

WinRunner
 Java™ Add-in

User’s Guide
Version 7.6

WinRunner Java Add-in User’s Guide, Version 7.6

This manual, and the accompanying software and other documentation, is protected by U.S. and
international copyright laws, and may be used only in accordance with the accompanying license
agreement. Features of the software, and of other products and services of Mercury Interactive
Corporation, may be covered by one or more of the following patents: U.S. Patent Nos. 5,701,139;
5,657,438; 5,511,185; 5,870,559; 5,958,008; 5,974,572; 6,138,157; 6,144,962; 6,205,122; 6,237,006;
6,341,310; 6,360,332, 6,449,739; 6,470,383; 6,477,483; 6,549,944; 6,560,564; and 6,564,342. Other
patents pending. All rights reserved.

ActiveTest, ActiveTune, Astra, FastTrack, Global SiteReliance, LoadRunner, Mercury, Mercury
Interactive, the Mercury Interactive logo, Open Test Architecture, Optane, POPs on Demand, ProTune,
QuickTest, RapidTest, SiteReliance, SiteRunner, SiteScope, SiteSeer, TestCenter, TestDirector, TestSuite,
Topaz, Topaz AIMS, Topaz Business Process Monitor, Topaz Client Monitor, Topaz Console, Topaz
Delta, Topaz Diagnostics, Topaz Global Monitor, Topaz Managed Services, Topaz Open DataSource,
Topaz Real User Monitor, Topaz WeatherMap, TurboLoad, Twinlook, Visual Testing, Visual Web
Display, WebTest, WebTrace, WinRunner and XRunner are trademarks or registered trademarks of
Mercury Interactive Corporation or its wholly owned subsidiary Mercury Interactive (Israel) Ltd. in
the United States and/or other countries.

All other company, brand and product names are registered trademarks or trademarks of their
respective holders. Mercury Interactive Corporation disclaims any responsibility for specifying which
marks are owned by which companies or which organizations.

Mercury Interactive Corporation
1325 Borregas Avenue
Sunnyvale, CA 94089 USA
Tel: (408) 822-5200
Toll Free: (800) TEST-911, (866) TOPAZ-4U
Fax: (408) 822-5300

© 2003 Mercury Interactive Corporation, All rights reserved

If you have any comments or suggestions regarding this document, please send them via e-mail to
documentation@merc-int.com.

WRJAVAUG7.6/01

iii

Table of Contents

Chapter 1: Introduction ..1
Using the Java Add-in..1
How the Java Add-in Identifies Java Objects ..2
Activating the Java Add-in ..3

Chapter 2: Testing Standard Java Objects ..5
About Testing Standard Java Objects ..5
Recording Context Sensitive Tests ..5
Enhancing Your Script with TSL ...6

Chapter 3: Working with Java Methods and Events...........................21
About Working with Java Methods and Events..................................21
Invoking Java Methods ...22
Accessing Object Fields..24
Working with Return Values (Advanced) ...26
Viewing Object Methods in Your Application or Applet....................28
Firing Java Events ..35

Chapter 4: Configuring Custom Java Objects.....................................37
About Configuring Custom Java Objects..37
Adding Custom Java Objects to the GUI Map38
Configuring Custom Java Objects with the Java Custom

Object Wizard...39

Chapter 5: Troubleshooting Testing Java Applets and
Applications ..47

Common Problems and Solutions ..48
Checking Java Environment Settings..50
Locating the Java Console...52
Accessing Java Add-in DLL Files..54
Running an Application or Applet with the Same Settings................55
Running the Java Add-in without Multi-JDK Support (Advanced)55
Disabling the Multi-JDK Support ..58

Index ..59

WinRunner Java Add-in User’s Guide

iv

1

1
Introduction

Welcome to the WinRunner Java Add-in. This guide explains how to use
WinRunner to successfully test Java applications and applets. It should be
used in conjunction with the WinRunner User’s Guide and the TSL Online
Reference.

This chapter describes:

➤ Using the Java Add-in

➤ How the Java Add-in Identifies Java Objects

➤ Activating the Java Add-in

Using the Java Add-in

The Java Add-in is an add-in to WinRunner, Mercury Interactive’s
automated GUI testing tool for Microsoft Windows applications.

The Java Add-in enables you to record and run tests on cross-platform Java
applets and applications. You can record and run user actions on Java
objects in Internet Explorer or Netscape, in Java Web Start, in Sun’s
AppletViewer, and in standalone Java applications.

To create a test for a Java application or applet, use WinRunner to record the
operations you perform on the applet or application. As you work with Java
objects, WinRunner generates a test script in TSL, Mercury Interactive’s
C-like test script language.

WinRunner Java Add-in User’s Guide

2

With the Java Add-in you can:

➤ Record operations on standard Java objects just as you would any other
Windows object with WinRunner.

➤ Configure the GUI map to recognize custom Java objects as push buttons,
check buttons, static text, or text fields.

➤ Use various TSL functions to execute Java methods from the WinRunner
script.

➤ Use the java_fire_event function to simulate a Java event on the specified
object.

How the Java Add-in Identifies Java Objects

WinRunner learns a set of default properties for each object you operate on
while recording a test. These properties enable WinRunner to obtain a
unique identification for every object that you test. This information is
stored in the GUI map. WinRunner uses the GUI map to help it locate
frames and objects during a test run.

WinRunner identifies standard Java objects as push button, check button,
static text, list, table, or text field classes, and stores the relevant physical
properties in the GUI Map just like the corresponding classes of Windows
objects. If you record an action on a custom or unsupported Java object,
WinRunner maps the object to the general object class in the WinRunner
GUI map unless you configure the GUI map to identify the object as a
custom Java object, by choosing Tools > Java Custom Object Wizard. A
custom Java object can be configured as a push button, check button, static
text, text field, and so forth, and you can configure the physical properties
that will be used to identify the object. For more information on GUI maps,
refer to the “Configuring the GUI Map” chapter in the WinRunner User’s
Guide.

You can view the contents of your GUI map files in the GUI Map Editor by
choosing Tools > GUI Map Editor. The GUI Map Editor displays the logical
names and the physical descriptions of objects. For more information on
GUI maps, refer to the “Understanding the GUI Map” section in the
WinRunner User’s Guide.

Introduction

3

Activating the Java Add-in

Before you begin testing your Java application or applet, make sure that you
have installed all the necessary files and made any necessary configuration
changes. For more information, refer to the WinRunner Java Add-in
Installation Guide.

Note: The RapidTest Script Wizard option is not supported by the Java
Add-in. For more information about the RapidTest Script Wizard, refer to the
WinRunner User’s Guide.

To activate the Java Add-in:

 1 Select Start > Programs > WinRunner > WinRunner. The WinRunner Add-in
Manager dialog box opens.

WinRunner Java Add-in User’s Guide

4

 2 Select Java.

 3 Click OK. WinRunner opens with the Java Add-in loaded.

Note:

If the Add-In Manager dialog box does not open:

 1 Start WinRunner.

 2 In Tools > General Options > General category > Startup sub-category, check
Display Add-in Manager on startup. In the Hide Add-in Manager after ___
seconds box, enter the number of seconds for which the Add-in Manager is
displayed. (The default value is 10 seconds.)

 3 Click OK.

 4 Close WinRunner. A WinRunner message box opens asking whether you
want to keep the changes you made. Click Yes.

For more information on the Add-in Manager, refer to the WinRunner User’s
Guide.

5

2
Testing Standard Java Objects

This chapter describes how to record standard Java objects and enhance
scripts that test Java applications and applets.

This chapter describes:

➤ About Testing Standard Java Objects

➤ Recording Context Sensitive Tests

➤ Enhancing Your Script with TSL

About Testing Standard Java Objects

With the Java Add-in, you can record or write context sensitive scripts on all
standard Java objects from the supported toolkits. You can also use TSL
functions that enable you to add Java-specific statements to your script.

Recording Context Sensitive Tests

Whenever you start WinRunner with the Java Add-in loaded, support for
the Java environments you installed will always be loaded. For more
information about selecting Java environments, refer to the WinRunner Java
Add-in Installation Guide.

You can confirm that your Java environment has opened properly by
checking the Java console for the following confirmation message: "Loading
Mercury Support (version x.xxx)".

WinRunner Java Add-in User’s Guide

6

Note: If the browser’s Java console and a Java plug-in are open
simultaneously, the Java Add-in will not function properly, since this
scenario results in two virtual machines and WinRunner cannot distinguish
between them. Typically, the last virtual machine created within a process is
supported. If this happens, close the browser and console, and then reopen
the browser before running the tests.

If your Java application or applet uses standard Java objects from any of the
supported toolkits, then you can use WinRunner to record a Context
Sensitive test, just as you would with any Windows application.

As you record, WinRunner adds standard Context Sensitive TSL statements
into the script. If you try to record an action on an unsupported or custom
Java object, WinRunner records a generic obj_mouse_click or
win_mouse_click statement. You can configure WinRunner to recognize
your custom objects as push buttons, check buttons, static text, edit fields,
and so forth, by using the Java Custom Object Wizard. For more
information, refer to Chapter 4, “Configuring Custom Java Objects.”

Enhancing Your Script with TSL

WinRunner includes several TSL functions that enable you to add
Java-specific statements to your script. Specifically, you can use TSL
functions to:

➤ Set the value of a Java bean-like property.

➤ Activate a specified Java edit field.

➤ Find the dimensions and coordinates of list and tree items in JFC (Swing
toolkit).

➤ Select an item from a Java pop-up menu.

➤ Configure the way WinRunner learns object descriptions and runs tests on
Java applications and applets.

➤ Configure the way WinRunner records Swing/JFC table cell editors.

Testing Standard Java Objects

7

You can also use TSL functions to invoke the methods of Java objects and to
simulate events on Java objects. These are covered in Chapter 3, “Working
with Java Methods and Events.”

For more information about TSL functions and how to use TSL, refer to the
TSL Reference Guide or the TSL Online Reference.

Setting the Value of a Java Bean-Like Property

You can set the value of a Java bean-like property with the obj_set_info
function. This function works on all properties that have a set method.

Tip: You can also use the java_set_field function to set the value of a Java
field, even if it does not have a set method. The java_set_field function has
the following syntax: java_set_field (object, field_name, value);. For more
information, see “Using the java_set_field Function” on page 25.

The obj_set_info function has the following syntax:

obj_set_info (object, property, value);

The object parameter is the logical name of the object. The object may
belong to any class. The property parameter is the object property you want
to set and can be any of the properties displayed when using the WinRunner
GUI Spy. Refer to the WinRunner Users Guide for more information on the
GUI Spy or for a list of properties. The value parameter is the value that is
assigned to the property.

Note: When writing the property parameter name in the function, convert
the capital letters of the property to lowercase, and add an underscore before
letters that are capitalized within the Java bean-like property name.
Therefore, a Java bean-like property called MyProp becomes my_prop in
the TSL statement.

WinRunner Java Add-in User’s Guide

8

For example, for a property called MyProp, which has the method
setMyProp(String), you can use the function as follows:

obj_set_info(object, "my_prop", "Mercury");

The obj_set_info function will return ATTRIBUTE_NOT_SUPPORTED for
the property my_prop if one of the following statements is true:

➤ The object does not have a method called setMyProp.

➤ The method setMyProp() exists, but it has more than one parameter, or the
parameter is not of one of the following types: String, int (or Integer),
boolean (or Boolean), or float (or Float).

➤ The value parameter is not convertible to one of the above Java classes. For
example, the method gets an integer number as a parameter, but the
function’s value parameter was a non-numeric value.

➤ The setMyprop() method creates a Java exception.

Activating a Java Edit Object

You can activate an edit field with the edit_activate function. This is the
equivalent of a user pressing the ENTER key on an edit field. This function
has the following syntax:

edit_activate (object);

The object parameter is the logical name of the edit object on which you
want to perform the action.

For example, if you want to enter John Smith into the edit field
Text_Fields_0, then you can set the text in the edit field and then use
edit_activate to send the activate event, as in the following script:

set_window("swingsetapplet.html", 8);
edit_set("Text Fields:_0", "John Smith 2");
edit_activate("Text Fields:_0");

Testing Standard Java Objects

9

Finding the Location of a List Item

You can find the dimensions and coordinates of list and tree items in JFC
(swing toolkit) with the list_get_item_coord function. This function has
the following syntax:

list_get_item_coord (list, item, out_x, out_y, out_width, out_height);

The list parameter is the name of the list. The item parameter is the item
string. The out_x and out_y parameters are the output variables that store the
x- and y- coordinates of the item rectangle. The out_width and out_height
parameters are the output variables that store the width and height of the
item rectangle.

For example, for a list called "ListPanel$1" containing an item called "Cola",
you can use the function as follows to find the location of the Cola item:

set_window("swingsetapplet.html");
tab_select_item("JTabbedPane", "ListBox");
list_select_item("ListPanel$1", " Cola");
rc = list_get_item_coord("ListPanel$1", " Cola", x_list_src, y_list_src,

width_list_src, height_list_src);

Selecting an Item from a Java Pop-up Menu

You can select an item from a Java pop-up menu using the
popup_select_item function. This function has the following syntax:

popup_select_item ("menu;item");

The menu;item parameter indicates the logical name of the component
containing the menu and the name of the item.

Note that menu and item are represented as a single string, and are separated
by a semicolon.

WinRunner Java Add-in User’s Guide

10

When an item is selected from a submenu, each consecutive level of the
menu is separated by a semicolon in the format "menu; sub_menu1;
sub_menu2;...sub_menun; item." The item must be specified in a chain
composed of menu objects from the GUI map and ending in the name of
the menu item as it appears in the application. For example, the function
popup_select_item ("Copy"); does not use the correct syntax; while
popup_select_item ("MyEdit;Copy"); is correct.

The popup_select_item statement does not open the pop-up menu; you
can open the menu by a preceding TSL statement. For example:

obj_mouse_click ("MyEdit", 1, 1, RIGHT);

Note: When using the popup_select_item function on AWT toolkit pop-up
menus, the action that opens the menu must be performed during the test
run using the USE_LOW_LEVEL_EVENTS variable. For more information,
see page 14.

Testing Standard Java Objects

11

Configuring Java Variable Settings

You can configure how WinRunner learns descriptions of objects, records
and runs tests on Java applications or applets, or otherwise affect record or
run-related settings, with the set_aut_var function. This function has the
following syntax:

set_aut_var (variable, value);

Note: Variable names are not case sensitive.
Variable values may or may not be case sensitive, as specified below.

The following variables and corresponding values are available:

EDIT_REPLAY_MODE Controls how WinRunner performs actions
on edit fields. Use one or more of the
following values:

"S"—uses the setText () or setValue ()
methods to set a value of the edit object.

"P"—sends KeyPressed event to the object
for every character from the input string.

"T"—sends KeyTyped events to the object
for every character from the input string.

"R"—sends KeyReleased event to the object
for every character from the input string.

"F"—generates a FocusLost event at the end
of function execution.

Note: EDIT_REPLAY_MODE variable values
are case sensitive.

Default value: "PTR"

Note that the default value sends a triple
event to the edit field (KeyPressed-
KeyTyped-KeyReleased), just as an actual
user would generate a key stroke.

WinRunner Java Add-in User’s Guide

12

EXCLUDE_CONTROL_CHARS Specifies the characters to be ignored from
the setText () call by the edit_set command
when REPLAY_MODE_EDIT contains "S".
For example: set_aut_var
("EXCLUDE_CONTROL_CHARS", "\t");
means that the tab character will not be
included in the setText () method call when
EDIT_REPLAY_MODE contains "S".

MAX_TEXT_DISTANCE Sets the maximum distance in pixels, to
look for attached text.

Default value: 100

RECORD_BY_NUM Controls how items in list, combo box,
table, tab control, and tree view objects are
recorded.

The variable can be one of the following
values: "list", "combo", "table", "tab", "tree",
or a combination of these values separated
by a space. If one of these objects is
detected, numbers are recorded instead of
the item names or row/column header
names. ("table" is supported for KLG or
JCTable objects. "tab" is supported for JFC,
Vcafe, and KLG 3.x.) To return to recording
these items by name, set the variable value
as an empty string.

Note: RECORD_BY_NUM variable values
are case sensitive.

RECORD_WIN_OPS Determines whether window operations
(move and resize) are recorded.
Use one of the following values:

"ON" (or any non-zero numeric value)
"OFF"

Default value: "OFF"

Testing Standard Java Objects

13

SKIP_ON_LEARN Controls how WinRunner learns a window.
Mercury Interactive classes listed in the
variable are ignored when WinRunner
learns objects in a window from the GUI
Map Editor. May contain a list of Mercury
Interactive classes, separated by spaces. By
default, only objects with the WinRunner
class "object" are skipped.

Note: SKIP_ON_LEARN variable values are
case sensitive.

Default value: "object"

TABLE_EXTERNAL_EDITORS_LIST Specifies a list of editor class names that
should never be treated as part of a JTable
object but rather as separate objects. The
specified editors should be ones that by
default are treated as part of a JTable object
(using table functions) but either do not
work correctly with the table functions, or
work correctly but special actions cannot
be performed on them. This variable is
available only for JTable Swing toolkit
tables. For more information, see
“Recording on Swing/JFC Table Objects” on
page 15.

Use one or more of the following values:
Editor class names, separated by a space,
tab, newline, or return character.

Note: TABLE_EXTERNAL_EDITORS variable
values are case sensitive.

TABLE_RECORD_MODE Sets the record mode for a table object (CS
or ANALOG). Use one or more of the
following values:

"CS"—indicates that the record mode is
Context Sensitive.

WinRunner Java Add-in User’s Guide

14

"ANALOG"—records only low-level
(analog) table functions: tbl_click_cell,
tbl_dbl_click_cell, and tbl_drag. (JFC
JTable objects, KLG 3.6 table objects, and
KLG 4.x/5.0 JCTable objects only.)

Default value: "CS"

TREEVIEW_PATH_SEPARATOR Specifies the default separator ";" used to
separate entries in a path to a node of a
TreeView control.

Note: If you specify more than one
character, for example "#$", then
WinRunner treats either of the characters
as a separator (but not both of them in
sequence).

Default value: ";"

USE_LOW_LEVEL_EVENTS Controls whether WinRunner simulates
user input by Java events or by the mouse
and keyboard drivers. When a test runs
using this mode, the cursor moves on the
screen, as if performing the recorded user
operations.

Use one or more of the following values:

"all"—indicates that WinRunner simulates
all mouse clicks and keyboard strokes for all
types of Java objects by the mouse and
keyboard drivers.

WinRunner class names separated by a
space indicate that WinRunner uses mouse
and keyboard drivers to simulate user input
on object of the class names listed. For
example, "push_button edit" uses mouse
and keyboard drivers to simulate user input
on all buttons and edit boxes. To return to
simulating user input by Java events, set
the variable value as an empty string.

Testing Standard Java Objects

15

The low level events mode should be used
only when the Java Add-in fails to correctly
perform an action on your application. In
this mode, the test run resembles user
behavior, and therefore may succeed where
the regular mode fails. It is recommended
to only use this mode in specific
statements, and not for the entire test.

When running a test on AWT pop-up
menus, it is required to use low level events
mode in most cases. Note that this mode is
less context sensitive, therefore it is
recommended to use it only when
necessary.

Note: USE_LOW_LEVEL_EVENTS variable
values are case sensitive.

Recording on Swing/JFC Table Objects

When you record an operation that changes the data in a cell of a Java table,
WinRunner generally records the end result of the data in the cell in the
form of a tbl_set_cell_data function.

Note: tbl_set_cell_data is not used when the TABLE_RECORD_MODE
variable is set to ANALOG. For more information on the
TABLE_RECORD_MODE variable, see “Configuring Java Variable Settings” on
page 11.

Recording on Standard Cell Editors in Swing JTable Tables

The Java Add-in provides built-in support for several standard Swing JTable
cell editor types. This means that by default, WinRunner records operations
on these standard cell editors using tbl_set_cell_data functions.

WinRunner Java Add-in User’s Guide

16

Recording on Custom Cell Editors in Swing JTable Tables

When a JTable contains a custom (non-standard) cell editor, the default
tbl_set_cell_data function cannot be recorded. For example, if a cell
contains both a check box and a button that opens a dialog box, then a
tbl_set_cell_data function may not always provide an accurate description
of the operation(s) performed inside the cell.

If you record an operation on a custom cell editor, WinRunner records a
function that reflects the operation you performed on the object inside the
cell. For example, if the cell editor contains a custom edit box, WinRunner
records a statement like the following, depending on the operation that was
needed to activate the cell while the test was being recorded:

set_window("SwingSetApplet", 8);
tbl_set_selected_cell ("Inter-cell spacing:_1", "#0", "Last Name");
edit_set("Type Here:", "Andrews");

or

set_window("SwingSetApplet", 8);
tbl_activate_cell ("Inter-cell spacing:_1", "#0", "Last Name");
edit_set("Type Here:", "Andrews");

instead of:

set_window("SwingSetApplet", 1);
tbl_set_cell_data("Inter-cell spacing:_1", "#0", "Last Name", "Andrews");

Modifying the Default JTable Recording Behavior (Advanced)

In most cases, the default recording behavior for JTables works well and
maximizes the readability of your test. However, if you are not satisfied with
the value that WinRunner records for the tbl_set_cell_data function of a
particular editor, or if the test does not run correctly, you can set that editor
to be recorded, like a custom cell editor, in terms of the operation performed
on the object inside the cell.

Testing Standard Java Objects

17

To do this, use the TABLE_EXTERNAL_EDITORS_LIST variable with the
set_aut_var function to specify specific cell editor type(s) that should always
be treated as separate objects, and not as part of a table object. You specify
the editors as a space-separated list of the relevant toolkit classes.

For more information on the set_aut_var function and its variables, see
“Configuring Java Variable Settings” on page 11.

Finding the Toolkit Class of a JTable Editor

If you do not know the value of the toolkit class for an editor for use with
the TABLE_EXTERNAL_EDITORS_LIST variable, you can find it either by
using the GUI Spy or by running a short script in WinRunner to retrieve the
value.

To find the toolkit class of a JTable cell editor using the GUI Spy:

 1 Open the table and activate the cell editor. For example, make sure the
cursor is blinking inside an edit field, or display the drop-down list of a
combo box.

 2 With the appropriate cell activated, use the GUI Spy to point to the active
cell. For more information on using the GUI Spy, refer to the WinRunner
User’s Guide.

WinRunner Java Add-in User’s Guide

18

 3 Display the All Standard tab of the GUI Spy.

 4 In the Members list, find TOOLKIT_class. The toolkit class value is displayed
next to the TOOLKIT_class item.

 5 Enter the toolkit class value (the case-sensitive fully qualified Java class
name) into your TABLE_EXTERNAL_EDITORS_LIST variable.

Finding the Toolkit Class of a JTable Editor by Running a WinRunner
Script

For some cell editors, it is difficult or impossible to capture an activated cell
with the GUI Spy because the cell does not stay activated for a long enough
period of time. For example, with a check box, once the check box has been
selected or cleared, the cell editor is no longer active.

Testing Standard Java Objects

19

If you need to find the toolkit class value to use for these types of cell
editors, you can run a a short script similar to the following script in
WinRunner to retrieve the value.

set_window("Table Demo", 1);
java_activate_method("Inter-cell spacing:_1", "editCellAt", editable, 4, 2);

row 4, column 2
if (editable != "false") {

java_activate_method("Inter-cell spacing:_1","getEditorComponent",
component);

java_activate_method(component, "getClass", class);
java_activate_method(class, "getName", name);
pause(name);

} else {
pause("Cell is not editable");

}

WinRunner Java Add-in User’s Guide

20

21

3
Working with Java Methods and Events

This chapter describes how to invoke the methods of Java objects. It also
describes how to simulate events on Java objects.

This chapter describes:

➤ About Working with Java Methods and Events

➤ Invoking Java Methods

➤ Accessing Object Fields

➤ Working with Return Values (Advanced)

➤ Viewing Object Methods in Your Application or Applet

➤ Firing Java Events

About Working with Java Methods and Events

You can invoke object methods during your test using the
java_activate_method function or static (class) methods using the
java_activate_static function. You can view the methods of Java objects in
your application using the GUI spy or the Java Method Wizard. You can also
generate the appropriate TSL statement for activating the method you
select.

You can access object fields using any of the following functions:
java_get_field, java_set_field, java_get_static, or java_set_static.

You can also simulate events on Java objects using the fire_java_event
function.

WinRunner Java Add-in User’s Guide

22

Invoking Java Methods

You can invoke a Java method for any Java object using the
java_activate_method function. You can invoke a static method using the
java_activate_static function.

Using the java_activate_method Function

You can use the java_activate_method function to invoke object methods
during your test.

The java_activate_method function has the following syntax:

java_activate_method (object, method_name, retval [, param1, ... param8]);

The object parameter is the logical name of the object (for a visible, GUI
object) or an object returned from a previous java_activate_method
function or any other function described in this chapter. For more
information on return values, see “Working with Return Values (Advanced)”
on page 26. The method_name parameter indicates the name of the Java
method to invoke. The retval parameter is an output variable that holds a
return value from the invoked method. Note that this parameter is required
even for void Java methods. param1...8 are optional parameters to be passed
to the Java method.

The Java method parameters may belong to one of the following Java data
types: boolean, int, long, float, double, or string, or they may be any other
Java object returned from a previous java_activate_method function or any
other function described in this chapter. For more information about using
returned objects in your script, see “Working with Return Values
(Advanced)” on page 26.

Note: If the function returns boolean output, the retval parameter returns
the string representation of the output: "true" or "false".

Working with Java Methods and Events

23

For example, you can use the java_activate_method function to perform
actions on a list:

Add item to the list at position 2:
java_activate_method("list", "add", retval, "new item", 2);

Get number of visible rows in a list:
java_activate_method("list", "getRows", rows);

Check if an item is selected:
java_activate_method("list", "isIndexSelected", isSelected, 2);

The TSL return value for the java_activate_method function can be any of
the TSL general return values. For more information on TSL return values,
refer to the TSL Reference Guide.

Using the java_activate_static Function

You can invoke a static method of any Java class using the
java_activate_static function.

The java_activate_static function has the following syntax:

java_activate_static (class_name, method_name, retval [, param1, ... param8
]);

The class_name parameter is the fully-qualified Java class name. The
method_name parameter indicates the name of the static Java method to
invoke. The retval parameter is an output variable that holds a return value
from the invoked method. param1...8 are optional parameters to be passed
to the Java method.

The Java method parameters may belong to one of the following Java data
types: boolean, int, long, float, double, or string, or they may be any other
Java object returned from a previous java_activate_static function or any
other function described in this chapter. For more information about using
returned objects in your script, see “Working with Return Values
(Advanced)” on page 26.

WinRunner Java Add-in User’s Guide

24

Note: If the function returns boolean output, the retval parameter will
return the string representation of the output: "true" or "false".

For example, you can use the java_activate_static function to invoke the
toHexString static method of the Java class Integer.

java_activate_static("java.lang.Integer", "toHexString", hex_str, 127);

Accessing Object Fields

You can access object fields using the java_get_field or java_set field
functions. You can use the java_get_static or java_set_static functions to
access static fields.

Using the java_get_field Function

You can use the java_get_field function to retrieve the current value of an
object’s field.

The java_get_field function has the following syntax:

java_get_field (object, field_name, out_value);

The object parameter is the logical name of the object whose field is
retrieved, or an object returned from a previous java_get_field function or
any other function described in this chapter. The field_name parameter
indicates the name of the field to retrieve. The out_value parameter is an
output variable that holds the value from the retrieved field.

For example, you can use the java_get_field function to retrieve the value of
the "x" field of a Java point object:

java_get_field(point_object, "x", ret_val);

Working with Java Methods and Events

25

Using the java_set_field Function

You can use the java_set_field function to set the specified value of an
object’s field.

The java_set_field function has the following syntax:

java_set_field (object, field_name, value);

The object parameter is the logical name of the object or the value returned
from a previous java_set_field function or any other function described in
this chapter. The field_name parameter indicates the name of the field whose
value will be set. The value parameter holds the new value of the field.

The value parameter may belong to one of the following Java data types:
boolean, int, long, float, double, or String, or it may be any other value
returned from a previous java_set_field function or any other function
described in this chapter. For more information about using returned objects
in your script, see “Working with Return Values (Advanced)” on page 26.

For example, you can use the java_set_field function to set the value of the
"x" field to 5:

java_set_field(point_object, "x", 5);

Using the java_get_static Function

You can use the java_get_static function to retrieve the current value of a
static field.

The java_get_static function has the following syntax:

java_get_static (class, field_name, out_value);

The class parameter is the fully-qualified Java class name. The field_name
parameter indicates the name of the field to retrieve. The out_value
parameter is an output variable that holds a return value from the retrieved
field.

For example, you can use the java_get_static function to retrieve the value
of the "out" static field of the "java.lang.System" class:

java_get_static("java.lang.System", "out", ret_val);

WinRunner Java Add-in User’s Guide

26

Using the java_set_static Function

You can use the java_set_static function to set the specified value of a static
field.

The java_set_static function has the following syntax:

java_set_static (class, field_name, value);

The class parameter is the fully-qualified Java class name. The field_name
parameter indicates the name of the field whose value will be set. The value
parameter holds the new value of the field.

The value parameter may belong to one of the following Java data types:
boolean, int, long, float, double, or String, or it may be any other value
returned from a previous java_set_static function or any other function
described in this chapter. For more information about using returned objects
in your script, see “Working with Return Values (Advanced)” on page 26.

For example, you can use the java_set_static function to set the value of the
"out" static field of the "java.lang.System" class:

java_set_static("java.lang.System", "out", 12);

Working with Return Values (Advanced)

If a Java object is returned from a prior java_activate_method statement,
you can use the returned object to invoke its methods. You can also use the
returned object as an argument to another java_activate_method function
or any of the other functions described in this chapter.

You can also use the jco_create function to create a new Java object within
your application or applet.

The jco_create function has the following syntax:

jco_create (existing_obj , new_obj , class_name , [param1 , ... , param8]);

Working with Java Methods and Events

27

The existing_obj parameter specifies the object whose class loader will be
used to find the class of the newly created object. This can be the main
application or applet window, or any other Java object within the
application or applet. The new_obj output parameter is the new object to be
returned. The class_name parameter is the fully-qualified Java class name.
Param1...Param8 are the required parameters for that object constructor.
These parameters can be of type: int, float, boolean ("true" or "false"), String,
or any value returned from a previous jco_create function or any of the
other functions described in this chapter.

You invoke the methods of a returned object just as you would any other
Java object, using the java_activate_method syntax described above.

Note: You can use the "_jco_null" object as a parameter in order to represent
a null object.

When a Java object is returned from a java_activate_method or jco_create
statement, a reference to the object is held by the Java Add-in. When you
have finished using the returned object in your script, you should use the
jco_free function to release the reference to the specific object. You can also
use the jco_free_all function to release all object references held by the Java
Add-in.

These two functions have the following syntax:

jco_free (object);
jco_free_all();

Note: A returned object can only be used to invoke the methods of that
object or as an argument for another java_activate_method or any of the
other functions described in this chapter. Do not use a returned object as an
argument for other functions.

WinRunner Java Add-in User’s Guide

28

Viewing Object Methods in Your Application or Applet

If you are not sure which methods are available for a given object, you can
use the GUI Spy or the Java Method Wizard to view all of the methods
associated with the object. You can also use the GUI Spy or the Java Method
Wizard to generate the appropriate java_activate_method function for a
selected method.

Using the GUI Spy

You can view all methods associated with GUI Java objects in your
application or applet and generate the appropriate java_activate_method
function for a selected method using the Java tab of the GUI Spy.

Note: As with any other GUI object, you can view all properties or just the
recorded properties of a Java object in the All Standard or Recorded tabs of
the GUI Spy. For more information on these elements of the GUI Spy, refer
to the WinRunner User’s Guide.

To view object methods in your application or applet using the GUI Spy:

 1 Open the Java application or applet that contains the object for which you
want to view the methods.

Working with Java Methods and Events

29

 2 Choose Tools > GUI Spy. The GUI Spy opens.

 3 Click the Java tab.

WinRunner Java Add-in User’s Guide

30

 4 Click Spy and point to an object on the screen. The object is highlighted
and the active window name, object name, and all of the object’s Java
methods appear in the appropriate fields. The object’s methods are listed
first, followed by a listing of methods inherited from the object’s
superclasses.

 5 To capture the object methods in the GUI Spy dialog box, point to the
desired object and press the STOP softkey. (The default softkey combination
is Ctrl Left + F3.)

Working with Java Methods and Events

31

To generate the TSL statement for invoking a Java method:

 1 Activate the GUI Spy as described on page 28.

 2 Select the method that you want to invoke from the list of methods. The
appropriate java_activate_method is displayed in the TSL statement box.

Note: If you run a Java application on a virtual machine earlier than JDK
version 1.2, the java_activate_method function cannot invoke Protected,
Default (i.e., package), or Private method types.

 3 Copy the statement displayed in the box and paste it into your script.

 4 Input parameters are identified as Param1, Param2, and so forth. Replace the
input parameters in the statement with the parameter values you want to
send to the method.

The Java method parameters may belong to one of the following Java data
types: boolean, int, long, float, double, or string, or they may be any other
Java object returned from a previous java_activate_method function or any
other function described in this chapter. For more information, see “Using
the java_activate_method Function” on page 22.

For example, if you want to change the text on the button labeled "One" to
"Yes", highlight the setText method and copy the statement in the box:

rc = java_activate_method("One","setText",retValue,param1);

and replace Param1 with "Yes" as shown below:

rc = java_activate_method("One","setText",retValue,"Yes");

WinRunner Java Add-in User’s Guide

32

Using the Java Method Wizard

You can use the Java Method Wizard to view the methods associated with
Java objects and to generate the appropriate java_activate_method
statement for one of the displayed methods.

To view the methods for an object in your application or applet:

 1 Open the Java application or applet that contains the object for which you
want to view the methods.

 2 Enter a method_wizard statement to activate the Java Method Wizard using
the syntax:

method_wizard (object);

where object is the logical name of the object for which you want to view the
methods, or an object returned from a previous java_activate_method
function, or any of the other functions described in this chapter.

 3 Select Debug run mode in the toolbar.

 4 Choose Debug > Step, or click the Step button to run the statement. The
Java Method Wizard opens and displays a list with the object’s class and all
of its superclasses.

Working with Java Methods and Events

33

Note: After the Java Method Wizard opens, the focus returns to the main
WinRunner window. You may need to select the Java Method Wizard icon
on your Windows taskbar to display the wizard.

 5 Double-click a class element to view a summary of available methods by
type.

 6 Double-click a method type to view the related methods.

WinRunner Java Add-in User’s Guide

34

To generate the TSL statement for invoking a Java method:

 1 Activate the Java Method Wizard as described on page 32.

 2 Select the method that you want to invoke from the list of methods under
the appropriate object class. A TSL statement is displayed in the TSL
statement box.

Note: If you run a Java application on a virtual machine earlier than JDK
version 1.2, the java_activate_method function cannot invoke Protected,
Default (i.e., package), or Private method types.

 3 Copy the statement displayed in the TSL statement box and paste it into
your script.

 4 Replace the * symbols in the statement with the parameter values you want
to send to the method.

For example, if you created a Rectangle object, and you want to enlarge it by
one pixel in each direction, copy the TSL statement displayed in the TSL
statement box:

rc = java_activate_method(newRectangle, "add", retValue, *, *);

and replace each * symbol with 1 as shown below:

rc = java_activate_method(newRectangle, "add", retValue, 1, 1);

Working with Java Methods and Events

35

Firing Java Events

You can simulate an event on a Java object during a test run with the
java_fire_event function. This function has the following syntax:

java_fire_event (object , class [, constructor_param1,..., contructor_paramn]);

The object parameter is the logical name of the Java object. The class
parameter is the name of the Java class representing the event to be
activated. The constructor_paramn parameters are the required parameters for
the object constructor (excluding the object source, which is specified in the
object parameter).

Note: The constructor’s Event ID argument may be entered as the ID
number or the final field string that represents the Event ID.

For example, you can use the java_fire_event function to fire a
MOUSE_CLICKED event using the following script:

set_window("mybuttonapplet.htm", 2);
java_fire_event ("MyButton", "java.awt.event.MouseEvent",
"MOUSE_CLICKED", get_time(), "BUTTON1_MASK", 4, 4, 1, "false");

In the example above, the constructor has the following parameters: int id,
long when, int modifiers, int x, int y, int clickCount, boolean popupTrigger,
where id = "MOUSE_CLICKED" , when = get_time() , modifiers =
"BUTTON1_MASK", x = 4, y = 4, clickCount = 1, popupTrigger = "false".

WinRunner Java Add-in User’s Guide

36

37

4
Configuring Custom Java Objects

This chapter explains how to add Java objects to the GUI map and to
configure custom Java objects as standard GUI objects.

This chapter describes:

➤ About Configuring Custom Java Objects

➤ Adding Custom Java Objects to the GUI Map

➤ Configuring Custom Java Objects with the Java Custom Object Wizard

About Configuring Custom Java Objects

With the Java Add-in you can use WinRunner to record test scripts on most
Java applications and applets, just like you would in any other Windows
application. If you record an action on a custom or unsupported Java object,
however, WinRunner maps the object to the general object class in the
WinRunner GUI map. When this occurs, you can use the Java Custom
Object Wizard to configure the GUI map to recognize these Java objects as a
push button, check button, static text, or text field. This makes the test
script easier to read and makes it easier for you to perform checks on
relevant object properties.

After using the wizard to configure a custom object, you can add it to the
GUI map, record actions, and run it as you would any other WinRunner
test.

WinRunner Java Add-in User’s Guide

38

Adding Custom Java Objects to the GUI Map

Once the Java Add-in is loaded, you can add custom Java objects to the GUI
map by recording an action or by using the GUI Map Editor to learn the
objects. By default, however, these objects will each be mapped to the
general object class, and activities performed on those objects will generally
result in generic obj_mouse_click or win_mouse_click statements. The
objects will usually be identified in the GUI map by their label property, or if
WinRunner does not recognize the label, by a numbered class_index
property.

For example, suppose you wish to record a test on a sophisticated subway
routing Java application. This application lets you select your starting
location and destination, and then suggests the best subway route to take.
The application allows you to select which train line(s) you prefer to use for
your travels.

Since WinRunner cannot recognize the custom Java check boxes in the
subway application as GUI objects, when you check one of the options, the
GUI map defines the objects as:

{
class: object,
label: "M (Nassau St Express)"
}

If you were to record a test in which you selected the "M", "A", and "Six" lines
as your preferred lines, WinRunner would create a test script similar to the
following:

set_window("Line Selection", 1);
obj_mouse_click("M (Nassau St Express)", 6, 32, LEFT);
obj_mouse_click("A (Far Rockaway) (Eighth Av...", 10, 30, LEFT);
obj_mouse_click("Six (Lexington Ave Local)", 5, 27, LEFT);

Configuring Custom Java Objects

39

The test script above is difficult to understand. If, instead, you use the Java
Custom Object Wizard in order to associate the custom objects with the
check button class, WinRunner records a script similar to the following:

set_window("Line Selection", 8);
button_set("M (Nassau St Express)", ON);
button_set("A (Far Rockaway) (Eighth Av...", ON);
button_set("Six (Lexington Ave Local)", ON);

Now it is easy to see that the objects in the script are check buttons and that
the user selected (turned ON) the three check buttons.

Configuring Custom Java Objects with the Java Custom
Object Wizard

You configure a custom Java object in WinRunner using the Java Custom
Object Wizard to assign the object to a standard GUI class and to object
properties that uniquely identify the object.

Note: The GUI Map Configuration tool does not support configuring Java
objects. The Java Custom Object Wizard serves a similar purpose for Java
objects to that which the regular GUI Map Configuration tool serves for
Windows objects. Because Java objects do not have a handle or window
(and therefore no MSW class), the regular GUI Map Configuration tool is
unable to perform a set_class_map type mapping. Thus, when you want to
map a custom Java object to a standard class, always use the Java Custom
Object Wizard option. For more information about the GUI Map
Configuration tool, refer to the WinRunner User’s Guide.

To configure a Java object using the Java Custom Object Wizard:

 1 Open your Java application containing custom Java objects.

 2 Open a new test in WinRunner.

 3 Choose Tools > Java Custom Object WIzard. The Custom Object Wizard
Welcome screen opens. Click Next.

WinRunner Java Add-in User’s Guide

40

 4 Click the Mark Object button. Point to an object in the Java application.
The object is highlighted. Click any mouse button to select the object. A
default name appears in the Object class field.

 5 Click the Highlight button if you want to confirm that the correct option
was selected. The object you selected is highlighted.

 6 If you want to select a different object, repeat steps 4 and 5. When you are
satisfied with your selection, click Next.

Configuring Custom Java Objects

41

 7 Select a standard class object for the object you selected. Click Next.

WinRunner Java Add-in User’s Guide

42

 8 Select an appropriate custom property and corresponding property value
from the property list on the right to uniquely identify the object, or accept
the suggested property and value.

If you selected check_button as the standard object, two custom properties
are necessary. After selecting the first property, click Next Property to select
the second property for the object.

Click Next.

 9 The Congratulations screen opens. If you want WinRunner to learn another
custom Java object, click Yes. The wizard returns to the Mark Custom Object
screen.

Configuring Custom Java Objects

43

 10 Repeat steps 4-8 for each custom object you want to configure. If you are
finished configuring custom Java options, click No.

WinRunner Java Add-in User’s Guide

44

 11 The Finish screen opens. Click Finish to close the Custom Object Wizard.

 12 Close and reopen your Java application or applet to activate the new
configuration for the object(s).

Note: The new object configuration settings will not take effect until the
Java application or applet is restarted.

Once you have configured a custom Java option using the Java Custom
Object Wizard, you can add the objects to the GUI map or record a test as
you would in any Windows application. For more information on the GUI
map and recording scripts, refer to the WinRunner User’s Guide.

Configuring Custom Java Objects

45

Note: When you configure custom Java objects in WinRunner, the Program
Files\Common Files\Mercury Interactive\SharedFiles\JavaAddin\classes\
customization.properties file is created and contains information about the
custom Java objects. If you want to modify your custom Java configurations,
or no longer want to use them, delete the custom Java objects in the GUI
Map and delete the customization.properties file. Then restart your Java
application or applet.

WinRunner Java Add-in User’s Guide

46

47

5
Troubleshooting Testing Java Applets and
Applications

This chapter is intended to help pinpoint and resolve some common
problems that may occur when testing Java applets and applications.

This chapter describes:

➤ Common Problems and Solutions

➤ Checking Java Environment Settings

➤ Locating the Java Console

➤ Accessing Java Add-in DLL Files

➤ Running an Application or Applet with the Same Settings

➤ Running the Java Add-in without Multi-JDK Support (Advanced)

➤ Disabling the Multi-JDK Support

WinRunner Java Add-in User’s Guide

48

Common Problems and Solutions

The Java Add-in provides a number of indicators that help you identify
whether your add-in is properly installed and functioning. The following
table describes the indicators you may see when your add-in is not
functioning properly, and suggests possible solutions:

Indicator Solution

The Java Add-in is not
displayed in the Add-in
Manager.

View the install.log file located in the <WinRunner
Installation folder>\dat folder for information
about the add-in installation that you performed.

The Java Support
Activation Tool is not
visible in the taskbar tray.

Invoke the Java Support Activation Tool:

Click Programs > WinRunner > Java Add-in > Java
Add-in Switching Tool in the Start menu.

or

Invoke JavaSupportSwitch.exe in Program
Files\Common Files\Mercury
Interactive\SharedFiles\JavaAddin\bin.

The Java Support
Activation Tool is disabled.

Click the Java Support Activation Tool in the
taskbar tray to enable it. For more information, refer
to the WinRunner Java Add-in Installation Guide.

Note that the Java Support Activation Tool only
affects Java applications activated after you disable
or enable the support. If a Java application is already
running without Mercury Java support, you must
close and restart it.

The Java console does not
display a line containing
the text "Loading Mercury
Interactive Support."

Check that the settings in your environment
correspond to the environment settings defined in
this chapter, or check for a batch file that may
override the settings.

For more information, see:

• “Checking Java Environment Settings” on
page 50

• “Locating the Java Console” on page 52

Troubleshooting Testing Java Applets and Applications

49

The Java console contains
messages about .dll files.

(This message is usually
followed by
UnsatisfiedLinkError
messages.)

Check that you have write permission for the
jre\bin folder, or place the Java Add-in basic .dll
files in the jre\bin folder.

For more information see:

• “Accessing Java Add-in DLL Files” on page 54

• “Locating the Java Console” on page 52

A different applet or
application works with
WinRunner but the
application you want to
test does not work.

First check whether you can record and run tests if
you invoke the other Java applet or application
using exactly the same settings.

Check that the settings in your environment
correspond to the environment settings defined in
this chapter, or check for a batch file that may
override the settings.

For more information, see:

• “Running an Application or Applet with the
Same Settings” on page 55

• “Checking Java Environment Settings” on
page 50

The add-in does not
function properly with
applications that run with
the –Xincgc option.

Either remove the option or run without the
multi-JDK support.

For more information, see:

• “Running the Java Add-in without Multi-JDK
Support (Advanced)” on page 55

• “Disabling the Multi-JDK Support” on page 58

Your Java console contains
the line Could not find
–Xrun library: micsupp.dll.

Check that you have micsupp.dll in your system
folder (WINNT\system32 or windows\system).

Indicator Solution

WinRunner Java Add-in User’s Guide

50

Note for Netscape 4.x users: If you experience any unusual behavior in the
Java support (for example, if the message "Loading Mercury Interactive
Support" does not appear in the Java Console), try disabling the JIT (Just-In-
Time) compiler. To do this, locate and rename the jit3240.dll file in
Communicator\Program\java\bin and then restart Netscape.

If, after reviewing the above indicators and solutions, you are still unable to
record and run tests on your Java applet or application, contact Mercury
Interactive Customer Support.

Checking Java Environment Settings

This section describes the environment settings you need for loading your
Java application with WinRunner Java Add-in support. For all the
environments, you need to set one or more environment variables to the
short path name of the Java Add-in support classes folder.

Note: The short path (also known as the 8.3 DOS name) of the Java Add-in
classes folder (Common Files\Mercury Interactive\Shared files\
JavaAddin\classes) can usually be obtained by examining the value of the
mic_classes environment variable. This may be useful when defining the
environment settings.

Sun Plug-in 1.4.1 or IBM Java 2 (version 1.2 or higher)

➤ Set the _JAVA_OPTIONS environment variable (Sun) or the
IBM_JAVA_OPTIONS environment variable (IBM) as follows:

-Dawt.toolkit=mercury.awt.awtSW -Xrunmicsupp
-Xbootclasspath/a:<common_files>\MERCUR~1\SHARED~1\JAVAAD~1\
classes;<common_files>\MERCUR~1\SHARED~1\JAVAAD~1\classes\mic.jar

The above settings should appear on one line (no new line separators).

Troubleshooting Testing Java Applets and Applications

51

Note that common_files denotes the short path of the Common Files folder
located in the Program Files folder. For example, if the Common Files folder
is in C:\Program Files\Common Files, then the value for –Xbootclasspath is
as follows:

-Xbootclasspath/a:C:\PROGRA~1\COMMON~1\MERCUR~1\SHARED~1\
JAVAAD~1\classes;C:\PROGRA~1\COMMON~1\MERCUR~1\SHARED~1\
JAVAAD~1\classes\mic.jar

Java 1.1.x

➤ The classpath environment variable should contain:

<common_files>\MERCUR~1\SHARED~1\JAVAAD~1\classes;
<common_files>\MERCUR~1\SHARED~1\JAVAAD~1\classes\mic.jar

Note that common_files denotes the short path of the Common Files folder
located in the Program Files folder. For example, if the Common Files folder
is in C:\Program Files\Common Files then the value for classpath is as
follows:

C:\PROGRA~1\COMMON~1\MERCUR~1\SHARED~1\JAVAAD~1\classes;C:\
PROGRA~1\COMMON~1\MERCUR~1\SHARED~1\JAVAAD~1\classes\mic.jar

➤ The _classload_hook environment variable should be set to micsupp.

Microsoft Java Virtual Machine (JVM) - Internet Explorer/Jview

➤ The classpath environment variable should contain:

<common_files>\MERCUR~1\SHARED~1\JAVAAD~1\classes;
<common_files>\MERCUR~1\SHARED~1\JAVAAD~1\classes\mic.jar

Note that common_files denotes the short path of the Common Files folder
located in the Program Files folder. For example, if the Common Files folder
is in C:\Program Files\Common Files then the value for classpath is as
follows:

C:\PROGRA~1\COMMON~1\MERCUR~1\SHARED~1\JAVAAD~1\classes;C:\
PROGRA~1\COMMON~1\MERCUR~1\SHARED~1\JAVAAD~1\classes\mic.jar

WinRunner Java Add-in User’s Guide

52

➤ The MSJAVA_ENABLE_MONITORS variable should be set to 1. This is
relevant when the user who installed WinRunner with Java Add-in support
is not the user running the application.

,Netscape 4.x

➤ The classpath environment variable should contain:

<common_files>\MERCUR~1\SHARED~1\JAVAAD~1\classes;
<common_files>\MERCUR~1\SHARED~1\JAVAAD~1\classes\mic.jar

Note that common_files denotes the short path of the Common Files folder
located in the Program Files folder. For example, if the Common Files folder
is in C:\Program Files\Common Files then the value for classpath is as
follows:

C:\PROGRA~1\COMMON~1\MERCUR~1\SHARED~1\JAVAAD~1\classes;C:\
PROGRA~1\COMMON~1\MERCUR~1\SHARED~1\JAVAAD~1\classes\mic.jar

Netscape 6.x

Netscape 6.x uses the Java 2 Virtual Machine. For more information, see
“Sun Plug-in 1.4.1 or IBM Java 2 (version 1.2 or higher)” on page 50.

Locating the Java Console

The Java console is the window in which your Java application displays
messages. The location of the Java console changes according to your
application setup, as follows:

If your Java application is a standalone application:

➤ Open the batch file or shortcut that invokes the application and look for the
command that launched Java (java.exe, javaw.exe, jre.exe, or jrew.exe).

➤ If the application was run with java.exe or jre.exe, it will load with a console
(Command prompt window).

Troubleshooting Testing Java Applets and Applications

53

➤ If the application was run with javaw.exe or jrew.exe, the console is not
available. To check for Java Add-in support, invoke the application with
java.exe or jre.exe. Do this by altering your batch file or the shortcut
invoking your application. Note that except for how they launch a console
window, java.exe and javaw.exe are identical and jre.exe and jrew.exe are
identical.

If your application runs in an AppletViewer:

➤ Look in the DOS command prompt window that invoked the AppletViewer.

➤ If there is no DOS command prompt window, your AppletViewer may be
run by a batch file just like a standalone application. See the information
about javaw and jrew in the standalone section above.

If your application runs in Internet Explorer or Netscape 6.x:

➤ If your application runs with the Sun Java plug-in:

➤ Right-click the Java plug-in icon in your taskbar tray and click Show
Console.

➤ For JDK 1.4 only, if you do not see the Java plug-in icon in your taskbar
tray, select Settings > Control Panel in the Start menu and double-click
the Java plug-in icon (choose the icon for the Java version used by your
application). In the Basic tab, select the Show Java console option and
click Apply. Restart the browser.

Note: To find out whether your Internet Explorer works with the Sun Java
plug-in, select Tools > Internet Options > Advanced. Under Java (Sun) verify
that Use Java is selected. Note that Java plug-in version 1.3 or later
automatically configures Internet Explorer to work with the Sun Java
plug-in.

➤ If your application runs with the Internet Explorer internal Virtual Machine,
in Internet Explorer select Tools > Internet Options. In the Advanced tab,
look for Microsoft VM. Select Java console enabled (requires restart) and
click OK. Restart the browser and invoke your application. Select View > Java
Console.

WinRunner Java Add-in User’s Guide

54

If your application runs in Netscape 4.x:

➤ Select Start > Programs > Communicator > Tools > Java Console.

Accessing Java Add-in DLL Files

For the Java Add-in to work properly, two .dll files must be accessible to the
Java Virtual Machine (JVM): mic_if2c.dll and mic_if2c_aqt.dll. In most cases,
the Java Add-in installs these files in the jre\bin folder of your Java
environment when your Java application starts.

However, if you do not have write permission in the jre\bin folder, the Java
Add-in fails to copy the .dll files. In this situation, messages similar to the
following appear in the Java console:

Error: The file S:\JAVA\JDK1.4.0\jre\bin\mic_if2c.dll is missing.

Error: The file S:\JAVA\JDK1.4.0\jre\bin\mic_if2c_aqt.dll is missing.

To fix this problem, either make sure that you have write permission to the
jre\bin folder, or manually copy the .dll files from the Common
Files\Mercury Interactive\SharedFiles\JavaAddin\bin folder.

A variant of this problem is if you have the wrong version of the .dll files in
the folder (for example, if you installed an earlier version of WinRunner or
QuickTest Professional, the folder may contain .dll files from a previous
version of the Java Add-in). If the files and the folder are accessible when
you install the latest version of WinRunner with Java support, the Java
Add-in replaces the files automatically.

If the files or the jre\bin folder are write protected or if another process is
using the .dll files, messages similar to the following appear in the Java
console:

Warning: The file S:\JAVA\JDK1.4.0\jre\bin\mic_if2c.dll does not match your
current Java Add-in installation version.

Warning: The file S:\JAVA\JDK1.4.0\jre\bin\mic_if2c_aqt.dll does not match your
current Java Add-in installation version.

Troubleshooting Testing Java Applets and Applications

55

To fix the problem, either make sure that the files are not write-protected, or
manually copy the correct version of the files to the jre\bin folder from the
Common Files\Mercury Interactive\SharedFiles\JavaAddin\bin folder.

Running an Application or Applet with the Same Settings

In some cases, running another Java application or applet with the exact
same settings helps determine whether you are encountering a general
problem with the Java Add-in or an application-specific problem.

To run an application or applet with the same settings:

 1 Determine whether the application is a standalone application or an applet.

 2 If the application is an applet, check the browser type.

 3 If the applet is executed from a shortcut, execute the applet with the same
command.

 4 If the applet is executed from a batch file, copy the batch file and only
change the class file to invoke it. Note that if the classpath must also be
changed, add only the new items needed. Do not remove any of the items
from the original application or applet classpath.

Running the Java Add-in without Multi-JDK Support
(Advanced)

The Java Add-in uses a mechanism for supporting multiple JDK versions
without configuration changes (multi-JDK support). This mechanism uses
the profiler interface of the Java Virtual Machine (JVM) to adjust the Java
Add-in support classes according to the JDK version used. If, for some
reason, this mechanism does not work, you can still use the Java Add-in if
you manually configure the Java environment.

WinRunner Java Add-in User’s Guide

56

Java 2

The multi-JDK support mechanism is invoked by the –Xrunmicsupp option
supplied to the JVM. If you want to disable the multi-JDK support, remove
the –Xrunmicsupp option from the JDK settings (by default, it is located in
the _JAVA_OPTIONS or IBM_JAVA_OPTIONS environment variable).

Next, you should change the –Xbootclasspath setting to list the correct
patches folder according to the JDK version you are using. If you do not
know which version you are using, execute the java –fullversion command to
retrieve the exact version (including the minor version number).

To determine the folder that you need to add to the Xbootclasspath, go to
Common Files\Mercury Interactive\SharedFiles\JavaAddin\Patches. Select
the patches folder appropriate for your JDK version (the latest version
number that is not later than your version). For example, if you are using
Sun’s JDK 1.3.0_05, select jdk\1.3.0_02 as your patches folder.

In addition, you need to add the default patches folder under Common
Files\Mercury Interactive\SharedFiles\JavaAddin\Patches.

To set your Java environment to load from the abovementioned folder, you
need to set the –Xbootclasspath option. You can set it in the
_JAVA_OPTIONSor IBM_JAVA_OPTIONS environment variable, or supply it
as a parameter in the Java invocation command. The –Xbootclasspath
should be set to the following value:

-Xbootclasspath/p:<patches folder>;<default patches folder>;
<common_files>
\MERCUR~1\SHARED~1\JAVAAD~1\classes;<common_files>
\MERCUR~1\SHARED~1\JAVAAD~1\classes\mic.jar

Note that instead of the usual setting of -Xbootclasspath/a:..., you should use
/p (to prepend the path rather than append).

For example, if you are using JDK1.2.2_007, and common_files is
C:\Program Files\Common Files, the value is:

Troubleshooting Testing Java Applets and Applications

57

-Xbootclasspath/p: C:\PROGRA~1\
COMMON~1\MERCUR~1\SHARED~1\JAVAAD~1\Patches\jdk\1.2.2_005;
C:\PROGRA~1\
COMMON~1\MERCUR~1\SHARED~1\JAVAAD~1\Patches\default;
C:\PROGRA~1\ COMMON~1\MERCUR~1\SHARED~1\JAVAAD~1\classes;
C:\PROGRA~1\
COMMON~1\MERCUR~1\SHARED~1\JAVAAD~1\classes\mic.jar

In addition, you need to copy mic_if2c.dll and mic_if2c_aqt.dll from the
Common Files\Mercury Interactive\SharedFiles\JavaAddin\bin folder to
the jre\bin folder of the JDK or JRE you are using.

Java 1

The multi-JDK support mechanism is invoked by the _classload_hook
environment variable. If you need to remove the multi-JDK support, remove
the _classload_hook from the JDK settings by deleting the environment
variable.

Next, you should change the classpath setting to list the correct patches
folder according to the JDK version you are using. If you do not know which
version you are using, execute the java –fullversion command to retrieve the
exact version (including the minor version number).

To determine the patches folder you need to add to the classpath, go to
Common Files\Mercury Interactive\SharedFiles\JavaAddin\Patches. Select
the patches folder appropriate for your JDK version (the latest version
number that is not later than your version). For example, if you are using
Sun’s JDK 1.1.8_ 005, select jdk\1.1.8 as your patches folder.

In addition, you need to add the default patches folder under Common
Files\Mercury Interactive\SharedFiles\JavaAddin\Patches.

WinRunner Java Add-in User’s Guide

58

To set your Java environment to load from the abovementioned folder, you
need to add a few entries in the beginning of the classpath option. You can
set it in the classpath environment variable, or supply it as a parameter in
the Java invocation command. The classpath should be set to the following
value:

-classpath <patches folder>;<default patches folder>;<common_files>
\MERCUR~1\SHARED~1\JAVAAD~1\classes;<common_files>
\MERCUR~1\SHARED~1\JAVAAD~1\classes\mic.jar

Note that usually the classpath should include the Java core classes archive
(classes.zip or rt.jar) as well as other entries needed for running your Java
application. Make sure these entries are kept.

For example, if you are using JDK1.1.8, and the Common Files folder is
C:\Program Files\Common Files, the value is:

-classpath C:\PROGRA~1\
COMMON~1\MERCUR~1\SHARED~1\JAVAAD~1\Patches\jdk\1.1.8;
C:\PROGRA~1\
COMMON~1\MERCUR~1\SHARED~1\JAVAAD~1\Patches\default;
C:\PROGRA~1\ COMMON~1\MERCUR~1\SHARED~1\JAVAAD~1\classes;
C:\PROGRA~1\
COMMON~1\MERCUR~1\SHARED~1\JAVAAD~1\classes\mic.jar

You also need to copy mic_if2c.dll and mic_if2c_aqt.dll from the Common
Files\Mercury Interactive\SharedFiles\JavaAddin\bin folder to the jre\bin
folder of the JDK or JRE you are using.

Disabling the Multi-JDK Support

The multi-JDK does not work when using the incremental garbage collector
(-Xincgc option). If the –Xincgc option is absolutely required, follow the
instructions in “Running the Java Add-in without Multi-JDK Support
(Advanced)” on page 55, to enable you to use the Java Add-in.

59

A

accessing an object field 24, 25, 26
activate changes 44
Add-in Manager 3

C

cell editors, JTable
working with 15

check_button 41, 42
configuring

custom Java objects 37
configuring the way WinRunner learns 11
custom Java objects

adding to GUI map 38
configuring 37

custom property 42
customization.properties file 45

E

edit field 41
edit objects, activating 8
edit_activate function 8

F

firing Java events 11, 35

G

GUI map
adding custom Java objects 38

GUI Map Configuration tool 39
GUI Map Editor 2
GUI Spy 28, 31

I

invoking
Java method 22
Java method from a returned object

26
static Java method 23

J

Java
console 52

Java Add-in
accessing .dll files 54
checking environment settings 50
disabling multi-JDK support 58
running without multi-JDK support

55
starting 3

Java bean properties, setting the value of 7
Java Custom Object Wizard 39
Java events, simulating 11, 35
Java GUI map configuration 39
Java method

invoking 22
invoking from a returned object 26
invoking static 23

Java Method wizard 28, 32
Java objects

adding custom to GUI map 38
configuring custom 37
working with 26

Java pop-up menu, selecting an item from 9
java_activate_method function 22

invoking a Java method 31, 34
viewing the methods for an object 32

java_activate_static function 23
java_fire_event function 11, 35

Index

WinRunner Java Add-in User’s Guide

60

java_get_field function 24
java_get_static function 25
java_set_field function 7, 25
java_set_static function 26
jco_create function 26
jco_free function 27
jco_free_all function 27
JTable cell editors

custom 16
finding the toolkit class using a

QuickTest script 18
finding the toolkit class using the

Object Spy 17
recording on 15

L

list items, finding the location of 9
list_get_item_coord function 9

M

method_wizard statement 32

O

obj_mouse_click statement 6, 38
obj_set_info function 7
object configuration

activate changes in 44
object field, accessing 24, 25, 26
object methods

viewing 28

P

popup_select_item function 9
push_button 41

S

set_aut_var function 11
EDIT_REPLAY_MODE variable 11
EXCLUDE_CONTROL_CHARS

variable 12
MAX_TEXT_DISTANCE variable 12
RECORD_BY_NUM variable 12

set_aut_var function (continued)
RECORD_WIN_OPS variable 12
SKIP_ON_LEARN variable 13
TABLE_EXTERNAL_EDITORS_LIST

variable 13
TABLE_RECORD_MODE variable 13
TREEVIEW_PATH_SEPARATOR

variable 14
USE_LOW_LEVEL_EVENTS variable

14
SetAUTVar method 15
SetCellData method 15
setting the value of a Java bean property 7
simulating Java events 11, 35
standard class object 41
static Java method

invoking 23
static text 41

T

table_external_editors_list variable 15
toolkit class, of a cell editor 15
troubleshooting, testing Java objects 47
TSL functions

for standard Java objects 5

V

variables, for set_aut_var 11

W

win_mouse_click statement 6, 38

Mercury Interactive Corporation
1325 Borregas Avenue
Sunnyvale, CA 94089 USA

Main Telephone: (408) 822-5200
Sales & Information: (800) TEST-911, (866) TOPAZ-4U
Customer Support: (877) TEST-HLP
Fax: (408) 822-5300

Home Page: www.mercuryinteractive.com
Customer Support: support.mercuryinteractive.com

� �� � �� ���� 	
 � � �

	WinRunner Java Add-in User's Guide
	Table of Contents
	Introduction
	Using the Java Add-in
	How the Java Add-in Identifies Java Objects
	Activating the Java Add-in

	Testing Standard Java Objects
	About Testing Standard Java Objects
	Recording Context Sensitive Tests
	Enhancing Your Script with TSL
	Setting the Value of a Java Bean-Like Property
	Activating a Java Edit Object
	Finding the Location of a List Item
	Selecting an Item from a Java Pop-up Menu
	Configuring Java Variable Settings
	Recording on Swing/JFC Table Objects

	Working with Java Methods and Events
	About Working with Java Methods and Events
	Invoking Java Methods
	Using the java_activate_method Function
	Using the java_activate_static Function

	Accessing Object Fields
	Using the java_get_field Function
	Using the java_set_field Function
	Using the java_get_static Function
	Using the java_set_static Function

	Working with Return Values (Advanced)
	Viewing Object Methods in Your Application or Applet
	Using the GUI Spy
	Using the Java Method Wizard

	Firing Java Events

	Configuring Custom Java Objects
	About Configuring Custom Java Objects
	Adding Custom Java Objects to the GUI Map
	Configuring Custom Java Objects with the Java Custom Object Wizard

	Troubleshooting Testing Java Applets and Applications
	Common Problems and Solutions
	Checking Java Environment Settings
	Locating the Java Console
	Accessing Java Add-in DLL Files
	Running an Application or Applet with the Same Settings
	Running the Java Add-in without Multi-JDK Support (Advanced)
	Java 2
	Java 1

	Disabling the Multi-JDK Support

	Index

