

WinRunner
Terminal Emulator Add-in

Guide
Version 7.6

WinRunner Terminal Emulator Add-in Guide, Version 7.6

This manual, and the accompanying software and other documentation, is protected by U.S. and
international copyright laws, and may be used only in accordance with the accompanying license
agreement. Features of the software, and of other products and services of Mercury Interactive
Corporation, may be covered by one or more of the following patents: U.S. Patent Nos. 5,701,139;
5,657,438; 5,511,185; 5,870,559; 5,958,008; 5,974,572; 6,138,157; 6,144,962; 6,205,122; 6,237,006;
6,341,310; 6,360,332, 6,449,739; 6,470,383; 6,477,483; 6,549,944; 6,560,564; and 6,564,342. Other
patents pending. All rights reserved.

ActiveTest, ActiveTune, Astra, FastTrack, Global SiteReliance, LoadRunner, Mercury, Mercury
Interactive, the Mercury Interactive logo, Open Test Architecture, Optane, POPs on Demand, ProTune,
QuickTest, RapidTest, SiteReliance, SiteRunner, SiteScope, SiteSeer, TestCenter, TestDirector, TestSuite,
Topaz, Topaz AIMS, Topaz Business Process Monitor, Topaz Client Monitor, Topaz Console, Topaz
Delta, Topaz Diagnostics, Topaz Global Monitor, Topaz Managed Services, Topaz Open DataSource,
Topaz Real User Monitor, Topaz WeatherMap, TurboLoad, Twinlook, Visual Testing, Visual Web
Display, WebTest, WebTrace, WinRunner and XRunner are trademarks or registered trademarks of
Mercury Interactive Corporation or its wholly owned subsidiary Mercury Interactive (Israel) Ltd. in
the United States and/or other countries.

All other company, brand and product names are registered trademarks or trademarks of their
respective holders. Mercury Interactive Corporation disclaims any responsibility for specifying which
marks are owned by which companies or which organizations.

Mercury Interactive Corporation
1325 Borregas Avenue
Sunnyvale, CA 94089 USA
Tel: (408) 822-5200
Toll Free: (800) TEST-911, (866) TOPAZ-4U
Fax: (408) 822-5300

© 2004 Mercury Interactive Corporation. All rights reserved.

If you have any comments or suggestions regarding this document, please send them via e-mail to
documentation@merc-int.com.

WRTEGD7.6/01

iii

Table of Contents

Welcome ..v
Using This Guide ...v
Typographical Conventions..vii

PART I: SETTING UP TERMINAL EMULATOR SUPPORT

Chapter 1: Before You Install ..3
System Requirements ..3
Preparing for the Terminal Emulator Add-in Installation4
Understanding Add-in Conflicts and Dependencies4

Chapter 2: Installing and Setting Up the Terminal Emulator Add-in ..5
Running the Setup Program..5
Configuring Your Terminal Emulator...11
Setting Your Terminal Emulator to Work with WinRunner18
Licensing the Terminal Emulator Add-in ...21
Activating WinRunner with Terminal Emulator Support23

PART II : WORKING WITH THE TERMINAL EMULATOR ADD-IN

Chapter 3: Testing Terminal Emulator Applications29
About Testing Terminal Emulator Applications29
How WinRunner Identifies Terminal Emulator Objects31
Terminal Emulator Object Properties..36
Changing How Operations are Recorded..37
Using Softkeys ...38

Chapter 4: Synchronizing the Test Run ..43
About Synchronizing the Test Run ...43
Waiting for a Response from the Host ..44
Waiting for a Specific String..44
Waiting for a Specific Field ...46
Synchronizing Using Time Factors ...46
Synchronizing Screen Changes ...49

WinRunner Terminal Emulator Add-in Guide

iv

Chapter 4: Synchronizing the Test Run ..43
About Synchronizing the Test Run ...43
Waiting for a Response from the Host..44
Waiting for a Specific String..44
Waiting for a Specific Field ...46
Synchronizing Using Time Factors ...46
Synchronizing Screen Changes...49

Chapter 5: Checking Screens and Fields ...51
About Checking Screens and Fields ..51
Checking the Properties of a Single Field or a Screen.........................52
Checking the Properties of Two or More Fields..................................53
Checking the Default Properties for All Fields in a Screen55
Screen and Field Property Checks ...56
Checking Dates..57

Chapter 6: Checking Text ...59
About Checking Text ..59
Checking Text Automatically..61
Checking Text Using Softkeys...64
Using Filters when Checking Text ..65
Reading Text from the Screen ...69
Searching for Text ...70

Chapter 7: Testing VT100 and Text Applications71
About Testing VT100 and Text Applications71
Creating Test Scripts..72
Synchronizing Tests ..73
Checking Text for VT100 and Text Applications74
TSL Functions ..75

Chapter 8: Learning the Application Using BMS Files........................79
About Learning the Application Using BMS Files...............................79
Learning the Application the First Time...80
Relearning the Application ...81

Index ..85

v

Welcome

Welcome to the WinRunner Terminal Emulator Add-in. The WinRunner
Terminal Emulator Add-in enables you to record and run tests on
mainframe, AS/400, and VAX/HP/UNIX terminal emulator applications
using the 3270, 5250, and VT100 protocols respectively, including support
for date manipulation testing.

You can use the WinRunner Terminal Emulator Add-in to test applications
running on most terminal emulators. The Terminal Emulator Add-in
recognizes your terminal emulator, and records and runs the operations you
perform on the screens and fields of your terminal emulator application.

Using This Guide

This guide explains everything you need to know to install the WinRunner
Terminal Emulator Add-in and to use WinRunner to test terminal emulator
applications. It should be used in conjunction with the WinRunner User’s
Guide and the TSL Online Reference (or TSL Reference Guide).

This guide contains two parts:

 Part I Setting Up Terminal Emulator Support

Details the process of installing the WinRunner Terminal Emulator Add-in
and configuring your terminal emulator to work with WinRunner,
including:

➤ Before You Install

➤ Installing and Setting Up the Terminal Emulator Add-in

WinRunner Terminal Emulator Add-in Guide

vi

 Part II Working with the Terminal Emulator Add-in

Explains how to use the WinRunner Terminal Emulator Add-in to test
terminal emulator applications, including:

➤ Testing Terminal Emulator Applications

➤ Synchronizing the Test Run

➤ Checking Screens and Fields

➤ Checking Text

➤ Testing VT100 and Text Applications

➤ Learning the Application Using BMS Files

Welcome

vii

Typographical Conventions

This book uses the following typographical conventions:

1, 2, 3 Bold numbers indicate steps in a procedure.

➤ Bullets indicate options and features.

> The greater than sign separates menu levels (for
example, File > Open).

Stone Sans The Stone Sans font indicates names of interface
elements (for example, the Run button) and other
items that require emphasis.

Bold Bold text indicates method or function names.

Italics Italic text indicates method or function arguments, file
names in syntax descriptions, and book titles.

<> Angle brackets enclose a part of a file path or URL
address that may vary from user to user (for example,
<MyProduct installation folder>\bin).

Arial The Arial font is used for examples and text that is to
be typed literally.

Arial bold The Arial bold font is used in syntax descriptions for
text that should be typed literally.

SMALL CAPS The SMALL CAPS font is used to indicate keyboard keys.

... In a line of syntax, an ellipsis indicates that more items
of the same format may be included. In a
programming example, an ellipsis is used to indicate
lines of a program that were intentionally omitted.

[] Square brackets enclose optional arguments.

| A vertical bar indicates that one of the options
separated by the bar should be selected.

WinRunner Terminal Emulator Add-in Guide

viii

Part I

Setting Up Terminal Emulator Support

2

3

1
Before You Install

This guide describes how to install and use WinRunner with support for
terminal emulators.

Before you begin to install the WinRunner Terminal Emulator Add-in, please
review the system requirements and additional information in this chapter.

This chapter describes:

➤ System Requirements

➤ Preparing for the Terminal Emulator Add-in Installation

➤ Understanding Add-in Conflicts and Dependencies

System Requirements

To work successfully with the WinRunner Terminal Emulator Add-in, your
system configuration should meet the requirements as specified for
WinRunner 7.6 (in the WinRunner 7.6 Read Me file), plus the following
add-in-specific requirements:

Prerequisites WinRunner version 7.6

Disk Space 11 MB of free disk space (in addition to the
WinRunner installation)

Operating System Windows® 98, Windows NT® 4.0, Windows® 2000,
or Windows® XP

WinRunner Terminal Emulator Add-in Guide

4

Note: For information on emulators, versions, and protocols supported by
the WinRunner Terminal Emulator Add-in, refer to the WinRunner
Terminal Emulator Add-in Read Me.

Preparing for the Terminal Emulator Add-in Installation

Before you install the WinRunner Terminal Emulator Add-in, you must have
a WinRunner 7.6 standalone installation on your computer. For information
on installing WinRunner, refer to the WinRunner Installation Guide.

Before starting the installation, make sure you know the following:

➤ The emulator name, for example, RUMBA

➤ The emulator version, for example 7.0

➤ The protocol used by the emulator, for example, 3270

If you are not sure of these details, consult your terminal emulator
documentation or the vendor of your terminal emulator.

Understanding Add-in Conflicts and Dependencies

You can install all the WinRunner add-ins on a single WinRunner computer.
Each time you start WinRunner, you can choose which add-in(s) to load.
Loading an add-in may affect the support of other add-ins.

For information on the conflicts that can occur when you load multiple
add-ins, refer to the Compatibility Issues help (located in:
<WinRunner Installation path>\dat\conflict.hlp).

5

2
Installing and Setting Up the Terminal
Emulator Add-in

This chapter explains how to install and set up the WinRunner
Terminal Emulator Add-in.

Installing and setting up the Terminal Emulator Add-in includes the
following steps:

➤ Running the Setup Program

➤ Configuring Your Terminal Emulator

➤ Setting Your Terminal Emulator to Work with WinRunner

➤ Licensing the Terminal Emulator Add-in

➤ Activating WinRunner with Terminal Emulator Support

Running the Setup Program

The setup program installs the WinRunner Terminal Emulator Add-in in
your WinRunner installation folder. It also enables you to specify the
emulator that you want to use with WinRunner, and to define its settings.

Before you start to install the Terminal Emulator Add-in, be sure to read
Chapter 1, “Before You Install.”

Note: You must be logged on with Administrator privileges (if applicable on
your operating system) to install the WinRunner Terminal Emulator Add-in.

WinRunner Terminal Emulator Add-in Guide

6

To run the Terminal Emulator Add-in setup program:

 1 Close any instances of WinRunner.

 2 Insert the CD-ROM into the CD-ROM drive. If the CD-ROM drive is on your
local machine, the Setup window opens. If you are installing from a network
drive, connect (map) and browse to it. Double-click autorun.exe in the root
folder of the CD-ROM.

If you want to view the Readme file, click Readme. If you want to browse
the CD-ROM, click Browse.

 3 Click Install. The Setup progress bar opens.

Chapter 2 • Installing and Setting Up the Terminal Emulator Add-in

7

 4 In the Registration Information screen, type your name, the name of your
company, and a WinRunner maintenance number. This number can be
found in the Maintenance Pack Number envelope or on the bill of lading
you received when you purchased WinRunner.

Note: Each team of users is assigned a single maintenance number. The
maintenance number replaces what was formerly a serial number for each
purchased copy of WinRunner. The maintenance number identifies the
customer and determines how many licenses are generated.

Click Next.

 5 Click Yes to confirm the registration information.

WinRunner Terminal Emulator Add-in Guide

8

 6 In the Terminal Emulator Support screen, specify the folder in which to
install the Terminal Emulator Add-in. The destination folder must be the
WinRunner installation folder. If the installation folder displayed is not the
WinRunner installation folder, click Browse to find the correct destination
folder.

Click Next.

Chapter 2 • Installing and Setting Up the Terminal Emulator Add-in

9

 7 Select the program folder for the Terminal Emulator Add-in program icons.

Click Next. The setup program begins installing files. To pause or quit the
installation, click Cancel.

After the WinRunner Terminal Emulator Add-in files have been installed,
the Terminal Emulator Configuration utility starts.

 8 Follow the procedure for selecting the terminal emulator that you want to
use with WinRunner and for defining the emulator settings, as described in
“Configuring Your Terminal Emulator” on page 11.

When the Terminal Emulator Configuration utility closes, the Setup
Complete screen opens.

WinRunner Terminal Emulator Add-in Guide

10

The Setup Complete screen prompts you to restart Windows or your
computer.

You can choose to restart your computer at a later time, but you must restart
your computer before you can use WinRunner with the Terminal Emulator
Add-in.

 9 Click Finish to complete the installation and setup process.

After you have installed the WinRunner Terminal Emulator Add-in:

➤ To read what’s new in the WinRunner Terminal Emulator Add-in and any
last minute information, select Start > Programs > WinRunner > Terminal
Emulator Add-in > Terminal Emulator Add-in Read Me.

➤ To read about the demo application for date operations support for terminal
emulator applications, select Start > Programs > WinRunner > Sample
Applications > Date Operations Demo Server Read Me.

➤ To use the demo application, select Start > Programs > WinRunner > Sample
Applications > Date Operations Demo Server.

Chapter 2 • Installing and Setting Up the Terminal Emulator Add-in

11

Configuring Your Terminal Emulator

During the installation process, the Terminal Emulator Configuration utility
opens, enabling you to specify the terminal emulator that you want to use
with WinRunner, and to define its settings.

You can also use the Terminal Emulator Configuration utility after
installation, to modify the current settings or select a different terminal
emulator. To run the Terminal Emulator Configuration utility, select
Start > Programs > WinRunner > Terminal Emulator Add-in >
Terminal Emulator Configuration.

The Terminal Emulator Configuration utility opens with the Date
Operations Support screen.

Date Operations Support Screen

WinRunner supports date operations testing for terminal emulator
applications. In the Date Operations Support screen, you define the required
date format.

WinRunner Terminal Emulator Add-in Guide

12

Select the date format style:

➤ US style, for example, 11/22/03.

➤ European style, for example, 22/11/03.

Select the default date format conversion mode used by the application you
want to test:

➤ Windowing—The converted year field in the date remains two digits in
length, for example, 03.

➤ Field Expansion—The converted year field in the date is expanded to four
digits, for example, 2003.

When you click Next, the Emulator (32-bit) screen opens.

Emulator (32-bit) Screen

In the Emulator (32-bit) screen, you select the terminal emulator and
protocol that you want to use with WinRunner.

Chapter 2 • Installing and Setting Up the Terminal Emulator Add-in

13

Select your emulator and protocol as follows:

➤ If you are using a mainframe display, select 3270.

➤ If you are using an AS/400 display, select 5250.

➤ If you are using a UNIX, VAX or HP display, select VT100.

➤ If the current version of your terminal emulator is not displayed, select
Other VT100.

Note: The WinRunner Terminal Emulator Add-in does not support testing
on 16-bit terminal emulators. For information on emulators, versions, and
protocols supported by the WinRunner Terminal Emulator Add-in, refer to
the WinRunner Terminal Emulator Add-in Read Me.

When you click Next:

➤ If the selected emulator supports the EHLLAPI protocol, the EHLLAPI screen
opens. For more information, see “EHLLAPI Screen” on page 14.

➤ If you selected Other VT100, the Classes screen opens. For more
information, see “Classes Screen” on page 15.

WinRunner Terminal Emulator Add-in Guide

14

EHLLAPI Screen

If you selected an emulator that supports EHLLAPI, you specify the EHLLAPI
DLL for your emulator in the EHLLAPI screen.

The table below lists the file names used for the EHLLAPI DLL by the
supported terminal emulators.

Emulator 32-Bit EHLLAPI DLL

Attachmate EXTRA! ehlapi32.dll

Hummingbird HostExplorer ehllap32.dll

IBM Personal Communications (PCOM) pcshll32.dll

NetSoft Elite whllapi.dll

NetManage RUMBA ehlapi32.dll

WRQ Reflection hllapi32.dll

Chapter 2 • Installing and Setting Up the Terminal Emulator Add-in

15

Specify the EHLLAPI DLL for your emulator in one of the following ways:

➤ Type in the path of the EHLLAPI DLL.

➤ Click Browse and use the Open dialog to locate the EHLLAPI DLL.

➤ Click Find. The Terminal Emulator Configuration utility searches for the
appropriate EHLLAPI DLL on your computer.

When you click Next, the Miscellaneous screen opens. For more
information, see “Miscellaneous Screen” on page 17.

Classes Screen

If you selected Other VT100 as your terminal emulator type, you specify the
classes for your emulator in the Classes screen. This enables WinRunner to
identify the components of the terminal emulator window.

You must specify the class for the main window. The other classes are
optional.

You can enter the class names automatically or type each class name in the
relevant box.

WinRunner Terminal Emulator Add-in Guide

16

To enter a class name automatically, open your terminal emulator, click an
anchor button in the Classes screen, drag the anchor to the appropriate
object class, and release the mouse.

Note: If a class name is followed by a colon (:) and digits, remove everything
after the colon so that only the class name and the colon remain.
For example, if the class name appears as Afx:00400000:8:00010011:
00000000:069201DF, only Afx: should remain in the class name box.

The classes are as follows:

➤ Main window class—The class of the terminal emulator’s main window. You
must set a value for this option.

➤ Text window class—The class of the terminal emulator’s text window (client
area). This is the area where text is displayed, and can be the same as the
main window.

➤ Toolbar class—The class of the terminal emulator’s toolbar (if applicable).

➤ Status bar class—The class of the terminal emulator’s status bar (if
applicable).

When you click Next, the Miscellaneous screen opens.

Chapter 2 • Installing and Setting Up the Terminal Emulator Add-in

17

Miscellaneous Screen

In the Miscellaneous screen, you can define the alignment settings of the
screen. You can also determine whether to update the softkey configuration.

Define the vertical and horizontal Screen alignment of your terminal
emulator, if necessary.

If you selected Other VT100 as your terminal emulator type, you can also
specify the Screen size, in terms of number of columns and rows.

Note: The screen size for some emulators is constant (80 x 24) and cannot
be changed during installation. To change the size of the screen for these
emulators, open the wrun.ini file and change the value for the columns and
rows manually. This file is located in the Windows system folder.

WinRunner Terminal Emulator Add-in Guide

18

When the Update Softkeys checkbox is selected, the Terminal Emulator
Configuration utility updates the current WinRunner softkey configuration
with the default softkeys for the selected emulator. These settings can be
changed manually if required.

To leave the current WinRunner softkey configuration unchanged, clear the
Update Softkeys checkbox.

For more information about softkeys and for lists of the default softkeys for
different emulators, see “Using Softkeys” on page 38.

When you click Finish, the Terminal Emulator Configuration utility closes.

Setting Your Terminal Emulator to Work with WinRunner

Before you can use WinRunner with the Terminal Emulator Add-in, you
need to set your terminal emulator to work with WinRunner.

The WinRunner Terminal Emulator Add-in supports the following
emulators:

➤ Attachmate EXTRA!

➤ Hummingbird HostExplorer

➤ IBM Personal Communications (PCOM)

➤ NetManage RUMBA

➤ NetSoft Elite

➤ WRQ Reflection

Note: For more information on supported emulators, versions and
protocols, refer to the WinRunner Terminal Emulator Add-in ReadMe.

Chapter 2 • Installing and Setting Up the Terminal Emulator Add-in

19

Attachmate EXTRA!

To connect your EXTRA! terminal emulator to WinRunner:

 1 Load EXTRA!.

 2 In EXTRA!, choose Options > Global Preferences. The Global Preferences
dialog box opens.

 3 Click the Advanced tab.

 4 Choose a Short Name and click Browse to select a previously saved session
profile.

 5 Click Open. Click OK.

 6 Save the profile when you exit EXTRA!.

Hummingbird HostExplorer

To connect your HostExplorer terminal emulator to WinRunner:

 1 Load HostExplorer.

 2 From the HostExplorer main menu, choose File > Save Session Profile.

 3 The Save Profile dialog box opens. Set the HLLAPI Short Name to any
uppercase letter.

 4 From the main menu, choose Options > API Settings.

 5 The API Global Settings dialog box opens. Check the Update screen after
PS update and Auto sync options.

 6 Click OK.

IBM Personal Communications (PCOM)

The preconfigured settings in the WinRunner Terminal Emulator Add-in
enable WinRunner to work with IBM PCOM terminal emulators without the
need for a specific connection.

WinRunner Terminal Emulator Add-in Guide

20

NetManage RUMBA

To connect your RUMBA terminal emulator to WinRunner:

 1 Load RUMBA.

 2 In RUMBA, choose Options > API. The API Options dialog box opens.

 3 Click the Identification tab.

 4 In the Short Name field, type the uppercase letter A for the first session. For
subsequent sessions, use consecutive uppercase letters in the alphabet.

 5 Click OK.

 6 Save the profile when you exit RUMBA.

NetSoft Elite

To connect your Elite terminal emulator to WinRunner:

 1 Load NS/Administrator.

 2 Select Mainframe Workspace for 3270 or Midrange Workspace for
AS400/5250.

 3 Right-click the appropriate display icon and choose Properties in the menu.

 4 In the Short Name field, type any uppercase letter.

 5 Click OK.

 6 Exit NS/Administrator.

 7 Load the NetSoft Display session.

 8 In the View menu, select Auto Font Size and Auto Window Size.

 9 Choose Tools > Keyboard to remap the default keys for New Line
(CTRL RIGHT) and Reset (CTRL LEFT). These keys conflict with WinRunner
softkeys.

Chapter 2 • Installing and Setting Up the Terminal Emulator Add-in

21

WRQ Reflection

To connect your Reflection terminal emulator to WinRunner:

 1 Load Host-Mainframe or AS400.

 2 Choose Setup > Terminal.

 3 In the Short Name field, type any uppercase letter.

 4 Click OK.

Licensing the Terminal Emulator Add-in

WinRunner external add-ins (purchased separately) require a separate seat or
concurrent license code. For seat licenses, you enter the license details by
clicking the Add-in License button in the Add-in Manager dialog box. For
concurrent licenses, you install the add-in license on the Mercury
Functional Testing Concurrent License Server computer.

Note: The WinRunner Add-in license is valid for all WinRunner external
add-ins. This means that after you have installed the add-in license for one
external add-in, you do not need to install it again if you install additional
external add-ins on the same computer.

To access the add-in license installation wizard:

 1 Select Start > Programs > WinRunner > WinRunner. The WinRunner Add-in
Manager dialog box opens.

WinRunner Terminal Emulator Add-in Guide

22

(If the Add-in Manager dialog box does not open, see the note on displaying
the Add-in Manager, on page 25).

Note: If the add-in license has not yet been installed, the add-in is displayed
as (No License) in the Add-in Manager dialog box.

If the words (No License) are not displayed, then the add-in license has
already been installed, and you do not need to install it again.

 2 Click Add-in License. The WinRunner License Installation - Welcome
window opens.

Chapter 2 • Installing and Setting Up the Terminal Emulator Add-in

23

Note: The Add-in License button is displayed only when a WinRunner seat
license is installed.

 3 Install the license. The procedure for installing an add-in license is the same
as the procedure for installing a WinRunner license. Refer to the WinRunner
Installation Guide for further information.

Activating WinRunner with Terminal Emulator Support

You use the Add-in Manager to activate the Terminal Emulator Add-in.

To activate the Terminal Emulator Add-in:

 1 Select Start > Programs > WinRunner > WinRunner. The WinRunner Add-in
Manager dialog box opens.

WinRunner Terminal Emulator Add-in Guide

24

(If the Add-in Manager dialog box does not open, see the note on displaying
the Add-in Manager, on page 25).

 2 Select Terminal Emulator.

 3 Click OK. WinRunner opens with the Terminal Emulator Add-in loaded.

Chapter 2 • Installing and Setting Up the Terminal Emulator Add-in

25

Note:

If the Add-In Manager dialog box does not open:

 1 Start WinRunner.

 2 In the Tools > General Options > General > Startup category, select Display
Add-in Manager on startup. In the Hide Add-in Manager after ___ seconds
box, enter the number of seconds for which the Add-in Manager is
displayed. (The default value is 10 seconds.)

 3 Click OK.

 4 Close WinRunner. A WinRunner message box opens asking whether you
want to keep the changes you made. Click Yes.

For more information on the Add-in Manager, refer to the WinRunner User’s
Guide.

Disabling Terminal Emulator Support

If you decide to use WinRunner without terminal emulator support, you can
disable the Terminal Emulator Add-in.

To disable Terminal Emulator Add-in support:

 1 Select Start > Programs > WinRunner > WinRunner. The WinRunner Add-in
Manager dialog box opens. (If the Add-in Manager dialog box does not
open, see the note on displaying the Add-in Manager, on page 25).

 2 Clear the Terminal Emulator check box and click OK. WinRunner opens
with the add-in support disabled.

WinRunner Terminal Emulator Add-in Guide

26

Part II

Working with the Terminal Emulator
Add-in

28

29

3
Testing Terminal Emulator Applications

This chapter explains how to use WinRunner to record and run tests on
terminal emulator applications, using WinRunner’s Context Sensitive
testing features. For general information on Context Sensitive testing with
WinRunner, refer to the WinRunner User’s Guide.

This chapter describes:

➤ About Testing Terminal Emulator Applications

➤ How WinRunner Identifies Terminal Emulator Objects

➤ Terminal Emulator Object Properties

➤ Changing How Operations are Recorded

➤ Using Softkeys

About Testing Terminal Emulator Applications

To create a test for a terminal emulator application, you use WinRunner to
record the operations you perform on the application. As you work with
objects in the application, WinRunner generates a test script consisting of
statements coded in Mercury Interactive’s C-like test script language (TSL).

These statements are generated automatically when you record, in response
to input to the application. You can program statements manually, or mix
recorded and programmed statements in the same test script.

WinRunner Terminal Emulator Add-in Guide

30

By default, WinRunner records in Context Sensitive mode, meaning that the
script reflects the objects on which you operate (such as screens and fields),
and the type of operation you perform (such as pressing PF keys or typing in
fields). Each object has a defined set of properties that determine its
behavior and appearance. WinRunner learns these properties and uses them
to identify and locate objects during a test run.

Context Sensitive testing ensures that non-essential changes in your
application do not affect the test run. WinRunner can handle changes in the
positioning of fields in an application screen.

WinRunner learns an accurate description of each object you are testing and
uniquely identifies each screen and field. For more information, see “How
WinRunner Identifies Terminal Emulator Objects” on page 31.

Softkeys can be used to activate certain WinRunner commands. For more
information, see “Using Softkeys” on page 38.

If you have access to the BMS files of your application, WinRunner can learn
your application by reading these files directly. For more information, see
Chapter 8, “Learning the Application Using BMS Files.”

Before you begin testing your terminal emulator application, make sure that
you have installed all the necessary files and made any necessary
configuration changes. You configure the terminal emulator settings for
WinRunner when you install the WinRunner Terminal Emulator Add-in.
You can modify these settings or select a different terminal emulator to work
with WinRunner, as required. For more information, see “Configuring Your
Terminal Emulator” on page 11.

Chapter 3 • Testing Terminal Emulator Applications

31

How WinRunner Identifies Terminal Emulator Objects

The WinRunner Terminal Emulator Add-in distinguishes between the
window of the terminal emulator and the screens in the host application.
For the purposes of testing, the terminal emulator window consists of the
frame and menus of the terminal emulator itself. The terminal emulator
window remains constant throughout each terminal emulator session.

The WinRunner Terminal Emulator Add-in identifies two types of objects
that are specific to terminal emulator applications: screens and fields.

The screen refers to the area of the window in which the application is
displayed. It can contain one or more fields. Each time the host responds to
user input to the application, the screen can change.

A field can be either protected (containing fixed text) or unprotected (able to
receive input).

Application
screen

Terminal
emulator
window

Protected
field

Unprotected
field

WinRunner Terminal Emulator Add-in Guide

32

WinRunner identifies the window of the terminal emulator, and its menus,
buttons, and status bar, as standard Windows objects. You can perform any
standard operations on these objects. For more information about standard
operations, refer to the TSL Online Reference.

WinRunner learns the description of each object when you record, or when
you use the RapidTest Script wizard or the GUI Map Editor. For general
information on these options, refer to the WinRunner User’s Guide.

The description of each screen or field (called the physical description)
contains a detailed list of properties and values. WinRunner places this list
in a GUI map file. In the test script, WinRunner uses a logical name for each
screen or field as it is displayed in the application.

The logical name and the physical description together ensure that each
object in your terminal emulator application has its own unique
identification.

The physical description of an object contains a list of property–value pairs,
as follows:

{
property1:value1,
property2:value2,
property3:value3,
...
}

The following example illustrates the connection between the logical name
and the physical description.

Chapter 3 • Testing Terminal Emulator Applications

33

Assume that you record a test in which you type your user ID in the Logon
screen of your terminal emulator application.

WinRunner learns the actual description, or list of properties, of both the
screen and field on which you performed the operation.

WinRunner learns the following properties and values for the screen:

Screen Property Value Comments

class mic_if_win Indicates that this is a window or
an application screen.

label VIRTUAL MACHINE/
SYSTEM PRODUCT

The logical name assigned to the
screen.

mic_if_handles_
windows

1 Internal property used by
WinRunner.

WinRunner Terminal Emulator Add-in Guide

34

WinRunner learns the following properties and values for the field in which
you entered your user ID:

In the test script, WinRunner inserts intuitive logical names for the objects.
The logical name is the name WinRunner uses for objects in the test script.
Once the name is assigned, you can modify it in the GUI map file. For more
information on the GUI map file, refer to the WinRunner User’s Guide.

The logical name assigned to an object depends on the class of the object.
For example, the logical name of a screen is the value of its label property.
The logical name of a field is the value of its attached_text property.

If you start recording and type the user name Carmen, the script segment
might look like this:

set_window ("VIRTUAL MACHINE/SYSTEM PRODUCT");
TE_edit_field("USERID","Carmen");

When the test runs, WinRunner reads the logical name of each object from
the script and refers to its physical description in the GUI map file. It uses
this description to find the object in the terminal emulator application.

WinRunner always learns the class property. This indicates the type of the
GUI object, such as the terminal emulator window, application screen, or
field. For each class, WinRunner learns a set of default properties.

For more information on properties that are unique to terminal emulator
objects, see “Terminal Emulator Object Properties” on page 36. For
information on other object properties used by WinRunner, refer to the
WinRunner User’s Guide.

Note that WinRunner learns the physical description of an object in the
context of the window in which it is displayed. This creates a unique
physical description for each object.

Field Property Value Comments

class field Indicates that this is a field.

attached_text USERID The logical name assigned to the
field.

Chapter 3 • Testing Terminal Emulator Applications

35

The following is a sample of a WinRunner test script recorded on a terminal
emulator application. The user presses the ENTER key in the first screen of a
terminal emulator application. WinRunner waits for the host to respond
and to be ready to receive input to the next screen (Logon). The user types
the name Michael in the appropriate field in the Logon screen.

The recorded statements show how WinRunner ensures that input is
directed to the correct screen. The comment lines (starting with #) describe
the statements.

Activate the Terminal Emulator window with the logical name
“RUMBA - DEMO”
win_activate("RUMBA - DEMO");

Press the Enter key
TE_send_key(TE_ENTER);

Wait for the host to be ready to receive input
TE_wait_sync();

Direct input to the Logon screen
set_window("LOGON");

Type in the user id (“Michael”)
TE_edit_field("USERID","Michael");

For more information on TSL functions, refer to the TSL Online Reference
(Help > TSL Reference).

WinRunner Terminal Emulator Add-in Guide

36

Terminal Emulator Object Properties

The following table shows the object properties for application screens and
fields. For a full list of properties for all standard Windows objects, refer to
the WinRunner User’s Guide.

Screens

A screen can have the following properties:

Fields

A field can have the following properties:

Screen Property Description

class The prime property that WinRunner uses to identify the type
of GUI object. All screens belong to the class mic_if_win.

label The title of the screen. If there is no title, WinRunner assigns
a unique number.

protected_fields
_number

The number of protected fields in this screen.

input_fields_
number

The number of unprotected fields in this screen.

id A number that WinRunner uses to identify the screen.

mic_if_handles_
windows

An internal property that WinRunner uses. The value of this
property is always 1.

Field Property Description

class The prime property that WinRunner uses to identify the type
of GUI object. All fields belong to the class field.

attached_text The text that is closest to the field.

protected A value that indicates whether the field is protected. This
value is Yes if the field is protected, or No if unprotected.

visible A value that indicates whether the contents of the field can
be seen: 1 if they are visible, or 0 if not visible.

Chapter 3 • Testing Terminal Emulator Applications

37

Changing How Operations are Recorded

When working with 3270 and 5250 protocol terminal emulators that
support the EHLLAPI protocol, WinRunner records operations using the field
or position method.

The field method (the default) enables WinRunner to record screens, fields,
and PF keys using functions such as TE_edit_field and TE_send_key.

When the position method is used, WinRunner records keyboard and mouse
input only. The operations on objects in your application are recorded as
win_type, obj_type, win_mouse_click, and win_mouse_drag statements.

Note: The method (field or position) used for recording on terminal emulator
applications is not the same as the standard WinRunner record modes
(Context Sensitive or Analog). You must always use the WinRunner Context
Sensitive record mode for recording on terminal emulator applications.

For information on testing terminal emulators that do not support the
EHLLAPI protocol, see Chapter 7, “Testing VT100 and Text Applications.”

numeric_only A value that indicates whether the field is numeric. This value
is Yes if the field is numeric or No if it is not numeric.

id A number that WinRunner uses to identify the field.

x The x-coordinate of the top left corner of a field, relative to
the screen origin.

y The y-coordinate of the top left corner of a field, relative to
the screen origin.

length The length of the field, in characters.

color A value indicating the color of the field. This can be 0, 1, 2, or
3, depending on the terminal emulator’s color definitions.

Field Property Description

WinRunner Terminal Emulator Add-in Guide

38

You use the TE_set_record_method function to change the emulator
recording method. This function has the following syntax:

TE_set_record_method (method);

The method can be one of the following:

➤ FIELD_METHOD, or (2)—Enables full Context Sensitive recording (default).

➤ POSITION_METHOD, or (1)—Only keyboard and mouse input is recorded.

The current emulator recording method remains valid until you change it,
even after you exit WinRunner and start it again. For more information on
TSL functions and syntax, refer to the TSL Online Reference.

Using Softkeys

Some WinRunner commands can be activated using softkeys. WinRunner
reads input from softkeys even when the WinRunner window is not the
active window on your screen, or when it is minimized.

By default, the current softkey configuration is updated when an emulator is
selected and configured, during the installation of the Terminal Emulator
Add-in or using the Terminal Emulator Configuration utility. For more
information, see “Configuring Your Terminal Emulator” on page 11.

Softkey assignments are configurable. If the application you are testing uses
one of the default softkeys preconfigured for WinRunner, you can redefine
the WinRunner softkey using the WinRunner Softkey Configuration utility.
To use this utility, select Start > Programs > WinRunner > Softkey
Configuration. For more information, refer to the WinRunner User’s Guide.

The tables in this section show the softkey configurations available for the
terminal emulators and protocols supported by the WinRunner
Terminal Emulator Add-in.

Chapter 3 • Testing Terminal Emulator Applications

39

WinRunner Terminal Emulator Softkeys

The following tables show the softkeys available for testing terminal
emulator applications.

Terminal Emulator
Command

Softkey for
Elite

(3270 & 5250)

Softkey for
EXTRA!

(3270 & 5250)

Softkey for
HostExplorer

(3270)

CHECK DATE Right Alt + PgDn Left Ctrl + F3 Left Ctrl + F3

CHECK PARTIAL DATE Left Alt + PgUp Left Alt + F3 Left Alt + F3

CHECK PARTIAL TEXT Left Alt + PgDn Left Ctrl + F8 Left Ctrl + F8

CHECK TEXT Left Alt + F1 Left Ctrl + F2 Left Ctrl + F2

EXCLUDE FILTER Left Alt + F3 Left Ctrl + F7 Left Ctrl + F7

GET TEXT Left Alt + F2 Left Alt + F2 Left Alt + F2

INCLUDE FILTER Left Alt + F7 Left Alt + F7 Left Alt + F7

WAIT STRING Left Alt + F5 Left Ctrl + F5 Left Ctrl + F5

Terminal Emulator
Command

Softkey for
PCOM & RUMBA

(3270)

Softkey for
PCOM & RUMBA
(5250 & VT100)

Softkey for
Reflection

(3270 & 5250)

CHECK DATE Left Ctrl + PgDn Left Ctrl + F2 Right Ctrl + F8

CHECK PARTIAL DATE Left Alt + End Left Ctrl + F8 Left Ctrl + F8

CHECK PARTIAL TEXT PgDn Left Ctrl + F3 Left Ctrl + F11

CHECK TEXT Left Alt + PgUp Left Ctrl + F1 Left Ctrl + F2

EXCLUDE FILTER Left Alt + PgDn Right Ctrl + F7 Right Ctrl + F7

GET TEXT Left Ctrl + End Left Ctrl + F5 Left Ctrl + F5

INCLUDE FILTER Right Alt + PgDn Left Ctrl + F7 Left Ctrl + F7

WAIT STRING Right Ctrl + End Left Ctrl + F12 Right Ctrl + F12

WinRunner Terminal Emulator Add-in Guide

40

Softkeys for Standard WinRunner Commands

The following tables show the default softkeys for standard WinRunner
functions when working with the specified emulators. Note that in some
cases the softkey for a selected emulator may be different than the default
WinRunner softkey for the command.

Standard WinRunner
Command

Softkey for
Elite

(3270 & 5250)

Softkey for EXTRA!
(3270 & 5250)

Softkey for
HostExplorer

(3270)

CHECK BITMAP OF
WINDOW

Left Alt + F11 Left Ctrl + PgUp Left Ctrl
+ PgUp

CHECK BITMAP OF
SCREEN AREA

Right Alt + 2 Left Ctrl + 2 Left Ctrl + 2

CHECK GUI FOR OBJECT/
WINDOW

Left Alt + 2 Right Ctrl + 2 Right Ctrl
+ 2

GET TEXT FROM SCREEN
AREA

Right Alt + F10 Left Ctrl + F10 Left Ctrl
+ F10

GET TEXT FROM
WINDOW AREA

Right Alt + 1 Left Ctrl + 1 Left Ctrl + 1

GET TEXT FROM OBJECT/
WINDOW

Right Alt + 9 Left Ctrl + 9 Left Ctrl + 9

CHECK GUI FOR
MULTIPLE OBJECTS

Right Alt + End Right Ctrl + F12 Right Ctrl +
F12

INSERT FUNCTION FOR
OBJECT/ WINDOW

Left Alt + 8 Left Alt + 8 Left Alt + 8

INSERT FUNCTION FROM
FUNCTION GENERATOR

Left Alt + 7 Left Alt + 7 Left Alt + 7

MOVE LOCATOR Left Alt + 6 Left Alt + 6 Left Alt + 6

PAUSE Pause Pause Pause

RECORD Scroll Lock Scroll Lock Scroll Lock

RUN FROM ARROW Right Alt + 7 Left Ctrl + 7 Left Ctrl + 7

Chapter 3 • Testing Terminal Emulator Applications

41

RUN FROM TOP Right Alt + 5 Left Ctrl + 5 Left Ctrl + 5

STEP Right Alt + 6 Left Ctrl + 6 Left Ctrl + 6

STEP INTO Right Alt + 8 Left Ctrl + 8 Left Ctrl + 8

STEP TO CURSOR Left Alt + F10 Left Alt + 9 Left Alt + 9

STOP Right Alt + 3 Left Ctrl + 3 Left Ctrl + 3

SYNCHRONIZE BITMAP OF
WINDOW

Right Alt + 0 Left Ctrl + 0 Left Ctrl + 0

SYNCHRONIZE BITMAP OF
SCREEN AREA

Right Alt + 4 Left Ctrl + 4 Left Ctrl + 4

SYNCHRONIZE BITMAP &
LOCATION OF WINDOW

Left Alt + F9 Left Alt + F9 Left Alt + F9

Standard WinRunner
Command

Softkey for
PCOM &

RUMBA (3270)

Softkey for PCOM
& RUMBA

(5250 & VT100)

Softkey for
Reflection

(3270 & 5250)

CHECK BITMAP OF
WINDOW

Left Ctrl
+ PgUp

Right Ctrl + 0 Left Ctrl
+ PgUp

CHECK BITMAP OF
SCREEN AREA

Left Ctrl + 2 Left Ctrl + 2 Left Ctrl + 2

CHECK GUI FOR
OBJECT/ WINDOW

Right Ctrl + 2 Right Ctrl + 2 Right Ctrl + 2

GET TEXT FROM SCREEN
AREA

Left Ctrl + F10 Left Ctrl + F10 Left Ctrl + F10

GET TEXT FROM
WINDOW AREA

Left Ctrl + 1 Left Ctrl + 1 Left Ctrl + 1

Standard WinRunner
Command

Softkey for
Elite

(3270 & 5250)

Softkey for EXTRA!
(3270 & 5250)

Softkey for
HostExplorer

(3270)

WinRunner Terminal Emulator Add-in Guide

42

GET TEXT FROM
OBJECT/ WINDOW

Left Ctrl + 9 Left Ctrl + 9 Left Ctrl + 9

CHECK GUI FOR
MULTIPLE OBJECTS

Right Ctrl +
F12

Right Ctrl + F12 Right Ctrl +
F12

INSERT FUNCTION FOR
OBJECT/ WINDOW

Left Alt + 8 Left Alt + 8 Left Alt + 8

INSERT FUNCTION
FROM FUNCTION
GENERATOR

Left Alt + 7 Left Alt + 7 Left Alt + 7

MOVE LOCATOR Right Ctrl + 6 Right Ctrl + 6 Right Ctrl + 6

PAUSE Pause Pause Pause

RECORD Scroll Lock Left Alt + 2 (5250)
Scroll Lock (VT100)

Left Alt + 2

RUN FROM ARROW Left Ctrl + 7 Left Ctrl + 7 Left Ctrl + 7

RUN FROM TOP Left Ctrl + 5 Left Ctrl + 5 Left Ctrl + 5

STEP Left Ctrl + 6 Left Ctrl + 6 Left Ctrl + 6

STEP INTO Left Ctrl + 8 Left Ctrl + 8 Left Ctrl + 8

STEP TO CURSOR Left Ctrl + F9 Left Ctrl + F9 Left Ctrl + F9

STOP Left Ctrl + 3 Left Ctrl + 3 Left Ctrl + 3

SYNCHRONIZE BITMAP
OF WINDOW

Left Ctrl + 0 Left Ctrl + 0 Left Ctrl + 0

SYNCHRONIZE BITMAP
OF SCREEN AREA

Left Ctrl + 4 Left Ctrl + 4 Left Ctrl + 4

SYNCHRONIZE BITMAP
& LOCATION OF
WINDOW

Left Alt + F9 Left Alt + F9 Left Alt + F9

Standard WinRunner
Command

Softkey for
PCOM &

RUMBA (3270)

Softkey for PCOM
& RUMBA

(5250 & VT100)

Softkey for
Reflection

(3270 & 5250)

43

4
Synchronizing the Test Run

WinRunner enables you to synchronize between the host and the
application you are testing during the test run. Synchronization ensures that
the test run is delayed until the application is ready to receive new input.
This prevents incidental differences in host response time from affecting test
runs.

This chapter describes:

➤ About Synchronizing the Test Run

➤ Waiting for a Response from the Host

➤ Waiting for a Specific String

➤ Waiting for a Specific Field

➤ Synchronizing Using Time Factors

➤ Synchronizing Screen Changes

About Synchronizing the Test Run

When using a terminal emulator, many factors can affect the speed of
operation and therefore interfere with the test run. Host response time
varies depending on the system load. The screen refresh rate of your
terminal emulator can also vary. WinRunner provides different types of
synchronization points to pace the test run with the system. These points
can be inserted into the test script automatically, using a softkey, or by
programming.

WinRunner Terminal Emulator Add-in Guide

44

Waiting for a Response from the Host

While recording on an emulator that supports the EHLLAPI protocol,
WinRunner automatically generates the following statement each time the
terminal emulator waits for a response from the host:

TE_wait_sync ();

During a test run, this statement ensures that the test run is delayed until
the host responds and the application is ready to receive input.

Note: The TE_wait_sync function is available only for 3270 and 5250
terminal emulators that support the EHLLAPI protocol.

Waiting for a Specific String

Using the TE_wait_string function, you can instruct WinRunner to wait for
a specific string to appear on the screen before continuing the test run. You
can specify an area of the screen, or WinRunner can search the entire screen
for the string.

To record a TE_wait_string statement in your test script:

 1 While recording, press the WAIT STRING softkey for your emulator.
WinRunner is minimized and a help window displays instructions for
capturing the string.

 2 Click and drag to draw the rectangle within which you want WinRunner to
search for the text.

Chapter 4 • Synchronizing the Test Run

45

 3 Right-click to capture the string. WinRunner is restored and a
TE_wait_string statement with the following syntax is inserted into your
test script:

TE_wait_string (string [, start_column, start_row, end_column, end_row,
 [, timeout]]);

The string parameter is the text enclosed in the rectangle. If the text you
captured exceeds one line, the string parameter includes the first line only.

The start_column and start_row parameters indicate the column/row at
which the captured text starts. The end_column and end_row parameters
represent the column and row, respectively, at which the text ends.

The timeout parameter is the number of seconds that WinRunner waits for
the specified string to appear before continuing the test run.

The following example shows the statement recorded when the text
Open the mail is captured using the Wait String softkey:

TE_wait_string("Open the mail", 8, 4, 20, 4, 60);

The value of the first parameter, Open the mail, is the string that WinRunner
searches for on the screen; WinRunner looks for this string in row 4,
columns 8 through 20. If this string does not appear in the defined location
within 60 seconds (the specified timeout period), the test run continues.

When you program this statement, you can omit the coordinates. In this
case, WinRunner searches the entire screen for the specified string.

If no timeout parameter is specified, WinRunner uses the currently defined
timeout period. You can retrieve the value of the currently defined timeout
using TE_get_timeout, and you can change it using TE_set_timeout. For
more information, see “Setting and Retrieving the Timeout” on page 47.

WinRunner Terminal Emulator Add-in Guide

46

Waiting for a Specific Field

Using the TE_wait_field function, you can instruct WinRunner to wait for a
specific field to appear on the screen before continuing the test run. When
the field is displayed, WinRunner resumes the test run. The syntax for this
function is:

TE_wait_field (field_logical_name, content [, timeout]);

The field_logical_name parameter is the name of the field.

The content parameter is the string contained in the field.

The timeout parameter is the number of seconds that WinRunner waits for
the specified field to appear before continuing the test run.

If no timeout parameter is specified, WinRunner uses the currently defined
timeout period. You can retrieve the value of the currently defined timeout
using TE_get_timeout, and you can change it using TE_set_timeout. For
more information, see “Setting and Retrieving the Timeout” on page 47.

Note: The TE_wait_field function is available only for 3270 and 5250
terminal emulators that support the EHLLAPI protocol.

Synchronizing Using Time Factors

Two factors that can affect whether the test runs correctly are the response
time of the host and the screen refresh rate of your terminal. The following
functions enable you to configure WinRunner to handle these variations.

Setting and Retrieving the Screen Refresh Time

The refresh time defines the maximum amount of time (in seconds) that
WinRunner waits for the screen to refresh after the host has responded,
before continuing the test run.

Chapter 4 • Synchronizing the Test Run

47

By default, WinRunner waits a maximum of one second for the screen to
refresh. You can change this if needed, using the TE_set_refresh_time
function, to ensure that WinRunner waits until the screen is completely
refreshed before continuing the test run. The time that you set for this
function remains in effect until WinRunner closes. Each time you restart
WinRunner, the refresh time is reset to the default value of one second.

The syntax for this function is:

TE_set_refresh_time (time);

To retrieve the value of the currently defined maximum refresh time, use the
TE_get_refresh_time function. The syntax for this function is:

TE_get_refresh_time ();

Note: The TE_set_refresh_time function is available only for 3270 and 5250
terminal emulators that support the EHLLAPI protocol.

Setting and Retrieving the Timeout

The timeout defines the maximum time (in seconds) that WinRunner waits
for a response from the host before continuing the test run.

By default, WinRunner waits a maximum of 60 seconds for the host to
respond. You can change this as needed, using the TE_set_timeout
function. The time that you set for this function remains in effect until
WinRunner closes. Each time you restart WinRunner, the timeout value is
reset to the default value of 60 seconds.

This statement has the following syntax:

TE_set_timeout (timeout);

To retrieve the value of the currently defined timeout, use the
TE_get_timeout function. The syntax for this function is:

TE_get_timeout ();

WinRunner Terminal Emulator Add-in Guide

48

Setting and Retrieving the Synchronization Time

The synchronization time defines the minimum amount of time (in
seconds) that WinRunner waits for the host to respond. WinRunner always
waits for at least this amount of time before checking whether a response
has been received from the host.

By default, WinRunner waits one second before checking whether a
response has been received from the host. You can use the
TE_set_sync_time function to change this amount of time.

This statement has the following syntax:

TE_set_sync_time (time);

If no response is received from the host within the defined synchronization
time, WinRunner continues to wait until a response is received or until the
timeout has expired.

Note: The synchronization time is included in the timeout period. For
example, if the synchronization time is 5 seconds and the timeout period is
60 seconds, the maximum time that WinRunner waits is 60 seconds and not
65 seconds. For more information about the timeout, see “Setting and
Retrieving the Timeout” on page 47.

To retrieve the value of the currently specified synchronization time, use the
TE_get_sync_time function.

This statement has the following syntax:

TE_get_sync_time ();

Note: The TE_set_sync_time and TE_get_sync_time functions are available
only for 3270 and 5250 terminal emulators that support the EHLLAPI
protocol.

Chapter 4 • Synchronizing the Test Run

49

Synchronizing Screen Changes

In some AS/400 applications, typing a key in a specific field causes the
screen to change. In such a case, WinRunner does not recognize that the
screen has changed and does not generate the TE_wait_sync function.

In such cases, you can add a TE_force_send_key function to your startup
test. This function causes WinRunner to recognize that the specified key
changes the terminal emulator screen and to generate the TE_wait_sync
function automatically for that key.

This function has the following syntax:

TE_force_send_key (in_screen, in_field [, in_key]);

The in_screen parameter defines the screen in which the field exists.

The in_field parameter defines the field.

The in_key parameter defines the input key that causes the screen to change
(optional). You can use a key mnemonic (such as @E for ENTER) or the
WinRunner macros (such as TE_Enter for ENTER).

Note: You can include several such statements in your startup test, to specify
different fields with special keys. Each TE_force_send_key statement should
refer to a different field. If you include two TE_force_send_key statements
with the same screen and field names, the second statement overrides the
first.

You can use the TE_reset_all_force_send_key to cancel the effect of all
TE_force_send_key statements until the startup script runs again.

For more information about these functions, refer to the TSL Online
Reference.

WinRunner Terminal Emulator Add-in Guide

50

51

5
Checking Screens and Fields

WinRunner verifies the behavior of your terminal emulator application by
comparing the expected results to the actual results that appear when you
run the test. By adding GUI checkpoints to your test, you can capture
information about screens and fields, and store the information as a basis
for comparison.

This chapter describes:

➤ About Checking Screens and Fields

➤ Checking the Properties of a Single Field or a Screen

➤ Checking the Properties of Two or More Fields

➤ Checking the Default Properties for All Fields in a Screen

➤ Screen and Field Property Checks

➤ Checking Dates

About Checking Screens and Fields

You can use GUI checkpoints to check the property values of the objects
(screens and fields) in your terminal emulator application. For example, you
can check the number of protected or input fields in a screen. You can also
check the content of a specific field and whether it is protected or visible.
WinRunner captures the current values of the selected properties and saves
this information as expected results.

When you run the test, WinRunner compares the actual values of the
selected properties to the expected results. If they do not match, the
checkpoint fails.

WinRunner Terminal Emulator Add-in Guide

52

You can use date checkpoints to check how your terminal emulator
application performs date operations. For additional information on
checking dates, see “Checking Dates” on page 57.

You can also add text checkpoints to your test, to check the text in the
screen of your terminal emulator application. For more information, see
Chapter 6, “Checking Text.”

The information in this chapter applies specifically to GUI checks on
terminal emulator applications. For general information on GUI
checkpoints, refer to the WinRunner User’s Guide.

Checking the Properties of a Single Field or a Screen

You can check the properties of a single field or screen by pointing to it and
specifying the type of checks you want to perform.

To check the properties of a single field or a screen:

 1 Choose Insert > GUI Checkpoint > For Object/Window, or click the
GUI Checkpoint for Object/Window button on the User toolbar.

 2 Double-click on the field or screen you want to check. (To check the screen,
double-click on an empty area of the screen.)

Tip: Alternatively, you can single-click the object to perform WinRunner’s
default checks. The default check for a field is Date. The default checks for a
screen are Number of protected fields and Number of input fields.

Chapter 5 • Checking Screens and Fields

53

 3 The Check GUI dialog box opens.

 4 Select the checks you want to perform. For more information, see “Screen
and Field Property Checks” on page 56.

 5 Click OK. WinRunner captures the screen or field information, stores it in
the expected results folder for the test, and adds an obj_check_gui or a
win_check_gui statement to your test script.

Checking the Properties of Two or More Fields

You create a checklist to check the properties of two or more fields by
clicking on the fields you want to check.

To check the properties of two or more fields in a screen:

 1 Choose Insert > GUI Checkpoint > For Multiple Objects, or click the
GUI Checkpoint for Multiple Objects button on the User toolbar. The
Create GUI Checkpoint window opens.

 2 Click the Add button.

 3 Click each field you want to check.

WinRunner Terminal Emulator Add-in Guide

54

 4 Right-click to stop the selection process. The Create GUI Checkpoint dialog
box reopens.

The Objects pane lists the name of the screen and the fields you clicked. The
Properties pane lists the properties for the selected field.

 5 To modify a check, select the field in the Objects pane and select the
properties to be checked in the Properties pane. For more information, see
“Screen and Field Property Checks” on page 56.

 6 Click OK. The checklist is saved and the Create GUI Checkpoint dialog box
closes. WinRunner captures the information about the fields and stores it in
the expected results folder for the test. A win_check_gui statement is
inserted into the test script.

Chapter 5 • Checking Screens and Fields

55

Checking the Default Properties for All Fields in a Screen

You can add a GUI checkpoint to check all fields in a screen. WinRunner
creates a checklist containing the default check (Date) for all fields in the
screen.

To check the default properties for all the fields in a screen:

 1 Choose Insert > GUI Checkpoint > For Object/Window, or click the
GUI Checkpoint for Object/Window button on the User toolbar.

 2 Click on an empty area of the screen or in the title bar of the terminal
emulator window.

The Add All dialog box opens.

 3 Select Objects, Menus, or both, to indicate the types of objects to include in
the checklist. When you select only Objects (the default setting), all objects
in the window except for menus are included in the checklist. To include
menus in the checklist, select Menus.

 4 Click OK to close the dialog box.

WinRunner captures the information about the fields and stores it in the
expected results folder for the test. (This may take several seconds.) The
WinRunner window is restored and a win_check_gui statement is inserted
into the test script.

WinRunner Terminal Emulator Add-in Guide

56

Screen and Field Property Checks

When you create a GUI checkpoint, you can determine the types of checks
to perform on screens and fields in your application.

Screen Checks

For a screen, you can check the following properties:

➤ screen_input_num—Checks the number of unprotected fields in the screen
(default check).

➤ screen_label—Checks the label (title) of the screen.

➤ screen_prot_num—Checks the number of protected fields in the screen
(default check).

Field Checks

For a field, you can check the following properties:

➤ field_attached_text—Checks the attached text of the field.

➤ field_color—Checks the color of the field.

➤ field_content—Checks the content of the field.

➤ field_date—Checks the date of the field (default check).

➤ field_len—Checks the length of the field, in characters.

➤ field_numeric_only—Checks whether the field is numeric only.

➤ field_protected—Checks whether the field is protected.

➤ field_visible—Checks whether the field is visible.

➤ field_x—Checks the x-coordinate of the top left corner of the field, relative
to the screen origin.

➤ field_y—Checks the y-coordinate of the top left corner of the field, relative
to the screen origin.

Chapter 5 • Checking Screens and Fields

57

Checking Dates

You can check how your terminal emulator application performs date
operations. For example, if your application is used by European and North
American customers, you may want to check how your application responds
to the different date formats used by these customers.

For terminal emulators, you can:

➤ choose how WinRunner identifies dates

➤ choose how WinRunner identifies date fields

➤ check all or some dates in the current terminal emulator screen

➤ automatically create date checkpoints whenever the terminal emulator
screen changes

Setting How WinRunner Identifies Dates

You can use the TE_date_set_capture_mode function to determine how
WinRunner captures dates in terminal emulator applications. WinRunner
can capture dates either by date field or by position on the screen. This
function has the following syntax:

TE_date_set_capture_mode (mode);

The mode is the date capture mode—one of the following:

➤ FIELD_METHOD—Captures dates in the context of the screens and fields in
your terminal emulator application (Context Sensitive). This is the default
mode.

➤ POSITION_METHOD—Identifies and captures dates according to their row
and column numbers on the screen.

If you use the default FIELD_METHOD mode, WinRunner can capture only
those dates that start at the beginning of a field. To capture dates that do not
appear at the beginning of a field (for example, Tuesday 03/31/99), you must
use the POSITION_METHOD mode. This mode captures dates according to
their row and column numbers on the screen.

WinRunner Terminal Emulator Add-in Guide

58

Setting How WinRunner Identifies Date Fields

You can use the TE_date_set_attr function to set the record configuration
mode for a field. This determines whether WinRunner identifies a date field
by its index or by its attached text. This function has the following syntax:

TE_date_set_attr (mode);

The mode is the record configuration mode—either INDEX or ATTACHED
TEXT.

Checking All Dates in a Terminal Emulator Screen

You can use the TE_date_check function to create a date checkpoint for
dates in all or part of the current screen of a terminal emulator application.
This function has the following syntax:

TE_date_check (filename [, start_column, start_row, end_column, end_row]);

The filename is the file containing the expected results of the date
checkpoint.

The start_column/row is the column/row at which the captured date begins;
the end_column/row is the column/row at which the captured date ends.

Automatically Creating Date Checkpoints

You can use the TE_set_auto_date_verify function to automatically
generate a date checkpoint (by inserting a TE_date_check statement)
whenever the screen changes in a terminal emulator application. This
function has the following syntax:

TE_set_auto_date_verify (ON|OFF);

If this function is set ON, WinRunner automatically generates a date
checkpoint to capture all date information in the current screen.

For additional information on the date-related functions and examples of
usage, refer to the TSL Online Reference. For additional information on date
checkpoints, refer to the “Checking Dates” chapter in the WinRunner User’s
Guide.

59

6
Checking Text

You can use WinRunner to check the text in the screen of your terminal
emulator application, by inserting text checkpoints. Text checkpoints
compare on-screen text according to its physical location on the screen.
WinRunner can capture the entire screen of the active terminal emulator
window, or only the portion of the screen that you specify.

This chapter describes:

➤ About Checking Text

➤ Checking Text Automatically

➤ Checking Text Using Softkeys

➤ Using Filters when Checking Text

➤ Reading Text from the Screen

➤ Searching for Text

About Checking Text

WinRunner provides different methods of checking the text in your
terminal emulator application screen. You can:

➤ capture all or part of the screen contents while recording a test

➤ instruct WinRunner to automatically capture all or part of the screen
contents of the active terminal emulator window

While creating a test, you indicate the text that you want to check.
WinRunner inserts a checkpoint into the script, captures the specified text,
and stores it in the expected results folder for the test.

WinRunner Terminal Emulator Add-in Guide

60

When you run the test, WinRunner recaptures the text and compares it to
the expected text captured earlier. You can view both the expected and the
actual test results. In the case of a mismatch, you can also view any
differences between them.

You can also use WinRunner to read text from a selected portion of the
screen and store it in a variable. The screen coordinates of the text you
indicated are inserted into the test script. You could use this feature, for
example, to change the logical flow of a test run according to the text found
in the indicated area.

Checking Text in a Terminal Emulator Screen

The TE_check_text function statement captures and compares the text in a
terminal emulator screen. This function has the following syntax:

TE_check_text (file_name [, start_column, start_row, end_column, end_row]);

The file_name parameter is a string expression provided by WinRunner that
identifies the captured window.

The start_column/row is the column/row at which the captured text begins;
the end_column/row is the column/row at which the captured text ends.

Chapter 6 • Checking Text

61

Checking Text Automatically

You can instruct WinRunner to capture the contents of the active terminal
emulator window automatically each time a new screen is displayed. The
three main options for automatic text checkpoints are:

➤ check full screen

➤ check partial screen

➤ check partial screen using the coordinates specified for a previous
checkpoint

Note: The automatic text checking options use the TE_set_auto_verify
function. This function is available only for 3270 and 5250 terminal
emulators that support the EHLLAPI protocol.

Checking Full Screens

When automatic full screen text checking is active, all the text in the active
window is captured each time a new screen is displayed.

To activate automatic full screen text checking, include the following
statement in your test script:

TE_set_auto_verify (ON);

To deactivate automatic full screen text checking, include the following
statement:

TE_set_auto_verify (OFF);

Each time a new screen is displayed in the window, a TE_check_text
statement, WinRunner automatically inserts a statement similar to the
following into the test script.

TE_check_text ("Trm1");

WinRunner Terminal Emulator Add-in Guide

62

The default name that WinRunner assigns to the first incidence of a full
screen text checkpoint in a test script is called Trm1. The text is stored as an
ASCII file in the expected results folder for the test.

When you run the test, WinRunner compares the text currently displayed
on the screen with the expected text captured earlier (the contents of the file
Trm1, stored in the expected results folder).

In the event of a mismatch, WinRunner captures the actual text and
generates a file that shows the discrepancy between the expected and the
actual results. Both files are stored in the current verification results folder.

Checking Partial Screens

When automatic partial screen text checking is active, the text in the
specified area of the active window is captured each time a new screen is
displayed.

To activate automatic partial screen text checking, include a statement in
your test script with the following syntax:

TE_set_auto_verify (ON, start_column, start_row, end_column, end_row);

The ON parameter activates the automatic check.

The start_column/row is the column/row at which the captured text starts;
the end_column/row is the column/row at which the text ends.

The example below shows a statement to automatically check the text in
columns 22 through 31, rows 10 through 14.

TE_set_auto_verify (ON, 22, 10, 31, 14);

Each time a new screen is displayed in the window, a TE_check_text
statement similar to the following is automatically inserted into the test
script:

TE_check_text ("Prt1", 22, 10, 31, 14);

The default file name Prt1 indicates the first incidence of captured partial
text in any test script.

Chapter 6 • Checking Text

63

To deactivate automatic partial text checking, include the following
statement:

TE_set_auto_verify (OFF);

Checking Partial Screens Using Previous Coordinates

When you choose the first/last partial text option, the coordinates for the
automatic partial screen text check are taken from a previous
TE_check_text statement in the test run.

To activate automatic first/last partial screen text checking, include a
statement in your test script with the following syntax:

TE_set_auto_verify (ON, FIRST|LAST);

The ON parameter activates the automatic check.

If you specify FIRST, the coordinates for the automatic partial screen text
check are taken from the first TE_check_text statement in the test run.

If you specify LAST, the coordinates are taken from the TE_check_text
statement immediately before the current statement in the test run. The
coordinates are updated during the test run each time a TE_check_text
statement is executed.

If there is no TE_check_text statement in the test script prior to the
set_auto_verify statement, then the entire screen is captured.

To deactivate automatic first/last partial screen text checking, include the
following statement in your test script:

TE_set_auto_verify (OFF);

WinRunner Terminal Emulator Add-in Guide

64

Checking Text Using Softkeys

While recording, you can use softkeys to check text. For a list of the softkeys
for different terminal emulators, see “WinRunner Terminal Emulator
Softkeys” on page 39.

Using softkeys, you can check the entire contents of the terminal emulator
screen or a specific portion of the screen. All captured text is stored as ASCII
text.

Checking a Full Screen Using a Softkey

You can use a softkey to capture the entire contents of the active terminal
emulator screen.

To capture the entire contents of the screen:

 1 While recording, make sure that the terminal emulator window you want to
check is active.

 2 Press the CHECK TEXT softkey. A TE_check_text statement is generated in
your test script.

The entire contents of the active terminal emulator screen are captured
(even if not all the text is visible in the window). A TE_check_text
statement similar to the following is inserted into the test script:

TE_check_text ("Trm1");

The default name that WinRunner assigns to the first incidence of a full
screen text checkpoint in a test script is Trm1. The text is stored as an ASCII
file in the expected results folder for the test.

When you run the test, WinRunner compares the text currently displayed
on the screen with the expected text captured earlier (the contents of the file
Trm1, stored in the expected results folder).

In the event of a mismatch, WinRunner captures the actual text and
generates a file that shows the discrepancy between the expected and the
actual results. Both files are stored in the current verification results folder.

Chapter 6 • Checking Text

65

Checking a Partial Screen Using a Softkey

You can use a softkey to create a partial text checkpoint when you want to
capture only part of the text on the screen.

To capture text in an area of the screen:

 1 Press the CHECK PARTIAL TEXT softkey. WinRunner is minimized to an icon
and a dialog box displays instructions for capturing the text.

 2 Click and hold down the left mouse button and drag the mouse to create a
rectangle that encloses the area to be filtered.

 3 Right-click inside the defined area. WinRunner is restored and a
TE_check_text statement similar to the following is inserted into the test
script:

TE_check_text ("Prt1", 51, 13,60, 13);

The above example shows the statement recorded when the text in line 13,
columns 51 through 60, is captured.

The default file name Prt1 indicates the first incidence of captured partial
text in any test script.

For more information on the TE_check_text function, refer to the TSL
Online Reference.

Using Filters when Checking Text

WinRunner lets you use filters to include or exclude regions of a terminal
emulator window when checking text. In cases where you do not want to
check an entire window, you can define parts of the window to be filtered
during the comparison. You can use two types of filters: exclude and include.

Note: You can also use filters to check dates in specific areas of the screen.
For more information on adding date checkpoints, see “Checking Dates” on
page 57.

WinRunner Terminal Emulator Add-in Guide

66

Exclude and Include Filters

An exclude filter defines the area to be ignored during the comparison. For
example, you can create an exclude filter on a region of a window
containing the current date and time.

An include filter is used in combination with an exclude filter. In the
diagram below, the white areas are included in the comparison and the
shaded area is excluded. This is achieved by defining an exclude filter and
then defining a smaller include filter on top of it. The result is a “ring” that
is excluded from comparison.

Note that when you combine exclude and include filters, the order in which
the filters are activated in the test script determines the actual area of
interest. For example, if an exclude filter that fully or partially overlaps an
include filter is activated after the include filter, the overlapped region is
excluded from the area of interest.

Emulator window

Exclude filter

Emulator window with exclude filter

Emulator window

Exclude filter

Include filter

Emulator window with
exclude filter and include filter

Chapter 6 • Checking Text

67

Creating Filters

You can use the EXCLUDE FILTER and INCLUDE FILTER softkeys to create a filter
while recording. For a list of the softkeys for different terminal emulators,
see “WinRunner Terminal Emulator Softkeys” on page 39.

If you know the exact coordinates, you can also insert TE_set_filter
statements manually into your test script.

To create a filter while recording:

 1 While recording, press the appropriate softkey (FILTER EXCLUDE or FILTER
INCLUDE). WinRunner is minimized and a dialog box displays instructions
for defining the filter area.

 2 Click and hold down the left mouse button and drag the mouse to create a
rectangle that encloses the area to be filtered.

 3 Right-click to save the filter. WinRunner is restored. The filter is added to the
db folder for the test and a TE_set_filter statement is inserted into your test
script.

The following example shows what WinRunner records when an exclude
filter is defined for row 23, columns 1 through 30, of all the screens in the
terminal emulator application.

TE_set_filter ("Filter0",1,23, 30, 23, EXCLUDE, "ALL_SCREENS");

You can modify the statement and specify the name of a specific screen.

When a TE_set_filter statement is executed during a test run, the filter is
activated. For more information on the TE_set_filter function, refer to the
TSL Online Reference.

Note: You can create up to a maximum of 256 filters using TE_set_filter.

WinRunner Terminal Emulator Add-in Guide

68

Deactivating and Deleting Filters

When you deactivate an existing filter, it remains in the db folder for the
test but is inactive for the test. To deactivate a filter, include a statement in
your test script with the following syntax:

TE_reset_filter (filter_name);

If you do not know the filter name, you can define the filter to be
deactivated using its coordinates and type, by including a statement with
the following syntax:

TE_reset_filter (start_column, start_row, end_column, end_row,
EXCLUDE | INCLUDE, screen_name);

To deactivate all active filters, include a statement in your test script with
the following syntax:

TE_reset_all_filters();

To delete a filter from the test database, include a statement with the
following syntax:

TE_delete_filter (filter_name);

Creating and Activating Filters Separately

In some cases, you may wish to create a filter and store it in the test’s db
folder for later use. You can do this by using the TE_create_filter function to
create a filter, and then activate it by executing a TE_set_filter statement
containing only the name of the filter.

To create a filter, include a statement in your test script with the following
syntax:

TE_create_filter (filter_name, start_column, start_row, end_column, end_row,
EXCLUDE | INCLUDE, screen_name);

The filter_name can contain a maximum of 16 characters.

Chapter 6 • Checking Text

69

To activate a filter, include a statement in the script with the following
syntax:

TE_set_filter (filter_name);

The filter_name must be the name of an existing filter for the current test.

Reading Text from the Screen

Using the TE_get_text function, you can instruct WinRunner to read the
text in a specified area of the screen and store it in a variable. You can use a
softkey while recording to define the area of the screen to be read. You can
also enter TE_get_text statements manually.

To read text from the screen:

 1 Make sure that you are in recording mode and that the terminal emulator
window from which you want to capture text is in focus.

 2 Press the GET TEXT softkey. For a list of the softkeys for different terminal
emulators, see “WinRunner Terminal Emulator Softkeys” on page 39.

WinRunner is minimized and a dialog box displays instructions for
capturing the string.

 3 Click and hold down the left mouse button and drag the mouse to create a
the rectangle that encloses the desired area.

 4 Right-click to capture the text. A TE_get_text statement is inserted into the
test script. This statement has the following syntax:

TE_get_text (x1, y1, x2, y2);

For more information on the TE_get_text function, refer to the TSL Online
Reference.

Each new line of text that is captured is preceded by the characters \n in the
variable. The following example shows how two lines of text appear in the
variable t:

t = "Fill in your User ID and press Enter \n(Your password will not appear
 when you type it)"

WinRunner Terminal Emulator Add-in Guide

70

Searching for Text

You can search for text in a terminal emulator screen, using the
TE_find_text function. This function looks for a specified text string and
returns its location on the screen as an x-coordinate and a y-coordinate.
Using an optional parameter, you can restrict the search to a rectangular
area of the screen that you define using pairs of x-, y-coordinates.

The TE_find_text function has the following syntax:

TE_find_text (, string, out_x_location, out_y_location [x1, y1, x2, y2]);

The string parameter is the text that you want to locate.

The out_x_location parameter is the output variable that stores the
x-coordinate of the test string. The out_y_location parameter is the output
variable that stores the y-coordinate of the text string.

The optional x1, y1, x2, y2 parameters define a rectangle that specifies the
limits of the search area.

For more information on the TE_find_text function, refer to the TSL Online
Reference.

71

7
Testing VT100 and Text Applications

You can use WinRunner to test applications on terminal emulators that do
not support the EHLLAPI protocol, such as VT100, VAX, UNIX, HP, and also
to test text applications.

This chapter describes:

➤ About Testing VT100 and Text Applications

➤ Creating Test Scripts

➤ Synchronizing Tests

➤ Checking Text for VT100 and Text Applications

➤ TSL Functions

About Testing VT100 and Text Applications

When working with VT100 terminal emulators, the text recording method is
used. The text method is similar to the position recording method, which
can be used in 3270 and 5250 terminal emulators that support the EHLLAPI
protocol. In both methods, WinRunner records keyboard and mouse input
only. The operations on objects in your application are recorded as
win_type, obj_type, win_mouse_click, and win_mouse_drag statements.

However, unlike the position method, the text method does not insert
synchronization statements into your test script automatically. You need to
insert synchronization statements using softkeys or by entering them into
the script manually.

WinRunner Terminal Emulator Add-in Guide

72

Creating Test Scripts

When using VT100 terminal emulator applications, WinRunner records
keyboard and mouse input only. The operations on objects in your
application are recorded as win_type, obj_type, win_mouse_click, and
win_mouse_drag statements.

The following is a sample of a WinRunner test script recorded on a VT100
terminal emulator application. The comment lines (starting with #) describe
the statements.

Activate the terminal emulator window
win_activate ("RUMBA - DEMO");

Direct input to the screen
set_window ("RUMBA - DEMO", 1);

Type in the user id “Michael”
obj_type ("AfxWnd40","Michael");

Press the Enter key
obj_type ("AfxWnd40","<kReturn>");

Wait for a string to appear on the next screen.
TE_wait_string(" MENU ", 1, 1, 53, 1, 60);

Type a menu option.
obj_type ("AfxWnd40","90");

In the above example, the user clicks on the terminal emulator window to
activate it. WinRunner records this action to ensure that the input is
directed to the correct window. Then the user types the user name Michael
in the appropriate field and presses the ENTER key.

A wait statement is added to ensure that WinRunner waits for the string to
appear on the next screen. The user types an option.

For information on TSL functions, refer to the TSL Online Reference.

Chapter 7 • Testing VT100 and Text Applications

73

Synchronizing Tests

When using VT100 terminal emulator applications, you can insert
synchronization points into your test script to pace the test run with the
system.

Using the TE_wait_string function, you can instruct WinRunner to wait for
a specific string to appear on the screen before continuing the test run. You
can specify an area of the screen, or WinRunner can search the entire screen
for the string. For more information, see “Waiting for a Specific String” on
page 44.

The TE_set_timeout function determines the maximum amount of time
(in seconds) that WinRunner waits for a response from the host before
continuing the test run. The TE_get_timeout function returns the
maximum amount of time (in seconds) that WinRunner waits for a response
from the host before continuing the test run. For more information, see
“Setting and Retrieving the Timeout” on page 47.

Setting Synchronization Keys

Using the TE_define_sync_keys function, you can set keys that enable
automatic synchronization in type, win_type, and obj_type functions.

When WinRunner executes a type, win_type, or obj_type statement that
includes a synchronization key, WinRunner waits for a specified string to
either appear on the screen or disappear from the screen. This function has
the following syntax:

TE_define_sync_keys (keys, string, mode [, x1, y1, x2, y2]);

The keys parameter contains a list of the keys that enable automatic
synchronization. Represent each key by an identifier consisting of the
letter k followed by the key name, bracketed with greater than/less than
signs (< >). Use a comma (,) as the delimiter between key identifiers. For
example, “<kReturn>, <kCtrl>, ...”. For key sequences in which more than one
key is pressed simultaneously, use a hyphen (-) to join them, for example,
“<kCtrl-kC>, ...”.

The string parameter defines the string that WinRunner waits for before
continuing with the test run.

WinRunner Terminal Emulator Add-in Guide

74

The mode parameter can be one of the following:

➤ SYNC_WHILE—Waits until the string disappears

➤ SYNC_UNTIL—Waits until the string appears

➤ SYNC_DEFAULT—Waits the default synchronization time

The parameters x1, y1, x2, y2 define a rectangle in which to search for the
string (optional). If these parameters are not defined, WinRunner searches
the entire screen.

Checking Text for VT100 and Text Applications

While creating a test for VT100 and text applications, you indicate the text
that you want to check from a selected portion of the screen by defining the
screen coordinates of the text.

Using the TE_get_text function, you can instruct WinRunner to read the
text in a specified area of the screen and store it in a variable. For more
information, see “Reading Text from the Screen” on page 69.

You can create filters to include or exclude regions of a terminal emulator
window when checking text. In cases where you do not want to check an
entire window, you can define parts of the window that will be filtered
during the comparison. For more information, see “Using Filters when
Checking Text” on page 65.

The TE_check_text function captures and compares the text in a terminal
emulator window. For more information, see “Checking Text in a Terminal
Emulator Screen” on page 60.

You can search for text in a terminal emulator screen using the
TE_find_text function. This function looks for a specified text string and
returns its location on the screen as an x-coordinate and a y-coordinate.
Using an optional parameter, you can restrict the search to a rectangular
area of the screen that you define using pairs of x- and y-coordinates.

For more information on TE_find_text, see “Searching for Text” on page 70.

Chapter 7 • Testing VT100 and Text Applications

75

TSL Functions

You can use the following TSL functions when testing your VT100 terminal
emulator application. For more information on TSL functions, refer to the
TSL Online Reference.

Synchronization Functions

You can insert synchronization points into your test script to pace the test
run with the system.

➤ The TE_define_sync_keys function sets keys that enable automatic
synchronization in win_type and obj_type commands. It has the following
syntax:

TE_define_sync_keys (keys, string, mode [, x1, y1, x2, y2]);

➤ The TE_set_timeout function sets the maximum amount of time (in
seconds) that WinRunner waits for a response from the host. It has the
following syntax:

TE_set_timeout (timeout);

➤ The TE_get_timeout function returns the currently defined timeout
(see above). It has the following syntax:

TE_get_timeout ();

➤ The TE_wait_string function waits for a string to appear on screen. It has
the following syntax:

TE_wait_string (string [, start_column, start_row, end_column, end_row
[, timeout]]);

WinRunner Terminal Emulator Add-in Guide

76

Date Operation Functions

You can set how WinRunner identifies dates and date fields in your terminal
emulator application, and how it creates date checkpoints.

➤ The TE_date_set_capture_mode function determines how WinRunner
captures dates in terminal emulator applications. It has the following
syntax:

TE_date_set_capture_mode (mode);

➤ The TE_date_set_attr function sets the record configuration mode for a
field. It has the following syntax:

TE_date_set_attr (mode);

➤ The TE_date_check function creates a date checkpoint for dates in all or
part of the current screen of a terminal emulator application. It has the
following syntax:

TE_date_check (filename [, start_column, start_row, end_column, end_row]);

➤ The TE_set_auto_date_verify function automatically generates a date
checkpoint whenever the screen changes in a terminal emulator
application. It has the following syntax:

TE_set_auto_date_verify (ON|OFF);

For additional information about the date-related functions, see “Checking
Dates” on page 57. For examples of usage, refer to the TSL Online Reference.

Text Functions

You can check the text in the screen of your terminal emulator application.

➤ The TE_check_text function captures and compares the text in a terminal
emulator window. It has the following syntax:

TE_check_text (file_name [, start_column, start_row, end_column,
end_row]);

Chapter 7 • Testing VT100 and Text Applications

77

➤ The TE_find_text function returns the location of a specified string. It has
the following syntax:

TE_find_text (string, out_x_location, out_y_location [, x1, y1, x2, y2]);

➤ The TE_get_text function reads text from the screen and stores it in a string.
It has the following syntax:

TE_get_text (x1, y1, x2, y2);

Filter Functions

You can create filters to check text and dates on your terminal emulator
screen.

➤ The TE_create_filter function creates a filter in the test database. It has the
following syntax:

TE_create_filter (filter_name, start_column, start_row, end_column, end_row,
EXCLUDE | INCLUDE, screen_name);

➤ The TE_delete_filter deletes a specified filter from the test database. It has
the following syntax:

TE_delete_filter (filter_name);

➤ The TE_get_active_filter function returns the coordinates of a specified
active filter. It has the following syntax:

TE_get_active_filter (filter_num [, out_start_column, out_start_row,
out_end_column, out_end_row, screen_name]);

➤ The TE_get_auto_reset_filter function indicates whether or not filters are
automatically deactivated at the end of a test run. It has the following
syntax:

TE_get_auto_reset_filters ();

➤ The TE_get_filter function returns the properties of a specified filter. It has
the following syntax:

TE_get_filter (filter_name [, out_start_column, out_start_row,
out_end_column, out_end_row, out_type, out_active, screen_name]);

WinRunner Terminal Emulator Add-in Guide

78

➤ The TE_reset_all_filters function deactivates all filters in a test. It has the
following syntax:

TE_reset_all_filters ();

➤ The TE_reset_filter function deactivates a specified filter. It has the
following syntax:

TE_reset_filter (filter);

➤ The TE_set_filter function creates and activates a filter. It has the following
syntax:

TE_set_filter (filter_name [, start_column, start_row, end_column, end_row,
EXCLUDE | INCLUDE, screen_name]);

➤ The TE_set_auto_reset_filters function deactivates the automatic reset of
filters when a test run is completed. It has the following syntax:

TE_set_auto_reset_filters (ON|OFF);

➤ The TE_set_filter_mode function specifies whether to assign filters to all
screens or to the current screen. It has the following syntax:

TE_set_filter_mode (mode);

79

8
Learning the Application Using BMS Files

The Learn BMS Files feature can teach WinRunner your 3270 mainframe
application by inserting information about screens and fields directly into a
GUI map file. This chapter describes:

➤ About Learning the Application Using BMS Files

➤ Learning the Application the First Time

➤ Relearning the Application

About Learning the Application Using BMS Files

If you have access to the BMS file of your 3270 mainframe application, you
can use the Learn BMS Files feature. This feature enables WinRunner to learn
your application directly from a BMS file containing descriptions of the
screens and fields in your application.

When you use Learn BMS Files, WinRunner learns these descriptions and
inserts them into a GUI map file. You can change the names or descriptions
as desired, as with any other GUI map file. You use the TSL function
TE_bms2gui to learn the BMS file.

The RELEARN option lets you update the GUI map file you created earlier as
your application changes during the development cycle. An interactive user
interface guides you through the process. It helps you retain desired
modifications to the descriptions in the GUI map file while changing others
as needed.

WinRunner Terminal Emulator Add-in Guide

80

It is recommended that you read Chapter 3, “Testing Terminal Emulator
Applications” in this guide, as well as the “Understanding the GUI Map”
section in the WinRunner User’s Guide, before you use the Learn BMS Files
feature.

Learning the Application the First Time

You use the TE_bms2gui function to learn (and to relearn) your BMS file.
This function has the following syntax:

TE_bms2gui (bms_filename, gui_filename, LEARN|RELEARN);

The bms_filename parameter is the full path of the BMS file of your
application.

The gui_filename parameter is the full path of the GUI map file in which
WinRunner inserts the descriptions of the objects into your application. If
no parameter is specified, the temporary GUI map file is used.

The LEARN|RELEARN parameter determines how WinRunner handles the
BMS file:

➤ Use the LEARN option the first time you learn a BMS file. Do not perform
LEARN twice for the same GUI map file.

➤ Use RELEARN when you have made changes to your application and
updated the BMS file. When RELEARN is specified, WinRunner compares
the descriptions in the current BMS file with those in the specified GUI
map file. It notifies you of any inconsistencies and enables you to make
changes as required.

To learn the BMS files, run the TE_bms2gui function in a WinRunner script.

In the following example, TE_bms2gui is used to teach WinRunner object
descriptions from a BMS file called Mail_app.txt, and place them into a GUI
map file called Mail_1.gui:

TE_bms2gui ("Mail_app.txt", "Mail_1.gui", LEARN);

Chapter 8 • Learning the Application Using BMS Files

81

You can edit names or descriptions in the GUI map file created by
TE_bms2gui and make any other required changes, using the GUI Map
Editor. For more information on the GUI Map Editor, refer to the WinRunner
User’s Guide.

Relearning the Application

You use the RELEARN option each time you want to update the GUI map
file to reflect changes in your application. RELEARN enables you to add new
screens and fields to the GUI map file while maintaining or changing the
names and descriptions that appear in the existing GUI map file, as
required.

To relearn a BMS file, you execute the TE_bms2gui function using RELEARN
as the learn_mode parameter. For example, to relearn a BMS file called
Mail_app.txt into an existing GUI map file called Mail_1.gui, run the
following statement:

TE_bms2gui ("Mail_app.txt", "Mail_1.gui", RELEARN);

As WinRunner converts the GUI map file from the BMS file, it looks for
discrepancies between the existing GUI map file and the current file on
which RELEARN is performed. Each time it finds a mismatch, a dialog box
prompts you to specify how to proceed.

In most cases, accepting the default option ensures that the intentional
changes made to your application are reflected accurately in the GUI map
file. However, WinRunner also gives you the option of changing the name
of the relevant screen or field.

The following examples describe the different RELEARN dialog boxes that
may be displayed during the RELEARN process and the options they
provide.

WinRunner Terminal Emulator Add-in Guide

82

Object Exists in the GUI Map File with Different Properties

In this example, WinRunner found a screen in the BMS file with the same
name as a screen in the existing GUI map file, but with different properties.

The current name of the screen is displayed in the list on the left. The list on
the right shows all the properties of the selected object, according to the
new BMS file. By default, WinRunner updates the GUI map to include the
new properties.

To use a different name, select it from the list or type in another name.

To save your changes, click OK. The RELEARN dialog box closes and a
confirmation message is displayed. Click OK.

To continue the RELEARN operation without making changes in the GUI
map for the specified screen object, click Cancel.

Chapter 8 • Learning the Application Using BMS Files

83

Object is not in the Original GUI Map File

In this example, WinRunner found a field that it recognizes as a new one.
No other field with the same name or properties exists in the GUI map file.

The name of the field is displayed in the list on the left. The list on the right
shows all the properties of the selected field, according to the new BMS file.

By default, WinRunner adds the object to the GUI map file with the name
specified.

To specify a new name for the object, type it in or select the name of
another screen from the list.

To save your changes, click OK. The RELEARN dialog box closes and a
confirmation message is displayed. Click OK.

To continue the RELEARN operation without making changes to the GUI
map file, click Cancel.

WinRunner Terminal Emulator Add-in Guide

84

Object has a Different Name in the GUI Map File

In this example, WinRunner found a field with the same properties as an
existing field, but with a different name.

By default, WinRunner retains the original name for the field as it is
displayed in the GUI map. This ensures that you can rerun existing tests
containing the original name for the field without changing them.

To use the name in the new BMS file or to select a new name, select it from
the list or type it in.

Click OK to save your changes, or Cancel to continue the RELEARN process
without making changes to the GUI map.

85

A

Add-in Manager
activating the Terminal Emulator

Add-in 23
disabling terminal emulator

support 25
installing the add-in license 21

Attachmate EXTRA! 19

B

BMS files 79
learning the application 80
relearning the application 81

C

checking
all fields in a screen 55
dates 57
default checks in screens and fields 52
field properties 56
screen properties 56
screens and fields 51
single screen/field 52
text automatically 61
two or more fields 53

checking text automatically
full screen 61
partial screen 62
using previous coordinates 63

checking text using softkeys
full screen 64
partial screen 65

checkpoints
date 57
GUI 51
text 59

configuring your terminal emulator 11
Context Sensitive

recording 38
testing 29

conventions. See typographical conventions

D

date checkpoints 52, 57
date format, defining 11
date operations 52

checking 57
defining settings 11

dates, checking 57
demo application 10

E

EHLLAPI DLL 14
Elite 20
EXTRA! 19

F

field method, recording 37
filters 65

exclude 65
include 66

finding text 70

Index

WinRunner Terminal Emulator Add-in Guide

86

G

GUI checkpoints 51
default checks 52
properties for screens and fields 56

H

host response
waiting maximum time 47
waiting minimum time 48

HostExplorer 19
Hummingbird HostExplorer 19

I

IBM Personal Communications 19
installing the Terminal Emulator Add-in 5

L

Learn BMS Files 79
licensing the Terminal Emulator Add-in 21
logical names 32

M

maximum wait time 47
minimum wait time 48

N

NetManage RUMBA 20
NetSoft Elite 20

O

obj_type function 37
object

properties 36
types 31

P

PCOM 19
physical descriptions 31, 32
position method, recording 37
properties 36

field 36
screen 36

R

Read Me 10
reading text 69
recording

field method 37
position method 37
text method 71

Reflection 21
refresh time, setting and retrieving 46
RUMBA 20

S

screen refresh time, setting and retrieving 46
scripts

for testing applications 29
VT100 and text applications 72

searching for text 70
selecting your terminal emulator 11
setup program, running 5
Softkey Configuration utility 38
softkeys 38

checking text 64
configurations 38
creating full text checkpoint 64
creating partial text checkpoint 65
standard WinRunner commands 40
updating default 18

synchronization time, setting and
 retrieving 48

synchronizing
between host and application 43
screen changes 49
text applications 73
VT100 applications 73
while testing 43

system requirements 3

Index

87

T

TE_bms2gui function 80
TE_check_text function 60

in text applications 74, 76
TE_create_filter function 68

in text applications 77
TE_date_check function 58

in text applications 76
TE_date_set_attr function 58

in text applications 76
TE_date_set_capture_mode function 57

in text applications 76
TE_define_sync_keys function

in text applications 73, 75
TE_delete_filter function 68

in text applications 77
TE_edit_field function 37
TE_find_text function 70

in text applications 74, 77
TE_force_send_key function 49
TE_get_active_filter function

in text applications 77
TE_get_auto_reset_filter function

in text applications 77
TE_get_filter function

in text applications 77
TE_get_text function 69

in text applications 74, 77
TE_get_timeout function 47

in text applications 73, 75
TE_reset_all_filters function 68

in text applications 78
TE_reset_all_force_send_key function 49
TE_reset_filter function 68

in text applications 78
TE_send_key function 37
TE_set_auto_date_verify function 58

in text applications 76
TE_set_auto_reset_filters function

in text applications 78
TE_set_auto_verify function 61
TE_set_filter function 67, 68, 69

in text applications 78
TE_set_filter_mode function

in text applications 78
TE_set_record_method function 38

TE_set_refresh_time function 46
TE_set_sync_time function 48
TE_set_timeout function 47

in text applications 73, 75
TE_wait_field function 46
TE_wait_string function 44

in text applications 73, 75
TE_wait_sync function 44, 49
terminal emulator

configuring 11
selecting 11, 12
testing 29

Terminal Emulator Add-in
installing 5
licensing 21

terminal emulator objects
identifying 31
properties 36
types 31

testing terminal emulator applications 29
text

checking 59, 74
checking automatically 61
finding 70
reading 69

text applications
checking text 74
creating scripts 72
date operation functions 76
filter functions 77
synchronization functions 75
synchronizing the test run 73
text functions 76

text checkpoints 59
in text applications 74

text method testing 71
timeout, setting and retrieving 47
TSL 29
typographical conventions vii

WinRunner Terminal Emulator Add-in Guide

88

V

VT100 and text applications 71
recording method 71

VT100 applications
checking text 74
creating scripts 72
date operation functions 76
filter functions 77
synchronization functions 75
synchronizing the test run 73
text functions 76

W

waiting
for host response 44
for screen refresh 46
for specific field 46
for specific string 44

waiting for host response
maximum time 47
minimum time 48
synchronization time 48
timeout 47

win_mouse_click function 37
win_mouse_drag function 37
win_type function 37
WRQ Reflection 21

Mercury Interactive Corporation
1325 Borregas Avenue
Sunnyvale, CA 94089 USA

Main Telephone: (408) 822-5200
Sales & Information: (800) TEST-911, (866) TOPAZ-4U
Customer Support: (877) TEST-HLP
Fax: (408) 822-5300

Home Page: www.mercuryinteractive.com
Customer Support: support.mercuryinteractive.com

� �� � � ��� � 	
 � � �

	WinRunner Terminal Emulator Add-in Guide
	Table of Contents
	Welcome
	Using This Guide
	Typographical Conventions

	Setting Up Terminal Emulator Support
	Before You Install
	System Requirements
	Preparing for the Terminal Emulator Add-in Installation
	Understanding Add-in Conflicts and Dependencies

	Installing and Setting Up the Terminal Emulator Add-in
	Running the Setup Program
	Configuring Your Terminal Emulator
	Setting Your Terminal Emulator to Work with WinRunner
	Licensing the Terminal Emulator Add-in
	Activating WinRunner with Terminal Emulator Support

	Working with the Terminal Emulator Add-in
	Testing Terminal Emulator Applications
	About Testing Terminal Emulator Applications
	How WinRunner Identifies Terminal Emulator Objects
	Terminal Emulator Object Properties
	Changing How Operations are Recorded
	Using Softkeys

	Synchronizing the Test Run
	About Synchronizing the Test Run
	Waiting for a Response from the Host
	Waiting for a Specific String
	Waiting for a Specific Field
	Synchronizing Using Time Factors
	Synchronizing Screen Changes

	Checking Screens and Fields
	About Checking Screens and Fields
	Checking the Properties of a Single Field or a Screen
	Checking the Properties of Two or More Fields
	Checking the Default Properties for All Fields in a Screen
	Screen and Field Property Checks
	Checking Dates

	Checking Text
	About Checking Text
	Checking Text Automatically
	Checking Text Using Softkeys
	Using Filters when Checking Text
	Reading Text from the Screen
	Searching for Text

	Testing VT100 and Text Applications
	About Testing VT100 and Text Applications
	Creating Test Scripts
	Synchronizing Tests
	Checking Text for VT100 and Text Applications
	TSL Functions

	Learning the Application Using BMS Files
	About Learning the Application Using BMS Files
	Learning the Application the First Time
	Relearning the Application

	Index

