
HP Universal CMDB

for the Windows and Solaris operating systems

Software Version: 8.01
Integrations
Document Release Date: March 2009

Software Release Date: March 2009

Legal Notices

Warranty

The only warranties for HP products and services are set forth in the express warranty
statements accompanying such products and services. Nothing herein should be construed as
constituting an additional warranty. HP shall not be liable for technical or editorial errors or
omissions contained herein.

The information contained herein is subject to change without notice.

Restricted Rights Legend

Confidential computer software. Valid license from HP required for possession, use or copying.
Consistent with FAR 12.211 and 12.212, Commercial Computer Software, Computer Software
Documentation, and Technical Data for Commercial Items are licensed to the U.S.
Government under vendor's standard commercial license.

Third-Party Web Sites

HP provides links to external third-party Web sites to help you find supplemental
information. Site content and availability may change without notice. HP makes no
representations or warranties whatsoever as to site content or availability.

Copyright Notices

© Copyright 2005 - 2009 Hewlett-Packard Development Company, L.P.

Trademark Notices

Adobe® and Acrobat® are trademarks of Adobe Systems Incorporated.

Intel®, Pentium®, and Intel® XeonTM are trademarks of Intel Corporation in the U.S. and
other countries.

JavaTM is a US trademark of Sun Microsystems, Inc.

Microsoft®, Windows®, Windows NT®, and Windows® XP are U.S registered trademarks of
Microsoft Corporation.

Oracle® is a registered US trademark of Oracle Corporation, Redwood City, California.

Unix® is a registered trademark of The Open Group.
2

Documentation Updates

This guide’s title page contains the following identifying information:

• Software Version number, which indicates the software version.

• Document Release Date, which changes each time the document is updated.

• Software Release Date, which indicates the release date of this version of the software.

To check for recent updates, or to verify that you are using the most recent edition of a
document, go to:

http://h20230.www2.hp.com/selfsolve/manuals

This site requires that you register for an HP Passport and sign-in. To register for an HP
Passport ID, go to:

http://h20229.www2.hp.com/passport-registration.html

Or click the New users - please register link on the HP Passport login page.

You will also receive updated or new editions if you subscribe to the appropriate product
support service. Contact your HP sales representative for details.
3

Support

You can visit the HP Software Support web site at:

http://www.hp.com/go/hpsoftwaresupport

This web site provides contact information and details about the products, services, and
support that HP Software offers.

HP Software Support Online provides customer self-solve capabilities. It provides a fast and
efficient way to access interactive technical support tools needed to manage your business. As
a valued support customer, you can benefit by using the HP Software Support web site to:

• Search for knowledge documents of interest

• Submit and track support cases and enhancement requests

• Download software patches

• Manage support contracts

• Look up HP support contacts

• Review information about available services

• Enter into discussions with other software customers

• Research and register for software training

Most of the support areas require that you register as an HP Passport user and sign in. Many
also require a support contract.

To find more information about access levels, go to:

http://h20230.www2.hp.com/new_access_levels.jsp

To register for an HP Passport ID, go to:

http://h20229.www2.hp.com/passport-registration.html
4

Table of Contents

Welcome to This Guide ...9

PART I: THE HP UNIVERSAL CMDB APIS

Chapter 1: Introduction to APIs ...13
APIs Overview..13

Chapter 2: The HP Universal CMDB Web Service API15
Conventions ..16
Using the HP Universal CMDB Web Service API16
HP Universal CMDB Web Service API Reference18
Returning Unambiguous Topology Map Elements.............................18
Call the Web Service..22
Query the UCMDB ..22
Update the UCMDB ..27
Query the UCMDB Class Model ...29
Query for Impact Analysis...31
UCMDB Query Methods ...31
UCMDB Update Methods..46
UCMDB Impact Analysis Methods ...49
Use Cases ...51
Examples..53
UCMDB General Parameters ..84
UCMDB Output Parameters ...88
5

Table of Contents
Chapter 3: The HP Universal CMDB Java API91
Conventions ..92
Using the HP Universal CMDB Java API ...92
General Structure of Application ..93
Retrieve the API Jar File ...94
Create an Integration User ..95
HP Universal CMDB Java API Reference ...96
Use Cases ...96
Examples..98

Chapter 4: The Discovery and Dependency Mapping
Web Service API ..103

PART II: FEDERATION AND RECONCILIATION

Chapter 5: Introduction to Federated CMDB...................................107
Federated CMDB – Overview ..108
Adapters...108
Retrieving Data from Multiple Data Stores109
Retrieving Attributes from an External Data Store110
Mapping Information ...112
Work with Federated Data – Workflow ..112
Change the Encrypted Password of a Federated Adapter113
Federated CMDB User Interface ..115
6

Table of Contents
Chapter 6: The Generic Database Adapter.......................................129
Database Adapter – Overview..130
Non-supported TQL Queries ...130
Reconciliation..131
Hibernate as JPA Provider..134
Deploy a Database Adapter – Minimal Method................................136
Deploy a Database Adapter – Advanced Method..............................143
The Federated Database Configuration Files.....................................168
The adapter.conf File...169
The simplifiedConfiguration.xml File...170
The orm.xml File ...177
The reconciliation_rules.txt File..181
The transformations.txt File..182
The persistence.xml File ..183
The discriminator.properties File ..185
The replication_config.txt File ..186
The fixed_values.txt File..186
Out of the Box Converters ..186
Plugins ...190
Configuration Examples..190
Federated Database Log Files...203
External References ...205
Troubleshooting and Limitations ...205

Chapter 7: The Federation Framework SDK207
Federation Framework – Overview..208
Adapter and Mapping Interaction with the Federation Framework 211
Federation Framework Flow for FTQL...212
Federation Framework Flow for Replication224
The HP Release Control Federation Adapter.....................................225
Adapter Interfaces..229
Add an Adapter for a New External Data Store.................................230
Adapter Capabilities ..241

Chapter 8: The HP ServiceCenter/Service Manager Adapter243
Adapter Usage..244
The Adapter Configuration File ..245
Deploy the Adapter ...254
Deploy the ServiceDesk Adapter ...255
Add an Attribute to the ServiceCenter/Service Manager CIT260
7

Table of Contents
Chapter 9: Troubleshooting and Limitations269
Federated CMDB Troubleshooting and Limitations.........................269

Chapter 10: Introduction to Reconciliation......................................273
Reconciliation – Overview ..273
Host Reconciliation Rules ...274
Cluster Reconciliation Rules ...274
Software Element Reconciliation Rules...275
Process Reconciliation Rules ...275

PART III : ADDITIONAL INTEGRATIONS

Chapter 11: Embedding UCMDB Applets Using Direct Links279
Using Direct Links to Embed UCMDB Applets.................................280
UCMDB Applet Tag Overview...281
Direct Link Operation Flow...282

Index..289
8

Welcome to This Guide

This guide describes the various integrations available for HP Universal
CMDB.

This chapter includes:

 ➤ How This Guide Is Organized on page 9

 ➤ Who Should Read This Guide on page 10

 ➤ Getting More Information on page 10

How This Guide Is Organized

The guide contains the following parts:

 Part I The HP Universal CMDB APIs

Describes how to work with the CMDB API to extract configuration data
from HP Universal CMDB.

 Part II Federation and Reconciliation

Explains how to define adapters to include data in the CMDB from other
sources, in such a way that the source of the data retains control of the data.

 Part III Additional Integrations

Describes how to embed applets into external applications using direct
links.
9

Welcome to This Guide
Who Should Read This Guide

This guide is intended for the following users of HP Universal CMDB:

➤ HP Universal CMDB administrators

➤ HP Universal CMDB end users

➤ HP Universal CMDB integration developers

Readers of this guide should be knowledgeable about navigating and using
enterprise applications, and be familiar with HP Universal CMDB and
enterprise monitoring and management concepts.

Getting More Information

For a complete list of all online documentation included with HP Universal
CMDB, additional online resources, information on acquiring
documentation updates, and typographical conventions used in this guide,
see the the HP Universal CMDB Deployment Guide PDF.
10

Part I

The HP Universal CMDB APIs

12

1
Introduction to APIs

This chapter lists the APIs that are included with HP Universal CMDB.

Concepts

APIs Overview

The following APIs are included with HP Universal CMDB:

➤ UCMDB API. Enables writing configuration item definitions and topological
relations to the UCMDB (Universal Configuration Management database),
and querying the information with TQL and ad hoc queries. For details, see
“The HP Universal CMDB Web Service API” on page 15.

➤ UCMDB Java API. Explains how third-party or custom tools can use the Java
API to extract data and calculations and to write data to the UCMDB
(Universal Configuration Management database). For details, see “The
HP Universal CMDB Java API” on page 91.

➤ DDM Web Service. Explains how third-party or custom tools can use the
HP Discovery and Dependency Mapping Web Service to manage Discovery
and Dependency Mapping (DDM). For details, see “The HP Discovery and
Dependency Mapping Web Service API” in Discovery and Dependency
Mapping Guide.
13

Chapter 1 • Introduction to APIs
14

2
The HP Universal CMDB Web Service API

This chapter explains how third-party or custom tools can use the
HP Universal CMDB Web Service API to extract data and calculations and to
write data to the UCMDB (Universal Configuration Management database).

Use this chapter in conjunction with the UCMDB schema documentation,
available in the online Documentation Library.

This chapter includes:

Concepts

 ➤ Conventions on page 16

 ➤ Using the HP Universal CMDB Web Service API on page 16

 ➤ HP Universal CMDB Web Service API Reference on page 18

 ➤ Returning Unambiguous Topology Map Elements on page 18

Tasks

 ➤ Call the Web Service on page 22

 ➤ Query the UCMDB on page 22

 ➤ Update the UCMDB on page 27

 ➤ Query the UCMDB Class Model on page 29

 ➤ Query for Impact Analysis on page 31

Reference

 ➤ UCMDB Query Methods on page 31

 ➤ UCMDB Update Methods on page 46

 ➤ UCMDB Impact Analysis Methods on page 49
15

Chapter 2 • The HP Universal CMDB Web Service API
 ➤ Use Cases on page 51

 ➤ Examples on page 53

 ➤ UCMDB General Parameters on page 84

 ➤ UCMDB Output Parameters on page 88
Concepts

Conventions

This chapter uses the following conventions:

➤ UCMDB refers to the Universal Configuration Management database itself.
HP Universal CMDB refers to the application.

➤ UCMDB elements and method arguments are spelled in the case in which
they are specified in the schema. An element or argument to a method is
not capitalized. For example, a relation is an element of type Relation passed
to a method.

Using the HP Universal CMDB Web Service API

The HP Universal CMDB Web Service API is used to integrate applications
with the Universal CMDB (UCMDB). The API provides methods to:

➤ add, remove, and update CIs and relations in the CMDB

➤ retrieve information about the class model

➤ retrieve impact analyses

➤ retrieve information about configuration items and relationships

Methods for retrieving information about configuration items and
relationships generally use the Topology Query Language (TQL). For details,
see “Topology Query Language” in Model Management.

Users of the HP Universal CMDB Web Service API should be familiar with:

➤ The SOAP specification

➤ An object-oriented programming language such as C++, C# or Java
16

Chapter 2 • The HP Universal CMDB Web Service API
➤ HP Universal CMDB

This section includes the following topics:

➤ “Uses of the API” on page 17

➤ “Permissions” on page 17

Uses of the API
The API is used to fulfill a number of business requirements. For example:

➤ A third-party system can query the class model for information about
available configuration items (CIs).

➤ A third-party asset management tool can update the UCMDB with
information available only to that tool, thereby unifying its data with data
collected by HP applications.

➤ A number of third-party systems can populate the UCMDB to create a
central UCMDB that can track changes and perform impact analysis.

➤ A third-party system can create entities and relations according to its
business logic, and then write the data to the UCMDB to take advantage of
the UCMDB query capabilities.

➤ Other systems, such as the Change Control Management (CCM) system, can
use the Impact Analysis methods for change analysis.

Permissions
The administrator provides login credentials for connecting with the Web
Service. The required credentials depend on whether you are using
HP Universal CMDB as a standalone application or from within HP Business
Availability Center:

➤ HP Universal CMDB standalone. Log in using the credentials of a DDM user
who has been granted permissions on the discovery resources.

For details, see “Security Manager Window” in Model Management.

➤ HP Universal CMDB embedded in HP Business Availability Center. Log in
using the credentials of a Business Availability Center user. The user must
have been granted the relevant permissions on the HP Universal CMDB
resource in Business Availability Center.
17

Chapter 2 • The HP Universal CMDB Web Service API
HP Universal CMDB Web Service API Reference

For full documentation on the request and response structures, refer to the
HP UCMDB Web Service API Reference. These files are located in the
following folder:

\\<HP Universal CMDB root directory>\UCMDBServer\j2f\AppServer\
webapps\site.war\amdocs\eng\doc_lib\Integrations\CMDB_Schema\
webframe.html

Returning Unambiguous Topology Map Elements

Query methods that return the data in topology or topologyMap elements
search the system for a match of a TQL query. The following diagrams
illustrate how the resulting topology and topologyMap structures are affected
by the use of unique labels in the query.

Labels are user-specified names in the query for relations and configuration
items in specific configurations. The labels specified in the query are used as
the node labels in the returned map. If no labels are specified, the CI or
Relation Type Name is used as the label in the resulting map. The following
example illustrates specifying labels IISHost and DBHost in place of the
default Host label, and labels ContainerIIS and ContainsDB in place of the
default Container Link label.

The following example represents a small IT universe model. There are three
hosts: H1, H2, H3, which host Web servers (WS) and database managers
(DB). WS1 resides on H1. DB1 and WS2 both reside on H2. DB2 resides on
H3.
18

Chapter 2 • The HP Universal CMDB Web Service API
This query is defined using the default labels:

The result of running this TQL query on the IT universe can be a Topology or
TopologyMap element.

Topology Response

CIs: H1, H2, H3, WS1, WS2, DB1, DB2
Relations: H1-WS1, H1-H2, H2-H3, WS2-H2, DB1-H2, DB2-H3
19

Chapter 2 • The HP Universal CMDB Web Service API
TopologyMap Response

In the above TopologyMap response, the first two CINodes contain identical
Host labels, corresponding to the two Host CIs in the query. Both of these
CINodes contain host H2, with no indication of why H2 is duplicated.

The last two relationNodes contain identical Contained labels, corresponding
to the two Container link relations in the query.

CINode:
label: Host
CIs: H1, H2

CINode:
label: Host
CIs: H2, H3

CINode:
label: DB
CIs: DB1, DB2

CINode:
label: Webserver

CIs: IIS

relationNode:
label: talk
relations: H1-H2, H2-H3

relationNode:
label: Container Link
relations: WS1-H1, WS2-H2

relationNode:
label: Container Link
relations: DB2-H3, DB1-H2
20

Chapter 2 • The HP Universal CMDB Web Service API
The duplications occur because no unique labels are specified in the query,
resulting in the use of default labels (the type names Host and Container) in
the map. To extract a more usable map, define queries with unique labels for
each configuration to be matched, as shown in the following query:

The topology result is identical to that of the TQL without unique labels. The
topologyMap result, however, is different: Each label is now unique.

In this map, it is clear why H2 is returned twice. The unique labels indicate
that it is returned once as a Web server host and once as a database host.

CINode:
label: IISHOST
CIs: H1, H2

CINode:
label: DBHOST
CIs: H2, H3

...

relationNode:
label: ContainerIIS
relations: WS1-H1, WS2-H2

relationNode:
label: ContainerDB
relations: DB2-H3, DB1-H2
21

Chapter 2 • The HP Universal CMDB Web Service API
Tip: Wherever possible in the UCMDB, apply unique, user-defined labels to
specific configurations.

Tasks

Call the Web Service

You use standard SOAP programming techniques in the HP Universal CMDB
Web Service to enable calling server-side methods. If the statement cannot
be parsed or if there is a problem invoking the method, the API methods
throw a SoapFault exception. When a SoapFault exception is thrown, the
UCMDB populates one or more of the error message, error code, and
exception message fields. If there is no error, the results of the invocation are
returned.

SOAP programmers can access the WSDL at:

http://<server>[:port]/axis2/services/UcmdbService?wsdl

The port specification is only necessary for non-standard installations.
Consult your system administrator for the correct port number.

The URL for calling the service is:

http://<server>[:port]/axis2/services/UcmdbService

For examples of connecting to the UCMDB, see “Use Cases” on page 51.

Query the UCMDB

The UCMDB is queried using the APIs described in “UCMDB Query
Methods” on page 31.

The queries and the returned UCMDB elements always contain real
UCMDB IDs.

For examples of the use of the query methods, see “Query Example” on
page 57.
22

Chapter 2 • The HP Universal CMDB Web Service API
This section includes the following topics:

➤ “Just In Time Response Calculation” on page 23

➤ “Processing Large Responses” on page 23

➤ “Specifying Properties to Return” on page 24

➤ “Concrete Properties” on page 25

➤ “Derived Properties” on page 25

➤ “Naming Properties” on page 26

➤ “Other Property Specification Elements” on page 26

Just In Time Response Calculation
For all query methods, the UCMDB server calculates the values requested by
the query method when the request is received, and returns results based on
the latest data. The result is always calculated at the time the request is
received, even if the TQL query is active and there exists a previously
calculated result. Therefore, the results of running a query returned to the
client application may be different to the results of the same query
displayed on the user interface.

Tip: If your application uses the results of a given query more than once and
the data is not expected to change significantly between uses of the result
data, you can improve performance by having the client application store
the data rather than repeatedly running the query.

Processing Large Responses
The response to a query always includes the structures for the data requested
by the query method, even if no actual data is being transmitted. For many
methods where the data is a collection or map, the response also includes
the ChunkInfo structure, comprised of chunksKey and numberOfChunks. The
numberOfChunks field indicates the number of chunks containing data that
must be retrieved.
23

Chapter 2 • The HP Universal CMDB Web Service API
The maximum transmission size of data is set by the system administrator. If
the data returned from the query is larger than the maximum size, the data
structures in the first response contain no meaningful information, and the
value of the numberOfChunks field is 2 or greater. If the data is not larger
than the maximum, the numberOfChunks field is 0 (zero), and the data is
transmitted in the first response. Therefore, in processing a response, check
the numberOfChunks value first. If it is greater than 1, discard the data in the
transmission and request the chunks of data. Otherwise, use the data in the
response.

For information on handling chunked data, see “pullTopologyMapChunks”
on page 44 and “releaseChunks” on page 45.

Specifying Properties to Return
CIs and relations generally have many properties. Some methods that return
collections or graphs of these items accept input parameters that specify
which property values to return with each item that matches the query. The
UCMDB does not return empty properties. Therefore, the response to a
query may have fewer properties than requested in the query.

This section describes the types of sets used to specify the properties to
return.

Properties can be referenced in two ways:

➤ By their names

➤ By using names of predefined properties rules. Predefined properties rules
are used by the UCMDB to create a list of real property names.

When an application references properties by name, it passes a PropertiesList
element.

Tip: Whenever possible, use PropertiesList to specify the names of the
properties in which you are interested, rather than a rule-based set. The use
of predefined properties rules nearly always results in returning more
properties than needed, and bears a performance price.
24

Chapter 2 • The HP Universal CMDB Web Service API
There are two types of predefined properties: qualifier properties and simple
properties.

➤ Qualifier properties. Use when the client application should pass a
QualifierProperties element (a list of qualifiers that can be applied to
properties). The UCMDB converts the list of qualifiers passed by the client
application to the list of the properties to which at least one of the qualifiers
applies. The values of these properties are returned with the CI or Relation
elements.

➤ Simple properties. To use simple rule-based properties, the client application
passes a SimplePredefinedProperty or SimpleTypedPredefinedProperty
element. These elements contain the name of the rule by which the UCMDB
generates the list of properties to return. The rules that can be specified in a
SimplePredefinedProperty or SimpleTypedPredefinedProperty element are
CONCRETE, DERIVED, and NAMING.

Concrete Properties
Concrete properties are the set of properties defined for the specified CIT.
The properties added by derived classes are not returned for instances of
those derived classes.

A collection of instances returned by a method may consist of instances of a
CIT specified in the method invocation and instances of CITs that inherit
from that CIT. The derived CITs inherit the properties of the specified CIT.
In addition, the derived CITs extend the parent CIT by adding properties.

Example of Concrete Properties

CIT T1 has properties P1 and P2. CIT T11 inherits from T1 and extends T1
with properties P21 and P22.

The collection of CIs of type T1 includes the instances of T1 and T11. The
concrete properties of all instances in this collection are P1 and P2.

Derived Properties
Derived properties are the set of properties defined for the specified CIT and,
for each derived CIT, the properties added by the derived CIT.
25

Chapter 2 • The HP Universal CMDB Web Service API
Example of Derived Properties

Continuing the example from concrete properties, the derived properties of
instances of T1 are P1 and P2. The derived properties of instances of T11 are
P1, P2, P21, and P22.

Naming Properties
The naming properties are display_label and data_name.

Other Property Specification Elements

➤ PredefinedProperties

PredefinedProperties can contain a QualifierProperties element and a
SimplePredefinedProperty element for each of the other possible rules. A
PredefinedProperties set does not necessarily contain all types of lists.

➤ PredefinedTypedProperties

PredefinedTypedProperties is used to apply a different set of properties to
each CIT. PredefinedTypedProperties can contain a QualifierProperties
element and a SimpleTypedPredefinedProperty element for each of the other
applicable rules. Because PredefinedTypedProperties is applied to each CIT
individually, derived properties are not relevant. A PredefinedProperties set
does not necessarily contain all applicable types of lists.

➤ CustomProperties

CustomProperties can contain any combination of the basic PropertiesList
and the rule-based property lists. The properties filter is the union of all the
properties returned by all the lists.

➤ CustomTypedProperties

CustomTypedProperties can contain any combination of the basic
PropertiesList and the applicable rule-based property lists. The properties
filter is the union of all the properties returned by all the lists.
26

Chapter 2 • The HP Universal CMDB Web Service API
➤ TypedProperties

TypedProperties is used to pass a different set of properties for each CIT.
TypedProperties is a collection of pairs composed of type names and
properties sets of all types. Each properties set is applied only to the
corresponding type.

Update the UCMDB

You update the UCMD with the update APIs. For details of the API methods,
see “UCMDB Update Methods” on page 46.

For examples of the use of the update methods, see “Update Example” on
page 74.

This section includes the following topics:

➤ “UCMDB Update Parameters” on page 27

➤ “Use of ID Types with Update Methods” on page 28

➤ “UCMDB Update Methods” on page 46

UCMDB Update Parameters
This topic describes the parameters used only by the service’s update
methods. For details, see the schema documentation.

CIsAndRelationsUpdates

The CIsAndRelationsUpdates type consists of CIsForUpdate,
relationsForUpdate, referencedRelations, and referencedCIs. A
CIsAndRelationsUpdates instance does not necessarily include all three
elements.

CIsForUpdate is a CIs collection. relationsForUpdate is a Relations collection.
The CI and relation elements in the collections have a props element. When
creating a CI or relation, properties that have either the required attribute or
the key attribute in the CI Type definition must be populated with values.
The items in these collections are updated or created by the method.
27

Chapter 2 • The HP Universal CMDB Web Service API
referencedCIs and referencedRelations are collections of CIs that are already
defined in the UCMDB. The elements in the collection are identified with a
temporary ID in conjunction with all the key properties. These items are
used to resolve the identities of CIs and relations for update. They are never
created or updated by the method.

Each of the CI and relation elements in these collections has a properties
collection. New items are created with the property values in these
collections.

Use of ID Types with Update Methods
The following describes ID CITs, and CIs and relations. When the ID is not a
real UCMDB ID, the type and key attributes are required.

Deleting or Updating Configuration Items

A temporary or empty ID may be used by the client when calling a method
to delete or update an item. In this case, the CI type and the key attributes
that identify the CI must be set.

Deleting or Updating Relations

When deleting or updating relations, the relation ID can be empty,
temporary, or real.

If a CI’s ID is temporary, the CI must be passed in the referencedCIs
collection and its key attributes must be specified. For details, see
referencedCIs in the “CIsAndRelationsUpdates” on page 27.

Inserting New Configuration Items into the UCMDB

It is possible to use either an empty ID or a temporary ID to insert a new CI.
However, if the ID is empty, the server cannot return the real UCMDB ID in
the structure createIDsMap because there is no clientID. For details, see
“addCIsAndRelations” on page 46 and “UCMDB Query Methods” on
page 31.
28

Chapter 2 • The HP Universal CMDB Web Service API
Inserting New Relations into the UCMDB

The relation ID can be either temporary or empty. However, if the relation is
new but the configuration items on either end of the relation are already
defined in the UCMDB, then those CIs that already exist must be identified
by a real UCMDB ID or be specified in a referencedCIs collection.

Query the UCMDB Class Model

The class model methods return information about CITs and relations. The
class model is configured using the CI Type Manager. For details, see “CI
Type Manager” in Model Management.

For examples of the use of the class model methods, see “Class Model
Example” on page 78.

This section provides information on the following methods that return
information about CITs and relations:

➤ “getClassAncestors” on page 29

➤ “getAllClassesHierarchy” on page 30

➤ “getCmdbClassDefinition” on page 30

getClassAncestors
The getClassAncestors method retrieves the path between the given CIT and
its root, including the root.

Input

Parameter Comment

cmdbContext For details, see “CmdbContext” on page 84.

className The type name. For details, see “Type Name” on
page 86.
29

Chapter 2 • The HP Universal CMDB Web Service API
Output

getAllClassesHierarchy
The getAllClassesHierarchy method retrieves the entire class model tree.

Input

Output

getCmdbClassDefinition
The getCmdbClassDefinition method retrieves information about the
specified class.

If you use getCmdbClassDefinition to retrieve the key attributes, you must
also query the parent classes up to the base class. getCmdbClassDefinition
identifies as key attributes only those attributes with the ID_ATTRIBUTE set
in the class definition specified by className. Inherited key attributes are
not recognized as key attributes of the specified class. Therefore, the
complete list of key attributes for the specified class is the union of all the
keys of the class and of all its parents, up to the root.

Parameter Comment

classHierarchy A collection of pairs of class names and parent class
name.

comments For internal use only.

Parameter Comment

cmdbContext For details, see “CmdbContext” on page 84.

Parameter Comment

classesHierarchy A collection of pairs of class name and parent class
name.

comments For internal use only.
30

Chapter 2 • The HP Universal CMDB Web Service API
Input

Output

Query for Impact Analysis

The Identifier in the impact analysis methods points to the service’s response
data. It is unique for the current response and is discarded from the server’s
memory cache after 10 minutes of non-use.

For examples of the use of the impact analysis methods, see “Impact
Analysis Example” on page 80.

Reference

UCMDB Query Methods

This section provides information on the following methods:

➤ “executeTopologyQueryByName” on page 32

➤ “executeTopologyQueryByNameWithParameters” on page 33

➤ “executeTopologyQueryWithParameters” on page 34

➤ “getChangedCIs” on page 34

Parameter Comment

cmdbContext For details, see “CmdbContext” on page 84.

className The type name. For details, see “Type Name” on
page 86.

Parameter Comment

cmdbClass The class definition, consisting of name, classType,
displayLabel, description, parentName, qualifiers, and
attributes.

comments For internal use only.
31

Chapter 2 • The HP Universal CMDB Web Service API
➤ “getCINeighbours” on page 35

➤ “getCIsByID” on page 36

➤ “getCIsByType” on page 37

➤ “getFilteredCIsByType” on page 38

➤ “getQueryNameOfView” on page 42

➤ “getTopologyQueryExistingResultByName” on page 43

➤ “getTopologyQueryResultCountByName” on page 43

➤ “pullTopologyMapChunks” on page 44

➤ “releaseChunks” on page 45

executeTopologyQueryByName
The executeTopologyQueryByName method retrieves the topology map that
matches the specified query.

Tip: The map contains more information and is easier to understand if the
label for each CINode and each relationNode in the TQL is unique. For
details, see “Returning Unambiguous Topology Map Elements” on page 18.

Input

Parameter Comment

cmdbContext For details, see “CmdbContext” on page 84.

queryName The name of the TQL in the UCMDB with which to
retrieve the map.

queryTypedProperties A collection of sets of properties to retrieve to items
of a specific Configuration Item Type.
32

Chapter 2 • The HP Universal CMDB Web Service API
Output

executeTopologyQueryByNameWithParameters
The executeTopologyQueryByNameWithParameters method retrieves a
topologyMap element that matches the specified parameterized query.

The values for the query parameters are passed in the parameterizedNodes
argument. The specified TQL must have unique labels defined for each
CINode and each relationNode or the method invocation fails.

Input

Output

Parameter Comment

topologyMap For details, see “TopologyMap” on page 89.

Parameter Comment

cmdbContext For details, see “CmdbContext” on page 84.

queryName The name of the parameterized TQL in the UCMDB
for which to get the map.

parameterizedNodes The conditions each node must meet to be included
in the query results.

queryTypedProperties A collection of sets of properties to retrieve to items
of a specific Configuration Item Type.

Parameter Comment

topologyMap For details, see “TopologyMap” on page 89.

chunkInfo For details, see: “ChunkInfo” on page 89,
“Processing Large Responses” on page 23.
33

Chapter 2 • The HP Universal CMDB Web Service API
executeTopologyQueryWithParameters
The executeTopologyQueryWithParameters method retrieves a topologyMap
element that matches the parameterized query.

The query is passed in the queryXML argument. The values for the query
parameters are passed in the parameterizedNodes argument. The TQL must
have unique labels defined for each CINode and each relationNode.

The executeTopologyQueryWithParameters method is used to pass ad-hoc
queries, rather than accessing a query defined in the UCMDB. You can use
this method when you do not have access to the UCMDB user interface to
define a query, or when you do not want to save the query to the database.

Input

Output

getChangedCIs
The getChangedCIs method returns the change data for all CIs related to the
specified CIs.

Parameter Comment

cmdbContext For details, see “CmdbContext” on page 84.

queryXML An XML representation of a TQL.

parameterizedNodes The conditions each node must meet to be included
in the query results.

Parameter Comment

topologyMap For details, see “TopologyMap” on page 89.

chunkInfo For details, see “ChunkInfo” on page 89 and
“Processing Large Responses” on page 23.
34

Chapter 2 • The HP Universal CMDB Web Service API
Input

Output

getCINeighbours
The getCINeighbours method returns the immediate neighbors of the
specified CI.

For example, if the query is on the neighbors of CI A, and CI A contains CI B
which uses CI C, CI B is returned, but CI C is not. That is, only neighbors of
the specified type are returned.

Input

Parameter Comment

cmdbContext For details, see “CmdbContext” on page 84.

ids The list of the IDs of the root CIs whose related CIs
are checked for changes.

Only real UCMDB IDs are valid in this collection.

fromDate The beginning of the period in which to check if CIs
changed.

toDate The end of the period in which to check if CIs
changed.

Parameter Comment

changeDataInfo Zero or more collections of ChangedDataInfo
elements.

Parameter Comment

cmdbContext For details, see “CmdbContext” on page 84.

ID The ID of the CI with which to retrieve the
neighbors. This must be a real UCMDB ID.
35

Chapter 2 • The HP Universal CMDB Web Service API
Output

getCIsByID
The getCIsByID method retrieves configuration items by their UCMDB IDs.

Input

neighbourType The CIT name of the neighbors to retrieve.
Neighbors of the specified type and of types derived
from that type are returned.

For details, see “Type Name” on page 86.

CIProperties The data to be returned on each configuration item,
called the Query Layout in the user interface.

For details, see “TypedProperties” on page 27.

relationProperties The data to be returned on each relation (called the
Query Layout in the user interface). For details, see
“TypedProperties” on page 27.

Parameter Comment

topology For details, see “Topology” on page 88.

comments For internal use only.

Parameter Comment

cmdbContext For details, see “CmdbContext” on page 84.

CIsTypedProperties A typed properties collection. For details, see
“TypedProperties” on page 27.

IDs Only real UCMDB IDs are valid in this collection.

Parameter Comment
36

Chapter 2 • The HP Universal CMDB Web Service API
Output

getCIsByType
The getCIsByType method returns the collection of configuration items of
the specified type and of all types that inherit from the specified type.

Input

Output

Parameter Comment

CIs Collection of CI elements.

chunkInfo For details, see: “ChunkInfo” on page 89,
“Processing Large Responses” on page 23.

Parameter Comment

cmdbContext For details, see “CmdbContext” on page 84.

type The class name. For details, see “Type Name” on
page 86.

properties The data to be returned on each configuration item.

For details, see “CustomProperties” on page 26.

Parameter Comment

CIs Collection of CI elements.

chunkInfo For details, see: “ChunkInfo” on page 89,
“Processing Large Responses” on page 23.
37

Chapter 2 • The HP Universal CMDB Web Service API
getFilteredCIsByType
The getFilteredCIsByType method retrieves the CIs of the specified type that
meet the conditions used by the method. A condition is comprised of:

➤ a name field containing the name of a property

➤ an operator field containing a comparison operator

➤ an optional value field containing a value or list of values

Together, they form a Boolean expression:

For example, if the condition name is root_actualdeletionperiod, the
condition value is 40 and the operator is Equal, the Boolean statement is:

The query returns all items whose root_actualdeletionperiod is 40, assuming
there are no other conditions.

If the conditionsLogicalOperator argument is AND, the query returns the
items that meet all conditions in the conditions collection. If
conditionsLogicalOperator is OR, the query returns the items that meet at
least one of the conditions in the conditions collection.

<item>.property.value [operator] <condition>.value

<item>.root_actualdeletionperiod.value = = 40
38

Chapter 2 • The HP Universal CMDB Web Service API
The following table lists the comparison operators:

Operator Type of Condition/Comments

ChangedDuring Date

This is a range check. The condition value is
specified in hours. If the value of the date property
lies in the range of the time the method is invoked
plus or minus the condition value, the condition is
true.

For example, if the condition value is 24, the
condition is true if the value of the date property is
between yesterday at this time and tomorrow at this
time.

Note: The name ChangedDuring is kept to preserve
backward compatibility. In previous versions, the
operator was used only with create and modify time
properties.

Equal String and numerical

EqualIgnoreCase String

Greater Numerical

GreaterEqual Numerical

In String, numerical, and list

The condition’s value is a list. The condition is true
if the value of the property is one of the values in
the list.

InList List

The condition’s value and the property’s value are
lists.

The condition is true if all the values in the
condition's list also appear in the item's property
list. There can be more property values than
specified in the condition without affecting the
truth of the condition.
39

Chapter 2 • The HP Universal CMDB Web Service API
IsNull String, numerical, and list

The item's property has no value. When operator
IsNull is used, the value of the condition is ignored,
and in some cases can be nil.

Less Numerical

LessEqual Numerical

Like String

The condition’s value is a substring of the value of
the property’s value. The condition’s value must be
bracketed with percentage signs (%). For example,
%Bi% matches Bismark and Bay of Biscay, but not
biscuit.

LikeIgnoreCase String

Use the LikeIgnoreCase operator as you use the Like
operator. The match, however is not case-sensitive.
Therefore, %Bi% matches biscuit.

NotEqual String and numerical

UnchangedDuring Date

This is a range check. The condition value is
specified in hours. If the value of the date property
is in the range of the time the method is invoked
plus or minus the condition value, the condition is
false. If it lies outside that range, the condition is
true.

For example, if the condition value is 24, the
condition is true if the value of the date property is
before yesterday at this time or after tomorrow at
this time.

Note: The name UnchangedDuring is kept to
preserve backward compatibility. In previous
versions, the operator was used only with create and
modify time properties.

Operator Type of Condition/Comments
40

Chapter 2 • The HP Universal CMDB Web Service API
Example of setting up a condition:

Example of querying for inherited properties.

The target CI is sample which has two attributes, name and size. sampleII
extends the CI with two attributes, level and grade. This example sets up a
query for the properties of sampleII that were inherited from sample by
specifying them by name.

Input

FloatCondition fc = new FloatCondition();
FloatProp fp = new FloatProp();
fp.setName("attr_name");
fp.setValue(11);
fc.setCondition(fp);
fc.setFloatOperator(FloatCondition.floatOperatorEnum.Equal);

GetFilteredCIsByType request = new GetFilteredCIsByType()
request.setCmdbContext(cmdbContext)
request.setType("sampleII")
CustomProperties customProperties = new CustomProperties();
PropertiesList propertiesList = new PropertiesList();
propertiesList.addPropertyName("name");
propertiesList.addPropertyName("size");
customProperties.setPropertiesList(propertiesList);
request.setProperties(customProperties)

Parameter Comment

cmdbContext For details, see “CmdbContext” on page 84.

type The class name. For details, see “Type Name” on
page 86. The type can be any of the types defined
using the CI Type Manager. For details, see “CI Type
Manager” in Model Management.

properties The data to be returned on each CI (Called the
Query Layout in the user interface).

For details, see “CustomProperties” on page 26.
41

Chapter 2 • The HP Universal CMDB Web Service API
Output

getQueryNameOfView
The getQueryNameOfView method retrieves the name of the TQL on which
the specified view is based.

Input

Output

conditions A collection of name-value pairs and the operators
that relate one to the other. For example,
host_hostname like QA.

conditionsLogicalOperator ➤ AND. All the conditions must be met.

➤ OR. At least one of the conditions must be met.

Parameter Comment

CIs Collection of CI elements.

chunkInfo For details, see “ChunkInfo” on page 89 and
“Processing Large Responses” on page 23.

Parameter Comment

cmdbContext For details, see “CmdbContext” on page 84.

viewName The name of a view, that is, a sub-set of the class
model in the UCMDB.

Parameter Comment

queryName The name of the TQL in the UCMDB on which the
view is based.

Parameter Comment
42

Chapter 2 • The HP Universal CMDB Web Service API
getTopologyQueryExistingResultByName

The getTopologyQueryExistingResultByName method retrieves the most
recent result of running the specifed TQL. The call does not run the TQL. If
there are no results from a previous run, nothing is returned.

Input

Output

getTopologyQueryResultCountByName

The getTopologyQueryResultCountByName method retrieves the number of
instances of each node that matches the specified query.

Input

Parameter Comment

cmdbContext For details, see “CmdbContext” on page 84.

queryName The name of a TQL.

queryTypedProperties A collection of sets of properties to retrieve to items
of a specific Configuration Item Type.

Parameter Comment

queryName The name of the TQL in the UCMDB on which the
view is based.

Parameter Comment

cmdbContext For details, see “CmdbContext” on page 84.

queryName The name of a TQL.

countInvisible If true, the output includes CIs defined as invisible
in the query.
43

Chapter 2 • The HP Universal CMDB Web Service API
Output

pullTopologyMapChunks
The pullTopologyMapChunks method retrieves one of the chunks that
contain the response to a method.

Each chunk contains a topologyMap element that is part of the response. The
first chunk is numbered 1, so the retrieval loop counter iterates from 1 to
<response object>.getChunkInfo().getNumberOfChunks().

For details, see “ChunkInfo” on page 89 and “Query the UCMDB” on
page 22.

The client application must be able to handle the partial maps. See the
following example of handling a CI collection and the example of merging
chunks to a map in “Query Example” on page 57.

Input

Output

Parameter Comment

queryName The name of the TQL in the UCMDB on which the
view is based.

Parameter Comment

cmdbContext For details, see “CmdbContext” on page 84.

ChunkRequest The number of the chunk to retrieve and the
ChunkInfo that is returned by the query method.

Parameter Comment

topologyMap For details, see “TopologyMap” on page 89.

comments For internal use only.
44

Chapter 2 • The HP Universal CMDB Web Service API
Example of Handling Chunks

releaseChunks
The releaseChunks method frees the memory of the chunks that contain the
data from the query.

Tip: The server discards the data after ten minutes. Calling this method to
discard the data as soon as it has been read conserves server resources.

GetCIsByType request =
new GetCIsByType(cmdbContext, typeName, customProperties);

GetCIsByTypeResponse response =
ucmdbService.getCIsByType(request);

ChunkRequest chunkRequest = new ChunkRequest();
chunkRequest.setChunkInfo(response.getChunkInfo());
for(int j=1 ; j < response.getChunkInfo().getNumberOfChunks() ; j++) {
chunkRequest.setChunkNumber(j);
PullTopologyMapChunks req = new PullTopologyMapChunks(cmdbContext,

chunkRequest);
PullTopologyMapChunksResponse res =

ucmdbService.pullTopologyMapChunks(req);
for(int m=0 ;

m < res.getTopologyMap().getCINodes().sizeCINodeList() ;
m++) {
CIs cis =

res.getTopologyMap().getCINodes().getCINode(m).getCIs();
for(int i=0 ; i < cis.sizeCIList() ; i++) {

// your code to process the CIs
}

}

}

45

Chapter 2 • The HP Universal CMDB Web Service API
Input

UCMDB Update Methods

This section provides information on the following methods:

➤ “addCIsAndRelations” on page 46

➤ “deleteCIsAndRelations” on page 48

➤ “updateCIsAndRelations” on page 48

addCIsAndRelations
The addCIsAndRelations method adds or updates CIs and relations.

If the CIs or relations do not exist in UCMDB, they are added and their
properties are set according to the contents of the CIsAndRelationsUpdates
argument.

If the CIs or relations do exist in UCMDB, they are updated with the new
data, if updateExisting is true.

If updateExisting is false, CIsAndRelationsUpdates cannot reference existing
configuration items or relations. Any attempt to reference existing items
when updateExisting is false results in an exception.

If updateExisting is true, the add or update operation is performed without
validating the CIs, regardless of the value of ignoreValidation.

If updateExisiting is false and ignoreValidation is true, the add operation is
performed without validating the CIs.

If updateExisiting is false and ignoreValidation is false, the CIs are validated
before the add operation.

Parameter Comment

cmdbContext For details, see “CmdbContext” on page 84.

chunksKey The identifier of the data on the server that was
chunked. The key is an element of ChunkInfo.
46

Chapter 2 • The HP Universal CMDB Web Service API
Relations are never validated.

CreatedIDsMap is a map or dictionary of type ClientIDToCmdbID that
connects the client’s temporary IDs with the corresponding real
UCMDB IDs.

Input

Output

Parameter Comment

cmdbContext For details, see “CmdbContext” on page 84.

updateExisting Set to true to update items that already exist in the
UCMDB. Set to false to throw an exception if any
item already exists.

CIsAndRelationsUpdates The items to update or create. For details, see
“CIsAndRelationsUpdates” on page 27.

ignoreValidation If is true, no check is performed before updating the
uCMDB.

Parameter Comment

CreatedIDsMap The map of client IDs to UCMDB IDs. For details,
see “addCIsAndRelations” on page 46.

comments For internal use only.
47

Chapter 2 • The HP Universal CMDB Web Service API
deleteCIsAndRelations
The deleteCIsAndRelations method removes the specified configuration
items and relations from the UCMDB.

When a CI is deleted and the CI is one end of one or more Relation items,
those Relation items are also deleted.

Input

updateCIsAndRelations
The updateCIsAndRelations method updates the specified CIs and relations.

Update uses the property values from the CIsAndRelationsUpdates argument.
If any of the CIs or relations do not exist in the UCMDB, an exception is
thrown.

CreatedIDsMap is a map or dictionary of type ClientIDToCmdbID that
connects the client’s temporary IDs with the corresponding real
UCMDB IDs.

Input

Parameter Comment

cmdbContext For details, see “CmdbContext” on page 84.

CIsAndRelationsUpdates The items to delete. For details, see
“CIsAndRelationsUpdates” on page 27

Parameter Comment

cmdbContext For details, see “CmdbContext” on page 84.

CIsAndRelationsUpdates The items to update. For details, see
“CIsAndRelationsUpdates” on page 27.

ignoreValidation If true, no check is performed before updating the
uCMDB.
48

Chapter 2 • The HP Universal CMDB Web Service API
Output

UCMDB Impact Analysis Methods

This section provides information on the following methods:

➤ “calculateImpact” on page 49

➤ “getImpactPath” on page 50

➤ “getImpactRulesByNamePrefix” on page 51

calculateImpact
The calculateImpact method calculates which CIs are affected by a given CI
according to the rules defined in the UCMDB.

This shows the effect of an event triggering of the rule. The identifier output
of calculateImpact is used as input for getImpactPath.

Input

Parameter Comment

CreatedIDsMap The map of client IDs to UCMDB IDs. For details,
see “addCIsAndRelations” on page 46.

Parameter Comment

cmdbContext For details, see “CmdbContext” on page 84.

impactCategory The type of event that would trigger the rule being
simulated.

IDs A collection of ID elements.

impactRulesNames A collection of ImpactRuleName elements.

severity The severity of the triggering event.
49

Chapter 2 • The HP Universal CMDB Web Service API
Output

getImpactPath
The getImpactPath method retrieves the topology graph of the path between
the affected CI and the CI that affects it.

The identifier output of calculateImpact is used as the identifier input
argument of getImpactPath.

Input

Output

An ImpactRelations element consists of an ID, type, end1ID, end2ID, a rule,
and an action.

Parameter Comment

impactTopology For details, see “Topology” on page 88.

identifier The key to the server response.

Parameter Comment

cmdbContext For details, see “CmdbContext” on page 84.

identifier The key to the server response that was returned by
calculateImpact.

relation A Relation based on one of the ShallowRelations
returned by calculateImpact in the impactTopology
element.

Parameter Comment

impactPathTopology A CIs collection and an ImpactRelations collection.

comments For internal use only.
50

Chapter 2 • The HP Universal CMDB Web Service API
getImpactRulesByNamePrefix
The getImpactRulesByNamePrefix method retrieves rules using a prefix filter.

This method applies to impact rules that are named with a prefix that
indicates the context to which they apply, for example, SAP_myrule,
ORA_myrule, and so on. This method filters all impact rule names for those
beginning with the prefix specified by the ruleNamePrefixFilter argument.

Input

Output

Use Cases

The following use cases assume two systems:

➤ HP Universal CMDB server

➤ A third-party system that contains a repository of configuration items

This section includes the following topics:

➤ “Populating the UCMDB” on page 52

➤ “Querying the UCMDB” on page 52

Parameter Comment

cmdbContext For details, see “CmdbContext” on page 84.

ruleNamePrefixFilter A string containing the first letters of the rule names
to match.

Parameter Comment

impactRules impactRules is composed of zero or more
impactRule. An impactRule, which specifies the
effect of a change, is composed of ruleName,
description, queryName, and isActive.
51

Chapter 2 • The HP Universal CMDB Web Service API
➤ “Querying the Class Model” on page 52

➤ “Analyzing Change Impact” on page 53

Populating the UCMDB
Use cases:

➤ A third-party asset management updates the UCMDB with information
available only in asset management.

➤ A number of third-party systems populate the UCMDB to create a central
CMDB that can track changes and perform impact analysis.

➤ A third-party system creates Configuration Items and Relations according to
third-party business logic to leverage the CMDB query capabilities.

Querying the UCMDB
Use cases:

➤ A third-party system gets the Configuration Items and Relations that
represent the SAP system by getting the results of the SAP TQL.

➤ A third-party system gets the list of Oracle servers that have been added or
changed in the last five hours.

➤ A third-party system gets the list of servers whose host name contains the
substring lab.

➤ A third-party system finds the elements related to a given CI by getting its
neighbors.

Querying the Class Model
Use cases:

➤ A third-party system enables users to specify the set of data to be retrieved
from the UCMDB. A user interface can be built over the class model to show
users the possible properties and prompt them for required data. The user
can then choose the information to be retrieved.

➤ A third-party system explores the class model when the user cannot access
the UCMDB user interface.
52

Chapter 2 • The HP Universal CMDB Web Service API
Analyzing Change Impact
Use case:

A third-party system outputs a list of the business services that could be
impacted by a change on a specified host.

Examples

This section includes the following topics:

➤ “The Example Base Class” on page 54

➤ “Query Example” on page 57

➤ “Update Example” on page 74

➤ “Class Model Example” on page 78

➤ “Impact Analysis Example” on page 80
53

Chapter 2 • The HP Universal CMDB Web Service API
The Example Base Class

package com.hp.ucmdb.demo;

import com.hp.ucmdb.generated.services.UcmdbService;
import com.hp.ucmdb.generated.services.UcmdbServiceStub;
import com.hp.ucmdb.generated.types.CmdbContext;
import org.apache.axis2.AxisFault;
import org.apache.axis2.transport.http.HTTPConstants;

import org.apache.axis2.transport.http.HttpTransportProperties;

import java.net.MalformedURLException;
import java.net.URL;

/**
* User: hbarkai
* Date: Jul 12, 2007
*/
abstract class Demo {

UcmdbService stub;
CmdbContext context;

public void initDemo() {
try {

setStub(createUcmdbService("admin", "admin"));
setContext();

} catch (Exception e) {
//handle exception

}
}

public UcmdbService getStub() {
return stub;

}

54

Chapter 2 • The HP Universal CMDB Web Service API
public void setStub(UcmdbService stub) {
this.stub = stub;

}

public CmdbContext getContext() {
return context;

}

public void setContext() {
CmdbContext context = new CmdbContext();
context.setCallerApplication("demo");
this.context = context;

}

//connection to service - for axis2/jibx client

private static final String PROTOCOL = "http";
private static final String HOST_NAME = "host_name";
private static final int PORT = 8080;
private static final String FILE = "/axis2/services/UcmdbService";

protected UcmdbService createUcmdbService
(String username, String password) throws Exception{

URL url;
UcmdbServiceStub serviceStub;

try {
 url = new URL

(Demo.PROTOCOL, Demo.HOST_NAME,
Demo.PORT, Demo.FILE);

 serviceStub = new UcmdbServiceStub(url.toString());
 HttpTransportProperties.Authenticator auth =

new HttpTransportProperties.Authenticator();
 auth.setUsername(username);
 auth.setPassword(password);

serviceStub._getServiceClient().getOptions().setProperty
(HTTPConstants.AUTHENTICATE,auth);
55

Chapter 2 • The HP Universal CMDB Web Service API
} catch (AxisFault axisFault) {
throw new Exception
("Failed to create SOAP adapter for "

+ Demo.HOST_NAME , axisFault);

} catch (MalformedURLException e) {

throw new Exception
("Failed to create SOAP adapter for "

+ Demo.HOST_NAME, e);
}
return serviceStub;

 }
}

56

Chapter 2 • The HP Universal CMDB Web Service API
Query Example

package com.hp.ucmdb.demo;

import com.hp.ucmdb.generated.params.query.*;
import com.hp.ucmdb.generated.services.UcmdbFaultException;
import com.hp.ucmdb.generated.services.UcmdbService;
import com.hp.ucmdb.generated.types.*;
import com.hp.ucmdb.generated.types.props.*;

import java.rmi.RemoteException;

public class QueryDemo extends Demo{

UcmdbService stub;
CmdbContext context;

public void getCIsByTypeDemo() {
GetCIsByType request = new GetCIsByType();
//set cmdbcontext
CmdbContext cmdbContext = getContext();
request.setCmdbContext(cmdbContext);
//set CIs type
request.setType("anyType");
//set CIs propeties to be retrieved
CustomProperties customProperties = new CustomProperties();
PredefinedProperties predefinedProperties =

new PredefinedProperties();
SimplePredefinedProperty simplePredefinedProperty =

new SimplePredefinedProperty();
simplePredefinedProperty.setName

(SimplePredefinedProperty.nameEnum.DERIVED);
SimplePredefinedPropertyCollection

simplePredefinedPropertyCollection =
new SimplePredefinedPropertyCollection();
57

Chapter 2 • The HP Universal CMDB Web Service API
simplePredefinedPropertyCollection.addSimplePredefinedProperty
(simplePredefinedProperty);

predefinedProperties.setSimplePredefinedProperties
(simplePredefinedPropertyCollection);

customProperties.setPredefinedProperties(predefinedProperties);
request.setProperties(customProperties);
try {

GetCIsByTypeResponse response =
getStub().getCIsByType(request);

TopologyMap map =
getTopologyMapResultFromCIs

(response.getCIs(), response.getChunkInfo());
} catch (RemoteException e) {

//handle exception
} catch (UcmdbFaultException e) {

//handle exception
}

}

public void getCIsByIdDemo() {
GetCIsById request = new GetCIsById();
CmdbContext cmdbContext = getContext();
//set cmdbcontext
request.setCmdbContext(cmdbContext);
//set ids
ID id1 = new ID();
id1.setBase("cmdbobjectidCIT1");
ID id2 = new ID();
id2.setBase("cmdbobjectidCIT2");
IDs ids = new IDs();
ids.addID(id1);
ids.addID(id2);
request.setIDs(ids);
//set CIs properties to be retrieved
TypedPropertiesCollection properties =

new TypedPropertiesCollection();

TypedProperties typedProperties1 =
new TypedProperties();

typedProperties1.setType("CIT1");
58

Chapter 2 • The HP Universal CMDB Web Service API
CustomTypedProperties customProperties1 =
new CustomTypedProperties();

PredefinedTypedProperties predefinedProperties1 =
new PredefinedTypedProperties();

SimpleTypedPredefinedProperty simplePredefinedProperty1 =
new SimpleTypedPredefinedProperty();

simplePredefinedProperty1.setName
(SimpleTypedPredefinedProperty.nameEnum.CONCRETE);

SimpleTypedPredefinedPropertyCollection
simplePredefinedPropertyCollection1 =

new SimpleTypedPredefinedPropertyCollection();
simplePredefinedPropertyCollection1

.addSimpleTypedPredefinedProperty
(simplePredefinedProperty1);

predefinedProperties1.
setSimpleTypedPredefinedProperties

(simplePredefinedPropertyCollection1);
customProperties1.

setPredefinedTypedProperties
(predefinedProperties1);

typedProperties1.setProperties(customProperties1);
properties.addTypedProperties(typedProperties1);

TypedProperties typedProperties2 =
new TypedProperties();

typedProperties2.setType("CIT2");
CustomTypedProperties customProperties2 =

new CustomTypedProperties();
PredefinedTypedProperties predefinedProperties2 =

new PredefinedTypedProperties();
SimpleTypedPredefinedProperty simplePredefinedProperty2 =

new SimpleTypedPredefinedProperty();
simplePredefinedProperty2.setName

(SimpleTypedPredefinedProperty.nameEnum.NAMING);
SimpleTypedPredefinedPropertyCollection

simplePredefinedPropertyCollection2 =
new SimpleTypedPredefinedPropertyCollection();
59

Chapter 2 • The HP Universal CMDB Web Service API
simplePredefinedPropertyCollection2.
addSimpleTypedPredefinedProperty

(simplePredefinedProperty2);

predefinedProperties2.setSimpleTypedPredefinedProperties
(simplePredefinedPropertyCollection2);

customProperties2.setPredefinedTypedProperties
(predefinedProperties2);

typedProperties2.setProperties(customProperties2);
properties.addTypedProperties(typedProperties2);

request.setCIsTypedProperties(properties);
try {

GetCIsByIdResponse response =
getStub().getCIsById(request);

CIs cis = response.getCIs();
} catch (RemoteException e) {

//handle exception
} catch (UcmdbFaultException e) {

//handle exception
}

}

public void getFilteredCIsByTypeDemo() {
GetFilteredCIsByType request = new GetFilteredCIsByType();
CmdbContext cmdbContext = getContext();
//set cmdbcontext
request.setCmdbContext(cmdbContext);
//set CIs type
request.setType("anyType");
//sets Filter conditions
Conditions conditions = new Conditions();
IntConditions intConditions = new IntConditions();
IntCondition intCondition = new IntCondition();
IntProp intProp = new IntProp();
intProp.setName("int_attr1");
60

Chapter 2 • The HP Universal CMDB Web Service API
intProp.setValue(100);
intCondition.setCondition(intProp);
intCondition.setIntOperator

(IntCondition.intOperatorEnum.Greater);
intConditions.addIntCondition(intCondition);

conditions.setIntConditions(intConditions);
request.setConditions(conditions);
//set logical operator for conditions
request.setConditionsLogicalOperator

(GetFilteredCIsByType.conditionsLogicalOperatorEnum.AND);
//set CIs properties to be retrieved
CustomProperties customProperties =

new CustomProperties();
PredefinedProperties predefinedProperties =

new PredefinedProperties();
SimplePredefinedProperty simplePredefinedProperty =

new SimplePredefinedProperty();
simplePredefinedProperty.setName

(SimplePredefinedProperty.nameEnum.NAMING);

SimplePredefinedPropertyCollection
simplePredefinedPropertyCollection =

new SimplePredefinedPropertyCollection();
simplePredefinedPropertyCollection.

addSimplePredefinedProperty
(simplePredefinedProperty);

predefinedProperties.setSimplePredefinedProperties
(simplePredefinedPropertyCollection);

customProperties.setPredefinedProperties
(predefinedProperties);

request.setProperties(customProperties);
try {

GetFilteredCIsByTypeResponse response =
getStub().getFilteredCIsByType(request);

TopologyMap map =
getTopologyMapResultFromCIs

(response.getCIs(), response.getChunkInfo());
61

Chapter 2 • The HP Universal CMDB Web Service API
} catch (RemoteException e) {
//handle exception

} catch (UcmdbFaultException e) {
//handle exception

}

}

public void executeTopologyQueryByNameDemo() {
ExecuteTopologyQueryByName request = new

ExecuteTopologyQueryByName();
CmdbContext cmdbContext = getContext();
//set cmdbcontext
request.setCmdbContext(cmdbContext);
//set query name
request.setQueryName("queryName");

try {
ExecuteTopologyQueryByNameResponse response =

getStub().executeTopologyQueryByName(request);
TopologyMap map =

getTopologyMapResult
(response.getTopologyMap(), response.getChunkInfo());

} catch (RemoteException e) {
//handle exception

} catch (UcmdbFaultException e) {
//handle exception

}

}

62

Chapter 2 • The HP Universal CMDB Web Service API
// assume the follow query was defined at UCMDB
// Query Name: exampleQuery
// Query sketch:
// Host
// / \
// ip Disk
// Query Parameters:
// Host-
// host_os (like)
// Disk-
// disk_failures (equal)

public void executeTopologyQueryByNameWithParametersDemo() {
ExecuteTopologyQueryByNameWithParameters request =

new ExecuteTopologyQueryByNameWithParameters();
CmdbContext cmdbContext = getContext();
//set cmdbcontext
request.setCmdbContext(cmdbContext);
//set query name
request.setQueryName("queryName");
//set parameters
ParameterizedNode hostParametrizedNode =

new ParameterizedNode();
hostParametrizedNode.setNodeLabel("Host");
CIProperties parameters = new CIProperties();
StrProps strProps = new StrProps();
StrProp strProp = new StrProp();
strProp.setName("host_os");
strProp.setValue("%2000%");
strProps.addStrProp(strProp);
parameters.setStrProps(strProps);
hostParametrizedNode.setParameters(parameters);
request.addParameterizedNodes(hostParametrizedNode);
ParameterizedNode diskParametrizedNode =

new ParameterizedNode();

diskParametrizedNode.setNodeLabel("Disk");
CIProperties parameters1 = new CIProperties();
IntProps intProps = new IntProps();
63

Chapter 2 • The HP Universal CMDB Web Service API
IntProp intProp = new IntProp();
intProp.setName("disk_failures");
intProp.setValue(30);
intProps.addIntProp(intProp);
parameters1.setIntProps(intProps);
diskParametrizedNode.setParameters(parameters1);

request.addParameterizedNodes(diskParametrizedNode);
try {

ExecuteTopologyQueryByNameWithParametersResponse
response =
getStub().executeTopologyQueryByNameWithParameters

(request);
TopologyMap map =

getTopologyMapResult
(response.getTopologyMap(), response.getChunkInfo());

} catch (RemoteException e) {
//handle exception

} catch (UcmdbFaultException e) {
//handle exception

}

}

/// assume the follow query was defined at UCMDB
// Query Name: exampleQuery
// Query sketch:
// Host
// / \
// ip Disk
// Query Parameters:
// Host-
// host_os (like)
// Disk-
// disk_failures (equal)
64

Chapter 2 • The HP Universal CMDB Web Service API
public void executeTopologyQueryWithParametersDemo() {
ExecuteTopologyQueryWithParameters request =

new ExecuteTopologyQueryWithParameters();
CmdbContext cmdbContext = getContext();
//set cmdbcontext
request.setCmdbContext(cmdbContext);
//set query definition
String queryXml = "<xml that represents the query above>";
request.setQueryXml(queryXml);
//set parameters
ParameterizedNode hostParametrizedNode =

new ParameterizedNode();

hostParametrizedNode.setNodeLabel("Host");
CIProperties parameters = new CIProperties();
StrProps strProps = new StrProps();
StrProp strProp = new StrProp();
strProp.setName("host_os");
strProp.setValue("%2000%");
strProps.addStrProp(strProp);
parameters.setStrProps(strProps);
hostParametrizedNode.setParameters(parameters);
request.addParameterizedNodes(hostParametrizedNode);
ParameterizedNode diskParametrizedNode =

new ParameterizedNode();
diskParametrizedNode.setNodeLabel("Disk");
CIProperties parameters1 = new CIProperties();
IntProps intProps = new IntProps();
IntProp intProp = new IntProp();
intProp.setName("disk_failures");
intProp.setValue(30);
intProps.addIntProp(intProp);
parameters1.setIntProps(intProps);
diskParametrizedNode.setParameters(parameters1);
request.addParameterizedNodes(diskParametrizedNode);
65

Chapter 2 • The HP Universal CMDB Web Service API
try {
ExecuteTopologyQueryWithParametersResponse
response = getStub().executeTopologyQueryWithParameters

(request);
TopologyMap map =

getTopologyMapResult
(response.getTopologyMap(), response.getChunkInfo());

 } catch (RemoteException e) {
 //handle exception

} catch (UcmdbFaultException e) {
//handle exception

}

}

public void getCINeighboursDemo() {
GetCINeighbours request = new GetCINeighbours();
//set cmdbcontext
CmdbContext cmdbContext = getContext();
request.setCmdbContext(cmdbContext);
// set CI id
ID id = new ID();
id.setBase("cmdbobjectidCIT1");
request.setID(id);
//set neighbour type
request.setNeighbourType("neighbourType");
//set Neighbours CIs propeties to be retrieved
TypedPropertiesCollection properties =

new TypedPropertiesCollection();
TypedProperties typedProperties1 = new TypedProperties();
typedProperties1.setType("neighbourType");
CustomTypedProperties customProperties1 =

new CustomTypedProperties();
PredefinedTypedProperties predefinedProperties1 =

new PredefinedTypedProperties();
66

Chapter 2 • The HP Universal CMDB Web Service API
QualifierProperties qualifierProperties =
new QualifierProperties();

qualifierProperties.addQualifierName("ID_ATTRIBUTE");
predefinedProperties1.setQualifierProperties(qualifierProperties);
customProperties1.setPredefinedTypedProperties

(predefinedProperties1);
typedProperties1.setProperties(customProperties1);
properties.addTypedProperties(typedProperties1);
request.setCIProperties(properties);

TypedPropertiesCollection relationsProperties =
new TypedPropertiesCollection();

TypedProperties typedProperties2 = new TypedProperties();
typedProperties2.setType("relationType");
CustomTypedProperties customProperties2 =

new CustomTypedProperties();

PredefinedTypedProperties predefinedProperties2 =
new PredefinedTypedProperties();

SimpleTypedPredefinedProperty simplePredefinedProperty2 =
new SimpleTypedPredefinedProperty();

simplePredefinedProperty2.setName

(SimpleTypedPredefinedProperty.nameEnum.CONCRETE);
SimpleTypedPredefinedPropertyCollection

simplePredefinedPropertyCollection2 =
new SimpleTypedPredefinedPropertyCollection();

simplePredefinedPropertyCollection2.
addSimpleTypedPredefinedProperty

(simplePredefinedProperty2);
predefinedProperties2.

setSimpleTypedPredefinedProperties
(simplePredefinedPropertyCollection2);

customProperties2.setPredefinedTypedProperties
(predefinedProperties2);

typedProperties2.setProperties(customProperties2);
relationsProperties.addTypedProperties(typedProperties2);
request.setRelationProperties(relationsProperties);
67

Chapter 2 • The HP Universal CMDB Web Service API
try {
GetCINeighboursResponse response =

getStub().getCINeighbours(request);
Topology topology = response.getTopology();

 } catch (RemoteException e) {
//handle exception

} catch (UcmdbFaultException e) {
 //handle exception

}

}

//get Topology Map for chunked/non-chunked result

private TopologyMap getTopologyMapResult(TopologyMap topologyMap,
ChunkInfo chunkInfo) {

if(chunkInfo.getNumberOfChunks() == 0) {
return topologyMap;

} else {

topologyMap = new TopologyMap();
for(int i=1 ; i <= chunkInfo.getNumberOfChunks() ; i++) {

ChunkRequest chunkRequest = new ChunkRequest();
chunkRequest.setChunkInfo(chunkInfo);
chunkRequest.setChunkNumber(i);
PullTopologyMapChunks req =

new PullTopologyMapChunks();
req.setChunkRequest(chunkRequest);
req.setCmdbContext(getContext());
PullTopologyMapChunksResponse res = null;
68

Chapter 2 • The HP Universal CMDB Web Service API
try {
res = getStub().pullTopologyMapChunks(req);
TopologyMap map = res.getTopologyMap();
topologyMap = mergeMaps(topologyMap, map);

} catch (RemoteException e) {
//handle exception

} catch (UcmdbFaultException e) {
//handle exception

}
}

}
return topologyMap;

}

private TopologyMap getTopologyMapResultFromCIs(CIs cis, ChunkInfo
chunkInfo) {

TopologyMap topologyMap = new TopologyMap();
if(chunkInfo.getNumberOfChunks() == 0) {

CINode ciNode = new CINode();
ciNode.setLabel("");
ciNode.setCIs(cis);
CINodes ciNodes = new CINodes();
ciNodes.addCINode(ciNode);
topologyMap.setCINodes(ciNodes);

} else {

for(int i=1 ; i <= chunkInfo.getNumberOfChunks() ; i++) {
ChunkRequest chunkRequest =

new ChunkRequest();
chunkRequest.setChunkInfo(chunkInfo);
chunkRequest.setChunkNumber(i);
PullTopologyMapChunks req =

new PullTopologyMapChunks();
req.setChunkRequest(chunkRequest);
req.setCmdbContext(getContext());
PullTopologyMapChunksResponse res = null;
69

Chapter 2 • The HP Universal CMDB Web Service API
try {
res = getStub().pullTopologyMapChunks(req);

} catch (RemoteException e) {
//handle exception

} catch (UcmdbFaultException e) {
//handle exception

}
TopologyMap map = res.getTopologyMap();
topologyMap = mergeMaps(topologyMap, map);

}

//release chunks
ReleaseChunks req = new ReleaseChunks();
req.setChunksKey(chunkInfo.getChunksKey());
req.setCmdbContext(getContext());

try {
getStub().releaseChunks(req);

} catch (RemoteException e) {
//handle exception

} catch (UcmdbFaultException e) {
//handle exception

}
}
return topologyMap;

}

//===
/* WARNING merge will be correct only if a each node is given
a unique name. This applies to both CI and Relation nodes .*/

//===
private TopologyMap mergeMaps(TopologyMap topologyMap, TopologyMap

newMap) {
for(int i=0 ; i < newMap.getCINodes().sizeCINodeList() ; i++) {

CINode ciNode = newMap.getCINodes().getCINode(i);
boolean alreadyExist = false;
if(topologyMap.getCINodes() == null) {

topologyMap.setCINodes(new CINodes());
}

70

Chapter 2 • The HP Universal CMDB Web Service API
for(int j=0 ; j < topologyMap.getCINodes().sizeCINodeList() ; j++) {
CINode ciNode2 = topologyMap.getCINodes().getCINode(j);
if(ciNode2.getLabel().equals(ciNode.getLabel())){

CIs cisTOAdd = ciNode.getCIs();
CIs cis =

mergeCIsGroups
(topologyMap.getCINodes().getCINode(j).getCIs(),

cisTOAdd);
topologyMap.getCINodes().getCINode(j).setCIs(cis);
alreadyExist = true;

}
}
if(!alreadyExist) {

topologyMap.getCINodes().addCINode(ciNode);
}

}

for(int i=0 ; i < newMap.getRelationNodes().sizeRelationNodeList() ; i++) {
RelationNode relationNode =

newMap.getRelationNodes().getRelationNode(i);
boolean alreadyExist = false;
if(topologyMap.getRelationNodes() == null) {

topologyMap.setRelationNodes(new RelationNodes());
}

71

Chapter 2 • The HP Universal CMDB Web Service API
for(int j=0 ;
j < topologyMap.getRelationNodes().sizeRelationNodeList() ;
j++) {

RelationNode relationNode2 =
topologyMap.getRelationNodes().getRelationNode(j);

if(relationNode2.getLabel().equals(relationNode.getLabel())){
Relations relationsTOAdd = relationNode.getRelations();
Relations relations =

mergeRelationsGroups
(topologyMap.getRelationNodes().

getRelationNode(j).getRelations(),
relationsTOAdd);

topologyMap.getRelationNodes().
getRelationNode(j).setRelations(relations);

alreadyExist = true;
}

}

if(!alreadyExist) {
topologyMap.getRelationNodes().addRelationNode(relationNode);

}
}

return topologyMap;

}

private Relations mergeRelationsGroups(Relations relations1, Relations
relations2) {

for(int i=0 ; i < relations2.sizeRelationList() ; i++) {
relations1.addRelation(relations2.getRelation(i));

}
return relations2;

}

72

Chapter 2 • The HP Universal CMDB Web Service API
private CIs mergeCIsGroups(CIs cis1, CIs cis2) {
for(int i=0 ; i < cis2.sizeCIList() ; i++) {

cis1.addCI(cis2.getCI(i));
}
return cis1;

}

}

73

Chapter 2 • The HP Universal CMDB Web Service API
Update Example

package com.hp.ucmdb.demo;

import com.hp.ucmdb.generated.params.update.AddCIsAndRelations;
import com.hp.ucmdb.generated.params.update.AddCIsAndRelationsResponse;
import com.hp.ucmdb.generated.params.update.UpdateCIsAndRelations;
import com.hp.ucmdb.generated.params.update.DeleteCIsAndRelations;
import com.hp.ucmdb.generated.services.UcmdbFaultException;
import com.hp.ucmdb.generated.types.*;
import com.hp.ucmdb.generated.types.update.CIsAndRelationsUpdates;
import com.hp.ucmdb.generated.types.update.ClientIDToCmdbID;

import java.rmi.RemoteException;

public class UpdateDemo extends Demo{

public void getAddCIsAndRelationsDemo() {
AddCIsAndRelations request = new AddCIsAndRelations();
request.setCmdbContext(getContext());
request.setUpdateExisting(true);
CIsAndRelationsUpdates updates = new CIsAndRelationsUpdates();
CIs cis = new CIs();
CI ci = new CI();
ID id = new ID();
id.setBase("temp1");
id.setTemp(true);

ci.setID(id);
ci.setType("host");

CIProperties props = new CIProperties();
StrProps strProps = new StrProps();
StrProp strProp = new StrProp();
strProp.setName("host_key");
String value = "blabla";
strProp.setValue(value);
74

Chapter 2 • The HP Universal CMDB Web Service API
strProps.addStrProp(strProp);
props.setStrProps(strProps);
ci.setProps(props);
cis.addCI(ci);
updates.setCIsForUpdate(cis);
request.setCIsAndRelationsUpdates(updates);

try {
AddCIsAndRelationsResponse response =

getStub().addCIsAndRelations(request);
for(int i = 0 ; i < response.sizeCreatedIDsMapList() ; i++) {

ClientIDToCmdbID idsMap = response.getCreatedIDsMap(i);
//do something

}
} catch (RemoteException e) {

//handle exception
} catch (UcmdbFaultException e) {

//handle exception
}

}

public void getUpdateCIsAndRelationsDemo() {
UpdateCIsAndRelations request = new UpdateCIsAndRelations();
request.setCmdbContext(getContext());

CIsAndRelationsUpdates updates =
new CIsAndRelationsUpdates();

CIs cis = new CIs();
CI ci = new CI();
ID id = new ID();

id.setBase("temp1");
id.setTemp(true);
ci.setID(id);
ci.setType("host");
CIProperties props = new CIProperties();
StrProps strProps = new StrProps();
75

Chapter 2 • The HP Universal CMDB Web Service API
StrProp hostKeyProp = new StrProp();
hostKeyProp.setName("host_key");
String hostKeyValue = "blabla";
hostKeyProp.setValue(hostKeyValue);
strProps.addStrProp(hostKeyProp);

StrProp hostOSProp = new StrProp();
hostOSProp.setName("host_os");
String hostOSValue = "winXP";
hostOSProp.setValue(hostOSValue);
strProps.addStrProp(hostOSProp);

StrProp hostDNSProp = new StrProp();
hostDNSProp.setName("host_dnsname");
String hostDNSValue = "dnsname";
hostDNSProp.setValue(hostDNSValue);
strProps.addStrProp(hostDNSProp);

props.setStrProps(strProps);
ci.setProps(props);
cis.addCI(ci);
updates.setCIsForUpdate(cis);
request.setCIsAndRelationsUpdates(updates);

try {
getStub().updateCIsAndRelations(request);

} catch (RemoteException e) {
//handle exception

} catch (UcmdbFaultException e) {
//handle exception

}

}

76

Chapter 2 • The HP Universal CMDB Web Service API
public void getDeleteCIsAndRelationsDemo() {
DeleteCIsAndRelations request =

new DeleteCIsAndRelations();
request.setCmdbContext(getContext());
CIsAndRelationsUpdates updates =

new CIsAndRelationsUpdates();
CIs cis = new CIs();
CI ci = new CI();
ID id = new ID();
id.setBase("stam");
id.setTemp(true);
ci.setID(id);
ci.setType("host");

CIProperties props = new CIProperties();
StrProps strProps = new StrProps();
StrProp strProp1 = new StrProp();
strProp1.setName("host_key");
String value1 = "for_delete";
strProp1.setValue(value1);
strProps.addStrProp(strProp1);
props.setStrProps(strProps);
ci.setProps(props);
cis.addCI(ci);
updates.setCIsForUpdate(cis);
request.setCIsAndRelationsUpdates(updates);

try {
getStub().deleteCIsAndRelations(request);

} catch (RemoteException e) {
//handle exception

} catch (UcmdbFaultException e) {
//handle exception

}

}

}

77

Chapter 2 • The HP Universal CMDB Web Service API
Class Model Example

package com.hp.ucmdb.demo;

import com.hp.ucmdb.generated.params.classmodel.*;
import com.hp.ucmdb.generated.services.UcmdbFaultException;
import com.hp.ucmdb.generated.types.classmodel.UcmdbClassModelHierarchy;
import com.hp.ucmdb.generated.types.classmodel.UcmdbClass;

import java.rmi.RemoteException;

public class ClassmodelDemo extends Demo{

public void getClassAncestorsDemo() {
GetClassAncestors request =

new GetClassAncestors();
request.setCmdbContext(getContext());
request.setClassName("className");

try {
GetClassAncestorsResponse response =

getStub().getClassAncestors(request);
UcmdbClassModelHierarchy hierarchy =

response.getClassHierarchy();
} catch (RemoteException e) {

//handle exception
} catch (UcmdbFaultException e) {

//handle exception
}

}

78

Chapter 2 • The HP Universal CMDB Web Service API
public void getAllClassesHierarchyDemo() {
GetAllClassesHierarchy request =

new GetAllClassesHierarchy();
request.setCmdbContext(getContext());
try {

GetAllClassesHierarchyResponse response =
getStub().getAllClassesHierarchy(request);

UcmdbClassModelHierarchy hierarchy =
response.getClassesHierarchy();

} catch (RemoteException e) {
//handle exception

} catch (UcmdbFaultException e) {
//handle exception

}

}

public void getCmdbClassDefinitionDemo() {
GetCmdbClassDefinition request =

new GetCmdbClassDefinition();
request.setCmdbContext(getContext());
request.setClassName("className");

try {
GetCmdbClassDefinitionResponse response =
getStub().getCmdbClassDefinition(request);
UcmdbClass ucmdbClass = response.getUcmdbClass();

} catch (RemoteException e) {
//handle exception

} catch (UcmdbFaultException e) {
//handle exception

}

}

}

79

Chapter 2 • The HP Universal CMDB Web Service API
Impact Analysis Example

package com.hp.ucmdb.demo;

import com.hp.ucmdb.generated.params.impact.*;
import com.hp.ucmdb.generated.services.UcmdbFaultException;
import com.hp.ucmdb.generated.types.*;
import com.hp.ucmdb.generated.types.impact.*;

import java.rmi.RemoteException;

/**
 * User: hbarkai
 * Date: Jul 17, 2007
 */
public class ImpactDemo extends Demo{

//Impact Rule Name : impactExample
//Impact Query:
// Network
// |
// Host
// |
// IP
//Impact Action: network affect on ip ;severity 100% ; category: change
//
public void calculateImpactAndGetImpactPathDemo() {
CalculateImpact request = new CalculateImpact();
request.setCmdbContext(getContext());
//set root cause ids
IDs ids = new IDs();
ID id = new ID();
id.setBase("rootCauseCmdbID");
ids.addID(id);
80

Chapter 2 • The HP Universal CMDB Web Service API
request.setIDs(ids);
//set impact category
request.setImpactCategory("change");
//set rule Names
ImpactRuleNames impactRuleNames = new ImpactRuleNames();
ImpactRuleName impactRuleName = new ImpactRuleName();
impactRuleName.setBase("impactExample");
impactRuleNames.addImpactRuleName(impactRuleName);
request.setImpactRuleNames(impactRuleNames);
//set severity
request.setSeverity(100);
CalculateImpactResponse response =

new CalculateImpactResponse();

request.setIDs(ids);
//set impact category
request.setImpactCategory("change");
//set rule Names
ImpactRuleNames impactRuleNames = new ImpactRuleNames();
ImpactRuleName impactRuleName = new ImpactRuleName();
impactRuleName.setBase("impactExample");
impactRuleNames.addImpactRuleName(impactRuleName);
request.setImpactRuleNames(impactRuleNames);
//set severity
request.setSeverity(100);
CalculateImpactResponse response =

new CalculateImpactResponse();

try {
response = getStub().calculateImpact(request);

} catch (RemoteException e) {
//handle exception
81

Chapter 2 • The HP Universal CMDB Web Service API
} catch (UcmdbFaultException e) {
//handle exception

}
Identifier identifier= response.getIdentifier();
Topology topology = response.getImpactTopology();
Relation relation = topology.getRelations().getRelation(0);
GetImpactPath request2 = new GetImpactPath();
//set cmdb context
request2.setCmdbContext(getContext());
//set impact identifier
request2.setIdentifier(identifier);
//set shallowRelation
ShallowRelation shallowRelation = new ShallowRelation();
shallowRelation.setID(relation.getID());
shallowRelation.setEnd1ID(relation.getEnd1ID());
shallowRelation.setEnd2ID(relation.getEnd2ID());
shallowRelation.setType(relation.getType());
request2.setRelation(shallowRelation);

try {
GetImpactPathResponse response2 =

getStub().getImpactPath(request2);
ImpactTopology impactTopology =

response2.getImpactPathTopology();
} catch (RemoteException e) {

//To change body of catch statement
// use File | Settings | File Templates.
e.printStackTrace();

} catch (UcmdbFaultException e) {
//To change body of catch statement
// use File | Settings | File Templates.
e.printStackTrace();

}

}

82

Chapter 2 • The HP Universal CMDB Web Service API
public void getImpactRulesByGroupName() {
GetImpactRulesByGroupName request =

new GetImpactRulesByGroupName();
//set cmdb context
request.setCmdbContext(getContext());
//set group names list
request.addRuleGroupNameFilter("groupName1");
request.addRuleGroupNameFilter("groupName2");

try {
GetImpactRulesByGroupNameResponse response =

getStub().getImpactRulesByGroupName(request);
ImpactRules impactRules = response.getImpactRules();

} catch (RemoteException e) {
//handle exception

} catch (UcmdbFaultException e) {
//handle exception

}

}

public void getImpactRulesByNamePrefix() {
GetImpactRulesByNamePrefix request =

new GetImpactRulesByNamePrefix();
//set cmdb context
request.setCmdbContext(getContext());
//set prefixes list
request.addRuleNamePrefixFilter("prefix1");
83

Chapter 2 • The HP Universal CMDB Web Service API
UCMDB General Parameters

This section describes the most common parameters of the service’s
methods. For details, refer to the schema documentation.

This section includes the following topics:

➤ “CmdbContext” on page 84

➤ “ID” on page 85

➤ “Key Attributes” on page 85

➤ “ID Types” on page 85

➤ “CIProperties” on page 86

➤ “Type Name” on page 86

➤ “Configuration Item (CI)” on page 87

➤ “Relation” on page 87

CmdbContext
All UCMDB Web Service API service invocations require a CmdbContext
argument. CmdbContext is a callerApplication string that identifies the
application that invokes the service. CmdbContext is used for logging and
troubleshooting.

try {
GetImpactRulesByNamePrefixResponse response =

getStub().getImpactRulesByNamePrefix(request);
ImpactRules impactRules = response.getImpactRules();

} catch (RemoteException e) {
//handle exception

} catch (UcmdbFaultException e) {
//handle exception

}
}

}

84

Chapter 2 • The HP Universal CMDB Web Service API
ID
Every CI and Relation has an ID field. It consists of a case-sensitive ID string
and an optional temp flag, indicating whether the ID is temporary.

Key Attributes
For identifying a CI or Relation in some contexts, key attributes can be used
in place of a UCMDB ID. Key attributes are those attributes with the
ID_ATTRIBUTE set in the class definition.

In the user interface, the key attributes have a key icon next to them in the
list of Configuration Item Type attributes in the user interface. For details,
see “Add/Edit Attribute Dialog Box” in Model Management. For information
about identifying the key attributes from within the API client application,
see “getCmdbClassDefinition” on page 30.

ID Types
An ID element can contain a real ID, a temporary ID, or can be empty.

A real ID is a string assigned by the UCMDB that identifies an entity in the
database. A temporary ID can be any string that is unique in the current
request. An empty ID means no value is assigned.

A temporary ID can be assigned by the client and often represents the ID of
the CI as stored by the client. It does not necessarily represent an entity
already created in the UCMDB. When a temporary ID is passed by the client,
if the UCMDB can identify an existing data configuration item using the CI
key properties, that CI is used as appropriate for the context as though it
had been identified with a real ID.

The real ID of a CI is calculated by the UCMDB based on a combination of
the CI’s type and key properties. The real ID of a Relation is based on the
relations’s type, the IDs of the two CIs that are part of the relationship, and
the relation’s key properties. Therefore, key attribute values must be set
during CI or Relation creation. If the key properties values are not specified
when creating a CI, there are two possibilities:

➤ If the CIT includes a RANDOM_GENERATED_ID qualifier, the server
generates a unique ID.
85

Chapter 2 • The HP Universal CMDB Web Service API
➤ If the CIT does not have a RANDOM_GENERATED_ID qualifier, an
exception is thrown.

For details, see “CI Type Manager” in Model Management.

CIProperties
A CIProperties element is composed of collections, each containing a
sequence of name-value elements that specify properties of the type
indicated by the collection name. None of the collections are required, so
the CIProperties element can contain any combination of collections.

CIProperties are used by CI and Relation elements. For details, see
“Configuration Item (CI)” on page 87 and “Relation” on page 87.

The properties collections are:

➤ dateProps - collection of DateProp elements

➤ doubleProps - collection of DoubleProp elements

➤ floatProps - collection of FloatProp elements

➤ intListProps - collection of intListProp elements

➤ intProps - collection of IntProp elements

➤ strProps - collection of StrProp elements

➤ strListProps - collection of StrListProp elements

➤ longProps - collection of LongProp elements

➤ bytesProps - collection of BytesProp elements

➤ xmlProps - collection of XmlProp elements

Type Name
The type name is the class name of a configuration item type or relation
type. The type name is used in code to refer to the class. It should not be
confused with the display name, which is seen on the user interface where
the class is mentioned, but which is meaningless in code.
86

Chapter 2 • The HP Universal CMDB Web Service API
Configuration Item (CI)
A CI element is composed of an ID, a type, and a props collection.

When using UCMDB Update Methods to update a CI, the ID element can
contain a real UCMDB ID or a client-assigned temporary ID. If a temporary
ID is used, set the temp flag to true. When deleting an item, the ID can be
empty. UCMDB Query Methods take real IDs as input parameters and return
real IDs in the query results.

The type can be any type name defined in the CI Type Manager. For details,
see “CI Type Manager” in Model Management.

The props element is a CIProperties collection. For details, see “CIProperties”
on page 86.

Relation
A Relation is an entity that links two configuration items. A Relation element
is composed of an ID, a type, the identifiers of the two items being linked
(end1ID and end2ID), and a props collection.

When using UCMDB Update Methods to update a Relation, the value of the
Relation’s ID can be a real UCMBD ID or a temporary ID. When deleting an
item, the ID can be empty. UCMDB Query Methods take real IDs as input
parameters and return real IDs in the query results.

The relation type is the Type Name of the HP UCMDB class from which the
relation is instantiated. The type can be any of the relation types defined in
the UCMDB. For further information on classes or types, see “Query the
UCMDB Class Model” on page 29.

For details, see “CI Type Manager” in Model Management.

The two relation end IDs must not be empty IDs because they are used to
create the ID of the current relation. However, they both can have
temporary IDs assigned to them by the client.

The props element is a CIProperties collection. For details, see “CIProperties”
on page 86.
87

Chapter 2 • The HP Universal CMDB Web Service API
UCMDB Output Parameters

This section describes the most common output parameters of the service
methods. For details, refer to the schema documentation.

This section includes the following topics:

➤ “CIs” on page 88

➤ “ShallowRelation” on page 88

➤ “Topology” on page 88

➤ “CINode” on page 88

➤ “RelationNode” on page 89

➤ “TopologyMap” on page 89

➤ “ChunkInfo” on page 89

CIs
CIs is a collection of CI elements.

ShallowRelation
A ShallowRelation is an entity that links two configuration items, composed
of an ID, a type, and the identifiers of the two items being linked (end1ID
and end2ID). The relation type is the Type Name of the UCMDB class from
which the relation is instantiated. The type can be any of the relation types
defined in the UCMDB.

Topology
Topology is a graph of CI elements and relations. A Topology consists of a CIs
collection and a Relations collection containing one or more Relation
elements.

CINode
CINode is composed of a CIs collection with a label. The label in the CINode
is the label defined in the node of the TQL used in the query.
88

Chapter 2 • The HP Universal CMDB Web Service API
RelationNode
RelationNode is a set of Relations collections with a label. The label in the
RelationNode is the label defined in the node of the TQL used in the query.

TopologyMap
TopologyMap is the output of a query calculation that matches a TQL query.
The labels in the TopologyMap are the node labels defined in the TQL used in
the query.

The data of TopologyMap is returned in the following form:

➤ CINodes. This is one or more CINode (see “CINode” on page 88).

➤ relationNodes. This is one or more RelationNode (see “RelationNode” on
page 89).

The labels in these two structures order the lists of configuration items and
relations.

ChunkInfo
When a query returns a large amount of data, the server stores the data,
divided into segments called chunks. The information the client uses to
retrieve the chunked data is located in the ChunkInfo structure returned by
the query. ChunkInfo is composed of the numberOfChunks that must be
retrieved and the chunksKey. The chunksKey is a unique identifier of the
data on the server for this specific query invocation.

For more information, see “Processing Large Responses” on page 23.
89

Chapter 2 • The HP Universal CMDB Web Service API
90

3
The HP Universal CMDB Java API

This chapter explains how third-party or custom tools can use the
HP Universal CMDB Java API to extract data and calculations and to write
data to the UCMDB (Universal Configuration Management database).

Use this chapter in conjunction with the API Javadoc, available in the
online Documentation Library.

This chapter includes:

Concepts

 ➤ Conventions on page 92

 ➤ Using the HP Universal CMDB Java API on page 92

 ➤ General Structure of Application on page 93

Tasks

 ➤ Retrieve the API Jar File on page 94

 ➤ Create an Integration User on page 95

Reference

 ➤ HP Universal CMDB Java API Reference on page 96

 ➤ Use Cases on page 96

 ➤ Examples on page 98
Concepts
91

Chapter 3 • The HP Universal CMDB Java API
Conventions

This chapter uses the following conventions:

➤ UCMDB refers to the Universal Configuration Management database itself.
HP Universal CMDB refers to the application.

➤ UCMDB elements and method arguments are spelled in the case in which
they are specified in the interfaces.

Using the HP Universal CMDB Java API

The HP Universal CMDB Java API is used to integrate applications with the
Universal CMDB (UCMDB). The API provides methods to:

➤ add, remove, and update CIs and relations in the CMDB

➤ retrieve information about the class model

➤ run what-if scenarios

➤ retrieve information about configuration items and relationships

Methods for retrieving information about configuration items and
relationships generally use the Topology Query Language (TQL). For details,
see “Topology Query Language” in Model Management.

Users of the HP Universal CMDB Java API should be familiar with:

➤ The Java programming language

➤ HP Universal CMDB

This section includes the following topics:

➤ “Uses of the API” on page 93

➤ “Permissions” on page 93
92

Chapter 3 • The HP Universal CMDB Java API
Uses of the API
The API is used to fulfill a number of business requirements. For example:

➤ A third-party system can query the class model for information about
available configuration items (CIs).

➤ A third-party asset management tool can update the UCMDB with
information available only to that tool, thereby unifying its data with data
collected by HP applications.

➤ A number of third-party systems can populate the UCMDB to create a
central UCMDB that can track changes and perform impact analysis.

➤ A third-party system can create entities and relations according to its
business logic, and then write the data to the UCMDB to take advantage of
the UCMDB query capabilities.

➤ Other systems can use the Impact Analysis methods for change analysis.

Permissions
The administrator provides login credentials for connecting with the API.
The API client needs the username and password of an integration user
defined in the UCMDB. These users do not represent human users of
UCMDB, but rather applications that connect to UCMDB.

For more information, see “Create an Integration User” on page 95.

General Structure of Application

There is only one static factory, the UcmdbServiceFactory. This factory is the
entry point for an application. The UcmdbServiceFactory exposes
getServiceProvider methods. These methods return an instance of
UcmdbServiceProvider interface. The client communicates with the server
over HTTP.

The client creates other objects using interface methods. For example, to
create a new query definition, the client:

 1 retrieves the query service from the main UCMDB service object

 2 retrieves a query factory object from the service object
93

Chapter 3 • The HP Universal CMDB Java API
 3 retrieves a new query definition from the factory

The services available from UcmdbService are:

Tasks

Retrieve the API Jar File

Get the ucmdb-api.jar from a BAC or UCMDB server installation. Extract the
jar file from ucmdb-api.war, found in the AppServer\webapps directory on
the server. Inside the war archive, ucmdb-api.jar is located in
theWEB-INF\lib directory.

Compile and run your application with ucmdb-api.jar in the classpath.

UcmdbServiceProvider provider =
UcmdbServiceFactory.getServiceProvider(HOST_NAME, PORT);

UcmdbService = provider.connect(provider.createCredentials(USERNAME,
PASSWORD), provider.createClientContext("Test"));

TopologyQueryService queryService = ucmdbService.getTopologyQueryService();
TopologyQueryFactory factory = queryService.getFactory();
QueryDefinition queryDefinition = factory.createQueryDefinition("Test Query");
queryDefinition.addNode("Node").ofType("host");
Topology topology = queryService.executeQuery(queryDefinition);
System.out.println("There are " + topology.getAllCIs().size() + " hosts in uCMDB");

Service Methods Use

getClassModelService Information about types of CIs and Relations

getImpactAnalysisService Analysing the effect of a change in the IT
universe

getTopologyQueryService Getting information about the IT universe

getTopologyUpdateService Changing the information in the IT universe
94

Chapter 3 • The HP Universal CMDB Java API
Create an Integration User

Applications written with this API set log on with an integration user.

To create an integration user:

 1 Log on to the JMX Agent console.

 a The URL is http://<UCMDB host>:8080/jmx-console.

 b The default user and password are both "admin".

 2 On the JMX Agent View page, locate the section labeled "MAM".

 3 Click service=MAM Security Services.

 4 On the JMX MBean View, locate "java.lang.String createIntegrationUser()"

 a Fill in the userName and password fields.

 b Click Invoke.

 5 Either click Back to MBean View to create more users, or close the JMX
Agent Console.

 6 Log on the the UCMDB as an administator.

 7 From the Settings tab, run Package Manager.

 8 Click the New icon.

 9 Enter a name for the new package, and click Next.

 10 In the Resource Selection tab, under Settings, click Integration Users.

 11 Select a user or users that you created using the JMX Agent console.

 12 Click Next and then Finish. Your new package appears in the Package Name
list in the Package Manager.

 13 Deploy the package to the users who will run the API applications.

For details, see “Deploy a Package” on page 468.
Reference
95

Chapter 3 • The HP Universal CMDB Java API
HP Universal CMDB Java API Reference

For full documentation on the available APIs, refer to the HP UCMDB Java
API Reference. These files are located in the following folder:

\\<HP Universal CMDB root directory>\UCMDBServer\j2f\
AppServer\webapps\site.war\amdocs\eng\doc_lib\
Integrations\UCMDB_JavaAPI\index.html

Use Cases

The following use cases assume two systems:

➤ HP Universal CMDB server

➤ A third-party system that contains a repository of configuration items

This section includes the following topics:

➤ “Populating the UCMDB” on page 96

➤ “Querying the UCMDB” on page 97

➤ “Querying the Class Model” on page 97

➤ “Analyzing Change Impact” on page 97

Populating the UCMDB
Use cases:

➤ A third-party asset management updates the UCMDB with information
available only in asset management.

➤ A number of third-party systems populate the UCMDB to create a central
CMDB that can track changes and perform impact analysis.

➤ A third-party system creates Configuration Items and Relations according to
third-party business logic to leverage the CMDB query capabilities.
96

Chapter 3 • The HP Universal CMDB Java API
Querying the UCMDB
Use cases:

➤ A third-party system gets the Configuration Items and Relations that
represent the SAP system by getting the results of the SAP TQL.

➤ A third-party system gets the list of Oracle servers that have been added or
changed in the last five hours.

➤ A third-party system gets the list of servers whose host name contains the
substring lab.

➤ A third-party system finds the elements related to a given CI by getting its
neighbors.

Querying the Class Model
Use cases:

➤ A third-party system enables users to specify the set of data to be retrieved
from the UCMDB. A user interface can be built over the class model to show
users the possible properties and prompt them for required data. The user
can then choose the information to be retrieved.

➤ A third-party system explores the class model when the user cannot access
the UCMDB user interface.

Analyzing Change Impact
Use case:

A third-party system outputs a list of the business services that could be
impacted by a change on a specified host.
97

Chapter 3 • The HP Universal CMDB Java API
Examples

This section includes the following topics:

➤ “Entry Point Example” on page 98

➤ “Query Examples” on page 98

➤ “Topology Query Example” on page 100

➤ “Topology Update Example” on page 101

➤ “Impact Analysis Example” on page 101

Entry Point Example

Query Examples
The following examples demonstate getting a single class definition and
getting a list of all CIT definitions and their attributes.

final String HOST_NAME = "localhost";
final int PORT = 8080;
UcmdbServiceProvider provider =
UcmdbServiceFactory.getServiceProvider(HOST_NAME, PORT);

final String USERNAME = "integration_user";
final String PASSWORD = "integration_password";
Credentials credentials =
provider.createCredentials(USERNAME, PASSWORD),

ClientContext clientContext = provider.createClientContext("Example");
UcmdbService ucmdbService = provider.connect(credentials, clientContext);
98

Chapter 3 • The HP Universal CMDB Java API
Retrieving a Class Definition

Retrieving the List of CIT Definitions and Attributes

This example queries the attributes for one CIT and prints their names and
types.

ClassModelService classModelService
= ucmdbService.getClassModelService();

String typeName = "disk";
ClassDefinition def =
classModelService.getClassDefinition(typeName);

System.out.println("Type " + typeName + " is derived from type "
+ def.getParentClassName());

System.out.println("Has " + def.getChildClasses().size() +
" derived types");

System.out.println("Defined and inherited attributes:");
for (Attribute attr : def.getAllAttributes().values()) {
System.out.println("Attribute " + attr.getName() +

" of type " + attr.getType());
}

ClassModelService classModelService =
 ucmdbService.getClassModelService();

for (ClassDefinition def : classModelService.getAllClasses()) {
System.out.println("Type " + def.getName() +

" (" + def.getDisplayName() + ") is derived from type "
+ def.getParentClassName());

System.out.println
("Has " + def.getChildClasses().size() + " derived types");

System.out.println
("Defined and inherited attributes:");

for (Attribute attr : def.getAllAttributes().values()) {
System.out.println
 ("Attribute " + attr.getName() +
 " of type " + attr.getType());

}
}

99

Chapter 3 • The HP Universal CMDB Java API
Topology Query Example

TopologyQueryService queryService =
ucmdbService.getTopologyQueryService();

TopologyQueryFactory queryFactory =
queryService.getFactory();

QueryDefinition queryDefinition =
queryFactory.createQueryDefinition

("Get hosts with more than one network interface");
String hostNodeName = "Host";
QueryNode hostNode =

queryDefinition.addNode(hostNodeName).ofType("host").queryProperty("display_l
abel");
QueryNode ipNode =
queryDefinition.addNode("IP").ofType("ip").queryProperty("ip_address");

hostNode.linkedTo(ipNode).withLinkOfType("contained").atLeast(2);
Topology topology = queryService.executeQuery(queryDefinition);
Collection<TopologyCI> hosts = topology.getCIsByName(hostNodeName);
for (TopologyCI host : hosts) {
 System.out.println("Host " + host.getPropertyValue("display_label"));
 for (TopologyRelation relation : host.getOutgoingRelations()) {
 System.out.println
 (" has IP " + relation.getEnd2CI().getPropertyValue("ip_address"));
 }
}

100

Chapter 3 • The HP Universal CMDB Java API
Topology Update Example

Impact Analysis Example

TopologyUpdateService topologyUpdateService =
ucmdbService.getTopologyUpdateService();

TopologyUpdateFactory topologyUpdateFactory =
topologyUpdateService.getFactory();

TopologyModificationData topologyModificationData =
topologyUpdateFactory.createTopologyModificationData();

CI host = topologyModificationData.addCI("host");
host.setPropertyValue("host_key", "test1");
CI ip = topologyModificationData.addCI("ip");
ip.setPropertyValue("ip_address", "127.0.0.10");
ip.setPropertyValue("ip_domain", "DefaultDomain");
topologyModificationData.addRelation("contained", host, ip);
topologyUpdateService.create
(topologyModificationData, CreateMode.IGNORE_EXISTING);

ImpactAnalysisService impactAnalysisService =
ucmdbService.getImpactAnalysisService();

ImpactAnalysisFactory impactFactory =
impactAnalysisService.getFactory();

ImpactAnalysisDefinition definition =
impactFactory.createImpactAnalysisDefinition();

definition.addTriggerCI(disk).withSeverity
(impactFactory.getSeverityByName("Warning(2)"));

definition.useAllRules();
ImpactAnalysisResult impactResult =
impactAnalysisService.analyze(definition);

AffectedTopology affectedCIs =
impactResult.getAffectedCIs();

for (AffectedCI affectedCI : affectedCIs.getAllCIs()) {
 System.out.println("Affected " +
 affectedCI.getType() + " " + affectedCI.getId() +
 " - severity " + affectedCI.getSeverity());

}

101

Chapter 3 • The HP Universal CMDB Java API
102

4
The Discovery and Dependency Mapping
Web Service API

For details, see “The HP Discovery and Dependency Mapping Web Service
API” in Discovery and Dependency Mapping Guide.
103

Chapter 4 • The Discovery and Dependency Mapping Web Service API
104

Part II

Federation and Reconciliation

106

5
Introduction to Federated CMDB

This chapter provides information on the Federated CMDB functionality.

This chapter includes:

Concepts

 ➤ Federated CMDB – Overview on page 108

 ➤ Adapters on page 108

 ➤ Retrieving Data from Multiple Data Stores on page 109

 ➤ Retrieving Attributes from an External Data Store on page 110

 ➤ Mapping Information on page 112

Tasks

 ➤ Work with Federated Data – Workflow on page 112

 ➤ Change the Encrypted Password of a Federated Adapter on page 113

Reference

 ➤ Federated CMDB User Interface on page 115
Concepts
107

Chapter 5 • Introduction to Federated CMDB
Federated CMDB – Overview

CMDB implementations often involve federation, which is the inclusion of
data in the CMDB from other sources, in such a way that the source of the
data retains control of the data.

You use federated CMDB to answer the following types of questions:

➤ Which hosts in a specific application (for example, SAP) have changed more
than a certain number of times in a certain time period?

➤ Which application names have changed more than a certain number of
times in a certain time period?

➤ Which hosts in the model have changed more than a certain number of
times in a certain time period?

Adapters

You set up adapters to work with data that is federated from different CMDB
sources, using the HP Universal CMDB API. For details, see “The
HP Universal CMDB Web Service API” in Reference Information.

You can use the following, predefined adapters to federate different CMDB
sources:

➤ CmdbChangesAdapter. Select to define a source adapter that queries the
UCMDB for changes. The adapter runs on federated TQLs and the UCMDB
History database/schema. (For details on limitations, see “The
CmdbChanges Adapter” on page 270.)

➤ CmdbHistoryAdapter. Select to define an adapter that retrieves data from a
UCMDB History database. Note: the History Adapter does not support
replication, that is, you cannot use this adapter to define a replication job
(to copy data from one data store to another one).

➤ CmdbRmiAdapter. Select to define an adapter that uses an RMI API to
retrieve data from an external CMDB data store. Note: This adapter supports
federated replication only by default. To support federated queries, contact
HP Software Support.
108

Chapter 5 • Introduction to Federated CMDB
➤ CmdbSoapAdapter. Select to define an adapter that uses a SOAP API to
retrieve data from an external CMDB data store. Note: This adapter does not
support federated queries and can be used only as a target in federated
replication.

➤ ServiceDeskAdapter. Select to define an adapter that supports the retrieval
of data from HP ServiceCenter and HP Service Manager. This adapter
connects to, and receives data from, ServiceCenter/Service Manager using
the Web Service API. For details on working with this adapter, see Chapter 8,
“The HP ServiceCenter/Service Manager Adapter.”

➤ GenericDBAdapter. Platform for configuring a database adapter that
integrates with any type of relational database and enables running
federated TQLs against the databases. For details on working with this
adapter, see Chapter 6, “The Generic Database Adapter.”

The Federation Framework SDK acts as a mediator between HP Universal
CMDB and the adapters; and as a container for the federated adapters. For
details, see “The Federation Framework SDK” on page 207.

For details on choosing an adapter when creating a data store, see “Data
Stores Tab” on page 115.

Retrieving Data from Multiple Data Stores

During FTQL calculation, you can retrieve data for the same CIT from
several data stores. The data can be retrieved from the local UCMDB and
from an external data store, or from several external data stores.

The data can be retrieved by the same adapter from several locations or by
several adapters from several locations.

Each CI that is retrieved from an external data store includes an attribute
(Created By) to show from which data store the CI has been retrieved.

For details on mapping information, see “Mapping Information” on
page 112.
109

Chapter 5 • Introduction to Federated CMDB
Limitations

➤ When a virtual link exists between two data stores, HP Universal CMDB
supports mapping in the following cases only:

➤ The UCMDB data store lies at one end of the link and multiple data
stores lie at the other end. The Cartesian product is calculated for A’s data
store (UCMDB) and B’s data stores (UCMDB, d2, d3).

➤ The same data stores lie at both ends of the link. The link is an internal
link of each data store and no mapping is required.

➤ Data that is retrieved from several data stores is not reconciled. If two data
stores include the same CIT, the CIT appears twice in HP Universal CMDB. If
two data stores include the same attribute, only one of the attributes is
federated with the UCMDB.

Retrieving Attributes from an External Data Store

➤ You can retrieve the attributes of a CI from an external data store, when the
core CI data is stored in the UCMDB.

➤ The core data store must be the UCMDB.

➤ The CIT must be located in a data store for its attributes to be defined.
110

Chapter 5 • Introduction to Federated CMDB
➤ The same attributes can be retrieved from multiple data stores.

For details on retrieval options, see the CI Type Retrieval Mode field in the
“Supported CI Types Tab” on page 120.

➤ You cannot map a CIT to an external CIT and to the external CIT's
attributes.

➤ A CIT can support external attributes if the adapter (that is federating the
CIT data) supports mapping information (reconciliation) for this CIT.

Use Cases

➤ You need to discover the SMS or Altiris desktops in your system. The desktop
CIT is a core CIT and is already synchronized with the UCMDB. However,
you do not want to store all the desktop data in the UCMDB as this is
inefficient and unnecessary. It is enough to store core attributes such as
name and MAC address in the UCMDB, and to define the other details of
the desktops as external attributes in two data stores: SMS and Altiris.

➤ VMware creates virtual machines that contain a virtual machine monitor
(hypervisor) that allocates hardware resources dynamically and
transparently. Multiple operating systems can run concurrently on a single
physical computer. Since the allocation resources (for example, memory) are
dynamic, DDM cannot discover these resources (DDM runs once every 24
hours and the resource data can change hourly). To enable HP Universal
CMDB to always be updated with real-time data, the solution is to divide the
data into two: the core data of the virtual hosts should be discovered and
placed in the UCMDB; the resource attributes should be retrieved from the
external source. In this use case, the data for these attributes is retrieved
from two data stores: UCDMB and VMware.
111

Chapter 5 • Introduction to Federated CMDB
Mapping Information

Federated queries should use the Mapping Engine to unify the shallow CIs
(the core attributes of a CI) from the core data store with the attributes from
the external data store.

For details on the Mapping Engine, see “Federation Framework Flow for
FTQL” on page 212.

For details on selecting attributes to be included in the federation, see
“Supported CI Types Tab” on page 120.

Tasks

Work with Federated Data – Workflow

This section explains how to set up and work with data that is federated
from different CMDB sources, using the HP Universal CMDB application.

This section includes the following topics:

➤ “Prerequisites” on page 112

➤ “Create a Data Store” on page 112

➤ “Replicate the Data Store” on page 113

➤ “Build a View” on page 113

➤ “View Instances in IT Universe Manager” on page 113

➤ “View Reports” on page 113

 1 Prerequisites
Set up the adapter. For details, see “Add an Adapter for a New External Data
Store” on page 230. For details on existing adapters, see “Adapters” on
page 108.

 2 Create a Data Store
Access Admin > Settings > Federated CMDB. Click the Add button to open
the New Data Store dialog box. For details, see “New Data Store Wizard” on
page 117.
112

Chapter 5 • Introduction to Federated CMDB
 3 Replicate the Data Store
Use the data store for replication. Access Admin > Settings > Federated
CMDB > Replication Jobs tab. Click the Add button to open the Replication
Job dialog box. For details, see “Replication Job Dialog Box” on page 123.

 4 Build a View
For details, see “View Manager Overview” in Model Management.

 5 View Instances in IT Universe Manager
For details, see “IT Universe Manager Overview” in Model Management.

 6 View Reports
For details, see “Topology Report Manager” in Model Management.

Change the Encrypted Password of a Federated Adapter

When defining a new data store adapter, a user must enter a password. This
password is encrypted by default and encryption is entirely transparent to
the user.

The following procedures explain how to generate a new key file and change
an existing key file. HP Universal CMDB includes a default key so that these
procedures are optional.

Note: During the upgrade process from a version with unencrypted
passwords, the passwords are encrypted.

The encryption key is located at C:\hp\UCMDB\UCMDBServer\j2f
\fcmdb\fkey.bin.
113

Chapter 5 • Introduction to Federated CMDB
To generate a new key file:

 1 Launch the Web browser and enter the following address:

where <machine name or IP address> is the machine on which HP Universal
CMDB is installed. You may have to log in with the user name and
password.

 2 Click the Topaz > service=FCmdb Config Services link.

 3 In the JMX MBEAN View page, locate the following operation:
java.lang.String generateNewKeyFile().

 4 In the customer id field, enter 1.

 5 Click Invoke. A message is displayed informing you that a new key file is
generated and has been loaded into the application.

To change the key file:

 1 Prepare a key file and note the location.

 2 In the JMX MBEAN View page, locate the following operation:
java.lang.String importKeyFile().

 3 In the customerId field, enter 1; in the newKeyFileLocation field, enter the
full path to the new key.

 4 Click Invoke. A message is displayed.
Reference

http://<machine name or IP address>.<domain_name>:8080/jmx-console
114

Chapter 5 • Introduction to Federated CMDB
Federated CMDB User Interface

This section describes:

 ➤ Data Stores Tab on page 115

 ➤ Federated CMDB Window on page 116

 ➤ New Data Store Wizard on page 117

 ➤ Replication Job Dialog Box on page 123

 ➤ Replication Job Statistics Window on page 124

 ➤ Replication Jobs Tab on page 126

Data Stores Tab

Description Enables you to edit existing data stores or to create new
stores.

To access: Admin > Settings > Federated CMDB > Data
Stores tab.

Important
Information

Data Stores includes the following tabs:

➤ Properties. Enables you to configure an adapter that
accesses external data sources. For details, see
“Properties Tab” on page 118.

➤ Supported CI Types. Enables you to choose which CITs
are to be supported by the data store. For example, if a
federated TQL (FTQL) includes a node that represents a
specific CIT, the instances of this CIT are accepted
from this external data store. For details, see
“Supported CI Types Tab” on page 120.

➤ Supported Queries. Enables you to choose which
queries should be supported by this data store for data
replication. For details, see “Supported Queries Tab” on
page 122.
115

Chapter 5 • Introduction to Federated CMDB
The following elements are included (unlabeled GUI elements are shown in
angle brackets):

Federated CMDB Window

GUI Element (A-Z) Description

Add a data store. For details, see “New Data Store Wizard”
on page 117.

Delete a data store.

Click to save changes.

 Refresh Click to refresh the page.

Click to reload, if changes have been made to the
adapter.

<List of Defined
Adapters>

Name. The name you give to the data store.

Adapter. The type of adapter for this data store.

View For details, see:

➤ “Data Stores Tab” on page 115

➤ “Supported CI Types Tab” on page 120

Description Enables you to define external data stores and create
replication jobs.

To access: Admin > Settings > Federated CMDB.

Important
Information

You create a data store with the New Data Store wizard. For
details, see “New Data Store Wizard” on page 117.

Included in Tasks “Work with Federated Data – Workflow” on page 112

Useful Links ➤ “Data Stores Tab” on page 115

➤ “Replication Jobs Tab” on page 126

➤ “Adapters” on page 108
116

Chapter 5 • Introduction to Federated CMDB
New Data Store Wizard

Description Enables you to define a data store that uses an adapter to
access external data sources.

To access: Admin > Settings > Federated CMDB > Data
Stores tab > click the Add button.

Important
Information

Depending on the adapter’s function, use one of the
following adapters to define a data store:

➤ CmdbChangesAdapter. The adapter supports federated
replication only and can be used as a source, therefore,
you must fill in the Properties tab and the Supported
Queries tab.

➤ CmdbHistoryAdapter. The adapter supports federated
TQL queries only, therefore you must fill in the
Properties tab and the Supported CI Types tab.

➤ CmdbRmiAdapter. The adapter supports both federated
replication and federated queries, therefore you must fill
in the Properties tab, the Supported CI Types tab, and
the Supported Queries tab. (By default, this adapter
supports replication only.)

➤ CmdbSoapAdapter. The adapter supports federated
replication only and can be used as a target, therefore
you must fill in the Properties tab.

➤ ServiceDeskAdapter. The adapter supports federated TQL
queries only, therefore you must fill in the Properties tab
and the Supported CI Types tab.

➤ GenericDBAdapter.

Included in Tasks “Work with Federated Data – Workflow” on page 112

Useful Links ➤ “Retrieving Data from Multiple Data Stores” on page 109

➤ “Retrieving Attributes from an External Data Store” on
page 110

➤ “Adapters” on page 108
117

Chapter 5 • Introduction to Federated CMDB
Properties Tab

The following elements are included (unlabeled GUI elements are shown in
angle brackets):

Description Enables you to select the type of adapter, and to define the
connection information for the external data store you are
defining.

To access: Admin > Settings > Federated CMDB > Data
Stores tab. Click the New Data Store button.

Important
Information

All enabled fields are mandatory.

Useful Links “Adapters” on page 108

GUI Element (A–Z) Description

Adapter Choose the adapter to retrieve the external data from an
external data store.

Customer ID For HP Universal CMDB, enter 1. For HP Software-as-a-
Service, enter the customer ID number.

Host Enter the name of the machine to which the adapter must
connect.

Name Enter a name to identify the data store. The name must be
unique in the HP Universal CMDB version.
118

Chapter 5 • Introduction to Federated CMDB
Next button Click to continue defining the adapter.

Note: If you did not test the connection, it is automatically
tested when you click Next.

If the adapter does not support a federated query and
replication as a source (that is, the adapter supports
replication only as a target, for example, the SOAP adapter),
the following message is displayed:

Click OK, then click Finish.

Password Enter the password needed to access the external data store
to which you want to connect. If you set up the system to
accept an encrypted password, the password you enter in
this field is encrypted and saved to the database.

For details on encrypted passwords, see “Change the
Encrypted Password of a Federated Adapter” on page 113.

Port Enter the port through which you are accessing the external
data store (if required).

Test connection
button

Click to test that you have entered valid information.

URL Use this field to define a specific URL to connect to the
external data store.

User Enter the user name needed to access the external data store
to which you want to connect.

GUI Element (A–Z) Description
119

Chapter 5 • Introduction to Federated CMDB
Supported CI Types Tab

The following elements are included (unlabeled GUI elements are shown in
angle brackets):

Description Enables you to choose which CITs or attributes are to be
supported by the data store. For example, if a federated TQL
(FTQL) includes a node that represents a specific CIT, the
instances of this CIT are accepted from this external data
store.

To access: Admin > Settings > Federated CMDB > Data
Stores tab. Click the Supported CI Types tab.

Important
Information

This page is displayed when the selected adapter supports
federated queries.

Included in Tasks “Work with Federated Data – Workflow” on page 112

Useful Links “Retrieving Attributes from an External Data Store” on
page 110

GUI Element (A-Z) Description

Represents instance federation, that is, CITs are federated.

Represents attribute federation, that is, federation is run at
the level of the attributes of a CIT.

<List of CITs> This list includes all CITs that are supported by the adapter.

When queried by an FTQL, the CITs you select here are
configured to retrieve the data from this external data store.

Select the CITs to be supported by this data store.
120

Chapter 5 • Introduction to Federated CMDB
CI Type Retrieval
Mode

➤ Retrieve CIs of selected CI Type. All a CI’s data, including
all its attributes, are retrieved from the data store.

Retrieve CIs of the CI Type from the UCMDB too.

➤ Retrieve selected attributes. The selected attributes are
retrieved from the data store. The CIs must already exist
in the UCMDB.

Retrieve the attribute from the UCMDB too.

Note:

➤ All CITs (and their child CITs) included in a data store
definition must use the same retrieval mode.

➤ You cannot select both CITs and attributes for the same
data store.

CI Types The CIT hierarchy.

Right-click the CIT to define a new data store of the same
data store type.

Select Attributes You can define which attributes of an external CIT are to be
included in the federation:

➤ In the CI Type Retrieval Mode pane, select Retrieve
selected attributes.

➤ In the Select Attributes list, select the attributes that are to
be included in the federation.

➤ Save the changes.

Note: Attributes are defined in the CIT Manager. For details,
see “Add/Edit Attribute Dialog Box” on page 237.

GUI Element (A-Z) Description
121

Chapter 5 • Introduction to Federated CMDB
Supported Queries Tab

The following elements are included (unlabeled GUI elements are shown in
angle brackets):

Description Displays a list of queries that are supported by the adapter.
Enables you to choose which queries should be supported
by this data store for data replication.

To access: Admin > Settings > Federated CMDB > Data
Stores tab. Click the Supported Queries tab.

Important
Information

This page is displayed when an adapter is selected that
supports federated replication and can be used as a source.

Included in Tasks “Work with Federated Data – Workflow” on page 112

GUI Element (A-Z) Description

➤ Select/Unselect All. Click to select all queries in the list
and click again to clear all queries.

➤ Switch Selection. Click to select all non-selected queries
or to clear all selected queries.

➤ Show Selected Queries. Click to view a list of all selected
queries.

<List of query
names>

This list includes all queries that are supported by the
adapter. During replication job configuration, queries you
select here are visible.

Select the queries to be included in the configured data
store.

Visible. The query is visible in the Replication Job dialog box
for the current data store.
122

Chapter 5 • Introduction to Federated CMDB
Replication Job Dialog Box

The following elements are included (unlabeled GUI elements are shown in
angle brackets):

Description Enables you to replicate data between two data stores.

To access: Admin > Settings > Federated CMDB >
Replication Jobs. Click the Add button.

Important
Information

➤ For successful replication, if you use CMDB adapters for
replication (SOAP or RMI), the CIT class model in the
target (the machine to which the data is imported, to be
federated) must be identical to the class model in the
source (the machine from which the data is exported).

➤ To add specific CIs only from a TQL during a replication
job, you must configure the required condition on those
CIs. Then, you must configure the same conditions for
the relationship TQLs that are linked to the CIs.

Included in Tasks “Work with Federated Data – Workflow” on page 112

GUI Element (A-Z) Description

Name Enter a name to identify the replication job.

Replication Job
Queries

➤ Active. Select to use this query in the replication job.

➤ Name. The query name.

➤ Description. The description of the query.

➤ Permit Deletion in Target. Permits deletion of CIs and
relationships on the target machine if they have been
deleted in the source query result.
123

Chapter 5 • Introduction to Federated CMDB
Replication Job Statistics Window

The following elements are included (unlabeled GUI elements are shown in
angle brackets):

Source Data Store The data store for the data that is to be brought over and
replicated to the data on the target machine.

Only data stores that have adapters that support replication
and can be used as a source are displayed here.

Click Details to view information about the data store.

Target Data Store The data store to which the data that is brought in from the
source machine should be replicated.

Only data stores that have adapters that support replication
and can be used as a target are displayed here.

Description Enables you to view statistics for a selected replication job
to verify whether replication is successful.

To access: Admin > Settings > Federated CMDB >
Replication Jobs tab. Select a replication job and click the
Statistics icon in the toolbar.

Important
Information

Click a row to view error messages for a specific
replication job.

GUI Element (A-Z) Description

Ad hoc Yes. The replication job was run by Scheduler or by the
user clicking the Ad hoc icon in the Replication Jobs tab.

Full replication Yes. The user chose to retrieve all appropriate data in the
source to the target, without taking the last run of the
replication job into consideration.

Job Name Name given to the replication job.

GUI Element (A-Z) Description
124

Chapter 5 • Introduction to Federated CMDB
Replication Job
Statistics per Query

➤ Query Name. The name of the query that is used for
replication.

➤ Status. Can be SUCCEEDED or FAILED. If the status is
FAILED, click the query to display the Replication Job
Error dialog box that contains the reason for the
failure. For more detailed information, look at the
fcmdb.synchronizer.log file, located in the following
folder:

<HP Universal CMDB root directory>\UCMDBServer
\j2f\fcmdb

➤ Replication Start Time. The time the replication job
started running replication for the current query.

➤ Replication Stop Time. The time the replication job
stopped running replication for the current query.

➤ Updated. The number of CIs and relationships that
were updated in the target data store during the last
replication job.

➤ Added. The number of CIs and relationships that were
added in the target data store during the last
replication job.

➤ Removed. The number of CIs and relationships that
were removed in the target data store during the last
replication job. Note: The CIs and relationships are
removed from the target only if Permit Deletion in
Target is selected in the Replication Job definition.

➤ Has Error. Yes. Click to open the Replication Error
dialog box that displays the reason for the failure.

Source Data Store The ID of the source data store.

Status Can be SUCCEEDED or FAILED.

Target Data Store The ID of the target data store.

GUI Element (A-Z) Description
125

Chapter 5 • Introduction to Federated CMDB
Replication Jobs Tab

The following elements are included (unlabeled GUI elements are shown in
angle brackets):

Description Enables you to define the replication jobs that contain
the source data store, target data store, and queries,
whose results should be replicated.

To access: Admin > Settings > Federated CMDB >
Replication Jobs tab.

Important
Information

You can set up a schedule to run a replication job. For
details, see “Scheduler Actions” on page 498.

GUI Element (A-Z) Description

New
Replication Job

Click to add a replication job. For details, see “Replication
Job Dialog Box” on page 123.

Delete Selected
Items

Click to delete a replication job.

New Data Store Click to open the New Data Store dialog box. For details,
see “New Data Store Wizard” on page 117.

 Save Click to save the changes.

 Refresh Click to refresh the page.

Click to test that replication is successful:

➤ Ad hoc diff replication. The result from the source data
store is compared to the result from the last run of the
replication job; only changes are sent to the target
data store.

➤ Ad hoc full replication. All appropriate data in the
source is brought to the target, without taking the last
run of the replication job into consideration.

Note: This feature is useful when testing a replication job
as you are developing it. During production, you should
use the Scheduler to run the replication job. For details,
see “Schedule Tab” on page 127.
126

Chapter 5 • Introduction to Federated CMDB
Properties Tab

Schedule Tab

 Statistics Click to view replication job statistics about the selected
replication job. For details, see “Replication Job Statistics
Window” on page 124.

To filter the list of tasks, choose from the list and type in
the first letters in the by box.

<right-click menu> For details, see the explanations for the buttons in this
table.

Duplicate Replication Job. Enter a name for the duplicate
job and make changes to it as necessary. Save the job.

Tasks Table Name. The name you give to the replication job.

Source Data Store. The ID of the source data store.

Target Data Store. The ID of the target data store.

Queries. The queries that are used for replication in this
replication job.

Description Enables you to edit a replication job.

To access: Admin > Settings > Federated CMDB >
Replication Jobs tab. Click the Properties tab.

Important
Information

For details, see “Replication Job Dialog Box” on page 123.

Description Enables you to set a schedule to run replication jobs.

To access: Admin > Settings > Federated CMDB >
Replication Jobs tab. Click the Schedule tab.

Useful Links Chapter 15, “Scheduler”

GUI Element (A-Z) Description
127

Chapter 5 • Introduction to Federated CMDB
The following elements are included (unlabeled GUI elements are shown in
angle brackets):

GUI Element (A-Z) Description

Click to add a schedule. For details, see “Job Definitions
Dialog Box” on page 499. For details on setting a replication
job action, see “Action Definition Dialog Box” on page 497.

Click to edit an existing schedule. For details, see “Job
Definitions Dialog Box” on page 499.

Delete a schedule.

Active The schedule runs at the defined time.

Job Definition A description of the job.

Last Run Time The previous time that the schedule ran.

Name The name of the schedule.

Next Run Time The date and time that the schedule will next run.

Schedule The description of the schedule.
128

6
The Generic Database Adapter

This chapter describes the generic database adapter functionality, usages,
and deployment in HP Universal CMDB.

This chapter includes:

Concepts

 ➤ Database Adapter – Overview on page 130

 ➤ Non-supported TQL Queries on page 130

 ➤ Reconciliation on page 131

 ➤ Hibernate as JPA Provider on page 134

Tasks

 ➤ Deploy a Database Adapter – Minimal Method on page 136

 ➤ Deploy a Database Adapter – Advanced Method on page 143

Reference

 ➤ The Federated Database Configuration Files on page 168

 ➤ The adapter.conf File on page 169

 ➤ The simplifiedConfiguration.xml File on page 170

 ➤ The orm.xml File on page 177

 ➤ The reconciliation_rules.txt File on page 181

 ➤ The transformations.txt File on page 182

 ➤ The persistence.xml File on page 183

 ➤ The discriminator.properties File on page 185

 ➤ The replication_config.txt File on page 186
129

Chapter 6 • The Generic Database Adapter
 ➤ The fixed_values.txt File on page 186

 ➤ Out of the Box Converters on page 186

 ➤ Plugins on page 190

 ➤ Configuration Examples on page 190

 ➤ Federated Database Log Files on page 203

 ➤ External References on page 205

Troubleshooting and Limitations on page 205
Concepts

Database Adapter – Overview

The purpose of this adapter is to enable integration with relational database
management systems (RDBMS) and to run a federated TQL query and
replication jobs against the database. The RDBMS supported by the generic
database adapter are Oracle, Microsoft SQL Server, and MySQL.

This version of the database adapter implementation is based on a JPA (Java
Persistence API) standard with the Hibernate ORM library as a persistence
provider.

Non-supported TQL Queries

The following limitations exist on the federated CMDB only:

➤ subgraphs are not supported

➤ compound relationships are not supported

➤ cycles or cycle parts are not supported
130

Chapter 6 • The Generic Database Adapter
The following TQL is an example of a cycle:

➤ Function layout is not supported.

➤ 0..0 cardinality is not supported.

➤ The Joinf relationship is not supported.

➤ Qualifier conditions are not supported.

➤ To connect between two CIs, a relationship in the form of a table or foreign
key must exist in the external database source.

Reconciliation

Reconciliation is carried out as part of the TQL calculation on the adapter
side. For reconciliation to occur, the CMDB side is mapped to a federated
entity called multinode.

Mapping. Each attribute in the UCMDB is mapped to a column in the data
source.
131

Chapter 6 • The Generic Database Adapter
Although mapping is done directly, transformation functions on the
mapping data are also supported. You can add new functions through the
Java code (for example, lowercase, uppercase). The purpose of these
functions is to enable value conversions (values that are stored in the CMDB
in one format and in the federated database in another format).

Note:

➤ To connect the UCMDB and external database source, an appropriate
association must exist in the database. For details, see “Prerequisites” on
page 144.

➤ Reconciliation with CMDB id is also supported.

Reconciliation rules take the form of OR and AND conditions. You can
define these rules on several different nodes (for example, host is identified
by host_name from host AND/OR ip_address from ip).

The following options find a match:

➤ Ordered match. The reconciliation expression is read from left to right. Two
OR sub-expressions are considered equal if they have values and they are
equal. Two OR sub-expressions are considered not equal if both have values
and they are not equal. For any other case there is no decision, and the next
OR sub-expression is tested for equality.

host_name OR ip_address. If both the UCMDB and the data source include
host_name and they are equal, the hosts are considered as equal. If both
have host_name but they are not equal, the hosts are considered not equal
without testing the ip_address. If either the UCMDB or the data source is
missing host_name, the ip_address is checked.

➤ Regular match. If there is equality in one of the OR sub-expressions, the
UCMDB and the data source are considered equal.

host_name OR ip_address. If there is no match on host_name, ip_address is
checked for equality.
132

Chapter 6 • The Generic Database Adapter
For complex reconciliations, where the reconciliation entity is modeled in
the class model as several CITs with relationships (such as host), the
mapping of a superset node includes all relevant attributes from all modeled
CITs.

Note: As a result, there is a limitation that all reconciliation attributes in the
data source should reside in tables that share the same primary key.

Another limitation states that the reconciliation TQL should have no more
than two nodes. For example, the host > ticket TQL has a host in the UCMDB
and a ticket in the data source.

To reconcile the results, host_name must be retrieved from the host and/or
ip_address must be retrieved from the IP address. A new mapping is made
from this federated multinode host towards the database host table and
from the ticket to the database ticket. In this case, the multinode is the
superset of all attributes needed for reconciliation (host_name + ip_address).

If the host_name in the CMDB is in the format of *.m.com, a converter can
be used from CMDB to the federated database, and vice versa, to convert
these values.

The host_id column in the database ticket table is used to connect between
the two entities (the defined association can also be made in a host table):

Note: Both tables must be part of the federated RDBMS source and not the
CMDB database.
133

Chapter 6 • The Generic Database Adapter
Hibernate as JPA Provider

Hibernate is an object-relational (OR) mapping tool, which enables
mapping Java classes to tables over several types of relational databases (for
example, Oracle and Microsoft SQL Server). For details, see “Functional
Limitations” on page 206.

In an elementary mapping, each Java class is mapped to a single table. More
advanced mapping enables inheritance mapping (as can occur in the CMDB
database).

Other supported features include mapping a class to several tables, support
for collections, and associations of types one-to-one, one-to-many, and
many-to-one. For details, see “Associations” on page 135.

For our purposes, there is no need to create Java classes. The mapping is
defined from the CMDB class model CITs to the database tables.

Examples of Object-Relational Mapping
The following examples describe object-relational mapping:

Example of 1 CMDB class mapped to 1 database table

Class M1, with attributes A1, A2, and A3, is mapped to table 1 columns c1,
c2, and c3. This means that any M1 instance has a matching raw in table 1.

Example of 1 CMDB class mapped to 2 database tables
134

Chapter 6 • The Generic Database Adapter
Example of inheritance

This case is used in the CMDB, where each class has its own database table.

Example of single table inheritance with discriminator

An entire hierarchy of classes is mapped to a single database table, whose
columns comprise a super-set of all attributes of the mapped classes. The
table also contains an additional column (Discriminator), whose value
indicates which specific class should be mapped to this entry.

Associations
There are three types of associations: one-to-many, many-to-one and many-
to-many. To connect between the different database objects, one of these
associations must be defined by using a foreign key column (for the one-to-
many case) or a mapping table (for the many-to-many case).
135

Chapter 6 • The Generic Database Adapter
Usability
As the JPA schema is very extensive, a streamlined XML file is provided to
ease definitions.

The use case for using this XML file is as follows: Federated data is modeled
into one federated class. This class has many-to-one relations to a non-
federated CMDB class. In addition, there is only one possible relation type
between the federated class and the non-federated class.

Tasks

Deploy a Database Adapter – Minimal Method

Note: When building an adapter for the first time, you should use this
method. The orm.xml file that is automatically generated as a result of
running this method is a good example that you can use when working later
with the advanced method.

The following procedure describes a method of mapping the class model in
the UCMDB to an RDBMS. You would use this minimal method when you
need to:

➤ Federate a single node such as a host attribute.

➤ Demonstrate the Generic Database Adapter capabilities.

This method:

➤ supports one-node federation only

➤ supports many-to-one relationships only
136

Chapter 6 • The Generic Database Adapter
This task includes the following steps:

➤ “Prerequisites” on page 137

➤ “Extract the Database Adapter Configuration File” on page 137

➤ “Deploy the Adapter Package” on page 137

➤ “Deploy the Adapter” on page 137

➤ “Create a CI Type” on page 137

➤ “Create the Relationships” on page 137

➤ “Configure the adapter.conf File” on page 138

➤ “Configure the simplifiedConfiguration.xml File” on page 138

➤ “Continue with the Procedure” on page 142

 1 Prerequisites
For details, see Prerequisites in “Deploy a Database Adapter – Advanced
Method” on page 143.

 2 Extract the Database Adapter Configuration File
For details, see “Extract the Database Adapter Configuration File” on
page 147.

 3 Deploy the Adapter Package
For details, see “Deploy the Adapter Package” on page 150.

 4 Deploy the Adapter
For details, see “Deploy the Adapter” on page 151.

 5 Create a CI Type
For details, see “Create a CI Type” on page 153.

 6 Create the Relationships
For details, see “Create the Relationships” on page 155.
137

Chapter 6 • The Generic Database Adapter
 7 Configure the adapter.conf File
In this step, you change the settings in the adapter.conf file so that the data
is federated automatically.

 a Open the following file in a text editor: <HP Universal CMDB root
directory>\j2f\fcmdb\Codebase\MyAdapter\META-INF\adapter.conf.

 b Locate the following line: use.simplified.xml.config=<true/false>.

 c Change to use.simplified.xml.config=true.

 8 Configure the simplifiedConfiguration.xml File
In this step you configure the simplifiedConfiguration.xml file by mapping
between the CIT in the UCMDB and the fields in the RDBMS table.

 a Open the following file in a text editor: <HP Universal CMDB root
directory>\j2f\fcmdb\Codebase\MyAdapter\META-INF\
simplifiedConfiguration.xml.
138

Chapter 6 • The Generic Database Adapter
 b This file includes a template that you use for each entity to be mapped:

 c Make changes to the attributes as follows:

➤ The CIT name in Universal CMDB (cmdb-class-name) and the
corresponding table name in the RDBMS (default-table-name):

The cmdb-class-name attribute is taken from the host CIT:

<cmdb-class cmdb-class-name="host" default-table-name="[table_name]">
<primary-key column-name="[column_name]"/>
<reconciliation-by-two-nodes connected-node-cmdb-class-name="ip" cmdb-

link-type="contained">
<or is-ordered="true">

<attribute cmdb-attribute-name="host_hostname" column-
name="[column_name]" ignore-case="true"/>

<connected-node-attribute cmdb-attribute-name="ip_address"
column-name="[column_name]"/>

</or>
</reconciliation-by-two-nodes>

</cmdb-class>

<class cmdb-class-name="[cmdb_class_name]" default-table-
name="[default_table_name]" connected-cmdb-class-name="host" link-class-
name="container_f">

<foreign-primary-key column-name="[column_name]" cmdb-class-primary-key-
column="[column_name]"/>

<primary-key column-name="[column_name]"/>
<attribute cmdb-attribute-name="[cmdb_attribute_name]" column-

name="[column_name]" from-cmdb-
converter="com.mercury.topaz.fcmdb.adapters.dbAdapter.dal.transform.impl.Generi
cEnumTransformer(generic-enum-transformer-example.xml)" to-cmdb-
converter="com.mercury.topaz.fcmdb.adapters.dbAdapter.dal.transform.impl.Generi
cEnumTransformer(generic-enum-transformer-example.xml)"/>

<attribute cmdb-attribute-name="[cmdb_attribute_name]" column-
name="[column_name]"/>

<attribute cmdb-attribute-name="[cmdb_attribute_name]" column-
name="[column_name]"/>
</class>

 <cmdb-class cmdb-class-name="host" default-table-name="Device">
139

Chapter 6 • The Generic Database Adapter
The default-table-name attribute is taken from the Device table:

➤ The unique identifier in the RDBMS:

➤ The reconciliation rule (reconciliation-by-two-nodes):

➤ The reconciliation attribute in Universal CMDB (cmdb-attribute-name)
and in the RDBMS (column-name):

 <primary-key column-name="Device_ID"/>

<reconciliation-by-two-nodes connected-node-cmdb-class-name="ip" cmdb-link-
type="contained">

<connected-node-attribute cmdb-attribute-name="ip_address" column-
name="[column_name]"/>
140

Chapter 6 • The Generic Database Adapter
➤ The name of the CIT (cmdb-class-name) and the name of the
corresponding table in the RDBMS (default-table-name). Also the
CMDB relationship (connected-cmdb-class-name) and the CIT
relationship (link-class-name):

➤ The primary key and the foreign key:

➤ The unique identifier in the RDBMS:

➤ The mapping between the Universal CMDB attribute (cmdb-attribute-
name) and the column name in the RDBMS (column-name):

 d Save the file.

<class cmdb-class-name="sw_sub_component" default-table-
name="SWSubComponent" connected-cmdb-class-name="host" link-class-
name="container_f">

<foreign-primary-key column-name="Device_ID" cmdb-class-primary-key-
column="Device_ID"/>

 <primary-key column-name="Device_ID"/>

 <attribute cmdb-attribute-name="last_access_time" column-
name="SWSubComponent_LastAccess TimeStamp"/>
141

Chapter 6 • The Generic Database Adapter
 9 Continue with the Procedure
For the rest of the procedure, see the following sections:

➤ “Load the Adapter” on page 162

➤ “Create a Data Store” on page 163

➤ “Create a View” on page 163

➤ “Calculate the Results” on page 165

➤ “View Results” on page 165

➤ “View Reports” on page 167

➤ “Enable Log Files” on page 167
142

Chapter 6 • The Generic Database Adapter
Deploy a Database Adapter – Advanced Method

The following procedure describes the complete method of mapping the
class model in the UCMDB to tables in an RDBMS.

This task includes the following steps:

➤ “Prerequisites” on page 144

➤ “Extract the Database Adapter Configuration File” on page 147

➤ “Deploy the Adapter Package” on page 150

➤ “Deploy the Adapter” on page 151

➤ “Create a CI Type” on page 153

➤ “Create the Relationships” on page 155

➤ “Configure the orm.xml File” on page 157

➤ “Map the Relationships” on page 159

➤ “Configure the reconciliation_rules.txt File” on page 162

➤ “Load the Adapter” on page 162

➤ “Create a Data Store” on page 163

➤ “Create a View” on page 163

➤ “Calculate the Results” on page 165

➤ “View Results” on page 165

➤ “View Reports” on page 167

➤ “Enable Log Files” on page 167
143

Chapter 6 • The Generic Database Adapter
 1 Prerequisites
To validate that you can use the database adapter with your database, check
the following:

➤ The reconciliation classes and their attributes (also known as multinodes)
exist in the database. For example, if the reconciliation is run by host name,
verify that there is a table that contains a column with host names. If the
reconciliation is run according to host cmdb_id, verify that there is a column
with CMDB IDs that matches the CMDB IDs of the hosts in the CMDB. For
details on reconciliation, see “Reconciliation” on page 131.

➤ To correlate two CITs with a relationship, there must be correlation data
between the CIT tables. The correlation can be either by a foreign key
column or by a mapping table. For example, to correlate between host and
ticket, there must be a column in the ticket table that contains the host ID, a
column in the host table with the ticket ID that is connected to it, or a
mapping table whose end1 is the host ID and end2 is the ticket ID. For
details on correlation data, see “Hibernate as JPA Provider” on page 134.

ID HOST_NAME IP_ADDRESS

31 BABA 16.59.33.60

33 ext3.devlab.ad 16.59.59.116

46 LABM1MAM15 16.59.58.188

72 cert-3-j2ee 16.59.57.100

102 labm1sun03.devlab.ad 16.59.58.45

114 LABM2PCOE73 16.59.66.79

116 CUT 16.59.41.214

117 labm1hp4.devlab.ad 16.59.60.182
144

Chapter 6 • The Generic Database Adapter
The following table shows the foreign key HOST_ID column:

➤ Each CIT can be mapped to one or more tables. To map one CIT to more
than one table, check that there is a primary table whose primary key exists
in the other tables, and is a unique value column.

For example, a ticket is mapped to two tables: ticket1 and ticket2. The first
table has columns c1 and c2 and the second table has columns c3 and c4. To
enable them to be considered as one table, both must have the same
primary key. Alternatively, the first table primary key can be a column in the
second table.

HOST_ID CARD_ID CARD_TYPE CARD_NAME

2015 1 Serial Bus
Controller

Intel ® 82801EB USB Universal Host
Controller

3581 2 System Intel ® 631xESB/6321ESB/3100
Chipset LPC

3581 3 Display ATI ES1000

3581 4 Base System
Peripheral

HP ProLiant iLO 2 Legacy Support
Function
145

Chapter 6 • The Generic Database Adapter
In the following example, the tables share the same primary key called
CARD_ID:

CARD_ID CARD_TYPE CARD_NAME

1 Serial Bus Controller Intel ® 82801EB USB Universal Host
Controller

2 System Intel ® 631xESB/6321ESB/3100 Chipset
LPC

3 Display ATI ES1000

4 Base System
Peripheral

HP ProLiant iLO 2 Legacy Support Function

CARD_ID CARD_VENDOR

1 Hewlett-Packard Company

2 (Standard USB Host Controller)

3 Hewlett-Packard Company

4 (Standard system devices)

5 Hewlett-Packard Company
146

Chapter 6 • The Generic Database Adapter
 2 Extract the Database Adapter Configuration File
In this step, you locate the generic database adapter package and make a
copy of it.

 a Locate the dbAdapter package in <HP Universal CMDB root directory>
\UCMDBServer\root\lib\factory_packages.

 b Extract the package to a local temporary directory:

 c Open the adapter\db_adapter.xml file in a text editor.

This file includes the fields that are needed to connect to the data store.
You can use this file as a template (recommended) or you can create a
new XML file from scratch.
147

Chapter 6 • The Generic Database Adapter
 d Locate the adapter-id attribute and replace the name:

There are no restrictions on the name, such as case or special characters.
The name you enter here appears in the list of adapters in the Data Stores
pane in HP Universal CMDB:

For details, see “Data Stores Tab” on page 115.

<adapter-config adapter-id="MyAdapter">
<class-name>com.mercury.topaz.fcmdb.adapters.dbAdapter.DBAdapter

</class-name>
<adapter-capabilities>

<support-federated-query>
<supported-classes>
</supported-classes>

<topology>
<pattern-topology>
</pattern-topology>

</topology>
</support-federated-query>

</adapter-capabilities>
<fields-to-connect>

<field>host</field>
<field>customerId</field>
<field>port</field>
<field>url</field>

</fields-to-connect>
<default-mapping-engine>

com.mercury.topaz.fcmdb.adapters.dbAdapter.reconciliation.mapping_engine.
DBMappingEngine</default-mapping-engine>
</adapter-config>
148

Chapter 6 • The Generic Database Adapter
Important: For consistency’s sake and for ease of use, use this name when
saving the file and when defining the adapter.

 e Create a *.zip file:

 f Give the zip file the same name as you gave to the attribute-id attribute,
as described in step d on page 148.

Note: The descriptor xml file is a default file that exists in every package.
149

Chapter 6 • The Generic Database Adapter
 3 Deploy the Adapter Package
In this step you deploy the package in Package Manager.

 a Save the new package that you created in the previous step in the
following folder: <HP Universal CMDB root directory>\UCMDBServer
\root\lib\customer_packages.

 b In HP Universal CMDB, access Package Manager. For details, see “Package
Manager Window” on page 486.

 c Deploy the adapter: click the Deploy Packages to Server icon:

Click Add and browse to your adapter package. Click Open then OK to
display the package in the Package Manager.

 d Verify that the XML file contents is recognized by Package Manager:
select your package in the list and click View package resources.

The package contains the adapter XML file only.
150

Chapter 6 • The Generic Database Adapter
 4 Deploy the Adapter
In this step, you create the connection between the logic and the definition
of the adapter.

 a Copy the generic database adapter folder under the <HP Universal CMDB
root directory>\j2f\fcmdb\Codebase folder and rename it to the name
of your adapter (the same name that you gave to the adapter-id field you
changed in step d on page 148):
151

Chapter 6 • The Generic Database Adapter
This folder contains the jar files that execute the federation logic, for
example, the adapter name, the queries and classes in Universal CMDB
and the fields in the RDBMS that the adapter supports.

 b Open the new adapter folder and drill down to the META-INF folder:
152

Chapter 6 • The Generic Database Adapter
This folder contains the files that run the adapter. The orm.xml file maps
the Universal CMDB class model to the actual columns and tables in the
RDBMS.

 5 Create a CI Type
In this step you create a federated CIT that is to be mapped to data in the
RDBMS (the external data source).

 a In HP Universal CMDB, access the CI Type Manager and create a new CI
Type. For details, see “Create a CI Type” on page 229.

 b Add the necessary attributes to the CIT, such as last access time, vendor,
and so on. These are the attributes that the adapter will retrieve from the
external data source and bring into HP Universal CMDB views.
153

Chapter 6 • The Generic Database Adapter
Example of creating a host_card CIT

<?xml version="1.0" encoding="UTF-8"?>
<Class class-name="host_card" display-name="Host Card" description="">
<Class-Qualifiers/>
<Class-Type>OBJECT</Class-Type>
<Derived-From class-name="hostresource"/>
<Attributes>

<Attribute name="card_class" display-name="Card Class" description=""
type="string">

<Attribute-Qualifiers/>
</Attribute>
<Attribute name="card_vendor" display-name="Card Vendor" description=""

type="string">
<Attribute-Qualifiers/>

</Attribute>
<Attribute name="card_name" display-name="Card Name" description=""

type="string">
<Attribute-Qualifiers/>

</Attribute>
</Attributes>
<Attribute-Overrides>

<Attribute-Override name="display_label" is-partially-override="true">
<Attribute-Qualifiers>

<Attribute-Qualifier name="CALCULATED_ATTRIBUTE">
<Data-Items>

<Data-Item name="FUNCTION"
type="string">card_name</Data-Item>

</Data-Items>
</Attribute-Qualifier>

</Attribute-Qualifiers>
</Attribute-Override>

</Attribute-Overrides>
</Class>
154

Chapter 6 • The Generic Database Adapter
 6 Create the Relationships
In this step you add a relationship between the HP Universal CMDB CIT and
the new CIT that represents the data to be federated from the external data
source.

Add appropriate, valid relationships to the new CIT. For details, see
“Add/Remove Relationship Dialog Box” on page 240.

Note: At this stage, you cannot yet view the federated data, as you have not
yet defined the method for bringing in the data.
155

Chapter 6 • The Generic Database Adapter
Example of creating a Contained relationship

 a In the CIT Manager, select the two CITs:
156

Chapter 6 • The Generic Database Adapter
 b Create a Contained relationship between the two CITs:

Example of Contained Relationship between host_card and host

 7 Configure the orm.xml File
In this step, you map the CITs in the Universal CMDB to the tables in the
RDBMS.

Tip: We recommend that when building an adapter for the first time, you
use the simplified method. The orm.xml file that is automatically generated
as a result of running that method is a good example that you can use now
when working with the advanced method. For details, see “Deploy a
Database Adapter – Minimal Method” on page 136.

<?xml version="1.0" encoding="UTF-8"?>
<Valid-Links>
<Valid-Link>

<Class-Ref class-name="contained"/>
<End1 class-name="host"/>
<End2 class-name="host_card"/>

</Valid-Link>
</Valid-Links>
157

Chapter 6 • The Generic Database Adapter
 a Open orm.xml in an XML or text editor. This file, by default, contains a
template that you use to map as many CITs and tables as needed for the
federation.

 b Make changes to the file according to the data entities to be mapped. For
details, see the following example.

For details of naming conventions, see “Naming Conventions” on page 181.

Example of Entity Mapping Between the Class Model and the RDBMS

Note: Attributes that do not have to be configured are omitted from the
following examples.

➤ The name and class of the Universal CMDB CIT.

➤ The name of the table in the RDBMS.

➤ The column name of the unique identifier in the RDBMS table.

➤ The name of the attribute in the Universal CMDB CIT.

➤ The name of the table field in the external data source.

➤ The name of the new CIT you created in “Create a CI Type” on page 153.

<entity name="host" class="generic_db_adapter.host">

<table name="Device"/>

<column name="Device ID"/>

<basic name="host_hostname">

<column name="Device_Name"/>

<entity name="MyAdapter" class="generic_db_adapter.MyAdapter">
158

Chapter 6 • The Generic Database Adapter
➤ The name of the corresponding table in the RDBMS.

➤ The two primary key nodes.

➤ The unique identity in the RDBMS.

➤ The attribute name in the Universal CMDB CIT and the name of the
corresponding attribute in the RDBMS:

 8 Map the Relationships
In this step you map relationships in Universal CMDB to the relationships
in the RDBMS. For details on relationships, see “Example of Relationship
Mapping Between the Class Model and the RDBMS” on page 161.

You make changes to the orm.xml file according to the relationships to be
mapped. You define the same relationships in Universal CMDB as exist in
the RDBMS, according to the use case. The following relationships can be
mapped:

<table name="SW_License"/>

<id class="generic_db_adapter.IDClass2PK_SW_Adapter">

<id name="id1">
<column updatable="false" insertable="false" name="Device_ID"/>
<generated-value strategy="TABLE"/>

</id>
<id name="id2">

<column updatable="false" insertable="false" name="Version_ID"/>
<generated-value strategy="TABLE"/>

</id>

<basic name="license_required">
<column updatable="false" insertable="false"

name="MyAdapter_LicenseRequired"/>
159

Chapter 6 • The Generic Database Adapter
➤ One to one:

The code for this type of relationship is:

➤ Many to one:

The code for this type of relationship is:

<one-to-one name="end1" target-entity="host">
<join-column name=“Device_ID" />

</one-to-one>
<one-to-one name="end2" target-entity=“sw_sub_component">

<join-column name=“Device_ID" />
<join-column name=“Version_ID" />

</one-to-one>

<many-to-one name="end1" target-entity="host">
<join-column name=“Device_ID" />

</many-to-one>
<one-to-one name="end2" target-entity=“sw_sub_component">

<join-column name=“Device_ID" />
<join-column name=“Version_ID" />

</one-to-one>
160

Chapter 6 • The Generic Database Adapter
➤ Many to many:

The code for this type of relationship is:

Example of Relationship Mapping Between the Class Model and the
RDBMS

➤ The name and class of the Universal CMDB relationship:

➤ The name of the RDBMS table where the relationship is performed.

➤ The unique ID in the RDBMS:

<many-to-one name="end1" target-entity="host">
<join-column name=“Device_ID" />

</many-to-one>
<many-to-one name="end2" target-entity=“sw_sub_component">

<join-column name=“Device_ID" />
<join-column name=“Version_ID" />

</many-to-one>

<entity name="host_contained_MyAdapter"
class="generic_db_adapter.host_contained_MyAdapter">

<table name="MyAdapter"/>

<id name="id1">
<column updatable="false" insertable="false" name="Device_ID"/>
<generated-value strategy="TABLE"/>

</id>
<id name="id2">

<column updatable="false" insertable="false" name="Version_ID"/>
<generated-value strategy="TABLE"/>

</id>
161

Chapter 6 • The Generic Database Adapter
➤ The relationship type and the Universal CMDB CIT:

➤ The primary key and foreign key fields in the RDBMS:

 9 Configure the reconciliation_rules.txt File
In this step you define the rules by which the adapter reconciles the
Universal CMDB and the RDBMS.

 a Open META-INF\reconciliation_rules.text in a text editor.

 b Make changes to the file according to the CIT you are mapping. For
example, to map a host CIT, use the following expression:

Note:

➤ If the data in the database is case sensitive, do not delete the control
character (^).

➤ Check that each opening square bracket has a matching closing bracket.

 10 Load the Adapter
In this step you load the adapter onto the HP Universal CMDB machine.

Note: Every time you make a change to the adapter, you must redeploy it
using the JMX console.

<many-to-one target-entity="host" name="end1">

<join-column updatable="false" insertable="false" referenced-column-
name="[column_name]" name="Device_ID"/>

multinode[host] ordered expression[^host_hostname]
162

Chapter 6 • The Generic Database Adapter
 a On the HP Universal CMDB server machine, launch the Web browser
and enter the following address:

where <machine name or IP address> is the machine on which
HP Universal CMDB is installed. You may have to log in with the user
name and password.

 b Click the service=Fcmdb Config Services link under the Topaz section.

 c In the JMX MBEAN View page, locate the
loadOrReloadCodeBaseForAdaptorId() operation.

 d In the customerID field, enter 1.

 e In the adaptorId field, enter MyAdapter. (This is the name you gave to
the adapter.)

 f Click Invoke.

 11 Create a Data Store
In this step you check that the federation is working, that is, that the
connection is valid and that the XML file is valid. However, this check does
not verify that the XML is mapping to the correct fields in the RDBMS.

 a In HP Universal CMDB access the Federated CMDB page (Settings >
Federated CMDB).

 b Create a data source. For details, see “Data Stores Tab” on page 115.

The Data Store dialog box displays all CITs that support federation.

 12 Create a View
In this step you create a view that enables you to view instances of the CIT.

 a In HP Universal CMDB access the View Manager (Admin > Modeling >
View Manager).

 b Create a view. For details, see “Create a Template Based View” on
page 162.

http://<machine name or IP address>.<domain_name>:8080/jmx-console
163

Chapter 6 • The Generic Database Adapter
 c You can add conditions to the TQL, for example, the last access time is
greater than six months:
164

Chapter 6 • The Generic Database Adapter
 13 Calculate the Results
In this step you check the results.

 a From the View Manager calculate results: click the Calculate TQL result
count button.

 b Click the Preview button to view the CIs in the CIT.

 14 View Results
In this step you view the results and debug problems in the procedure. For
example, if nothing is shown in the view, check the definitions in the
orm.xml file; remove the relationship attributes and reload the adapter.

 a In HP Universal CMDB access the Topology View (Application >
Topology View).
165

Chapter 6 • The Generic Database Adapter
 b The Properties tab displays the results of the federation:
166

Chapter 6 • The Generic Database Adapter
 15 View Reports
In this step you view Topology reports. For details, see Chapter 28,
“Topology Report.”

 16 Enable Log Files
To understand the calculation flows, adapter lifecycle, and to view debug
information, you can consult the log files. For details, see “Federated
Database Log Files” on page 203.

Reference
167

Chapter 6 • The Generic Database Adapter
The Federated Database Configuration Files

The files discussed in this section are located under the <HP Universal CMDB
root directory>\UCMDBServer\j2f\fcmdb\CodeBase\GenericDBAdapter
\META-INF folder.

This section includes the following topics:

➤ “General Configuration” on page 168

➤ “Advanced Configuration” on page 168

➤ “Hibernate Configuration” on page 168

➤ “Simple Configuration” on page 169

General Configuration

➤ adapter.conf. The adapter configuration file. For details, see “The
adapter.conf File” on page 169.

Advanced Configuration

➤ orm.xml. The object-relational mapping file in which you map between
CMDB CITs and database tables. For details, see “The orm.xml File” on
page 177.

➤ reconciliation_rules.txt. Contains the reconciliation rules. For details, see
“The reconciliation_rules.txt File” on page 181.

➤ transformations.txt. Transformations file in which you specify the
converters to apply to convert from the CMDB value to the database value,
and vice versa. For details, see “The transformations.txt File” on page 182.

Hibernate Configuration

➤ persistence.xml. Used to override out of the box Hibernate configurations.
For details, see “The persistence.xml File” on page 183.
168

Chapter 6 • The Generic Database Adapter
Simple Configuration

➤ simplifiedConfiguration.xml. Configuration file that replaces orm.xml,
transformations.txt, and reconciliation_rules.txt with less capabilities. For
details, see “The simplifiedConfiguration.xml File” on page 170.

The adapter.conf File

This file contains the following settings:

➤ use.simplified.xml.config=false. true: uses simplifiedConfiguration.xml.

Note: Usage of this file means that orm.xml, transformations.txt, and
reconciliation_rules.txt are replaced with less capabilities.

➤ dal.ids.chunk.size=300. Do not change this value.

➤ dal.use.persistence.xml=false. true: the adapter reads the Hibernate
configuration from persistence.xml.

Note: It is not recommended to override the Hibernate configuration.
169

Chapter 6 • The Generic Database Adapter
The simplifiedConfiguration.xml File

This file is used for simple mapping of CMDB classes to database tables. The
template for editing the file is located under the <HP Universal CMDB root
directory>\UCMDBServer\j2f\fcmdb\CodeBase\GenericDBAdapter\META
-INF folder.

This section includes the following topics:

➤ “Example of the XSD File” on page 170

➤ “The Template” on page 173

➤ “Limitations” on page 176

Example of the XSD File
<?xml version="1.0" encoding="UTF-8"?>
<!-- edited with XMLSPY v5 rel. 3 U (http://www.xmlspy.com) by Nimrod (Mercury Interactive) -->
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" elementFormDefault="qualified"
attributeFormDefault="unqualified">
<xs:element name="generic-DB-adapter-config">

<xs:complexType>
<xs:sequence>

<xs:element ref="CMDB-class" maxOccurs="unbounded"/>
<xs:element ref="class" maxOccurs="unbounded"/>

</xs:sequence>
</xs:complexType>

</xs:element>
<xs:element name="class">

<xs:complexType>
<xs:sequence>

<xs:element ref="foreign-primary-key" maxOccurs="unbounded"/>
<xs:element ref="primary-key" maxOccurs="unbounded"/>
<xs:element ref="attribute" minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence>
<xs:attribute name="CMDB-class-name" type="xs:string" use="required"/>
<xs:attribute name="default-table-name" type="xs:string" use="required"/>
<xs:attribute name="connected-CMDB-class-name" type="xs:string" use="required"/>
<xs:attribute name="link-class-name" type="xs:string" use="required"/>

</xs:complexType>
</xs:element>
<xs:element name="reconciliation-by-single-node">

<xs:complexType>
<xs:choice>
170

Chapter 6 • The Generic Database Adapter
<xs:element ref="attribute"/>
<xs:element name="or">

<xs:complexType>
<xs:choice minOccurs="2" maxOccurs="unbounded">

<xs:element name="and">
<xs:complexType>

<xs:sequence>
<xs:element ref="attribute" minOccurs="2"

maxOccurs="unbounded"/>
</xs:sequence>

</xs:complexType>
</xs:element>
<xs:element ref="attribute"/>

</xs:choice>
<xs:attribute name="is-ordered" type="xs:boolean" use="optional"

default="false"/>
</xs:complexType>

</xs:element>
<xs:element name="and">

<xs:complexType>
<xs:sequence>

<xs:element ref="attribute" minOccurs="2" maxOccurs="unbounded"/>
</xs:sequence>

</xs:complexType>
</xs:element>

</xs:choice>
</xs:complexType>

</xs:element>
<xs:element name="primary-key">

<xs:complexType>
<xs:attribute name="column-name" type="xs:string" use="required"/>

</xs:complexType>
</xs:element>
<xs:element name="attribute">

<xs:complexType>
<xs:complexContent>

<xs:extension base="attribute-type"/>
</xs:complexContent>

</xs:complexType>
</xs:element>
<xs:complexType name="attribute-type">

<xs:attribute name="table-name" type="xs:string" use="optional"/>
<xs:attribute name="column-name" type="xs:string" use="required"/>
<xs:attribute name="CMDB-attribute-name" type="xs:string" use="required"/>
<xs:attribute name="from-CMDB-converter" type="xs:string" use="optional"/>
<xs:attribute name="to-CMDB-converter" type="xs:string" use="optional"/>
171

Chapter 6 • The Generic Database Adapter
<xs:attribute name="ignore-case" type="xs:boolean" use="optional" default="false"/>
</xs:complexType>
<xs:complexType name="class-type"/>
<xs:element name="or">

<xs:complexType>
<xs:choice minOccurs="2" maxOccurs="unbounded">

<xs:element ref="and"/>
<xs:element ref="attribute"/>
<xs:element ref="connected-node-attribute"/>

</xs:choice>
<xs:attribute name="is-ordered" type="xs:boolean" use="optional" default="false"/>

</xs:complexType>
</xs:element>
<xs:element name="and">

<xs:complexType>
<xs:choice minOccurs="2" maxOccurs="unbounded">

<xs:element ref="attribute"/>
<xs:element ref="connected-node-attribute"/>

</xs:choice>
</xs:complexType>

</xs:element>
<xs:element name="reconciliation-by-two-nodes">

<xs:complexType>
<xs:sequence>

<xs:choice>
<xs:element ref="attribute"/>
<xs:element ref="connected-node-attribute"/>
<xs:element ref="or"/>
<xs:element ref="and"/>

</xs:choice>
</xs:sequence>
<xs:attribute name="connected-node-CMDB-class-name" type="xs:string" use="required"/>
<xs:attribute name="CMDB-link-type" type="xs:string" use="required"/>
<xs:attribute name="link-direction" use="optional" default="main-to-connected">

<xs:simpleType>
<xs:restriction base="xs:string">

<xs:enumeration value="main-to-connected"/>
<xs:enumeration value="connected-to-main"/>

</xs:restriction>
</xs:simpleType>

</xs:attribute>
</xs:complexType>

</xs:element>
<xs:element name="connected-node-attribute" type="attribute-type"/>
<xs:element name="CMDB-class">

<xs:complexType>
172

Chapter 6 • The Generic Database Adapter
<xs:sequence>
<xs:element ref="primary-key" maxOccurs="unbounded"/>
<xs:choice>

<xs:element ref="reconciliation-by-single-node"/>
<xs:element ref="reconciliation-by-two-nodes"/>

</xs:choice>
</xs:sequence>
<xs:attribute name="CMDB-class-name" type="xs:string" use="required"/>
<xs:attribute name="default-table-name" type="xs:string" use="required"/>

</xs:complexType>
</xs:element>
<xs:element name="foreign-primary-key">

<xs:complexType>
<xs:attribute name="CMDB-class-primary-key-column" type="xs:string" use="required"/>
<xs:attribute name="column-name" type="xs:string" use="required"/>

</xs:complexType>
</xs:element>

</xs:schema>

The Template
The CMDB-class-name property is the multinode type (the node to which
federated CITs connect in the TQL):

reconciliation-by-two-nodes. Reconciliation can be done using one node or
two nodes. In this case example, reconciliation uses two nodes.

connected-node-CMDB-class-name. The second class type needed in the
reconciliation TQL.

CMDB-link-type. The relationship type needed in the reconciliation TQL.

link-direction. The direction of the relationship in the reconciliation TQL
(from host to ip or from ip to host):

<?xml version="1.0" encoding="UTF-8"?>
<generic-DB-adapter-config xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="../META-CONF/simplifiedConfiguration.xsd">
<CMDB-class CMDB-class-name="host" default-table-name="[table_name]">

<primary-key column-name="[column_name]"/>

<reconciliation-by-two-nodes connected-node-CMDB-class-name="ip" CMDB-link-
type="contained" link-direction="main-to-connected">
173

Chapter 6 • The Generic Database Adapter
The reconciliation expression is in the form of ORs and each OR includes
ANDs.

is-ordered. Determines if reconciliation is done in order form or by a regular
OR comparison.

If the reconciliation property is retrieved from the main class (the
multinode), use the attribute tag, otherwise use the connected-node-
attribute tag.

ignore-case. true: when data in the Universal CMDB class model is
compared with data in the RDBMS, case does not matter:

The column name is the name of the foreign key column (the column with
values that point to the multinode primary key column).

If the multinode primary key column is composed of several columns, there
needs to be several foreign key columns, one for each primary key column.

If there are few primary key columns, duplicate this column.

<or is-ordered="true">

<attribute CMDB-attribute-name="host_hostname" column-
name="[column_name]" ignore-case="true"/>

<connected-node-attribute CMDB-attribute-name="ip_address" column-
name="[column_name]"/>

</or>
</reconciliation-by-two-nodes>

</CMDB-class>
<class CMDB-class-name="[CMDB_class_name]" default-table-

name="[default_table_name]" connected-CMDB-class-name="host" link-class-
name="container_f">

<foreign-primary-key column-name="[column_name]" CMDB-class-primary-key-
column="[column_name]"/>

<primary-key column-name="[column_name]"/>
174

Chapter 6 • The Generic Database Adapter
The from-CMDB-converter and to-CMDB-converter properties are Java
classes that implement the following interfaces:

➤ com.mercury.topaz.fcmdb.adapters.dbAdapter.dal.transform.FcmdbDalTransfor
merFromExternalDB

➤ com.mercury.topaz.fcmdb.adapters.dbAdapter.dal.transform.FcmdbDalTransfor
merToExternalDB

Use these converters if the value in the CMDB and in the database are not
the same. For example, the host name in the CMDB has the suffix mer.com.

In this example GenericEnumTransformer is used to convert the enumerator
according to the XML file that is written inside the parenthesis (generic-
enum-transformer-example.xml):

Example of Simple Mapping
<?xml version="1.0" encoding="UTF-8"?>
<generic-DB-adapter-config xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="../META-CONF/simplifiedConfiguration.xsd">
<CMDB-class CMDB-class-name="host" default-table-name="Device">

<primary-key column-name="Device_ID"/>
<reconciliation-by-two-nodes connected-node-CMDB-class-name="ip" CMDB-link-

type="contained">
<or>

<attribute CMDB-attribute-name="host_hostname" column-name="Device_Name"/>
<connected-node-attribute CMDB-attribute-name="ip_address" column-

name="Device_PreferredIPAddress"/>
</or>

</reconciliation-by-two-nodes>
</CMDB-class>

<attribute CMDB-attribute-name="[CMDB_attribute_name]" column-
name="[column_name]" from-CMDB-
converter="com.mercury.topaz.fcmdb.adapters.dbAdapter.dal.transform.impl.GenericE
numTransformer(generic-enum-transformer-example.xml)" to-CMDB-
converter="com.mercury.topaz.fcmdb.adapters.dbAdapter.dal.transform.impl.GenericE
numTransformer(generic-enum-transformer-example.xml)"/>

<attribute CMDB-attribute-name="[CMDB_attribute_name]" column-
name="[column_name]"/>

<attribute CMDB-attribute-name="[CMDB_attribute_name]" column-
name="[column_name]"/>
</class>

</generic-DB-adapter-config>
175

Chapter 6 • The Generic Database Adapter
<class CMDB-class-name="host_card" default-table-name="hwCards" connected-CMDB-class-
name="host" link-class-name="contained">

<foreign-primary-key column-name="Device_ID" CMDB-class-primary-key-column="Device_ID"/>
<primary-key column-name="Device_ID"/>
<primary-key column-name="hwBusesSupported_Seq"/>
<primary-key column-name="hwCards_Seq"/>
<attribute CMDB-attribute-name="card_class" column-name="hwCardClass"/>
<attribute CMDB-attribute-name="card_vendor" column-name="hwCardVendor"/>
<attribute CMDB-attribute-name="card_name" column-name="hwCardName"/>

</class>
<class CMDB-class-name="sw_sub_component" default-table-name="SWSubComponent" connected-

CMDB-class-name="host" link-class-name="contained">
<foreign-primary-key column-name="Device_ID" CMDB-class-primary-key-column="Device_ID"/>
<primary-key column-name="Device_ID"/>
<primary-key column-name="Version_ID"/>
<attribute CMDB-attribute-name="installed_dir" column-

name="SWSubComponent_InstalledDirectory"/>
<attribute CMDB-attribute-name="license_required" column-

name="SWSubComponent_LicenceRequired"/>
<attribute CMDB-attribute-name="last_access_time" column-

name="SWSubComponent_LastAccessTimeStamp"/>
<attribute CMDB-attribute-name="last_access_time_string" column-

name="SWSubComponent_LastAccessTimeStamp"/>
</class>
<class CMDB-class-name="host_scsi_device" default-table-name="hwSCSIDevices" connected-

CMDB-class-name="host" link-class-name="contained">
<foreign-primary-key column-name="Device_ID" CMDB-class-primary-key-column="Device_ID"/>
<primary-key column-name="Device_ID"/>
<primary-key column-name="hwSCSIDevices_Seq"/>
<attribute CMDB-attribute-name="scsi_device_name" column-name="hwSCSIDeviceName"/>
<attribute CMDB-attribute-name="scsi_device_vendor" column-name="hwSCSIDeviceVendor"/>
<attribute CMDB-attribute-name="scsi_device_type" column-name="hwSCSIDeviceType"/>

</class>
</generic-DB-adapter-config>

Limitations

➤ Can be used to map one node TQLs only (in the database source). For
example, you can run a host > ticket and a ticket TQL. To bring the hierarchy
of nodes from the database, you must use the advanced orm.xml file.

➤ Only one-to-many relations are supported. For example, you can bring one
or more tickets on each host. You cannot bring tickets that belong to more
than one host.
176

Chapter 6 • The Generic Database Adapter
➤ You cannot connect the same class to different types of CMDB CITs. For
example, if you define that ticket is connected to host, it cannot be
connected to application as well.

The orm.xml File

This file is used for mapping CMDB CITs to database tables.

A template to use for creating a new file is located in the <HP Universal
CMDB root directory>\UCMDBServer\j2f\fcmdb\CodeBase
\GenericDBAdapter\META-INF folder.

This section includes the following topics:

➤ “The Template” on page 177

➤ “Multiple ORM files” on page 181

➤ “Naming Conventions” on page 181

The Template

Do not change the package name.

entity. The Universal CMDB CIT name. This is the multinode entity.

Make sure that name is the same as class and that class includes a
generic_DB_adapter. prefix.

<?xml version="1.0" encoding="UTF-8"?>
<entity-mappings xmlns="http://java.sun.com/xml/ns/persistence/orm"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" version="1.0"
xsi:schemaLocation="http://java.sun.com/xml/ns/persistence/orm
http://java.sun.com/xml/ns/persistence/orm_1_0.xsd">
<description>Generic DB adapter orm</description>

<package>generic_DB_adapter</package>

<entity name="host" class="generic_DB_adapter.host">
<table name="[table_name]"/>
177

Chapter 6 • The Generic Database Adapter
Use a secondary table if the entity is mapped to more than one table.

For a single table inheritance with discriminator, use the following code:

Attributes with tag id are the primary key columns. Make sure that the
naming convention for these primary key columns are idX (id1, id2, and so
on) where X is the column index in the primary key.

Change only the column name of the primary key.

basic. Used to declare the CMDB attributes. Make sure to edit only name
and column_name properties. The expression is located in the
reconciliation_rules.txt file:

<secondary-table name=""/>
<attributes>

<inheritance strategy="SINGLE_TABLE"/>
<discriminator-value>host</discriminator-value>
<discriminator-column name="[column_name]"/>

<id name="id1">

<column updatable="false" insertable="false" name="[column_name]"/>
<generated-value strategy="TABLE"/>

</id>

<basic name="host_hostname">
<column updatable="false" insertable="false" name="[column_name]"/>

</basic>
<basic name="ip_ip_address">

<column updatable="false" insertable="false" name="[column_name]"/>
</basic>

</attributes>
</entity>
178

Chapter 6 • The Generic Database Adapter
For a single table inheritance with discriminator, map the extending classes
as follows:

The following example shows a CMDB attribute name with no prefix:

<entity name="[cmdb_class_name]" class="generic_DBdb_adapter.nt" name="nt">

<discriminator-value>nt</discriminator-value>
<attributes/>

</entity>
<entity class="generic_DB_adapter.unix" name="unix">

<discriminator-value>unix</discriminator-value>
<attributes/>

</entity>
<entity name="[CMDB_class_name]"

class="generic_DB_adapter.[CMDB[cmdb_class_name]">
<table name="[default_table_name]"/>
<secondary-table name=""/>
<attributes>

<id name="id1">
<column updatable="false" insertable="false" name="[column_name]"/>
<generated-value strategy="TABLE"/>

</id>
<id name="id2">

<column updatable="false" insertable="false" name="[column_name]"/>
<generated-value strategy="TABLE"/>

</id>
<id name="id3">

<column updatable="false" insertable="false" name="[column_name]"/>
<generated-value strategy="TABLE"/>

</id>

<basic name="[CMDB_attribute_name]">
<column updatable="false" insertable="false" name="[column_name]"/>

</basic>
<basic name="[CMDB_attribute_name]">

<column updatable="false" insertable="false" name="[column_name]"/>
</basic>
<basic name="[CMDB_attribute_name]">

<column updatable="false" insertable="false" name="[column_name]"/>
</basic>

</attributes>
</entity>
179

Chapter 6 • The Generic Database Adapter
This is a relationship entity. The naming convention is
end1Type_linkType_end2Type. In this example end1Type is host and the
linkType is container_f.

The target entity is the entity that this property is pointing to. In this
example, end1 is mapped to host entity.

many-to-one. Many relationships can be connected to one host.

join-column. The column that contains end1 IDs (the target entity IDs).

referenced-column-name. The column name in the target entity (host) that
contain the IDs that are used in the join column.

one-to-one. One relationship can be connected to one [CMDB_class_name].

<entity name="host_container_f_[CMDB_class_name]"
class="generic_DB_adapter.host_container_f_[CMDB_class_name]">

<table name="[default_table_name]"/>
<attributes>

<id name="id1">
<column updatable="false" insertable="false" name="[column_name]"/>
<generated-value strategy="TABLE"/>

</id>

<many-to-one target-entity="host" name="end1">
<join-column updatable="false" insertable="false" referenced-column-

name="[column_name]" name="[column_name]"/>
</many-to-one>

<one-to-one target-entity="[CMDB_class_name]" name="end2">
<join-column updatable="false" insertable="false" referenced-column-

name="" name="[column_name]"/>
</one-to-one>

</attributes>
</entity>

</entity-mappings>
180

Chapter 6 • The Generic Database Adapter
Multiple ORM files
Multiple mapping files are supported from version 7.5.1. Each mapping file
name should end with orm.xml. All mapping files should be placed under
the META-INF folder of the adapter.

Naming Conventions

➤ In each entity, the class property must match the name property with the
prefix of generic_DB_adapter.

➤ Primary key columns must take names of the form idX where X = 1, 2, ...,
according to the number of primary keys in the table.

➤ If an entity has more than one primary key column, you must add an id
class as a separate entity. The name takes the form
IdClassXPK_cmdbClassName where X is replaced with the number of
primary key columns and className is replaced with the entity name with
which this id class is associated.

➤ Entity names must match class names even as regards case.

➤ Attribute names must match class attribute names even as regards case.

➤ The relationship name takes the form end1Type_linkType_end2Type.

➤ CMDB CITs, which are also reserved words in Java, should be prefixed by
gdba_. For example, for the CMDB CIT goto, the ORM entity should be
named gdba_goto.

The reconciliation_rules.txt File

➤ This file is used to configure the reconciliation rules.

➤ Each row in the file represents a rule. For example:

➤ The multinode is filled with the multinode name (the CMDB CIT that is
connected to the federated database CIT in the TQL).

multinode[host] expression[^host.host_hostname OR ip.ip_address] end1_type[host]
end2_type[ip] link_type[contained]
181

Chapter 6 • The Generic Database Adapter
➤ This expression includes the logic that decides whether two multinodes are
equal (one multinode in the UCMDB and the other in the database source).

➤ The expression is composed of ORs or ANDs.

➤ The convention regarding attribute names in the expression part is
[className].[attributeName]. For example, attribute ip_address in the ip class
is written ip.ip_address.

➤ For an ordered match (if the first OR sub-expression returns an answer that
the multinodes are not equal, the second OR sub-expression is not
compared), then use ordered expression instead of expression.

➤ To ignore case during a comparison, use the control sign (^) sign.

➤ The parameters end1_type, end2_type and link_type are used only if the
reconciliation TQL contains two nodes and not just a multinode. In this
case, the reconciliation TQL is end1_type > (link_type) > end2_type.

➤ There is no need to add the relevant layout as it is taken from the
expression.

The transformations.txt File

This file contains all the converter definitions.

The format is that each line contains a new definition.

The Template

entity. The entity name as it appears in the orm.xml file.

attribute. The attribute name as it appears in the orm.xml file.

entity[[CMDB_class_name]] attribute[[CMDB_attribute_name]]
to_DB_class[com.mercury.topaz.fcmdb.adapters.dbAdapter.dal.
transform.impl.GenericEnumTransformer(generic-enum-transformer-example.xml)]
from_DB_class[com.mercury.topaz.fcmdb.adapters.dbAdapter.dal.transform.impl.
GenericEnumTransformer(generic-enum-transformer-example.xml)]
182

Chapter 6 • The Generic Database Adapter
to_DB_class. The full, qualified name of a class that implements the
interface
com.mercury.topaz.fcmdb.adapters.dbAdapter.dal.transform.FcmdbDalTra
nsformerToExternalDB. The elements in the parenthesis are given to this
class constructor. Use this converter to transform CMDB values to database
values, for example, to append the suffix of .com to each host name.

from_DB_class. The full, qualified name of a class that implements the
com.mercury.topaz.fcmdb.adapters.dbAdapter.dal.transform.
FcmdbDalTransformerFromExternalDB interface. The elements in the
parenthesis are given to this class constructor. Use this converter to
transform database values to CMDB values, for example, to append the
suffix of .com to each host name.

For details, see “Out of the Box Converters” on page 186.

The persistence.xml File

This file is used to override the default Hibernate settings and to add support
for database types that are not out of the box (OOB database types are
Oracle Server, Microsoft MSSQL Server, and MySQL).

If you need to support a new database type, make sure that you supply a
connection pool provider (the default is c3p0) and a JDBC driver for your
database (put the *.jar files in the adapter folder).

To see all available Hibernate values that can be changed, check the
org.hibernate.cfg.Environment class.
183

Chapter 6 • The Generic Database Adapter
Example of the persistence.xml file

<persistence xmlns="http://java.sun.com/xml/ns/persistence"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://java.sun.com/xml/ns/persistence
 http://java.sun.com/xml/ns/persistence/persistence_1_0.xsd" version="1.0">
<!-- Don't change this value -->
<persistence-unit name="GenericDBAdapter">

<properties>
<!-- Don't change this value -->
<property name="hibernate.archive.autodetection" value="class, hbm"/>
<!--The driver class name"/-->
<property name="hibernate.connection.driver_class"

value="com.mercury.jdbc.MercOracleDriver"/>
<!--The connection url"/-->
<property name="hibernate.connection.url"

value="jdbc:mercury:oracle://artist:1521;sid=cmdb2"/>
<!--DB login credentials"/-->
<property name="hibernate.connection.username" value="CMDB"/>
<property name="hibernate.connection.password" value="CMDB"/>
<!--connection pool properties"/-->
<property name="hibernate.c3p0.min_size" value="5"/>
<property name="hibernate.c3p0.max_size" value="20"/>
<property name="hibernate.c3p0.timeout" value="300"/>
<property name="hibernate.c3p0.max_statements" value="50"/>
<property name="hibernate.c3p0.idle_test_period" value="3000"/>
<!--The dialect to use-->
<property name="hibernate.dialect"

value="org.hibernate.dialect.OracleDialect"/>
</properties>

</persistence-unit>
</persistence>
184

Chapter 6 • The Generic Database Adapter
The discriminator.properties File

This file maps each supported CI type (that is also used as a discriminator
value in orm.xml) to a comma-separated list of possible corresponding
values of the discriminator column.

Example of discriminator mapping

The discriminator.properties file includes the following code:

The orm.xml file includes the following code:

The [discriminator_column] attribute is calculated as follows:

➤ The discriminator column of the corresponding table contains 10002 for a
certain entry. The entry is mapped to the nt CIT.

➤ The discriminator column of the corresponding table contains 10006 for a
certain entry. The entry is mapped to the unix CIT.

➤ The discriminator column of the corresponding table contains 10010 for a
certain entry. The entry is mapped to the host CIT.

Note that the host CIT is also the parent of nt and unix.

host=10001, 10005,10010,10011,10012
nt=10002,10003
unix=10004,10006,10008

<entity class="generic_DB_adapter.host" name="host">
<table name="[table_name]"/>
…
<inheritance strategy="SINGLE_TABLE"/>
<discriminator-value>host</discriminator-value>
<discriminator-column name="[discriminator_column]"/>
…

</entity>
<entity class="generic_DB_adapter.nt" name="nt">

<discriminator-value>nt</discriminator-value>
<attributes/>

</entity>
<entity class="generic_DB_adapter.unix" name="unix">

<discriminator-value>unix</discriminator-value>
<attributes/>

</entity>
185

Chapter 6 • The Generic Database Adapter
The replication_config.txt File

This file contains a comma-separated list of CI and relationship types whose
property conditions are supported by the replication plugin. For details, see
“Plugins” on page 190.

The fixed_values.txt File

This file enables you to configure fixed values for specific attributes of
certain CITs. In this way, each of these attributes can be assigned a fixed
value that is not stored in the database.

The file should contain zero or more entries of the following format:

For example:

Out of the Box Converters

You can use the following converters (transformers) to convert federated
queries and replication jobs to and from database data.

This section includes the following topics:

➤ “The enum-transformer Converter” on page 187

➤ “The SuffixTransformer Converter” on page 189

➤ “The PrefixTransformer Converter” on page 189

➤ “The BytesToStringTransformer Converter” on page 189

entity[<entityName>] attribute[<attributeName>] value[<value>]

entity[ip] attribute[ip_domain] value[DefaultDomain]
186

Chapter 6 • The Generic Database Adapter
The enum-transformer Converter
This converter uses an XML file that is given as an input parameter.

The XML file maps between hard-coded CMDB values and database values
(enums). If one of the values does not exist, you can choose to return the
same value, return null, or throw an exception.

Use one XML mapping file for each entity attribute.

Note: This converter can be used for both the to_DB_class and
from_DB_class fields in the transformations.txt file.

Example of the input file XSD
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" elementFormDefault="qualified"
attributeFormDefault="unqualified">
<xs:element name="enum-transformer">

<xs:complexType>
<xs:sequence>

<xs:element ref="value" minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>
<xs:attribute name="DB-type" use="required">

<xs:simpleType>
<xs:restriction base="xs:string">

<xs:enumeration value="integer"/>
<xs:enumeration value="long"/>
<xs:enumeration value="float"/>
<xs:enumeration value="double"/>
<xs:enumeration value="boolean"/>
<xs:enumeration value="string"/>
<xs:enumeration value="date"/>
<xs:enumeration value="xml"/>
<xs:enumeration value="bytes"/>

</xs:restriction>
</xs:simpleType>

</xs:attribute>
<xs:attribute name="CMDB-type" use="required">

<xs:simpleType>
<xs:restriction base="xs:string">

<xs:enumeration value="integer"/>
<xs:enumeration value="long"/>
187

Chapter 6 • The Generic Database Adapter
<xs:enumeration value="float"/>
<xs:enumeration value="double"/>
<xs:enumeration value="boolean"/>
<xs:enumeration value="string"/>
<xs:enumeration value="date"/>
<xs:enumeration value="xml"/>
<xs:enumeration value="bytes"/>

</xs:restriction>
</xs:simpleType>

</xs:attribute>
<xs:attribute name="non-existing-value-action" use="required">

<xs:simpleType>
<xs:restriction base="xs:string">

<xs:enumeration value="return-null"/>
<xs:enumeration value="return-original"/>
<xs:enumeration value="throw-exception"/>

</xs:restriction>
</xs:simpleType>

</xs:attribute>
</xs:complexType>

</xs:element>
<xs:element name="value">

<xs:complexType>
<xs:attribute name="CMDB-value" type="xs:string" use="required"/>
<xs:attribute name="external-DB-value" type="xs:string" use="required"/>

</xs:complexType>
</xs:element>

</xs:schema>

Example of Converting sys Value to System Value

In this example, sys value in the CMDB is transformed into System value in
the federated database, and System value in the federated database is
transformed into sys value in the CMDB.

If the value does not exist in the XML file (for example, the string demo), the
converter returns the same input value it receives.

<enum-transformer CMDB-type="string" DB-type="string" non-existing-value-action="return-original"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:noNamespaceSchemaLocation="../META-
CONF/generic-enum-transformer.xsd">
<value CMDB-value="sys" external-DB-value="System"/>

</enum-transformer>
188

Chapter 6 • The Generic Database Adapter
The SuffixTransformer Converter
This converter is used to add or remove suffixes from the CMDB or federated
database source value.

There are two implementations:

➤ com.mercury.topaz.fcmdb.adapters.dbAdapter.dal.transform.impl.AdapterToC
mdbAddSuffixTransformer. Adds the suffix (given as input) when
converting from federated database value to CMDB value and removes the
suffix when converting from CMDB value to federated database value.

➤ com.mercury.topaz.fcmdb.adapters.dbAdapter.dal.transform.impl.AdapterToC
mdbRemoveSuffixTransformer. Removes the suffix (given as input) when
converting from federated database value to CMDB value and adds the
suffix when converting from CMDB value to federated database value.

The PrefixTransformer Converter
This converter is used to add or remove a prefix from the CMDB or federated
database value.

There are two implementations:

➤ com.mercury.topaz.fcmdb.adapters.dbAdapter.dal.transform.impl.AdapterToC
mdbAddPrefixTransformer. Adds the prefix (given as input) when
converting from federated database value to CMDB value and removes the
prefix when converting from CMDB value to federated database value.

➤ com.mercury.topaz.fcmdb.adapters.dbAdapter.dal.transform.impl.AdapterToC
mdbRemovePrefixTransformer. Removes the prefix (given as input) when
converting from federated database value to CMDB value and adds the
prefix when converting from CMDB value to federated database value.

The BytesToStringTransformer Converter
This converter is used to convert byte arrays in the UCMDB to their string
representation in the federated database source.

The converter is:
com.mercury.topaz.fcmdb.adapters.dbAdapter.dal.transform.impl.CmdbTo
AdapterBytesToStringTransformer.
189

Chapter 6 • The Generic Database Adapter
Plugins

The generic database adapter supports the following plugins:

➤ A mandatory plugin for full topology synchronization.

➤ A mandatory plugin for synchronizing changes in topology.

➤ A mandatory plugin for synchronizing layout.

➤ An optional plugin to retrieve supported queries for synchronization. If this
plugin is not defined, all TQL names are returned.

➤ An internal, optional plugin to change the TQL definition and TQL result.

➤ An internal, optional plugin to change a layout request and CIs result.

➤ An internal, optional plugin to change a layout request and relationships
result.

The plugins are configured using the plugins.txt file under the META-INF
folder of the adapter.

Configuration Examples

This section gives examples of configurations.

This section includes the following topics:

➤ “Use Case” on page 190

➤ “Single Node Reconciliation” on page 191

➤ “Two Node Reconciliation” on page 193

➤ “Using a Primary Key that Contains More Than One Column” on page 198

➤ “Using Transformations” on page 201

Use Case
Use case. A TQL is:

host > (container_f) > host_card
190

Chapter 6 • The Generic Database Adapter
where:

host is the UCMDB entity

host_card is the federated database source entity

container_f is the relationship between them

The example is run against the ED database. ED hosts is stored in the Device
table and host_card is stored in the hwCards table. In the following
examples, host_card is always mapped in the same manner.

Single Node Reconciliation
In this example the reconciliation is run against the host_hostname
property.

Simplified Definition

The multinode is the host and it is emphasized by the special tag
CMDB-class.

<?xml version="1.0" encoding="UTF-8"?>
<generic-DB-adapter-config xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="../META-CONF/simplifiedConfiguration.xsd">
<CMDB-class CMDB-class-name="host" default-table-name="Device">

<primary-key column-name="Device_ID"/>
<reconciliation-by-single-node>

<or>
<attribute CMDB-attribute-name="host_hostname" column-name="Device_Name"/>

</or>
</reconciliation-by-single-node>

</CMDB-class>
<class CMDB-class-name="host_card" default-table-name="hwCards" connected-CMDB-class-

name="host" link-class-name="container_f">
<foreign-primary-key column-name="Device_ID" CMDB-class-primary-key-column="Device_ID"/>
<primary-key column-name="hwCards_Seq"/>
<attribute CMDB-attribute-name="card_class" column-name="hwCardClass"/>
<attribute CMDB-attribute-name="card_vendor" column-name="hwCardVendor"/>
<attribute CMDB-attribute-name="card_name" column-name="hwCardName"/>

</class>
</generic-DB-adapter-config>
191

Chapter 6 • The Generic Database Adapter
Advanced Definition

The orm.xml File

Pay attention to the addition of the relationship mapping. For details, see
the definition section in “The orm.xml File” on page 177.

Example of the orm.xml File
<?xml version="1.0" encoding="UTF-8"?>
<entity-mappings xmlns="http://java.sun.com/xml/ns/persistence/orm"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://java.sun.com/xml/ns/persistence/orm
http://java.sun.com/xml/ns/persistence/orm_1_0.xsd" version="1.0">
<description>Generic DB adapter orm</description>
<package>generic_DB_adapter</package>
<entity class="generic_DB_adapter.host" name="host">

<table name="Device"/>
<attributes>

<id name="id1">
<column name="Device_ID" insertable="false" updatable="false"/>
<generated-value strategy="TABLE"/>

</id>
<basic name="host_hostname">

<column name="Device_Name"/>
</basic>

</attributes>
</entity>
<entity class="generic_DB_adapter.host_card" name="host_card">

<table name="hwCards"/>
<attributes>

<id name="id1">
<column name="hwCards_Seq" insertable="false" updatable="false"/>
<generated-value strategy="TABLE"/>

</id>
<basic name="card_class">

<column name="hwCardClass" insertable="false" updatable="false"/>
</basic>
<basic name="card_vendor">

<column name="hwCardVendor" insertable="false" updatable="false"/>
</basic>
<basic name="card_name">

<column name="hwCardName" insertable="false" updatable="false"/>
</basic>

</attributes>
</entity>
192

Chapter 6 • The Generic Database Adapter
<entity class="generic_DB_adapter.host_container_f_host_card"
name="host_container_f_host_card">

<table name="hwCards"/>
<attributes>

<id name="id1">
<column name="hwCards_Seq" insertable="false" updatable="false"/>
<generated-value strategy="TABLE"/>

</id>
<many-to-one name="end1" target-entity="host">

<join-column name="Device_ID" insertable="false" updatable="false"/>
</many-to-one>
<one-to-one name="end2" target-entity="host_card">

<join-column name="hwCards_Seq" referenced-column-name="hwCards_Seq"
insertable="false" updatable="false"/>

</one-to-one>
</attributes>

</entity>
</entity-mappings>

The reconciliation_rules.txt File

For details, see “The reconciliation_rules.txt File” on page 181.

The transformation.txt File

This file remains empty as no values need to be converted in this example.

Two Node Reconciliation
In this example, reconciliation is calculated according to the host_hostname
and ip_address properties with different variations.

The reconciliation TQL is host > (contained) > ip.

multinode[host] expression[host.host_hostname]
193

Chapter 6 • The Generic Database Adapter
Simplified Definition

The reconciliation is host_hostname OR ip_address:

<?xml version="1.0" encoding="UTF-8"?>
<generic-DB-adapter-config xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="../META-CONF/simplifiedConfiguration.xsd">
<CMDB-class CMDB-class-name="host" default-table-name="Device">

<primary-key column-name="Device_ID"/>
<reconciliation-by-two-nodes connected-node-CMDB-class-name="ip" CMDB-link-

type="contained">
<or>

<attribute CMDB-attribute-name="host_hostname" column-
name="Device_Name"/>

<connected-node-attribute CMDB-attribute-name="ip_address" column-
name="Device_PreferredIPAddress"/>

</or>
</reconciliation-by-two-nodes>

</CMDB-class>
<class CMDB-class-name="host_card" default-table-name="hwCards" connected-

CMDB-class-name="host" link-class-name="contained">
<foreign-primary-key column-name="Device_ID" CMDB-class-primary-key-

column="Device_ID"/>
<primary-key column-name="hwCards_Seq"/>
<attribute CMDB-attribute-name="card_class" column-name="hwCardClass"/>
<attribute CMDB-attribute-name="card_vendor" column-name="hwCardVendor"/>
<attribute CMDB-attribute-name="card_name" column-name="hwCardName"/>

</class>
</generic-DB-adapter-config>
194

Chapter 6 • The Generic Database Adapter
The reconciliation is host_hostname AND ip_address:

<?xml version="1.0" encoding="UTF-8"?>
<generic-DB-adapter-config xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="../META-CONF/simplifiedConfiguration.xsd">
<CMDB-class CMDB-class-name="host" default-table-name="Device">

<primary-key column-name="Device_ID"/>
<reconciliation-by-two-nodes connected-node-CMDB-class-name="ip" CMDB-link-

type="contained">
<and>

<attribute CMDB-attribute-name="host_hostname" column-
name="Device_Name"/>

<connected-node-attribute CMDB-attribute-name="ip_address" column-
name="Device_PreferredIPAddress"/>

</and>
</reconciliation-by-two-nodes>

</CMDB-class>
<class CMDB-class-name="host_card" default-table-name="hwCards" connected-

CMDB-class-name="host" link-class-name="contained">
<foreign-primary-key column-name="Device_ID" CMDB-class-primary-key-

column="Device_ID"/>
<primary-key column-name="hwCards_Seq"/>
<attribute CMDB-attribute-name="card_class" column-name="hwCardClass"/>
<attribute CMDB-attribute-name="card_vendor" column-name="hwCardVendor"/>
<attribute CMDB-attribute-name="card_name" column-name="hwCardName"/>

</class>
</generic-DB-adapter-config>
195

Chapter 6 • The Generic Database Adapter
The reconciliation is ip_address:

Advanced Definition

The orm.xml File

Since the reconciliation expression is not defined in this file, the same
version can be used for both OR and AND and for ip_address alone.

Example of the orm.xml File
<?xml version="1.0" encoding="UTF-8"?>
<entity-mappings xmlns="http://java.sun.com/xml/ns/persistence/orm"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://java.sun.com/xml/ns/persistence/orm
http://java.sun.com/xml/ns/persistence/orm_1_0.xsd" version="1.0">
<description>Generic DB adapter orm</description>
<package>generic_DB_adapter</package>
<entity class="generic_DB_adapter.host" name="host">

<table name="Device"/>
<attributes>

<?xml version="1.0" encoding="UTF-8"?>
<generic-DB-adapter-config xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="../META-CONF/simplifiedConfiguration.xsd">
<CMDB-class CMDB-class-name="host" default-table-name="Device">

<primary-key column-name="Device_ID"/>
<reconciliation-by-two-nodes connected-node-CMDB-class-name="ip" CMDB-link-

type="contained">
<or>

<connected-node-attribute CMDB-attribute-name="ip_address" column-
name="Device_PreferredIPAddress"/>

</or>
</reconciliation-by-two-nodes>

</CMDB-class>
<class CMDB-class-name="host_card" default-table-name="hwCards" connected-

CMDB-class-name="host" link-class-name="contained">
<foreign-primary-key column-name="Device_ID" CMDB-class-primary-key-

column="Device_ID"/>
<primary-key column-name="hwCards_Seq"/>
<attribute CMDB-attribute-name="card_class" column-name="hwCardClass"/>
<attribute CMDB-attribute-name="card_vendor" column-name="hwCardVendor"/>
<attribute CMDB-attribute-name="card_name" column-name="hwCardName"/>

</class>
</generic-DB-adapter-config>
196

Chapter 6 • The Generic Database Adapter
<id name="id1">
<column name="Device_ID" insertable="false" updatable="false"/>
<generated-value strategy="TABLE"/>

</id>
<basic name="host_hostname">

<column name="Device_Name" insertable="false" updatable="false"/>
</basic>
<basic name="ip_ip_address">

<column name="Device_PreferredIPAddress" insertable="false" updatable="false"/>
</basic>

</attributes>
</entity>
<entity class="generic_DB_adapter.host_card" name="host_card">

<table name="hwCards"/>
<attributes>

<id name="id1">
<column name="hwCards_Seq" insertable="false" updatable="false"/>
<generated-value strategy="TABLE"/>

</id>
<basic name="card_class">

<column name="hwCardClass" insertable="false" updatable="false"/>
</basic>
<basic name="card_vendor">

<column name="hwCardVendor" insertable="false" updatable="false"/>
</basic>
<basic name="card_name">

<column name="hwCardName" insertable="false" updatable="false"/>
</basic>

</attributes>
</entity>
<entity class="generic_DB_adapter.host_container_f_host_card"

name="host_container_f_host_card">
<table name="hwCards"/>
<attributes>

<id name="id1">
<column name="hwCards_Seq" insertable="false" updatable="false"/>
<generated-value strategy="TABLE"/>

</id>
<many-to-one name="end1" target-entity="host">

<join-column name="Device_ID" insertable="false" updatable="false"/>
</many-to-one>
<one-to-one name="end2" target-entity="host_card">

<join-column name="hwCards_Seq" referenced-column-name="hwCards_Seq"
insertable="false" updatable="false"/>
197

Chapter 6 • The Generic Database Adapter
</one-to-one>
</attributes>

</entity>
</entity-mappings>

The reconciliation_rules.txt File

For more information, see “The reconciliation_rules.txt File” on page 181.

The transformation.txt File

This file remains empty as no values need to be converted in this example.

Using a Primary Key that Contains More Than One
Column
If the primary key is composed of more than one column, the following
code is added to the XMLS definitions:

multinode[host] expression[ip.ip_address OR host.host_hostname] end1_type[host]
end2_type[ip] link_type[contained]

multinode[host] expression[ip.ip_address AND host.host_hostname] end1_type[host]
end2_type[ip] link_type[contained]

multinode[host] expression[ip.ip_address] end1_type[host] end2_type[ip]
link_type[contained]
198

Chapter 6 • The Generic Database Adapter
Simplified Definition

There is more than one primary key tag and for each column there is a tag.

Advanced Definition

The orm.xml File

A new id entity is added that maps to the primary key columns. Entities that
use this id entity must add a special tag.

If you use a foreign key for such a primary key, you must map between each
column in the foreign key to a column in the primary key.

For details, see “The orm.xml File” on page 177.

<?xml version="1.0" encoding="UTF-8"?>
<generic-DB-adapter-config xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="../META-CONF/simplifiedConfiguration.xsd">
<CMDB-class CMDB-class-name="host" default-table-name="Device">

<primary-key column-name="Device_ID"/>
<reconciliation-by-two-nodes connected-node-CMDB-class-name="ip" CMDB-link-

type="contained">
<or>

<attribute CMDB-attribute-name="host_hostname" column-
name="Device_Name"/>

<connected-node-attribute CMDB-attribute-name="ip_address" column-
name="Device_PreferredIPAddress"/>

</or>
</reconciliation-by-two-nodes>

</CMDB-class>
<class CMDB-class-name="host_card" default-table-name="hwCards" connected-

CMDB-class-name="host" link-class-name="contained">
<foreign-primary-key column-name="Device_ID" CMDB-class-primary-key-

column="Device_ID"/>
<primary-key column-name="Device_ID"/>
<primary-key column-name="hwBusesSupported_Seq"/>
<primary-key column-name="hwCards_Seq"/>
<attribute CMDB-attribute-name="card_class" column-name="hwCardClass"/>
<attribute CMDB-attribute-name="card_vendor" column-name="hwCardVendor"/>
<attribute CMDB-attribute-name="card_name" column-name="hwCardName"/>

</class>
</generic-DB-adapter-config>
199

Chapter 6 • The Generic Database Adapter
Example of the orm.xml File
<?xml version="1.0" encoding="UTF-8"?>
<entity-mappings xmlns="http://java.sun.com/xml/ns/persistence/orm"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://java.sun.com/xml/ns/persistence/orm
http://java.sun.com/xml/ns/persistence/orm_1_0.xsd" version="1.0">
<description>Generic DB adapter orm</description>
<package>generic_DB_adapter</package>
<entity class="generic_DB_adapter.host" name="host">

<table name="Device"/>
<attributes>

<id name="id1">
<column name="Device_ID" insertable="false" updatable="false"/>
<generated-value strategy="TABLE"/>

</id>
<basic name="host_hostname">

<column name="Device_Name"/>
</basic>

</attributes>
</entity>
<entity class="generic_DB_adapter.host_card" name="host_card">

<table name="hwCards"/>
<attributes>

<id name="id1">
<column name="Device_ID" insertable="false" updatable="false"/>
<generated-value strategy="TABLE"/>

</id>
<id name="id2">

<column name="hwBusesSupported_Seq" insertable="false" updatable="false"/>
<generated-value strategy="TABLE"/>

</id>
<id name="id3">

<column name="hwCards_Seq" insertable="false" updatable="false"/>
<generated-value strategy="TABLE"/>

</id>
<basic name="card_class">

<column name="hwCardClass" insertable="false" updatable="false"/>
</basic>
<basic name="card_vendor">

<column name="hwCardVendor" insertable="false" updatable="false"/>
</basic>
<basic name="card_name">

<column name="hwCardName" insertable="false" updatable="false"/>
</basic>

</attributes>
</entity>
200

Chapter 6 • The Generic Database Adapter
<entity class="generic_DB_adapter.host_contained_host_card" name="host_contained_host_card">
<table name="hwCards"/>
<attributes>

<id name="id1">
<column name="Device_ID" insertable="false" updatable="false"/>
<generated-value strategy="TABLE"/>

</id>
<id name="id2">

<column name="hwBusesSupported_Seq" insertable="false" updatable="false"/>
<generated-value strategy="TABLE"/>

</id>
<id name="id3">

<column name="hwCards_Seq" insertable="false" updatable="false"/>
<generated-value strategy="TABLE"/>

</id>
<many-to-one name="end1" target-entity="host">

<join-column name="Device_ID" insertable="false" updatable="false"/>
</many-to-one>
<one-to-one name="end2" target-entity="host_card">

<join-column name="Device_ID" referenced-column-name="Device_ID" insertable="false"
updatable="false"/>

<join-column name="hwBusesSupported_Seq" referenced-column-
name="hwBusesSupported_Seq" insertable="false" updatable="false"/>

<join-column name="hwCards_Seq" referenced-column-name="hwCards_Seq"
insertable="false" updatable="false"/>

</one-to-one>
</attributes>

</entity>
</entity-mappings>

Using Transformations
In the following example, the generic enum transformer is converted from
values 1, 2, 3 to values a, b, c respectively in the host_hostname column.

The mapping file is generic-enum-transformer-example.xml.

<enum-transformer CMDB-type="string" DB-type="string" non-existing-value-
action="return-original" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="../META-CONF/generic-enum-transformer.xsd">
<value CMDB-value="1" external-DB-value="a"/>
<value CMDB-value="2" external-DB-value="b"/>
<value CMDB-value="3" external-DB-value="c"/>

</enum-transformer>
201

Chapter 6 • The Generic Database Adapter
Simplified Definition

Advanced Definition

There is a change only to the transformation.txt file.

<?xml version="1.0" encoding="UTF-8"?>
<generic-DB-adapter-config xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="../META-CONF/simplifiedConfiguration.xsd">
<CMDB-class CMDB-class-name="host" default-table-name="Device">

<primary-key column-name="Device_ID"/>
<reconciliation-by-two-nodes connected-node-CMDB-class-name="ip" CMDB-link-

type="contained">
<or>

<attribute CMDB-attribute-name="host_hostname" column-
name="Device_Name" from-CMDB-
converter="com.mercury.topaz.fcmdb.adapters.dbAdapter.dal.transform.impl.GenericE
numTransformer(generic-enum-transformer-example.xml)" to-CMDB-
converter="com.mercury.topaz.fcmdb.adapters.dbAdapter.dal.transform.impl.GenericE
numTransformer(generic-enum-transformer-example.xml)"/>

<connected-node-attribute CMDB-attribute-name="ip_address" column-
name="Device_PreferredIPAddress"/>

</or>
</reconciliation-by-two-nodes>

</CMDB-class>
<class CMDB-class-name="host_card" default-table-name="hwCards" connected-

CMDB-class-name="host" link-class-name="contained">
<foreign-primary-key column-name="Device_ID" CMDB-class-primary-key-

column="Device_ID"/>
<primary-key column-name="hwCards_Seq"/>
<attribute CMDB-attribute-name="card_class" column-name="hwCardClass"/>
<attribute CMDB-attribute-name="card_vendor" column-name="hwCardVendor"/>
<attribute CMDB-attribute-name="card_name" column-name="hwCardName"/>

</class>
</generic-DB-adapter-config>
202

Chapter 6 • The Generic Database Adapter
The transformation.txt File

Make sure that the attribute names and entity names are the same as in the
orm.xml file.

Federated Database Log Files

To understand the calculation flows and adapter lifecycle, and to view debug
information, you can consult the following log files.

This section includes the following topics:

➤ “Log Levels” on page 203

➤ “Log Locations” on page 204

Log Levels
You can configure the log level for each of the logs.

Open the following file in a text editor: <HP Universal CMDB root
directory>\j2f\conf\core\Tools\log4j\fcmdb\fcmdb.gdba.properties.

The default log level is ERROR:

➤ To increase the log level for all log files, change loglevel=ERROR to
loglevel=DEBUG or loglevel=INFO.

entity[host] attribute[host_hostname]
to_DB_class[com.mercury.topaz.fcmdb.adapters.dbAdapter.dal.transform.impl.Generic
EnumTransformer(generic-enum-transformer-example.xml)]
from_DB_class[com.mercury.topaz.fcmdb.adapters.dbAdapter.dal.transform.impl.Gene
ricEnumTransformer(generic-enum-transformer-example.xml)]

#loglevel can be any of DEBUG INFO WARN ERROR FATAL
loglevel=ERROR
203

Chapter 6 • The Generic Database Adapter
➤ To change the log level for a specific file, change the specific log4j category
line accordingly. For example, to change the log level of
fcmdb.gdba.dal.sql.log to INFO, change

to:

Log Locations
The log files are located in the following directory: <HP Universal CMDB
root directory>\j2f\log\fcmdb\.

➤ Fcmdb.gdba.log

The adapter lifecycle log. Gives details about when the adapter started or
stopped, and which CITs are supported by this adapter.

Consult for initiation errors (adapter load/unload).

➤ fcmdb.log

Consult for exceptions.

➤ cmdb.log

Consult for exceptions.

➤ Fcmdb.gdba.mapping.engine.log

The mapping engine log. Gives details about the reconciliation TQL that the
mapping engine uses, and the reconciliation topologies that are compared
during the connect phase.

Consult this log when a TQL gives no results even though you know there
are relevant CIs in the database, or the results are unexpected (check the
reconciliation).

➤ Fcmdb.gdba.TQL.log

The TQL log. Gives details about the TQLs and their results.

Consult this log when a TQL does not return results and the mapping
engine log shows that there are no results in the federated data source.

log4j.category.fcmdb.gdba.dal.SQL=${loglevel},fcmdb.gdba.dal.SQL.appender

log4j.category.fcmdb.gdba.dal.SQL=INFO,fcmdb.gdba.dal.SQL.appender
204

Chapter 6 • The Generic Database Adapter
➤ Fcmdb.gdba.dal.log

The DAL lifecycle log. Gives details about CIT generation and database
connection details.

Consult this log when you cannot connect to the database or when there
are CITs or attributes that are not supported by the query.

➤ Fcmdb.gdba.dal.command.log

The DAL operations log. Gives details about internal DAL operations that
are called. (This log is similar to cmdb.dal.command.log).

➤ Fcmdb.gdba.dal.SQL.log

The DAL SQL queries log. Gives details about called JPAQLs (object oriented
SQL queries) and their results.

Consult this log when you cannot connect to the database or when there
are CITs or attributes that are not supported by the query.

➤ Fcmdb.gdba.hibrnate.log

The Hibernate log. Gives details about the SQL queries that are run, the
parsing of each JPAQL to SQL, the results of the queries, data regarding
Hibernate caching, and so on. For details on Hibernate, see “Hibernate as
JPA Provider” on page 134.

External References

For details on the JavaBeans 3.0 specification, see
http://jcp.org/aboutJava/communityprocess/final/jsr220/index.html.

Troubleshooting and Limitations

Note the following limitations:

JPA Limitations

➤ All tables must have a primary key column.

➤ CMDB class attribute names must follow the JavaBeans naming convention
(for example, names must start with lower case letters).
205

Chapter 6 • The Generic Database Adapter
➤ Two CIs that are connected with one relationship in the class model must
have direct association in the database (for example, if host is connected to
ticket there must be a foreign key or linkage table that connects them).

➤ Several tables that are mapped to the same CIT must share the same primary
key table.

Functional Limitations

➤ You cannot create a manual relationship between the CMDB and federated
CITs. To be able to define virtual relationships, a special relationship logic
must be defined (it can be based on properties of the federated class).

➤ Federated CITs cannot inherit from a multinode (in most cases this means a
new federated CIT cannot be created underneath the Host CIT)

➤ Federated CITs cannot inherit from another federated CIT, unless they are
both located in the same data store.

➤ To view federated data, you must add the federated CIT itself to a TQL, and
not its parent CIT. (If you use the parent CIT, the federated instances will
not appear in the results.)

➤ Federated CITs cannot be trigger CITs in a correlation rule but they can be
included in a correlation TQL.

➤ A federated CIT can be part of an enrichment TQL, but cannot be used as
the node on which enrichment is performed (you cannot add, update, or
delete the federated CIT).

➤ Properties from the CI Type list are not supported.

➤ Using a class qualifier in a condition is not supported.

➤ Subgraphs are not supported.

➤ Compound relationships are not supported.

➤ The external CI CMDB id is composed from its primary key and not its key
attributes.

➤ A column of type bytes cannot be used as a primary key column in
Microsoft SQL Server.
206

7
The Federation Framework SDK

This chapter provides information on the Federation Framework
functionality, which uses an API to retrieve information from federated
sources.

This chapter includes:

Concepts

 ➤ Federation Framework – Overview on page 208

 ➤ Adapter and Mapping Interaction with the Federation Framework
on page 211

 ➤ Federation Framework Flow for FTQL on page 212

 ➤ Federation Framework Flow for Replication on page 224

 ➤ The HP Release Control Federation Adapter on page 225

 ➤ Adapter Interfaces on page 229

Tasks

 ➤ Add an Adapter for a New External Data Store on page 230

Reference

 ➤ Adapter Capabilities on page 241
Concepts
207

Chapter 7 • The Federation Framework SDK
Federation Framework – Overview

Note:

➤ The term relationship is equivalent to the term link.

➤ The term CI is equivalent to the term object.

➤ A graph is a collection of nodes and links.

➤ For a glossary of definitions and terms, see “Glossary.”

The Federation Framework provides two main capabilities:

➤ Federation on the fly. All queries are run over original data stores and results
are built on the fly in HP Universal CMDB.

➤ Data Replication. Replicates data (topological data and CI properties) from
one data store to another.

Both action types require an adapter for each data store, which can provide
the specific capabilities of the data store and retrieve and/or update the
required data. Every request to the data store is made through its adapter.

This section includes the following topics:

➤ “Federation on the Fly” on page 208

➤ “Data Replication” on page 210

Federation on the Fly
Federated TQL enables data retrieval from any external data store without
replicating its data.

A federated TQL query uses adapters that represent external data stores, to
create appropriate external relationships between different external data
store CIs and HP Universal CMDB CIs.
208

Chapter 7 • The Federation Framework SDK
Example of Federation on the Fly Flow

 1 The Federation Framework splits a Federated TQL (FTQL) into several
subgraphs, where all nodes in a subgraph refer to the same data store. Each
subgraph is connected to the other subgraphs by a virtual relationship (but
itself contains no virtual relationships).

 2 After the FTQL is split into subgraphs, the Federation Framework calculates
each subgraph's topology and connects two appropriate subgraphs by
creating virtual relationships between the appropriate nodes.
209

Chapter 7 • The Federation Framework SDK
 3 After the FTQL topology is calculated, the Federation Framework retrieves a
layout for the topology result.

Data Replication
You replicate data if you have several data stores with a large amount of
data, and another data store that uses a view with data from these data
stores.

In data replication, data stores are divided into two categories: source and
target. Data is retrieved from the source data store and updated to the target
data store. The replication is based on query names, that is, data is
synchronized between the source data store and target data store and is
retrieved by a query name in the source data store. For example, in
HP Universal CMDB, the query name is the name of the TQL. However, in
another data store the query name can be a code name that returns data.
The adapter is designed to correctly handle the query name.

Each query name in the source data store can be defined as an exclusive
query. This means that the CIs and relationships in the query results are
unique in the target data store, and no other query can bring them to the
target. The adapter of the source data store supports specific queries, and can
retrieve the data from this data store. The adapter of the target data store
enables the update of retrieved data on this data store.
210

Chapter 7 • The Federation Framework SDK
The replication process flow includes the following steps:

 1 Retrieves the topology result with signatures from the source data store.

 2 Compares the new results with the previous results.

 3 Retrieves a full layout (that is, all CI properties) of CIs and relationships, for
changed results only.

 4 Updates the target data store with the received full layout of CIs and
relationships. If any CIs or relationships are deleted in the source data store
and the query is exclusive, the replication process removes the CIs or
relationships in the target data store as well.

Adapter and Mapping Interaction with the Federation
Framework

An adapter is an entity in the Federated CMDB that represents external data
(data that is not saved in HP Universal CMDB). In federated flows, all
interactions with external data sources are performed through adapters. The
Federation Framework interaction flow and adapter interfaces are different
for replication and for FTQL.

This section includes the following topics:

➤ “Adapter Lifecycle” on page 211

➤ “Adapter assist Methods” on page 212

Adapter Lifecycle
An adapter instance is created for each external data store. The adapter
begins its lifecycle with the first action applied to it (such as, calculate TQL
or retrieve/update data). When the start method is called, the adapter
receives environmental information, such as the data store configuration,
logger, and so on. The adapter lifecycle ends when the data store is removed
from the configuration, and the shutdown method is called. This means
that the adapter is stateful and can contain the connection to the external
data store if it is required.
211

Chapter 7 • The Federation Framework SDK
Adapter assist Methods
The adapter has several assist methods that can add external data store
configurations. These methods are not part of the adapter lifecycle and
create a new adapter each time they are called.

➤ The first method tests the connection to the external data store for a given
configuration.

➤ The second method is relevant only for the source adapter and returns the
supported queries for replication.

➤ The third method is relevant only for FTQL and returns supported external
classes by the external data store.

All these methods are used when you create new data store configurations.

Federation Framework Flow for FTQL

This section includes the following topics:

➤ “Definitions and Terms” on page 212

➤ “Mapping Engine” on page 213

➤ “FTQL Adapter” on page 213

➤ “Flow Diagrams” on page 214

Definitions and Terms
Reconciliation data. The rule for matching between CIs of the specified type
that are received from UCMDB and external data store. The reconciliation
rule can be of three types:

➤ ID reconciliation. This can be used only if the external data store contains
the UCMDB id of reconciliation objects.

➤ Property reconciliation. This is used when the matching can be done by
properties of the reconciliation CI type only.
212

Chapter 7 • The Federation Framework SDK
➤ Topology reconciliation. This is used when you need the properties of
additional CITs (not only of the reconciliation CIT) to perform a
matching on reconciliation CIs. For example, you can perform
reconciliation of the host type by the ip_address property that belongs to
the ip CIT.

Reconciliation object. The object is created by the adapter according to
received reconciliation data. This object should refer to some external CI
and is used by Mapping Engine to connect between the external CIs to the
UCMDB CIs.

Reconciliation CI type. The type of the CIs that represent reconciliation
objects. These CIs must be stored in both UCMDB and in the external data
stores.

Mapping engine. A component that identifies relations between CIs from
different data stores that have a virtual relationship among them. The
identification is performed by reconciling between UCMDB Reconciliation
objects and external CIs Reconciliation objects.

Mapping Engine
Federation Framework uses the Mapping Engine to calculate the FTQL. The
Mapping Engine connects between CIs that are received from different data
stores and are connected by virtual relationships. The Mapping Engine also
provides reconciliation data for the virtual relationship. One end of the
virtual relationship must refer to the Universal CMDB. This end is a
reconciliation type. For the calculation of the two subgraphs, a virtual
relationship can start from any end node.

FTQL Adapter
The FTQL adapter is requested to bring two kinds of data from external data
store: external CIs data and reconciliation objects that belong to external
CIs.

External CIs data. The external data that does not exist in UCMDB. It is the
target data of the external data store for the UCMDB.
213

Chapter 7 • The Federation Framework SDK
Reconciliation objects data. The auxiliary data that is used by the federation
framework to connect between UCMDB CIs and external data. Each
reconciliation object should refer to an External CI. The type of the
reconciliation objects is the type (or subtype) of one of the virtual
relationship end which data is retrieved from UCMDB. Reconciliation
objects should fit to reconciliation data the adapter receive. It can be one of
three types: IdReconciliationObject, PropertyReconciliationObject, and
TopologyReconciliationObject.

Flow Diagrams
The following diagrams illustrate the Federation Framework, the Universal
CMDB, the adapter, and the Mapping Engine. The FTQL in the example
diagrams has only one virtual relationship, so that only the Universal
CMDB and one external data store are involved in the FTQL. In the first
diagram the calculation begins at the Universal CMDB and in the second
diagram at the external adapter. Each step in the diagram has reference to
the appropriate method call of the adapter or mapping engine interface.
214

Chapter 7 • The Federation Framework SDK
The Calculation Starts at the HP Universal CMDB End

The following sequence diagram illustrates the interaction between the
Federation Framework, the Universal CMDB, the adapter, and the Mapping
Engine. The FTQL in the example diagram has only one virtual relationship,
so that only the Universal CMDB and one external data store are involved in
the FTQL.
215

Chapter 7 • The Federation Framework SDK
The numbers in this image are explained below:

 1 The Federation Framework receives a call for a FTQL calculation.

 2 The Federation Framework analyzes the pattern, finds the virtual
relationship, and divides the original TQL into two sub-patterns–one for the
Universal CMDB and one for the external data store.

 3 The Federation Framework requests the topology of the sub-TQL from the
Universal CMDB.

 4 After receiving the topology results, the Federation Framework calls the
appropriate Mapping Engine for the current virtual relationship and
requests reconciliation data. The reconciliationObject parameter is empty at
this stage, that is, no condition should be added to reconciliation data in
this call. The returned reconciliation data defines what data is needed to
match between the reconciliation CIs from UCMDB and external data store.
The reconciliation data can be one of three following types:

➤ IdReconciliationData. Reconciliation is done by ID.

➤ PropertyReconciliationData. Reconciliation is done by properties of
one CI.

➤ TopologyReconciliationData. Reconciliation is done by topology (for
example, to reconcile host CIs, the IP address of IP is required too).

 5 The Federation Framework requests reconciliation data for the CIs of the
virtual relationship ends that were received in step 3 from the Universal
CMDB.

 6 The Federation Framework calls the Mapping Engine to retrieve the
reconciliation data. In this state (by contrast with step 3), the Mapping
Engine receives the the reconciliation objects from step 5 as parameters. The
Mapping Engine translates the received reconciliation object to the
condition on the reconciliation data.

 7 The Federation Framework requests the topology of the sub-TQL from the
external data store. The external adapter receives as a parameter the
reconciliation data from step 6.
216

Chapter 7 • The Federation Framework SDK
 8 The Federation Framework calls the Mapping Engine to connect between
the received results. The firstResult parameter is the external topology result
received from UCMDB in step 5 and the secondResult parameter is the
external topology result received from the External Adapter in step 7. The
Mapping Engine returns a map where External CI ID from the first data store
(the Universal CMDB in our case) is mapped to the External CI IDs from the
second (external) data store.

 9 For each mapping, the Federation Framework creates a virtual relationship.

 10 After the calculation of the FTQL results (only at the topology stage), the
Federation Framework retrieves the original TQL layout for the resulting CIs
and relationships from the appropriate data stores.
217

Chapter 7 • The Federation Framework SDK
The Calculation Starts at the External Adapter End

 1 The Federation Framework receives a call for a FTQL calculation.

 2 The Federation Framework analyzes the pattern, finds the virtual
relationship, and divides the original TQL into two sub-patterns - one for
the Universal CMDB and one for the external data store.
218

Chapter 7 • The Federation Framework SDK
 3 The Federation Framework requests the topology of the sub-TQL from the
External Adapter. The returned ExternalTopologyResult is not supposed to
contain any reconciliation object, since the reconciliation data is not part of
the request.

 4 After receiving the topology results, the Federation Framework calls the
appropriate Mapping Engine with the current virtual relationship and
requests reconciliation data. The reconciliationObjects parameter is empty
at this state - it means that no condition should be added to reconciliation
data in this call. The returned reconciliation data defines what data is
needed to match between the reconciliation CIs from UCMDB and external
data store. The reconciliation data can be one of three following types:

➤ IdReconciliationData. Reconciliation is done by ID

➤ PropertyReconciliationData. Reconciliation is done by properties of one
CI.

➤ TopologyReconciliationData. Reconciliation is done by topology (for
example, to reconcile host CIs, the IP address of IP is required too).

 5 The Federation Framework requests reconciliation objects for the CIs that
were received in step 3 from the external data store. The Federation
Framework calls getTopologyWithReconciliationData() method in the
External Adapter, where the requested topology is one node topology with
CIs received in step 3 as ID condition and reconciliation data from the step
4.

 6 The Federation Framework calls the Mapping Engine to get the
reconciliation data. In this state (in contrast with step 3), the Mapping
Engine receives the reconciliation objects from step 5 as parameters. The
Mapping Engine translates the received reconciliation object to the
condition on the reconciliation data.

 7 The Federation Framework requests the topology of the sub-TQL with
reconciliation data from the step 6 from the UCMDB.
219

Chapter 7 • The Federation Framework SDK
 8 The Federation Framework calls the Mapping Engine to connect between
the received results. The firstResult parameter is the external topology result
received from External Adapter at step 5 and the secondResult parameter is
the external topology result received from the UCMDB at step 7. The
Mapping Engine returns a map where External CI ID from the first data store
(the external data store in our case) is mapped to the External CI IDs from
the second (UCMDB).

 9 For each mapping, the Federation Framework creates a virtual relationship.

 10 After the calculation of the FTQL results (only at the topology stage), the
Federation Framework retrieves the original TQL layout for the resulting CIs
and relationships from the appropriate data stores.

Example of Federation Framework Flow for FTQL

This example explains how to view all open incidents on specific hosts. The
ServiceCenter data store is the external data store. The host instances are
stored in the Universal CMDB, and the incident instances are stored in
ServiceCenter. We assume that to connect the incident instances to the
appropriate host, the host_name and ip_address properties of the host and
IP are needed. These are reconciliation properties that identify the hosts
from ServiceCenter in the Universal CMDB.

Note: For attribute federation, the adapter's getTopology method is called.
The reconciliation data is adapted in the user TQL (in this case, the CI
element).
220

Chapter 7 • The Federation Framework SDK
 1 After analyzing the pattern, the Federation Framework recognizes the virtual
relationship between Host and Incident and splits the FTQL into two
subgraphs:

 2 The Federation Framework runs the the Universal CMDB subgraph to
request the topology, and receives the following results:

 3 The Federation Framework requests from the appropriate Mapping Engine
the reconciliation data for the first data store (HP Universal CMDB) that
contains the information to connect between received data from two data
stores. The reconciliation data in this case is:
221

Chapter 7 • The Federation Framework SDK
 4 The Federation Framework creates one node topology query with Host node
and ID conditions on it from the previous result (host_id in H1, H2, H3), and
runs this query with required reconciliation data on HP Universal CMDB.
The result includes Host CIs that are relevant to the ID condition and the
appropriate reconciliation object for each CI:

 5 The reconciliation data for ServiceCenter should contain a condition for
host_name and ip_address that is derived from the reconciliation objects
received from HP Universal CMDB:
222

Chapter 7 • The Federation Framework SDK
 6 The Federation Framework runs the ServiceCenter subgraph with the
reconciliation data to request the topology and appropriate reconciliation
objects, and receives the following results:

 7 The result after connection in Mapping Engine and creating virtual
relationships is:

 8 The Federation Framework requests the original TQL layout for received
instances from HP Universal CMDB and ServiceCenter.
223

Chapter 7 • The Federation Framework SDK
Federation Framework Flow for Replication

This section includes the following topics:

➤ “Definitions and Terms” on page 224

➤ “Flow Diagram” on page 224

Definitions and Terms
Signature. Denotes the state of properties in the CI. If changes are made to
property values in a CI, the CI signature must also be changed. "CI
signature" helps detect whether a CI has changed without retrieving and
comparing all CI properties. Both the CI and "CI signature" are provided by
the appropriate adapter. The adapter is responsible to change CI signature
when CI properties are altered.

Flow Diagram
The following sequence diagram illustrates the interaction between the
Federation Framework and the source and target adapters in a replication
flow:
224

Chapter 7 • The Federation Framework SDK
 1 The Federation Framework receives the topology for the query result from
the source adapter. The adapter recognizes the query by its name and runs it
on the external data store. The topology result contains the ID and signature
for each CI and relationship in the result. The ID is the logical ID that
defines the CI as unique in the external data store. The signature should be
modified if the CI or relationship is modified.

 2 The Federation Framework uses signatures to compare the newly received
topology query results with the saved ones, and to determine which CIs
have changed.

 3 After the Federation Framework finds the CIs and relationships that have
changed, it calls the source adapter with the IDs of the changed CIs and
relationships as a parameter to retrieve their full layout.

 4 The Federation Framework sends the update to the target adapter. The target
adapter updates the external data source it represents with the received data.

 5 After the update, the Federation Framework saves the last query result.

The HP Release Control Federation Adapter

The HP Release Control Federation adapter supports the retrieval of data
from HP Release Control. Every request to HP Release Control to calculate a
federated query is made through this adapter. The adapter supports the
Planned Change CI type. You use service desk links to create the query.

The following use cases describe how the adapter can be employed:

➤ A user needs to display planned changes to any CI within a specific time
frame.

➤ A user needs to display planned changes to specified system CIs.

In this case, HP Universal CMDB retrieves changes that directly change
system CIs and does not retrieve changes that indirectly affect system
CIs.

➤ A user needs to display planned changes to a specified business CI.

In this case, HP Universal CMDB retrieves changes that directly affect
business CIs and does not retrieve changes that indirectly affect business
CIs.
225

Chapter 7 • The Federation Framework SDK
In all of the above cases, HP Universal CMDB retrieves parent changes and
independent tasks. HP Universal CMDB does not retrieve tasks that are
included in a parent request.

Example

The following example illustrates some of the use cases. Assume there is one
planned change in HP Release Control, Planned Change 1.

➤ Planned Change 1 is performed on Host 1.

➤ Application 1 runs on Host 1 and is therefore directly affected by the
change.

➤ Host 2 is connected to Host 1 and may be affected by Planned Change 1 but
no actual change is made to Host 2.

➤ Application 2 runs on Host 2 and may be indirectly affected by the change.

If the user runs a query to retrieve planned changes to Host 1 or
Application 1, HP Universal CMDB displays Planned Change 1, because this
change directly affects those CIs.
226

Chapter 7 • The Federation Framework SDK
If the user runs a query to retrieve planned changes to Host 2 or
Application 2, HP Universal CMDB does not display any changes because
there are no changes that directly affect those CIs.

This section includes the following topics:

➤ “Configuring the Federation Adapter” on page 227

➤ “Retrieving Planned Change Attributes” on page 228

➤ “Adding Custom Fields to the Federation Adapter” on page 228

Configuring the Federation Adapter
This section describes how to configure the HP Release Control Federation
adapter to work with HP Universal CMDB.

To configure the adapter:

 1 Deploy the following file in the Package Manager:

➤ <Release Control installation directory>\conf\uCmdb
-<version_number>-extensions\federation\rc_federation.zip

For details, see Chapter 14, “Package Manager.”

 2 Copy the <Release Control installation directory>\conf\uCmdb
-<version-number>-extensions\federation\CcmChangeAdapter directory to
the following location:

<UCMDB installation directory>\UCMDBServer\j2f\fcmdb\CodeBase\

 3 Reload the CcmChangeAdapter in the HP Universal CMDB JMX console.

 4 In HP Universal CMDB go to Settings > Federated CMDB and configure the
CcmChangeAdapter. Enter the following required details:

➤ Name. The logical name of the adapter.

➤ Host. The URL of HP Release Control.

➤ User. The user name of an administrator user in HP Release Control.

➤ Password. The password of the administrator user specified above.
227

Chapter 7 • The Federation Framework SDK
Retrieving Planned Change Attributes
HP Universal CMDB contains a list of the planned change attributes in the
selected in the CI Type Manager Attributes tab. HP Universal CMDB
retrieves planned change attributes from HP Release Control using the
following rule:

HP Universal CMDB converts all underscores (_) in the attribute names and
converts them to hyphens (-) and searches through the HP Release Control
fields for matching fields. The list of fields in HP Release Control is located
in the Administrator module Fields tab.

In addition, specific attribute properties are mapped to specific fields in the
convertfields.properties file, located in the CcmChangeAdapter directory.
You can map additional attributes to fields HP Release Control in this file.

Adding Custom Fields to the Federation Adapter
This section explains how to add custom fields to the Federation adapter.

To add new custom fields to the Federation adapter:

 1 In HP Release Control, add the relevant fields in the Administrator module
Fields tab. For more information about adding custom fields, refer to the
HP Release Control Installation and Configuration Guide.

 2 In HP Universal CMDB, locate the planned change CI type and add the new
attribute names.

➤ Use the same name for the attribute as you used for the custom field that
you created in HP Release Control. However, if you used a hyphen (-) in
the field name, substitute the hyphen for an underscore (_) in the name
of the attribute.

➤ To use an attribute name that is different from the custom field name,
you can map the attribute name to a specific field name in the
convertfields.properties file, located in the CcmChangeAdapter
directory.
228

Chapter 7 • The Federation Framework SDK
Adapter Interfaces

This section includes the following topics:

➤ “Definitions and Terms” on page 229

➤ “Adapter Interfaces for FTQL” on page 229

➤ “Adapter Interfaces for Replication” on page 230

Definitions and Terms
The External relation. The relation between two external CI types that are
supported by the same adapter.

Adapter Interfaces for FTQL
Use the appropriate adapter interface for each adapter, as follows.

A oneNode topology interface is used when the adapter does not support
any external relations. That is, the adapter is never meant to receive a
request with more than one external CI. All OneNode interfaces are created
to simplify the workflow; for those cases where you need to use a more
extensive query, use the PatternTopology interface.

A Pattern topology interface is used when the adapter supports more than
one external CI type and supports at least one relation type between
supported external CI types. That is, the adapter should implement the
Pattern Topology interface if it intends receiving queries for external data
with relations.

OneNode Interfaces

The following interfaces have different types of reconciliation data:

➤ OneNodeTopologyIdReconciliationDataAdapter. Use if the adapter supports
a single-node TQL and the reconciliation between data stores is calculated
by the ID.

➤ OneNodeTopologyPropertyReconciliationDataAdapter. Use if the adapter
supports a single-node TQL and the reconciliation between data stores is
done by the properties of one CI.
229

Chapter 7 • The Federation Framework SDK
➤ OneNodeTopologyDataAdapter. Use if the adapter supports a single-node
TQL and the reconciliation between data stores is done by topology.

PatternTopology Interfaces

The following interfaces have different types of reconciliation data:

➤ PatternTopologyIdReconciliationDataAdapter. Use if the adapter supports a
complex TQL and the reconciliation between data stores is done by the ID.

➤ PatternTopologyPropertyReconciliationDataAdapter. Use if the adapter
supports a complex TQL and the reconciliation between data stores is done
by single-node properties.

➤ PatternTopologyDataAdapter. Use if the adapter supports a complex TQL
and the reconciliation between data stores is done by topology.

➤ SortResultDataAdapter. Use if you can sort the resulting CIs in the external
data store.

➤ FunctionalLayoutDataAdapter. Use if you can calculate the functional
layout in the external data store.

Adapter Interfaces for Replication

➤ SourceDataAdapter. Use for source adapters in replication jobs.

➤ TargetDataAdapter. Use for target adapters in replication jobs.
Tasks

Add an Adapter for a New External Data Store

This task explains how to define an adapter to support a new external data
source.

This task includes the following steps:

➤ “Model Supported Adapter Classes for CIs and Relationships in the CMBD
Class Model” on page 231

➤ “Define Valid Relationships for Virtual Relationships” on page 231
230

Chapter 7 • The Federation Framework SDK
➤ “Define an Adapter Configuration” on page 232

➤ “Implement the Adapter” on page 234

➤ “Implement the Mapping Engine” on page 235

➤ “Add Jars Required for Implementation to the Class Path” on page 235

➤ “Deploy the Adapter” on page 235

➤ “Redeploy the Adapter” on page 236

➤ “Write Implementations for the ServiceCenter Adapter and Mapping
Engine” on page 241

 1 Model Supported Adapter Classes for CIs and Relationships in
the CMBD Class Model
As an adapter developer, you should:

➤ have knowledge of the hierarchy of the HP Universal CMDB CI types to
understand how external CITs are related to the HP Universal CMDB CITs

➤ model the external CITs in the CMDB class model

➤ add the definitions for new CI types and their relationships

➤ define valid relationships in the CMDB class model for the valid
relationships between adapter inner classes. (The CITs can be placed at any
level of the CMDB class model tree.)

Modeling should be the same regardless of federation type (on the fly or
replication). For details on adding new CIT definitions to the CMDB class
model, see “CI Type Manager” on page 225.

 2 Define Valid Relationships for Virtual Relationships

Note: This section is relevant only for the FTQL adapter.
231

Chapter 7 • The Federation Framework SDK
Determine the relationship between your data and the HP Universal CMDB
data, that is, define your virtual relationships. You can do this by adding a
valid relationship, where one end of the relationship does not refer to your
adapter supported classes. A valid relationship for a virtual relationship is
different from a regular valid relationship only in that it has a qualifier that
defines a Mapping Engine class implementation.

Example of Valid Relationship Definition

In the following example of a valid relationship definition, the relation of
type history_link between instances of type it_world to instances of type
HistoryChange is valid. To connect between instances of these types the
Federation Framework should use the HistoryMappingEngine
implementation class:

If you have only one Mapping Engine implementation for all virtual
relationships, you can define it in the adapter configuration and not as a
qualifier in the valid relationship.

 3 Define an Adapter Configuration
Add an XML adapter configuration file that contains the following details:

➤ Adapter ID. A unique ID for the adapter

➤ Adapter name. A fully-qualified Java implementation class name for the
adapter

<Valid-Link>
<Class-Ref class-name="history_link" />

<End1 class-name="it_world" />
<End2 class-name="HistoryChange" />
<Valid-Link-Qualifiers>

<Valid-Link-Qualifier name="EXTENDED_VALID_LINK">
<Data-Items>

<Data-Item name="mapping_engine_class" type="string">
com.mercury.topaz.adapters.CmdbHistoryAdapter.HistoryMappingEngine

</Data-Item>
</Data-Items>

</Valid-Link-Qualifier>
</Valid-Link-Qualifiers>

</Valid-Link>
232

Chapter 7 • The Federation Framework SDK
➤ Adapter capabilities. Defines the capabilities the adapter supports. For
details, see “Adapter Capabilities” on page 241.

➤ Fields to connect. Defines the fields that the user must supply to connect
to the external data store.

➤ Default mapping engine. Defines the default mapping engine for virtual
relationships. Relevant only for FTQL-supported adapters.

See the schema folder for the schema of the adapter configuration.
233

Chapter 7 • The Federation Framework SDK
Example of Adapter Configuration Definition

Example of an adapter configuration definition:

 4 Implement the Adapter
Select the correct adapter implementation class according to its defined
capabilities. The adapter implementation class implements the appropriate
interfaces according to defined capabilities.

<adapter-config adapter-id="CmdbRmiAdapter">
<class-name>com.mercury.topaz.adapters.cmdb.CmdbRmiAdapter</class-

name>
<adapter-capabilities>

<support-federated-query>
<supported-classes>

<supported-class is-derived="true" all-attributes-supported="true"
name="hostresource"/>

</supported-classes>
<topology>

<pattern-topology>
<functional-layout/>

</pattern-topology>
<advanced-capabilities>

<calculated-attribute></calculated-attribute>
</advanced-capabilities>

</topology>
<result>

<sort-result/>
</result>

</support-federated-query>
<support-replicatioin-data>

<source/>
<target/>

</support-replicatioin-data>
</adapter-capabilities>
<fields-to-connect>

<field>host</field>
<field>customerId</field>

</fields-to-connect>
<default-mapping-

engine>com.mercury.topaz.adapters.cmdb.CmdbMappingEngine</default-mapping-
engine>
</adapter-config>
234

Chapter 7 • The Federation Framework SDK
 5 Implement the Mapping Engine
If your adapter supports federated query, you should support a Mapping
Engine implementation for each virtual relationship. The implementation
class should implement the Mapping Engine interface.

 6 Add Jars Required for Implementation to the Class Path
To implement your classes, add the following jars to your class path:

➤ federation_api.jar

 7 Deploy the Adapter

 a Deploy the adapter package. For general details on deploying a package,
see “Deploy a Package” in Model Management.

The package should contain the following entities:

➤ New CIT definition (optional):

Used only if the adapter supports new CI types that do not yet exist in
the UCMDB.

The new CIT definitions are located in the class folder in the package.

➤ New data type definition (optional):

Used only if the new CITs require new data types.

The new data type definitions are located in the typedef folder in the
package.

➤ New valid relationships definition (optional):

Used only if the adapter supports the federated TQL.

The new valid relationships definitions are located in the validlinks
folder in the package.

The virtual relationship is defined as a valid relationship and can
include a data item named mapping_engine_class, which defines the
mapping engine fully-qualified class name.

➤ The adapter configuration definition XML file should be located in the
adapter folder in the package.

➤ Descriptor. Defines the package definitions.
235

Chapter 7 • The Federation Framework SDK
 b Deploy your code:

➤ Create a class that implements all required adapter interfaces.

➤ Implement a mapping engine (if you are writing a federated query
adapter).

➤ Place your compiled classes (normally a jar file) together with all your
based-on *.jar files in the <HP Universal CMDB root directory>
\UCMDBServer\j2f\fcmdb\CodeBase\<adapter id> folder.

Note: The adapter id folder name has the same value as in the adapter
configuration.

➤ If you create your own configuration file, you should also use the
<HP Universal CMDB root directory>\UCMDBServer\j2f\fcmdb
\CodeBase\<adapter id> folder as your root folder.

 8 Redeploy the Adapter
The adapter definitions and implementation may become altered as a result
of external class definitions, changes in adapter capabilities, or changes in
implementation. If this happens, redeploy the definitions or
implementations.

 a Redeploy an adapter package.

If your external classes definition or adapter definition was altered, create
an updated adapter package and redeploy it using the package
mechanism. For details, see “Deploy a Package” on page 468.

 b Redeploy your code.
236

Chapter 7 • The Federation Framework SDK
If your implementation code or private configuration altered, do the
following:

➤ Create updated *.jar or configuration files, and place them in the
<HP Universal CMDB root directory>\UCMDBServer\j2f\fcmdb
\CodeBase\<adapter id> folder.

➤ Call the next JMX method with the appropriate customer ID and
adapter ID:
FCmdb Config Services > loadOrReloadCodeBaseForAdapterId.

Example of Adding a New Adapter

This example illustrates how to add an adapter for ServiceCenter.

 1 The relevant ServiceCenter entities are Incident, Problem, and RFC. For each
entity, create the CIT definition. Decide where to place these definitions in
the HP Universal CMDB class model hierarchy. The entities refer to
IT processes, so it makes sense to put them under the IT Process CIT. RFC
refers to IT change, so put the RFC class definition under the IT Change CIT.
There is no relationship between Incident, Problem, and RFC CITs, so do not
add definitions for such relationships.

 2 Determine to which CITs in HP Universal CMDB you want to relate the
ServiceCenter entities. For the purpose of this example, the only relevant
entity is Host. Add a valid relationship for each of the following pairs: [Host,
Incident], [Host, Problem], [Host, RFC]. Each valid relationship should have
a qualifier with the Mapping Engine implementation class name that
supports connection between the ends of this relationship. It can be the
same Java class for all three cases or three different classes, depending on
your implementation.

 3 Define the adapter configuration XML file.

 a Define the adapter ID.

For this example, assume the ID is ServiceCenterAdapter and the class
implementation is adapter.ServiceCenterAdapterImpl. The beginning of
the configuration adapter file is:

<adapter-config adapter-id=" ServiceCenterAdapter ">
<class-name> adapter.ServiceCenterAdapterImpl </class-name>
237

Chapter 7 • The Federation Framework SDK
 b Define adapter capabilities.

➤ In this example, the adapter supports a federation query but not
replication data. Therefore, its capabilities XML should contain the
support-federated-query element but not support-replication-data.

➤ Add the supported classes with supported attribute conditions.
Suppose all three classes have property status and the system supports
only the equal condition for this attribute. The supported_classes
element has the following definition:

<supported-classes>
<supported-class is-derived="true" all-attributes-supported="false"

name="incident">
<supported-conditions>

<attribute-operators attribute-name="status">
<operator> EQUEL </operator>

 </attribute-operators>
</supported-conditions>

</supported-class>
<supported-class is-derived="true" all-attributes-supported="false"

name="change">
<supported-conditions>

<attribute-operators attribute-name="status">
<operator> EQUEL </operator>

</attribute-operators>
</supported-conditions>

</supported-class>
<supported-class is-derived="true" all-attributes-supported="false"

name="problem">
<supported-conditions>
 <attribute-operators attribute-name="status">

<operator>EQUEL</operator>
 </attribute-operators>

</supported-conditions>
</supported-class>

</supported-classes>
238

Chapter 7 • The Federation Framework SDK
➤ Define the topology that the ServiceCenter adapter supports. Because
there are no relationships between the ServiceCenter entities, it is
sufficient that the ServiceCenter adapter support single-node
topology. For simplicity's sake, assume that the ServiceCenter adapter
has no advanced capabilities and cannot calculate the value of
calculated attributes. The topology element definition is as follows:

➤ For simplicity's sake, assume that ServiceCenter does not support
sorting. Therefore, the capability should not contain the element
result.

 c Add the element that defines the information required for the
ServiceCenter adapter to connect to ServiceCenter. Assume this includes
host, port, and user. Because the password for ServiceCenter can be
empty, do not define this field as required. However, the ServiceCenter
adapter checks this field, and if a value exists, it uses the password value
to connect. The fields-to-connect element has the following definition:

<topology>
<one-node-topology/ >

</topology>

<fields-to-connect>
<field>host</field>
<field>port</field>
<field>user</field>

</fields-to-connect>
239

Chapter 7 • The Federation Framework SDK
The configuration XML definition of the Service Desk adapter is complete.
The following is the finished definition:

<adapter-config adapter-id=" ServiceCenterAdapter ">
<class-name> adapter.ServiceCenterAdapterImpl </class-name>

<adapter-capabilities>
<support-federated-query>

<supported-classes>
<supported-class is-derived="true" all-attributes-

supported="false" name="incident">
<supported-conditions>

<attribute-operators attribute-name="status">
<operator> EQUAL </operator>

</attribute-operators>
</supported-conditions>

</supported-class>
<supported-class is-derived="true" all-attributes-

supported="false" name="change">
<supported-conditions>

<attribute-operators attribute-name="status">
<operator>EQUEL</operator>

</attribute-operators>
</supported-conditions>

</supported-class>
<supported-class is-derived="true" all-attributes-

supported="false" name="problem">
<supported-conditions>

<attribute-operators attribute-name="status">
<operator>EQUEL</operator>

</attribute-operators>
</supported-conditions>

</supported-class>
</supported-classes>
<topology>

<one-node-topolgy/>
</topology>

</<support-federated-query>
</adapter-capabilities>

<fields-to-connect>
<field>host</field>
<field>port</field>
<field>user</field>

</fields-to-connect>
</adapter-config>
240

Chapter 7 • The Federation Framework SDK
 9 Write Implementations for the ServiceCenter Adapter and
Mapping Engine
The Mapping Engine implementation should implement the MappingEngine
interface. The ServiceCenter adapter should implement the
OneNodeTopologyDataAdapter interface according to its capabilities and the
fact that the reconciliation is done by topology.

Reference

Adapter Capabilities

This section describes adapter capabilities:

➤ Support federated query. Included in adapter capabilities if the adapter
implementation supports FTQL. Federated query capabilities include:

➤ Supported classes. Defines the supported classes in the federated query.
The supported class definition includes supported class name, whether
derived classes of this class are also supported, and the possible condition
operations for class attributes. The possible values for condition operators
are:

➤ IS_NULL

➤ EQUALS

➤ NOT_EQUALS

➤ GREATER

➤ GREATER_OR_EQUAL

➤ LESS

➤ LESS_OR_EQUAL

➤ IN

➤ EQUALS_CASE_INSENSITIVE

➤ LIKE

➤ LIKE_CASE_INSENSITIVE

➤ CHANGED_DURING

➤ UNCHANGED_DURING
241

Chapter 7 • The Federation Framework SDK
If derived classes are supported, the condition operation for class
attributes is also derived. You can ignore definition of supported classes
in adapter capabilities configuration by implementing the
getSupportedClasses method of the FTqlDataAdapter interface. This
might be useful if your supported classes or supported attribute condition
operators can be changed dynamically.

➤ Topology. Defines whether pattern topology or single-node topology is
supported, and the federated TQL advanced capabilities.

➤ Result. Defines whether the adapter can sort the resulting CIs.

➤ Support replication data. Included in adapter capabilities if the adapter
implementation supports data replication. Next capabilities are part of
replication capabilities:

➤ Source. Defines that the adapter can be used in a replication job as source.

➤ Target. Defines that the adapter can be used in a replication job as target.
242

8
The HP ServiceCenter/Service Manager
Adapter

This chapter provides information on the HP ServiceCenter/Service Manager
Adapter, version 1.0. The Adapter is compatible with HP Universal CMDB,
version 8.0 or later, HP ServiceCenter, version 6.2, and HP Service Manager,
versions 7.0x, 7.1x (following changes to the WSDL configuration).

Note: This Adapter is a specific configuration of the ServiceDesk Adapter.

This chapter includes:

Concepts

 ➤ Adapter Usage on page 244

 ➤ The Adapter Configuration File on page 245

Tasks

 ➤ Deploy the Adapter on page 254

 ➤ Deploy the ServiceDesk Adapter on page 255

 ➤ Add an Attribute to the ServiceCenter/Service Manager CIT on page 260
Concepts
243

Chapter 8 • The HP ServiceCenter/Service Manager Adapter
Adapter Usage

The ServiceCenter/Service Manager Adapter supports the retrieval of data
from HP ServiceCenter and HP Service Manager. This adapter connects to,
and receives data from, ServiceCenter/Service Manager using the Web
Service API. Every request to ServiceCenter/Service Manager to calculate a
federated query is made through this adapter.

The Adapter supports three external CI types: Incident, Problem, and
Planned Change. The adapter retrieves the CIs of these types from
ServiceCenter/Service Manager with the required layout and by a given filter
(using reconciliation and/or a CI filter). Each of these CITs can be related to
one of the following UCMDB internal CITs: Host, Business Service,
Application. Each UCMDB internal CIT includes a reconciliation rule in the
ServiceCenter/Service Manager configuration that can be changed
dynamically (for details, see “Reconciliation Data Configuration” on
page 249). Note that there are no internal relationships between Adapter-
supported CITs.

The modeling of the supported CITs and virtual relationships is supplied
with the Adapter. You can add attributes to a CIT (for details, see “Add an
Attribute to the ServiceCenter/Service Manager CIT” on page 260).

The following use cases (that include TQL examples) describe how the
Adapter can be employed:

 1 A user needs to display all unplanned changes to all hosts running a specific
application during the last 24 hours:
244

Chapter 8 • The HP ServiceCenter/Service Manager Adapter
 2 A user needs to see all open critical incidents on an application and its hosts:

The Adapter Configuration File

The Adapter configuration file serviceDeskConfiguration.xml is located in
the following directory:

<HP Universal CMDB root directory>\UCMDBServer\j2f\fcmdb\CodeBase
\ServiceDeskAdapter.

This file contains three parts:

 1 The first part, which is defined by the ucmdbClassConfigurations element,
contains the external CIT configuration that the Adapter supports. For
details, see “External CITs Configuration” on page 246.

 2 The second part, defined by the reconciliationClassConfigurations element,
contains reconciliation data information for appropriate UCMDB CITs. For
details, see “Reconciliation Data Configuration” on page 249.

 3 The third part, defined by the globalConnectorConfig element, includes the
global configuration for a specific connector implementation. For details,
see “Global Configuration” on page 253.
245

Chapter 8 • The HP ServiceCenter/Service Manager Adapter
Important: The adapter is delivered without a default configuration file.
Before defining a data store, you must prepare the appropriate file,
according to the version of ServiceCenter/Service Manager you are working
with:

➤ Locate the ...\fcmdb\CodeBase\ServiceDeskAdapter folder.
This folder contains the following configuration files:
serviceDeskConfiguration.xml.6.xx for ServiceCenter version 6.xx
serviceDeskConfiguration.xml.7.0x for Service Manager version 7.0x
serviceDeskConfiguration.xml.7.1x for Service Manager version 7.1x

➤ Delete the suffix of the appropriate configuration file. For example, if you
are working with Service Manager 7.0x, locate the
serviceDeskConfiguration.xml.7.0x file and delete .7.0x, so that the new
name of the file is serviceDeskConfiguration.xml.

External CITs Configuration
Each CIT that is supported by the Adapter is defined in the first section of
the Adapter configuration file.

This section, ucmdbClassConfiguration, represents the only supported CIT
configuration. This element contains the CIT name as defined in the
UCMDB class model (the ucmdbClassName attribute), mapping for all its
attributes (the attributeMappings element), and a private configuration for a
specific connector implementation (the classConnectorConfiguration
element):

➤ The ucmdbClassName attribute defines the UCMDB class model name.

➤ The attributeMappings element contains attributeMapping elements.

The attributeMapping element defines the mapping between the UCMDB
model attribute name (the ucmdbAttributeName attribute) to an appropriate
ServiceCenter/Service Manager attribute name (the
serviceDeskAttributeName attribute).
246

Chapter 8 • The HP ServiceCenter/Service Manager Adapter
For example:

This element can optionally contain the following converter attributes:

➤ The converterClassName attribute. This is the converter class name that
converts the UCMDB attribute value to the ServiceDesk attribute value.

➤ The reversedConverterClassName attribute. This is the converter class
name that converts the ServiceDesk attribute value to the UCMDB
attribute value.

➤ The classConnectorConfiguration element contains the configuration for the
specific connector implementation for the current external CIT. Wrap this
configuration in CDATA if it contains special XML characters (for example,
& replacing &).

The useful fields of the Service Manager classConnectorConfiguration element
are as follows:

➤ The device_key_property_names element contains the fields names in
the WSDL information of the current object that can contain the device
ID (for example, ConfigurationItem). Each field should be added as a
device_key_property_name element.

➤ The id_property_name element contains the field name in the WSDL
information that contains the ID of the current object.

<attributeMapping ucmdbAttributeName="problem_brief_description"
serviceDeskAttributeName="brief.description"/>
247

Chapter 8 • The HP ServiceCenter/Service Manager Adapter
The following example shows the ucmdbClassConfiguration section of the
serviceDeskConfiguration.xml file. The section includes the ucmdbClassName
element for the Incident CIT with a ServiceCenter connector
implementation:

<ucmdbClassConfiguration ucmdbClassName="it_incident">
 <attributeMappings>
 <attributeMapping ucmdbAttributeName="incident_id"
serviceDeskAttributeName="IncidentID"/>
 <attributeMapping ucmdbAttributeName="incident_brief_description"
serviceDeskAttributeName="BriefDescription"/>
 <attributeMapping ucmdbAttributeName="incident_category"
serviceDeskAttributeName="Category"/>
 <attributeMapping ucmdbAttributeName="incident_severity"
serviceDeskAttributeName="severity"/>
 <attributeMapping ucmdbAttributeName="incident_open_time"
serviceDeskAttributeName="OpenTime"/>
 <attributeMapping ucmdbAttributeName="incident_update_time"
serviceDeskAttributeName="UpdatedTime"/>
 <attributeMapping ucmdbAttributeName="incident_close_time"
serviceDeskAttributeName="ClosedTime"/>
 <attributeMapping ucmdbAttributeName="incident_status"
serviceDeskAttributeName="IMTicketStatus"/>
 </attributeMappings>

 <classConnectorConfiguration>
 <![CDATA[<class_configuration
connector_class_name="com.mercury.topaz.fcmdb.adapters.serviceDeskAdapter.servi
ceCenterConnector.impl.SimpleServiceCenterObjectConnector">
 <device_key_property_names>
 <device_key_property_name>ConfigurationItem</device_key_property_name>
 </device_key_property_names>
 <id_property_name>IncidentID</id_property_name>
 <keys_action_info>
 <request_name>RetrieveUcmdbIncidentKeysListRequest</request_name>
<response_name>RetrieveUcmdbIncidentKeysListResponse</response_name>
 </keys_action_info>
 <properties_action_info>
 <request_name>RetrieveUcmdbIncidentListRequest</request_name>
 <response_name>RetrieveUcmdbIncidentListResponse</response_name>
 </properties_action_info>
 </class_configuration>]]>
 </classConnectorConfiguration>
 </ucmdbClassConfiguration>
248

Chapter 8 • The HP ServiceCenter/Service Manager Adapter
Adding an Attribute to a CIT

When adding an attribute to the UCMDB model for an Adapter-
supported CIT:

 1 In serviceDeskConfiguration.xml, add an attributeMapping element to the
appropriate ucmdbClassConfiguration element.

 2 Verify that ServiceCenter/Service Manager externalizes this attribute in its
Web Service API.

 3 Save serviceDeskConfiguration.xml.

 4 Send a call to the JMX to reload the adapter: FCmdb Config Services >
loadOrReloadCodeBaseForAdapterId, using the appropriate customer ID
and the ServiceDeskAdapter adapter ID.

Reconciliation Data Configuration
Each UCMDB CIT that can be related to the adapter-supported CIT is
defined in the second section of the Adapter configuration file.

This section, reconciliationClassConfigurations, represents the reconciliation
data configuration for one UCMDB CIT. The element includes two
attributes:

➤ The ucmdbClassName attribute. This is the CIT name as defined in the
UCMDB class model.

➤ The concreteMappingImplementationClass attribute. This is the class name of
the concrete implementation for the ConcreteMappingEngine interface. Use
this attribute to map between instances of UCMDB CITs and external
Adapter CITs. The default implementation that is used is:

An additional implementation exists that is used only for the host
reconciliation CIT for reconciliation by the IP of the host:

com.mercury.topaz.fcmdb.adapters.serviceDeskAdapter.mapping.impl.OneNodeMappi
ngEngine

com.mercury.topaz.fcmdb.adapters.serviceDeskAdapter.mapping.impl.
HostIpMappingEngine
249

Chapter 8 • The HP ServiceCenter/Service Manager Adapter
The reconciliationClassConfiguration element can contain one of the
following elements:

➤ The reconciliationById element. This element is used when the reconciliation
is done by ID. In this case, the text value of this element is the ServiceDesk
field name that contains the CMDB ID. For example:

In this example, the ServiceDesk field UcmdbID contains the CMDB ID of
the appropriate host.

➤ The reconciliationData element. Use this element if the reconciliation is done
by comparing attributes. You can run reconciliation with one attribute or
several attributes by using the logical operators OR and/or AND.

If you run reconciliation with one attribute, the reconciliationData child
element should be a reconciliationAttribute element. The reconciliationAttribute
element contains an appropriate UCMDB attribute name (the
ucmdbAttributeName attribute) and an appropriate ServiceDesk attribute
name (the serviceDeskAttributeName attribute). This element can also
contain a ucmdbClassName attribute that defines the appropriate UCMDB
CIT name. By default, the current reconciliation UCMDB CIT name is used.

You can also use the converterClassName and reversedConverterClassName
attributes; they should contain the converter class name that converts the
UCMDB attribute value to the ServiceDesk attribute value, or vice versa.

For example:

For reconciliation to run with two or more attributes, use a logical operator
between reconciliation attributes.

The logical operator AND can contain several reconciliationAttribute elements
(the minimum is 2). In this case the reconciliation rule contains an AND
operator between attribute comparisons.

<reconciliationById>UcmdbID</reconciliationById>

<reconciliationData>
 <reconciliationAttribute ucmdbAttributeName="host_hostname"
serviceDeskAttributeName="NetworkName"
converterClassName="com.mercury.topaz.fcmdb.adapters.serviceDeskAdapter.conver
ter.PropertyValueConverterToUpperCase"/>
 </reconciliationData>
250

Chapter 8 • The HP ServiceCenter/Service Manager Adapter
For example:

In this example, the reconciliation rule follows this format:
host.host_hostname= NetworkName and ip.ip_address= NetworkAddress.

The logical operator OR can contain several reconciliationAttribute and AND
elements. In this case the reconciliation rule contains an OR operator
between attributes and AND expressions. Since XML does not assure the
order of elements, you should provide a priority attribute to each sub-
element of OR element type. The comparison between OR expressions is
calculated by these priorities.

For example:

<reconciliationData>
<AND>
 <reconciliationAttribute ucmdbAttributeName="host_hostname"
serviceDeskAttributeName="NetworkName"
converterClassName="com.mercury.topaz.fcmdb.adapters.serviceDeskAdapter.conver
ter.PropertyValueConverterToUpperCase"/>
 <reconciliationAttribute ucmdbClassName=”ip”
ucmdbAttributeName="ip_address" serviceDeskAttributeName="NetworkAddress" />

</AND>
 </reconciliationData>

<reconciliationData>
<OR>
 <reconciliationAttribute ucmdbAttributeName="host_dnsname"
serviceDeskAttributeName="NetworkDNSName" priority=”2” />
<AND priority=”1” >
 <reconciliationAttribute ucmdbAttributeName="host_hostname"
serviceDeskAttributeName="NetworkName"
converterClassName="com.mercury.topaz.fcmdb.adapters.serviceDeskAdapter.conver
ter.PropertyValueConverterToUpperCase"/>
 <reconciliationAttribute ucmdbClassName=”ip”
ucmdbAttributeName="ip_address" serviceDeskAttributeName="NetworkAddress" />

</AND>
</OR
 </reconciliationData>
251

Chapter 8 • The HP ServiceCenter/Service Manager Adapter
In this example the reconciliation rule follows this format:
(host.host_dnsname= NetworkDNSName OR (host.host_hostname=
NetworkName and ip.ip_address= NetworkAddress)). Since the AND element
takes a priority attribute of value 1, the (host.host_hostname=
NetworkName and ip.ip_address= NetworkAddress) condition is checked
first. If the condition is satisfied, the reconciliation is run. If not, the
.host_dnsname= NetworkDNSName condition is checked.

The additional sub-element of the reconciliationClassConfiguration element is
classConnectorConfiguration. The classConnectorConfiguration element
contains the configuration for a specific connector implementation for the
current reconciliation CIT. This configuration should be wrapped by CDATA
if it contains some special XML characters (for example, & replacing &).

Changing the Reconciliation Rule of a CIT

 1 In serviceDeskConfiguration.xml, update the appropriate reconciliationData
element with the new rule.

 2 Call to the JMX to reload the adapter: FCmdb Config Services >
loadOrReloadCodeBaseForAdapterId, using the appropriate customer ID
and ServiceDeskAdapter adapter ID, or go to the Data Stores tab and reload
the adapter from there. For details, see the Reload button information in
“Data Stores Tab” on page 115.

Reconciliation of a Host by ip_address or by host_name

To run reconciliation on a host by ip_address or host_name, place the
following ReconciliationData element in the Adapter configuration file:

<reconciliationData>
 <OR>
 <reconciliationAttribute priority="1" ucmdbClassName="ip"
ucmdbAttributeName="ip_address" serviceDeskAttributeName="NetworkAddress"/>
 <reconciliationAttribute priority="2" ucmdbClassName="host"
ucmdbAttributeName="host_hostname" serviceDeskAttributeName="NetworkName"
converterClassName="com.mercury.topaz.fcmdb.adapters.serviceDeskAdapter.conver
ter.PropertyValueConverterToUpperCase"/>
 </OR>
</reconciliationData>
252

Chapter 8 • The HP ServiceCenter/Service Manager Adapter
You should also change the value of the
concreteMappingImplementationClass attribute of the
reconciliationClassConfiguration element to:

Global Configuration
The third section of the Adapter configuration file contains the global
configuration for the specific connector implementation.

This configuration, globalConnectorConfig, should be wrapped by CDATA if
it contains some special XML characters (for example, & replacing &).

The useful fields of the Service Manager globalConnectorConfig element are
as follows:

 1 The date_pattern element contains the date pattern that the Service
Manager is working with.

The default is MM/dd/yy HH:mm:ss.

If the date pattern is wrong, an FTQL returns wrong date condition results.

 2 The time_zone element defines the time zone of Service Manager. The
default is the UCMDB server time zone.

To check the Service Manager date pattern and time zone:

 a Service Manager version 7: Access Menu Navigation > System
Administration > Base System Configuration > Miscellaneous >System
Information Record. Click the Date Info tab.

 b ServiceCenter version 6.1: Access Menu Navigation > Utilities
>Administration > Information >System Information. Click the Date Info
tab.

 3 The max_query_length element defines the maximal query length in a
Service Manager Web service request. The default value is 1000000.

 4 The name_space_uri element defines the name space URI to connect to the
Service Manager Web service. The default value is
http://servicecenter.peregrine.com/PWS.

="com.mercury.topaz.fcmdb.adapters.serviceDeskAdapter.mapping.impl.HostIpMappin
gEngine"
253

Chapter 8 • The HP ServiceCenter/Service Manager Adapter
 5 The web_service_suffix element defines the Service Manager Web service
center URI suffix. The default value is sc62server/ws. It is used when the URL
is created.

Tasks

Deploy the Adapter

This section describes a typical deployment of the adapter.

This section includes the following steps:

 1 “Deploy the ServiceDesk Adapter” on page 255

 a “Extract the Adapter Implementation Files and Deploy the Package” on
page 255

 b “Add a ServiceCenter/Service Manager External Data Source” on
page 255

 c “Configure HP ServiceCenter 6.2” on page 256 (when connecting to
HP ServiceCenter)

 d “Configure HP Service Manager 7.0/7.1” on page 259 (when connecting
to HP Service Manager)

 2 “Add an Attribute to the ServiceCenter/Service Manager CIT” on page 260

 a “Add an Attribute to the HP Universal CMDB Model” on page 260

 b “Export Attributes from HP ServiceCenter by Changing the
Configuration” on page 262 (when connecting to HP ServiceCenter)

 c “Export Attributes from HP Service Manager by Changing the
Configuration” on page 264 (when connecting to HP Service Manager)

 d “Modify the Adapter Configuration File” on page 266

 e “Load the Changes” on page 267
254

Chapter 8 • The HP ServiceCenter/Service Manager Adapter
Deploy the ServiceDesk Adapter

This section explains where to place the files needed for deployment.

This section includes the following steps:

➤ “Extract the Adapter Implementation Files and Deploy the Package” on
page 255

➤ “Add a ServiceCenter/Service Manager External Data Source” on page 255

➤ “Configure HP ServiceCenter 6.2” on page 256

➤ “Configure HP Service Manager 7.0/7.1” on page 259

 1 Extract the Adapter Implementation Files and Deploy the
Package

 a Verify the location of the following folder and file:

➤ ServiceDeskAdapter

➤ serviceDeskAdapter.zip

 b Move the serviceDeskAdapter.zip package to the following directory:
<HP Universal CMDB root directory>\UCMDBServer\root\lib\packages.

 c Deploy the serviceDeskAdapter.zip package: Log in to HP Universal
CMDB and access the Package Manager (Admin > Settings > Package
Manager). Select the package and click the Deploy button.

For details on deploying packages, see “Deploy a Package” on page 472.

 d Move the ServiceDeskAdapter folder to the following directory:

<HP Universal CMDB root directory>\UCMDBServer\j2f\fcmdb
\CodeBase

 2 Add a ServiceCenter/Service Manager External Data Source
In this step, you add an external data store.

 a In HP Universal CMDB, access the Federated CMDB window: Admin >
Settings > Federated CMDB.
255

Chapter 8 • The HP ServiceCenter/Service Manager Adapter
 b Click the button to add a data store. In the Data Store dialog box that
opens, choose ServiceDeskAdapter and fill in the mandatory fields.

For help with this dialog box, see “Data Stores Tab” on page 115.

 c Continue to “Configure HP ServiceCenter 6.2” on page 256 or
“Configure HP Service Manager 7.0/7.1” on page 259.

 3 Configure HP ServiceCenter 6.2
If you are connecting to HP ServiceCenter 6.2, perform the following
procedure. If you are connecting to HP Service Manager 7.0/7.1, skip this
step.

 a Open HP ServiceCenter, then the ServiceCenter client.

 b Display WSDL Configuration in the Navigator (Main Menu > Menu
navigation > Toolkit):
256

Chapter 8 • The HP ServiceCenter/Service Manager Adapter
 c In the Name field, enter device and press Enter:

 d Select the Data Policy tab and ensure that the network.name attribute is
not empty (its value should be NetworkName). Change the value to
false. Save your changes.

 e After saving, click the Cancel button.

 f In the Object Name field type Change and press Enter.
257

Chapter 8 • The HP ServiceCenter/Service Manager Adapter
 g Select the Data Policy tab and ensure that:

➤ The header,coordinator attribute is not empty (its value should be
Coordinator). Change the value to false.

➤ The header,orig.operator attribute is not empty (its value should be
OpenedBy). Change the value to false.

 h Save the changes.

 i Restart ServiceCenter: Select Start > Programs > ServiceCenter 6.2 >
Server > Console to open the ServiceCenter Console.

 j Click Stop and then Start.

 k Continue to “Add an Attribute to the HP Universal CMDB Model” on
page 260.
258

Chapter 8 • The HP ServiceCenter/Service Manager Adapter
 4 Configure HP Service Manager 7.0/7.1
If you are connecting to HP Service Manager 7.0/7.1, perform the following
procedure. If you are connecting to HP ServiceCenter 6.2, skip this step.

 a Import the unload file relevant to the Service Manager version with
which you are working: ucmdbIntegration7_0x.unl or
ucmdbIntegration7_1x.unl. To do so, in Service Manager, click Menu
Navigation > Tailoring > Database Manager.

➤ Right-click the detail button and select Import/Load.

➤ In the HP Service Manager File Load/Import page, click Specify File
and browse to the following unload file:

“Configure HP ServiceCenter 6.2” on page 256<HP Universal CMDB
root directory>\UCMDBServer\j2f\fcmdb\
CodeBase\ServiceCenterAdapter\ucmdbIntegration7_0x.unl or
ucmdbIntegration7_1x.unl.

The file is loaded via the file browser.

➤ Enter the description in the Import Description box.

➤ Select winnt in the File Type list.

➤ Select a display option.

➤ Click Load FG to start loading.

 b Continue to “Add an Attribute to the HP Universal CMDB Model” on
page 260.
259

Chapter 8 • The HP ServiceCenter/Service Manager Adapter
Add an Attribute to the ServiceCenter/Service
Manager CIT

This section explains how to retrieve additional data from ServiceCenter or
Service Manager by adding an attribute.

This section includes the following steps:

➤ “Add an Attribute to the HP Universal CMDB Model” on page 260

➤ “Export Attributes from HP ServiceCenter by Changing the Configuration”
on page 262

➤ “Export Attributes from HP Service Manager by Changing the
Configuration” on page 264

➤ “Modify the Adapter Configuration File” on page 266

➤ “Load the Changes” on page 267

 1 Add an Attribute to the HP Universal CMDB Model
To add an attribute to the model, proceed as follows:

 a Add the new attribute to HP Universal CMDB: Edit the Incident CIT:
Select Admin > Modeling > CI Type Manager. In View Explorer, select IT
Process > IT Incident.
260

Chapter 8 • The HP ServiceCenter/Service Manager Adapter
 b Select the Attribute tab and add the new attribute:

 c Continue to “Export Attributes from HP ServiceCenter by Changing the
Configuration” on page 262 or “Export Attributes from HP Service
Manager by Changing the Configuration” on page 264.
261

Chapter 8 • The HP ServiceCenter/Service Manager Adapter
 2 Export Attributes from HP ServiceCenter by Changing the
Configuration
If you are connecting to HP ServiceCenter, perform the following procedure.

 a In HP ServiceCenter, open the ServiceCenter client.

 b Select Window > Open Perspective > Administration:

 c Select Incident Management > All Open Incidents, and select one of the
incidents you created.

Note: Verify that the value in the Class field is the one that you want to
report to HP Universal CMDB.
262

Chapter 8 • The HP ServiceCenter/Service Manager Adapter
 d Search for the value you entered in the Class field (that is, myclass), in
the XML file displayed below. This is the CI name in ServiceCenter.

 e Display WSDL Configuration in the Navigator (Main Menu > Menu
navigation > Toolkit). Locate the Object Name field, enter Incident and
press Enter.

 f Select the Data Policy tab. Enter a name for the CI mentioned in the XML
file (that is, class). Change the value to false. Save your changes.

 g Restart ServiceCenter: Select Start > Programs > ServiceCenter 6.2 >
Server > Console to open the ServiceCenter Console.

 h Click Stop and then Start.

 i Continue to “Modify the Adapter Configuration File” on page 266.
263

Chapter 8 • The HP ServiceCenter/Service Manager Adapter
 3 Export Attributes from HP Service Manager by Changing the
Configuration
If you are connecting to HP Service Manager, perform the following
procedure.

 a In the HP Service Manager client, restore the bottom right pane by
clicking the Restore button. Click the Detail Data tab.
264

Chapter 8 • The HP ServiceCenter/Service Manager Adapter
 b Open one of the incidents you created: Select Incident Management >
Search Incidents. Click the search button (you can filter the fields to limit
the search).

Note: Verify that the value in the Class field is the one that you want to
report to HP Universal CMDB.
265

Chapter 8 • The HP ServiceCenter/Service Manager Adapter
 c Search for the value you entered in the Class field (that is, myclass), in
the XML file displayed below. This is the CI name in Service Manager.

 d Display WSDL Configuration in the Navigator (Main Menu > Menu
Navigation > Tailoring). Locate the Object Name field, enter
UcmdbIncident and press ENTER.

 e Select the Data Policy tab.

 f Select the Fields tab and ensure that the CI name mentioned in the XML
file (that is, class) appears in the Field list with ClassName as its caption.
If this attribute does not appear in the Field list, add it and save your
changes.

 g Continue to “Modify the Adapter Configuration File” on page 266.

 4 Modify the Adapter Configuration File
Perform this procedure for all configurations.

 a Edit the ServiceDeskConfiguration.xml file in

<HP Universal CMDB root directory>\UCMDBServer\j2f\fcmdb
\CodeBase\ServiceDeskAdapter
266

Chapter 8 • The HP ServiceCenter/Service Manager Adapter
 b Add the new attribute line under the Incident area: Locate the following
marker:

 c Add the following line:

where:

➤ ucmdbAttributeName="incident_class" is the value defined in the CI
Type Manager

➤ ServiceDeskAttributeName="ClassName" is the valued defined in
ServiceCenter/Service Manager

 d Continue to “Load the Changes” on page 267.

 5 Load the Changes
Perform this procedure to load changes.

 a Launch the Web browser and enter the following address:

where <machine name or IP address> is the machine on which
HP Universal CMDB is installed.

You may have to log in with the administrator’s user name and password.

 b Click the Topaz > service=Fcmdb Config Services link.

 c In the JMX MBEAN View page, locate the following operation:
loadOrReloadCodeBaseForAdapterId().

 d In the customerID field, enter 1. In the AdapterId field, enter the name of
the Adapter folder (ServiceDeskAdapter). Click Invoke.

<ucmdbClassConfiguration ucmdbClassName="it_incident">
<attributeMappings>

<attributeMapping ucmdbAttributeName="incident_class"
ServiceDeskAttributeName="ClassName"/>

http://<machine name or IP address>:8080/jmx-console/
267

Chapter 8 • The HP ServiceCenter/Service Manager Adapter
268

9
Troubleshooting and Limitations

This chapter includes troubleshooting and limitations for the Federated
CMDB functionality.

This chapter includes:

Reference

 ➤ Federated CMDB Troubleshooting and Limitations on page 269
Reference

Federated CMDB Troubleshooting and Limitations

This section includes the following topics:

➤ “All Adapters” on page 270

➤ “The RMI Adapter” on page 270

➤ “The CmdbChanges Adapter” on page 270
269

Chapter 9 • Troubleshooting and Limitations
All Adapters

➤ When changes are made in View Manager and these changes affect the
results of a TQL, federated CIs in the view are not updated. This is because
federated TQLs are calculated ad-hoc only and are not updated when a view
is recalculated. To update the federated CIs, select the view in View Explorer
and click the Rebuild View button. (Note that the recalculation may take a
long time.) For details, see “Browse Mode” on page 677.

➤ When configuring a local UCMDB data store, if your RMI adapter also
supports federated queries, do not choose CITs in the CITs Supported by
Adapter dialog box. (You should add an adapter for the local UCMDB data
store only if you want to use it for replication jobs).

➤ Do not choose a CIT to be supported by an external data store if instances of
this CIT exist in the local UCMDB, as this can lead to state inconsistency.
For example, if there are instances of the CPU CIT in the local UCMDB, you
must not choose the CPU when defining an external data store, even if the
selected adapter supports it.

➤ When configuring a replication job between two CMDBs, verify that the
class model is the same in the two CMDBs.

The RMI Adapter

➤ When using the RMI adapter, the version of the CMDB running on the
configured host must be the same as the version of the UCMDB.

The CmdbChanges Adapter

➤ The adapter does not support any property condition beside the root_class
IN … condition on the Root node.

➤ A query should contain one CI that is labeled Root, or one or more relations
that are labeled Root.

The root node is the main CI that is synchronized; the other nodes are the
contained CIs of the main CI. For example, when synchronizing hosts, the
host node is labeled as root and the host resources are not root.

➤ The TQL graph must not have cycles.

➤ The TQL must contain only the Root CI and optional CIs that are directly
connected to it.
270

Chapter 9 • Troubleshooting and Limitations
➤ A query that is used to synchronize relations should have the cardinality
1...* and an OR condition between the relations.

➤ The adapter does not support compound relations.

➤ All CI attributes to be replicated must have the Change Monitored check
box selected (STATIC qualifier) so that they can be written to the History
database:

➤ Each relation must include the TRACK_LINK_CHANGES qualifier so that it
can be written to the History database:
271

Chapter 9 • Troubleshooting and Limitations
272

10
Introduction to Reconciliation

This chapter provides information on Reconciliation.

This chapter includes:

Concepts

 ➤ Reconciliation – Overview on page 273

 ➤ Host Reconciliation Rules on page 274

 ➤ Cluster Reconciliation Rules on page 274

 ➤ Software Element Reconciliation Rules on page 275

 ➤ Process Reconciliation Rules on page 275
Concepts

Reconciliation – Overview

Reconciliation is a process of identifying and matching entities from
different data stores (DDM, DDMi, ticketing, and so on). It is designed to
avoid duplication of CIs in the CMDB.

The following sections include details of the out-of-the-box reconciliation
rules:
273

Chapter 10 • Introduction to Reconciliation
Host Reconciliation Rules

➤ Any host in UCMDB is identified either by an IP address or a strong ID value
(such as a MAC address or hardware ID):

Hosts identified by an IP address are considered incomplete (the Host Is
Complete attribute has a false value).

Hosts identified by a strong ID are considered complete. If a host has several
MAC addresses, DDM uses the lowest MAC address as the identifier.

➤ An incomplete host can be reconciled with a complete host by its IP address,
or with an incomplete host that has the same ID.

➤ A complete host can be reconciled with an incomplete host by its IP address,
or with a complete host that has the same ID.

➤ When an incomplete host exists in the CMDB and a complete host is
reported, the complete host replaces the incomplete host and the topology
(related CIs) that is connected to the incomplete host is moved to the new,
complete host.

➤ When a complete host exists in the CMDB and an incomplete host is
reported, the properties of the incomplete host are copied to the complete
host that is already in the CMDB.

Note: Properties are updated according to the conflict resolution policy.

Cluster Reconciliation Rules

➤ A Cluster Server is a complete host.

➤ If an incomplete host is identified by its IP with two complete hosts, and one
of these hosts is a cluster, the incomplete host is identified with the cluster
only.

➤ If a Cluster Server and a complete host are connected to the same VIP
(virtual IP), all software elements that include the VIP in the application_ip
attribute move from the physical complete host to the Cluster Server.
274

Chapter 10 • Introduction to Reconciliation
Software Element Reconciliation Rules

➤ Software Element CITs are considered to be either of a strong type or a weak
type:

➤ Strong Type Software Element CITs. These CITs are specialized (they are
derived from the Software Element CIT) and include more attributes,
different identification rules, a display label, and so on.

➤ Weak Type Software Element CITs. These CITs are CI instances of the
Software Element CI Type itself. They include basic configuration
attributes only. Also, only one instance of each software component type
can exist in the model. That is, you cannot model two different Oracle
instances on a single host using a weak type software element.

➤ A reconciliation mechanism handles the mapping of weak type software
elements to their corresponding strong type, once they are discovered. This
mechanism enables DDM to detect the existence of software by one
method, and report additional details about the software when it is
discovered using another method, knowing the two CIs will eventually be
merged in the CMDB.

➤ The reconciliation mechanism relies on a shared attribute value between the
weak type and strong type: the Name attribute (data_name). All software
elements (strong or weak) are created with a distinguishing name: when a
strong software element is discovered on a host containing a weak software
element with the same name, the weak software element is merged with the
strong one.

Process Reconciliation Rules

Process CITs are considered to be either of a strong type or a weak type:

➤ Strong Type Process CITs. These CITs contain the process command line.

➤ Weak Type Process CITs. These CITs do not include information about
the process command line; instead, they contain an empty string that
can be mapped to any command line.
275

Chapter 10 • Introduction to Reconciliation
Reconciliation receives a process CI from a data store and searches the
CMDB for an identical CI, by comparing key attributes:

➤ If one of the CIs contains an empty string in the command line attribute
but the other key attributes are identical in both CIs, they are considered
identical and are mapped to each other.

For example, if the process CI is of the strong type, that is, includes a
command line attribute, and the CI in the CMDB is of the weak type,
that is, includes an empty string for the command line attribute, they are
considered identical.

Once the two CIs are identified, a data change procedure merges them.

➤ If the CIs have identical attributes, including the process command line
attribute, they are merged.
276

Part III

Additional Integrations

278

11
Embedding UCMDB Applets Using Direct
Links

This chapter describes how to embed UCMDB applets into external
applications using direct links.

Note: This chapter is relevant to integration developers only.

This chapter includes:

Concepts

 ➤ Using Direct Links to Embed UCMDB Applets on page 280

 ➤ UCMDB Applet Tag Overview on page 281

Reference

 ➤ Direct Link Operation Flow on page 282
Concepts
279

Embedding UCMDB Applets Using Direct Links
Using Direct Links to Embed UCMDB Applets

You can directly embed UCMDB applets into external applications using a
direct link. A direct link is a URL that you create using the Direct Links
wizard. For details, see “Direct Links to an Application Page” in Solutions and
Integrations.

You can embed UCMDB applets in the following ways:

➤ Using the URL itself to display CMDB content in an external application.
For example, you can create a URL in the Direct Links wizard to display the
properties of a certain CI. The login page opens if you are not already logged
into HP Universal CMDB.

Note: Using the URL to enable the integration requires opening the link in
an IFrame or a new window. This does not allow you to manage the
resulting UCMDB applet using Javascript due to cross-site scripting issues.
For example, if you use a URL that displays the properties of a specific CI
using the object ID, you cannot use the same URL to display the properties
of another CI.

➤ Using the UCMDB applet tag to embed the UCMDB applet in an external
application. This enables integration developers to display a part of the
HP Universal CMDB user interface as part of their own application. In
addition, this enables interaction with the embedded HP Universal CMDB
user interface using Javascript.
280

Embedding UCMDB Applets Using Direct Links
UCMDB Applet Tag Overview

The UCMDB Applet tag creates the environment needed for the UCMDB
applet to run (HTML, Javascript, and server session parameters). The code
behind the tag can log into the HP Universal CMDB server in one of the
following cases:

➤ The login parameters are specified and the user is not already logged in.

➤ The clear session parameter is true.

Once a user session is established, the tag continues to write the required
applet environment (HTML and Javascript code) to the result of the JSP
processor. The resulting HTML page includes the required Javascript code to
load the UCMDB applet from the specified server. On error, the specified
error string is printed to the page. This string can be customized using the
userErrorMessage parameter and may include HTML elements and HTML
wrapped Javascript code to initiate error handling scenarios.

Example of a UCMDB Applet Tag

Important: You retrieve the directLinkParameters from the URL created in
the Direct Links wizard. Delete the part of the parameter that precedes
"cmd=", as it is not part of the parameter needed for the UCMDB applet tag.
For details on how to create a direct link, see “Direct Links Wizard” on
page 441.

The UCMDB applet tag is located at <HP Universal CMDB root
folder>AppServer\webapps\site.war\WEB-INF\tags\CMS\
ucmdb_applet.tag.

<ucmdb:ucmdb_applet
serverConnectionString="x.com"
serverType="BAC"
directLinkParameters="cmd=ShowProperties&objectId=2d3b0fec35431ea01625
a4&navigation=false&interfaceVersion=8.0.0"
userName="admin"
userPassword="admin"
clearSessionCookies="false"/>
281

Embedding UCMDB Applets Using Direct Links
You can copy the UCMDB applet tag to an external application server. The
UCMDB applet tag requests the login data from the HP Universal CMDB
server provided that:

➤ The external application server can communicate with JSP tags.

➤ The HP Universal CMDB server is accessible to the external application
server and to the browser.

Reference

Direct Link Operation Flow

This section describes different scenarios in which direct links are used to
embed UCMDB applets into external machines.

This section includes the flow descriptions:

➤ “Regular Login” on page 283

➤ “An Embedded UCMDB Applet Using a Direct Link URL” on page 284

➤ “An Embedded UCMDB Applet Using a UCMDB Applet Tag” on page 286
282

Embedding UCMDB Applets Using Direct Links
Regular Login
This flow describes a regular login to the HP Universal CMDB server. It
serves as a base reference for the direct link flows.

 1 The user enters the direct link URL (into the browser) to log into the
HP Universal CMDB server.

 2 The browser sends the login request to the HP Universal CMDB server.

 3 The server checks the user credentials and creates a user session if required.

 4 The server returns the requested first page of HP Universal CMDB.

 5 The browser loads the Java virtual machine (JVM) with the code base
location parameter (which instructs the JVM from where to load the
UCMDB applet files) as the HP Universal CMDB server.
283

Embedding UCMDB Applets Using Direct Links
 6 UCMDB applet files (jars) and data are transferred between the HP Universal
CMDB server and the JVM loaded in the browser.

At this point, the UCMDB applet is loaded and regards HP Universal CMDB
as the server with which it should communicate.

An Embedded UCMDB Applet Using a Direct Link URL
This flow shows how to use the direct link to open a UCMDB applet (opened
to a specified context) in a new browser frame.

 1 The external application has a page that needs to show the UCMDB applet.
284

Embedding UCMDB Applets Using Direct Links
 2 The returned page includes a directive to open the direct link in an IFrame
or new browser window.

 3 The browser opens a new frame (IFrame or new window) with the direct link
as the frame URL.

 4 The new frame sends the direct link to the HP Universal CMDB server.

 5 If the user is not already logged into HP Universal CMDB, HP Universal
CMDB displays the login page and waits for the user to enter credentials and
click the login button.

 6 The user session is created, if required.

 7 The HP Universal CMDB server returns a page that includes the directive to
load the UCMDB applet.

 8 The browser processes the page. When the browser encounters the directive
to load the UCMDB applet, it starts the JVM. The browser then passes the
needed parameters to the JVM, including the HP Universal CMDB server
location as "code base."

 9 UCMDB applet files (jars) and data are transferred between the HP Universal
CMDB server and the JVM loaded in the browser.

Important: The HP Universal CMDB server must be accessible from the
browser machine.
285

Embedding UCMDB Applets Using Direct Links
An Embedded UCMDB Applet Using a UCMDB Applet Tag
This flow shows how to use the UCMDB applet tag in conjunction with
direct links to embed the UCMDB applet (opened to a specified context) in
an external application page.

 1 The UCMDB applet tag is included in the processed JSP in the external
application.

 2 The UCMDB applet tag uses the parameters given to it to create an HTTP/
HTTPS connection to the HP Universal CMDB server and requests the applet
HTML-let.
286

Embedding UCMDB Applets Using Direct Links
 3 If the user is not already logged in, the parameters from the UCMDB applet
tag are used (see the tag itself for reference information regarding this step).
If login fails, the UCMDB applet tag returns an error message, either the
preset one or the one specified in the UCMDB applet tag parameters.

 4 The HP Universal CMDB server returns the HTML-let (with embedded
Javascript) that loads the UCMDB applet. The external application can now
incorporate this HTML-let into the page, which it sends to the browser.

 5 The external application sends the complete page which includes the
HTML-let to the browser.

 6 The browser processes the page. When the browser encounters the HTML-let
that loads the UCMDB applet, the JVM is started. The browser then passes
the needed parameters to the JVM, including the HP Universal CMDB server
location as "code base".

 7 UCMDB applet files (jars) and data are transferred between the HP Universal
CMDB server and the JVM loaded in the browser.

Important: The HP Universal CMDB server must be accessible from the
browser machine as well as the external application machine.
287

Embedding UCMDB Applets Using Direct Links
288

Index
A

adapter
add for new external data store 230

adapter capabilities 241
adapter.conf 169
adapters 108

configuration file in ServiceCenter/
Service Manager 245

deployment for ServiceCenter/Service
Manager 254

deployment of ServiceDesk adapter
255

generating a new encryption key file
113

interaction with the federation
framework 211

interfaces 229
usage in ServiceCenter/Service

Manager 244
API

UCMDB Java
UCMDB Java API 91

UCMDB webservice 15
APIs

included with HP Universal CMDB 13
introduction 13

attributes
retrieving from external data source

110

C

configuration file
for ServiceCenter/Service Manager

adapter 245
configuration files for the generic database

adapter 168

configuration type
UCMDB webservice API 86

converters
generic database adapter 186

D

data store
add adapter for new external 230
creating 117

data stores
retrieving data from multiple 109

Data Stores tab 115
database adapter

configuration examples 190
derived properties 25
direct link embedded applets

overview 280
direct link operation flow 282
discriminator.properties 185

E

embedding applets
using direct links 279

F

federated adapter
generating a new encryption key file

113
federated adapters 108
federated CMDB

federation framework flow for FTQL
212

federation framework flow for
replication 224

mapping information 112
289

Index
overview 108
troubleshooting and limitations 269
workflow 112

Federated CMDB window 116
federated database adapter

supported TQL queries 130
troubleshooting 205

federation
adapter capabilities 241

federation framework
adapter and mapping interaction 211
adapter interfaces 229

fixed_values.txt 186

G

generic database adapter
converters 186
deployment, advanced method 143
deployment, minimal method 136
federated database configuration files

168
overview 130
plugins 190
reconciliation 131

H

Hibernate mapping tool 134
HP Release Control federation adapter 225

J

Java
UCMDB API 91

L

log files
for federated database 203

M

mapping
interaction with the federation

framework 211

N

New Data Store wizard 117

O

orm.xml 177

P

password
generating a new encryption key file

for a federated adapter 113
persistence.xml 183
plugins

generic database adapter 190
properties

derived 25

Q

queries
UCMDB webservice API 18

R

reconciliation
cluster rules 274
host rules 274
overview 273
software element rules 275

reconciliation_rules.txt 181
relation

UCMDB webservice API 87
Replication Job dialog box 123
Replication Job Statistics window 124
Replication Jobs tab 126
replication_config.txt 186

S

ServiceCenter/Service Manager
adapter deployment 254
add attribute to CIT 260

ServiceDesk adapter
deployment 255

simplifiedConfiguration.xml 170
290

Index
T

TopologyMap
UCMDB webservice API 18

TQL
supported queries in federated

database adapter 130
transformations.txt 182

U

UCMDB
querying

webservice 22
UCMDB applet tag

overview 281
UCMDB Java API

application structure 93
integration user, creating 95
jar file 94
permissions 93
using 92

UCMDB Web service API
using 16

UCMDB webservice API
addCIsAndRelations 46
calculateImpact 49
chunkInfo 89
CIT name 86
class name 86
configuration type name 86
deleteCIsAndRelations 48
errors 22
exceptions 22
executeTopologyQueryByName 32
executeTopologyQueryByNameWith

Parameters 33
executeTopologyQueryWithParamete

rs 34
getAllClassesHierarchy 30
getChangedCIs 34
getCIsByID 36
getCIsByType 37
getClassAncestors 29
getCmdbClassDefinition 30
getFilteredCIsByType 38
getImpactPath 50

getImpactRulesByNamePrefix 51
getQueryNameOfView 42
getTopologyQueryExistingResultByN

ame 43
getTopologyQueryResultCountByNa

me 43
identifier in impact analysis methods

31
inherited properties query 41
key attributes 85
labels 18
parameter format 27, 84, 88
permissions 17
query methods 31
query, properties returned 24
relation 87
ShallowRelation 88
TopologyMap 18
TQL queries 18
update methods 29, 46, 49
updateCIsAndRelations 48
Web Service, calling 22

W

Web Service
UCMDB API 15
UCMDB webservice API 22
291

Index
292

	Integrations
	Table of Contents
	Welcome to This Guide
	How This Guide Is Organized
	Who Should Read This Guide
	Getting More Information

	The HP Universal CMDB APIs
	Introduction to APIs
	APIs Overview

	The HP Universal CMDB Web Service API
	Conventions
	Using the HP Universal CMDB Web Service API
	Uses of the API
	Permissions

	HP Universal CMDB Web Service API Reference
	Returning Unambiguous Topology Map Elements
	Call the Web Service
	Query the UCMDB
	Just In Time Response Calculation
	Processing Large Responses
	Specifying Properties to Return
	Concrete Properties
	Derived Properties
	Naming Properties
	Other Property Specification Elements

	Update the UCMDB
	UCMDB Update Parameters
	Use of ID Types with Update Methods

	Query the UCMDB Class Model
	getClassAncestors
	getAllClassesHierarchy
	getCmdbClassDefinition

	Query for Impact Analysis
	UCMDB Query Methods
	executeTopologyQueryByName
	Input
	Output
	executeTopologyQueryByNameWithParameters
	Input
	Output
	executeTopologyQueryWithParameters
	Input
	Output
	getChangedCIs
	Input
	Output
	getCINeighbours
	Input
	Output
	getCIsByID
	Input
	Output
	getCIsByType
	Input
	Output
	getFilteredCIsByType
	Input
	Output
	getQueryNameOfView
	Input
	Output
	getTopologyQueryExistingResultByName
	Input
	Output
	getTopologyQueryResultCountByName
	Input
	Output
	pullTopologyMapChunks
	Input
	Output
	releaseChunks
	Input

	UCMDB Update Methods
	addCIsAndRelations
	deleteCIsAndRelations
	updateCIsAndRelations

	UCMDB Impact Analysis Methods
	calculateImpact
	getImpactPath
	getImpactRulesByNamePrefix

	Use Cases
	Populating the UCMDB
	Querying the UCMDB
	Querying the Class Model
	Analyzing Change Impact

	Examples
	The Example Base Class
	Query Example
	Update Example
	Class Model Example
	Impact Analysis Example

	UCMDB General Parameters
	CmdbContext
	ID
	Key Attributes
	ID Types
	CIProperties
	Type Name
	Configuration Item (CI)
	Relation

	UCMDB Output Parameters
	CIs
	ShallowRelation
	Topology
	CINode
	RelationNode
	TopologyMap
	ChunkInfo

	The HP Universal CMDB Java API
	Conventions
	Using the HP Universal CMDB Java API
	Uses of the API
	Permissions

	General Structure of Application
	Retrieve the API Jar File
	Create an Integration User
	HP Universal CMDB Java API Reference
	Use Cases
	Populating the UCMDB
	Querying the UCMDB
	Querying the Class Model
	Analyzing Change Impact

	Examples
	Entry Point Example
	Query Examples
	Topology Query Example
	Topology Update Example
	Impact Analysis Example

	The Discovery and Dependency Mapping Web Service API

	Federation and Reconciliation
	Introduction to Federated CMDB
	Federated CMDB - Overview
	Adapters
	Retrieving Data from Multiple Data Stores
	Limitations

	Retrieving Attributes from an External Data Store
	Use Cases

	Mapping Information
	Work with Federated Data - Workflow
	Change the Encrypted Password of a Federated Adapter
	Federated CMDB User Interface
	Data Stores Tab
	Federated CMDB Window
	New Data Store Wizard
	Replication Job Dialog Box
	Replication Job Statistics Window
	Replication Jobs Tab

	The Generic Database Adapter
	Database Adapter - Overview
	Non-supported TQL Queries
	Reconciliation
	Hibernate as JPA Provider
	Examples of Object-Relational Mapping
	Associations
	Usability

	Deploy a Database Adapter - Minimal Method
	Deploy a Database Adapter - Advanced Method
	The Federated Database Configuration Files
	General Configuration
	Advanced Configuration
	Hibernate Configuration
	Simple Configuration

	The adapter.conf File
	The simplifiedConfiguration.xml File
	Example of the XSD File
	The Template
	Limitations

	The orm.xml File
	The Template
	Multiple ORM files
	Naming Conventions

	The reconciliation_rules.txt File
	The transformations.txt File
	The Template

	The persistence.xml File
	The discriminator.properties File
	The replication_config.txt File
	The fixed_values.txt File
	Out of the Box Converters
	The enum-transformer Converter
	The SuffixTransformer Converter
	The PrefixTransformer Converter
	The BytesToStringTransformer Converter

	Plugins
	Configuration Examples
	Use Case
	Single Node Reconciliation
	Two Node Reconciliation
	Using a Primary Key that Contains More Than One Column
	Using Transformations

	Federated Database Log Files
	Log Levels
	Log Locations

	External References
	Troubleshooting and Limitations

	The Federation Framework SDK
	Federation Framework - Overview
	Federation on the Fly
	Data Replication

	Adapter and Mapping Interaction with the Federation Framework
	Adapter Lifecycle
	Adapter assist Methods

	Federation Framework Flow for FTQL
	Definitions and Terms
	Mapping Engine
	FTQL Adapter
	Flow Diagrams

	Federation Framework Flow for Replication
	Definitions and Terms
	Flow Diagram

	The HP Release Control Federation Adapter
	Configuring the Federation Adapter
	Retrieving Planned Change Attributes
	Adding Custom Fields to the Federation Adapter

	Adapter Interfaces
	Definitions and Terms
	Adapter Interfaces for FTQL
	Adapter Interfaces for Replication

	Add an Adapter for a New External Data Store
	Adapter Capabilities

	The HP ServiceCenter/Service Manager Adapter
	Adapter Usage
	The Adapter Configuration File
	External CITs Configuration
	Reconciliation Data Configuration
	Global Configuration

	Deploy the Adapter
	Deploy the ServiceDesk Adapter
	Add an Attribute to the ServiceCenter/Service Manager CIT

	Troubleshooting and Limitations
	Federated CMDB Troubleshooting and Limitations
	All Adapters
	The RMI Adapter
	The CmdbChanges Adapter

	Introduction to Reconciliation
	Reconciliation - Overview
	Host Reconciliation Rules
	Cluster Reconciliation Rules
	Software Element Reconciliation Rules
	Process Reconciliation Rules

	Additional Integrations
	Embedding UCMDB Applets Using Direct Links
	Using Direct Links to Embed UCMDB Applets
	UCMDB Applet Tag Overview
	Direct Link Operation Flow
	Regular Login
	An Embedded UCMDB Applet Using a Direct Link URL
	An Embedded UCMDB Applet Using a UCMDB Applet Tag

	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /JPXEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG2000
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 100
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /JPXEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG2000
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 100
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck true
 /PDFX3Check false
 /PDFXCompliantPDFOnly true
 /PDFXNoTrimBoxError false
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f0062006500200050004400460020658768637b2654080020005000440046002f0058002d00310061003a0032003000300031002089c4830330028fd9662f4e004e2a4e1395e84e3a56fe5f6251855bb94ea46362800c52365b9a7684002000490053004f0020680751c6300251734e8e521b5efa7b2654080020005000440046002f0058002d00310061002089c483037684002000500044004600206587686376848be67ec64fe1606fff0c8bf753c29605300a004100630072006f00620061007400207528623763075357300b300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200034002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef67b2654080020005000440046002f0058002d00310061003a00320030003000310020898f7bc430025f8c8005662f70ba57165f6251675bb94ea463db800c5c08958052365b9a76846a196e96300295dc65bc5efa7acb7b2654080020005000440046002f0058002d003100610020898f7bc476840020005000440046002065874ef676848a737d308cc78a0aff0c8acb53c395b1201c004100630072006f00620061007400204f7f7528800563075357201d300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200034002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c00200064006500720020006600f800720073007400200073006b0061006c00200073006500730020006900670065006e006e0065006d00200065006c006c0065007200200073006b0061006c0020006f0076006500720068006f006c006400650020005000440046002f0058002d00310061003a0032003000300031002c00200065006e002000490053004f002d007300740061006e0064006100720064002000740069006c00200075006400760065006b0073006c0069006e00670020006100660020006700720061006600690073006b00200069006e00640068006f006c0064002e00200059006400650072006c006900670065007200650020006f0070006c00790073006e0069006e0067006500720020006f006d0020006f007000720065007400740065006c007300650020006100660020005000440046002f0058002d00310061002d006b006f006d00700061007400690062006c00650020005000440046002d0064006f006b0075006d0065006e007400650072002000660069006e006400650072002000640075002000690020006200720075006700650072006800e5006e00640062006f00670065006e002000740069006c0020004100630072006f006200610074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200034002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002f0058002d00310061003a0032003000300031002d006b006f006d00700061007400690062006c0065006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002e0020005000440046002f0058002d003100610020006900730074002000650069006e0065002000490053004f002d004e006f0072006d0020006600fc0072002000640065006e002000410075007300740061007500730063006800200076006f006e0020006700720061006600690073006300680065006e00200049006e00680061006c00740065006e002e0020005700650069007400650072006500200049006e0066006f0072006d006100740069006f006e0065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002f0058002d00310061002d006b006f006d00700061007400690062006c0065006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002000660069006e00640065006e002000530069006500200069006d0020004100630072006f006200610074002d00480061006e00640062007500630068002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200034002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f00620065002000710075006500200073006500200064006500620065006e00200063006f006d00700072006f0062006100720020006f002000710075006500200064006500620065006e002000630075006d0070006c006900720020006c00610020006e006f0072006d0061002000490053004f0020005000440046002f0058002d00310061003a00320030003000310020007000610072006100200069006e00740065007200630061006d00620069006f00200064006500200063006f006e00740065006e00690064006f00200067007200e1006600690063006f002e002000500061007200610020006f006200740065006e006500720020006d00e1007300200069006e0066006f0072006d00610063006900f3006e00200073006f0062007200650020006c0061002000630072006500610063006900f3006e00200064006500200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00700061007400690062006c0065007300200063006f006e0020006c00610020006e006f0072006d00610020005000440046002f0058002d00310061002c00200063006f006e00730075006c007400650020006c006100200047007500ed0061002000640065006c0020007500730075006100720069006f0020006400650020004100630072006f006200610074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200034002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000710075006900200064006f006900760065006e0074002000ea0074007200650020007600e9007200690066006900e900730020006f0075002000ea00740072006500200063006f006e0066006f0072006d00650073002000e00020006c00610020006e006f0072006d00650020005000440046002f0058002d00310061003a0032003000300031002c00200075006e00650020006e006f0072006d0065002000490053004f00200064002700e9006300680061006e0067006500200064006500200063006f006e00740065006e00750020006700720061007000680069007100750065002e00200050006f0075007200200070006c007500730020006400650020006400e9007400610069006c007300200073007500720020006c006100200063007200e9006100740069006f006e00200064006500200064006f00630075006d0065006e00740073002000500044004600200063006f006e0066006f0072006d00650073002000e00020006c00610020006e006f0072006d00650020005000440046002f0058002d00310061002c00200076006f006900720020006c00650020004700750069006400650020006400650020006c0027007500740069006c0069007300610074006500750072002000640027004100630072006f006200610074002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200034002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF che devono essere conformi o verificati in base a PDF/X-1a:2001, uno standard ISO per lo scambio di contenuto grafico. Per ulteriori informazioni sulla creazione di documenti PDF compatibili con PDF/X-1a, consultare la Guida dell'utente di Acrobat. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 4.0 e versioni successive.)
 /JPN <FEFF30b030e930d530a330c330af30b330f330c630f330c4306e590963db306b5bfe3059308b002000490053004f00206a196e96898f683c306e0020005000440046002f0058002d00310061003a00320030003000310020306b6e9662e03057305f002000410064006f0062006500200050004400460020658766f830924f5c62103059308b305f3081306b4f7f75283057307e30593002005000440046002f0058002d0031006100206e9662e0306e00200050004400460020658766f84f5c6210306b306430443066306f3001004100630072006f006200610074002030e630fc30b630ac30a430c9309253c2716730573066304f30603055304430023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200034002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020c791c131d558b294002000410064006f0062006500200050004400460020bb38c11cb2940020d655c778c7740020d544c694d558ba700020adf8b798d53d0020cee8d150d2b8b97c0020ad50d658d558b2940020bc29bc95c5d00020b300d55c002000490053004f0020d45cc900c7780020005000440046002f0058002d00310061003a0032003000300031c7580020addcaca9c5d00020b9dec544c57c0020d569b2c8b2e4002e0020005000440046002f0058002d003100610020d638d65800200050004400460020bb38c11c0020c791c131c5d00020b300d55c0020c790c138d55c0020c815bcf4b2940020004100630072006f0062006100740020c0acc6a90020c124ba85c11cb97c0020cc38c870d558c2edc2dcc624002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200034002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die moeten worden gecontroleerd of moeten voldoen aan PDF/X-1a:2001, een ISO-standaard voor het uitwisselen van grafische gegevens. Raadpleeg de gebruikershandleiding van Acrobat voor meer informatie over het maken van PDF-documenten die compatibel zijn met PDF/X-1a. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 4.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200073006b0061006c0020006b006f006e00740072006f006c006c0065007200650073002c00200065006c006c0065007200200073006f006d0020006d00e50020007600e6007200650020006b006f006d00700061007400690062006c00650020006d006500640020005000440046002f0058002d00310061003a0032003000300031002c00200065006e002000490053004f002d007300740061006e006400610072006400200066006f007200200075007400760065006b0073006c0069006e00670020006100760020006700720061006600690073006b00200069006e006e0068006f006c0064002e00200048007600690073002000640075002000760069006c0020006800610020006d0065007200200069006e0066006f0072006d00610073006a006f006e0020006f006d002000680076006f007200640061006e0020006400750020006f007000700072006500740074006500720020005000440046002f0058002d00310061002d006b006f006d00700061007400690062006c00650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020007300650020006200720075006b00650072006800e5006e00640062006f006b0065006e00200066006f00720020004100630072006f006200610074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200034002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200063006100700061007a0065007300200064006500200073006500720065006d0020007600650072006900660069006300610064006f00730020006f0075002000710075006500200064006500760065006d00200065007300740061007200200065006d00200063006f006e0066006f0072006d0069006400610064006500200063006f006d0020006f0020005000440046002f0058002d00310061003a0032003000300031002c00200075006d0020007000610064007200e3006f002000640061002000490053004f002000700061007200610020006f00200069006e007400650072006300e2006d00620069006f00200064006500200063006f006e0074006500fa0064006f00200067007200e1006600690063006f002e002000500061007200610020006f00620074006500720020006d00610069007300200069006e0066006f0072006d006100e700f50065007300200073006f00620072006500200063006f006d006f00200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00700061007400ed007600650069007300200063006f006d0020006f0020005000440046002f0058002d00310061002c00200063006f006e00730075006c007400650020006f0020004700750069006100200064006f002000750073007500e100720069006f00200064006f0020004100630072006f006200610074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200034002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b00610020007400610072006b0069007300740065007400610061006e00200074006100690020006a006f006900640065006e0020007400e400790074007900790020006e006f00750064006100740074006100610020005000440046002f0058002d00310061003a0032003000300031003a007400e400200065006c0069002000490053004f002d007300740061006e006400610072006400690061002000670072006100610066006900730065006e002000730069007300e4006c006c00f6006e00200073006900690072007400e4006d00690073007400e4002000760061007200740065006e002e0020004c0069007300e40074006900650074006f006a00610020005000440046002f0058002d00310061002d00790068007400650065006e0073006f00700069007600690065006e0020005000440046002d0064006f006b0075006d0065006e0074007400690065006e0020006c0075006f006d0069007300650073007400610020006f006e0020004100630072006f0062006100740069006e0020006b00e400790074007400f6006f0070007000610061007300730061002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200034002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200073006b00610020006b006f006e00740072006f006c006c006500720061007300200065006c006c0065007200200073006f006d0020006d00e50073007400650020006d006f0074007300760061007200610020005000440046002f0058002d00310061003a0032003000300031002c00200065006e002000490053004f002d007300740061006e00640061007200640020006600f6007200200075007400620079007400650020006100760020006700720061006600690073006b007400200069006e006e0065006800e5006c006c002e00200020004d0065007200200069006e0066006f0072006d006100740069006f006e0020006f006d00200068007500720020006d0061006e00200073006b00610070006100720020005000440046002f0058002d00310061002d006b006f006d00700061007400690062006c00610020005000440046002d0064006f006b0075006d0065006e0074002000660069006e006e00730020006900200061006e007600e4006e00640061007200680061006e00640062006f006b0065006e002000740069006c006c0020004100630072006f006200610074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200034002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings when submitting to HP. These settings require font embedding.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /HighResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

