

WinRunner Oracle® Add-in
User’s Guide

Version 7.6

WinRunner Oracle Add-in User’s Guide, Version 7.6

This manual, and the accompanying software and other documentation, is protected by U.S. and
international copyright laws, and may be used only in accordance with the accompanying license
agreement. Features of the software, and of other products and services of Mercury Interactive
Corporation, may be covered by one or more of the following patents: U.S. Patent Nos. 5,701,139;
5,657,438; 5,511,185; 5,870,559; 5,958,008; 5,974,572; 6,138,157; 6,144,962; 6,205,122; 6,237,006;
6,341,310; 6,360,332, 6,449,739; 6,470,383; 6,477,483; 6,549,944; 6,560,564; and 6,564,342. Other
patents pending. All rights reserved.

ActiveTest, ActiveTune, Astra, FastTrack, Global SiteReliance, LoadRunner, Mercury, Mercury
Interactive, the Mercury Interactive logo, Open Test Architecture, Optane, POPs on Demand, ProTune,
QuickTest, RapidTest, SiteReliance, SiteRunner, SiteScope, SiteSeer, TestCenter, TestDirector, TestSuite,
Topaz, Topaz AIMS, Topaz Business Process Monitor, Topaz Client Monitor, Topaz Console, Topaz
Delta, Topaz Diagnostics, Topaz Global Monitor, Topaz Managed Services, Topaz Open DataSource,
Topaz Real User Monitor, Topaz WeatherMap, TurboLoad, Twinlook, Visual Testing, Visual Web
Display, WebTest, WebTrace, WinRunner and XRunner are trademarks or registered trademarks of
Mercury Interactive Corporation or its wholly owned subsidiary Mercury Interactive (Israel) Ltd. in
the United States and/or other countries.

All other company, brand and product names are registered trademarks or trademarks of their
respective holders. Mercury Interactive Corporation disclaims any responsibility for specifying which
marks are owned by which companies or which organizations.

Mercury Interactive Corporation
1325 Borregas Avenue
Sunnyvale, CA 94089 USA
Tel: (408) 822-5200
Toll Free: (800) TEST-911, (866) TOPAZ-4U
Fax: (408) 822-5300

© 2003 Mercury Interactive Corporation, All rights reserved

If you have any comments or suggestions regarding this document, please send them via e-mail to
documentation@merc-int.com.

WRORAUG7.6/01

iii

Table of Contents

Chapter 1: Introduction ..1
Using the Oracle Add-in..1
How the Oracle Add-in Identifies Java Objects.....................................2
Activating the Oracle Add-in ..3

Chapter 2: Testing Standard Java Objects ..5
About Testing Standard Java Objects ..5
Recording Context Sensitive Tests ..5
Enhancing Your Script with TSL ...6

Chapter 3: Working with Java Methods and Events...........................17
About Working with Java Methods and Events..................................17
Invoking Java Methods ...18
Accessing Object Fields..20
Working with Return Values (Advanced) ...22
Viewing Object Methods in Your Application or Applet....................24
Firing Java Events ..31
Using the Name Attribute for Oracle Application GUI Objects32

Chapter 4: Troubleshooting Testing Oracle Applications35
Common Problems and Solutions ..36
Checking Java Environment Settings..37
Locating the Java Console...39
Accessing Oracle Add-in DLL Files ..40
Running the Oracle Add-in without Multi-JDK Support

(Advanced)..41
Disabling the Multi-JDK Support ..43

Index ..45

WinRunner Oracle Add-in User’s Guide

iv

1

1
Introduction

Welcome to the WinRunner Oracle Add-in. This guide explains how to use
WinRunner to successfully test Oracle Applications. It should be used in
conjunction with the WinRunner User’s Guide and the TSL Online Reference.

This chapter describes:

➤ Using the Oracle Add-in

➤ How the Oracle Add-in Identifies Java Objects

➤ Activating the Oracle Add-in

Using the Oracle Add-in

The Oracle Add-in is an add-in to WinRunner, Mercury Interactive’s
automated GUI testing tool for Microsoft Windows applications.

The Oracle Add-in enables you to record and run tests on cross-platform
Oracle Applications. You can record and run user actions on Java-based and
Web-based Oracle Applications 11i, as well as applications designed with
Oracle Forms, running Oracle JInitiator or Java Plug-in.

To create a test for an Oracle Application, use WinRunner to record the
operations you perform on the application. As you work with Java objects
within Oracle Applications, WinRunner generates a test script in TSL,
Mercury Interactive’s C-like test script language.

WinRunner Oracle Add-in User’s Guide

2

With the Oracle Add-in you can:

➤ Record operations on Java objects within Oracle Forms Applications just as
you would any other Windows object with WinRunner.

➤ Use various TSL functions to execute Java methods from the WinRunner
script.

➤ Use the java_fire_event function to simulate a Java event on the specified
object.

How the Oracle Add-in Identifies Java Objects

WinRunner learns a set of default properties for each object you operate on
while recording a test. These properties enable WinRunner to obtain a
unique identification for every object that you test. This information is
stored in the GUI map. WinRunner uses the GUI map to help it locate
frames and objects during a test run.

WinRunner identifies standard Java objects as push button, check button,
static text, list, table, or text field classes, and stores the relevant physical
properties in the GUI Map just like the corresponding classes of Windows
objects. If you record an action on a custom or unsupported Java object,
WinRunner maps the object to the general object class in the WinRunner
GUI map. For more information on GUI maps, refer to the “Configuring the
GUI Map” chapter in the WinRunner User’s Guide.

You can view the contents of your GUI map files in the GUI Map Editor by
choosing Tools > GUI Map Editor. The GUI Map Editor displays the logical
names and the physical descriptions of objects. For more information on
GUI maps, refer to the “Understanding the GUI Map” section in the
WinRunner User’s Guide.

Introduction

3

Activating the Oracle Add-in

Before you begin testing your Oracle Application, make sure that you have
installed all the necessary files and made any necessary configuration
changes. For more information, refer to the WinRunner Oracle Add-in
Installation Guide.

Note: The RapidTest Script Wizard option is not supported by the Oracle
Add-in. For more information about the RapidTest Script Wizard, refer to the
WinRunner User’s Guide.

To activate the Oracle Add-in:

 1 Select Start > Programs > WinRunner > WinRunner. The WinRunner Add-in
Manager dialog box opens.

WinRunner Oracle Add-in User’s Guide

4

 2 Select Oracle.

 3 Click OK. WinRunner opens with the Oracle Add-in loaded.

Note:

If the Add-In Manager dialog box does not open:

 1 Start WinRunner.

 2 In Tools > General Options > General category > Startup sub-category, check
Display Add-in Manager on startup. In the Hide Add-in Manager after ___
seconds box, enter the number of seconds for which the Add-in Manager is
displayed. (The default value is 10 seconds.)

 3 Click OK.

 4 Close WinRunner. A WinRunner message box opens asking whether you
want to keep the changes you made. Click Yes.

For more information on the Add-in Manager, refer to the WinRunner User’s
Guide.

5

2
Testing Standard Java Objects

This chapter describes how to record Java objects within Oracle Applications
and enhance scripts that test Oracle Applications.

This chapter describes:

➤ About Testing Standard Java Objects

➤ Recording Context Sensitive Tests

➤ Enhancing Your Script with TSL

About Testing Standard Java Objects

With the Oracle Add-in, you can record or write context sensitive scripts on
all supported Oracle Forms objects. You can also use TSL functions that
enable you to add Java-specific statements to your script.

Recording Context Sensitive Tests

Whenever you start WinRunner with the Oracle Add-in loaded, support for
the Oracle environments you installed will always be loaded. For more
information about selecting Oracle environments, refer to the WinRunner
Oracle Add-in Installation Guide.

You can confirm that your Oracle environment has opened properly by
checking the Java console for the following confirmation message: "Loading
Mercury Support (version x.xxx)".

WinRunner Oracle Add-in User’s Guide

6

If your Oracle Application uses Java objects from supported Oracle Forms,
then you can use WinRunner to record a Context Sensitive test, just as you
would with any Windows application.

As you record, WinRunner adds standard Context Sensitive TSL statements
into the script. If you try to record an action on an unsupported object,
WinRunner records a generic obj_mouse_click or win_mouse_click
statement.

Enhancing Your Script with TSL

WinRunner includes several TSL functions that enable you to add
Java-specific statements to your script. Specifically, you can use TSL
functions to:

➤ Set the value of a Java bean-like property.

➤ Activate a specified Java edit field.

➤ Select an item from a Java pop-up menu.

➤ Configure the way WinRunner learns object descriptions and runs tests on
Oracle Applications.

You can also use TSL functions to invoke the methods of Java objects and to
simulate events on Java objects. These are covered in Chapter 3, “Working
with Java Methods and Events.”

For more information about TSL functions and how to use TSL, refer to the
TSL Reference Guide or the TSL Online Reference.

Testing Standard Java Objects

7

Setting the Value of a Java Bean-Like Property

You can set the value of a Java bean-like property with the obj_set_info
function. This function works on all properties that have a set method.

Tip: You can also use the java_set_field function to set the value of a Java
field, even if it does not have a set method. The java_set_field function has
the following syntax: java_set_field (object, field_name, value);. For more
information, see “Using the java_set_field Function” on page 21.

The obj_set_info function has the following syntax:

obj_set_info (object, property, value);

The object parameter is the logical name of the object. The object may
belong to any class. The property parameter is the object property you want
to set and can be any of the properties displayed when using the WinRunner
GUI Spy. Refer to the WinRunner Users Guide for more information on the
GUI Spy or for a list of properties. The value parameter is the value that is
assigned to the property.

Note: When writing the property parameter name in the function, convert
the capital letters of the property to lowercase, and add an underscore before
letters that are capitalized within the Java bean-like property name.
Therefore, a Java bean-like property called MyProp becomes my_prop in
the TSL statement.

WinRunner Oracle Add-in User’s Guide

8

For example, for a property called MyProp, which has the method
setMyProp(String), you can use the function as follows:

obj_set_info(object, "my_prop", "Mercury");

The obj_set_info function will return ATTRIBUTE_NOT_SUPPORTED for
the property my_prop if one of the following statements is true:

➤ The object does not have a method called setMyProp.

➤ The method setMyProp() exists, but it has more than one parameter, or the
parameter is not of one of the following types: String, int (or Integer),
boolean (or Boolean), or float (or Float).

➤ The value parameter is not convertible to one of the above Java classes. For
example, the method gets an integer number as a parameter, but the
function’s value parameter was a non-numeric value.

➤ The setMyprop() method creates a Java exception.

Activating a Java Edit Object

You can activate an edit field with the edit_activate function. This is the
equivalent of a user pressing the ENTER key on an edit field. This function
has the following syntax:

edit_activate (object);

The object parameter is the logical name of the edit object on which you
want to perform the action.

For example, if you want to enter John Smith into the edit field
Text_Fields_0, then you can set the text in the edit field and then use
edit_activate to send the activate event, as in the following script:

set_window("swingsetapplet.html", 8);
edit_set("Text Fields:_0", "John Smith 2");
edit_activate("Text Fields:_0");

Testing Standard Java Objects

9

Selecting an Item from a Java Pop-up Menu

You can select an item from a Java pop-up menu using the
popup_select_item function. This function has the following syntax:

popup_select_item ("menu;item");

The menu;item parameter indicates the logical name of the component
containing the menu and the name of the item.

Note that menu and item are represented as a single string, and are separated
by a semicolon.

When an item is selected from a submenu, each consecutive level of the
menu is separated by a semicolon in the format "menu; sub_menu1;
sub_menu2;...sub_menun; item." The item must be specified in a chain
composed of menu objects from the GUI map and ending in the name of
the menu item as it appears in the application. For example, the function
popup_select_item ("Copy"); does not use the correct syntax; while
popup_select_item ("MyEdit;Copy"); is correct.

The popup_select_item statement does not open the pop-up menu; you
can open the menu by a preceding TSL statement. For example:

obj_mouse_click ("MyEdit", 1, 1, RIGHT);

Note: When using the popup_select_item function on AWT toolkit pop-up
menus, the action that opens the menu must be performed during the test
run using the USE_LOW_LEVEL_EVENTS variable. For more information,
see page 14.

WinRunner Oracle Add-in User’s Guide

10

Configuring Oracle Variable Settings

You can configure how WinRunner learns descriptions of objects, records
and runs tests on Oracle Applications, or otherwise affect record or run-
related settings, with the set_aut_var function. This function has the
following syntax:

set_aut_var (variable, value);

Note: Variable names are not case sensitive.
Variable values may or may not be case sensitive, as specified below.

The following variables and corresponding values are available:

COLUMN_NUMBER In Oracle Applications, forms that appear
to contain tables are actually implemented
as a set of text fields and not as a table
object. The Oracle Add-in can record and
run tests on these forms as table objects
and not as text fields. This variable specifies
the minimum number of text field
columns for a form with text fields to be
considered a table object. Otherwise, the
edit fields are treated as separate objects.
This variable affects the way table objects
are recorded as follows: if a test was
recorded on a form as a table, it will be run
as such regardless of the current value of
the COLUMN_NUMBER variable.
However, if a test was recorded on a form as
separate text fields, then the
COLUMN_NUMBER variable must reflect
this during the test run, otherwise the test
will fail.

Testing Standard Java Objects

11

Note: If the name attribute is enabled (see
“Using the Name Attribute for Oracle
Application GUI Objects” on page 32), it is
recommended that you record and run
tests on these tables as text fields (by
keeping the default value of 99).

Default value: 99

Note: In earlier versions of WinRunner, the
default value for the COLUMN_NUMBER
variable was 2. Tests recorded using the
default value of 2 still run correctly, even
when the new default value is 99.

MAX_COLUMN_GAP The maximum number of pixels between
text fields in a form to be considered a
column. This variable is used in
conjunction with the COLUMN_NUMBER
variable and is required only in rare cases.

Default value: 12

MAX_LINE_DEVIATION The maximum number of pixels between
text fields in a form to be considered a on
single line. This variable is used in
conjunction with the COLUMN_NUMBER
variable and is required only in rare cases.

Default value: 8

MAX_ROW_GAP The maximum number of pixels between
text fields in a form to be considered one
table row. This varable is used in
conjunction with the COLUMN_NUMBER
variable and is required only in rare cases.

Default value: 12

WinRunner Oracle Add-in User’s Guide

12

EDIT_REPLAY_MODE Controls how WinRunner performs actions
on edit fields. Use one or more of the
following values:

"S"—uses the setText () or setValue ()
methods to set a value of the edit object.

"P"—sends KeyPressed event to the object
for every character from the input string.

"T"—sends KeyTyped events to the object
for every character from the input string.

"R"—sends KeyReleased event to the object
for every character from the input string.

"F"—generates a FocusLost event at the end
of function execution.

“E”—generates a FocusGained event at the
beginning of function execution.
(AWT toolkit only)

Note: EDIT_REPLAY_MODE variable values
are case sensitive.

Default value: "PTR"

Note that the default value sends a triple
event to the edit field (KeyPressed-
KeyTyped-KeyReleased), just as an actual
user would generate a key stroke.

EXCLUDE_CONTROL_CHARS Specifies the characters to be ignored from
the setText () call by the edit_set command
when REPLAY_MODE_EDIT contains "S".
For example: set_aut_var
("EXCLUDE_CONTROL_CHARS", "\t");
means that the tab character will not be
included in the setText () method call when
EDIT_REPLAY_MODE contains "S".

Testing Standard Java Objects

13

MAX_TEXT_DISTANCE Sets the maximum distance in pixels, to
look for attached text.

Default value: 100

RECORD_BY_NUM Controls how items in list, combo box,
table, tab control, and tree view objects are
recorded.

The variable can be one of the following
values: "list", "combo", "table", "tab", "tree",
or a combination of these values separated
by a space. If one of these objects is
detected, numbers are recorded instead of
the item names or row/column header
names. ("table" is supported for KLG or
JCTable objects. "tab" is supported for JFC,
Vcafe, and KLG 3.x.) To return to recording
these items by name, set the variable value
as an empty string.

Note: RECORD_BY_NUM variable values
are case sensitive.

RECORD_WIN_OPS Determines whether window operations
(move and resize) are recorded.
Use one of the following values:

"ON" (or any non-zero numeric value)
"OFF"

Default value: "OFF"

WinRunner Oracle Add-in User’s Guide

14

SKIP_ON_LEARN Controls how WinRunner learns a window.
Mercury Interactive classes listed in the
variable are ignored when WinRunner
learns objects in a window from the GUI
Map Editor. May contain a list of Mercury
Interactive classes, separated by spaces. By
default, only objects with the WinRunner
class "object" are skipped.

Note: SKIP_ON_LEARN variable values are
case sensitive.

Default value: "object"

SOFTKEYS_REC Controls whether WinRunner records
Oracle Application softkeys. By default,
WinRunner does not record special
function and action keys.

"On" (or any non-zero numeric value)—
enables recording of Oracle Application
softkeys.

TREEVIEW_PATH_SEPARATOR Specifies the default separator ";" used to
separate entries in a path to a node of a
TreeView control.

Note: If you specify more than one
character, for example "#$", then
WinRunner treats either of the characters
as a separator (but not both of them in
sequence).

Default value: ";"

USE_LOW_LEVEL_EVENTS Controls whether WinRunner simulates
user input by Java events or by the mouse
and keyboard drivers. When a test runs
using this mode, the cursor moves on the
screen, as if performing the recorded user
operations.

Testing Standard Java Objects

15

Use one or more of the following values:

"all"—indicates that WinRunner simulates
all mouse clicks and keyboard strokes for all
types of Java objects by the mouse and
keyboard drivers.

WinRunner class names separated by a
space indicate that WinRunner uses mouse
and keyboard drivers to simulate user input
on object of the class names listed. For
example, "push_button edit" uses mouse
and keyboard drivers to simulate user input
on all buttons and edit boxes. To return to
simulating user input by Java events, set
the variable value as an empty string.

The low level events mode should be used
only when the Oracle Add-in fails to
correctly perform an action on your
application. In this mode, the test run
resembles user behavior, and therefore may
succeed where the regular mode fails. It is
recommended to only use this mode in
specific statements, and not for the entire
test.

When running a test on AWT pop-up
menus, it is required to use low level events
mode in most cases. Note that this mode is
less context sensitive, therefore it is
recommended to use it only when
necessary.

Note: USE_LOW_LEVEL_EVENTS variable
values are case sensitive.

WinRunner Oracle Add-in User’s Guide

16

17

3
Working with Java Methods and Events

This chapter describes how to invoke the methods of Java objects. It also
describes how to simulate events on Java objects.

This chapter describes:

➤ About Working with Java Methods and Events

➤ Invoking Java Methods

➤ Accessing Object Fields

➤ Working with Return Values (Advanced)

➤ Viewing Object Methods in Your Application or Applet

➤ Firing Java Events

➤ Using the Name Attribute for Oracle Application GUI Objects

About Working with Java Methods and Events

You can invoke object methods during your test using the
java_activate_method function or static (class) methods using the
java_activate_static function. You can view the methods of Java objects in
your application using the GUI spy or the Java Method Wizard. You can also
generate the appropriate TSL statement for activating the method you
select.

You can access object fields using any of the following functions:
java_get_field, java_set_field, java_get_static, or java_set_static.

You can also simulate events on Java objects using the fire_java_event
function.

WinRunner Oracle Add-in User’s Guide

18

Invoking Java Methods

You can invoke a Java method for any Java object using the
java_activate_method function. You can invoke a static method using the
java_activate_static function.

Using the java_activate_method Function

You can use the java_activate_method function to invoke object methods
during your test.

The java_activate_method function has the following syntax:

java_activate_method (object, method_name, retval [, param1, ... param8]);

The object parameter is the logical name of the object (for a visible, GUI
object) or an object returned from a previous java_activate_method
function or any other function described in this chapter. For more
information on return values, see “Working with Return Values (Advanced)”
on page 22. The method_name parameter indicates the name of the Java
method to invoke. The retval parameter is an output variable that holds a
return value from the invoked method. Note that this parameter is required
even for void Java methods. param1...8 are optional parameters to be passed
to the Java method.

The Java method parameters may belong to one of the following Java data
types: boolean, int, long, float, double, or string, or they may be any other
Java object returned from a previous java_activate_method function or any
other function described in this chapter. For more information about using
returned objects in your script, see “Working with Return Values
(Advanced)” on page 22.

Note: If the function returns boolean output, the retval parameter returns
the string representation of the output: "true" or "false".

Working with Java Methods and Events

19

For example, you can use the java_activate_method function to perform
actions on a list:

Add item to the list at position 2:
java_activate_method("list", "add", retval, "new item", 2);

Get number of visible rows in a list:
java_activate_method("list", "getRows", rows);

Check if an item is selected:
java_activate_method("list", "isIndexSelected", isSelected, 2);

The TSL return value for the java_activate_method function can be any of
the TSL general return values. For more information on TSL return values,
refer to the TSL Reference Guide.

Using the java_activate_static Function

You can invoke a static method of any Java class using the
java_activate_static function.

The java_activate_static function has the following syntax:

java_activate_static (class_name, method_name, retval [, param1, ... param8
]);

The class_name parameter is the fully-qualified Java class name. The
method_name parameter indicates the name of the static Java method to
invoke. The retval parameter is an output variable that holds a return value
from the invoked method. param1...8 are optional parameters to be passed
to the Java method.

The Java method parameters may belong to one of the following Java data
types: boolean, int, long, float, double, or string, or they may be any other
Java object returned from a previous java_activate_static function or any
other function described in this chapter. For more information about using
returned objects in your script, see “Working with Return Values
(Advanced)” on page 22.

WinRunner Oracle Add-in User’s Guide

20

Note: If the function returns boolean output, the retval parameter will
return the string representation of the output: "true" or "false".

For example, you can use the java_activate_static function to invoke the
toHexString static method of the Java class Integer.

java_activate_static("java.lang.Integer", "toHexString", hex_str, 127);

Accessing Object Fields

You can access object fields using the java_get_field or java_set field
functions. You can use the java_get_static or java_set_static functions to
access static fields.

Using the java_get_field Function

You can use the java_get_field function to retrieve the current value of an
object’s field.

The java_get_field function has the following syntax:

java_get_field (object, field_name, out_value);

The object parameter is the logical name of the object whose field is
retrieved, or an object returned from a previous java_get_field function or
any other function described in this chapter. The field_name parameter
indicates the name of the field to retrieve. The out_value parameter is an
output variable that holds the value from the retrieved field.

For example, you can use the java_get_field function to retrieve the value of
the "x" field of a Java point object:

java_get_field(point_object, "x", ret_val);

Working with Java Methods and Events

21

Using the java_set_field Function

You can use the java_set_field function to set the specified value of an
object’s field.

The java_set_field function has the following syntax:

java_set_field (object, field_name, value);

The object parameter is the logical name of the object or the value returned
from a previous java_set_field function or any other function described in
this chapter. The field_name parameter indicates the name of the field whose
value will be set. The value parameter holds the new value of the field.

The value parameter may belong to one of the following Java data types:
boolean, int, long, float, double, or String, or it may be any other value
returned from a previous java_set_field function or any other function
described in this chapter. For more information about using returned objects
in your script, see “Working with Return Values (Advanced)” on page 22.

For example, you can use the java_set_field function to set the value of the
"x" field to 5:

java_set_field(point_object, "x", 5);

Using the java_get_static Function

You can use the java_get_static function to retrieve the current value of a
static field.

The java_get_static function has the following syntax:

java_get_static (class, field_name, out_value);

The class parameter is the fully-qualified Java class name. The field_name
parameter indicates the name of the field to retrieve. The out_value
parameter is an output variable that holds a return value from the retrieved
field.

For example, you can use the java_get_static function to retrieve the value
of the "out" static field of the "java.lang.System" class:

java_get_static("java.lang.System", "out", ret_val);

WinRunner Oracle Add-in User’s Guide

22

Using the java_set_static Function

You can use the java_set_static function to set the specified value of a static
field.

The java_set_static function has the following syntax:

java_set_static (class, field_name, value);

The class parameter is the fully-qualified Java class name. The field_name
parameter indicates the name of the field whose value will be set. The value
parameter holds the new value of the field.

The value parameter may belong to one of the following Java data types:
boolean, int, long, float, double, or String, or it may be any other value
returned from a previous java_set_static function or any other function
described in this chapter. For more information about using returned objects
in your script, see “Working with Return Values (Advanced)” on page 22.

For example, you can use the java_set_static function to set the value of the
"out" static field of the "java.lang.System" class:

java_set_static("java.lang.System", "out", 12);

Working with Return Values (Advanced)

If a Java object is returned from a prior java_activate_method statement,
you can use the returned object to invoke its methods. You can also use the
returned object as an argument to another java_activate_method function
or any of the other functions described in this chapter.

You can also use the jco_create function to create a new Java object within
your application.

The jco_create function has the following syntax:

jco_create (existing_obj , new_obj , class_name , [param1 , ... , param8]);

Working with Java Methods and Events

23

The existing_obj parameter specifies the object whose class loader will be
used to find the class of the newly created object. This can be the main
application window, or any other Java object within the application. The
new_obj output parameter is the new object to be returned. The class_name
parameter is the fully-qualified Java class name. Param1...Param8 are the
required parameters for that object constructor. These parameters can be of
type: int, float, boolean ("true" or "false"), String, or any value returned from
a previous jco_create function or any of the other functions described in
this chapter.

You invoke the methods of a returned object just as you would any other
Java object, using the java_activate_method syntax described above.

Note: You can use the "_jco_null" object as a parameter in order to represent
a null object.

When a Java object is returned from a java_activate_method or jco_create
statement, a reference to the object is held by the Oracle Add-in. When you
have finished using the returned object in your script, you should use the
jco_free function to release the reference to the specific object. You can also
use the jco_free_all function to release all object references held by the
Oracle Add-in.

These two functions have the following syntax:

jco_free (object);
jco_free_all();

Note: A returned object can only be used to invoke the methods of that
object or as an argument for another java_activate_method or any of the
other functions described in this chapter. Do not use a returned object as an
argument for other functions.

WinRunner Oracle Add-in User’s Guide

24

Viewing Object Methods in Your Application or Applet

If you are not sure which methods are available for a given object, you can
use the GUI Spy or the Java Method Wizard to view all of the methods
associated with the object. You can also use the GUI Spy or the Java Method
Wizard to generate the appropriate java_activate_method function for a
selected method.

Using the GUI Spy

You can view all methods associated with GUI Java objects in your
application and generate the appropriate java_activate_method function
for a selected method using the Java tab of the GUI Spy.

Note: As with any other GUI object, you can view all properties or just the
recorded properties of a Java object in the All Standard or Recorded tabs of
the GUI Spy. For more information on these elements of the GUI Spy, refer
to the WinRunner User’s Guide.

To view object methods in your application using the GUI Spy:

 1 Open the Oracle Application that contains the object for which you want to
view the methods.

Working with Java Methods and Events

25

 2 Choose Tools > GUI Spy. The GUI Spy opens.

 3 Click the Java tab.

WinRunner Oracle Add-in User’s Guide

26

 4 Click Spy and point to an object on the screen. The object is highlighted
and the active window name, object name, and all of the object’s Java
methods appear in the appropriate fields. The object’s methods are listed
first, followed by a listing of methods inherited from the object’s
superclasses.

 5 To capture the object methods in the GUI Spy dialog box, point to the
desired object and press the STOP softkey. (The default softkey combination
is Ctrl Left + F3.)

Working with Java Methods and Events

27

To generate the TSL statement for invoking a Java method:

 1 Activate the GUI Spy as described on page 24.

 2 Select the method that you want to invoke from the list of methods. The
appropriate java_activate_method is displayed in the TSL statement box.

Note: If you run an Oracle Application using Oracle JInitiator 1.1.x, the
java_activate_method function cannot invoke Protected, Default
(i.e., package), or Private method types.

 3 Copy the statement displayed in the box and paste it into your script.

 4 Input parameters are identified as Param1, Param2, and so forth. Replace the
input parameters in the statement with the parameter values you want to
send to the method.

The Java method parameters may belong to one of the following Java data
types: boolean, int, long, float, double, or string, or they may be any other
Java object returned from a previous java_activate_method function or any
other function described in this chapter. For more information, see “Using
the java_activate_method Function” on page 18.

For example, if you want to change the text on the button labeled "One" to
"Yes", highlight the setText method and copy the statement in the box:

rc = java_activate_method("One","setText",retValue,param1);

and replace Param1 with "Yes" as shown below:

rc = java_activate_method("One","setText",retValue,"Yes");

WinRunner Oracle Add-in User’s Guide

28

Using the Java Method Wizard

You can use the Java Method Wizard to view the methods associated with
Java objects and to generate the appropriate java_activate_method
statement for one of the displayed methods.

To view the methods for an object in your application:

 1 Open the Oracle Application that contains the object for which you want to
view the methods.

 2 Enter a method_wizard statement to activate the Java Method Wizard using
the syntax:

method_wizard (object);

where object is the logical name of the object for which you want to view the
methods, or an object returned from a previous java_activate_method
function, or any of the other functions described in this chapter.

 3 Select Debug run mode in the toolbar.

 4 Choose Debug > Step, or click the Step button to run the statement. The
Java Method Wizard opens and displays a list with the object’s class and all
of its superclasses.

Working with Java Methods and Events

29

Note: After the Java Method Wizard opens, the focus returns to the main
WinRunner window. You may need to select the Java Method Wizard icon
on your Windows taskbar to display the wizard.

 5 Double-click a class element to view a summary of available methods by
type.

 6 Double-click a method type to view the related methods.

WinRunner Oracle Add-in User’s Guide

30

To generate the TSL statement for invoking a Java method:

 1 Activate the Java Method Wizard as described on page 28.

 2 Select the method that you want to invoke from the list of methods under
the appropriate object class. A TSL statement is displayed in the TSL
statement box.

Note: If you run an Oracle Application using Oracle JInitiator 1.1.x, the
java_activate_method function cannot invoke Protected, Default
(i.e., package), or Private method types.

 3 Copy the statement displayed in the TSL statement box and paste it into
your script.

 4 Replace the * symbols in the statement with the parameter values you want
to send to the method.

For example, if you created a Rectangle object, and you want to enlarge it by
one pixel in each direction, copy the TSL statement displayed in the TSL
statement box:

rc = java_activate_method(newRectangle, "add", retValue, *, *);

and replace each * symbol with 1 as shown below:

rc = java_activate_method(newRectangle, "add", retValue, 1, 1);

Working with Java Methods and Events

31

Firing Java Events

You can simulate an event on a Java object during a test run with the
java_fire_event function. This function has the following syntax:

java_fire_event (object , class [, constructor_param1,..., contructor_paramn]);

The object parameter is the logical name of the Java object. The class
parameter is the name of the Java class representing the event to be
activated. The constructor_paramn parameters are the required parameters for
the object constructor (excluding the object source, which is specified in the
object parameter).

Note: The constructor’s Event ID argument may be entered as the ID
number or the final field string that represents the Event ID.

For example, you can use the java_fire_event function to fire a
MOUSE_CLICKED event using the following script:

set_window("mybuttonapplet.htm", 2);
java_fire_event ("MyButton", "java.awt.event.MouseEvent",
"MOUSE_CLICKED", get_time(), "BUTTON1_MASK", 4, 4, 1, "false");

In the example above, the constructor has the following parameters: int id,
long when, int modifiers, int x, int y, int clickCount, boolean popupTrigger,
where id = "MOUSE_CLICKED" , when = get_time() , modifiers =
"BUTTON1_MASK", x = 4, y = 4, clickCount = 1, popupTrigger = "false".

WinRunner Oracle Add-in User’s Guide

32

Using the Name Attribute for Oracle Application GUI
Objects

The Oracle Applications server can provide a unique name attribute for
many GUI objects in the application. Using this attribute in the object
description improves the reliability of the description and usually prevents
the need for learning the class_index attribute that may change for a given
object between the time you record and run a test.

Enabling the Name Attribute

To use the name attribute in your object descriptions, you must first enable
the attribute supplied by the Oracle Applications server.

To enable the developer name when accessing the application directly:

 1 Add record=names to the URL parameters.

For example:
http://oracleapps.mydomain.com:8002/dev60cgi/f60cgi?record=names

To enable the name attribute when using HTML to launch the Oracle
Application:

 1 In the startup HTML file that is used to launch the application, locate the
line: <PARAM name="serverArgs fndnam= APPS">

 2 Add the Oracle key: record=names. For example:

<PARAM name="serverArgs" value="module=f:\FNDSCSGN userid=XYZ
fndnam=apps?record=names">

To enable the name attribute when using the Personal Home Page to
launch your Forms 6 Application:

Set up the following system profile option at your user level in order to
enable the name attribute:

 1 Sign on to your Oracle Application and select System Administrator
responsibility.

 2 Select Nav > Profile > System.

Working with Java Methods and Events

33

 3 In the Find System Profile Values form:

➤ Confirm that Display: Site and Users contains your user logon.

➤ Enter %ICX%Launch% in the Profile box.

➤ Click the Find button.

 4 Copy the value from the Site box of the ICX: Forms Launcher profile and
paste it in the User box. Add &play=&record=names to the end of the URL in
the User box.

 5 Save your transaction.

 6 Sign on again using your user name.

Note: If the ICX: Forms Launcher profile option is not UPDATABLE at the
USER level, access Application Developer and select the Updateable check
box for the ICX_FORMS_LAUNCHER profile.

Verifying that the Oracle Applications Server Provides a Unique
Name Attribute

Before configuring WinRunner’s GUI map to learn the name attribute,
confirm that the Oracle Applications server supplies unique names. To
check this, use the GUI Spy and point to some edit fields inside the Oracle
application. Click the All Standard tab and view the name attribute for each.
If the name is in all capital letters in the format FORM:BLOCK:FIELD or
FORM_BLOCK_FIELD, then the name attribute is supplied correctly. If the
name value is in the format ClassNameXXX, then the Oracle Applications
server does not supply a unique name and you cannot use this attribute in
the description.

WinRunner Oracle Add-in User’s Guide

34

Adding the Name Attribute to the GUI Map Configuration

By default, the name attribute is defined as an optional learned property in
the record configuration of the following WinRunner classes: push_button,
check_button, radio_button, list, edit. After you have configured the
Oracle Applications server to supply a unique name attribute, you can add
this property to the default set of properties learned by WinRunner as you
record or learn Oracle objects.

For example, you could use the following statement to add the name
attribute to an object’s GUI map configuration:

set_record_attr("spin", "class name attached_text", "class_index", "index");

You should add the name attribute to other types of objects used in your
application with additional set_record_attr statements.

Note that you can edit the set_record_attr calls made in the java_supp init
script located in <WinRunner Installation Folder>/lib to load these settings
by default with the Oracle Add-in.

35

4
Troubleshooting Testing Oracle
Applications

This chapter is intended to help pinpoint and resolve some common
problems that may occur when testing Oracle Applications.

This chapter describes:

➤ Common Problems and Solutions

➤ Checking Java Environment Settings

➤ Locating the Java Console

➤ Accessing Oracle Add-in DLL Files

➤ Running the Oracle Add-in without Multi-JDK Support (Advanced)

➤ Disabling the Multi-JDK Support

WinRunner Oracle Add-in User’s Guide

36

Common Problems and Solutions

The Oracle Add-in provides a number of indicators that help you identify
whether your add-in is properly installed and functioning. The following
table describes the indicators you may see when your add-in is not
functioning properly, and suggests possible solutions:

Indicator Solution

The Oracle Add-in is not
displayed in the Add-in
Manager.

View the install.log file located in the <WinRunner
Installation folder>\dat folder for information
about the add-in installation that you performed.

The Java Support
Activation Tool is not
visible in the taskbar tray.

Invoke the Java Support Activation Tool:

Click Programs > WinRunner > Oracle Add-in >
Oracle Add-in Switching Tool in the Start menu.

or

Invoke JavaSupportSwitch.exe in Program
Files\Common Files\Mercury
Interactive\SharedFiles\JavaAddin\bin.

The Java Support
Activation Tool is disabled.

Click the Java Support Activation Tool in the
taskbar tray to enable it. For more information, refer
to the WinRunner Oracle Add-in Installation Guide.

Note that the Java Support Activation Tool only
affects Oracle Applications activated after you
disable or enable the support. If an Oracle
Application is already running without Mercury
Java support, you must close and restart it.

The Java console does not
display a line containing
the text "Loading Mercury
Interactive Support."

Check that the settings in your environment
correspond to the environment settings defined in
this chapter, or check for a batch file that may
override the settings.

For more information, see:

• “Checking Java Environment Settings” on
page 37

• “Locating the Java Console” on page 39

Troubleshooting Testing Oracle Applications

37

Note for Netscape 4.x users: If you experience any unusual behavior in the
Java support (for example, if the message "Loading Mercury Interactive
Support" does not appear in the Java Console), try disabling the JIT (Just-In-
Time) compiler. To do this, locate and rename the jit3240.dll file in
Communicator\Program\java\bin and then restart Netscape.

If, after reviewing the above indicators and solutions, you are still unable to
record and run tests on your Oracle Application, contact Mercury Interactive
Customer Support.

Checking Java Environment Settings

This section describes the environment settings you need for loading your
Oracle Application with WinRunner Oracle Add-in support. For all the
environments, you need to set one or more environment variables to the
short path name of the Oracle Add-in support classes folder.

The Java console contains
messages about .dll files.

(This message is usually
followed by
UnsatisfiedLinkError
messages.)

Check that you have write permission for the
jre\bin folder, or place the Oracle Add-in basic .dll
files in the jre\bin folder.

For more information see:

• “Accessing Oracle Add-in DLL Files” on page 40

• “Locating the Java Console” on page 39

Your Java console contains
the line Could not find
–Xrun library: micsupp.dll.

Check that you have micsupp.dll in your system
folder (WINNT\system32 or windows\system).

Indicator Solution

WinRunner Oracle Add-in User’s Guide

38

Note: The short path (also known as the 8.3 DOS name) of the Oracle
Add-in classes folder (Common Files\Mercury Interactive\Shared files\
JavaAddin\classes) can usually be obtained by examining the value of the
mic_classes environment variable. This may be useful when defining the
environment settings.

Sun Plug-in 1.4.1

➤ Set the _JAVA_OPTIONS environment variable (Sun) as follows:

-Dawt.toolkit=mercury.awt.awtSW -Xrunmicsupp
-Xbootclasspath/a:<common_files>\MERCUR~1\SHARED~1\JAVAAD~1\
classes;<common_files>\MERCUR~1\SHARED~1\JAVAAD~1\classes\mic.jar

The above settings should appear on one line (no new line separators).

Note that common_files denotes the short path of the Common Files folder
located in the Program Files folder. For example, if the Common Files folder
is in C:\Program Files\Common Files, then the value for –Xbootclasspath is
as follows:

-Xbootclasspath/a:C:\PROGRA~1\COMMON~1\MERCUR~1\SHARED~1\
JAVAAD~1\classes;C:\PROGRA~1\COMMON~1\MERCUR~1\SHARED~1\
JAVAAD~1\classes\mic.jar

Oracle JInitiator 1.1.x

➤ The _classload_hook environment variable should be set to micsupp.

Oracle JInitiator 1.3.1.x

➤ Set the _JAVA_OPTIONS environment variable as follows:

-Dawt.toolkit=mercury.awt.awtSW -Xrunmicsupp
-Xbootclasspath/a:<common_files>\MERCUR~1\SHARED~1\JAVAAD~1\
classes;<common_files>\MERCUR~1\SHARED~1\JAVAAD~1\classes\mic.jar

The above settings should appear on one line (no new line separators).

Troubleshooting Testing Oracle Applications

39

Note that common_files is the short path of the Common Files folder
located in the Program Files folder. For example, if the Common Files folder
is in C:\Program Files\Common Files, then the value for classpath is as
follows:

-Xbootclasspath/a:C:\PROGRA~1\COMMON~1\MERCUR~1\SHARED~1\
JAVAAD~1\classes;C:\PROGRA~1\COMMON~1\MERCUR~1\SHARED~1\
JAVAAD~1\classes\mic.jar

Locating the Java Console

The Java console is the window in which your Oracle Application displays
messages. The location of the Java console changes according to your
application setup, as follows:

If your application runs in Oracle JInitiator 1.3 or higher:

➤ Right-click the JInitiator icon in the taskbar tray and click Show Console.

If your application runs in Oracle JInitiator 1.1.x:

➤ If you do not see the JInitiator icon in the taskbar tray, click
Programs > JInitiator Control Panel in the Start menu. In the Basic tab,
select Show Java console and click Apply. Restart your JInitiator application.

If your application runs in JDK 1.4 Plug-in:

➤ Right-click the Java Plug-in icon in the taskbar tray and click Open Console.

➤ If you do not see the Java Plug-in icon in the taskbar tray, click
Settings > Control Panel in the Start menu. Double-click the Java Plug-in
icon. In the Basic tab, select Show Java in System Tray and click Apply.
Restart the browser.

WinRunner Oracle Add-in User’s Guide

40

Accessing Oracle Add-in DLL Files

For the Oracle Add-in to work properly, two .dll files must be accessible to
the Java Virtual Machine (JVM): mic_if2c.dll and mic_if2c_aqt.dll. In most
cases, the Oracle Add-in installs these files in the jre\bin folder of your Java
environment when your Oracle Application starts.

However, if you do not have write permission in the jre\bin folder, the
Oracle Add-in fails to copy the .dll files. In this situation, messages similar to
the following appear in the Java console:

Error: The file S:\JAVA\JDK1.4.0\jre\bin\mic_if2c.dll is missing.

Error: The file S:\JAVA\JDK1.4.0\jre\bin\mic_if2c_aqt.dll is missing.

To fix this problem, either make sure that you have write permission to the
jre\bin folder, or manually copy the .dll files from the Common
Files\Mercury Interactive\SharedFiles\JavaAddin\bin folder.

A variant of this problem is if you have the wrong version of the .dll files in
the folder (for example, if you installed an earlier version of WinRunner or
QuickTest Professional, the folder may contain .dll files from a previous
version of the Oracle Add-in). If the files and the folder are accessible when
you install the latest version of WinRunner with Java support, the Oracle
Add-in replaces the files automatically.

If the files or the jre\bin folder are write protected or if another process is
using the .dll files, messages similar to the following appear in the Java
console:

Warning: The file S:\JAVA\JDK1.4.0\jre\bin\mic_if2c.dll does not match your
current Oracle Add-in installation version.

Warning: The file S:\JAVA\JDK1.4.0\jre\bin\mic_if2c_aqt.dll does not match your
current Oracle Add-in installation version.

To fix the problem, either make sure that the files are not write-protected, or
manually copy the correct version of the files to the jre\bin folder from the
Common Files\Mercury Interactive\SharedFiles\JavaAddin\bin folder.

Troubleshooting Testing Oracle Applications

41

Running the Oracle Add-in without Multi-JDK Support
(Advanced)

The Oracle Add-in uses a mechanism for supporting multiple JDK versions
without configuration changes (multi-JDK support). This mechanism uses
the profiler interface of the Java Virtual Machine (JVM) to adjust the Oracle
Add-in support classes according to the JInitiator or JDK version used. If, for
some reason, this mechanism does not work, you can still use the Oracle
Add-in if you manually configure the Java environment.

Java 2 (JInitiator 1.3.1.x, Sun Plug-in 1.4.1)

The multi-JDK support mechanism is invoked by the –Xrunmicsupp option
supplied to the JVM. If you want to disable the multi-JDK support, remove
the –Xrunmicsupp option from the JDK settings (by default, it is located in
the _JAVA_OPTIONS environment variable).

Next, you should change the –Xbootclasspath setting to list the correct
patches folder according to the JVM version you are using. If you do not
know which version you are using (but it is Java 2 VM), the exact JVM
version number should be displayed in your Java Console. For information
on displaying the Java Console, see “Locating the Java Console” on page 39.

If you are using JInitiator version 1.3.1.11 or earlier, add the ora_1.3.1 folder
to the Xbootclasspath. If you are using JInitiator version 1.3.1.12 or later, add
the 1.3.1_06 folder to the Xbootclasspath. If you are using JDK, add the 1.4.1
folder to the Xbootclasspath.

In addition, you need to add the default patches folder under Common
Files\Mercury Interactive\SharedFiles\JavaAddin\Patches.

To set your Java environment to load from the abovementioned folder, you
need to set the –Xbootclasspath option. You can set it in the
_JAVA_OPTIONS environment variable. The –Xbootclasspath should be set
to the following value:

-Xbootclasspath/p:<patches folder>;<default patches folder>;
<common_files>
\MERCUR~1\SHARED~1\JAVAAD~1\classes;<common_files>
\MERCUR~1\SHARED~1\JAVAAD~1\classes\mic.jar

WinRunner Oracle Add-in User’s Guide

42

Note that instead of the usual setting of -Xbootclasspath/a:..., you should use
/p (to prepend the path rather than append).

For example, if you are using JInitiator 1.3.1.14, and common_files is
C:\Program Files\Common Files, the value is:

-Xbootclasspath/p: C:\PROGRA~1\
COMMON~1\MERCUR~1\SHARED~1\JAVAAD~1\Patches\jdk\1.3.1_06;
C:\PROGRA~1\
COMMON~1\MERCUR~1\SHARED~1\JAVAAD~1\Patches\default;
C:\PROGRA~1\ COMMON~1\MERCUR~1\SHARED~1\JAVAAD~1\classes;
C:\PROGRA~1\
COMMON~1\MERCUR~1\SHARED~1\JAVAAD~1\classes\mic.jar

In addition, you need to copy mic_if2c.dll and mic_if2c_aqt.dll from the
Common Files\Mercury Interactive\SharedFiles\JavaAddin\bin folder to
the bin folder of the Plug-in or JInitiator you are using.

Java 1 (JInitiator 1.1.x)

The multi-JDK support mechanism is invoked by the _classload_hook
environment variable. If you need to remove the multi-JDK support, remove
the _classload_hook from the JDK settings by deleting the environment
variable.

Next, you should manually copy the classes from the correct patches folder
to the JInitiator 1.1.x classes folder. For JInitiator versions 1.1.7.x, copy the
classes from the ora_1.1.7 folder. For JInitiator versions 1.1.8.x, copy the
classes from the ora_1.1.8 folder.

Note: Typically, the JInitiator version number is part of the installation
path. If you do not know the version number, and do not know the
installation path, check the Java Console for version information. For
information on locating the Java Console, see “Locating the Java Console”
on page 39.

Troubleshooting Testing Oracle Applications

43

In addition, you need to copy the default patches folder under Common
Files\Mercury Interactive\SharedFiles\JavaAddin\Patches.

You also need to copy mic_if2c.dll and mic_if2c_aqt.dll from the Common
Files\Mercury Interactive\SharedFiles\JavaAddin\bin folder to the bin
folder of the JInitiator you are using.

Disabling the Multi-JDK Support

The multi-JDK does not work when using the incremental garbage collector
(-Xincgc option). If the –Xincgc option is absolutely required, follow the
instructions in “Running the Oracle Add-in without Multi-JDK Support
(Advanced)” on page 41, to enable you to use the Oracle Add-in.

WinRunner Oracle Add-in User’s Guide

44

45

A

accessing an object field 20, 21, 22
Add-in Manager 3

C

configuring the way WinRunner learns 10

E

edit objects, activating 8
edit_activate function 8

F

firing Java events 10, 31

G

GUI Map Editor 2
GUI Spy 24, 27

I

invoking
Java method 18
Java method from a returned object

22
static Java method 19

J

Java
console 39

Java bean properties, setting the value of 7
Java events, simulating 10, 31

Java method
invoking 18
invoking from a returned object 22
invoking static 19

Java Method wizard 24, 28
Java objects

working with 22
Java pop-up menu, selecting an item from 9
java_activate_method function 18

invoking a Java method 27, 30
viewing the methods for an object 28

java_activate_static function 19
java_fire_event function 10, 31
java_get_field function 20
java_get_static function 21
java_set_field function 7, 21
java_set_static function 22
jco_create function 22
jco_free function 23
jco_free_all function 23

M

method_wizard statement 28

O

obj_mouse_click statement 6
obj_set_info function 7
object field, accessing 20, 21, 22
object methods

viewing 24
Oracle Add-in

accessing .dll files 40
checking environment settings 37
disabling multi-JDK support 43

Index

WinRunner Oracle Add-in User’s Guide

46

Oracle Add-in (continued)
running without multi-JDK support

41
starting 3

P

popup_select_item function 9

S

set_aut_var function 10
COLUMN_NUMBER variable 10
EDIT_REPLAY_MODE variable 12
EXCLUDE_CONTROL_CHARS

variable 12
MAX_COLUMN_GAP variable 11
MAX_LINE_DEVIATION variable 11
MAX_ROW_GAP variable 11
MAX_TEXT_DISTANCE variable 13
RECORD_BY_NUM variable 13
RECORD_WIN_OPS variable 13
SKIP_ON_LEARN variable 14
SOFTKEYS_REC variable 14
TREEVIEW_PATH_SEPARATOR

variable 14
USE_LOW_LEVEL_EVENTS variable

14
setting the value of a Java bean property 7
simulating Java events 10, 31
static Java method

invoking 19

T

troubleshooting, testing Java objects 35
TSL functions

for standard Java objects 5

V

variables, for set_aut_var 12

W

win_mouse_click statement 6

Mercury Interactive Corporation
1325 Borregas Avenue
Sunnyvale, CA 94089 USA

Main Telephone: (408) 822-5200
Sales & Information: (800) TEST-911, (866) TOPAZ-4U
Customer Support: (877) TEST-HLP
Fax: (408) 822-5300

Home Page: www.mercuryinteractive.com
Customer Support: support.mercuryinteractive.com

� �� ��� ��� � 	
 � � �

	WinRunner Oracle Add-in User's Guide
	Table of Contents
	Introduction
	Using the Oracle Add-in
	How the Oracle Add-in Identifies Java Objects
	Activating the Oracle Add-in

	Testing Standard Java Objects
	About Testing Standard Java Objects
	Recording Context Sensitive Tests
	Enhancing Your Script with TSL
	Setting the Value of a Java Bean-Like Property
	Activating a Java Edit Object
	Selecting an Item from a Java Pop-up Menu
	Configuring Oracle Variable Settings

	Working with Java Methods and Events
	About Working with Java Methods and Events
	Invoking Java Methods
	Using the java_activate_method Function
	Using the java_activate_static Function

	Accessing Object Fields
	Using the java_get_field Function
	Using the java_set_field Function
	Using the java_get_static Function
	Using the java_set_static Function

	Working with Return Values (Advanced)
	Viewing Object Methods in Your Application or Applet
	Using the GUI Spy
	Using the Java Method Wizard

	Firing Java Events
	Using the Name Attribute for Oracle Application GUI Objects
	Enabling the Name Attribute
	Verifying that the Oracle Applications Server Provides a Unique Name Attribute
	Adding the Name Attribute to the GUI Map Configuration

	Troubleshooting Testing Oracle Applications
	Common Problems and Solutions
	Checking Java Environment Settings
	Locating the Java Console
	Accessing Oracle Add-in DLL Files
	Running the Oracle Add-in without Multi-JDK Support (Advanced)
	Java 2 (JInitiator 1.3.1.x, Sun Plug-in 1.4.1)
	Java 1 (JInitiator 1.1.x)

	Disabling the Multi-JDK Support

	Index

