'NUM'
EDM000010 99.202 14:09:15 7 *-* then
EDM000010 99.202 14:09:15 7 *-* do
EDM000010 99.202 14:09:15 8 *-* y = x + 456 / 100
EDM000010 99.202 14:09:15 9 *-* say y
EDM000010 99.202 14:09:15 127.56
EDM000010 99.202 14:09:15 10 *-* end
EDM000010 99.202 14:09:15 11 *-* call Subrtn
EDM000010 99.202 14:09:15 15 *-* Subrtn:
EDM000010 99.202 14:09:15 16 *-* say now in subroutine
EDM000010 99.202 14:09:15 NOW IN SUBROUTINE
EDM000010 99.202 14:09:15 17 *-* return 4
EDM000010 99.202 14:09:15 12 *-* if result > 4
EDM000010 99.202 14:09:15 13 *-* exit

112 Chapter 4

Instructions 113

Example 3
Logged output from: RADPNLWR traceit.rex c

EDM000010 99.202 14:25:08 REXX Environment set up
 completed successfully
EDM000010 99.202 14:25:08 127.56
EDM000010 99.202 14:25:08 NOW IN SUBROUTINE
EDM000010 99.202 14:25:08 REXX host cmd env cleanup
 completed successfully

Example 4
Logged output from: radpnlwr traceit.rex e

 (No errors occurred)

EDM000010 99.202 14:27:50 REXX Environment set up
 completed successfully
EDM000010 99.202 14:27:50 127.56
EDM000010 99.202 14:27:50 NOW IN SUBROUTINE
EDM000010 99.202 14:27:50 REXX host cmd env cleanup
 completed successfully

Example 5
Logged output from: radpnlwr traceit.rex f

 (No failure occurred)

EDM000010 99.202 14:29:07 REXX Environment set up
 completed successfully
EDM000010 99.202 14:29:07 127.56
EDM000010 99.202 14:29:07 NOW IN SUBROUTINE
EDM000010 99.202 14:29:07 REXX host cmd env cleanup
 completed successfully

Example 6
Logged output from: radpnlwr traceit.rex l

EDM000010 99.202 14:30:25 REXX Environment set up completed successfully
EDM000010 99.202 14:30:25 127.56
EDM000010 99.202 14:30:25 15 *-* Subrtn:
EDM000010 99.202 14:30:25 NOW IN SUBROUTINE
EDM000010 99.202 14:30:25 REXX host cmd env cleanup
 completed successfully

Example 7
Logged output from: radpnlwr traceit.rex n

 (No failure occurred)

EDM000010 99.202 14:31:34 REXX Environment set up
 completed successfully
EDM000010 99.202 14:31:34 127.56
EDM000010 99.202 14:31:34 NOW IN SUBROUTINE
EDM000010 99.202 14:31:34 REXX host cmd env cleanup
 completed successfully

Example 8
Logged output from: radpnlwr traceit.rex o

EDM000010 99.202 14:32:36 REXX Environment set up
 completed successfully
EDM000010 99.202 14:32:36 127.56
EDM000010 99.202 14:32:36 NOW IN SUBROUTINE
EDM000010 99.202 14:32:36 REXX host cmd env cleanup
 completed successfully

Example 9
Logged output from: radpnlwr traceit.rex i

EDM000010 99.202 14:33:51 REXX Environment set up
 completed successfully
EDM000010 99.202 14:33:51 4 *-* file = 'infile.txt'
EDM000010 99.202 14:33:51 >L> "infile.txt"
EDM000010 99.202 14:33:51 >>> "infile.txt"
EDM000010 99.202 14:33:51 5 *-* line = linein(file)
EDM000010 99.202 14:33:51 >V> "infile.txt"
EDM000010 99.202 14:33:51 >F> "123"
EDM000010 99.202 14:33:51 >>> "123"
EDM000010 99.202 14:33:51 6 *-* x = word(line, 1)
EDM000010 99.202 14:33:51 >V> "123"
EDM000010 99.202 14:33:51 >L> "1"
EDM000010 99.202 14:33:51 >F> "123"
EDM000010 99.202 14:33:51 >>> "123"
EDM000010 99.202 14:33:51 7 *-* if datatype(x) = 'NUM'
EDM000010 99.202 14:33:51 >V> "123"
EDM000010 99.202 14:33:51 >F> "NUM"
EDM000010 99.202 14:33:51 >L> "NUM"
EDM000010 99.202 14:33:51 >O> "1"

114 Chapter 4

Instructions 115

EDM000010 99.202 14:33:51 >>> "1"
EDM000010 99.202 14:33:51 7 *-* then
EDM000010 99.202 14:33:51 7 *-* do
EDM000010 99.202 14:33:51 8 *-* y = x + 456 / 100
EDM000010 99.202 14:33:51 >V> "123"
EDM000010 99.202 14:33:51 >L> "456"
EDM000010 99.202 14:33:51 >L> "100"
EDM000010 99.202 14:33:51 >O> "4.56"
EDM000010 99.202 14:33:51 >O> "127.56"
EDM000010 99.202 14:33:51 >>> "127.56"
EDM000010 99.202 14:33:51 9 *-* say y
EDM000010 99.202 14:33:51 >V> "127.56"
EDM000010 99.202 14:33:51 >>> "127.56"
EDM000010 99.202 14:33:51 127.56
EDM000010 99.202 14:33:51 10 *-* end
EDM000010 99.202 14:33:51 11 *-* call Subrtn
EDM000010 99.202 14:33:51 15 *-* Subrtn:
EDM000010 99.202 14:33:51 16 *-* say now in subroutine
EDM000010 99.202 14:33:51 >L> "NOW"
EDM000010 99.202 14:33:51 >L> "IN"
EDM000010 99.202 14:33:51 >O> "NOW IN"
EDM000010 99.202 14:33:51 >L> "SUBROUTINE"
EDM000010 99.202 14:33:51 >O> "NOW IN SUBROUTINE"
EDM000010 99.202 14:33:51 >>> "NOW IN SUBROUTINE"
EDM000010 99.202 14:33:51 NOW IN SUBROUTINE
EDM000010 99.202 14:33:51 17 *-* return 4
EDM000010 99.202 14:33:51 >L> "4"
EDM000010 99.202 14:33:51 >>> "4"
EDM000010 99.202 14:33:51 12 *-* if result > 4
EDM000010 99.202 14:33:51 >V> "4"
EDM000010 99.202 14:33:51 >L> "4"
EDM000010 99.202 14:33:51 >O> "0"
EDM000010 99.202 14:33:51 >>> "0"
EDM000010 99.202 14:33:51 13 *-* exit
EDM000010 99.202 14:33:51 REXX host cmd env cleanup
 completed successfully

Example 10
Logged output from: radpnlwr traceit.rex r

EDM000010 99.202 14:38:14 REXX Environment set up
 completed successfully
EDM000010 99.202 14:38:14 4 *-* file = 'infile.txt'
EDM000010 99.202 14:38:14 >>> "infile.txt"
EDM000010 99.202 14:38:14 5 *-* line = linein(file)
EDM000010 99.202 14:38:14 >>> "123"
EDM000010 99.202 14:38:14 6 *-* x = word(line, 1)
EDM000010 99.202 14:38:14 >>> "123"
EDM000010 99.202 14:38:14 7 *-* if datatype(x) = 'NUM'
EDM000010 99.202 14:38:14 >>> "1"
EDM000010 99.202 14:38:14 7 *-* then
EDM000010 99.202 14:38:14 7 *-* do
EDM000010 99.202 14:38:14 8 *-* y = x + 456 / 100
EDM000010 99.202 14:38:14 >>> "127.56"
EDM000010 99.202 14:38:14 9 *-* say y
EDM000010 99.202 14:38:14 >>> "127.56"
EDM000010 99.202 14:38:14 127.56
EDM000010 99.202 14:38:14 10 *-* end
EDM000010 99.202 14:38:14 11 *-* call Subrtn
EDM000010 99.202 14:38:14 15 *-* Subrtn:
EDM000010 99.202 14:38:14 16 *-* say now in subroutine
EDM000010 99.202 14:38:14 >>> "NOW IN SUBROUTINE"
EDM000010 99.202 14:38:14 NOW IN SUBROUTINE
EDM000010 99.202 14:38:14 17 *-* return 4
EDM000010 99.202 14:38:14 >>> "4"
EDM000010 99.202 14:38:14 12 *-* if result > 4
EDM000010 99.202 14:38:14 >>> "0"
EDM000010 99.202 14:38:14 13 *-* exit
EDM000010 99.202 14:38:14 REXX host cmd env cleanup
 completed successfully

116 Chapter 4

Instructions 117

UPPER

Syntax UPPER var_list

Description The UPPER instruction converts one or more variables to uppercase.

Parameters

Parameter Explanation

var_list var_list is the list of variables to be converted to uppercase. var_list must be a list of
symbols separated by blanks. Variable references (symbols enclosed in parentheses) are
not permitted.

Example 1

For the following example:

a = 'Hello world'
upper a say a

The output is:

HELLO WORLD

Example 2

For the following example:

a = 'c3po'
b = 'r2d2'
upper a b say a 'and' b

The output is:

C3PO and R2D2

118 Chapter 4

5 Built-In Functions

This chapter explores the powerful set of built-in functions found in CM
REXX. These functions can be called by any program.

119

Built-In Functions Overview

Typically, a function is invoked as a term in an expression. The general form
of a function call is:

function_name([expression][, [expression]] ...)

A function returns a single result that is substituted in the expression just as
the value of a variable is used. A function call can be used in any expression
wherever any other term would be valid. The argument expressions can also
be function calls. There cannot be intervening blanks between the
function_name and the opening parenthesis. The presence of such blanks will
cause the expression to be interpreted as two unrelated symbols or
expressions.

You can also invoke a function using the CALL instruction. In this case, the
proper syntax is:

CALL function_name [expression] [, [expression]]...

If you CALL a built-in function, the value that it returns is assigned to the
special variable RESULT.

120 Chapter 5

Built-In Functions 121

The following built-in functions are available in CM REXX and will be
explained in this chapter:

ABBREV FIND * SOURCELINE

ABS FORM SPACE

ADDRESS FORMAT STREAM

ARG FUZZ STRIP

B2X GETCWD SUBSTR

BITAND GETENV SUBWORD

BITOR INDEX * SYMBOL

BITXOR INSERT TIME

C2D JUSTIFY * TRACE

C2X LASTPOS TRANSLATE

CENTER LEFT TRUNC

CHARIN LENGTH UPPER

CHAROUT LINEIN USERID

CHARS LINEOUT VALUE

CHDIR LINES VERIFY

COMPARE LOWER WORD

CONDITION MAX WORDINDEX

COPIES MIN WORDLENGTH

CUSERID OVERLAY WORDPOS

D2C POS WORDS

D2X POPEN X2B

DATATYPE PUTENV X2C

DATE QUEUED X2D

DELSTR RANDOM XRANGE

DELWORD REVERSE

DIGITS RIGHT

ERRORTEXT SIGN

* Functions provided for compatibility with IBM

General Rules for Built-In Functions

We strongly recommend that you follow these general rules when invoking
built-in functions, unless otherwise noted in the description of a particular
function.

• The parentheses in a function call are required—even when no
arguments are specified.

• The opening parenthesis must immediately follow the function name with
no intervening blanks. This is required to distinguish a function call from
a reference to a simple symbol or an instruction keyword.

• Any argument identified as a string can be specified as a null string.

• Any argument identified as a number is rounded, if necessary, according
to the current setting of NUMERIC DIGITS, before it is used in the
function.

• Any argument identified as a length must be specified as a non-negative
integer.

• Any argument identified as a pad must be exactly one character in
length.

• Optional arguments can be omitted from the right of the function call;
taking out the comma is optional.

• Any function name or function argument can be specified in upper-,
lower-, or mixed case.

• Functions with arguments that are one of a specified set of characters
should have the argument enclosed in quotes. Without the quotes, the
argument is interpreted as an un-initialized symbol. As long as the
symbol remains un-initialized, the function behaves as expected since the
value of the un-initialized symbol is the symbol in uppercase (e.g., when
un-initialized, the value of the symbol foo is FOO).

122 Chapter 5

Built-In Functions 123

If, however, an assignment statement sets the value of that symbol to
something else, the function results in Error 40: Incorrect call to routine.
See Appendix A: Message Summary for more information.

ABBREV

Syntax ABBREV(information, info [, length])

Description The ABBREV function determines if one string is a valid abbreviation of a longer string. It returns
1 if the abbreviation is valid and 0 if the abbreviation is invalid.

Parameters

Parameter Explanation

information The unabbreviated string.

info The abbreviated string. When info is the null string, it matches any value of
information as long as length is omitted or specified as 0.

length Specifies the minimum length of info. If length is omitted, the default is the length of
info.

Usage Notes

If info is exactly equal to the leading characters of information and if the
length of info is greater than or equal to length, then info is a valid
abbreviation of information, and the function returns 1.

If either of the above conditions is not met, then the abbreviation is invalid
and the function returns 0.

Example 1

The output of:

valid = abbrev('month', 'mo')

is:

valid = 1

Example 2

The output of:

valid = abbrev('month','mo',2)

is:

valid = 1

124 Chapter 5

Built-In Functions 125

Example 3

The output of:

valid = abbrev('month', 'mo', 3)

is:

valid = 0

Example 4

The output of:

valid = abbrev('month', m)

is:

valid = 0

The value of the symbol m, when not specifically assigned a value, is M.

Example 5

The value of:

valid = abbrev('month','')

is:

valid = 1

The null string matches any value of information.

Example 6

The output of:

month = 'January'
mo = 'Jan'
if abbrev(month, mo) then say 'valid'
 else say 'invalid'

is:

'valid'

ABS

Syntax ABS(number)

Description The ABS function returns the absolute value of a number.

Parameters

Parameter Explanation

number Any valid number. The result is formatted according to the current NUMERIC settings.

Example 1

The output of the following program fragment:

value = abs(-98.6)

is:

value = 98.6

Example 2

The output of the following program fragment:

numeric digits 4
number = abs(-123456.7890)
say number

is:

1.235E+5

126 Chapter 5

Built-In Functions 127

ADDRESS

Syntax ADDRESS()

Description The ADDRESS function returns the name of the current host command environment.

Usage Notes

The host command environment can be changed using the ADDRESS
instruction. For more information see Chapter 4: Instructions.

Example 1

The output of the following:

env = address()

is:

env = EDMWIN

Example 2

The following program fragment sets the default host command environment
to cmd before executing a DOS command.

address cmd
'dir > filelist'
say address()

The output is:

CMD

ARG

Syntax ARG([n [, option]])

Description The ARG function returns the argument string or information about the argument string. This is
useful for verifying arguments passed to a subroutine or function before using them in the
subroutine or function.

Parameters

Parameter Explanation

n Indicates the argument number to be returned and must be a positive integer. When
only n is specified, ARG returns the nth argument string.

Can be either E or O. Used in conjunction with n.

Exists. If the nth argument exists, ARG
returns 1; otherwise, it returns 0.
Omitted. If the nth argument is omitted,
ARG returns 1; otherwise, it returns 0.

When both arguments are specified, ARG tests for the existence of the nth argument
string.

option

Usage Notes

With no parameters specified, ARG returns the number of arguments passed
to the subroutine or function.

Example 1

In the following example where no argument is specified:

call subr
 :
subr:
arglist = arg() /* arglist = 0 */
arg1 = arg(1) /* arg1 = '' */
arg1_exist = arg(1,'e')

The output is arg1_exist = 0; i.e., the first argument does not exist.

128 Chapter 5

Built-In Functions 129

Example 2

In the following example:

call subr a,,b
 :
subr:
arglist = arg() /* arglist = 3 */
arg1 = arg(1) /* arg1 = "A" */
arg2_omitted = arg(2,'o')

The output is arg2_omitted = 1; i.e., the second argument is omitted.

BITAND

Syntax BITAND(string1 [, [string2] [, pad]])

Description The BITAND function returns the results of a logical AND of two strings.

Parameters

Parameter Explanation

string1

string2

The two strings upon which the AND operation is performed. If the strings are of unequal
length, the length of the result is that of the longer of the two strings. If string2 is
omitted, the default is the null string.

pad A character specified to pad the shorter string if string1 and string2 are of unequal
length. Pad characters are added on the right of the shorter string before the AND is
performed. If pad is omitted, the AND operation terminates at the end of the shorter
string, and the remaining portion of the longer string is appended to the result.

The examples below are in United States ASCII.

Example 1

The output of the following program fragment:

anded = bitand('52'x, '43'x)

is:

anded = '42'x

Example 2

The output of the following program fragment:

anded = bitand('52'x, '4343'x)

is:

anded = '4243'x

130 Chapter 5

Built-In Functions 131

BITOR

Syntax BITOR(string1 [, [string2] [, pad]])

Description The BITOR function returns the logical inclusive OR of two strings.

Parameters

Parameter Explanation

string1

string2

The two strings on which the OR operation is performed. If the strings are of unequal
length, the length of the result is that of the longer of the two strings. If string2 is
omitted, the default is the null string.

pad A character specified to pad the shorter string if string1 and string2 are of unequal
length. Pad characters are added on the right of the shorter string before the OR is
performed. If pad is omitted, the OR operation terminates at the end of the shorter
string, and the remaining portion of the longer string is appended to the result.

The examples below are in United States ASCII.

Example 1

The output of the following program fragment:

ord = bitor('52'x, '43'x')

is:

ord = '53'x'

Example 2

The output of the following program fragment:

ord = bitor('52x', '4343'x)

is:

ord = '5343'x

BITXOR

Syntax BITXOR(string1 [, [string2] [, pad]])

Description The BITXOR function returns the logical exclusive OR of two strings.

Parameters

Parameter Explanation

string1

string2

The two strings on which the exclusive OR operation is performed. If the strings are of
unequal length, the length of the result is that of the longer of the two strings. If string2
is omitted, the default is the null string.

pad A character specified to pad the shorter string if string1 and string2 are of unequal
length. Pad characters are added on the right of the shorter string before the exclusive
OR is performed. If pad is omitted, the exclusive OR operation terminates at the end of
the shorter string, and the remaining portion of the longer string is appended to the
result.

The examples below are in United States ASCII.

Example 1

The output of the following program fragment:

xord = bitxor('52'x, '43'x)

is:

xord = '11'x

Example 2

The output of the following program fragment:

xord = bitxor('52'x, '4343'x)

is:

xord = '1143'x

132 Chapter 5

Built-In Functions 133

B2X

Syntax B2X(string)

Description The B2X function converts a binary string to a hexadecimal string.

Parameters

Parameter Explanation

string The character representation of the binary data to be converted. It can be any length and
can contain embedded blanks at four-digit boundaries. If string does not contain an
even multiple of four digits, zeros are added on the left to make an even multiple. string
is not a binary string literal—i.e., it is not specified in the form '1010'b.

The value returned is a character representation of the equivalent hexadecimal string. It
does not contain embedded blanks.

The results of B2X() can be used as the input for the functions X2D() or X2C() to convert
binary strings into other representations.

The examples below are in United States ASCII.

Example 1

The output of the following program fragment:

hexval = b2x('0110 0001')

is:

hexval = '61'

Example 2

The output of the following program fragment:

charval = x2c(b2x('01100001'))

is:

charval = 'a'

CENTER

Syntax CENTER(string, length [, pad])
CENTRE(string, length [, pad])

Description The CENTER function centers a string within a specified number of character positions. The
alternative spelling CENTRE is also supported.

Parameters

Parameter Explanation

string The character string to be centered.

length Specifies the total number of character positions within which string is to be centered. If
string is longer than length, it is truncated to fit, as necessary, at both ends.

pad The character that occupies character positions at either end of string. If pad is omitted,
the default is blank.

Usage Note

If an odd number of characters must be truncated or padded, the excess is
added or dropped on the right side of string.

Example 1

The output of the following program fragment:

greeting = center('Hello!',10)

is:

greeting = " Hello! "

Example 2

The output of the following program fragment:

news = center('Headline', 12, '*')

is:

news = "**Headline**"

134 Chapter 5

Built-In Functions 135

Example 3

The output of the following program fragment:

quote = 'To be or not to be?'
line_length = 18
sayit = center(quote, line_length)
say sayit

is:

"To be or not to be"

CHARIN

Syntax CHARIN([name] [, [start] [, length]])

Description The CHARIN function returns a string of characters from a character input stream.

Parameters

Parameter Explanation

name The name of the character input stream. This can be a persistent stream such as a disk
file or a transient stream such as STDIN or a pipe (including a named pipe). If name is
omitted, the default is STDIN.

start Specifies an explicit read position. It must be a positive integer and within the bounds of
the input stream specified. If start is omitted, the default is the current read position.
start cannot be specified for a transient input stream.

length Specifies the number of characters to be read. If length is omitted, the default is 1. If
length is specified as 0, then the function resets the read position to the value of start
and returns a null string. If there are fewer characters in the stream than length, the
program can wait for additional characters to become available. If it is not possible for
additional characters to become available, the function returns fewer than the specified
number of characters and raises the NOTREADY condition. The built-in function STREAM
can be used to determine the state of a character stream.

Usage Notes

When reading disk files, use CHARIN to read less than a full line or files in
which the lines do not have normal line-end terminators. For files that have
normal line-end terminators, you may want to use the built-in function
LINEIN to read an entire line.

When the input stream is a disk file, use of an I/O function such as CHARIN
can leave the file in an open state. Thus, it may be necessary to close the file
using CHAROUT, LINEOUT, or STREAM before performing subsequent
read or write operations to the file.

Example 1

This example returns 5 characters from the current read position and assigns
that value to the variable emp_number.

emp_number = charin('personnel.txt',,5)

136 Chapter 5

Built-In Functions 137

Example 2

The following program fragment displays a prompt to the user. It then
pauses until data is available on STDIN (in this case, characters typed at the
keyboard). CHARIN returns a single character and assigns that value to the
variable num. A host command then prints a file whose name is a
concatenation of report and the character entered on the keyboard.

say 'Enter report number'
num = charin()
address cmd 'print report.'num

CHAROUT

Syntax CHAROUT([name] [, [string] [, start]])

Description The CHAROUT function writes a string to a character output stream and returns the number of
characters remaining in the string after the write is performed.

Parameters

Parameter Explanation

name The name of the character output stream. This can be a persistent stream, such as a disk
file, or a transient stream such as STDOUT or a pipe (including a named pipe). If name
is omitted, the default is STDOUT.

string The character string to be written.

start The character position within the output stream at which writing of output characters
begins.

Usage Notes

If name is a persistent stream (usually a disk file), then string can be
omitted. In this case, one of the following actions is taken:

• If start is specified, CHAROUT resets the write position to the start
value and the function returns 0.

• If start is also omitted, CHAROUT closes the output stream and the
function returns 0.

Start specifies an explicit write position. It must be a positive integer and
within the bounds of the output stream specified. If start is omitted, the
default is the current write position. Start cannot be specified for a transient
output stream.

The program waits until the write operation is complete. If it is not possible
to write all the characters to the output stream, the function returns the
number of characters not written and raises the NOTREADY condition.

When the output stream is a disk file, use of an I/O function such as
CHAROUT can leave the file in an open state. Thus, it may be necessary to
close the file using CHAROUT, LINEOUT, or STREAM before performing
subsequent read or write operations to the file.

138 Chapter 5

Built-In Functions 139

Example 1

The following program fragment writes the string specified by the variable
emp_number to the file personnel.txt; rc is normally 0.

emp_number = 'DEV003'
rc = charout('personnel.txt', emp_number)

Example 2

The following program fragment writes the string specified by the variable
emp_number to the file personnel.txt beginning at the 75th character
position. Note the use of CALL to invoke the function.

emp_number = 'DEV003'
call charout 'personnel.txt', emp_number, 75

Example 3

The following program fragment writes Hello world to STDOUT, usually
the terminal. out_rc is normally 0.

out_rc = charout(, 'Hello world')

Example 4

The following program fragment writes the string Hello world followed by
a new-line character to STDOUT, usually the terminal. This produces the
same output as say 'Hello world'.

call charout ,'Hello world'||'0a'x

Example 5

The following program fragment:

Call charout 'foo.txt'

closes the file foo.txt.

CHARS

Syntax CHARS([name])

Description The CHARS function returns the number of characters remaining in a character input stream.

Parameters

Parameter Explanation

name The name of the character input stream. This can be a persistent stream, such as a disk
file, or a transient stream such as STDIN or a pipe (including a named pipe). If name is
omitted, the default is STDIN.

Usage Notes

When the input stream is a transient stream, CHARS returns 1 if there is
any data available in the stream, and 0 if there is no data available in the
stream.

When the input stream is a disk file, use of an I/O function such as CHARS
can leave the file in an open state. Thus, it may be necessary to close the file
using CHAROUT, LINEOUT, or STREAM before performing subsequent
read or write operations to the file.

Example 1

In the following example count is set to the number of characters in the disk
file named myfile.

count = chars('myfile')

Example 2

The following program fragment tests for the existence of a file. If the file
exists (the value of the CHARS function is greater than zero), the file is
deleted before proceeding.

if chars('myfile') > 0 then
 address CMD 'erase myfile'

140 Chapter 5

Built-In Functions 141

CHDIR

Syntax CHDIR([directory])

Description The CHDIR function changes the current working directory for the process in which the CM REXX
program is running.

Parameters

Parameter Explanation

directory Specifies the path to which the current working directory is to be set. directory can be
any valid directory path on your system. The value you specify for directory can be
any character string that would validly effect a directory change if typed in at the
command prompt. If directory is omitted, the default is the path specified by the
HOME environment variable.

Usage Notes

CHDIR returns 0 if the current working directory is successfully changed.
Otherwise, it returns non-zero.

To effect a directory change for operations within the current program, you
must use CHDIR. If you use the host command CD, that command is
executed in a different process from your CM REXX program and has no
effect on the current working directory for the program.

Example

In the following example, the current directory was c:\progra~1\Hewlett-
Packard\CM when the program was started.

olddir = getcwd()
cd_rc = chdir('lib')
newdir = getcwd()
say olddir
say newdir

The output is:

c:\progra~1\Hewlett-Packard\CM
c:\progra~1\Hewlett-Packard\CM\lib

COMPARE

Syntax COMPARE(string1, string2 [, pad])

Description The COMPARE function determines if two strings are identical.

Parameters

Parameter Explanation

string1

string2

The two strings to be compared. If the strings are of unequal length, the shorter string
is padded before the comparison is performed.

pad Specifies the character to be appended to the shorter of the two strings. If pad is
omitted, the default is blank.

Usage Notes

The COMPARE function returns 0 if the strings are identical. If the strings
are not identical, the function returns the number of the left-most character
position at which a discrepancy was detected.

Example 1

In the following example comp_rc is 0. The first string is padded with blanks
to make it equal in length to the second string; this also makes it identical to
the second string.

comp_rc = compare('a', 'a ')

Example 2

In the following comp_rc is 1; the first argument (the symbol q) has the
value Q since it has not been assigned a value; Q and q are not identical.

comp_rc = compare(q, 'q')

Example 3

In the following example c is 6. Pad is omitted so the value of a is padded
with blanks, making the string effectively
"alpha ". The first discrepancy is in position 6, where a has a blank and b
has a b.

142 Chapter 5

Built-In Functions 143

a = 'alpha'
b = 'alphabet'
c = compare(a, b)

CONDITION

Syntax CONDITION([option])

Description The CONDITION function returns information about the current trapped condition.

Parameters

Parameter Explanation

option Specifies the type of information to be returned. Can be any string beginning with one of
the characters shown below. If option is omitted, the default value is I. If option is
specified, it must be one of the following: C, D, I, or S.

C (condition name)
The name of the current trapped condition.

D (description)
The descriptive string associated with the current trapped condition. If no descriptive
string is available, this option returns a null string.

I (instruction)
The instruction executed when the condition was trapped. This is either CALL or SIGNAL.

S (state)
The state of the current trapped condition. This is ON, OFF, or DELAY.

Usage Notes

The descriptive strings for each condition are as follows:

Condition Explanation

ERROR
FAILURE

The string that was passed to the external environment which resulted in the condition
being raised.

HALT Any string associated with the halt request by the external environment. This can be a null
string.

NOVALUE The derived name of the variable referenced, which raised the condition.

NOTREADY The name of the stream being accessed when the condition was raised. If this is a default
stream, then a null string is returned.

SYNTAX Any string associated with the error by the interpreter. This can be a null string.

144 Chapter 5

Built-In Functions 145

Example

The following program fragment illustrates the use of the CONDITION
function to implement a generic condition trap.

signal on novalue name trapit
signal on syntax name trapit
signal on notready name trapit
signal on halt name trapit
signal on error name trapit
signal on failure name trapit
 :
 :
exit
trapit:
say condition('c') 'raised at line:' sigl
select
 when condition('c') = 'NOVALUE' then
 str = 'Bad variable is:'
 when condition('c') = 'ERROR' then
 str = 'Bad command is:'
 when condition('c') = 'FAILURE' then
 str = 'Bad command is:'
 otherwise
 str = 'Condition string (may be null):'
 end
say ''
say str condition('d')
exit

COPIES

Syntax COPIES(string, n)

Description The COPIES function returns a string composed of a specific number of concatenated copies of
an original string.

Parameters

Parameter Explanation

string The original string to be copied.

n Specifies the number of copies of string to concatenate. n must be a positive number or
zero.

Example 1

The output of the following program fragment:

newstring = copies('ho',3)

is:

newstring = 'hohoho'

Example 2

The output of the following program fragment:

str = '616263'x
newstring = copies(str, 2)
say newstring

is:

abcabc

Example 3

The output of the following program fragment:

do i = 0 to 3
 say copies('ho', i)
 end

is:

146 Chapter 5

Built-In Functions 147

ho
hoho
hohoho

The first line of output is a null string since n is 0.

Example 4

The following program fragment uses COPIES to provide leading zeroes so
that each number is exactly six characters long.

num.0 = 37
 :
 :
do i = 1 to num.0
 num.i = copies('0',6-length(num.i))||num.i
 end

CUSERID

Syntax CUSERID()

Description The CUSERID function returns the User ID of the user currently logged on to the computer. It is
identical to the USERID built-in function.

Example

The following program fragment displays the User ID of the individual
running the program.

say cuserid()

148 Chapter 5

Built-In Functions 149

C2D

Syntax C2D(string [, n])

Description The C2D function converts a character string to the decimal value of its ASCII representation.

Parameters

Parameter Explanation

string The character string to be converted.

n If n is specified, then string is interpreted as a signed number. If the left-most bit is
zero, then the number is positive. Otherwise, the number is a twos-complement negative
number. If n is 0, the function returns 0. If n is omitted, the return value is positive.

The examples below are in United States ASCII.

Example 1

The output of the following program fragment:

decval = c2d('abc')

is:

decval = '979899'

Example 2

The output of the following program fragment:

hexval = d2x(c2d('abc'))

is:

hexval = '616263'

C2X

Syntax C2X(string)

Description The C2X function converts a character string to its hexadecimal representation.

Parameters

Parameters Explanation

string The string to be converted. The function returns the character representation of its
hexadecimal value. If string is the null string, then C2X returns the null string.

Usage Note

C2X can be used in conjunction with X2B to convert character strings to their
binary representation.

The examples below are in United States ASCII.

Example 1
The output of the following program fragment:

hexval = c2x('a')

is:

hexval = '61'

Example 2
The output of the following program fragment:

hexval = c2x('61'x)

is:

hexval = '61'

Example 3
The output of the following program fragment:

bval = x2b(c2x('a'))

is:

150 Chapter 5

Built-In Functions 151

bval = '01100001'

DATATYPE

Syntax DATATYPE (string [,type])

Description The DATATYPE function tests the data type of a string. It can be used to determine the data type
or to determine if the data is of the desired type.

Parameters

Parameters Explanation

string The string for which the data type is to be tested.

type If specified, is one of the valid data types.

Return Values
Return
Value

Explanation

NUM string is a number that can be added to zero without error

CHAR string does not meet the criteria for NUM.

0 or 1 The function returns 1 if string matches the specified type; otherwise, it returns 0. type must
be one of the following: A, B, L, M, N, S, U, W, X.

A (alphanumeric) string contains only the characters a-z, A-Z, or 0-9.

B (binary) string contains only binary digits (0 and 1), possibly with
embedded blanks between groups of four digits.

L (lowercase) string contains only the characters a-z.

M (mixed case) string contains only the characters a-z or A-Z.

N (number) string is a number; DATATYPE without the type argument would
return NUM.

S (symbol) string contains only those characters that are valid in a CM REXX
symbol.

U (uppercase) string contains only the characters A-Z.

W (whole number) string is a valid whole number under the current setting of
NUMERIC DIGITS.

X (hexadecimal) string contains only valid hexadecimal digits (a-f, A-F, or 0-9),
possibly with embedded blanks, or string is the null string.

152 Chapter 5

Built-In Functions 153

Example 1

The output of the following fragment:

type = datatype('abc')

is:

type = 'CHAR'

Example 2

The output of the following fragment:

val = 10
type = datatype(val)

is:

type = 'NUM'

Example 3

 The output of the following fragment:

string = 'April 15'
type = datatype(string, 'A')

is:

type = 1

Example 4

The following program fragment tests the data type of a variable to
determine if it is composed entirely of lowercase characters. If so, the string
is converted to uppercase.

val = 'abc'
if datatype(val,'L') = 1 then
 upper_val = translate(val)

Example 5

The following program fragment prompts for user input and then verifies
that the user typed a valid whole number. The DATATYPE function is used as
a logical symbol since its value will be either 0 or 1. If the user input is a
whole number, DATATYPE returns 1 (true).

 say 'Enter menu selection (1, 2, or 3)'
 pull answer
 if datatype(answer, 'W') then call mysub
else call error1

Example 6

The following program fragment extends the previous example to validate not
only the type of user input but also that it is within the valid range.

say 'Enter menu selection (1-8)'
pull answer
if \datatype(answer, 'w') | answer < 1 | ,
 answer > 8 then call error1

154 Chapter 5

Built-In Functions 155

DATE

Syntax DATE ([out_option [, date_string, in_option]])

Description The DATE function returns the current date or converts dates from one format to another. Date
format conversion occurs when DATE is coded with the date_string and in_option arguments; it
permits arithmetic operations to be performed on dates of any format.

Parameters

Parameter Explanation

out_option Specifies the format in which the date is returned. Valid values for out_option are:
B, C, D, E, J, M, N, O, S, U, and W.

B (base) The number of complete days since the base date of 1 January
0001. Complete days include the base date but do not include
the current day. The date format returned is ddddd.

C (century) The number of days in the current century. The count of days
includes 1 January of the century year (such as 1900) and the
current day. The date format returned is ddddd.

D (days) The number of days in the current year. The count includes the
current day. The date format returned is ddd.

E (European) The current date in the standard European format of dd/mm/yy.

J (Julian) The current date in the format yyddd. yy is the last two digits of
the current year. ddd is the number of days, including today, in
the current year.

M (month) The full English name of the current month, beginning with a
capital letter.

N (normal) The current date in the format dd Mmm yyyy. This is the same
format as the default returned when out_option is omitted.

O (ordered) The current date in the format yy/mm/dd.

S (standard) The current date in the format yyyymmdd.

U (USA) The current date in the standard United States format of
mm/dd/yy.

W (weekday) The full English name for the current day of the week, beginning
with a capital letter.

date_string Specifies the date to be converted. It may be a literal string, a variable reference, or an
expression that evaluates to a date. It must be in one of the valid out-option date
formats, except Weekday or Month. These are: B, C, D, E, J, N, O, S, and U.

in_option Specifies the format of date_string and must be one of the date format options for
out_option, other than Weekday or Month. Thus, valid values for in_option are:

B, C, D, E, J, N, O, S, and U.

Usage Note

If out_option is omitted, the format returned is: dd mmm yyyy
where:

dd is the current day of the month, without leading zeroes.

mmm is the first three characters of the English name of the current month.

yyyy is the four-digit representation of the current year.

Example 1

The output of the following program fragment:

today = date()

could be:

today = '4 Jul 1994'

Example 2

The output of the following program fragment:

thisdate = date('U')

could be:

thisdate = '07/04/94'

Example 3

The output of the following program fragment:

sdate = date('s')

could be:

sdate = '19940704'

Dates in this format are suitable for sorting and other ordering operations.

156 Chapter 5

Built-In Functions 157

Example 4

The following program fragment converts a data in "normal" REXX format to
a format suitable for sorting:

newdate = date('s',_ '04 Jul 1998', 'n')

The converted date format in newdate is "19980704".

Example 5

The following program fragment adds 90 days to the current date:

today = date()
plus90=date('u', date('b', today, 'n')+90, 'b')

If today is 04/30/98, plus 90 is "07/29/98".

Example 6

The following program fragment runs a quarterly report only if the current
month is one of those included in the list of reporting months.

report_months = 'March June September December'
if wordpos(date('M'), report_months) \= 0 then
 call quarterly_report
 else say 'Not a reporting month'

Example 7

The following program fragment calls a different subroutine for each day of
the week. When run on Monday, it calls report_Monday and so forth.

today = date('w')
 interpret 'call report_'today

Example 8

The following program fragment is a slightly different approach to the
previous example. In this case, the subroutines do not have names that can
easily be related to any date format. This example takes advantage of the fact
that date('b')//7 returns a numeric value for the day of the week (Monday
= 0).

sub.0 = 'start_week'
sub.1 = 'two_days'
sub.2 = 'hump_day'
sub.4 = 'four_days'
sub.5 = 'tgif'
sub.6 = 'weekend'
sub.7 = 'weekend'
daynum = date('b')//7
interpret 'call' sub.daynum

158 Chapter 5

Built-In Functions 159

DELSTR

Syntax DELSTR (string, n [, length])

Description The DELSTR function deletes one or more characters within a string.

Parameters

Parameter Explanation

string The string from which characters are to be deleted.

n Specifies the character position within string where deletion begins. n must be a positive
number. If n is greater than the length of string, then string remains unchanged.

length Specifies the number of characters to be deleted. length must be non-negative. If
length is omitted, all remaining characters in the string, beginning at position n, are
deleted.

Example 1

The output of the following program fragment:

str = delstr('string', 4)

is:

str = 'str'

Example 2

The output of the following program fragment:

airborne = 'paratroops'
infantry = delstr(airborne, 1, 4)

is:

infantry = 'troops'

Example 3

The following program fragment reads lines of an input file of addresses,
parses for the zip code, and puts all zip codes into the five-digit form rather
than the "zip plus four" form. Any zip codes longer than five digits (as in
60018-6300) have the sixth and all subsequent characters deleted; any zip
codes in the five-digit form remain unchanged.

do i = 1 to lines('addrfile')
 parse value linein('addrfile') with +95 zip .
 5digit_zip.i = delstr(zip, 6)
 end

160 Chapter 5

Built-In Functions 161

DELWORD

Syntax DELWORD (string, n [, length])

Description The DELWORD function deletes one or more blank-delimited words in a string.

Parameters

Parameter Explanation

string Is the string from which words are to be deleted.

n Specifies the number of the first word to be deleted. n must be a positive number. If n is
greater than the number of words in string, then string remains unchanged.

length Specifies the number of words to be deleted. length must be non-negative. If length is
omitted, all remaining words in the string, beginning with word n, are deleted.

Example 1
The output of the following program fragment:

s = delword('how now brown cow', 2)

is:

s = 'how'

Example 2
The output of the following program fragment:

s = delword('hi there world', 2, 1)

is:

s = hi world'

Example 3
In the following program fragment:

parse var var1 first . . rest
newvar = first rest
newvar2 = delword(var1, 2, 2)

• When var1='Raining cats and dogs', then both newvar and
newvar2 have the value 'Raining dogs'.

• When var1='Raining cats and dogs', then newvar='Raining
dogs' but newvar2='Raining dogs'.

162 Chapter 5

Built-In Functions 163

DIGITS

Syntax DIGITS()

Description The DIGITS function returns the current setting of NUMERIC DIGITS.

Usage Notes

The description of the NUMERIC instruction in the previous chapter,
Chapter 4: Instructions, contains information on using NUMERIC DIGITS to
control the precision of arithmetic operations and the evaluation of
arithmetic functions.

Example 1

In the following example x = 9 if the default for NUMERIC DIGITS is in
effect.

x = digits()

Example 2

The following program fragment tests the current setting of NUMERIC
DIGITS and resets it if necessary before evaluating the FORMAT function. If
precision is not tested and reset, the FORMAT function would raise Error 40:
Incorrect call to routine. By testing and, if necessary, resetting NUMERIC
DIGITS, the FORMAT function can be evaluated and x = '-1.2E+2'
(assuming the default setting of NUMERIC FORM).

if digits() > 2 then numeric digits 2
x = format(-123,3)

D2C

Syntax D2C(whole-number [, n])

Description The D2C function converts the decimal representation of a number to its character
representation.

Parameters

Parameter Explanation

whole-number The decimal representation of the number to be converted. It must be a whole number -
that is, it must be a number that can be represented entirely in digits within the current
setting of NUMERIC DIGITS. If n is omitted, whole-number must be non-negative.

n The length of the result in characters. It must be non-negative. If n is specified, the
result is sign-extended to the specified length. If the result will not fit in n characters, it is
truncated on the left.

Example 1

The output of the following program fragment:

charval = d2c(97)

is:

charval = 'a'

Example 2

The output of the following program fragment:

charval = d2c(979899)

is:

charval = 'abc'

164 Chapter 5

Built-In Functions 165

D2X

Syntax D2X(whole-number [, n])

Description The D2X function converts the decimal representation of a number to its hexadecimal
representation.

Parameters

Parameter Explanation

whole-number The decimal representation of the number to be converted. It must be a whole number –
that is, it must be a number that can be represented entirely in digits within the current
setting of NUMERIC DIGITS. If n is omitted, whole-number must be non-negative.

n The length of the result in characters. It must be non-negative. If n is specified, the
result is sign-extended to the specified length. If the result will not fit in n characters, it is
truncated on the left.

Example 1

The output of the following program fragment:

hexval = d2x(97)

is:

hexval = '61'

Example 2

The output of the following program fragment:

bval = x2b(d2x(97))

is:

bval = '01100001'

ERRORTEXT

Syntax ERRORTEXT(n)

Description The ERRORTEXT function returns the message text associated with the specified CM REXX error
number.

Parameters

Parameter Explanation

n Is a number in the range 0-99. If n is not a currently defined CM REXX error, then
ERRORTEXT returns a null string. If n is not within the valid range, then ERRORTEXT
results in Error 40: Incorrect call to routine.

Example 1

The output of the following program fragment:

msg = errortext(11)

is:

msg = 'Control stack full'

Example 2

The following program fragment illustrates the use of the special variable rc
to retrieve the appropriate message text when a processing error occurs.
When the SYNTAX condition is raised, the value of rc is the number of the
error that raised the condition.

signal on syntax
a = 10
b = max(a, x)
say b
syntax:
say errortext(rc)
say 'detected at line' sigl
exit

The output is:

Bad arithmetic conversion detected at line 3

166 Chapter 5

Built-In Functions 167

Note

The processing error occurs because the variable x used in the MAX function, is un-
initialized and therefore has the value X. Arguments of MAX must be numeric.

FIND

Syntax FIND(string1, string2)

Description The FIND function searches a string of blank-delimited words for the first occurrence of another
string of blank-delimited words.

Parameters

Parameter Explanation

string1 The string to be searched.

string2 The search string.

Usage Notes

FIND returns the number of the first word in string1 where a match is
found. If no match is found, FIND returns 0.

For purposes of comparison, multiple blanks between words in either string1
or string2 are treated as a single blank.

FIND is included in CM REXX for compatibility with the VM and TSO/E
implementations of REXX. It may not be available in other implementations
and is not included in the standard language definition. Use WORDPOS to
ensure portability of an application across all implementations of REXX.

Example 1

The output of the following program fragment:

x = find("How now brown cow", "brown cow")

is:

x = 3

Example 2

The output of the following program fragment:

y = find("Once upon a time", "a time")

is:

y = 3

168 Chapter 5

Built-In Functions 169

Example 3

The following program fragment uses FIND to verify user response to a
prompt; if the answer provided by the user does not match one of the words
in the list, FIND returns 0.

list = 'REXX C FORTRAN LISP PL/I'
say 'What language for this program?'
pull lang
if find(list, lang) = 0 then
 say 'Language not available'

FORM

Syntax FORM()

Description The FORM function returns the current setting of NUMERIC FORM.

Usage Notes

The description of the NUMERIC instruction in the previous chapter,
Chapter 4: Instructions, contains information on using NUMERIC FORM to
control the precision and format of numbers used in the results of arithmetic
operations, and the evaluation of arithmetic functions.

Example 1

In the following program fragment:

expform = form()

expform = 'SCIENTIFIC' if the default setting of NUMERIC FORM is in
effect.

Example 2

The following program fragment ensures that NUMERIC FORM is set correctly
for this application before proceeding with other operations.

if form() \= 'ENGINEERING' then
 numeric form engineering

170 Chapter 5

Built-In Functions 171

FORMAT

Syntax FORMAT(num [,[before] [,[after] [,[expp] [, expt]]]])

Description The FORMAT function rounds and formats a number.

Parameters

Parameter Explanation

num Is the number to be formatted. If no additional arguments are specified, FORMAT simply
rounds the number.

before The number of places to the left of the decimal point (the integer portion) of the result.
before must be a positive integer. If before is omitted, the number of places to the left
of the decimal point is exactly the number contained in the result. If before is greater
than the number of places to the left of the decimal in the result, the result is padded on
the left with blanks. If before is less than the number of places to the left of the decimal
in the result, Error 40 results.

after The number of places to the right of the decimal point (the decimal portion) of the result.
after can be a positive integer or zero. If after is omitted, the number of places to the
right of the decimal point is exactly the number contained in the result. If after is greater
than the number of decimal places in the result, the result is padded with zeros. If after
is less than the number of decimal places in the result, the result is rounded to fit. If
after is specified as 0, then num is rounded to the nearest integer.

expp

expt

Used to override the current settings of NUMERIC DIGITS and NUMERIC FORM in the
result of FORMAT.

expp Specifies the number of digits to be used in the exponent portion of the result. expp
must be a positive integer or zero. If expp is greater than the number of digits required
for the exponent, it is padded on the left with zeros. If expp is less than the number of
digits required for the exponent, Error 40 results. If expp is specified as 0, no exponent
is supplied in the result, and zeros are added as necessary to express the result without
exponential notation. If expp is non-zero and the exponent of the result is zero, then the
result is padded on the right with expp+2 blanks.

expt The trigger point for exponential notation. expt must be a positive integer or zero. If the
number of places to the left of the decimal point in the result is greater than expt, the
result is expressed exponentially. If the number of places to the right of the decimal in
the result is greater than 2*expt, the result is expressed exponentially. If expt is
specified as 0, the result is always expressed exponentially unless the exponent of the
result is 0.

Usage Notes

FORMAT first rounds the number using the standard REXX rules that would
be applied if the operation num + 0 were performed. It then formats the
number. By default, the number is formatted according to the current

settings of NUMERIC DIGITS and NUMERIC FORM. The last two
arguments of FORMAT allow you to override these defaults.

Example 1

The output of the following program fragment:

x = format(12,5)

is:

x = ' 12'

Example 2

The following program fragment outputs a right-justified column of numbers.

numlist = '10 456 2 1034'
do i = 1 to words(numlist)
 say format(word(numlist,i),4)
 end

The output is:

 10
 456
 2
 1034

Example 3

The following program fragment outputs a decimal-aligned column of
numbers with exactly two decimal places in each number.

numlist = '10.567 456 .2 1034.6 45.25'
do i=1 to words(numlist)
 say format(word,numlist,i),4,2)
 end

The output is:

 10.57
 456.00
 0.20
 1034.60
 45.25

172 Chapter 5

Built-In Functions 173

Example 4

The following program fragment illustrates the effect of the exponent trigger
point on the formatted results.

numlist = '10 120 10.123 9.12345 123.12345'
do i = 1 to words(numlist)
 say format(word(numlist,i),,,,2)
 end

The output is:

 10
 1.2E+2
 10.123
 9.12345
 1.2312345E+2

Example 5

The following program fragment illustrates use of the exponent trigger point
to over-ride the current setting of NUMERIC DIGITS.

numeric digits 3
numlist = '10 100 1000 10000 100000'
do i = 1 to words(numlist)
 say format(word(numlist,i))
 end
say ''
do j = 1 to words(numlist)
 say format(word(numlist,j),,,,5)
 end

The output is:

 10
 100
 1.00E+3
 1.00E+4
 1.00E+5

 10
 100
 1000
 10000
 1.00E+5

Example 6

The following program fragment illustrates use of the expp argument of
format().

numeric digits 3
list = 0 1 2 3
num = 12345
do i = 1 to words(list)
 say format(num,,,word(list,i))
 end

The output is:

 12300
 1.23E+4
 1.23E+04
 1.23E+004

174 Chapter 5

Built-In Functions 175

FUZZ

Syntax FUZZ()

Description The FUZZ function returns the current setting of NUMERIC FUZZ.

Usage Notes

The description of the NUMERIC instruction in the previous chapter,
Chapter 4: Instructions, contains information on using NUMERIC FUZZ to
control how many digits are ignored in a numeric comparison.

Example

In the following program fragment:

expfuzz = fuzz()

expfuzz = 0 if the default setting of NUMERIC FUZZ is in effect.

GETCWD

Syntax GETCWD()

Description The GETCWD function returns the full path name of the current working directory.

Example 1

In the following program fragment:

dir = getcwd()

if the current directory is c:\progra~1\Hewlett-Packard\CM, then dir =
'c:\progra~1\Hewlett-Packard\CM'

Example 2

The following program fragment creates an output file name within the
current working directory:

dir = getcwd()
outfile = dir'\output.txt'

176 Chapter 5

Built-In Functions 177

GETENV

Syntax GETENV(string)

Description The GETENV function returns the current setting of an environment variable.

Parameters

Parameter Explanation

string The name of the environment variable for which the current setting is to be returned. If
the environment variable specified by string is not set, GETENV returns a null string.

Usage Note

It is recommended that the string argument be enclosed in quotes. Without
the quotes, string is an un-initialized symbol. As long as the symbol remains
un-initialized, GETENV behaves as expected since the value of the un-
initialized symbol is the symbol in uppercase. If, however, an assignment
statement sets the value of that symbol to something else, the GETENV
function would attempt to determine the setting of the environment variable
specified by the value assigned to string.

Example

In the following program fragment:

home = getenv('HOME')

home = the current value of HOME. This is the same value that would result
from typing the DOS command:

set HOME

INDEX

Syntax INDEX(string1, string2 [, start])

Description The INDEX function searches a string for the first occurrence of another string.

Parameters

Parameter Explanation

string1 The string to be searched.

string2 The search string.

start The character position in string1 where the search begins. start must be a positive
integer. If start is greater than the length of string1, INDEX returns 0.

Usage Notes

INDEX is included in CM REXX for compatibility with the VM and TSO/E
implementations of REXX. It may not be available in other implementations
and it is not included in the standard language definition. Use POS to ensure
portability of an application across all implementations of REXX.

INDEX returns the position of the first character in string1 where a match
is found. If no match is found, INDEX returns 0.

Example 1

The output of the following program fragment:

where = index('abcdef', 'c')

is:

where = 3

Example 2

The output of the following program fragment:

where = index('abrakadabra', 'a', 5)

is:

where = 6

178 Chapter 5

Built-In Functions 179

Example 3

The following program fragment uses INDEX to verify user response to a
prompt. If the answer provided by the user does not match one of the
characters in the list, INDEX returns 0.

options = abcxyz
 say 'Select a processing option'
 pull which_option
 if index(options, which_option) = 0 then
 call bad_option
 else call got_it_right

INSERT

Syntax INSERT(string1, string2 [, [n] [, [length][, pad]]])

Description The INSERT function inserts one string into another string.

Parameters

Parameter Explanation

string1 The string to be inserted.

string2 The inserted string.

n The character position in string2 after which insertion begins. n must be a non-negative
number. If n is specified as 0, string1 is inserted before the first character of string2. If
n is omitted, the default value is 0.

length The number of characters to be inserted. length must be a non-negative number. If
string1 is shorter than length, it is padded on the right to the value of length before
insertion. If n is greater than the length of string2, string1 is also padded on the left
before insertion. If length is 0, none of the characters in string1 are inserted. If length
is omitted, the default is the length of string1.

pad Character used to pad string1 before insertion. If pad is omitted, the default pad
character is a blank.

Example

This program fragment illustrates various combinations of the arguments to
INSERT.

ins = 'scotty '
 string = 'beam me up now'
 say insert(ins, string)
 say insert(ins, string, length(string)+1)
 say insert(ins, string, 11)
 say insert(ins, string, 20)
 say insert(ins, string, 20, 0, '!')

The output is:

 scotty beam me up now
 beam me up now scotty
 beam me up scotty now
 beam me up now scotty
 beam me up now!!!!!!

180 Chapter 5

Built-In Functions 181

JUSTIFY

Syntax JUSTIFY(string, length [, pad])

Description The JUSTIFY function adds pad characters between words in a string of blank-delimited words to
justify both margins.

Parameters

Parameter Explanation

string String of blank-delimited words.

length length is the length of the string returned by the function.

pad Character used to pad string. If pad is omitted, the default pad character is a blank.

Usage Note

JUSTIFY is included in CM REXX for compatibility with the VM and TSO/E
implementations of REXX. It may not be available in other implementations
and is not included in the standard language definition. Use POS to ensure
portability of an application across all implementations of REXX.

Example

The output of the following program fragment:

str = 'To be or not to be'
outstr = justify(str, 25)

is:

outstr = 'To be or not to be'

LASTPOS

Syntax LASTPOS(string1, string2 [, start])

Description The LASTPOS function finds the right-most occurrence of one string within another string. It
scans string2 from right to left looking for string1.

Parameters

Parameter Explanation

string1 Search string.

string2 String to be searched.

start Character position within string2 where the backward search begins. start must be a
positive integer. If start is greater than the length of string2, it defaults to the length of
string2. If start is omitted, the default is the length of string2.

Usage Notes

It returns the character position of the right-most occurrence of string1 in
string2. If string1 is not found in string2, then LASTPOS returns 0.

Example 1

The output of the following program fragment:

x = lastpos('a', 'abrakadabra')

is:

x = 11

Example 2

The output of the following program fragment:

x = lastpos('a', 'abrakadabra', 7)

is:

x = 6

182 Chapter 5

Built-In Functions 183

Example 3

In the following program fragment, LASTPOS returns 0 if there is only one
entry in product_list (no blanks in the list) or non- zero if there is more
than one entry in the list.

product_list = 'RMS RMP ROMS RCS'

if lastpos(' ', product_list) = 0

 then say 'Only one CM product installed'

 else say 'Several CM products installed'

The output is

Several CM products installed

LEFT

Syntax LEFT(string, n [, pad])

Description The LEFT function returns the left-most characters in a string.

Parameters

Parameter Explanation

string The original string.

n The number of characters to be returned. n must be non-negative. If n is zero, the
LEFT function returns a null string. If n is greater than the length of string, the value
returned by LEFT is padded on the right to the length of n.

pad Character used to pad the result. If pad is omitted, the default is a blank character.

Example 1

The output of the following program fragment:

x = left('abcdefg', 3)

is:

x = 'abc'

Example 2

The output of the following program fragment:

alphabet = left('abc', 26)

is:

alphabet = 'abc '

Example 3

The output of the following program fragment:

alphabet = left('abc', 6, '.')

The output is:

alphabet = 'abc...'

184 Chapter 5

Built-In Functions 185

Example 4

The following program fragment processes an input file by selecting data only
from those lines that do not begin with a comment character (#).

input = 'mydata.txt'
j = 1
do lines(input)
 line = linein(input)
 if left(line, 1) \= '#' then do
 parse var line num.j descr.j .

 j = j + 1
 end
 end

Example 5

The following program fragment uses the LEFT and RIGHT functions to
format output data.

line.1 = 'Jan East 1500 West 975 Total $ 2475'
line.2 = 'Feb East 24660 West 975 Total $34635'
line.3 = 'Mar East 800 West 8500 Total $ 9300'
 :
 :
do i = 1 to 12
 say left(line.i, 3) right(line.i, 6)
 end

The output is:

 Jan $ 2475
 Feb $34635
 Mar $ 9300
 :
 :

LENGTH

Syntax LENGTH(string)

Description The LENGTH function determines the number of characters in a string.

Parameters

Parameter Explanation

string The string for which the length is to be determined.

Example 1

The output of the following program fragment:

x = length('Hello')

is:

x = 5

Example 2

The following program fragment validates user input based on the number of
characters in that input.

say 'Enter part number'
pull reply
if length(reply) \= 4 then do
 say 'Invalid part number:' reply
 say 'Part numbers have exactly 4 digits'
 end

186 Chapter 5

Built-In Functions 187

LINEIN

Syntax LINEIN([name] [, [line] [, count]])

Description The function reads a line from a character input stream. It can also be used to set the read
position in a persistent input stream. Use LINEIN for input streams that have normal line-end
terminators (usually CR/LF).

Parameters

Parameter Explanation

name The name of the character input stream. This can be a persistent stream such as a disk
file or a transient stream such as STDIN or a pipe (including a named pipe). If name is
omitted, the default is STDIN.

line Specifies an explicit read position in a persistent input stream such as a disk file. It must
be a positive integer and must be within the bounds of the input stream specified. If line
is omitted, the default is the current read position. line cannot be specified for a
transient input stream.

count Specifies the number of lines to be read. count must be 0 or 1. If count is omitted, the
default is 1. If count is specified as 0, then the read position is set to the beginning of
line, and the function returns a null string.

Usage Notes

If a complete line is not available in the stream, the program can wait until
the line is complete. If it is not possible for a line to be completed, the
function returns all available characters and raises the NOTREADY
condition. The built-in function STREAM can be used to determine the state
of a character stream.

Use LINEIN to read complete lines that have normal line-end terminators.
This means that it is important to know the kind of data contained in a file
that you read using LINEIN. Trying to read a large file that lacks normal
line-end terminators (such as a binary file) using LINEIN can result in
unexpected and undesirable results. Use CHARIN to read less than a
complete line, or to read lines that do not have normal line-end terminators.

Use of an I/O function such as LINEIN can leave a persistent input stream in
an open state. Thus, it may be necessary to close it using LINEOUT,
CHAROUT, or STREAM before performing subsequent read or write
operations.

Example 1

The following example reads one line from the current read position and
assigns that value to the variable emp_record.

emp_record = linein('personnel.txt')

Example 2

The following program fragment displays a prompt to the user. It then
pauses until data is available on STDIN (in this case, characters typed at the
keyboard); LINEIN returns everything that was typed at the keyboard before
ENTER was pressed and assigns that value to the variable num; a host
command then prints a file.

say 'Enter report number'
num = linein()
address cmd 'print report.'num

Example 3

The following program fragment processes all lines in an input file, one line
at a time.

infile = 'foo.txt'
do i = 1 while lines(infile) > 0
 line.i = linein(infile)
 end

188 Chapter 5

Built-In Functions 189

LINEOUT

Syntax LINEOUT([name] [, [string] [, line]])

Description The LINEOUT function writes a line to a character output stream and returns the number of lines
remaining in the stream after the write has been attempted.

Parameters

Parameter Explanation

name The name of the character output stream. This can be a persistent stream such as a
disk file or a transient stream such as STDOUT or a pipe (including a named pipe). If
name is omitted, the default is STDOUT.

string The character string to be written. If name is a persistent stream, then string can be
omitted. In this case, one of the following actions is taken:

If line is specified, LINEOUT resets the
write position to the start value, and the
function returns 0.
If line is omitted, LINEOUT closes the
output stream, and the function returns 0.

line Specifies an explicit write position. It must be a positive integer and must be within the
bounds of the output stream specified. If line is omitted, the default is the current write
position. line may not be specified for a transient output stream.

Example 1

The following program fragment writes the string specified by the variable
emp_data to the file personnel.txt. rc is normally 0.

emp_data = 'DEV003 Smith Joe Software Engineer'
rc = lineout('personnel.txt', emp_data)
if rc \= 0 then
 say 'Error in writing to personnel file'

Example 2

The following program fragment:

out_rc = lineout(, 'Hello world')

writes "Hello world" to STDOUT, usually the terminal. out_rc is
normally 0.

Example 3

The following program fragment writes the lines specified by the compound
variables emp.<n> to the file personnel.txt. After the last line is written,
it closes the file. Note the use of CALL to invoke the function.

outfile = 'personnel.txt'
emp.0 = 57
emp.1 = 'DEV003 Smith Joe Software Engineer'
emp.2 = 'DEV004 Jones Anne AI Specialist'
 :
 :
do i = 1 to emp.0
 call lineout outfile, emp.i
 end
call lineout outfile

190 Chapter 5

Built-In Functions 191

LINES

Syntax LINES([name])

Description The LINES function returns the number of complete lines remaining in a character input stream.

Parameters

Parameter Explanation

name The name of the character input stream. This can be a persistent stream such as a disk
file or a transient stream such as STDIN or a pipe (including a named pipe). If name is
omitted, the default is STDIN.

Example 1

In the following program fragment:

count = lines('foo.txt')

count is set to the number of lines in the disk file named foo.txt.

Example 2

The following program fragment tests for the existence of a file. If the file
exists (the value of the LINES function is greater than zero), the file is
deleted before proceeding.

if lines('foo.txt') > 0 then
 address cmd 'erase foo.txt'

Example 3

The following program named anydata gives different results depending on
whether or not data is waiting.

if lines() then say 'Data available'
 else say 'No data'

When you run this program by typing:

 anydata

the output is:

 No data

When you run this program by typing:

 echo 'Hello world' | anydata

the output is:

 Data available

192 Chapter 5

Built-In Functions 193

LOWER

Syntax LOWER(string)

Description The LOWER function converts characters in a string to lowercase.

Parameters

Parameter Explanation

string The string of characters to be converted. string can be upper-, lower-, or mixed-case.

Example 1

The output of the following program fragment:

low = lower('ABCD')

is:

low = 'abcd'

Example 2

The following program fragment converts user input to lowercase before
validating the input.

say 'Enter authorization'
parse pull reply
if wordpos(lower(reply), auth_list) \= 0 then
 call run_prog
 else say 'Sorry, not authorized'

Example 3

The following program is functionally equivalent to the previous example but
ensures that reply is taken from the terminal (STDIN) rather than from
data that might be on the program stack.

say 'Enter authorization'
reply = lower(linein())
if wordpos(reply, auth_list) \= 0 then
 call run_prog
 else say 'Sorry, not authorized'

MAX

Syntax MAX(number [, number] ...)

Description The MAX function returns the largest number in a list of numbers.

Parameters

Parameter Explanation

number Any valid number.

Example

The output of the following program fragment:

x = max(10, 12, 9)

is:

x = 12

194 Chapter 5

Built-In Functions 195

MIN

Syntax MIN(number [, number] ...)

Description The MIN function returns the smallest number in a list of numbers.

Parameters

Parameter Explanation

number Any valid number.

Example 1

The output of the following program fragment:

x = min(10, 12, 9)

is:

x = 9

Example 2

The following program fragment uses MIN to get the length of the shortest
word in a string.

list = 'the a an'
shortest = length(word(list, 1))
do while list \= ''
 parse var list next list
 shortest = min(shortest, length(next))
 end
say shortest

The output is:

1

OVERLAY

Syntax OVERLAY(string1, string2 [, [n][, [length] [, pad]]]

Description The OVERLAY function overlays one string with characters from another string.

Parameters

Parameter Explanation

string1 This is the overlay string, that is, the string that supplies characters for the overlay
operation.

string2 The original string in which characters are to be replaced by characters from string1.

n The character position in string2 where the overlay begins. n must be a positive integer.
If n is greater than the length of string2, string1 is padded on the left before the
overlay is performed. If n is omitted, the default value is 1.

length Number of characters to overlay. length must be non-negative. If length is greater than
the number of characters in string1, string1 is padded on the right before the overlay
is performed. If length is less than the number of characters in string1, string1 is
truncated from the right before the overlay is performed. If length is omitted, the
default value is the length of string1.

pad Character to be used for padding string1. If pad is omitted, the default is a blank
character.

Example 1

The output of the following program fragment:

str = overlay('old', 'new data')

is:

str = 'old data'

Example 2

The output of the following program fragment:

str = overlay('old', 'Some new data', 6)

is:

str = 'Some old data'

196 Chapter 5

Built-In Functions 197

Example 3

The output of the following program fragment:

str = overlay('change', 'New data', 12, 8, '*')

is:

str = 'New data***change**'

Example 4

The following program fragment takes a template reply message and uses
OVERLAY to replace a placeholder string with the current date before mailing
the message.

parse arg inquirer
auto_reply = 'template.txt'
mail_msg = 'msg.txt'
d = "Insert today's date here"
do lines(auto_reply)
 line = linein(auto_reply)
 if wordpos(d, line) \= 0 then
line=overlay(date(),line,pos(d,line),(length(d))
 call lineout mail_msg, line
 end
call lineout mail_msg /*be sure file is closed */

POPEN

Syntax POPEN(command [, option])

Description The POPEN function executes a host command and places the results on the REXX program
stack. It returns the completion code of the host command.

Parameters

Parameter Explanation

command Any host command that is valid in the Bourne shell.

option Indicates whether command output should be placed on the stack in FIFO or LIFO
order. ‘P’ specifies LIFO order; ‘Q’ specifies FIFO order. If option is omitted, the default
value is ‘Q’.

Usage Note

POPEN redirects STDOUT to the program stack. Use POPEN to:

• Capture the output of a host command for subsequent processing.

• Execute any host command that may write to STDOUT when you do not
wish that output to appear on the terminal screen.

Example 1

The following program invokes the UNIX test command to check for existence
of a file. If the file exists, test sets a completion code of 0 and therefore state
= 0. If the file does not exist, test sets a completion code of 1 and therefore
state = 1.

state = popen("test -f myfile")

Example 2

The following program fragment processes all files in the current directory
with a date/time stamp matching the current month.

x = 5
rc = popen("ls –l")
if rc \= 0 then call error1
do queued()
parse pull nextfile

198 Chapter 5

Built-In Functions 199

if word(nextfile, x) = left(date(m),3) then
call prog2
end

Note that the output of "ls" is system-dependent. This example is for SunOS.
Change value of "x" for other systems as needed.

POS

Syntax POS(string1, string2 [, start])

Description The POS function searches a string for the left-most occurrence of another string.

Parameters

Parameter Explanation

string1 The search string.

string2 The string to be searched.

start The character position in string2 where the search begins. start must be a positive
integer. If start is greater than the length of string2, POS returns 0.

Usage Note

POS returns the position of the left-most character in string2 where a match
is found. If no match is found, POS returns 0.

Example 1

The output of the following program fragment:

where = pos('c', 'abcdef')

is:

where = 3

Example 2

The output of the following program fragment:

where = pos('a', 'abrakadabra', 5)

is:

where = 6

200 Chapter 5

Built-In Functions 201

Example 3

The following program fragment uses POS to verify user response to a
prompt; if the answer provided by the user does not match one of the
characters in the list, POS returns 0.

options = abcxyz
say 'Select a processing option'
pull which_option
if pos(which_option, options) = 0 then
 call bad_option
 else call value which_option

PUTENV

Syntax PUTENV(string)

Description The PUTENV function sets the value of an environment variable.

Parameters

Parameter Explanation

string A command to set the value of an environment variable. The command is of the form
VARIABLE=value.

Usage Notes

Blanks are not permitted around the equal sign.

Use PUTENV to set or modify the value of an environment variable used by
the process in which the CM REXX program is running. Environment
variables set by PUTENV are not retained after the CM REXX program
terminates.

Example

The following program fragment:

rc = putenv('MYVAR=FOO')

sets the MYVAR environment variable. If PUTENV executes successfully, the
value of rc is 0. If an error occurs, the value of rc is non-zero.

202 Chapter 5

Built-In Functions 203

QUEUED

Syntax QUEUED()

Description The QUEUED function returns the number of lines remaining on the CM REXX external data
queue.

Example

The following program processes every line remaining on the CM REXX
external data queue, based on some pre-determined criterion.

do queued()
 pull nextone
 if word(nextone, 3) > checkit then call bigger
 else call smaller
 end

RANDOM

Syntax RANDOM([min] [, [max] [, seed]])

Description The RANDOM function returns a quasi-random, non-negative whole number.

Parameters

Parameter Explanation

min The lower value of the range. min must be non-negative. If min is omitted, the default
is 0.

max The upper value of the range. max must be non-negative. If max is omitted, the default
is 999.

seed An initial seed value that can be used to create a repeatable series of results. seed must
be a whole number. If seed is omitted, the default is an arbitrary value, which can be
time-dependent.

Usage Note

The magnitude of the range specified cannot exceed 100000. Specifically, the
following must be true:

max - min <= 100000

Example 1

The output of the following program fragment:

x = random()

could be:

x = 983

Example 2

The output of the following program fragment:

x = random(9)

could be:

x = 2

204 Chapter 5

Built-In Functions 205

Example 3

The following program fragment generates a random number for use as the
extension on a temporary file required by the program.

ext = random()
tmpfile = '\tmp\thisprog.'ext

REVERSE

Syntax REVERSE(string)

Description The REVERSE function reverses the characters in a string.

Parameters

Parameter Explanation

string The original string in which the characters are to be reversed.

Example 1

The output of the following program fragment:

str = reverse('string')

is:

str = 'gnirts'

Example 2

The output of the following program fragment:

time = reverse('noon ')

is:

time = ' noon'

206 Chapter 5

Built-In Functions 207

RIGHT

Syntax RIGHT(string, n [, pad])

Description The RIGHT function returns the right-most characters in a string.

Parameters

Parameter Explanation

string The original string.

n The number of characters to be returned. n must be non-negative. If n is zero, the
RIGHT function returns a null string. If n is greater than the length of string, the value
returned by RIGHT is padded on the left to the length of n.

pad The character used to pad the result. If pad is omitted, the default is a blank character.

Example 1

The output of the following program fragment:

x = right('abcdefg', 3)

is:

x = 'efg'

Example 2

The output of the following program fragment:

alphabet = right('xyz', 26)

is:

alphabet = ' xyz'

Example 3

The output of the following program fragment:

alphabet = right('xyz', 6, '.')

is:

alphabet = '...xyz'

Example 4

The following program fragment removes 6-character sequence numbers from
the beginning of each line of a file.

input = 'foo.txt'
output = 'bar.txt'
do lines(input)
 line = linein(input)
 line = right(line, length(line)-6)
 call lineout output, line
 end
 call lineout output

Example 5

The following program fragment uses the LEFT and RIGHT functions to
format output data.

line.1 = 'Jan East 1500 West 975 Total $ 2475'
line.2 = 'Feb East 24660 West 975 Total $34635'
line.3 = 'Mar East 800 West 8500 Total $ 9300'
 :
 :
do i = 1 to 12
 say left(line.i, 3) right(line.i, 6)
 end

The output is:

 Jan $ 2475
 Feb $34635
 Mar $ 9300
 :
 :

208 Chapter 5

Built-In Functions 209

SIGN

Syntax SIGN(number)

Description The SIGN function returns a value that indicates the sign of a number.

Parameters

Parameter Explanation

number The number for which the sign is to be determined. If number is negative, then SIGN
returns -1. If number is zero, then SIGN returns 0. If number is positive, then SIGN
returns 1.

Example 1

The output of the following program fragment:

x = sign(10)

is:

x = 1

Example 2

The output of the following program fragment raises 2 to the power chosen by
the user. It does not permit negative or zero exponents.

say 'Enter exponent'
pull power
if sign(power) > 0 then say 2**power
 else say power 'invalid here'

SOURCELINE

Syntax SOURCELINE([n])

Description The SOURCELINE function returns either the number of lines in the current program or the
contents of the specified line.

Parameters

Parameter Explanation

n A line number within the range of the current program. n must be positive and cannot
exceed the line number of the last line in the program. When n is specified, SOURCELINE
returns the contents of the nth line in the program. If n is omitted, SOURCELINE returns
the line number of the last line in the program.

If no source lines are available (as in the case of a compiled program), SOURCELINE
returns 0.

Example 1

In the following program fragment:

prog_length = sourceline()

if the current program contains 50 lines, then

prog_length = 50

Example 2

The following program fragment illustrates the use of SOURCELINE to
identify errors occurring during program execution.

call on error name uhoh
parse arg program_name
address CMD program_name
 :
 :
exit
uhoh:
parse value sourceline(sigl) with 'CMD' failed
say 'Host command failed'
interpret 'say' failed "'not found in PATH'"
return

210 Chapter 5

Built-In Functions 211

SPACE

Syntax SPACE(string [, [n] [, pad]])

Description The SPACE function reformats a string of blank-delimited words such that the specified number
of pad characters appears between each word.

Parameters

Parameter Explanation

string The string of blank-delimited words to be formatted.

n The number of pad characters to appear between each word in the result. n must be
non-negative. If n is specified as zero, all blanks in string are removed. If n is omitted,
the default value is 1.

pad Character used between each word in the result. If pad is omitted, the default pad
character is a blank.

Example 1

The output of the following program fragment:

x = space('Good morning')

is:

x = 'Good morning'

Example 2

The following program fragment creates a header line for a report.

str = date time userid status
header = space(str, 6, '-')

The header line looks like:

DATE------TIME------USERID------STATUS

Example 3

The following program uses SPACE in conjunction with TRANSLATE to
remove characters from a string.

string = 'work group'
string = translate(string, 'o', ' ou')
string = space(string, 0)
string = translate(string, 'o', ' o')
string = space(string, 0)
say string

The output is:

wrkgrp

212 Chapter 5

Built-In Functions 213

STREAM

Syntax STREAM(name [, operation[, strmcmd]])

Description The STREAM function is used to determine the state of a stream, or to perform an operation on a
stream and return the result.

Parameters

Parameter Explanation

name The name of the stream of interest.

operation Describes the action to be carried out. If operation is omitted, the default value is S. If
operation is specified, it must have one of the following values: C, D, or S.

C (command) The command to execute on this stream as specified by the strmcmd
argument.

D (description) Descriptive string associated with the current state of the stream; the
descriptive strings are available only when the state of the stream is
READY. strmcmd must not be specified.

S (state) The current state of the specified stream. strmcmd must not be
specified; the value returned, if you specify S, is one of the following:

ERROR An erroneous operation has been attempted on the stream.

NOTREADY Normal input or output operations would raise the
NOTREADY condition.

READY The stream is ready for normal input or output operations.
UNKNOWN The state of the stream cannot be determined.

Parameter Explanation

A command to be executed on the stream. strmcmd must be enclosed in quotes and
must be one of the following:

open Open the stream for input or output operations; the function returns the
state of the stream.

close Close the stream for input or output operations; the function returns the
state of the stream.

delete Remove the file; the function returns a null string.

query exists Test for existence of the stream; the function returns the name of the
stream, if it exists; otherwise it returns a null string.

query size Determine the number of characters in the file; the function returns the
number of characters.

query datetime Retrieve the date/time stamp of the file; the function returns the
information in the form mm-dd-yy hh:mm:ss.

seek offset Position the file for the next input or output operation; offset must be a
positive integer preceded by one of the following characters:

= Offset is from the beginning of the file.

< Offset is from the end of the file.
+ Offset is forward from the current position.
- Offset is backward from the current position.

strmcmd

Example

The following program fragment illustrates the use of the STREAM function:

strm = 'sales.txt'
state = stream(strm, 'c', 'query exists')
if state \= '' then
 if stream(strm, 'c', 'open') \= 'READY' then
 say 'error opening file' strm
 else
 :
 /* Process the file.. */
 :
 :

214 Chapter 5

Built-In Functions 215

STRIP

Syntax STRIP(string [, [option] [, char]])

Description The STRIP function removes leading, trailing, or both leading and trailing characters from a
string.

Parameters

Parameter Explanation

string The string from which characters are to be removed.

option Specifies whether leading, trailing, or both leading and trailing characters are to be
removed. option can be any string beginning with the character L, T, or B, in any case.

If the first character of option is L, only
leading characters are removed.
If the first character of option is T, only
trailing characters are removed.
If the first character of option is B, both
leading and trailing characters are removed.
If option begins with any other character,
Error 40 results.
If option is omitted, the default is B.

char Character to be removed from string. If specified, char can be only one character. If
char is omitted, the default is a blank.

Example 1

The output of the following program fragment:

x = strip(' Gypsy Rose ')

is:

x = 'Gypsy Rose'

Example 2

The output of the following program fragment:

x = strip('000123', 'l')

is:

x = '123'

Example 3

The output of the following program fragment:

x = strip('In retrospect....', 'Trail', '.')

is:

x = 'In retrospect'

Example 4

The following program fragment removes leading and trailing blanks from a
value to be used as the tail in referencing a compound symbol.

pfile = 'params.txt'
 do lines(pfile)
 parse value linein(pfile) with arg1 arg2 prog
 prog = strip(upper(prog))
 interpret 'call subr.'prog arg1',' arg2
 end

216 Chapter 5

Built-In Functions 217

SUBSTR

Syntax SUBSTR(string, n [, [length][, pad]])

Description The SUBSTR function returns a sub-string of a string.

Parameters

Parameter Explanation

string The string from which the sub-string is to be extracted.

n Character position within string where the sub-string begins. n must be positive. If n is
greater than the length of string, then only pad characters are returned.

length The length of the sub-string to be returned. length must be non-negative. If length is
greater than the number of characters from n to the end of string, then the result is
padded on the right. If length is specified as 0, then the null string is returned. If
length is omitted, the result includes all characters from n to the end of string.

pad The pad character to be used. If pad is omitted, the default is a blank character.

Example 1

The output of the following program fragment:

x = substr('CM REXX', 7)

is:

x = 'REXX'

Example 2

The output of the following program fragment:

herbs = 'parsley sage rosemary thyme'
herb2 = substr(herbs, 9, 4)

is:

herb2 = 'sage'

Example 3

The output of the following program fragment:

today = substr(date(u), 4, 2)

is:

today = '18'

on the 18th day of any month.

Example 4

The following program fragment extracts a sub-string from a series of
numbers, and pads the short ones with zeroes.

numlist = '14 144 4114 41'
do i = 1 to words(numlist)
 x = substr(word(numlist, i), 2, 3, 0)
 say x
 end

The output is:

 400
 440
 114
 100

218 Chapter 5

Built-In Functions 219

SUBWORD

Syntax SUBWORD(string, n [, length])

Description The SUBWORD function returns a sub-string from a string of blank-delimited words.

Parameters

Parameter Explanation

string The string from which the sub-string is to be extracted.

n The number of the word within string where the sub-string begins. n must be positive.
If n is greater than the number of words in string, then the null string is returned.

length Number of words to be returned. length must be non-negative. If length is specified as
0, then the null string is returned. If length is omitted, the result includes all remaining
words in string.

Example 1

The output of the following program fragment:

n = subword('over the rainbow', 3)

is:

n = 'rainbow'

Example 2

The output of the following program fragment:

days = 'Mon Tue Wed Thur Fri Sat Sun'
weekend = subword(days, 6)

is:

weekend = 'Sat Sun'

SYMBOL

Syntax SYMBOL(name)

Description The SYMBOL function returns the status of a symbol.

Parameters

Parameter Explanation

name Specifies the symbol name for which status is to be determined. name is, itself, a symbol
- that is, normal conversion to uppercase and substitution of assigned values occurs
before the SYMBOL function is evaluated. It is therefore recommended that name be
enclosed in quotes to prevent substitution and ensure that the status returned is for the
symbol intended.

Return Values

Return Value Explanation

BAD Indicates that name is not a valid REXX symbol.

VAR Indicates that name is a variable (a symbol to which a value has been assigned).

LIT Indicates that name is a literal; this could be either a constant symbol or a symbol to
which no value has yet been assigned.

220 Chapter 5

Built-In Functions 221

Example 1

The following program fragment illustrates the various results from the
SYMBOL function.

a = 14
b = 3
c. = 0
c.3 = 'hello'
say symbol(a)
say symbol('a')
say symbol('c.1')
say symbol('c.b')
say symbol('d')
say symbol('%')

The output is:

LIT /* after substitution, is symbol(14) */
VAR /* no substitution */
VAR
VAR
LIT /* no value yet assigned */
BAD /* "%" not permitted as symbol name */

Example 2

The following program fragment illustrates using SYMBOL instead of setting a
flag to test for successful processing.

drop testvar
do i = 1 to lines('in_file')
 line = linein('in_file')
 if word(line, 5) \= 'temp' then
 testvar = word(line, 5)
 end
if symbol('testvar') \= 'LIT' then
 say 'Good data'
 else say 'All temps'

TIME

Syntax TIME([out_option [, time_string, in_option]])

Description The TIME function returns the current time of day, or converts times from one format to another.
The second and third arguments of TIME provide support for converting time formats. Time
format conversion permits arithmetic operations to be performed on times of any format.

Parameters

Parameter Explanation

out_option Specifies the format in which the time is returned. If out_option is omitted, the format
returned is: hh:mm:ss. The valid format values for out_option are: C, E, H, L, M, N, R,
S.

C (civil) The time in civil format - hh:mmxx. The value of hh (hours) is
between 1 and 12, without leading zeros. The value of mm
(minutes) reflects the current minute. The value of xx is either am
or pm, to indicate the midnight-to-noon or noon-to-midnight period,
respectively.

E (elapsed) The number of seconds since the elapsed time clock was started or
reset. The format is sssss, without leading zeros or blanks. The first
execution of TIME(E) starts the elapsed time clock and returns a
value of 0.

H (hours) The number of complete hours since midnight. The format is hh,
without leading zeros or blanks. In the case of the period from
midnight to 1:00, the value returned is 0.

L (long) Extended time. The format is hh:mm:ss.uuuuuu. Hours, minutes,
and seconds conform to the rules for the normal format. uuuuuu
represents fractional seconds, given in microseconds. Fractional
seconds are not available in some implementations. In these cases,
TIME(L) returns the same value as TIME(N).

M (minutes) The number of complete minutes since midnight. The format is
mmmm, without leading zeros or blanks. In the case of the period
from 12:00 midnight to 12:01 A.M., the value returned is 0.

N (normal) The time of day using the 24-hour clock. The format is hh:mm:ss.
The value of hh is from 00 through 23, with leading zeros. The value
of mm and of ss is from 00 through 59, with leading zeros.
Fractional seconds are ignored. This is the default result of TIME
when no option is specified.

R (reset) The number of seconds since the elapsed time clock was started or
reset. The format is sssss, without leading zeros or blanks. In
addition to returning elapsed time, TIME(R) resets the elapsed time
clock.

S (seconds) The number of complete seconds since midnight. The format is
sssss, without leading zeros or blanks. In the case of the period from
12:00 midnight to 12:00:01, the value returned is 0.

time_string Specifies the time to be converted. Time_string must be in one of the time formats

222 Chapter 5

Built-In Functions 223

Parameter Explanation

described above. It may be a literal string, a variable reference, or an expression that
evaluates to a time.

in_option Specifies the format of time_string and must be one of the time formats described above.
It should not be (E) Elapsed or (R) Reset.

Example 1

The output of the following program fragment:

now = time()

could be:

now = '10:30:15'

Example 2

The output of the following program fragment:

cnow = time('c')

could be:

cnow = '10:30am'

Example 3

The following program fragment measures the elapsed time required to run
specified programs.

do forever
 say 'Enter program name or "Q"'
 parse pull prog
 if upper(prog) = 'Q' then leave
 call time('r')
 address cmd prog
 prog_time = time('e')
 say 'Time to run' prog':' prog_time
 end
 exit

Example 4

The output of the following program fragment:

now = time('c', '17:17:00', 'n')

could be:

now = '5:17 pm'

Example 5

If it is currently 4:40 pm, the output of the following program fragment:

plus45 = time('c', time('m') + 45,'m')

could be:

plus45=5:25 pm)

224 Chapter 5

Built-In Functions 225

TRACE

Syntax TRACE([option])

Description The TRACE function returns the current setting of TRACE. It can also be used to change the
TRACE setting.

Parameters

Parameter Explanation

option One of the valid TRACE settings as described in Chapter 4: Instructions. Valid trace
settings are A, C, E, F, I, L, N, O, R.

Example 1

The output of the following program fragment:

setting = trace()

could be:

setting = 'N'

Example 2

The following program fragment uses the TRACE function both to capture the
initial TRACE setting and to change the setting prior to calling a subroutine;
after the subroutine returns, the TRACE instruction restores the TRACE
setting to its original value.

set1 = trace('o')
call subr
trace value set1

TRANSLATE

Syntax TRANSLATE(string [, [out_tbl] [, [in_tbl] [, pad]]])

Description The TRANSLATE function translates the characters in a string according to the specified
translation tables.

Parameters

Parameter Explanation

string The string to be translated. Each character in string is looked up in in_tbl.

If the character is found in in_tbl, the position in in_tbl at which it was found is used as
an index into out_tbl. The character at that position in out_tbl is substituted for the
character that was looked up, in the result string returned by the TRANSLATE function.

If the character is not found in in_tbl, the character that was looked up is appended to
the result string returned by the TRANSLATE function.

If neither in_tbl nor out_tbl are specified, the TRANSLATE function returns string in
uppercase.

out_tbl The set of characters used in the result string. The default value is the null string.
out_tbl is padded with pad or truncated so that out_tbl and in_tbl are the same
length.

in_tbl The set of characters from the original string that are to be translated in the result. The
default value is XRANGE('00'x, 'FF'x).

pad The character used to pad out_tbl, if necessary. If pad is omitted, the default is a
blank.

Example 1

The output of the following program fragment:

upper_str = translate('Hello')

is:

upper_str = 'HELLO'

This is a fully portable equivalent to the CM REXX UPPER function, which
may not be available in other REXX implementations.

226 Chapter 5

Built-In Functions 227

Example 2

The following program fragment converts a string to lowercase. This is a fully
portable equivalent to the CM REXX LOWER function, which may not be
available in other REXX implementations.

parse arg string
uppers = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ'
lowers = 'abcdefghijklmnopqrstuvwxyz'
lstring = translate(string, lowers, uppers)

Example 3

This example shows how to use TRANSLATE to reorder the characters in an
input string.

intab = 'abcdefgh'
pattern = 'ef/gh/abcd'
reorder = translate(pattern, '19940704',intab)

The output is:

reorder = '07/04/1994'

TRUNC

Syntax TRUNC(number [, n])

Description The TRUNC function returns the integer portion of a number and, optionally, a specified number
of decimal places.

Parameters

Parameter Explanation

number The numeric value to be truncated.

n The number of decimal positions in the result. n must be non-negative. If n is omitted,
the default value is 0.

Example 1

The output of the following program fragment:

x = trunc(3.1416)

is:

x = 3

Example 2

The output of the following program fragment:

y = trunc(3.1416, 2)

is:

y = 3.14

Example 3

The output of the following program fragment:

z = trunc(3.14, 3)

is:

z = 3.140

228 Chapter 5

Built-In Functions 229

UPPER

Syntax UPPER(string)

Description The UPPER function converts characters in a string to uppercase.

Parameters

Parameter Explanation

string The string of characters to be converted. string can be upper-, lower-, or mixed-case.

Example 1

The output of the following program fragment:

up = upper('abcd')

is:

up = 'ABCD'

Example 2

The output of the following program fragment:

up = upper ('Hello world')

is:

up = 'HELLO WORLD'

Example 3

The following program fragment ensures that user input is in uppercase for
validation while also insuring that reply is taken from the terminal
(STDIN) rather than from data that might be on the program stack.

say 'Enter authorization'
reply = upper(linein())
if wordpos(reply, auth_list) \= 0 then
 call run_prog
 else say 'Sorry, not authorized'

USERID

Syntax USERID()

Description The USERID function returns the userid of the user currently logged on to the computer. It is
identical to the CUSERID built-in function.

Example

The output of the following program fragment displays the User ID of the
individual running the program.

say userid()

230 Chapter 5

Built-In Functions 231

VALUE

Syntax VALUE(name)

Description The VALUE function returns the value of a symbol.

Parameters

Parameters Explanation

name name specifies the symbol name for which status is to be determined. name is, itself,
a symbol. Normal conversion to uppercase and substitution of assigned values occurs
before the VALUE function is evaluated. It is therefore recommended that name be
enclosed in quotes to prevent substitution and ensure that the status returned is for the
symbol intended.

Example 1

The output of the following program:

x = 10
say value('x')

is:

10

Example 2

The output of the following program fragment:

x = 10
y = 'x'
say value(y)

is:

10

Example 3

This example results in Error 31: Name starts with number or '.', because the
value of x (10) is substituted before the VALUE function is evaluated.

x = 10
say value(x)

Example 4

The output of the following program fragment:

x = qqq
qqq = 10
y.10 = 'hello'
y.x = 'goodbye'
say value('y.x')
say value(y.x)
say value('y.'||x)

is:

 goodbye
 GOODBYE
 hello

232 Chapter 5

Built-In Functions 233

VERIFY

Syntax VERIFY(string, char_list [, [option]
[, start]])

Description The VERIFY function verifies whether or not a string is composed only of characters in a specified
character list.

Parameters

Parameters Explanation

string Is the string to be verified.

char_list Is the list of acceptable characters.

option Controls whether the function verifies the presence or absence of characters in
char_list. Can be any string beginning with the character M or N, in any case. If
option is omitted, the default is N.

M (match) The function returns the position of the first character In string
that is present in char_list.

N (nomatch) The function returns the position of the first character in string
that is not present in char_list.

start Is the character position in string where the verification begins. start must be a
positive integer. If start is greater than the length of string, the function returns 0. If
start is omitted, the default value is 1.

Usage Notes

With no additional arguments, the function returns the character position in
string of the first character that is not present in char_list. If all characters
in string are present in char_list, the function returns 0. If string is the
null string, the function also returns 0.

Example 1

The output of the following program fragment:

x = verify('abc', 'abcdefg')

is:

x = 0

Example 2
The output of the following program fragment:

x = verify(abc, 'abcdefg')

is:

x = 1;

The value of the symbol abc is ABC, and none of these characters is in
abcdefg.

Example 3
The following program fragment verifies that all date values in a file contain
only numbers or slash before processing the file.

infile = 'orders.txt'
bad_data = 0
OK_chars = '1234567890/'
do lines(infile)
 parse value linein(infile) with order_date .
 bad_data = verify(order_date, OK_chars)
 end
call lineout infile
if bad_data > 0 then do
 say 'Some orders have invalid dates'
 say 'These must be corrected to proceed'
 exit
 end
 else call run_orders

Example 4
The following program fragment verifies that employee numbers include a
valid department designator in position >=6 before proceeding.

infile = 'personnel.txt'
bad_data = 0
dept_letters = 'RDAFL'
do lines(infile)
 parse value linein(infile) with empno .
 if verify(empno, dept_letters, 'M', 6) = 0
 then bad_data = 1
 end
call lineout infile
if bad_data then do
 say 'Found some invalid employee numbers'
 exit

234 Chapter 5

Built-In Functions 235

 end
 else call do_payroll

WORD

Syntax WORD(string, n)

Description The WORD function returns a single word from a string of blank-delimited words.

Parameters

Parameters Explanation

string The string of blank-delimited words.

n The number of the word to be returned. n must be a positive integer. If n is greater
than the number of words in string, the function returns a null string.

Example 1

The output of the following program fragment:

x = word('Happy New Year', 2)

is:

x = 'New'

Example 2

The following program fragment determines the compiler to use based on
user input.

say 'Enter language, program name, and userid'
pull reply /* gets user input in uppercase */
select
 when word(reply, 1) = 'REXX' then comp = 'rxc'
 when word(reply, 1) = 'C' then comp = 'cc'
 otherwise comp = 'unknown'
 end

236 Chapter 5

Built-In Functions 237

WORDINDEX

Syntax WORDINDEX(string, n)

Description The WORDINDEX function returns the character position, of the start of a specified word in a
string of blank-delimited words.

Parameters

Parameters Explanation

string Is the string of blank-delimited words.

n n must be a positive integer. If n is greater than the number of words in string, the
function returns 0.

Example 1

The output of the following program fragment:

x = wordindex('Happy New Year', 2)

is:

x = 7

Example 2

The following program fragment uses WORDINDEX to set the right position for
parsing lines of data that are not consistently formatted.

output = ''
line.0 = 3
line.1 = 'Benjamin Franklin'
line.2 = 'George Washington'
line.3 = 'Abe Lincoln'
do i = 1 to lines.0
 x = wordindex(line.i, 2) - 1
 parse var line.i +(x) last_name
 output = output last_name
 end
say strip(output)

The output is:

Franklin Washington Lincoln

WORDLENGTH

Syntax WORDLENGTH(string, n)

Description The WORDLENGTH function returns the length of a specified word in a string of blank-delimited
words.

Parameters

Parameters Explanation

string Is the string of blank-delimited words.

n The number of the word whose length is to be returned. n must be a positive integer. If
n is greater than the number of words in string, the function returns 0.

Example 1

The output of the following program fragment:

x = wordlength('Happy New Year', 2)

is:

x = 3

Example 2

The following program fragment uses WORDLENGTH to set the right position
for verifying part numbers.

part.0 = 3
part.1 = 'Mouse 1046'
part.2 = 'Keyboard 90772'
part.3 = 'Monitor 806'
do i = 1 to part.0
 x = wordlength(part.i, 1) + 2
 if verify(part.i, '1234567890', , x) \= 0
 then say 'Bad part number for:' line.i
 end

238 Chapter 5

Built-In Functions 239

WORDPOS

Syntax WORDPOS(string1, string2 [, start])

Description The WORDPOS function searches a string of blank-delimited words for the first occurrence of
another string of blank delimited words.

Parameters

Parameters Explanation

string1 string1 is the search string.

string2 string2 is the string to be searched.

start The number of the word in string2 where the search begins. start must be a positive
integer. If start is omitted, the default value is 1.

Usage Notes

Multiple blanks between words in both string1 and string2 are treated as a
single blank for comparison purposes.

The function returns the word number of the first word in string2 that
matches string1. If string1 is not found in string2, the function returns 0.

Example 1

The output of the following program fragment:

z = wordpos('time', 'time and time again')

is:

z = 1

Example 2

The output of the following program fragment:

z = wordpos(time, 'Time flies')

is:

z = 0

Example 3

The output of the following program fragment:

a = 'the best of times'
b = 'It was the best of times'
c = wordpos(a, b)

is:

c = 3

Example 4

The output of the following program fragment:

a = 'the best of times, the worst of times'
b = 'times'
say wordpos(b, a, 5)

is:

8

Example 5

The following program fragment uses WORDPOS to verify user input.

prod_list = 'RMS RMP ROMS RCS'
say 'Name a CM product'
parse pull answer
if wordpos(answer, prod_list) = 0
 then say "Sorry, that product's not from CM"

240 Chapter 5

Built-In Functions 241

WORDS

Syntax WORDS(string)

Description The WORDS function returns the number of words in a string of blank-delimited words.

Parameters

Parameters Explanation

string The string of blank-delimited words.

Example 1

The output of the following program fragment:

x = words('Hip, hip, hooray')

is:

x = 3

Example 2

The following program fragment processes a file, discarding all blank lines.

file = 'foo.txt'
do lines(file)
 line = linein(file)
 if words(line) \= 0 then call reports line
 end

XRANGE

Syntax XRANGE([start] [, end])

Description The XRANGE function returns a string of all the valid character encodings within a range.

Parameters

Parameters Explanation

start The beginning of the range. If start is omitted, the default value is '00'x.

end The end of the range. If end is omitted, the default is 'ff'x.

Usage Note

If start is greater than end, then the result will automatically wrap from
'ff'x to '00'x.

Example 1
The output of the following program fragment:

x = xrange('m', 'r')

is:

x = 'mnopqr'

Example 2
For the following program fragment:

y = xrange('fa'x, '04'x)
say y

the output is the character representation of the hexadecimal string:

'fafbfcfdfeff01020304'x

242 Chapter 5

Built-In Functions 243

Example 3
The output of the following program fragment:

a = x2c(b2x('01100011'))
b = d2c(112)
say xrange(a, b)

is:

cdefghijklmnop

X2B

Syntax X2B(string)

Description The X2B function converts a string of hexadecimal characters to a string of binary characters.

Parameters

Parameters Explanation

string String of hexadecimal characters. This is not a hexadecimal string literal in the form
'nnnn'x. It is simply the hexadecimal digits themselves.

Usage Note

You can use X2B in combination with other conversion functions to convert
various formats to their equivalent binary value.

Example 1

The output of the following program fragment:

x = x2b('63')

is:

x = '01100011'

Example 2

The output of the following program fragment:

y = x2b(c2x('a'))

is:

y = '01100001'

244 Chapter 5

Built-In Functions 245

X2C

Syntax X2C(string)

Description The X2C function converts a string of hexadecimal characters to character format.

Parameters

Parameters Explanation

string A string of hexadecimal characters. This is not a hexadecimal string literal in the form
'nnnn'x. It is simply the hexadecimal digits themselves. string can contain embedded
blanks, which are ignored, between pairs of characters.

Usage Notes

If the length of string is not an even multiple of 2, it is automatically padded
with a leading zero before the conversion is performed.

If string is null, the function returns a null string.

Example 1

The output of the following program fragment:

x = x2c('616263')

is:

x = 'abc'

Example 2

The output of the following program fragment:

say x2c('f')

is the character representation of '0f'x

Example 3

The output of the following program fragment:

z = x2c(d2x('112'))

is:

z = 'p'

246 Chapter 5

Built-In Functions 247

X2D

Syntax X2D(string {, n})

Description The X2D function converts a string of hexadecimal characters to its decimal equivalent.

Parameters

Parameters Explanation

string A string of hexadecimal characters. This is not a hexadecimal string literal in the form
'nnnn'x. It is simply the hexadecimal digits themselves. string can contain embedded
blanks, which are ignored, between pairs of characters. If string is null, the function
returns 0.

n n indicates that the string represents a signed number expressed in n characters. If
necessary, string is padded on the left with zeroes or truncated on the left so that the
length of string is n characters. If n is specified, the left-most bit determines the sign;
if it is zero, the number is positive; otherwise it is a negative number in twos-
complement form. If n is 0, the function returns 0.

Usage Note

The value returned by X2D is expressed as a whole number. If it cannot be
expressed as a whole number within the current setting of NUMERIC
DIGITS, the Error 40: Incorrect call to routine, results.

Example 1

The output of the following program fragment:

x = x2d('76')

is:

x = '112'

Example 2

The output of the following program fragment:

y = x2d(b2x('01100011'))

is:

y = 99

Example 3

The output of the following program fragment:

z = x2d(b2x('01100001'),1)

is:

z = 1

Example 4

The output of the following program fragment:

q = x2d('f063', 4)

is:

q = -3997

248 Chapter 5

6 Using Extensions

This chapter teaches you how to use the REXX function extensions of CM
when you customize CM processing for your CM environment.

249

CM Agent REXX Methods

CM Agent REXX Methods enable you to attach logic to CM objects in the
form of methods. Methods are programs that apply to an object or a specific
class of objects. Methods can perform virtually any type of operation against
CM objects or any other CM-managed elements in the desktop environment.
At a minimum, every object class includes a create method and a delete
method.

Methods enable the base CM software to be enhanced, extended, and
interfaced to external services. The CM Agent software includes a number of
CM REXX methods and various other methods that serve as templates for
specific functions.

Overview of CM REXX Extensions

CM provides function extensions that support access to CM data through
compound symbols and stem variables. These CM REXX extensions act on
CM objects that reside in the CM Agent's internal storage object pool,
enabling access to CM variables, including Z-named variables. The
extensions reference multi-heap object variables much like arrays of
variables. Multiheap reference techniques are more efficient than explicit
references to the CM variables, and, therefore, are strongly encouraged.

REXX, CM, Objects and Object Paths/Folders

Included in the CM (agent) extensions for REXX is the ability to read and
write CM Objects. When processing objects, REXX internally maintains a
list/queue of objects being processed. Objects are added to the queue via
EDMGET(RADGET) or EDMBLD (REXX) functions. Objects are saved to
disk via the EDMSET(RADSET) function and objects are deleted/removed
from the REXX queue via the EDMFREE function. There is no CM extension
to delete/erase the object file from disk, but the REXX "stream" function can
be used to do this.

250 Chapter 6

Using Extensions 251

By default when an object is added to the REXX queue, the default
path/directory is the (current) value of IDMLIB. The REXX queue of object
names is unique by the object name (case neutral), regardless of the folder
that the object resides in, thus if ZFOO is opened in IDMLIB we would have
to close ZFOO (EDMFREE) before we can (re)open it in the C:\Bar directory.

The first time EDMGET(RADGET) is called for an object, it will always tied
to read it from disk at the specified (or default) directory. If the object exists,
the first heap is read and loaded into (REXX) storage. If the object does not
exist on disk, then an empty object is allocated with the default heap size of
1024 bytes. If a larger heap size is need for an empty object, EDMBLD can
be used to create it. The heap size is the sum all the lengths of the
variables/attributes in the object.

Directory paths can be any valid path that exists. If a specified path does not
exit, the "current directory" will be used in its place. The specified directory
can be specified with or without a trailing slash. Internally this is checked
and handled correctly when building the actual file name of the object file.
Generally, once an object is added to the REXX queue, the initial directory
(default or specified) can't be changed via EDMSET(RADSET). There is an
exception. If the object in the REXX queue was built (EDMBLD) or never
existed on disk, then, if a directory is specified via the call to
EDMSET(RADSET), it will then be come the directory that the specified
object will be save to.

In addition to the absolute path, relative paths can be specified. The relative
paths are (NOTE: there are two underscores on each size of the names)
__lib__ for IDMLIB, __adm__ for IDMADM, __sys__ for IDMSYS, __data__
for IDMDATA, __log__ for IDMLOG and __root__ for IDMROOT.

Using Extensions

This chapter explains how to use CM REXX function extensions when you
customize CM processing at your site. CM Agent REXX Methods enables you
to attach logic to CM objects in the form of methods. Methods are programs
that apply to an object or a specific class of objects. Methods can perform
virtually any type of operation against CM objects and/or any other CM-
managed elements in the desktop environment. At a minimum, every object
class includes a create method and a delete method. Methods enable the base
CM software to be enhanced, extended, and interfaced to external services.

The CM Agent software includes a number of CM REXX methods and various
other methods that serve as templates for specific functions. Overview of CM
REXX Extensions CM provides function extensions that support access to CM
data through compound symbols and stem variables. These CM REXX
extensions act on CM objects that reside in the CM Agent's in storage object
pool, enabling access to CM variables, including Z-named variables. The
extensions reference multi-heap object variables much like arrays of
variables. Multi heap reference techniques are more efficient than explicit
references to the CM variables, and, therefore, are strongly encouraged.

Function Calls and Return Values

Function calls can be made in either of two ways:

• Use the CALL statement.

• Place the return value into a variable.

When you use the CALL statement, CM REXX sets the special variable
RESULT to the value returned by the function. Unless otherwise noted, all
CM REXX extensions return a value of 0 upon successful execution, and the
value 8 if execution fails. The following example contains a CALL statement
on the first line, and a return value on the second. Note the use of
parentheses in the second example. Also note that REXX is a "case neutral"
language. REXX variables function and instructions and be specified in mix
case so EdmGet edmget EDMGET are all the same.

The following example contains a CALL statement on the first line, and a
return value on the second. Note the use of parentheses in the second
example.

Example
CALL EDMGET 'ZMASTER',0,'NOLOAD';
rc=EDMGET('ZMASTER',0,'NOLOAD');

252 Chapter 6

Using Extensions 253

Identifying Variables

When an object is fetched/open with EDMGET(RADGET), in addition to
returning an error/return code of 0 or 8, the function also creates REXX
variables. So if we issue the call:

 call EDMGET 'myobject'

EDMGET will create the REXX variable myobject and save to it the number
of heap in the object. So ff we issue:

 call EDMGET 'myobject'

 say myobject /* (might) output 10 */

A more programmatic way to do this would be like this:

 object = 'myobject'

 call edmget object

 say value(object)

The REXX function VALUE will return the value of the specified variable
name. Check the description of VALUE for more information on this function.

In addition to the REXX variable that contains the name of the object being
processed, edmget also sets the variable <objectname>vars to the one more
than the total number of variables in the object. So extending the above
example we can issue:

 object = 'myobject'

 call edmget object

 heaps = value(object)

 vars = value(object || "vars") - 1

 say heaps /* 10, maybe */

 say vars /* 62, maybe */

Appending n to a CM object name (where n is an integer between 1 and the
number of variables) returns the variable name. Note, however, that the
suffix n does not return the variable value. For example:

 do vv = 1 to vars

 attr_name = value(object || vv)

 say attr_name /* might show "ZOS" */

 end vv

We need to know the attribute/variable name saved in the object to get its
value. The attribute/variable values are saved in two forms, which are:

 <objectname>.<attribute>

 <objectname>.resolved.<attribute>

Where <objectname>.<attribute> is the exact data of the attribute in the
object. So, if the value is &(ZMASTER.ZFOO), then that is the value saved to
REXX. In the second form, the value that would be saved to REXX for
<objectname>.resolved.<attribute> would be the "value" of
&(ZMASTER.ZFOO) which (might) be "BAR."

There is a form used for debugging which is:

 <objectname>.ventry.<ordinal>

In this form, the <ordinal> is the numeric entry (starting from 1) of the
attribute in the template. The value of <objectname>.ventry.<ordinal> is a
string of seven "REXX words" which contain the attribute name(1), offset in
the object(2), length(3) and flag bytes F1 F2 F2 and F4

REXX variables and CM object values

REXX variables in the form of Name.a.b.c are known as "compound
variables," which contain a "stem" and a "tail." The "stem" name is the string
of characters up to and including the first period. The characters after the
first period are the "tail." The tail is actually composed tokens glued together
with periods. So when REXX tries to read or write a compound variable like
item.red.green, it breaks it down as follows:

254 Chapter 6

Using Extensions 255

It first looks at the tail,

red.green

Then checks to see if any of the "tokens" are REXX variables. In this case we
have the tokens red and green. REXX will look up these variables to see if
they have a value. If they have a value, that value will be replace the variable
name in the tail. So if "red" was 24 and green was 48 the tail would look like
this:

24.48

Then REXX would look up the value of the (REXX) variable "ITEM.24.48" If
the (tail) token is not a valid REXX variable (see datatype('s') REXX function)
or a value variable has no value, then the token is left as is, and converted to
uppercase, so green would become GREEN if "green" is undefined and red
would become RED and the REXX variable fetched would be:
"ITEM.RED.GREEN"

So when working with CM objects in REXX, care needs to be taken after
EDMGET reads an object into REXX variables. For example:

 call edmget 'zmaster'

There might be a variable in the zmaster object call zos, so see its value we
would write:

 say zmaster.zos /* maybe show "NT" */

But if we were to write:

 zos = 'fred'

 call edmget 'zmaster'

 say zmaster.zos /* this will fetch the REXX variable
zmaster.fred */

REXX first will look to see if the "tail" could be resolved as a REXX variable.
In this case, it could because we assigned 'zos' the value of 'fred.'

To safeguard for this condition we could start all the REXX variable we use
in our REXX code to start with "@" or "?" which we usually don't see in
attribute name, or can use the REXX drop instruction to make sure that
REXX will leave the stem as is:

 zos = 'fred'

 call edmget 'zmaster'

 drop zos

 say zmaster.zos /* this will fetch the REXX variable
zmaster.zos */

Example 1

In this example, rc1 is set to the number of variables in the ZMASTER object,
and rc2 is set to the name of the first variable. Had the ZMASTER object not
been found on the desktop, then rc1 would have been set to ZMASTERVARS.
Had the first variable not been defined, or if it had no value, then rc2 would
have been set to ZMASTER1.

 CALL EDMGET 'ZMASTER','0','NOLOAD'
 rc1 = ZMASTERVARS - 1
 SAY 'There are' RC1 'variables in the ZMASTER object.'
 rc2 = ZMASTER1
 SAY 'The 1st variable is ' rc2

256 Chapter 6

Using Extensions 257

Example 2

A more sophisticated and practical example follows below.

This program returns how many variables there are in the first heap of the
ZCLIENT object, the name of each variable, and the value of each variable.

object = 'zclient'
 CALL EDMGET object, 0, 'NOLOAD'
 number_variables = value (object || 'vars') - 1
 SAY 'There are' number_variables,
 'variables in the first heap of the' object,
 "object"
 do n = 1 to number_variables
 variable_name = value(object || n)
 full_name = space(object variable_name, 1, '.')
 variable_value = value(full_name)
 SAY 'The value of ZCLIENT.'variable_name,
 'is' variable_value
 end n
 exit 0

Example 3

This program will show the contents of the ZERRMSG variable in each heap
of the ZERROR object in the PNLREXX.LOG file.

CALL EDMGET('ZERROR',0)
Nheaps = ZERROR
Nheaps = Nheaps -1
 /* Loop through all heaps in the object. */
do CurrHeap = 0 to Nheaps by 1
 CALL EDMGET 'ZERROR',CurrHeap
 say ZERROR.ZERRMSG

end /* Loop through all heaps in the object. */

The CM REXX Extension List

The following sections document the CM REXX method extensions.

• EDMADD • NvdVerQueryValueString
FileInfo

• EDMATTR • RADGET
• EDMBLD • RADSET
• EDMCMD • RXXCOMMANDKILL
• EDMDELHEAP • RXXCOMMANDSPAWN
• EDMDELVAR • RXXCOMMANDWAIT
• EDMFREE • RXXOSENDOFLINESTR

ING
• EDMGET • RXXOSENVIRONMENT

SEPARATOR
• EDMLOC • RXXOSNAME
• EDMRST • RXXOSPATHSEPARATO

R
• EDMSET • RXXSLEEP
• EDMSORT • WinMessageBox
• GET_CHILD_OBJ • WinExpandEnvironmentS

tring
• LOAD_CHILDREN • WinGetVersion
• NOWAIT •

258 Chapter 6

Using Extensions 259

EDMADD

Syntax EDMADD(object_name)

Description Calling EDMADD adds an empty heap to the end of the specified CM object in memory, and the
newly added heap becomes the currently selected heap. The total heap-count (stored in a
variable with the same name as the name of the object) is incremented. The newly added heap
will not be stored in the object on disk until EDMSET is called.

Parameters

Parameter Explanation

object_name A valid CM object. object_name can be up to eight characters long. The object name
has to already exist in the REXX object queue. If the names does not exist, the call
fails.

Example 1

This CM REXX method reads in the lines of an input file, (AUTOEXEC.BAT),
and creates SAMPLE.EDM, a multi-heap object with one variable per heap.
Each variable contains the value of a single line from that file.

 /* Create a 'sample' object. */
 CALL EDMBLD 'SAMPLE'

 /* Define a file to read. */
 infile1='C:\AUTOEXEC.BAT'

 heapcount = 0
 do while lines(infile1) > 0
 /* Loop through the input file. If it's */
 /* not the first heap then we need to add */
 /* a new heap to the object. */
 if heapcount > 0
 then CALL EDMADD 'SAMPLE'

 /* Read in a line of the input file. */
 /* Set the SAMPLE object variable. */
 SAMPLE.LINE1 = linein(infile1)

 /* Save the current heap. */
 CALL EDMSET 'SAMPLE'

 /* Increase the heap counter. */
 heapcount = heapcount +1
 end

260 Chapter 6

Using Extensions 261

EDMATTR

Syntax EDMATTR(filename)

Description The value returned from EDMATTR contains a string with the following file attribute information:

 File exists (or does not exist).

 File size (in bytes).

 Date file was last updated

 Time file was last updated (in 24 hour format).

 Time file was updated (in AM/PM format).

If the file does not exist, a string with the character value of 8 is returned.

Parameters

Parameter Explanation

filename The full name and path of the file you are querying.

Usage Note

We recommend using the REXX built-in function STREAM instead of
EDMATTR. For more information on the STREAM function, see Chapter 5:
Built-In Functions.

Example

The output of the following program fragment:

CALL EDMATTR 'C:\AUTOEXEC.BAT'

is:

0 126848 02-14-96 03:12:00 03:12a

In the above return value:

 0 indicates the file exists.

 126848 is the size of the file in bytes.

 02-14-96 is the date the file was last updated.

 03:12:00 is the time the file was last updated.

 03:12a is the time the file was last updated.

262 Chapter 6

Using Extensions 263

EDMBLD

Syntax Call EDMBLD object_name[,heap_size[,path]]

Description Calling EDMBLD adds a new object to the REXX object queue.

Parameters

Parameter Explanation

object_name A valid CM object name. object_name can be up to eight characters long. The object
name has to be a new object. If the object name already exists in the REXX object
queue, the call fails.

heap_size The size of each heap within the object to be built. The default is 1K (1024 bytes). The
heap_size option can be between 1 to 6144 bytes. If the object already is present in
REXX (via a EDM/RADGET), the function call will fail. Thus, EDMBLD creates a new
entry in the REXX object queue. Each additional heap adds only heap_size bytes to the
size of the object.

path Is the location/directory that the object will be saved to. The default is the (current)
value of IDMLIB. When this object/heap is save, on the first call to EDMSET, if a path is
specified, then that path becomes the allocated path for this object.

Example
CALL EDMBLD 'MAINT', 256, "c:\myobjects"

EDMCMD

Syntax EDMCMD('modifier command_line')

Description Calling EDMCMD allows you to use CM Extended Batch command line modifiers to execute a
platform-specific command.

Parameters

Parameter Explanation

modifier Enhances your control over the desktop during execution of the command. Modifiers can
be grouped together but must be placed before command_line. CM REXX supports only
the following modifiers: SHOW, HIDE, WAIT, NOWAIT, and FULLSCR.

SHOW Specify SHOW to see the command or program as it executes in its default sized
window.

HIDE Specify HIDE to prohibit the display of a window during startup and execution of a
program or command.

WAIT Specify WAIT to force CM REXX to wait for the completion of the command before
resuming execution of the REXX program.

NOWAIT Specify NOWAIT to continue execution of the REXX program as soon as the command is
launched, without waiting for completion of the command.

FULLSCR Specify FULLSCR to display the command's execution in a full screen window, rather
than its default window size.

command_line A platform-specific, valid command with proper syntax and parameters.

Usage Note

CM REXX interprets the command line modifier and passes the command to
the local operating system.

Example
CALL EDMCMD 'NOWAIT HIDE EDMDEMON'

264 Chapter 6

Using Extensions 265

EDMDELHEAP

Syntax EDMDELHEAP(object_name)

Description Calling EDMDELHEAP deletes the current heap from a CM object. The heap is immediately
deleted from both the object in memory, and from the object as stored on disk.

Parameters

Parameter Explanation

object_name A valid CM object. object_name can be up to eight characters long.

Example

This example deletes heap 5 from the SAMPLE object.

CALL EDMGET 'sample', 5
CALL EDMDELHEAP 'sample'

EDMDELVAR

Syntax EDMDELVAR(object_name,variable)

Description Calling EDMDELVAR deletes a specified variable from a CM object. The variable is deleted
immediately from both the object in memory, and from the object as stored on disk.

Parameters

Parameter Explanation

object_name The name of a valid CM object. object_name can be up to eight characters long.

variable The name of a variable contained in the object. variable can be up to eight characters
long.

Example

This example deletes the VAR1 variable from the SAMPLE object.

CALL EDMGET 'SAMPLE'
CALL EDMDELVAR 'SAMPLE', 'VAR1'

266 Chapter 6

Using Extensions 267

EDMFREE

Syntax EDMFREE(object_name)

Description Calling EDMFREE removes the specified CM object from the REXX object queue. In addition to
the "REXX object queue" there is an internal object queue. For the most part the REXX and
internal queue are process in parallel. There are certain cases were this is not true, namely
when invoking REXX via radpnlwr.exe. In this case, radpnlwr is the owner of ZMASTER, so if
EDMFREE is call with ZMASTER, it would be purged from the REXX object queue, and not the
internal object queue. The term "managed" is used to describe this. (See nvdobjects function
call) Object that REXX has full control over are "managed," otherwise they are unmanaged. This
should not be a concern when running REXX via radrexxw.exe or radrexx on unix.

There is a finite number of objects that can be loaded in the internal object queue. For Unix it is
50, otherwise 20.

Parameters

Parameter Explanation

object_name A valid CM object. object_name can be up to eight characters long. If the object is not in
the REXX object queue, the call return 8.

Example
CALL EDMFREE 'MYOBJECT'

EDMGET

Syntax Call EDMGET object_name,[heap_number [,'NOLOAD'[,path]]]

Description Calling EDMGET reads the specified heap from a CM object into memory, making it the currently
selected heap. If you specify an non-existent heap, EDMGET returns a value of 8.

 NOTE: You can use this command on the CM Configuration Server OR the CM Agent. However,
you must note that heap numbers on the RCS start at 1, while heap numbers on the client start
at 0.

Parameters

Parameter Explanation

object_name A valid CM object. object_name can be up to eight characters long.

heap_number Specifies the relative position of the heap or instance in the object. heap_number must
be an integer between 0 and 65,536. The maximum value of heap_number is one less
than the number of heaps in the object. Default is 0.

'NOLOAD' If you include the NOLOAD option, EDMGET will NOT "reload" the object template off
from disk. If the object being process can "change" (variables/attributes added and/or
deleted) while the REXX program/script is running, it best not to specify this argument.
If the template does not change then specifying NOLOAD will save a (disk) read of the
object's template.

Path Is the location/directory that the object will be read/written to. The default is the
(current) value of IDMLIB. Once the path is established via a "GET", (for the most part),
this directory will stay in effect until the object is purged from the REXX object queue via
EDMFREE.

Example

This program will show the contents of the ZERRMSG variable in each heap
of the ZERROR object written to the log file.

 Object = "ZERROR"
 Dir = "c:\Temp\Objects"

 CALL EDMGET Object, 0,, Dir /* NOLOAD was omitted as a null argument
*/

 Nheaps = value(Object)
 NVars = value(Object || "vars")
 Nheaps = Nheaps - 1

 /* Loop through all heaps in the object. */
 for CurrHeap = 0 to Nheaps by 1
 CALL EDMGET Object, CurrHeap

268 Chapter 6

Using Extensions 269

 errorvar = Object || ".ZERRMSG"
 say ZERROR.ZERRMSG
 end /* Loop through all heaps in the object. */

RCS: You can use this function on the CM Configuration Server. Note that
only the first two arguments are supported. Also, note that heap numbers on
the RCS start at 1, while heap numbers on the client start at 0. A heap
number of 0 on the RCS means "the current heap."

EDMGETV

Syntax EDMGETV object_name, var_name, [heap_number [,'NOLOAD' , path]]]

Description Calling EDMGETV reads and returns the specified variable from a CM object.

Parameters

Parameter Explanation

object_name A valid CM object. object_name can be up to eight characters long.

Var_name Name of the variable to access.

Heap_number Specifies the relative position of the heap or instance in the object. heap_number must
be an integer between 0 and 65,536. The maximum value of heap_number is one less
than the number of heaps in the abject. The default is 0. If the specified heap is out of
range is out of range, a REXX syntax error will be raised.

NOLOAD If you include the NOLOAD option, EDMGET will NOT "reload" the object template off
from disk. If the object being process can "change" (variables/attributes added and/or
deleted) while the REXX program/script is running, it best not to specify this argument.
If the template does not change then specifying NOLOAD will save a (disk) read of the
object's template.

Path The location/directory that the object will be read/written to. The default is the (current)
value of IDMLIB. Once the path is established via a "GET", (for the most part), this
directory will stay in effect until the object is purged from the REXX object queue via
EDMFREE,

Example
Say EDMGETV("ZMASTER", "ZOS") /* outputs (maybe) WINXP */

CM Configuration Server note - You can use this function on the CM
Configuration Server. Note that only the first three arguments are
supported. The CM Configuration Server supports a fourth argument which
is a flag. If its value is 1, then if the value fetched is in the form of
&(object.variable), the CM Configuration Server will try to find this value. If
the fourth argument is missing or is 0, then the value is returned as-is. Also
note that heap numbers on the CM Configuration Server start at 1, while
heap numbers on the client start at 0. A heap number of 0 on the CM
Configuration Server means the "current heap."

270 Chapter 6

Using Extensions 271

EDMLOC

Syntax EDMLOC(filename)

Description The value returned from EDMLOC specifies whether or not a file exists. A return value of 0
indicates the file exists. If the file does not exist, 8 is returned.

Parameters

Parameter Explanation

filename The full name and path of the file you are querying.

Usage Note

We recommend using the built-in function STREAM with the QUERY
EXISTS option instead of EDMLOC. For more information on the STREAM
function, see Chapter 5: Built-In Functions.

Example
CALL EDMLOC 'C:\autoexec.bat'

EDMRST

Syntax EDMRST(object_name)

Description Calling EDMRST resets the specified CM object to a single heap object in memory. A call to
EDMSET must be made to save this change to disk.

Parameters

Parameter Explanation

object_name A valid CM object. object_name can be up to eight characters long.

Example

This example demonstrates that the values in the current heap will be saved
in the only heap remaining after EDMSET is called.

CALL EDMGET 'MYOBJECT', 5
 /* Get sixth heap of object. */
CALL EDMRST 'MYOBJECT'
 /* Reset object to single heap. */
CALL EDMSET 'MYOBJECT'
 /* The single heap object's variables */
 /* have the values that were in the sixth */
 /* heap, originally. */

272 Chapter 6

Using Extensions 273

EDMSET

Syntax Call EDMSET object_name [,path]

Description Calling EDMSET saves the current heap for object_name to disk.

NOTE: You can use this command on the CM Configuration Server OR the CM Agent. However,
you must note that heap numbers on the RCS start at 1, while heap numbers on the client start
at 0.

Parameters

Parameter Explanation

object_name A valid CM object. object_name can be up to eight characters long.

Path Is the location/directory that the object will be written to. The default is the (current)
value of IDMLIB. Once the path is established via a GET/BLD, this directory will stay in
effect until the object is purged from the REXX object queue via EDMFREE. EDMSET
can override the path if the object did not exist on disk or was add to the REXX object
queue via EDMBLD.

Examples

This CM REXX method reads in the lines of an input file, (AUTOEXEC.BAT),
and creates SAMPLE.EDM, a multi-heap object with one variable per heap.
Each variable contains the value of a single line from that file.

/* Create a 'sample' object. */
 CALL EDMBLD 'SAMPLE'

 /* Define a file to read. */
 infile1='C:\AUTOEXEC.BAT'

 heapcount = 0
 do while lines(infile1) > 0
 /* Loop through the input file. If it's */
 /* not the first heap then we need to add */
 /* a new heap to the object. */
 if heapcount > 0
 then CALL EDMADD 'SAMPLE'

 /* Read in a line of the input file. */
 /* Set the SAMPLE object variable. */
 SAMPLE.LINE1 = linein(infile1)

 /* Save the current heap. */

 CALL EDMSET 'SAMPLE'

 /* Increase the heap counter. */
 heapcount = heapcount +1
 end

RCS: You can use this function on the CM Configuration Server. Note that
on the RCS there is a second argument, the heap number. The specified heap
number can be set from 1 to MAX+1, where MAX is the total number of heap
in the (RCS) object. If MAX+1 is specified then that heap is created. NOTE
that EDMBLD is not available on the RCS. Also, note that heap numbers on
the RCS start at 1, while heap numbers on the client start at 0. A heap
number of 0 on the RCS means "the current heap."

274 Chapter 6

Using Extensions 275

EDMSORT

Syntax EDMSORT(object_name,variable)

Description Calling EDMSORT will sort the heaps of a multi-heap CM object into alphabetic ascending order
by the contents of a specific variable, and save the changes to disk.

Parameters

Parameter Explanation

object_name A valid CM object. object_name can be up to eight characters long.

variable The name of a variable contained within the object. variable can be up to eight
characters long, and must be specified in uppercase.

Example
CALL EDMSORT 'MYOBJECT', 'VAR1'

GET_CHILD_OBJ

Description This function is equivalent to EDMGET, and is no longer supported. Use EDMGET instead. See
LOAD_CHILDREN for information describing how to access and manipulate child and grandchild
objects.

276 Chapter 6

Using Extensions 277

LOAD_CHILDREN

Syntax call LOAD_CHILDREN 'object_name'

Description Calling the LOAD_CHILDREN function provides visibility to child and grandchild objects of an
object. Once visibility is established, the child and/or grandchild objects can be read into storage
with EDMGET and written to disk by EDMSET.

Parameters

Parameter Explanation

object_name The name of the object whose children and grandchildren objects you need to access.

Usage

CM objects pertinent to a service are stored in the service's IDMLIB location
and its sub-directories. The IDMLIB location is the directory identified by the
IDMLIB setting in the [NOVAEDM] section of WIN.INI. This setting is
dynamically changed by the CM Agent to a unique directory associated with
the service being installed or otherwise manipulated. For example, if the
subscriber is installing a service named HELLO, the IDMLIB directory for
the HELLO service might be:

C:\Program Files\Hewlett-Packard\CM\Lib\username\ABC\SOFTWARE
\ZSERVICE\HELLO

The components comprising the service are stored in a tree of sub-directories,
for which the service's IDMLIB directory is the root. Child and grandchild
objects of an object stored within this tree structure are stored in sub-
directories of the directory in which the parent object is stored.

EDMGET and EDMSET normally only have the ability to access objects that
are stored in the IDMLIB directory. The LOAD_CHILDREN function
provides EDMGET and EDMSET the ability to access child and grandchild
objects of parent objects located in the IDMLIB directory.

Parent objects contain information identifying their child objects. You can
inspect an object using CM Admin Agent Explorer to determine which objects
will be made accessible by calling LOAD_CHILDREN for that object. For
example, the DMSYNC object for the HELLO service may appear as follows
in CM Admin Agent Explorer:

Figure 6.1 ~ DMSYNC object.

This object is stored in the IDMLIB location for the HELLO service, which is:

C:\Program Files\Hewlett-Packard\CM\Lib\username\ABC\SOFTWARE
\ZSERVICE\HELLO

Child objects for an object are listed in ZOBJCnnn variables (where nnn is
001 to the number of child objects belonging to the parent object), in the
parent object. The number of child objects belonging to the parent object is
stored in the ZOBJCNUM variable. If the ZOBJCNUM variable is not
present in the object, or if its value is 00000000, the object has no child
objects.

Each ZOBJCnnn variable contains a fixed format text string providing
information about the child object, as follows:

278 Chapter 6

Using Extensions 279

Characters Contains

1 – 8 Number of instances (heaps) in the child object.

9 - 16 Child object name

17 – 24 Child object CRC

25 – 40 Latest child object date and time stamp

41 - 48 Tree CRC

The ZOBJID variable contains the object ID. The name of the sub-directory
containing child objects for this object is derived from the object ID value by
concatenating the rightmost eight characters of the object ID (in this case
00000000) with characters 2-4 of the object ID (in this case 000), separated by
a period. Thus, the sub-directory name containing the child object of the
DMSYNC object, in this case, is 00000000.000.

This DMSYNC object has one child object – DIALOG. It is stored in the
following directory:

 C:\Program Files\Hewlett-Packard\CM\Lib\username\ABC\SOFTWARE
\ZSERVICE\HELLO\00000000.000

When viewed in the CM Admin Agent Explorer, the DIALOG object appears
as follows:

Figure 6.2 ~ DIALOG object.

The DIALOG object has four child objects: INSTALL (1 heap), PANEL (9
heaps), PATH (2 heaps) and BEHAVIOR (4 heaps). These objects are
grandchildren of the DMSYNC object. They are stored in a sub-directory
named 3E247F11.ABC (name derived from the ZOBJID variable), beneath
the directory in which the DIALOG object is stored.

The current implementation of LOAD_CHILDREN provides visibility to child
and grandchild objects only. If identically named objects are both a child and
a grandchild object, only the grandchild object is made visible by
LOAD_CHILDREN.

Warning

Do not modify the ZOBJCnnn, ZOBJID, or ZOBJCNUM variables.

280 Chapter 6

Using Extensions 281

Example 1

The following program fragment:

CALL LOAD_CHILDREN 'DMSYNC'

will make children and grandchildren of DMSYNC object visible.

Example 2

The following program fragment:

CALL EDMGET 'INSTALL'

will get the grandchild INSTALL object.

NOWAIT

Syntax call NOWAIT 'command_line'

Description Calling the NOWAIT function allows CM REXX to start a process, then immediately begin
processing the next command.

Parameters

Parameter Explanation

command_line A platform-specific, valid command with proper syntax and parameters.

Example

This example leaves the display message: Exiting CM REXX on the screen
and exits CM REXX.

NOWAIT 'EDMBOX.EXE "Exiting CM REXX."'
EXIT 0

282 Chapter 6

Using Extensions 283

NVDOBJECTS

Syntax Count = NvdObjects("AllObjects")

Description Calling NVDOBJECTS returns in the specified REXX (stem) variable, all

the objects in the REXX object queue and information about these objects.

Parameters

Parameter Explanation

Count The name of the (REXX) variable that will be built as a stem list containing the objects
allocated. If the (REXX) variable name is "objs", then objs.0 contains the number of
allocated objects and each object can be found in the variables objs.1, objs.2 objs.n

Example
count = nvdobjects('curobjs')
 do oo = 1 to curobjs.0
 say curobjs.oo
 end oo

The output for this might be:

Name=ZPOOLTAB VTAB=00835D40 Size=1024 Built=No OnDisk=No Managed=Yes
PathReset=No Saves=0 ForcedPath=No Path=
Name=ZMASTER VTAB=00838578 Size=4096 Built=No OnDisk=Yes Managed=Yes
PathReset=No Saves=0 ForcedPath=No Path=E:\RadClient\Lib
Name=ZLOCAL VTAB=0083ADB0 Size=1024 Built=No OnDisk=Yes Managed=Yes
PathReset=No Saves=0 ForcedPath=No Path=E:\RadClient\Lib

Where Name= is the object name, VTAB= is the internal buffer address,
Built= is if the object was created by EDMBLD.

If Managed=Yes ,the object can be removed from the internal object queue (
not the REXX object queue). If No, the object will remain in the internal
queue even after a EDMFREE removes the object from the REXX object
queue.

PathReset if the path was reset via a EDM/RAD "SET".

Saves determines how many times the object was saved to disk.

ForcedPath if the specified directory was invalid and the path was reset to
the current directory.

Path= is the path the object is allocated to.

This output can be (REXX) parsed like this:

 count = nvdobjects('curobjs')

 do oo = 1 to curobjs.0

 parse var curobjs.oo 1 "Name=" Objname .

 parse var curobjs.oo 1 "Path=" Objpath .

 say curobjs.oo

 end oo

284 Chapter 6

Using Extensions 285

NVDPATHS

Syntax RealPath = NvdPaths(PsuedoPath)

Description Calling NVDPATHS will return the value if the pseudo path specified. If the
psuedopath is undefined, the value returned is the value passed to nvdpaths

Parameters

Parameter Explanation

RealPath The relative/pseudo paths are __lib__ for IDMLIB, __adm__ for IDMADM, __sys__ for
IDMSYS, __data__ for IDMDATA, __log__ for IDMLOG and __root__ for IDMROOT.
Note, that there are two underscores around each of the pseudo names and they are
case neutral.

Example
current_idmlib = nvdpaths("__lib__")
say current_ibmlib /* outputs (maybe) c:\program files\Hewlett-Packard\CM\lib
*/

test = nvdpaths("fred")
say test /* outputs: fred */

NvdVerQueryValueStringFileInfo

Syntax PropValue = nvdVerQueryValueStringFileInfo(DLL, PropName)

Description Returns the properties of a DLL or EXE.

Parameters

Parameter Explanation

DLL The name of the DLL or EXE to examine.

PropName The name of the property to extract, which can be:

Comments LegalTrademarks

CompanyName OriginalFilename

FileDescription PrivateBuild

FileVersion ProductName

InternalName ProductVersion

LegalCopyright SpecialBuild

If no property is specified, the attributes of the file are returned.

286 Chapter 6

Using Extensions 287

RADGET

Syntax RADGET(object_name,directory,heap_number[,'NOLOAD'])

Description Calling RADGET reads the specified heap from a CM object (located in the specified directory or
folder) into memory, making it the currently selected heap. If you specify a non-existent heap,
RADGET returns a value of 8.

 NOTE: You can use this command on the CM Configuration Server OR the CM Agent. However,
you must note that heap numbers on the RCS start at 1, while heap numbers on the client start
at 0.

Parameters

Parameter Explanation

object_name A valid CM object. object_name can be up to eight characters long.

directory Folder to read object_name. Enter a fully qualified directory name, or one of the
following CM folder names. IDMROOT for the value of the IDMROOT folder set in
NVD.INI. IDMLIB for the value of the IDMLIB folder set in NVD.INI or RADSETUP, the
Bootstrap priming folder (IDMROOT/RADSETUP).

heap_number Specifies the relative position of the heap or instance in the object. heap_number must
be an integer between 0 and 65,536. The maximum value of heap_number is one less
than the number of heaps in the object.

'NOLOAD' If you include the NOLOAD option, RADGET will NOT "reload" the object template off
from disk. If the object being process can "change" (variables/attributes added and/or
deleted) while the REXX program/script is running, it best not to specify this argument.
If the template does not change then specifying NOLOAD will save a (disk) read of the
object's template.

Example

This program first reads MYOBJECT from a fully qualified location, and
assigns test variables. After the read, the object is purged from the (REXX)
object queue by EDMFREE, them allocated again with EDMBLD, and then
written to a different folder location.

Successive parts of this program illustrate reading and writing MYOBJECT
variables from and to the current heaps of the IDMROOT and IDMLIB
folders (specified in NVD.INI), and the RADSETUP bootstrap folder. At the
end of this program, MYOBJECT contains different variables in each of the
folder locations specified by RADSET.

 trace i
 CALL RADGET "MYOBJECT","C:\PROGRA~1\Hewlett-Packard\CM\LIB\RADSETUP"
 SAY "Opened Object"

 MYOBJECT.IP="1.1.2.2"
 MYOBJECT.TESTVAR1="Hello"
 MYOBJECT.TESTVAR2="World"
 CALL EDMFREE "MYOBJECT"

 CALL EDMBLD "MYOBJECT"
 CALL RADSET "MYOBJECT","C:\PROGRA~1\Hewlett-Packard\CM\LIB\"
 CALL EDMFREE "MYOBJECT"

 CALL RADGET "MYOBJECT","IDMROOT","0"
 MYOBJECT.TESTVAR1="Jello"
 MYOBJECT.TESTVAR2="World"
 CALL RADSET "MYOBJECT","IDMROOT"
 CALL EDMFREE "MYOBJECT"

 CALL RADGET "MYOBJECT","RADSETUP","0"
 MYOBJECT.TESTVAR1="Merry"
 MYOBJECT.TESTVAR2="World"
 CALL RADSET "MYOBJECT","RADSETUP"
 CALL EDMFREE "MYOBJECT"

 CALL RADGET "MYOBJECT","IDMLIB","0"
 MYOBJECT.TESTVAR1="Hello"
 MYOBJECT.TESTVAR2="World"
 CALL RADSET "MYOBJECT","IDMLIB"
 CALL EDMFREE "MYOBJECT"

288 Chapter 6

Using Extensions 289

 SAY "Saving Objects"

 RETURN 2

RADSET

Syntax call RADSET (object_name,directory)

Description Calling RADSET saves the current heap for object_name to disk.

Parameters

Parameter Explanation

object_name A valid CM object. object_name can be up to eight characters long.

directory The location/directory to which the object is written. The default is the (current) value
of IDMLIB. Once the path is established via a GET/BLD, this directory will stay in effect
until the object is purged from the REXX object queue via EDMFREE. RADSET can
override the path if the object did not exist on disk or was add to the REXX object
queue via EDMBLD. In addition to actual directory names, a pseudo CM folder name
can be used. Their values are:

IDMROOT - The IDMROOT folder set in NVD.INI

IDMLIB - The IDMLIB folder set in NVD.INI

RADSETUP - The Bootstrap priming folder (IDMROOT/RADSETUP)

290 Chapter 6

Using Extensions 291

RXXCommandKill

Syntax Call RxxCommandKill Handle

Description Exits the current process. Always returns 0.

Example

In this example, we "spawn" the command myapp.exe, checking every 2
seconds to see if it is finished. If 120 seconds pass before it is finished, then
we kill the process and continue with the REXX program.

 TotalSleep = 0
 SleepFor = 2
 CMD = "MyApp.Exe"
 CMD_Handle = RxxCommandspawn(CMD)

 Do Until DataType(RC, 'n')
 TotalSleep = TotalSleep + SleepFor
 Call RxxSleep SleepFor
 If TotalSleep > 120
 Then Do
 Call RxxCommandKill CMD_Handle
 Leave
 End
 Else Say "Waiting ..."
 RC = RxxCommandwait(CMD_Handle, "t")
 End

RXXCommandSpawn

Syntax Handle = RxxCommandSpawn(CmdName)

Description Returns the "handle" of the spawned command. If the call fails, -1 is returned. Use this value
with the RxxCommandKill and RxxCommandWait functions.

Example

In this example, we "spawn" the command myapp.exe, checking every 2
seconds to see if it is finished. If 120 seconds pass before it is finished, then
we kill the process and continue with the REXX program.

 TotalSleep = 0
 SleepFor = 2
 CMD = "MyApp.Exe"
 CMD_Handle = RxxCommandspawn(CMD)

 Do Until DataType(RC, 'n')
 TotalSleep = TotalSleep + SleepFor
 Call RxxSleep SleepFor
 If TotalSleep > 120
 Then Do
 Call RxxCommandKill CMD_Handle
 Leave
 End
 Else Say "Waiting ..."
 RC = RxxCommandwait(CMD_Handle, "t")
 End

292 Chapter 6

Using Extensions 293

RXXCommandWait

Syntax Status = RxxCommandWait(Handle, Option)

Description Waits for a command spawned with RXXCommandSpawn. See RXXCommandSpawn.

Parameters

Parameter Explanation

Handle Value is returned by RXXCommandSpawn

Option This option can be omitted. If omitted, RXXCommandWait will wait until the spawn
command completes.

If Option is specified as t, RXXCommandWait returns immediately with the numeric exit
code of the completed command. If the command is not completed, it returns
WAITPENDING.

Example

In this example, we "spawn" the command myapp.exe, checking every 2
seconds to see if it is finished. If 120 seconds pass before it is finished, then
we kill the process and continue with the REXX program.

 TotalSleep = 0
 SleepFor = 2
 CMD = "MyApp.Exe"
 CMD_Handle = RxxCommandspawn(CMD)

 Do Until DataType(RC, 'n')
 TotalSleep = TotalSleep + SleepFor
 Call RxxSleep SleepFor
 If TotalSleep > 120
 Then Do
 Call RxxCommandKill CMD_Handle
 Leave
 End
 Else Say "Waiting ..."
 RC = RxxCommandwait(CMD_Handle, "t")
 End

RXXOSEndOfLineString

Syntax EOL = RxxOSEndOfLineString()

Description Returns the character(s) that mark the End of Line (EOL) for a text file for the OS. For UNIX EOL
= LF (0x0d) and for Windows EOL = CRLF (0x0d0a).

294 Chapter 6

Using Extensions 295

RXXOSEnvironmentSeparator

Syntax PathChar = RxxOSEnvironmentSeparator()

Description Returns the character for building PATH enviromental variable. For UNIX PathChar= : and for
Windows PathChar= ;.

RXXOSName

Syntax OSClass = RxxOsName()

Description Return the class of the operating system that the REXX program is running on. For UNIX, it
returns the string "UNIX" and for Windows it returns "WINNT", "WIN95" or "WIN98". To get the
actual Windows OS, use the WinGetVersion function. See WinGetVersion for more information.

296 Chapter 6

Using Extensions 297

RXXOSPathSeparator

Syntax SepChar = rxxospathseparator()

Description Returns the character for building file paths. For Unix it returns a forward slash (/) and for
Windows it returns a back slash (\).

RXXSleep

Syntax RXXSleep <seconds>

Description Suspends the current process for the amount of <seconds> specified.

Parameters

Parameter Explanation

Seconds Number of seconds for which to suspend the process

Example
The example suspends the current process for 2 seconds.
Call RxxSleep 2

298 Chapter 6

Using Extensions 299

WinMessageBox

Syntax KeyTag = WinMessageBox(Text, Title, Flag1, Flag2, Flag3,
Flagn)

Description This function displays a pop-up window (message box). It is available for Windows only.

Parameters

Parameter Explanation

Text The text to display in the message box.

Title The title that appears in the title bar of the message box.

Flags1-n Specifies the buttons available in the message box.

The following flags control the number of buttons in the message box and what the
buttons are labeled. If there is more than one button, the left-most button is the default.

• "MB_OK" – specifies one button labeled OK. The return value is always IDOK.

• "MB_OKCANCEL" – specifies two buttons labeled OK (return value is IDOK) and
CANCEL (return value is IDCANCEL).

• "MB_ABORTRETRYIGNORE" – specifies three buttons labeled ABORT (return
value is IDABORT), RETRY (return value is IDRETRY) and CANCEL (return
value is IDCANCEL).

• "MB_YESNOCANCEL" – specifies three buttons labeled YES (return value is
IDYES), NO (return value is IDNO) and CANCEL (return value is IDCANCEL).

• "MB_YESNO"- specifies two buttons labeled YES (return value is IDYES) and
NO (return value is IDNO).

• "MB_RETRYCANCEL" - specifies two buttons labeled RETRY (return value is
IDRETRY) and CANCEL (return value is IDCANCEL).

The following flags specify which button should be set as the default.

• "MB_DEFBUTTON1" – the first button is the default

• "MB_DEFBUTTON2" – the second button is the default

• "MB_DEFBUTTON3" – the third button is the default

The following flags specify the icons that can appear in the message box.

• "MB_ICONQUESTION" – the message box has a question mark in it.

• "MB_ICONEXCLAMATION" – the message box has an exclamation point in it.

• "MB_ICONERROR" – the message box has a red X in it.

• "MB_ICONINFORMATION" – the message box has the letter I in it.

The following flags specify how the message box is displayed.

• "MB_TOPMOST" – sets the message box as the "top most" window. Without
this flag, the message box may appear underneath other windows. This flag
should always be included.

• "MB_RIGHT" – sets the title and message text to right justified.

Examples
KeyTag = WinMessageBox("Is it OK to exit", "MyApp",
"MB_OKCANCEL", "MB_DEFBUTTON2", "MB_TOPMOST")

say keytag

KeyTag = WinMessageBox("Continue Processing?", "MyApp",
"MB_ABORTRETRYIGNORE", "MB_DEFBUTTON3", "MB_TOPMOST")

say keytag

300 Chapter 6

Using Extensions 301

WinExpandEnvironmentStrings

Syntax call WinExpandEnvironmentStrings
 string

Description This function expands selected environment variables using a string parameter. It returns the
string parameter with the selected environment variables substituted.

Parameters

This function expands selected environment variables using a string
parameter. It returns the string parameter with the selected environment
variables substituted.

Parameter Explanation

string String containing environment variables in the form %variable% to be substituted.

Example

The following string returns the subscriber computer's current path setting:

call WinExpandEnvironmentStrings "%path%"

WinGetVersion

Syntax Call WinGetVersion

Description Returns the class of Windows OS.

Usage

When invoked, this function creates five REXX variables:

MajorVersion

MinorVersion

BuildNumber

PlatformID

CSDVersion

If you call the function with an argument, the value is concatenated with the
variables listed above.

For example, Call WinGetVersion "@" sets and creates:

@MajorVersion

@MinorVersion

@BuildNumber

@PlatformID

@CSDVersion

302 Chapter 6

Using Extensions 303

Example

This example gets the exact Windows OS.

 /*--*/
 /* Show OS */
 /*--*/
 Say TheOSName()
 Exit

TheOSName:

 Procedure
 Call WinGetVersion "@"
 OS = "?"
 Wstr = RxxOSName()
 Select
 When Wstr = "WINNT"
 Then Select
 When @MajorVersion = 3 | @MajorVersion = 4
 Then OS = "WINNT"
 When @MajorVersion = 5 & @MinorVersion = 0
 Then OS = "WIN2K"
 When @MajorVersion = 5 & @MinorVersion = 1
 Then OS = "WINXP"
 OtherWise
 OS = "WINNT"
 End
 When Left(Wstr, 4) = "WIN9"
 Then Select
 When @MajorVersion = 4 & @MinorVersion = 0
 Then OS = "WIN95"
 When @MajorVersion = 4 & @MinorVersion = 10
 Then OS = "WIN98"
 When @MajorVersion = 4 & @MinorVersion = 90
 Then OS = "WINME"
 OtherWise
 OS = Wstr
 End
 OtherWise
 OS = Wstr
 End
 Return OS

304 Chapter 6

7 Registry Manipulation Functions

This chapter describes CM REXX functions that enable you to inspect and
manipulate the Windows Registry.

305

Registry Manipulation Functions

The provided functions enable your REXX methods to open, inspect, create,
modify, delete and close registry keys.

When you open access to a registry key, Windows returns a handle to that
key. A handle is a value that Windows recognizes as an alias for the key. The
handle is useful in calls to other functions that manipulate the designated
key. You should store the handle value that Windows provides in a variable
so you can provide the handle in subsequent function calls that refer to the
same key. When you close the key, Windows destroys the handle.

In the function descriptions that follow, the type parameter must be chosen
from this table:

Value Data that can be stored in the associated Registry key

REG_BINARY Binary data in any form.

REG_DWORD A 32-bit number.

REG_DWORD
_LITTLE_ENDIAN

A 32-bit number in little-endian format (same as REG_DWORD). In little-endian
format, the most significant byte of a word is the right most. This is the most common
format for computers running Windows NT and Windows 95.

REG_DWORD_BIG
_ENDIAN

A 32-bit number in big-endian format. In big-endian format, the most significant byte
of a word is the left most.

REG_EXPAND_SZ A null-terminated string that contains unexpanded references to environment variables
(for example, "%PATH%"). It will be a Unicode or ANSI string depending on whether
you use the Unicode or ANSI functions.

REG_LINK A Unicode symbolic link.

REG_MULTI_SZ An array of null-terminated strings, terminated by two null characters.

REG_NONE No defined value type.

REG_RESOURCE_
LIST

A device-driver resource list.

REG_SZ A null-terminated string. It will be a Unicode or ANSI string depending on whether you
use the Unicode or ANSI functions.

The examples in this chapter are based upon the TestKey key and its sub-
keys, as seen here in the Registry Editor in Windows:

306 Chapter 7

Figure 7.1 ~ Registry Editor in Windows.

Registry Manipulation Functions 307

WinRegCloseKey

Syntax WinRegCloseKey handle

Description This function closes a key previously opened by one of the other registry manipulation functions.
It returns the Win32 error code (0 if successful).

Parameters

Parameter Usage

handle Handle of key to close.

Example
hive="HKEY_CURRENT_USER"
access="KEY_ALL_ACCESS"
key="TestKey"

w32err=WinRegCreateKey(hive, key, myhandle,
 access,"orgstatus")
say w32err
say myhandle
say orgstatus
 .
 . /* some processing on the key */
 .
w32err=WinRegCloseKey(myhandle)
say w32err /* 0 = key successfully closed */

308 Chapter 7

Registry Manipulation Functions 309

WinRegCreateKey

Syntax call WinRegCreateKey handle,
 key,
 hkey,
 access,
 class,
 options,
 disposition

Description This function creates a new registry key or opens an exiting registry key. It returns the Win32
error code (0 if successful).

Parameters

Parameter Usage

handle Handle of parent key.

handle can be a handle returned from a prior call to WinRegCreateKey or
WinRegOpenKey, or a predefined hive name, one of the following:

"HKEY_CLASSES_ROOT"

"HKEY_CURRENT_USER"

"HKEY_LOCAL_MACHINE"

"HKEY_USERS"

"HKEY_PERFORMANCE_DATA"

"HKEY_CURRENT_CONFIG"

"HKEY_DYN_DATA"

key Name of the key to open or create.

hkey Name of a variable to receive the handle to the key provided by Windows. Enclose the
name in quotes.

access Specifies an access mask that specifies the desired security access for the new key.
Choose one of the following:

"KEY_ALL_ACCESS"
Key can be read and written. All permission granted by KEY_READ and KEY_WRITE plus
permission to create a symbolic link.

"KEY_READ"
The key is read-only. Permission to query subkey data, enumerate subkeys and
permission to receive change notification.

"KEY_WRITE"
Permission to add sub-keys and sub-key values to the key.

class Class for newly created key.

Parameter Usage

options How key is created. One of:

"REG_OPTION_NON_VOLATILE"
This key is not volatile; this is the default. The information is stored in a file and is
preserved when the system is restarted. The RegSaveKey function saves keys that are
not volatile.

"REG_OPTION_VOLATILE"
Windows NT:
This key is volatile; the information is stored in memory and is not preserved when the
system is restarted. The RegSaveKey function does not save volatile keys. This flag is
ignored if the key already exists.

Windows 95:
This value is ignored in Windows 95. If REG_OPTION_VOLATILE is specified, the
WinRegCreateKey function creates a nonvolatile key and returns ERROR_SUCCESS.

"REG_OPTION_BACKUP_RESTORE"
Windows NT:
If this flag is set, the function ignores the samDesired parameter and attempts to open
the key with the access required to backup or restore the key. If the calling thread has
the SE_BACKUP_NAME privilege enabled, the key is opened with ACCESS_SYSTEM
_SECURITY and KEY_READ access. If the calling thread has the SE_RESTORE_NAME
privilege enabled, the key is opened with ACCESS_SYSTEM_SECURITY and KEY_WRITE
access. If both privileges are enabled, the key has combined accesses for both privileges.

Windows 95:
This flag is ignored. Windows 95 does not support security in its registry.

disposition Name of the variable that receives whether key already existed. Windows returns one of
the following:

"REG_CREATED_NEW_KEY"
"REG_OPENED_EXISTING_KEY"

Enclose the name of the variable in quotes.

Example

Refer to the Registry Editor example on page 308.

hive="HKEY_CURRENT_USER"
access="KEY_ALL_ACCESS"
key="TestKey"
class= "KEY_ALL_ACCESS"
options= REG_OPTION_NON_VOLATILE"

w32err=WinRegCreateKey(hive, key, "myhandle",
 access,class, options, "orgstatus")

say w32err * 0 = no error */
say myhandle /* t44 = the handle assigned by */
 /* Windows. */
say orgstatus /* REG_OPENED_EXISTING_KEY = */
 /* key already existed. */

310 Chapter 7

Registry Manipulation Functions 311

WinRegDeleteKey

Syntax WinRegDeleteKey(handle, key)

Description This function deletes a key from the registry, and destroys the handle. It returns the Win32 error
code (0 if successful).

Parameters

Parameter Usage

handle Handle of parent key.

It can be a handle returned from a prior call to WinRegCreateKey or WinRegOpenKey,
or a predefined hive name, one of the following:

"HKEY_CLASSES_ROOT"

"HKEY_CURRENT_USER"

"HKEY_LOCAL_MACHINE"

"HKEY_USERS"

"HKEY_PERFORMANCE_DATA"

"HKEY_CURRENT_CONFIG"

"HKEY_DYN_DATA"

key Name of the key to delete.

Example

Refer to the Registry Editor example on page 308.

hive="HKEY_CURRENT_USER"
access="KEY_ALL_ACCESS"
key="TestKey"

w32err=WinRegCreateKey(hive, key, myhandle,
 access,"orgstatus")
 .
 .
 .
w32err=WinRegDeleteKey(hive, key)
say w32err /* 0 = key successfully deleted. */

WinRegDeleteValue

Syntax WinRegDeleteValue(handle, value)

Description Delete a value from a key. Returns the Win32 error code (0 if successful).

Parameters

Parameter Usage

handle Handle of parent key.

It can be a handle returned from a prior call to WinRegCreateKey or WinRegOpenKey, or
a predefined hive name, one of the following:

"HKEY_CLASSES_ROOT"

"HKEY_CURRENT_USER"

"HKEY_LOCAL_MACHINE"

"HKEY_USERS"

"HKEY_PERFORMANCE_DATA"

"HKEY_CURRENT_CONFIG"

"HKEY_DYN_DATA"

value Name of the value to delete.

Example

Refer to the Registry Editor example on page 308.

hive="HKEY_CURRENT_USER"
access="KEY_ALL_ACCESS"
key="TestKey\TestSubKey"
tvalue="TestValue"

w32err=WinRegCreateKey(hive, key, "myhandle",
 access, "orgstatus")
say w32err
say myhandle
say orgstatus /* REG_OPENED_EXISTING_KEY */

w32err=WinRegDeleteValue(myhandle, tvalue)
say w32err /* 0 = TestValue successfully */
 /* deleted. */

312 Chapter 7

WinRegEnumKey WinRegEnumKey

Syntax call WinRegEnumKey handle,
 index,
 key
 , class
 , timestamp

Syntax call WinRegEnumKey handle,
 index,
 key
 , class
 , timestamp

Description Get sub-key information by index. Returns the Win32 error code (0 if successful). If the index
supplied selects a non-existent key, the function returns error code 259.

Description Get sub-key information by index. Returns the Win32 error code (0 if successful). If the index
supplied selects a non-existent key, the function returns error code 259.

Parameters Parameters

Parameter Usage

handle Handle of parent key.

It can be a handle returned from a prior call to WinRegCreateKey or WinRegOpenKey, or
a predefined hive name, one of the following:

"HKEY_CLASSES_ROOT"

"HKEY_CURRENT_USER"

"HKEY_LOCAL_MACHINE"

"HKEY_USERS"

"HKEY_PERFORMANCE_DATA"

"HKEY_CURRENT_CONFIG"

"HKEY_DYN_DATA"

index index is an integer that selects which sub-key to access. An index value of zero
accesses the first subkey; an index value of 1 accesses the second sub-key, and so
forth.

key Name of the variable that receives the selected sub-key's name. Enclose the name in
quotes.

class Name of the variable that receives the class of the selected sub-key. Enclose the name in
quotes.

timestamp Name of the variable that receives the timestamp of the selected sub-key. Enclose the
name in quotes.

Registry Manipulation Functions 313 313

Example

Refer to the Registry Editor example on page 308.

hive="HKEY_CURRENT_USER"
access="KEY_ALL_ACCESS"
key="TestKey"
svalue="StringValue"
bvalue="BinaryValue"
keyindex=0
keyname=''
keyclass=''
timestamp=''

w32err=WinRegOpenKey(hive, key, "myhandle",
 access)
say w32err
say myhandle

w32err=WinRegEnumKey(myhandle, keyindex,
 "keyname", "keyclass", "timestamp")
say w32err /* 0=successful completion. */
say keyname /* keyname="TestSubKey1" */
say keyclass /* keyclass="" */
say timestamp /* timestamp="08/03/99 15:57:28" */

314 Chapter 7

Registry Manipulation Functions 315

WinRegEnumValue

Syntax WinRegEnumValue(handle,
 index,
 name,
 type
 [, data])

Description Get value information by index. Returns the Win32 error code (0 if successful). If the index
supplied selects a non-existent value, the function returns error code 259.

Parameters

Parameter Usage

handle Handle of parent key.

It can be a handle returned from a prior call to WinRegCreateKey or WinRegOpenKey, or
a predefined hive name, one of the following:

"HKEY_CLASSES_ROOT"

"HKEY_CURRENT_USER"

"HKEY_LOCAL_MACHINE"

"HKEY_USERS"

"HKEY_PERFORMANCE_DATA"

"HKEY_CURRENT_CONFIG"

"HKEY_DYN_DATA"

index index is an integer that selects which value to access. An index value of zero accesses
the first value; an index value of 1 accesses the second value, and so forth.

name Name of a variable to receive the value name. Enclose the name in quotes.

type Name of the variable that receives the type of data returned; one of:

"REG_DWORD"

"REG_DWORD_LITTLE_ENDIAN"

"REG_EXPAND_SZ"

"REG_MULTI_SZ"

"REG_SZ"

"REG_LINK"

"REG_RESOURCE_LIST"

"REG_BINARY"

"REG_NONE"

"REG_DWORD_BIG_ENDIAN"

Enclose the name in quotes.

data Name of the variable that receives the data. Enclose the name in quotes.

Example

Refer to the Registry Editor example on page 308.

hive="HKEY_CURRENT_USER"
access="KEY_ALL_ACCESS"
key="TestKey\TestSubKey"
svalue="StringValue"
bvalue="BinaryValue"
keyindex=0
valname=''
valtype=''
valdata=''

w32err=WinRegOpenKey(hive, key, "myhandle",
 access)
say w32err
say myhandle

w32err=WinRegEnumValue(myhandle, keyindex,
 "valname", "valtype", "valdata")
say w32err /* 0=successful completion */
say valname /* valname="StringValue" */
say valtype /* valtype="REG_SZ" */
say valdata /* valdata="TestData" */

316 Chapter 7

Registry Manipulation Functions 317

WinRegOpenKey

Syntax WinRegOpenKey(handle,
 key,
 hkey
 [, access])

Description Open a key. Returns the Win32 error code (0 if successful, 2 if the specified key is not found).

Parameters

Parameter Usage

handle Handle of parent key.

It can be a handle returned from a prior call to WinRegCreateKey or WinRegOpenKey,
or a predefined hive name, one of the following:

"HKEY_CLASSES_ROOT"

"HKEY_CURRENT_USER"

"HKEY_LOCAL_MACHINE"

"HKEY_USERS"

"HKEY_PERFORMANCE_DATA"

"HKEY_CURRENT_CONFIG"

"HKEY_DYN_DATA"

key Name of key to open.

hkey The name of the variable to receive the handle that Windows supplies. Enclose the
name in quotes.

access Access type. Either empty/skipped or one of:

"KEY_ALL_ACCESS"

"KEY_READ"

"KEY_WRITE"

Example

Refer to the Registry Editor example on page 308.

hive="HKEY_CURRENT_USER"
access="KEY_ALL_ACCESS"
key="TestKey\TestSubKey"

w32err=WinRegOpenKey(hive, key, "myhandle",
 access)
say w32err /* 0=successful open */
say myhandle /* myhandle="t44" (returned by */
 /* Windows) */

318 Chapter 7

Registry Manipulation Functions 319

WinRegQueryInfoKey

Syntax WinRegQueryInfoKey(handle
 [, class
 , subkey-count
 , value-count
 , timestamp])

Description Get key information. Returns the Win32 error code (0 if successful).

Parameters

Parameter Usage

handle Handle of parent key.

It can be a handle returned from a prior call to WinRegCreateKey or WinRegOpenKey,
or a predefined hive name, one of the following:

"HKEY_CLASSES_ROOT"

"HKEY_CURRENT_USER"

"HKEY_LOCAL_MACHINE"

"HKEY_USERS"

"HKEY_PERFORMANCE_DATA"

"HKEY_CURRENT_CONFIG"

"HKEY_DYN_DATA"

class Name of the variable that receives the class of key. Enclose the name in quotes.

subkey-count Name of the variable that receives the sub-key count. Enclose the name in quotes.

value-count Name of the variable that receives the value count. Enclose the name in quotes.

timestamp Name of the variable that receives the timestamp of key. Enclose the name in quotes.

Example

Refer to the Registry Editor example on page 308.

hive="HKEY_CURRENT_USER"
access="KEY_ALL_ACCESS"
key="TestKey\TestSubKey"
class=''
skcnt=0
vcnt=0
timestamp=''

w32err=WinRegOpenKey(hive, key, "myhandle",
 access)
say w32err

w32err=WinRegQueryInfoKey(myhandle, "class",
 "skcnt", "vcnt", "timestamp")
say w32err /* 0=Successful completion. */
say class /* "" – class returned by Windows*/
say skcnt /* 0=Number of sub-keys of */
 /* TestKey\TestSubKey. */
say vcnt /* 2=Number of values in */
 /* TestKey\TestSubKey. */
say timestamp /* "08/03/99 19:32:29" */

320 Chapter 7

Registry Manipulation Functions 321

WinRegQueryValue

Syntax WinRegQueryValue(handle,
 value,
 type
 [, data])

Description Get key value. Returns the Win32 error code (0 if successful, 2 if the value name cannot be
found within the key being queried).

Parameters

Parameter Usage

handle Handle of parent key.

It can be a handle returned from a prior call to WinRegCreateKey or WinRegOpenKey, or
a predefined hive name, one of the following:

"HKEY_CLASSES_ROOT"

"HKEY_CURRENT_USER"

"HKEY_LOCAL_MACHINE"

"HKEY_USERS"

"HKEY_PERFORMANCE_DATA"

"HKEY_CURRENT_CONFIG"

"HKEY_DYN_DATA"

value Name of the value to be queried.

type Name of the variable that receives the type of data returned; one of:

"REG_DWORD"

"REG_DWORD_LITTLE_ENDIAN"

"REG_EXPAND_SZ"

"REG_MULTI_SZ"

"REG_SZ"

"REG_LINK"

"REG_RESOURCE_LIST"

"REG_BINARY"

"REG_NONE"

"REG_DWORD_BIG_ENDIAN"

Enclose the name in quotes.

data Name of the variable that receives the data. Enclose the name in quotes.

Example

Refer to the Registry Editor example on page 308.

hive="HKEY_CURRENT_USER"
access="KEY_ALL_ACCESS"
key="TestKey\TestSubKey"
valname='StringValue'
valtype=''
valdata=''

w32err=WinRegOpenKey(hive, key, "myhandle",
 access)
say w32err
say myhandle

w32err=WinRegQueryValue(myhandle, valname,
 "valtype", "valdata")
say w32err /* 0=Successful completion */
say valname /* "StringValue" */
say valtype /* "REG_SZ" */
say valdata /* "Test Data" */

322 Chapter 7

Registry Manipulation Functions 323

WinRegSetValue

Syntax WinRegSetValue(handle, name, type, data)

Description Set key value. Returns the Win32 error code (0 if successful).

Parameters

Parameter Usage

handle Handle of parent key.

It can be a handle returned from a prior call to WinRegCreateKey or WinRegOpenKey, or
a predefined hive name, one of the following:

"HKEY_CLASSES_ROOT"

"HKEY_CURRENT_USER"

"HKEY_LOCAL_MACHINE"

"HKEY_USERS"

"HKEY_PERFORMANCE_DATA"

"HKEY_CURRENT_CONFIG"

"HKEY_DYN_DATA"

name A variable containing the name of the value, within the key, to be set.

type A variable that specifies the type of data contained in the value to be set; one of:

"REG_DWORD"

"REG_DWORD_LITTLE_ENDIAN"

"REG_EXPAND_SZ"

"REG_MULTI_SZ"

"REG_SZ"

"REG_LINK"

"REG_RESOURCE_LIST"

"REG_BINARY"

"REG_NONE"

"REG_DWORD_BIG_ENDIAN"

data A variable containing the new data for the key value being set.

Example

Refer to the Registry Editor example on page 308.

hive="HKEY_CURRENT_USER"
access="KEY_ALL_ACCESS"
key="TestKey\TestSubKey"
valname='StringValue'
valtype=''
valdata='Live Data'

w32err=WinRegOpenKey(hive, key, "myhandle",
 access)
say w32err
say myhandle

w32err=WinRegSetValue(myhandle, valname,
 valtype,valdata)
say w32err /* 0=Successful completion */
say valname /* "StringValue" */
say valtype /* "REG_SZ"* */
say valdata /* "Live Data" */

As a result, the StringValue value of

HKEY_CURRENT_USER\TestKey\TestSubKey

is set to Live Data.

324 Chapter 7

A Message Summary

This appendix lists the messages that can be generated by CM REXX. Each
message is followed by a brief description of its meaning.

CM REXX Messages

03 Program is unreadable

CM REXX was unable to locate the program you are trying to execute. A file by this
name does not exist in the current working directory or in any directory on the current
PATH.

04 Program interrupted

The system interrupted execution of the program at the user's request. If interrupts are
not trapped by CALL or SIGNAL ON HALT, CM REXX immediately terminates
execution when an interrupt occurs.

05 Machine resources exhausted

The CM REXX program was not able to obtain the system resources required to continue
execution of this program. This can indicate insufficient memory, swap space, or other
system resources.

06 Unmatched /* or quote

A comment or literal string was started but not completed. Comments require a
matching '/* */' pair. Literal strings require matching single or double quotes. Since
comments may span multiple lines, the absence of a closing '*/' can be reported at the end

325

of the program rather than on the line where the opening '/*' appears. Unmatched quotes
can be reported at the end of the line on which the opening quote appears.

07 WHEN or OTHERWISE expected

A SELECT construct must include at least one WHEN clause and possibly an
OTHERWISE clause. If no WHEN clause is encountered, or if any other instruction is
found, this error occurs. This can occur if the OTHERWISE clause has been omitted and
none of the WHEN conditions are satisfied. It can also occur if a list of instructions
follows a WHEN without the necessary DO and END.

08 Unexpected THEN or ELSE

A THEN or an ELSE was encountered in the program for which a matching IF or WHEN
was not found. This can occur if the instruction following THEN is DO, and its matching
END is omitted.

09 Unexpected WHEN or OTHERWISE

A WHEN or OTHERWISE keyword was encountered outside the scope of a SELECT
construct. This can occur if a required WHEN or OTHERWISE is inadvertently enclosed
in a DO-END construct (often the result of a missing END somewhere else). It can also
occur if an attempt is made to branch to the WHEN or OTHERWISE clause using
SIGNAL.

326 Appendix A

Message Summary 327

10 Unexpected WHEN or OTHERWISE

An END was encountered in the program for which a matching DO or SELECT was not
found. This can occur if the END is badly located so that it does not match the DO or
SELECT for which it was intended. Also, this error can occur in the case of heavily
nested DOs when too many ENDs are provided. Including the name of the DO loop
control variable on the corresponding END clause is a good technique to avoid or identify
this type of error.

This error can also occur if END immediately follows THEN or ELSE. Still another
possible cause of this error is an attempt to branch into a DO loop using SIGNAL. In this
case, the DO instruction will never have been executed and the END will be unexpected.

11 Control stack full

An implementation-specific limit on levels of nesting of control structures has been
exceeded. This can occur with deeply nested DO-END or IF-THEN-ELSE constructs. It
can also occur if an INTERPRET instruction is looping or if a recursive subroutine or
internal function does not terminate correctly, resulting in an infinite loop.

12 Clause too long

An implementation-specific limit on the length of a clause has been exceeded.

13 Invalid character in program

A character appears in the program, outside of a literal string, that is not a blank or one
of the following characters:

A-Z, a-z, 0-9
@@ # . ? ! _ $ & * () - + = ^ \
' " ; : , % / < > |

This can occur if the program contains accented or other national language-specific
characters not specifically permitted by the implementation.

14 Incomplete DO/IF/SELECT

At the end of the program, the language processor has detected a DO or SELECT
instruction without a matching END or an IF instruction that is not followed by a THEN
clause. Including the name of the control variable on the corresponding END clause is a
good technique for avoiding or identifying this type of error.

15 Invalid hexadecimal constant

Hexadecimal constants can contain only the digits 0-9 and the letters a-f and A-F. They
cannot have leading or trailing blanks, and embedded blanks can occur only at byte
boundaries (between pairs of hexadecimal digits).

Binary strings can contain only the digits 0 and 1. They cannot have leading or trailing
blanks, and embedded blanks can occur only between groups of four binary digits.

This error may occur if the character x or b immediately follows a literal string - that is,
if abuttal concatenation is used to append an x or b to the end of a literal string. In this
case, it is necessary to use the concatenation operator to distinguish concatenation from
an attempt to specify a hexadecimal or binary string.

16 Label not found

A SIGNAL instruction has been executed or a trapped condition has been raised, and the
specified label is not found in the program. For trapped conditions, if the SIGNAL ON
instruction does not include the NAME keyword, a label matching the name of the
condition must exist.

17 Unexpected procedure

A PROCEDURE instruction was encountered that was not the first instruction after a
CALL or function invocation. If present, the PROCEDURE instruction must be the first
instruction executed after a subroutine is called or a function invoked. This error can
occur if a program falls through into an internal routine that includes a PROCEDURE
instruction.

328 Appendix A

Message Summary 329

18 THEN expected

All IF and WHEN clauses must be followed by a THEN clause. Another clause was
encountered at the point where a THEN was expected to be.

19 String or symbol expected

The first token following a CALL or SIGNAL instruction must be a literal string or a
symbol. The string or symbol was omitted or something else, such as an operator, was
found.

20 Symbol expected

In an instruction where a symbol is required, the symbol was omitted or some other
token was found.

21 Invalid data on end of clause

A keyword or instruction that has no operand (such as SELECT or NOP) was followed by
something other than a comment.

22 Invalid character string

A literal string contains one or more characters that are not supported in this
implementation.

24 Invalid TRACE request

The first character of the option specified on the TRACE instruction does not match one
of the valid TRACE settings. Refer to the Chapter 4: Instructions for a list of valid
TRACE settings.

25 Invalid sub-keyword found

An unexpected token was in the position where an instruction expected a specific
keyword. This can occur if the token following NUMERIC is not DIGITS, FORM, or
FUZZ. It can also occur with CALL or SIGNAL ON condition if the token following
condition is not NAME.

26 Invalid whole number

One of the following did not evaluate to a whole number, or its value is greater than the
implementation limit:

• The repetitor in a DO instruction.

• The FOR expression in a DO instruction
values specified for DIGITS or FUZZ in a NUMERIC instruction.

• A positional pattern in a parsing template.

• A number used as a trace setting in the TRACE instruction.

• The exponent (right hand operator) of the power operator (**).

This error also occurs when the result of an integer divide (%) is not a whole number or
when the specific value is not permitted in the context where it appears (such as a
negative value for a DO repetitor).

27 Invalid DO syntax

A syntax error was found in the DO instruction. This can occur when a keyword such as
TO appears without a control variable, or when such a keyword appears more than once.

28 Invalid LEAVE or ITERATE

A LEAVE or ITERATE instruction was unexpectedly encountered during execution.
Either no loop is active, or the control variable name specified on the instruction does not

330 Appendix A

Message Summary 331

match that of an active loop. This can occur when attempting to use SIGNAL to branch
into, or within, a loop.

29 Environment name too long

The host command environment specified on the ADDRESS instruction is longer than
permitted by the operating system.

30 Name or string too long

The length of the name or string was greater than the implementation maximum.

31 Name starts with number or "."

To avoid confusion with numeric constants, a value cannot be assigned to a variable
whose name begins with a number or a period.

33 Invalid expression result

The result of an expression is invalid in the context where it occurs. This can occur if the
value for NUMERIC FUZZ is greater than that for NUMERIC DIGITS.

34 Logical value not 0 or 1

Any term operated on by a logical operator (^ \ | & &&) must evaluate to 0 or 1.
Likewise, the expression in an IF, WHEN, DO, WHILE, or UNTIL clause must evaluate
to 0 or 1.

35 Invalid expression

There is an error in the syntax of an expression. This can be due to the absence or
misplacement of an operator, the placement of two operators adjacent to each other, or
the absence of an expression where one was expected. This can occur when an operator
character is present in what is intended to be a literal string, but the string is not
enclosed in quotes.

36 Unmatched "(" in expression

There are more left parentheses than right parentheses in an expression.

37 Unmatched "," or ")" in expression

Either a comma was found outside of a function call, or there are too many right
parentheses in an expression.

38 Invalid template or pattern

One of the following errors has been detected:

• A special character (such as "*"), which is not allowed, was found in a
parsing template.

• The syntax of a variable pattern is incorrect; this can occur if no symbol
follows a left parenthesis or if a parenthesis is missing.

• The WITH is missing in a PARSE VALUE instruction.

39 Evaluation stack overflow

An expression is too complex to be evaluated within implementation-specific limits.

40 Incorrect call to routine

Arguments passed to a routine are of the wrong type, or the number of arguments passed
to the routine exceeded an implementation-specific maximum. This can also occur if the
routine is not compatible with the CM REXX language.

41 Bad arithmetic conversion

One of the terms in an arithmetic expression is not a valid number, or its exponent
exceeds the implementation-specific limit.

332 Appendix A

Message Summary 333

42 Arithmetic overflow/underflow

The result of an arithmetic operation requires an exponent outside the range supported
by the implementation. This can occur during an attempt to divide by zero.

43 Routine not found

A subroutine that has been called, or a function that has been invoked, cannot be found.
It is neither an internal or external routine nor the name of a built-in function. This can
be caused by the result of a typographical error, or the presence of a literal string or
symbol immediately adjacent to a left parenthesis.

44 Function did not return data

An external function was invoked but it did not return a value for use within the
expression. All functions must return a value.

45 No data specified on function RETURN

A routine was called as a function, but the RETURN instruction did not specify a value
to be returned. All functions must return a value.

46 Invalid variable reference

The syntax of a variable reference is incorrect. The right parenthesis, which must
immediately follow the variable name, is missing.

48 Failure in system service

An operating system service called by CM REXX resulted in an error. As a result,
execution of the program terminated.

49 Interpretation error

A CM REXX internal error occurred during execution of the program. Please contact HP
Technical Support for assistance.

334 Appendix A

B Programming Hints

This appendix is designed to help you avoid common pitfalls when using CM
REXX to write programs. The more common programming mistakes are
identified, and the correct CM REXX usage is shown.

Invoking a Built-in Function Like an Instruction

When a built-in function call is the only clause on a line, the function returns
a value.

Example
LINEOUT('myfile', 'new data')

This value is then passed to the external environment where it is interpreted
as a command. This usually results in an "Invalid command" message from
the operating system. To avoid this, use CALL to invoke the function.

Failure to Use Commas with CALL and PARSE ARG

With CALL

When you CALL a routine or function, the arguments of the called routine
must be separated by commas.

335

Example 1

The following example passes two arguments to the routine SUB.

CALL SUB X, Y

Example 2

This example passes one argument to SUB.

CALL SUB X Y

This argument is the result of concatenating X and Y.

With PARSE ARG

Commas must also be used between arguments in the template of a PARSE
ARG instruction.

Example 3

The following example assigns all of the first argument to a1 and all of the
second argument to a2.

PARSE ARG a1, a2

336 Appendix B

Programming Hints 337

Example 4

The next example assigns the first word of the first argument to a1 and the
rest of the first argument to a2.

PARSE ARG a1 a2

Note that any arguments supplied on the program invocation command line
are treated as one string by PARSE ARG or ARG.

Incorrect Use of Continuation

The statement:

x = min(1, 2, 3,
 4, 5)

will fail with Error 41: Bad arithmetic conversion, because the comma after
the 3 in the first line is treated as a continuation character, resulting in a
function invocation that looks like:

x = min(1, 2, 3 4, 5)

The arguments to the MIN built-in function must be separated by commas.
The correct way to write such a continued clause is to provide an additional
comma for continuation on the first line as in:

x = min(1, 2, 3,,
 4, 5)

Incorrect CALL Syntax

The correct syntax for calling a routine with arguments is:

CALL SUB X, Y

If you use the CALL instruction, it is not proper to enclose the arguments in
parentheses. Enclose the arguments in parentheses when you invoke a
routine as a function, as in:

x = SUB(X,Y)

Failure to Enclose Command Arguments Within
Quotes

Consider the example of attempting to set the REXX environment variable:

dir = 'c:\mydir'
putenv(REXX=dir)

The function argument includes an operator and is therefore treated as an
expression that must be evaluated before it is used in the function. The
expression is treated as a logical comparison and returns the value 0
(FALSE). The result is passed to the PUTENV function; but since 0 is not a
valid command to set an environment variable, PUTENV appears to have no
effect. The correct way to write the sample above is shown below:

dir = 'c:\mydir'
rc = putenv('REXX='dir)

Similar pitfalls exist in the use of host commands that include strings that
might be interpreted as operators. In XEDIT macros, for example, the
EXTRACT command requires the use of the forward slash character as in:

extract /curline

If this command is not enclosed in quotes, CM REXX sees the clause as an
attempt to divide the value of the symbol extract by the value of the symbol
curline. Since such variables would not normally be initialized to a numeric
value in an editor macro, execution of the clause results in Error 41: Bad
arithmetic conversion. If the clause is enclosed in quotes, it is treated by CM
REXX as a literal string and is automatically passed to the host command
environment (in this case, XEDIT) for execution.

Failure to Close a File

Any I/O operation to a file (CHARIN, CHAROUT, CHARS, LINEIN,
LINEOUT, LINES, or EXECIO) can leave the file in an open state. Therefore,
it might be necessary to close the file with CHAROUT, LINEOUT, or
STREAM before subsequent attempts to read from or write to the file.

338 Appendix B

C System Limitations

Very few implementation-specific limitations exist in CM REXX. These
limitations are documented in this appendix.

Implementation-Specific Limits

Description of Limitation Limitation

Maximum length of a string. 1 billion characters

Maximum length of a symbol or variable name. 1 billion characters

Maximum number of variables in a program. 60 thousand variables

Maximum setting of numeric digits. 1000

Maximum length of a host command environment
name.

16 characters

In general, all internal maximums are equivalent to
1 billion bytes.

It is likely that your system memory will be exceeded before
you approach these limits.

339

340 Appendix C

Bibliography

Amiga Programmers Guide to AREXX, Eric Giguere, Commodore-Amiga,
Inc., 1991.

Application Development Using OS/2 REXX, Anthony Rudd, John Wiley
and Sons, Inc., 1994.

Mastering OS/2 REXX, Gabriel F. Gargiulo, John Wiley and Sons, Inc.,
1994.

Modern Programming Using REXX, Bob O'Hara and Dave Gomberg,
Prentice Hall, 1988.

OS/2 2.1 REXX Handbook - Basics, Applications, and Tips, Hallett
German, Van Nostrand Reinhold, 1994.

Practical Usage of REXX, Anthony Rudd, Ellis Horwood Limited, 1990.

Programming in REXX, Charles Daney, McGraw-Hill, Inc., 1992.

REXX Handbook, edited by Gabe Goldberg and Phil Smith, McGraw-Hill,
Inc., 1992.

REXX in the TSO Environment, Gabriel F. Gargiulo, QED Information
Sciences, Inc., 1990.

REXX Tools and Techniques, Barry Nirmal, QED Publishing Group, 1993.

REXX: Advanced Techniques for Programmers, Peter Kiesel, McGraw-
Hill, Inc., 1993.

The AREXX Cookbook, Merrill Callaway, Whitestone, 1992.

341

The REXX Language: A Practical Approach to Programming, M. F.
Cowlishaw, Prentice Hall, Second Edition, 1990.

Using ARexx on the Amiga, Chris Zamara and Nick Sullivan, Abacus,
1991.

Note

In addition to these references, published proceedings of the annual REXX Symposium are
available from the Stanford Linear Accelerator Center.

Lists

342 Bibliography

Index

A

A (All) trace option, 110

ABBREV function, 124

ABS function, 126

absolute positional pattern, 85

ADDRESS [VALUE] expr2 parameter, 48

ADDRESS function, 127

ADDRESS instruction, 43, 47, 48

ADDRESS settings, 56

after parameter, 171

agent methods, 250

ARG function, 128

ARG instruction, 47, 53

ARG parameter, 79

arithmetic operators, 30

arithmetic overflow/underflow message, 333

assignment instructions, 26

B

B2X function, 133

bad arithmetic conversion message, 332

before parameter, 171

binary strings, 25

BITAND function, 130

BITOR function, 131

BITXOR function, 132

built-in functions, 32, 120

invoking, 335

BY parameter, 61

C

C (Commands) trace option, 110

C2D function, 149

C2X function, 150

CALL instruction, 34, 47, 55

CENTER function, 134

char parameter, 215

char_list parameter, 233

CHARIN

function, 136

operation, 35

CHAROUT

function, 138

operation, 35

CHARS

function, 140

operation, 35

CHDIR function, 141

clause

definition, 24

types of, 26

343

clause too long message, 327

CM REXX executable, 38

CM REXX extensions. See extensions

CM REXX functions. See functions

CM REXX programs, coding, 42

CMD host command, 43

command instructions, 26

command output, 43

command parameter, 198

command_line parameter, 264, 282, 283

comparative operators, 30

normal, 31

strict, 31

COMPARE function, 142

compound symbol

definition, 27

tail, 27

concatenation operators, 30

CONDITION function, 144

CONDITION information, 56

condition parameter, 55

condition traps, 34

and CALL, 34

and SIGNAL, 34

ERROR, 34

FAILURE, 34

HALT, 34

LOSTDIGITS, 34

NOTREADY, 34

NOVALUE, 34

SYNTAX, 34

CONDITION traps, 56

constant symbol, definition, 28

Control stack full message, 327

DATE formats, 155

COPIES function, 146

copyright notices, 2

count parameter, 187

CUSERID function, 148

customer support, 7

D

D2C function, 164

D2X function, 165

DATATYPE function, 152

DATE function, 155

date_string parameter, 155

DELSTR function, 159

DELWORD function, 161

DIGITS function, 163

DIGITS parameter, 76

directory parameter, 141, 287, 290

DO instruction, 47, 60

document changes, 4

documentation updates, 4

DROP instruction, 47, 65

E

E (Error) trace option, 110

EDM REXX language. See language structure

EDMADD extension, 259

EDMATTR extension, 261

344 Index

EDMBLD extension, 263

EDMCMD extension, 264

EDMDELHEAP extension, 265

EDMDELVAR extension, 266

EDMFREE extension, 267

EDMGET extension, 268

EDMGETV extension, 270

EDMLOC extension, 271

EDMRST extension, 272

EDMSET extension, 273

EDMSORT extension, 275

EDMWIN, 43

EDMWIN host command, 43

Elapsed time clocks, 57

ELSE parameter, 69

end parameter, 242

environment name too long message, 331

environment parameter, 48

ERROR condition, 56, 107

ERROR condition trap, 34

ERROR FAILURE condition, 144

ERRORTEXT function, 166

evaluation stack overflow message, 332

executing methods, overview, 38

EXIT instruction, 47, 67

EXPOSE parameter, 89

expp parameter, 171

expr parameter, 55

expr1 parameter, 48, 76

expr3 parameter, 76

expression parameter, 67, 69, 72, 95, 97, 99, 102, 104

exprl parameter, 60

exprn parameter, 61

expt parameter, 171

extensions

EDMADD, 259

EDMATTR, 261

EDMBLD, 263

EDMCMD, 264

EDMDELHEAP, 265

EDMDELVAR, 266

EDMFREE, 267

EDMGET, 268

EDMGETV, 270

EDMLOC, 271

EDMRST, 272

EDMSET, 273

EDMSORT, 275

function calls, 252

GET_CHILD_OBJECT, 276

LOAD_CHILDREN, 277

NOWAIT, 282

NVDOBJECTS, 283

NVDPATHS, 285

overview, 250

RADGET, 287

RADSET, 290

return values, 252

RXXCommandKill, 291

RXXCommandSpawn, 292

RXXCommandWait, 293

RXXOSEndOfLineString, 294

RXXOSEnvironmentSeparator, 295

RXXOSName, 296

RXXOSPathSeparator, 297

RXXSleep, 298

Index 345

WinExpandEnvironmentStrings, 301

WinGetVersion, 302

WinMessageBox, 299

external functions, 32, 42

F

F (Failure) trace option, 110

FAILURE condition, 56, 107

FAILURE condtion trap, 34

failure in system service message, 333

filename parameter, 261, 271

FIND function, 168

FOR parameter, 61

FOREVER parameter, 61

FORM function, 170

FORM parameter, 76

FORMAT function, 171

FULLSCR parameter, 264

function calls, 29, 252

function did not return data message, 333

functions, 32

ABBREV, 124

ABS, 126

ADDRESS, 127

ARG, 128

B2X, 133

BITAND, 130

BITOR, 131

BITXOR, 132

built-in, 32, 120

C2D, 149

C2X, 150

CENTER, 134

CHARIN, 136

CHAROUT, 138

CHARS, 140

CHDIR, 141

COMPARE, 142

CONDITION, 144

COPIES, 146

CUSERID, 148

D2C, 164

D2X, 165

DATATYPE, 152

DATE, 155

DELSTR, 159

DELWORD, 161

DIGITS, 163

ERRORTEXT, 166

external, 32

FIND, 168

FORM, 170

FORMAT, 171

FUZZ, 175

general rules, 122

GETCWD, 176

GETENV, 177

INDEX, 178

INSERT, 180

internal, 32

JUSTIFY, 181

LASTPOS, 182

LEFT, 184

LENGTH, 186

LINEIN, 187

LINEOUT, 189

LINES, 191

LOWER, 193

MAX, 194

MIN, 195

OVERLAY, 196

overview, 120

346 Index

POPEN, 198

POS, 200

PUTENV, 202

QUEUED, 203

RANDOM, 204

REVERSE, 206

RIGHT, 207

SIGN, 209

SOURCELINE, 210

SPACE, 211

STREAM, 213

STRIP, 215

SUBSTR, 217

SUBWORD, 219

SYMBOL, 220

TIME, 222

TRACE, 225

TRANSLATE, 226

TRUNC, 228

UPPER, 229

USERID, 230

VALUE, 231

VERIFY, 233

WORD, 236

WORDINDEX, 237

WORDLENGTH, 238

WORDPOS, 239

WORDS, 241

X2B, 244

X2C, 245

X2D, 247

XRANGE, 242

FUZZ function, 175

FUZZ parameter, 76

G

GET_CHILD_OBJECT extension, 276

GETCWD function, 176

GETENV function, 177

H

HALT condition, 56, 107, 144

HALT condition trap, 34

heap_number parameter, 268, 287

heap_size parameter, 263

hexadecimal strings, 24

HIDE parameter, 264

host command, executing, 42

I

I (Intermediates) trace option, 110

I/O operations, 35

CHARIN, 35

CHAROUT, 35

CHARS, 35

LINEIN, 35

LINEOUT, 35

LINES, 35

PARSE LINEIN, 35

PARSE PULL, 35

PULL, 35

PUSH, 35

QUEUE, 35

QUEUED, 35

SAY, 35

STREAM, 35

IF instruction, 47, 69

in_option parameter, 155

in_tbl parameter, 226

incomplete DO/IF/SELECT message, 328

incorrect call to routine message, 332

Index 347

INDEX function, 178

info parameter, 124

information parameter, 124

INSERT function, 180

instruction parameter, 69, 104

instruction, definition, 26

instructions

ADDRESS, 48

ARG, 53

CALL, 55

DO, 60

DROP, 65

EXIT, 67

IF, 69

INTERPRET, 72

ITERATE, 73

LEAVE, 74

NOP, 75

NUMERIC, 76

overview, 46

PARSE, 79

PROCEDURE, 89

PULL, 93

PUSH, 95

QUEUE, 97

RETURN, 99

SAY, 102

SELECT, 104

SIGNAL, 106

TRACE, 110

UPPER, 117

instructions, types of

assignment, 26

command, 26

keyword, 26

internal functions, 32

INTERPRET instruction, 47, 72

interpretation error message, 334

invalid character in program message, 327

invalid character string message, 329

invalid data on end of clause message, 329

invalid DO syntax message, 330

invalid expression message, 331

invalid expression result message, 331

invalid hexadecimal constant message, 328

invalid LEAVE or ITERATE message, 330

invalid sub-keyword found message, 330

invalid template or pattern message, 332

invalid TRACE request message, 329

invalid variable reference message, 333

invalid whole number message, 330

ITERATE instruction, 73

J

JUSTIFY function, 181

K

keyword instructions, 26

L

L (Labels) trace option, 110

label not found message, 328

label parameter, 106

label, definition, 26

language structure

clauses, 24

348 Index

condition traps, 34

expressions, 29

functions, 32

input/output operation, 35

parsing, 36

special variables, 33

symbols, 27

LASTPOS function, 182

LEAVE instruction, 47, 74

LEFT function, 184

legal notices, 2

copyright, 2

restricted rights, 2

trademark, 2

warranty, 2

LENGTH function, 186

length parameter, 124, 134, 136, 159, 161, 180, 181,
196, 217, 219

line parameter, 187, 189

line prefixes, 111

LINEIN

function, 187

operation, 35

LINEIN parameter, 79

LINEOUT

function, 189

operation, 35

LINES

function, 191

operation, 35

literal strings, 24, 29

LOAD_CHILDREN extension, 277

logical operators, 30

logical value not 0 or 1 message, 331

LOSTDIGITS condition trap, 34

LOWER function, 193

M

machine resources exhausted message, 325

MAX function, 194

max parameter, 204

messages

arithmetic overflow/underflow, 333

bad arithmetic conversion, 332

clause too long, 327

control stack full, 327

environment name too long, 331

evaluation stack overflow, 332

failure in system service, 333

function did not return data, 333

incomplete DO/IF/SELECT, 328

incorrect call to routine, 332

interpretation error, 334

invalid character in program, 327

invalid character string, 329

invalid data on end of clause, 329

invalid DO syntax, 330

invalid expression, 331

invalid expression result, 331

invalid hexadecimal constant, 328

invalid LEAVE or ITERATE, 330

invalid sub-keyword found, 330

invalid template or pattern, 332

invalid TRACE request, 329

invalid variable reference, 333

invalid whole number, 330

label not found, 328

logical value not 0 or 1, 331

machine resources exhausted, 325

name or string too long, 331

name starts with number or ".", 331

Index 349

no data specified on function RETURN, 333

program interrupted, 325

program is unreadable, 325

routine not found, 333

string or symbol expected, 329

symbol expected, 329

THEN expected, 329

unexpected procedure, 328

unexpected THEN or ELSE, 326

unexpected WHEN or OTHERWISE, 326, 327

unmatched "(" in expression, 332

unmatched "," or ")" in expression, 332

unmatched /* or quote, 325

WHEN or OTHERWISE expected, 326

messages generated by CM REXX, 325

methods, executing, 38

MIN function, 195

min parameter, 204

modifier parameter, 264

N

N (Normal) trace option, 110

n parameter, 128, 146, 149, 159, 161, 164, 165, 166,
180, 184, 196, 207, 210, 211, 217, 219, 228, 236,
237, 238, 247

name or string too long message, 331

name parameter, 55, 61, 73, 74, 136, 138, 140, 187,
189, 191, 213, 220, 231

name starts with number or "." message, 331

NEWPANEL.LOG, 40

no data specified on function RETURN message, 333

NOLOAD parameter, 268, 287

NOP instruction, 47, 75

NOTREADY condition, 56, 107, 144

NOTREADY condition trap, 34

NOVALUE condition, 107, 144

NOVALUE condition trap, 34

NOWAIT extension, 282

NOWAIT parameter, 264

null clause, definition, 26

num parameter, 171

number parameter, 126, 194, 195, 209, 228

NUMERIC instruction, 47, 76

NUMERIC settings, 56

NVDOBJECTS extension, 283

NVDPATHS extension, 285

O

O (Off) trace option, 110

object_name parameter, 259, 263, 265, 266, 267, 268,
270, 272, 273, 275, 277, 287, 290, 298

OFF parameter, 55

ON parameter, 55

operation parameter, 213

operator tokens, 25

operators, 29, 30

option parameter, 110, 128, 144, 215, 225, 233

optioneter, 198

OTHERWISE parameter, 104

out_option parameter, 155, 222

out_tbl parameter, 226

OVERLAY function, 196

350 Index

P

pad parameter, 130, 131, 132, 134, 142, 180, 181,
184, 196, 207, 211, 217, 226

PARSE instruction, 47, 79

PARSE LINEIN operation, 35

PARSE PULL operation, 35

parsing, 36

by patterns, 83

by position, 84

by words, 82

positional patterns, 84

summary, 88

templates, 81

with placeholders, 87

PINSCOMP.EDM, 40

PINSCOMP.LOG, 40

PNLREXX.LOG, 40

POPEN function, 198

POS function, 200

prefixes, 111

PROCEDURE instruction, 47, 89

PROCEDURE parameter, 89

program interrupted message, 325

program is unreadable message, 325

programming hints, 335

PULL instruction, 47, 93

PULL operation, 35

PULL parameter, 79

PUSH instruction, 47, 95

PUSH operation, 35

PUTENV function, 202

Q

QUEUE

instruction, 47, 97

operation, 35

QUEUED

function, 203

operation, 35

R

R (Results) trace option, 110

RADGET extension, 287

Radia Agent REXX methods, 250

RADPNLWR

functions, 38

invoking, 38

RADPNLWR executable, 38

RADPNLWR log files, 40

RADREXXW.EXE, 37

RADSET extension, 290

RANDOM function, 204

RC variable, 33

redirect, 49

registry manipulation functions

WinRegCloseKey, 308

WinRegCreateKey, 309

WinRegDeleteKey, 311

WinRegDeleteValue, 312

WinRegEnumKey, 313

WinRegEnumValue, 315

WinRegOpenKey, 317

WinRegQueryInfoKey, 319

WinRegQueryValue, 321

WinRegSetValue, 323

Index 351

registry, manipulating, 305

relative positional pattern, 85

restricted rights legend, 2

RESULT variable, 33

RETURN instruction, 47, 99

REVERSE function, 206

REXX instructions. See instructions

REXX methods, executing from Windows, 41

RIGHT function, 207

routine not found message, 333

RXXCommandKill extension, 291

RXXCommandSpawn extension, 292

RXXCommandWait extension, 293

RXXOSEndOfLineString extension, 294

RXXOSEnvironmentSeparator extension, 295

RXXOSName extension, 296

RXXOSPathSeparator extension, 297

RXXSleep extension, 298

S

SAY

instruction, 47, 102

operation, 35

seed parameter, 204

SELECT instruction, 47, 104

SELECT parameter, 104

SHOW parameter, 264

SIGL variable, 33

SIGN function, 209

SIGNAL instruction, 34, 47, 106

simple symbol, defintion, 28

SOURCE parameter, 80

SOURCELINE function, 210

SPACE function, 211

special characters, 25

special variables, 33

Standard Error Stream, 43

Standard Output Stream, 43

start parameter, 136, 138, 178, 182, 200, 233, 239,
242

STDERROR, 43

STDIN, definition, 36

STDOUT, 43

definition, 36

stem, definition, 28

STREAM

function, 213

operation, 35

string or symbol expected message, 329

string parameter, 133, 134, 138, 146, 149, 150, 152,
159, 161, 177, 181, 184, 186, 189, 193, 202, 206,
207, 211, 215, 217, 219, 226, 229, 233, 236, 237,
238, 241, 244, 245, 247, 301

string1 parameter, 130, 131, 132, 142, 168, 178, 180,
182, 196, 200, 239

string2 parameter, 130, 131, 132, 142, 168, 178, 180,
182, 196, 200, 239

strings

binary, 25

hexadecimal, 24

literal, 29

STRIP function, 215

strmcmd parameter, 214

352 Index

sub-expression, 29

subroutines, 42

SUBSTR function, 217

SUBWORD function, 219

support, 7

symbol, 25, 29

definition, 27

tokens, 25

symbol expected message, 329

SYMBOL function, 220

SYNTAX condition, 107, 144

SYNTAX condtion trap, 34

system limitations, 339

T

tail, definition, 27

technical support, 7

template parameter, 53, 79, 93

THEN expected message, 329

THEN parameter, 69, 104

TIME formats, converting, 222

TIME function, 222

TO parameter, 61

tokens

binary, 25

hexadecimal, 24

literal string, 24

operator, 25

special characters, 25

symbol, 25

TRACE function, 225

TRACE instruction, 47, 110

TRACE settings, 56

trademark notices, 2

TRANSLATE function, 226

troubleshooting, 335

CALL and PARSE ARG, 335

CALL syntax, 337

closing a file, 338

command arguments, 338

continuation, 337

invoking a built-in function, 335

TRUNC function, 228

type parameter, 152

U

unexpected procedure message, 328

unexpected THEN or ELSE message, 326

unexpected WHEN or OTHERWISE message, 326,
327

unmatched "(" in expression message, 332

unmatched "," or ")" in expression message, 332

unmatched /* or quote message, 325

UNTIL parameter, 60

updates to doc, 4

UPPER function, 229

UPPER instruction, 47, 117

USERID function, 230

V

VALUE function, 231

VALUE parameter, 80

VAR parameter, 80

Index 353

var_list parameter, 117

variable parameter, 266, 275

variables

RC, 33

RESULT, 33

SIGL, 33

varlist parameter, 65, 89

VERIFY function, 233

VERSION parameter, 81

W

WAIT parameter, 264

warranty, 2

WHEN or OTHERWISE expected message, 326

when_list parameter, 104

WHILE parameter, 60

whole-number parameter, 164, 165

Windows registry, manipulating, 305

WinExpandEnvironmentStrings extension, 301

WinGetVersion extension, 302

WinMessageBox extension, 299

WinRegCloseKey function, 308

WinRegCreateKey function, 309

WinRegDeleteKey function, 311

WinRegDeleteValue function, 312

WinRegEnumKey function, 313

WinRegEnumValue function, 315

WinRegOpenKey function, 317

WinRegQueryInfoKey function, 319

WinRegQueryValue function, 321

WinRegSetValue function, 323

WITH, 49

WORD function, 236

WORDINDEX function, 237

WORDLENGTH function, 238

WORDPOS function, 239

WORDS function, 241

X

X2B function, 244

X2C function, 245

X2D function, 247

XRANGE function, 242

Z

ZMASTER variables

ZPANEL, 39

ZPCONT, 39

ZPHEAPNO, 39

ZPREXEC, 39

ZPSEL, 40

ZPANEL variable, 39

ZPCONT variable, 39

ZPHEAPNO variable, 39

ZPREXEC variable, 39

ZPSEL variable, 40

354 Index

	REXX variables and CM object values

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /JPXEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG2000
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 100
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /JPXEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG2000
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 100
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck true
 /PDFX3Check false
 /PDFXCompliantPDFOnly true
 /PDFXNoTrimBoxError false
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f0062006500200050004400460020658768637b2654080020005000440046002f0058002d00310061003a0032003000300031002089c4830330028fd9662f4e004e2a4e1395e84e3a56fe5f6251855bb94ea46362800c52365b9a7684002000490053004f0020680751c6300251734e8e521b5efa7b2654080020005000440046002f0058002d00310061002089c483037684002000500044004600206587686376848be67ec64fe1606fff0c8bf753c29605300a004100630072006f00620061007400207528623763075357300b300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200034002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef67b2654080020005000440046002f0058002d00310061003a00320030003000310020898f7bc430025f8c8005662f70ba57165f6251675bb94ea463db800c5c08958052365b9a76846a196e96300295dc65bc5efa7acb7b2654080020005000440046002f0058002d003100610020898f7bc476840020005000440046002065874ef676848a737d308cc78a0aff0c8acb53c395b1201c004100630072006f00620061007400204f7f7528800563075357201d300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200034002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c00200064006500720020006600f800720073007400200073006b0061006c00200073006500730020006900670065006e006e0065006d00200065006c006c0065007200200073006b0061006c0020006f0076006500720068006f006c006400650020005000440046002f0058002d00310061003a0032003000300031002c00200065006e002000490053004f002d007300740061006e0064006100720064002000740069006c00200075006400760065006b0073006c0069006e00670020006100660020006700720061006600690073006b00200069006e00640068006f006c0064002e00200059006400650072006c006900670065007200650020006f0070006c00790073006e0069006e0067006500720020006f006d0020006f007000720065007400740065006c007300650020006100660020005000440046002f0058002d00310061002d006b006f006d00700061007400690062006c00650020005000440046002d0064006f006b0075006d0065006e007400650072002000660069006e006400650072002000640075002000690020006200720075006700650072006800e5006e00640062006f00670065006e002000740069006c0020004100630072006f006200610074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200034002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002f0058002d00310061003a0032003000300031002d006b006f006d00700061007400690062006c0065006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002e0020005000440046002f0058002d003100610020006900730074002000650069006e0065002000490053004f002d004e006f0072006d0020006600fc0072002000640065006e002000410075007300740061007500730063006800200076006f006e0020006700720061006600690073006300680065006e00200049006e00680061006c00740065006e002e0020005700650069007400650072006500200049006e0066006f0072006d006100740069006f006e0065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002f0058002d00310061002d006b006f006d00700061007400690062006c0065006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002000660069006e00640065006e002000530069006500200069006d0020004100630072006f006200610074002d00480061006e00640062007500630068002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200034002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f00620065002000710075006500200073006500200064006500620065006e00200063006f006d00700072006f0062006100720020006f002000710075006500200064006500620065006e002000630075006d0070006c006900720020006c00610020006e006f0072006d0061002000490053004f0020005000440046002f0058002d00310061003a00320030003000310020007000610072006100200069006e00740065007200630061006d00620069006f00200064006500200063006f006e00740065006e00690064006f00200067007200e1006600690063006f002e002000500061007200610020006f006200740065006e006500720020006d00e1007300200069006e0066006f0072006d00610063006900f3006e00200073006f0062007200650020006c0061002000630072006500610063006900f3006e00200064006500200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00700061007400690062006c0065007300200063006f006e0020006c00610020006e006f0072006d00610020005000440046002f0058002d00310061002c00200063006f006e00730075006c007400650020006c006100200047007500ed0061002000640065006c0020007500730075006100720069006f0020006400650020004100630072006f006200610074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200034002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000710075006900200064006f006900760065006e0074002000ea0074007200650020007600e9007200690066006900e900730020006f0075002000ea00740072006500200063006f006e0066006f0072006d00650073002000e00020006c00610020006e006f0072006d00650020005000440046002f0058002d00310061003a0032003000300031002c00200075006e00650020006e006f0072006d0065002000490053004f00200064002700e9006300680061006e0067006500200064006500200063006f006e00740065006e00750020006700720061007000680069007100750065002e00200050006f0075007200200070006c007500730020006400650020006400e9007400610069006c007300200073007500720020006c006100200063007200e9006100740069006f006e00200064006500200064006f00630075006d0065006e00740073002000500044004600200063006f006e0066006f0072006d00650073002000e00020006c00610020006e006f0072006d00650020005000440046002f0058002d00310061002c00200076006f006900720020006c00650020004700750069006400650020006400650020006c0027007500740069006c0069007300610074006500750072002000640027004100630072006f006200610074002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200034002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF che devono essere conformi o verificati in base a PDF/X-1a:2001, uno standard ISO per lo scambio di contenuto grafico. Per ulteriori informazioni sulla creazione di documenti PDF compatibili con PDF/X-1a, consultare la Guida dell'utente di Acrobat. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 4.0 e versioni successive.)
 /JPN <FEFF30b030e930d530a330c330af30b330f330c630f330c4306e590963db306b5bfe3059308b002000490053004f00206a196e96898f683c306e0020005000440046002f0058002d00310061003a00320030003000310020306b6e9662e03057305f002000410064006f0062006500200050004400460020658766f830924f5c62103059308b305f3081306b4f7f75283057307e30593002005000440046002f0058002d0031006100206e9662e0306e00200050004400460020658766f84f5c6210306b306430443066306f3001004100630072006f006200610074002030e630fc30b630ac30a430c9309253c2716730573066304f30603055304430023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200034002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020c791c131d558b294002000410064006f0062006500200050004400460020bb38c11cb2940020d655c778c7740020d544c694d558ba700020adf8b798d53d0020cee8d150d2b8b97c0020ad50d658d558b2940020bc29bc95c5d00020b300d55c002000490053004f0020d45cc900c7780020005000440046002f0058002d00310061003a0032003000300031c7580020addcaca9c5d00020b9dec544c57c0020d569b2c8b2e4002e0020005000440046002f0058002d003100610020d638d65800200050004400460020bb38c11c0020c791c131c5d00020b300d55c0020c790c138d55c0020c815bcf4b2940020004100630072006f0062006100740020c0acc6a90020c124ba85c11cb97c0020cc38c870d558c2edc2dcc624002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200034002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die moeten worden gecontroleerd of moeten voldoen aan PDF/X-1a:2001, een ISO-standaard voor het uitwisselen van grafische gegevens. Raadpleeg de gebruikershandleiding van Acrobat voor meer informatie over het maken van PDF-documenten die compatibel zijn met PDF/X-1a. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 4.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200073006b0061006c0020006b006f006e00740072006f006c006c0065007200650073002c00200065006c006c0065007200200073006f006d0020006d00e50020007600e6007200650020006b006f006d00700061007400690062006c00650020006d006500640020005000440046002f0058002d00310061003a0032003000300031002c00200065006e002000490053004f002d007300740061006e006400610072006400200066006f007200200075007400760065006b0073006c0069006e00670020006100760020006700720061006600690073006b00200069006e006e0068006f006c0064002e00200048007600690073002000640075002000760069006c0020006800610020006d0065007200200069006e0066006f0072006d00610073006a006f006e0020006f006d002000680076006f007200640061006e0020006400750020006f007000700072006500740074006500720020005000440046002f0058002d00310061002d006b006f006d00700061007400690062006c00650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020007300650020006200720075006b00650072006800e5006e00640062006f006b0065006e00200066006f00720020004100630072006f006200610074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200034002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200063006100700061007a0065007300200064006500200073006500720065006d0020007600650072006900660069006300610064006f00730020006f0075002000710075006500200064006500760065006d00200065007300740061007200200065006d00200063006f006e0066006f0072006d0069006400610064006500200063006f006d0020006f0020005000440046002f0058002d00310061003a0032003000300031002c00200075006d0020007000610064007200e3006f002000640061002000490053004f002000700061007200610020006f00200069006e007400650072006300e2006d00620069006f00200064006500200063006f006e0074006500fa0064006f00200067007200e1006600690063006f002e002000500061007200610020006f00620074006500720020006d00610069007300200069006e0066006f0072006d006100e700f50065007300200073006f00620072006500200063006f006d006f00200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00700061007400ed007600650069007300200063006f006d0020006f0020005000440046002f0058002d00310061002c00200063006f006e00730075006c007400650020006f0020004700750069006100200064006f002000750073007500e100720069006f00200064006f0020004100630072006f006200610074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200034002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b00610020007400610072006b0069007300740065007400610061006e00200074006100690020006a006f006900640065006e0020007400e400790074007900790020006e006f00750064006100740074006100610020005000440046002f0058002d00310061003a0032003000300031003a007400e400200065006c0069002000490053004f002d007300740061006e006400610072006400690061002000670072006100610066006900730065006e002000730069007300e4006c006c00f6006e00200073006900690072007400e4006d00690073007400e4002000760061007200740065006e002e0020004c0069007300e40074006900650074006f006a00610020005000440046002f0058002d00310061002d00790068007400650065006e0073006f00700069007600690065006e0020005000440046002d0064006f006b0075006d0065006e0074007400690065006e0020006c0075006f006d0069007300650073007400610020006f006e0020004100630072006f0062006100740069006e0020006b00e400790074007400f6006f0070007000610061007300730061002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200034002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200073006b00610020006b006f006e00740072006f006c006c006500720061007300200065006c006c0065007200200073006f006d0020006d00e50073007400650020006d006f0074007300760061007200610020005000440046002f0058002d00310061003a0032003000300031002c00200065006e002000490053004f002d007300740061006e00640061007200640020006600f6007200200075007400620079007400650020006100760020006700720061006600690073006b007400200069006e006e0065006800e5006c006c002e00200020004d0065007200200069006e0066006f0072006d006100740069006f006e0020006f006d00200068007500720020006d0061006e00200073006b00610070006100720020005000440046002f0058002d00310061002d006b006f006d00700061007400690062006c00610020005000440046002d0064006f006b0075006d0065006e0074002000660069006e006e00730020006900200061006e007600e4006e00640061007200680061006e00640062006f006b0065006e002000740069006c006c0020004100630072006f006200610074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200034002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings when submitting to HP. These settings require font embedding.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /HighResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

