
Peregrine

PART NO: DSCA-5-EN08
SCAuto
SCAuto for SPECTRUM Guide
Version 5.0

Copyright © 2003 Peregrine Systems, Inc. or its subsidiaries. All rights reserved.

Information contained in this document is proprietary to Peregrine Systems, Incorporated, and may be used or disclosed only with written permission
from Peregrine Systems, Inc. This book, or any part thereof, may not be reproduced without the prior written permission of Peregrine Systems, Inc. This
document refers to numerous products by their trade names. In most, if not all, cases these designations are claimed as Trademarks or Registered
Trademarks by their respective companies.

Peregrine Systems® and ServiceCenter®Automate are registered trademark of Peregrine Systems, Inc. or its subsidiaries.

This document and the related software described in this manual are supplied under license or nondisclosure agreement and may be used or copied only
in accordance with the terms of the agreement. The information in this document is subject to change without notice and does not represent a
commitment on the part of Peregrine Systems, Inc. Contact Peregrine Systems, Inc., Customer Support to verify the date of the latest version of this
document.

The names of companies and individuals used in the sample database and in examples in the manuals are fictitious and are intended to illustrate the use
of the software. Any resemblance to actual companies or individuals, whether past or present, is purely coincidental.

If you need technical support for this product, or would like to request documentation for a product for which you are licensed, contact Peregrine

Systems, Inc. Customer Support by e-mail at support@peregrine.com.

If you have comments or suggestions about this documentation, contact Peregrine Systems, Inc. Technical Publications by e-mail at

doc_comments@peregrine.com.

This edition applies to version 5.0 of the licensed program.
Peregrine Systems, Inc.
3611 Valley Centre Drive San Diego, CA 92130
Tel 800.638.5231 or 858.481.5000
Fax 858.481.1751
www.peregrine.com

mailto:support@peregrine.com
mailto:doc_comments@peregrine.com

Content
Preface . 5

Overview . 5

Prerequisite knowledge . 5

Contacting Peregrine Systems . 6

Customer Support . 6

Documentation Web site . 6

Education Services Web Site . 7

Chapter 1 Introduction . 9

Overview . 10

Compatibility . 10

Alarm Integration . 10

SCAutoAlarms . 12

Inventory Integration . 13

SCAutoInventory . 13

GUI Integration (cut-throughs) . 16

Context insensitive menu items 16

ServiceCenter Event Monitor . 17

Chapter 2 Installation . 19

Overview . 19

Installation requirements . 19

Installing on Windows NT or Windows 2000 21

Installing on Solaris. 26
Contents 3

SCAuto
Chapter 3 Configuration . 33

Configuring Using ECMA Scripts . 33

General ECMA techniques used 34

SPECTRUM Event Object . 35

SPECTRUM SpectrumModel Object 36

SPECTRUM SpectrumAttributes Object. 37

SPECTRUM SpectrumAttribute Object 38

SCEvMon Configuration . 39

Customizing Event Integration . 42

Customizing the Interface Queue Manager. 42

Java properties file (scautoj.properties) 43

Customizing the SPECTRUM Alarm Monitor 45

alarms.js . 45

Customizing Inventory Integration 48

Chapter 4 SCAuto SPECTRUM Files . 51
SCAutoSpectrum . 51

SCAutoSpectrum/EventMap: . 52

SCAutoSpectrum/EventMap/To_SC: 52

SCAutoSpectrum/SpectrumScripts: 52

SCAutoSpectrum/bin: . 53

SCAutoSpectrum/jrel.2.2: . 53

SCAutoSpectrum/lib: . 53

Index . 55
4 Contents

Preface
Overview

Welcome to Peregrine Systems’ SCAuto for Aprisma SPECTRUM. This
product is part of the suite of SCAuto (SCAutomate) interface products that
integrate ServiceCenter with premier network and systems management
tools.

This guide describes how to implement SCAuto for Aprisma’s SPECTRUM
for integration with Peregrine Systems’ ServiceCenter.

Additional information about SCAuto can be found in the SCAuto
Applications for Windows NT and Unix guide.

Prerequisite knowledge
This guide assumes you have:

Working knowledge of ServiceCenter applications, ServiceCenter
Client/Server, and Aprisma SPECTRUM operating systems. While some
procedures for these applications are explained, others are referenced.
Refer to the ServiceCenter documentation for a more detailed
explanation.

Working knowledge of a GUI or text-based environment.

(As an Administrator) a thorough knowledge of the operating system
where the product will be installed and implemented.
Preface 5

SCAuto
Important: ServiceCenter installation requirements are specific to the
operating system of the computer where ServiceCenter is being
installed. These requirements are listed in their respective
installation guides.

Contacting Peregrine Systems

For further information and assistance with this release, you can download
documentation or schedule training.

Customer Support
For further information and assistance, contact Peregrine Systems’
Customer Support at the Peregrine CenterPoint Web site.

To contact customer support:

1 In a browser, navigate to http://support.peregrine.com

2 Log in with your user name and password.

3 Follow the directions on the site to find your answer. The first place to search
is the KnowledgeBase, which contains informational articles about all
categories of Peregrine products.

4 If the KnowledgeBase does not contain an article that addresses your
concerns, you can search for information by product; search discussion
forums; and search for product downloads.

Documentation Web site
For a complete listing of current SCAuto documentation, see the
Documentation pages on the Peregrine Customer Support Web.

To view the document listing:

1 In a browser, navigate to http://support.peregrine.com.

2 Log in with your login user name and password.

3 Click either Documentation or Release Notes at the top of the page.

4 Click the SCAuto link.
6 Preface

http://support.peregrine.com
http://support.peregrine.com

SCAuto for SPECTRUM Guide
5 Click a product version link to display a list of documents that are available
for that version of SCAuto.

6 Documents may be available in multiple languages. Click the Download
button to download the PDF file in the language you prefer.

You can view PDF files using Acrobat Reader, which is available on the
Customer Support Web site and through Adobe at http://www.adobe.com.

Important: Release Notes for this product are continually updated after each
release of the product. Ensure that you have the most current
version of the Release Notes.

Education Services Web Site
Peregrine Systems offers classroom training anywhere in the world, as well as
“at your desk” training via the Internet. For a complete listing of Peregrine’s
training courses, refer to the following web site:

http://www.peregrine.com/education

You can also call Peregrine Education Services at +1 858.794.5009.
Contacting Peregrine Systems 7

http://www.adobe.com
http://www.peregrine.com/education

SCAuto
8 Preface

CHAPTER
1 I
ntroduction
SCAuto facilitates the integration of Aprisma’s SPECTRUM with Peregrine
Systems' ServiceCenter Service. The SCAuto for Aprisma’s SPECTRUM
product consists of:

Alarm Integration – open, update, and close incident tickets in
ServiceCenter based on alarms generated by SPECTRUM.

Inventory Integration – allows initial (one-time) population of network
inventory items to ServiceCenter asset management.

SCEvMon - sends events to ServiceCenter.

GUI Integration (cut-throughs) – allows the SPECTRUM operator to
open, update, close, and view incident tickets using SPECTRUM’s menus
and icons.

This chapter is an introduction to SCAuto for Aprisma’s SPECTRUM and
covers the following topics:

Overview on page 10

Alarm Integration on page 10

Inventory Integration on page 13

GUI Integration (cut-throughs) on page 16
Introduction 9

SCAuto
Overview

SCAuto for Aprisma’s SPECTRUM is standardized on Sun Microsystem's
Java JDK 1.2.2 for rapid development and cross-platform compatibility. It is
integrated to ServiceCenter using Event Services and with SPECTRUM via
the command line interface (CLI) interface and AlarmNotifier. The CLI
interface and AlarmNotifier are called from a custom Java Native Interface
shared library. The adapter implements an event that mediates the transport
of events to ServiceCenter to achieve total connectivity and fault tolerance
during outages of either or both ServiceCenter and SPECTRUM. The adapter
processes are started and stopped through the SpectroGRAPH facility. GUI
Integration is achieved by customization of SpectroGRAPH’s CsStdMenu
file to provide control of the adapter, as well as the ServiceCenter client
through SpectroGRAPH’s pull-down menus and windows icons.

Compatibility
SCAuto for SPECTRUM is compatible and tested with SPECTRUM version
6.0 - 6.6 on Windows 2000, Windows NT, and Solaris 7 and 8.

Alarm Integration

Alarm Integration uses a combination of programmable ECMA scripts
(JavaScript) referencing static ASCII map files compatible with
ServiceCenter event types. The alarms from SPECTRUM are received in a
SPECTRUM event object and passed to an ECMA function to be mapped
into a ServiceCenter event object that subsequently gets serialized into an
event cache queue file. The cached event is then picked up by an event
monitoring process and transported to ServiceCenter.

The ECMA script interpreter is embedded in a Java class and executes in the
Java Virtual Machine environment. The Java embedded interpreter allows
the ECMA scripts to access Java class objects and methods directly. The
ECMA scripts provide a programmable environment to drive the adapter,
waiting for alarms from SPECTRUM.

By default, the map files are downloaded from ServiceCenter every 24 hours.
This interval can be modified in a configuration file. The section Chapter 3,
Customizing Event Integration further describes the procedures for
customizing the integration.
10 Chapter 1—Introduction

SCAuto for SPECTRUM Guide
To facilitate integration, there are two processes (shown in Table 1-1).

The following figure provides an overview the alarm integration of Aprisma
SPECTRUM and ServiceCenter using SCAuto.

Table 1-1: Alarm Integration Processes

Process Description

Interface Event Queue
Monitor (SCEvMon)

This is the gatekeeper process that mediates events between
ServiceCenter and SPECTRUM. Therefore, it must rung all
the time for events integration to function. You can either
start it using the command line or by using the drop-down
ServiceCenter-Interface Manager menu item on the
SpectroGRAPH Windows. This process is configured
through SCAutoSpectrum.ini as well as
scevmon.properties.

SPECTRUM Alarm
Monitor
(SCAutoAlarms)

This process uses SPECTRUM’s AlarmNotifier application
to process alarms detected by the SpectroServer. It then
executes ECMA scripts to map and log these alarms as
ServiceCenter events in the scevents.to.<sc_host><sc_port>
event queue file. Then, the Interface Event Queue Manager
will pick it up and forward it to ServiceCenter.
Alarm Integration 11

SCAuto
SCAutoAlarms
SCAutoAlarms supports incident integration. This process:

Launches the AlarmNotifier

Uses the scripts in the SpectrumScripts subdirectory to format the data

Executes the alarms.js JavaScript in the EventMap/To_SC subdirectory to
map the data into a ServiceCenter event.

You can make any customizations to map or filter (by default based on
condition and modeltype from the alarm) the alarm data. The
AlarmNotifierParms file is a customized version of the .alarmrc used by the
AlarmNotifier. You can use any of the AlarmNotifier options you want, but
the SET/UPDATE/CLEAR scripts should point to the scripts Peregrine
provides. (see Customizing the SPECTRUM Alarm Monitor on page 53)

Aprisma
SPECTRUM SCAutoalarms SCEvMON

SCAutoAlarms.sh

SCAutoAlarms.jar

AlarmNotifier.exe

Alarms.js

Can be customized to:

 - define SC category based
on model from SPECTRUM

- define assignment group

- define severity

- filter alarms so that only
some are sent to SC

Event
Services

(eventin file)

Service Center

- open incident
- update incident
- close incident

SCEvents.to

A B C

A = set
B = update
C = clear

A B C

PMO PMU PMC

Aprisma SPECTRUM Alarms: Create, Update, or Close ServiceCenter Incidents/Problems

SCAUTOD
(SC1 - SC5)

SC
5.1
12 Chapter 1—Introduction

SCAuto for SPECTRUM Guide
To start the process for alarm monitoring:

select the menu options under the SCAutomate sub-menu, or optionally,

start the process from the command line.

Inventory Integration

This section describes the SCAutoIntegration process and how to start the
inventory integration process.

SCAutoInventory
SCAutoInventory is for inventory integration. The initial static inventory
gathering makes use of SPECTRUM’s command line interface and parses its
output for information. This process uses vnmsh commands to retrieve
model data. In the scautoj.properties file there is a parameter,
scautospectrumj.modeltypes, to specify the model types that you wish to
inventory. The values are case sensitive and are used to determine the
JavaScript to be executed. For example, if you have a value of Host_Sun then
the /EventMap/To_SC/Host_Sun.js JavaScript executes to map the data to a
ServiceCenter event. When this processed is launched, it gathers and maps all
the model types you have specified and then exits.

Inventory Integration consists of initial inventory collected. The generated
inventory events (icmServer event types in ServiceCenter) are cached in the
scevents.to.<sc host><scauto port> event queue file and forwarded to
ServiceCenter by the Interface Queue Manager (SCEvMon) process.

To start the process for Inventory Integration:

select the menu options under the SCAutomate sub-menu, or optionally,

start the process from the command line.
Inventory Integration 13

SCAuto
To use the menu:

1 From the Tools menu, select Peregrine Systems

Figure 1-1: Tools Menu
14 Chapter 1—Introduction

SCAuto for SPECTRUM Guide
2 Click SCAutomate to display the SCAutomate menu.

Figure 1-2: SCAutomate Menu

The following list describes the menu items.

Menu Item Description

Start SCAutoAlarms Start the Alarm Monitor process by executing the
StartSCAutoAlarms.sh script.

Start SCAutoInventory Start the Inventory Gathering process by executing
the StartSCAutoInventory.sh script.

Start SCEvMon Start the ServiceCenter Event Monitor by executing
the StartSCAutoSCEvMon.sh script.

Stop SCAutoAlarms Stop the Alarm Monitor process by executing the
StopSCAutoAlarms.sh script.

Stop SCAutoInventory Stop the Inventory Gathering process by executing
the StopSCAutoInventory.sh script.

Stop SCEvMon Stop the ServiceCenter Event Monitor by executing
the StopSCAutoSCEvMon.sh script.
Inventory Integration 15

SCAuto
Note: These scripts are all located in the /<installed>/bin directory.

GUI Integration (cut-throughs)

GUI Integration (or cut-throughs) are menu items in SpectroGRAPH that
allow access to the ServiceCenter client. There are context insensitive menu
items that do not require a Model in SpectroGRAPH to be highlighted, and
there are context sensitive items that are available when a Model is
highlighted.

Context insensitive menu items
The following figure shows the context insensitive menu items.

Figure 1-3: Context insensitive menu items

The context sensitive menu items do not depend on a network Model being
highlighted (selected) because they do not use the Model name as an input to
a ServiceCenter query/insert.
16 Chapter 1—Introduction

SCAuto for SPECTRUM Guide
This list shows the static ServiceCenter client screens.

ServiceCenter Event Monitor

ServiceCenter Event Monitor (SCEvMon) is the gatekeeper process that
mediates events between ServiceCenter and the SCAuto Adapters. It works
with SCAuto Java Native Interface Bridge objects, SCAuto Event objects and
SCAuto C shared libraries to accomplish this event integration process.

SCAuto Java Native Interface Bridge (SCAutoJ):

SCAutoJ contains all the native methods for accessing the C functions in
the SCAuto C libraries. It includes all the file I/O operations for SCAuto
Adapter's event queue files and ServiceCenter connection and event
insert/query operations.

ServiceCenter Event Object (SCEvent):

The ServiceCenter Event Object is an event data object that represents the
ServiceCenter events.

SCEvMon is a bi-directional events processor and the processes are handled
by separate threads. It responds by establishing a connection between
SCAuto Adapter and ServiceCenter, querying ServiceCenter events and
inserting new SCAuto Adapter events to ServiceCenter. The two events
processes are named as To_SC and From_SC. The To_SC reads in events
from the SCAuto Adapter's event-to-sc queue file and insert this event into
ServiceCenter's event-in queue. The From_SC responses for retrieving
ServiceCenter outbound events from the event-out queue and updating the
SCAuto Adapter's event-from-sc queue file for SCAuto Adapter to notify the
third party product about the change of an event's status.

Note: For SCAuto for SPECTRUM, SCEvMon handles inbound events
(events going to ServiceCenter) only.

Menu Item Description

Main Menu Launch a ServiceCenter client Main Menu.

Incident Help Desk Launch a ServiceCenter client Help Desk/Incident list.

Inventory Manager Launch a ServiceCenter client Inventory Menu.

Event Services Launch a ServiceCenter client Event Services Menu.
ServiceCenter Event Monitor 17

SCAuto

t

ServiceCenter

SCAuto Base
Server

(SCAutoD)

Event
Service

Event-In

Event-Ou

To_SC

From_
SC

SCAuto Adapter for Third
Party Product Third Party Product

To_SC
From_SC

Event Q
File to

SC

Event Q
File from

SC

To_SC

To_SCFrom_SC

SCEvMon:

From_SC

To_SC:

SCAuto
Event

SCAutoJ/
TakeQEvent

SCAutoJ/
WriteEvent

From_SC:

SCAuto
Event

SCAutoJ/
WriteQEvent

SCAutoJ/
TakeEvent
18 Chapter 1—Introduction

CHAPTER
2 I
nstallation
Overview

SCAuto installation requires a graphical user interface (GUI) such as
Windows NT, Windows 2000, or X-Window on UNIX systems. The GUI has
the same look and feel on all OS platforms. SCAuto uses an installation
wizard that prompts the user for configuration parameters. At the end of the
installation, a post-install ECMA script configures the product.

Installation requirements
To install SCAuto for SPECTRUM, the following are required:

A graphical user interface. X-Window (on UNIX), Windows 2000, or
Windows NT.

You must be executed as the root user, or user with local administrative
rights for Windows NT or Windows 2000 (i.e., same ID as SPECTRUM or
owner of SPECTRUM).

You must have the required parameter values, as shown in the following
table.
Installation 19

SCAuto
Table 2-1: Required Installation Parameters

Parameter Name Description Example Value

Destination
directory

The installation directory for the
SCAuto adapter

C:\winapp32\Spectrum\SCAutoSpectrum
\usr\spectrum\SCAutoSpectrum

SPECTRUM
Home Directory

The home directory of SPECTRUM.
The environment variables of
SPECROOT or SSHOME are used by
default.

C:\win32app\Spectrum

\usr\spectrum

VNM Node Name The SpectroServer host name. e.g., suntest_host,10.1.1.110 etc.

VNMSH Path The path for Spectrum’s CLI
executables.

C:\win32app\Spectrum\vnmsh

\usr\spectrum \vnmsh\

Alarm Notifier Name and location of SPECTRUM’s
AlarmNotifier executable.

C:\win32app\Spectrum\Notifier\AlarmNotifier

\usr\spectrum\Notifier\AlarmNotifier

Probable Cause
Path

The path to SPECTRUM’s Probable
Cause files.

C:\win32app\Spectrum\SG-Support\CsPCause

\usr\spectrum\SG-Support\CsPCause\

SCAuto for
SPECTRUM
User/Group

The user name and group to own the
SCAuto for SPECTRUM files. This
has the format of
<username/id>:<groupname/id>

spectrum:root, 123:456

ServiceCenter
RUN Directory

(optional)

The installed ServiceCenter client
executable. This is used for
cut-through integration.

c:\ProgramFiles\ServiceCenter\RUN

\usr\local\ServiceCenter\RUN

ServiceCenter
Server Host

The ServiceCenter host for connecting
to the server using the ServiceCenter
Full Client.

servername, 172.17.7.321

ServiceCenter
Client Port

(optional)

The ServiceCenter port on the
ServiceCenter host for connecting to
the server using the ServiceCenter Full
Client.

scclient,12670

SCAuto Server
Port

The port number for the SCAuto
Daemon listening process.

scautod,12690

ServiceCenter
Login Name

(optional)

This is the ServiceCenter user name to
log into the system from a Client. If
this user does not have a password, the
GUI cut-throughs log in directly to
ServiceCenter, otherwise, a password
is prompted.

falcon
20 Chapter 2—Installation

SCAuto for SPECTRUM Guide
Installing on Windows NT or Windows 2000

To install SCAuto for SPECTRUM on Windows NT or Windows 2000:

1 Login as Administrator (any user with Administrative rights).

2 Insert the SCAuto for SPECTRUM CD into your CD-ROM drive.

3 Change directory to the CDROM drive and execute the installation batch file
(nt_install.bat).

The system runs until the Welcome screen appears.

Figure 2-1: Welcome screen

4 Click Next.
Installing on Windows NT or Windows 2000 21

SCAuto
The Choose Destination Location screen appears.

Figure 2-2: Choose Destination Location

5 Select a destination path to install the interface files by:

Choosing the default destination

C:\Program Files\Peregrine Systems\SCAutoSpectrum

Clicking the Browse button to install the files in a different location. You
can also create a new directory or use an existing path.

6 Click Next.
22 Chapter 2—Installation

SCAuto for SPECTRUM Guide
The Host screen appears.

Figure 2-3: Host screen

7 You can accept the defaults or type in new information. Choose the
parameters that apply to your installation (see Table 2-1 on page 20 to help
you decide).

8 Click Next.

The prompt to install cutthru files for launching SC client appears. The
system is asking if you want to modify SPECTRUM’s CsStdMenu file. This
adds pull-down menus cut-throughs to access ServiceCenter.

Figure 2-4: Modifying the CsStdMenu files

9 Click Yes or No.

If you select Yes, Cutthru options screen appear. If you select No, the Install
Options selected screen appears (see Figure 2-5 on page 24).
Installing on Windows NT or Windows 2000 23

SCAuto
10 If you select Yes, enter the information in the Cutthru screen.

11 Click Next.

The Install Options Selected screen appears with the values you entered.

Figure 2-5: Install Options Selected screen

Note: This screen shows installed options without the Cutthru option
installed.

12 Confirm the values are correct.

If the values are correct, click Next.
24 Chapter 2—Installation

SCAuto for SPECTRUM Guide
If you want to modify the values, click Back to make your changes.
Then, click Next when you return to this confirmation screen.

A splash screen appears, followed by an installation progress dialog. After the
files are copied, a post-install Javascript configures the product.

Finally, the Setup Complete screen appears.

Figure 2-6: Setup Complete screen

13 Indicate whether you want to see the installation log. Peregrine strongly
recommends you view this file to confirm that installation of the product was
successful.

If you want to see the log, leave the check box checked.

If you do not want to see the log, un-check the box and click Finish.
Installing on Windows NT or Windows 2000 25

SCAuto
If you left the log file check box checked, the Installation Log File screen
appears.

Figure 2-7: Install Log File screen

14 Scan the log and confirm that the installation was successful. Click Finish
when you are done.

This completes the installation of SCAuto for SPECTRUM.

Installing on Solaris

To install SCAuto for SPECTRUM on Solaris:

1 Login as the superuser root.

2 Mount the CD ROM drive onto a partition. For example, use the command:

mount /cdrom

3 Change directory to the CDROM partition and execute the installation
script/batch file. The name of the script is solaris_install.sh
26 Chapter 2—Installation

SCAuto for SPECTRUM Guide
The system runs until the Welcome screen appears.

Figure 2-8: Welcome screen

4 Click Next.

The Choose Destination Location screen opens.

Figure 2-9: Choose Destination Location

5 Select a destination path to install the interface files by:

Choosing the default destination of
Installing on Solaris 27

SCAuto
C:\Program Files\Peregrine Systems\SCAutoSpectrum

Clicking the Browse button to install the files in a different location. You
can also create a new directory or use an existing path.

6 Click Next.

The Host screen opens.

Figure 2-10: Host Information screen

7 You can accept the defaults or type in new information. Choose the
parameters that apply to your installation (see Table 2-1 on page 20 to help
you decide).

Note: On Solaris systems, an additional parameter is needed to indicate the
username and group that will own the files being installed. When
entering this parameter, separate the values with a colon : (for
example, user:group).

8 Click Next.
28 Chapter 2—Installation

SCAuto for SPECTRUM Guide
The prompt to install cutthru files for launching SC client appears. The
system is asking if you want to modify SPECTRUM’s CsStdMenu file. This
adds pull-down menu cut-throughs to access ServiceCenter.

Figure 2-11: Modifying the CsStdMenu files

If you select Yes, the ServiceCenter Client and Login Information screen
appear. If you select No, the Install Options Selected screen appears.

9 If you selected yes, enter the ServiceCenter client and login information.

Figure 2-12: ServiceCenter Client and Login Information

10 After you enter the information, click Next.
Installing on Solaris 29

SCAuto
The Install Options Selected screen appears that shows the values you
recently entered.

Figure 2-13: Install Options Selected screen

Note: This screen shows installed options without the Cutthru option
installed.

11 Confirm the values are correct.

If the values are correct, click Next.

If you want to modify the values, click Back to make your changes.
Then, click Next when you return to this confirmation screen.

A splash screen appears, followed by an installation progress dialog. After the
files are copied, a post-install Javascript configures the product.

Finally, the Setup Complete screen appears.

Figure 2-14: Setup Complete screen
30 Chapter 2—Installation

SCAuto for SPECTRUM Guide
12 Indicate whether you want to see the installation log. Peregrine strongly
recommends you view this file to confirm that installation of the product was
successful.

If you want to see the log, leave the check box checked.

If you do not want to see the log, un-check the box and click Finish.

If you left the log file check box checked, the Installation Log File screen
appears.

Figure 2-15: Install Log File screen

13 Scan the log and confirm that the installation was successful. Click Finish
when you are done.

This completes the installation of SCAuto for SPECTRUM.
Installing on Solaris 31

SCAuto
32 Chapter 2—Installation

CHAPTER
3 C
onfiguration
This chapter describes how to configure SCAuto for SPECTRUM. It covers
the following topics:

Configuring Using ECMA Scripts on page 33

Customizing Event Integration on page 42

Configuring Using ECMA Scripts

The ECMA scripting engine used in SCAuto for SPECTRUM is FESI v1.1.1
(Free ECMA Script Interpreter). It is an embedded interpreter within Java.
This means that from within the ECMA script, it is possible to instantiate
Java classes and call Java methods directly. This embedded interpreter
enables SCAuto to work with SPECTRUM.

There are engineered Java object representations of ServiceCenter event
objects and SPECTRUM event objects. Each Java object is furnished with
methods to connect, retrieve, and send itself through its connection to
ServiceCenter. The availability of these Java objects, combined with the real
Configuration 33

SCAuto
time programmability of ECMA scripting in a JVM environment, makes it
possible to have a system that is flexible, cross-platform, and powerful. See
Figure 3-1 for a diagram of the overall system flow. ExecuteJS class
implements the ECMA interpreter. An example of executing the script:

jre -classpath
lib/classes.zip:lib/xml.jar:lib/fesi.jar:/SCAutoJ.jar:lib/SCAutoSpectrumJ.jar:
ExecuteJS writeSpectrumEvent.js recv_alarms.js

Besides the regular language syntax for ECMA scripting
(http://www.ecma.ch/stand/ECMA-262.htm), there are general techniques
used in SCAuto scripts.

General ECMA techniques used
The general ECMA techniques used are:

Defining short-cuts for Java classes, variables, and methods.

Loops

These techniques are described in the sections that follow.

Defining short-cuts for Java Classes, Variables, and Methods
This is a convenient syntax to shorten long names into short ones that can be
used throughout the scope of the script. It is usually used to shorten class
names that contain long package names but can also be used for static Java
class methods or variables.

Syntax:

<name> = Packages.<package name>.<class name, static method or static
variable>;

Example:

SpectrumEvent = Packages.SpectrumEvent;

(define the SpectrumEvent variable as the Java class SpectrumEvent - do
not use package name)

String = Packages.java.lang.String;

(define String as the Java String)

ErrPrintln = Packages.java.lang.System.err.println;
34 Chapter 3—Configuration

SCAuto for SPECTRUM Guide
(you can use ErrPrintln directly and to call Java's System.err.println)

Loops
Loops are used to implement an endless execution cycle where events/traps
are being repeatedly read/processed until a user initiates a shutdown. Because
the test condition of the loops are in the beginning of the loop, a user initiated
shutdown will not take affect until the last trap/event has been processed.

Syntax:

while (<test condition>)

{

}

Example:

while(scBridge.isContinue() && status == 1)
{

 vEvent = new SpectrumEvent();
 writeln("waiting for trap ...");
 status = spectrumBridge.readEvent(vEvent);
 writeSpectrumEvent(scBridge, vEvent);

}

SPECTRUM Event Object
The SPECTRUM Event Object is the data communication medium for
sessions connecting to SPECTRUM. It provides instance methods for
accessing and assigning values to the event fields.

Class Method: String getEvField(String name)

Definition: Gets the event field value, given the field name.

Arguments: Name The name of attribute value to return as a
string.

Returns: The value of the attribute (field) as a String.
Configuring Using ECMA Scripts 35

SCAuto
SPECTRUM SpectrumModel Object
The SpectrumModel Object contains the model handle, model name, type
handle, and type name for a SPECTRUM model. For the user, it provides
instance methods for accessing values for these fields.

Class Method: void getEventType(String eventType)

Definition: Gets the event type from the SPECTRUM Alarm.

Arguments: None

Returns: The event type SET New alarm

CLEAR Closed alarm

UPDATE Updated alarm

Class Method: SpectrumModel()

Definition: Constructor

Arguments: None

Returns: New SpectrumModel Object.

Class Method: getMHandle()

Definition: Gets the model handle from the SpectrumModel Object.

Arguments: None

Returns: Mhandle The model handle.

Class Method: getMName()

Definition: Gets the model name from the SpectrumModel Object.

Arguments: None

Returns: MName The model name.
36 Chapter 3—Configuration

SCAuto for SPECTRUM Guide
SPECTRUM SpectrumAttributes Object
The SpectrumAttributes Object is used to create a hashtable of all
SpectrumAttribute Objects for a SpectrumModel Object. Specific attributes
can be looked up using either the attribute name or id.

Class Method: getMTypeHnd()

Definition: Gets the model type handle from the SpectrumModel Object.

Arguments: None

Returns: MTypeHnd The model type handle.

Class Method: getMTypeName()

Definition: Gets the model type name from the SpectrumModel Object.

Arguments: None

Returns: MTypeName The model type name.

Class Method: SpectrumAttributes()

Definition: Constructor. Uses the show attributes cli command and creates a new
hashtable of SpectrumAttribute Objects that can be parsed to create
inventory items for ServiceCenter.

Arguments: None

Returns: New hashtable of the SpectrumAttribute Objects.

Class Method: getSpectrumAttribute(String value)

Definition: Gets the attribute for a SpectrumModel Object based on the attribute name
or id.

Arguments: Value The attribute name or id.

Returns: SpectrumAttribute Object
Configuring Using ECMA Scripts 37

SCAuto
SPECTRUM SpectrumAttribute Object
The SpectrumAttribute Object contains the attribute id, name, instance id,
and value for a Spectrum model. For the user, it provides instance methods
for accessing values to these fields.

Class Method: SpectrumAttribute()

Definition: Constructor

Arguments: None

Returns: New SpectrumModel object.

Class Method: getAId()

Definition: Gets the attribute id from the SpectrumModel Object.

Arguments: None

Returns: AId The attribute id.

Class Method: getAName()

Definition: Gets the attribute name from the SpectrumModel Object.

Arguments: None

Returns: AName The attribute name.

Class Method: getAIid()

Definition: Gets the attribute instance id from the SpectrumModel Object.

Arguments: None

Returns: AIid The attribute instance id.

Class Method: getAValue()

Definition: Gets the attribute value from the SpectrumModel Object.
38 Chapter 3—Configuration

SCAuto for SPECTRUM Guide
SCEvMon Configuration

SCEvMon is configured through scevmon.properties file. There are two
fixed key properties that provide the information for SCEvMon to identify a
Peregrine Systems's SCAuto Adapter: scevmon.Key and scevmon.SessionID.
All the other properties are configurable and may be set when starting
SCEvMon. The properties are:

Arguments: None

Returns: AValue The attribute value.

scevmon.Key This is the license key that enables SCEvMon
to function. Not Modifiable.

scevmon.SessionID This is the session ID used by SCAuto Base
Server to identify the incoming SCAuto
Adapter. Not Modifiable.

scevmon.IniFile This property contains the name of the
SCAuto Adapter's initialization file.

scevmon.SleepInterval This is a sleep interval in number of seconds
for SCEvMon to pause before attempting to
read the next event from both the to and the
from queues when there are no events
available. If there are events available in any
queue, it finishes processing these events
before sleeping. Default is 5.

scevmon.To_SC This property specifies whether to enable
incoming event process to ServiceCenter.
Default is off.

on - enable.

off - disable.

scevmon.From_SC This property specifies whether to enable
ServiceCenter outbound event process.
Default is off.

on - enable.

off - disable.
SCEvMon Configuration 39

SCAuto
scevmon.EventList This property specifies a ServiceCenter event
type or list of ServiceCenter event types to be
queried at the connection time. A value of all
causes queries to fetch all event types.
Multiple event types are specified using the
format (type1, type2, ...). Default is all.

scevmon.UserList This property specifies a user name or list of
user names to be used for querying the
ServiceCenter events. The value all causes
events owned by any user to be retrieved, and
multiple user names in the format
(user1,user2,...) can be used. Default is all.

scevmon.ReconnectSC Retry to connect to SCAuto Base Server after
the server restarted. Default is 0.

0: Do not retry to connect to the SCAuto
Base Server.

1: Retry to connect to the SCAuto Base
Server.

scevmon.ReconnectSCInterval Number of seconds to sleep between retrying.
Default is 120 (two minutes).

scevmon.NumOfRetryConnect Number of retries before exiting. 0 = retry
forever. Default is 0.

scevmon.InterrupterInterval Number of seconds to sleep for SCAutoJ's
Interrupter object. This object checks the
existing status of the SCEvMon's running
files. If the running file has been removed, it
signals SCEvMon and cause that particular
process to stop. Default is 5.

scevmon.LogError This is an error logging flag to enable error
codes to be output to a log file. The name of
the log file is configured in the initializing file
specified by the scevmon.IniFile property.
Default is 0.

0 - run log off.

1 - run log on.
40 Chapter 3—Configuration

SCAuto for SPECTRUM Guide
scevmon.LogErrString This is an error logging flag to enable error
strings to be output to a log file. The name of
the log file is configured in the initializing file
specified by the scevmon.IniFile property.
Default is 0.

0 - run log off.

1 - run log on.

scevmon.debug A debug flag for SCEvMon. Default is 0.

0 - turn debug off.

1 - level 1 debugging

2 - level 2 debugging

scevmon.debugJNI Debug flag for SCAutoJ. Default is 0.

0 - turn debug off.

1 - level 1 debugging

scevmon.DeleteSCEvent This flag enable a ServiceCenter event to be
deleted from the event-out queue after this
event is successfully written to the SCAuto
Adapter's event queue file. Default is 0.

0: do not delete this event.

1: delete a ServiceCenter event from the
event-out queue.

scevmon.IgnoreWriteQError This flag allows the From_SC process
continue running even after the write event to
queue file operations failed. Default is 0.

0: process stops after a write event to queue
file operation failed.

1: ignore the write error and continue the
process

scevmon.ShowSCAutoVer Log a string that describes the current
SCAuto version and the date the SCAuto
library or DLL was built. It is intended to be
used for debugging or for presenting
descriptive text upon application start-up.
Default is 0.
SCEvMon Configuration 41

SCAuto
Customizing Event Integration

SCAuto for SPECTRUM can be customized for startup/shutdown behavior
and data mapping between ServiceCenter and SPECTRUM. These
customizations can be done by modifying certain initializing files, Java
property files, as well as ECMA scripts (JavaScript). The tables in the
following pages show the areas of customization and their related files.

Customizing the Interface Queue Manager
The Interface Queue Manager is the process that monitors and caches events
from/to ServiceCenter and SPECTRUM. The queue manager continues to
cache all events when one of the connecting software is down. It acts as an
event pump that accumulates events during a system down and continues
pumping events when the system is up again.

0: do not log SCAuto Library or DLL
version string

1: log SCAuto Library or DLL version
string

File Name: <inst. dir.>/bin/StartSCEvmon.sh

Description: This is the script file specified to start the Interface Queue Manager. Its main
purpose is to set up the correct library paths (UNIX) or DLL paths
(Windows NT) to enable the Java Runtime Environment to execute.

Customization: Peregrine suggests that customers not modify this file.

File Name: <inst. dir.>/bin/StopSCEvMon.sh

Description: This is the script file that is specified to stop the Interface Queue Manager.

Customization: Peregrine suggests that customers not modify this file.
42 Chapter 3—Configuration

SCAuto for SPECTRUM Guide
Java properties file (scautoj.properties)

File Name: <inst. dir.>/SCAutoSpectrum.ini

Description: This initialization file contains traditional SCAutomate parameters that are
used by the SCAutomate SDK v3 library functions. The entries are
name/value pairs separated by the colon (:) character.

Customization:

Property Name Property Value

log The log file name where all debugging information
as well as error messages will be redirected to.

Default: no default

scevent.server The SCAutomate Server hostname/port number
to connect to. It is in the format of <host
name.><port number>. This value is modified
during installation. If after installation, the
SCAuto host/port has changed, please modify this
entry to reflect the change.

debug A debug flag for SCAutomate.

1 - turn debug on.

0 - turn debug off.

Default: 0

debugscautoevents A debug level flag for SCAuto events.

0 - off.

1 - level 1.

2 - level 2.

Default: 0

File Name: <inst. dir.>/scautoj.properties

Description: This is the Java property file used by all the Java processes including the
Interface Queue Manager. The entries are name/value pairs separated by the
colon (:) character.

Customization: Property Name Property Value
Customizing Event Integration 43

SCAuto
scautoj.SCMessagingClassName This is the java class name including the
package name of the class that defines
the ServiceCenter Messaging class. This
should be provided by the installer and
not modified after installation.

Default: SCAutoJ.JNIBridge

scautoj.SCMessagingClassFile This is the absolute path name to the
class file that contains the ServiceCenter
Messaging class. Not modifiable by
user.

Default: JNIBridge.class

scautoj.VendorMessagingClassName This is the java class name including the
package name of the class that defines
the SPECTRUM Messaging class. This
should be provided by the installer and
not modified after installation.

Default: SpectrumBridge

scautoj.VendorMessagingClassFile This is the absolute path name to the
class file that contains the ServiceCenter
Messaging class. Not modifiable by
user.

Default: SpectrumBridge.class

scautospectrumj.vnmshpath This is the path to SPECTRUM’s CLI
directory. Used for inventory
integration only.

scautospectrumj.pcausepath This is the path to SPECTRUM’s
Probable Cause directory.

scautospectrumj.alarmnotifier This is the path to SPECTRUM’s
AlarmNotifier executable.

scautospectrumj.alarmnotifierparms This is the path to the parameters file
used by the SPECTRUM’s
AlarmNotifier executable started by the
SCAutoAlarms process.

Default: AlarmNotifierParms

scautospectrumj.modeltypes Lists the model types to inventory
(Host_Sun, Host_NT, Host_Compaq,
GnSNMPDev, Pingable). Used for
inventory integration only.
44 Chapter 3—Configuration

SCAuto for SPECTRUM Guide
Customizing the SPECTRUM Alarm Monitor
The SPECTRUM Alarm Monitor process has the responsibility of receiving
Alarms from SPECTRUM and logging them to the queue file scevents.to.<sc
host>.<scauto port>. The Interface Queue Manager process (if running)
picks up each alarm and forwards it to ServiceCenter.

The following describes the files and their values related to customizing this
process.

.

The SPECTRUM Alarm Monitor process can also use the scautoj.properties
file (see Java properties file (scautoj.properties) on page 43) for customization.

alarms.js
The following shows the contents of the alarm.js file.

// alarms.js
File = Packages.java.io.File;
String = Packages.java.lang.String;

scautospectrumj.alarmTraceLevel

scautospectrumj.inventoryTraceLevel

File Name: <inst. dir.>/bin/StartSCAutoAlarms.sh

Description: This is the shell script executed when you choose the Start SCAutoAlarms
menu option under the SCAutomate sub-menu in SpectroGraph. Its main
purpose is to set up correct library paths (UNIX) or DLL paths (Windows
NT) to enable the Java Runtime Environment to execute.

File Name: <inst. dir.>/bin/StopSCAutoAlarms.sh

Description: This is the shell script executed when you choose the Stop SCAutoAlarms
menu option under the SCAutomate sub-menu in SpectroGraph. It stops
SCAutoAlarms.

File Name: <inst. dir.>/bin/alarms.js

Description:
Customizing Event Integration 45

SCAuto
Util = Packages.JSInterpreter.Util;

scEvent = Packages.SpectrumAlarms.scEvent;
vEvent = Packages.SpectrumAlarms.vEvent;
pcausepath = Packages.SpectrumAlarms.pcausepath;
SpecUtil = Packages.SpectrumUtil;

defaultcategory = "network";

//get the fields from the alarm

alarmdate = vEvent.getEvField("DATE");
alarmtime = vEvent.getEvField("TIME");
modeltype = vEvent.getEvField("MTYPE");
modelname = vEvent.getEvField("MNAME");
alarmid = vEvent.getEvField("AID");
causecode = vEvent.getEvField("CAUSE");
condition = vEvent.getEvField("COND");
repairperson = vEvent.getEvField("REPAIRPERSON");
alarmstatus = vEvent.getEvField("STATUS");
spectroserver = vEvent.getEvField("SERVER");
landscape = vEvent.getEvField("LANDSCAPE");
modelhandle = vEvent.getEvField("MHANDLE");
modeltypehandle = vEvent.getEvField("MTHANDLE");
ipaddress = vEvent.getEvField("IPADDRESS");
securitystring = vEvent.getEvField("SECSTR");
alarmstate = vEvent.getEvField("ALARMSTATE");
acknowledged = vEvent.getEvField("ACKD");
userclearable = vEvent.getEvField("CLEARABLE");

// you only get the following if you have SANM......

if(vEvent.getEvField("SANM") == "Y" || vEvent.getEvField("SANM") == "enabled")
{
 SANMEnabled = true;
 flashgreen = vEvent.getEvField("FLASHGREEN");
 probablecause = vEvent.getEvField("PCAUSE");
 location = vEvent.getEvField("LOCATION");
 alarmage = vEvent.getEvField("AGE");
 notificationdata= vEvent.getEvField("NOTIFDATA");
 eventmessage = vEvent.getEvField("EVENTMSG");
}
else
{
 SANMEnabled = false;
}

//check to see if we have already processed this alarm

if (vEvent.getEventType()=="SET" && alarmstate=="EXISTING")
{
 SpecUtil.logprintA(0,"Alarm "+alarmid+" already processed");
 scEvent.setEventStatus("filtered");
 exit;
}

//check to see if we want to process this alarm

scProcessAlarm=true;
46 Chapter 3—Configuration

SCAuto for SPECTRUM Guide
if(
 (condition == "RED" || condition == "CRITICAL") //process RED alarms
 || (condition == "ORANGE" || condition == "MAJOR") //process ORANGE alarms
//|| (condition == "YELLOW" || condition == "MINOR") //uncomment to process YELLOW alarms
)
 scProcessAlarm=scProcessAlarm && true;
else
 scProcessAlarm=false;

if(
 (modeltype == "Host_Compaq") //process Host_Compaq modeltypes
 || (modeltype == "Host_Sun") //process Host_Sun modeltypes
 || (modeltype == "Host_NT") //process Host_NT modeltypes
 || (modeltype == "Host_Device") //process Host_Device modeltypes
 || (modeltype == "GnSNMPDev") //process GnSNMPDev modeltypes
//|| (modeltype == "Pingable") //uncomment to process Pingable modeltypes
)
 scProcessAlarm=scProcessAlarm && true;
else
 scProcessAlarm=false;

if (!scProcessAlarm)
{
 scEvent.setEventStatus("filtered");
}
else
{
// map the alarmdata to a servicecenter event
// SET = pmo
// CLEAR = pmc
// UPDATE = pmu

 if(vEvent.getEventType()=="SET")
 {
 scEvent.setEventType("pmo");
 scEvent.createEventFieldNamesFromMapFile("EventMap"+ File.separator +"To_SC"+ File.separator
+"pmo.map");
 scEvent.setEvField("logical.name", modelname);
 scEvent.setEvField("network.name", modelname);
 scEvent.setEvField("reference.no", alarmid);
 scEvent.setEvField("assignee.name", repairperson);
 scEvent.setEvField("cause.code", causecode);
 scEvent.setEvField("network.address", ipaddress);
 scEvent.setEvField("category", defaultcategory);
 scEvent.setEvField("model", modeltype);

// SANM will provide the probable cause data and the event message data
 if(SANMEnabled)
 {
 action = "Local Alarm Time: " + alarmdate + " " + alarmtime + "||" +
 "PCAUSE" + "|" + probablecause + "|" +
 "EVENTMSG" + "|" + eventmessage + "|";
 scEvent.setEvField("_ax.field.name", action);
 }
// Without SANM, build the probable cause filename from the causecode value
// fill in leading zeroes between "Prob" and the causecode value
 else
 {
 while (causecode.length < 8)
Customizing Event Integration 47

SCAuto
 {
 causecode = "0" + causecode;
 }

 pcausefile = pcausepath + File.separator + "Prob" + causecode;

 util = new Util();
 tmpdata = new String(util.run("cat " + pcausefile));
 pcausedata = tmpdata.replace('\n', '|');
 action = "Local Alarm Time: " + alarmdate + " " + alarmtime + "||" + pcausedata + "|";
 scEvent.setEvField("_ax.field.name", action);
 }

// set the priority.code value based on the color/severity in the alarm

 if(condition == "RED" || condition == "CRITICAL")
 scEvent.setEvField("priority.code", "1");
 else if(condition == "ORANGE" || condition == "MAJOR")
 scEvent.setEvField("priority.code", "2");
 else if(condition == "YELLOW" || condition == "MINOR")
 scEvent.setEvField("priority.code", "3");
 else
 scEvent.setEvField("priority.code", "4");
 }
 else if(vEvent.getEventType()=="CLEAR")
 {
 scEvent.setEventType("pmc");
 scEvent.createEventFieldNamesFromMapFile("EventMap"+ File.separator +"To_SC"+ File.separator +"pmc.map");
 scEvent.setEvField("logical.name", modelname);
 scEvent.setEvField("network.name", modelname);
 scEvent.setEvField("reference.no", alarmid);
 action = "Local Alarm Cleared Time: " + alarmdate + " " + alarmtime;
 scEvent.setEvField("resolution", action);
 }
 else if(vEvent.getEventType()=="UPDATE")
 {
 scEvent.setEventType("pmu");
 scEvent.createEventFieldNamesFromMapFile("EventMap"+ File.separator +"To_SC"+ File.separator
+"pmu.map");
 scEvent.setEvField("logical.name", modelname);
 scEvent.setEvField("network.name", modelname);
 scEvent.setEvField("reference.no", alarmid);
 scEvent.setEvField("assignee.name", repairperson);
 action = "Local Alarm Updated Time: " + alarmdate + " " + alarmtime +
 "|Alarm Status : " + alarmstatus +
 "|Acknowledged : " + acknowledged;
 scEvent.setEvField("update.action", action);
 }
}

Customizing Inventory Integration
Inventory integration gathers all the models specified in the modeltype
parameter from the SPECTRUM database. The following files are involved in
inventory gathering:
48 Chapter 3—Configuration

SCAuto for SPECTRUM Guide
Inventory integration can also be customized using the scautoj.properties
file.

Example of map for Host_Compaq model.
scEvent.setEvField("type","server");
scEvent.setEvField("logical.name",modelname);
scEvent.setEvField("location",ssmodelobject.getSpectrumAttribute("Location").getAValue());
scEvent.setEvField("network.address",ssmodelobject.getSpectrumAttribute("Network_Address").getAValue());
scEvent.setEvField("network.name",modelname);
scEvent.setEvField("vendor",ssmodelobject.getSpectrumAttribute("Manufacturer").getAValue());
scEvent.setEvField("model",ssmodelobject.getSpectrumAttribute("Model_Number").getAValue());
scEvent.setEvField("serial.no.",ssmodelobject.getSpectrumAttribute("Serial_Number").getAValue());
scEvent.setEvField("contact.name",ssmodelobject.getSpectrumAttribute("ContactPerson").getAValue());
scEvent.setEvField("subtype",ssmodelobject.getSpectrumAttribute("DeviceType").getAValue());
scEvent.setEvField("subnet.mask",ssmodelobject.getSpectrumAttribute("Network_Mask").getAValue());
scEvent.setEvField("protocol.addr",ssmodelobject.getSpectrumAttribute("Network_Address").getAValue());
scEvent.setEvField("mac.address",ssmodelobject.getSpectrumAttribute("MAC_Address").getAValue());
scEvent.setEvField("description",ssmodelobject.getSpectrumAttribute("0x10052").getAValue());
scEvent.setEvField("model",ssmodelobject.getSpectrumAttribute("cpqSiProductName").getAValue());
scEvent.setEvField("operating.system",ssmodelobject.getSpectrumAttribute("cpqHoName").getAValue());
scEvent.setEvField("os.version",ssmodelobject.getSpectrumAttribute("cpqHoVersion").getAValue());
comments = "Model Handle: " + modelhandle + "|";
comments += "Model Name: " + modelname + "|";
comments += "Model Type Name: " + modeltype + "|";
comments += "Model Type Handle: " + modeltypehandle;
scEvent.setEvField("comments",comments);

File Name: <inst. dir.>/bin/StartSCAutoInventory.sh

Description: This is the shell script executed when you choose the Start SCAutoInventory
menu option under the SCAutomate sub-menu in SpectroGraph. Its main
purpose is to set up the correct library paths (UNIX) or DLL paths (Windows
NT) to enable the Java Runtime Environment to execute, set up a unique CLI
sessid id, and connect to the SPECTRUM CLI.

File Name: <inst. dir.>/bin/StopSCAutoInventory.sh

Description: This is the shell script executed when you choose the Stop SCAutoInventory
menu option under the SCAutomate sub-menu in SpectroGraph. Its main
purpose is to stop ScAutoInventory.

File Name: <inst. dir.>/bin/model_name.js

Description:
Customizing Event Integration 49

SCAuto
50 Chapter 3—Configuration

CHAPTER
4 S
CAuto SPECTRUM Files
This chapter lists the files in SCAuto for SPECTRUM.

SCAutoSpectrum
SCAutoSpectrum includes the following files

-rw-rw-rw- 1 spectrum root 264 Apr 7 02:47 AlarmNotifierParms

-rw-rw-rw- 1 spectrum root 1937 Apr 7 02:47 CsStdMenu

-rw-rw-rw- 1 spectrum root 558 Apr 7 02:47 CsStdMenu.no.cutthru

drwxrwxrwx 4 spectrum root 512 Apr 7 02:46 EventMap

-rw-rw-rw- 1 spectrum root 81 Apr 7 02:47 SpectrumJ.ini

drwxrwxrwx 2 spectrum root 512 Apr 7 02:46 SpectrumScripts

drwxrwxrwx 2 spectrum root 512 Apr 7 02:47 UnInst

drwxrwxrwx 2 spectrum root 512 Apr 7 02:47 bin

drwxrwxrwx 4 spectrum root 512 Apr 7 02:47 jre1.2.2

drwxrwxrwx 2 spectrum root 512 Apr 7 02:46 lib

-rwxrwxrwx 1 spectrum root 338 Apr 7 02:47 modFiles.sh

-rw-rw-rw- 1 spectrum root 557 Apr 7 02:47 scautoj.properties

-rw-rw-rw- 1 spectrum root 372 Apr 7 02:46 scevmon.properties
SCAuto SPECTRUM Files 51

SCAuto
SCAutoSpectrum/EventMap:

SCAutoSpectrum/EventMap/To_SC:

SCAutoSpectrum/SpectrumScripts:
The following are the SCAutoSpectrum scripts.

drwxrwxrwx 2 spectrum root 512 Apr 7 02:46

drwxrwxrwx 2 spectrum root 512 Apr 7 02:46 To_SC

-rwxrwxrwx 1 spectrum root 1625 Apr 7 02:46 GnSNMPDev.js

-rwxrwxrwx 1 spectrum root 1914 Apr 7 02:46 Host_Compaq.js

-rwxrwxrwx 1 spectrum root 1616 Apr 7 02:46 Host_NT.js

-rwxrwxrwx 1 spectrum root 1617 Apr 7 02:46 Host_Sun.js

-rwxrwxrwx 1 spectrum root 540 Apr 7 02:46 ICMdevicenode.map

-rwxrwxrwx 1 spectrum root 447 Apr 7 02:46 ICMrouter.map

-rwxrwxrwx 1 spectrum root 822 Apr 7 02:46 ICMserver.map

-rwxrwxrwx 1 spectrum root 759 Apr 7 02:46 ICMworkstation.map

-rwxrwxrwx 1 spectrum root 1149 Apr 7 02:46 Pingable.js

-rwxrwxrwx 1 spectrum root 193 Apr 7 02:46 alarm.map

-rwxrwxrwx 1 spectrum root 5593 Apr 7 02:46 alarms.js

-rwxrwxrwx 1 spectrum root 266 Apr 7 02:46 pmc.map

-rwxrwxrwx 1 spectrum root 256 Apr 7 02:46 pmo.map

-rwxrwxrwx 1 spectrum root 270 Apr 7 02:46 pmu.map

-rwxrwxrwx 1 spectrum root 158 Apr 7 02:46 pmcscript

-rwxrwxrwx 1 spectrum root 156 Apr 7 02:46 pmoscript

-rwxrwxrwx 1 spectrum root 159 Apr 7 02:46 pmuscript
52 Chapter 4—SCAuto SPECTRUM Files

SCAuto for SPECTRUM Guide
SCAutoSpectrum/bin:

SCAutoSpectrum/jrel.2.2:

SCAutoSpectrum/lib:

-rwxrwxrwx 1 spectrum root 501 Apr 7 02:47 StartSCAutoAlarms.sh

-rwxrwxrwx 1 spectrum root 945 Apr 7 02:47 StartSCAutoInventory.sh

-rwxrwxrwx 1 spectrum root 510 Apr 7 02:47 StartSCEvmon.sh

-rwxrwxrwx 1 spectrum root 69 Apr 7 02:47 StopSCAutoAlarms.sh

-rwxrwxrwx 1 spectrum root 72 Apr 7 02:47 StopSCAutoInventory.sh

-rwxrwxrwx 1 spectrum root 67 Apr 7 02:47 StopSCEvmon.sh

-rwxrwxrwx 1 spectrum root 3023 Apr 7 03:05 scelogin.sh

drwxrwxrwx 3 spectrum root 512 Apr 7 02:47 bin

drwxrwxrwx 9 spectrum root 2048 Apr 7 02:47 lib

-rwxrwxrwx 1 spectrum root 42637 Apr 7 02:46 SCAutoJ.jar

-rwxrwxrwx 1 spectrum root 28586 Apr 7 02:46 SCAutoSpectrumJ.jar

-rwxrwxrwx 1 spectrum root 21543 Apr 7 02:46 SCEvMonJ.jar

-rwxrwxrwx 1 spectrum root 1358806 Apr 7 02:46 fesi.jar

-rwxrwxrwx 1 spectrum root 417457 Apr 7 02:46 libSCAutoJNIBridge.so

-rwxrwxrwx 1 spectrum root 301396 Apr 7 02:46 xml.jar
 53

SCAuto
54 Chapter 4—SCAuto SPECTRUM Files

Index
A
Alarm 10
Alarm Integration 9

C
configuration

ECMA scripts 33
Event Integration 42
Interface Queue Manager 42
Inventory Integration 48
SPECTRUM Alarm Monitor 45

customer support 6
Customer Support, contacting 6
Customer Support, Support, Help 6

E
ECMA scripts 19, 33, 42
Event Integration

configuring 42

G
GUI Integration 9, 16

I
installation

SCAuto for SPECTRUM (on Solaris) 26
SCAuto for SPECTRUM (on Windows NT)

 21
Interface Queue Manager

configuring 42
Inventory Integration 9, 13

configuring 48

J
Java 33, 34, 42

L
loops 35

P
Peregrine Systems customer support 6
processes

Interface Event Queue Monitor 11
SPECTRUM Alarm Monitor 11

S
SCAuto for SPECTRUM

compatibility 10
installing on Solaris 26
installing on Windows NT 21
introduction to 10
prerequisite knowledge 5

SPECTRUM Alarm Monitor
configuring 45

SPECTRUM SpectrumAttributes Object 37, 38
SPECTRUM SpectrumModel Object 36

T
technical support 6

U
UNIX 19
Index 55

SCAuto
X
X-Window 19
56 Index

July 23, 2003

	Content
	Preface
	Overview
	Prerequisite knowledge

	Contacting Peregrine Systems
	Customer Support
	Documentation Web site
	Education Services Web Site

	Introduction
	Overview
	Compatibility

	Alarm Integration
	SCAutoAlarms

	Inventory Integration
	SCAutoInventory

	GUI Integration (cut-throughs)
	Context insensitive menu items

	ServiceCenter Event Monitor

	Installation
	Overview
	Installation requirements

	Installing on Windows NT or Windows 2000
	Installing on Solaris

	Configuration
	Configuring Using ECMA Scripts
	General ECMA techniques used
	SPECTRUM Event Object
	SPECTRUM SpectrumModel Object
	SPECTRUM SpectrumAttributes Object
	SPECTRUM SpectrumAttribute Object

	SCEvMon Configuration
	Customizing Event Integration
	Customizing the Interface Queue Manager
	Java properties file (scautoj.properties)
	Customizing the SPECTRUM Alarm Monitor
	alarms.js
	Customizing Inventory Integration

	SCAuto SPECTRUM Files
	SCAutoSpectrum
	SCAutoSpectrum/EventMap:
	SCAutoSpectrum/EventMap/To_SC:
	SCAutoSpectrum/SpectrumScripts:
	SCAutoSpectrum/bin:
	SCAutoSpectrum/jrel.2.2:
	SCAutoSpectrum/lib:

	Index

