
 

 

 
 

Table of Contents 

Introduction ......................................................................................................................................... 3 

Part I:  Understanding the DMA modeling process ................................................................................... 4 
The role of the UCMDB ..................................................................................................................... 5 

UCMDB as DMA data source ........................................................................................................ 5 
Guidelines for successful DMA synchronization with UCMDB data ..................................................... 6 

Transforming CIs (and topology) to nodes and services ....................................................................... 10 
Sync packages ........................................................................................................................... 10 
UCMDB and HPOM model differences ......................................................................................... 12 

DMA control of synchronized CIs ..................................................................................................... 12 
Nodes....................................................................................................................................... 12 
Services .................................................................................................................................... 13 

Part II:  Getting what you want in HPOM .............................................................................................. 14 
Synchronizing nodes ...................................................................................................................... 14 

How to put nodes into specific node groups .................................................................................. 14 
Automatic creation of node groups ............................................................................................... 17 

Synchronizing services.................................................................................................................... 18 
Service Type Definitions .............................................................................................................. 18 
Automatic creation of Service Type Definitions ............................................................................... 19 
Overriding defaults of Service Type Definitions .............................................................................. 20 
Extending existing HPOM services with data from UCMDB ............................................................. 22 
Creating the desired dependency and propagation in HPOM ......................................................... 25 

How to get optimum results with Smart Message Mapper ................................................................... 28 
SMM service matching algorithm ................................................................................................. 28 
SMM and the “hosted_on” attribute .............................................................................................. 29 
Attribute mapping rules ............................................................................................................... 29 
Service attributes – The key to making SMM smarter ....................................................................... 30 
Improving the odds for a match .................................................................................................... 31 
Exposing service attributes as CMAs (new in DMA 8.20!) ............................................................... 32 

For more information .......................................................................................................................... 36 
 
 
Table of Figures 
 
Figure 1.  HPOM Dependency Mapping Automation ............................................................................... 3 
Figure 2.  UCMDB is the source of data for DMA Synchronization ............................................................ 6 
Figure 3.  DMA TQL “Windows Operating System (Operations)” .............................................................. 7 
Figure 4.  Filtering nodes in the TQL....................................................................................................... 8 
Figure 5.  Required CI attributes for DMA ............................................................................................... 9 

Guidelines for Deploying HPOM 
Dependency Mapping Automation (DMA) 

 

 
   



  Guidelines for Deploying DMA 
 

 

Figure 6.  DMA Synchronization Process .............................................................................................. 11 
Figure 7.  Example synchronized node in HPOM on Windows ............................................................... 15 
Figure 8.  NodeServerType Enrichment Rule .......................................................................................... 16 
Figure 9.  Dependency from External to Internal CIs ............................................................................... 22 
Figure 10.  Dependency from Internal to External CIs ............................................................................. 23 
Figure 11.  Example results from service mapping dependency rule ......................................................... 25 
Figure 12.  UCMDB “Oracle” TQL ....................................................................................................... 26 
Figure 13.  DMA “Oracle (Operations)” TQL ........................................................................................ 26 
Figure 14.  DataBaseDependency Enrichment rule ................................................................................. 27 
Figure 15.  Exposing CI attributes in TQL results .................................................................................... 33 
Figure 16.  Configuring SMM to create CMAs ...................................................................................... 34 
Figure 17.  Assignment of CMA to matched message ............................................................................ 35 



  Guidelines for Deploying DMA 
 

  3 
 

Introduction 
This technical white paper is intended primarily for Service Designers and Integrators who wish to 
gain additional insight into the process of deploying HP Operations Manager Dependency Mapping 
Automation (HPOM DMA) software, especially where customization will be required to achieve the 
desired results.  The material covered here assumes prior knowledge of HP Operations Manager 
(HPOM) and HP Universal CMDB (UCMDB).  Please refer to “For More Information” at the end of this 
paper for a link to the public HP web site where HPOM DMA documentation can be obtained. 
 
DMA delivers flexible integration capabilities which enable the customer to leverage the typed model 
of discovered Configuration Items (CIs) and relationships (topology) in the UCMDB for use with 
HPOM.  Its core function is to automate and simplify the process of creating nodes and service views 
in HPOM.  Additionally, DMA enables operational drill-down from HPOM managed nodes and 
services into the change history and neighbor CIs maintained in the UCMDB.  For customers with 
multiple HPOM servers, DMA serves as the mechanism to maintain consistent and shared service 
views across all of them, with the UCMDB as the single source of CIs and relationships.  And finally, 
DMA can leverage the discovery part of UCMDB (Discovery and Dependency Mapping, or DDM) to 
“inform” HPOM of new nodes in the infrastructure that need to be put under proper management in 
order to support important business services. 
 

 
Figure 1.  HPOM Dependency Mapping Automation 

 

 
 
It’s important to understand up front that DMA is an integration product and toolkit.  It leverages, and 
significantly enhances, an environment that already has: 
 

– A UCMDB that has been populated with CIs and relationships, and 
– One or more HPOM instances (either HPOM on UNIX or HPOM on Windows) 

 
Deploying DMA requires knowledge of both UCMDB and HPOM.  Although DMA includes out-of-box 
functionality for customers using the Database and OS Smart Plug-Ins (SPIs), it is likely that a customer 



  Guidelines for Deploying DMA 
 

  4 
 

will need additional customization to get maximum benefits for their specific operational environment.  
In some cases this may simply involve modifying or leveraging the existing out-of-box sync packages 
and TQLs provided with DMA, and in other cases a completely new sync package and associated 
TQLs will be required to produce the desired results.  So it will be important for Service Designers and 
Integrators to fully understand the process and boundaries of implementing DMA as well as the 
technical details. 
 
The first part of this white paper will focus on an overall understanding how to approach modeling 
with DMA and some of the key things to know about using the UCMDB with DMA and HPOM.  This 
will include topics such as understanding the differences between how UCMDB relates CIs and how 
HPOM represents and instantiates services, important things to know about designing TQLs to be used 
with DMA, and the concept of DMA “ownership” of nodes and services in HPOM. 
 
The second part of the paper will cover some best practices and “how to” information, and will 
generally be more technically detailed.  This part will be subdivided into three sections:  a) node 
synchronization, b) service synchronization, and c) using the Smart Message Mapper (SMM). 
 
Overall, our approach in this white paper will be to augment and emphasize certain relevant topics 
which (in most cases) are described in the existing HPOM DMA documentation.  This paper is NOT a 
substitute for the product documentation; in fact readers who have already completed a review of the 
DMA Installation and User’s Guide will get the most from this material.  Some of the material 
(especially in Part II) relates especially to extending DMA for custom application environments, and so 
prior review of the DMA Extensibility Guide is also recommended. 
 
 

Part I:  Understanding the DMA modeling process 
At the simplest level, there are three essential steps in the process of achieving the desired modeling 
results with DMA: 
 
1. Understand and define the target results in HPOM 

You must visualize and plan for the nodes, node groups, services, and service hierarchy that you 
want to create in HPOM.  If this is not done up front as the first step in DMA implementation, you 
will not likely achieve the desired results. 

2. Produce the required source data from the UCMDB 

Ultimately a TQL query will be the mechanism that provides the data for DMA, but additional 
UCMDB configuration may be required to facilitate  design and implementation of the right TQL.  
And of course it’s important that the UCMDB actually contains the desired CIs to start with. 

3. Create or configure the required transformation artifacts for DMA synchronization  

Synchronization is driven by one or more synchronization packages containing mapping rules and 
optionally scripts.  Creation of other elements such as  Service Type Definitions (STDs) and node 
groups in HPOM may also be required .  (More information regarding sync packages and STDs 
will be found later in the document.) 

In the remainder of Part I, we will focus primarily on the UCMDB-related aspects of the DMA 
Modeling process (step 2 above).  For most customers and Integrators mainly familiar with HPOM, 
this is the area of least knowledge and experience. 
 



  Guidelines for Deploying DMA 
 

  5 
 

The role of the UCMDB 
The UCMDB is the source of “truth” regarding CIs and relationships in the infrastructure.  The CIs and  
topology maintained in the UCDMB are typically instantiated through DDM discovery patterns that 
can periodically run at intervals as appropriate.  The UCMDB is therefore also a dynamic source of 
truth; its content represents what is actually in the environment based on the currency of the discovery 
jobs.  The dynamic nature of the UCMDB makes it especially useful as THE source of information for 
automating the management of nodes and service views in HPOM. 
 
 
UCMDB as DMA data source 
DMA is a consumer of information in the UCMDB; it does not populate the UCMDB.  There are two 
exceptions:  When DMA’s UCMDB packages are deployed, a new CI Type (Service Group), a new 
relationship type (Service Group Contained) and new valid link settings are created to facilitate 
representing virtual services in HPOM.  In addition, UCMDB enrichment rules (also installed as part of 
the DMA UCMDB packages or configured as part of DMA customization) may instantiate new Service 
Group CIs, new CI relationships and update certain CI attributes.  These UCMDB enrichments 
facilitate the creation of specific Topology Query Language (TQL) queries whose results are the 
“input” to DMA synchronization.  But it’s important to understand that DMA is not a discovery source 
for the UCMDB. 
 
Synchronization is the core functionality in DMA.  It is a “run time” process which can be executed 
whenever desired or scheduled to run at desired times.  While the synchronization process is 
technically run within and controlled by DMA, it is just one part of a bigger modeling exercise that 
also includes UCMDB (as the source of CIs and relationships) and HPOM (as the target for nodes and 
service hierarchies). 
 
For the OS and Database SPIs, DMA includes all the necessary elements and configuration needed in 
UCMDB and HPOM to support synchronization “out-of-the-box.”  However an implementation of 
DMA for custom applications may require new UCMDB enrichment rules (to add CI instances  and 
relationships) and will require one or more custom designed TQLs to produce the desired CI result set 
as input for synchronization.  The key point here is that getting the desired end results in HPOM, 
especially for custom application environments, involves more than just installing and configuring 
DMA.  The UCMDB is the starting point for the whole process and having the necessary discovered 
CIs, Service Group CIs, relationships, valid links, and TQLs in the UCMDB is an essential part of the 
successful design and implementation of a DMA-based solution. 
 
Figure 2 highlights the essential UCMDB components involved in the synchronization process. 
 



  Guidelines for Deploying DMA 
 

  6 
 

 
Figure 2.  UCMDB is the source of data for DMA Synchronization 

 

 
 
Guidelines for successful DMA synchronization with UCMDB data 
 
 
If it’s not in the UCMDB, it can’t be synchronized 
It should be obvious, but it’s worth stating:  If the CIs you want in HPOM don’t exist in the UCMDB, 
then DMA will be of little help.  This is why it is important to start the DMA modeling process by fully 
understanding what is in the UCMDB.  It’s a good idea to explore the UCMDB using the View 
Manager or Universe Manager to understand what is there and to determine if specific DMA 
customizations or UCMDB enrichment will be needed in order to get the desired results with DMA. 
 
 
If it’s not returned by the TQL, it can’t be synchronized 
The first step in the DMA synchronization process is execution of one or more TQL queries as defined 
in the active sync packages.  Understanding how to create appropriate TQLs for use with DMA is 
vitally important.  The TQL must be crafted so that it returns the set of CIs that are needed as input to 
DMA synchronization.  This may take some experimentation and tweaking to get the desired results.  
If you don’t see something in HPOM that you expected DMA to create, the first thing to do is verify 
that the TQL is actually providing the required input to synchronization.  Use the View Manager in 
UCMDB to get counts and preview TQL results. 
 
 
Use cardinality and filtering in the TQL to constrain the input to synchronization 
The TQL must include the appropriate CI Type nodes and topology, but it must also include the 
appropriate node filters and cardinality rules to filter out what is NOT needed or desired. 
 
Consider the following out-of-box TQL provided by DMA for use with systems running the Microsoft 
Windows Operations System : 
 



  Guidelines for Deploying DMA 
 

  7 
 

 
Figure 3.  DMA TQL “Windows Operating System (Operations)” 

 

 
 
At a minimum, you would want this TQL to return the top three CIs (both of the Service Group CIs and 
the Windows node itself).  Depending on how discovery (DDM) is configured in the environment, you 
may or may not have the CPU, IP, Printer, Memory, etc. CIs in the UCMDB and related to the 
Windows host.  The default cardinality rules for the Windows node in this TQL are: 
 

Service Group Contained (Service Group, Windows) : 1..*  
AND Container link (Windows, File System) : 0..*  
AND Container link (Windows, Logical Volume) : 0..*  
AND Container link (Windows, Memory) : 0..*  
AND Container link (Windows, Printer) : 0..*  
AND Container link (Windows, CPU) : 0..*  
AND Contained (Windows, IP) : 0..* 

 
These rules allow the TQL to return just the Service Group CIs and the Windows node without 
anything else.  Of course, if there are instances of the CPU, IP, or Printer etc. connected with the 
indicated relationships to a Windows node these will be returned as well. 
 
If you wanted to further constrain the TQL result so that only Windows nodes with at least one 
container link to a File System exists, you would modify the Windows File System cardinality rule as 
follows: 
 

AND Container link (Windows, File System) : 1..* 
 

 
Another way to constrain the TQL results is to put filters on specific CI Type nodes in the TQL.  Let’s 
say that you want to restrict the above TQL to return only those nodes in the UCMDB topology that 
belong to a specific domain.  This can be accomplished by configuring the Node Properties for the 
Windows node in the TQL. 
 
(Note:  The TQLs provided out-of-box with DMA have the following default filter on host nodes: 



  Guidelines for Deploying DMA 
 

  8 
 

 
Created By Equal “ProbeGW_Topology_Task_” 

 
This means that the TQL will only return nodes which are running DDM probes.  Since this is not what 
you would typically want, you should always plan on modifying the out-of-box TQLs when deploying 
DMA). 
 
To have the above TQL return only nodes in the domain “example.com,” you would configure a filter 
rule on the Windows node as shown in Figure 4. 
 

 
Figure 4.  Filtering nodes in the TQL 

 

 
 
Note:  The first filter rule in the figure above is one way to ensure that only hosts with a valid host 
name are returned as input to DMA synchronization, however this assumes that in fact the Host DNS 
Name attribute is being initialized by DDM.  It should be noted that as of UCMDB/BAC 8.0, the Host 
DNS Name attribute has been deprecated.  Host name information can actually appear in different 
attributes depending on the DDM implementation.  This is why DMA 8.20 includes a new “DNS 
Mapping” sync package which checks the different attributes and does DNS lookups if needed to 
determine the host name.  The package contains only a Pre-Mapping groovy script which does the 
work.  You can examine the script directly in the DMA user interface by navigating to the “Extending 
DMA  Synchronization Packages” page and then expanding the link for the “DNS Mapping” sync 
package. 
 
 
The importance of CI attributes 
Each CI in the UCMDB has a set of properties known as “attributes.” Depending on the CI Type, 
DMA requires certain attributes to be part of the CI data stream returned by the TQLs.  Other 
attributes are recommended and if present can simplify the mapping rules and configuration steps that 
may be required once the CIs are inserted into HPOM (e.g. node properties such as “Host Operating 
System Version” and “Host Model.”) 
 
Figure 5 provides a summary of the required CI attributes for proper operation of DMA. 
 
  



  Guidelines for Deploying DMA 
 

  9 
 

 
Figure 5.  Required CI attributes for DMA 

CI Type Attribute Name Required for Sync Package 

all display_label Setting caption on HPOM 
service (displayed by Service 
Navigator) 

Default 

“database” database_dbtype mapping rules – determining 
DB vendor 

Informix 

all node types host_servertype mapping rules – determining 
database running on a node 

Informix, Oracle, 
MSSQLServer, Sybase 

“sqlserver” database_dbversion mapping rules – determining 
version of SQL Server 

MSSQLServer 

all node types host_os mapping rules – OS type 
detection 

Unix OS, 
Windows OS 

 
 
Of course if you are not planning to use a specific sync package you would not need to worry about 
having the associated required attribute initialized.  More information about required and 
recommended attributes can be found in the DMA Extensibility Guide and Appendix A of the DMA 
Installation and User’s Guide (sections “HPOM DMA Default Synchronization Package” and “DNS 
Mapping Synchronization Package: dmaDnsMapping”). 
 
Beyond just making sure you have the required attributes, using them effectively can contribute a lot to 
a successful DMA implementation.  CI attributes are used in several important ways: 
 

– CI attributes can be mapped to create equivalent or derived service attributes in HPOM during 
the synchronization process (this is especially important for the Smart Message Mapper – more 
on this later) 

– CI attributes can be leveraged in the logic of mapping rules, e.g. an enrichment rule could set a 
certain value in an attribute that is used by a mapping rule to determine how to assign a CI to a 
node group 

 
 
Exposing CI attributes 
It’s important to verify that the CI attributes you need for DMA synchronization are actually exposed to 
the UCMDB web services interface when the TQL/View results are returned by UCMDB.  You cannot 
assume that just because an attribute exists that it will be available to DMA.  To ensure the desired CI 
attributes are being properly exposed, follow these steps when editing the TQL in View Manager: 
 
1. Right click on a node in the TQL 
2. Select “Node Properties” 
3. Click on the “Advanced Layout Settings” link in the toolbar area of the Node Properties window 
4. Check the box for each attribute which needs to be exposed for DMA 
5. Remember to save your TQL when all changes and configuration are completed! 
 
If you don’t see an attribute in the list that you know exists (e.g. “Host DNS Name”), you will need to 
first modify the UCMDB Type Model to make the attribute “visible.”  This can be accomplished with 
the UCMDB CI Type Manager. 



  Guidelines for Deploying DMA 
 

  10 
 

 
In DMA versions prior to 8.20, if the Host DNS Name attribute was missing or did not have a value, 
then it was not possible to get the host configured properly in HPOM.  As indicated above, starting 
with DMA version 8.20, a “Pre-Mapping” script is included in the new “DNS Mapping” sync 
package which makes it much more likely that the host node will be configured properly in HPOM, 
even if the “Host DNS Name” attribute is not available.  But it is still recommended that the “Host 
DNS Name” attribute be initialized if possible, made visible and exposed in the TQL.  In addition, the 
new DNS Mapping sync package should always be marked active for synchronization. 
 
 
The TQL is where it all starts for DMA synchronization 
In summary, TQLs provide three essential things that are needed for successful DMA synchronization: 
 
• A set of CIs
• CI 

 (which represent the desired HPOM nodes and services) 
attributes

• 
 (which are mapped to HPOM service attributes and used in mapping rules) 

Structure
 
The Service Designer should always be asking the following questions during the TQL design process: 
 

 (the hierarchy of the desired HPOM services and relationships) 

– Does the TQL return the CIs I want in HPOM? 
– Are the required CI attributes “visible” (in the CI Type Model) and “exposed” to the UCMDB web 

services interface? 
– Are the required CI attributes initialized with appropriate values (either via DDM or through 

UCMDB enrichment rules)? 
– Do I need to create and initialize custom CI attributes specifically for use during DMA 

synchronization (e.g. in mapping rules)? 
– Does the TQL return a topology which matches the desired HPOM service view structure? 

 
As the above discussion illustrates, getting desired results with DMA starts with having the right TQLs 
in place and verified.  Furthermore, simple changes in the TQL configuration can have dramatic 
results on what is returned by the TQL.  It’s therefore essential that the DMA/HPOM Service Designer 
be completely familiar with creating and modifying TQLs and using the available filtering capabilities. 
 
 

Transforming CIs (and topology) to nodes and services 
Sync packages 
As already stated, sync packages contain the mapping rules for transforming the stream of CI data 
provided by the TQLs into nodes and services that are instantiated in HPOM.  The rules are contained 
in XML files and are activated and processed according to the settings you configure in the DMA user 
interface. 
 
Figure 6 provides an overview of the sync package components and DMA processing steps. 
 



  Guidelines for Deploying DMA 
 

  11 
 

 
Figure 6.  DMA Synchronization Process 

 

 
 
It is beyond the scope of this paper to cover all the details of creating sync packages, but for our 
discussion here it’s important to understand the composition and key functions within a sync package.  
The components of the sync package are: 
 

– Pre-Mapping, Pre-Upload, and Post-Upload scripts 
These can be used to do customizations of the CI hierarchy that are not possible with the 
mapping rules and to trigger certain actions before and after the CIs are uploaded into HPOM.  
An example of a Post-Upload action would be to initiate policy deployment to a node.  (Note:  
The Pre-Mapping script is new in DMA version 8.20.) 

– Service Mapping rules 
Maps UCMDB CIs to services in the HPOM service model by referencing Service Type Definitions 
(STDs).   

– Node Mapping rules 
Maps host CIs to node groups 

– Attribute Mapping rules 



  Guidelines for Deploying DMA 
 

  12 
 

Sets node properties and service attributes in HPOM based on CI attributes.  The attribute values 
can be modified and new attributes can be created in the mapping rules.  This is where you 
determine things like the display label that will be used as the caption for services in the Service 
Navigator.  The “default” sync package attributemapping.xml file is where node properties such 
as Host Operating System are initialized.  The attribute mapping rules for services can have a lot 
of impact on how well the Smart Message Mapper works (more on this later). 

– User Profile Mapping rules 
Maps (assigns) a User Role or Profile to services in the HPOM service hierarchy 

Note:  As illustrated in the diagram above, DMA uses the term “Enrichment” to describe the process 
of modifying the stream of CIs and topology that is input from the TQLs.  These enrichments (in the 
form of mapping rules) produce the ultimate nodes and services in HPOM.  This should not be 
confused with enrichment rules in UCMDB which modify the CIs and topology model in UCMDB. 
 
It’s highly recommended that Service Designers and Integrators become familiar with the out-of-box 
sync packages before starting on the development of custom packages.  Spend some time looking at 
the XML files with your favorite XML editor to learn the mapping syntax and how the rules work.  
More details on sync packages can be found in Chapters 7-12 of the DMA Extensibility Guide.  
 
 
UCMDB and HPOM model differences 
One of the key things for the Service Designer to grasp is that the UCMDB has a very robust type 
model for CIs.  Each CI is of a certain type, e.g. “Host,” “Network Interface,” “Database,” etc.  The 
type model also includes a number of different relationships that may exist in the topology, e.g. 
“Container Link,” “Depends,” “Member,” “Contains,” “Contained,” “Use,” “Client Server,” etc.  And 
even further, the UCMDB type model defines which CI types can be related to other specific CI types 
using which relationships (these are known as “valid links”).  Another important aspect of the type 
model is inheritance.  For example, CI types “Websphere AS” and “Weblogic AS” are child types to 
the parent type “J2EE Server”.  Attributes defined at the parent level are inherited by the child types. 
 
HPOM has a much simpler model.  There are two service types (virtual and hosted_on) and two 
relationship types (Containment and Dependency).  By default, DMA will create a containment 
relationship in HPOM if the UCMDB relationship label starts with the string “container” or 
“contained”.  (This behavior is controlled by the containmentrelations.xml configuration file in DMA.)  
And DMA does not recognize CI type inheritance; each CI type must be handled separately within 
the mapping rules.  
 
It’s important to carefully consider these model differences when you design the TQLs for DMA.  The 
TQL should return a CI topology that is already constrained to what is possible in the HPOM service 
model.  To do this you may need to add new valid links into the CI Type model (using the CI Type 
Manager) and create enrichment rules to add  the new relationships where needed.  You may also 
need to modify the containmentrelations.xml file to force additional mappings to the containment 
relationship in HPOM.  Also give particular attention to setting the hosted_on service attribute for 
appropriate CIs in the attribute mapping file. 
 
   

DMA control of synchronized CIs 
Nodes 
DMA puts all synchronized nodes into the “CMDB Nodes” node group which is initially created when 
DMA is installed.  You also have the option to put specific node CIs into other node groups if desired, 
using node mapping rules in a sync package.  It’s no problem to have a node in multiple node 



  Guidelines for Deploying DMA 
 

  13 
 

groups.  Just be aware that the target node group must already exist in the HPOM configuration, or 
alternatively you could enable automatic node group creation  (see below). 
 
If during synchronization DMA determines that a previously synchronized node is no longer provided 
as input by any of the TQLs (which typically would mean it is no longer in the UCMDB), it is removed 
from the “CMDB Nodes” node group and placed in the “CMDB Removed Nodes” node group.  This 
behavior is fixed and cannot be changed. 
 
If nodes already exist in HPOM which are then imported for the first time using DMA, these nodes will 
automatically be removed from all user-assigned node groups and placed into the default DMA 
“CMDB Nodes” node group and any other node groups which are specified by the node mapping 
rules.  And in similar fashion, if you make manual node group assignment changes to already 
imported nodes and then follow this with an import that no longer includes the node, it will be 
removed from all node groups and placed into the “CMDB Removed Nodes” node group. 
 

IMPORTANT:  You should consider DMA as having sole control over how synchronized nodes 
are configured into HPOM node groups. 

This is by design, since it allows for a fully automated node group assignment process.  In 
environments which may contain many thousands of nodes, node group assignment may be extremely 
dynamic; automating the process therefore becomes very desirable.  But this DMA feature should also 
be carefully understood before deploying DMA in a large production environment already managed 
by HPOM with existing node configurations.  For example, existing Node Layout Group assignments 
in HPOM on UNIX can be effectively “undone” by DMA synchronization of nodes which already 
exist. 
 
The bottom line with nodes is that node group configuration is either controlled by DMA or not.  If you 
need to manually manage and configure the node group assignments, then these nodes must be 
excluded from DMA synchronization.  For environments where more complex node configuration 
(e.g. layout groups) is needed for synchronized nodes, use the optional post-upload scripting 
capability provided by the sync packages. 
 
 
Services 
Services imported by DMA are placed under a single “CMDB” root service (service name is 
“ROOT_DMA_Service”) in the HPOM model hierarchy.  This keeps thing relatively simple and allows 
for a controlled migration from using SPI uploaded or manually created service trees to the services as 
discovered and instantiated in the UCMDB.  It is no problem for these service trees to coexist at the 
same time.  However, once the UDCMB branch has been well populated and matches the desired 
structure, you will need to remove the SPI services branch so that Smart Message Mapper will start to 
match incoming messages to the appropriate UCMDB services. 
 
Like node group assignments, you should consider DMA as the “owner” of whatever is placed below 
the CMDB root service.  The hierarchy as well as service configuration (including service attributes) is 
under complete control of DMA and is driven by both the TQL results feeding into synchronization as 
well as the mapping rules in the sync packages.  As we will see later, there is quite a bit of 
complexity that can be included in the mapping rules if needed, including making changes to default 
settings for things like status and calculation rules.  Each time synchronization is executed, the entire 
service tree under the CMDB root service will be re-created. 

 

  



  Guidelines for Deploying DMA 
 

  14 
 

Part II:  Getting what you want in HPOM 
In this part of the white paper, we cover a few items which should be of interest to Integrators and 
customers wanting to implement DMA for use with custom application environments which may 
require more advanced techniques to get the desired results in HPOM. 
 
 

Synchronizing nodes 
How to put nodes into specific node groups 
As mentioned in Part I, by default new nodes will be placed in the “CMDB Nodes” node group in 
HPOM.  If you want certain nodes to be put into other node groups as well, you will need to control 
this through use of an appropriate sync package nodemapping.xml file.  But before we dive into the 
mapping file details, let’s review the motivations for putting nodes into specific node groups. 
 
In most cases, we want to see nodes put into node groups which align with the major application that 
is running on the node.  For example, if we have nodes that are hosting IIS, we might want them to 
appear in a node group called “IIS.”  For nodes running Apache, we would put them in a node 
group called “Apache.”  Nodes supporting a database would be put into node groups for the 
database type, e.g. “SQLServer” or “Oracle.”  It also might be desirable to have separate node 
groups for specific versions of these applications, e.g. “IIS 6.0” and “IIS 7.0.”  These two version-
related node groups would most likely be subfolders under the generic service “IIS.” 
 
We would typically also want to see nodes in OS-related nodegroups, e.g. “Windows,” “Unix,” etc.  
When new nodes are added in HPOM on Windows (OMW), they are automatically placed into 
appropriate OS-related node groups (this is a function of OMW itself), but only if the required OS 
information exists.  This is why it is important that the results returned by the UCMDB TQL for each 
host CI contain valid information in the “Host Model,” “Host Operating System,” and “Host 
Operating System Version” attributes.  If these aren’t provided to DMA during synchronization, then it 
will not be possible to determine which OS node group the node should belong to. 
 
We should point out that there are differences between how node groups are setup in HPOM on 
Windows and HPOM on UNIX.  In the former, there is a hierarchical or “folder” arrangement of node 
groups; in the latter there is just a simple “flat” arrangement of node groups.  Since there are some 
special considerations for DMA, the following discussion will highlight the HPOM on Windows use 
case. 
 
Consider the example in Figure 7 below.  Since the needed OS information was not available, OMW 
placed the node ucmdb-75 into the “Unknown” node group in addition to DMA placing the node into 
“CMDB Nodes.”   
 



  Guidelines for Deploying DMA 
 

  15 
 

 
Figure 7.  Example synchronized node in HPOM on Windows 

 

 
 
Also note that the node has been put into node group “DBSPI SQL Server.”  This is because the 
“MSSQLServer” sync package was active during the synchronization and the mapping rules in the 
nodemapping.xml file determined that this node is hosting an instance of SQL Server. 
 
The MSSQLServer sync package is worth reviewing since it contains a great example of an effective 
technique for handling node group assignments.  Here’s the contents of the nodemapping.xml file: 
 
<?xml version="1.0" encoding="utf-8"?> 
<Mapping> 
     <Rules> 
            <Rule name="SQL Server Nodes"> 
                <Condition> 
                    <Equals> 
                        <Attribute>host_servertype</Attribute> 
                        <Value>sqlserver</Value> 
                    </Equals>      
                </Condition> 
                <MapTo> 
                    <NodeGroup> 
                        <Value>DBSPI_SQL_Server_Nodes</Value> 
                    </NodeGroup> 
                </MapTo> 
            </Rule> 
     </Rules> 
</Mapping> 

 



  Guidelines for Deploying DMA 
 

  16 
 

This is a very simple mapping file with just one rule.  The rule defines a condition and then an 
associated mapping.  In the DMA user interface (under “Enrichment Summary”), this rule is 
summarized as follows: 
 

if 
 the value of the attribute “host_servertype” equals the value “sqlserver” 
then 
 place the node into the node group named after the value “DBSPI_SQL_Server_Nodes” 

 
Keep in mind that this rule is going to be applied to the complete stream of CIs and attributes that are 
being provided to DMA by the TQLs associated with active sync packages.  The key to the simplicity 
of this rule is that we have an existing CI attribute (“host_servertype” in this case) that we can 
examine, and based on the value of that attribute we determine which node group the CI belongs to. 
 
What may not be obvious, however, is that this attribute was actually initialized in the UCMDB using 
an enrichment rule provided by DMA.  It turns out that this attribute is not typically populated with 
values by DDM, so to facilitate simplicity in our mapping rule we have “taken over” this attribute and 
designated it to be used for indicating which type of database is running on the host CI.   
 
Here is the DMA-provided enrichment rule which initializes this attribute: 
 

 
Figure 8.  NodeServerType Enrichment Rule 

 

 
 
This enrichment rule is also very simple:  Find all instances in the UCMDB of a Host which has a 
Container Link to a Database, then set the “Host Server Type” attribute of the Host CI to a value that is 
taken from the CI Type attribute of the Database CI.  In the example above (Figure 7), the enrichment 
rule found that ucmdb-75 had a Container Link to a SQL Server database and so the “Host Server 



  Guidelines for Deploying DMA 
 

  17 
 

Type” attribute on ucmdb-75 was set to the value “sqlserver.”  During DMA synchronization, the 
simple rule in the nodemapping.xml file of the MSSQLServer sync package was then able to 
determine that ucmdb-75 should be put into node group “DBSPI_SQL_Server_Nodes.”   
 
You can use the same approach for your own applications if needed, however you would normally 
want to create an entirely new CI attribute in the CI Type model that you would then initialize with an 
appropriate enrichment rule.  For example, to designate that a host is running IIS, you might create a 
new attribute called “web_server_flag” that you would then leverage in your mapping rules for node 
group assignment.  The basic steps would be as follows: 
 

– CI Type Manager:  Add a new attribute “web_server_flag” to CI Type “host”; make sure it is 
marked “visible” 

– Enrichment Manager:  Create an enrichment rule to initialize the “web_server_flag” attribute to 
the value “iis” on hosts which contain IIS 

– View Manager:  Ensure that the new host attribute “web_server_flag” is exposed by the TQL 
being used to model the IIS application 

– DMA Sync Package:  Create a nodemapping.xml file in the package you are using to import IIS 
nodes and services into HPOM; include a rule which checks the “web_server_flag” (as in the SQL 
server example above) and designate the appropriate node group for the node 

 
Before going through the effort of creating your own custom attributes, you should always examine 
the existing attributes for nodes in your TQLs to see if there is anything already there that could be 
used in the node mapping logic. 
 
An important note on doing customizations with sync packages:  It is not recommended to change the 
“default” sync package mapping files.  All customizations needed for a specific customer environment 
should be implemented by either a) modifying one of the existing SPI sync packages (OS or 
database), or b) creating a new sync package.  In general, the best approach would be to create a 
specific sync package for each application service hierarchy that you want in HPOM; this way you 
have better granular control over what happens during the synchronization process. 
 
 
Automatic creation of node groups 
By default, DMA assumes that the node groups you are mapping to already exist in HPOM.  If a node 
group does not exist that is referenced during synchronization, an error will occur.  On HPOM on 
Windows, it is possible to create node groups manually using the Node Configuration Editor, 
however this is not the recommended approach for DMA because you have no control over the 
Unique ID that will be assigned to the node group in HPOM.  For example, if you manually create a 
node group “TEST GROUP,” its unique ID may be something like {5A6030E3-FB14-4675-A3EA-
BACF504A8890}.  This is not very user-friendly for use in mapping files! 
 
A better approach (again on HPOM on Windows) would be to create your own MOF files where you 
could designate node group names that are easier to read and reference.  Prior to DMA 
synchronization, you would upload the node group configuration into HPOM using the mofcomp 
command line interface to get the definitions into the HPOM model.  This would of course need to be 
done only once.  The problem with this approach is that you need to understand the usage of mof 
files and the instance definition syntax for node groups. 
 
The easiest approach of all (for both HPOM on Windows and HPOM on UNIX) is to simply have 
DMA create the node groups automatically if the target node group does not exist.  On HPOM for 
Windows, the only downside of this approach is that the node groups will be created at the top level 
of the node group hierarchy which might not be the desired structure.  But you can later go into the 



  Guidelines for Deploying DMA 
 

  18 
 

Node Configuration Editor and move the new groups under the desired parent groups (except for the 
standard HPOM-provided groups which are “read only”). 
 
To setup DMA for automatic creation of node groups, you need to make a change to the XPL 
configuration on HPOM.  From a command window, issue the following command: 
 
ovconfchg –ovrg server –ns opc.WebService.ConfigurationItem 
-set NodeGroupCreationEnabled true 
 

You must then restart the Tomcat server as follows: 
 
ovc –restart ovtomcatB 
 

Thereafter, any non-existing node groups referenced by DMA mapping rules will be automatically 
created. 
 
 

Synchronizing services 
Service Type Definitions 
HPOM on Windows introduced the concept of Service Type Definitions as the mechanism for creating 
services in the service model.  In HPOM on Windows, referencing a STD is the ONLY way to 
instantiate a service.  DMA must therefore use this mechanism during synchronization to get new 
services created.  HPOM on UNIX does not itself implement the notion of STDs in the service model, 
however installing DMA on HPOM on UNIX will insert new service definitions into the service model 
which in effect represent STDs.  In this way DMA can use the same mechanism and syntax in the 
service mapping files for both platforms. 
 
You can think of STDs as templates for use when instantiating specific kinds of services in HPOM.  The 
STD specifies the assignment of default calculation rules for status and propagation, the icon to be 
displayed in the Service Navigator, and tools to be associated when a new service is created.  One 
nice aspect of this design is that you can easily modify ALL services created with a specific STD in 
your service model by simply changing the STD.  In HPOM on Windows, you can do this manually 
using the Service Type Configuration Editor. 
 
When you install DMA, a number of STDs for use with the OS and Database SPI sync packages are 
automatically loaded into the HPOM service model.  (See Appendix A in the DMA Installation and 
User Guide for a complete list.)  For example, here is the STD for creating a service representing a 
Unix host: 
 
instance of OV_ServiceTypeDefinition 
{ 
 CalcRuleId = "ucmdb_generic_CR"; 
 Caption = "Unix"; 
 CaptionFormat = "folder"; 
 Description = "Mapping of corresponding UCMDB type"; 
 GUID = "ucmdb_unix"; 
 Icon = "Unix.ico"; 
 KeyFormat = "folder"; 
 MsgPropRuleId = "ucmdb_generic_PR"; 
}; 
 
instance of OV_ServiceTypeComponent 
{ 
 GroupComponent = "OV_ServiceTypeDefinition.GUID=\"folder\""; 
 PartComponent = "OV_ServiceTypeDefinition.GUID=\"ucmdb_unix\""; 
 PropRuleId = "ucmdb_generic_PR"; 
}; 



  Guidelines for Deploying DMA 
 

  19 
 

 
instance of OV_ServiceTypeDependency 
{ 
 Antecedent = "OV_ServiceTypeDefinition.GUID=\"ucmdb_unix\""; 
 Dependent = "OV_ServiceTypeDefinition.GUID=\"folder\""; 
 PropRuleId = "ucmdb_generic_PR"; 
}; 

 
Notice that this STD also specifies how the service can be related to other services.  In this case the 
template will allow containment from other services (OV_ServiceTypeComponent) and dependency 
from other services (OV_ServiceTypeDependency). 
 
To complete the picture, here is the service mapping file from the “default” DMA sync package: 
 
<?xml version="1.0" encoding="utf-8"?> 
<Mapping> 
    <Rules> 
        <Rule name="ServiceGroup"> 
             <Condition> 
                 <Equals ignoreCase="true"> 
                      <CiType /> 
                      <Value>servicegroup</Value> 
                  </Equals> 
              </Condition> 
              <MapTo> 
                 <STD> 
                      <Value>folder</Value> 
                  </STD> 
              </MapTo> 
        </Rule> 
        <Rule name="Default"> 
            <Condition> 
                <True/> 
            </Condition> 
            <MapTo> 
                <STD> 
                    <Value>ucmdb_</Value> 
                    <CiType/> 
                </STD> 
            </MapTo> 
        </Rule> 
    </Rules> 
</Mapping> 

 
The second rule illustrates the power (and simplicity) possible in mapping rules:  For CIs of type “unix” 
encountered in the TQL result set, the rule concatenates the strings “ucmdb_” and “unix” and creates 
a new service in HPOM by referencing the “ucmdb_unix” STD.  Keep in mind that the service 
mapping file is only concerned with mapping the CI to a service type.  Attributes like the service name 
and display label for the service are determined by rules in the appropriate attribute mapping files. 
 
 
Automatic creation of Service Type Definitions 
The default in DMA is that you must have STDs already defined in the HPOM model before you can 
reference them in the sync package mapping rules.  You can reference any of the existing STDs in 
HPOM.  To see what DMA has loaded into the service model on HPOM on Windows, examine the 
following file: 
 
<InstallDir>\misc\dma\moffiles\en\default.mof 
 
On HPOM on UNIX, you can use the “ServiceTypeDefinitionCLI” command to list the available STDs, 
or examine the following files which are used at install time to upload into the service model: 



  Guidelines for Deploying DMA 
 

  20 
 

 
/opt/OV/misc/dma/default_calprop.xml 
/opt/OV/misc/dma/default_std.xml 
 

You may want to use your own STDs for synchronizing custom applications.  In this case, you have 
two options: 
 
1. Create mof files (HPOM on Windows) or xml files (HPOM on UNIX) containing the definitions and 

upload them to the service model before you synchronize, or 
 

2. Enable automatic STD creation 
 
Option 2 is the easiest, and can be accomplished by changing the XPL configuration with the 
following command: 
 
ovconfchg –ovrg server –ns opc.WebService.ConfigurationItem 
-set StdCreationEnabled true 
 

As is usually the case when changing XPL configuration, you must then restart the Tomcat server: 
 
ovc –restart ovtomcatB 

 
After this change is made, if your service mapping rules reference a STD that does not exist, it will be 
created automatically with a default configuration in the service model.  More information on creating 
and using STDs can be found in Chapter 4 of the DMA Extensibility Guide. 
 
 
Overriding defaults of Service Type Definitions 
In certain situations, it may be desirable to override defaults of a STD which you reference in the 
service mapping rules.  Here are some example scenarios where this might be useful: 
 

– You want to use custom icons in the service map for the services you create 
– You want to modify the status calculation rule for a service to more accurately reflect how it is 

affected by subordinate services in the hierarchy (e.g. setting a cluster service calculation rule to 
“least critical” instead of the default “most critical”) 

 
The service mapping syntax allows for overriding the following STD elements: 
 

– Calculation rule 
– Message propagation rule 
– Parent propagation rule 
– Icon 
– Message weight 
– Parent weight 

 
The Parent propagation and Parent weight rules determine the propagation to the parent of the 
service.  The Message propagation and Message weight rules determine the propagation of the 
incoming HPOM messages to the service. 
 
Of course you could also manually create and upload a new STD with the desired custom settings 
and then reference it in your service mapping rules, but it’s much easier and less effort to specify 
overrides of an existing STD. 



  Guidelines for Deploying DMA 
 

  21 
 

 
Consider the following simple example of how to specify overrides in the service mapping rules.  In 
this case we want to change the default Message propagation rule and also  specify a custom icon 
for an Apache server CI that resides in a cluster. 
 
<?xml version="1.0" encoding="utf-8"?> 
<Mapping> 
 <Rules> 
  <Rule name="Apache Server"> 
   <Condition> 
    <And> 
     <Equals ignoreCase="true"> 
      <CiType /> 
      <Value>apache</Value> 
     </Equals> 
     <Equals> 
      <Attribute>cluster</Attribute> 
      <Value>true</Value> 
     </Equals> 
    </And> 
   </Condition> 
 
   <MapTo> 
    <STD> 
     <Value>ucmdb_</Value> 
     <CiType /> 
     <Value>_std</Value> 
    </STD> 
    <MessagePropagationRule> 
     <Value>least_critical</Value> 
    </MessagePropagationRule> 
   </MapTo> 
  </Rule> 
  <Rule name="Set Icons"> 
   <Condition> 
    <True /> 
   </Condition> 
 
   <MapTo> 
    <Icon> 
     <CiType /> 
     <Value>_icon</Value> 
    </Icon> 
   </MapTo> 
  </Rule> 
 </Rules> 
</Mapping> 
 

 
This service mapping file has two rules which implement the following logic: 
 

– Rule 1 (“Apache Server”) 
If the CI is of type “apache” and the CI attribute “cluster” has a value of “true,” then create a new 
service referencing STD “ucmdb_apache_std” and override the STD message propagation rule to 
use “least critical.” 
 

– Rule 2 (“Set Icons”) 
For all CIs (the condition part of the rule is always “true”), set the icon name to be the 
concatenation of the CI Type string and “_icon”.  For apache servers, the icon name would be 
evaluated to “apache_icon”. 

 



  Guidelines for Deploying DMA 
 

  22 
 

Note that the results from Rule 2 may be overwritten by higher priority rules during synchronization.  
Service mapping rules are executed according to the priority of the bundle (sync package) and the 
position within the rule declarations; rules are applied in reverse order, i.e. the rules in the XML file 
are processed bottom up.  If you wanted the icon logic to apply only to the Apache server CIs, you 
would modify the second rule’s condition part to be the same as in the first rule. 
 
For a more complex example of using STD overrides, see Chapter 8 “Service Mapping” in the DMA 
Extensibility Guide. 
 
 
Extending existing HPOM services with data from UCMDB 
In customer environments where important HPOM service hierarchies already exist, DMA supports the 
concept of extending these hierarchies by establishing dependencies to and from the data being 
imported from the UCMDB.  DMA uses the following terms to define “ownership” of service CIs: 
 

– ExternalCI 
Services which already exist in HPOM and are maintained completely outside of the DMA 
synchronization process 

– InternalCI 
Services created and managed by the DMA synchronization process 

In the service mapping file, you can establish dependency relationships (in either direction) between 
Internal and External CIs using special mapping rule syntax.  Before we look at an example of service 
mapping rules that accomplish this, we need to first clarify how the concepts of dependency and 
propagation relate to each other.  You need to know the “from/to” semantics in order to understand 
how the rules are written. 
 
First, let’s consider the case of establishing a dependency from External to Internal CIs.  Figure 9 
illustrates the concept and terminology: 
 

 
Figure 9.  Dependency from External to Internal CIs 

  

 
 
It may be counterintuitive, but note that the direction of propagation and dependency are opposite to 
each other.  This is important to grasp.  The target for propagation is where the dependency 
originates.  You would use this type of dependency setup when you want an existing service in 
HPOM to be the propagation target from the new service CI being imported from UCDMB.  (Note 
that when you implement this type of dependency, DMA can only create or update the relationship; it 
cannot delete it during synchronization.  Deletion of these dependencies must be done manually in 
HPOM.) 



  Guidelines for Deploying DMA 
 

  23 
 

 
In Figure 10, we have the opposite situation, i.e. dependency from Internal to External CIs: 
 

 
Figure 10.  Dependency from Internal to External CIs 

 

 
 
Again (it’s worth repeating!), the target for propagation is where the dependency originates.  You 
would use this type of setup when you want the new service CI from UCMDB to be the propagation 
target from an existing service in HPOM.  In this type of dependency, all aspects  of managing it 
(create, update, delete) can be accomplished within the DMA synchronization process. 
 
The above discussion is important because when designing service hierarchies in HPOM we tend to 
think in “propagation” terms, however the semantics of the service mapping rules in DMA are in 
“dependency” terms. 
 
Let’s take a look at a simple example scenario and the required service mapping rules to implement it.  
Our scenario is as follows: 
 

An existing service model for managing a web-based online store has already been implemented 
in HPOM.  Most of the key infrastructure supporting this application is already covered in the 
service model, however it is missing some important services (specific oracle databases) which 
are not yet included.  Since DDM has discovered all the databases and related topology and 
populated the UCMDB, we now want to use DMA to enhance the existing web-store service tree 
to include the appropriate oracle database dependencies. 

Here’s the current service tree in HPOM (in real life this would typically be quite a bit more 
comprehensive): 

 

 



  Guidelines for Deploying DMA 
 

  24 
 

 

Our goal is to extend the service model to include a specific database, “MI6,” as an important 
component which supports the Customer Relationship Management (CRM) service. 

 
To accomplish the desired results, we need a dependency relationship from CRM (an External CI) to 
the database “MI6” (which will be an Internal CI once it has been synchronized).  The easiest way to 
implement this is to modify the existing service mapping file in the Oracle Database sync package 
provided by DMA.  We would add a new mapping rule as follows: 
 
    <Rule name="Create dependency from CRM to MI6”> 
      <Condition> 
        <And> 
          <Equals ignoreCase="true"> 
            <CiType /> 
            <Value>oracle</Value> 
          </Equals> 
          <Equals ignoreCase="true"> 
            <CiCaption /> 
            <Value>MI6</Value> 
          </Equals> 
        </And> 
      </Condition> 
      <MapTo> 
        <DependencyFromExternalCi> 
          <ExternalCiId> 
            <Value>store_crm</Value> 
          </ExternalCiId> 
          <DependencyType> 
            <Value>Dependency</Value> 
          </DependencyType> 
          <PropagationRuleName> 
            <Value>ucmdb_generic_PR</Value> 
          </PropagationRuleName> 
          <PropagationWeight>1.0</PropagationWeight> 
        </DependencyFromExternalCi> 
      </MapTo> 
    </Rule>  

 
Here is the translation of this new rule in the DMA user interface: 
 

if 
 the type of the CI equals the value “oracle” 
 and 
 the CI caption equals the value “MI6” 
 
then 

create a dependency from an external CI to this CI.  The CI ID of the external CI is the value 
“store_crm”.  The dependency type is the value “Dependency”.  Also assign a propagation 
rule to the dependency.  The name of the rule is the value “ucmdb_generic_PR”.  The rule 
weight is “1.0”. 

 
 
Note that the “ucmdb_generic_PR” propagation rule must already exist in HPOM (in this case it is one 
of the defaults loaded when DMA is installed).  With this rule included in our Oracle sync package 
service mapping file, DMA synchronization would produce something similar to the following service 
tree: 
 



  Guidelines for Deploying DMA 
 

  25 
 

 
Figure 11.  Example results from service mapping dependency rule 

 

 
 
In this example, we can also see that MI6 is hosted on a node named “calderone.hpevent.local” and 
that a dependency from the database to the node has also been established in the service hierarchy 
(as a result of the data returned by the TQLs used in this synchronization).  For more details on 
establishing dependencies between existing services and CIs being synchronized with DMA, see 
Chapter 8 “Service Mapping” in the DMA Extensibility Guide. 
 
 
Creating the desired dependency and propagation in HPOM 
As stated earlier, the UCMDB type model implements many different relationship types which can be 
used when instantiating discovered CIs.  In most cases, DDM will create a model of CIs and 
relationships which has a top-down or “global-to-detailed” view of the world.  This is largely the result 
of the spiral discovery design of DDM.  Newly discovered CIs tend to be treated as being a 
component of and contained by a parent CI. 
 
An example of this is how databases are discovered in relationship to hosts.  The host is discovered 
first, then the database.  So the typical model in UCMDB will have a “Container Link” relationship 
between a host and a database.  The standard out-of-box Oracle TQL in UCMDB illustrates this: 
 



  Guidelines for Deploying DMA 
 

  26 
 

 
Figure 12.  UCMDB “Oracle” TQL 

 

 
 
This can be a useful way of looking at the Oracle application environment from a CI perspective, but 
for HPOM this view is less desirable because it doesn’t reflect the service impact design of HPOM’s 
model.  In HPOM, we want to show a dependency from Oracle to the host, i.e. we want a problem 
with the host to propagate to Oracle.  The TQL above does not accommodate the notion of a problem 
on the host having impact on the database. 
 
Luckily we have a great deal of flexibility in UCMDB to modify and enhance the discovered CI model 
to suit our needs.  For synchronizing Oracle CIs, DMA provides the following TQL which gives us the 
desired propagation and dependency relationships: 
 

 
Figure 13.  DMA “Oracle (Operations)” TQL 

 

 
 



  Guidelines for Deploying DMA 
 

  27 
 

This TQL is possible as a result of DMA’s UCMDB enrichment rules which modify the existing model to 
include the needed relationships.  Enrichment is an extremely powerful concept in UCMDB and it’s 
fair to say that without it, DMA would have greatly reduced value to HPOM customers. 
 
Here is the DMA enrichment rule that makes the TQL possible: 
 

 
Figure 14.  DataBaseDependency Enrichment rule 

 

 
 
It’s a very simple enrichment rule, but extremely powerful:  For all instances of a host with a container 
link to a database, add a new “depend” relationship from the database to the host.  Once this 
enrichment has been applied to the UCMDB data, we can then use the DMA Oracle TQL.  (We 
should point out that there are actually several other enrichment rules that must run to fully enable use 
of DMA Oracle TQL; these additional enrichments create the Service Group instances and 
relationships which are used to represent the virtual services, e.g. “Applications,” “Systems 
Infrastructure,” “Windows,” etc. in our target HPOM model.) 
 
The “depend” relationship is a standard relationship type in UCMDB, so we did not have to add it to 
the type model.  However, by default the UCMDB does not allow a “depend” relationship between 
the database CI Type and the host CI Type, i.e. it is not a valid link.  So even before we created the 
enrichment rule, it was necessary to enable this link.  Valid links can be configured using the CI Type 
Manager, or as is the case with DMA, they can be configured into the UCMDB by importing a pre-
built UCMB package with the Package Manager.   DMA’s “hpdmadb.zip” UCMDB package includes 
the necessary link for “Depend:  Database  Host”.  
 
To summarize for the database example, the following sequence of UCMDB tasks was necessary in 
order to deliver useful data to DMA and HPOM: 
 
1. Configure a new valid link for the depend relationship 
2. Design and execute an enrichment rule to instantiate the desired depend relationship in the 

topology 
3. Design the TQL to return the modified topology 

 
The key thing to be learned from the above out-of-box example is that when creating TQLs and sync 
packages for custom applications, you may need to modify the UCMDB model to ensure that you will 
ultimately be able to create the desired dependencies and propagation behavior in HPOM.  
Furthermore, you will need to pay attention to the sequence of UCMDB modifications since they build 
on each other. 



  Guidelines for Deploying DMA 
 

  28 
 

 
 

How to get optimum results with Smart Message Mapper 
The Smart Message Mapper (SMM) is an important part of DMA since it allows the continued use of 
currently deployed HPOM SPI policies without having to modify them to reference the new service IDs 
of CIs that have been synchronized into the service model.  For a good summary of SMM concepts, 
see Chapter 3 of the DMA Installation and User’s Guide. 
 
Smart Message Mapper is implemented as a MSI program on the HPOM server and exists to do 
essentially one thing:  map incoming messages to the most appropriate service in the service tree.  All 
messages are input to SMM whether or not they include a service ID, so it provides the added benefit 
of making it easier to leverage the service views in HPOM.  SMM looks for hints in each incoming 
message to help identify the target service which the message should impact.  The hints include the 
service name (service ID), object, application and node name attributes. 
 
Before describing how to make SMM “smarter,” we should first review the basic SMM algorithm. 
 
 
SMM service matching algorithm 
The service matching algorithm can be summarized by the following sequence of steps: 
 
1. If the message includes a service ID, look for an exact match of this service ID in the service 

model.  If there is a match, the message is sent to that service.  (This first step in the algorithm 
ensures that as long as the service model still has the SPI-discovered services, the assignment of 
messages to services remains unchanged.) 

2. If there is no exact match of service ID, SMM will then extract hints from the service name, object, 
and application attributes of the message and compare these hints with the existing service 
attributes of all services.  When the best matching service is found, SMM replaces the service ID in 
the message with the service ID of the matching service and forwards the modified message. 

3. If SMM cannot find a matching service, it will then consider the node name attribute of the 
message.  If it can find a matching host in the service model, it forwards the message to that host 
(again the service ID will be modified to match the service ID of the host service in the model).  If 
multiple matches are made on services which are connected to the same host, SMM will forward 
the message to the host service (and also set an explanatory CMA). 

4. If SMM cannot find either a matching service or node name, it will forward the message 
unchanged (no changes are made to the service ID). 

5. Even if a message does not contain a service ID, SMM still considers the object, application, and 
node name attributes as hints and attempts to find a matching service by comparing with the 
attributes of all services. 

 
As an example of how the hints are extracted, consider the following attributes from a typical 
message from a Database SPI policy: 
 
a=Oracle 
o=G11 
msg_t="ORASPI-0001.3: DB-SPI cannot connect to database G11, may be down; Oracle 
error [ORA-12560:_TNS:protocol_adapter_error].   [Policy: DBSPI-0001]" 
severity=critical 
service_id=Oracle_G11_@@dbhost1.acme.com 
node=dbhost1.acme.com 

 
The hints used by DMA in this message are highlighted. 



  Guidelines for Deploying DMA 
 

  29 
 

 
 
SMM and the “hosted_on” attribute 
Regarding service attributes, there is one important guideline which needs to be followed up front to 
ensure SMM works effectively: 
 

– All hosted services in the HPOM model MUST have the “hosted_on” attribute set to the fully 
qualified domain name (FQDN) of the host.  Remember that a hosted service includes both the 
node itself and any services hosted on that node.  For example, if we have an Oracle database 
service “MI6” which is hosted on the node “calderone.hpevent.local,” both of these services in 
the model must have the hosted_on attribute set. 

 
If the hosted_on service attribute is not properly initialized, SMM will have difficulty in matching 
messages to services.  The good news is that DMA already provides two sync packages which help 
you with this requirement:  the DNS Mapping package (which contains a pre-mapping script to 
identify DNS names of hosts) and the Default sync package (attribute mapping file) which includes a 
rule that sets the hosted_on attribute for appropriate services.   
 
 
Attribute mapping rules 
Remember from the discussion in Part I above that the attribute mapping file in a sync package is the 
place for mapping CI attributes to service attributes and creating new service attributes.  To 
understand the basics of how attribute mapping rules work, let’s take a look at the following rule from 
the Default sync package: 
 
<Rule name="Set hosted_on attribute for nodes"> 
    <Condition> 
        <IsNode /> 
    </Condition> 
    <MapTo> 
       <Attribute> 
          <Name>hosted_on</Name> 
          <SetValue> 
               <XPathResult>./attributes/host_dnsname</XPathResult> 
          </SetValue> 
       </Attribute> 
    </MapTo> 
</Rule> 

 
This is a simple rule on the surface, but it also demonstrates a more advanced capability of using 
XPath expressions in the mapping rules.  This is the rule that sets the hosted_on attribute for all node 
CIs that are processed during DMA synchronization.  The “Condition” element evaluates to true if the 
CI is a node, and the “MapTo” element sets the hosted_on attribute to the value string returned by the 
XPath expression.  The XPath expression operates on the XML structure of the normalized “pre-
mapped hierarchy” which is created during synchronization (see Figure 6 above). 
 
Equally important to the rule above for services representing nodes, there is also a Default sync 
package attribute mapping rule to set the hosted_on attribute for services (i.e. CIs that are NOT 
nodes).  (This rule also illustrates a more complex usage of XPath expressions and expanded 
condition logic and can serve as a good example for learning more advanced XPath techniques.) 
 
To get a better understanding of how XPath expressions work, see Appendix A in the DMA 
Extensibility Guide; you may also want to have a look at this tutorial:  
http://www.w3schools.com/xpath/.  A word of caution is in order regarding using XPath 

http://www.w3schools.com/xpath/�


  Guidelines for Deploying DMA 
 

  30 
 

expressions in your mapping rules:  they can have a negative impact on performance of DMA 
synchronization if not used carefully! 
 
 
Service attributes – The key to making SMM smarter 
If you observe a message that is mapped to the wrong service (or perhaps is not mapped at all but 
you expected a mapping), there are several steps you need to take (we are assuming that MSI has 
already been properly configured in HPOM and the SMM process is running): 
 

– Verify that the expected target service actually exists in the service model. 

– If it exists, you then need to verify that SMM is properly configured for how to extract the hints 
from the incoming message.  SMM looks for separators (e.g. “:” or “@@”) in the message 
attributes to extract each individual hint.   Starting with DMA version 8.20, you can now 
configure these SMM parameters in the user interface in the “Configuring DMA” section.  If the 
separators in the message are different than what SMM expects, the hints will not be properly 
extracted. 

– Determine if you have case issues.  By default SMM considers case when comparing hints with 
attributes.  In general, you would probably want SMM to be case-insensitive since some parts of 
the infrastructure (e.g. DNS servers) operate without case sensitivity.  You can configure SMM to 
be case-insensitive in the “Configuring DMA  Smart Message Mapper” page of the DMA user 
interface.  Note that there may be a short delay before this takes effect while SMM rebuilds its 
internal hash table of services. 

– If the separators are correct and there are no issues with case sensitivity, and if you have just 
recently updated the service model with the target service, you need to ensure that SMM has 
updated its internal hash table which it uses for the search for a match.  By default, this table is 
updated within 60 seconds of a change in the service model, however once the table is updated, 
the minimum delay for the next update is 15 minutes.  This means that there is a window of up to 
15 minutes where the target service may exist in the model, but NOT in the internal SMM hash 
table.   When testing with SMM, it is recommended to always force an update to the table by 
changing the “minimum delay” parameter in DMA (“Configuring DMA” section) after you have 
synchronized new services. 

– If all of the above are OK, you will then need to go a level deeper and begin looking at the 
message hints and service attributes of the target service.  If the service attributes have wrong or 
misleading values or if there aren’t enough hints or attributes for comparison, SMM may not be 
able to identify a match or make the best match. 

 
Having the right service attributes with the right values is the key to getting expected results with 
SMM.  There are several ways to go about verifying service attributes and values.  The first approach 
is to leverage DMA’s ability to create dump files (XML) of the “internal” CI hierarchy used for 
uploading nodes and services into HPOM (refer to Figure 6).  The dump files are very useful for 
diagnosing the following types of problems: 
 
• expected attributes not written to HPOM 
• problems with mapping rules 

o Wrong attributes 
o Nodes in wrong node group 
o Services not built in HPOM due to non-existing STD 



  Guidelines for Deploying DMA 
 

  31 
 

o Mapping rules are not executed 
o Smart Message Mapping does not highlight expected service 

 
Dumping of synchronization files is enabled by changing the “sync.dumpData” parameter in the 
following file: 
 
<SharedDir>/conf/dma/DefaultSyncTask.settings 

 
It’s a good idea to enable dumping only while debugging problems; make sure you turn off dumping 
when DMA is in production.  The dump file will show exactly which attributes and associated values 
will be uploaded into HPOM, but since the files are XML it may be difficult to interpret them.  A good 
XML editor which presents the data in a more readable format can make this easier.  More details on 
how to examine the dump files can be found in Chapter 13 “Testing and Deployment” of the DMA 
Extensibility Guide. 
 
An alternative method for verifying service attributes would be to just examine HPOM itself to see the 
results of the upload.  In HPOM on Windows, there is unfortunately no possibility in the GUI to see 
the service attributes which have been instantiated since attributes are not exposed in the service 
properties window.   The easiest way around this is to download the free Microsoft WMI Tools 
package which includes the WMI CIM Studio application.  This tool allows you to connect to the 
WMI namespace used by HPOM on Windows and enables navigation and display of the various 
objects.  With a little bit of exploring, you should be able to find the service instances and the 
attributes.  CIM Studio can also modify the WMI repository, so be extremely careful that you do not 
make inadvertent changes which could render your HPOM environment unusable. 
 
On HPOM on UNIX, we have a much easier solution since it is very easy to see the service attributes 
from the JAVA GUI interface.  All you have to do is simply right-click on a service in the Service 
Navigator and select Properties, and then select the Attributes tab. 
 
 
Improving the odds for a match 
After you’ve examined the attributes for the target service and compared them to the message hints 
from the problem message, you may then be able to conclude that SMM needs some help to ensure 
the algorithm succeeds in making a match.  Remember that the SMM algorithm will look at ALL 
service attributes when it compares against the message hints.  So to increase the odds, you will need 
to do one of two things, or maybe both: 
 
1. Add additional service attributes to the target service and initialize with appropriate values 

 
You could choose to map one of the existing CI attributes which is included in the TQL results, 
assuming its value will match a message hint.  Or you could simply create a new service attribute 
of your own and initialize it with a value that will match a message hint.  In both cases you would 
accomplish this with additional rules in the attribute mapping file of the appropriate sync package.  
 

2. Expand the application or object message attributes to include additional hints  
 
If you have the option, and if you think the service model contains sufficient service attributes on 
the target service, you might consider changing the message itself to include more hints.  This 
would mean expanding the “application” and/or “object” attributes emitted by the monitoring 
policy on the HPOM agent where the message originates. 
 
For example, instead of object=disk, you might get better results with object=disk:root 
or something similar which further distinguishes the service.  In this case you would have two hints 



  Guidelines for Deploying DMA 
 

  32 
 

(“disk” and “root”) instead of just one.  In any case, you would need to ensure that the additional 
hint(s) would actually match with a service attribute on the target service. 

 
The bottom line for SMM is that it needs to have adequate hints and adequate service attributes (each 
with appropriate values) to ensure the matching algorithm works optimally.  In environments with 
large and complex service hierarchies, it is likely that some tuning of SMM (in the form of adding 
hints and service attributes) will be required. 
 
 
Exposing service attributes as CMAs (new in DMA 8.20!) 
One of the really nice new features in DMA 8.20 is the ability to expose synchronized service 
attributes as Custom Message Attributes (CMAs) in the HPOM browser.  This can be a really powerful 
way to provide additional information from the UCMDB that operators can use in the process of 
resolving problems.  Instead of manually launching a tool from a message to drill into the UCMDB to 
get CI properties, the operator simply views the appropriate attributes directly in the browser as 
CMAs embedded in the message. 
 
This new feature is a function of the Smart Message Mapper.  If SMM is configured for CMA 
mapping, it retrieves the specified service attribute and its corresponding value and copies this 
information into the message before sending it on to HPOM.  Here are the steps required to make this 
work: 
 
1. Decide which UCMDB CI Type attribute you want to expose in the HPOM browser. 
2. Ensure that this attribute is exposed by the appropriate DMA TQL (in Node Properties, Advanced 

Layout Settings) 
3. Create a new attribute mapping rule in the appropriate sync package which maps the UCMDB CI 

attribute to a service attribute in HPOM 
4. Synchronize 
5. Configure SMM to attach the service attribute as a CMA 
6. Configure the HPOM browser to show the desired CMA as a column 
7. Test the configuration by sending an appropriate message to HPOM (ensure that SMM has rebuilt 

its internal hash table of services and service attributes before you send the message) 
 
Here’s a simple example scenario to illustrate the process: 
 

UCMDB includes a “city” attribute on host CIs which can be used to track the physical location of 
systems.  We want this attribute to be available in the HPOM message browser so that an 
operator can see at a glance where an affected node is physically located.  (We are assuming of 
course that DDM or some other discovery mechanism has populated this attribute with 
appropriate values.) 

The first step is to ensure this attribute is exposed by the appropriate DMA TQL.  For this example, 
we’ll make the required modifications to the out-of-box “dmaWinOS” sync package, which 
means that all synchronized Windows host CIs will get the “city” attribute. 
 
Figure 15 below shows that we have marked the “city” attribute to be exposed in the “Windows 
Operating System (Operations)” TQL results. 

 



  Guidelines for Deploying DMA 
 

  33 
 

 
Figure 15.  Exposing CI attributes in TQL results 

 

 
 
Next, we create a simple attribute mapping file with one rule as follows: 
 
<?xml version="1.0" encoding="utf-8"?> 
<Mapping xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"> 
  <Rules> 
    <Rule name="Set city location attribute"> 
      <Condition> 
        <IsNode /> 
      </Condition> 
      <MapTo> 
        <Attribute> 
          <Name>cmdbCity</Name> 
          <SetValue> 
            <Attribute>city</Attribute> 
          </SetValue> 
        </Attribute> 
      </MapTo> 
    </Rule> 
  </Rules> 
</Mapping> 

 
DMA translates this rule as follows: 
 



  Guidelines for Deploying DMA 
 

  34 
 

if 
the CI is a node 

then 
 assign the value of the attribute “city” to the attribute “cmdbCity” 

 
This mapping file would be saved as “attributemapping.xml” into the “dmaWinOS” sync package 
directory on the DMA system. 
 
Synchronization at this point will create the “cmdbCity” attribute on Windows host services in the 
HPOM service model, however we aren’t quite done yet.  As a final step,  we need to configure 
SMM to include the “cmdbCity” attribute as a CMA on appropriate messages.  Figure 16 illustrates 
how the SMM configuration is accomplished: 
 

 
Figure 16.  Configuring SMM to create CMAs 

 

 
 
We are now ready for a test.  In the figure below, we can see the results of sending a message to 
HPOM that is matched by SMM to the service “mars.planets.com”, a Windows node synchronized by 



  Guidelines for Deploying DMA 
 

  35 
 

DMA.  In the browser, the CMA  “cmdbCity” has been set to the value of “Bethesda” as instantiated 
in the UCMDB. 
 

 
Figure 17.  Assignment of CMA to matched message 

 

 
 
Like most aspects of DMA, the value of this new feature in SMM will depend on having useful 
information in the UCMDB to begin with.  Any implementation of DMA should include a thorough 
review of how CIs are being discovered and instantiated in the UCMDB.  For the CMA feature, pay 
special attention to which attributes are being populated.  To get maximum benefit with DMA, it may 
be necessary to expand what goes “in” so that what comes “out” will produced the desired results. 
 
 



  Guidelines for Deploying DMA 
 

  36 
 

For more information  
Documentation for the following products referenced in this white paper can be found at the link 
below. 
 
HP Operations Manager Dependency Mapping Automation 
HP Operations Manager on UNIX 
HP Operations Manager on Windows 
HP Universal CMDB (Application Mapping) 
 
http://h20230.www2.hp.com/selfsolve/manuals 
 
Note:  This site requires that you register for an HP Passport and sign in. 
 
 
 
 

© Copyright 2009 Hewlett-Packard Development Company, L.P. The information 
contained herein is subject to change without notice. The only warranties for HP 
products and services are set forth in the express warranty statements 
accompanying such products and services. Nothing herein should be construed as 
constituting an additional warranty. HP shall not be liable for technical or editorial 
errors or omissions contained herein. 

Linux is a U.S. registered trademark of Linus Torvalds. Microsoft and Windows are 
U.S. registered trademarks of Microsoft Corporation. UNIX is a registered 
trademark of The Open Group.  

May 2009 

http://h20230.www2.hp.com/selfsolve/manuals�

	Technical White Paper
	Introduction
	Part I:  Understanding the DMA modeling process
	The role of the UCMDB
	UCMDB as DMA data source
	Guidelines for successful DMA synchronization with UCMDB data
	If it’s not in the UCMDB, it can’t be synchronized
	If it’s not returned by the TQL, it can’t be synchronized
	Use cardinality and filtering in the TQL to constrain the input to synchronization
	The importance of CI attributes
	Exposing CI attributes
	The TQL is where it all starts for DMA synchronization


	Transforming CIs (and topology) to nodes and services
	Sync packages
	UCMDB and HPOM model differences

	DMA control of synchronized CIs
	Nodes
	Services


	Part II:  Getting what you want in HPOM
	Synchronizing nodes
	How to put nodes into specific node groups
	Automatic creation of node groups

	Synchronizing services
	Service Type Definitions
	Automatic creation of Service Type Definitions
	Overriding defaults of Service Type Definitions
	Extending existing HPOM services with data from UCMDB
	Creating the desired dependency and propagation in HPOM

	How to get optimum results with Smart Message Mapper
	SMM service matching algorithm
	SMM and the “hosted_on” attribute
	Attribute mapping rules
	Service attributes – The key to making SMM smarter
	Improving the odds for a match
	Exposing service attributes as CMAs (new in DMA 8.20!)


	For more information

