

HP Operations Orchestration Software
Software Version: 7.51

Purging OO Run Histories from MSSQL Databases

Document Release Date: August 2009

Software Release Date: August 2009

ii

Legal Notices

Warranty

The only warranties for HP products and services are set forth in the express warranty statements
accompanying such products and services. Nothing herein should be construed as constituting an additional
warranty. HP shall not be liable for technical or editorial errors or omissions contained herein.

The information contained herein is subject to change without notice.

Restricted Rights Legend

Confidential computer software. Valid license from HP required for possession, use or copying. Consistent
with FAR 12.211 and 12.212, Commercial Computer Software, Computer Software Documentation, and
Technical Data for Commercial Items are licensed to the U.S. Government under vendor's standard
commercial license.

Copyright Notices

© Copyright 2009 Hewlett-Packard Development Company, L.P.

Trademark Notices

All marks mentioned in this document are the property of their respective owners.

iii

Finding or updating documentation on the Web
Documentation enhancements are a continual project at Hewlett-Packard Software. You can obtain
or update the HP OO documentation set and tutorials at any time from the HP Software Product
Manuals web site. You will need an HP Passport to log in to the web site.

To obtain HP OO documentation and tutorials

1. Go to the HP Software Product Manuals web site
(http://support.openview.hp.com/selfsolve/manuals).

2. Log in with your HP Passport user name and password.

OR

If you do not have an HP Passport, click New users – please register to create an HP Passport,
then return to this page and log in.

If you need help getting an HP Passport, see your HP OO contact.

3. In the Product list box, scroll down to and select Operations Orchestration.

4. In the Product Version list, click the version of the manuals that you’re interested in.

5. In the Operating System list, click the relevant operating system.

6. Click the Search button.

7. In the Results list, click the link for the file that you want.

Where to find Help, tutorials, and more
The HP Operations Orchestration software (HP OO) documentation set is made up of the following:

• Help for Central

Central Help provides information to the following:

• Finding and running flows

• For HP OO administrators, configuring the functioning of HP OO

• Generating and viewing the information available from the outcomes of flow runs

The Central Help system is also available as a PDF document in the HP OO home directory, in the
\Central\docs subdirectory.

• Help for Studio

Studio Help instructs flow authors at varying levels of programming ability.

The Studio Help system is also available as a PDF document in the HP OO home directory, in the
\Studio\docs subdirectory.

• Animated tutorials for Central and Studio

HP OO tutorials can each be completed in less than half an hour and provide basic instruction on
the following:

• In Central, finding, running, and viewing information from flows

• In Studio, modifying flows

The tutorials are available in the Central and Studio subdirectories of the HP OO home directory.

• Self-documentation for operations and flows in the Accelerator Packs and ITIL folders

http://support.openview.hp.com/selfsolve/manuals�

iv

Self-documentation is available in the descriptions of the operations and steps that are included
in the flows.

Support
For support information, including patches, troubleshooting aids, support contract management,
product manuals and more, visit the following site: http://www.hp.com/go/bsaessentialsnetwork

This is the BSA Essentials Network Web page. To sign in:

1. Click Login Now.

2. On the HP Passport sign-in page, enter your HP Passport user ID and password and then click
Sign-in.

3. If you do not already have an HP Passport account, do the following:

a. On the HP Passport sign-in page, click New user registration.

b. On the HP Passport new user registration page, enter the required information and then
click Continue.

c. On the confirmation page that opens, check your information and then click Register.

d. On the Terms of Service page, read the Terms of use and legal restrictions, select the
Agree button, and then click Submit.

4. On the BSA Essentials Network page, click Operations Orchestration Community.

The Operations Orchestration Community page contains links to announcements,
discussions, downloads, documentation, help, and support.

Note: Contact your OO contact if you have any difficulties with this process.

http://www.hp.com/go/bsaessentialsnetwork�

v

Table of Contents

Warranty .. ii

Restricted Rights Legend .. ii

Trademark Notices ... ii

Finding or updating documentation on the Web .. iii

Where to find Help, tutorials, and more ... iii

Support .. iv

About deleting run histories ... 1

Required knowledge ...1

About the OO database tables .. 1

The run table ...1

The run_history table ..2

The runstep_history table ...2

The property_history table ...2

The log_record table ...2

The flow_metrics table ...2

Physically deleting data ... 3

Appendices ... 4

Appendix A: Tables diagram..5

Appendix B: Upgrading older schemas ...6

Appendix C: Example cleanup stored procedure ..8

Appendix D: Example scheduling script ..15

Appendix E: Performance implications ...18

vi

Running the script for the 1st time ..18
Running the script on an ongoing basis ...19

1

About deleting run histories
This document is designed to provide a method for pruning old run history data for Central
administrators and DBAs involved in the management of the data stored by Central systems.

This document is divided into three main sections:

1. Descriptions of the tables involved in storing historical run data in the OO database.

2. The procedure for physically deleting old run history data.

3. Appendices that contain information such as a diagram of the tables in the 7.50 Run schema,
how to upgrade older schemas, and performance implications.

The code examples shown in the appendices are included in text form in the file
MSSQL_RunHistory_Purge.zip (which also contains this document). The code files are:

• For Appendix B: Upgrading older schemas—

sqlserver_oo_upgrade_history_schema.sql

• For Appendix C: Example cleanup stored procedure—

sqlserver_oo_prune_run_history.sql

• For Appendix D: Example scheduling script—

sqlserver_oo_schedule_prune_run_history.sql

Before deciding whether to implement the procedures in this document, read the entire document
including Appendix E: Performance implications.

Required knowledge

Microsoft SQL Server database knowledge is required to use this method.

About the OO database tables
The tables involved in capturing run history information belong to the OO database. See Appendix A:
Tables diagram for a diagram of these tables. The tables are:

• The run table

• The run_history table

• The runstep_history table

• The property_history table

• The log_record table

• The flow_metrics table

The run table

The run table stores information about flows that have not yet finished running. Every time a run
performs a checkpoint, its current frame stack (including context variables) is placed into a binary
object and written to a row in this table. The primary key of the run table is the run id. As soon as
a run finishes, the entry in the run table is removed and placed in the run_history table.

There are no foreign keys between this table and any other table.

2

The run_history table

The run_history table stores run information that is used in reporting. There is one row in this table
stored for every execution of a flow. The table stores general information about the run, such as its
start time, end time, the number of its steps, and how the run ended.

Important Deleting data from the run_history table causes the loss of reporting information.
However, if storage space is critical, you can delete data from this table. Just be aware that flows
deleted from the run_history table will no longer be visible in any reports.

The runstep_history table

The runstep_history table stores reporting information for each step. There is a one-to-many
relationship between the run_history table and the runstep_history table, enforced by a foreign
key relationship between the runstep_history.run_history_id and run.oid fields, which uses
cascading deletes.

Important Deleting data from the runstep_history table causes the loss of reporting information
for each step of a flow, but the general flow information is still available for reporting. You will not
however, be able to "drill down" into the steps which were executed by a flow that has been pruned.
However, if storage space is critical, you can delete data from this table. Deleting data from the
runstep_history table also deletes any related records from the property_history table.

Note: OO versions older than 7.20 require schema altering in order to properly support cascading
deletes. See Appendix B: Upgrading older schemas.

The property_history table

The property_history table stores a row for each input of a step. There is a foreign key relationship
between the fields property_history.runstep_hist_id and runstep_history.oid, with cascading
deletes.

The log_record table

The log_record table stores a row for each step input that was designated to be recorded for
reporting under a domain-term name. Essentially, it stores a subset of the data in the
property_history table, but there is no foreign key relationship to the runstep_history table. If a
run_history row is deleted, rows will also be deleted from the runstep_history and
property_history tables, but the log_record table is left intact.

The data in the log_record table is used to plot dashboard charts, and as such deleting from it will
result in loss of dashboard information. This may or may not be a problem depending on how often
data is pruned. Since dashboard charts are meant to give a more "real-time" picture of what's going
on with OO, deleting from log_record for a period past where the data is useful for dashboards
should be fine.

The flow_metrics table

The flow_metrics table stores flow outcome counters. There is one entry for each flow, with
counters broken down into Resolved, Error, Diagnosed, No Action Taken, and Failed outcomes,
as well as the cumulative time taken by the flows.

3

This table is used to create the flow metrics bar:

Physically deleting data
To delete run histories, use the following approach

4. Upgrade the database schema if necessary (see Appendix B: Upgrading older schemas.)

5. Establish a timestamp (date and time) when run histories older than it are deleted.

6. Determine how many run histories should be deleted.

7. Divide these run histories into batches to minimize the transaction size.

8. Starting with the oldest batch, delete the batches using one transaction per batch as follows:

a. Begin the transaction.

b. Delete data from the run_history table, if required.

c. Update the flow_metrics table to reflect the deleted rows, if run histories were deleted.

d. Delete data from the runstep_history table if data was not removed from the run_history
table.

e. Delete the rows for the deleted run steps from the log_record table, if necessary.

f. Commit the transaction.

These steps, excluding the first one (upgrading), can be performed on a periodic basis from a
scheduled job. An example stored procedure is provided in Appendix C: Example cleanup stored
procedures.

You can schedule the cleanup job from the SQLAgent graphical UI, or programmatically, as
explained in Appendix D: Example scheduling script. If you choose to schedule the cleanup job
programmatically, note that the scheduling API is different in SQL Server 2005 than in SQL Server
2000. We use the sp_add_jobschedule system procedure, which is provided in both versions.

4

Appendices
The appendices in this section are meant to help you perform the necessary tasks involved in
deleting run histories.

• Appendix A: Tables diagram

• Appendix B: Upgrading older schemas

• Appendix C: Example cleanup stored procedure

• Appendix D: Example scheduling script

• Appendix E: Performance implications

5

Appendix A: Tables diagram

run

PK,FK2 oid

 dlm_time
 start_time
I3 parent_id
 clob_state
 blob_state
 engine_version
FK1 history_id
 root_flow_uuid
 cmd_state
 exec_state
I4,I2 user_id
 is_relinquished
I1 is_headless
 node_startup_id
 node_name
 node_instance_id
 name
 annotation
 dri_time
 root_step_uuid

flow_metrics

PK oid

 dlm_time
 diagnosed_count
 error_count
 failed_count
U1 flow_uuid
U1 flow_version
 no_action_count
 resolved_count
 cumulative_time

log_record

PK oid

 item_type
I2 item_name
I1 creation_time
I5 item_value
I3 run_hist_id
I4 runstep_hist_id
 is_error
 error_msg

runstep_history

PK oid

 parent_hist_id
 end_time
 step_name
 step_description
 operation_name
 operation_path
 operation_type
 parent_flow_name
 parent_flow_path
 response_string
 result_string
 scriptlet_result_string
 run_time_millis
 start_time
I1 step_number
 tree_level
 is_simple
 bound_inputs
 transition_label
 transition_string
 transition_value
 user_id
 exception_message
 exception_trace
 return_code
 response_type
 uuid
 parallel_mode
I3 root_hist_id
 path_enc
FK1,I2 run_history_id
 step_pos

property_history

PK oid

 run_hist_id
I2 property_name
 value1
 value2
I4 value3
I5 value4
 property_type
I1 is_log_record
FK1,I3 runstep_hist_id

run_history

PK oid

 flow_dlm_time
I3 run_id
 run_name
I2 flow_name
 flow_last_modified_by
 flow_revision
 flow_path
I1 flow_uuid
I1 flow_version
 has_parallel_steps
 run_time_millis
I7 start_time
 end_time
 step_count
 direct_step_count
I8 user_id
 flow_description
I5 execution_state
I4 command_state
 run_value
I6 parent_id
 parallel_mode

7.50 Run Schema

Runstep_hist_id ->

fk_hist_prop2rstep

fk_hist_rstep2run

Run_hist_id

Updated asynchronously
at the end of each run:

Currently running flows: one row per run: one row per run step:

one row per step input:

one row per input marked
as domain term:

6

Appendix B: Upgrading older schemas

The following script detects older versions of the schema (OO versions 7.0 and earlier) and alters the
appropriate tables in order to support cascading deletes. We recommend that you use the text copy
of this script contained in the file sqlserver_oo_upgrade_history_schema.sql instead of copying
the code below, which has line breaks to make reading easier.

USE <your_db_here>

GO

/* find out the build version so we know if we need to do some schema altering */

DECLARE @need_alters INTEGER ;

SET @need_alters = 0;

SELECT @need_alters=1

 FROM dbo.build_info

 WHERE dri_time IN (SELECT max(dri_time) FROM dbo.build_info)

 AND ((version LIKE '7.0%') OR (version LIKE '7.10%'));

/* only do this if version is < 7.11 !!! */

IF (@need_alters <> 0)

BEGIN

 RAISERROR('Preparing old schema for pruning ...', 0,1) WITH NOWAIT;

 /* this may fail if the constraint has already been dropped – that’s ok*/

 ALTER TABLE dbo.runstep_history DROP CONSTRAINT fk_hist_rstep2parent;

 /** create index if not there already */

 CREATE INDEX idx_hist_prop_runhist_id

 ON dbo.property_history(run_hist_id);

 /* replace some of the foreign keys generated by hibernate

 with the same foreign keys, but with DELETE CASCADE */

 ALTER TABLE dbo.runstep_history

 DROP CONSTRAINT fk_hist_rstep2run;

 ALTER TABLE dbo.runstep_history

 ADD CONSTRAINT fk_hist_rstep2run

 FOREIGN KEY(run_history_id)

 REFERENCES run_history

 ON DELETE CASCADE;

 ALTER TABLE dbo.property_history

 DROP CONSTRAINT fk_hist_prop2rstep ;

7

 ALTER TABLE dbo.property_history

 ADD CONSTRAINT fk_hist_prop2rstep

 FOREIGN KEY (runstep_hist_id)

 REFERENCES runstep_history(oid)

 ON DELETE CASCADE;

END

GO

8

Appendix C: Example cleanup stored procedure

The following stored procedure illustrates the points made in the deletion algorithm. We recommend
that you use the text copy of this stored procedure contained in the file
sqlserver_oo_prune_run_history.sql instead of copying the code below, which has line breaks to
make reading easier.

USE <your_db_here>

GO

DROP PROCEDURE dbo.oo_prune_run_history

GO

CREATE PROCEDURE [dbo].[oo_prune_run_history]

 @keep_this_many_hours INTEGER = 2160, -- 90 days

 @prune_batch_size INTEGER = 1000,

 @prune_run_history varchar(5) = 'false',

 @prune_dashboards VARCHAR(5) = 'true',

 @recompute_flow_metrics VARCHAR(5) = 'true',

 @verbose INTEGER = 1

/*

* This procedure attempts to prune the run histories whose start_time

* was prior to a specified date. Please configure the parameters below

* according to your needs.

*

* The procedure will recompute the counters in the flow_metrics table.

*

* The script will execute a series of batch deletes to minimize the

* size of the transaction. The default size of the batch is 1000 histories

* at one time (note the records deleted is a lot more than 1000 as the

* associated run steps and their dependents are also deleted -- in other

* words, the script deletes 1000 history trees at a time).

*

* PARAMETERS:

*

* @keep_this_many_hours: sets the number of hours of history retained, relative

* to the last known start time.

* Histories for runs whose start_time is less than (max(run_history.start_time)

* -
@keep_this_many_hours)

* will be deleted, unless their runs have not completed.

* Defaults to 2160 (90 days).

* Example: @keep_this_many_hours = 24 -- keep only the last day.

*

* @prune_batch_size (default 1000): the batch size for pruning, in terms

* of number of run histories being deleted.

9

* Example: @prune_batch_size = 1000

*

* @prune_run_history: if set to 'true', the script will delete records from

* the run_history table, which in turn deletes from runstep_history and

* property_history. If set to 'false', the script will leave records in

* run_history intackt and only delete the runstep_history date (and

* property_history data by cascading deletes)

*

* @prune_dashboards: if set to 'true', the script will also delete data

* that supports dashboards. Otherwise it will leave the data in place,

* but because the supporting histories are deleted, links from the dashboards

* may not always produce the proper reports.

* Example: @prune_dashboards = 'false'

*

* @recompute_flow_metrics: if set to 'true', after each batch of run histories

* is deleted, the flow_metrics table is update to reflect the new counts.

* Example: @recompute_flow_metrics = 'false'

*

* @verbose: if set to a value greater than 0, the script will output messages

* about the progress of deletion, as follows:

* if @verbose = 1, it outputs basic information at startup

* if @verbose = 2, it also outputs information about each batch being

* deleted

* if @verbose >= 3, it also outputs detailed information about flow

* metrics update

*

* RESULT: how many histories were pruned (an integer).

*/

AS

 SET NOCOUNT ON;

 /* set the deadlock priority for this session to low such that in case

 we disturb real runs, we're the losing party */

 SET DEADLOCK_PRIORITY LOW;

 -- validate input params

 IF (@prune_batch_size < 2) BEGIN

 RAISERROR('Invalid pruning batch size, must be at least 2 rows',0,1)

 WITH NOWAIT;

 END;

 IF (@keep_this_many_hours < 1) BEGIN

 RAISERROR('Invalid time window, must be at least 1hr',0,1) WITH NOWAIT;

 END;

 DECLARE @msg VARCHAR(1000),

 @prune_start_time DATETIME,

 @batch_start_time DATETIME,

 @seconds INTEGER,

10

 @max_start_time DATETIME,

 @last_start_time DATETIME;

 SET @prune_start_time = GETDATE();

 /* declare local table variable to store the ids for what we want deleted. */

 DECLARE @oo_pruning_table TABLE (

 oid integer identity not null primary key,

 run_id numeric(19,0),

 flow_uuid varchar(255) COLLATE DATABASE_DEFAULT,

 execution_state int,

 run_time_millis numeric(19,0));

 /* populate the pruning table with increasing id's taken from the

 * run_history table. Exclude histories whose runs are still active

 * inside the run table

 */

 SELECT @max_start_time = max(start_time) from run_history with (nolock);

 SET @last_start_time = DATEADD(hour, (-1 * @keep_this_many_hours),

 @max_start_time);

 IF (@verbose > 0)

 BEGIN

 SET @msg =

 'Preparing pruning table. Will delete histories where start_time <= '

 + CAST (@last_start_time AS VARCHAR);

 RAISERROR(@msg, 0,1) WITH NOWAIT;

 END;

 INSERT INTO @oo_pruning_table (run_id,

 flow_uuid,

 execution_state,

 run_time_millis)

 SELECT h.oid,

 h.flow_uuid,

 h.execution_state,

 cast(h.run_time_millis as numeric(19,0))

 FROM dbo.run_history h (nolock)

 WHERE h.start_time <= @last_start_time

 AND NOT EXISTS

 (SELECT 1 FROM dbo.run r (nolock) WHERE r.history_id = h.oid)

 ORDER BY h.oid ASC;

 /* this is how many records we try to prune (total) */

 DECLARE @prune_size INTEGER;

 SELECT @prune_size=COUNT(*) FROM @oo_pruning_table;

11

 IF (@verbose > 0)

 BEGIN

 SET @msg = 'Pruning set size is: ' + CAST (@prune_size as VARCHAR);

 RAISERROR(@msg, 0,1) WITH NOWAIT;

 END;

 DECLARE @batch_start INTEGER;

 SET @batch_start = 1;

 DECLARE @min_id INTEGER;

 DECLARE @max_id INTEGER;

 WHILE (@prune_size > 0 AND @batch_start <= @prune_size)

 BEGIN

 SET @batch_start_time = GETDATE();

 SET @min_id = @batch_start;

 SET @max_id = @batch_start + @prune_batch_size - 1;

 IF (@verbose > 1)

 BEGIN

 SET @msg = 'Deleting chunk: ' + CAST(@min_id AS VARCHAR) +

 ' to ' + CAST(@max_id AS VARCHAR);

 RAISERROR(@msg, 0,1) WITH NOWAIT;

 END;

 BEGIN TRANSACTION;

 IF (LOWER(@prune_dashboards) = 'true')

 BEGIN

 IF (@verbose > 1)

 RAISERROR('Deleting dashboard data...' , 0,1) WITH NOWAIT;

 DELETE dbo.log_record

 FROM dbo.log_record l

 INNER JOIN @oo_pruning_table p

 ON ((p.oid BETWEEN @min_id AND @max_id) AND

 l.run_hist_id = p.run_id)

 END;

 IF (LOWER(@prune_run_history) = 'true')

 BEGIN

 IF (@verbose > 1)

 RAISERROR('Deleting run history...' , 0,1) WITH
NOWAIT;

 DELETE dbo.run_history

 FROM dbo.run_history r

12

 INNER JOIN @oo_pruning_table p

 ON ((p.oid BETWEEN @min_id AND @max_id) AND

 r.oid = p.run_id)

 IF (@verbose > 1)

 RAISERROR('Updating flow metrics...' , 0,1) WITH
NOWAIT;

 -- update flow metrics if required:

 IF (LOWER(@recompute_flow_metrics) = 'true')

 BEGIN

 IF (@verbose > 2)

 BEGIN

 RAISERROR('BEFORE:' , 0,1) WITH NOWAIT;

 SELECT * from flow_metrics with (nolock);

 END;

 -- update the flow metrics table to subtract
the

 -- counts for the run history rows that we just

 -- deleted.

 UPDATE dbo.flow_metrics

 SET diagnosed_count = diagnosed_count -
d.diagnosedCount,

 error_count = error_count -
d.errorCount,

 failed_count = failed_count -
d.failedCount,

 no_action_count = no_action_count -
d.noActionCount,

 resolved_count = resolved_count -
d.resolvedCount,

 cumulative_time = cumulative_time -
d.cumulativeTime,

 dlm_time = GETDATE()

 FROM dbo.flow_metrics

 INNER JOIN (

 SELECT flow_uuid,

 sum(case

 when execution_state = 0
then 1 else 0

 end) as diagnosedCount,

 sum(case

 when execution_state = 1
then 1 else 0

 end) as resolvedCount,

 sum(case

 when execution_state = 2
then 1 else 0

 end) as noActionCount,

 sum(case

13

 when execution_state = 3
then 1 else 0

 end) as errorCount,

 sum(case

 when execution_state =
2147483647 then 1 else 0

 end) as failedCount,

 sum(run_time_millis) as
cumulativeTime

 FROM @oo_pruning_table

 WHERE oid BETWEEN @min_id AND @max_id

 GROUP BY flow_uuid

) AS d

 ON dbo.flow_metrics.flow_uuid = d.flow_uuid AND

 dbo.flow_metrics.flow_version = 0;

 -- now delete the metrics for those flows that are

 -- left with 0 counts across the board

 DELETE FROM dbo.flow_metrics

 WHERE diagnosed_count = 0

 AND failed_count = 0

 AND no_action_count = 0

 AND resolved_count = 0

 AND error_count = 0

 AND EXISTS (SELECT 1 FROM
@oo_pruning_table p

 WHERE oid

 BETWEEN
@min_id AND @max_id

 AND flow_uuid
= p.flow_uuid);

 IF (@verbose > 2)

 BEGIN

 RAISERROR('AFTER:' , 0,1) WITH NOWAIT;

 SELECT * from flow_metrics with (nolock);

 END;

 END; -- update flow metrics

 END; -- delete run_history

 ELSE -- don't delete run histories, just runstep history

 BEGIN

 IF (@verbose > 1)

 RAISERROR('Deleting flow step details...' , 0,1) WITH
NOWAIT;

 DELETE dbo.runstep_history

 FROM dbo.runstep_history r

 INNER JOIN @oo_pruning_table p

 ON ((p.oid BETWEEN @min_id AND @max_id) AND

14

 r.run_history_id = p.run_id);

 END;

 COMMIT TRANSACTION;

 SET @batch_start = @batch_start + @prune_batch_size ;

 IF (@verbose > 1)

 BEGIN

 SELECT @seconds = DATEDIFF(second, @batch_start_time, GETDATE());

 SET @msg = 'Batch pruning time was: ' +

 CAST(@seconds as VARCHAR) + ' seconds';

 RAISERROR(@msg, 0,1) WITH NOWAIT;

 END;

 END;

 IF (@verbose > 0)

 BEGIN

 SELECT @seconds = DATEDIFF(second, @prune_start_time, GETDATE());

 SET @msg = 'Total pruning time was: ' +

 CAST(@seconds as VARCHAR) + ' seconds';

 RAISERROR(@msg, 0,1) WITH NOWAIT;

 END;

 RETURN @prune_size

-- END PROCEDURE

GO

15

Appendix D: Example scheduling script

The following script creates a schedule and job to run the database pruning script on a recurring
basis. We recommend that you use the text copy of this script contained in the file
sqlserver_oo_schedule_prune_run_history.sql instead of copying the code below, which has
line breaks to make reading easier.

USE <your_db_here>

GO

/*

 * This script attempts to schedule a run of the oo_prune_run_history stored
procedure.

 * Please set the parameters to your preference.

 */

DECLARE @dbName VARCHAR(128),

 @dbUser VARCHAR(32),

 @jobName VARCHAR(128),

 @jobScheduleName VARCHAR(128),

 @jobDesc VARCHAR(512),

 @jobID UNIQUEIDENTIFIER,

 @jobStartTime VARCHAR(12),

 @ooCommand VARCHAR(1024),

 @hours_retained INTEGER,

 @log_file VARCHAR(1024)

/* how many hours to keep (calculated from the last known start_time in the table
run_history) */

SET @hours_retained = 2;

/* what user do you want the job to run as, defaults to current user */

SELECT @dbUser = CURRENT_USER;

/* what is the database you want pruned, defaults to current database */

SET @dbName = DB_NAME(DB_ID());

/* how to call the job */

SET @jobName = 'oo_prune_run_history_job' ;

SET @jobScheduleName = 'schedule for ' + @jobName;

SET @jobDesc = 'Purge run histories older than '

 + CAST(@hours_retained AS VARCHAR)

16

 + ' hours';

/*

 * where to log the output of the job (you can also see this output if you view the
detailed job history in SQLAgent)

 *

 * Note that the success of writing this log file depends on

 * how the user that runs the procedure may be set up (i.e

 * what type of system user is it associated with, and what

 * type of permissions are there for the file).

 */

SET @log_file = 'C:\tmp\oo_prune_history_job.log';

/* check if SQLAgent is running */

IF (SELECT count(*)

 FROM Master.dbo.SysProcesses

 WHERE Program_Name = 'SQLAgent - Generic Refresher') = 0

BEGIN

 RAISERROR('Could not schedule procedure oo_prune_run_history: SQLAgent is not
running!', 0, 1)

 WITH NOWAIT

 RETURN;

END

SET @ooCommand = 'EXEC dbo.oo_prune_run_history '

 + '@keep_this_many_hours = '

 + CAST(@hours_retained AS VARCHAR)

 + ', @verbose = 2';

/* create a job */

EXEC msdb..sp_add_job

 @job_name = @jobName,

 @enabled = 1,

 @description = @jobDesc,

 @job_id = @jobID OUTPUT;

/* add target server to the job */

EXEC msdb..sp_add_jobserver

 @job_id = @jobID,

 @server_name = @@SERVERNAME;

-- create step1, actual command

EXEC msdb..sp_add_jobstep

 @job_id = @jobID,

 @step_name = 'Run procedure oo_prune_run_history',

17

 @subsystem = 'TSQL',

 @command = @ooCommand,

 @database_name = @dbName,

 @database_user_name = @dbUser,

 @output_file_name = @log_file,

 @flags = 2; -- append to output file.

-- start the job 10 minutes from now.

-- Schedule proc requires HHMMSS. CONVERT(8) returns HH:MM:SS

--SET @jobStartTime = REPLACE(CONVERT(VARCHAR, DATEADD(minute, 10, GETDATE()), 8),
':', '');

-- schedule the job

EXEC msdb..sp_add_jobschedule

 @job_id = @jobID,

 @name = @jobScheduleName,

 @enabled = 1,

 @freq_type = 4, -- daily

 @freq_interval = 1,

 @freq_subday_type = 8, -- hourly

 @freq_subday_interval = 2; -- every 2 hours

GO

18

Appendix E: Performance implications

Pruning data from the OO database can be hard on your system, and there are a few considerations
to take into account before you start using the pruning scripts in this guide. There are a number of
parameters that can help mitigate the impact of pruning on your system, but you must carefully
choose values for these parameters that match your particular situation. The default values shown
in the scripts may not be appropriate for your system.

The main reason pruning data impacts the performance of your OO system is that when you delete
from a table, the table is locked until the delete is completed. This means that nothing else can
modify the data in the table. Since OO must update the database for every status change of a flow,
the server cannot process new flows or move running flows along until the lock is released—in other
words, OO is stalled until the delete operation is complete.

The pruning scripts use the prune_batch_size parameter to divide the data to be deleted into
batches in an attempt to avoid creating locks that last long enough to affect performance. However,
you must choose a value for the prune_batch_size parameter that is appropriate for your system
or the pruning scripts may severely impact performance.

The pruning scripts can also generate a lot of temporary data and eat up CPU cycles. However,
there's not much you can do about these problems apart from choosing a time to run the pruning
scripts when the server is idle, or not trying to delete too many run histories at once.

 Running the script for the 1st time

Before you know how the pruning script will affect your system, you should try and limit the number
of rows you try and delete. For example, if your OO database spans 2 years, and you haven't run
the pruning script yet, don't just run it with the default values for all of the parameters. You'll end up
with a script that's trying to delete nearly 2 years worth of data, which will take a long time, and if
the system becomes unusable you'll likely have to kill the pruning script and possibly have to deal
with data corruption. A better plan would be something like the following:

1. Determine the time span of you data, with a command such as

SELECT MIN(start_time), MAX(start_time)

FROM run_history

2. Figure out the total number of hours in that time span, and try running the pruning script with
keep_this_many_hours set to a value that will delete a couple days worth of data. For example,
if your date range is 6 months, that's 4320 hours. So you would run the pruning script to keep
4220 hours.

3. Keep trying the script with decreasing values of keep_this_many_hours until you get it to run for
10 minutes or so, and while it's running try and access the system, or run a flow that has a
predetermined execution time, and make sure that the pruning scripts are not interfering with
normal OO operations. If the server becomes too loaded, adjust prune_batch_size and repeat
step 3 until you find a value that balances server impact and execution time.

19

Running the script on an ongoing basis

Once you have the correct value of prune_batch_size determined for you system, you need to
consider two more things: The frequency which you run the prune script, and the number of hours
you want to keep in history. These won't have nearly as great an impact on the server as finding the
correct prune_batch_size, but it is still worth considering. It is usually a good idea to run the prune
script more often, which means that there will be less data to delete each time you run it.
Unfortunately there are no hard-and-fast rules to determine, so the best suggestion is to use the
information gathered tuning the 1st run to create a schedule, and monitor it for a few runs to make
sure the system is healthy.

Here are some recommendations for using the pruning code:

• Choose a pruning set size that is appropriate to your particular situation. This is important for
maintaining the well being of your OO system. The number of hours retained should be
calculated so that the pruning stored procedure deletes small amounts of history while allowing
Central to make progress in running flows.

• The stored procedure uses a local table variable, which is allocated out of the temporary
tablespace. The table contains IDs for the whole set size, not just for one individual batch. Make
sure that there is enough space for it.

• In general, it is better to run the pruning procedure run more often with small batches, than less
frequently with larger batches. This helps both Central and SQL Server’s throughput, as the
pruning jobs can be interleaved with normal processing jobs.

• Although beyond the scope of this document, note that proper allocation of disk space is
important when considering the performance of the database. Having separate physical drives
for the database file and the transaction log (separate from the operating system) is a good
start. Use the perfmon tool and the SQL Server counters to monitor the disk activity during
pruning to establish the impact on the disk resource.

	Warranty
	Restricted Rights Legend
	Trademark Notices
	Finding or updating documentation on the Web
	Where to find Help, tutorials, and more
	Support
	About deleting run histories
	Required knowledge

	About the OO database tables
	The run table
	The run_history table
	The runstep_history table
	The property_history table
	The log_record table
	The flow_metrics table

	Physically deleting data
	Appendices
	Appendix A: Tables diagram
	Appendix B: Upgrading older schemas
	Appendix C: Example cleanup stored procedure
	Appendix D: Example scheduling script
	Appendix E: Performance implications
	Running the script for the 1st time
	Running the script on an ongoing basis

