
HP SOA Systinet Registry

Software Version: 6.5

Product Documentation

Document Release Date: May 2007
Software Release Date: May 2007

Legal Notices

Warranty

The only warranties for HP products and services are set forth in the express warranty statements
accompanying such products and services. Nothing herein should be construed as constituting an additional
warranty. HP shall not be liable for technical or editorial errors or omissions contained herein.

The information contained herein is subject to change without notice.

Restricted Rights Legend

Confidential computer software. Valid license from HP required for possession, use or copying. Consistent
with FAR 12.211 and 12.212, Commercial Computer Software, Computer Software Documentation, and
Technical Data for Commercial Items are licensed to the U.S. Government under vendor's standard
commercial license.

Third-Party Web Sites

Mercury provides links to external third-party Web sites to help you find supplemental information. Site
content and availability may change without notice. Mercury makes no representations or warranties
whatsoever as to site content or availability.

Copyright Notices

Copyright ' 1997-2007, Systinet Corporation. All Rights Reserved.

Trademark Notices

Java™ is a US trademark of Sun Microsystems, Inc. Microsoft®, Windows® and Windows XP® are U.S.
registered trademarks of Microsoft Corporation. IBM®, AIX® and WebSphere® are trademarks or registered
trademarks of International Business Machines Corporation in the United States and/or other countries.
BEA® and WebLogic® are registered trademarks of BEA Systems, Inc.

Contents

1 Read This First. 5

HP SOA Systinet Registry Features Overview. 5

Release Notes. 7

Supported Platforms. 20

Specifications. 22

Document Conventions. 23

Documentation Updates. 24

Support. 25

Legal. 26

FAQs. 38

2 Installation Guide. 39

System Requirements. 40

Installation. 42

Licensing and Evaluation. 83

Server Configuration. 89

Database Installation. 95

Approval Process Registry Installation. 118

External Accounts Integration. 130

Deployment to an Application Server. 159

Cluster Configuration. 178

Authentication Configuration. 186

Migration. 197

Backup. 203

NT Service Support. 211

Running in Linux. 217

Uninstallation. 220

3

3 User's Guide. 223

Introduction to HP SOA Systinet Registry. 224

Registry Consoles . 241

Demo Data. 242

Business Service Console. 245

Advanced Topics. 295

4 Administrator's Guide. 399

Registry Management. 400

Registry Configuration. 454

Configuration in Database. 464

Business Service Console Configuration. 467

Registry Console Configuration. 482

Permissions: Principles. 485

Approval Process Principles. 499

PStore Tool. 503

SSL Tool. 511

5 Developer's Guide. 517

Mapping of Resources. 517

Client-Side Development. 527

Server-Side Development. 722

UDDI from Developer Tools. 872

How to Debug. 880

6 Demos. 887

Basic Demos. 887

Advanced Demos. 927

Security Demos. 959

Resources Demos. 982

Index. 1011

Glossary. 1017

4

1 Read This First

Welcome to HP SOA Systinet Registry!

HP SOA Systinet Registry is the leading business service registry, providing discovery, publishing and
approval of SOA business services. With full support for version 3 of the UDDI (Universal Description,
Discovery and Integration) standard, HP SOA Systinet Registry is a key component of a Service Oriented
Architecture (SOA).

This product documentation contains the following sections:

Read This First . This book is recommended for all readers. It provides a product overview, release notes,
product changes, the typographical conventions used throughout this guide.

Installation and Deployment Guide . This book guides you through installing HP SOA Systinet Registry,
installing and setting up databases, and deploying HP SOA Systinet Registry to application servers.

User's Guide . This book describes how to manually maintain HP SOA Systinet Registry contents. All
basic functions of the Registry Console are discussed here.

Developer's Guide . Introduces the basics of creating extensions and client programs in HP SOA Systinet
Registry. The Developer's Guide also documents the HP SOA Systinet Registry demo suite.

Administrator's Guide . Explains HP SOA Systinet Registry's configuration and management, and
introduces the tools and utilities you will need to perform these tasks.

HP SOA Systinet Registry Features Overview
HP SOA Systinet Registry is the only fully V3-compliant implementation of UDDI (Universal Description,
Discovery and Integration), and is a key component of a Service Oriented Architecture (SOA). HP SOA
Systinet Registry is an easy-to-use, standards-based mechanism for publishing and discovering Web services
and related resources like XML Schemas or XSLT transformations.

5

HP SOA Systinet Registry fully implements the OASIS UDDI V3 standard. HP SOA Systinet Registry can
be deployed in almost any Java environment and works with all popular database systems. In addition, the
registry has been designed specifically for enterprise deployment and includes many advanced features that
make it easy to configure, deploy, manage and secure. HP SOA Systinet Registry is also easy to customize
to support different enterprise user communities.

HP SOA Systinet Registry extends the core UDDI V3 standard with unique functionality designed for
enterprise applications:

• Advanced Security allows for defining granular access control for registered components. Component
publisher can specify find, get, modify and delete access permissions for every published object.

• Data Accuracy & Quality enforcement mechanisms ensure that component registrations are accurate
and up-to-date. Systinet Registry clearly defines responsibility for every registered component. It offers
component promotion & approval mechanisms for promoting components between development, QA
and production environments.

• Subscription & Notification for automatically notifying registry users about changes to components
that they depend on.

• Selective Replication among multiple registries allow for automated propagation between different
registries (for e.g. between internal and external registries).

• Advanced Taxonomy Management for enforcement of well-defined taxonomies.

• Powerful Management for granular control, logging and auditing of the publishing and discovery
processes.

• Performance & Scalability UDDI provides maximum performance and scalability by efficient
implementation of web services stack and database algorithms and by supporting of a load balancing
and clustering mechanism.

HP SOA Systinet Registry is a platform-independent solution that can easy be deployed in a wide variety
of settings. The registry can run either standalone or within an application server: Many application servers,
ranging from Tomcat to BEA WebLogic, IBM Websphere or JBoss are supported. Systinet Registry also
unrivalled support for a broad set of database management systems for storing registrations (e.g. Oracle,
MS SQL Server, Sybase, IBM DB/2, PostgreSQL and HSQL). Crucially, HP SOA Systinet Registry also
integrates with both LDAP and Microsoft ActiveDirectory.

Chapter 16

Release Notes

What's New

• Business Service Console:

• The Home tab has been redesigned as a dashboard of the most frequently used features;

• Context menus for Catalog tree - right click to display the set of operations allowed on the selected
entity type;

• The user interface now only displays links for actions that the user has permission to perform;

• Quick search - the user can search all data structures by keyword;

• The navigation panel on the left-hand side of the Catalog and Reports tabs can be hidden, with a
mouse click or Alt-Q;

• Duplicate scrollbars have been eliminated from the UI;

• Entities in the BSC:

• When viewing entity details, a new System Info tab provides information about the owner, creation
and modification dates and UDDI keys;

• Custom Entity Types - an administrator can define a new entity type based on a UDDI entity type
and a specific categorization. For example, a "Policy" can be a tModel (UDDI type) with a
keyedReference to uddi:schemas.xmlsoap.org:policytypes:2003_03 with "policy" as the keyValue.
Custom types are added seamlessly to the Catalog tree and Reports tab;

• References between entities - it is possible to create and browse references between entities. The
user can view all references from the current entity to other entities and find all entities which refer
to the current entity;

• Configurable Searches - an administrator can configure the search dialog for an entity type by
changing the appropriate categorization;

7Read This First

• Localization - the registry console and Business Service Console are prepared for localization to other
languages;

• Publishing Services:

• A user can publish a service from a WSDL document stored on a web server requiring HTTP Basic
authentication;

• The performance of WSDL to UDDI publishing has been improved;

• Approval Process:

• Wizards for submission of approval requests have been simplified and improved. A user can
immediately submit an approval request when an entity is published;

• Errors are prevented by automatic closure checking. A list of entities that must be added to a request
is automatically supplied;

• Server-Side Development:

• Business Services Console Framework - enhancements to support customization and integration.

Known Issues

UDDI Version 3 Specification

The following parts of the UDDI Version 3 specification are not implemented:

• Inter-Node operation - this part of the specification is not implemented.

• Replication Specification - The Replication Specification describes the data replication process and the
programming interface required to achieve complete replication between UDDI Operators in the UBR
(Universal Business Registry ~ UDDI operator cloud). This part of the specification is mandatory for
members of the UBR and is not implemented.

• Policy - The policy description is not defined.

Chapter 18

• Exclusive XML Canonicalization [http://www.w3.org/2001/10/xml-exc-c14n#] is used for
canonicalization of digital signatures. Schema-centric XML Canonicalization is not yet implemented.

UDDI Version 2 Specification

The following parts of the UDDI Version 2 specification are not implemented:

• Operator Specification - This part of the specification is mandatory for members of the UBR and is
implemented with the exceptions described in this section.

• Custody transfer from version 2 is not implemented.

• Replication Specification - The Replication Specification describes the data replication process and the
programming interface required to achieve complete replication between UDDI Operators in the UBR.
This part of the specification is mandatory for members of the UBR and is not implemented.

Database

• Sybase ASE (Adaptive Server Enterprise) has a limit of 16 sub-selects for queries (SELECT ... FROM ...
WHERE EXISTS (SELECT...)). Because of this limit, some more complex queries (such as find by category
bag with more keyed references) do not work.

• There are the following caveats in data migration and backup:

• Deletion history for subscriptions is not migrated and backed up.

• Custody transfer requests are not migrated and backed up.

• Migration and backup of approval requests and relationships between requestors and approvers are
not yet implemented.

• We do not recommend installing HP SOA Systinet Registry with the HSQL database under IBM Java
1.4.x since the installation may time out.

Consoles

• The Firefox web browser interprets Alt key combinations in a non-standard way. One consequence of
this is that use of Alt+1, Alt+2 etc. to change tabs may change the Firefox tab instead of the Business
Service Console tab.

9Read This First

http://www.w3.org/2001/10/xml-exc-c14n#

• On completing an operation, the page displayed by the Business Service Console is not always accurately
reflected in the state of the browser, including the current URL and POST data. Consequently, clicking
the browser's refresh button may result in an erroneous attempt to repeat the operation. For an operation
such as deleting a resource, this will result in error code E_invalidKeyPassed because the resource has
already been deleted. To avoid this problem, use the refresh button provided by the Business Service
Console instead.

• If the user's login expires because of a prolonged pause during execution of a wizard, he will be required
to login before the wizard resumes. However, resumption of the wizard is not always reliable, resulting
in subsequent errors. This is known to occur in the wizard that adds a reference to an entity (from that
entity to another). See Entities on page 271;

• If a browsable taxonomy is checked then any of its categories that contain items should appear in the
reports tree, as described in Browsable Taxonomies on page 470. However, when a category contains
no items and an item is added, the reports tree is not immediately updated because it is cached. To ensure
it is updated the user must take some action to clear the cache, such as closing and reopening their
browser;

• It is possible for an administrator to configure an internal taxonomy (that has a fixed set of categories)
represented using input mode on pages. See Customizable Taxonomies on page 474. The user is then
able to enter arbitrary text as the category and an error will occur if the value entered is not one of the
defined categories;

• The uddi-org:wsdl:categorization:transport taxonomy appears on the Search endpoints page of the
Business Service Console, in the Binding properties composite area with caption Transport. However,
an administrator attempting to use Customizable taxonomies to edit this taxonony is initially told that
it is not compatible with Endpoints. Subsequently they are given the opportunity to choose the area on
the Search endpoints page where the taxonomy appears. This can confuse users. This taxonomy is not
compatible with Endpoints but searching Endpoints by transport is implemented as a special case using
find_tModel;

Other

• Use of SubjectAlternativeName in certificates is not yet supported. This has potential impact wherever
SSL is used and the secure host has more than one hostname. See WSDL Publishing below. The result
is a java.net.ssl.SSLException with a message that hostnames do not match.

• Installation fails if the installation path contains non-ASCII characters;

Chapter 110

• Attempting to undeploy HP SOA Systinet Registry from an application server may appear to have been
successful but can leave files locked until the application server and its JVM exit. This means than an
attempt to redeploy HP SOA Systinet Registry to the application server will fail because these files exist
and cannot be overwritten. A workaround is to restart the application server;

• Selective One-way Replication has the following caveats:

• Checked taxonomies are replicated as unchecked. Taxonomy data replication and change of taxonomy
to checked must be done manually.

• Custody transfer requests are not replicated.

• Publisher assertions are not replicated.

• Approval process has the following caveats:

• Promotion of projected services is not supported.

• Promotion of publisher assertions is not implemented yet.

• LDAP

• Dynamic groups in LDAP account backends are not processed.

• The approximateMatch find qualifier is not supported in LDAP account backends. There is no
wildcard that can represent any single character in the directory (LDAP or AD). % is mapped to *,
it is not possible to map _.

• Groups from disabled domains are visible in the Registry Console.

• Intranet identity association is not implemented; the system#intranet group is reserved for future use.

• Password structure and length checking, expiration, checking of repeated failed logins and IP mask
restriction are not implemented.

• The Signer tool does not support the refresh operation. If you start the Signer and then modify a UDDI
structure, you must restart the Signer Tool.

11Read This First

• The Setup tool throws an exception when you try to configure registry ports on HP SOA Systinet Registry
that are not connected to a database. The exception does not affect the port configuration.

• WSDL Publishing:

• Unable to unpublish unreachable WSDLs in Registry Console.

• Publishing a WSDL at a URL that has https as protocol may fail because the server certificate uses
SubjectAlternativeName to specify alternative hostnames. This is not yet supported as noted above.
The result may be a WSDLException with fault code INVALID_WSDL but the underlying cause is in fact a
java.net.ssl.SSLException with a message that hostnames do not match.

• If you change the HP SOA Systinet Registry configuration using the Setup tool, demo data is always
imported the registry database.

Change Log

HP SOA Systinet Registry 6.0

• Business Service Console - The functionality of the Business Service Console has been extended in the
following areas:

• Approval Process - The approval process has been implemented in the Business Service Console
for requestors and approvers. Requestors can create and submit requests, manage their requests, and
clone requests to the request work area. Requestors can also send reminders to their approvers.
Approvers can approve/reject requests and view approval histories.

• Subscriptions and Notifications - The Business Service Console allows you to create and manage
subscriptions for monitoring new, changed, and deleted entities. The following entities can be
monitored: providers, services, interfaces, and endpoints, as well as resources (WSDL, XML, XSD
and XSLT).

• User Profiles - HP SOA Systinet Registry contains a list of predefined user profiles which differ in
which main menu tabs will be available to them. Each user profile also contains a definition of
default formats for result views. The registry administrator can adjust these user profiles.

• Reports are based on taxonomic classifications.

Chapter 112

• Paging and large results set support - The Business Service Console supports paging for displaying
large result sets. The maximum number of pages and number or rows per page can be configured
for each component.

• Overall performance of the Business Service Console has been increased by Business Service
Console framework optimization.

• Approval Process

• Changed terminology from 5.5 - the staging registry has been renamed to publication registry; the
production registry has been renamed to discovery registry.

• New installation/configuration scenarios have been added. The approval process can be installed
with multiple publication registries and the approval process can be performed in multiple steps.

• Backup functionality - Backup functionality allows you to save the Systinet Registry data and
configuration to a filesystem directory. Later the backup data can serve for a full restore of Systinet
Registry data and configuration.

• Documentation

• Introduction to HP SOA Systinet Registry

• Accessing UDDI from Developer Tools

HP SOA Systinet Registry 5.5

• Business Service Console - Using the Business Service Console, developers, architects and business
users can browse the various perspectives of the Systinet Business Services Registry including business-
relevant classifications such as service and interface lifecycle, compliance or operational/readiness
status. They can browse information through business-relevant abstractions of SOA information such
as schemas, interface local names or namespaces. The Business Service Console also provides easy to
use and customizable publication wizards.

• Advanced query capabilities - Range Queries - users can search for UDDI structures using >,< operators
when searching by categories.

13Read This First

• Taxonomy management

• Taxonomy management has been enhanced by drag and drop taxonomy structure editing. You can
move a category item in the taxonomy hierarchy without de-associating it with current UDDI entities
categorized with this item’s value.

• Administrators can edit an enterprise taxonomy list. Users can edit their lists of favorite taxonomies.

• Mapping resources. New publishing wizards and APIs. The WSDL2UDDI publishing wizard and API
have been enhanced. New wizards and APIs for publishing of resources have be been created.

• Publish a WSDL document

• Publish an XML document

• Publish an XML schema document

• Publish an XSL Transformation

HP SOA Systinet Registry 5.0

• UDDI Multi-version Registry

• UDDI Version 3 Registry - Implementation of the UDDI Version 3 Specification - Committee
Specification v3.0.1

• UDDI Version 2 Registry - Implementation of the UDDI Version 2 Specifications - OASIS Standard

• UDDI Version 1 Registry - Implementation of the UDDI Version 1 Specifications - contributed

• WSDL Publishing - Implementation of Using WSDL in a UDDI Registry, Version 2.0 [http://www.oasis-
open.org/committees/uddi-spec/doc/tn/uddi-spec-tc-tn-wsdl-v200-20031104.htm] for UDDI Version 2
and Version 3

• Access Control - Allows definition of granular access control for registered components. Component
publisher can specify find, get, modify, and delete access permissions for every published object.

Chapter 114

http://www.oasis-open.org/committees/uddi-spec/doc/tn/uddi-spec-tc-tn-wsdl-v200-20031104.htm

• Account and Group Management - Allows management of user's account and groups.

• External Accounts Integration - Allows integration of the registry with custom account storages including
three integration scenarios with LDAP.

• Taxonomy Management and Validation - Allows administrator to create, download, upload, browse and
manage taxonomies.

• Approval Process - component promotion and approval mechanisms for promoting components between
development, staging, and production environments.

• Selective One-way Replication - Replication based on subscription-notification mechanism. An
asynchronous subscription listener listens to incoming subscription data from a master registry.

• Registry Console - User-friendly UI enables user to query and publish the registry, manage user's account
and provide various administration tasks.

• Administration Tools

• GUI Setup and Administration Tool - Allows administrator to set up, port, and configure the registry;
create and drop the registry database; and migrate data from other registry databases.

• Web Administration Console - Allows administrator to configure and manage registry permissions,
data, and users; configure replications; and view registry access statistics.

• Support for leading database engines including Oracle, MS SQL 2000 or 2005, IBM DB2, PostgreSQL,
Sybase, Hypersonic SQL. HP SOA Systinet Registry contains both a bundled and a pre-configured
Hypersonic SQL 1.7.1 database.

• Support for application servers - HP SOA Systinet Registry supports BEA WebLogic and Apache
Tomcat application servers.

• Client Libraries - This distribution includes UDDI Version 1,UDDI Version 2, and UDDI Version 3
account, groups, and permissions management, taxonomy management, approval, administration and
configuration clients with generated javadocs.

• Open Server-Side Architecture

15Read This First

Registry Integration and Embedding - Developers can directly access instances of registry APIs,
run custom classes inside the registry, create custom login modules, and write custom integration
with external accounts and groups storages.

•

• Registry Extensions - Developers can write their own extension services, create and use external
and internal validation services, write custom interceptors to intercept registry messages, customize
the approval process, and customize or create their own Registry Console using a supplied JSP Web
Framework.

WASP UDDI 4.6

• Evaluation License Enforcement Mechanism - evaluation version of HP SOA Systinet Registry requires
an evaluation license

• Integration with LDAP/MS Active Directory - HP SOA Systinet Registry accounts able to integrate
with legacy systems using WASP Userstore

• Approval Process - staging-production pattern used to approve data stored in the registry;

• Direct access to back-end services - HP SOA Systinet Registry services implementations are now directly
accessible

• Administration

• configuration is now transparent for clustered installations

• selected elements in configuration file can be signed to avoid their changes

• created registry privileged users - extended administrators

• admin and superuser able to switch to different user identity

• Localization - support for easier localization.

• Wildcards - selected databases support wildcard queries.

• Demos - demos simplified and refactored.

Chapter 116

• WSDL Best Practice - Using WSDL in a UDDI Registry, Version 2.0 Technical Note supported.

• UDDI Client

• Operation timeout can be set per request.

• Serialization of UDDI API structures from/to XML file, DOM, String.

• Distribution contains the new UDDI client to be used in future releases of HP SOA Systinet Registry.

WASP UDDI 4.5.2

• Bugfixes - Fixes of major bugs found after 4.5 and 4.5.1 releases

• New application servers - Sun ONE Application Server 7

• Taxonomies - Added possibility to configure all combinations of tModelKey and keyName, and keyValue
(tModelKey and keyName; tModelKey and keyValue; and tModelKey, keyName, and keyValue) when
searching for specific taxonomies by keyedReferences.

• Administration - Added cleaner for account audit and subscriptions

WASP UDDI 4.5.1

• Runtime - Used WASP Server for Java, 4.5.1 runtime.

• Database schema - Database schemas changed to reflect optimizations.

• Performance optimizations - Improved performance for high load of data in database.

• New application servers - WebSphere 5.0, JBoss 3.0.4, BEA WebLogic 6.1 SP3, BEA WebLogic 7.0.

• Database installation - Added database installation to HP SOA Systinet Registry installation.

• GUI database tool - New database tool for database creation, delete and migration.

• Security Enhancements - Security enhanced with:

• password structure and length checking

17Read This First

• password/account expiration

• repeated failed logins checking

• access to configuration access can be restricted by IP mask

• WASP Secure Identity - Integration with WASP Secure Identity is not supported any more.

• Web Interface look and feel - New web interface look and feel used.

• Support for NT service - HP SOA Systinet Registry can be now run as NT service.

WASP UDDI 4.5

• Hypersonic SQL - Embedded Hypersonic SQL 1.7.1 database. New demo database pre-configured for
evaluation purposes.

• GUI Upgrade - New graphical upgrade of both registry and database.

• Taxonomy refactoring - Taxonomy publication and validation refactored.

• Added new TaxonomyAdminApi for taxonomy administration.

• Changed specification of taxonomy compatibility

• Unified definition of validation services as specified in Providing a Taxonomy for Use in UDDI
Version 2.

• Created Validation Plug-ins to allow creation of custom taxonomy validators.

• Change UUID - UUIDs can be now changed for all UDDI basic data structures (businessEntity,
businessService, bindingTemplate, tModel) using AdminToolApi

• Category dependencies - New tModel systinet-org:dependency introduced to allow specification of
dependencies between UDDI entities.

• Other API Changes:

Chapter 118

UDDIProxy - added save_wsdlTmodel methods•

• find_relatedServices extended with fromServiceKey and toServiceKey

• Demos - Created new demos structure.

• Database schema - Database schemas changed to reflect new features.

• GUI Installation - New graphical installation.

• Subscriptions - Allows client to subscribe for changes of any UDDI entities that occur in HP SOA
Systinet Registry. There are two basic ways how the subscription is used: asynchronous notification
and synchronous pull subscription.

• HP SOA Systinet Registry Interceptor API - The UDDI interceptor allows implementing customized
handling of UDDI requests and responses.

• Selective One Way Replication - Replication based on subscription-notification mechanism. An
asynchronous subscription listener listens to incoming subscription data from a master registry.

• UDDI Errata - Incorporated last errata from UDDI.org

• UDDI Version 2.04 API

• UDDI Version 2.03 Data Structure Reference

• API Extensions - Extended Inquiry Extensions merged with Access Control API and enhanced with:

• new assertion related API calls

• enhanced wsdl related API calls

• added categoryBag into bindingTemplate and related API calls extended with categoryBag

• Administration - Configurable direct deletion of tModels.

19Read This First

WASP UDDI 4.0

• InstallShield - Graphical installation tool, InstallShield added.

• PointBase - Support for PointBase 4.3 database added.

• Oracle 9i - Oracle 9i AS (OC4J) deployment added.

• Disabled Runtime Services - System services removed from HP SOA Systinet Registry runtime.

• Extended installation - Installation extended with security providers configuration.

• Web interface design changed - Improved the look and feel of the web interface.

• JDK 1.4 Support - HP SOA Systinet Registry now support Sun's implementation of JDK 1.4.

• Deployment - BEA WebLogic, IBM WebSphere, Orion, Tomcat deployment scripts and documentation
included.

• Taxonomy and Validation - Additional Taxonomy and Validation services integrated into the web
interface.

Supported Platforms
HP SOA Systinet Registry 6.5 has been tested on the following platforms.

• Operating systems:

• RedHat Enterprise 2.1 and 3.0 [http://www.redhat.com]

• Solaris 9 [http://www.sun.com/software/solaris/]

• Windows 2003 Server [http://www.microsoft.com/windows2003/]

• Windows 2000 SP4 [http://www.microsoft.com/windows2000/]

• Windows XP SP2 [http://www.microsoft.com/windowsxp/]

• AIX 5.2 and 5.3 [http://www-1.ibm.com/servers/aix/]

Chapter 120

http://www.redhat.com
http://www.sun.com/software/solaris/
http://www.microsoft.com/windows2003/
http://www.microsoft.com/windows2000/
http://www.microsoft.com/windowsxp/
http://www-1.ibm.com/servers/aix/

• JDKs:

• Sun JDK 1.4.2 and 1.5.0 [http://java.sun.com/j2se/]

• BEA JRockit 1.4.2 and 1.5

• IBM Java 1.4 or higher

• Databases:

• Oracle 9.2.0.7 and 10.0.1.5 [http://www.oracle.com]

• Microsoft SQL Server 2000 or 2005 [http://www.microsoft.com/sql/default.asp]

• DB2 8.X [http://www-3.ibm.com/software/data/db2/]

• PostgreSQL 7.3 [http://www.postgresql.org]

• Sybase ASE 12.5 [http://www.sybase.org]

• HSQL 1.7.3 [http://hsqldb.org]

• LDAP:

• Sun One Directory Server 5.2 [http://www.sun.com]

• Microsoft Active Directory (Windows 2003 Server) [http://www.microsoft.com]

• Application Servers:

• BEAWebLogic 8.1 and 9.0 [http://www.bea.com]

• IBM WebSphere 5.1 and 6.0 [http://www-3.ibm.com/software/info1/websphere/index.jsp]

• Tomcat 5 [http://jakarta.apache.org/tomcat/index.html]

• JBoss 4.0 [http://www.jboss.org]

21Read This First

http://java.sun.com/j2se/
http://www.oracle.com
http://www.microsoft.com/sql/default.asp
http://www-3.ibm.com/software/data/db2/
http://www.postgresql.org
http://www.sybase.org
http://hsqldb.org
http://www.sun.com
http://www.microsoft.com
http://www.bea.com
http://www-3.ibm.com/software/info1/websphere/index.jsp
http://jakarta.apache.org/tomcat/index.html
http://www.jboss.org

• Browsers:

• Microsoft Internet Explorer 5.5 and 6.0

• Firefox 1.0

Specifications
HP SOA Systinet Registry conforms to the following specifications:

• UDDI Specifications [http://uddi.org/specification.html]

• UDDI Version 1 Specification [http://www.oasis-open.org/committees/uddi-
spec/doc/contribs.htm#uddiv1]

• UDDI Version 2 Specification [http://www.oasis-open.org/committees/uddi-spec/doc/tcspecs.htm#uddiv2]

• UDDI Version 3 Specification [http://www.oasis-open.org/committees/uddi-spec/doc/tcspecs.htm#uddiv3]

• Technical Note Using WSDL in a UDDI Registry, Version 2.0 [http://www.oasis-
open.org/committees/uddi-spec/doc/tn/uddi-spec-tc-tn-wsdl-v2.htm]

Chapter 122

http://uddi.org/specification.html
http://www.oasis-open.org/committees/uddi-spec/doc/contribs.htm#uddiv1
http://www.oasis-open.org/committees/uddi-spec/doc/tcspecs.htm#uddiv2
http://www.oasis-open.org/committees/uddi-spec/doc/tcspecs.htm#uddiv3
http://www.oasis-open.org/committees/uddi-spec/doc/tn/uddi-spec-tc-tn-wsdl-v2.htm

Document Conventions
The typographic conventions used in this document are:

Script name or other executable command plus mandatory arguments.run.bat make

A command-line option.[--help]

A choice of arguments.either | or

A command-line argument that should be replaced with an actual value.replace_value

A choice between two command-line arguments where one or the other is
mandatory.

{arg1 | arg2}

Operating system commands and other user input that you can type on the
command line and press Enter to invoke. Items in italics should be replaced
by actual values.

rmdir /S /Q System32

Filenames, directory names, paths and package names.C:\System.ini

Program source code.a.append(b);

An inline Java or C++ class name.server.Version

An inline Java method name.getVersion()

A combination of keystrokes.Shift-N

A label, word or phrase in a GUI window, often clickable.Service View

Menu choice.New->Service

23Read This First

Documentation Updates
This manual's title page contains the following identifying information:

• Software version number

• Document release date, which changes each time the document is updated

• Software release date, which indicates the release date of this version of the software

To check for recent updates, or to verify that you are using the most recent edition of a document, go to:

http://ovweb.external.hp.com/lpe/doc_serv/

Chapter 124

http://ovweb.external.hp.com/lpe/doc_serv/

Support

Mercury Product Support

You can obtain support information for products formerly produced by Mercury as follows:

• If you work with an HP Software Services Integrator (SVI) partner (www.hp.-
com/managementsoftware/svi_partner_list), contact your SVI agent.

• If you have an active HP Software support contract, visit the HP Software Support Web site and use
the Self-Solve Knowledge Search to find answers to technical questions.

• For the latest information about support processes and tools available for products formerly produced
by Mercury, we encourage you to visit the Mercury Customer Support Web site at: http://support.-
mercury.com.

• For the latest information about support processes and tools available for products formerly produced
by Systinet, we encourage you to visit the Systinet Online Support Web site at: http://www.systinet.-
com/support/index.

• If you have additional questions, contact your HP Sales Representative.

HP Software Support

You can visit the HP Software Support Web site at:

www.hp.com/managementsoftware/services

HP Software online support provides an efficient way to access interactive technical support tools. As a
valued support customer, you can benefit by using the support site to:

• Search for knowledge documents of interest

• Submit and track support cases and enhancement requests

• Download software patches

• Manage support contracts

25Read This First

www.hp.com/managementsoftware/svi_partner_list
www.hp.com/managementsoftware/svi_partner_list
http://support.mercury.com
http://support.mercury.com
http://www.systinet.com/support/index
http://www.systinet.com/support/index
www.hp.com/managementsoftware/services

• Look up HP support contacts

• Review information about available services

• Enter into discussions with other software customers

• Research and register for software training

Most of the support areas require that you register as an HP Passport user and sign in. Many also require a
support contract. To find more information about access levels, go to: www.hp.-
com/managementsoftware/access_level

To register for an HP Passport ID, go to: www.managementsoftware.hp.com/passport-registration.html

Legal

Third Party Licenses

HSQLDB License

Copyright (c) 1995-2000, The Hypersonic SQL Group. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided
that the following conditions are met:

Redistributions of source code must retain the above copyright notice, this list of conditions and the following
disclaimer.

Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other materials provided with the distribution.

Neither the name of the Hypersonic SQL Group nor the names of its contributors may be used to endorse
or promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE HYPERSONIC SQL GROUP, OR CONTRIBUTORS
BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR

Chapter 126

www.hp.com/managementsoftware/access_level
www.hp.com/managementsoftware/access_level
www.managementsoftware.hp.com/passport-registration.html

CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY
OF SUCH DAMAGE.

This software consists of voluntary contributions made by many individuals on behalf of the Hypersonic
SQL Group.

For work added by the HSQL Development Group:

Copyright (c) 2001-2004, The HSQL Development Group All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided
that the following conditions are met:

Redistributions of source code must retain the above copyright notice, this list of conditions and the following
disclaimer.

Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other materials provided with the distribution.

Neither the name of the HSQL Development Group nor the names of its contributors may be used to endorse
or promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL HSQL DEVELOPMENT GROUP, HSQLDB.ORG, OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
OF THE POSSIBILITY OF SUCH DAMAGE.

27Read This First

The Apache XML License, Version 1.1

The Apache Software License, Version 1.1

Copyright (c) 1999-2000 The Apache Software Foundation. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided
that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the
following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other materials provided with the distribution.

3. The end-user documentation included with the redistribution, if any, must include the following
acknowledgment: "This product includes software developed by the Apache Software Foundation
(http://www.apache.org/)." Alternately, this acknowledgment may appear in the software itself, if and
wherever such third-party acknowledgments normally appear.

4. The names "Xerces" and "Apache Software Foundation" must not be used to endorse or promote products
derived from this software without prior written permission. For written permission, please contact
apache@apache.org.

5. Products derived from this software may not be called "Apache", nor may "Apache" appear in their name,
without prior written permission of the Apache Software Foundation.

THIS SOFTWARE IS PROVIDED "AS IS'' AND ANY EXPRESSED OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
APACHE SOFTWARE FOUNDATION OR ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
==

Chapter 128

This software consists of voluntary contributions made by many individuals on behalf of the Apache Software
Foundation and was originally based on software copyright (c) 1999, International Business Machines, Inc.,
http://www.ibm.com. For more information on the Apache Software Foundation, please see
<http://www.apache.org/>.

Apache Jakarta License, Version 1.1

==

The Apache Software License, Version 1.1

Copyright (c) 1999 The Apache Software Foundation. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided
that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the
following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other materials provided with the distribution.

3. The end-user documentation included with the redistribution, if any, must include the following
acknowlegement: "This product includes software developed by the Apache Software Foundation
(http://www.apache.org/)." Alternately, this acknowlegement may appear in the software itself, if and
wherever such third-party acknowlegements normally appear.

4. The names "The Jakarta Project", "Tomcat", and "Apache Software Foundation" must not be used to
endorse or promote products derived from this software without prior written permission. For written
permission, please contact apache@apache.org.

5. Products derived from this software may not be called "Apache" nor may "Apache" appear in their names
without prior written permission of the Apache Group.

THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESSED OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
APACHE SOFTWARE FOUNDATION OR ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,

29Read This First

BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
==

This software consists of voluntary contributions made by many individuals on behalf of the Apache Software
Foundation. For more information on the Apache Software Foundation, please see <http://www.apache.org/>.

CUP Parser Generator

CUP Parser Generator Copyright Notice, License, and Disclaimer

Copyright 1996-1999 by Scott Hudson, Frank Flannery, C. Scott Ananian

Permission to use, copy, modify, and distribute this software and its documentation for any purpose and
without fee is hereby granted, provided that the above copyright notice appear in all copies and that both
the copyright notice and this permission notice and warranty disclaimer appear in supporting documentation,
and that the names of the authors or their employers not be used in advertising or publicity pertaining to
distribution of the software without specific, written prior permission.

The authors and their employers disclaim all warranties with regard to this software, including all implied
warranties of merchantability and fitness. In no event shall the authors or their employers be liable for any
special, indirect or consequential damages or any damages whatsoever resulting from loss of use, data or
profits, whether in an action of contract, negligence or other tortious action, arising out of or in connection
with the use or performance of this software.

Jetty License, Version 3.6

Jetty License

Revision: 3.6

Preamble:

The intent of this document is to state the conditions under which the Jetty Package may be copied, such
that the Copyright Holder maintains some semblance of control over the development of the package, while
giving the users of the package the right to use, distribute and make reasonable modifications to the Package

Chapter 130

in accordance with the goals and ideals of the Open Source concept as described at
http://www.opensource.org.

It is the intent of this license to allow commercial usage of the Jetty package, so long as the source code is
distributed or suitable visible credit given or other arrangements made with the copyright holders.

Definitions:

- "Jetty" refers to the collection of Java classes that are distributed as a HTTP server with servlet capabilities
and associated utilities.

- "Package" refers to the collection of files distributed by the Copyright Holder, and derivatives of that
collection of files created through textual modification.

- "Standard Version" refers to such a Package if it has not been modified, or has been modified in accordance
with the wishes of the Copyright Holder.

- "Copyright Holder" is whoever is named in the copyright or copyrights for the package.

Mort Bay Consulting Pty. Ltd. (Australia) is the "Copyright Holder" for the Jetty package.

- "You" is you, if you're thinking about copying or distributing this Package.

- "Reasonable copying fee" is whatever you can justify on the basis of media cost, duplication charges, time
of people involved, and so on. (You will not be required to justify it to the Copyright Holder, but only to
the computing community at large as a market that must bear the fee.)

- "Freely Available" means that no fee is charged for the item itself, though there may be fees involved in
handling the item. It also means that recipients of the item may redistribute it under the same conditions
they received it.

0. The Jetty Package is Copyright (c) Mort Bay Consulting Pty. Ltd. (Australia) and others. Individual files
in this package may contain additional copyright notices. The javax.servlet packages are copyright Sun
Microsystems Inc.

1. The Standard Version of the Jetty package is available from http://www.mortbay.com.

31Read This First

2. You may make and distribute verbatim copies of the source form of the Standard Version of this Package
without restriction, provided that you include this license and all of the original copyright notices and
associated disclaimers.

3. You may make and distribute verbatim copies of the compiled form of the Standard Version of this
Package without restriction, provided that you include this license.

4. You may apply bug fixes, portability fixes and other modifications derived from the Public Domain or
from the Copyright Holder. A Package modified in such a way shall still be considered the Standard Version.

5. You may otherwise modify your copy of this Package in any way, provided that you insert a prominent
notice in each changed file stating how and when you changed that file, and provided that you do at least
ONE of the following:

a) Place your modifications in the Public Domain or otherwise make them Freely Available, such as by
posting said modifications to Usenet or an equivalent medium, or placing the modifications on a major
archive site such as ftp.uu.net, or by allowing the Copyright Holder to include your modifications in the
Standard Version of the Package.

b) Use the modified Package only within your corporation or organization.

c) Rename any non-standard classes so the names do not conflict with standard classes, which must also
be provided, and provide a separate manual page for each non-standard class that clearly documents how
it differs from the Standard Version.

d) Make other arrangements with the Copyright Holder.

6. You may distribute modifications or subsets of this Package in source code or compiled form, provided
that you do at least ONE of the following:

a) Distribute this license and all original copyright messages, together with instructions (in the about dialog,
manual page or equivalent) on where to get the complete Standard Version.

b) Accompany the distribution with the machine-readable source of the Package with your modifications.
The modified package must include this license and all of the original copyright notices and associated
disclaimers, together with instructions on where to get the complete Standard Version.

c) Make other arrangements with the Copyright Holder.

Chapter 132

7. You may charge a reasonable copying fee for any distribution of this Package. You may charge any fee
you choose for support of this Package. You may not charge a fee for this Package itself. However, you
may distribute this Package in aggregate with other (possibly commercial) programs as part of a larger
(possibly commercial) software distribution provided that you meet the other distribution requirements of
this license.

8. Input to or the output produced from the programs of this Package do not automatically fall under the
copyright of this Package, but belong to whomever generated them, and may be sold commercially, and
may be aggregated with this Package.

9. Any program subroutines supplied by you and linked into this Package shall not be considered part of
this Package.

10. The name of the Copyright Holder may not be used to endorse or promote products derived from this
software without specific prior written permission.

11. This license may change with each release of a Standard Version of the Package. You may choose to
use the license associated with version you are using or the license of the latest Standard Version.

12. THIS PACKAGE IS PROVIDED "AS IS" AND WITHOUT ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

13. If any superior law implies a warranty, the sole remedy under such shall be , at the Copyright Holders
option either a) return of any price paid or b) use or reasonable endeavours to repair or replace the software.

14. This license shall be read under the laws of Australia.

W3C Software Notice and License

W3C(C) SOFTWARE NOTICE AND LICENSE

Copyright (C) 1994-2002 World Wide Web Consortium, (Massachusetts Institute of Technology, Institut
National de Recherche en Informatique et en Automatique, Keio University). All Rights Reserved.
http://www.w3.org/Consortium/Legal/

This W3C work (including software, documents, or other related items) is being provided by the copyright
holders under the following license. By obtaining, using and/or copying this work, you (the licensee) agree
that you have read, understood, and will comply with the following terms and conditions:

33Read This First

Permission to use, copy, modify, and distribute this software and its documentation, with or without
modification, for any purpose and without fee or royalty is hereby granted, provided that you include the
following on ALL copies of the software and documentation or portions thereof, including modifications,
that you make:

The full text of this NOTICE in a location viewable to users of the redistributed or derivative work. Any
pre-existing intellectual property disclaimers, notices, or terms and conditions. If none exist, a short notice
of the following form (hypertext is preferred, text is permitted) should be used within the body of any
redistributed or derivative code: "Copyright (C) [$date-of-software] World Wide Web Consortium,
(Massachusetts Institute of Technology, Institut National de Recherche en Informatique et en Automatique,
Keio University). All Rights Reserved. http://www.w3.org/Consortium/Legal/"

Notice of any changes or modifications to the W3C files, including the date changes were made. (We
recommend you provide URIs to the location from which the code is derived.)

THIS SOFTWARE AND DOCUMENTATION IS PROVIDED "AS IS," AND COPYRIGHT HOLDERS
MAKE NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT
NOT LIMITED TO, WARRANTIES OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR
PURPOSE OR THAT THE USE OF THE SOFTWARE OR DOCUMENTATION WILL NOT INFRINGE
ANY THIRD PARTY PATENTS, COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS.

COPYRIGHT HOLDERS WILL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL OR
CONSEQUENTIAL DAMAGES ARISING OUT OF ANY USE OF THE SOFTWARE OR
DOCUMENTATION.

The name and trademarks of copyright holders may NOT be used in advertising or publicity pertaining to
the software without specific, written prior permission. Title to copyright in this software and any associated
documentation will at all times remain with copyright holders.

Xalan, Version 2.5.1

The Apache Software License, Version 1.1

Copyright (c) 1999-2003 The Apache Software Foundation. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided
that the following conditions are met:

Chapter 134

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the
following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other materials provided with the distribution.

3. The end-user documentation included with the redistribution, if any, must include the following
acknowledgment: "This product includes software developed by the Apache Software Foundation
(http://www.apache.org/)." Alternately, this acknowledgment may appear in the software itself, if and
wherever such third-party acknowledgments normally appear.

4. The names "Xalan" and "Apache Software Foundation" must not be used to endorse or promote products
derived from this software without prior written permission. For written permission, please contact
apache@apache.org.

5. Products derived from this software may not be called "Apache", nor may "Apache" appear in their name,
without prior written permission of the Apache Software Foundation.

THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESSED OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
APACHE SOFTWARE FOUNDATION OR ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
==

This software consists of voluntary contributions made by many individuals on behalf of the Apache Software
Foundation and was originally based on software copyright (c) 1999, Lotus Development Corporation.,
http://www.lotus.com. For more information on the Apache Software Foundation, please see
<http://www.apache.org/>.

XML Pull Parser for Java, 1.1.1

Indiana University Extreme! Lab Software License

35Read This First

Version 1.1.1

Copyright (c) 2002 Extreme! Lab, Indiana University. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided
that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the
following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other materials provided with the distribution.

3. The end-user documentation included with the redistribution, if any, must include the following
acknowledgment:

"This product includes software developed by the Indiana University Extreme! Lab
(http://www.extreme.indiana.edu/)."

Alternately, this acknowledgment may appear in the software itself, if and wherever such third-party
acknowledgments normally appear.

4. The names "Indiana Univeristy" and "Indiana Univeristy Extreme! Lab" must not be used to endorse or
promote products derived from this software without prior written permission. For written permission,
please contact http://www.extreme.indiana.edu/.

5. Products derived from this software may not use "Indiana Univeristy" name nor may "Indiana Univeristy"
appear in their name, without prior written permission of the Indiana University.

THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESSED OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
AUTHORS, COPYRIGHT HOLDERS OR ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Chapter 136

Unix crypt(3C) utility

Copyright ' 1996 Aki Yoshida. All rights reserved.

Permission to use, copy, modify and distribute this software for non-commercial or commercial purposes
and without fee is hereby granted provided that this copyright notice appears in all copies.

Notices

Copyright

This document and the information contained herein are the property of Systinet Corporation and shall not
be reproduced or copied in whole or in part without written permission of Systinet Corp.

Copyright ' 2001 - 2006 Systinet Corp. All Rights Reserved.

Federal Acquisitions: Commercial Computer Software - Use Governed by Terms of Standard Commercial
License.

Disclaimer

The information in this document is preliminary and is subject to change without notice and should not be
construed as a commitment by Systinet Corporation.

SYSTINET CORPORATION SHALL HAVE NO LIABILITY FOR THIS DOCUMENT, INCLUDING
ANY LIABILITY FOR NEGLIGENCE. SYSTINET CORPORATION MAKES NO WARRANTIES,
EXPRESS, IMPLIED, STATUTORY, OR IN ANY OTHER COMMUNICATION. SYSTINET
CORPORATION SPECIFICALLY DISCLAIMS ANY WARRANTY OF MERCHANTABILITY OR
SATISFACTORY QUALITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE AND NON-
INFRINGEMENT.

Trademarks

HP™, the HP logo, "The Web Services Infrastructure Company™" and "Web Services That Work™" are
trademarks and/or registered trademarks of HP Corporation in the United States and/or other countries.

Java™ and all Java-based marks are trademarks or registered trademarks of Sun Microsystems, Inc. in the
United States and/or other countries.

37Read This First

Microsoft®, Windows® and Windows NT® and the Windows logo are trademarks or registered trademarks
of Microsoft Corporation in the United States and/or other countries.

IBM®, AIX® and WebSphere® are trademarks or registered trademarks of International Business Machines
Corporation in the United States and/or other countries.

Sonic Software® and SonicMQ® are trademarks or registered trademarks of Sonic Software Corporation
in the U.S. and other countries.

UNIX® is a registered trademark of The Open Group in the United States and/or other countries.

BEA® and WebLogic® are registered trademarks of BEA Systems, Inc.

JBoss is a registered trademark of Red Hat, Inc.

Other company, product, and service names mentioned in these documents may be trademarks and/or service
marks of others.

Acknowledgements

This product includes software developed by the Apache Software Foundation (http://www.apache.org).

This product includes code licensed from RSA Data Security (http://www.rsasecurity.com).

This product includes software developed by jGuru.com (MageLang Institute) (http://www.jGuru.com).

This product includes Antlr (http://www.antlr.org).

This product contains components derived from software developed by the Indiana University Extreme!
Lab (http://www.extreme.indiana.edu).

The Standard Version of the Jetty package is available from http://www.mortbay.com.

FAQs
In order to keep our FAQs current and useful, we have transferred them to our Developers' Corner web site.
They are located at:

http://dev.systinet.com/faqs/var/prd/eq/

Chapter 138

http://www.apache.org
http://www.rsasecurity.com
http://www.jGuru.com
http://www.antlr.org
http://www.extreme.indiana.edu
http://www.mortbay.com
http://dev.systinet.com/faqs/var/prd/eq/

2 Installation Guide

HP SOA Systinet Registry may be installed using the following scenarios:

Standalone Registry

This is the default installation scenario; under it the HP SOA Systinet Registry server is installed
on a local machine and connects to a local or external registry database. To perform a standalone
installation, follow the instructions at Installation on page 42. For more configuration information,
refer to Server Configuration on page 89 and Database Installation on page 95.

Deployed to an Application Server

The installed standalone HP SOA Systinet Registry server may be deployed to several application
servers. To deploy HP SOA Systinet Registry to an application server, perform the standalone
installation as described in Installation on page 42 and then follow the instructions in Deployment
to an Application Server on page 159.

Standalone registry with data migration

In this case, a standalone installation is performed and data is migrated to it from a previous
installation of HP SOA Systinet Registry. Follow the instructions in Migration on page 197.

Approval Process Registry

An installation of HP SOA Systinet Registry may be split into two servers, publication registry
and discovery registry. The publication registry is a preliminary server for the publishing, testing,
and approval of data. After data is approved, it is promoted to the discovery registry. The discovery
registry is configured for inquiry. To install HP SOA Systinet Registry with the Approval Process
Registry, follow the instructions in Approval Process Registry Installation on page 118.

External Accounts Integration

HP SOA Systinet Registry server may be optionally configured to use external accounts on an
LDAP or other account store. It is possible to set up external accounts integration during database
installation. For more information, please see Database Installation on page 95 and External
Accounts Integration on page 130

39

Registry cluster

A UDDI cluster is a group of UDDI registries deployed on multiple servers possibly with a clustered
database in the back-end. Load balancing is used to distribute requests amongst HP SOA Systinet
Registry servers to get the optimal load distribution. Standalone Registry or registry deployed to
an application server could be configured to cluster with instructions in Cluster Configuration on
page 178

Support for Windows NT service and Unix Daemon

HP SOA Systinet Registry can be run as a service on Windows 2000/XP. Support for NT service
installation is installed by default on Windows servers, see instructions in NT Service Support on
page 211. Also, HP SOA Systinet Registry can be run as a system daemon on Unix machines, see
instructions in Running in Linux on page 217.

System Requirements
This section explains the requirements which must be met before you start installation. Supported Platforms
on page 20 in Read This First on page 5 summarizes the software platform options for the current release.
So you should:

1 Ensure the installation machine meets the requirements that follow in Hardware on page 40;

2 Decide which combination of supported platform components will be used;

3 Ensure each component is installed as described in this section.

Then you can proceed with installation.

Hardware

Table 1 on page 41 summarizes hardware requirements for the installation machine. The minimum
specifications are suitable for experimental use of HP SOA Systinet Registry on a workstation. Although
it may be possible to install the product on a machine with lower specifications, performance and reliability
may be severely affected. The requirements of servers in a production environment are greater and depend
on patterns of use. See Support in Read This First if you need assistance.

Chapter 240

Table 1. Minimum Hardware Specifications

NotesMinimumSpecification

Actual requirements depend on the on patterns of use in the target
environment.

1GHzCPU

1GBRAM

This is sufficient if the selected database system is installed on
another machine.

The database server machine must have sufficient space for the
selected database system. The requirements for registry data are
quite modest. Each GB typically provides for registration of
several thousand additional entities.

So disk performance is more significant.

300MBDisk Space

Java™ Platform

A supported Java Development Kit is required on the installation machine. A Java Runtime Environment
is not sufficient because it must be possible to compile JSP pages at runtime.

IBM JDK 1.4 and higher must contain a JCE provider. Bouncy Castle provider [http://www.bouncycastle.org/]
is supported, and JCE Unlimited Strength Jurisdiction Policy Files [http://java.sun.com/products/jce/index-
14.html] are required.

1 Copy the file bcprov-jdk14-*.jar from Bouncy Castle provider [http://www.bouncycastle.org/] to
IBMJava2/jre/lib/ext;

2 Add the following line to the the file java.security located in IBMJava2/jre/lib/security:

security.provider.5=org.bouncycastle.jce.provider.BouncyCastleProvider

Relational Database

Setting up a relational database during installation is optional - you can instead set it up after installation
using the setup tool. See Database Installation on page 95. In both cases you can use the pre-configured
HSQL database system that comes with HP SOA Systinet Registry.

41Installation Guide

http://www.bouncycastle.org/
http://java.sun.com/products/jce/index-14.html
http://www.bouncycastle.org/

The installation process allows you to setup a database using one of the other supported database systems,
in which case the database server must be installed and running (not necessarily on the same machine).
JDBC driver files must generally be available locally, but some drivers are distributed with HP SOA Systinet
Registry.

Installation
This section describes the standalone installation of HP SOA Systinet Registry and all settings.

To install the registry, type the following at a command prompt:

java -jar systinet-registry-6.5.jar

and follow the wizard panels. If you have associated javaw with *.jar files on Windows, just double-click
the icon for the file systinet-registry-6.5.jar.

Command-line Options

Installation may be launched with following optional arguments:
java -jar systinet-registry-6.5.jar [[--help] | [-h] | [--gui] | [-g]]
[[-u configfile] | [--use-config configfile]]
[[-s configfile] | [--save-config configfile]]
[--debug]

-g | --gui starts the installation in gui mode (default).

-c | [--console] runs command-line installation

-h | [--help] shows help messages

-s configfile | --save-config configfile saves the installation settings into the configuration file without
actually installing the registry.

-u configfile | --use-config configfile installs the registry using the settings contained in the configuration
file.

--debug the installation produces more information to localize problems or errors.

Chapter 242

Installation Panels

This section discusses the content of the installation wizard. It goes through installation panels using default
settings.

Figure 1. Welcome Panel

43Installation Guide

Figure 1 shows the first panel of the installation wizard. The installation wizard helps you to install HP
SOA Systinet Registry on a local computer. To continue, click Next. To stop this installation at any time,
click Exit. To return to a previous panel, click Back. This panel also contains links to HP SOA Systinet
Registry documentation and to the Systinet Web site.

Figure 2. License Panel

Chapter 244

Figure 2 shows the HP SOA Systinet Registry license. To continue with the installation of the registry, read
the license agreement and agree to it. To accept the license agreement, select the radio button labeled I
accept the terms of the license agreement and click Next.

If you do not accept the terms of the license agreement, select the radio button labeled I DO NOT accept
the terms of the license agreement, and click Exit.

Until you agree to the license, only the Exit button is enabled. You cannot proceed with the installation
without agreeing to the license.

Evaluation Key

If you are installing the evaluation version of HP SOA Systinet Registry, you must provide your user name
and key. If you have the full version, skip to Installation Type on page 47.

45Installation Guide

Figure 3. Evaluation Key

User name

In this field use the e-mail address you provided at www.systinet.com.

License Key

The key has been sent to you via e-mail. If you have difficulties, please contact
http://www.systinet.com/support for assistance.

Chapter 246

http://www.systinet.com/support

You must provide a valid user name and license key to continue the installation.

Installation Type

Figure 4. Installation Type

Figure 4 shows several installation scenarios. Select one.

47Installation Guide

Standalone registry

Default installation. Installs a standalone registry and enables the creation of a new registry database.

Standalone registry with data migration

Installs standalone registry with migration of data from a previous installation of the registry. For
more information, please see Migration on page 197.

Discovery registry

Installs the discovery registry. This is the second part of the approval process registry installation.
The discovery registry allows users to query HP SOA Systinet Registry. For more information,
please see Discovery Registry Installation on page 121.

Publication registry

Installs the publication registry of the approval process. The publication registry is one part of the
approval process registry installation. The publication registry is a space for users to publish and
test data prior to its approval for promotion to the discovery server. For more information, please
see Publication Registry Installation on page 123.

Chapter 248

Figure 5. Installation Directory

On the panel shown in Figure 5, type the path to the installation directory where HP SOA Systinet Registry
will be installed. The default directory is the current working directory.

Installation directory can consist of ASCII characters. International characters in installation
directory path are not supported.

49Installation Guide

If you are installing on a Windows platform you can selected from the following:

Create shortcut icons on the desktop

If selected, icons for accessing the Registry Console and for starting and stopping the registry will
be created on the desktop.

Add shortcut icons to the Start menu

If selected, the icons noted above are added to the Start menu.

Program group name

Group name created in the Start menu where shortcut icons will be placed.

You must have read and write permissions on the installation directory.

Chapter 250

SMTP Configuration

Figure 6. SMTP Configuration

Figure 6 shows SMTP configuration. The SMTP configuration is important when users needs to receive
email notification from subscriptions and from the approval process.

51Installation Guide

SMTP Host Name

Host name of the SMTP server associated with this installation of HP SOA Systinet Registry

SMTP Port

Port number for this SMTP server

SMTP Password

Self explanatory

Confirm password

Retype the same password. Note that if it is not same as the password in the previous box, you
cannot continue.

SMTP Default Sender E-mail, Name

HP SOA Systinet Registry will generate email messages with this identity.

Chapter 252

Setup Administrator Account

Figure 7. Administrator Account

Database Settings

The registry requires a database which may be created during installation. During installation you can create
a new database, create schema in an existing empty database or connect to an existing database with created

53Installation Guide

schema. Using the Setup tool, you can also drop the database or database schema. Select your database
creation method on the following panel.

Figure 8. Database Creation Method

Chapter 254

Create database

Create new database/users/tablespaces (depending on the type of the database server) and database
schema. This is the most comfortable way, but please note that you must know the credentials of
the database administrator.

Create schema

Create a new schema in an existing database. Use this option if you have access to an existing
empty database and the ability to create tables and indexes. This option is suitable when you do
not know the administrator's credentials. We assume admin has already created a new
database/users/tablespaces for this option.

See Database Installation on page 95, for more information.

Configure database

Configure registry database. Use this option if the registry database already exists (For example,
from a previous installation) and fill in only the connection parameters.

No database

Choose it if you intend to create a registry database later. Note that HP SOA Systinet Registry
cannot be started without a database.

55Installation Guide

Figure 9. Select Database

Figure 9 shows the supported database engines that can be prepared for HP SOA Systinet Registry.

You can specify the name of HP SOA Systinet Registry installation. The name is saved to the operational
business entity. The registry name appears in the upper right corner of Registry Console and Business
Service Console.

Chapter 256

Select Install demo data if you want to evaluate the provided HP SOA Systinet Registry demos after
installation.

The default database to create is the Preconfigured HSQL (HSQL). This database is recommended for
evaluation purposes.

Note that it is possible to change the database after installation, using the Setup tool.

Please see Database Installation on page 95 for more information on database installation.

57Installation Guide

Figure 10. Preconfigured HSQL

On the panel displayed in Figure 7 you are only required to provide administrator account settings. The
database files will be installed into the REGISTRY_HOME/hsqldb/uddinode directory. The database user is uddiuser
and the password is uddi.

Chapter 258

Figure 11. Optional JDBC Driver

Enter path to JDBC Drivers on the panel shown in Figure 11. It is not necessary to configure this path for
the HSQL and PostgreSQL databases as the JDBC drivers for these databases are installed in the distribution.

59Installation Guide

Figure 12. Authentication Provider

Figure 12 allows you to select an authentication provider.

Database

All accounts will be stored in the registry database.

Chapter 260

LDAP

Registry accounts integrated with LDAP server.

External

Registry accounts integrated with other external storage. The the interface
com.systinet.uddi.account.ExternalBackendApi must be implemented and added to the registry
installation.

61Installation Guide

Direct deployment

Figure 13. Direct deployment

Direct deployment allows to create EAR or WAR file for deployment in application server directly from
installer. You can also deploy later with setup. See Creating a Web Application Archive (WAR,EAR) on
page 160 for information on how to deploy from setup. Deployment from installer is similar.

Chapter 262

Server Settings

Figure 14. Server Configuration

Figure 14 shows the server configuration settings. These settings will be used for the HTTP and HTTPS
servers. The default recommended settings are filled in the text fields.

63Installation Guide

Host name

The host name of this computer; change the auto-completed entry if it is different.

HTTP Port

The nonsecure port for accessing the Registry Console (default value: 8080)

SSL (HTTPS) Port

Secure port for accessing the Registry Console (default value: 8443)

Connector

The connector port is used by standalone server to listen for control signals. Note that no other
application may use this port (default value: 8081).

SSL Certificate Alias

Alias used to identify the SSL private key in protected store management. For more information
see PStore Tool on page 503. (default value: uddiadmin)

SSL Certificate Password

Password to encrypt SSL private key. (default value: changeit)

Confirm Password

Retype the same password. Note that if it is not same as previous, you cannot continue.

The host name, SSL Certificate Alias, and SSL password are used to create a new security identity in the
local protected store. It creates a certificate and adds this certificate to REGISTRY_HOME/conf/clientconf.xml,
REGISTRY_HOME/conf/pstore.xml, and also exports it to the certificate file REGISTRY_HOME/doc/registry.crt. This
certificate file is used in several situations including the approval process registry scenario. See PStore Tool
on page 503 for instructions in how to operate the protected security store.

The server configuration may be changed after install. See Reconfiguring After Installation on
page 75.

Single Login

This panel allows you to set up HP SOA Systinet Registry as a HP Single Login partner. Users can be
transferred between HP products that are installed as partners in the same Single Login affiliation without
logging in more than once.

Chapter 264

Figure 15. Single Login

To set up registry as a Single Login partner:

1 Check the box provided;

2 Enter a unique Partner Name;

65Installation Guide

3 Enter the URL for Single login server, including context of its service. This URL might look like
http://host:8080/sso;

4 Enter a user name for Single login administrator;

5 Enter a password and password confirmation for Single login administrator.

The registry should also be configured to use the same account provider as the identity provider
(and other partners). See Figure 12 in Database Settings on page 53. User groups defined at the
side ofidentity provider are lost without keeping the same account provider.

In fact the partner name must be unique amongst Single Login entities, which includes both partners
and the identity provider. So it cannot be ip, since this is the name used by the identity provider.

Chapter 266

Confirmation and Installation Process

Figure 16. Confirmation

Figure 16 shows a summary of installation information. All required and optional properties are set. If you
want to continue with the installation, click Next and the install process will start. If you want to change
any property click Back.

67Installation Guide

Figure 17. Installation Process

Figure 17 shows the installation output and progress. Installation consists of copying files, configuring the
server, and installing the database. When the installation has completed successfully, the Next button is
enabled. If there is a problem, an error message and Recovery button will appear on the screen.

For more information on recovery, see Troubleshooting on page 82

Chapter 268

Figure 18. Finish Panel

On this panel, click Finish to conclude the installation.

69Installation Guide

Installation Summary

Directory Structure

The installation directory structure contains the following directories:

app

Contains HP SOA Systinet Registry deployed as Web services in Systinet Server for Java.

bin

Contains command-line scripts for running HP SOA Systinet Registry. See Command-line Scripts
on page 73.

conf

Contains the HP SOA Systinet Registry configuration files

demos

Contains demos of HP SOA Systinet Registry functionality. For more information, please see
Demos on page 887.

dist

Contains HP SOA Systinet Registry client packages.

doc

Contains the HP SOA Systinet Registry documentation.

etc

Contains additional data and scripts.

hsqldb

Contains the preconfigured HSQL database with registry data.

lib

Contains the HP SOA Systinet Registry libraries

log

Contains logs of installation, setup, and server output. See Logs on page 81.

work

This directory is available after the first launch of the server; it is a working image of the app
directory.

Chapter 270

Registry Endpoints

HP SOA Systinet Registry is configured as follows. The <host name>, <http port> and <ssl port> are
specified during installation. For more information, please see Server Settings in Server Settings on page
63. For each endpoint you can use either http or ssl port.

• Business Service Console home page: http://<host name>:<http port>/uddi/bsc/web

• Registry Console home page: http://<host name>:<http port>/uddi/web

• UDDI Inquiry API endpoint - http://<host name>:<port>/uddi/inquiry

See Developer's Guide, UDDI Version 1 on page 535, UDDI Version 2 on page 535, UDDI Version 3 on
page 536.

• UDDI Publishing API endpoint - http://<host name>:<port>/uddi/publishing

See Developer's Guide, UDDI Version 1 on page 535, UDDI Version 2 on page 535, UDDI Version 3 on
page 536.

• UDDI Security Policy v3 API endpoint - http://<host name>:<port>/uddi/security

See Developer's Guide, UDDI Version 3 on page 536.

• UDDI Custody API endpoint - http://<host name>:<port>/uddi/custody

See Developer's Guide, UDDI Version 3 on page 536.

• UDDI Subscription API endpoint - http://<host name>:<port>/uddi/subscription

See Developer's Guide, UDDI Version 3 on page 536.

• Taxonomy API endpoint - http://<host name>:<port>/uddi/taxonomy

See Developer's Guide, Taxonomy on page 548.

• Category API endpoint - http://<host name>:<port>/uddi/category

See Developer's Guide, Category on page 561.

71Installation Guide

• Administration Utilities API endpoint - http://<host name>:<port>/uddi/administrationUtils

See Developer's Guide, Administration Utilities on page 608.

• Replication API endpoint - http://<host name>:<port>/uddi/replication

See Developer's Guide, Replication on page 614.

• Statistics API endpoint - http://<host name>:<port>/uddi/statistics

See Developer's Guide, Statistics on page 615.

• WSDL2UDDI API endpoint - http://<host name>:<port>/uddi/wsdl2uddi

See Developer's Guide, WSDL Publishing on page 620.

• XML2UDDI API endpoint - http://<host name>:<port>/uddi/xml2uddi

See Developer's Guide, XML Publishing on page 636.

• XSD2UDDI API endpoint - http://<host name>:<port>/uddi/xsd2uddi

See Developer's Guide, XSD Publishing on page 645.

• XSLT2UDDI API endpoint - http://<host name>:<port>/uddi/xslt2uddi

See Developer's Guide, XSLT Publishing on page 658.

• Extended Inquiry API endpoint - http://<host name>:<port>/uddi/inquiryExt

• Extended Publishing API endpoint - http://<host name>:<port>/uddi/publishingExt

• Configurator API endpoint - http://<host name>:<port>/uddi/configurator

• Account API endpoint - http://<host name>:<port>/uddi/account

See Developer's Guide, Account on page 685.

• Group API endpoint - http://<host name>:<port>/uddi/group

See Developer's Guide, Group on page 694.

Chapter 272

• Permission API endpoint - http://<host name>:<port>/uddi/permission

See Developer's Guide, Permission on page 703.

Pre-installed Data

HP SOA Systinet Registry contains the following data:

• Operational business - This entity holds miscellaneous nodes' registry settings such as the validation
service configuration.

• Built in tModels - tModels required by the UDDI specification.

• Demo data - Data required by the HP SOA Systinet Registry demos. For more information, please see
Demos on page 887.

Command-line Scripts

The bin subdirectory contains scripts, including those for launching the server, installing Windows services,
and changing configuration.

serverstart

serverstart.batWindows:

./serverstart.shUNIX:

Starts the standalone registry server.

serverstop

serverstop.batWindows:

./serverstop.shUNIX:

Stops the standalone registry server.

server

server.batWindows:

73Installation Guide

./server.shUNIX:

Helper script to manipulate the standalone HP SOA Systinet Registry server. To start and stop the registry,
use serverstart or serverstop without parameters instead of server with parameters. For more information,
please see Server Properties on page 78.

Setup

setup.batWindows:

./setup.shUNIX:

Setup may be launched with the following optional arguments:
setup.sh (.bat) [[--help] | [-h] | [--gui] | [-g] | [-u file] | [--use-config file]] [[-s file] | [--save-config file
]] [--debug]

-h | --help shows help message

-g | --gui starts the setup wizard. The wizard is the default mode.

-u | --use-config file starts setup in non-interactive mode; it reads all properties from the specified file.

-s | --save-config file starts the setup wizard. All configuration will be saved into specified file instead
of execute configuration. The file may be used later in a non-interactive installation.

--debug the setup produces more information to localize problems or errors.

To change the HP SOA Systinet Registry configuration after installation follow Reconfiguring After
Installation on page 75.

Signer

signer.batWindows:

./signer.shUNIX:

The Signer is a graphical application that can be used to add, remove, and verify the signatures of UDDI
structures you have published. Follow Signer Tool on page 394.

Chapter 274

register

register.batWindows:

./register.shUNIX:

Registers evaluation version of HP SOA Systinet Registry. Follow Licensing and Evaluation on page 83.

SoapSpy

SoapSpy.batWindows:

./SoapSpy.shUNIX:

Debugging tool to control low level soap communication. Follow How to Debug on page 880.

PStoreTool

PStoreTool.batWindows:

./PStoreTool.shUNIX:

Protected security storage manipulation tool. See PStore Tool on page 503.

env

env.batWindows:

./env.shUNIX:

Helper script to set system variables. We recommend not to use it directly.

Reconfiguring After Installation

All settings may be changed after installation using the Setup tool.

The Setup tool also facilitates other functions such as deploying to an application server (described in
Deployment to an Application Server on page 159) and data migration from previous installation (described
in Migration on page 197).

75Installation Guide

The Setup tool contains similar panels to those in the installation tool. To run this tool, execute the following
script from the bin subdirectory of your installation:

setup.batWindows:

./setup.shUNIX:

See command-line parameters in Setup on page 74.

By default setup starts in wizard mode as shown here:

Chapter 276

The following topics may be configured:

Configuration

Change server and registry configuration. Follow Server Configuration on page 89.

Database

Create, drop, or connect to a database. Follow Database Installation on page 95.

77Installation Guide

Deployment

Deploy registry to an application server. Follow Deployment to an Application Server on page 159.

Migration

Migrate registry data from other registry. Follow Migration on page 197.

Backup and Restore

Backup and restore HP SOA Systinet Registry. Follow Backup on page 203

Authentication account provider

Change account backend configuration. Follow External Accounts Integration on page 130.

Server Properties

System properties are the main means of configuring HP SOA Systinet Registry as deployed into Systinet
Server for Java. Default values for these properties are in the resource META-INF/wasp.properties, which is
located in lib/runner.jar.

There are two ways to alter system properties, for the two different types of HP SOA Systinet Registry
installation:

• Standalone Installation: Set the property from the command line when starting the server from either
the REGISTRY_HOME/bin/server.bat or server.sh script. The syntax is:
server(.sh) [-Dname of property=value] { start | stop }

For example:

server -Didoox.debug.level=4 start

• HP SOA Systinet Registry deployed to an application server: Default property values can be overridden
in the init-param elements in the web application deployment descriptor, web.xml.

The following properties are checked when HP SOA Systinet Registry is initialized:

Chapter 278

DescriptionProperty

This property is mandatory for running a HP SOA Systinet Registry
server. It must point to the directory in which HP SOA Systinet
Registry is installed.

wasp.location

This is an absolute or wasp.location-relative path pointing to the registry
configuration file. Setting this property is optional; the default value
is conf/clientconf.xml.

wasp.config.location

Comma-separated list of additional config paths to include. These
paths can be either absolute or relative to the working directory. This
property is optional.

wasp.config.include

Sets a classpath for the registry implementation. This property is
optional; if it is not set, registry interfaces and implementation are
loaded in the same classloader.

wasp.impl.classpath

Set to true if HP SOA Systinet Registry should be automatically
destroyed just before JVM is destroyed. Set to false if you want to
manage the shutdown process yourself. The default setting is true.

wasp.shutdownhook

Determines the number of debugging messages produced by HP SOA
Systinet Registry:

• 0: none

• 1: errors

• 2: warnings

• 3: infos

• 4: debugs

This property is optional; the default value is 2 for the client and 3 for
the server. The debug level is available in the non-stripped distribution
only.

The logging level specified by the idoox.debug.level property overrides
the level specified in the configuration file determined by the
log4j.configuration property

idoox.debug.level

79Installation Guide

DescriptionProperty

Specifies which logging system is used, waspLogger or log4j. Default is
log4j. Setting the value of this property to waspLogger uses this logger,
instead.

idoox.debug.logger

Specifies the location of the configuration (properties file) for log4j.
This property can contain a relative (conf/log4j.config) or absolute
(/home/waspuser/log4j.config) path to the configuration file.

If it is not set, the default configuration (ConsoleAppender with the pattern
%p: %c{2} - %m\n) will be used.

An example configuration file for log4j, log4j.config, is located in the
conf subdirectory of the HP SOA Systinet Registry installation
directory.

log4j.configuration

Windows Services

Use the following scripts to install, uninstall, start, and stop HP SOA Systinet Registry as a Windows service:

InstallService

InstallService.bat

Installs HP SOA Systinet Registry into system services

UnInstallService

UnInstallService.bat

Uninstalls HP SOA Systinet Registry from system services.

StartService

StartService.bat

Starts the already installed HP SOA Systinet Registry service.

StopService

StopService.bat

Stops the started HP SOA Systinet Registry service.

Chapter 280

Follow NT Service Support on page 211.

Logs

There are four log files in REGISTRY_HOME/log directory.

These two log files are produced by the Installation and Setup processes:

install.log

This log contains installation output information including all properties set during installation,
and output from the installation process. If an error occurs during installation, see this log for
details.

setup.log

The log of the Setup tool. Any execution of the Setup tool writes the set properties and output from
setup processes here. Errors occurring during setup are written to this log.

The default server logs are:

logEvents.log

The standard server output contains informative events which occur on the HP SOA Systinet
Registry server.

errorEvents.log

This file contains detailed logs of error events which occur on the HP SOA Systinet Registry server.

replicationEvents.log

Replication process logs can be found in the REGISTRY_HOME/log/replicationEvents.log file.

configuratorEvents.log

Cluster configuration events are logged in the REGISTRY_HOME/log/configuratorEvents.log file

wasp_NTService.log

Events of the server are written into the REGISTRY_HOME\log\wasp_NTService.log file.

The server logs may be configured by one of two logging systems, the in-house waspLogger and log4j. By
default, log4j is used. The default log4j configuration file is located in REGISTRY_HOME/conf/log4j.config.

An explanation of using log4j is outside the scope of this documentation; please see the Apache
log4j documentation [http://logging.apache.org/log4j/docs/index.html] for more information.

81Installation Guide

http://logging.apache.org/log4j/docs/index.html
http://logging.apache.org/log4j/docs/index.html

Troubleshooting

If errors occur during the installation process, the installer displays a message and a Recovery button.

Execution of Task fails. You can click Recovery and correct erroneous selections or click Exit to exit the
installation.

If you click Recovery, the installation returns to the step that should be corrected. For example, if the
installation fails during copying files, it will return to the installation type panel. If the process fails during
configuring database it will return to the database panels.

If errors occur when using the Setup tool, only the error message is displayed, you can continue by clicking
Next.

The following general problems may occur:

Installation backend timeout

If the task does not respond for a long time, a timeout error is thrown and the task is stopped. The
default timeout is 30 minutes. If you have a slow machine, try to redefine the timeout system
property for a greater value in minutes at a java command line.

For 60 minutes, run installation by following command: java -Dtimeout=60 -jar systinet-registry-
6.5.jar

For 60 minutes, edit the setup.sh (setup.bat) file; add the -Dtimeout=60 option into the java command
line so it looks like:

"%JAVA_CMD%" -Dtimeout=60Windows:

"$JAVA_CMD" -Dtimeout=60UNIX:

Cannot find JDBC driver
java.lang.ClassNotFoundException

Some external classes cannot be found. Usually the path to JDBC driver does not contain the
needed *.jar or *.zip files. Another reason this error may be thrown is that the JDBC driver is not
supported by HP SOA Systinet Registry. See Database Installation on page 95 for more information
about supported databases.

Chapter 282

Cannot access database
java.sql.SQLException

This usually happens during the creation of database which already exists. To resolve this error,
try to connect or drop this database first.

This error is also thrown when trying to drop a database which is currently in use, or does not exist.
Note that some set properties must exist on the database engine and some of them are optional.
Please see Database Installation on page 95 for more information about supported databases.

Couldn't create or access important files. Wrong path

This error is displayed when the installation directory specified is bad or the user does not have
read and write permissions for it. Try to install to another directory or reset the read and write
permissions.

Consult Systinet's Developers Corner at http://dev.systinet.com if problems persist or any other problems
occur.

Licensing and Evaluation
When you download the evaluation version of HP SOA Systinet Registry from Systinet, the license key is
provided via email. This license is valid for 30 days. At the end of this period, you may request an extension
of the evaluation license key. (If you wish to continue using HP SOA Systinet Registry after the expiration
of the extended license key, you must purchase it. For information on purchasing HP SOA Systinet Registry,
visit the Systinet Purchase Page [http://systinet.com/products/buy].)

You will be prompted for your User name and License key during installation.

If you have installed HP SOA Systinet Registry using the Approval Process scenario, you must
register on both the publication and discovery servers. You may use the same license key on each
server.

Obtaining an Evaluation License Key

When you download HP SOA Systinet Registry from Systinet
[http://www.systinet.com/products/download_center], a license key is sent to the email address you provided
at registration.

83Installation Guide

http://dev.systinet.com
http://systinet.com/products/buy
http://www.systinet.com/products/download_center

Save this email. It contains a link to the page on which you request an extension of your evaluation
license.

Entering the License Key

Enter the valid license key during installation of the evaluation version.

Chapter 284

Figure 19. Evaluation Key

User name

User name is the e-mail address that you provided at www.systinet.com.

License Key

The key has been sent to you via e-mail. If you have difficulties, please contact
http://www.systinet.com/support for assistance.

85Installation Guide

http://www.systinet.com/support

You must provide valid user name and license key otherwise you cannot continue with installation. Continue
installation the installation as described in Installation Type on page 47

Extending the Evaluation Period

When the license period expires, the Registry Console displays a page indicating that your key is no longer
valid as shown below:

To acquire an extension of the evaluation license:

1 Follow the link in the email containing your initial license key.

2 Provide your user name and password, and the reason for your extension request.

3 If approved, you will receive a reply via email with a new key.

Chapter 286

4 When you receive your new license key, enter it as described in Obtaining an Evaluation Key above.

GUI Version

After expiration you can enter a new license key via the Registry Console:

1 Point a browser at the HP SOA Systinet Registry registration URL, http://<host name>:8080/uddi/web
(assuming that registry runs on <host name> using the default port).

2 Type the email address associated with this download in the box labeled User name.

3 Copy the key from the email and paste it into the box labeled License key and click Register.

4 A valid key returns the message "License key was accepted."

87Installation Guide

Command-line Version

If you do not wish to launch the HP SOA Systinet Registry user interface, you can also enter the license
key from a command line.

To provide your license key via console:

1 Change your working directory to the bin subdirectory of your installation, and type the following:

register --licenseKey <license key> --userName <email address>

2 Replace <license key> with the key provided in your email and replace <email address> with the
email address used to register with Systinet. For example, if your license key is W1116-7IYU4-RDCNE-
GC777-HHVVV and your email address is crunch@breakfast.com, you would type:

register --licenseKey W1116-7IYU4-RDCNE-GC777-HHVVV --userName crunch@breakfast.com

3 A valid license key will return the message "License key was accepted."

Evaluation Limitations

The following limitations are put on HP SOA Systinet Registry installations under evaluation licenses:

1 User is not allowed change the system clock back to extend the evaluation period. If the system clock
is altered in this way, the validation of the license key fails.

2 User cannot use HP SOA Systinet Registry without a valid, non-expired license key. HP SOA Systinet
Registry is rendered inaccessible until a valid key is entered using one of the methods described above.

3 The registry's database is not accessible without a valid, non-expired license key; the database is
accessible only from a registry using same license key or its extension keys.

4 The database export/import/migrate tools take the license into account. You cannot transfer data
between databases containing different licenses. In other words, if you download a new evaluation
version of HP SOA Systinet Registry, you will not be able to transfer the database to it using these
tools.

Chapter 288

Server Configuration
The server configuration may be set during installation or by using the Setup tool after installation. Both
of these scenarios use the same set of GUI panels for server configuration shown in this section.

To run the Setup tool, execute the following script from the bin subdirectory of your installation:

setup.batWindows:

./setup.shUNIX:

See command-line parameters in Setup on page 74.

Select Configuration on the first panel.

89Installation Guide

Figure 20. Setup

For more information on the Setup tool, please see Reconfiguring After Installation on page 75.

Select whether you want to setup HP SOA Systinet Registry that has been deployed (second choice) or not
(first choice).

Chapter 290

Figure 21. Setup

91Installation Guide

Server Configuration

Figure 22. Server Configuration

Figure 22 shows server configuration settings. These settings are used for the HTTP and HTTPS servers.

Chapter 292

Host name

Host name of the computer on which HP SOA Systinet Registry is installed; change the auto-
completed entry if it is different.

HTTP Port

The non-secure port for accessing the Registry Console (default value: 8080)

SSL (HTTPS) Port

Secure port for accessing the Registry Console (default value: 8443)

Connector

Connector port is used by standalone server to listen for control signals. No other application could
use this port (default value: 8081)

SSL Certificate Alias

Alias used for identify SSL private key in protected store management. For more information see
PStore Tool on page 503. (default value: uddiadmin)

SSL Certificate password

Password to encrypt SSL private key.(default value: changeit)

Confirm password

Retype the same password. Note that if it is not same as previous, you cannot continue.

The host name, SSL Certificate Alias, and SSL password are used to create a new security identity in the
local protected store. It creates a certificate and adds this certificate to REGISTRY_HOME/conf/clientconf.xml,
REGISTRY_HOME/conf/pstore.xml, and also exports it to the certificate file REGISTRY_HOME/doc/registry.crt. This
certificate file is used in several situations including the approval process registry scenario. See PStore Tool
on page 503 for instructions in how to operate the protected security store.

After setting these properties, the server will be available at http://[host name]:[HTTP Port]/[Context of URL].
For example, in Figure 22, the server is available at http://mydomain.mycompany.com:8080/uddi and at
https://mydomain.mycompany.com:8443/uddi. Note that the communication could be spied by SoapSpy tool, see
How to Debug on page 880

If you change the host name, https admin name, or password on the discovery registry, you must
import the new certificate REGISTRY_HOME/doc/registry.crt onto the publication registry manually
using the PStore Tool.

93Installation Guide

SMTP Configuration

Figure 23. SMTP Configuration

Figure 23 allows you to configure SMTP. The SMTP configuration is important when users needs to receive
email notification from subscriptions and from the approval process.

Chapter 294

SMTP Host Name

Host name of the SMTP server, through which all e-mail alerts and notification are sent to
administrator and users.

SMTP Port

Port number for this SMTP server

SMTP Password

Password to access SMTP server

Confirm password

Retype the same password. Note that if it is not same as the password in the previous box, you
cannot continue.

SMTP Default Sender E-mail, Name

HP SOA Systinet Registry will generate email messages with this identity.

Database Installation
The database may be set up during installation or by using the Setup tool after installation. Both of these
scenarios use the same set of GUI panels shown in this section.

To run the Setup tool, execute the following script from the bin subdirectory of your installation:

setup.batWindows:

./setup.shUNIX:

See command-line parameters in Setup on page 74.

95Installation Guide

Figure 24. Setup Select Database

Select your database. For more information on the Setup tool, please see Reconfiguring After Installation
on page 75.

Chapter 296

Database Creation Method

The registry requires a database. During installation you can create a new database, create schema in an
existing empty database or connect to an existing database with created schema. Using the Setup tool, you
can also drop a database or database schema. Select your database operation on the following panel:

Figure 25. Database Creation Method

97Installation Guide

Select a method from those shown in Figure 25.

Create database

Create new database/users/tablespaces (depending on the type of database server) and database
schema. This is the easiest way to attach the required database to HP SOA Systinet Registry. Note
that you must have the credentials of the database administrator.

Create schema

Create a new schema in existing database. Select this method if you have access to an existing
empty database with the ability to create tables and indexes. This option is suitable when you does
not know the administrator's credentials. We assume the administrator has already created a new
database/users/tablespaces for this option.

Drop database

Drops the whole database/users/tablespaces. Note that this option depends on the type of database
server.

Drop schema

Drops all tables in the database but leave the empty database.

Configure database

Configure registry database. Use this method if the registry database already exists, for example,
from a previous HP SOA Systinet Registry installation of the same release number, and fill in only
the connection parameters.

Select Database Type

Figure 26 shows the supported database engines that can be prepared for HP SOA Systinet Registry. The
panel may differ if another method was selected in the previous step.

Chapter 298

Figure 26. Select Database Type

Follow these links for selected database.

• Preconfigured HSQL on page 100

• HSQL on page 110

99Installation Guide

• Oracle on page 101

• MSSQL 2000 or 2005 on page 103

• DB2 on page 106

Preconfigured HSQL

The default database is the preconfigured HSQL. The installer or Setup tool creates database named
REGISTRY_HOME/hsqldb/uddinode and the user account uddiuser with the password uddi in the database. Note
that all database files can be found in REGISTRY_HOME/hsqldb directory.

This database is recommended for evaluation and testing purposes only.

If you use HSQL then user credentials are stored in the HSQL database files in plain text. So you
must protect these files from unauthorized reading using appropriate filesystem access rights. The
files are located in the directory REGISTRY_HOME/hsqldb/ by default.

Chapter 2100

Oracle

The Create database option on the installer/Setup tool does not mean to create a new physical database.
The installation process only creates a new tablespace in an existing database and a new user of the default
tablespace is set up on the created one. Then a database schema is created and UDDI data are loaded.
Because relational tables are created in the schema of the specified user, if you want to create more UDDI

101Installation Guide

databases (such as databases for publication and discovery registries for the approval process), you must
create UDDI databases with different database users.

Oracle database creation requires the following properties. To connect or create a schema requires a subset
of these properties. Please note that properties marked with an asterisk (*) must not collide with existing
objects in the database.

Database Server Address

Usually the host name or IP address of the computer where the database server is accessible.

Chapter 2102

Database Server Port

Port on which the database listens for a connection

Existing Database Name

Name of a database that already exists into which the HP SOA Systinet Registry tablespace will
be created.

Database Administrator Name

User name of the administrator of the database; required to create a new tablespace on the existing
database

Database Administrator Password

Password for the administrator account specified in the previous text box.

Database Tablespace Name *

Name of the tablespace to be created in the existing database and which will store UDDI data
structures.

Database User *

A new user account which will be created to connect to the tablespace.

Database User Password

Password for the user account specified in the previous text box.

Confirm password

Again, if it is not the same as in the previous text box, you cannot continue.

Tablespace Datafile *

Enter the path to the tablespace data file.

Continue with JDBC Driver on page 111.

MSSQL 2000 or 2005

You have to select right version of MSSQL. Either MSSQL 2000 or MSSQL 2005 can be selected in panel
shown on Figure 26. The options that follow are same for both but the versions differ in connection string
and JDBC class name so that the selected version must match the version of database.

103Installation Guide

The installation process creates a new database on the database server under the given user name. The
database schema is created and UDDI data are loaded. This user should have the Database Creators server
role.

Make sure your database server has case-sensitive collation, otherwise all comparisons will be
case insensitive, even if the caseSensitiveMatch findQualifier is set. Alternatively, you can create
a database with case-sensitive collation manually and use the create schema option.

If you selected the option Create database in the installation/Setup panel shown in Figure 25, you
need a database user account with the Database creators server role. To create such account, you
can use the SQL Server Enterprise Manager:

1 Select the Console Root > Microsoft SQL Servers > SQL Server Group > server name >
Security > Logins.

2 Right-click on Logins and select the New Login from the context menu.

3 Enter the account name, click on the SQL Server Authentication option and fill in the
password.

4 Select Server Roles tab, mark the Database Creators, click OK, and retype the password.

Chapter 2104

MSSQL database creation requires the following properties. To connect or create schema requires a subset
of these properties. Please note that properties marked with an asterisk (*) must not collide with existing
objects in the database.

Database Server Address

Usually the host name or IP address where the database server is accessible.

105Installation Guide

Database Server Port

Port on which the database listens for a connection.

Database name *

Name of the database that will hold UDDI data structures.

Database user

User name of a user who is able to create a new database.

Database User Password *

Password for the user specified above.

Continue with JDBC Driver on page 111.

DB2

The Create database option from the installer/Setup tool does not create a new database physically. The
installation process creates a new tablespace in an existing database with the given (existing) bufferpool
and associates the tablespace with the given file. Permission to use the tablespace is given to the specified
user. Then, a database schema is created and UDDI data are loaded.

Because relational tables are created in the implicit schema, if you want to create more UDDI
databases (such as databases for publication and discovery registries for the approval process),
you must create UDDI databases with different database users.

The Create database option requires a bufferpool with 8k page size and an database user account,
that can use a temporary tablespace with such bufferpool.

• To create such a bufferpool using the DB2 Control Center:

1 Select Control Center > All Databases > database > Buffer Pools from the left side
tree.

2 Right-click on Buffer Pools, and select the Create... option from the context menu.

3 Fill in a Buffer pool name, such as "uddipool" and select 8k page size.

• To create such a temporary tablespace using the DB2 Control Center:

Chapter 2106

Select Control Center > All Databases > database > Table Spaces from the left side
tree.

1

2 Right-click on Table Spaces and select the Create... option from the context menu.

3 Fill a tablespace name such as "udditempspace" and click Next.

4 Select the user temporary option, and click Next.

5 Select the uddipool buffer pool and click Next twice.

6 Select the location where data are physically stored such as C:\Db2\data\udditempspace,
click Next 3 times and then click Finish.

• To create the database user that can use the temporary tablespace using DB2 Control Center:

1 Select Control Center > All Databases > database > User and Group Objects >
DBUsers from the left side tree.

2 Right-click on DBUsers and select the Add... option from the context menu.

3 Select the username, check Connect to database, Create tables and Create schemas
implicitly.

4 Click on the Table Space tab, the Add Tablespace... button, select the udditempspace
and click OK.

5 Select the udditempspace and select the Yes option from the Privileges drop down list
.

6 Click OK to save the account.

107Installation Guide

DB2 database creation requires the following properties. To connect or create schema requires a subset of
these properties. Please note that properties marked with an asterisk (*) must not collide with existing objects
in the database.

Database Server Address

Usually the host name or IP address where the database server is accessible.

Chapter 2108

Database Server Port

Port on which the database listens for connection.

Existing Database Name

Name of a database that already exists. The UDDI tablespace will be created in this database.

Database Administrator Name

User name of the administrator of the database; this is required to create a new tablespace on the
existing database.

Database Administrator Password

Password for the user specified in the previous text box.

Database Tablespace Name *

Name of tablespace to be created in the existing database and which will store UDDI data structures

Tablespace Datafile *

Full path of the host machine where the tablespace files will be stored

You must have read and write permissions to this directory.

Buffer pool with 8k page size

Buffer pool for database; it must have pages with a size of 8k.

Existing Database User

User name of a user having the following authorities: connect database, create table and create
schema implicitly.

The user also must have access to a temporary tablespace with the associated 8k-length
bufferpool to use for temporary tables.

Database User Password

Password for the user specified in the previous text box.

Specify the HP SOA Systinet Registry Administrator account which will be created in the database. (If
configure database is selected, this administrator account must correspond to one existing in the database.)

Increase transaction log size (parameter logfilsiz) from default value 250 to 1000. You can use
the Control Center tool to make this change.

109Installation Guide

Continue with JDBC Driver on page 111.

HSQL

The installation process creates a new database and a user who is able to create schema/tables.

The HSQL database requires the following properties.

Chapter 2110

Database File Name

Full path to the file which will hold data structures.

Database User

User name for one account authorized to access this database

If you use HSQL then user credentials are stored in the HSQL database files in plain text. So you
must protect these files from unauthorized reading using appropriate filesystem access rights. The
files are located in the directory REGISTRY_HOME/hsqldb/ by default.

JDBC Driver

Select the JDBC Driver as shown in Figure 11. It is not necessary to configure this path for the HSQL
database as the JDBC drivers for this database are installed in the distribution. It is also not necessary if
you have already configured this path previously for the selected database. The JDBC drivers are usually
supplied by database vendors.

111Installation Guide

Figure 27. Optional JDBC Driver

Account Backend

If you created a database or schema, you can configure an authentication account provider.

Chapter 2112

Figure 28. Authentication Account Provider

Figure 12 allows you to select the authentication account provider.

Database

All accounts will be stored in the registry database. This is the recommended backend.

113Installation Guide

LDAP

Registry accounts integrated with LDAP server.

External

Registry accounts integrated with other external storage. To integrate HP SOA Systinet Registry,
with an external backend, you must implement the interface
com.systinet.uddi.account.ExternalBackendApi and add it to the registry installation.

For more information about LDAP and External account backends, please see External Accounts Integration
on page 130

Multilingual Data

This section describes how HP SOA Systinet Registry supports the storage of UDDI structures in the
multilingual data format.

There are two types of text fields in UDDI structures: Unicode fields and ASCII fields.

Unicode fields

are intended for human readable information, the field length is measured in number of characters
as follows:

Max Length (in
chars)

Field Name

255name of businessEntity and businessService

255keyName

255keyValue

255useType

255description

80addressLine

255personName

ASCII fields

are intended for machine processing, such as URIs. The length is measured in bytes. ASCII fields
can typically hold multilingual data. Its length is limited by the number of bytes of its serialized

Chapter 2114

form in UTF-8 encoding. For example, the name of a tModel can carry 85 Japanese characters,
because Japanese characters are encoded into three bytes each under UTF-8 encoding (255/3=85).

Max Length (in bytes)Field Name

255name of tModel

4096overviewURL

4096discoveryURL

10sortCode

255email

50phone

4096accessPoint

8192instanceParms

HSQL

HSQL supports Unicode characters in both types (Unicode and ASCII) of fields.

MSSQL

MSSQL supports Unicode characters only in Unicode fields. Unicode characters are stored successfully to
ASCII fields only if they match with the server collation, otherwise are converted to question marks (?).
For example, Japanese characters are stored correctly if the Japanese_Unicode_Cl_AS collation is default
to the server. If the English collation is set up, Japanese characters are converted to ? characters.

Oracle

Oracle database supports Unicode characters in both types (Unicode and ASCII) of fields.

DB2

The DB2 database supports Unicode characters in both types of fields. Maximal length of a field is measured
in bytes in the default database schema despite it being a Unicode field. You can use any Unicode characters,
but allowed string length is not guarantied. For example, the name of a tModel can carry 85 Japanese
characters, because Japanese characters are encoded into three bytes each under UTF-8 encoding (255/3=85).

115Installation Guide

Note that longer strings produce a database exception. The restriction is made because the cumulative length
of indexed columns is limited to 800 bytes. The default schema prefers performance to multiple language
support.

If you want to use Unicode fields with longer byte-length you must enlarge appropriate database columns.
However indexes with cumulative length longer than 800 bytes must be removed as these can harm
performance. Follow these steps:

1 Install HP SOA Systinet Registry with the no database option.

2 Modify the database schema file REGISTRY_HOME/etc/db/db2/schema_core.sql

a Increase column lengths for names and keyValues.

b Remove appropriate indexes.

3 Use the Setup tool to create the database.

JDBC Drivers

HP SOA Systinet Registry requires by default the following classes for connection to the database. Please
ensure that your downloaded JDBC JAR(s) includes them:

Driver classDatabase

com.ibm.db2.jcc.DB2DriverDB2

org.hsqldb.jdbcDriverHSQL

com.microsoft.jdbc.sqlserver.SQLServerDriverMSSQL

oracle.jdbc.driver.OracleDriverOracle

Alternative JDBC Drivers

This section describes the use JDBC drivers other than the default drivers mentioned above. Suppose you
downloaded FooJDBC.jar, where the driver class is foo.jdbc.Driver and the connection string is jdbc:foo:....

If you want to use an alternative JDBC driver while you already installed the registry and set up database
with the default JDBC driver, edit the file REGISTRY_HOME/app/uddi/conf/database.xml as follows:

Chapter 2116

1 Add

<universalDriver name="fooDriver">
 <JDBC_driver>foo.jdbc.Driver</JDBC_driver>
 <URI_pattern>jdbc:foo:...</URI_pattern>
</universalDriver>

at the end of <databaseMappings/> element

You can use following parameters in the <URI_pattern> element

• ${hostname} - hostname or IP address of the database server

• ${port} - Port where the database server listens for requests

• ${dbName} - Name of the database

• ${userName} - Name of database account

• ${userPassword} - Password of the account

Replace the parameters with corresponding values using the Setup tool or the Registry Console.

2 Replace the className attribute of the interfaceMapping element with fooDriver value for your database.
Determine the right databaseMapping element by value of type attribute.)

If you want to create a database with the alternative JDBC driver (without needing to use the default driver):

1 Install the HP SOA Systinet Registry without the database.

2 Modify REGISTRY_HOME/app/uddi/conf/database.xml as described above.

3 Replace the driver class and connection string in the installation scripts in REGISTRY_HOME/etc/db/
<database_type>/installXXX.xml

4 Run the Setup tool to create database.

117Installation Guide

Approval Process Registry Installation
HP SOA Systinet Registry allows for installation with an approval publishing process which requires two
registries: a publication registry and a discovery registry. The publication registry is used for testing and
verification of data. The discovery registry contains approved data that has been promoted from the
publication registry.

HP SOA Systinet Registry supports the following scenarios of approval process configuration:

• One publication and one discovery registry as shown in Figure 29. This is the simplest configuration.
Data is promoted from the publication to the discovery registry after an approver approves the data.

Figure 29. One-Step Approval Process

• Multiple publication registries as shown in Figure 30. Promoted data is merged from more than one
publication registry to a single discovery registry.

Chapter 2118

Figure 30. One-Step Approval Process with Multiple Publication Registries

• Multiple step approval process as shown in Figure 31. There can be many steps for promoting data from
the publication to the discovery registry. For example, you can define the approval process to include
two steps of data promotion. The first step is promoting data from a 'unit testing' registry to an 'integrated
testing' registry. The next step is promoting data from the 'integrated testing' registry to a 'production
quality' registry. In this case you need to install three registries as shown in Figure 31. See Intermediate
Registry Installation on page 130 to learn how to install a registry that behaves as both publication and
discovery registry.

119Installation Guide

Figure 31. Multiple Step Approval Process

We recommend that you install the discovery registry first, and then the publication registry, because the
digital security certificate of the discovery registry is needed when installing the publication registry.

To install the publication or discovery registry with accounts in external storage you must ensure
that accounts from the publication registry are a subset of accounts on the discovery registry.
Accounts may exist on the discovery registry that do not exist on the publication registry, but all
accounts on the publication registry must exist on the discovery registry. Put another way: all
accounts on the publication registry exist on the discovery registry, but not all accounts on discovery
registry exist on the publication registry.

It is also not allowed to have two different LDAP servers, one for the publication registry and one
for discovery registry. For more information about setting of external accounts, see the External
Accounts Integration chapter in the Installation Guide.

Do not forget to configure the SMTP configuration on the publication registry for receiving email
notifications.

To learn more about the approval process, see the Approval Process chapter in the Administrator' Guide.

Chapter 2120

Discovery Registry Installation

To install the discovery registry, install it as described in Installation on page 42. At installation, during
installation type selection, choose Discovery instead of the default Standalone installation.

Fill in all properties on the discovery-specific panel shown in Figure 32

121Installation Guide

Figure 32. Discovery Settings

Set the following properties:

Publication Registry IP address

The IP address allowed to connect to this discovery registry .

Netmask

A netmask is a 32-bit mask used to divide an IP address into subnets and specify the network's
available hosts.

The default netmask of 255.255.255.255 indicates that publication registry may be connected only
from the IP address specified in Publication Registry IP address

Chapter 2122

Continue with standalone installation as described in Server Settings on page 63.

Publication Registry Installation

To install the publication registry you must have an installed discovery registry as described in
Discovery Registry Installation on page 121.

Install the publication registry in same way you would the Standalone registry as described in Installation
on page 42. During installation selection, choose Publication instead of the default Standalone installation.

The Installer needs to know the Discovery Registry Certificate in order for the Publication Registry to verify
the connections made to the Discovery Registry. The Installer can download the certificate for you, or you
can choose to provide the certifiate in a file on your local disk.

Fill in the properties shown below:

123Installation Guide

Discovery Registry Location

You have to enter the URL of the Discovery Registry installation. The URL must use secure https:
protocol. HTTP (nonsecure) connections between the publication and discovery registry are not
allowed.

Note that the exact port number you need to provide in the Discovery Registry URL
depend on the values entered during installation of the Discovery Registry. If the Discovery

Chapter 2124

Registry was deployed to an application server, you also have to provide the application
context in the URL, as shown in the following example:

https://registry.mycomp.com:8443/reg_discovery

("reg_discovery" is the application context).

Download from URL

The Installer will download the certificate for you from the Discovery URL which you provided
to the Installer. The certificate will be stored in a temporary file and will be deleted when the
Installer finishes. The Installer checks whether the Discovery Registry requires SSL client
authentication on the transport level during the connect.

Load from a Local File

You will have to provide a file, that contains the Discovery Registry certificate.

If you choose to let the Installer to download the certificate, you will not be able to continue with
the installation until the Installer connects to the Discovery Registry and downloads the certificate.
If you cannot access the Discovery Registry at the moment, choose the Load from a Local File.

Provide Certificate in a File

This screen appears, when you choose to provide the Discovery Certificate manually, from a file. In addition
to the filename, you may instruct the Installer not to connect to the Discovery Registry. This could be useful
if e.g. the Discovery Registry is not accessible at the moment.

125Installation Guide

Discovery Registry Certificate

File that contains the Discovery Registry certificate. PEM or DER formats are accepted. When
using the Discovery Registry in a standalone mode, the certificate can be found in doc/registry.crt
file.

In the case the Discovery Registry is deployed in an application server, you have to obtain the SSL
certificate used by that application server. For example, you may point your web browser to the

Chapter 2126

Discovery Registry's web console using HTTPS protocol and save the SSL certificate which the
console will use to identify itself to your browser.

Check or two-way SSL

If you check this option, the Installer will attempt to connect to the Discovery Registry URL and
determine, whether SSL Client Authentication is required to connect to the Discovery Registry.

Select the Certificate

The screen presents a list of certificates obtained from the Discovery Registry or from the certificate file.
Individual certificates can be selected using the Select the certificate drop-down control. When a certificate
is selected, its properties are displayed in the Certificate details box, so you can choose which of the
certificates you want the Registry to trust.

Two-way SSL

You may choose that the Publication Registry will support 2-way SSL and offer its SSL certificate as the
identity for authentication on the connection level. If you enable the Two-way SSL option, you will have to
provide the client SSL certificate for the Production Registry, the private key and password for the key.

127Installation Guide

Use Two-way SSL

If checked, the Publication Registry will offer a SSL identity as its authentication when making
calls to the Discovery Registry. You will need to provide the SSL Identity in a PKCS#12 format
or as a Java Keystore (JKS).

Identity File

Path to the PKCS#12 identity information or to the Java Keystore.

Chapter 2128

Password

Password that protects the identity file. Empty passwords are not supported.

Java Keystore

The Java Keystore screen appears, if the identity file is a Java Keystore, and there are more keys in the
keystore, or the key uses a different password than the keystore. In that case the Installer needs to precisely
know which key to use and what is the password to access it.

129Installation Guide

Alias

The alias which identifies the private key to be used by the Discovery Registry. The Installer will
present a list of aliases present in the Keystore to choose from.

Key Password

The password for the key. The field may be left blank to indicate the same password as for the
keystore should be used.

Intermediate Registry Installation

Install the publication registry in same way you would the Standalone registry as described in Installation
on page 42. During installation selection, choose Intermediate instead of the default Standalone installation.

Since the Intermediate Registry acts as the Discovery and Publication registry at the same time, both of
these functions have to be configured. Please refer to Discovery Registry Installation on page 121 and
Publication Registry Installation on page 123 for details on how to set up the Publication or Discovery registry.

After you are done with Publication and Discovery setup, continue with standalone installation as described
in Server Settings on page 63.

External Accounts Integration
During database installation or by employing the Setup tool, you may choose to use accounts from external
repositories. This chapter describes how to integrate accounts from an LDAP server and from non-LDAP
user stores into HP SOA Systinet Registry.

An LDAP server can be integrated with HP SOA Systinet Registry with these scenarios:

• LDAP with a single search base - The scenario is very simple. There is only one LDAP server in this
scenario. All identities are stored under a single search base.

• LDAP with multiple search bases - In this scenario there is also only one LDAP server, but it has multiple
search bases mapped to a domain. The domain is a specified part of the user's login name (that is,
DOMAIN/USERNAME). All users must specify the domain name in the login dialog. When managing accounts
or groups, we recommend using the DOMAIN/USERNAME format for performance reasons. If no domain is
set, searches are performed across all domains.

Chapter 2130

• Multiple LDAP services - More than one LDAP service is used in this scenario. The correct LDAP
service is chosen via DNS. As in the previous scenario, users must specify a domain name during login.
When managing accounts or groups, users have to set domain name. If the domain name is not specified,
then no domain is processed.

This chapter also contains the following configuration examples:

• Sun One with a single search base

• Sun One with multiple search bases

• Active Directory with a single search base

HP SOA Systinet Registry treats external stores as read-only. User account properties stored in
these external stores cannot be modified by HP SOA Systinet Registry.

The Administrator account must not be stored in the LDAP. We strongly recommend that users
stored in account_list.xml (by default, only administrator) should not be in the LDAP. If you really
need to have users from LDAP in the file account_list.xml, delete password items from the file and
change of all the accounts' properties according to the LDAP. The account_list.xml file contains a
list of users that can be logged into a registry without connection to the database.

Sometimes HP SOA Systinet Registry displays various warnings into logs. We recommend to edit
file directory.xml and file group_core.xml manually in order to suppress warnings related to account
/ group integration - LDAP (set true for attribute suppressWarnings).

To integrate external accounts from another repository, either:

• Create a database or create a new schema on the connected database by following the instructions in
Database Settings on page 53, or

• Use the Setup tool and choose Authentication provider. To run the Setup tool, execute the following
script from the bin subdirectory of your installation:

setup.batWindows:

./setup.shUNIX:

See command-line parameters in Setup on page 74.

131Installation Guide

Figure 33. Setup Select Authentication Account Provider

For more information on the Setup tool, please see Reconfiguring After Installation on page 75.

LDAP

Select LDAP on the Account Provider panel.

Chapter 2132

Enter the following settings:

133Installation Guide

Figure 34. LDAP Service

HP SOA Systinet Registry uses a JNDI interface to connect to LDAP servers. The following JNDI properties
must be known to the server. (The default properties are noted in parentheses.)

Java naming provider URL

A URL string for configuring the service provider specified by the "Java naming factory initial"
property. (ldap://hostname:389).

Initial Naming Factory

Class name of the initial naming factory. (com.sun.jndi.ldap.LdapCtxFactory).

Security Principal

The name of the principal for anonymous read access to the directory service.

Chapter 2134

Password

Password of security principal.

Authentication

Security level. (simple)

Figure 35. LDAP Usage Scenarios

You can select the following LDAP usage scenarios:

LDAP with a single search base

The scenario is very simple. There is only one LDAP server in this scenario. All identities are
stored under a single search base.

135Installation Guide

LDAP with multiple search bases

In this scenario there is also only one LDAP server, but it has multiple search bases mapped to a
domain. The domain is a specified part of user's login name (that is, DOMAIN/USERNAME). All users
must specify the domain name in the login dialog. During the managing with accounts or groups
it is recommended to use DOMAIN/USERNAME because of performance. If no domain is set then search
is performed across all domains.

Domains can be specified dynamically or statically. For dynamic settings it is necessary to specify,
for example, a domain prefix or postfix. Static domains are set during the installation directly and
so they must be known in time of installation.

Multiple LDAP services

More than one LDAP service are used in this scenario. The correct LDAP service is chosen via
DNS. As in the previous scenario, users must specify a domain name during login. When managing
accounts or groups users have to set domain name. If domain name is not specified then no domain
is processed.

Automatic discovery of the LDAP service using the URL's distinguished name is supported only
in Java 2 SDK, versions 1.4.1 and later, so be sure of the Java version you are using.

The automatic discovery of LDAP servers allows you not to hardwire the URL and port of the
LDAP server. For example, you can use ldap:///o=JNDITutorial,dc=example,dc=com as a URL and
the real URL will be deduced from the distinguished name o=JNDITutorial,dc=example,dc=com.

HP SOA Systinet Registry integration with LDAP uses the JNDI API. For more information, see
http://java.sun.com/products/jndi/tutorial/ldap/connect/create.html and http://java.sun.com/j2se/1.-
4.2/docs/guide/jndi/jndi-dns.html#URL

LDAP with a Single Search Base

The installation consists of the following steps:

1 Specify user/account search properties as shown in Figure 36.

2 Map Registry user properties to LDAP properties as shown in Figure 37.

3 Specify group search properties as shown in Figure 38.

4 Map Registry group properties to LDAP properties as shown in Figure 39.

Chapter 2136

http://java.sun.com/products/jndi/tutorial/ldap/connect/create.html
http://java.sun.com/j2se/1.4.2/docs/guide/jndi/jndi-dns.html#URL
http://java.sun.com/j2se/1.4.2/docs/guide/jndi/jndi-dns.html#URL

Figure 36. User Search Properties

Field description:

Search Filter

The notation of the search filter conforms to the LDAP search notation. You can specify the LDAP
node property that matches the user account.

Search Base

LDAP will be searched from this base including the current LDAP node and all possible child
nodes.

Search Scope

Here you can specify how deep the LDAP tree structure's data will be searched.

137Installation Guide

• Object Scope - Only the search base node will be searched.

• One-level Scope - Only direct sub-nodes of the search base (entries one level below the search
base) will be searched. The base entry is not included in the scope.

• Subtree Scope - Search base and all its sub-nodes will be searched.

Results Limit

Number of items returned when searching LDAP.

If an LDAP search returns more results than the limit then the following warning is returned:

WARN: ldap.LdapBackendImpl - The result of LDAP query
 (searchbase: 'dc=in,dc=idoox,dc=com', filter:
'(&(uid=*)(objectClass=person))')
 is truncated by using the count limit search control which is set
to '100'.
 The query produced too many answers and so please narrow your search
 filter or increase default limit count.
 Read the documentation in order to suppress the warning.

Chapter 2138

Figure 37. User Properties Mapping

You can specify mapping between HP SOA Systinet Registry user account properties and LDAP properties.
You can add rows by clicking Add. To edit an entry, double click on the value you wish to edit.

The following user account properties can be mapped from an LDAP server:

java.lang.String loginName
java.lang.String email
java.lang.String fullName
java.lang.String languageCode
java.lang.String password
java.lang.String description
java.lang.String businessName
java.lang.String phone
java.lang.String alternatePhone

139Installation Guide

java.lang.String address
java.lang.String city
java.lang.String stateProvince
java.lang.String country
java.lang.String zip
java.util.Date expiration
java.lang.Boolean expires
java.lang.Boolean external
java.lang.Boolean blocked
java.lang.Integer businessesLimit
java.lang.Integer servicesLimit
java.lang.Integer bindingsLimit
java.lang.Integer tModelsLimit
java.lang.Integer assertionsLimit
java.lang.Integer subscriptionsLimit

The Registry account property dn specifies the LDAP distinguished name. The value depends on
the LDAP vendor.

• On the Sun ONE Directory Server, the value is entryDN

• On Microsoft Active Directory, the value is distinguishedName

If an optional property (such as email) does not exist in the LDAP, then the property's value is set
according to the default account. The default account is specified in the config file whose name is
account_core.xml.

User account properties that you specify at the Figure 37 will be treated as read-only from Registry
Console and registry APIs.

For more information, please see Developer's Guide, userAccount data structure .

Chapter 2140

Figure 38. Group Search Properties

Field description:

Search Filter

The notation of the search filter conforms to LDAP search notation. You can specify the LDAP
node property that matches the group.

Search Base

LDAP, including the current LDAP node and possible all child nodes, will be searched from this
base.

Search Scope

Here you can specify how deep the LDAP tree structure data will be searched.

141Installation Guide

• Object Scope - Only the search base node will be searched.

• One-level Scope - Search base and its direct sub-nodes will be searched.

• Subtree Scope - Search base and all its sub-nodes will be searched.

Figure 39. Group Properties Mapping

You can specify mapping between HP SOA Systinet Registry group properties and LDAP properties. You
can add rows by clicking Add. To edit an entry, double click on the value you wish to edit.

If a property (such as description) does not exist in the LDAP then property value is set according to the
default group. The default group (groupInfo) is specified in the config file whose name is group.xml.

Chapter 2142

For more information, please see Developer's Guide, group data structure

LDAP with Multiple Search Bases

The installation consists of the following steps:

1 Specify the domain delimiter, domain prefix and postfix as shown in Figure 40.

2 Enable/Disable domains as shown in Figure 41.

3 Specify User Search properties as shown in Figure 36.

4 Map Registry user properties to LDAP properties as shown in Figure 37.

5 Specify group search properties as shown in Figure 38.

6 Map Registry group properties to LDAP properties as shown in Figure 39

143Installation Guide

Figure 40. Domain Delimiter

Field descriptions:

Domain Delimiter

Specifies the character that delimits domain and user name. When left empty, users are searched
from all domains.

Domain Prefix, Domain Postfix

Domains are searched using the following pattern: {domain prefix}domain_name{domain postfix}{search
base}

Chapter 2144

where {domain prefix} is value of property whose name is domain prefix, {domain postfix} is
value of property whose name is domain postfix and {searchbase} is value of property whose name
is searchbase.

Figure 41. Enable/Disable Domains

Enable Domains

Left column: domain name that users will be using during login. Right column: distinguished
domain name.

Disable Domains

Enter distinguished domain name of domains you wish to disable.

145Installation Guide

Multiple LDAP Services

The correct LDAP service is chosen via DNS. The installation consists of the following steps:

1 Specify user/account search properties as shown in Figure 36.

2 Map Registry user properties to LDAP properties as shown in Figure 37.

3 Specify group search properties as shown in Figure 38.

4 Map Registry group properties to LDAP properties as shown in Figure 39.

LDAP over SSL/TLS

It is only a matter of configuration to setup LDAP over SSL (or TLS) with a directory server of your choice.
We recommend that you first install HP SOA Systinet Registry with a connection to LDAP that does not
use SSL. You can then verify the configuration by logging in as a user defined in this directory before
configuring use of SSL.

The configuration procedure assumes that you have already installed HP SOA Systinet Registry with an
LDAP account provider. HP SOA Systinet Registry must not be running.

LDAP over SSL Without Client Authentication

In this case only LDAP server authentication is required. This is usually the case.

Edit the REGISTRY_HOME/app/uddi/conf/directory.xml file in one of the following ways depending on
the version of Java used to run HP SOA Systinet Registry:

• If HP SOA Systinet Registry will always be running with Java 1.4.2 or later:

1 Change the java.naming.provider.url property to use the ldaps protocol and the port on which the
directory server accepts SSL/TLS connections. For example ldaps://sranka.in.idoox.com:636;

• Otherwise, if HP SOA Systinet Registry may be run with a Java version less than 1.4.2:

1 Change the java.naming.provider.url property to the appropriate URL using the ldap protocol. For
example ldap://sranka.in.idoox.com:636;

Chapter 2146

2 Add a new property, after the java.naming.provider.url property, with name
java.naming.security.protocol and value ssl;

This is shown in the following example:

Example 1: Directory configuration

<config name="directory" savingPeriod="5000">
 <directory>
 <!-- LDAP over (SSL/TLS) unprotected connection -->
 <!--
 <property name="java.naming.provider.url" value="ldap://hostname:47361"/>
 -->
 <!-- LDAP over SSL/TLS for Java 1.4.2 and later -->
 <!--
 <property name="java.naming.provider.url" value="ldaps://hostname:636"/>
 -->
 <!-- LDAP over SSL/TLS for Java where LDAP over SSL is supported -->
 <property name="java.naming.provider.url" value="ldap://hostname:636"/>
 <property name="java.naming.security.protocol" value="ssl"/>
 ...
 ...
 ...
 </directory>
</config>

In both cases, be sure that the hostname specified in the java.naming.provider.url property matches the name
that is in the directory server certificate's subject common name (CN part of certificate's Subject). Otherwise
you will get an exception during startup of HP SOA Systinet Registry. It will inform you of a hostname
verification error. The stacktrace contains the hostname that you must use.

LDAP over SSL With Mutual Authentication

HP SOA Systinet Registry does not support LDAP over SSL with mutual authentication.

Ensuring Trust of the LDAP Server

The client that connects to the SSL/TLS server must trust the server certificate in order to establish
communication with that server. The configuration of LDAPS explained above inherits the default rule for
establishing trust from JSSE (the Java implementation of SSL/TLS). This is based on trust stores.

147Installation Guide

When a trust store is needed to verify a client/server certificate, it is searched for in the following locations
in order:

1 The file specified by the javax.net.ssl.trustStore system property, if defined;

2 Otherwise the file JAVA_HOME\jre\lib\security\jssecacerts if it exists;

3 Otherwise the file JAVA_HOME\jre\lib\security\cacerts if it exists;

It is recommended to use the first option to define a trust store specifically for the application you are
running. In this case, you have to change the command that starts the registry (or the JVM environment of
the deployed registry) to define the following Java system properties:

DescriptionProperty

Absolute path of your trust store file.javax.net.ssl.trustStore

Password for the trust store file.javax.net.ssl.trustStorePassword

To ensure that the server certificate is trusted, you have to:

1 Contact the administrator of the LDAP server and get the certificate of the server or the certificate of
the authority that signed it;

2 Import the certificate into the trust store of your choice using the Java keytool:

keytool -import -trustcacerts -alias alias -file file -keystore keystore -storepass storepass

where the parameters are as follows:

alias

A mandatory, unique alias for the certificate in the trust store;

The file containing the certificate (usually with .crt extension);

The keystore file of your choice;

A password designed to protect the keystore file from tampering. Java level keystores (cacerts
and jssecacerts) usually require the password changeit;

Chapter 2148

file

The file containing the certificate (usually with .crt extension);

The keystore file of your choice;

A password designed to protect the keystore file from tampering. Java level keystores (cacerts
and jssecacerts) usually require the password changeit;

keystore

The keystore file of your choice;

A password designed to protect the keystore file from tampering. Java level keystores (cacerts
and jssecacerts) usually require the password changeit;

storepass

A password designed to protect the keystore file from tampering. Java level keystores (cacerts
and jssecacerts) usually require the password changeit;

LDAP Configuration Examples

SUN One with Single Search Base

In this example, we show how to configure a Sun One Directory Server 5.2 under the LDAP Single Search
Base scenario.

SUN One with Single Search Base on page 149 shows user properties that are stored in the LDAP server.

149Installation Guide

Figure 42. User Properties in LDAP

SUN One with Single Search Base on page 149 shows group properties that are stored in the LDAP server.

Figure 43. Group Properties in LDAP

The following table shows how to configure HP SOA Systinet Registry using this scenario.

Chapter 2150

SeeConfig ValueConfig Property

Figure 34ldap://localhost:389Java naming provider URL

Figure 34com.sun.jndi.ldap.LdapCtxFactoryInitial Naming Factory

Figure 34uid=JPatroni,ou=people,dc=in,dc=idoox,dc=comSecurity Principal

Figure 34simpleSecurity Protocol

 User Properties

Figure 36objectClass=personSearch Filter

Figure 36ou=people,dc=in,dc=idoox,dc=comSearch Base

Figure 36Subtree ScopeSearch Scope

Figure 36100Result Limit

Figure 37phonetelephoneNumber

Figure 37loginNameuid

Figure 37fullNamecn

Figure 37emailmail

 Group Properties

Figure 38objectClass=groupofuniquenamesSearch Filter

Figure 38ou=groups,dc=in,dc=idoox,dc=comSearch Base

Figure 38Subtree ScopeSearch Scope

Figure 38100Result Limit

Figure 39ownercreatorsName

Figure 39descriptiondescription

Figure 39memberuniqueMember

Figure 39namecn

Sun One with Multiple Search Bases

In this example, we show how to configure Sun One Directory Server 5.2 with multiple search bases. In
Figure 45, you can see users and domains that are stored on the LDAP server. We want to configure the
LDAP integration with HP SOA Systinet Registry in this way:

151Installation Guide

• Only users from domain1 and domain10 can log into HP SOA Systinet Registry. LDAP domain2 will be
disabled.

• LDAP domain10 will be mapped to the domain3 user group in HP SOA Systinet Registry.

Figure 45 shows how users from LDAP are mapped to HP SOA Systinet Registry

Figure 44. LDAP Users and Groups

Chapter 2152

Figure 45. Registry Users

The following table shows how to configure HP SOA Systinet Registry using this scenario.

SeeConfig valueConfig Property

Figure 34ldap://localhost:1000Java naming provider URL

Figure 34com.sun.jndi.ldap.LdapCtxFactoryInitial Naming Factory

Figure 34uid=JPatroni,ou=people,dc=in,dc=idoox,dc=comSecurity Principal

Figure 34simpleSecurity Protocol

Figure 40/uddi.ldap.domain.delimiter

Figure 40ou=uddi.ldap.domain.prefix

Figure 40leave emptyuddi.ldap.domain.postfix

 Enable domains

Figure 41domain3domain name

153Installation Guide

SeeConfig valueConfig Property

Figure 41ou=domain10,ou=example,dc=in,dc=idoox,dc=comDistinguished name

 Disable domains

Figure 41ou=domain2,ou=example,dc=in,dc=idoox,dc=comDistinguished name

 User Properties

Figure 36objectClass=personSearch Filter

Figure 36ou=people,dc=in,dc=idoox,dc=comSearch Base

Figure 36Subtree ScopeSearch Scope

Figure 36100Result Limit

Figure 37phonetelephoneNumber

Figure 37loginNameuid

Figure 37fullNamecn

Figure 37emailmail

 Group Properties

Figure 38objectClass=groupofuniquenamesSearch Filter

Figure 38ou=groups,dc=in,dc=idoox,dc=comSearch Base

Figure 38Subtree ScopeSearch Scope

Figure 38100Result Limit

Figure 39ownercreatorsName

Figure 39descriptiondescription

Figure 39memberuniqueMember

Figure 39namecn

Active Directory with Single Search Base

In this example, we show how to configure an Active Directory with a single search base. Figure 46 shows
group properties that are stored in the Active Directory. These group properties will be mapped to HP SOA
Systinet Registry as shown in Figure 47.

Chapter 2154

Figure 46. LDAP User Group

Figure 47. User Group in HP SOA Systinet Registry

Figure 48 shows user properties that are stored in the Active Directory. These user properties will be mapped
to HP SOA Systinet Registry as shown in Figure 47.

155Installation Guide

Figure 48. LDAP User Properties

Chapter 2156

Figure 49. User Properties in HP SOA Systinet Registry

The following table shows how to configure HP SOA Systinet Registry using this scenario.

SeeConfig valueConfig Property

Figure 34ldap://localhost:389Java naming provider URL

Figure 34com.sun.jndi.ldap.LdapCtxFactoryInitial Naming Factory

Figure 34CN=userx,OU=root,DC=registry,DC=in,DC=mycompany,DC=comSecurity Principal

Figure 34DIGEST-MD5Security Protocol

 User Properties

Figure 36objectClass=personSearch Filter

157Installation Guide

SeeConfig valueConfig Property

Figure 36ou=example,dc=registry,dc=in,dc=mycompany,dc=comSearch Base

Figure 36Subtree ScopeSearch Scope

Figure 36100Result Limit

Figure 37loginNamesAMAccountName

Figure 37fullNamecn

Figure 37emailmail

Figure 37phonetelephoneNumber

 Group Properties

Figure 38objectClass=groupSearch Filter

Figure 38ou=example,dc=registry,dc=in,dc=mycompany,dc=comSearch Base

Figure 38Subtree ScopeSearch Scope

Figure 38100Result Limit

Figure 39membermember

Figure 39namecn

Figure 39memberuniqueMember

Figure 39namecn

Custom (Non-LDAP)

Select External on the Advanced Account Settings panel.

Chapter 2158

External accounts require implementation of the interface org.systinet.uddi.account.ExternalBackendApi.

Deployment to an Application Server
To deploy HP SOA Systinet Registry to any application server, it must be installed as standalone server,
as described Installation on page 42. After installation, use the Setup tool as described in Creating a Web
Application Archive (WAR,EAR) on page 160 to create Web application archive (WAR,EAR) for the specific
application server.

The WAR file or EAR file is then prepared for deployment to the application server. You must deploy it
into the application server manually, according to your specific application server's instructions:

159Installation Guide

If you are going to use the HSQL (despite the fact it is recommended only for demo/testing purposes)
and deploying the wasp.war on a different machine, do not forget to copy the database files from
the REGISTRY_HOME/hsqldb directory to the host where the application server is running. Then, change
the database configuration accordingly after the first start of HP SOA Systinet Registry.

Creating a Web Application Archive (WAR,EAR)

To create a Web application archive:

1 Briefly, launch the Setup tool by executing the following command from the bin directory of your
installation:

setup.batWindows:

./setup.shUNIX:

See command-line parameters in Setup on page 74.

2 Select Portation on the first panel:

Chapter 2160

3 Select the application server on the next panel.

161Installation Guide

Select the application server to which you want to deploy HP SOA Systinet Registry .

4 The next panel shows deployment settings on the application server.

Chapter 2162

HTTP Port

HTTP port of the application server

SSL(HTTPS) Port

HTTPS port of the application server

Host name

Host name of the application server

Application Server Context

Use the context you will use to deploy on the application server. (default: wasp)

163Installation Guide

Figure 50. Deployment Process After Confirmation of Settings

To continue the deployment process, follow the instruction in the log window. For further details, see the
instructions in the individual sections below dedicated to the individual application servers.

• WebLogic on page 164

• WebSphere on page 166

• JBoss on page 170

WebLogic

The BEA WebLogic 8.x and 9.x are supported.

Chapter 2164

WL_HOME refers to the directory where WebLogic is installed.

REGISTRY_HOME refers to the directory in which the HP SOA Systinet Registry distribution is installed.

The REGISTRY_HOME/conf/porting/weblogic/build/[context_name].war file is ready for deployment. Please follow
these steps to complete the integration:

1 Deploy the package using WebLogic's administration console.

2 Modify the BEA WebLogic server launch script which is:

• WL_HOME/user_projects/domains/DOMAIN_NAME/startWebLogic.sh or startWebLogic.cmd

• Add the following property to the Java command line for starting the WebLogic server:

-Djava.security.auth.login.config=REGISTRY_HOME/conf/jaas.config

3 Import the SSL certificate of the WebLogic server to the HP SOA Systinet Registry configuration.

Obtain the WebLogic SSL certificate. There are two methods:

a You can get certificate using Internet Explorer 6.0 web browser connected to WebLogic via
HTTPS. Select "Properties" in context menu of the page, button "Certificates", tab "Details",
button "Copy to file", and then export certificate in Base 64 encoded X.509 .cer format.

b You can also use REGISTRY_HOME/bin/sslTool.sh or REGISTRY_HOME\bin\sslTool.bat to get certificate.
Run command:

sslTool serverInfo --url https://HOST:9043 --certFile weblogic.cer

This command will connect to specified host and port using HTTPS and it will store server
certificate into specified file.

To import this certificate use

PStoreTool located in [registry_home]/bin PStoreTool.sh add -config
[registry_home]/conf/clientconf.xml -certFile [weblogic.cer]

4 Enable SSL in WebLogic if not yet enabled and (re)start the BEA WebLogic server.

165Installation Guide

Deployment should now be complete. The HP SOA Systinet Registry URL is
http://[hostname]:[http_port]/[context]/uddi/web

WebLogic 8.x: When "Segmentation fault" problems occur during WebLogic startup on RedHat
Enterprise Linux, you have to set environment variable LD_ASSUME_KERNEL to value 2.4.1.
Add this line to WebLogic startup script: export LD_ASSUME_KERNEL="2.4.1"

WebSphere

This process has been tested on WebSphere 6.0 and 6.1

REGISTRY_HOME refers to the directory in which the HP SOA Systinet Registry distribution is installed.

WEBSPHERE_HOME refers to the directory in which IBM WebSphere is installed.

PORTING_CONTEXT refers to context under which the HP SOA Systinet Registry is deployed.

The REGISTRY_HOME/conf/porting/websphere/6.x/build/PORTING_CONTEXT.ear file is ready for deployment. Please
follow these steps to complete the integration:

1 The IBM WebSphere server uses IBM java, which is installed in the WEBSPHERE_HOME/java directory.
You must set up the security for this IBM JVM. To do so, follow the java security section in System
Requirements on page 40.

You should not download and replace the following security jars: US_ExportPolicy.jar and
local_policy.jar

2 Modify the file WEBSPHERE_HOME/profiles/default/config/cells/DOMAIN_NAME/security.xml (for version 6.0)
by adding the following lines between the tags <applicationLoginConfig> and </applicationLoginConfig>:

Chapter 2166

Example 2: WebSphere Configuration

 <entries xmi:id="WaspCredentials" alias="Credentials">
 <loginModules xmi:id="Credentials"
 moduleClassName="com.ibm.ws.security.common.auth.module.proxy.WSLoginModuleProxy"
 authenticationStrategy="REQUIRED">
 <options xmi:id="debug_property_1" name="debug" value="true"/>
 <options xmi:id="delegate_property_1" name="delegate"
 value="com.idoox.security.jaas.GSSLoginModule"/>
 </loginModules>
</entries>
<entries xmi:id="WaspReceivedCredentials" alias="ReceivedCredentials">
 <loginModules xmi:id="ReceivedCredentials"
 moduleClassName="com.ibm.ws.security.common.auth.module.proxy.WSLoginModuleProxy"
 authenticationStrategy="REQUIRED">
 <options xmi:id="debug_property_2" name="debug" value="true"/>
 <options xmi:id="delegate_property_2" name="delegate"
 value="com.idoox.security.jaas.GSSLoginModuleNoAuth"/>
 </loginModules>
</entries>
<entries xmi:id="WaspHttpCredentials" alias="HttpCredentials">
 <loginModules xmi:id="HttpCredentials"
 moduleClassName="com.ibm.ws.security.common.auth.module.proxy.WSLoginModuleProxy"
 authenticationStrategy="REQUIRED">
 <options xmi:id="debug_property_3" name="debug" value="true"/>
 <options xmi:id="delegate_property_3" name="delegate"
 value="com.idoox.security.jaas.HttpLoginModule"/>
 </loginModules>
</entries>
<entries xmi:id="WaspKrbCredentials" alias="KrbCredentials">
 <loginModules xmi:id="KrbCredentials"
 moduleClassName="com.ibm.ws.security.common.auth.module.proxy.WSLoginModuleProxy"
 authenticationStrategy="REQUIRED">
 <options xmi:id="debug_property_4" name="debug" value="false"/>
 <options xmi:id="krb_property_1" name="storeKey" value="true"/>
 <options xmi:id="delegate_property_4" name="delegate"
 value="com.sun.security.auth.module.Krb5LoginModule"/>
 </loginModules>
</entries>
<entries xmi:id="WaspCachedKrbCredentials" alias="CachedKrbCredentials">
 <loginModules xmi:id="CachedKrbCredentials"
 moduleClassName="com.ibm.ws.security.common.auth.module.proxy.WSLoginModuleProxy"
 authenticationStrategy="REQUIRED">
 <options xmi:id="debug_property_5" name="debug" value="false"/>

167Installation Guide

 <options xmi:id="krb_property_2" name="useTicketCache" value="true"/>
 <options xmi:id="delegate_property_5" name="delegate"
 value="com.sun.security.auth.module.Krb5LoginModule"/>
 </loginModules>
</entries>
<entries xmi:id="WaspNamePasswordNoAN" alias="NamePasswordNoAN">
 <loginModules xmi:id="NamePasswordNoAN"
 moduleClassName="com.ibm.ws.security.common.auth.module.proxy.WSLoginModuleProxy"
 authenticationStrategy="REQUIRED">
 <options xmi:id="debug_property_6" name="debug" value="true"/>
 <options xmi:id="delegate_property_6" name="delegate"
 value="com.idoox.security.jaas.NamePasswordLoginModuleNoAuth"/>
 </loginModules>
</entries>
<entries xmi:id="UDDINamePasswordAN" alias="NamePasswordAN">
 <loginModules xmi:id="NamePasswordAN"
 moduleClassName="com.ibm.ws.security.common.auth.module.proxy.WSLoginModuleProxy"
 authenticationStrategy="REQUIRED">
 <options xmi:id="debug_property_7" name="debug" value="true"/>
 <options xmi:id="delegate_property_7" name="delegate"
 value="com.systinet.uddi.security.jaas.NamePasswordLoginModule"/>
 </loginModules>
</entries>
<entries xmi:id="UDDIAuthTokenAN" alias="AuthTokenAN">
 <loginModules xmi:id="AuthTokenAN"
 moduleClassName="com.ibm.ws.security.common.auth.module.proxy.WSLoginModuleProxy"
 authenticationStrategy="REQUIRED">
 <options xmi:id="debug_property_8" name="debug" value="true"/>
 <options xmi:id="delegate_property_8" name="delegate"
 value="com.systinet.uddi.security.jaas.AuthTokenLoginModule"/>
 </loginModules>
</entries>
<entries xmi:id="WaspNameDigestAN" alias="NameDigestAN">
 <loginModules xmi:id="NameDigestAN"
 moduleClassName="com.ibm.ws.security.common.auth.module.proxy.WSLoginModuleProxy"
 authenticationStrategy="REQUIRED">
 <options xmi:id="debug_property_9" name="debug" value="true"/>
 <options xmi:id="delegate_property_9" name="delegate"
value="com.idoox.security.jaas.NameDigestLoginModule"/>
 </loginModules>
</entries>
<entries xmi:id="WaspNameMapping" alias="NameMapping">
 <loginModules xmi:id="NameMapping"
 moduleClassName="com.ibm.ws.security.common.auth.module.proxy.WSLoginModuleProxy"
 authenticationStrategy="REQUIRED">
 <options xmi:id="debug_property_10" name="debug" value="true"/>
 <options xmi:id="delegate_property_10" name="delegate"

Chapter 2168

 value="com.idoox.security.jaas.NameLoginModuleNoAuth"/>
 </loginModules>
</entries>
<entries xmi:id="WaspCertsMapping" alias="CertsMapping">
 <loginModules xmi:id="CertsMapping"
 moduleClassName="com.ibm.ws.security.common.auth.module.proxy.WSLoginModuleProxy"
 authenticationStrategy="REQUIRED">
 <options xmi:id="debug_property_11" name="debug" value="true"/>
 <options xmi:id="delegate_property_11" name="delegate"
 value="com.idoox.security.jaas.CertsLoginModule"/>
 </loginModules>
</entries>
<entries xmi:id="HttpRequestMapping" alias="HttpRequest">
 <loginModules xmi:id="HttpRequest"
 moduleClassName="com.ibm.ws.security.common.auth.module.proxy.WSLoginModuleProxy"
 authenticationStrategy="REQUIRED">
 <options xmi:id="debug_property_12" name="debug" value="true"/>
 <options xmi:id="delegate_property_12" name="delegate"
 value="com.systinet.uddi.security.jaas.SmLoginModule"/>
 </loginModules>
</entries>
<entries xmi:id="RegistryIdentityAsserter" alias="IdentityAsserter">
 <loginModules xmi:id="IdentityAsserter"
 moduleClassName="com.ibm.ws.security.common.auth.module.proxy.WSLoginModuleProxy"
 authenticationStrategy="REQUIRED">
 <options xmi:id="debug_property_13" name="debug" value="true"/>
 <options xmi:id="delegate_property_13" name="delegate"
 value="com.systinet.uddi.security.jaas.IdentityAsserterLoginModule"/>
 </loginModules>
</entries>

3 Deploy the file REGISTRY_HOME/conf/porting/websphere/6.x/build/PORTING_CONTEXT.ear file using the IBM
WebSphere admin console, leaving all the options set at their default values.

4 After you finish the deployment, use WebSphere's admin console to set following properties. They
are in "Class loading and update detection" section inside of enterprise application properties (in
WebSphere 6.1).

• mode of the WASP Application's classloader to 'PARENT_LAST' or "Classes loaded with
application class loader first" option

169Installation Guide

• WAR Classloader Policy to 'Application' or "Single class loader for application" option

5 Import the SSL certificate of the Websphere server to the Systinet Registry configuration. Follow these
steps:

a Obtain the WebSphere SSL certificate. There are two methods:

i You can get certificate using Internet Explorer 6.0 web browser connected to WebSphere
via HTTPS. Select "Properties" in context menu of the page, button "Certificates", tab
"Details", button "Copy to file", and then export certificate in Base 64 encoded X.509 .cer
format.

ii You can also use REGISTRY_HOME/bin/sslTool.sh or REGISTRY_HOME\bin\sslTool.bat to get certificate.
Run command:

sslTool serverInfo --url https://HOST:9043 --certFile websphere.cer

This command will connect to specified host and port using HTTPS and it will store server
certificate into specified file.

b Import this certificate using the PStoreTool located in REGISTRY_HOME/bin. The command follows
(replace variables with real values):

PStoreTool add -config REGISTRY_HOME/conf/clientconf.xml -certFile websphere.cer

HP SOA Systinet Registry is now running on http://<hostname>:9080/wasp/uddi/web.

• The lines added to login-config.xml are an analogy of jaas.config expressed in XML.

• The PARENT_LAST option and Application ClassLoader policy need to be set because there is a
conflict between our implementations of the saaj, jaxm, jaxrpc and wsdl interfaces. PARENT_LAST
assures that the servlet classloader is the first to be asked for the definition of classes.

JBoss

Tested on JBoss 4.0.2

Chapter 2170

REGISTRY_HOME refers to the directory in which the HP SOA Systinet Registry distribution is installed.

JBOSS_HOME refers to the directory in which JBoss is installed.

REGISTRY_HOME/conf/porting/jboss/build/[context_name].war is now ready for deployment. Please follow these
steps to complete the integration:

1 Unpack the created file into the [context_name].war subdirectory of the JBoss deployment directory,
which is usually JBOSS_HOME/server/[jboss_configuration]/deploy.

2 Modify the JBoss launch script (usually in JBOSS_HOME/bin/run.sh) as follows:

• Add the following jars to the beginning of the JBoss classpath:

REGISTRY_HOME/lib/security-ng.jar

REGISTRY_HOME/conf/porting/dist/security3-ng.jar

3 Enable security: Add the following lines to the file JBOSS_HOME/server/[jboss_configuration]/conf/login-
config.xml between the tags <policy>...</policy>:

171Installation Guide

Example 3: Enabling Security - JBoss

 <application-policy name="Credentials">
 <authentication>
 <login-module code="com.idoox.security.jaas.GSSLoginModule"
 flag="required">
 <module-option name = "debug">true</module-option>
 </login-module>
 </authentication>
</application-policy>

<application-policy name="ReceivedCredentials">
 <authentication>
 <login-module code="com.idoox.security.jaas.GSSLoginModuleNoAuth"
 flag="required">
 <module-option name = "debug">true</module-option>
 </login-module>
 </authentication>
</application-policy>
<application-policy name="HttpCredentials">
 <authentication>
 <login-module code="com.idoox.security.jaas.HttpLoginModule"
 flag="required">
 <module-option name = "debug">true</module-option>
 </login-module>
 </authentication>
</application-policy>

<application-policy name="NamePasswordNoAN">
 <authentication>
 <login-module code="com.idoox.security.jaas.NamePasswordLoginModuleNoAuth"
 flag="required">
 <module-option name = "debug">true</module-option>
 </login-module>
 </authentication>
</application-policy>

<application-policy name="NamePasswordAN">
 <authentication>
 <login-module code="com.systinet.uddi.security.jaas.NamePasswordLoginModule"
 flag="required">
 <module-option name = "debug">true</module-option>
 </login-module>
 </authentication>

Chapter 2172

</application-policy>

<application-policy name="NameDigestAN">
 <authentication>
 <login-module code="com.idoox.security.jaas.NameDigestLoginModule"
 flag="required">
 <module-option name = "debug">true</module-option>
 </login-module>
 </authentication>
</application-policy>

<application-policy name="NameMapping">
 <authentication>
 <login-module code="com.idoox.security.jaas.NameLoginModuleNoAuth"
 flag="required">
 <module-option name = "debug">true</module-option>
 </login-module>
 </authentication>
</application-policy>

<application-policy name="CertsMapping">
 <authentication>
 <login-module code="com.idoox.security.jaas.CertsLoginModule"
 flag="required">
 <module-option name = "debug">true</module-option>
 </login-module>
 </authentication>
</application-policy>

<application-policy name="AuthTokenAN">
 <authentication>
 <login-module code="com.systinet.uddi.security.jaas.AuthTokenLoginModule"
 flag="required">
 <module-option name = "debug">true</module-option>
 </login-module>
 </authentication>
</application-policy>

<application-policy name="HttpRequest">
 <authentication>
 <login-module code="com.systinet.uddi.security.jaas.SmLoginModule"
 flag="required">
 <module-option name = "debug">true</module-option>
 </login-module>
 </authentication>
</application-policy>

173Installation Guide

<application-policy name="IdentityAsserter">
 <authentication>
 <login-module code="com.systinet.uddi.security.jaas.IdentityAsserterLoginModule"
 flag="required">
 <module-option name = "debug">true</module-option>
 </login-module>
 </authentication>
</application-policy>

4 Configure log4j for Systinet Registry: Add the following lines to the file
JBOSS_HOME/server/[jboss_configuration]/conf/log4j.xml after the last tag </appender>:

Chapter 2174

Example 4: Log4j Configuration - JBoss

 <!-- Systinet Registry log4j appenders -->
<appender name="sr_eventLog" class="org.apache.log4j.RollingFileAppender">
 <errorHandler class="org.jboss.logging.util.OnlyOnceErrorHandler"/>
 <param name="File"
 value="${jboss.server.home.dir}/log/systinetRegistry_logEvents.log"/>
 <param name="MaxFileSize" value="10000KB"/>
 <param name="MaxBackupIndex" value="10"/>
 <layout class="org.apache.log4j.PatternLayout">
 <param name="ConversionPattern" value="(%d) - %m%n"/>
 </layout>
</appender>
<appender name="sr_errorLog" class="org.apache.log4j.RollingFileAppender">
 <errorHandler class="org.jboss.logging.util.OnlyOnceErrorHandler"/>
 <param name="File"
 value="${jboss.server.home.dir}/log/systinetRegistry_errorEvents.log"/>
 <param name="MaxFileSize" value="10000KB"/>
 <param name="MaxBackupIndex" value="10"/>
 <layout class="org.apache.log4j.PatternLayout">
 <param name="ConversionPattern" value="(%d) - %m%n"/>
 </layout>
</appender>
<appender name="sr_clusterLog" class="org.apache.log4j.RollingFileAppender">
 <errorHandler class="org.jboss.logging.util.OnlyOnceErrorHandler"/>
 <param name="File"
 value="${jboss.server.home.dir}/log/systinetRegistry_configuratorEvents.log"/>
 <param name="MaxFileSize" value="10000KB"/>
 <param name="MaxBackupIndex" value="10"/>
 <layout class="org.apache.log4j.PatternLayout">
 <param name="ConversionPattern" value="(%d) - %m%n"/>
 </layout>
</appender>
<appender name="sr_replicationLog" class="org.apache.log4j.RollingFileAppender">
 <errorHandler class="org.jboss.logging.util.OnlyOnceErrorHandler"/>
 <param name="File"
 value="${jboss.server.home.dir}/log/systinetRegistry_replicationEvents.log"/>
 <param name="MaxFileSize" value="10000KB"/>
 <param name="MaxBackupIndex" value="10"/>
 <layout class="org.apache.log4j.PatternLayout">
 <param name="ConversionPattern" value="(%d) - %m%n"/>
 </layout>
</appender>
<appender name="sr_notificationLog" class="org.apache.log4j.RollingFileAppender">

175Installation Guide

 <errorHandler class="org.jboss.logging.util.OnlyOnceErrorHandler"/>
 <param name="File"
 value="${jboss.server.home.dir}/log/systinetRegistry_notificationEvents.log"/>
 <param name="MaxFileSize" value="10000KB"/>
 <param name="MaxBackupIndex" value="10"/>
 <layout class="org.apache.log4j.PatternLayout">
 <param name="ConversionPattern" value="(%d) - %m%n"/>
 </layout>
</appender>
<!-- Systinet Registry log4j categories -->
<category name="com.idoox.wasp.server.adaptor.RawAdaptor" additivity="false">
 <priority value="ERROR"/>
</category>
<category name="com.systinet.wasp.events" additivity="false">
 <priority value="INFO"/>
 <appender-ref ref="sr_eventLog"/>
</category>
<category name="com.systinet.wasp.errors" additivity="false">
 <priority value="ERROR"/>
 <appender-ref ref="sr_errorLog"/>
</category>
<category name="org.apache.xml.security" additivity="true">
 <priority value="ERROR"/>
</category>
<category
 name="configurator.com.systinet.uddi.configurator.cluster.ConfiguratorManagerApiImpl"
 additivity="false">
 <priority value="INFO"/>
 <appender-ref ref="sr_clusterLog"/>
</category>
<category name="replication_v3.com.systinet.uddi.replication.v3.ReplicatorTask"
 additivity="false">
 <priority value="DEBUG"/>
 <appender-ref ref="sr_replicationLog"/>
</category>
<category name="uddi_subscription_v3.com.systinet.uddi.subscription.v3"
 additivity="false">
 <priority value="DEBUG"/>
 <appender-ref ref="sr_notificationLog"/>
</category>

5 If you do not have SSL keys and certificate, generate them using the keytool from the JDK distribution
as follows:

Chapter 2176

Change the directory to the bin subdirectory of JBOSS_HOME and enter the following command:

keytool -keystore JBOSS_HOME/server/[jboss_configuration]/conf/server.keystore -genkey -alias jboss
-keyalg RSA -storepass changeit

•

• Change your directory to the bin subdirectory of REGISTRY_HOME.

• Export the certificate to a file using the following command:

keytool -keystore JBOSS_HOME/server/[jboss_configuration]/conf/server.keystore -export -file
jboss.crt -alias jboss -storepass changeit

• Import the certificate to clientconf.xml in the HP SOA Systinet Registry distribution using this
command:

PStoreTool.sh (bat) add -certFile jboss.crt -alias jboss -config REGISTRY_HOME/conf/clientconf.xml

6 Enable SSL in JBoss.

• Uncomment following lines in the file $JBOSS_HOME/server/[jboss_configuration]/deploy/jbossweb-
tomcat55.sar/server.xml

<Connector port="8443" address="${jboss.bind.address}"
 maxThreads="100" strategy="ms" maxHttpHeaderSize="8192"
 emptySessionPath="true"
 scheme="https" secure="true" clientAuth="false"
 keystoreFile="${jboss.server.home.dir}/conf/server.keystore"
 keystorePass="123456" sslProtocol = "TLS" />

Change the values of keystoreFile to ${jboss.server.home.dir}/conf/server.keystore a keystorePass
to changeit.

Use the actual values you used when invoking the keytool utility if those values differ
from the values shown here.

7 (Re)start the JBoss server

177Installation Guide

Installation should be complete. The HP SOA Systinet Registry URL is
http://hostname:8080/[context_name]/uddi/web.

• The lines added to login-config.xml are an analogy of jaas.config expressed in XML.

Cluster Configuration
This chapter contains general notes about the synchronized configuration of a HP SOA Systinet Registry
cluster and gives instructions on how to deploy HP SOA Systinet Registry to a WebLogic Cluster (WebLogic
specific configuration for use with cluster on page 183).

Cluster operation

Cluster operation is achieved by running multiple registries and joining their functionality with a load
balancer (proxy).

Load balancing is used to distribute requests among registries to get the optimal load distribution. The load
balancer should be configured to distribute requests among all physical endpoints of the registry nodes. If
using an application server, refer to its documentation for details about configuring load balancing.

Figure 51. HP SOA Systinet Registry in WebLogic Cluster

Clients to HP SOA Systinet Registry access TCP ports on the balancer which forwards the connection to a
running cluster node with an actual HP SOA Systinet Registry. Each HP SOA Systinet Registry has a

Chapter 2178

connection to a common database so that each HP SOA Systinet Registry has access to the latest data. This
connection also serves as a distribution point for changed configurations and inter-node events.

When a HP SOA Systinet Registry node fails (there are various reasons for this such as hardware problems,
network conection problems or software failure), other nodes can work without it. The intelligent load
balancer will detect this and further requests will not be directed there until the node starts to respond.

Every node has a Node ID - a string identifying the node. Each node should have a different ID. Breaking
this rule will cause nodes with the same ID miss some configuration changes and synchronization events.

Node ID can be specified by the administrator in the REGISTRY_HOME\app\uddi\conf\nodeid.xml file.
If it is not specified before the initial start of HP SOA Systinet Registry, it will be generated as a unique
UUID string. It is possible to change it later, but node-local configurations under the old ID will be left in
database. Ensure that EAR/WAR file generated for deployment have either:

1 Empty Node ID - so that each deployment of the file will generate unique Node ID on first run and
retain it until deletition or redeployment of EAR/WAR. You can use such EAR/WAR to deploy on all
nodes.

2 Specified Node ID - when you deploy that EAR/WAR to single node and generate another EAR/WAR
for others. You can choose meaningful names for Node ID this way.

You can set the Node ID in the nodeid.xml file before starting setup to generate EAR/WAR. If you use
generation of EAR/WAR file directly from installer the Node ID will be empty.

Latest configurations are identified by internal index sequencing. Time stamps of configurations
as displayed in configuration management UI are not relevant as they may be unreliable in case
of clock skew on a cluster node.

Cluster operation is affected by the interaction of connection security (HTTPS) and the load balancer. For
security reasons, client access is done using the HTTPS protocol. This protocol requires that there is a valid
and matching security certificate on the server side (possibly on the client side too if client authentication
is required). There are generally two methods how to achieve clustered operation via independent load
balancer. If you use deploymeny with some application server it may provide integrated load balancer for
you which may be easier to configure than independent load balancer.

1 Secure connection can take a place between a client and the load balancer which would be the end
point for the secure connection originated at the client. Load balancer will make independent connection
to some of the HP SOA Systinet Registry nodes. This connection may be either in HTTP or HTTPS.

179Installation Guide

The certificate which the client checks has to be placed at load balancer. A connection between load
balancer and each HP SOA Systinet Registry can be protected by HTTPS in which case the load
balancer and the registries should know each other certificates.

Figure 52. Security in cluster, method 1.

2 Secure connection can be passed by the load balancer and terminated at the cluster node. This case
requires that the certificates on all the nodes have to be the same to provide the illusion of a single
service. However the common name inside the certificate should specify the DNS name of the balancer.

Chapter 2180

Figure 53. Security in cluster, method 2.

Load balancer is not part of HP SOA Systinet Registry product. You can use almost any
HTTP/HTTPS load balancer that supports described configurations.

Most of the Client - HP SOA Systinet Registry interactions require an authentication token to be passed
along the way. This token is encrypted by the HP SOA Systinet Registry certificate. Therefore each HP
SOA Systinet Registry behind the balancer has to have the same certificate.

WEB interfaces of HP SOA Systinet Registry (both Registry Console and Business Service Console) need
to know the absolute HTTP addresses of themselves. This address in the cluster is the address of the load
balancer and the possible context under which it is deployed. This address can be changed during setup.

Cluster installation

Cluster installation requires the setup of a load balancer and multiple registries. These steps are recommended
on the HP SOA Systinet Registry side when an application server is used:

181Installation Guide

1 Install HP SOA Systinet Registry.

• Fill-in the hostname and ports of the load balancer.

2 Port HP SOA Systinet Registry via the Deploy option in the HP SOA Systinet Registry Setup program
(or directly in Installer program).

3 Deploy the generated WAR or EAR to all cluster nodes via the application server.

These steps are recommended on the HP SOA Systinet Registry side where multiple standalone instances
of HP SOA Systinet Registry are used:

1 Install the first HP SOA Systinet Registry.

• Fill-in the hostname and ports of the load balancer.

2 Setup SSL certificates as required in the first HP SOA Systinet Registry.

3 Install other Registries.

• Do not create new databases, just connect to database of first HP SOA Systinet Registry.

• Copy REGISTRY_HOME\conf\pstore.xml from the first registry to each HP SOA Systinet Registry. This
assures that each HP SOA Systinet Registry will have same identity with respect to authentication
tokens.

• Copy the configuration files in the REGISTRY_HOME\app\uddi\conf\ directory from the first HP SOA
Systinet Registry. This is requireded because some fields in the configuration files are coded by
key specified in application_core.xml. Failure to do so may result in error messages during startup
and inconsistent configuration data in database.

4 Run the first installed HP SOA Systinet Registry first so that its configuration files are stored in database
first. Next time you can run the Registries in any order (including the first one).

Chapter 2182

Setting Up Security

If using a cluster of standalone registries, they must share the same private key for validating authentication
tokens.

Sharing Token Key

If HP SOA Systinet Registry is installed as a cluster of standalone registries, you must ensure that all cluster
nodes share the same private key for checking authentication token validity. (By a standalone registry, we
mean HP SOA Systinet Registry that is not deployed to an application server. You do not need to do this
if HP SOA Systinet Registry is deployed to an application server). To set this up, choose one of the cluster
nodes and copy its private key to all other nodes in the cluster by entering this command at a command
prompt:

PStoreTool copy -alias authTokenIdentity -keyPassword SSL_CERTIFICATE_PASSWORD -config
REGISTRY_HOME\conf\pstore.xml -config2 TARGET_REGISTRY_HOME\conf\pstore.xml

SSL_CERTIFICATE_PASSWORD is a ssl certificate password entered during the installation

TARGET_REGISTRY_HOME is the directory where a cluster node is installed.

WebLogic specific configuration for use with cluster

This section will guide you through an example setup of clustering with a WebLogic application server.

To deploy HP SOA Systinet Registry to a WebLogic cluster follow these steps:

1 Install WebLogic, then configure it by adding machines to the cluster. In our case, the cluster is named
cluster, and the configuration manager, named myserver, is running on 10.0.0.79. The nodes in the
WebLogic cluster are named:

• kila (10.0.0.79), running on kila.mycompany.com, with an http port of 7101 and https port of 7102

• fido (10.0.0.134), running on fido.mycompany.com, with an http port of 7101 and https port of 7102

2 Generate the certificates of all cluster nodes: Let's create proper certificates for our two nodes. It will
be done via the CertGen tool provided by WebLogic. Go to the directory

183Installation Guide

%WEB_LOGIC_HOME%\weblogic81\server\lib. CertGen is located in weblogic.jar's utils package. Invoke it
with the command:

java -cp weblogic.jar utils.CertGen changeit kilacert kilakey export kila.mycompany.com

The output resembles the following:

kilacert kilakey export kila.mycompany.com
 Will generate certificate signed by CA from CertGenCA.der file
 With Export Key Strength
 Common Name will have Host name kila.mycompany.com
 Issuer CA name is
 CN=CertGenCAB,OU=FOR TESTING ONLY,O=MyOrganization,L=MyTown,ST=MyState,C=US

Use the password changeit for starting the UDDI node servers. The output file with the certificate is
kilacert, and kilakey is the output file containing the private key. Generate certificates for all remaining
nodes from their CertGen tools. (In our case, the other node is fido.mycompany.com.)

3 Once you have certificates from all nodes (in our case files kilacert.der and fidocert.der), import them
to pstore.xml using the PstoreTool. Also include CertGenCA.der (from the directory
%WEB_LOGIC_HOME%\weblogic81\server\lib). The pstore.xml file is now ready. For more info about WebLogic
certificates and SSL settings, please see Configuring SSL [http://e-
docs.bea.com/wls/docs81/secmanage/ssl.html#1185171] in BEA's WebLogic product documentation.

4 Prepare a registry deployment package (REGISTRY_HOME\conf\porting\weblogic\wasp.war) as described in
Deployment to an Application Server on page 159.

In our case, the http port is 7101, the https port is 7102, and the application server context is wasp.

5 Check that the paths for log4j.appender.eventLog.File, log4j.appender.errorLog.File, and
wasp.war\conf\log4j.config are valid on all cluster nodes.

6 Deploy wasp.war into all WebLogic cluster nodes

You must also prepare the package for the balancer which will only be deployed to the cluster manager
server. To do so:

1 Create a balancer directory, in, for example, REGISTRY_HOME. This directory is referenced in this section
as PACKAGE_HOME.

2 Create a subdirectory of PACKAGE_HOME named WEB-INF.

Chapter 2184

http://e-docs.bea.com/wls/docs81/secmanage/ssl.html#1185171

3 In this subdirectory, create the file web.xml containing the following text. Under WebLogicCluster specify
the names and ports of your cluster nodes separated by a pipe (|). In our case, the file looks like:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE web-app PUBLIC "-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN"
 "http://java.sun.com/dtd/web-app_2_3.dtd">
<web-app>
 <servlet>
 <servlet-name>HttpClusterServlet</servlet-name>
 <servlet-class>weblogic.servlet.proxy.HttpClusterServlet</servlet-class>
 <init-param>
 <param-name>WebLogicCluster</param-name>
 <param-value>kila:7101|fido:7101</param-value>
 </init-param>
 </servlet>

 <servlet>
 <servlet-name>FileServlet</servlet-name>
 <servlet-class>weblogic.servlet.FileServlet</servlet-class>
 </servlet>

 <servlet-mapping>
 <servlet-name>FileServlet</servlet-name>
 <url-pattern>/uddi/webdata*</url-pattern>
 </servlet-mapping>

 <servlet-mapping>
 <servlet-name>HttpClusterServlet</servlet-name>
 <url-pattern>/</url-pattern>
 </servlet-mapping>

 <servlet-mapping>
 <servlet-name>FileServlet</servlet-name>
 <url-pattern>/uddi/bsc/webdata*</url-pattern>
 </servlet-mapping>
</web-app>

4 In the WEB-INF subdirectory, create the file weblogic.xml containing the following text, where /wasp is
the context of HP SOA Systinet Registry deployed to this application server. Your text must be
customized for your own installation.

<!DOCTYPE weblogic-web-app PUBLIC "-//BEA Systems, Inc.//DTD Web Application 8.1//EN"
"http://www.bea.com/servers/wls810/dtd/weblogic810-web-jar.dtd">
<weblogic-web-app>
 <context-root>/wasp</context-root>
</weblogic-web-app>

185Installation Guide

5 Create the directory %PACKAGE_HOME%\uddi\webdata.

6 Unjar REGISTRY_HOME\app\uddi\bsc.jar and copy the content of the webroot subdirectory from the jar to
%PACKAGE_HOME%\uddi\bsc\webdata

7 Unjar REGISTRY_HOME\app\uddi\web.jar and copy the content of the webroot subdirectory from the jar to
%PACKAGE_HOME%\uddi\webdata.

8 Package the content of %PACKAGE_HOME% into the file balancer.war using jar or some other compression
utility.

9 Deploy balancer.war into the cluster manager server.

Authentication Configuration
In this section, we will show you how to change the HP SOA Systinet Registry configuration to allow the
following authentication options:

• HTTP Basic

• Netegrity SiteMinder

• SSL Client Authentication

• J2EE Server Authentication

HTTP Basic

To allow HTTP Basic authentication:

1 Modify REGISTRY_HOME/app/uddi/services/Wasp-inf/package.xml to enable HTTP basic authentication as
follows:

a Under <processing name="UDDIv1v2v3PublishingProcessing"/>, uncomment <use
ref="tns:HttpBasicInterceptor"/>. This enables the HTTP Basic authentication for UDDI Publishing
API v1, v2, v3.

b Under <processing name="UDDIv1v2v3InquiryProcessing">, add <use ref="tns:HttpBasicInterceptor"/>
. This enables the HTTP Basic authentication for all three versions of the UDDI Inquiry API.

Chapter 2186

c Under <processing name="wsdl2uddiProcessing">, add <use ref="tns:HttpBasicInterceptor"/> . This
enables the HTTP Basic authentication for versions 2 and 3 of the WSDL2UDDI API.

d Add the attribute accepting-security-providers="HttpBasic" to other service-endpoints (except UDDI
publishing and Inquiry endpoint) you wish to access via HTTP Basic authentication.

A fragment of the package.xml is shown in Example 5 on page 188

2 Shutdown HP SOA Systinet Registry, delete the REGISTRY_HOME/work directory, and restart the registry.

187Installation Guide

Example 5: package.xml - HTTP Basic Enabled

.....
 <service-endpoint path="/inquiry" version="3.0" name="UDDIInquiryV3Endpoint"
 service-instance="tns:UDDIInquiryV3" processing="tns:UDDIv1v2v3InquiryProcessing"
 accepting-security-providers="HttpBasic">
 <wsdl uri="uddi_api_v3.wsdl" service="uddi_api_v3:UDDI_Inquiry_SoapService"/>
 <envelopePrefix xmlns="arbitraryNamespace" value=""/>
 <namespaceOptimization xmlns="arbitraryNamespace">false</namespaceOptimization>
 </service-endpoint>
 <service-instance
 implementation-class="com.systinet.uddi.publishing.v3.PublishingApiImpl"
 name="UDDIPublishingV3"/>
 <service-endpoint path="/publishing" version="3.0" name="UDDIPublishingV3Endpoint"
 service-instance="tns:UDDIPublishingV3"
 processing="tns:UDDIv1v2v3PublishingProcessing"
 accepting-security-providers="HttpBasic">
 <wsdl uri="uddi_api_v3.wsdl" service="uddi_api_v3:UDDI_Publication_SoapService"/>
 <envelopePrefix xmlns="arbitraryNamespace" value=""/>
 <namespaceOptimization xmlns="arbitraryNamespace">false</namespaceOptimization>
 </service-endpoint>

 <processing name="UDDIv3Processing">
 <use ref="uddiclient_v3:UDDIClientProcessing"/>
 <fault-serialization name="MessageTooLargeFaultSerializer"
 serializer-class="com.systinet.uddi.publishing.v3.serialization.MessageTooLargeFaultSerializer"
 serialized-exception-class="com.systinet.uddi.interceptor.wasp.MessageTooLargeException"/>
 </processing>

 <processing name="UDDIv1v2v3PublishingProcessing">
 <use ref="uddiclient_v3:UDDIClientProcessing"/>
 <use ref="uddiclient_v2:UDDIClientProcessing"/>
 <use ref="uddiclient_v1:UDDIClientProcessing"/>
 <!-- HttpBasic (without authtoken) -->
 <use ref="tns:HttpBasicInterceptor"/>

 <interceptor name="MessageSizeCheckerInterceptor"
 implementation-class="com.systinet.uddi.interceptor.wasp.MessageSizeCheckerInterceptor"
 direction="in">
 <config:maxMessageSize>2097152</config:maxMessageSize>
 </interceptor>
 </processing>

 <processing name="UDDIv1v2v3InquiryProcessing">
 <use ref="tns:UDDIv3Processing"/>

Chapter 2188

 <use ref="tns:UDDIv2Processing"/>
 <use ref="tns:UDDIv1Processing"/>
 <use ref="tns:HttpBasicInterceptor"/>
 </processing>
.....

Netegrity SiteMinder

To allow Netegrity SiteMinder authentication:

1 Modify REGISTRY_HOME/app/uddi/services/Wasp-inf/package.xml as follows:

a Under <processing name="UDDIv1v2v3PublishingProcessing"/>, add <use
ref="tns:SiteMinderInterceptor"/>. This enables the SiteMinder authentication for all three versions
of the UDDI Publishing API.

b Under <processing name="UDDIv1v2v3InquiryProcessing">, add <use ref="tns:SiteMinderInterceptor"/>.
This enables the SiteMinder authentication for versions 1, 2, and 3 of the Inquiry API.

c Under <processing name="wsdl2uddiProcessing">, add <use ref="tns:SiteMinderInterceptor"/> . This
enables the SiteMinder authentication for versions 2 and 3 of the WSDL2UDDI API.

d Add the attribute accepting-security-providers="Siteminder" to other service-endpoints (except
UDDI publishing and Inquiry endpoint) you wish to access via Netegrity SiteMinder authentication.

e Under the elements <securityProviderPreferences> and <interceptor name="SiteMinderInterceptor",
fill in:

• <loginNameHeader> - login name header

• <groupHeader> - group header

• <delimiter> - group name delimiter.

You must set the same element values to both <securityProviderPreferences> and
<interceptor name="SiteMinderInterceptor" elements.

A fragment of the package.xml is shown in Example 6 on page 190

189Installation Guide

2 Shutdown HP SOA Systinet Registry, delete the REGISTRY_HOME/work directory, and restart the registry.

Example 6: package.xml - Netegrity SiteMinder Enabled

.....
 <!-- Netegrity SiteMinded security provider preferences for the server side -->
 <securityProviderPreferences xmlns="http://systinet.com/wasp/package/extension"
 name="Siteminder">
 <loginNameHeader>sm-userdn</loginNameHeader>
 <groupHeader>sm-role</groupHeader>
 <delimiter>^</delimiter>
 </securityProviderPreferences>

 <!-- Netegrity SiteMinded interceptor-->
 <interceptor name="SiteMinderInterceptor"
 implementation-class="com.systinet.uddi.security.siteminder.SmInterceptor" >
 <config:loginNameHeader>sm-userdn</config:loginNameHeader>
 <config:groupHeader>sm-role</config:groupHeader>
 <config:delimiter>^</config:delimiter>
 </interceptor>
.....

SSL Client authentication

Standalone registry can be configured to perform authentication using client certificate obtained via 2-way
SSL, where also the client has to authenticate itself to a server. Setup instructions differes for a standalone
and a deployed registry. This section is focused on a standalone registry. See J2EE Server Authentication
on page 194 for instruction of how to configure SSL client authentication for deployed registry.

To allow SSL client authentication for a standalone registry:

1 Make sure that the registry is not running.

2 Modify REGISTRY_HOME/conf/serverconf.xml as follows:

• Under <httpsPreferences name="https">, change <needsClientAuth> to true. This will setup HTTPS
transport to require client certificates.

Chapter 2190

• Under <securityPreferences name="main">, add
<acceptingSecurityProvider>SSL</acceptingSecurityProvider>. This will turn on mapping of client
certificates to a user name.

A fragment of changed REGISTRY_HOME/conf/serverconf.xml is shown in Example 7 on page 193.

3 Trust the certificate of a certification authority that is used to issue client certificates. Run the PStoreTool
tool from the REGISTRY_HOME/bin directory to import this certificate to a truststore that is used by registry.

PStoreTool add --certFile <client certificates authority certificate file>

4 Configure a way how a client certificate is mapped to a user name. Registry comes with JAAS login
module that extracts the user name out of a subject that is necessary part of a client certificate. The
login module that performs this mapping is configured under the CertsMapping entry of the
REGISTRY_HOME/conf/jaas.conf file. An example of CertsMapping entry is shown in Example 8 on page 194.

You can configure the following options:

• debug - if set it to true, debug actions of the login module are printed to error stream. False by
default.

• issuer - issuer name, recommended to set. If set, mapped certificate must be issued by a certification
authority with this subject name.

• pattern - regular expession (as per java.util.regexp) that is used to get user name. The first capturing
group of a specified pattern is used as a user name. When there is no capturing group and the pattern
matches, the whole subject becomes a user name. Used regular expressions are case-insensitive.
Examples are:

• The default is (?<!\\,\s?)EMAILADDRESS=(.+)@. It matches a name listed in EMAILADDRESS.
This regular expression ignores the case of EMAILADDRESS possibly contained in another
part of subject.

• CN=([^,]+) matches common name.

• .* matches every subject. Since it has no capturing group, the whole subject DN is used.

191Installation Guide

You can configure more than one login module to perform certificate mapping. This is usefull when
you have to accept different issuers and/or provide a fallback to a failed certificate mapping of the first
configured login module. An example of a CertsMapping entry that allows to map certificates issued by
2 issuers with a different way of mapping is shown in Example 9 on page 194.

5 Now the registry is configured for SSL client authentication. You may also change the applicability
of SSL client authentication by changing configuration of SSL security provider. This configuration
is in the <securityProviderPreferences name="SSL"> element of the REGISTRY_HOME/conf/serverconf.xml file.
An example is shown in Example 7 on page 193.

Chapter 2192

Example 7: A fragment of serverconf.xml with 2-way SSL turned on

<?xml version="1.0" encoding="UTF-8"?>
<config name="main">
 ...
 <securityPreferences name="main">
 <!-- Added acceptingSecurityProvider -->
 <acceptingSecurityProvider>SSL</acceptingSecurityProvider>
 <pstoreInitParams/>
 ...
 </securityPreferences>
 ...
 <httpsPreferences name="https">
 ...
 <!-- Client authentication required -->
 <needsClientAuth>true</needsClientAuth>
 ...
 </httpsPreferences>
 ...
 <!-- security provider preferences intended mainly for SSL client authentication -->
 <securityProviderPreferences name="SSL">
 <!-- What to do when SSL is not used to access the resource? Avalaible options:
 redirect
 - perform HTTP redirect to associated HTTPS URL (302 Moved Temporarily)
 fail
 - return a message that informs to use HTTPS URL (400 Bad Request)
 skip
 - do not perform certififate mapping at all
 perform
 - try to perform certificate mapping with no client certificates
 -->
 <whenNotSsl>skip</whenNotSsl>
 <!-- Can certificate mapping fail? If set to true and it fails, no received subject will be
constructed. -->
 <certMappingMayFail>false</certMappingMayFail>
 <!-- Can a default account be created when no account for a mapped user exists? -->
 <createDefaultAccount>false</createDefaultAccount>
 </securityProviderPreferences>
</config>

193Installation Guide

Example 8: CertsMapping JAAS configuration

CertsMapping{
 com.systinet.uddi.security.jaas.CertMappingLoginModule sufficient pattern="(?<!\\,\s?)EMAILADDRESS=(.+)@"
 debug=false issuer="CN=Company CA, OU=mycomp";
};

Example 9: CertsMapping JAAS configuration with 2 possible issuers

CertsMapping{
 com.systinet.uddi.security.jaas.CertMappingLoginModule sufficient pattern="(?<!\\,\s?)EMAILADDRESS=(.+)@"
 debug=false issuer="CN=Company CA, OU=mycomp";
 com.systinet.uddi.security.jaas.CertMappingLoginModule sufficient pattern="CN=([^,]*)" issuer="CN=Company
 CA2, OU=mycomp" debug=false;
};

J2EE Server Authentication

The registry can be configured to let a J2EE application server perform authentication. Unlike Netegrity
SiteMinder on page 189 and HTTP Basic on page 186, the authentication takes place for a whole registry
application. To allow J2EE server authentication:

1 Create a deployment package using instructions provided in Deployment to an Application Server on
page 159.

2 Modify WEB-INF/web.xml file of the resulted war file as follows:

a Change the value of context parameter use.request.user to true.

b Add a login-config element with a type of chosen J2EE authentication. Example 10 on page 195
shows a login config that will turn on CLIENT-CERT authentication method, which is essentially used
for SSL client authentication.

You may also add security-constraint element to specify a set of resources where confidentialy
and/or integrity is required. Example 10 on page 195 contains a security-constraint that requires
confidential communication between client and server for all registry resources, which typically
means to allow only HTTPS in the communication with registry.

Chapter 2194

c Configure a J2EE application server for an authentication method of your choice. For SSL client
authentication, this typically means to setup HTTPS transport to require client certificates and to
map client certificates to user name. Consult documentation of a target J2EE application server
for details.

3 Go on with deploymement of a modified war file.

Example 10: A fragment of web.xml

<?xml version="1.0" encoding="UTF-8"?>
<web-app>
 <display-name>Registry</display-name>
...
 <context-param>
 <param-name>use.request.user</param-name>
 <param-value>true</param-value>
 </context-param>
....
<!-- Added CLIENT-CERT authentication method -->
 <login-config>
 <auth-method>CLIENT-CERT</auth-method>
 </login-config>

<!-- Added security contraint that allow to access registry only via HTTPS -->
 <security-constraint>
 <display-name>HTTPS required to access registry</display-name>
 <web-resource-collection>
 <web-resource-name>Protected Area</web-resource-name>
 <url-pattern>/*</url-pattern>
 <http-method>DELETE</http-method>
 <http-method>GET</http-method>
 <http-method>POST</http-method>
 <http-method>PUT</http-method>
 </web-resource-collection>
 <user-data-constraint>
 <description>Require confidentiality</description>
 <transport-guarantee>CONFIDENTIAL</transport-guarantee>
 </user-data-constraint>
 </security-constraint>
</web-app>

195Installation Guide

Consoles Configuration

In this section, we will show you how to configure HTTP Basic or Netegrity Siteminder authentication for
both Registry Console and Business Service Console. The configuration of consoles is very similar to the
configuration of other endpoints.

Referring to jar packages

The file path REGISTRY_HOME/app/uddi/web.jar/WASP-INF/package.xml means the /WASP-INF/package.xml
inside the jar package REGISTRY_HOME/app/uddi/web.jar.

For the Registry Console, modify the file REGISTRY_HOME/app/uddi/web.jar/WASP-INF/package.xml with the
following:

<service-endpoint path="/web" name="WebUIEndpoint1"
 service-instance="tns:WebUI" type="raw" other-methods="get"
 accepting-security-providers="HttpBasic"/>
<service-endpoint path="/web/*" name="WebUIEndpoint2"
 service-instance="tns:WebUI" type="raw" other-methods="get"
 accepting-security-providers="HttpBasic"/>

If you want to set Netegrity SiteMinder provider, use accepting-security-providers="Siteminder"

For the Business Service Console do the same in the file REGISTRY_HOME/app/uddi/bsc.jar/WASP-INF/package.xml

We just set authentication providers for both HTTP and HTTPS protocols. Now, we must specify which
protocol consoles will be using for user authentication. The default registry configuration is to use HTTP
for browsing and searching. HTTPS is used for publishing. To avoid displaying the login dialog twice, (for
the first time when accessing via HTTP then the second time when accessing via HTTPS), modify the
configuration to use only one protocol.

For the Registry Console, modify url and secureUrl elements in the file REGISTRY_HOME/app/uddi/conf/web.xml
to have the same value:

<url>https://servername:8443</url>
<secureUrl>https://servername:8443</secureUrl>

Chapter 2196

For the Business Service Console, make the same change in the REGISTRY_HOME/app/uddi/bsc.jar/conf/web.xml
file.

Migration
Migration is used to migrate data from one database to another. You can migrate data during installation
or during setup. Often users evaluate HP SOA Systinet Registry using the preconfigured Hypersonic SQL
database, and migrate data to another database after evaluation.

Demo data are not migrated. Internal UDDI data such as built-in T-Models are not migrated since
they are avaiable in any installation by default. The list of such skipped entities is inside
migration*.xml in app\uddi\conf directory which you may view before migration if you use Migration
After Installation on page 200.

Migration During Installation

To migrate data during installation:

1 Select Standalone registry with data migration as shown in Figure 54.

197Installation Guide

Figure 54. Standalone Installation with Migration

2 Click Next. This returns the Migration panel shown below.

Chapter 2198

3 Fill the following properties:

• Previous Registry Version - Systinet Registry version from which you are migrating data

• Previous Registry Directory - the directory containing the previous installation of HP SOA
Systinet Registry. The existing data will be migrated from it.

• Previous Registry Administrator Username - name of the user having rights to retrieve data
from the previous version Registry. By default, only administrator can migrate all data including
private data.

• Installation directory - select the directory where HP SOA Systinet Registry will be installed.

199Installation Guide

4 Click Next and continue your Standalone installation as described in Server Settings on page 63. During
the installation process, all data will be migrated from the specified previous HP SOA Systinet Registry
installation to the current installation.

Migration After Installation

Migration is additive. It does not delete entities that are already present in HP SOA Systinet Registry
and not present in migration source.

To migrate data after installation, use the Setup tool described in Reconfiguring After Installation on page
75. Briefly:

1 Launch the Setup tool by issuing the following command from the bin subdirectory of your installation:

setup.batWindows:

./setup.shUNIX:

See command-line parameters in Setup on page 74.

2 Select the Migration tool on first panel:

Chapter 2200

3 Fill in the following properties:

201Installation Guide

• Previous Registry Version - Systinet Registry version from which you are migrating data

• Previous Registry Directory - the directory in which the previous HP SOA Systinet Registry is
installed. The existing data will be migrated from it.

• Previous Registry Administrator Username - name of the user having rights to retrieve data
from the previous version Registry.

• Current Registry Administrator Username - name of the user having rights to save UDDI
structure keys. By default, only administrator can migrate all data including private data.

• JDBC drivers - Set path to the directory in which the .jar (.zip) of JDBC drivers is located.

Chapter 2202

Enter this path only if the previous HP SOA Systinet Registry installation is configured
with a different type of database than the current one.

Backup
Backup functionality allows you to save the HP SOA Systinet Registry data and configuration to a filesystem
directory. Later the backup data can serve for full restore of HP SOA Systinet Registry data and configuration.

What is subject to backup?

• All registry data stored in the database.

• Configuration files.

• HP SOA Systinet Registry libraries and JSP files.

The HP SOA Systinet Registry server must be shut down before you start backup or restore
operations.

Backup HP SOA Systinet Registry

To back up HP SOA Systinet Registry data:

1 Use the Setup tool and choose Backup. To run the Setup tool, execute the following script from the
bin subdirectory of your installation:

setup.batWindows:

./setup.shUNIX:

For more information, see command-line parameters in Setup on page 74.

203Installation Guide

Figure 55. Setup Tool - Select Backup

2 Select whether you want to use HP SOA Systinet Registry that has been deployed (second choice) or
not (first choice).

Chapter 2204

Figure 56. Setup

3 Specify the location of the backup directory. You can check which items you wish to back up as shown
in Figure 57.

Item description.

205Installation Guide

Backup data makes a backup of UDDI data such as different kind of entites and taxonomies.a

b Backup configuration files makes a backup of configuration files from REGISTRY_HOME/app/uddi/conf
and REGISTRY_HOME/work/uddi/bsc.jar/conf.

c Backup configuration from Database makes a backup of configuration files and their history
as they are stored in database. See Configuration in Database on page 464.

d Backup libraries makes a backup of bsc.jar and web.jar from both app and work directories. These
files and directories contain UI customizations and modifications.

Chapter 2206

Figure 57. Setup Tool - Backup

Restore HP SOA Systinet Registry

To restore registry data and configuration from a backup:

207Installation Guide

1 Use the Setup tool and choose Restore. To run the Setup tool, execute the following script from the
bin subdirectory of your installation:

setup.batWindows:

./setup.shUNIX:

See command-line parameters in Setup on page 74.

Chapter 2208

Figure 58. Setup Tool - Select Restore

2 Select whether you want to use HP SOA Systinet Registry that has been deployed (second choice) or
not (first choice).

209Installation Guide

Figure 59. Setup

3 Specify the location of backup directory and check the items you wish to restore. The restore will work
only for items that have been backed up previously.

Chapter 2210

Figure 60. Setup Tool - Restore from Backup

NT Service Support
The HP SOA Systinet Registry server can be run as a service on Windows 2000/XP. Support for NT service
installation is installed by default on Windows servers, and cannot be installed on UNIX machines. The

211Installation Guide

support is a set of executable files that let you install, start, stop, and uninstall HP SOA Systinet Registry
as an NT service.

The server log is by default written into the log file. The output to the NT log can be manually configured.

Installation

When the HP SOA Systinet Registry installation is complete, the REGISTRY_HOME\bin directory contains these
four batch files related to NT service support:

• InstallService.bat

• UnInstallService.bat

• StartService.bat

• StopService.bat

After installing HP SOA Systinet Registry with NT Service support, the registry server is not
installed as an NT service. It must be installed manually, as follows.

If you want to customize the NT service first (set-up the JVM max memory, add files to classpath, etc.),
please read the Customizing section now.

Make sure that the JAVA_HOME environment variable points to your JDK and run the InstallService.bat
command.

When the installation is finished, the name of the installed NT service is printed to the screen. The default
name is HP SOA Systinet Registry.

You may need extra permissions to install a new service into your OS. To determine whether you
have these permissions, please consult your system administrator.

If the installation fails, read the Customizing section. If it does not contain the solution, contact Systinet
support [http://www.systinet.com/support].

Chapter 2212

http://www.systinet.com/support
http://www.systinet.com/support

Starting and Stopping

Once the HP SOA Systinet Registry server NT service is installed, start it as you would any NT service, by
selecting Control Panel> Administrative Tools > Services > start.

As a shortcut, you can use the StartService.bat command in the REGISTRY_HOME\bin directory.

You may need extra permissions to start or stop an NT service in your OS. To determine whether
you have these permissions, please consult your system administrator.

To stop the server, use either the system tools or the StopService.bat command.

For security reasons, you cannot use serverstop.bat or server.bat stop to stop a HP SOA Systinet
Registry server that is running as an NT service.

Logging

By default, the logs of the server are written into the REGISTRY_HOME\log\registry_NTService.log file. The
default maximum size of the log file is 1MB. When the file is full, a backup is created and the content of
the file is cleaned. By default, 3 backups are kept and older backups are deleted.

Logging Customization

HP SOA Systinet Registry uses the Log4J library for logging. You can manually change its logging behavior.
The configuration is stored in the file REGISTRY_HOME\conf\log4j_NTservice.config. You can change the log
output, message priority and other settings in this file as follows:

Message Priority Settings

To change the message priority from INFO to ERROR, comment out the following lines in the config file:

log4j.category.com.systinet.wasp.events=INFO,R
log4j.additivity.com.systinet.wasp.events=false

log4j.category.com.systinet.wasp.events=INFO,ntlog
log4j.additivity.com.systinet.wasp.events=false

Log File Properties

To change the log file properties, change the Rolling File appender settings:

213Installation Guide

log4j.appender.R.File=log/registry_NTService.log
log4j.appender.R.MaxFileSize=1024KB
log4j.appender.R.MaxBackupIndex=3

Switching to NT Log

To switch logging from file to NT log, comment out the lines:

log4j.category.com.systinet.wasp.events=INFO,R
log4j.additivity.com.systinet.wasp.events=false
log4j.category.com.systinet.wasp.errors=ERROR,R
log4j.additivity.com.systinet.wasp.errors=false

and uncomment the lines:

#log4j.category.com.systinet.wasp.events=INFO,ntlog
#log4j.additivity.com.systinet.wasp.events=false
#log4j.category.com.systinet.wasp.errors=ERROR,ntlog
#log4j.additivity.com.systinet.wasp.errors=false

from this section:

Assigning appenders to categories
(using rolling file appender by default)
log4j.category.com.systinet.wasp.events=INFO,R
log4j.additivity.com.systinet.wasp.events=false
log4j.category.com.systinet.wasp.errors=ERROR,R
log4j.additivity.com.systinet.wasp.errors=false

Uncomment next line if you want use NT Event Log
for logging of error messages
#log4j.category.com.systinet.wasp.events=INFO,ntlog
#log4j.additivity.com.systinet.wasp.events=false
#log4j.category.com.systinet.wasp.errors=ERROR,ntlog
#log4j.additivity.com.systinet.wasp.errors=false

so that the section reads:

Assigning appenders to categories
(using rolling file appender by default)
#log4j.category.com.systinet.wasp.events=INFO,R
#log4j.additivity.com.systinet.wasp.events=false
#log4j.category.com.systinet.wasp.errors=ERROR,R
#log4j.additivity.com.systinet.wasp.errors=false

Uncomment next line if you want use NT Event Log
for logging of error messages
log4j.category.com.systinet.wasp.events=INFO,ntlog

Chapter 2214

log4j.additivity.com.systinet.wasp.events=false
log4j.category.com.systinet.wasp.errors=ERROR,ntlog
log4j.additivity.com.systinet.wasp.errors=false

We recommend that you log only errors to the NT log.

The REGISTRY_HOME\lib\NTEventLogAppender.dll file must be copied into the system PATH if you want
to use the NT event log for logging.

Using other Log4J Appenders

Rolling File and NTLog are the two default appenders. You can choose any Log4J appender that suits your
needs. To add custom classes to the HP SOA Systinet Registry NT service classpath, please see the
Customizing section.

You must restart the HP SOA Systinet Registry NT service to put the changes into effect.

For more information about Log4J and its settings, please visit Apache/Jakarta's Log4j Project website
[http://jakarta.apache.org/log4j].

Customizing

You can manually set up the name "HP SOA Systinet Registry NT Service" and the JVM parameters that
are used to start HP SOA Systinet Registry as an NT service. To customize logging, please visit the previous
section, Logging.

All customizable files in the following instructions are located in the REGISTRY_HOME\bin directory.

All the following changes require reinstallation of the HP SOA Systinet Registry NT Service.
Uninstall it first, make your modifications and reinstall the service.

NT Service Name Change

The default name of the NT service is Systinet Registry. To change the service name:

1 Uninstall the existing service by running UnInstallService.bat.

2 Manually edit the files

215Installation Guide

http://jakarta.apache.org/log4j

UnInstallService.bat•

• InstallService.bat

• StartService.bat

• StopService.bat

3 Change the system variable NT_SERVICE_NAME, so the row with the variable resembles:

set NT_SERVICE_NAME=HP SOA Systinet Registry

4 Install your NT service with its new name by running InstallService.bat.

5 Start the new service by running StartService.bat.

JVM Startup Parameters

The parameters of the Java Virtual Machine are set up during the installation of the NT service. If you
modify the parameters, you must reinstall the NT service to put the changes into effect. To modify the
parameters of the NT service, open InstallService.bat in a text editor and do the following:

• To change the maximum size of available memory, change the value of the JVM_MEM variable, with a
command like set JVM_MEM=-Xmx256m.

• To add custom files to the classpath, edit the RegistryService.exe parameters. These are in the line
"-Djava.class.path=%REGISTRY_HOME%\lib\wasp.jar".

HP SOA Systinet Registry deployed to Application Server

Systinet does not support installation of deployed HP SOA Systinet Registry as an NT Service. For more
information, please see the documentation of your application server provider. However, any Java application
can be installed as an NT Service with Systinet's NT service solution. Please contact http://www.systinet.-
com/support if you need to run a deployed HP SOA Systinet Registry server as an NT service.

Chapter 2216

http://www.systinet.com/support
http://www.systinet.com/support

Uninstallation

To uninstall the HP SOA Systinet Registry server NT service, run UnInstallService.bat from the
REGISTRY_HOME\bin directory. The uninstaller first tries to stop the NT service. It then removes the NT service
from your OS.

Running in Linux

Using the syslog Daemon with HP SOA Systinet Registry

The log4j system used in HP SOA Systinet Registry can be configured to send log messages to the syslog
daemon. In order to utilize this feature, your system must be configured as follows:

1 Change log4j in REGISTRY_HOME/conf/log4j.config. First add a syslog appender, as shown in Example 11
on page 217. Note the following properties in particular:

• syslogHost - Set to host name of the computer where syslog is running.

• Facility - HP SOA Systinet Registry log message facility recognized by syslog.

Example 11: log4j.config--syslog Appender

Appender to syslog
log4j.appender.syslog=org.apache.log4j.net.syslogAppender
log4j.appender.syslog.syslogHost=localhost
log4j.appender.syslog.Facility=local6
log4j.appender.syslog.layout=org.apache.log4j.PatternLayout
log4j.appender.syslog.layout.ConversionPattern=%p: %c{2} - %m%n

Then add syslog to the value of the property log4j.category.com.systinet.wasp.events under # event
monitoring, as follows:

Example 12: log4j.config--Event Monitoring

event monitoring
log4j.category.com.systinet.wasp.events=INFO,eventLog,syslog

217Installation Guide

2 Set the syslogd configuration to recognize log messages from HP SOA Systinet Registry. Implicitly,
HP SOA Systinet Registry sends log messages to syslog under the facility local6. Therefore, modify
the /etc/syslog.conf file by adding the following line of text:

local6.* /var/log/registry.log

HP SOA Systinet Registry will now log messages of all priorities into the file /var/log/registry.log.
You should create this file now with appropriate permissions (otherwise syslogd will create it for you
automatically with default permissions, which may not be suitable for you).

3 Your syslog daemon must be started with remote logging enabled (the -r command line option). To
make sure that:

• syslogd is running, use the pgrep syslogd command.

• remote logging is enabled, use the netstat -l command (syslog's udp port is 514).

The local6 facility is not mandatory in any way. You may use other localX facilities instead.

Running HP SOA Systinet Registry as a UNIX Daemon

HP SOA Systinet Registry can be forced to start as a system daemon using the script
REGISTRY_HOME/etc/bin/registry.sh. This script can be renamed registry as per UNIX conventions. The
directions for using this script follow.

1 Tailor the service script as needed. The meaning of variables is shown in Table 2 on page 219.

Chapter 2218

Table 2. Variables in the Systinet Registry Service Script

Default valueDescriptionName of variable
in registry service
script

HP SOA Systinet Registry Installation
directory.

Home directory of Systinet RegistryREGISTRY_HOME

None. This variable must be set
manually.

Home directory of JavaJAVA_HOME

Determined during runtime according
to the user who owns the REGISTRY_HOME
directory. If the user is root, this value
reverts to "nobody".

User under whom the Systinet Registry
server should run. If this is set to root,
it will be changed to "nobody".

REGISTRY_USER

60 seconds.Number of seconds the system waits for
Systinet Registry to successfully start
up.

TIMEOUT

2 Rename the script registry (without the .sh extension) and save it in the /etc/init.d/ directory.

3 (optional) To start HP SOA Systinet Registry automatically in the appropriate run-level, create
SXXregistry and KXXregistry symbolic links in the appropriate /etc/rcX.d/ directory.

Now you may start and stop HP SOA Systinet Registry using the installed script. You can invoke this script
directly or by using specific OS tools. For example, on RedHat, by using the redhat-config-services
command.

The parameters of the script are shown in Table 3 on page 220.

219Installation Guide

Table 3. Parameters of init.d Scripts

FunctionParameter

Starts HP SOA Systinet Registrystart

Stops HP SOA Systinet Registrystop

Restarts HP SOA Systinet Registryrestart

Restarts HP SOA Systinet Registry only if it is already runningcondrestart

Displays whether HP SOA Systinet Registry is running or notstatus

The provided startup script may be run by the root user. The script uses the su command to run as
REGISTRY_USER.

Uninstallation

Windows

1 If you installed HP SOA Systinet Registry as NT service, uninstall it by executing script
REGISTRY_HOME\bin\UninstallService.bat. See more information on NT Service Support on
page 211.

2 Remove Icons and Start menu items on Windows platform.

3 Drop database manually via the Setup tool. Setup should automatically detect the current configuration
of the database. See Reconfiguring After Installation on page 75.

4 Delete installation directory of HP SOA Systinet Registry.

Linux

1 If you installed HP SOA Systinet Registry as Linux daemon, remove the registry files from /etc/init.d.
Remove also links KXXregistry and SXXregistry from appropriate directory /etc/rcX.d. Unregister the
daemon by system tools.

2 Drop database manually via the Setup tool. Setup should automatically detect the current configuration
of the database. See Reconfiguring After Installation on page 75.

Chapter 2220

3 Delete installation directory of HP SOA Systinet Registry.

221Installation Guide

Chapter 2222

3 User's Guide

The HP SOA Systinet Registry User's Guide is mainly focused on the web user interface. The users to whom
this guide is addressed are those who query the registry or publish to it using this interface as opposed to
accessing the registry over SOAP. It is comprised of the following sections:

Introduction to HP SOA Systinet Registry

This section is a brief intoduction to HP SOA Systinet Registry including basic concepts of UDDI
specifications.

Registry Consoles

This section presents both Business Service Console and Registry Console

Demo Data Description

The HP SOA Systinet Registry's Demo Data chapter describes the business domain and UDDI
data structures used in the HP SOA Systinet Registry Demo Suite and both registry consoles.

Business Service Console

Describes the Business Service Console and basic tasks you can perform with it.

Advanced Topics

Access Control Principles

Describes principles of permissions and access control to UDDI data structures.

Publisher-Assigned Keys

Under UDDI v3, users may assign alpha-numeric keys to structures rather than having
these keys automatically generated by the registry (as was the case under UDDI v1 and
v2).

Range Queries

HP SOA Systinet Registry's range queries functionality allows you to search UDDI entities
with the ability to use comparative operators (>, <).

223

Taxonomy: Principles, Creation and Validation

This section gives you a brief overview of taxonomy classification in HP SOA Systinet
Registry

Registry Console Reference

Describes the Registry Console and basic tasks you can perform with it.

Signer Tool

Allows the user to digitally sign published UDDI structures and validate digital signatures.

Introduction to HP SOA Systinet Registry
HP SOA Systinet Registry is a fully V3-compliant implementation of the UDDI (Universal Description,
Discovery and Integration) specification, and is a key component of a Service Oriented Architecture (SOA).
A UDDI registry provides a standards-based foundation for locating services, invoking services and managing
metadata about services (security, transport or quality of service). A UDDI registry can store and provide
these metadata using arbitrary categorizations. These categorizations are called taxonomies.

This introduction has the following sections:

• UDDI's Role in the Web Services World - UDDI Benefits on page 224

• Typical Application of a UDDI Registry on page 225

• Basic Concepts of the UDDI Specification on page 226

• Subscriptions in HP SOA Systinet Registry on page 231

• Approval Process in Systinet Registry on page 234

UDDI's Role in the Web Services World - UDDI Benefits

When development teams start to build Web service interfaces into their applications, they face such issues
as code reuse, ongoing maintenance and documentation. The need to manage these services can increase
rapidly.

The UDDI registry can help to address these issues and provides the following benefits:

Chapter 3224

• It delivers visibility when identifying which services within the organization can be reused to address
a business need.

• It promotes reuse and prevents reinvention. It accelerates development time and improves productivity.
This ability of UDDI to categorize a growing portfolio of services makes it easier to manage them. It
helps you understand relationships between components, supports versioning and manages dependencies.

• It supports service configurability and adaptability by using the service-oriented architectural principle
of location and transport independence. Users can dynamically discover services stored in the UDDI
registry.

• It allows you to understand and manage relationships between services, component versions and
dependencies.

• It makes it possible to manage the business service lifecycle. For example, the process of moving
services through each phase of development, from coding to public deployment. For more information,
see the Approval Process.

Typical Application of a UDDI Registry

A UDDI registry stores data and metadata about business services. A UDDI registry offers a standards-
based mechanism to classify, catalog and manage Web services so that they can be discovered and consumed
by other applications. As part of a generalized strategy of indirection among services-based applications,
UDDI offers several benefits to IT managers at both design-time and run-time, including increasing code
reuse and improving infrastructure management by:

• Publishing information about Web services and categorization rules (taxonomies) specific to an
organization.

• Finding Web services that meet given criteria.

• Determining the security and transport protocols supported by a given Web service and the parameters
necessary to invoke the service.

• Providing a means to insulate applications (and providing fail-over and intelligent routing) from failures
or changes in invoked services.

225User's Guide

Basic Concepts of the UDDI Specification

UDDI is based upon several established industry standards, including HTTP, XML, XML Schema (XSD),
SOAP, and WSDL. The latest version of the UDDI specification is available at: http://www.oasis-open.-
org/committees/uddi-spec/doc/tcspecs.htm#uddiv3.

The UDDI specification describes a registry of Web services and its programmatic interfaces. UDDI itself
is a set of Web services. The UDDI specification defines services that support the description and discovery
of:

• Businesses, organizations and other providers of Web services;

• The Web services they make available;

• The technical interfaces which may be used to access and manage those services.

UDDI Data Model

The basic information model and interaction framework of UDDI registries consist of the following data
structures:

• A description of a service business function is represented as a businessService.

• Information about a provider that publishes the service is put into a businessEntity.

• The service's technical details, including a reference to the service's programmatic interface or API, is
stored in a bindingTemplate.

• Various other attributes, or metadata, such as taxonomy, transports, and policies, are stored in tModels.

These UDDI data structures are expressed in XML and are stored persistently by a UDDI registry. Within
a UDDI registry, each core data structure is assigned a unique identifier according to a standard scheme.
This identifier is referred as a UDDI key.

Business Entity

A business entity represents an organization or group of people responsible for a set of services (a service
provider). It can also represent anything that overreaches a set of services; for example a development
project, department or organization. The business entity structure contains the following elements:

Chapter 3226

http://www.oasis-open.org/committees/uddi-spec/doc/tcspecs.htm#uddiv3
http://www.oasis-open.org/committees/uddi-spec/doc/tcspecs.htm#uddiv3

• Names and Descriptions. The business entity can have a set of names and descriptions, in a variety of
languages if necessary.

• Contacts. The list of people who are associated with the business entity. A contact can include, for
example, a contact name, addresses, phone numbers, and use type.

• Categories. Set of categories that represent the business entity's features or quantities. For example the
business entity can be associated with the category California to say that the business entity is located
in that geographical area.

• Identifiers. The business entity can be associated with arbitrary number of identifiers that uniquely
identify it. For example, the business entity can be identified by a department number or D-U-N-S
number.

• Discovery URLs are additional links to documents describing the business entity.

Business entities can be linked to one another using so-called assertions that model a relationships between
them.

Business Service

Business services represent functionality or resources provided by business entities. A business entity can
reference multiple business services. A business service is described by the following elements:

• Names and descriptions. The business service can have a set of names and descriptions, in a variety of
languages if necessary.

• Categories. A set of categories that represent the business service features and quantities. For example,
the business service can be associated by a category that represents service availability, version, etc.

A business service in a UDDI registry does not necessarily represent a Web service. The UDDI registry
can register arbitrary services such as example EJB, CORBA, etc.

Binding Template

A business service can contain one or more binding templates. A binding template represents the technical
details of how to invoke its service. Binding templates are described by the following elements:

• Access point represents the service endpoint. It contains endpoint URI and specification of the protocol.

227User's Guide

• tModel instance infos can be used to represent any other information about the binding template

• Categories. The binding template can be associated with categories to reference specific features of the
binding template, for example certification status (test, production) or versions.

tModel

The tModel provides a reference to an abstraction describing compliance with a specification and concepts.
TModels are described by the following elements:

• Name and description. The tModel can have a set of names and descriptions, in different languages if
required.

• An overview document is a reference to a document that specifies the tModel's purpose.

• Categories. Like all the other UDDI entities, tModels can be categorized.

• Identifiers. The tModel can be associated with an arbitrary number of identifiers that uniquely identify
it.

UDDI entities are categorized through tModels via taxonomies. Business entities, business services, and
binding templates declare associations to a certain category by presence of specific tModels in their
categoryBags.

Taxonomic Classifications

UDDI provides a foundation and best practices that help provide semantic structure to the information about
Web services contained in a registry. UDDI allows users to define multiple taxonomies that can be used in
a registry. Users can employ an unlimited number of appropriate classification systems simultaneously.
UDDI also defines a consistent way for a publisher to add new classification schemes to their registrations.

Taxonomies are used for representing various UDDI entity features and qualities (such as product types,
geographical regions or departments in a company).

The UDDI specification mandates several standard taxonomies that must be shipped with each UDDI
registry product. Some are internal UDDI taxonomies such as the UDDI types taxonomy or geographical
taxonomy. A taxonomy can be marked as specific to business, service, binding template or tModel or it can
be used with any type of the UDDI entity

Chapter 3228

Enterprise Taxonomies

Enterprise taxonomies are taxonomies that are specific to the particular enterprise or application. These
taxonomies reflect specific categories like company departments, types of applications, and access protocols.

HP SOA Systinet Registry allows definition of enterprise taxonomies. Users can also download and upload
any taxonomy as an XML file. HP SOA Systinet Registry offers tools for creating, modifying and browsing
taxonomies on both the web user interface and SOAP API levels.

Checked and Unchecked Taxonomies

There are two types of taxonomies: checked and unchecked. Checked taxonomies are rigid, meaning that
the UDDI registry does not allow the use of any categories other than those predefined in the taxonomy.
Checked taxonomies are usually used when the taxonomy author can enumerate all distinct values within
the taxonomy. A checked taxonomy can be validated using the internal validation service that is available
in HP SOA Systinet Registry or by using an external validation service.

Unchecked taxonomies do not prescribe any set of fixed values and any name and value pair can be used
for categorization of UDDI entities. Unchecked taxonomies are used for things like volume, weight, price,
etc. A special case of the unchecked taxonomy is the general_keywords taxonomy that allows categorizations
using arbitrary keywords.

Security Considerations

UDDI specification does not define an access control mechanism. The UDDI specification allows
modification of the specific entity only by its owner (creator). This does not scale in the enterprise
environment where the right to modify or delete a specific UDDI entity must be assigned with more identities
or even better with some role.

HP SOA Systinet Registry addresses this issue with the ACL (Access Control List) extension to the UDDI
security model. Every UDDI entity can be associated with the ACL that defines who can find (list it in some
UDDI query result), get (retrieve all details of the UDDI object), modify or delete it. The ACL can reference
either the specific user account or user group.

The UDDI v3 specification provides support for digital signatures. In HP SOA Systinet Registry, the
publisher of a UDDI structure can digitally sign that structure. The digital signature can be validated to
verify the information is unmodified by any means and confirm the publisher's identity.

229User's Guide

Notification and Subscription

The UDDI v3 specification introduces notification and subscription features. Any UDDI registry user can
subscribe to a set of UDDI entities and monitor their creation, modification and deletion. The subscription
is defined using standard UDDI get or find API calls. The UDDI registry notifies the user whenever any
entity that matches the subscription query changes even if the change causes the entity to not match the
query anymore. It also notifies about entities that were changed in a way that after the change they match
the subscription query.

The notification might be synchronous or asynchronous. By synchronous, we mean solicited notification
when the interested party explicitly asks for all changes that have happened since the last notification.
Asynchronous notifications are run periodically in a configurable interval and the interested party is notified
whenever the matched entity is created, modified, or deleted.

Replication

Content of the UDDI registry can be replicated using the simple master-slave model. The UDDI registry
can replicate data according to multiple replication definitions that are defined using UDDI standard queries.
The master-slave relationship is specific to the replication definition. So one registry might be master for
one specific replication definition and slave for another. The security settings (ACL, users, and groups) are
not subject to replication but you can set permissions on replicated data.

UDDI APIs

The core data management tools functions of a UDDI registry are:

• Publishing information about a service to a registry.

• Searching a UDDI registry for information about a service.

The UDDI specification also includes concepts of:

• Replicating and transferring custody of data about a service.

• Registration key generation and management.

• Registration subscription API set.

• Security and authorization.

Chapter 3230

The UDDI specification divides these functions into Node API sets that are supported by a UDDI server and
Client API Sets that are supported by a UDDI client .

Technical Notes

Technical Notes (TN) are non-normative documents accompanying the UDDI Specification that provide
guidance on how to use UDDI registries. Technical Notes can be found at http://www.oasis-open.-
org/committees/uddi-spec/doc/tns.htm. One of the most important TNs is "Using WSDL in a UDDI Registry".

Benefits of UDDI Version 3

The most important features include:

• User-friendly identifiers facilitate reuse of service descriptions among registries.

• Support for digital signatures allows UDDI to deliver a higher degree of data integrity and authenticity.

• Extended discovery features can combine previous, multi-step queries into a single-step, complex
query. UDDI now also provides the ability to nest sub-queries within a single query, letting clients
narrow their searches much more efficiently.

Subscriptions in HP SOA Systinet Registry

Subscriptions are used to alert interested users in changes made to structures in HP SOA Systinet Registry.
The HP SOA Systinet Registry Subscription API provides users the ability to manage (save and delete)
subscriptions and evaluate notification. Notifications are lists of changes made within a specified time
interval. The Subscription mechanism allows the user to monitor new, changed, and deleted entries for
businessEntities, businessServices, bindingTemplates, tModels or publisherAssertions. The set of entities
in which a user is interested is expressed by a SubscriptionFilter, which can be any one of the following
UDDI v3 API queries:

• find_business, find_relatedBusinesses, find_services, find_bindings, find_tmodel

• get_businessDetail, get_serviceDetail, get_bindingDetail, get_tModelDetail, get_assertionStatusReport

In Business Service Console, users can also create subscriptions also resources (WSDL, XML,
XSD and XSLT) without a detailed knowledge of how resources are mapped to UDDI data
structures.

231User's Guide

http://www.oasis-open.org/committees/uddi-spec/doc/tns.htm
http://www.oasis-open.org/committees/uddi-spec/doc/tns.htm

Subscription Arguments

A subscription is the subscriber's interest in changes made to entities as defined by the following arguments:

• SubscriptionKey - The identifier of the subscription, as generated by the server when the subscription
is registered.

• Subscription Filter - Specifies the set of entities in which the user is interested. This field is required.
Note that once the subscription filter is set, it cannot be changed.

• Expires After - The time after which the subscription is invalid (optional).

• Notification Interval - How often the client will be notified (optional). The server can extend it to the
minimum supported notification interval supported by the server as configured by the administrator.

For more information, please see Administrator's Guide, Registry Configuration on page 454.

• Max Entities - how many entities can be listed in a notification (optional). When the number of entities
in a notification exceeds max entities, the notification will contain only the number of entities specified
here or in the registry configuration. A chunkToken different from "0" will be specified in the notification.
This chunkToken can be used to retrieve trailing entities.

• BindingKey - points to the bindingTemplate that includes the endpoint of the notification handling service
(optional). Only http and mail transports are currently supported. If this bindingKey is not specified,
the notification can be retrieved only by synchronous calls.

• Brief - By default, notifications contain results corresponding to the type of the Subscription Filter.
For example, when the subscription filter is find_business, notifications contain Business Entities in the
businessInfos form. If brief is toggled on, notifications will contain only the keys of entities. (optional)

Subscription Notification

Notification is the mechanism by which subscribers learn about changes. Notifications inform subscribers
about entities that:

1 Satisfy the Subscription Filter now and were last changed, or created, within a given time period. The
entities are included in a list of the appropriate data type by default. For example, when find_business
represents the Subscription Filter, notifications contain Business Entities in the businessList/businessInfo
form. (If the brief switch is toggled on, only the entity keys in the keyBag are included.)

Chapter 3232

2 Were changed or deleted in the given time period and no longer satisfy the Subscription Filter. Only
the keys of the appropriate entities are included in the keyBag structure and the deleted flag is toggled
on.

There are two types of notifications:

• Asynchronous notification - Using asynchronous notification, the server periodically checks for changes
and offers them to the client via HTTP or SMTP. HTTP is suitable for services listening to UDDI
changes. SMTP (that is, mail notification) is suitable for both services and users. With this transport,
the user is notified at each notification interval by email. To perform asynchronous notification, the
subscription must be populated with notification interval and bindingKey. See Developer's Guide, Writing
a Subscription Notification Service on page 744 for details.

• Synchronous notification - Using synchronous notification, the server checks for changes and offers them
when the client explicitly asks for them outside of periodical asynchronous notifications. It is useful for
client applications which cannot listen for notifications, and for services that want to manage the time
of notification by themselves. See Demos, Subscription on page 939 for details.

XSLT Over Notification

To improve the readability of notifications sent to users via email, HP SOA Systinet Registry provides the
ability to process the XSL transformation before the notification is sent. To enable this feature:

1 Register the XSL transformation in UDDI as a tModel that refers to XSL transformation in its first
overviewDoc.

2 Modify the bindingTemplate (with the bindingKey specified in the subscription) to refer to the XSLT
tModel by its tModelInstanceInfo.

3 Tag the XSLT tModel by a keyedReference to uddi:uddi.org:resource:type with the keyValue="xslt".

Suppressing Empty Notifications

Another HP SOA Systinet Registry extension to the specification is the ability to suppress empty notifications.
To do this, tag the bindingTemplate referenced from the subscription with a keyedReference to the tModel
uddi:uddi.org:categorization:general_keywords with keyValue="suppressEmptyNotification" and
keyName="suppressEmptyNotification".

233User's Guide

Related Links

• To manage subscriptions via the Business Service Console, see the section Business Service Console
Subscriptions.

• To manage subscriptions via the Registry Console, see the Registry Console Reference.

• To use and manage subscriptions, see the Subscription API.

• More details about subscriptions can be found in the Subscription API [http://uddi.org/pubs/uddi-v3.00-
published-20020719.htm#_Toc42047327] chapter of the UDDI v3 Specification.

Approval Process in Systinet Registry

The approval process provides functionality to ensure consistency and quality of data stored in HP SOA
Systinet Registry. There are two registries in the approval process:

• a publication registry is used for testing and verification of data;

• a discovery registry only contains data that has been approved and promoted from the publication
registry.

See Approval Process Registry Installation on page 118 in the Installation Guide on page 39 for details of
how to install and configure these registries.

The approval process includes two types of users:

• A requestor is a user of the publication registry who can request approval of data for promotion to the
discovery registry;

• An approver is a user who can approve or reject requests for promotion of data.

Administrators can specify:

• the users or groups of users who are approvers;

• the users or groups of users whose requests they can approve;

Every user can ask for approval, but to have data considered for promotion, a user must have an administrator-
assigned approver.

Chapter 3234

http://uddi.org/pubs/uddi-v3.00-published-20020719.htm#_Toc42047327

For more information see Approval Process Management on page 438 in the Administrator's Guide on page
399.

Figure 1. Approval Request Lifecycle

Approval requests have a lifecycle shown in Figure 1. A requestor can create a request. Once the request
is created, the requestor can add UDDI data structures (described in UDDI Data Model on page 226) or
resources (WSDL, XML, XSD and XSLT) to the request. Note that the requestor does not need to know
how resources are mapped to UDDI data structures. When the requestor adds a resource to the request, all
underlying UDDI structures (bindings, tModels) the resource represents are automatically added to the
request. Once the requestor specifies all entities to promote, the request may be submitted for approval.

The approver will review incoming requests, and then can approve or reject the request. If the approver
approves the request, the requested data is immediately promoted to the discovery registry. If the requestor
is not satisfied with the approver's response time, this user can remind the approver to review the requests.
The requestor can also cancel submitted requests.

In the following section, we will look at requestor's and approver's actions in detail.

235User's Guide

Requestor's Actions

A requestor may perform the following actions:

• Submit a request for approval of data promotion

After submitting the request, all data referenced in the request is blocked (locked for writing) until the
request is either canceled by the requestor, approved for promotion, or rejected by the approver.

A requestor may request approval for the promotion of the same set of data several times, and
may have several unprocessed requests at one time.

• Find request.

This action provides the requestor with the ability to list information about all requests. If the requestor
has privileged access on the Requestor API, then it is possible to get brief information on the requests
of other users. Otherwise only the requestor's own requests may be viewed.

• Get request

This action returns full information about the given request. If the requestor has privileged access on
the Requestor API then they can obtain full details of other user's requests. Otherwise only the requestor's
own requests may be accessed.

• Cancel request

Provides requestor with the ability to cancel the given request. Only requestors with privileged access
can cancel the requests of other requestors.

• Synchronize data

This action enables the requestor to synchronize data on the publication registry with data on the discovery
registry. There are three types of synchronization - publication priority, partial discovery priority, and
full discovery priority. For detailed information about synchronization, please see Synchronization of
Data.

To publish data to the discovery registry, the data must first be published to the publication registry and
then approved by an appropriate approver. Once the requestor is satisfied with the quality of data, it is
possible to ask for data promotion.

Chapter 3236

Requestors can publish data on the publication registry for testing. Once this data is ready for approval, the
requestor asks for approval. An approval request contains two different sets of keys - keys for saving and
keys for deletion. The keys select the data. Keys for saving are used for entities to be published (saved or
updated) to the discovery registry. Keys for deletion can be used for deletion of any entity from the discovery
registry. Approval requests can contain data (keys of entities) either for saving or for deletion.

Both types of keys can contain keys for businessEntities, businessServices, bindingTemplates, tModels or
publisherAssertions. For example, if a requestor wants to promote a businessEntity to the discovery registry
and remove a bindingTemplate from a service on the discovery registry then the request for approval must
contain the key of the businessEntity in the keys for saving and the key of the bindingTemplate in the keys
for deletion. After successful approval the business entity is saved (created or updated) to the discovery
registry and the binding template is deleted from the discovery registry.

Context Checking

During a request for approval, and when approval is granted, automatic context checking is processed to
ensure the integrity of data from a request. The context checker has the following rules:

• If an entity is contained in keys for saving, then the parent entity must already exist on the discovery
registry or be contained in keys for saving to the discovery registry. For a businessService, the parent
is a businessEntity; for a bindingTemplate, the parent is a businessService.

• An entity whose key is included in those for deletion may not be referenced by an entity whose key is
included in those being saved.

• An entity whose key is included in those for deletion must exist on the discovery registry.

• Deleting a tModel that is referenced by entities on the discovery registry is not allowed.

• If a publisher assertion is included in keys for saving, then its business entities (specified in fromKey,
toKey) and tModel must already exist on the discovery registry or be contained in keys for saving.

If the data is valid, according to these rules, the request for approval is made.

If data is invalid (for example, an entity is included in keys for deletion that does not exist on the discovery
registry), an exception is thrown and the request for approval is not made.

If context checking fails, the requestor is informed that the data must somehow be changed before requesting
approval again.

237User's Guide

A Special Approval Case

If the registry administrator trusts a requestor, that requestor may be assigned the approval contact
AutoApprover. Under this approval contact, there is no human review of the data. The data is automatically
promoted to the discovery registry as long as automatic context checking is successful.

Approver's Actions

Approval contacts are assigned by users who have permission to set up the approval process via the
ApprovalConfiguration API (such as registry administrator). The approval contact reviews requests to
promote data to the discovery registry and approves or rejects these requests.

If enabled, content checking (additional rules applied to approved data) is performed at this time as well.

If context checking and content checking are successful, an email is sent to the requestor indicating the
successful promotion of data, and including any message entered in the Message for requestor box.

Optional Content Checking

Optional content checking provides an approver with the ability to programmatically check data for approval.
For example, the approver can set a policy that:

• Each business service must include a binding template, or

• Each business service must be categorized by specified categories

To enforce such a policy, a developer can write an implementation of the Checker API to enforce these
checks. The implementation is called automatically during the approval process when an approver presses
the Approve request button. So the approver does not have to check it manually. For more information on
setting up optional content checking, see Optional Content Checking Setup on page 502 in the Administrator's
Guide.

Synchronization of Data

Requestor's synchronization is used to synchronize the information on the publication and discovery registries.
There are three different kinds of synchronization described below - publication priority, partial discovery
priority and full discovery priority. Each is performed on all data structures associated with the
synchronizing user's account. Synchronization is performed only upon request.

Chapter 3238

These tools do not change information on the discovery registry. The only way to change data on
discovery registry is via the publication registry and the approval process. Only administrator can
publish to discovery registry.

Publication priority

Publication priority has the following rules:

• If an entity exists only on the discovery registry then it is copied to the publication registry.

• If an entity exists only on the publication registry then it is preserved.

• If an entity exists on both registries, then the publication registry takes priority over the discovery
registry.

Publication Priority Example

Before synchronization, structures A and X exist on the publication registry and structures X and B exist
on the discovery registry.

The Publication Priority synchronization copies structure B to the publication registry. Structure X on
publication registry remains the same because when the same entity exists on both servers, Publication
Priority synchronization favors the publication registry.

Partial Discovery Priority

Partial discovery priority has the following rules:

• If an entity exists only on the discovery registry, then it is copied from the discovery registry to the
publication registry.

• If an entity exists only on the publication registry then it is preserved.

• If an entity exists on both registries, then data on the publication registry is overwritten by data from
the discovery registry.

Partial Discovery Example

Before this synchronization, structures A and X exist on the publication registry and structures X and B
exist on the discovery registry.

239User's Guide

Partial discovery synchronization copies structure B to the publication registry and overwrites the version
of structure X on the publication registry with that from the discovery registry.

Full Discovery Priority

Under this synchronization scenario, all the user's data on the publication registry is deleted, and all the
user's data from discovery registry is copied to the publication registry. After full discovery priority
synchronization, data on the discovery and publication registries is identical.

The HP SOA Systinet Registry administrator cannot execute full discovery priority synchronization.

Full Discovery Example

Before synchronizing, structures A, X, Y and B exist on the publication registry and structures A, X and B
exist on the discovery registry.

Full discovery synchronization deletes structures A, X, Y and B from the publication registry, and replaces
them with A, X, and B from the discovery registry.

Mail notifications in approval process

Mails are sent in approval process for notification of involved parties. Approvers are notified via mail that
requestors ask for their approval, cancel approval requests and so on. Requestors are notified via mail that
approvers approve requests, reject requests and so on. Mail's form is determined by XSL transformation
and so it can be changed.

By default the following transformation are used. They are specified by the key of appropriate tModel.
uddi:systinet.com:approval:defaultRequestEmailXSLT is used for notifications of aprovers about requestor's
submission of approval requests. uddi:systinet.com:approval:defaultMessageEmailXSLT is used for notifications
of approvers and requestors about approval request's cancellation, approval or rejection.

User can change mail's form in case that he defines his transformations for himself. In such a case these
transformations are taken into the account instead of default ones. User can set special properties into its
account. Property whose name is approval.email.approver.request.tranformation determines custom
transformation for mail notification about newly created approval requests. If approver set value of this
property to the key of XSL transformation, then this transformation is used for mail notification he receives.
In a similar way, property whose name is approval.email.approver.message.tranformation specifies custom

Chapter 3240

transformation for notification mails about request's cancellation, approval or rejection. If user wants to
receive other mails than default ones he sets this property to the key of new transformation.

If you are using approval process from the Registry Console, the form of mail notifications is
determined by approval.email.approval.message.tranformation.60 property. By default transformation
defined by uddi:systinet.com:approval:defaultMessageEmailXSLT_60 tModel is used.

Related Links

• Installation of publication and discovery registries - Installation Guide, Approval Process Registry
Installation on page 118

• Approval process via Business Service Console - User's Guide, Approval Process on page 282

• Configure requestors and approvers - Administrator's Guide, Approval Process Management on page
438

Registry Consoles
HP SOA Systinet Registry provides two user interfaces.

• Systinet Business Service Console. Using the Business Service Console developers, architects and
business users can browse the various perspectives of the registry including business-relevant
classifications such as service and interface lifecycle, compliance or operational/readiness status. They
can browse information through business-relevant abstractions of SOA information such as schemas,
interface local names or namespaces. The Business Service Console also provides easy to use and
customizable publication wizards.

The Business Service Console can be found at http://<hostname>:<port>/uddi/bsc/web. Host name and
port are defined when HP SOA Systinet Registry is installed. The default port is 8080. See Business
Service Console on page 245

• Registry Console. Using the Registry Console users can browse and publish registry contents, create
subscriptions and perform ownership changes. The Registry Console is the primary console for
administrators to perform registry management.

The Registry Console can be found at http://<hostname>:<port>/uddi/web. Host name and port are defined
when HP SOA Systinet Registry is installed. The default port is 8080. See Registry Console Overview
on page 331

241User's Guide

Make sure your browser allows HTTPS connections, supports JavaScript and does not block popup
windows.

Demo Data
Demo data is pre-installed with HP SOA Systinet Registry. There are two demo data sets:

• demo data to demonstrate Business Service Console

• demo data to demonstrate Registry Console and Demo Suite

Demo Data for Business Service Console

Demo data is pre-installed with HP SOA Systinet Registry for use with the Business Service Console. This
data describes a financial institution (bank) with several departments. It contains entities providing services
for its operations. Entities providing services are modelled as service providers. There are the following
providers and their services in the demo data:

Account Services

Account Services provides services related to account information, transfers, check orders, bill
pay, online statements.

• Account - The account service provides the account related operations :getAccount,
listAccountDetail, listRelatedAccounts, listTransactionHistory.

• Bill Payment - The bill payment service provides the ability to establish bill payment service,
cancel bill payment service and get information about bill payment for a customer. Operations:
authorizeAcctForBillPymt, cancelBillPymtSvc, createBillPymtSvc.

• Check Order - This service supports new check orders, check reorders, check order inquiry.
Operations: getLastCheckOrder, orderChecks, reorderChecks.

• Direct Deposit Advance -This service supports the operations used to set up the advancement
of money. Operation: addDirectDepositAdvance.

• Notification Services - This service is used to provide notifications. Operation:
sendAccountTransferNotification.

Chapter 3242

• Stop Payment - This service allows stops to be set and maintained. Operations:
addStopPaymentForCheck, cancelStopPay

• Transfer Funds - This service allows funds to be transferred from one account to another.
Operations: authorizeTransfer, sendInvoicePayment, transferFunds.

Customer Management System

Customer relationship and management system.

• Add Customer - This service allows a customer to be added to the enterprise customer system.
Operation: addCustomer.

• Customer Notification - This service provides notification messages for various customer
changes. Operations: customerNameChangeNotif, customerAddressChangeNotif.

Outlet Locator

Provides information about outlets and sites.

• Outlet - The Outlet service gets all of the information about a Company outlet. Operation:
getOutletDetail.

• Site - This service gets information about a site. Operations: getSiteDetail, listSites, searchSites

Document Services

Provides access to company forms.

• Electronic Forms - Provides access to company forms. Operations: updateAddrPhone,
updateNameAndTitle.

Transaction Services

Middleware applications for posting transactions with high performance SLA.

• Monetary Transaction - Monetary Posting. Operation: postTransaction.

Each service has a WSDL definition. Demo data also contains information about service interfaces and
endpoints including categorization as certification statuses, availability statuses, and stages of lifecycle.

243User's Guide

Demo data for Registry Console and demos

Demo data describes a multinational company with offices in several locations and HP SOA Systinet
Registry installed in its headquarters division. The headquarters division has two departments: IT and HR.

There are two predefined users, demo_john and demo_jane. The passwords for these users are the same as
their log on names.

Departments are represented as the following Business Entities:

• Headquarters

• HR

• IT

The following taxonomies are used:

demo:hierarchy

Represents the organizational structure (hierarchy). KeyValue is the businessKey of the parent
department.

demo:location:floor

Represents the geographical location of departments. Headquarters is located in a building; IT and
HR are located in different floors of the same building. KeyValue is the number of the floor.

demo:departmentID

Identifies each department uniquely. The value from keyValue can be used as an argument in
WSDL services.

Pre-published services are shown in Table 1 on page 245:

Chapter 3244

Table 1. Pre-published Demo Web Services

DescriptionWSDL ServiceName

stored in the HR department; used by employees to
submit holiday request

YesHoliday request

stored in the IT department; used by employees to
call IT phone support for help with their PCs.

NoPhone support

stored in the HR department, projected to IT
department; takes single argument - departmentId;
used by employees to view a list of employees that
belong to a department.

YesEmployee list

Assertions are an alternate way to represent relationships between business entities. In the HP SOA Systinet
Registry demo data, assertions are created between the Headquarters and HR departments.

The demo data also contains the following resource files located in the REGISTRY_HOME/demos/conf directory:

• EmployeeList.wsdl

• employees.xml

• employees.xsd

• employeesToDepartments.xsl

• departments.xml

• departments.xsd

Business Service Console
Using the Business Service Console, developers, architects and business users can browse the various
perspectives of the registry including business-relevant classifications such as service and interface lifecycle,
compliance or operational/readiness status. They can browse information through business-relevant
abstractions of SOA information such as schemas, interface local names or namespaces. The Business
Service Console also provides easy to use and customizable publication wizards.

245User's Guide

The Business Service Console is designed to be consistent, intuitive and user friendly. This documentation
demonstrates general procedures using typical examples. It has the following subsections:

Overview on page 246 . A general description of the Business Service Console user interface.

User Account on page 249 . User accounts and profiles.

Searching on page 254 . Searching for providers and endpoints.

Publishing on page 259 . Publishing providers and services.

Reports on page 269 . The Reports tab.

Business Service Console Configuration on page 467 . How an administrator can configure the Business
Service Console according to your needs.

Subscription and Notification on page 274 . How to create and manage subscriptions so that you are notified
of changes to data stored in the registry.

Approval Process on page 282 . The process for approval of publications from the perspective of a requestor
or approver.

Overview

Figure 2 illustrates common features of the Business Service Console:

A: Main Menu Tabs. The appearance of the Main menu tabs depends on your user profile.

Home

This is a good place to start navigating the Business Service Console since it contains many links.

Catalog

This tab allows you to list, search and publish entities on HP SOA Systinet Registry.

Tools

This tab allows you to view and manage subscriptions and approval requests.

Report

This tab allows you to view the predefined set of reports.

Chapter 3246

Configure

This tab allows you to configure the Business Service Console.

B: History Path (bread crumbs). This area displays the log of your recent actions. You can return to any
of these previous actions by clicking on the hyperlinks.

C: Side Bar. On some screens a side bar is available showing a list of item types.

D: Hide/Show Side Bar. Click here to hide or show the side bar when available.

E: Main Display Area. Information chosen from the tabs and the tree display is made available in the Main
Display Area.

F: User Profile. The name of the user profile of the currently logged in user.

G: Login/logout. Here you can log in as a particular user or logout and use the Business Service Console
anonymously.

H: Registry Name. The name of the registry is taken from the name of the Operational Business Entity
which represents the UDDI registry.

I: Action Icons. There are two icons in this area. The first one allows you to refresh the page content, while
the second one opens the product documentation page.

J: Reference Links. Links at the bottom of the page. These are always the same and always there if you
need them.

247User's Guide

Figure 2. Example Business Service Console page

Figure shows features available on other screens:

V: Link to an entity. References to entities or other resources appear in many places as links. Generally,
clicking on such a link displays details of the resource. See Entity Details on page 272.

W: Result View Drop Down List. This feature allows you to toggle among business, technical, and common
views. Views differ in formatting and column selection.

X: Filters. You can filter data you wish to display. To perform a filter, select a column name from the Filter
Column drop down list, enter the Filter value, then click the Filter button. You can use wild card characters.

Y: Links for entity selection. This section contains a set of links for selecting entities in the main display
area. If you select all entities or clear (deselect) all entities displayed in the main display area will be selected.
If the display area contains multiple pages, the Select All link will select entities in all pages.

Z: Action Drop Down List. The action drop down list allows you to perform operations with selected
entities. To perform the selected action, click the Go button.

Chapter 3248

Figure 3. Example Business Service Console page

User Account

Before you can publish data to the registry, you must have a HP SOA Systinet Registry account. Follow
these steps to create a user account:

1 Click the Create Account link on the Business Service Console home page. This returns the Create
account page shown in Figure 4.

2 Fill in all fields. Those labeled with an asterisk (*) are required. Your email address may be used later
for enabling your account.

3 Switch to the My profile tab, shown in Figure 5 to specify profile preferences and subscription
preferences.

4 When finished, click Create Account.

249User's Guide

HP SOA Systinet Registry may be configured to require email confirmation in order to enable the
user account. In this case, the registry sends an email confirmation. Follow the instructions in this
email to enable your account.

Figure 4. Create Account

Chapter 3250

Figure 5. User Profile

User Profile Fields

The My Profile tab has the following fields:

• Profile preference - Select your preferred predefined user profile from this drop down list

HP SOA Systinet Registry Administrator can disable selection of user profiles. In this case, a
default user profile appears in a noneditable field.

251User's Guide

• E-mail addresses to send subscription notification - You can enter a list of e-mail addresses to which
email notifications will be sent. These addresses will be defaulted on the Create subscription page.

• Default notification interval - Specify how often email notifications will be sent.

• Default subscription duration - Enter the default subscription lifetime here.

• Maximum Updates to Send - Use this field to limit number of entries sent by an email notification.

• Suppress Empty Notifications - If checked, empty notifications will not be sent.

• Send Raw XML - If checked, email notifications will be sent in XML format.

• Show Updates in Last - If you want to view the updates made in the most recent period, specify the
period here. For example, if you want to view updates made in the last three days, enter 3 in the first
box and select days from the drop down list.

• Maximum Updates to Display - Enter how many items will be displayed .

Predefined User Profiles

HP SOA Systinet Registry contains a list of predefined user profiles which differ in which main menu tabs
will be available to them. Each user profile also contains a definition of default formats for result views.
The registry administrator can adjust these user profiles. See Business Service Console Configuration on
page 467.

The predefined user profiles are:

• Business Expert - Understands problems that needs to be solved and relationships and implications to
other systems within the enterprise. The Business Expert proposes reusable functional components
(future business services) and how these solve particular problems. This user associates both functional
and non-functional requirements with the components. The Business Expert also suggests reuse of
existing services.

• Functional requirements are usually provided as descriptions attached to proposed components.

• Non-functional requirements are usually represented with high-level capabilities and constraints
that are rendered as categories (For example, secure, 24x7 uptime, transactional etc.).

Chapter 3252

• Developer - Implements business services according to description and associated capabilities/constraints
(such as compliance). This user reuses low-level infrastructure services for the implementation.

Business service implementation usually undergoes some QA and testing after development.

• SOA Architect - Re-factors input from the Business Expert. This user performs the following:

• Translates Business Expert deliverables into a set of reusable business services.

• Transforms high-level capabilities/constraints into standards-based capabilities/constraints that can
be enforced and implemented by other roles (developers, administrators and operation managers).

• Defines capabilities/constraints (such as compliance constraints) that enforce standards-compliance
and common implementation and deployment service practices in the enterprise.

• Enforces compliance to selected standards (SOAP, WSDL, UDDI, WS-S, WS-RM etc.).

• Suggests reuse of existing business services.

• Operator - Deploys and manages business services implemented by the Developer into the production
environment. This user also:

• Publishes service endpoint and other runtime data about the deployed service.

• Ensures that the business service is properly managed and secured by tagging the service with the
appropriate category that triggers security and WSM registration processes.

• SOA Administrator - This user performs the same functions as the Operator, but has higher priviledges:

• Publishes service endpoint and other runtime data about the deployed service.

• Ensures that the business service is properly managed and secured by tagging the service with the
appropriate category that triggers security and WSM registration processes.

• Anonymous User Profile - This profile applies to not authenticated users. The profile is a configuration
placeholder for users that did not log in to the Business Service Console

253User's Guide

Searching

The Business Service Console allows you to search HP SOA Systinet Registry. You can search for providers,
services, endpoints and interfaces. The tab also allows you to search for artifacts that have been published
to HP SOA Systinet Registry.

Properties of search criteria are used in conjunction with one another. The search returns all records that
satisfy any of the search criteria property values.

Searching functions are under the Search main menu tab.

Figure 6. Search Tab

We will explain how to search in the following examples:

• Searching for providers

• Searching for endpoints

Searching Providers

To search for providers:

Chapter 3254

1 On the Home main menu tab select the Search providers link in the right display area. The page
shown in Figure 7 appears.

Figure 7. Searching Providers

Enter search criteria. You can enter wild card characters. Then click Find.

2 Search results will be displayed on the page shown in Figure 8.

Figure 8. Searching Providers - Result

255User's Guide

In Figure 8, you can also switch result views using the Display drop down list. The default result view is
configurable for each user profile. See Business Service Console Configuration on page 467 for more
information.

If the result view contains too many records, you can filter which records will be displayed as follows:

1 Select the Filter by on which you wish to apply the filter.

2 Enter the filter string in the Filter value edit box. Wildcards can be used. The "%" character is replaced
by any number of characters. The "_" character is replaced by any single character. The end of the
string is treated as if it has a "%" wildcard suffix so there is no need to add a terminating wildcard.

3 Click the Apply button. The view is updated with only those records matching the filter.

The result view table can view sorted by each column. To sort, just click on the appropriate column header.

Large result lists are divided into multiple pages. The number of records per page can be configured by
administrator. See Paging Limits on page 472 for details.

If you click on the provider's name, provider details will displayed as shown in Figure 9.

Chapter 3256

Figure 9. Searching Providers - Provider Detail

See Entity Details on page 272 for more information.

If you access a detail screen from the result view under the Catalog tab, the entity can be edited or deleted.
You can also request approval of the entity (on a publication registry) or create a subscription.

Searching Endpoints

To search for service endpoints:

1 On the Home main menu tab select the Search endpoints link in the right display area. The page in
Figure 10 is displayed.

257User's Guide

Figure 10. Searching Endpoints

Enter your search criteria. You can enter wild card characters. Then click Find.

2 The search results will be displayed on the page shown in Figure 11.

Chapter 3258

Figure 11. Searching Endpoints - Result

To display complete information about an endpoint, click on the endpoint URL in the result view.
Endpoint details will be displayed. See Entity Details on page 272 for more information.

Publishing

Under the Catalog main menu tab, you can use publishing wizards to publish data to HP SOA Systinet
Registry.

You must be logged in to publish data to HP SOA Systinet Registry. See User Account on page
249 to learn how to register your user account.

To try publishing wizards, you can use the demo data account with the username demo_john and
password demo_john.

259User's Guide

Figure 12. Catalog Tree

You can publish the following data to HP SOA Systinet Registry:

• Providers - A two-step publishing wizard allows you to enter provider's name and description, provider's
taxonomy classification and contact persons.

• Services - A four-step publishing wizard guides you through publishing a service, its interfaces, and its
endpoints.

• Interfaces - A wizard for publishing and republishing service interfaces.

• Resources - This node allows you to start publishing wizards for publishing WSDL files, XML files,
XML schema, and XSL transformations.

We will demonstrate publishing wizards in the following examples:

• Publishing providers

• Publishing services

Publishing Providers

In this section we show, step by step, how to publish a provider. We will create the provider HR Services.
To publish this provider:

Chapter 3260

1 Login to HP SOA Systinet Registry using the link under the Home main menu tab.

2 Click on the Catalog main menu tab. Click on the Providers link in the Catalog tree. Then, click on
the Publish a new provider link in the right-hand display area.

If you do not see the Catalog main menu tab, log in with username demo_john and password
demo_john in order to follow this example.

3 The page shown in Figure 13 appears.

Figure 13. Publish Provider - Step 1

4 Enter the provider name and description. You can also enter the home page URL of the provider. Click
Next.

5 The page shown in Figure 14 appears.

261User's Guide

Figure 14. Publish Provider - Step 2

6 Enter the contact's data, and click Add. This returns a list of contacts you have entered and a blank
New Contact form. Click Finish when you have entered all of your contacts.

The person's name is only a required field when you enter any contact information. It is possible to
create a provider without a contact.

7 On a publication registry, you then have the opportunity to request approval for the new provider as
shown in Figure 15.

Figure 15. Publish Provider - Approval Step

Chapter 3262

For more information see Requestor's Actions on page 282.

Publishing Services

In this section, we will show you how to publish a business service step-by-step. The service will be created
from a WSDL file accessible from the registry server. Note that it is also possible to publish a service without
a WSDL, in which case some additional details must be entered.

The following locations are supported for the WSDL and documents it imports:

• the server filesystem, perhaps on a network drive shared with user workstations;

• an HTTP server, optionally:

• requiring HTTP Basic authentication;

• using SSL (https);

If HP SOA Systinet Registry receives the response 401-Unauthorized when attempting to retrieve the WSDL
or a (direct or indirect) import, you will be prompted for HTTP Basic authentication credentials (a login
name and password). If necessary these will be used to retrieve subsequent imports. This assumes that the
server for each import requires the same credentials or none at all.

HP SOA Systinet Registry will always attempt to retrieve imported documents without credentials
first and will only try sending credentials if this results in a 401-Unauthorized response. A potential
security issue is that a third-party server may be intentionally configured to return the 401-
Unauthorized response to gain knowledge of credentials from HP SOA Systinet Registry.

In an SOA it is desirable for such documents to be widely accessible without unnecessary security
constraints. Furthermore, once published to the registry, the documents will be accessible without
the same credentials. The security policies governing the registry and servers from which WSDL
documents and imports are retrieved, must take these issues of trust into account.

To publish a business service:

1 Login to HP SOA Systinet Registry using the link under the Home main menu tab.

2 Click on the Catalog main menu tab. Click on the WSDL Services link in the Catalog tree. Then,
click Publish a new service in the right-hand display area.

263User's Guide

If you do not see the Catalog main menu tab, log in with username demo_john and password
demo_john.

3 The page appears as in Figure 16:

Figure 16. Publish Services - Step 1

4 From the Provider drop down list, select a provider. Which providers are listed depends on the user's
permissions. The user must have permission to write to the provider. You can use the provider created
in the previous section.

Enter the location of the WSDL file. You can use the WSDL in the demo data located in the
REGISTRY_HOME/demos/conf/employeeList.wsdl. You need to prefix the path with file:// in that case. For
example, under windows the path might be file:///c:/systinet/registry/demos/conf/employeeList.wsdl.

Click Next.

5 If HTTP Basic authentication is required to access the WSDL then you will be presented with the
screen shown in Figure 17.

Chapter 3264

Figure 17. Entering HTTP Basic credentials

Enter credentials and click Next.

6 The page shown in Figure 18 will appear.

265User's Guide

Figure 18. Publish Service - Service Properties

7 You can optionally specify service properties. The service Usage will classify the service by functional
areas. You can enter the service certification status, release date, version and milestone. Then click
Next .

8 The next step allows you to specify service interface properties. You can specify the interface status
and compliance.

Chapter 3266

Figure 19. Publish Service - Interface Properties

Then click Next.

9 The last step of the wizard allows you to specify service endpoint properties.

267User's Guide

Figure 20. Publish Service - Endpoint Properties

Then click Finish.

10 A summary of how the service has been published to HP SOA Systinet Registry will appear, as shown
in Figure 21.

Chapter 3268

Figure 21. Publish Service - Summary

On a publication registry, you then have the opportunity to request approval for the new service as
shown in Figure 21. For more information see Requestor's Actions on page 282.

Reports

Under the Reports main menu tab you can browse various reports. In the reports tree shown in Figure 22
you can select a report which will be shown in the right display area. Most of the reports can be displayed
in different views. The Business Service Console contains the predefined reports shown in Figure 22. If
you see different reports in the tree, they have been reconfigured (Browsable Classification) by an
administrator.

269User's Guide

Figure 22. Reports Tree

The Business Service Console includes the following predefined reports:

• Usage - This report shows services, endpoints, and interfaces categorized by the systinet-
com:taxonomy:usage taxonomy.

• Endpoint status - This report shows endpoints categorized by the systinet-com:taxonomy:endpoint:status
taxonomy.

• Interface status - This report shows interfaces categorized by the systinet-com:taxonomy:interface:status
taxonomy.

• Namespace - This report shows services, endpoints, interfaces, and resources categorized by the uddi-
org:xml:namespace taxonomy.

• Local Name - This report shows services and endpoints categorized by the uddi-org:xml:localName
taxonomy.

• Certification - This report shows services categorized by the systinet-com:taxonomy:service:certification
taxonomy.

Chapter 3270

• Availability - This report shows endpoints categorized by the systinet-com:taxonomy:endpoint:availability
taxonomy.

• WS-I Compliance - This report shows endpoints and interfaces categorized by the ws-i-
org:conformsTo:2002_12 taxonomy.

• Milestone - This report shows services categorized by the systinet-com:versioning:milestone taxonomy.

• Release date - This report shows services categorized by the systinet-com:versioning:releaseDate
taxonomy.

• Version - This report shows services categorized by the systinet-com:versioning:version taxonomy.

Entities

The preceding sections describe how to navigate to entities by Searching on page 254 or with reports. The
Catalog tab provides a data-centric approach. It lists types of entity and allows the user to select a type
before performing an action. One way to perform actions on an entity type is to bring up the Context Menu
by right-clicking on an entity type.

Figure 23. Catalog tab

This section focuses on the entity types listed in the catalog and how they are displayed by the Business
Service Console.

271User's Guide

Entity Details

References to entities and resources on the Business Service Console are generally hyperlinks, allowing
you to navigate to them by various routes. Clicking such a link displays a details page. For example, in
Searching Providers on page 254 the example resulted in the page shown in Figure 24.

Figure 24. Provider Details

Some of the tabs are specific to the entity type. For example, Services in the above example. This section
focuses on general purpose tabs.

Chapter 3272

Table 2. General Purpose Detail Tabs

DescriptionLabel

Basic details relating to the entity, depending on its type.Details

How this entity is classified using taxonomies.Classifications

References to related entities. Note that there is also a Referenced by action to
list other entities that refer to the entity.

References

Information relating to storage of the entity in HP SOA Systinet Registry,
including ownership, creation and modification dates and UDDI keys that
uniquely identify it.

System Info

This tab displays all the information on the other tables on a single screen.View All

Note that the tabs displayed and their content depend on:

• the user's profile. See User Account on page 249;

• customization of the Business Service Console by administrators. See Business Service Console
Configuration on page 467;

Resources

Resources are essentially entities that are documents, identified by a URL. Together with generic features
such as classifications and references, resources are the means by which HP SOA Systinet Registry supports
arbitrary document types. HP SOA Systinet Registry provides special support for the following types of
resource.

273User's Guide

Table 3. Special Resources

DescriptionType

eXtensible markup language documentsXML Documents

XML Stylesheet Language Transformations specifying how an XML
document can be transformed into another document, typically also an
XML document.

XSLT Transformations

XML Schema Document, specifying a particular type of XML document.XSD Documents

WS-Policy documents that can be attached to other entities to specify:Policies

• conformance constraints on entities implementing SOA governance
policies;

• constraints on how a client may use a service, to facilitate
establishment of a contract between a provider and a service user;

Policies attached to entities are visible as references.

Note that all of the above are XML documents. Furthermore, there is a generic type on the Catalog tab with
label Resource. This enables all types of resource, including the above, to be processed using the flexible
generic features of HP SOA Systinet Registry.

Resources are represented as UDDI tModels. This representation is visible on the Registry Console.

Subscription and Notification

Subscriptions are used to alert interested users in changes to structures made in Systinet Registry. The
Business Service Console allows you to create and manage subscriptions for monitoring new, changed, and
deleted entities. The following entities can be monitored: providers, services, interfaces, and endpoints, as
well as resources (WSDL, XML, XSD and XSLT). You can establish a subscription based on a set of entities
in which you are interested or on a specific search query. Users can receive notifications about modified
structures via email messages or they may view the modified entities under the Tools main menu tab in the
My Subscription Results section.

If you wish to create more advanced subscriptions, see Advanced Topics, Publishing Subscriptions
on page 372.

Chapter 3274

In this chapter, we will show you on demo data the following actions:

• Creating Subscriptions on Selected Entities

• Creating Subscriptions from Search Query

• Managing Subscriptions

• Viewing Changed Entities

Subscription On Selected Entities

In this section we will show you how to create subscriptions on selected entities. The following steps guide
you to create a subscription on the HR provider from demo data. You will then be notified about each
modification made to the HR provider, and modifications made to all of its child entities: services, interfaces,
endpoints etc.

1 Under the Catalog main menu tab, click on the Providers branch in the tree menu. Then click on the
link, List all providers.

2 Locate the HR provider and toggle the check box in front of the provider's name.

If the list contains multiple pages, you can navigate between pages and select entities on multiple
pages.

3 From the drop down list labeled Select an Action, located at the bottom of the page, select Subscribe
to Selected Providers as shown in Figure 25.

275User's Guide

Figure 25. Subscription From Providers List

4 Click Go to start the subscription wizard. The page shown in Figure 26 will appear.

You can also create a subscription from an entity detail page.

Chapter 3276

Figure 26. Create Subscription

5 The subscription filter contains a list of the entities you have selected on the previous screen. You can
specify an email address to which notification messages will be sent. If do not want to receive email
notifications, select the option No notifications. Configure the frequency of mail notifications using
the drop down lists labeled Notification Interval.

You can specify the default email address and notification interval values in your profile.

6 Enter additional information on this panel. The default values are entered in your profile. Click Finish
when done.

7 You can review your subscriptions under the Tools main menu tab, section Manage My Subscriptions.
The page shown in Figure 29 will appear.

277User's Guide

Subscription from Search Query

In this section, we will show you how to create a subscription based on a search query. Our subscription
will monitor all certified services, even newly created certified services.

1 Under the Catalog main menu tab, click on the Services branch in the tree menu. Then click on the
link Search services.

On the Search services page, check the certification status certified located under Business properties,
and click Find.

2 The page shown in Figure 27 contain a list of all certified services.

Chapter 3278

Figure 27. Subscription From Services Search

3 From the drop down list labeled Select an Action, located in the bottom of the page, select Subscribe
using this Search as shown in Figure 27. The page shown in Figure 28 will appear.

279User's Guide

Figure 28. Create Subscription

4 The subscription filter contains the search query. You can execute the query to review the query
specification. It is not possible to modify the query, so if you wish to change the query, click Cancel
button and recreate the steps above.

5 To review your subscriptions, select the Tools main menu tab, and click on Manage My Subscriptions.
The page shown in Figure 29 will appear.

Manage Subscriptions

You can manage your subscription when you click on Manage My Subscriptions under the Tools main
menu tab. On the Manage my subscription page shown in Figure 29, you can edit, delete or view
subscription detail information.

Chapter 3280

Figure 29. Manage Subscriptions

View Changed Entities

There are two options for viewing changed entities. If you have specified an email address during subscription
creation, notification will be sent to you by email. The other option is to review changes under the Tools
main menu tab. Click on the Providers link. If the HR provider has been modified and you created the
subscription described in this chapter, you will see the page shown in Figure 30

Figure 30. View Changes

281User's Guide

Approval Process

The approval process includes two types of users:

• requestor - A user of the publication registry who can ask for the approval of data for promotion. Every
user can ask for approval, but to have data considered for promotion, a user must have an administrator-
assigned approver.

• An approver is a user or group given the ability to review published information on the publication
registry and grant or deny approval to promote that information to the discovery registry. If the approver
is a group then any of its members may approve or reject approval requests.

We recommend reading Approval Process in Systinet Registry on page 234 to become familiar with
approval process.

In this chapter, we will describe:

• Requestor's actions

• Create and submit request

• Manage Requests

• Cloning Requests

• Approver's actions

• Approve/Reject request

• View Approval History

Requestor's Actions

• Create and submit request

• Manage Requests

• Cloning Requests

Chapter 3282

Create and Submit Request

This section describes the steps to request approval of entities. This can be done in two ways:

1 When an entity is published on a publication registry, the final screen provides a button to request
immediate approval of the entity and related entities for promotion to the discovery registry. See
Publishing on page 259;

2 For published entities it is possible to request their promotion to the discovery registry or demotion
from the discovery registry;

The procedure below uses the second of these as an example. The first case differs in that it is not possible
to demote newly published entities and so the user is not presented with this option. The procedure has
minor differences in the first few steps.

You need to publish entities before following this procedure. The first few steps request promotion of an
existing provider as an example. The entities are those in sections Publishing Providers on page 260 and
Publishing Services on page 263. These sections also explain the other way of starting the procedure.

1 On the Catalog tab, click on an entity type such as Providers in the tree menu. To select an existing
provider click My providers and the existing providers are displayed as in Figure 31.

283User's Guide

Figure 31. Select Items for Promotion

2 Toggle the check box in front of the provider's name, select Promote from the action drop down list
located in the bottom of the page, and then click Go. A page appears like that shown in Figure 32.

Chapter 3284

Figure 32. Add Items to Approval Request

3 You can see which entities will be added to the approval request including the requested entity and
entities related to it. If the entity previously existed then you can specify whether you are requesting

285User's Guide

promotion to the discovery registry or demotion (deletion) from the discovery registry. You are not
given this choice if you are requesting approval immediately following publication.

In this example, an attempt to promote some entities and demote others would probably fail because
they are related. However, you can select more than one entity in the catalog (Figure 31), promote
entites related to some of them and demote the rest.

4 Further down you can choose to add the entities to a new approval request, in which case you must
enter a name. Alternatively, if there are other pending requests, you can click Add to existing request
and select one from the drop-down list.

5 Finally you can choose to Submit for immediate approval, in which case you can enter a message
for the approver. Alternatively you can save the request. Then click OK.

6 If you have submitted the request for immediate approval, automatic context checking is performed.
If it fails you may be presented with a page like Figure 33:

Chapter 3286

Figure 33. Recover Approval Request

You can then choose whether to recover by adding the suggested entities to the request.

7 Otherwise you are presented with a page displaying unsubmitted approval requests as shown in
Figure 34.

287User's Guide

Figure 34. Unsubmitted Request

8 Click on a request in the list to display its details as shown in Figure 35. From here you can enter a
message for the approver and click Submit Request for Approval. Click on the Back button to return
to the list.

Chapter 3288

Figure 35. Enter Message for Approver

9 To view your submitted approval request, click on the Submitted Approval Requests link under the
Tools main menu tab. A page similar to that shown in Figure 36 will appear.

289User's Guide

Manage Requests

You can manage your approval requests under the Tools main menu tab. On this tab, there are the following
links for managing your approval requests:

• Unsubmitted Approval Requests - The request work list holds requests that you have not yet submitted
to an approver. You can add multiple types of entities into a single approval request. The work list is
also a place to which you can restore canceled requests or requests for editing and re-approval. The
request work list is persistent. You can work with requests in the work list after you log out of the
Business Service Console.

• Submitted Approval Requests - The Submitted Approval Requests link will display a page where
you can see your submitted approval request. These requests have been submitted but have not yet been
approved or rejected. You can cancel a pending request or remind approver about the request. See
Figure 36.

• Completed Approval Requests - The Completed Approval Requests link will display a page where
you can see all your requests that have been approved or rejected. You can delete a request from this
list or use the request for to create a new request. For more information, see Cloning Requests on page
291.

Figure 36. Submitted Approval Requests

Chapter 3290

Cloning Requests

You can create a new approval request from an existing approval request. We call this operation cloning.

To clone a request, follow these steps:

1 Click on the Completed Approval Request link under the Tools main menu tab. The page shown in
Figure 37 is returned.

Figure 37. Completed Approval Requests

2 Select the approval request and click on the Clone icon in the Action column. The page shown in
Figure 38 will appear. Once you click on the Yes button, the new approval request will be created in
your request work list with the name starting with The clone. Name of the original request. The cloned
request contains the same entities as the original request.

291User's Guide

Figure 38. Clone Request

Approver's Actions

An approver can perform the following actions:

• Approve/Reject request

• View Approval History

Approve/Reject Request

To approve or reject an approval request:

1 Click on the Approvals to Administer link under the Tools main menu tab. The page shown in
Figure 39 will appear.

Chapter 3292

Figure 39. View Requests to Administer

2 If you click on the request name, you will see the request's detailed information including a list of
entities the requestor wants to be promote. To approve or reject the request, click on an appropriate
button icon in the Action column. If you click Approve, the page shown Figure 40 will appear.

293User's Guide

Figure 40. Approve Request

Chapter 3294

3 You can review all entities in the request, see request history, and optionally enter a message for the
requestor. Once you click Approve, an email notification will be sent to the requestor and entities
listed in the request will be promoted to the discovery registry.

View Approval History

Approvers have the ability to see all approval requests they have approved or rejected. To access the approval
history, click on the Approval Admin History link under the Tools main menu link. The Approval Admin
History page shown in Figure 41 will appear.

Approvers are not allowed to delete any approval requests, only requestors can delete their approval
requests.

Figure 41. Approval Admin History

Advanced Topics

Data Access Control: Principles

This chapter describes the entity access control mechanism, which defines permissions for users and groups
to access structures in HP SOA Systinet Registry

There are two types of user groups: public and private. Both public and private groups are visible to all
users in the registry, meaning that all users are able to see which groups exist. Public and private groups

295User's Guide

differ in that members of public groups are visible to all users of the registry whereas members of private
groups are visible only to the owner of the group.

There are other permissions in HP SOA Systinet Registry used to control access to APIs and their
operations. API permissions are relations between the user or group and operation only. Please
see Permissions: Principles on page 485 in the Administration Guide for details.

Permission in this chapter is limited to Data Access Permission - ACL permission.

We use the following terms with regard to ACL permissions:

• Party. A user or group of users

• Core Structure. One of the major UDDI data structures: businessEntity, businessService,
bindingTemplate or tModel

• Action. An operation: "find", "get", "save", or "delete" on the entity plus special action "create", which
means to save sub-entities. (For example, a user with the "create" permission on a businessService can
save new bindingTemplates under the businessService, but can not update whole businessService.) Note
that the "create" permission makes sense only on businessEntity and businessService, because
bindingTemplates and tModels have no sub-entities.

Standard UDDI access control defines that only the owner of a UDDI core structure can update or delete
it. Every user can find or get the structure (with the exception that deleted/hidden tModels are visible for
get_tModelDetail but not for the find_tModel operation). ACLs (Access Control Lists) added to a UDDI entity
can override standard UDDI access control as there are several cases in which standard access control is
not sufficient.

Examples:

• When a Web service is under construction, its UDDI representation (businessService and
bindingTemplate) should be visible only to members of the development team. Arbitrary users should
not be able to obtain it in the result set of get_serviceDetail or find_service operations. Moreover, a
get_businessDetail or find_business operation result, which includes a superior businessEntity, should
not give away the existence of the businessService.

• On the other hand when the server (where the service prototype is running) goes down, the administrator
should be able to deploy the Web service on another server and repair the service endpoint in the
accessPoint within its bindingTemplate, despite not being the owner of the bindingTemplate.

Chapter 3296

Explicit Permissions

Explicit permission gives (positive permission), or revokes (negative permission), access rights to a party
to process an action on a specified entity.

Explicit permissions are saved with the entity as special keyedReferences in the categoryBag. For more
information, please see Setting ACLs on UDDI v3 Structures and Setting ACLs on UDDI v1 and v2
Structures below.

Permission Rules

When no explicit permission is set for the find/get action on an entity, everyone can find/get it. When no
explicit permission is set for the save/delete action on an entity, only owner of the entity can save/delete it.
This is a standard UDDI access control. When an explicit Permission is set for an action, a completely
different access control is used which is defined by the following rules:

1 Owner always has full control. The owner can always process an operation over an owned entity,
even if the permission is explicitly revoked.

2 Negative permission for a user overrides positive permission for a user.. Example: User U has
explicit positive permission on businessEntity BE for the get action. However, if U also has explicit
negative permission on BE for action get, then an attempt to process get_businessDetail by user U on
the BE will fail.

3 Negative permission for group overrides positive permission for group.. Example: User U has
belongs to groups G1 and G2. Group G1, has explicit positive permission on the BE for action get.
Group G2, has explicit negative permission on the BE for action get. Because of this negative permission,
any attempt to process get_businessDetail by user U on the BE will fail.

4 Permission for user has more weight than permission for group. Example: User U has explicit
positive permission on businessEntity BE for action get. Group G, to which U belongs, has explicit
negative permission on the BE for action get. User U can process get_businessDetail on the BE, even
though U belongs to group G.

5 The owner of an entity can always process get_XXX on a direct sub-entity. Example: User U1 owns
businessEntity BE. U1 (as owner) grants "create" permission to user U2. Then U2 saves new
businessService BS with bindingTemplate BT under BE. When user U1 executes get_businessDetail,
U1 obtains BE with BS but without BT, because BT is not a direct sub-element of the BE.

297User's Guide

Motivation: This rule ensures that the owner of an entity will see all direct sub-entities. The number
of sub-entities is limited. By default, a user can save only one businessEntity, four businessServices
per businessEntity, two bindingTemplates per businessService and 10 tModels. Suppose that user U1
has businessEntity BE. User U2 can save businessServices in BE (permission "create" on BE). If U2
has already saved four businessServices under BE, user U1 cannot, therefore, save a new
businessService. Therefore, the owner of an businessEntity should see why the limit is reached.

6 Delete and Save positive permissions are inherited from parent entities and override negative
permissions on sub-entities. Example: User U has "delete" permission on businessEntity BE. Then
U can execute the delete_business operation, which deletes the BE with all its businessServices and
bindingTemplates, even if some of these sub-entities have negative permission for deletion by the user
U.

Motivation: Sub-entities can not survive parent entity deletion. This rule ensures that a user who can
save/delete an entity can do this despite not having sufficient privileges on sub-entities.

7 To perform update by save_XXX operation, it is necessary to have both "save" and "get"
permissions. Example: User U1 has "save" and "get" permissions on businessEntity BE, but he is not
the owner. User U2 owns the BE and saves businessService BS1, which has "get" permission for U1,
and businessService BS2 without any permissions. Both BS1 and BS2 are created under BE. U1 gets
BE with only BS1 and updates BE in this way: U1 can add a category and save BE again without BS1.
In fact, when BE is updated, BS1 is deleted but BS2 remains.

Example:

User U1 owns a businessEntity BE. The user U1 defines the explicit get allowed permission to user group
G1. Everyone can find the BE, because there is no explicit permission for find and therefore the standard
UDDI access control is used. On the other hand, only user U1 (as the owner) and all users from group G1
can get the BE.

Composite Operations

BusinessService BS can be moved from one businessEntity BE1 to other businessEntity BE2. By performing
the save_service operation on BS, where BS has updated businessKey to point to the BE2. To perform this
action, the party must have permission to save BE1, BE2, and BS, because all these entities are changed.

Similarly bindingTemplate BT can be moved from businessService BS1 to businessService BS2. The party
who moves it must have save permission on BS1, BS2 and BT.

Chapter 3298

BusinessService BS hosted in businessEntity BE1 can be projected into businessEntity BE2. The party who
projects BS must have save permission on BE2.

Pre-installed Groups

ACL logic considers some special pre-published abstract groups during permission evaluation. These abstract
groups allow a publisher to give a permission to a specific set of HP SOA Systinet Registry users.

system#everyone

Holds all users of HP SOA Systinet Registry (both users who have and who do not have a HP SOA
Systinet Registry account, authenticated and non-authenticated). If this group is used, all users
always have the specified permission to the associated data.

system#registered

Holds all authenticated HP SOA Systinet Registry users. Every user who is authenticated (that is,
who has an account and has logged into the registry) is a member of this group. If this group is
used, all authenticated users always have the specified permission to the associated data.

system#intranet

Holds users who access HP SOA Systinet Registry via a local intranet. (This group is reserved for
a future release. There is no implementation behind it as of HP SOA Systinet Registry 6.5)

ACL tModels

ACL permissions are represented as tModels as detailed below:

v2 tModelKeyv3 tModelKeyACL
Permission

uuid:aacfc8e0-dcf5-11d5-b238-cbbeaea0a8d4uddi:systinet.com:acl:find-allowedfind allowed

uuid:ced3c160-dcf5-11d5-b238-
cbbeaea0a8d4

uddi:systinet.com:acl:find-deniedfind denied

uuid:f9977a90-dcf5-11d5-b238-
cbbeaea0a8d4

uddi:systinet.com:acl:get-allowedget allowed

uuid:09e202d0-dcf6-11d5-b238-
cbbeaea0a8d4

uddi:systinet.com:acl:get-deniedget denied

uuid:19885bd0-dcf6-11d5-b239-
cbbeaea0a8d4

uddi:systinet.com:acl:save-allowedsave allowed

299User's Guide

v2 tModelKeyv3 tModelKeyACL
Permission

uuid:2a25e610-dcf6-11d5-b239-
cbbeaea0a8d4

uddi:systinet.com:acl:save-deniedsave denied

uuid:37f44ac0-dcf6-11d5-b239-
cbbeaea0a8d4

uddi:systinet.com:acl:delete-alloweddelete
allowed

uuid:4e51d8f0-dcf6-11d5-b239-
cbbeaea0a8d4

uddi:systinet.com:acl:delete-denieddelete denied

uuid:5bc32980-dcf6-11d5-b239-
cbbeaea0a8d4

uddi:systinet.com:acl:create-allowedcreate
allowed

uuid:6d0be7e0-dcf6-11d5-b239-
cbbeaea0a8d4

uddi:systinet.com:acl:create-deniedcreate denied

Setting ACLs on UDDI v3 Structures

In UDDI v3, explicit ACL permission is saved in a special keyedReferenceGroup having the tModelKey
uddi:systinet.com:acl. This keyedReferenceGroup can contain only keyedReferences to ACL tModels. Only
the terms "user" and "group" are allowed in the included keyName, and the keyValue must contain the
name of the user or group (according to keyName value).

For example, user demo_john can save (update) following businessEntity even if he is not the owner:

Example 1: Setting ACLs - v3

<businessEntity xmlns="urn:uddi-org:api_v3">
 ...
 <categoryBag>
 ...
 <keyedReferenceGroup tModelKey="uddi:systinet.com:acl">
 <keyedReference tModelKey="uddi:systinet.com:acl:save-allowed"
 keyName="user" keyValue="demo_john"/>
 ...
 </keyedReferenceGroup>
 </categoryBag>
</businessEntity>

Chapter 3300

Setting ACLs on UDDI v1/v2 Structures

Under versions 1 and 2 of UDDI, explicit ACL permission is saved as a special keyedReference in the
categoryBag. This keyedReference refers to one of the tModels representing ACL permissions. Only the
terms "user" and "group" are allowed in the included keyName and the keyValue must contain the name
of the user or group (according to the keyName value).

For example, user demo_john can save (update) following businessEntity even if he is not the owner:

<businessEntity ...>
 ...
 <categoryBag>
 <keyedReference tModelKey="uuid:19885bd0-dcf6-11d5-b239-cbbeaea0a8d4"
 keyName="user" keyValue="demo_john"/>
 ...
 </categoryBag>
</businessEntity>

ACL permissions cannot be set on the bindingTemplate structure because this structure has no
categoryBag in UDDI v1/v2.

Publisher-Assigned Keys

Under UDDI v1 and v2, keys are generated automatically when a structure is published. Generated keys in
these versions are in form (uuid:)8-4-4-4-12 where the numbers indicate a count of hexadecimal values. For
example, uuid:327A56F0-3299-4461-BC23-5CD513E95C55. Note that the prefix "uuid:" was only used in tModelKeys.

In UDDI v3 users may assign keys when saving a structure for the first time. These Keys can be 255
characters long and can contain numbers and Latin characters, so that the key itself describes what the UDDI
structure means. For example, the key uddi:systinet.com:uddiRegistry:demo:businessService has the following
elements:

• The prefix uddi: is a schema much like http: or ftp: and must be always present.

• systinet.com is an optional host name.

• The elements uddiRegistry, demo, and businessService represent a hierarchy of domains. The domain demo
is a subdomain of uddiRegistry.

301User's Guide

This description is sufficient for our purposes for now. For a more precise description of keys, please see
the UDDI v3 Specification [http://uddi.org/pubs/uddi-v3.00-published-20020719.htm#_Toc42047261].

Generating Keys

The key generator tModel is a tModel with a key in the form domain:keygenerator. This tModel permits its
owner to save structures with keys in the form domain:string. For example, the tModel
uddi:systinet.com:uddiRegistry:demo:keygenerator allows its owner to publish structures with keys like:

• uddi:systinet.com:uddiRegistry:demo:businessService

• uddi:systinet.com:uddiRegistry:demo:b52

These are derived keys of the uddi:systinet.com:uddiRegistry:demo domain.

With one exception, the key generator tModel does not allow the user to save keys from subdomains such
as uddi:systinet.com:uddiRegistry:demo:businessService:exchangeRate, that is, derived keys of
uddi:systinet.com:uddiRegistry:demo:businessService.

The key generator tModel, however, permits the user to save the key generator for each direct subdomain.
For example, the user can save uddi:systinet.com:uddiRegistry:demo:businessService:keygenerator. After
creating this second key generator, the user is permitted to save structures with keys of the
uddi:systinet.com:uddiRegistry:demo:businessService domain, such as
uddi:systinet.com:uddiRegistry:demo:businessService:exchangeRate.

To generate keys for a domain, the user must own the domain's key generator tModel. Only the
administrator can save structures with assigned keys without having the key generator tModel. To
enable this process for other users, the administrator must save the domain's tModel and then
change its ownership to the user via custody transfer. For more information, please see Publish
Custody Transfer on page 378.

Affiliations of Registries

The rules above ensure that two users can not create structures with the same key. A complicated situation
arises when one user wants to copy UDDI structures from one registry to another while preserving the keys
of those structures. There are two problems:

1 The key of the copied structure must not exist on the second registry. The key must be unique - this is
required by the UDDI specification.

Chapter 3302

http://uddi.org/pubs/uddi-v3.00-published-20020719.htm#_Toc42047261

2 The user must be allowed to save a structure with a specified key on the second registry.

The Affiliated registries mechanism solves both problems. An affiliation is a relationship between two
registries. The first registry gives up generation of keys for a certain domain and transfers this privilege to
the second registry. This ensures that keys from both registries are unique.

In the examples below we name the two registries 'master' and 'slave'. Moreover there are three
people:

• The person 1 is an administrator of the master registry, this account is called master-admin.

• The person 2 is an administrator of the slave registry (account slave-admin) and a common
user on the master registry (account master-user2).

• The person 3 is a common user on slave registry (account slave-user3) and a common user on
master registry (account master-user3).

Affiliation Setup

To set up an affiliation:

1 The administrator of the slave registry (slave-admin) registers a user account on the master registry
(master-user2).

2 Master-user2 requests a key generator tModel from the administrator of the Master registry.

3 This administrator, master-admin, creates the key generator tModel and transfers it to the master-user2
account using custody transfer.

4 Person 2 manually copies the key generator tModel to the slave registry (his slave-admin account has
permission to assign any key) and sets up the slave registry to generate all keys based on this key
generator. For more information, please see Node on page 462 in the Administrator's Guide.

All keys generated by the slave registry or its users will be from the domain or some subdomain defined
by the key generator.

Copying Structures with Key Preservation

Given key should refer to the same structure no matter which registry the structure is in.

303User's Guide

Suppose that slave-admin creates a key generator tModel for slave-user3 and this user uses the key generator
to generate a key for a structure in the slave registry. To copy the structure to the master registry, this key
generator tModel must exist on both registries.

To copy a structure from the slave to the master registry:

1 The slave-user3 must ask person 2 (slave-admin) to copy the second key generator, because only the
holder of the account master-user2, as owner of the first key generator, can do this on the master
registry.

2 Then master-user2 transfers ownership of the second key generator in the master registry to master-
user3. Now master-user3 can copy the structure while preserving the generated keys.

Range Queries

HP SOA Systinet Registry's range queries functionality allows you to search UDDI entities with the ability
to use comparative operators (>, <) for matching keyValues in keyedReferences. There must be a defined
type of keyValues in the taxonomy which defines the ordering. The following ordering types are supported:
string, numeric, and custom. KeyedReferences in find_XXX queries are extended by a list of find qualifiers. Do
not mix with find qualifiers of the whole query. Find Qualifiers are used for specifying comparison operators.

See Find Business by Categories on page 348 how to search UDDI data structures using range queries with
Registry Console.

The HP SOA Systinet Registry implementation of range queries goes beyond the current UDDI
v3 specification since the specification does not define this functionality.

The following findQualifiers are supported:

• equal - the default find qualifier. If no one from the group of (equal, greaterThan, lesserThan qualifiers)
is specified. This is done due to the backward compatibility with a standard UDDI. When used, the
keyedReference from the request matches to the all keyedReferences from the database with the same
tModelKey and the same keyValue.

• greaterThan - When used, the keyedReference from the request match to the all keyedReferences from
the database with the same tModelKey and a greater keyValue.

• lesserThan - When used, the keyedReference from the request match to the all keyedReferences from
the database with the same tModelKey and a lesser keyValue.

Chapter 3304

• notExists - This findQualifier has validity for the whole keyedReference (not just for keyValues). An
entity matches the find request with notExists findQualifier if and only if the specific keyedReference
does not exist in its categoryBag. This findQualifier can be arbitrarily combined with greaterThan,
lesserThan and equal findQualifiers. If the notExists findQualifier is used alone, then the equal findQualifier
is considered automatically.

Comparators can be combined:

• greaterThan and equal find qualifiers can be used together with the keyedReference match to the all
keyedReferences with the same tModelKey and a greater or equal keyValue (>=).

• lesserThan and equal find qualifiers can be used together with the keyedReference match to the all
keyedReferences with the same tModelKey and a lesser or equal keyValue (<=).

• lesserThan and greaterThan find qualifiers can be used together with the keyedReference match to the all
keyedReferences with the same tModelKey and a not equals keyValue (<>).

• Combination of lesserThan, greaterThan and equal is not allowed.

Examples

The following examples demonstrate the usage of range queries. Suppose that the keyedReferences are
placed in the category bag of the find_business request.

greaterThan. Only business entities that have a keyedReference with tModelKey equal to tmKey, and a
keyValue that is greater than kv, in their categoryBags are returned.

<keyedReference tModelKey="tmKey" keyValue="kv" keyName="kn">
 <findQualifiers>
 <findQualifier>greaterThan</findQualifier>
 </findQualifiers>
</keyedReference>

greaterThan and lesserThan. Only business entities that have keyedReference with tModelKey that is
equal to tmKey, and a keyValue not equal to kv, in their categoryBags are returned.

<keyedReference tModelKey="tmKey" keyValue="kv" keyName="kn">
 <findQualifiers>
 <findQualifier>greaterThan</findQualifier>

305User's Guide

 <findQualifier>lesserThan</findQualifier>
 </findQualifiers>
</keyedReference>

notExists. Only business entities that do not have a keyedReference with a tModelKey equal to tmKey,
and a keyValue equal to kv, in their categoryBags are returned.

<keyedReference tModelKey="tmKey" keyValue="kv" keyName="kn">
 <findQualifiers>
 <findQualifier>notExists</findQualifier>
 </findQualifiers>
</keyedReference>

notExists and greaterThan. Only business entities that do not have a keyedReference with a tModelKey
equal to tmKey, and a keyValue greater than kv, in their categoryBags are returned.

<keyedReference tModelKey="tmKey" keyValue="kv" keyName="kn">
 <findQualifiers>
 <findQualifier>notExists</findQualifier>
 <findQualifier>greaterThan</findQualifier>
 </findQualifiers>
</keyedReference>

notExists, greaterThan, equal. Only business entities that do not have a keyedReference with a tModelKey
equal to tmKey, and a keyValue greater than or equal to kv, in their categoryBags are returned.

<keyedReference tModelKey="tmKey" keyValue="kv" keyName="kn">
 <findQualifiers>
 <findQualifier>notExists</findQualifier>
 <findQualifier>greaterThan</findQualifier>
 <findQualifier>equal</findQualifier>
 </findQualifiers>
</keyedReference>

See also Demos, Advanced Inquiry - Range Queries on page 928.

Taxonomy: Principles, Creation and Validation

The UDDI Version 3 Specification [http://www.oasis-open.org/committees/uddi-
spec/doc/tcspecs.htm#uddiv3] provides tools for setting the context on all four major UDDI structures:
businessEntities, businessServices, bindingTemplates and tModels. This document covers basic principles
and management of this feature - the taxonomies.

Chapter 3306

http://www.oasis-open.org/committees/uddi-spec/doc/tcspecs.htm#uddiv3

What Is a Taxonomy?

A taxonomy, or value set in the terminology of the UDDI specifications, is a tModel which can be used in
categoryBags, identifier bags, or Publisher Assertions. This tModel must be in a specific form, so that HP
SOA Systinet Registry can recognize it as a taxonomy. The tModel must be categorized with the type of
taxonomy and, optionally, with information concerning whether and how to validate the values in
keyedReferences.

Taxonomy Types

The UDDI specification distinguishes four types of taxonomies: categorizations, categorizationGroups,
identifiers, and relationships.

Categorizations

Categorizations can be used in all four main UDDI structures. They are used to tag them with
additional information, such as identity, location, and what the taxonomy describes.

CategorizationGroups

New in UDDI version 3, CategorizationGroups group several categorizations into one logical
categorization. For example, a geographical location comprised of two categorizations: longitude
and latitude.

Identifiers

Used in businessEntities and tModels, Identifiers reference published information.

Relationships

Used only in Publisher Assertions, Relationships define the relation between two businessEntities.

Validation of Values

The publisher of a taxonomy can decide whether the values in keyedReferences within the taxonomy will
be checked or not.

Unchecked Taxonomies

HP SOA Systinet Registry does not perform any checks on values used in keyedReferences associated with
unchecked taxonomies. Unchecked taxonomies are those that are marked as such, or those that are not
marked as checked. These two states are equivalent.

307User's Guide

Checked Taxonomies

If a taxonomy is checked, HP SOA Systinet Registry executes its validation service for every keyedReference
in which the checked taxonomy is used. The validation service may check the expected syntax of values,
such as the format of a credit card or ISBN number. Taxonomies like the ISO 3166 Geographic taxonomy,
which permits only existing countries, check the existence of the value against a list. A validation service
may even permit or deny values depending on the context in which they are used.

HP SOA Systinet Registry Requirements

HP SOA Systinet Registry conforms to the technical note Providing A Value Set For Use In UDDI Version
3 [http://oasis-open.org/committees/uddi-spec/doc/tn/uddi-spec-tc-tn-valuesetprovider-20030212.htm]. To
create a checked taxonomy, you must:

1 Prepare and deploy a validation service which implements the Valueset_validation API.

2 Publish the tModel categorized as a checked taxonomy and mark it as unvalidatable.

3 Publish the bindingTemplate that implements the Valueset_validation API and the taxonomy's tModel.

4 Republish the tModel, without the unvalidatable categorization, and with the categorization uddi-
org:validatedBy pointing to the bindingTemplate.

HP SOA Systinet Registry requires that the bindingTemplate be published in the businessService of the
Operational Business Entity. If this businessService is not part of the Operational Business Entity, the
checked taxonomy will not be validatable and thus it may not be used in keyedReferences. This implies
that only the HP SOA Systinet Registry administrator may publish checked taxonomies.

The bindingTemplate must contain an accessPoint with its useType attribute set to "endPoint".

If the accessPoint starts with the prefix class:, then the remaining part is assumed to contain the fully
qualified name of the class that implements interface
org.systinet.uddi.client.valueset.validation.v3.UDDI_ValueSetValidation_PortType and is accessible by the
HP SOA Systinet Registry classloader.

If the accessPoint does not start with the prefix class:, it is assumed to be the URL of the Web service
implementing the Valueset_validation API and a stub is created for this Web service.

Chapter 3308

http://oasis-open.org/committees/uddi-spec/doc/tn/uddi-spec-tc-tn-valuesetprovider-20030212.htm
http://oasis-open.org/committees/uddi-spec/doc/tn/uddi-spec-tc-tn-valuesetprovider-20030212.htm

Internal Validation Service

HP SOA Systinet Registry contains a special validation service called the Internal Validation Service. This
service is used by checked taxonomies that declare a list of available values published using the Systinet
Taxonomy API.

Types of keyValues

The creator of the taxonomy must specify types of keyValues by assigning the appropriate comparator
reference (comparator tModel) of the systinet-com:isOrderedBy taxonomy to the categorization taxonomy
you want to use to categorize a UDDI entity. The following types of key values types are supported:

• string - keyValues are treated as string values. If keyValues type is unknown then keyValues are treated
as strings. The maximum length is 255 characters.

• numeric - keyValues are treated as decimal numbers. The value can have maximum 19 digits before the
decimal point and maximum 6 digits after the decimal point.

• custom - keyValues must be transformed to string or numeric values using a transformation service.
Please see Custom Ordinal Types on page 310 for more information.

For example, the tModel of the categorization taxonomy with numeric key values must have the following
keyedReference in its category bag:

<keyedReference tModelKey="uddi:systinet.com:isOrderedBy"
 keyValue="uddi:systinet.com:comparator:numeric"/>

309User's Guide

Figure 42. Example of Numeric Categorization

Figure 42 shows how the demo:location:floor taxonomy from Demo data can be assigned numeric key values.

If you change type of keyValues of the taxonomy and there are entities in the HP SOA Systinet
Registry that were already categorized with the taxonomy, the HP SOA Systinet Registry
administrator must execute the task Transform keyed references. The button for executing this
task is located in the Registry Console under the Manage tab, Registry Management link. See
Administrator's Guide, Accessing Registry Management on page 400

• To learn how to make this assignment using the Registry Console , see User's Guide, Adding a Category
on page 369.

• See User's Guide, Searching on page 345 how to search UDDI data structures using range queries with
Registry Console.

• See Administrator's Guide , Editing Taxonomies on page 422 how to edit taxonomy type.

Custom Ordinal Types

You can define your custom ordinal types. To demonstrate possible extensions, HP SOA Systinet Registry
contains two demo comparators:

• systinet-com:comparator:date

Chapter 3310

• systinet-com:comparator:stringToLowerCase

Let's assume you want to create a taxonomy with date values in keyValues. You must mark the taxonomy
tModel (that is, add the following keyedReference into its categoryBag) by <keyedReference
tModelKey="uddi:systinet.com:isOrderedBy" keyValue="uddi:systinet.com:comparator:date"/>. It is quite easy
because there is a demo comparator for date in the registry. Imagine the date comparator is not present.
Take the following steps to create it in the registry:

1 Create a transformer service that transforms the date value into a string or numeric value. The
transformer service must implement org.systinet.uddi.client.transformer.kr.TransformerKeyedReferenceApi
and add this class to the HP SOA Systinet Registry class path.

2 Create a new comparator tModel for date. The tModel must be categorized as a comparator using the
systinet-com:comparator taxonomy. The comparator must refer to the transformer service. This reference
is specified by the taxonomy IsTransformedBy (where "uddi:cba104c0-fb5c-11d8-8761-eb2505508761"
is the key of the bindingTemplate with the specification of the transformer service.

If you change implementation of the of the transformer service of the taxonomy and there are
entities in the HP SOA Systinet Registry that were already categorized with the taxonomy, the HP
SOA Systinet Registry administrator must execute the task Transform keyed references. The
button for executing this task is located in the Registry Console under the Manage tab, Registry
Management link. See Administrator's Guide, Accessing Registry Management on page 400

Figure 43 shows the tModel references for date categorization ordering. It describes a purchase order
document that has been mapped to HP SOA Systinet Registry via XML-to-UDDI functionality, and then
categorized by the acceptancedate taxonomy. The categorization taxonomy must refer to the comparator
tModel uddi:systinet.com:comparator:date that references a bindingTemplate with the location of the date
transformation service.

311User's Guide

Figure 43. Example of Custom Categorization (date)

The transformer service is called whenever the appropriate keyedReference is processed. If any entity
contains the keyedReference with a taxonomy tModel whose type is custom then the transformer service
is called to discover the correct (that is, transformed) keyValue of the keyedReference. Such transformed
values are stored into the database. If you want to find entities by this keyedReference (the keyedReference

Chapter 3312

with the same taxonomy tModel), the service is called again to get the transformed value. Transformed
values are used for the saving and searching of keyedReferences.

See Administrator's Guide , Editing Taxonomies on page 422 how to edit taxonomy type.

Taxonomy API

This section demonstrates the basics of taxonomy API and taxonomy persistence format. A comprehensive
description of the Taxonomy API can be found in the Developer's Guide, Taxonomy on page 548.

For clarity, we use an XML representation, but you can achieve the same results with Java objects.

<taxonomy xmlns="http://systinet.com/uddi/taxonomy/v3/5.0"
 xmlns:uddi="urn:uddi-org:api_v3"
 check="false">
 <tModel tModelKey="uddi:systinet.com:demo:myTaxonomy">
 <uddi:name>My taxonomy</uddi:name>
 <uddi:description>Category system</uddi:description>
 </tModel>
 <compatibilityBag>
 <compatibility>businessEntity</compatibility>
 </compatibilityBag>
 <categorizationBag>
 <categorization>categorization</categorization>
 </categorizationBag>
</taxonomy>

Each taxonomy, in order to be saved, requires a valid tModel. While it must contain a tModelKey and a
name, you do not need to set the content of the categoryBag.

• The Taxonomy attribute check determines whether the taxonomy will be checked or not.

• The compatibilityBag is an interface to Systinet's uddi:systinet.com:taxonomy:categorization taxonomy,
which is used to limit usage of the selected taxonomy within the four main UDDI structure types. In
this way you can enforce that your taxonomy can be used only within the UDDI structures of your
choice and not in others.

• The categorizationBag is used to declare the type of the taxonomy, for example, whether it is a
categorization, categorizationGroup, identifier or relationship taxonomy.

313User's Guide

Note that values may be combined.

Let's enhance the previous example and convert the taxonomy from unchecked to checked. Checked
taxonomies must contain Validation. In this example, the taxonomy is checked by the Custom Validation
Web service located at http://www.foo.com/MyValidationService.wsdl.

<taxonomy xmlns="http://systinet.com/uddi/taxonomy/v3/5.0"
 xmlns:uddi="urn:uddi-org:api_v3"
 check="true">
 <tModel tModelKey="uddi:foo.com:demo:myTaxonomy">
 <uddi:name>My taxonomy</uddi:name>
 <uddi:description>Category system</uddi:description>
 </tModel>
 <compatibilityBag>
 <compatibility>businessEntity</compatibility>
 </compatibilityBag>
 <categorizationBag>
 <categorization>categorization</categorization>
 </categorizationBag>
 <validation>
 <bindingTemplate bindingKey="" serviceKey="" xmlns="urn:uddi-org:api_v3">
 <accessPoint useType="endPoint">
 http://www.foo.com/MyValidationService.wsdl
 </accessPoint>
 <tModelInstanceDetails>
 <tModelInstanceInfo
 tModelKey="uddi:uddi.org:v3_valueSetValidation"/>
 <tModelInstanceInfo
 tModelKey="uddi:systinet.com:demo:myTaxonomy"/>
 </tModelInstanceDetails>
 </bindingTemplate>
 </validation>
</taxonomy>

The validation element must hold the bindingTemplate identifying the validation Web service or categories
structures. In this example we chose bindingTemplate. It must contain complete accessPoint and
tModelInstanceDetails must hold the Valueset_validation API and tModelKey of the saved taxonomy. If the
serviceKey is specified and if the businessService already exists, it must be part of the Operational Business
Entity.

Be aware that the service will be replaced during the save_taxonomy process.

Chapter 3314

If you can provide a list of allowed values, you do not need to implement your own validation Web service.
Just provide the allowed values inside the categories structure (as shown below) and the Internal Validation
Service will be responsible for validation of the keyedReferences.

<taxonomy xmlns="http://systinet.com/uddi/taxonomy/v3/5.0"
 xmlns:uddi="urn:uddi-org:api_v3"
 check="true">
 <tModel tModelKey="uddi:foo.com:demo:myTaxonomy">
 <uddi:name>My taxonomy</uddi:name>
 <uddi:description>Category system</uddi:description>
 </tModel>
 <compatibilityBag>
 <compatibility>businessEntity</compatibility>
 </compatibilityBag>
 <categorizationBag>
 <categorization>categorization</categorization>
 </categorizationBag>
 <validation>
 <categories>
 <category keyName="Value A" keyValue="A"/>
 <category keyName="Value B" keyValue="B">
 <category keyName="Value B1" keyValue="B1"/>
 <category keyName="Value B3" keyValue="B3" disabled="true" />
 </category>
 <category keyName="Value C" keyValue="C"/>
 </categories>
 </validation>
</taxonomy>

As you can see, you can arrange your values hierarchically. This is useful for the Registry Console that
implements the drill-down pattern. If you really need, you can even specify bindingTemplate along with
the categories structure, but its accessPoint must point to the Internal Validation Service.

Predeployed Taxonomies

HP SOA Systinet Registry comes with the following predeployed taxonomies:

• uddi-org:types is a UDDI Type Category System.

uddi:uddi.org:categorization:typesv3 UDDI key

uuid:c1acf26d-9672-4404-9d70-39b756e62ab4v2 UUID key

315User's Guide

categorizationCategorization

tModelCompatibility

yes, Internal Validation ServiceChecked

• uddi-org:general_keywords is a category system consisting of namespace identifiers and the keywords
associated with namespaces.

uddi:uddi.org:categorization:general_keywordsv3 UDDI key

uuid:A035A07C-F362-44dd-8F95-E2B134BF43B4v2 UUID key

categorizationCategorization

tModel, businessEntity, businessService, bindingTemplateCompatibility

yesChecked

• uddi-org:entityKeyValues is a category system used to declare that a value set uses entity keys as valid
values.

uddi:uddi.org:categorization:entitykeyvaluesv3 UDDI key

uuid:916b87bf-0756-3919-8eae-97dfa325e5a4v2 UUID key

categorizationCategorization

tModelCompatibility

yes, Internal Validation ServiceChecked

• uddi-org:isreplacedby is the identifier system used to point to the UDDI entity, using UDDI keys, that
is the logical replacement for the one in which isReplacedBy is used.

uddi:uddi.org:identifier:isReplacedByv3 UDDI key

uuid:e59ae320-77a5-11d5-b898-0004ac49cc1ev2 UUID key

identifierCategorization

tModel, businessEntityCompatibility

Chapter 3316

yesChecked

• uddi-org:nodes is a category system for identifying the nodes of a registry.

uddi:uddi.org:categorization:nodesv3 UDDI key

uuid:327A56F0-3299-4461-BC23-5CD513E95C55v2 UUID key

categorizationCategorization

businessEntityCompatibility

yesChecked

• uddi-org:owningBusiness_v3 is a category system used to point to the businessEntity associated with the
publisher of the tModel.

uddi:uddi.org:categorization:owningbusinessv3 UDDI key

uuid:4064c064-6d14-4f35-8953-9652106476a9v2 UUID key

categorizationCategorization

tModelCompatibility

yesChecked

• uddi-org:validatedBy is a category system used to point a value set or category group system tModel to
associated value set Web service implementations.

uddi:uddi.org:categorization:validatedbyv3 UDDI key

uuid:25b22e3e-3dfa-3024-b02a-3438b9050b59v2 UUID key

categorizationCategorization

tModelCompatibility

yesChecked

• uddi-org:wsdl:types is a WSDL Type Category System.

317User's Guide

uddi:uddi.org:wsdl:typesv3 UDDI key

uuid:6e090afa-33e5-36eb-81b7-1ca18373f457v2 UUID key

categorizationCategorization

tModel, businessEntity, businessService, bindingTemplateCompatibility

yes, Internal Validation ServiceChecked

• uddi-org:wsdl:categorization:protocol

uddi:uddi.org:wsdl:categorization:protocolv3 UDDI key

uuid:4dc74177-7806-34d9-aecd-33c57dc3a865v2 UUID key

categorizationCategorization

tModelCompatibility

yesChecked

• uddi-org:wsdl:categorization:transport

uddi:uddi.org:wsdl:categorization:transportv3 UDDI key

uuid:e5c43936-86e4-37bf-8196-1d04b35c0099v2 UUID key

categorizationCategorization

tModelCompatibility

yesChecked

• uddi-org:wsdl:portTypeReference is a category system tModel that can be used to identify a relationship
to a portType tModel.

uddi:uddi.org:wsdl:portTypeReferencev3 UDDI key

uuid:082b0851-25d8-303c-b332-f24a6d53e38ev2 UUID key

categorizationCategorization

Chapter 3318

tModelCompatibility

yesChecked

• systinet-com:taxonomy:compatibility enhances a taxonomy tModel with additional information, in which
structures the taxonomy can be used.

uddi:systinet.com:taxonomy:compatibilityv3 UDDI key

uuid:cf68c700-f93d-11d6-8cfc-b8a03c50a862v2 UUID key

categorizationCategorization

tModelCompatibility

yes, Internal Validation ServiceChecked

• systinet-com:dependency creates link between two structures (may be different types). Both keyName
and keyValue must be specified. KeyName must be one of businessEntity, businessService,
bindingTemplate and tModel. KeyValue must be existing UDDI key of specified structure.

uddi:systinet.com:dependencyv3 UDDI key

uuid:179e5540-f27b-11d6-9738-b8a03c50a862v2 UUID key

categorizationCategorization

tModel, businessEntity, businessService, bindingTemplateCompatibility

yesChecked

• dnb-com:D-U-N-S - Thomas Registry Suppliers

uddi:uddi.org:ubr:identifier:dnb.com:d-u-n-sv3 UDDI key

uuid:8609c81e-ee1f-4d5a-b202-3eb13ad01823v2 UUID key

identifierCategorization

tModel, businessEntity, businessService, bindingTemplateCompatibility

noChecked

319User's Guide

• microsoft-com:geoweb:2000 - Geographic Taxonomy: GeoWeb (2000 Release)

uddi:297aaa47-2de3-4454-a04a-cf38e889d0c4v3 UDDI key

uuid:297aaa47-2de3-4454-a04a-cf38e889d0c4v2 UUID key

categorizationCategorization

tModel, businessEntity, businessService, bindingTemplateCompatibility

noChecked

• ntis-gov:naics:1997 - Business Taxonomy: NAICS (1997 Release)

uddi:uddi.org:ubr:categorization:naics:1997v3 UDDI key

uuid:c0b9fe13-179f-413d-8a5b-5004db8e5bb2v2 UUID key

categorizationCategorization

tModel, businessEntity, businessService, bindingTemplateCompatibility

yes, Internal Validation ServiceChecked

• ntis-gov:sic:1997 - Business Taxonomy: SIC (1997 Release)

uddi:70a80f61-77bc-4821-a5e2-2a406acc35ddv3 UDDI key

uuid:70a80f61-77bc-4821-a5e2-2a406acc35ddv2 UUID key

categorizationCategorization

tModel, businessEntity, businessService, bindingTemplateCompatibility

yes, Internal Validation ServiceChecked

• ntis-gov:naics:2002 - Business Taxonomy: Business Taxonomy: NAICS (2002 Release

uddi:uddi.org:ubr:categorization:naics:2002v3 UDDI key

uuid:1ff729f2-1948-46cf-b660-31ec107f1663v2 UUID key

categorizationCategorization

Chapter 3320

tModel businessEntity businessService bindingTemplateCompatibility

yes, Internal Validation ServiceChecked

• unspsc-org:unspsc:3-1 - Product Taxonomy: UNSPSC (Version 3.1)

uddi:db77450d-9fa8-45d4-a7bc-04411d14e384v3 UDDI key

uuid:db77450d-9fa8-45d4-a7bc-04411d14e384v2 UUID key

categorizationCategorization

tModel, businessEntity, businessService, bindingTemplateCompatibility

noChecked

• unspsc-org:unspsc - Product Taxonomy: UNSPSC (Version 7.3)

uddi:unspsc-org:unspscv3 UDDI key

uuid:cd153257-086a-4237-b336-6bdcbdcc6634v2 UUID key

categorizationCategorization

tModel, businessEntity, businessService, bindingTemplateCompatibility

yes, Internal Validation ServiceChecked

• unspsc-org:unspsc:v6.0501 - Product and Service Category System: United Nations Standard Products
and Services Code (UNSPSC)

uddi:uddi.org:ubr:categorization:unspscv3 UDDI key

uuid:4614C240-B483-11D7-8BE8-000629DC0A53v2 UUID key

categorizationCategorization

tModel businessEntity businessService bindingTemplateCompatibility

yes, Internal Validation ServiceChecked

321User's Guide

• ws-i-org:conformsTo:2002_12 is a category system used for UDDI entities to point to the WS-I concept to
which they conform.

uddi:65719168-72c6-3f29-8c20-62defb0961c0v3 UDDI key

uuid:65719168-72c6-3f29-8c20-62defb0961c0v2 UUID key

categorizationCategorization

tModelCompatibility

noChecked

WSM Taxonomies

The following taxonomies are used for integration with a web service management system:

systinet-com:management:metrics:avg-byte

Average sum of incoming and outgoing message length

uddi:systinet.com:management:metrics:avg-bytev3 UDDI key

uuid:3c13a2e2-dfd0-30a2-bd58-c5de8c2ae3bbv2 UUID key

categorizationCategorization

tModelCompatibility

noChecked

systinet-com:management:metrics:avg-byte-input

Average input message length per hour

uddi:systinet.com:management:metrics:avg-byte-inputv3 UDDI key

uuid:f18a50ad-ddb2-392a-b97c-1181c67b2817v2 UUID key

categorizationCategorization

tModelCompatibility

noChecked

Chapter 3322

systinet-com:management:metrics:avg-byte-output

Average output message length

uddi:systinet.com:management:metrics:avg-byte-outputv3 UDDI key

uuid:7664723d-896a-3ed2-b7e9-46c9f38e7681v2 UUID key

categorizationCategorization

tModelCompatibility

noChecked

systinet-com:management:metrics:avg-hits

Average message hits per hour

uddi:systinet.com:management:metrics:avg-hitsv3 UDDI key

uuid:bf010bf9-cafa-3f68-bf51-3cde3bd0f483v2 UUID key

categorizationCategorization

tModelCompatibility

noChecked

systinet-com:management:metrics:avg-response-time

Average response time in milliseconds

uddi:systinet.com:management:metrics:avg-response-timev3 UDDI key

uuid:099d67a9-eae6-3c30-8be9-48b44c5d9728v2 UUID key

categorizationCategorization

tModelCompatibility

noChecked

systinet-com:management:metrics:errors

Count of application failures in the last hour

323User's Guide

uddi:systinet.com:management:metrics:errorsv3 UDDI key

uuid:b074de10-e781-383a-bd00-248a1c42f0fav2 UUID key

categorizationCategorization

tModelCompatibility

noChecked

systinet-com:management:metrics:hits

Count of hits in the last hour

uddi:systinet.com:management:metrics:hitsv3 UDDI key

uuid:720689a4-dce4-398c-adba-e5c0f50d1eb2v2 UUID key

categorizationCategorization

tModelCompatibility

noChecked

systinet-com:management:metrics:median-byte

Median sum of incoming and outgoing message lengths

uddi:systinet.com:management:metrics:median-bytev3 UDDI key

uuid:0adefd4c-7624-3973-91a5-ea4971d6b0efv2 UUID key

categorizationCategorization

tModelCompatibility

noChecked

systinet-com:management:metrics:median-byte-input

Median value of incoming message lengths

uddi:systinet.com:management:metrics:median-byte-inputv3 UDDI key

uuid:c9c2fd87-f806-3ca0-819e-3f788cc8fd95v2 UUID key

Chapter 3324

categorizationCategorization

tModelCompatibility

noChecked

systinet-com:management:metrics:median-byte-output

Median output message length

uddi:systinet.com:management:metrics:median-byte-outputv3 UDDI key

uuid:bdb4e8f8-1aba-3558-b1f5-cf89b5455529v2 UUID key

categorizationCategorization

tModelCompatibility

noChecked

systinet-com:management:metrics:median-response-time

Median response time in milliseconds

uddi:systinet.com:management:metrics:median-response-timev3 UDDI key

uuid:62f08146-1d3f-30e3-8c6a-1f2062c332d4v2 UUID key

categorizationCategorization

tModelCompatibility

noChecked

systinet-com:management:metrics:policy-violations

Count of policy violations in the last hour

uddi:systinet.com:management:metrics:policy-violationsv3 UDDI key

uuid:be42511a-3c68-34d2-b137-d00e56bb4de4v2 UUID key

categorizationCategorization

tModelCompatibility

325User's Guide

noChecked

systinet-com:management:metrics:reference

Reference to a tModel containing all metrics about the service. The keyValues in keyedReferences that
refer to this tModel must be a tModelKey of the metric tModel.

uddi:systinet.com:management:metrics:referencev3 UDDI key

uuid:0d709256-b9f3-30a3-9aa1-51a1adb11324v2 UUID key

categorizationCategorization

bindingTemplateCompatibility

yesChecked

systinet-com:management:proxy-reference

WSM Proxy Reference Taxonomy

uddi:systinet.com:management:proxy-referencev3 UDDI key

uuid:79bf6f6d-b0b7-3f08-b45e-9893b525de9bv2 UUID key

categorizationCategorization

bindingTemplateCompatibility

yesChecked

systinet-com:management:server-reference

WSM Server Reference Taxonomy.

uddi:systinet.com:management:server-referencev3 UDDI key

uuid:1583604a-57a2-3887-9b1d-2549e270390cv2 UUID key

categorizationCategorization

bindingTemplateCompatibility

yesChecked

Chapter 3326

systinet-com:management:state

WSM State Taxonomy

uddi:systinet.com:management:statev3 UDDI key

uuid:73c7ef28-6150-36a0-ba82-414424ede582v2 UUID key

categorizationCategorization

bindingTemplateCompatibility

yesChecked

systinet-com:management:state-change-request-type

WSM State Change Request Taxonomy

uddi:systinet.com:management:state-change-request-typev3 UDDI key

uuid:64473cda-4a78-3ddb-b0c6-801533ce1943v2 UUID key

categorizationCategorization

bindingTemplateCompatibility

yesChecked

systinet-com:management:system

WS Management System Taxonomy

uddi:systinet.com:management:systemv3 UDDI key

uuid:e148d85e-cc08-32f6-8f00-db85e258e511v2 UUID key

categorizationCategorization

bindingTemplateCompatibility

noChecked

systinet-com:management:type

WSM Type Taxonomy

327User's Guide

uddi:systinet.com:management:typev3 UDDI key

uuid:5d14645d-66ea-39ac-8122-49d06b09b492v2 UUID key

categorizationCategorization

bindingTemplateCompatibility

yesChecked

systinet-com:management:url

Endpoint URL Taxonomy

uddi:systinet.com:management:urlv3 UDDI key

uuid:4897f99b-bd23-3889-af37-b80351cf8b52v2 UUID key

categorizationCategorization

bindingTemplateCompatibility

noChecked

Registry Console Reference

• Registry Console Overview

• Manage user account and user groups

• Browsing the registry;

• Searching the registry

• Publishing in the registry

Register/Create Account

Register

Before you can publish data to the registry, you must have a HP SOA Systinet Registry account. You can
create an account via the web interface.

Chapter 3328

Figure 44. Register Account

Follow these steps to register a user account:

1 Click the Register link on the main Registry Console page. This returns the Create account page.

2 Fill in all fields. Those labeled with an asterisk (*) are required. Your email address may be used later
for enabling your account.

329User's Guide

Figure 45. Create Account

3 Click the Create account button.

Chapter 3330

The new account is now enabled.

HP SOA Systinet Registry may be configured to require email confirmation in order to enable the
user account. In this case, the registry sends an email confirmation. Follow the instructions in this
email to enable your account.

Login

To log on, click the Login link on the upper part of the Registry Console, and enter your username and
password.

Figure 46. Login Tab

Once logged into the registry, you are able to publish, delete, and update the various UDDI structures. Users
have access to their own account information. Administrators also have account administration access; that
is, the ability to delete and edit accounts and produce account audit reports.

Registry Console Overview

Registry Console is comprised of the following objects:

A: Main Menu Tabs.

Browse

This tab allows you to browse UDDI entities using taxonomies.

Search

This tab allows you to search the registry. You can perform inquiry on UDDI entities, you can
find business entity, service, bindings, tModels, and related businesses. The menu option also
allows you to browse taxonomies and directly get information from HP SOA Systinet Registry
when you know a key of UDDI data types (business, service, binding, and tModel)

331User's Guide

Publish

This tab allows you to publish UDDI structures (businessEntities, businessServices,
bindingTemplates, and tModels). On this tab, you can also assert relationships between business
entities, subscribe interest in receiving information about changes made to a registry, transfer
ownership of selected UDDI structures (Custody Transfer), and publish WSDLs to the registry.

Profile

Here you can manage your user account properties, account groups and favorite taxonomies.

Manage

This tab is used by the HP SOA Systinet Registry administrator to perform management tasks.
See Administrators Guide for more information.

B: Menu Bar. Sub menu options are located here.

Chapter 3332

Figure 47. Registry Console Overview

C: History path (breadcrumbs). This area displays the log of your recent actions. You can return to any
of these previous actions by clicking on the hyperlinks.

333User's Guide

D: User Actions. This area contains several control elements that enable a user to:

• Create an account

• Log On

• Log Out

E: Tree Display Area. A tree of available objects displays whenever applicable. It is displayed when
viewing a business entity and its child objects and when the user may want a hierarchical overview of the
UDDI workspace (such as when publishing).

F: Main Display Area. Information chosen from the tabs and the tree display is made available in the Main
Display Area.

G: Display Tabs. These tabs allow the user to control the main area's display based on information type.
A plain listing of all business properties would be very long and very difficult to read. Dividing the properties
into tabs reduces the amount of information and improves page readability. The displayed information
changes with the context.

H: Action Buttons. The action buttons allow you to perform operations on the contents of the main display.

I: Show/Hide button. This button allows to hide or show the tree display area.

J: Action Icons. There are two icons in this area. The first one allows you to refresh the page content,
second one will open the product documentation page.

K: Action Icons . Icons from this area allow you to switch on/off display tabs and open the current page
in the printer friendly mode.

L: Context Menu. The context menu displayed in Figure 48 is available by right mouse click on a node's
icon in the tree display area.

Chapter 3334

Figure 48. Context Menu

For more information, please see Figure 47.

User Profile

You can manage your user account, user groups, and favorite taxonomies under the Profile menu tab.

Figure 49. Profile Menu Tab

To update your account properties, select My account and click the Edit Account button

335User's Guide

Figure 50. View Account

Field descriptions (self-explanatory fields are omitted):

Default Language Code

Set the default language code. Used when publishing, it is the language code associated with a
particular field when the language is not specified.

Use the following profile

Profile preference - Select your preferred predefined user profile from this drop down list

To maintain user groups, click the Groups link. From the Groups screen, you can:

• Create and manage your own groups

Chapter 3336

• Manage group membership

Figure 51. View User Groups

Create and Manage Groups

To create a new group:

1 Click on the Profile menu tab, and select the Groups link. This returns the Group list shown in
Figure 51.

2 Click the Add Group button.

337User's Guide

Figure 52. Edit Group Membership

3 In the edit box labeled Group name, type the name of your group.

4 Use the radio buttons labeled public and private to establish whether this group should be visible to
all members (public) or visible only to the group owner (private).

5 Click Filter to display a list of the registry's users.

Chapter 3338

6 Check the boxes for all members you wish to include, then click the right-pointing arrow to move them
to the Group members table.

7 Once users are added, click Save Group to update HP SOA Systinet Registry

Manage Group Membership

To add or remove members from a group:

1 Click on the Profile menu tab.

2 Click on the Groups link. This returns the Group list shown in Figure 51.

3 Click on the Edit button.

4 Use arrow buttons to add and remove users as shown in Figure 52

favorite Taxonomies

You can manage your favorite taxonomies under the Profile tab. You can define which taxonomies will be
present in the list of your favorite taxonomies. Favorite taxonomies help you to search and categorize UDDI
entities.

To manage your list of favorite taxonomies:

1 Click on the Profile menu tab. Click on the favorite taxonomies link. This returns the list of your
favorite taxonomies shown in Figure 53.

2 Click Filter to search taxonomies by name.

3 Check the boxes for all taxonomies you wish to include, and click the right-pointing arrow to copy
them to the favorite taxonomies table.

4 Once taxonomies are added, click the Save button to update the registry.

339User's Guide

Figure 53. Manage favorite Taxonomies

Browsing

In this section, we will show you how to browse taxonomy structures to discover UDDI entities categorized
or identified by taxonomies. You can also define a taxonomy filter and put your search criteria to a query.
We present a demo data set that is installed with HP SOA Systinet Registry. This demonstration set is
designed to help familiarize you with the registry.

To browse taxonomies and UDDI entities:

1 Click on the Taxonomies link under the Browse main menu tab.

2 The page shown in Figure 54 will appear.

Chapter 3340

Figure 54. Browse Menu Tab

On this page, you can use the drop down list to switch the taxonomy list to favorite taxonomies,
enterprise taxonomies, and a defined filter.

The favorite taxonomies option appears in the drop down list only if your list of favorite taxonomies
is not empty. To add a taxonomy to your favorites, follow the direction in favorite Taxonomies
on page 339. The list of enterprise taxonomies is defined by an administrator. For more information,
see Taxonomy Management on page 415 in the Administrator's guide.

Initially, the filter contains all taxonomies except system taxonomies. Icons next to the drop down list serve
to show/hide categorized entities, and show all/suppress empty categories.

Drill down through the taxonomy tree to see all taxonomy categories. Those with sub-categories can be
expanded and collapsed.

When you browse internally checked taxonomies you can see their value set to see UDDI entities categorized
by these key values. For unchecked or externally checked taxonomies, you can search UDDI entities by
key values. We will show you how to browse an unchecked taxonomy from the demo data.

To browse the demo data using demo:location:floor taxonomy:

1 Switch the drop down list shown in Figure 54 to the filter option.

2 Click on the demo:location:floor taxonomy. Expand the taxonomy by clicking on the plus sign in
front of the taxonomy name. The key name and key value field pair appears.

341User's Guide

3 Enter key value as 5, then click Search button.

4 You will get a list of UDDI entities categorized by this taxonomy with matching key value (IT in this
case) as shown in Figure 55.

Figure 55. Browse Demo

You can also add this search criterion to a query.

Define Filter

You can reduce the number of taxonomies in the taxonomy list by defining a taxonomy filter. To switch
from taxonomy browsing to filter definition, click on the filter link in the lower left corner. The page shown
in Figure 56 will appear.

Chapter 3342

Figure 56. Taxonomy Filter

You can filter taxonomies by name using the wild card characters % and _. You can specify taxonomy type,
compatibility, and a validation type. Once you define the filter criteria, click Apply filter. This will return
you to the browse taxonomy page.

343User's Guide

Define Query

You can also combine search criteria in a query. To add a search criterion to a query, use the button Add
to query shown in Figure 55. Then, you can expand another taxonomy and specify a new criterion. The
page shown at Figure 57 presents the query displaying business entities located on the 5th floor
(demo:location:floor taxonomy) having Headquarter department as the superior department (demo:hierarchy
taxonomy).

Figure 57. Query

To remove a category from the query, right-click on the query and select remove from query from the
context menu.

Chapter 3344

The query definition is not persistent. Once you leave the Browse menu tab, the query will disappear.

Searching

HP SOA Systinet Registry search function allows you to perform the following searches:

Find UDDI data structures

You can search for business entities, services, bindings, and tModels using names and categories
in combination with find qualifiers including range queries.

• Find Business

• Find Services

• Find Binding

• Find tModel

Direct Get

You can retrieve data from HP SOA Systinet Registry when you know the key of the UDDI entity
you want to retrieve.

Find Resources

You can search for resources:

• Find WSDL

• Find XML

• Find XSD

• Find XSLT

In the Search section, we present a demonstration data set that is installed with HP SOA Systinet Registry.
This demonstration set is designed to help familiarize you with the registry.

HP SOA Systinet Registry supports the use of wildcard characters. You can use both % and _.

345User's Guide

Use % in place of any number of characters and spaces. For example, if you wish to find all business
beginning with A, type A%. Use the underscore wildcard (_) in place of any single character. For
example, to find Dan or Dane, type Dan_.

See Find Business by Categories on page 348 how to use range queries functionality.

Find Business

In this section, we cover locating business entities using a number of different methods. You can locate
business entities by:

• Name

• Categories

• Identifiers

• Discovery URL

• tModel

For each find method, you can specify qualifiers located on the Find Qualifiers tab of the Search panel.

Chapter 3346

Figure 58. Find Qualifiers

Find Business by Name

To find a business by name:

1 Under the main Search tab, click the Businesses link.

2 Click the Add Name button in the Search panel.

3 Type in the business name, such as IT from the pre-installed demo data. Then click the Find tab at the
bottom right corner.

To see all businesses, type the wildcard % and click Find.

4 The search result will appear on the Results panel. Click on the link with the business name, this opens
the page shown at Figure 59.

347User's Guide

Figure 59. View Business Detail

Find Business by Categories

In this section we will show you how to search for business entities by categories. We will use demo data
to demonstrate how to find all departments located on specific floors. Also, an example how to use range
queries will be shown.

To find a business by category:

1 Under the main Search tab, click the Businesses link

Chapter 3348

2 Click the Categories tab, then click the Add category button. This returns a list of available taxonomies.

You can switch the Show drop down list from favorite taxonomies to see all taxonomies. To manage
favorite taxonomies see User Profile on page 335.

3 Click on the desired taxonomy.

The taxonomy is shown as a tree; its sub-branches include categories.

Select demo:location:floor from our demo data.

4 Now you can enter Key name and Key value.

Type 1 in the box labeled Key value and then click the Add category icon.

Figure 60. Find Business by Category

5 Once a category is added as your search criteria, click Find.

You will get the department with that is located on the first floor. If you want search for all departments
located on higher floors you must use range queries functionality. We will continue with the previous search.

1 Click the tab Search to return to the Find business by categories page.

2 Click the Edit category icon. The page shown in Figure 61 is returned.

349User's Guide

Figure 61. Find Business by Range Category

3 From the Operator drop down list, select the > operator, and click the Update icon.

4 Click Find. You will get all departments located higher than the first floor.

Find Business by Identifier

In this section we will show you how to find a business entity by identifier. We will use demo data to
demonstrate how to find departments by their department number identifiers.

To find a business by identifier:

1 Under the main Search tab, click the Businesses link

2 Click the Identifiers tab. Then click the Add identifier button. This returns a list of available
taxonomies.

3 Click on the desired taxonomy

The taxonomy is shown as a tree with its sub-branches including categories.

Select demo:departmentID from the demo data.

4 Now you can enter Key name and Key value.

Type 002 in the box labeled Key value, and click Add identifier.

Chapter 3350

Figure 62. Find Business by Identifier

5 Once the Identifier is added as your search criteria, click Find.

Find Business by Discovery URL

To find a business entity by discovery URL:

1 Under the main Search tab, click the Businesses link.

2 Select the Discovery URLs tab.

3 Type in the discovery URL and click Find.

Find Services

You can find services using a number of different methods including by:

• Name

• Category

• tModel

Search principles for finding services are the similar to those used for finding business entities.

351User's Guide

Find Binding

You can find bindings using a number of different methods including by:

• Parent service

• Category

• tModel

The search principles for finding bindings are similar to those used for finding business entities.

Find tModel

You can find tModels using a number of different methods including by:

• Name

• Category

• Identifiers

The search principles for finding tModels are similar to those used for finding business entities.

Direct Get

You can also use Direct get from the Search menu tab to retrieve data from HP SOA Systinet Registry
when you know the key of the UDDI structure you want to retrieve. HP SOA Systinet Registry allows you
to specify keys for both UDDI version 2 and UDDI version 3. Click the Find by v2 tab if you want to search
using UDDI v2 keys.

Chapter 3352

Figure 63. Direct Get

Direct Get of XML Structures

You can also acquire the XML form of businesses, services, bindings, and tModels for use in automated
processing by entering the key of the structure into a URI.

The form of the URI is:

http://<hostname>:<port>/uddi/web/directGetXml?<structureKey>=<key>

URI Examples. Note that UDDI v3 is assumed by default.

• http://localhost:8080/uddi/web/directGetXml?businessKey=uddi:systinet.com:uddinodebusinessKey

353User's Guide

• http://localhost:8080/uddi/web/directGetXml?serviceKey=...

• http://localhost:8080/uddi/web/directGetXml?bindingKey=...

• http://localhost:8080/uddi/web/directGetXml?tModelKey=...

Example with Login. This URI includes username and password.

• https://localhost:8080/uddi/web/directGetXml?businessKey=uddi:systinet.com:uddinodebusinessKey&userName=admin&password=changeit

Example with UDDI Version Specification. Use this format when getting information associated with v1
and v2 structures.

• http://localhost:8080/uddi/web/directGetXml?businessKey=8f3033d0-c22f-11d5-b84b-cc663ab09294&version=2

Find WSDL

You can find all WSDL documents published in HP SOA Systinet Registry. When you supply the WSDL
location URI, you can review how artifacts of the WSDL document are published in HP SOA Systinet
Registry. The following criteria: a WSDL document location, a tModel key, a business service key, and a
binding template key can be used. To search for a WSDL document in HP SOA Systinet Registry:

1 Select the Search menu tab and click the WSDL link. The page shown in Figure 64 will appear.

2 Click the Find all published WSDLs button, or

Enter WSDL location URI , then click Examine this WSDL button.

Chapter 3354

Figure 64. Find WSDL

Find XML

You can search for an XML document in HP SOA Systinet Registry according to location URI of the XML
document.

To search an XML document:

1 Select the Search menu tab and click the XML link. The page shown in Figure 65 will appear.

2 Enter a location and click Find.

355User's Guide

Figure 65. Find an XML Document

Find XSD

You can search for an XML Schema in HP SOA Systinet Registry according to location URI of the XML
document.

To search an XML document:

1 Select the Search menu tab and click the XSD link. The page shown in Figure 66 will appear.

2 You can search by the location of the XML Schema document, namespaces, and by xsd:elements and
xsd:types defined in the XML Schema document. Once you specify the search criteria, click Find.

Chapter 3356

Figure 66. Find XSD

Find XSLT

To search an XSL transformation:

1 Select the Publish menu tab and click the XML link. The page shown in Figure 67 will appear.

2 You can enter the location of the XSLT. You can also search according to input and output XML
schemas Search criteria for an XML schemas can be specified by tModel key or namespace. If you
click on Select XML Schema you can specify additional criteria for the XML Schema, then select an
XML Schema from the XML Schema list.

3 Before you click Find, click the Update icon if you specified to be search according to an XML
Schema.

357User's Guide

Figure 67. Find XSLT

Publishing

Publishing in HP SOA Systinet Registry has several components:

• Publish UDDI core structures:

• Publishing a Business on page 360

• Publishing a Service on page 366

• Publishing a Binding Template on page 367

• Publishing a tModel on page 368

• Publishing Assertions on page 369 - Asserting relationships between business entities.

Chapter 3358

• Publishing Subscriptions on page 372 - Subscribing interest in receiving alerts regarding changes made
to a registry.

• Publish Custody Transfer on page 378 - Transferring ownership of selected UDDI structures.

• Publish Resources

• Publishing WSDL Documents on page 379 - Publishing Web Services Description Language
documents (WSDL) to HP SOA Systinet Registry.

• Publish XML on page 383 - Publishing XML Documents.

• Publish XSD on page 387 - Publishing XML Schema Definition (XSD) Documents.

• Publish XSLT on page 391 - Publishing Extensible Stylesheet Language Transformation (XSLT)
Documents.

You must be logged into HP SOA Systinet Registry to publish to it. There is a limitation of how
many UDDI structures a user can store. See Administrator's Guide, Account Limits on page 406

The main Publish page is divided into two panels. The left panel displays UDDI data structures that belong
to the logged-in user or to which this user has access permissions. The panel on the right displays details
about the data structure selected in the left panel. As you can see, if no structures are selected, buttons for
adding businesses and tModels are displayed.

359User's Guide

Figure 68. Publish Page

Publishing a Business

This section explains how to publish a businessEntity and edit businessEntity-related structures:

• Add business name and description

• Add Contact

• Add a Discovery URL

• Add a Category

• Add an Identifier

• Add Business Services

• Add Projected Services

• Assert Business Relationships

To publish a business:

1 Click the Add Business button in the right-hand panel of the publish page, or select Add Business
from the context menu that appears when you right-click the Business Entities node.

Chapter 3360

Figure 69. Add Business

2 Enter the business name and a description, then click Add Business.

3 The business will appear in the left tree panel under the Business entities node

To edit a business entity:

1 Select the Publish menu tab.

2 Click the Publish link.

3 In the left tree panel, click on the business entity node you wish to edit.

361User's Guide

Figure 70. Edit Business

4 After you modified the business entity, click the Save changes button.

Adding a Contact

The contact structure provides you with a space where you can list the people associated with the business
entity. It is comprised of six properties: name, phone, email, address, description, and use type.

It is recommended that you use the description field to give a brief explanation of how the contact should
be used.

Use types can be used to indicate the expected way in which the contact should be used. For example, "New
Franchises", "Sales contact", "Technical Questions".

To add a contact:

1 On the Contacts tab of the Edit business or View business page, click the Add contact button. This
displays the Add contact page where you can specify the contact's name and use type, as shown in
Figure 71:

Chapter 3362

Figure 71. Add Contact

2 Click Add contact.

3 Build your lists of information for descriptions, phone numbers, and addresses. Each collection page,
with the exception of Address collection, functions in the same manner. Click the Add button for the
element you want to add. You will see two or more edit fields to be completed.

Once the fields have been edited, you must click the Update icon on the right.

For addresses, click the Addresses tab. On this tab, add, edit, or delete existing address structures by
clicking through the appropriate buttons.

When you add or edit an address, fill in the desired fields, add the data to your list, and click Update
when finished.

4 Once you have updated all of the contact's information, click Save changes at the bottom of the Edit
contact page. You will see the name and use type of your new contact entry in the contacts list.

Adding a Discovery URL

To add a Discovery URL:

1 On the Edit business page click on the Add discovery URL button at the bottom of the Discovery
URLs tab.

2 Complete the Discovery URL and Use Type edit fields with the relevant data.

3 When the fields are complete, click Update on the right to add this information to the list.

363User's Guide

4 Click Save changes

Adding a Category

With categories you can make your business more visible to searches by associating it with a number of
accepted taxonomies. These taxonomic categories identify a business and its services by location, product
or service line, and industry.

HP SOA Systinet Registry comes with keys for three basic checked taxonomies by default: These are the
ISO 3166 geographical classification system and the NAICS and SIC industry and product classifications.

A key is also provided for Microsoft GeoWeb 2000, but as this is an unchecked taxonomy, key names and key
values must be entered by hand.

To add a category to your list:

1 On the Categories tab of the Edit business page, click the Edit button. If there are already categories
associated with this business entity, a list of them will be returned along with the Add category button.
Otherwise, only the button will be displayed.

2 Click the Add category button beneath the Categories tab. This returns a list of available taxonomies
from which you can choose categories to add to the list.

3 Click on an available taxonomy. Checked taxonomies will expand to a tree of categories valid for that
model. You can type a known key name in the search box for faster retrieval. Note that larger branches
are limited to ten items per page.

4 You can also search for the name of the taxonomy through the search box at the top of the taxonomy
form. Use the starts with, contains, and exact match radio buttons as necessary. Like standard wild
cards, these buttons search for the entered string as specified. For example, The pattern Cana, when
used with the starts with button and a geographic taxonomy, returns the set {"Canada" "Canarias"}.
The result set is limited to a maximum of 250 items.

If you provide too broad a search pattern, the resulting list will be truncated to 100 items.

With unchecked taxonomies (for example, Microsoft's GeoWeb taxonomy), it is possible to supply the
key name and value through edit fields.

Chapter 3364

5 To add multiple categories, for example Albania and Armenia from the uddi-org:iso-ch:3166:1999
taxonomy, check the boxes to the right of those key names, and click Add category. If you would like
to add categories from different pages, you must click Add category on the first page before continuing
to the next page containing your selections. For example, to choose Albania and Kazakhstan:

a Select Albania and click Add category.

b Click Add category on the Find service page.

c Click the link for page 8 on the expanded Find service page.

d Check the box next to Kazakhstan and click Add category.

Figure 72. Add Category

365User's Guide

6 When you find the taxonomic classification you want, click the Add category button for checked
taxonomies. For unchecked taxonomies, click Add category once the edit fields have been completed.

Adding an Identifier

You can also make your organization more visible by supplying any of your public or private identifiers,
such as D-U-N-S, Tax, or Geographical Locator numbers to the registry. UDDI identifier structures are
composed of the following elements:

tModel Key

Identifies a namespace or service in which the key name and key value have significance

keyName

The name or description of the key being used

keyValue

The value of the key

To add an identifier to your list:

1 On the Edit business page, switch to the Identifiers tab.

2 Click the Add identifier button at the bottom of the Identifiers list.

3 Choose the identifier type from the displayed list of available taxonomical tmodels. This returns a field
in which you enter key names and key values.

4 When you have filled in the fields, click the Add identifier button to the right to add the new identifier
to the list.

If you use a tModel for a checked identifier, the key value must be of a recognizable form and
value. For example, if you want to use a uddi-org:isReplacedBy key, you must supply the valid
business entity UUID key in the keyValue field. Failure to do so will generate an error when you
attempt to submit your business data to the database.

Publishing a Service

To publish a service:

1 Select the Publish menu tab and click the Publish link

Chapter 3366

2 In the left panel, click on the business to which you want to add a service. The right display area will
show business details.

3 Select the Services tab, and click the Add Service button.

Alternately, right-click on the business node to which you want to add a service, and select Add Service
from the context menu.

Figure 73. Add Service

4 Enter the service name and description and click Add service.

The service is added to the left panel tree.

Publishing a Binding Template

Once you have declared and defined a business service, you must establish how current and potential
business partners can access that service, a technical description of the service including where it can be
found. This is accomplished through bindingTemplates.

A bindingTemplate represents a Web service instance where you obtain (among other things) the access
point of an instance of the parent business service. Every bindingTemplate has a unique bindingKey for
identification. (An access point contains contact information such as a URL, email address, or telephone
number used to locate the service.)

The AccessPoint in a bindingTemplate structure can contain a URL of the endpoint of the web service. If
there is more than one businessEntity that provides the same business service we recommend you reuse
this information in a bindingTemplate. Create a bindingTemplate on the businessService that holds technical
information. Other businessServices should contain bindingTemplates with accessPoints containing the key
of the first technical bindingTemplate. These accessPoints should also contain useTypes with the value
hostingRedirector.

367User's Guide

Alternatively, reference to another bindingTemplate can be stored in a hostingRedirector structure
instead of in an accessPoint. However the hostingRedirector structure (not the hostingRedirector
value of useType) is a relic of UDDI v2 and is deprecated in UDDI v3.

To add a bindingTemplate:

1 Select the Publish menu tab and click the Publish link

2 In the left panel, click on the service to which you want to add a binding. The right display area will
show service details. Select the Bindings tab and click the Add Binding button.

Alternatively, right-click the service node to which you want to add a binding, and select Add Binding
from the context menu.

Figure 74. Add Binding

Publishing a tModel

The tModel is a structure that takes the form of keyed metadata (data about data). In a general sense, the
purpose of a tModel within HP SOA Systinet Registry is to provide a reference system based on abstraction.
Among the roles that a tModel plays in UDDI is the ability to provide and to describe compliance with a
specification or concept, to a taxonomy, for example.

To publish a tModel:

1 Select the Publish tab, and click the Publish link.

2 On the right Publish panel, click the Add tModel button.

Alternatively, right-click on the tModels node in the left panel and select Add tModel from the context
menu.

Chapter 3368

Figure 75. Add tModel

3 Enter tModel name and description, and click the Add tModel button.

If you delete an unused tModel, the tModel will be deleted from the database. The HP SOA Systinet
Registry Administrator can change this behavior that tModels will be only marked as deleted. See
Administrator's Guide, Node on page 462.

Adding a Category

In this section we will show you how to assign demo:location:floor taxonomy to the numeric ordering as
show at Figure 42.

1 Log on as demo_john user. (password is the same as the username).

2 Click the Publish tab in the main menu. Click on the tModel demo:location:floor item in the tree in the
left part of the page. Edit tModel 'demo:location:floor' page will appear.

3 Click Add category button. A taxonomy list will appear.

4 Select the taxonomy systinet-com:isOrderedBy, enter Key value uddi:systinet.com:comparator:numeric.

5 Click the button Add category , then Save changes button.

Publishing Assertions

You can assert relationships that businesses under your HP SOA Systinet Registry custody have with others
under your custody or with those under the custody of another user registered at the same operator node.
The success of the latter assertion depends upon the approval of the user to whom the assertion is made.

369User's Guide

When making an assertion you must supply:

• The identity of the business from which the assertion is being made

• The identity of the business to which it is making a claim. HP SOA Systinet Registry specifies these
business identities through their UUID keys.

• A reference explaining the nature of the relationship. References about the nature of the asserted
relationship are derived from your own tModels or from the uddi-org:relationships tModel.

Adding an Assertion

To add a new assertion:

1 On the Edit business panel, switch to the Relationships tab. This displays the Relationship assertions
page. If you have already set assertions you will see a list of those previously published. If not, you
will see the message "No assertions found."

2 Click the Add new assertion button to display the Add assertion page shown in Figure 76.

Figure 76. Add Assertion

3 If the business for which you are making an assertion will assume the "To" role, click the Change
Direction button.

4 Find the business with which you want to assert a relationship in the same way you would on the
inquiry side of UDDI. The difference is that, along with the business name, you will see the business
descriptions in the retrieved record set and a Select business key icon next to each record.

Chapter 3370

When you locate the target business among the records, click its Select business key icon. This returns
you to the Add assertion page with the UUID key of the selected business as the previously missing
role.

A Keyed Reference will be required for the assertion to be valid. Click the Set button on the
right of the Keyed Reference line. The Set keyed reference page displays.

5 Locate a tModel for your reference in the same way you would on the inquiry side of UDDI. The
difference is that there are edit fields for Key Names and Key Values next to the tModel names and a
Set button at the end of each row. Pertinent tModels include uddi-orgs:relationship and those you have
published yourself.

a Enter the key value and the key name or description. For uddi-orgs:relationship, the key value
may be parent-child, peer-peer, or identity.

b Click the Set value. This returns you to the Add assertion page. The tModel, key name, and key
value added to the Keyed Reference record are displayed there.

6 Click the Add assertion button.

7 If the assertion is made to a business of which you have custody, the assertion will be completed
automatically. If it is made to a business in the custody of another user, that user will need to review
the assertion and complete it through his or her own account. This process is described below.

Accepting an Assertion

Assume that you have been notified by a parent company, a subsidiary, a peer, or a cooperative member
that they have asserted a relationship with your company. Now you must review that assertion and, if you
are in agreement, complete it.

To accept the assertion:

1 On the Edit business page, switch to the Relationships tab.

2 View the incomplete assertions made toward your business in the Requested assertions list. Each
assertion will have a Complete assertion button next to its status message.

3 Click the Complete assertion button to accept the assertion.

371User's Guide

4 If you wish to refuse, leave the assertion incomplete by omitting step 3. Return to the Publisher assertions
page by clicking the link at the top of the page. Contact the business making the assertion to resolve
the details of your relationship. Incomplete assertions will not appear when users query for related
businesses.

Publishing Subscriptions

Subscriptions give you the ability to register interest in receiving information about changes made to HP
SOA Systinet Registry. It allows the monitoring of new, changed, and deleted UDDI structures. Each
subscription has a filter that limits the subscription scope to a subset of registry entities.

You can establish a subscription based on a specific query or set of entities in which you are interested.
Query-based subscriptions notify the user if the result set changes within a given time span; entity-based
subscriptions notify the user if the contents of the specified entities change.

Subscriptions enable:

• notification of the registration of new businesses or services

• monitoring of existing businesses or services

• acquiring registry information for use in a private registry

• acquiring data for use in a marketplace or portal registry

This filter should be one of the following ordinary UDDI inquiry calls:

• find_business

• find_relatedBusinesses

• find_service

• find_binding

• find_tModel

• get_businessDetail

• get_serviceDetail

Chapter 3372

• get_bindingDetail

• get_tModelDetail

Figure 77. Add Subscription

Adding Subscriptions

To add new subscription:

1 Click on the Subscriptions link under the Publish menu tab to display the Subscriptions page.

2 Click the Add subscription button to display the Add subscriptions page shown in Figure 77.

3 Click Change filter to specify a filter for your subscriptions. This returns the Subscription filter type
page.

4 Select the filter type from the drop down list labeled Subscription filter type.

5 Click Select filter.

6 Set the filter properties in the same way you would for ordinary search calls.

7 Click the Preview results button to check filter results.

8 Click Save filter to return to the page with the filter settings shown in Figure 77.

9 Fill in the other subscription fields if needed. These are described below.

373User's Guide

Notification Listener Types

Figure 78. Add Subscription - Email Notification Listener Type

• Subscription filter - Specifies on which UDDI structure change the notification will occur.

• Notification listener type - Select notification listener type

• Email address

• Service endpoint

• Binding template

• Email address - Email address to which notifications will be sent

• XSLT transformer tModel - tModel that references XSLT

• Business service and Business entity - Business service and business entity to which the bindingTemplate
representing the notification listener service will be saved. These drop down lists lists only business
entities and business services under which you have the permission to create the binding template.

Chapter 3374

• Notification interval - Specifies how often change notifications are to be provided to a subscriber.
Required only for asynchronous notifications.

• Expires after - Specifies the period of time for which the administrator would like the subscription to
exist.

• Max entities - Contains the maximum number of entities in a notification returned to a subscription
listener.

• Brief - Controls the level of detail returned to a subscription listener.

Figure 79. Add Subscription - Service Endpoint Listener Type

• Subscription filter - Specifies on which UDDI structure change the notification will occur.

• Notification listener type - Select notification listener type here.

• Email address

• Service endpoint

• Binding template

375User's Guide

• Notification listener endpoint - URL to which the notification will be sent

• Business service and Business entity - business service and business entity to which the bindingTemplate
representing the notification listener service will be saved. These drop down lists lists only business
entities and business services under which you have the permission to create the binding template.

• Notification interval - Specifies how often change notifications are to be provided to a subscriber.
Required only for asynchronous notifications.

• Expires after - Specifies the period of time for which the administrator would like the subscription to
exist.

• Max entities - Contains the maximum number of entities in a notification returned to a subscription
listener.

• Brief - Controls the level of detail returned to a subscription listener.

Figure 80. Add Subscription - Binding Template Listener Type

• Subscription filter - Specifies on which UDDI structure change the notification will occur.

• Notification listener type - Select notification listener type here.

• Email address

Chapter 3376

• Service endpoint

• Binding template

• Binding Template - The bindingTemplate representing the notification listener service.

• Notification interval - Specifies how often change notifications are to be provided to a subscriber.
Required only for asynchronous notifications.

• Expires after - Specifies the period of time for which the administrator would like the subscription to
exist.

• Max entities - Contains the maximum number of entities in a notification returned to a subscription
listener.

• Brief - Controls the level of detail returned to a subscription listener.

Editing Subscriptions

To edit an existing subscription:

1 Click on the Subscriptions link under Publish menu tab to display the Subscriptions page.

2 Click the Edit button beside the subscription you want to edit. This returns the Edit subscription page.
Here you can edit all subscription arguments except Subscription filter.

Deleting Subscriptions

To delete subscription:

1 Click on the Subscriptions link under Publish menu tab to display the Subscriptions page.

2 Check the boxes beside subscriptions you want to delete.

3 Click the Delete selected button. This returns a confirmation page.

4 The confirmation page contains a list of subscriptions marked for deletion. If it is correct, press the
Yes button to delete subscriptions permanently.

377User's Guide

Publish Custody Transfer

Custody transfer is a service used to transfer ownership of a selected structure (business entity, business
service, binding template or tModel) from one user to another. It consists of two steps: selecting structure(s)
to transfer and generating a custody transfer token. When the potential new owner receives the transfer
token (by a secure transport such as encrypted email), that user may accept or reject the custody transfer.

This token must be kept secret, as it is sufficient information to transfer custody of the structure
to any user!

If you decide to cancel the request (for example the transfer token has been compromised), use the Discard
transfer token button.

Requesting Custody Transfer

To request custody transfer:

1 Click on the Custody link under Publish menu tab to display the Custody transfer page.

2 Click the Request transfer token link. This returns a list of UDDI data structures you own.

3 Check the box next to the UDDI structure(s) you wish to transfer, and click Request transfer token.

4 The next page will generate the transfer token. Copy the text of the transfer token to a file and send
this file to the user who shall become the new owner of selected structures. Keep the token secret, as
anyone who knows it can use it to transfer custody of that structure. Unencrypted email, for example,
is not good data transfer choice.

Accepting Custody Transfer

To accept custody transfer:

1 Click on the Custody link under Publish menu tab to display the Custody transfer page.

2 Click on the Transfer custody link.

3 Open the file with the transfer token, copy its contents to clipboard and paste it to the edit area on the
Transfer structures page.

4 Click Transfer button.

Chapter 3378

Publishing WSDL Documents

HP SOA Systinet Registry WSDL to UDDI (WSDL2UDDI) mapping is compliant with OASIS's technical
note Using WSDL in a UDDI registry Version 2.0 [http://www.oasis-open.org/committees/uddi-
spec/doc/tn/uddi-spec-tc-tn-wsdl-v200-20031104.htm]. It enables the automatic publishing of WSDL
documents to UDDI, enables precise and flexible UDDI queries based on specific WSDL artifacts and
metadata, and provides a consistent mapping for UDDI v2.

Publish WSDL

To publish a WSDL document:

1 Click on the WSDL link under the Publish main menu tab.

2 The page shown at Figure 81 will appear.

379User's Guide

http://www.oasis-open.org/committees/uddi-spec/doc/tn/uddi-spec-tc-tn-wsdl-v200-20031104.htm

Figure 81. Publish WSDL

3 Enter the Business key of the business where services from WSDL document will be published. You
can find a business key by clicking on the Find business key button.

4 Enter a WSDL location. You can try the WSDL document from HP SOA Systinet Registry demos
from REGISTRY_HOME/demos/conf/employeeList.wsdl.

5 Leave the Advanced mode check box unchecked, then click Publish button.

The WSDL document will be published to HP SOA Systinet Registry. You can review how WSDL artifacts
of the document have been mapped to HP SOA Systinet Registry at Figure 82.

Chapter 3380

Figure 82. Publish WSDL Summary

Publishing WSDL Documents (Advanced Mode)

The advanced publishing mode allows you to specify certain details of how the WSDL document will be
mapped to the UDDI registry. To publish in this mode, follow the steps from the previous section, and
toggle the Advanced mode check box on. Once you click on the button Publish the Advanced Mode Publish
page shown in Figure 83 will appear.

381User's Guide

Figure 83. Publish WSDL (Advanced Mode)

In the left tree panel, you can see how artifacts of the WSDL document will be published. Click on a tree
branch to edit how WSDL artifacts will be mapped to HP SOA Systinet Registry. Explanatory instructions
in the right panel describe the mapping options. Click Preview to see how each part of the WSDL document
will be mapped to the registry. From the Preview page, you can go back to adjust the WSDL mapping.

The wizard's default selection in Figure 83 is based on the following rules:

• If a possible mapping of a WSDL artifact already exists in the registry, and the user owns this UDDI
structure, the wizard will suggest rewriting that mapping in the registry.

Chapter 3382

• If a possible mapping of a WSDL artifact already exists in the registry, and the user does not own this
UDDI structure, the wizard will suggest reusing that UDDI entity.

• If no mapping of the WSDL artifact exists in the registry, the wizard will suggest creating a new UDDI
entity to represent the mapping.

HP SOA Systinet Registry applies these rules automatically when you publish a WSDL document without
the Advanced mode option.

Publishing of WSDL operations and WSDL messages is not implemented in this HP SOA Systinet
Registry release.

Unpublish WSDL

To unpublish a WSDL definition:

1 Search for the WSDL document in the registry.

2 In the result view, click on a business service.

3 The page with business service details will appear, click the Unpublish button at the page.

4 The Unpublish WSDL document wizard will appear.

Publish XML

HP SOA Systinet Registry XML to UDDI (XML2UDDI) mapping enables the automatic publishing of
XML documents to UDDI, enabling precise and flexible UDDI queries based on specific XML artifacts
and metadata

If you want to unpublish an XML document, use the Find XML button, then click the Unpublish button
in the search result page.

Publishing an XML Document

To publish an XML document:

1 Click on the XML link under the Publish main menu tab.

2 The page shown in Figure 84 will appear.

383User's Guide

Figure 84. Publish XML Document

3 Enter an XML location. To demonstrate, choose the file REGISTRY_HOME/demos/conf/employees.xml from
the HP SOA Systinet Registry demos.

4 Leave the Advanced mode check box unchecked, and click Publish.

The XML document will be published to HP SOA Systinet Registry You can review how the XML document
has been mapped to HP SOA Systinet Registry at Figure 85.

The content of the XML document is not copied into the registry

Chapter 3384

Figure 85. Publish XML Document Summary

Publishing an XML Document - Advanced Mode

The advanced publishing mode allows you to specify certain details of how the XML document will be
mapped to the UDDI registry. To publish in this mode, follow the steps from the previous section, check
the box labeled Advanced mode, and click Publish. This returns the Advanced Mode Publish page shown
in Figure 86 will appear.

385User's Guide

Figure 86. Publish XML Document - Advanced

In the left tree panel, you can see how Namespaces of the XML document will be published. Click on a
Namespace to edit how the Namespace will be mapped to HP SOA Systinet Registry. Explanatory instructions
in the right panel describe the mapping options. Click Preview to see how the XML document and its
Namespaces will be mapped to HP SOA Systinet Registry. From the Preview page, you can go back to edit
the XML mapping.

Chapter 3386

Figure 87. Publish XML Document - Preview

Unpublish an XML Document

The Unpublish XML operation allows you to delete an XML mapping from HP SOA Systinet Registry To
unpublish an XML document, you must search for the XML document first.

Publish XSD

HP SOA Systinet Registry XSD to UDDI (XSD2UDDI) mapping enables the automatic publishing of XML
schema documents to UDDI, enabling precise and flexible UDDI queries based on specific XML schema
artifacts and metadata.

If you want to unpublish an XML schema document, use the Find XSD button and click the Unpublish
button in the search result page.

Publishing an XML Schema

To publish an XML Schema document:

387User's Guide

1 Click on the XSD link under the Publish main menu tab.

2 The page shown in Figure 88 will appear.

Figure 88. Publish XSD

3 Enter an XML Schema location. To demonstrate, use the file REGISTRY_HOME/demos/conf/employees.xsd
from the HP SOA Systinet Registry demos.

4 Leave the Advanced mode check box unchecked, then click Publish.

5 The XML Schema document will be published to the registry. You can review mappings of the XML
Schema document itself and its elements at Figure 89.

Chapter 3388

Figure 89. Publish XSD Summary

Publishing an XML Schema (Advanced Mode)

The advanced publishing mode allows you to specify certain details of how the XML Schema document
will be mapped to the UDDI registry. To publish in this mode:

1 Follow the steps from the previous section, but check the Advanced mode box

2 Click Publish. This returns the Advanced Mode Publish page shown in Figure 90.

389User's Guide

Figure 90. Publish XSD - Advanced

3 In the left tree panel, you can see how the XML Schema and its possible XML Schema imports will
be published. Click on an XML Schema model node to edit how the parts of the XML Schema will
be mapped to the HP SOA Systinet Registry. The explanatory instructions in the right panel describe
the mapping options.

4 Click the Preview to see how the XML Schema document will be mapped to HP SOA Systinet Registry.
From the Preview page, you can go back to edit the XML Schema mapping.

Unpublish an XML Schema

The Unpublish XML operation allows you to delete the XML Schema mapping from HP SOA Systinet
Registry. To unpublish an XML Schema document, you must search for the XML Schema document first.

Chapter 3390

Publish XSLT

HP SOA Systinet Registry XSLT to UDDI (XSLT2UDDI) mapping enables the automatic publishing of
XSL Transformations to UDDI, enabling precise and flexible UDDI queries based on specific XSLT artifacts
and metadata.

If you want to unpublish an XSL transformation, click the Find XSLT button, then click the Unpublish
button in the search result page.

Publishing an XSL Transformation

To publish an XSL transformation:

1 Click on the XSLT link under the Publish main menu tab.

2 The page shown in Figure 91 will appear.

Figure 91. Publish XSLT

391User's Guide

3 Enter an XSLT location. To demonstrate, use the REGISTRY_HOME/demos/conf/employeesToDepartments.xsl
file from the HP SOA Systinet Registry demos.

4 Leave the Advanced mode check box unchecked, then click Publish.

The XSL transformation will be published to HP SOA Systinet Registry. You can review how XSLT artifacts
have been mapped to HP SOA Systinet Registry at Figure 92

Figure 92. Publish XSLT Summary

Publishing an XSL Transformation (Advanced Mode)

The advanced publishing mode allows you to specify certain details of how the XSL transformation will
be mapped to the UDDI registry. To publish in this mode:

1 Follow the steps from the previous section, but check the Advanced mode box.

2 Click Publish. This returns the Advanced Mode Publish page shown in Figure 86.

Chapter 3392

Figure 93. Publish XSLT- Advanced

In the left tree panel, you can see how XSLT and its input and output schemas will be published.

3 Click on an XSLT node itself, its input XML Schemas, and types of XSLT output to edit how these
artifacts will be mapped to HP SOA Systinet Registry. Explanatory instructions in the right panel
describe the mapping options.

4 Click Preview to see how the XSLT will be mapped to HP SOA Systinet Registry. From the Preview
page, you can go back to edit the mapping.

393User's Guide

Signer Tool

One of the most important advantages of UDDI version 3 is its support for digital signatures. Without
signatures you cannot verify whether the publisher of a business entity is really who that publisher claims
to be. But if the publisher has signed the UDDI structure, anyone can verify that the information is unmodified
by any means (including by UDDI registry operators) and to confirm the publisher's identity.

The HP SOA Systinet Registry Signer tool simplifies signature manipulation. You can find this tool's script
in the bin directory of your HP SOA Systinet Registry installation. The Signer is a graphical application
that can be used to add, remove, and verify the signatures of UDDI structures you have published.

If you are using IBM Java, you must install Bouncy Castle security provider. See Installation
Guide, System Requirements on page 40

Starting the Signer

1 To start the Signer tool, first ensure that HP SOA Systinet Registry is running, then execute the following
script from the bin subdirectory of your HP SOA Systinet Registry installation:

signer.batWindows:

./signer.shUNIX:

2 When the tool starts, you must first authenticate yourself against the selected UDDI version 3 registry.
Simply provide your user name and password. If your registry is not running on a local machine, you
must configure its endpoints. This can be accomplished via the Configure UDDI button.

Figure 94. Login Dialog

3 On the returned screen, set the endpoints of the Security, Inquiry, and Publishing Web services. For
help, ask the administrator of your registry.

Chapter 3394

Figure 95. Configure Dialog

4 Once you have entered your user name and password, click the Login button. The Signer tool will
attempt to authorize you at the selected registry. If authorization fails, you can correct your login
information. Once it succeeds, the Login dialog disappears and the Signer tool asks HP SOA Systinet
Registry for your registered information (businessEntities and tModels that you have published).

Main Screen

In the Signer tool's interface, the left part of the main screen consists of a tree containing all your
businessEntities and tModels. If you wish to add or remove a digital signature, select the structure to sign
from this tree. The Signer will fetch it from the registry. When the structure is fetched, its XML representation
is displayed in the right panel. The Sign button is unblocked. If the structure has been already signed, the
Remove signatures button is unblocked as well.

395User's Guide

Figure 96. Signature Tool - Main Screen

The status bar at the bottom of the application informs the user of current action progress and results.

Sign

To sign a UDDI structure, you must set up the Java keystore. Use JDK tool keytool to generate the keystore.
Please, see your JDK documentation for more information how to use keytool. The Signer tool has been
tested with keystores in JKS and PKCS12 formats.

To generate the certificate issue the following command

keytool -genkey -keyalg RSA -storetype JKS -alias demo_john -keystore test_certificate.jks

Example of the dialog:

 Enter keystore password: changeit
What is your first and last name?
 [Unknown]: John Johnson
What is the name of your organizational unit?
 [Unknown]: UDDI

Chapter 3396

What is the name of your organization?
 [Unknown]: Myorg
What is the name of your City or Locality?
 [Unknown]: San Diego
What is the name of your State or Province?
 [Unknown]: California
What is the two-letter country code for this unit?
 [Unknown]: CA
Is CN=John Johnson, OU=UDDI, O=Myorg, L=San Diego, ST=California, C=CA correct?
 [no]: yes
Enter key password for <demo_john>
 (RETURN if same as keystore password):

To sign a UDDI structure, you must set the Java keystore file, alias, and password as follows:

1 Click on the Sign button. This returns the Select identity dialog.

2 In the box labeled Select identity, type the path to the file with your Java keystore.

3 In the box labeled Alias, type the alias located in the identity.

4 In the box labeled Password, type the password used to encrypt the private key.

If you enter the wrong value for the alias or the password, the tool will not be able to open
the identity.

5 If the keystore is in the Sun JKS format, you do not have to click on Choose format button. You can
leave default values there. If the keystore is not in the Sun JKS format, you can specify the format by
clicking the Choose format button. In the returned dialog window, set the keystore format and its
provider. For example, to use the PKCS12 format, set the format to PKCS12 and the provider to
SunJSSE.

397User's Guide

Figure 97. KeyStore Format Dialog

6 When the signing operation succeeds, the selected UDDI structure will have a digital signature and its
XML representation will be updated. For security reasons, the signing process takes place on your
computer so as not to risk compromise to your private key.

7 Finally the Publish changes and Remove signatures buttons are enabled.

Validation

The Validate button is used to perform validity check of UDDI structures that contain XML digital signatures.
The result of this operation is displayed in the status bar.

Remove Signatures

The Remove signatures button is used to remove all digital signatures from the selected UDDI structure.
When this operation is complete, the XML representation of the UDDI structure is updated. If the Publish
changes button had been disabled, it is enabled.

Publish Changes

If you have signed the selected UDDI structure or removed digital signatures from it, you can select the
Publish changes button to publish the changes to the registry. Its invocation uses standard UDDI publishing
methods (save_tModel, etc.) to update this UDDI structure on the registry. The private key is not used during
this operation.

Signer Configuration

The Signer tool automatically remembers the actual configuration such as registry endpoints or keystore
location and format. The config file is saved in the user's home directory with the name signer.conf. You
can change the location (and filename) by using the signer script's -c option. If you do not want this feature,
use -n. The list of valid options can be obtained with -h option.

Chapter 3398

4 Administrator's Guide

The HP SOA Systinet Registry Administrator's Guide contains information necessary for the management
of HP SOA Systinet Registry. It is aimed at the user responsible for configuring the registry and managing
permissions, approval, and replication. This guide is divided into the following sections:

Registry Management on page 400 . Registry management includes also management of user accounts and
permissions, taxonomy management, and management of the approval process.

Registry Configuration on page 454 . How to configure the Registry Console.

Business Service Console Configuration on page 467 . How to configure the Business Service Console.

Registry Console Configuration on page 482 . This section covers setting the URLs, directories, contexts,
timeouts and limits associated with the HP SOA Systinet Registry interface.

Permissions: Principles on page 485 . This section discusses the mechanism HP SOA Systinet Registry
provides for the management of users' rights; permissions allow the administrator to manage or make
available different parts of the registry to different users.

Approval Process Principles on page 499 . This section describes Approval, a process by which control is
exercised over the data published to HP SOA Systinet Registry.

PStore Tool on page 503 . Describes a tool for management of protected stores for certificates and security
identities.

Make sure HP SOA Systinet Registry is running before attempting to use its consoles for
configuration. To start it change to the bin subdirectory of REGISTRY_HOME and run:

serverstart.batWindows:

./serverstart.shUNIX:

399

The Registry Console can be found at http://<hostname>:<port>/uddi/web and the Business Service Console
can be found at http://<hostname>:<port>/uddi/bsc/web.

Hostname and port are defined when HP SOA Systinet Registry is installed. The default port is 8080.

Log on as administrator. Initially, the administrator's user name is set to admin and the password to changeit.

We strongly advise you to change the password for user admin once you have logged in.

Be very careful when editing the Operational business entity, or editing the taxonomy uddi-org:types.
Modification of these structures can lead to registry instability.

Registry Management

Accessing Registry Management

Registry Management is a set of tasks that the administrator can address through the Registry Console.
These tasks are listed in Figure 1

To access the Registry Management console:

1 Log on as administrator or as a user with privilege to display Manage tab as described in Rules to
Display the Manage Tab.

2 Click the Manage main menu tab.

3 Select the Registry management link under Manage tab. This returns the screen shown in Figure 1.

Rules to Display the Manage Tab

The Manage tab is available if at least one of the following conditions is satisfied:

• You have ApiManagerPermission to all methods (*) of one or more APIs
(Account,Group,Permission,Taxonomy,ApprovalManagement,Statistics,Administration Utils).

• You have ConfiguratorManagerPermission to all operations (*) and all configurations (*).

Chapter 4400

• You have ApiManagerPermission to all methods (*) of ReplicationApi and
ConfiguratorManagerPermission to all operations (*) for replication configuration.

• You have ConfiguratorManagerPermission to all operations (*) for web configuration.

Figure 1. Registry Management

• Account Management - Create, edit, and delete user accounts.

• Group Management - Create, edit, and delete accounts groups.

• Permissions - Set up permissions using the Registry Console

• Taxonomy Management - Build and maintain taxonomies via the Registry Console.

401Administrator's Guide

• Replication Management - Set up a subscription-based replication mechanism under which a slave
registry receives notification from a master registry regarding updates and changes. (For more information
on replication, please see Replication Management on page 431.)

• Approval Management - set up requestors and approvers. This button is available only if the approval
process is installed. See Installation Guide, Approval Process Registry Installation on page 118

• Replace UDDI keys - Replace the UDDI keys of businessEntities, businessServices, tModels, and
bindingTemplates.

• Replace URLs - Replace URL prefixes in the following entities:

• tModel - OverviewDoc URL

• tModelInstanceInfo - overviewDoc URL and DiscoveryURL

• binding template - accessPoint URL

• Delete deprecated tModels - This option lets the administrator permanently delete deprecated tModels.
A tModel is considered deprecated when it is marked as deleted by its owner. By default, tModels are
deleted permanently by users. See Node on page 462 how to change this behavior.

• Transform keyed references - This operation is necessary when the type of taxonomy keyValues or
the implementation of the taxonomy transformation service have been changed. For more information
see, User's Guide, Taxonomy: Principles, Creation and Validation on page 306.

• Statistics - This option displays two statistics tabs:

• The first tab displays information about the number of accesses made to the various UDDI interface
methods. One column displays the total request counts and a count of calls that fail and therefore
return exceptions.

• The second one contains counts of the main data structures (businessEntities, businessServices,
tModels, bindingTemplates) in the database.

Chapter 4402

Account Management

The HP SOA Systinet Registry administrator manages user accounts using the Registry Console. Use this
console whenever you want to disable an account, change limits for a particular account, or take care of
general housekeeping.

To access the Account management console:

1 Log on as administrator.

2 Click the Registry management link under the Manage tab.

3 Click the Account management button.

This displays a list of all accounts, as shown in Figure 2.You can search accounts using the Find users
button.

Figure 2. Find Account

Create Account

To create an account:

1 On the Find Account page, click Create Account button. This returns the Create account page shown
in Figure 3.

403Administrator's Guide

Figure 3. Create Account

2 Provide the information shown in . Fields marked with a red asterisk (*) are required.

Chapter 4404

Figure 4. New Account - All Fields

Field descriptions (self-explanatory fields are omitted):

Default Language Code

Set the default language to be used during publishing when the language code associated with
a particular field is not specified.

Use the following profile

Profile preference - Select your preferred predefined user profile from this drop down list

405Administrator's Guide

Blocked

Here you can enable/disable a user account. This is the account flag which prevents/permits
a user from successfully logging onto the server.

Limits

These fields (Assertions limit, Bindings limit, Businesses limit, Services limit, Subscriptions
limit, andTModels limit) indicate the number of these items allowed by the user. Changing
default user limits is discussed in the Accounts section of Registry Configuration.

If you are using approval process (you create account in publication or intermediate registry),
you can set fields for Approver request transformation and Approver message transformation.
Both fields determines XSL transformation for approval process mail notifications. XSL
transformation is specified by the key of appropriate tModel. Approver request transformation
determines transformation for mail notification about newly created approval request. Approver
message transformation is used for mail notification about request's cancellation, approval or
rejection. Both transformations are taken into account only for approval process called from
the Registry Console

3 When finished, click Create account. This returns the Find account page. Note that the list of accounts
now includes the account you have just created.

Account Limits

Each user account has the following limits for data saved under the account:

• Businesses limit - maximum number of businessEntities the account can hold. (1 by default).

• Services limit - maximum number of businessServices in the same businessEntity (4 by default).

• bindings limit - maximum number of bindingTemplates in the same businessService (2 by default).

• tModels limit - maximum number of tModels the account can hold. (100 by default).

• Assertions limit - maximum number of publisherAssertions the account can hold (10 by default).

• Subscriptions limit - maximum number of subscriptions an account can hold. (5 by default)

Chapter 4406

Common users can not change these limits. Only the administrator can change limits for a user or change
default limits for newly created users.

The number of businessServices/bindingTemplates are checked against the limit on the user account owning
the parent structure, not against the limit of the user processing the save_XXX call. For example, a user U1
owns a businessEntity BE_U1 and provides create ACL right to the user U2. The user U2 saves a new
businessService under the BE_U1, total count of businessServices under the BE_U1 (no matter who is the
owner) is checked against the service limit of the BE account.

Limit checking is skipped if a user who performs the operation has an ApiManagerPermission with the
appropriate permission name and action:

• API (permission name)

• org.systinet.uddi.client.v3.UDDI_Publication_PortType for skipping limit tests on Publishing V3 API.

• org.systinet.uddi.client.v2.Publish for skipping limit tests on Publishing V2 API.

• org.systinet.uddi.client.v1.PublishSoap for skipping limit tests on Publishing V1 API.

• org.systinet.uddi.client.subscription.v3.UDDI_Subscription_PortType for skipping limit tests on
Subscription API.

• operation (action)

• save_business for skipping businesses limit test on Publishing V1/V2/V3 API

• save_service for skipping services limit test on Publishing V1/V2/V3 API

• save_binding for skipping bindings limit test on Publishing V1/V2/V3 API

• save_tModel for skipping tModels limit test on Publishing V1/V2/V3 API

• add_publisherAssertions for skipping assertions limit test on Publishing V2/V3 API

• set_publisherAssertions for skipping assertions limit test on Publishing V2/V3 API

• save_subscription for skipping subscriptions limit test on Subscription API

407Administrator's Guide

For more information see Permissions: Principles on page 485. By default, only the administrator has these
permissions, and therefore the administrator has an unlimited account.

Edit Account

To edit an account:

1 On the Find account page shown in Figure 2, click the Edit Account icon () associated with the
account you want to edit.

This returns the Edit account page.

2 On the Edit account page, provide or change the information in the various fields. These are the same
as the fields shown in Figure 4.

Field descriptions (self-explanatory fields are omitted):

Default Language Code

Set the default language to be used during publishing when the language code associated with
a particular field is not specified.

Blocked

Here you can enable/disable a user account. This is the account flag which prevents/permits
a user from successfully logging onto the server.

Limits

These fields (Assertions limit, Bindings limit, Businesses limit, Services limit, Subscriptions
limit, andTModels limit) indicate the number of these items allowed by the user. These are
described in detail in the Accounts section of Registry Configuration.

3 When finished, click the button labeled Save Changes. This returns the Find account page.

Delete Account

To delete an account:

1 On the Find account page, check the box next to the Login name of the account you want to delete.

2 Click the Delete Selected button.

Chapter 4408

3 If you are certain you want to delete the account, click Yes when prompted. Note that on publication
registries and standard installations of HP SOA Systinet Registry, all published information associated
with the user will be lost.

If you are using LDAP for storing users, the user account will not be deleted from the LDAP store,
because LDAP stores are treated as read-only. The delete account operation will delete an account
only from the registry database.

Group Management

User groups simplify management of access rights to each UDDI data structure. You can use groups to
group users with similar rights.

The administrator can:

• Create and manage user groups

• Manage group membership

Figure 5. View User Groups

Create and Manage Groups

To create a new group:

1 Click on the Manage menu tab. On the Manage tab, select the Registry management link, and then
click the Group management button. This returns the Group Management page.

409Administrator's Guide

2 To display all groups on the registry, click Filter. This returns a Group list like the one shown in
Figure 5.

3 Click the Add Group button. This returns a blank Add group page much like the one shown in Figure 6.

Figure 6. Add Group Page

4 In the edit box labeled Group name, type the name of your group. In the edit box labeled Group
owner, type the owner of the group. The default owner is Admin. These two fields are required.

5 Use the radio buttons labeled public and private to set group visibility.

Both public and private groups are visible to all users in the registry, meaning that all users are able
to see which groups exist. Public and private groups differ in that members of public groups are visible
to all users of the registry whereas members of private groups are visible only to the owner of the
group.

6 Optionally, Enter a description of the group in the box labeled Description.

7 Click the Save group properties button. This returns the Users list and Group members sections
shown in Figure 5.

Chapter 4410

Figure 7. Edit Group Membership

8 In the Users list section, click Filter to display a list of all of the registry's users.

Use the drop down list in this section to sort users by Login name or Full name.

Use the text box to further filter users. You can use % as wildcard in this field.

9 Check the boxes next to all members you wish to include, and click the right-pointing arrow (
) to move them to the Group members table.

Group members are updated in the database once you click the arrow buttons.

Manage Group Membership

To add or remove members from a group:

1 Click on the Manage main menu tab.

411Administrator's Guide

2 Click on the Registry management link. This returns the main Registry Management page.

Click the Group management button. This returns the Group list shown in Figure 5.

3 Enter your search criteria, then click the Filter button. Click Filter without search criteria to return a
list of all groups.

4 Click the Edit button () in the row with the group you want to manage. This returns the Edit Group
page. Specify search criterion for user accounts, then click the Filter button.

5 Use the arrow buttons (and) to add and remove users as shown in Figure 7

Permissions

This chapter describes how you can set permissions using the Registry Console. Before you start to work
with permissions, we recommend reading Permissions: Principles on page 485 to become familiar with
permissions principles.

HP SOA Systinet Registry uses the same interface for managing both user permissions and group permissions.
In this section we discuss user permissions, but group permissions are handled the same way.

Accessing Permission Management

To access permission management:

1 Log on as Administrator or as a user who has permission to set permissions, as described in Permissions
Definitions on page 486.

2 Click the Manage main menu tab. On the Manage tab, select the Registry management link, and
then click the Permissions button.

3 On the initial Select Principal screen, click Filter, without changing the default settings, to view a list
of all users (principals).

Use the drop down list in this section, labeled Filter: to sort users by Login name or Full
name.

Use the text box to further filter users by name. You can use % as wildcard in this field.

Chapter 4412

Select the radio button labeled User to manage permissions for individual users. Select the button
labeled Group to manage group permissions.

Check the box labeled Show only users/groups with some permission to filter out principals who
have not already been granted permissions.

This returns the list of users shown in Figure 8.

Figure 8. Select Principal

4 Click the Edit icon () associated with the user or group whose permissions you wish to set.

Add Permission

To add permissions:

1 Access permission management as described above in Accessing Permission Management on page
412.

2 On the principal list page shown in Figure 8, click the Edit icon () associated with the group or
user to whom you wish to add permissions. On the returned Permissions page, click Add permission.

3 An Add permissions page much like the one shown in Figure 9 will appear.

413Administrator's Guide

Figure 9. Add Permission

4 • Select the type of permission from the drop down list labeled Permission type.

• From the drop down list labeled Permission name, select the name of the permission to add.

• Check the box(es) next to the actions associated with the permission name in order to grant
permission to perform those actions. Check the box next to the asterisk (*) to permit all the actions
on the list.

5 Click Save Changes to save the permission.

Editing and Deleting Permissions

To edit a permission:

Chapter 4414

1 On the principal list page shown in Figure 8, click the Edit icon () associated with the user whose
permissions you want to edit or delete.

2 If the principal has permissions defined, a permission list like the one shown in Figure 10 will appear.

Figure 10. Permissions List

3 Click the Edit or Delete icon () associated with the permission you want to address.

Assigning Administrator's Permission

If you want to give administrator's permissions to an existing user, you must assign the following permissions
types to the user:

• org.systinet.uddi.security.permission.ApiManagerPermission

• org.systinet.uddi.security.permission.ApiUserPermission

• org.systinet.uddi.security.permission.ConfigurationManagerPermission

For each Permission type set all Permission names and all actions using the asterisk (*)

Taxonomy Management

This chapter describes how administrators can build and maintain taxonomies using the Registry Console.
Before you start to manage taxonomies, we recommend reading User's Guide, Taxonomy: Principles,
Creation and Validation on page 306 to become familiar with taxonomy principles.

The following tasks are described in this chapter:

415Administrator's Guide

• Adding a taxonomy - How to add taxonomies HP SOA Systinet Registry.

• Finding taxonomies - How to locate taxonomies in HP SOA Systinet Registry.

• Editing taxonomies - How to change taxonomy categorization, compatibilities, and a taxonomy type
that is important in range queries comparison.

• Editing a taxonomy structure - How to add categories, disable nodes, edit node values, and delete nodes.

• Uploading a taxonomy

• Downloading a taxonomy

To view the Taxonomy management page:

1 Log on as administrator.

2 Click the Manage tab under the Main menu, and then click on the Registry management link under
the Manage menu tab.

3 Click Taxonomy management. This returns a blank Taxonomy management page. To view a selection
of taxonomies, select a filter from the drop down list labeled Show. Possible filters are:

• Favorite taxonomies

• Enterprise taxonomies

• All taxonomies hide system

• All taxonomies including system

This returns a list of taxonomies similar to that shown in Figure 11.

Chapter 4416

Figure 11. Find Taxonomy (Enterprise Taxonomies)

Use the page shown in Figure 11 to search enterprise taxonomies. You can classify taxonomies according
to the following overlapping groups:

• Enterprise taxonomies - The HP SOA Systinet Registry administrator can define which taxonomies will
be present in the enterprise taxonomies list. The Enterprise taxonomies button located in the bottom
part of Figure 11 allows you to manage a list of enterprise taxonomies for all registry user accounts.

• Favorite taxonomies - All registry users can define their list of favorite taxonomies. See User's Guide,
favorite Taxonomies on page 339 for more information on how to manage your list of favorite taxonomies.

417Administrator's Guide

• System taxonomies - When you edit a taxonomy you can assign whether the taxonomy is a system
taxonomy using the check box System taxonomy.

The reason for this taxonomy classification is to make taxonomy management and UDDI entity categorization
easier.

If you want to manage taxonomies which are not in the enterprise taxonomy list, select see all taxonomies
including system taxonomies from the drop down list labeled Show. The page shown in Figure 12 will
appear. You can search taxonomies using the following criteria: taxonomy name, type, compatibility, and
validation.

Figure 12. Find Taxonomy

Adding Taxonomies

You can also add a root for a taxonomy by hand and build it through the Registry Console.

To add a taxonomy:

Chapter 4418

1 Click the Add taxonomy button shown in Figure 12.

2 Fill in as many of the fields on the Add taxonomy page, shown in Figure 13, as you require. Only two
fields are required to create a taxonomy: Name and Categorization, however the more information
you provide, the more useful your taxonomy will be.

Figure 13. Add Taxonomy

3 In the field labeled Name, name your taxonomy.

4 Skip the field labeled tModel key. This key is generated when you save the taxonomy.

5 In the field labeled Description, briefly describe the use of the taxonomy.

419Administrator's Guide

6 Check one or more of the boxes in the section labeled Categorization. Categorizations are discussed
in Taxonomy Types on page 307.

7 You may enforce that your taxonomy can be used only within the UDDI structures of your choice.
Select one or more of the main UDDI structure types in the section labeled Compatibility.

8 Validation. In this section, specify whether the values in keyedReferences within the taxonomy will
be checked or not.

• Select checked internal if you want HP SOA Systinet Registry to check keyedReferences in which
the taxonomy is used against a validation service deployed within HP SOA Systinet Registry.

• Select checked external if you want HP SOA Systinet Registry to check keyedReferences in which
the taxonomy is used against a validation service deployed on a remote SOAP stack such as Systinet
Server.

If you are using an external validation service, provide at least one Validation service endpoint.

• Select unchecked if you do not want HP SOA Systinet Registry to perform any checks on values
used in keyedReferences in which the taxonomy is used.

9 Use the box labeled Unvalidatable to mark taxonomies as temporarily unavailable.

10 Check the box labeled System taxonomy if you want to mark the taxonomy for internal use. Users
and administrators can filter System taxomies easily when searching in the Business Service Console.

11 Select a Value type for keyValues. You can choose from three existing comparators or create a custom
comparator. Existing comparators are:

• string - keyValues are treated as string values. If keyValues type is unknown then keyValues are
treated as strings. The maximum length is 255 characters.

• numeric - keyValues are treated as decimal numbers. The value can have maximum 19 digits before
the decimal point and maximum 6 digits after the decimal point.

• date - keyValues are treated as dates.

If you want to categorize using a custom comparison, you must create a new comparator tModel and
implement a transformation service. The Transformation service endpoint must start with the class:

Chapter 4420

prefix. Please see the Types of keyValues on page 309 and Custom Ordinal Types on page 310 for more
information.

12 Use the box labeled Add to favorites to mark the taxonomy as either a personal favorite. This is an
option available to all users.

Check the box labeled Add to enterprise to mark the taxonomy specific to the particular enterprise
or application. For more information, see Enterprise Taxonomies on page 229

13 Click Save taxonomy.

Later, you will be able to modify all taxonomy attributes except the validation type. See Editing
Taxonomies on page 422 for attribute descriptions.

Finding Taxonomies

To locate a taxonomy in HP SOA Systinet Registry:

1 Log on as administrator.

2 Click the Manage tab under the Main menu, and then click on the Registry management link under
the Manage menu tab.

3 Click Taxonomy management. This returns a blank Taxonomy management page. Select a filter from
the drop down list labeled Show. Possible filters are:

• Favorite taxonomies

• Enterprise taxonomies

• All taxonomies hide system

• All taxonomies including system

This returns a list of taxonomies similar to that shown in Figure 11.

4 On the returned Find taxonomy page, you can further filter the results by

a name

421Administrator's Guide

b type - Types are discussed in Taxonomy Types on page 307

c compatibility

d validation

5 From the list of taxonomies the fit the filter criteria, select the taxonomy you wish to view by clicking
on its name.

Editing Taxonomies

The Registry Console makes it possible to change any taxonomy attribute except the validation type attribute.
To edit a taxonomy:

1 Identify the taxonomy you want to edit as described in Finding Taxonomies on page 421.

2 Click on the Edit Taxonomy icon in the Find Taxonomy page shown in Figure 12. This loads the Edit
taxonomy page shown in Figure 14.

Chapter 4422

Figure 14. Edit Taxonomy

3 In the field labeled Name, edit the taxonomy's name.

4 In the field labeled Description, briefly describe the use of the taxonomy.

5 Check one or more of the boxes in the section labeled Categorization. Categorizations are discussed
in Taxonomy Types on page 307.

6 You may enforce that your taxonomy can be used only within the UDDI structures of your choice.
Select one or more of the main UDDI structure types in the section labeled Compatibility.

7 Validation. In this section, specify whether the values in keyedReferences within the taxonomy will
be checked or not.

• Select checked internal if you want HP SOA Systinet Registry to check keyedReferences in which
the taxonomy is used against a validation service deployed within HP SOA Systinet Registry.

423Administrator's Guide

• Select checked external if you want HP SOA Systinet Registry to check keyedReferences in which
the taxonomy is used against a validation service deployed on a remote SOAP stack such as Systinet
Server.

If you are using an external validation service, provide at least one Validation service endpoint.

• Select unchecked if you do not want HP SOA Systinet Registry to perform any checks on values
used in keyedReferences in which the taxonomy is used.

8 Check the box labeled Unvalidatable to mark the taxonomy as temporarily unavailable. When you
save a checked taxonomy without a validation service, the taxonomy will be saved with Unvalidatable
toggled on.

9 Select a Value type for keyValues. You can choose from three existing comparators or create a custom
comparator. Existing comparators are:

• string - keyValues are treated as string values. If keyValues type is unknown then keyValues are
treated as strings. The maximum length is 255 characters.

• numeric - keyValues are treated as decimal numbers. The value can have maximum 19 digits before
the decimal point and maximum 6 digits after the decimal point.

• date - keyValues are treated as dates.

If you want to categorize using a custom comparison, you must create a new comparator tModel and
implement a transformation service. The Transformation service endpoint must start with the class:
prefix. Please see the Types of keyValues on page 309 and Custom Ordinal Types on page 310 for more
information.

Editing a Taxonomy Structure

While the fields in the Edit Taxonomy page are used for controlling global attributes, the management of
nodes within the taxonomy itself is handled by categories. Here you can add nodes, edit node values, and
enable or disable them.

Changing taxonomy structure is allowed only for checked taxonomies which are validated by the
internal validation service.

Chapter 4424

Adding Categories to a Taxonomy

Before we begin assigning names to a taxonomy it is important to consider how the naming system
will function.

Taxonomy values in UDDI consist of name and value pairs, like entries in a hash table. As with
hash table values, the trade-off between economy of space and extensibility must be taken into
consideration. Too long a Value string will be wasteful; too small and it will not be extendable.

To add a node to a branch or root:

1 Identify the taxonomy you want to edit as described in Finding Taxonomies on page 421.

2 Click the Edit taxonomy structure icon () in the Find taxonomy page as shown in Figure 12.

This icon is only available for checked taxonomies that are validated by the internal validation
service. You cannot edit the structure of unchecked taxonomies and checked taxonimies that
are validated by other services.

3 The Edit taxonomy structure page will appear.

4 On this page, right-click on the taxonomy's folder icon to display its context menu, and select the Add
category action or click the Add child category to ... icon next to the item.

5 This displays the Add category page. Provide the required Key name and Key value, and click Save
category.

In the shipping taxonomy example shown in Figure 15, we use a value algorithm that employs an array
of six alphanumeric characters:

• The first element in the array signifies the first geographic division.

• The second and third elements signify further geographic subdivisions where necessary.

• The fourth character indicates transport mode.

• The fifth character is reserved for an extension to the system allowing a coded category containing
a maximum of thirty-six divisions.

425Administrator's Guide

• The sixth can be used for a weight coding system.

Figure 15. Add Category

6 Check the box labeled Disabled to mark the category as either helper or deprecated. Note that disabled
categories cannot be used as valid options in keyedReferences.

7 Click the Save category button. This builds the taxonomy as shown in Figure 16.

Chapter 4426

Figure 16. Edit Shippers Taxonomy 1

Moving categories

To demonstrate category moving, we will extend the Shippers taxonomy from previous section.

Add four non-disabled categories with the following attributes:

a Key name: national; Key value: N00000.

b Key name: regional; Key value: R00000

c Key name: american; Key value: A00000.

d Key name: european; Key value: E00000.

The result is shown in Figure 17.

427Administrator's Guide

Figure 17. Edit Shippers Taxonomy 2

Add a new category {world-wide,W00000} to the same level as all previous taxonomies.

We want to put both the european and american categories under the world-wide category as shown in Figure 18.

Figure 18. Edit Shippers Taxonomy 3

To do so, select both the european and american categories and click Reparent selected. A dialog for the
target category should appear. Choose the world-wide category node. The structures will be displayed as
shown in Figure 18.

Child nodes are moved along with the parent.

Chapter 4428

The Edit taxonomy structure also allows you to see UDDI entities categorized with a category from the
taxonomy tree. An example of displayed business entities categorized with the Shippers taxonomy is shown
in Figure 19. To switch to the view of categorized UDDI entities, click the house icon ().

Figure 19. Edit Shippers Taxonomy 3

Deleting and Disabling Nodes

There are two policy choices for dealing with categories of entities that cease to be active. Either:

• They can be marked as disabled.

• They can be deleted entirely from the taxonomy.

To delete a taxonomy node,

1 Navigate through the taxonomy tree via the Edit taxonomy page.

2 Right-click on the category node's icon and select the Delete option from its context menu.

Because this process is irreversible you will be asked to confirm.

429Administrator's Guide

To disable a taxonomy node:

1 Navigate through the taxonomy tree via the Edit taxonomy page.

2 Right-click on the category node icon to display its context menu.

3 Select the Edit category option from the context menu. This returns the Edit category page.

4 On the Edit category page, check the option labeled Disable.

5 Click the Save category button.

Uploading Taxonomies

To upload a taxonomy:

1 Log on as administrator.

2 Click Manage main menu tab, then click on the link Registry management under the Manage menu
tab.

3 A list of taxonomies like the one shown in Figure 12 will appear.

4 Click the Upload taxonomy button.

5 Choose a taxonomy file using the Browse button.

6 Click the Upload taxonomy button.

The format of data on this page is described in the Persistence Format on page 557 of the Developer's
Guide.

To upload multiple taxonomies at once you should add them into one ZIP archive and upload this
archive.

Downloading Taxonomies

There are two obvious cases in which you will want to download a taxonomy from the database:

Chapter 4430

1 If you are planning to edit the taxonomy, it is good to keep a safe copy for version control. You can
either edit the downloaded copy directly, and even manage it through a versioning system, or keep the
downloaded copy as the safety copy and edit the taxonomy directly through the Registry Console and
save changes directly to the database.

2 You may wish to replicate the taxonomy for other systems in other departments of your organization.
These departments or branches may even tailor the taxonomy for their own purposes.

To download the taxonomy, click the Download () icon. This returns the system Save file dialog. The
default name for the destination file is the taxonomy name with a .xml extension appended. Rename the file
if you choose, then save the taxonomy file as you would any other.

Deleting Taxonomies

If at any point you decide that a taxonomy is no longer necessary, you can delete it by clicking the Delete
taxonomy icon () in the Find Taxonomy page.

Because this procedure is irreversible you will be asked to confirm your deletion.

Replication Management

Selective One-way Replication is a subscription-based replication mechanism under which a slave registry
retrieves update and change notifications from a master registry. The slave registry then applies these to its
own data.

Replication is set up by a subscription defining the set of businessEntities or tModels being replicated. The
subscription filter is a find_business or find_tModel query with no special requirements.

Each time replication is invoked, the slave registry retrieves a set of changed businessEntities and referenced
tModels. The tModels are referenced in tModelKeys of either tModelInstanceInfos or keyedReferences.
These changes are then saved.

Referenced tModels are only replicated if the slave registry does not already contain them. If a
tModel is already present in the slave registry, it will not be replicated to the slave registry, even
if the tModel has been modified in the master registry.

Replicated data should not be changed because such changes in the slave registry will be lost when
someone changes these entities in the master registry and the replication is automatically processed.

431Administrator's Guide

Note also that replicated data should be stored under an account having administrator's privileges
(admin).

Replication may fail or produce warning messages. The failure may occur for one of the following reasons:

• The master registry is not accessible or the connection is broken during data replication;

• Saving/Deleting of a subscribed businessEntity on the slave registry fails.

A warning is produced when:

• The subscribed businessEntity is not accessible on the master registry. For example because of ACL
GET denied permission;

• Referenced tModels are not accessible on the master registry;

• Referenced tModels are saved/deleted.

Replication tries to obtain all changes to subscribed data since the last successful replication.

Replication process logs can be found in the REGISTRY_HOME/log/replicationEvents.log file. You can edit the
REGISTRY_HOME/conf/log4j.config and make replication logging more detailed by uncommenting the following
statement:

log4j.category.replication_v3.com.systinet.uddi.replication.v3.ReplicatorTask=DEBUG,replicationLog

Master Registry Setup

To set up the master registry:

1 If you do not have an account on the master registry, you must create one. It can be a standard account.

The default subscription limit for a new user is five. The HP SOA Systinet Registry
Administrator may increase the subscriptions limit for the user.

2 Log into the master registry account.

3 Create a subscription for the replication with the following details:

• The subscription filter must be a find_business or find_tModel query.

Chapter 4432

• Set the Notification listener type drop down list to None

• The brief option is recommended to reduce the amount of transferred data.

For more information, please see Publishing Subscriptions on page 372.

Slave Registry Setup

Only the administrator of the slave registry should do this.

There are two parts to the slave registry configuration:

• Master registry information including the location of master registry endpoints for inquiry, subscription
and security APIs, and the username/password pair on the master registry needed to obtain notifications;

• Slave registry information including the username/password pair on the slave registry for the user who
will own the replicated data, and the notification interval.

To set up replication:

1 Log on as Administrator to the slave registry.

2 Click the Manage main menu tab, then click on the link Registry management under the Manage
menu tab.

3 Click Replication management. This returns a list of replications.

4 Click Add replication.

5 Fill in the form under the Master tab as described in Figure 20.

6 Fill in the form under the Slave tab as described in Figure 21.

7 Specify permissions for replicated data under the Permissions tab as shown in Figure 22.

8 Click Save replication.

433Administrator's Guide

Figure 20. Add Replication Master

• User name - Name of the user who created the replication subscription on the master registry

• Password - Password of the user who created this subscription. This password is encrypted in the
configuration file.

• URLs of Master Registry - All URLs (Inquiry URL, Subscription URL and Security URL) must refer
to the same master registry. Moreover the URLs must not refer to the slave registry itself, otherwise
you can loose some data.

• Inquiry URL - Inquiry URL of master registry. For example,
http://master.mycompany.com:8080/uddi/inquiry. The inquiry URL is used to obtain full standard UDDI
v3 structures.

UDDI v2 keys are not included in the UDDI v3 structure and replicated structures differ
with regard to v2 keys. To replicate v2 keys, specify the URL of the proprietary inquiry

Chapter 4434

API, which returns extended structures including v2 keys. This extended API has the context
/uddi/export. For example, http://master.mycompany.com:8080/uddi/export.

• Subscription URL - Master registry's subscription URL. For example,
http://master.mycompany.com:8080/uddi/subscription.

• Security URL - Master registry's security URL. For example,
https://master.mycompany.com:8443/uddi/security.

• Replication subscription key - key of the find_business or find_tModel subscription from the master
registry.

• tModel subscription key - key of the helper subscription for changes to tModels from the master
registry.

Figure 21. Add Replication Slave

435Administrator's Guide

• Replication name - Name the replication for better orientation within the list of replications.

• Disabled - Check this box to disable replication.

• User name - User account name under which replicated data will be stored.

The user must have the ApiManagerPermission on
org.systinet.uddi.client.v3.UDDI_Publication_PortType API for all * actions to be able to generate
keys without having the appropriate keyGenerator. For more information, see User's Guide,
Generating Keys on page 302. By default, the only user who can do this is the admin.

• Replication period - Specify the period between replications by entering the appropriate number in the
boxes for years, months, days, hours, minutes, and seconds. The default period is one hour.

• Last replication time - The date and time when the last replication occurred.

Chapter 4436

Figure 22. Add Replication Permissions

In the page shown in Figure 22, the administrator can set up permissions for replicated data. If you do not
enter any data on this page, all users from the slave registry have find and get permissions on replicated
data.

To specify permissions on replicated data:

1 Enter a filter criteria for users or groups, and click Filter.

2 Check the box in front of users or groups. Then, click the Add selected users button. Selected users
or groups will be added to the permissions list.

3 Click the Edit icon to change permissions for Find, Get, Save and Delete operations

4 Click the Save replication button.

437Administrator's Guide

Use the button Replicate now on the replication page to test the replication settings.

Approval Process Management

This chapter describes how administrators can manage the approval publishing process. We will show you
how to set up requestors and approvers using the Registry Console. Before you start, we recommend that
you read Approval Process Principles on page 499.

Loading the Approval Management Page

The tasks described in this section are performed from the Approval management page. To load this page:

1 Log on as administrator.

2 Click the Manage main menu tab, then select the Registry management link under the Manage
menu tab.

3 Click Approval management. This returns a list of approvers similar to that shown in Figure 23.

Figure 23. Approval Management

Chapter 4438

Create Approver

To create an approval contact:

1 Click the Modify approvers button on the Approval management page shown in Figure 23

2 This returns the Modify approvers page as shown in Figure 24

The left side of this page, labeled Principal list is a list of all users and groups on the registry. The
administrator may make any name on this list into an approval contact.

The right side, labeled Approvers is a list of all approvers on the registry.

3 Check the box next to the login name of a user you would like to turn into an approver and click the

right-facing arrow (). If you would like to create an approver from a group, check the group
box and use the right-facing arrow.

4 Click the Save approvers button.

Using the left-facing arrow buttons, you can deselect approvers in the same way.

Figure 24. Modify Approvers

439Administrator's Guide

Create Requestor

To create a requestor from a user:

1 On the Approval management page shown in Figure 23 click the link labeled Requestors next to an
Approver type.

2 This returns the Modify requestors page shown in Figure 25

The Requestors page consists of two lists:

• A list of all users and groups on the registry labeled principals

• A list of users and groups, labeled Requestors assigned to the selected approver

3 Select a user or group from the Principals column (or click Select all if you choose), and click the

right-pointing arrow () to turn the user(s) into requestors.

4 Click the Save requestors button.

Using the left-pointing arrow button, you can deselect requestors in the same way.

Chapter 4440

Figure 25. Modify Requestors

Replacing UDDI Keys

Replacing keys of businessEntities, businessServices, tModels, and bindingTemplates is intended to correct
errors in keys before entities are commonly used by users.

To access the key replacement page:

1 Log on as administrator.

2 Click the Registry management link under the Manage tab.

3 In the row labeled Replace UDDI keys, click the appropriate button tModel, business, service, or
binding.

441Administrator's Guide

The replace key operation can break digital signatures on changing entity as well as on other entities
which reference to the changing entity.

Replacing tModel keys

When you replace a tModel key, the key will be updated in the following data structures:

• tModel

• keyedReferenceGroups

• keyedReferences

• tModelInstanceInfos

• publisherAssertions

• addresses

• taxonomies

Replacing businessEntity keys

When you replace a businessEntity key, the key will be updated in the following data structures:

• businessEntity

• services

• keyedReferences

Replacing businessService keys

When you replace a businessService key, the key will be updated in the following data structures:

• businessService

• bindingTemplates

• keyedReferences

Chapter 4442

Replacing bindingTemplate keys

When you replace a bindingTemplate key, the key will be updated in the following data structures:

• bindingTemplate

• keyedReferences

• subscriptions

• hostingRedirector

• accessPoint with bindingTemplate useType

Registry Statistics

Registry statistics include statistics on::

• UDDI structure counts versus limits imposed by the product license;

• invocations of registry APIs;

• UDDI structure counts generally;

To access the registry statistics page:

1 Log on as administrator.

2 Click the Registry management link under the Manage tab.

3 Click the Statistics button.

4 The page similar as shown in Figure 26 will appear, summarizing publishing limits imposed by the
product license, current counts and the number remaining.

443Administrator's Guide

Figure 26. Statistics - Publication Limits

5 Click the API Usage tab and you will see a page as in Figure 27 showing the number of requests for
each API, number of unsuccessful requests and datetime of last API call. You can reset count separately
for each API by clicking the Reset button or reset counts for all API by clicking on the Reset all
statistics.

Chapter 4444

Figure 27. Statistics - API usage

6 You can click on the Structure tab. The page similar as shown in Figure 28 appears. On that page you
can see number of UDDI entities stored in Systinet Registry.

445Administrator's Guide

Figure 28. Statistics - Structure

Management of configuration - User Interface

Configuration Management User Interface is available on the Registry Console, "Manage" tab, "Registry
management" sub-tab (default), Configuration management button.

This management tool has two main parts designed for the following tasks:

1 Inspection of current configurations and their history.

2 Saving configuration states into collections to compare or restore them later.

Chapter 4446

Current configurations and their history

View configuration

Figure 29. View of current configurations

This view shows current configurations. You can either sort it alphabetically or by time by clicking on the
relevant column heading. Configurations that are local to a cluster node are displayed for all nodes. You
can switch to the named collections view with the left tab.

Two actions are available:

1 View the current configuration by clicking on the configuration name or in the case of cluster-local
configurations on its Node ID.

2 View all versions of some configuration by clicking on the icon in the last column.

447Administrator's Guide

When the list is sorted by time the configurations with the same name but different Node IDs are not grouped
together.

All versions

Figure 30. View of all versions

This view shows all versions of a specified configuration. If such a configuration is local, multiple entries
may be marked as latest, one for each node. Latest nodes are also highlighted. The Length of this list is
limited by rules for retaining older configurations (see Configuration in database section).

Clicking on a configuration name will show the configuration which is described in the row.

Chapter 4448

Configuration view

Figure 31. Configuration view

This view shows specified configuration information including the content. There are also links to related
versions of the configurations (such as latest, later, older, or oldest). You can see these related configurations
by clicking on the view icon or compare differences between the displayed version and a selected version
by clicking the differences icon in the selected row.

If the displayed configuration is not the latest, a Reactivate button appears in the window. Its function is
to make the displayed configuration active (after confirmation). It does so by adding it as a new configuration
entry with the latest time stamp.

449Administrator's Guide

Differences

Figure 32. Differences

This view can be invoked from the configuration view. It shows a comparison between two versions of the
configuration. You can alter the options for differences comparison: whether it is case sensitive and whether
the full text is shown or omitted.

Chapter 4450

Named collections of configuration

List of named collections

Figure 33. List of named collections

This view shows named collections of configurations which are stored in the database. It also allows you
to capture the current state of configurations into such a collection so that you can later compare or restore
them.

Creating new collections is easy. Just fill in the name and optionally the description of the collection and
press the Make a snapshot button.

Once some collections are created, you can view their contents (by clicking the name) and compare them
to the current set of configurations (by clicking the differences icon).

451Administrator's Guide

Activation of a collection means that all configurations that the collection holds will be added as new current
configurations. Activation can be done on the collection as a whole (by clicking the icon in this view) or
selectively on specified configurations (by button in the collection configuration view). Before activation
proceeds a confirmation is required.

All Differences

Figure 34. All Differences

Chapter 4452

This is what a comparison between a collection and the current set of configurations looks like. It shows
the differences of matching pairs of all configurations. Matching configurations where no differences appear
are listed below. Non-matching configurations (when the configuration appears in the collection only or in
the current set only) are also listed below.

You can alter the options for differences comparison: whether it is case sensitive and whether the full text
is shown or omitted. It is not recommended to show full text in all differences because the resulting page
might get very long.

View collection

Figure 35. View collection

Collection content usually looks like this. When you click on the configuration name its view with actions
is displayed.

453Administrator's Guide

View configuration

Figure 36. View configuration

This view shows a configuration stored inside a collection. You can see the comparison between this
configuration and the current configuration by clicking on button Differences. You can also make this
configuration the current with the Activate button (after confirmation).

Registry Configuration
Registry configuration is used whenever you want to set up the database, registry parameters, or account
properties.

To access Registry configuration:

Chapter 4454

1 Log on as administrator or as a user with privilege to display the Manage tab. For more information,
see Rules to Display the Manage Tab.

2 Click the Manage main menu tab.

3 Select the Registry configuration link under Manage tab. This returns the Registry configuration
panel shown in Figure 37.

Figure 37. Registry Configuration

The Registry configuration panel includes the following tabs:

• Core Config

• Database

• Security

455Administrator's Guide

• Account

• Group

• Subscription

In this part of the chapter, each of these sections settings is described in detail. Fields marked with an asterisk
(*) are the most important.

Core Config
Threads

Maximum number of threads used in statement execution

The default is 2.

Mail

SMTP Host Name, SMTP Host Port, SMTP Auth User, SMTP Auth Password, Default sender
email, and Default sender name are used to set up the entity that sends emails on behalf the registry
administrator.

Database

This section details how to set up the database connection. The default values are set according to the
database chosen at installation. For details, please see Table 1 on page 458.

Database installation, that is, creating the database schema and loading basic data, is described in
Database Installation on page 95.

Chapter 4456

Figure 38. Registry Configuration - Database

Backend type *

A menu of databases from which to select the vendor of your database.

Hostname *

Database host name or IP address, for example, dbserver.mycompany.com

Port *

Database port number. For default values see Table 1 on page 458. Note that if you are using the
HSQL database, it is embedded in the same JVM and therefore the port number is ignored in this
case.

457Administrator's Guide

Database Name *

Database name; for example, uddinode

User Name *

User name; uddiuser by default

User Password *

Database user password;uddi by default

Default pool size

Count of concurrent database connections initialized at start time

Max pool size

Maximum count of concurrent database connections. Each request books one connection until the
request is served. If all connections are booked and new request comes in, the connection pool
creates a new connection till the maximum count is reached. If this maximum is reached and new
request comes in, this request must wait for a free connection to be released by a previous request.

Pool cleaning interval

How often database connections are closed over the default count. This value represents time in
hours.

Database cache

This is used for performance optimization.

Table 1. Default Ports for Supported Database Servers

Default PortDatabase

1521Oracle 8i

1433MS SQL 2000 or 2005

6789DB2 8.0

5000Sybase ASE 12.5

5432PostgreSQL

-hsqldb 1.7.3

Chapter 4458

Security

On the Security tab, you can configure your digital signature token and key properties.

Figure 39. Registry Configuration - Security

AuthInfo Time Out

Authorization token is obtained by invoking the get_authToken method. This token is used for each
operation on the publishing port. Here you can set up the authorization token time-out in seconds.
The default value is one hour.

Token Creation Time Tolerance

Tolerance interval of token validity, expressed in milliseconds

Token Signature

Whether authorization token is signed. We recommend you toggle this switch on.

459Administrator's Guide

Account

On this tab, you can specify accounts properties applicable for all HP SOA Systinet Registry user accounts.

Figure 40. Registry Configuration - Account

Backend type

This field is not editable. Its value is specified during installation.

Default result size

Number of items returned in search results when querying accounts

Confirm registration by email

Check this box if you would like new users to confirm account creation.

Confirmation URL

URL where new users can confirm registration

Chapter 4460

Default User Limits. Limits are used as default values only when creating a new account. Accounts that
exist at the time of change are exempt from new limit values. Limits for existing accounts can be updated
with the Account Management tool.

Business entities

Business entity limit; default is 1.

Business services

Number of allowed business services per business entity; default is 4.

Binding templates

Number of allowed bindingTemplates per businessService; default is 2.

TModels

Number of allowed tModels; default is 100.

Publisher assertions

Number of allowed relationship assertions; default is 10.

Subscriptions

Number of allowed subscriptions saved by user. Default is 5.

Group

On this tab, you can specify the properties of the group API.

Backend type

Not editable, this field's value is specified during installation.

Default result size

Number of items returned in search results when querying groups; the default value for this field
is 10.

Subscription

On the Subscription tab, you can configure server limits for subscriptions. If a user saves a subscription
which does not match these limits, the registry automatically adjusts the user's values.

461Administrator's Guide

Figure 41. Registry Configuration - Subscriptions

There are three fields to configure on this tab:

Min. notification interval

Minimal interval between notifications provided to a subscriber

Sender Pool size

Number of stubs ready for notification

Transformer Cache Size

Number of cached XSLT transformations

Node

On the Node tab, you can configure UDDI node properties.

Chapter 4462

Figure 42. Registry Configuration - Node

Default key generator

The Default Key generator tModel allows the Registry to generate keys in the form domain:string
instead of only in the form uuid. For example, uddi:mycompany.com:myservice:61c08bf0-be41-11d8-aa33-
b8a03c50a862 instead of only 61c08bf0-be41-11d8-aa33-b8a03c50a862. Enter the key of the tModel that
is the key generator. For example, if you enter uddi:mycompany.com:myservice:keyGenerator, keys will
be generated with the prefix uddi:mycompany.com:myservice:. For more information, please see
Publisher-Assigned Keys on page 301 in the User's Guide.

Operator name

The name of the operator of the UDDI node. The default entry for this field is configured during
installation.

Operational business key

The key of the Operational business entity. This entity holds miscellaneous registry settings such
as the validation service configuration.

463Administrator's Guide

Operational business key v2

The key of the Operational business entity in UDDI v2 format.

Web UI URL

The URL of the Registry Console.

tModel deletion

If this box is checked then deleted tModels are deleted permanently. Otherwise, tModels are marked
as deprecated. (Deprecated tModels are visible by direct get tModel call, but do not appear in any
search results.)

Configuration in Database
HP SOA Systinet Registry uses many configuration files. They are stored in REGISTRY_HOME\app\uddi\conf
and REGISTRY_HOME\work\uddi\bsc.jar\conf directories. Some of them may be changed during setup or with
web interfaces.

Each such configuration file is an XML file containing tag config with some information about how the
configuration file is used.

These attributes are generally recognized:

Table 2. Attributes of config tag

Default valueOptionalMeaningAttribute

 noconfiguration namename

falseyestrue when the file is local to the cluster nodelocal

falseyeswhen true the file is stored in the database on HP SOA
Systinet Registry start

updateDB

trueyeswhen false configuration history is not loggedhistory

2000yesdelay before changes in memory are written to file in
milliseconds

savingPeriod

The most important attribute is name which is the identifier by which HP SOA Systinet Registry tries to find
the configuration. Some configuration files have attribute local set to true. That means that the configuration
is only used by this HP SOA Systinet Registry and other Registries in the cluster will not share it. Other

Chapter 4464

nodes will have their own independent versions. These cluster nodes are distinguished by the Node ID
which is specified inside nodeid.xml. If its value is empty, a unique ID will be generated at HP SOA Systinet
Registry startup.

The configuration files are always present in the directories, however their copy is in the database. If a
configuration file is present in both database and file-system, the one in the database has priority. After the
initial startup of HP SOA Systinet Registry all configurations are put into the database. When HP SOA
Systinet Registry needs to change some configuration settings it does so in the both the database and file-
system.

If a user or another program like HP SOA Systinet Registry setup wants to edit the configuration file the
priority of the configuration in database has to be overridden. This can be done in two ways:

1 By setting attribute updateDB to true in the top-level tag config in all configuration files where
modifications have been done. Once HP SOA Systinet Registry starts, the attribute will be automatically
removed.

2 By setting attribute updateDBAll (see in table below) to true in tag dbconfig in database.xml Once HP
SOA Systinet Registry starts the attribute will be automatically cleared. There can be also time stamp
in this attribute in format like 20070321133058 where digits denote year, month, day of month, hour,
minute, and second in GMT time zone. Such time stamp is compared to time stamp in database. When
config files have more recent time, they will be put in database on HP SOA Systinet Registry start.
When stamp in database is more recent, database version will be used. In both cases the attribute will
be cleared.

Time stamp in updateDBAll is used by setup. Each time setup task is run it updates time stamp except
for task that do not modify configuration files like drop database and backup. Purpose of the time
stamp is to prevent overwritting current configuration with old one while redeploying same EAR/WAR
file to application server.

When HP SOA Systinet Registry operates in cluster mode the other means than the time stamp is used
for synchronization. Clocks on cluster nodes are assumed to be not enough precise for that, but enough
precise for redeployment and configuration changes. There is only one time stamp in database.xml,
individual configuration files allow only true/false values in updateDB attribute.

The other important configuration setting for configurations is inside the database.xml file, in the dbconfig
tag. The tag has following attributes:

465Administrator's Guide

Table 3. Attributes of dbconfig tag

Default valueOptionalMeaningAttribute

10yesnumber of latest configuration versions that are not deletedconfigRetainCount

10yesage of configuration version before it can be deletedconfigRetainMinutes

5yesage of event information before it can be deletedeventRetainMinutes

falseyeswhen true all configuration files will be stored in the database
at HP SOA Systinet Registry startup, can be also a time
stamp

updateDBAll

HP SOA Systinet Registry setup automatically sets the updateDBAll attribute when its operation has
been successful so that all changed configurations will be stored in the database at HP SOA Systinet
Registry startup. This is usually desirable behavior.

When HP SOA Systinet Registry encounters an identical configuration in the database to the one
that is being stored (e.g. when set updateDB or updateDBAll is encountered) then the store operation
is ignored. This may be surprising as there would be no entry in the log of configurations, however
the resulting state of the configurations is correct.

The database not only holds the current set of configurations but also their history in a log. You can monitor
configuration changes, what the previous content was, or let HP SOA Systinet Registry show you differences
between versions. This configuration history log is purged every few minutes. Old configurations are not
retained indefinitely. There are rules on how many older versions are left there and the age of a configuration
before it can be deleted. The purpose of these rules is to avoid running out of space in the database and yet
still have information about recent changes. Rules can be configured inside tag dbconfig in database.xml.
Their defaults are in the table above. Default settings specify that there must be at least configRetainCount
new versions of the configuration before it can be deleted automatically. Also, the configuration has to be
older than configRetainMinutes before it can be deleted automatically. This allows the correction of most
non-fatal configuration errors after an invalid change or to track which configuration change might have
caused unexpected behavior.

To allow easy comparison of current and older configurations or try-then-rollback scenarios, the current
set of configurations can be stored into a named collection of configurations. These collections are not
deleted automatically. They allow you to store a configuration that works correctly and compare it with the
current version if something breaks later. You can then activate the old one if needed or change the incorrect
setting manually.

Chapter 4466

Backup tool in setup can store both file and database configurations. You can select which you
want to backup.

Configurations in the database can be managed with the "Configuration Management" component of Registry
Console. You can find it under tab Manage, then Registry management sub-tab (default), then Configuration
Management button.

Business Service Console Configuration
Under the Configuration tab of the Business Service Console the administrator can configure the following:

• The tabs that will be displayed for users who have a specific user profile

• Types of result view for each user profile

• Browsable Taxonomies

• Result paging limits

• Configuration of the Business Service Console User Interface

• Customizable Taxonomies providing for user input when creating, editing or searching entities

The Configuration tab is available if both of the following conditions are satisfied:

• The user belongs to a user profile that has the visible Configuration tab

• The user has ConfiguratorManagerPermission to all operations (*) and all configurations (*). See
Administrator's Guide, Permissions on page 412 for more information on how to set up permissions.

Furthermore, administrators can customize individual pages wherever a Customize button appears.

467Administrator's Guide

Tabs Displayed

Figure 43. Business Service Console Configuration - Tabs Displayed

On the page shown in Figure 43, you can define which tabs will be available for specific user profiles. The
Default User Profile drop down list allows you to specify the default user profile when creating a new user
account. If the checkbox Allow User to Select Profile is checked, users are allowed to select a user profile
when creating a new account, later users can switch profiles.

Chapter 4468

Search Result View

Figure 44. Business Service Console Configuration - Search Result View

On the page shown in Figure 44, you can configure default result views for user profiles.

469Administrator's Guide

Browsable Taxonomies

Figure 45. Business Service Console Configuration - Browsable Classifications

On this panel, you can choose which classifications (taxonomies) are browsable. Browsable taxonomies
appear on the reports tree on the Reports tab, and also show up when viewing an entity's classification
details.

Each browsable classification is displayed as a node in the Reports tree, using the Display name configured
on the panel. If the taxonomy classification is internally checked - meaning it has a predefined set of values
- a sub-node is displayed in the Reports tree for each possible value.

Chapter 4470

For example, the selected classification systinet-com:taxonomy:service:certification represents a node
Certification in the Report tree. If you click on the Certification node in the report tree, the result view
will contain all entities categorized by this taxonomy. Since the systinet-com:taxonomy:service:certification
is internally checked, having the value set (Certified, Pending), the Certification node will contain two
subnodes (Certified and Pending) representing a report of certified and pending services.

471Administrator's Guide

Paging Limits

Figure 46. Business Service Console Configuration - Paging Limits

On this panel, you can specify how many records and on how many pages searched data will appear.
Component names from the Components column consist of the component name (services, endpoints,
providers, interfaces, bindings) and the type of result view (common, technical, business). For example,

Chapter 4472

the row with the component name servicesTechnicalResult contains page limits for search results of services
listing technical service data.

UI Configuration

On the Web Interface tab of the Business Service Console Configuration screen, you can configure URLs,
contexts, directories, and other information related to the registry's interface.

Figure 47. Business Service Console Configuration - UI Configuration

Field description:

• URL - nonsecure registry URL

• Secure URL - secure registry URL

• Context - context of the Registry Console URL

473Administrator's Guide

• Data context - context where static objects such as JavaScript and images are stored

• JSP directory - location of JSP pages relative to REGISTRY_HOME/work/uddi

• Upload directory - upload directory used for tasks such as uploading taxonomies

• Maximum upload size - maximum upload size in bytes

• Server session timeout - session timeout (measured in seconds)

• Administrator's email - email address of the registry administrator.

• URL Truncation Limit - URLs displayed in reports and result views will be truncated to number of
characters specified in this field. The truncated URL will not be exactly so long as the value specified
here but the URL string can be a little bit longer. The truncated URL will be displayed in the following
format:<protocol><server name><truncated part ...><filename>

Customizable Taxonomies

This tab controls which taxonomies are used in the Search, Edit or Publish pages, and how they are
displayed.

Chapter 4474

Figure 48. Customizable Taxonomies

475Administrator's Guide

To add a new taxonomy, click Add New Taxonomy at the bottom of the screen. To change how a taxonomy
is currently displayed, click the Edit icon in the right-hand column.

The wizards for adding and editing a taxonomy (its representation) are similar. Here we describe the
procedure for editing a taxonomy:

1 Click the icon in the Edit column for a taxonomy and you will be presented with a page as shown in
Figure 49.

Figure 49. Configuring a customized taxonomy's representation

2 The details in the lower half of this page depend on the selection labeled Select representation:

Select mode. Users select a value from a predefined set of valid values. This set can be displayed using
one of the supported UI controls - checkboxes, radio buttons, listbox, etc. For checked taxonomies,

Chapter 4476

the UI can fetch the valid values from the taxonomy itself - so providing values here is optional. Doing
so allows you to limit users to a subset of values, and control the order in which they are displayed.

Input mode. Users input a value in a text box.

Hidden value. In this case it is not appropriate for the user to edit the value.

3 The next screen allows you to specify the pages to which this representation of the taxonomy will be
added:

Figure 50. Selecting pages where a customized taxonomy appears

You can make it possible for the user to enter a value when an entity is created and/or edited, or to use
the taxonomy in searches.

4 Click Next and you will be asked to specify where the representation appears on each additional page
for which it is configured.

477Administrator's Guide

Figure 51. Specify positioning on pages

5 If there are any conflicts between the new and existing configurations, you will be asked to resolve
them.. If you are adding the representation to a page where a different representation already exists
then you will be asked to choose the new or existing representation.

6 Finally you will be presented with a summary of the additions.

Customizing Individual Pages

Administrators can customize individual pages of the Business Service Console wherever a Customize
button appears. Pages sometimes have more than one composite area, in which case each can have its own
Customize button.

The Customize buttons on individual pages take precedence over the Customizable Taxonomies
settings discussed above. This allows registry administrators to further customize individual pages
to best meet their needs.

For example, Figure 52 shows a page with two composite areas:

• Business Properties

• Technical Properties

The user (an administrator) has clicked the Customize button in the Business Properties area.

Chapter 4478

Figure 52. Customizing a Page

479Administrator's Guide

The result is that the Business Properties are displayed in the customization editor, whereas the Technical
Properties are displayed as usual in this page.

The customization editor displays:

• Visual Components in a table, one row line. In this case there are 2 components in each line but see
below. One component is selected and in this case it is the label Usage;

• Component Properties shows the properties of the selected component;

Under Visual Components each pair of adjacent components has a number of buttons between them. In
this case there is only one set of buttons per line because there are only two components per line. The tool-
tip for each button shows what it does. You can:

• Swap the positions of a pair of adjacent components horizontally;

• Move the component down or up, swapping it with the component below or above;

• Link a pair of adjacent components together so that when they are moved up or down the are moved
together. Or you can unlink components that are linked;

Some of the details under Component Properties depend on the type of component. If you click Show
expert visual properties it is possible to change the number of rows or columns occupied by a component
- its Height and Width. The last component on the line has Remainder of the row checked. If you check
Cells instead then the row is joined with the following row to make one line. For example, in Figure 53 the
first two lines have been joined into one line of 4 components.

Chapter 4480

Figure 53. Expert visual properties

481Administrator's Guide

It is possible to perform the following actions by clicking the buttons provided:

• Add a new component;

• Delete the selected component;

• Save the design;

• Reset the changes you have made;

• Close the customization editor;

Registry Console Configuration
This section provides you with a catalog of web engine parameters.

Initially almost every web engine parameter is set correctly by default.

To access the Registry Console configuration:

1 Log on as administrator.

2 Click the Manage menu tab.

3 Click Registry console configuration link under the Manage tab. This returns the configuration screen
shown in Figure 54. The Registry Console Configuration screen has two tabs:

• On the Web Interface tab, you can set various parameters associated with HP SOA Systinet
Registry's interface.

• On the Paging tab, configure the number of rows per page and the maximum number of pages
associated with the returns of various searches.

Note that on both tabs there is a button labeled Reload Configuration. When you change a registry
configuration file directly, and save it, use this button to put the configuration changes into effect.

Chapter 4482

Web Interface Configuration

Figure 54. Registry Console Configuration - Web Interface Tab

Field description:

• URL - nonsecure registry URL

• Secure URL - secure registry URL

• Context - context of the Registry Console URL

• Data context - context where static objects such as JavaScript and images are stored

• JSP directory - location of JSP pages relative to $REGISTRY_HOME/work/uddi

• Upload directory - upload directory used for tasks such as uploading taxonomies

483Administrator's Guide

• Maximum upload size - maximum upload size in bytes

• Server session timeout - session timeout (measured in seconds)

• Name cache timeout - cache timeout for the names of UDDI structures. If someone renames a UDDI
structure, the Registry Console will load the new name after this interval has passed (measured in
seconds).

• Entity cache enabled - If you check this check box, entities will be cached.

Click Save configuration when finished.

Chapter 4484

Paging Configuration

Figure 55. Registry Console Configuration - Paging Tab

Paging limits - On this tab, you can specify how many records and on how many pages searched data will
appear. Click Save configuration when finished.

Permissions: Principles
Permissions in HP SOA Systinet Registry were developed so that administrators might exercise control
over users. Permissions:

485Administrator's Guide

• Provide a simple mechanism for the management of users' rights in HP SOA Systinet Registry.

• Allow the administrator to manage or make available different parts of the registry to different users.

• Help HP SOA Systinet Registry better reflect the real world where there are many roles with different
responsibilities.

This chapter describes permissions in detail with some examples and a description of permission
configuration.

Permission is defined as the right to perform an action on some interface. Put another way: permission is
the ability to process some method on some interface. Permissions are very different from the other
mechanism for rights in HP SOA Systinet Registry, the Access Control List.

Access Control enables the user to control access to the basic UDDI data structures (businessEntity,
businessService, bindingTemplate, and tModel). Access Control on HP SOA Systinet Registry is provided
by the Access Control List (ACL). The ACL is based on permissions given to a user or group. In the context
of ACL, this means that a given user can access only that information in HP SOA Systinet Registry made
available to the user by the registry administrator or other users. For more information about the Access
Control List, see the Access Control chapter in the User's guide.

Access Control Lists limit the visibility of entities and so restrict the access to data in HP SOA Systinet
Registry. Permissions on the other hand restrict access to interfaces. The ACLs restrain users by the restricting
the visibility of UDDI structures. Permissions limit users through the visibility of interfaces.

Permissions Definitions

There are two basic kinds of permission:

• The first, consisting of ApiUserPermission and ApiManagerPermission, is used to restrict access for
some users on some interfaces.

• The second, ConfigurationManagerPermission, is used to restrict the ability to change configurations
in HP SOA Systinet Registry.

ApiUserPermission

ApiUserPermission consists of the interface's name and method from the given interface. This
permission provides the user common access to the specified method on the given API.

Chapter 4486

ApiUserPermission enables the user to call methods on an interface as a common user. Users
usually must have this permission to perform any call.

ApiManagerPermission

ApiManagerPermission also consists of the names of an interface and of a method. This permission
allows the user to call a determined method on the given API. It is very similar to
ApiUserPermission. The only difference is in the user's significance. If a user has
ApiManagerPermission, that user is considered to be a privileged user. There are many API calls
where the result depends on user's importance.

ConfigurationManagerPermission

ConfigurationManagerPermission consists of configuration files and a method's name. The name
of the method is either get or set. The ConfigurationManagerPermission combined with the get
method allows user to read (get) data from the configuration file. On the other hand, the
ConfigurationManagerPermission combined with the set method enables the user to write to the
configuration.

HP SOA Systinet Registry Permission Rules

The following permissions' rules are always valid:

• Permission is the ability to process a method on an API.

• Permission contains the type of permission (ApiUserPermission, ApiManagerPermission,
ConfigurationManagerPermission), the name (interface's or config's name) and an action (method's
name).

You are allowed to use the asterisk wildcard (*) to substitute all names - names of interfaces,
configurations, or actions.

• There is no hierarchy in permissions. The ability to set permission for users is also a permission (for
some methods on PermissionApi).

• The HP SOA Systinet Registry administrator has all permissions for all methods on all APIs.

• Permissions are always positive. This means that permissions say what is possible or allowed. Permissions
allow user to perform an action (some method on some API). Any action that is not expressly permitted
is denied.

487Administrator's Guide

• Permissions can be set for an individual user or for a group of members. Each user is member of the
group system#everyone, therefore every user has the default permissions associated with this group.

For more information, see Data Access Control: Principles on page 295

Setting Permissions

This section describes the configuration of permissions. The setting of permissions is written from the
administrator's point of view.

There are three basic ways to set permissions for a user:

• By performing methods on PermissionApi. A user can call these methods only if that user has the
appropriate permissions.

• By calling methods via SOAP or via the Registry Console.

• By changing permissions directly in the configuration file.

The PermissionApi contains several methods for managing permissions. These methods are described below:

get_permission

Used for obtaining all of a user's permissions. A user possessing the ApiManagerPermission can obtain
permissions of other users. A user with only ApiUserPermission, can only discover his or her own
permissions.

Note that users who have neither ApiUserPermission nor ApiManagerPermission for a method on
PermissionApi, cannot call this method.

set_permission

Provides users the ability to set permissions for other users. It is necessary to possess
ApiManagerPermission for this call.

get_permissionDetail

Similar to get_permission, this method can be called for more than one user at a time.

get_permission takes a principal as the input parameter. On the other hand, get_permissionDetail
takes an array of principals as the input parameter. If you want to find out the permissions of three
users, you can call get_permission three times or you can call get_permissionDetail once.

Chapter 4488

who_hasPermission

Enables a user to find out who owns a given permission.

It is not recommended to change permissions directly in the configuration file. However, if the
administrator wants to change default permissions for new users (meaning changing permissions
for the group system#everyone), there is no other possibility. Before making any changes to these
permissions, we strongly recommend making a reserve copy of the configuration. The permissions
for special users or groups are stored in the file permission_list.xml.

Permissions and User Roles

Many systems use user roles in addition to permissions. A user role is usually a set of permissions; it can
be predefined in the system or be user-defined. In HP SOA Systinet Registry, the user roles mechanism is
implemented by groups. The administrator is allowed to set permissions not only for individual users but
also for groups. Instead of restricting the relationship to users and roles, it is possible to create groups, set
permissions for them and then add users into these groups. This "group" mechanism in HP SOA Systinet
Registry is nearly the same as user role mechanism and it is used instead of user roles.

HP SOA Systinet Registry contains the following built-in groups that represent basic roles. Each role has
appropriate permissions already defined. So, administrator can set simply permissions by adding users into
these groups. For more information, see Group Management on page 409.

accountManagerGroup

Members of the group accountManagerGroup are able to manage accounts. For example, they can
create new accounts, edit and delete existing ones.

administrationUtilsManagerGroup

Members of the group administrationUtilsManagerGroup are able to use administration utilities. For
example, they can delete tModels permanently, replace keys, replace URLs.

approvalManagerGroup

Members of the group approvalManagerGroup are able to configure approval process. They can manage
relationships between approvers and requestors.

bscConfiguratorGroup

Members of the group bscConfiguratorGroup are able to configure settings for Business Service
Console.

489Administrator's Guide

configuratorGroup

Members of the group configuratorGroup are able to configure setting for HP SOA Systinet Registry.
This means that they can set consoles, database, mail settings and so on.

groupManagerGroup

Members of the group groupManagerGroup are able to manage groups. For example, they can create
new groups, edit or delete existing ones.

permissionManagerGroup

Members of the group permissionManagerGroup are able to manage permissions. For example, they
can add permission to some principal or remove permission from some principal.

replicationManagerGroup

Members of the group replicationManagerGroup are able to manage replication. For example, they
can create new replication or manage the existing one.

statisticsManagerGroup

Members of the group statisticsManagerGroup are able to view or reset statistics.

taxonomyManagerGroup

Members of the group taxonomyManagerGroup are able to manage taxonomies. For example, they can
add or upload taxonomy.

webConfiguratorGroup

Members of the group webConfiguratorGroup are able to configure Registry Console.

ApiManagerPermission Reference

ApiManagerPermission allow user to use operation in a privileged mode. The following tables explain what
does it mean for certain APIs and operations.

Chapter 4490

Table 4. Account API (org.systinet.uddi.account.AccountApi)

Descriptionoperation (action)

Not used.find_userAccount

Allows to get foreign account.get_userAccount

Allows to save/update any account. Allows to set up non default limits. Allows to
skip mail confirmation (if it is required).

save_userAccount

Allows to delete any account.delete_userAccount

Not used.enable_userAccount

Table 5. Admin Utils API (org.systinet.uddi.admin.AdministrationUtilsApi)

Descriptionoperation (action)

Allows to call the deleteTModel operation. (ApiUserPermission is not sufficient to
call the operation.)

deleteTModel

Allows to call the replaceKey operation. (ApiUserPermission is not sufficient to call
the operation.)

replaceKey

Allows to call the cleanSubscriptionHistory operation. (ApiUserPermission is not
sufficient to call the operation.)

cleanSubscriptionHistory

Allows to call the resetDiscoveryURLs operation. (ApiUserPermission is not sufficient
to call the operation.)

resetDiscoveryURLs

Allows to call the transform_keyedReferences operation. (ApiUserPermission is not
sufficient to call the operation.)

transform_keyedReferences

Allows to call the rebuild_cache operation. (ApiUserPermission is not sufficient to
call the operation.)

rebuild_cache

Allows to call the replaceURL operation. (ApiUserPermission is not sufficient to
call the operation.)

replaceURL

491Administrator's Guide

Table 6. Category API (org.systinet.uddi.client.category.v3.CategoryApi)

Descriptionoperation (action)

Allows to call the set_category operation. (ApiUserPermission is not sufficient to
call the operation.)

set_category

Allows to call the add_category operation. (ApiUserPermission is not sufficient to
call the operation.)

add_category

Allows to call the move_category operation. (ApiUserPermission is not sufficient
to call the operation.)

move_category

Allows to call the delete_category operation. (ApiUserPermission is not sufficient
to call the operation.)

delete_category

Not used.find_category

Not used.get_category

Not used.get_rootCategory

Not used.get_rootPath

Table 7. Custody API
(org.systinet.uddi.client.custody.v3.UDDI_CustodyTransfer_PortType)

Descriptionoperation (action)

Allows to call the get_transferToken operation on foreign entities.get_transferToken

Allows to call the discard_transferToken operation on foreign tokens.discard_transferToken

Chapter 4492

Table 8. Group API (org.systinet.uddi.group.GroupApi)

Descriptionoperation (action)

Allows to find foreign private groups.find_group

Allows to get foreign private groups.get_group

Allows to save/update foreign groups.save_group

Allows to delete foreign groups.delete_group

Not used.where_amI

Not used.find_user

Not used.add_user

Not used.remove_user

Table 9. Inquiry V1 API (org.systinet.uddi.client.v1.InquireSoap)

Descriptionoperation (action)

Allows to find all bindingTemplates despite ACL rights.find_binding

Allows to find all businessEntities despite ACL rights.find_business

Allows to find all services despite ACL rights.find_services

Allows to find all tModels despite ACL rights.find_tModel

Allows to get any bindingTemplate despite ACL rights.get_bindingDetail

Allows to get any businessEntity despite ACL rights.get_businessDetail

Not used.get_businessDetailExt

Allows to get any businessService despite ACL rights.get_serviceDetail

Allows to get any tModel despite ACL rights.get_tModelDetail

493Administrator's Guide

Table 10. Inquiry V2 API (org.systinet.uddi.client.v2.Inquire)

Descriptionoperation (action)

Allows to find all bindingTemplates despite ACL rights.find_binding

Allows to find all businessEntities despite ACL rights.find_business

Allows to find all related businessEntities despite ACL rights.find_relatedBusinesses

Allows to find all services despite ACL rights.find_services

Allows to find all tModels despite ACL rights.find_tModel

Allows to get any bindingTemplate despite ACL rights.get_bindingDetail

Allows to get any businessEntity despite ACL rights.get_businessDetail

Not used.get_businessDetailExt

Allows to get any businessService despite ACL rights.get_serviceDetail

Allows to get any tModel despite ACL rights.get_tModelDetail

Table 11. Inquiry V3 API (org.systinet.uddi.client.v3.UDDI_Inquiry_PortType)

Descriptionoperation (action)

Allows to find all bindingTemplates despite ACL rights.find_binding

Allows to find all businessEntities despite ACL rights.find_business

Allows to find all related businessEntities despite ACL rights.find_relatedBusinesses

Allows to find all services despite ACL rights.find_services

Allows to find all tModels despite ACL rights.find_tModel

Allows to get any bindingTemplate despite ACL rights.get_bindingDetail

Allows to get any businessEntity despite ACL rights.get_businessDetail

Not used.get_operationalInfo

Allows to get any businessService despite ACL rights.get_serviceDetail

Allows to get any tModel despite ACL rights.get_tModelDetail

Chapter 4494

Table 12. Permission API (org.systinet.uddi.permission.PermissionApi)

Descriptionoperation (action)

Allows to call the get_permission operation on foreign accounts and groups.get_permission

Allows to call the set_permission operation. (ApiUserPermission is not sufficient to
call the operation.)

set_permission

Allows to call the who_hasPermission operation. (ApiUserPermission is not sufficient
to call the operation.)

who_hasPermission

Allows to call the find_principal operation. (ApiUserPermission is not sufficient to
call the operation.)

find_principal

Table 13. Publishing V1 API (org.systinet.uddi.client.v1.PublishSoap)

Descriptionoperation (action)

Allows deletion of any bindingTemplate despite ACL rights.delete_binding

Allows deletion of any businessEntity despite ACL rightsdelete_business

Allows deletion of any businessService despite ACL rightsdelete_service

Allows deletion of any tModel despite ACL rightsdelete_tModel

* Allows to update any bindingTemplate or create new bindingTemplate in any
businessService despite ACL rights. * Skips bindings limit checking.

save_binding

* Allows to update any businessEntity despite ACL rights. * Skips businesses limit
checking.

save_business

* Allows to update any businessService or create new businessService in any
businessEntity despite ACL rights. * Skips services limit checking.

save_service

* Allows to update any tModel despite ACL rights. * Skips tModels limit checking.save_tModel

Not used.get_authToken

Not used.discard_authToken

Not used.get_registeredInfo

Not used.validate_categorization

495Administrator's Guide

Table 14. Publishing V2 API (org.systinet.uddi.client.v2.Publish)

Descriptionoperation (action)

Allows deletion of any bindingTemplate despite ACL rights.delete_binding

Allows deletion of any businessEntity despite ACL rightsdelete_business

Allows deletion of any businessService despite ACL rightsdelete_service

Allows deletion of any tModel despite ACL rightsdelete_tModel

* Allows to update any bindingTemplate or create new bindingTemplate in any
businessService despite ACL rights. * Skips bindings limit checking.

save_binding

* Allows to update any businessEntity despite ACL rights. * Skips businesses limit
checking.

save_business

* Allows to update any businessService or create new businessService in any
businessEntity despite ACL rights. * Skips services limit checking.

save_service

* Allows to update any tModel despite ACL rights. * Skips tModels limit checking.save_tModel

Skips assertions limit checking in add_publisherAssertions operation.add_publisherAssertions

Skips assertions limit checking in set_publisherAssertions operation.set_publisherAssertions

Not used.delete_publisherAssertions

Not used.get_publisherAssertions

Not used.get_assertionStatusReport

Not used.get_authToken

Not used.discard_authToken

Not used.get_registeredInfo

Chapter 4496

Table 15. Publishing V3 API (org.systinet.uddi.client.v3.UDDI_Publication_PortType)

Descriptionoperation (action)

Allows deletion of any bindingTemplate despite ACL rights.delete_binding

Allows deletion of any businessEntity despite ACL rightsdelete_business

Allows deletion of any businessService despite ACL rightsdelete_service

Allows deletion of any tModel despite ACL rightsdelete_tModel

* Allows to update any bindingTemplate or create new bindingTemplate in any
businessService despite ACL rights. * Skips bindings limit checking.

save_binding

* Allows to update any businessEntity despite ACL rights. * Skips businesses limit
checking.

save_business

* Allows to update any businessService or create new businessService in any
businessEntity despite ACL rights. * Skips services limit checking.

save_service

* Allows to update any tModel despite ACL rights. * Skips tModels limit checking.save_tModel

Skips assertions limit checking in add_publisherAssertions operation.add_publisherAssertions

Skips assertions limit checking in set_publisherAssertions operation.set_publisherAssertions

Not used.delete_publisherAssertions

Not used.get_publisherAssertions

Not used.get_assertionStatusReport

Not used.get_registeredInfo

Table 16. Replication V3 API (org.systinet.uddi.replication.v3.ReplicationApi)

Descriptionoperation (action)

Allows to call the replicate operation. (ApiUserPermission is not sufficient to call
the operation.)

replicate

497Administrator's Guide

Table 17. Statistics API (org.systinet.uddi.statistics.StatisticsApi)

Descriptionoperation (action)

Allows to call the get_accessStatistics operation. (ApiUserPermission is not sufficient
to call the operation.)

get_accessStatistics

Allows to call the reset_accessStatistics operation. (ApiUserPermission is not
sufficient to call the operation.)

reset_accessStatistics

Allows to call the get_structureStatistics operation. (ApiUserPermission is not
sufficient to call the operation.)

get_structureStatistics

Table 18. Subscription V3 API
(org.systinet.uddi.client.subscription.v3.UDDI_Subscription_PortType)

Descriptionoperation (action)

Allows to delete any subscription despite the caller is not a subscription owner.delete_subscription

* Allows to update any subscription despite the caller is not a subscription owner. *
Skips subscription limit checking.

save_subscription

Allows to get result of any subscription despite the caller is not a subscription owner.get_subscriptionResults

Allows to get any subscription despite the caller is not a subscription owner.get_subscriptions

Chapter 4498

Table 19. Taxonomy API (com.systinet.uddi.taxonomy.v3.TaxonomyApi)

Descriptionoperation (action)

Allows to obtain all categories in the taxonomy.get_taxonomy

Not used.find_taxonomy

Allows to call the save_taxonomy operation. (ApiUserPermission is not sufficient
to call the operation.)

save_taxonomy

Allows to call the delete_taxonomy operation. (ApiUserPermission is not sufficient
to call the operation.)

delete_taxonomy

Allows to call the download_taxonomy operation. (ApiUserPermission is not sufficient
to call the operation.)

download_taxonomy

Allows to call the upload_taxonomy operation. (ApiUserPermission is not sufficient
to call the operation.)

upload_taxonomy

Approval Process Principles
In this section, we will focus on the approval process from the administrator's point of view. We assume
you are familiar with the basic principles of the approval process as described in the User's Guide, Approval
Process in Systinet Registry on page 234.

The approval process includes two types of registries: a publication registry and a discovery registry . The
publication registry is used for testing and verification of the accuracy of data. Users publish data to the
publication registry. The discovery registry houses approved data. It has no publishing API, but supports
other HP SOA Systinet Registry APIs including inquiry, subscriptions, accounts, and so on. (In actual fact,
the administrator can publish data to the discovery registry, but this is an exception.)

Both publication and discovery registries must be running so that user accounts may be
synchronized. When the discovery registry is down, it is not possible to register a new user account
on the publication registry.

The accounts on the publication and the discovery registry are nearly the same. Accounts created on the
publication registry and all their changes are replicated to the discovery registry. But accounts can exist on
the discovery registry that do not exist on the publication registry. The discovery registry contains approved
read-only data and can therefore be accessible for more users. It is possible to create accounts with inquiry
and subscription privileges on the discovery registry that do not exist on the publication registry. Note again

499Administrator's Guide

that there is no Publish API on the discovery registry (except for administrator); the only way to publish
data to the discovery registry is via the approval process.

Put another way: all accounts on the publication registry exist on the discovery registry, but not all accounts
on the discovery registry exist on the publication registry.

If a user first registers on the discovery registry, he cannot register later on the publication registry.

When promotion is requested, automatic context checking is performed to ensure the consistency of data.
For example, if a business service is contained in the keys for saving in the approval request and its business
entity is missing on both the discovery registry and in the request, then the request for approval fails. The
automatic context checker checks the integrity of data. If an entity is contained in keys for saving, then the
parent entity must already exist on the discovery registry or be contained in keys for saving to the discovery
registry. For detailed information, please see User's Guide, Context Checking on page 237.

Approval Process Roles

As noted above, the approval process registry has several roles associated with it:

• Requestor on page 500

• Approver on page 501

• autoApprover on page 501

• Administrator on page 501

Requestor

The requestor is a user on the publication registry who can ask for approval of data for promotion. Every
user can ask for approval, but to be a requestor requires an administrator-assigned approval contact.

If a user does not have at least one assigned approval contact, an exception is thrown when this user asks
for approval. There is no way for such a user to promote data to the discovery registry. By assigning approval
contacts, the administrator determines whether to give users the opportunity to publish data to the discovery
registry.

Chapter 4500

During the creation of users via the HP SOA Systinet Registry console or via API, the default approver,
administrator, is assigned for all newly created users on the publication registry. The default approval contact
for all users is administrator, though this does not apply to users defined in an external repository (LDAP).
Note that demo data does not come with assigned approval contact. For example, the user demo_john does
not have an assigned approver, thus the administrator must assign this user an approval contact in order for
him to make a request.

For more information on the requestor's role, see the section Requestor's Actions on page 236.

Approver

The approver is a person or group who approves changes to the discovery registry. If the approval contact
is group, then all its members are may approve data for promotion.

For detailed information on the approval contact's role, see the User's Guide, Approver's Actions on page
238.

autoApprover

A special approval contact exists in the approval process, the autoApprover. This role is defined in the
registry at installation. The administrator can set autoApprover as the approval contact for trusted users.

This means that no human approval is required and such users' data is copied to the discovery registry upon
request for approval, as long as context checking is successful.

Administrator

The administrator is responsible for setting up HP SOA Systinet Registry and is therefore also responsible
for setting up the approval process. The term administrator refers to the user of HP SOA Systinet Registry
who can manage the registry. Note that all users who have permission to configure the approval process
are allowed to set relationships between requestors and approval contacts.

The manager of the approval configuration assigns approval contact(s) for requestors.

For easy management of relationships between approvers and requestors, it is possible to create an approver
or requestor either from an existing user or from a group. If an approver is a group then each user in this
group can approve the promotion of data. When several users (requestors) are in the same group, then an
approval contact can be assigned to the whole group.

501Administrator's Guide

Optional Content Checking Setup

Optional content checking provides an approver the ability to programmatically check data for approval.
For example, the approver can set a policy that:

• Each business service must include a binding template, or

• Each business service must be categorized by some specific categories

To enforce such a policy, a developer can write an implementation of the CheckerApi to ensure these checks.
The implementation is called automatically during the approval process when an approver presses the
Approve request button. Therefore, the approver does not have to check it manually.

To set up optional content checking:

1 Write a class that implements the org.systinet.uddi.approval.checker.v3.CheckerApi

2 There are two ways to make the implementation class available:

• Copy the .jar file including the implementation class to the REGISTRY_HOME/app/uddi/services/Wasp-
inf/lib, or

• Implement a Web service that can perform the checkRequest() method from CheckerApi interface
and deploy the service to the Systinet Server for Java

3 Register the implementation of the content checker class in the HP SOA Systinet Registry data:

a Publish the WSDL of the checker service.

Publish the WSDL located at http://<host_name>:<http_port>/uddi/doc/wsdl/approval_checker.wsdl
to a new or already existing business entity. You should reuse the existing WSDL portType
(tModel's name: CheckerApi, tModel's key:
uddi:systinet.com:uddi:service:porttype:approvalchecker).

b Specify the checker in the access point of a new binding template.

• If you have put your implementation of the CheckerApi into the registry classpath, then the
value of access point must start with the class: prefix and continue with the fully qualified
class name. For example class:com.systinet.uddi.approval.v3.approver.CheckerApiImpl.

Chapter 4502

• If you have deployed your checker as a Web service to the Systinet Server for Java, then the
access point is the endpoint URL of the service. For example
http://localhost:6060/ContentChecker.

See Developer's Guide, Writing a Content Checker on page 749 to see the implementation example.

PStore Tool
The PStoreTool provides HP SOA Systinet Registry Protected Store management. It provides functionality
to:

• Import and export trusted certificates locally to or from a file.

• Create new security identities in the HP SOA Systinet Registry configuration file.

• Copy identities between protected stores.

Use SSL Tool on page 511 to import and export a key entry to or from HP SOA Systinet Registry
protected store.

Remote protected store management via SOAP is not supported with HP SOA Systinet Registry.

The general usage is:
PStoreTool [command [options]]

You can perform operations from the command line or start up a GUI interface.

Commands

The PStore tool has the following commands (see also Options on page 505):

• new - Creates a new security identity in the local protected store. The configuration file of the protected
store can be specified using the -config parameter.

• newServer - Creates a new security identity on HP SOA Systinet Registry. The location of the server
is specified with the -url parameter.

503Administrator's Guide

• copy - Copies the existing security identity from one protected source to another or to the HP SOA
Systinet Registry protected store.

• add - Adds a trusted X.509 certificate to the local protected store. The X.509 certificate can be supplied
as a local file.

This command can also add mapping between the security identity alias and the X.509 certificate to the
user store part of the protected store. (The certificate is needed only for the server-side protected store.)
This can be requested by using -user with the -alias option.

• addServer - Adds a trusted certificate to HP SOA Systinet Registry. This command also adds the
mapping between the security identity alias and its X.509 certificate to the user store part of the HP
SOA Systinet Registry protected store. The certificate can be given in the local file or can be fetched
from the local protected store. The configuration file can be specified using the -config option.

• remove - Removes the given alias from the local protected store. This command can also remove an
alias from the user store part of the protected store using the -user option. When removing a mapping
from the user store, the X.509 certificates mapped to the given alias are also removed from the key
store.

• removeServer - Removes a given alias from the protected store. The alias is removed from the user
store part of the protected store if it is not found in the key store. When removing mapping from the
user store part, the X.509 certificates mapped to the given alias are also removed from the key store.

• lsTrusted - Displays a list of the trusted certificate's Subject-distinguished names from the local protected
store.

• lsTrustedServer - Displays a list of the trusted certificate's Subject distinguished names from the server.

• list - Displays all aliases contained in the key store part of the local protected store.

• listServer - Displays all aliases contained in the key store part of the HP SOA Systinet Registry protected
store.

• export - Exports the X.509 certificate chain stored in the key store or in the user store of the local
protected store with the given alias.

• exportServer - Exports the X.509 certificate chain stored in the key store or in the user store of the
protected store with the given alias.

Chapter 4504

• gui - Launches the graphical version of this tool.

Options

The PStore tool has the following options:

• -alias alias - This option must be used with a command that refers to an alias.

• -keyPassword password - Password for encrypting/decrypting the security identity private key.

• -subject subjectDN - Subject-distinguished name to be used in the generated X.509 certificate.

• -config configPath - File and path to the configuration file to be used during command execution for
the source of the local protected store.

• -username username - Username for authentication process. Not required if the HP SOA Systinet Registry
server is unsecured.

• -password password - Password for authentication process. Not required if the server is unsecured.

• -secprovider provider - Authentication mechanism used during the authentication process. Not required
if the server is unsecured.

• -certFile certPath - File and path to the X.509 certificate stored in a local file.

• -user - Indicates that a command should be executed only with the contents of the user store of the
protected store.

• -config2 secondConfigPath - Path to the second configuration file. Used for the copy command, when
copying an identity from one local protected store to another.

PStore Tool - GUI Version

You can add, edit, or remove any user properties in the user store. You can also add, edit, and remove
certificates and identities in the key store. You can do all of this with a local file containing the protected
store.

505Administrator's Guide

Figure 56. PStore Tool

Running the GUI PStore Tool

To run the graphical version of this tool, use gui as parameter with the PStoreTool command.
PStoreTool gui

Opening and Closing the Protected Store

Opening Protected Store from a File

The GUI PStore Tool can manipulate every protected store in a file. To manipulate the client's protected
store, open clientconf.xml. To open the server protected store, open pstore.xml.

To open protected store from file, select Open From File... from the PStore menu. This returns the file
chooser dialog. Select the file you want to open as shown in Figure 57.

Chapter 4506

Figure 57. Open Protected Store from a File

Closing Protected Store

To close the protected store, select Close from the PStore menu.

Open Next Protected Store

In some cases you need to work with more than one protected store at the same time. Typically you want
to copy certificates from one protected store to another. To open another protected store, select the New
Window from the PStore menu. New windows appear. Now you can open the protected store from a file.

Copy Data Between Protected Stores

With the PStore Tool, you can manipulate more than one protected store at the same time. You can simply
copy identities, certificates, users, and user properties from one protected store to another using the Copy
and Paste actions located in context menus of the Aliases, Users, and Properties panels.

507Administrator's Guide

When you copy data from one area to another, the Paste action is disabled for some categories of
data. This means that data may be copied, but cannot be pasted to the selected area. For example,
the password property from the user store cannot be pasted to the key store.

Key Store

To work with the key store, select the Key Store tab. This tab has two panels. The left side has a list of all
entries. The right has detailed information for the selected entry.

Figure 58. Key Store Tab

Create New Identity

To create a new identity, select New Identity... from the Key Store menu. This opens a dialog for information
such as Alias, Distinguished Name, and Password. (The Distinguished Name is not mandatory.) If the
specified information is valid, the new identity will be added to the key store with the specified Alias.
Otherwise an error dialog will be returned.

Chapter 4508

Key Store Trust

If you want to trust a key entry, select Trust from the Key Store menu. This action is available only for
the key entry type.

Import Alias

To import a certificate from a file into the key store, select Import Alias from the Key Store menu. This
opens a dialog in which you can specify Alias, Type, and value that depend on the entry type. In the current
implementation, you can import only the certificate chain entry type.

Remove Alias

To remove an alias from the key store, select the alias you want to remove and select Remove Alias from
the Key Store menu. You can remove several aliases at once.

Refresh Aliases

To synchronize information shown in this tool with the original key store source, perform a refresh by
selecting Refresh Aliases from the Key Store menu.

Alias Details Panel

It is not surprising that the Details panel has more details about the selected alias. This panel shows details
that depend on the entry type. You can also change this value. If you want to store a new value, press the
Apply Changes button. To return to the original value, press Restore.

User Store

There are three panels on the User Store tab. The left side has a list of all entries. On the right top are
properties available for the selected user. On the right bottom is detailed information for the selected user
property.

509Administrator's Guide

Figure 59. User Store Tab

Add User

To add a new user, select Add User from the User Store menu. This opens a dialog for entering the
Username. Press OK when done.

Remove User

To remove a user from the user store, select the user you want to remove and choose Remove User from
the User Store menu. You can remove several users at once.

Refresh Users

Refresh synchronizes information shown in this tool with the original user store source. To refresh, select
Refresh Users from the User Store menu.

Chapter 4510

Add Property

To add a new user property, select Properties and Add Property from the User Store menu. This returns
a dialog for the property you want to create and its value.

Remove Property

To remove one or more user properties from the user store, select them and select Properties and Remove
Property from the User Store menu.

Refresh Properties

To synchronize information on the Properties panel with the original user store source, perform a refresh.
Select Properties and Refresh Properties from the User Store menu.

User Properties Details Panel

The Details panel has more information about user properties that depend on the property type. Select the
property you want to see. You can also change this value. If you want to store a new value press Apply
Changes.

To return to the original value, press Restore.

SSL Tool
The sslTool helps with setup of SSL on the client side of HP SOA Systinet Registry. The general usage is:
sslTool [command [options]]

The SSL tool has the following commands:

• serverInfo - Prints out security requirements of an SSL server and saves a server certificate to a file.

• encrypt - Prints out the encrypted form of a password supplied as plain text. Encrypted passwords are
used in the configuration files of HP SOA Systinet Registry.

• pstoreEI - Exports and imports a java keystore to or from the HP SOA Systinet Registry Protected
Store. Both PKCS12 and JKS keystores are supported. The type of a supplied keystore is automatically
detected during import.

511Administrator's Guide

Running the sslTool with a command followed by a --help option prints out a complete help for the command.
See SSL Tool Examples on page 512 for the most typical usage.

SSL Tool Examples

To print out security requirements of an SSL server:

sslTool serverInfo --url https://localhost:8443

To print out security requirements of an SSL server and save server certificates:

sslTool serverInfo --url https://localhost:8443 --certFile /tmp/sever.cer

To print out an encrypted password for use in HP SOA Systinet Registry configuration files:

sslTool encrypt --password changeit

To import a key entry from a java keystore to HP SOA Systinet Registry client Protected Store:

sslTool pstoreEI -i --keystore /tmp/java.keystore
 --storepass changeit --alias mykey --keypass changeit
 --pstore ../conf/clientconf.xml
 --pstoreAlias registryclient --pstoreKeypass changeit2

To export a key entry from HP SOA Systinet Registry Protected Store to a java keystore:

sslTool pstoreEI -e --keystore /tmp/java.keystore2
 --storepass changeit --alias mykey --keypass changeit
 --pstore ../conf/clientconf.xml
 --pstoreAlias registryclient --pstoreKeypass changeit2

Associating an SSL client identity with a registry client

Instructions on how to associate an SSL client identity with a registry client are explained in Example Client
on page 718. In this case, a key entry must be imported to registry's client protected store, which is the

Chapter 4512

conf/clientconf.xml file of the registry installation directory and a few system properties must be added to
a script that runs the client application.

There are also cases where a registry acts as a client to another registry. These include:

• Communication from a publication registry to a discovery registry, which is used during approval
process.

• Communication between nodes in a clustered HP SOA Systinet Registry.

Associating an SSL client identity with a HP SOA Systinet Registry server can be done in the
app/uddi/conf/security.xml file of a registry installation directory (or deployed package for a deployed
registry) by adding the destinationConfig elements. A fragment of the security.xml with example
destinationConfig elements is shown in Example 1 on page 514.

513Administrator's Guide

Example 1: Association of client identities with a registry server

<?xml version="1.0" encoding="UTF-8"?>
<config name="security" savingPeriod="5000">
 ...
 <security>
 ...
 </security>
 <!-- For communication with a discovery registry -->
 <destinationConfig>
 <alias>discoveryClient</alias>
 <password_coded>StGw/jpkDHfJXWg0ih6J+Q==</password_coded>
 <destination proxyName="com.systinet.uddi.approval.production.v3.ProductionStub"/>
 </destinationConfig>
 <!-- For communication with other nodes in the cluster -->
 <destinationConfig>
 <alias>clusterClient</alias>
 <password_coded>gNFDFWMNdkU=</password_coded>
 <destination proxyName="com.systinet.uddi.configurator.cluster.ConfiguratorManagerStub"/>
 <destination proxyName="com.systinet.uddi.configurator.cluster.ConfiguratorListenerStub"/>
 </destinationConfig>
 <!-- For communication via registry client to services accessible
 at URLs that start with https://pc1.mycom.com or https://pc2.mycom.com -->
 <destinationConfig>
 <alias>otherClient</alias>
 <password_coded>Vr+i+UzC2WLJXWg0ih6J+Q==</password_coded>
 <destination url="https://pc1.mycom.com/*"/>
 <destination url="https://pc2.mycom.com/*"/>
 </destinationConfig>
</destinationConfig>

</config>

There can be more destinationConfig elements. A destinationConfig element is used to associate a particular
SSL client identity with a set of destinations. It contains:

• alias in the server protected store. A key entry with the same name as the alias must exist in a server's
Protected Store. This key entry represents security material used to establish SSL with a destination
server. The HP SOA Systinet Registry server Protected Store is in the conf/pstore.xml file of a registry
deployment package. Use this file when importing a key entry from a java keystore, as shown in SSL
Tool Examples on page 512.

Chapter 4514

• password_coded element, which contains the encrypted password that is used to access a private key stored
under the alias supplied. See SSL Tool Examples on page 512 for an example that prints out the encrypted
form of a password supplied in plain text.

• One or more destination elements each specify a rule. The rule can contain url or proxyName attributes.
The rule matches when a client use a proxy class specified by the proxyName attribute or connects to a
URL that is specified by the url attribute. The value of the url can end with a wildcard * to specify a
match of all URLs that start with the string specified before the wildcard. The whole destinationConfig
element matches if at least one rule matches.

The first matching destinationConfig is used.

515Administrator's Guide

Chapter 4516

5 Developer's Guide

The Developer's Guide is divided into the following main parts:

• Mapping of Resources covers registering various XML resources in HP SOA Systinet Registry including
WSDL definitions, schemas, and transformations.

• Client-Side Development describes the basic principles of using HP SOA Systinet Registry APIs. For
each client API, there is a comprehensive description of data structures and operations including links
to JavaDoc, XML Schemas and WSDL documents.

• Server-Side Development discusses how to access server-side APIs, including custom modules,
interceptors, external validation services, and subscription notification services. The HP SOA Systinet
Registry web framework is also described in this section.

• UDDI From Developer Tools discusses how to access UDDI from HP Developer for Eclipse and
Microsoft Visual Studio .NET.

• How to debug describes logging and using the SOAPSpy tool.

Mapping of Resources
HP SOA Systinet Registry provides you with functionality to register the following resources:

• WSDL definition

• XML file

• XML Schema (XSD)

• XSL Transformation

517

WSDL

This describes how to publish a WSDL file to HP SOA Systinet Registry. The implementation reflects the
OASIS UDDI technical note Using WSDL in a UDDI Registry, Version 2.0 [http://www.oasis-
open.org/committees/uddi-spec/doc/tn/uddi-spec-tc-tn-wsdl-v202-20040631.htm]. As shown in Figure 1,
the technical note suggests a mapping between WSDL and UDDI.

Figure 1. WSDL TO UDDI

WSDL PortTypes

As shown in Table 1 on page 519, each WSDL portType maps to a tModel having the the same name as the
local name of the portType in the WSDL specification. The overviewURL of the tModel becomes the URL
of the WSDL specification. The tModel contains a categoryBag with a keyedReference for the type of
WSDL artifact and the namespace of the WSDL definitions element containing the portType, as follows:

• The type is categorized as portType.

• The namespace is categorized as the WSDL binding namespace.

Chapter 5518

http://www.oasis-open.org/committees/uddi-spec/doc/tn/uddi-spec-tc-tn-wsdl-v202-20040631.htm

Table 1. WSDL portType:UDDI Mapping

UDDIWSDL

tModel (categorized as portType)portType

keyedReference in categoryBagNamespace of portType

tModel nameLocal name of portType

overviewURLWSDL location

WSDL Bindings

In similar fashion, as summarized in Table 2 on page 520, WSDL bindings are mapped to tModels created
for each binding, with name of the tModel gathered from the WSDL binding local name and the overviewURL
again being the URL of the WSDL specification. Again, the tModel contains a categoryBag, this time with
the following keyedReferences:

• The type is categorized as binding.

• The namespace is categorized as the WSDL binding namespace.

• A portType category on the binding is used to refer to the portType tModel that was created for the
WSDL portType (as described above).

• The protocol and transport categories are set to the same attributes as described in the WSDL binding,
such as SOAP and HTTP, respectively.

519Developer's Guide

Table 2. wsdl binding:UDDI mapping

UDDIWSDL

tModel (categorized as binding and wsdlSpec)Binding

keyedReference in categoryBagNamespace of binding

tModel nameLocal name of binding

overviewURLWSDL location

keyedReference in categoryBagportType binding

keyedReference in categoryBagProtocol

keyedReference in categoryBagTransport

WSDL Service

WSDL services are represented as UDDI businessServices. The name is a human readable name. The tModel
again contains a categoryBag which this time contains the following keyedReferences:

• The type is categorized as service

• The namespace is again categorized as the WSDL binding namespace.

• The local name is categorized as the local name of the service.

The businessService also contains a bindingTemplate:

• The access type is categorized as the access point of the service.

• The portType is categorized as the tModel of the portType.

• The binding is categorized as the tModel of the binding information.

• The local name is categorized as the local name of the port.

Chapter 5520

Table 3. wsdl service:UDDI mapping

UDDIWSDL

businessService (categorized as service)Service

keyedReference in categoryBagNamespace of service

keyedReference in categoryBag; optionally used
name of service

Local name of service

Use Cases

HP SOA Systinet Registry supports the following use cases:

• Publishing a WSDL file. You can also specify how artifacts of the WSDL file will be mapped to the
existing UDDI structures.

• Search for a WSDL. You can search for the WSDL file by WSDL location (URI).

• Unpublish and republish the WSDL. You can unpublish and republish the WSDL

For more information, also see:.

• User's Guide, Publishing WSDL Documents on page 379

• User's Guide, Find WSDL on page 354

• Developer's Guide, WSDL Publishing on page 620

XML

As shown in Figure 2, an XML file is mapped to a tModel. The location of the XML file is added to the
tModel's overviewURL element. Namespaces are mapped to keyedReferences in the tModel categoryBag.
Each namespace is mapped to a tModel.

521Developer's Guide

Figure 2. XML TO UDDI

Use Cases

HP SOA Systinet Registry supports the following use cases:

• Publish an XML document. You can also specify how artifacts of the XML file will be mapped to the
existing UDDI structures.

• Search for an XML file.

Chapter 5522

Search for an XML file containing data of certain type (XSD) .•

• Search for an XML file from a specified server or folder, using search criteria, URI prefix, and wild
card characters.

• Search for an XML file that is input or output of a specified XSLT.

• Search for a generator of a specified output XML file.

• Search for a processor of a specified input XML file.

• Unpublish and republish the XML file.

For more information, also see:.

• User's Guide, Publish XML on page 383

• User's Guide, Find XML on page 355

• Developer's Guide, XML Publishing on page 636

XSD

As shown in Figure 3, an XML Schema file is mapped to a tModel. The location URI of the XSD file is
put to the tModels overviewURL element and the target namespace is mapped to a keyedReference in the
tModel category bag. xsd:types, xsd:elements and xsd:imports are mapped to the tModel keyedReferences.
For each type, element or import, a new tModel is created.

523Developer's Guide

Figure 3. XSD to UDDI

Use Cases

HP SOA Systinet Registry supports the following use cases:

• Publish an XML Schema . You can also specify how artifacts of the XML Schema file will be mapped
to existing UDDI structures

• Search for an XML schema:.

Chapter 5524

Search for an XML Schema that imports artifacts declared in the specified XSD file.•

• Search for an XML Schema located in a specified server or folder.

• Search for all XSL transformations that can process documents using a specified XSD.

• Search for all XSL transformations producing documents that use the specified XSD.

• Unpublish and republish the XML Schema. You can unpublish and republish the XML Schema

For more information, also see:.

• User's Guide, Find XSD on page 356

• User's Guide, Publish XSD on page 387

• Developer's Guide, XSD Publishing on page 645

XSLT

As shown in Figure 4 an XSL Transformation is mapped to a tModel:

• The location URI of the XSLT file is added to the tModel's overviewURL element.

• Namespaces are mapped to keyedReferences in the tModel's categoryBag.

• The xsl:import elements are also mapped to keyedReferences in the tModel's categoryBag.

For each import and namespace, a new tModel is created.

525Developer's Guide

Figure 4. XSLT TO UDDI

Use Cases

HP SOA Systinet Registry supports the following use cases:

• Publish an XSL Transformation. You can also specify how artifacts of the XSLT file will be mapped
to the existing UDDI structures.

• Search for an XSL Transformation.

Chapter 5526

Search for inputs and outputs of the specified XSLT.•

• Search for compatible XSDs.

• Unpublish and republish the XSL transformations. You can unpublish and republish the XSL
transformations

For more information, also see:.

• User's Guide, Find XSLT on page 357

• User's Guide, Publish XSLT on page 391

• Developer's Guide, XSLT Publishing on page 658

Client-Side Development
Client-Side Development includes the following sections:

• UDDI APIs - Describes the principles of how to use HP SOA Systinet Registry APIs. The UDDI API
set can be split by typical use case into two parts. The Inquiry API set is used to locate and obtain
details on entries in the UDDI registry. For example to find out endpoint of given web service. The
publication API set is used to publish and update information in the UDDI registry.

• Advanced APIs - Advanced APIs cover the following APIs: Validation API, Taxonomy API, Category
APIs, Approval API, Administration Utilities API, Replication API, Statistics API, Inquiry UI API,
Subscription Ext Api, and Publishing API for resources:

• WSDL Publishing

• XML Publishing

• XSD Publishing

• XSLT Publishing

• Security APIs - Security APIs cover the following APIs: Account API, Group API, Permission API.

527Developer's Guide

• Registry Client - This section describes how to prepare your own client distribution. A client created
this way allows you to access the HP SOA Systinet Registry API through a SOAP interface.

• Client authentication - describes how to create a client that autheticates thru HTTP Basic.

UDDI APIs

UDDI (Universal Description Discovery and Integration) is set of Web service that supports the description
and discovery of Web service providers, Web services and technical fingerprints of those Web service.

The UDDI API set can be split by typical use case into two parts. The Inquiry API set is used to locate and
obtain details on entries in the UDDI registry. For example to find out endpoint of given web service. The
publication API set is used to publish and update information in the UDDI registry.

Principles To Use UDDI API

This section will show you how to use the HP SOA Systinet Registry API. Examples are based on UDDI
version 3 Specification [http://uddi.org/pubs/uddi-v3.00-published-20020719.htm].

To use Inquiry APIs you can follow these steps. The complete code fragment is shown in Example 1 on
page 531.

1 Get API implementation from stub

String url = "http://localhost:8080/uddi/inquiry";
UDDI_Inquiry_PortType inquiry = UDDIInquiryStub.getInstance(url);

2 Collect inquiry parameters

String serviceKey = "uddi:systinet.com:demo:hr:employeesList";
String tModelKey = "uddi:systinet.com:demo:employeeList:binding";
Find_binding find_binding = new Find_binding();
find_binding.setServiceKey(serviceKey);
find_binding.addTModelKey(tModelKey);
find_binding.setMaxRows(new Integer(10));

3 Call inquiry method

BindingDetail bindingDetail = inquiry.find_binding(find_binding);

Chapter 5528

http://uddi.org/pubs/uddi-v3.00-published-20020719.htm
http://uddi.org/pubs/uddi-v3.00-published-20020719.htm

4 Operate with inquiry result

ListDescription listDescription = bindingDetail.getListDescription();
if (listDescription != null) {
 int includeCount = listDescription.getIncludeCount();
 int actualCount = listDescription.getActualCount();
 int listHead = listDescription.getListHead();
 System.out.println("Displaying " + includeCount + " of " +
 actualCount+ ", starting at position " + listHead);
}

If you get the java.lang.reflect.UndeclaredThrowableException exception, check whether HP SOA
Systinet Registry is running.

To use the publishing API, follow these steps. The complete code fragment is shown in Example 2 on page
533.

1 Get API of security stub

String securityUrl = "http://localhost:8080/uddi/security";
UDDI_Security_PortType security = UDDISecurityStub.getInstance(securityUrl);
String publishingUrl = "http://localhost:8080/uddi/publishing";
UDDI_Publication_PortType publishing = UDDIPublishStub.getInstance(publishingUrl);

2 Get authentication token

AuthToken authToken = security.get_authToken(new Get_authToken(userName, password));
String authInfo = authToken.getAuthInfo();

3 Create save object

String businessKey = "uddi:systinet.com:demo:it";
String serviceKey = ""; // serviceKey is optional
int count = 1;
String[] serviceNames = new String[count];
String[] languageCodes = new String[count];
languageCodes[0] = null; // can set an array of language codes
serviceNames[0] = "Requests Service"; //service name
String serviceDescription = "Saved by Example"; //service description
BusinessService businessService = new BusinessService();
businessService.setBusinessKey(businessKey);
if (serviceKey != null && serviceKey.length() > 0)
 businessService.setServiceKey(serviceKey);

529Developer's Guide

businessService.addName(new Name(serviceNames[0], languageCodes[0]));
businessService.addDescription(new Description(serviceDescription));
Save_service save = new Save_service();
save.addBusinessService(businessService);
save.setAuthInfo(authInfo);

4 Call publishing method

ServiceDetail serviceDetail = publishing.save_service(save);

5 Operate with publishing result

BusinessServiceArrayList
 businessServiceArrayList = serviceDetail.getBusinessServiceArrayList();
int position = 1;
for (Iterator iterator = businessServiceArrayList.iterator();
 iterator.hasNext();) {
 BusinessService service = (BusinessService) iterator.next();
 System.out.println("Service " + position + " : " + service.getServiceKey());
 System.out.println(service.toXML());
 position++;
}

6 Discard the authentication token

security.discard_authToken(new Discard_authToken(authInfo));

Chapter 5530

Example 1: FindBinding v3

// Copyright 2001-2005 Systinet Corp. All rights reserved.
// Use is subject to license terms.

package example.inquiry;

import org.systinet.uddi.client.v3.UDDIInquiryStub;
import org.systinet.uddi.client.v3.UDDI_Inquiry_PortType;
import org.systinet.uddi.client.v3.struct.*;

import java.util.Iterator;

public class PrincipleFindBinding {

 public static void main(String args[]) throws Exception {

 //1. Get API implementation from stub
 String url = "http://localhost:8080/uddi/inquiry";
 System.out.print("Using Inquiry at url " + url + " ..");
 UDDI_Inquiry_PortType inquiry = UDDIInquiryStub.getInstance(url);
 System.out.println(" done");

 //2. Collect inquiry parameters
 String serviceKey = "uddi:systinet.com:demo:hr:employeesList";
 String tModelKey = "uddi:systinet.com:demo:employeeList:binding";
 Find_binding find_binding = new Find_binding();
 find_binding.setServiceKey(serviceKey);
 find_binding.addTModelKey(tModelKey);
 find_binding.setMaxRows(new Integer(10));

 //3. Call inquiry method
 System.out.print("Search in progress ..");
 BindingDetail bindingDetail = inquiry.find_binding(find_binding);
 System.out.println(" done");

 //4. Operate with result
 ListDescription listDescription = bindingDetail.getListDescription();
 if (listDescription != null) {
 int includeCount = listDescription.getIncludeCount();
 int actualCount = listDescription.getActualCount();
 int listHead = listDescription.getListHead();
 System.out.println("Displaying " + includeCount + " of " + actualCount
 + ", starting at position " + listHead);
 }

531Developer's Guide

 BindingTemplateArrayList bindingTemplateArrayList
 = bindingDetail.getBindingTemplateArrayList();
 if (bindingTemplateArrayList == null) {
 System.out.println("Nothing found");
 return;
 }

 int position = 1;
 for (Iterator iterator = bindingTemplateArrayList.iterator();
 iterator.hasNext();) {
 BindingTemplate bindingTemplate = (BindingTemplate) iterator.next();
 System.out.println("Binding " + position + " : " +
 bindingTemplate.getBindingKey());
 System.out.println(bindingTemplate.toXML());
 position++;
 }
 }
}

Chapter 5532

Example 2: SaveService v3

// Copyright 2001-2005 Systinet Corp. All rights reserved.
// Use is subject to license terms.

package example.publishing;

import org.systinet.uddi.InvalidParameterException;
import org.systinet.uddi.client.v3.UDDIException;
import org.systinet.uddi.client.v3.UDDIPublishStub;
import org.systinet.uddi.client.v3.UDDISecurityStub;
import org.systinet.uddi.client.v3.UDDI_Publication_PortType;
import org.systinet.uddi.client.v3.UDDI_Security_PortType;
import org.systinet.uddi.client.v3.struct.AuthToken;
import org.systinet.uddi.client.v3.struct.BusinessService;
import org.systinet.uddi.client.v3.struct.BusinessServiceArrayList;
import org.systinet.uddi.client.v3.struct.Description;
import org.systinet.uddi.client.v3.struct.Discard_authToken;
import org.systinet.uddi.client.v3.struct.DispositionReport;
import org.systinet.uddi.client.v3.struct.Get_authToken;
import org.systinet.uddi.client.v3.struct.Name;
import org.systinet.uddi.client.v3.struct.Save_service;
import org.systinet.uddi.client.v3.struct.ServiceDetail;

import javax.xml.soap.SOAPException;
import java.util.Iterator;

public class PrincipleSaveService {

 public static void main(String[] args) throws UDDIException,
 InvalidParameterException, SOAPException {

 String userName = "demo_john";
 String password = "demo_john";

 //1. Get API implementation from stub
 String securityUrl = "http://localhost:8080/uddi/security";
 System.out.print("Using Security at url " + securityUrl + " ..");
 UDDI_Security_PortType security = UDDISecurityStub.getInstance(securityUrl);
 System.out.println(" done");
 String publishingUrl = "http://localhost:8080/uddi/publishing";
 System.out.print("Using Publishing at url " + publishingUrl + " ..");
 UDDI_Publication_PortType publishing = UDDIPublishStub.getInstance(publishingUrl);
 System.out.println(" done");

533Developer's Guide

 //2. Get authentication token
 System.out.print("Logging in ..");
 AuthToken authToken =
 security.get_authToken(new Get_authToken(userName, password));
 System.out.println(" done");
 String authInfo = authToken.getAuthInfo();

 //3. Create save object
 String businessKey = "uddi:systinet.com:demo:it";
 String serviceKey = ""; // serviceKey is optional
 int count = 1;
 String[] serviceNames = new String[count];
 String[] languageCodes = new String[count];
 languageCodes[0] = null; // can set an array of language codes
 serviceNames[0] = "Requests Service"; //service name
 String serviceDescription = "Saved by Example"; //service description
 BusinessService businessService = new BusinessService();
 businessService.setBusinessKey(businessKey);
 if (serviceKey != null && serviceKey.length() > 0)
 businessService.setServiceKey(serviceKey);
 businessService.addName(new Name(serviceNames[0], languageCodes[0]));
 businessService.addDescription(new Description(serviceDescription));

 Save_service save = new Save_service();
 save.addBusinessService(businessService);
 save.setAuthInfo(authInfo);

 //4. Call publishing method
 System.out.print("Save in progress ...");
 ServiceDetail serviceDetail = publishing.save_service(save);
 System.out.println(" done");

 //5. Operate with publishing result
 BusinessServiceArrayList businessServiceArrayList =
 serviceDetail.getBusinessServiceArrayList();
 int position = 1;
 for (Iterator iterator = businessServiceArrayList.iterator();
 iterator.hasNext();) {
 BusinessService service = (BusinessService) iterator.next();
 System.out.println("Service " + position + " : "
 + service.getServiceKey());
 System.out.println(service.toXML());
 position++;
 }
 //6. Discard authentication token
 System.out.print("Logging out ..");
 security.discard_authToken(new Discard_authToken(authInfo));

Chapter 5534

 System.out.println(" done");
 }
}

UDDI Version 1

The UDDI version 1 Specification [http://www.oasis-open.org/committees/uddi-
spec/doc/contribs.htm#uddiv1] has provided a foundation for next versions.

Inquire

• WSDL: inquire_v1.wsdl [http://www.hp.com/managementsoftware/services/wsdl/inquire_v1.wsdl]

• API endpoint: http://<host name>:<port>/uddi/inquiry

• Java API: org.systinet.uddi.client.v1.InquireSoap

• Demos: Inquiry demos v1

Publish

• WSDL: publish_v1.wsdl [http://www.hp.com/managementsoftware/services/wsdl/publish_v1.wsdl]

• API endpoint: http://<host name>:<port>/uddi/publishing

• Java API: org.systinet.uddi.client.v1.PublishSoap

• Demos: Publishing demos v1

UDDI Version 2

The UDDI version 2 Specification [http://uddi.org/pubs/ProgrammersAPI-V2.04-Published-20020719.htm]
has introduced many improvements of existing concepts and new features like service projections.

Inquiry

• Specification: Inquiry API functions [http://uddi.org/pubs/ProgrammersAPI-V2.04-Published-
20020719.htm#_Toc25137711]

• WSDL: inquire_v2.wsdl [http://www.hp.com/managementsoftware/services/wsdl/inquire_v2.wsdl]

535Developer's Guide

http://www.oasis-open.org/committees/uddi-spec/doc/contribs.htm#uddiv1
http://www.hp.com/managementsoftware/services/wsdl/inquire_v1.wsdl
http://www.hp.com/managementsoftware/services/wsdl/publish_v1.wsdl
http://uddi.org/pubs/ProgrammersAPI-V2.04-Published-20020719.htm
http://uddi.org/pubs/ProgrammersAPI-V2.04-Published-20020719.htm#_Toc25137711
http://www.hp.com/managementsoftware/services/wsdl/inquire_v2.wsdl

• API endpoint: http://<host name>:<port>/uddi/inquiry

• Java API: org.systinet.uddi.client.v2.Inquire

• Demos: Inquiry demos v2

Publish

• Specification: Publishing API Function [http://uddi.org/pubs/ProgrammersAPI-V2.04-Published-
20020719.htm#_Toc25137730]

• WSDL: publish_v2.wsdl [http://www.hp.com/managementsoftware/services/wsdl/publish_v2.wsdl]

• API endpoint: http://<host name>:<port>/uddi/publishing

• Java API: org.systinet.uddi.client.v2.Publish

• Demos: Publishing demos v2

UDDI Version 3

The UDDI version 3 Specification [http://uddi.org/pubs/uddi-v3.00-published-20020719.htm] is a major
step in providing industry standard for building and querying XML web services registries useful in both
public and private deployments.

Inquiry

• Specification: Inquiry API set [http://uddi.org/pubs/uddi-v3.00-published-20020719.htm#_Toc42047277]

• API endpoint: http://<host name>:<port>/uddi/inquiry

• Java API: org.systinet.uddi.client.v3.UDDI_Inquiry_PortType

• Demos: Inquiry demos v3

Publication

• Specification: Publication API set [http://uddi.org/pubs/uddi-v3.00-published-
20020719.htm#_Toc42047296]

Chapter 5536

http://uddi.org/pubs/ProgrammersAPI-V2.04-Published-20020719.htm#_Toc25137730
http://www.hp.com/managementsoftware/services/wsdl/publish_v2.wsdl
http://uddi.org/pubs/uddi-v3.00-published-20020719.htm
http://uddi.org/pubs/uddi-v3.00-published-20020719.htm#_Toc42047277
http://uddi.org/pubs/uddi-v3.00-published-20020719.htm#_Toc42047296

• API endpoint: http://<host name>:<port>/uddi/publishing

• Java API: org.systinet.uddi.client.v3.UDDI_Publication_PortType

• Demos: Publishing demos v3

Security

• Specification: Security API set [http://uddi.org/pubs/uddi-v3.00-published-20020719.htm#_Toc42047316]

• API endpoint: http://<host name>:<port>/uddi/security

• Java API: org.systinet.uddi.client.v3.UDDI_Security_PortType

Custody

The Custody and Ownership Transfer API is used to transfer UDDI structures between UDDI nodes and
to change their ownership. One use case is when the publisher wishes to transfer responsibility for a selected
UDDI structure to another user, typically after a business reorganization.

• Specification: Custody and Ownership Transfer API Set [http://uddi.org/pubs/uddi-v3.00-published-
20020719.htm#_Toc42047319]

• API endpoint: http://<host name>:<port>/uddi/custody

• Java API: org.systinet.uddi.client.custody.v3.UDDI_CustodyTransfer_PortType

• Demos: Custody Demos

Subscription

The Subscription API is a service that asynchronously sends notification to users who have registered an
interest in changes to a registry. These users have a range of options in specifying matching criteria so that
they receive only the information in which they are interested.

• Specification: Subscription API Set [http://uddi.org/pubs/uddi-v3.00-published-
20020719.htm#_Toc42047327]

• API endpoint: http://<host name>:<port>/uddi/custody

537Developer's Guide

http://uddi.org/pubs/uddi-v3.00-published-20020719.htm#_Toc42047316
http://uddi.org/pubs/uddi-v3.00-published-20020719.htm#_Toc42047319
http://uddi.org/pubs/uddi-v3.00-published-20020719.htm#_Toc42047327

• Java API: org.systinet.uddi.client.subscription.v3.UDDI_Subscription_PortType

• Demos: Subscription Demos

UDDI Version 3 Extension

UDDI Version 3 Extensions are HP extensions of the UDDI Version 3 Specification [http://www.oasis-
open.org/committees/uddi-spec/doc/tcspecs.htm#uddiv3]. The following data structures are used by APIs
for the Registry Console and APIs that will be approved as official technical notes of the UDDI specification.

Data Structures

businessEntityExt

Table 4. Attributes

RequiredName

OptionalbusinessKey

This structure is used by the Registry Console for performance enhancements. The structure is an extension
of businessEntity [http://uddi.org/pubs/uddi-v3.0.1-20031014.htm#_Toc53709226], the added element is

Chapter 5538

http://www.oasis-open.org/committees/uddi-spec/doc/tcspecs.htm#uddiv3
http://uddi.org/pubs/uddi-v3.0.1-20031014.htm#_Toc53709226

uddi:assertionStatusItem [http://uddi.org/pubs/uddi-v3.0.1-20031014.htm#_Toc53709302] that points to
the related businessEntity,

businessInfoExt

Table 5. Attributes

RequiredName

OptionalbusinessKey

This structure is an extension of the businessInfo structure; the added element is uddi_ext:contactInfos.

contactInfo

Table 6. Attributes

RequiredName

OptionaluseType

This structure represents a person name for the businessInfoExt.

539Developer's Guide

http://uddi.org/pubs/uddi-v3.0.1-20031014.htm#_Toc53709302

contactInfos

Table 7. Attributes

RequiredName

OptionaluseType

This structure holds a list of contactInfos.

operationalInfoExt

Table 8. Attributes

RequiredName

RequiredentityKey

OptionalentityKeyV2

This structure is an extension of the operationalInfo [http://uddi.org/pubs/uddi-v3.0.1-
20031014.htm#_Toc53709242] structure, the added element is uddi:name. The entityKeyV2 holds UDDI v2
key values.

Chapter 5540

http://uddi.org/pubs/uddi-v3.0.1-20031014.htm#_Toc53709242

qualifiedKeyedReference

Table 9. Attributes

RequiredName

RequiredtModelKey

OptionalkeyName

RequiredkeyValue

This structure holds findQualifiers that are used in Range Queries.

registeredInfoExt

Table 10. Attributes

RequiredName

Optionaltruncated

This structure is used by ACL functionality. The added elements are uddi:serviceInfos and
uddi:bindingTemplates that point to UDDI entities the user does not own but has privileges to modify.

541Developer's Guide

serviceInfoExt

Table 11. Attributes

RequiredName

RequiredserviceKey

RequiredbusinessKey

This structure is an extension of serviceInfo. It is used by the web interface for performance enhancements.
The added elements are uddi:description and uddi:bindingTemplates.

Find Qualifiers

UDDI V3 Specification [http://uddi.org/pubs/uddi-v3.0.1-20031014.htm#_Toc53709434] permits vendors
to define new find qualifiers. Table 12 on page 543 summarizes the additional find qualifiers in HP SOA
Systinet Registry and the find_xx operations that support them. See Inquiry on page 536 for more information
on inquiry API operations.

Each short name in Table 12 on page 543 links to a subsection that follows. Note that the tModel key is the
short name prefixed with uddi:systinet.com:findQualifier:.

Chapter 5542

http://uddi.org/pubs/uddi-v3.0.1-20031014.htm#_Toc53709434

Table 12. Summary of Additional Find Qualifiers in HP SOA Systinet Registry

Supporting OperationsShort Name

find_relatedBusinessesfind_tModelfind_bindingfind_servicefind_business

 ✓ deletedTModels

 ✓✓✓✓foreignEntities

✓✓✓✓✓keyNameMatch

 ✓✓✓✓myEntities

✓✓✓✓✓omitKeyNameMatch

✓✓✓✓✓omitKeyValueMatch

✓✓✓✓✓omitTModelKeyMatch

✓✓✓✓✓tModelKeyApproximateMatch

deletedTModels

This find qualifier returns only hidden tModels, hence enabling administrators to locate and permanently
delete garbage tModels.

Note that the registry settings determine whether delete_tModel:

• just hides the tModel from find_tModel operations (default behaviour required by the specification);

• really deletes the tModel, provided there are no dependencies on it;

See Administrator's Guide, Node on page 462.

uddi:systinet.com:findQualifier:deletedTModelstModel Key

find_tModel.Supporting Operations

foreignEntities

This find qualifier restricts results to entities that do not belong to the caller.

This qualifier does not make any sense for an anonymous caller because all entities will be returned
in the query.

543Developer's Guide

uddi:systinet.com:findQualifier:foreignEntitiestModel Key

All find_xx operations except find_relatedBusinesses.Supporting Operations

keyNameMatch

This find qualifier changes default rules for matching keyedReferences. By default keyNames are only
compared when the General Keywords tModelKey is specified. This find qualifier enforces comparison of
keyNames.

The keyNameMatch and omitKeyNameMatch findQualifiers are mutually exclusive.

uddi:systinet.com:findQualifier:keyNameMatchtModel Key

All find_xx operations.Supporting Operations

myEntities

This find qualifier restricts results to entities that belong to the caller.

This qualifier does not make any sense for an anonymous caller. All entities would be returned in
that case.

uddi:systinet.com:findQualifier:myEntitiestModel Key

All find_xx operations except find_relatedBusinesses.Supporting Operations

omitKeyNameMatch

This find qualifier changes default rules for matching keyedReferences. By default keyNames are only
compared when the General Keywords tModelKey is specified. This find qualifier skips comparison of
keyNames.

The keyNameMatch and omitKeyNameMatch findQualifiers are mutually exclusive.

uddi:systinet.com:findQualifier:omitKeyNameMatchtModel Key

All find_xx operations.Supporting Operations

Chapter 5544

omitKeyValueMatch

This find qualifier changes default rules for matching keyedReferences. By default keyValues are compared.
This find qualifier skips comparison of keyValues.

The omitKeyValueMatch and omitTModelKeyMatch findQualifiers are mutually exclusive.

uddi:systinet.com:findQualifier:omitKeyValueMatchtModel Key

All find_xx operations.Supporting Operations

omitTModelKeyMatch

This find qualifier changes default rules for matching keyedReferences. By default tModelKeys are compared.
This find qualifier skips comparison of tModelKeys.

The omitKeyValueMatch and omitTModelKeyMatch findQualifiers are mutually exclusive.

uddi:systinet.com:findQualifier:omitTModelKeyMatchtModel Key

All find_xx operations.Supporting Operations

tModelKeyApproximateMatch

This find qualifier changes the default rules for matching keyedReferences. By default tModelKeys are
compared without wildcards and case insensitively. This find qualifier enables a tModelKey in a query to
include wildcards:

• '%' interpreted as zero or more arbitrary characters;

• '_' interpreted as an arbitrary character.

The behavior is similar to the approximateMatch find qualifier.

uddi:systinet.com:findQualifier:tModelKeyApproximateMatchtModel Key

All find_xx operations.Supporting Operations

545Developer's Guide

Advanced APIs

Advanced APIs cover the following APIs:

• Validation API - The Valueset Validation API is used to validate values in keyedReferences involved
in save operations that reference checked taxonomies. Valueset validation is defined in the UDDI version
3 specification [http://uddi.org/pubs/uddi_v3.htm]. Every checked taxonomy requires a Web service
that implements this API.

• Taxonomy API - The Systinet Taxonomy API provides a high-level view of taxonomies and makes
them easy to manage and query. This API was designed according to the UDDI technical note Providing
A Value Set For Use In UDDI Version 3 [http://oasis-open.org/committees/uddi-spec/doc/tn/uddi-spec-
tc-tn-valuesetprovider-20030212.htm].

• Category APIs - The Systinet Category API complements the Systinet Taxonomy API. It is used to
query and to manipulate Internal taxonomies in HP SOA Systinet Registry. More information on the
subject of internal taxonomies can be found in the API documentation. The categories may be
hierarchically organized. Each category may be top-level (without parent), it may have children, or it
may be a child of another category. You can drill down through this pattern In the Registry Console.

• Approval API - The Approval API includes a set of APIs to manage the approval process.

• Administration Utilities API - The Systinet Administration Utilities API provides an interface to perform
several low level administrative tasks in HP SOA Systinet Registry.

• Replication API - The Replication API is used to launch replications in HP SOA Systinet Registry.

• Statistics API - The Systinet Statistics API provides useful information about HP SOA Systinet Registry
usage.

• WSDL Publishing API - HP SOA Systinet Registry WSDL-to-UDDI mapping is compliant with OASIS's
Technical Note, Using WSDL in a UDDI registry Version 2.0 [http://www.oasis-
open.org/committees/uddi-spec/doc/tn/uddi-spec-tc-tn-wsdl-v2.htm]. It enables the automatic publishing
of WSDL documents to UDDI, enables precise and flexible UDDI queries based on specific WSDL
artifacts and metadata, and provides a consistent mapping for UDDI v2 and UDDI v3.

• Resources Publishing APIs - XML2UDDI, XSD2UDDI and XSLT2UDDI. These API sets allow you
to manipulate with resources in HP SOA Systinet Registry. XML documents, XML Schemas and XSL
Transformations are supported.

Chapter 5546

http://uddi.org/pubs/uddi_v3.htm
http://uddi.org/pubs/uddi_v3.htm
http://oasis-open.org/committees/uddi-spec/doc/tn/uddi-spec-tc-tn-valuesetprovider-20030212.htm
http://oasis-open.org/committees/uddi-spec/doc/tn/uddi-spec-tc-tn-valuesetprovider-20030212.htm
http://www.oasis-open.org/committees/uddi-spec/doc/tn/uddi-spec-tc-tn-wsdl-v2.htm

• Inquiry UI API - The Inquiry UI API has been implemented for improving the performance of the
Business Service Console. The basic idea is to retrieve data that appear in the Business Service Console
using a single API call.

• Subscription Ext API - The Subscription Extension API has been implemented to allow the user to
create subscriptions in the discovery registry of the approval process.

Validation

The Valueset validation API is used to validate values in keyedReferences involved in save operations that
reference checked taxonomies. Valueset validation is defined in the UDDI version 3 specification
[http://uddi.org/pubs/uddi_v3.htm]. Every checked taxonomy requires a Web service that implements this
API. The API is defined by the uddi:uddi.org:v3_valueSetValidation tModel for UDDI version 3,
uddi:systinet.com:v2_validateValues for UDDI version 2 and uddi:systinet.com:v1_validateValues for UDDI
version 1.

HP SOA Systinet Registry is built according to the UDDI technical note Providing A Value Set For Use In
UDDI Version 3 [http://oasis-open.org/committees/uddi-spec/doc/tn/uddi-spec-tc-tn-valuesetprovider-
20030212.htm]. To function correctly, checked taxonomies must be categorized with uddi-org:validatedBy
taxonomy pointing to the bindingTemplate with the valueset validation Web service accessPoint. This Web
service is called whenever the checked taxonomy occurs within a keyedReference during a save operation.

If the Web service is accessible by HP SOA Systinet Registry's classloader, the validation Web service does
not need to be invoked over SOAP, but it may run inside the registry's Java Virtual Machine.

The accessPoint value must be in a special form: It must start with the class: prefix and continue with fully
qualified class name. For example, the internal validation service endpoint is defined as follows:
class:com.systinet.uddi.publishing.v3.validation.service.AclValidator.

For more information, consult the UDDI version 3 specification, section 5.6
[http://uddi.org/pubs/uddi_v3.htm#_Toc53709335] .

SOAP

• Specification: uddi_vs_v3.wsdl [http://www.hp.com/managementsoftware/services/wsdl/uddi_vs_v3.wsdl]

Java

• Java API: org.systinet.uddi.client.valueset.validation.v3.UDDI_ValueSetValidation_PortType

547Developer's Guide

http://uddi.org/pubs/uddi_v3.htm
http://oasis-open.org/committees/uddi-spec/doc/tn/uddi-spec-tc-tn-valuesetprovider-20030212.htm
http://oasis-open.org/committees/uddi-spec/doc/tn/uddi-spec-tc-tn-valuesetprovider-20030212.htm
http://uddi.org/pubs/uddi_v3.htm#_Toc53709335
http://www.hp.com/managementsoftware/services/wsdl/uddi_vs_v3.wsdl

• Demos: Validation demos

Taxonomy

The Systinet Taxonomy API provides high-level view of taxonomies and makes them easy to manage and
query. This API was built according to the UDDI technical note Providing A Value Set For Use In UDDI
Version 3 [http://oasis-open.org/committees/uddi-spec/doc/tn/uddi-spec-tc-tn-valuesetprovider-
20030212.htm].

Data Structures

The following structures are used by the Systinet Taxonomy API:

Categories

This structure is a container for zero or more category structures. If the taxonomy is internal, then categories
are used to hold possible values of its keyedReferences.

categorizationBag

This structure is a container for one or more categorizations. It defines the containers (categoryBag,
keyedReferenceGroup, identifierBag and Publisher Assertion) in which this taxonomy can be used. Possible
values are categorization, categorizationGroup, identifier, and relationship. A save operation containing a
keyedReference referencing a taxonomy in the wrong container will be denied with E_valueNotAllowed
UDDI exception.

Category

Chapter 5548

http://oasis-open.org/committees/uddi-spec/doc/tn/uddi-spec-tc-tn-valuesetprovider-20030212.htm
http://oasis-open.org/committees/uddi-spec/doc/tn/uddi-spec-tc-tn-valuesetprovider-20030212.htm

This structure corresponds to the keyedReference. It defines the keyedReference of the taxonomy in which
it is used. The keyValue must be unique. The disabled attribute is used to mark the category as either helper
or deprecated, so it cannot be used as a valid option in keyedReferences. The keyName attribute serves as a
label for this category.

Table 13. Attributes

RequiredName

YeskeyName

YeskeyValue

Nodisabled

compatibilityBag

This structure is a container for one or more compatibilities. It defines the compatibility of the taxonomy
with the four basic UDDI data structures - tModel, businessEntity, businessService and bindingTemplate.
If the taxonomy is not compatible with one of these UDDI structures, then a save operation containing a
keyedReference referencing this taxonomy in this structure will be denied with E_valueNotAllowed UDDI
exception.

taxonomy

549Developer's Guide

Table 14. Attributes

RequiredName

Nocheck

Nounvalidatable

Nobrief

Each taxonomy is identified by its tModel.

• The optional check attribute is used to define whether the taxonomy is checked or not. If the tModel is
checked, then a validation structure must be present.

• The unvalidatable attribute is used to mark the checked taxonomy as unvalidatable. Unvalidatable
taxonomies cannot be used in keyedReferences.

• The brief attribute is related to categories structure and its meaning depends on context, in which it is
used.

taxonomyDetail

Table 15. Attributes

RequiredName

Notruncated

This structure is a container for zero or more taxonomies. The truncated attribute indicates whether the list
of taxonomies is truncated.

Chapter 5550

taxonomyInfo

Table 16. Attributes

RequiredName

Yescheck

Nounvalidatable

The taxonomyInfo is an extension of the tModelInfo structure.

• The check attribute indicates whether or not the taxonomy is checked.

• The unvalidatable attribute is used to mark the checked taxonomy as unvalidatable. Unvalidatable
taxonomies cannot be used in keyedReferences.

taxonomyInfos

This structure is a container for zero or more taxonomyInfo structures.

taxonomyList

551Developer's Guide

This structure serves as a container for optional listDescription and optional taxonomyInfos structures. The
truncated attribute indicates whether the list of taxonomies is truncated.

Table 17. Attributes

RequiredName

Notruncated

validation

This structure is used to hold information for validating a checked taxonomy. The categories structure
defines the list of available values for keyedReferences checked by the Internal validation service. Binding
templates contains the valueset validation Web service endpoint.

Operations

delete_taxonomy

The delete_taxonomy API call is used to delete one or more taxonomies from HP SOA Systinet Registry.
The taxonomy consists of a tModel and optional business services and categories.

Arguments

• uddi:authInfo - This optional argument is an element that contains an authentication token.

• uddi:tModelKey - One or more required uddiKey values that represent existing taxonomy tModels.

Chapter 5552

Upon successful completion, a disposition report is returned with a single success indicator.

Permissions

This API call requires API manager permission with the name org.systinet.uddi.client.taxonomy.v3.TaxonomyApi
and the action delete_taxonomy.

download_taxonomy

The download_taxonomy API call is used to fetch a selected taxonomy from HP SOA Systinet Registry.
This call is stream oriented and is useful for fetching the content of very large taxonomies.

Arguments

• taxonomy:authInfo - This optional argument is an element that contains an authentication token.

• uddi:tModelKey - required uddiKey value that represents an existing taxonomy tModel.

Returns

This API call returns a ResponseMessageAttachment with the selected taxonomy upon success.

Permissions

This API call requires the API manager permission with name org.systinet.uddi.client.taxonomy.v3.TaxonomyApi
and the action download_taxonomy.

find_taxonomy

The find_taxonomy API call is used to find all taxonomies in a registry that match given criteria. This call
is an extension of the UDDI v3 find_tModel API call.

553Developer's Guide

Table 18. Attributes

RequiredName

Nocheck

Nounvalidatable

Arguments

• uddi:authInfo - This optional argument is an element that contains an authentication token.

• uddi:findQualifiers - The collection of findQualifier used to alter default behavior.

• uddi:name - The string value represents the name of tModel to be found.

• uddi:identifierBag - The list of keyedReferences from tModel IdentifierBag.

• uddi:categoryBag - The list of keyedReferences from tModel categoryBag.

• taxonomy:compatibilityBag - An optional list of Compatibilities.

• taxonomy:categorizationBag - An optional list of Categorizations.

• check - Optional boolean value that limits returned data to checked (or unchecked) taxonomies only.

• unvalidatable - Optional boolean value that limits returned data to unvalidatable taxonomies only.

Chapter 5554

The unvalidatable attribute of the tModel of a checked taxonomy will be set to true, if one of the
following rules is met:

• The tModel of a checked taxonomy does not contain the validatedBy keyedReference

• The bindingTemplate from keyedReferences does not exists or is not readable because of
ACLs.

Returns

This API call returns the TaxonomyList upon success.

Permissions

This API call requires API user permission org.systinet.uddi.client.taxonomy.v3.TaxonomyApi and the action
find_taxonomy.

get_taxonomy

The get_taxonomy API call returns the Taxonomy structure corresponding to each of the tModelKey values
specified.

Table 19. Attributes

RequiredName

Nobrief

Arguments

• uddi:authInfo - This optional argument is an element that contains an authentication token.

• uddi:tModelKey - Required uddiKey value representing an existing taxonomy tModel.

555Developer's Guide

• brief - Requests not to fetch the categories element. Note that only the API manager can set this attribute
to false.

Returns

This API call returns the TaxonomyList on success.

If the tModel of a checked taxonomy does not contain the validatedBy keyedReference, the
taxonomy's unvalidatable attribute will be set to true and the validation structure will be missing.

Permissions

This API call requires the API user permission org.systinet.uddi.client.taxonomy.v3.TaxonomyApi and the
action get_taxonomy.

save_taxonomy

The save_taxonomy API call is used to publish taxonomies to HP SOA Systinet Registry.

The taxonomy properties (checked, unvalidatable, compatibilityBag, and categorizationBag) are first
combined with their counterparts in the tModel's categoryBag.

It is an error to specify a validation structure for an unchecked taxonomy. If the taxonomy contains
a validation structure, it is automatically set to be checked. If the taxonomy is neither checked nor
unchecked, it will be saved as unchecked. If a checked taxonomy does not have a validation
structure, the taxonomy is saved with the unvalidatable attribute set to true.

If the categories structure is defined in the validation structure, then the taxonomy will be checked by the
Internal validation service. The bindingTemplates are optional; if they are specified, then their AccessPoint
must point to the Internal validation service's Web service endpoint.

If the categories structure is not defined in the validation structure, then there must be at least one
bindingTemplate. The bindingTemplate must implement valueset validation API (either

Chapter 5556

uddi:uddi.org:v3_valueSetValidation, uddi:systinet.com:v2_validateValues or uddi:systinet.com:v1_validateValues).
There must be a valid AccessPoint.

If the serviceKey is given, then this businessService must be part of the Operational business entity
(uddi:systinet.com:uddinodebusinessKey). During the save_taxonomy operation, the businessService will be
overwritten.

Arguments

• taxonomy:authInfo - This optional argument is an element that contains an authentication token.

• taxonomy:taxonomy - A list of taxonomies to be saved.

Returns

This API call returns the TaxonomyDetail on success.

Permissions

This API call requires the API manager permission org.systinet.uddi.client.taxonomy.v3.TaxonomyApi and
the action save_taxonomy.

upload_taxonomy

The upload_taxonomy API call is used to publish a Taxonomy into HP SOA Systinet Registry. This call is
stream oriented and is useful for publishing very large taxonomies.

Permissions

This API call requires the API manager permission named org.systinet.uddi.client.taxonomy.v3.TaxonomyApi
and the action upload_taxonomy.

Persistence Format

The taxonomy persistence format is used by taxonomy Download/Upload operations. Following is an
example of the taxonomy persistence format:

557Developer's Guide

<taxonomy xmlns="http://systinet.com/uddi/taxonomy/v3/5.0"
 xmlns:uddi="urn:uddi-org:api_v3"
 check="true">
 <tModel tModelKey="uddi:foo.com:demo:myTaxonomy">
 <uddi:name>My taxonomy</uddi:name>
 <uddi:description>Category system</uddi:description>
 </tModel>
 <compatibilityBag>
 <compatibility>businessEntity</compatibility>
 </compatibilityBag>
 <categorizationBag>
 <categorization>categorization</categorization>
 </categorizationBag>
 <validation>
 <bindingTemplate bindingKey="" serviceKey="" xmlns="urn:uddi-org:api_v3">
 <accessPoint useType="endPoint">
 http://www.foo.com/MyValidationService.wsdl
 </accessPoint>
 <tModelInstanceDetails>
 <tModelInstanceInfo
 tModelKey="uddi:uddi.org:v3_valueSetValidation"/>
 <tModelInstanceInfo
 tModelKey="uddi:systinet.com:demo:myTaxonomy"/>
 </tModelInstanceDetails>
 </bindingTemplate>
 </validation>
</taxonomy>

This format reflects the taxonomy.xsd [http://www.hp.com/managementsoftware/services/wsdl/taxonomy.xsd]
XML Schema Definition file. For more information, see the data structure of taxonomy on page 549.

Chapter 5558

http://www.hp.com/managementsoftware/services/wsdl/taxonomy.xsd

WSDL

You can find the WSDL specification in the file taxonomy.wsdl
[http://www.hp.com/managementsoftware/services/wsdl/taxonomy.wsdl].

API Endpoint

You can find the Taxonomy API endpoint at http://<host name>:<port>/uddi/taxonomy.

Java

Systinet Java API is generated from Taxonomy WSDL. You are encouraged to browse
org.systinet.uddi.client.taxonomy.v3.TaxonomyApi and to read and try Taxonomy demos.

Taxonomy 5.5 Extension

This section describes the taxonomy 5.5. extension intended for Range queries functionality implementation.

Data Structures

The following structures are used by the Systinet Taxonomy 5.5 API:

Taxonomy

559Developer's Guide

http://www.hp.com/managementsoftware/services/wsdl/taxonomy.wsdl

Table 20. Attributes

RequiredName

Nocheck

Nounvalidatable

Nobrief

This structure is almost identical to taxonomy, except that the transformation argument has been added

taxonomyInfo

Table 21. Attributes

RequiredName

Yescheck

yestModelKey

Nounvalidatable

NoisOrderedBy

This structure is almost identical to taxonomyInfo, except that the optional attribute isOrderedBy was added
to contain the name of the comparator tModel.

Chapter 5560

transformation

This structure holds a reference to a transformation service implementation. For more information about
the transformation service, please see Administrator's Guide, Custom Ordinal Types on page 310.

• uddi:tModel - The tModel that represents a comparator taxonomy.

• uddi:bindingTemplate - This argument holds the reference of the transformation service implementation.
The accessPoint element of the bindingTemplate includes the name of the java class implementation of
the sevice with the prefix class:.

• uddi:tModelKey The key of the tModel that represents the transformation.

API Endpoint

You can find the Taxonomy 5.5 API endpoint at http://<host name>:<port>/uddi/taxonomy55.

Category

The Systinet Category API complements the Systinet Taxonomy API. It is used to query and to manipulate
Internal taxonomies in HP SOA Systinet Registry. The categories may be hierarchically organized. Each
category may be top-level (without parent), it may have children, or it may be a child of another category.
You can drill down through this pattern in the Registry Console.

Data Structures

The following structures are used by the Systinet Category API:

561Developer's Guide

Categories

This structure is a container for zero or more category elements.

category

Table 22. Attributes

RequiredAttribute

Nodisabled

Noleaf

This element contains a single keyedReference element that defines value of the category.

The disabled attribute is used to indicate that a category cannot be used as a valid option in keyedReferences.
Either it has been deprecated or it is only a parent for other categories. The tModel key value in the uddi-
org:types taxonomy is one such disabled category.

The leaf attribute indicates whether this category is a leaf in the category tree.

categoryList

Chapter 5562

Table 23. Attributes

RequiredAttribute

Notruncated

This structure serves as a container for optional listDescription and categories structures. The truncated
attribute indicates whether a returned list of categories is truncated.

Operations

add_category

The add_category API call is used to add a new category to the Internal taxonomy identified by the tModelKey
in the keyedReference. The parentKeyedReference element is used to define the parent category of new category
to be saved. If the parentKeyedReference element is missing, then the new category will have no parent.

Syntax

Arguments

• category:authInfo - This optional argument is an element that contains an authentication token.

• category:category - Category to be added.

• parentKeyedReference - Optional keyedReference; serves as parent of the new category.

Permissions

This API call requires API manager permission for org.systinet.uddi.client.category.v3.CategoryApi and
for the action add_category.

563Developer's Guide

delete_category

The delete_category API call deletes the selected category from HP SOA Systinet Registry.

Syntax

Arguments

• category:authInfo - This optional argument is an element that contains an authentication token.

• keyedReference - Category to be deleted.

Permissions

This API call requires API manager permission for org.systinet.uddi.client.category.v3.CategoryApi and
the action delete_category.

find_category

The find_category API call is used to query HP SOA Systinet Registry for categories that match given
criteria.

Syntax

Arguments

• category:authInfo - This optional argument is an element that contains an authentication token.

• category:findQualifiers - Optional list of findQualifiers, that modifies default behavior.

Chapter 5564

• uddi:keyedReference - The category containing search arguments.

Behavior

FindByName and findByValue findQualifiers are used to distinguish whether the call will search by keyName
or keyValue from the keyedReference that is the argument of the call. The default is to search by value.

The caseSensitiveMatch and caseInsensitiveMatch findQualifiers are used to control whether the search
will be case sensitive; the default is case sensitive.

The ApproximateMatch findQualifier is used to search with SQL wildcards. The default findQualifier,
exactMatch, instructs the search to perform an exact comparison.

Finally there are four findQualifiers that affect the order in which categories are returned:

• sortByNameAsc

• sortByNameDesc

• sortByValueAsc (default)

• sortByValueDesc

These find qualifiers are exclusive. If you combine them, an exception is thrown.

Returns

This API call returns a CategoryList upon success.

get_category

The get_category API call is used to get categories having a relation, identified by getQualifier, to the category
identified by given keyedReference. If the getQualifier is childCategories, then the call returns categories
that have the selected category as their parent. If the siblingCategories getQualifier is used, then categories
having same parent as selected category are returned.

565Developer's Guide

Syntax

Arguments

• category:authInfo - This optional argument is an element that contains an authentication token.

• category:getQualifier and category:getQualifier - Control search behavior.

• uddi:keyedReference - The category whose relatives shall be received.

Returns

This API call returns a CategoryList upon success.

get_rootCategory

The get_rootCategory API call returns all categories of the Internal taxonomy identified by given tModelKey
that have no parent.

Syntax

Arguments

• category:authInfo - This optional argument is an element that contains an authentication token.

• uddi:tModelKey - Required uddiKey value that represents an existing taxonomy tModel.

Chapter 5566

• category:getQualifiers - Control search behavior.

Returns

This API call returns a CategoryList upon success.

get_rootPath

The get_rootPath API call returns categories from root category, then its child categories until the selected
category in this order: root category, parent's parent, parent and the selected category.

Syntax

Arguments

• category:authInfo - This optional argument is an element that contains an authentication token.

• uddi:keyedReference - Category to be searched

Returns

This API call returns a CategoryList upon success.

move_category

The move_category API call is used to move selected category from current parent (if any) to a new parent
category. If the newParentKeyedReference is not defined, then the category will have no parent.

Syntax

567Developer's Guide

Arguments

• category:authInfo - This optional argument is an element that contains an authentication token.

• keyedReference - Category to be deleted.

• newParentKeyedReference - Optional category, that becomes new parent of the category.

Permissions

This API call requires API manager permission for org.systinet.uddi.client.category.v3.CategoryApi and
the action move_category.

set_category

The set_category API call is used to update the selected category in HP SOA Systinet Registry.

Syntax

Arguments

• category:authInfo - This optional argument is an element that contains an authentication token.

• oldKeyedReference - Current category to be updated.

• category:category - New category, that will replace selected category.

Permissions

This API call requires API manager permission for org.systinet.uddi.client.category.v3.CategoryApi and
the action set_category.

Chapter 5568

WSDL

You can find this API's WSDL specification in the file category.wsdl
[http://www.hp.com/managementsoftware/services/wsdl/category.wsdl].

API Endpoint

You can find the Category API at http://<host name>:<port>/uddi/category.

Java

Systinet Java API is generated from Category WSDL. You are encouraged to browse
org.systinet.uddi.client.category.v3.CategoryApi and to read and try Category demos.

Approval

The approval process includes the following API sets:

• Requestor on page 569

• Approver on page 577

• Approval Management on page 588

• Approval Content Checker on page 595

Requestor

The Systinet Approval Requestor API is used to manage approval requests in HP SOA Systinet Registry
from the requestor point of view.

Data Structures

The following structures are used by the Systinet Approval Requestor API:

• approvalKeys on page 570

• approvalRequest on page 570

• approvalRequestInfo on page 571

569Developer's Guide

http://www.hp.com/managementsoftware/services/wsdl/category.wsdl

• approvalRequestList on page 572

• approvalRequestRecord on page 572

• keys4Deletion on page 573

• keys4Saving on page 574

• Request on page 574

• requestInfo on page 575

• requestList on page 576

• requestWrapper on page 576

approvalKeys

This element is a container for the optional elements keys4Saving and keys4Deletion.

approvalRequest

Chapter 5570

This structure describes one approval request and contains the following elements:

• key - identifies the approval request

• name - user-defined name of the request

• description - description of the request

• requestorName - the loginName of the requestor

• status - status of the approver request (open, submitted, closeCancelled, closeRejected, closeApproved,
corrupted). The corrupted status means some entities from the approval request have been deleted from
the registry. It is not possible to search for approval requests using the corrupted status.

• time - time at which the request switched to the current status (xsd:dateTime)

• approvalKeys - keys of element to be saved or deleted from the discovery registry

• record

approvalRequestInfo

The approvalRequestInfo structure is used by approvalRequestList and contains the following elements:

• key - identifies the approvalRequestInfo

• name - name of the request

• description - description of the approvalRequestInfo

571Developer's Guide

• requestorName - loginName of the requestor

• status - status of the approvalRequestInfo (open, submitted, closeCancelled, closeRejected,
closeApproved, corrupted). The corrupted status means some entities from the approval request have
been deleted from the registry. It is not possible to search for approval requests using the corrupted status.

• time - time at which the request switched to the current status (xsd:dateTime)

approvalRequestList

The approvalRequestList structure contains a list of approvalRequestInfos.

approvalRequestRecord

This structure is used in approvalRequests and contains the following elements:

• user - requestor's username

• action - action made with the request (saveRequest, askForApproval, cancelRequest, remindApprover,
approveRequest, rejectRequest)

• time - time at which the approvalRequestRecord switched the current action (xsd:dateTime)

Chapter 5572

• message - may contain a requestor's message to the approval contact or approver's message to the requestor.

keys4Deletion

This element is a container for UDDI keys or publisher assertions to be deleted from the discovery registry.
It can contain the optional elements:

• tModelKey

• businessKey

• serviceKey

• bindingKey

• publisherAssertion

573Developer's Guide

keys4Saving

This element is a container for UDDI keys or publisher assertions to be saved to the discovery registry. It
can contain the optional elements

• tModelKey

• businessKey

• serviceKey

• bindingKey

• publisherAssertion

Request

This structure is deprecated. User approvalRequest instead.

Chapter 5574

This element describes one approval request. It contains:

• The mandatory element requestId that identifies the request

• A requestorName holds the loginName of the requestor.

• The time element is set to the time the request was made.

• The approvalKeys element is used to store keys of element to be saved or deleted from the discovery
registry.

• The optional message element may contain a requestor's message to the approval contact.

requestInfo

This structure is deprecated. Used approvalRequestInfo instead.

This element contains:

• The mandatory element requestId that identifies the request

• A requestorName holding loginName of requestor

575Developer's Guide

• A time element set to the time the request was made

requestList

This structure is deprecated. Use approvalRequestList instead.

This element is used to store an optional listDescription element that describes the result set and an optional
set of requestInfo elements.

requestWrapper

This structure wraps the request structure to be inherited in approve_request, cancel_approvalRequest,
reject_request, and remind_approver structures.

WSDL

You can find the WSDL specification in the file approval.wsdl
[http://www.hp.com/managementsoftware/services/wsdl/approval.wsdl].

Chapter 5576

http://www.hp.com/managementsoftware/services/wsdl/approval.wsdl

Java

The Systinet Approval Requestor API is generated from approval.wsdl
[http://www.hp.com/managementsoftware/services/wsdl/approval.wsdl]. You are encouraged to browse its
org.systinet.uddi.approval.v3.RequestorApi.

API Endpoint

The endpoint for the Systinet Approval Requestor API is available at http://<host name>:<http
port>/uddi/requestor

Approver

The Systinet Approver API is used to manage approval requests in HP SOA Systinet Registry from the
approver's point of view.

Data Structures

The Systinet Approver API shares the same definition of structures with the Systinet Requestor API. See
Data Structures on page 569 for information on these structures.

Operations

The Approver API has the following operations:

• approve_request on page 578

• Approve on page 579

• find_approvalRequest on page 580

• findRequest on page 580

• getBindingDetail on page 581

• getBusinessDetail on page 582

• getOperationalInfo on page 583

• get_approvalRequest on page 583

577Developer's Guide

http://www.hp.com/managementsoftware/services/wsdl/approval.wsdl

• getRequest on page 584

• getServiceDetail on page 584

• getTModelDetail on page 585

• reject_request on page 586

• Reject on page 587

approve_request

The approve_request API call is used to approve the request. The user must be an approval contact for the
requestor.

Arguments

The approve_request API call has the following arguments:

• requestKey - a mandatory argument holding the key of the approval request

• message - This optional element may contain text that will be delivered to the requestor by an email.

• sender - Sender is an optional helper element. If set, it must be equal to the loginName of the user whose
authentication token is equal to the token in authInfo. If an administrator (a user with admin manager
permission) calls approve_request, the authInfo contains the authentication token of the administrator.

The value of the sender argument may contain the loginName of any existing user.

• authInfo - This optional argument is an element that contains an authentication token.

Chapter 5578

Permissions

This API call requires the API manager permission with the name org.systinet.uddi.approval.v3.RequestorApi
and the action approve_request.

Approve

This operation is deprecated. Use approveRequest instead.

The approve API call is used to approve the request identified by requestId. The user must be an approval
contact for the requestor.

Arguments

• authInfo - This optional argument is an element that contains an authentication token.

• requestId - mandatory argument holding key of approval request.

• message - optional element that may contain text to be delivered to the requestor via email.

• sender - an optional helper element. If set, it must be equal to the loginName of the user.

Permissions

This API call requires the API manager permission with the name org.systinet.uddi.approval.v3.RequestorApi
and the action approve.

579Developer's Guide

find_approvalRequest

The find_approvalRequest API call is used to find all approval requests that should be handled (that is,
approved or rejected) by the approver.

For more information, see find_approvalRequest on page 598

findRequest

This operation is deprecated. Use find_approvalRequest instead.

The findRequest API call is used to find the requests that the current user is allowed to approve. If the
requestorName element is specified, this call only returns requests made by this requestor.

Arguments

The find_request API call has the following arguments:

• authInfo - This optional argument is an element that contains an authentication token.

• requestorName - This optional element identifies the requestor to be searched. The requestorName contains
the value of loginName.

• findQualifier - The collection of findQualifiers used to alter default behavior.

Behavior

The following findQualifiers affect the behavior of the call:

• The exactMatch findQualifier requires that an exact match be returned.

Chapter 5580

• The default approximateMatch findQualifier enables SQL wildcard query.

• The sortByNameAsc (default) and sortByNameDesc findQualifiers control the order in which the data
is returned.

Permissions

This API call requires the API manager permission with the name org.systinet.uddi.approval.v3.RequestorApi
and the action findRequest.

getBindingDetail

The getBindingDetail API call is an extended version of the standard UDDI API call. It is used to get details
of the selected bindingTemplate mentioned in the approval request without respect to its access control list.
The structure may be configured to allow access only to selected users, but the approval contact must be
able to review it.

If the given bindingKey is contained in the approvalKeys structure and the user is the approval contact for
the requestor, the ACL check will be skipped and the bindingTemplate will be returned.

Arguments

The getBindingDetail API call has the following arguments:

• authInfo - This optional argument is an element that contains an authentication token.

• requestId - Mandatory argument holding key of the approval request.

• bindingKey - This mandatory argument contains the keys of the bindingTemplates to be fetched.

581Developer's Guide

Permissions

This API call requires the API manager permission with the name org.systinet.uddi.approval.v3.RequestorApi
and the action getBindingDetail.

getBusinessDetail

The getBusinessDetail API call is an extended version of the standard UDDI API call. It is used to get
details of the selected businessEntity mentioned in the approval request without respect to its access control
list. The structure may be configured to allow access only selected users, but the approval contact must be
able to review it.

If the given businessKey is contained in the approvalKeys structure and the user is the approval contact for
the requestor, the ACL check will be skipped and the businessEntity will be returned.

Arguments

The getBusinessDetail API call has the following arguments:

• authInfo - This optional argument is an element that contains an authentication token.

• requestId - Mandatory argument holding the key of the approval request.

• businessKey - This mandatory argument contains the keys of businessEntities to be fetched.

Permissions

This API call requires the API manager permission with the name org.systinet.uddi.approval.v3.RequestorApi
and the action getBusinessDetail.

Chapter 5582

getOperationalInfo

The getOperationalInfo API call is an extended version of the standard UDDI API call. It is used to get
details of the selected structure mentioned in the approval request without respect to its access control list.
The structure may be configured to allow access only to selected users, but the approval contact must be
able to review it.

If the given entityKey is contained in the approvalKeys structure and the user is the approval contact for
the requestor, the ACL check will be skipped and the operationalInfo will be returned.

Arguments

The getOperationalInfo API call has the following arguments:

• authInfo - This optional argument is an element that contains an authentication token.

• requestId - Mandatory argument holding the key of the approval request.

• entityKey - This mandatory argument contains the keys of UDDI structures to be fetched.

Permissions

This API call requires the API manager permission with the name org.systinet.uddi.approval.v3.RequestorApi
and the action getOperationalInfo.

get_approvalRequest

The get_approvalRequest API call is used by an approver to get details of the approval request identified
by the requestKey.

For more information, see get_approvalRequest on page 601

583Developer's Guide

getRequest

This operation is deprecated. Use get_approvalRequest instead

The getRequest API call is used to get details of the approval request identified by the requestId. The user
must be an approval contact for the requestor who makes the request.

Arguments

The getRequest API call has the following arguments:

• authInfo - This optional argument is an element that contains an authentication token.

• requestId - Mandatory argument holding the key of the approval request.

Permissions

This API call requires the API manager permission with the name org.systinet.uddi.approval.v3.RequestorApi
and the action getRequest.

getServiceDetail

The getServiceDetail API call is an extended version of the standard UDDI API call. It is used to get details
of the selected businessService mentioned in an approval request without respect to its access control list.
The structure may be configured to allow access only to selected users, but the approval contact must be
able to review it.

If the given serviceKey is contained in the approvalKeys structure and the user is the approval contact for
the requestor, the ACL check will be skipped and the businessService will be returned.

Chapter 5584

Arguments

The getServiceDetail API call has the following arguments:

• authInfo - This optional argument is an element that contains an authentication token.

• requestId - Mandatory argument holding the key of the approval request.

• serviceKey - This mandatory argument contains the keys of businessServices to be fetched.

Permissions

This API call requires the API manager permission with the name org.systinet.uddi.approval.v3.RequestorApi
and the action getServiceDetail.

getTModelDetail

The getTModelDetail API call is an extended version of the standard UDDI API call. It is used to get details
of a selected tModel mentioned in an approval request without respect to its access control list. The structure
may be configured to allow access only to selected users, but the approval contact must be able to review
it.

If the given tModelKey is contained in the approvalKeys structure and the user is the approval contact for
the requestor, the ACL check will be skipped and the tModel will be returned.

585Developer's Guide

Arguments

The getTModelDetail API call has the following arguments:

• authInfo - This optional argument is an element that contains an authentication token.

• requestId - Mandatory argument holding the key of the approval request.

• tModelKey - This mandatory argument contains keys of tModels to be fetched.

Permissions

This API call requires the API manager permission with the name org.systinet.uddi.approval.v3.RequestorApi
and the action getTModelDetail.

reject_request

The reject_request API call is used to reject a request identified by a requestKey. The user must be an
approval contact for the requestor.

Arguments

The reject_request API call has the following arguments:

• requestKey - Mandatory argument holding the key of the approval request.

• message - This optional element may contain text that will be delivered to the requestor via email.

• sender - Sender is an optional helper element. If set, it must be equal to the loginName of the user. If
the administrator (a user with admin manager permission) calls reject_request, the authInfo contains

Chapter 5586

the authentication token of administrator. The value of the sender argument may contain a loginName
of any existing user.

• authInfo - This optional argument is an element that contains an authentication token.

Permissions

This API call requires the API manager permission with the name org.systinet.uddi.approval.v3.RequestorApi
and the action reject_request.

Reject

This operation is deprecated. Use reject_request instead

The Reject API call is used to reject a request identified by requestId. The user must be an approval contact
for the requestor.

Arguments

The Reject API call has the following arguments:

• authInfo - This optional argument is an element that contains an authentication token.

• requestId - Mandatory argument holding the key of the approval request.

• message - This optional element may contain text that will be delivered to the requestor via email.

• sender - Sender is an optional helper element. If set, it must be equal to the loginName of the user.

587Developer's Guide

Permissions

This API call requires the API manager permission with the name org.systinet.uddi.approval.v3.RequestorApi
and the action reject.

WSDL

You can find the WSDL specification in the file approval.wsdl
[http://www.hp.com/managementsoftware/services/wsdl/approval.wsdl].

Java

Systinet Approval Approver API is generated from approval.wsdl
[http://www.hp.com/managementsoftware/services/wsdl/approval.wsdl]. You are encouraged to browse its
org.systinet.uddi.approval.v3.RequestorApi.

API Endpoint

The endpoint for the Systinet Approval Approver API is available at http://<host name>:<http
port>/uddi/approver

Approval Management

The Systinet Approval Management API is used to manage approval requestors and approval contacts in
HP SOA Systinet Registry.

Data Structures

The following structures are used by the Systinet Approval Management API:

• principalList on page 589

• Principal on page 589

• Approver on page 589

• Requestor on page 589

Chapter 5588

http://www.hp.com/managementsoftware/services/wsdl/approval.wsdl
http://www.hp.com/managementsoftware/services/wsdl/approval.wsdl

principalList

This element serves as a container for zero or more principal elements. The optional listDescription element
is used to describe the result set.

Principal

This element contains the optional attribute principalType, which may be assigned to a user or group. The
element's text contains the loginName of the user, or a group name, depending on the principalType value.

Approver

This element contains the optional attribute principalType, which may be assigned to a user or group. The
element's text contains the loginName of the user, or a group name, depending on principalType value.

Requestor

This element contains the optional attribute principalType, which may be assigned to a user or group. The
element's text contains the loginName of the user, or a group name, depending on principalType value.

Operations

The Systinet Approval Management API has the following operations:

• addApprover on page 590

• addRequestor on page 590

• deleteApprover on page 591

• deleteRequestor on page 591

• findApprover on page 592

• findRequestor on page 593

589Developer's Guide

• isApprover on page 594

• Save on page 594

addApprover

The addApprover API call is used to add a new approval contact to HP SOA Systinet Registry.

Arguments

• authInfo - This optional argument is an element that contains an authentication token.

• approver - This mandatory element identifies the user or group to be added as a new approval contact.

Permissions

This API call requires the API manager permission with the name
org.systinet.uddi.approval.management.ApprovalManagementApi and the action addApprover.

addRequestor

The addRequestor API call is used to assign a new requestor to a given approval contact.

Arguments

• authInfo - This optional argument is an element that contains an authentication token.

Chapter 5590

• approver - This mandatory element identifies an approval contact.

• requestor - This mandatory element identifies a new requestor.

Permissions

This API call requires the API manager permission with the name
org.systinet.uddi.approval.management.ApprovalManagementApi and the action addRequestor.

deleteApprover

The deleteApprover API call is used to remove the given approval contact from HP SOA Systinet Registry.

Arguments

• authInfo - This optional argument is an element that contains an authentication token.

• approver - This mandatory element identifies an approval contact.

Permissions

This API call requires the API manager permission with the name
org.systinet.uddi.approval.management.ApprovalManagementApi and the action deleteApprover.

deleteRequestor

The deleteRequestor API call is used to remove relationships between the requestor and a given approval
contact in HP SOA Systinet Registry.

591Developer's Guide

Arguments

• authInfo - This optional argument is an element that contains an authentication token.

• approver - This mandatory element identifies an approval contact.

• requestor - This mandatory element identifies a new requestor.

Permissions

This API call requires the API manager permission with the name
org.systinet.uddi.approval.management.ApprovalManagementApi and the action deleteRequestor.

findApprover

The findApprover API call is used to find approval contacts in HP SOA Systinet Registry who match the
given criteria. Default findQualifiers are approximateMatch and sortByNameAsc.

Arguments

• authInfo - This optional argument is an element that contains an authentication token.

• findQualifier - The collection of findQualifiers used to alter default behavior.

• approverName - This mandatory element represent an approval contact to be searched.

Chapter 5592

Returns

This API call returns the PrincipalList upon success.

Permissions

This API call requires the API manager permission with the name
org.systinet.uddi.approval.management.ApprovalManagementApi and the action addApprover.

findRequestor

The findRequestor API call is used to find all requestors of a given approval contact in the registry that
match the search criteria.

Arguments

• authInfo - This optional argument is an element that contains an authentication token.

• findQualifier - The collection of findQualifiers used to alter default behavior.

• approverName - This mandatory element contains the approval contact's name.

• requestorName - This mandatory element represents the requestor to be searched. It must be the loginName
of the requestor.

Returns

This API call returns the PrincipalList upon success.

593Developer's Guide

Permissions

This API call requires the API manager permission with the name
org.systinet.uddi.approval.management.ApprovalManagementApi and the action findRequestor.

isApprover

The isApprover API call finds out whether the user is an approver.

Arguments

• name - login name of the user

• authInfo - This optional argument is an element that contains an authentication token.

Save

The Save API call combines the addApprover and addRequestor API calls into a single method. If the
approval contact does not exist, it is created. Then all requestors are added to this approval contact.

Arguments

The Save API call has the following arguments:

• authInfo - This optional argument is an element that contains an authentication token.

Chapter 5594

• approver - This mandatory element identifies an approval contact.

• requestor - This mandatory element identifies new requestors.

Permissions

This API call requires the API manager permission with the name
org.systinet.uddi.approval.management.ApprovalManagementApi and the action addApprover.

WSDL

You can find the WSDL specification in the file approval_management.wsdl
[http://www.hp.com/managementsoftware/services/wsdl/approval_management.wsdl].

Java

Systinet Approval Management API is generated from the Approval Management WSDL. You are encouraged
to browse its org.systinet.uddi.approval.management.ApprovalManagementApi.

API Endpoint

The endpoint for Systinet Approval Management API is available at http://<host name>:<http
port>/uddi/approvalManagement

Approval Content Checker

The Systinet Approval Content Checker API provides the approval contact a way to programmatically
automate checks of data to be approved. For example, there might be a Web service implementing this API,
which requires that each structure be signed. Another implementation may ensure that business services
have binding templates. The usage is up to the will of the approval contact.

Operations

The Systinet Approval Content Checker API has the following operations:

• cancelRequest on page 597

• cancelRequest on page 597

• delete_approvalRequest on page 598

595Developer's Guide

http://www.hp.com/managementsoftware/services/wsdl/approval_management.wsdl

• find_approvalRequest on page 598

• findRequest on page 600

• get_approvalRequest on page 601

• getRequest on page 601

• remind_approver on page 602

• request_approver on page 603

• requestApprover on page 604

• save_approvalRequest on page 604

• synchronize on page 605

cancel_approvalRequest

This API call will cancel a request that has been submitted for approval.

Arguments

The cancel_approvalRequest API call has the following arguments:

• requestKey - Mandatory argument holding the key of the approval request.

• message - This element may contain text that will be delivered to the approval contact via email.

• sender - Sender is an optional helper element. If set, it must be equal to the loginName of the user. If
the administrator (a user with admin manager permission) calls cancel_approvalRequest, the authInfo

Chapter 5596

contains the authentication token of administrator. The value of the sender argument may contain a
loginName of any existing user.

• authInfo - This optional argument is an element that contains an authentication token.

Permissions

This API call requires the API manager permission with the name org.systinet.uddi.approval.v3.RequestorApi
and the action cancel_approvalRequest.

cancelRequest

This operation is deprecated. Use cancel_approvalRequest instead.

The cancelRequest API call is used by the requestor to cancel the request identified by requestId.

Arguments

• authInfo - This optional argument is an element that contains an authentication token.

• requestId - Mandatory argument holding the key of the approval request.

• message - This element may contain text that will be delivered to the approval contact via email.

• sender - Sender is an optional helper element. If set, it must be equal to the loginName of the user.

Permissions

This API call requires the API manager permission with the name org.systinet.uddi.approval.v3.RequestorApi
and the action cancelRequest.

597Developer's Guide

delete_approvalRequest

This operation will delete an approval request. Requests are not deleted automatically after approval or
rejection. Requests are held in the registry and a requestor/approver can look at them at any time. This
method is used to clean the given requestor's requests.

Arguments

The delete_approvalRequest operation has the following arguments:

• authInfo - This optional argument is an element that contains an authentication token.

• requestKey - Mandatory argument holding the key of the approval request.

Permissions

This API call requires the API manager permission with the name org.systinet.uddi.approval.v3.RequestorApi
and the action cancelRequest.

find_approvalRequest

The find_approvalRequest API call is used to find all approval requests of the requestor.

Chapter 5598

Arguments

The find_approvalRequest API call has the following arguments:

• requestName - The name of the request

• timeInterval - You can specify a time interval search criteria (from, to) having inclusive attributes.

• requestStatus - A list of request statuses (open, submitted, closeCancelled, closeRejected, closeApproved)

• requestorName - This optional element is set to the loginName of the user.

• approval_60:find_qualifier - The collection of findQualifiers used to alter default behavior.

• authInfo - This optional argument is an element that contains an authentication token.

Behavior

The following findQualifiers affect the behavior of the call:

• The exactMatch findQualifier specifies that an exact match is required.

• The default approximateMatch findQualifier enables an SQL wildcard query.

599Developer's Guide

• The sortByNameAsc (default) and sortByNameDesc findQualifiers control the order in which data is
returned, as do the time, requestor and status sorts below.

• sortByTimeAsc, sortByTimeDesc

• sortByRequestorNameAsc, sortByRequestorNameDesc

• sortByStatusAsc, sortByStatusDesc

Permissions

This API call requires the API manager permission with the name org.systinet.uddi.approval.v3.RequestorApi
and the action find_approvalRequest.

findRequest

This operation is deprecated. Use find_approvalRequest instead.

The findRequest API call is used to find all approval requests of the requestor who calls this method.

Arguments

• authInfo - This optional argument is an element that contains an authentication token.

• requestorName - This optional element is set to the loginName of the user.

• findQualifier - The collection of findQualifiers used to alter default behavior.

Behavior

The following findQualifiers affect the behavior of the call:

Chapter 5600

• The exactMatch findQualifier specifies that an exact match is required.

• The default approximateMatch findQualifier enables an SQL wildcard query.

• The sortByNameAsc (default) and sortByNameDesc findQualifiers control the order in which data is
returned.

Permissions

This API call requires the API manager permission with the name org.systinet.uddi.approval.v3.RequestorApi
and the action findRequest.

get_approvalRequest

The get_approvalRequest API call is used by a requestor to get details of the approval request identified by
requestKey.

Arguments

• requestKey - Mandatory argument holding the key of an approval request.

• authInfo - This optional argument is an element that contains an authentication token.

Permissions

This API call requires the API manager permission with the name org.systinet.uddi.approval.v3.RequestorApi
and the action get_approvalRequest.

getRequest

This operation is deprecated. Use get_approvalRequest instead.

The getRequest API call is used by a requestor to get details of the approval request identified by requestId.

601Developer's Guide

Arguments

• authInfo - This optional argument is an element that contains an authentication token.

• requestId - Mandatory argument holding the key of an approval request.

Permissions

This API call requires the API manager permission with the name org.systinet.uddi.approval.v3.RequestorApi
and the action getRequest.

remind_approver

The remind_approver API call is used by a requestor to remind the approval contact to review a submitted
request. If a requestor is not satisfied with the approver's delay, the requestor can notify the approver about
the unhandled approval requests.

Arguments

The remind_approver API call has the following arguments:

• requestKey - identifies the request.

• message - This optional element may contain text that will be delivered to the approver via email.

Chapter 5602

• sender - Sender is an optional helper element. If set, it must be equal to the loginName of the user. If
the administrator (a user with admin manager permission) calls remind_approver, the authInfo contains
the authentication token of administrator. The value of the sender argument may contain the loginName
of any existing user.

• authInfo - This optional argument is an element that contains an authentication token.

Permissions

This API call requires the API manager permission with the name org.systinet.uddi.approval.v3.RequestorApi
and the action remind_approver.

request_approver

The request_approver API call is used by a requestor to request data for promotion to a discovery registry.

Arguments

The request_approver API call has the following arguments:

• requestKey - identifies the request

• message - This optional element may contain text that will be delivered to the requestor via email.

• authInfo - This optional argument is an element that contains an authentication token.

Permissions

This API call requires the API manager permission with the name org.systinet.uddi.approval.v3.RequestorApi
and the action request_approver.

603Developer's Guide

requestApprover

This operation is deprecated. Use request_approver instead.

The requestApprover API call is used by a requestor to request that an approval contact approve changes
to the publication registry.

Arguments

• authInfo - This optional argument is an element that contains an authentication token.

• requestorName - This optional element is set to the loginName of the user.

• message - This optional element may contain text that will be delivered to the requestor via email.

• approvalKeys - This mandatory element is a container for the UDDI keys of structures to be saved or
deleted on the discovery registry.

Permissions

This API call requires the API manager permission with the name org.systinet.uddi.approval.v3.RequestorApi
and the action requestApprover.

save_approvalRequest

This operation is used to save an approval request.

Chapter 5604

Arguments

The save_approvalRequest operation has the following arguments:

• approvalRequest

• message - This element may contain text that will be delivered to the approval contact via email.

• authInfo - This optional argument is an element that contains an authentication token.

Permissions

This API call requires the API manager permission with the name org.systinet.uddi.approval.v3.RequestorApi
and the action save_approvaRequest.

synchronize

The Synchronize API call is used to synchronize data on publication registry with data on the discovery
registry. The synchronizationType element is used to choose the way the synchronization will be performed.
Possible values are publication_priority, partial_discoveryPriority, and full_discoveryPriority. The
synchronization behaviors are described in Synchronization of Data on page 238.

Arguments

The Synchronize API call has the following arguments:

605Developer's Guide

• authInfo - This optional argument is an element that contains an authentication token.

• requestorName - This mandatory element identifies the loginName of the requestor.

• synchronizationType - This mandatory element is used to choose the synchronization method.

Permissions

This API call requires the API manager permission with the name org.systinet.uddi.approval.v3.RequestorApi
and the action synchronize.

Data Structures

The following structures are used by the Systinet Approval Content Checker API:

approvalEntitiesDetail

This element is a container for the optional elements entitiesDetail4Saving and entitiesDetail4Deletion. The
type for both structures is entitiesDetail.

Chapter 5606

entitiesDetail

This element holds structure details to be propagated from the publication registry to the discovery registry.
It contains a list of businessEntities, businessServices, bindingTemplates, tModels and publisherAssertions.

In fact, the extended version of this structure is returned, because it is necessary to transfer the original
values of UDDI version 2 keys and standard structures are missing this data.

Operations

checkRequest

The checkRequest API call is made during an approve API call. It is used to perform user-specific checks
of data. If the check fails, the implementation returns a DispositionReport with an error code other than
E_SUCCESS. See the example in the Developer's Guide, Example 15 on page 752

607Developer's Guide

Arguments

The checkRequest API call has the following arguments:

• approvalEntitiesDetail - This element contains details of all structures to be checked.

• requestorName - This element identifies the requestor by loginName.

Returns

Upon successful completion, a disposition report is returned with a single success indicator.

WSDL

You can find the WSDL specification in the file approval_checker.wsdl
[http://www.hp.com/managementsoftware/services/wsdl/approval_checker.wsdl].

Java

Systinet Approval Content Checker API is generated from approval_checker.wsdl
[http://www.hp.com/managementsoftware/services/wsdl/approval_checker.wsdl]. You are encouraged to
browse org.systinet.uddi.approval.checker.v3.CheckerApi.

See also the example, Writing a Content Checker on page 749, in the Developer's Guide,

Administration Utilities

The Systinet Administration Utilities API provides an interface to perform several low level administration
tasks in HP SOA Systinet Registry.

Chapter 5608

http://www.hp.com/managementsoftware/services/wsdl/approval_checker.wsdl
http://www.hp.com/managementsoftware/services/wsdl/approval_checker.wsdl

Operations

cleanSubscriptionHistory

This utility removes subscription histories from HP SOA Systinet Registry. If the olderThan value is not
specified, the utility deletes all historical data; otherwise it deletes data older than the specified value.

Syntax

Arguments

• uddi_v3:authInfo - This optional argument is an element that contains an authentication token.

• olderThan - Optional argument specifying the date before which subscription history is deleted.

Permissions

This API call requires API manager permissions for org.systinet.uddi.admin.AdministrationUtilsApi and for
the cleanSubscriptionHistory action.

clean_unusedAccounts

This utility is useful when LDAP is used as a user store. HP SOA Systinet Registry treats LDAP as read-
only and all data from LDAP is mirrored to the registry's database. After you remove users from LDAP
using LDAP tools, data removed from LDAP stays in the database. To remove the orphan data from the
database, execute the clean_unusedAccounts operation.

Syntax

609Developer's Guide

Permissions

This API call requires API manager permissions for org.systinet.uddi.admin.AdministrationUtilsApi and for
the clean_unusedAccounts action.

deleteTModel

The delete_tModel API removes one or more tModels from HP SOA Systinet Registry. Note that the
delete_tModel call in the UDDI version 3 specification does not physically remove the tModel from the
database; it marks the tModel as deprecated. The delete_tModel call from Administration Utilities can be
used to delete such deprecated tModels from the database.

Syntax

Arguments

• uddi_v3:authInfo - This optional argument is an element that contains an authentication token.

• uddi_v3:tModelKey - One or more required uddiKey values that represent existing tModels.

Permissions

This API call requires API manager permission for org.systinet.uddi.admin.AdministrationUtilsApi and the
action deleteTModel.

rebuild_cache

Database cache stores v3 UDDI structures in database as objects. Using this cache increases performance
of v3 inquiry get_business, get_service, get_binding, get_tModel and find_binding operations. On the other
hand the cache synchronization take some time mainly in v1 and v2 publishing API operations. The cache
can be enabled or disabled by Registry Console. By default, the cache is enabled. Each time caching is
switched on, the cache is rebuilt. After the initial rebuild the cache is incrementally synchronized each time
save_xxx or delete_xxx operation is performed on v1, v2, v3 publishing API. Explicit rebuild is enabled

Chapter 5610

by rebuild_cache operation. This operation is suitable when data is changed by an administrator in a SQL
console (note that such data changing is not recommended).

Syntax

Arguments

• uddi_v3:authInfo - This optional argument is an element that contains an authentication token.

Permissions

This API call requires API manager permissions for org.systinet.uddi.admin.AdministrationUtilsApi and for
the rebuild_cache action.

replaceURL

The replaceURL API call is used to replace URL prefixes in the following entities:

• tModel - OverviewDoc URL

• tModelInstanceInfo - overviewDoc URL and DiscoveryURL

• binding template - accessPoint URL

Syntax

Arguments

• uddi_v3:authInfo - This optional argument is an element that contains an authentication token.

611Developer's Guide

• oldURLPrefix - old value of URL prefix

• newURLPrefix - new value of URL prefix

Permissions

This API call requires API manager permission for org.systinet.uddi.admin.AdministrationUtilsApi and the
action replaceURL.

replaceKey

The replaceKey API call is used to change the uddiKey of a selected UDDI structure in HP SOA Systinet
Registry. The key must be specified in either UDDI version 3 format or UDDI version 2 format. The optional
elements uddiKeyNewV2 anduddiKeyNewV3 hold new values of uddiKeys for the selected UDDI structure.

Syntax

Arguments

• uddi_v3:authInfo - This optional argument is an element that contains an authentication token.

• uddiKeyOldV2 - Value of the uddiKey of an existing UDDI structure in UDDI version 2 format.

• uddiKeyOldV3 - Value of a uddiKey of an existing UDDI structure in UDDI version 3 format.

• uddiKeyNewV2 - New value of the uddiKey in UDDI version 2 format.

• uddiKeyNewV3 - New value of the uddiKey in UDDI version 3 format.

Chapter 5612

Permissions

This API call requires API manager permission for org.systinet.uddi.admin.AdministrationUtilsApi and the
action replaceKey.

resetDiscoveryURLs

Sets the discoveryURL value of each businessEntity in HP SOA Systinet Registry to its default value.

Syntax

Arguments

• uddi_v3:authInfo - This optional argument is an element that contains an authentication token.

Permissions

This API call requires API manager permission for org.systinet.uddi.admin.AdministrationUtilsApi and the
action resetDiscoveryURLs.

transform_keyedReferences

This operation is necessary when the type of taxonomy keyValues or the implementation of the taxonomy
transformation service have been changed. For more information see, User's Guide, Taxonomy: Principles,
Creation and Validation on page 306.

Syntax

Arguments

• uddi_v3:authInfo - This optional argument is an element that contains an authentication token.

613Developer's Guide

• uddi_v3:tModelKey

Permissions

This API call requires API manager permission for org.systinet.uddi.admin.AdministrationUtilsApi and the
action transform_keyedReferences.

WSDL

You can find the WSDL specification for this API in administrationUtils.wsdl
[http://www.hp.com/managementsoftware/services/wsdl/administrationUtils.wsdl].

API Endpoint

You can find the Administration Utilities API endpoint at http://<host name>:<port>/uddi/administrationUtils.

Java

The Systinet Java API is generated from Administration Utils WSDL. You are encouraged to browse
org.systinet.uddi.admin.AdministrationUtilsApi for more information.

Replication

The Replication API is used to launch replications in HP SOA Systinet Registry.

Operations

Replicate

The replicate API call is used to immediately start replications.

Arguments

• authInfo - This optional argument is an element that contains an authentication token.

Chapter 5614

http://www.hp.com/managementsoftware/services/wsdl/administrationUtils.wsdl

Behavior

When this API call is invoked, it stops the scheduling of replications and, if needed, waits until the completion
of current replications. It then starts a new replication process in which replications are rescheduled from
this time with the normal replication interval. This results in one of two scenarios:

• If no replications are in process when the replicate call is made, the call stops the replication schedule,
runs the replication, and restarts the schedule from the time the call was made. For example, if replications
had been scheduled on the hour, and the call is made at 9:15, replications will then occur at 10:15, 11:15,
and so forth.

• If there is a replication in process when the replicate call is made, scheduling is stopped, the call waits
for the current process to conclude, runs the replication, and restarts schedule from the time the call was
made as in the previous scenario.

WSDL

You can find the WSDL specification in the file replication_v3.wsdl
[http://www.hp.com/managementsoftware/services/wsdl/replication_v3.wsdl].

API Endpoint

You can find the Replication API endpoint at http://<host name>:<port>/uddi/replication.

Java

The Systinet Java API is generated from the Replication WSDL. You are encouraged to browse its
org.systinet.uddi.replication.v3.ReplicationApi.

Statistics

The Systinet Statistics API provides useful information about HP SOA Systinet Registry usage.

Data Structures

The following structures are used by the Systinet Statistics API:

615Developer's Guide

http://www.hp.com/managementsoftware/services/wsdl/replication_v3.wsdl

accessStatisticsDetail

Table 24. Attributes

RequiredAttribute

yesenable

This structure is a container for zero or more apiStatisticsDetail elements. The enable attribute is used to
distinguish whether the returned data is consistent or not. If set to false, the Statistics interceptor has been
configured not to run and returned data will be outdated.

apiStatisticsDetail

Table 25. Attributes

RequiredAttribute

YesapiName

YesrequestCount

YesexceptionCount

YeslastCall

This structure contains information about usage of the API specified in the attribute apiName and its methods.
It also serves as a container for methodStatisticsDetail elements.

The requestCount attribute holds a number indicating how many times this API has been used since its last
reset or since HP SOA Systinet Registry installation.

Chapter 5616

The exceptionCount attribute indicates the number of exceptions that have interrupted execution of the API's
methods.

The lastCall attribute contains the time this API was last invoked.

methodStatisticsDetail

Table 26. Attributes

RequiredAttribute

YesmethodName

YesrequestCount

YesexceptionCount

YeslastCall

This element contains information about usage of the method specified in the attribute methodName.

The requestCount attribute holds a number indicating how many times this method has been called since its
last reset or since HP SOA Systinet Registry installation.

The exceptionCount attribute indicates the number of exceptions that have interrupted execution of this
method.

The lastCall attribute contains the time this method was last invoked.

structureStatisticsDetail

This structure serves as a container for the structure element.

617Developer's Guide

Structure

Table 27. Attributes

RequiredAttribute

Yesname

Yescount

The structure element indicates how many UDDI structures of the type given by the name attribute are stored
in the registry.

Operations

get_accessStatistics

The get_accessStatistics API call is used to fetch information about usage of selected UDDI APIs in HP
SOA Systinet Registry. The filter element is used to specify which APIs' statistics will be returned. If it is
empty, the statistics for all APIs are returned.

Arguments

• statistics:authInfo - This optional argument is an element that contains an authentication token.

• statistics:filter - Optional regular expression to match selected APIs by their name. The wildcard
characters ? and * are supported.

Returns

Upon successful completion, an accessStatisticsDetail structure is returned.

Permissions

This API call requires API manager permission for org.systinet.uddi.statistics.StatisticsApi and the action
get_accessStatistics.

Chapter 5618

get_structureStatistics

The get_structureStatistics API call is used to get overview information about how many UDDI structures
is stored within HP SOA Systinet Registry.

Arguments

• statistics:authInfo - This optional argument is an element that contains an authentication token.

Returns

Upon successful completion, an structureStatisticsDetail structure is returned.

Permissions

This API call requires API manager permission for org.systinet.uddi.statistics.StatisticsApi and the action
get_structureStatistics.

reset_accessStatistics

The reset_accessStatistics API call is used to reset API usage statistics in HP SOA Systinet Registry. The
optional filter element is used to limit affected APIs, if it is not set, statistics for all APIs is removed.

Arguments

• statistics:authInfo - This optional argument is an element that contains an authentication token.

• statistics:filter - Optional regular expression to match selected APIs by their name. The wildcard
characters ? and * are supported.

619Developer's Guide

Permissions

This API call requires API manager permission for org.systinet.uddi.statistics.StatisticsApi and the action
reset_accessStatistics.

WSDL

You can find the WSDL specification in the file statistics.wsdl
[http://www.hp.com/managementsoftware/services/wsdl/statistics.wsdl].

API Endpoint

You can find the Statistics API endpoint at http://<host name>:<port>/uddi/statistics.

Java

Systinet Java API is generated directly from WSDL. You are encouraged to browse
org.systinet.uddi.statistics.StatisticsApi.

WSDL Publishing

HP SOA Systinet Registry WSDL-to-UDDI mapping is compliant with OASIS's Technical Note, Using
WSDL in a UDDI registry Version 2.0 [http://www.oasis-open.org/committees/uddi-spec/doc/tn/uddi-spec-
tc-tn-wsdl-v2.htm]. It enables the automatic publishing of WSDL documents to UDDI, enables precise and
flexible UDDI queries based on specific WSDL artifacts and metadata, and provides a consistent mapping
for UDDI v2 and UDDI v3.

Data Structures

wsdlDetail

wsdlDetail completes information about the WSDL to be mapped.

Chapter 5620

http://www.hp.com/managementsoftware/services/wsdl/statistics.wsdl
http://www.oasis-open.org/committees/uddi-spec/doc/tn/uddi-spec-tc-tn-wsdl-v2.htm
http://www.oasis-open.org/committees/uddi-spec/doc/tn/uddi-spec-tc-tn-wsdl-v2.htm

Arguments

• wsdl2uddi:wsdl - Contains URI or physical location of mapped WSDL.

• wsdl2uddi:wsdlMapping - Describes wsdl:types to be mapped.

wsdl

WSDL contains information about location of a mapped WSDL.

Arguments

• wsdlLocation - The URI or physical location of a mapped WSDL.

• any - Used to make extensible documents (see XML schema [http://www.w3.org/TR/xmlschema-1/]).
It is generally used as the DOM pattern of a mapped WSDL.

wsdlMapping

WsdlMapping describes the wsdl:types to be mapped. It is used to alter the default behavior of mapping the
specified WSDL. In contained structures, it is possible to describe each mapped wsdl:type correctly. This
is to ensure exact mapping and prevent duplication of data in the registry.

621Developer's Guide

http://www.w3.org/TR/xmlschema-1/

Arguments

• uddi:businessKey - Represents the businessKey of an existing uddi:businessEntity to which the assigned
wsdl:types will be mapped.

• uddi:businessEntity - Represents an existing businessEntity to which the assigned wsdl:types will be
mapped.

• wsdl2uddi:porttypes - Represents the container of wsdl:portTypes to be mapped. wsdl2uddi:porttypes makes
it possible map a uddi:tModel to its corresponding wsdl:portType .

• wsdl2uddi:bindings - Represents the container of wsdl:bindings to be mapped. wsdl2uddi:bindings makes
it possible to map a uddi:tModel to its corresponding wsdl:binding.

• wsdl2uddi:services - Represents the container of wsdl:services to be mapped. wsdl2uddi:services makes
it possible to map a uddi:businessService to its corresponding wsdl:service.

Note that uddi:businessKey and uddi:businessEntity are mutually exclusive.

portTypes

The portTypes structure is a simple container of one or more wsdl2uddi:portTypes.

portType

PortType represents a mapping of wsdl:portType in UDDI. It contains information necessary to map the
wsdl:portType to a corresponding uddi:tModel accurately.

Chapter 5622

Arguments

• uddi:tModelKey - Represents the tModelKey of an existing uddi:tModel which will be reused or rewritten
(depending on the publishingMethod selected by the user) with data from wsdl:portType.

• uddi:tModel - Represents an existing uddi:tModel which will be reused or rewritten (depending on the
publishingMethod selected by the user) with data from wsdl:portType.

Note that uddi:tModelKey and uddi:tModel are mutually exclusive.

Table 28. Attributes

RequiredName

optionalname

optionalnamespace

optionalpublishingMethod

These attributes describe the wsdl:portType of the appropriate WSDL. Name and namespace represent the
wsdl:portType QName. publishingMethod represents an enumeration of available mapping use cases. It can be
set to rewrite, create, reuse, or ignore. The default publishingMethod is reuse.

Bindings

The bindings structure is a simple container of one or more wsdl2uddi:bindings.

binding

623Developer's Guide

A binding represents a mapping of wsdl:binding in UDDI. It contains information necessary for the precise
mapping of a wsdl:binding to the appropriate uddi:tModel.

Arguments

• uddi:tModelKey - Represents the tModelKey of an existing uddi:tModel which will be reused or rewritten
(depending on the publishingMethod selected by the user) with data from wsdl:binding.

• uddi:tModel - Represents an existing uddi:tModel which will be reused or rewritten (depending on the
publishingMethod selected by the user) with data from wsdl:binding.

Note that uddi:tModelKey and uddi:tModel are mutually exclusive.

Table 29. Attributes

RequiredName

optionalname

optionalnamespace

optionalpublishingMethod

These attributes describe the wsdl:binding from the appropriate WSDL. Name and namespace represent the
wsdl:binding QName.

publishingMethod represents an enumeration of the available mapping use cases. It can be set to rewrite,
create, reuse, or ignore. The default publishingMethod is reuse.

Services

The services structure is a simple container of one or more wsdl2uddi:services.

Chapter 5624

service

Service represents the mapping of wsdl:service in UDDI. It contains information necessary to map a
wsdl:service to the appropriate uddi:businessService precisely.

Arguments

• uddi:businessKey - represents businessKey of an existing uddi:businessEntity to which the translated
wsdl:service will be stored.

• uddi:serviceKey - represents the serviceKey of an existing uddi:businessService which will be reused or
rewritten (depending on the publishingMethod selected by user) with data from wsdl:service.

• uddi:businessService - represents an existing uddi:businessService which will be reused or rewritten
(depending on the publishingMethod selected by user) with data from wsdl:service.

• wsdl:ports - represents existing uddi:bindingTemplates which will be reused or rewritten (depending on
the publishingMethod selected by user) with data from wsdl:service ports.

Note that uddi:serviceKey and uddi:businessService are mutually exclusive.

Table 30. Attributes

UseName

optionalname

optionalnamespace

optionalpublishingMethod

625Developer's Guide

These attributes describe the wsdl:service from an appropriate WSDL. Name and namespace represents the
wsdl:service QName.

publishingMethod represents an enumeration of available mapping use cases. It can be set to rewrite, create,
reuse, or ignore. The default publishingMethod is reuse.

ports

The ports structure is a simple container for one or more wsdl2uddi:ports.

port

Port represents a mapping of wsdl:port in UDDI. It contains information necessary to map the wsdl:port to
the appropriate uddi:bindingTemplate precisely.

Arguments

• uddi:bindingKey - Represents the bindingKey of an existing uddi:bindingTemplate which will be reused or
rewritten (depending on the publishingMethod selected by user) with data from wsdl:port.

• uddi:bindingTemplate - Represents an existing uddi:bindingTemplate which will be reused or rewritten
(depending on the publishingMethod selected by user) with data from wsdl:service.

Note that uddi:bindingKey and uddi:bindingTemplate are mutually exclusive.

Chapter 5626

Table 31. Attributes

RequiredName

optionalname

optionalpublishingMethod

These attributes describe the wsdl:port from an appropriate WSDL.Name represents the wsdl:port name.
publishingMethod represents an enumeration of available mapping use cases. It can be set to rewrite, create,
or reuse. The default publishingMethod is reuse.

wsdlServiceInfos

The wsdlServiceInfo structure is a simple container of one or more wsdl2uddi:wsdlServiceInfos.

wsdlServiceInfo

The wsdlServiceInfo completes information about the wsdlLocation and uddi:businessService being searched.

Arguments

• wsdlLocation - The URI or physical location of a WSDL.

• wsdl2uddi:portInfos - Container for wsdl2uddi:ports which contain the wsdl:port mapped to the appropriate
uddi:bindingTemplate.

627Developer's Guide

Table 32. Attributes

RequiredName

requiredname

requirednamespace

requiredserviceKey

These attributes describes how the wsdl:service is mapped from the appropriate WSDL. Name and namespace
represent the wsdl:service QName.

The serviceKey represents the uddi:businessService on which the wsdl:service is mapped.

PortInfos

The portInfos structure is a simple container of one or more wsdl2uddi:portInfos.

portInfo

The portInfo completes information about uddi:bindingTemplates used in the uddi:businessService being
searched.

Arguments

• uddi:accessPoint contains information about accessing the uddi:businessService being searched.

Chapter 5628

Table 33. Attributes

RequiredName

requiredname

requiredbindingKey

These attributes describe how the wsdl:port is mapped from the appropriate WSDL. Name represents the
wsdl:port name. BindingKey represents the uddi:bindingTemplate on which the wsdl:port is mapped.

Operations

publish_wsdl

Publish_wsdl ensures the publishing of a WSDL to a UDDI registry. It uses the Publishing API to store
translated wsdl:types to the UDDI registry. For more information about the Publishing API, please see UDDI
v3 - publishing API [http://uddi.org/pubs/uddi_v3.htm#_Toc53709290]).

By default UDDI entities are rewritten by data contained in wsdl:types as follows: Each wsdl:type is first
searched on the specified registry. The found UDDI entity is rewritten, or a new entity is created if one is
not found. However, the user can specify how the wsdl:types will be published to the registry.

You can alter the default publish behavior and define which wsdl:types will be mapped on the appropriate
UDDI entity and, naturally, whether the UDDI entity will be created, rewritten, or reused.

For more information about publish behavior and its use cases, see publishingMethod. Below are some
rules by which wsdl:types are assigned to the appropriate UDDI entities depending on whether the wsdl:type
is found on the user account or on a foreign account. Note that wsdl:services are searched only on the user's
account, unlike wsdl:portType or wsdl:binding. This is because it is preferable to use tModels from a foreign
account rather then tModels translated from a WSDL.

629Developer's Guide

http://uddi.org/pubs/uddi_v3.htm#_Toc53709290
http://uddi.org/pubs/uddi_v3.htm#_Toc53709290

publishingMethod

PublishingMethod describes the behavior of the publish operation. In accordance with the set behavior, the
corresponding wsdl:type will be mapped to the UDDI registry.

Note that publish_wsdl is set to reuse by default. However, if a user wants to rewrite an entity or a create a
new entity, the default behavior can be changed from "reuse" to "rewrite" or "create" to ensure unique
mapping.

Use cases

• rewrite - wsdl:type is searched on the registry and the found UDDI structure is redrawn by data of that
wsdl:type. If the wsdl:type is not found, a new one will be created.

• reuse - The default behavior of the publish operation. Using this behavior, the user is able to reuse an
entire existing UDDI structure. The found UDDI entity will not be redrawn by data of that wsdl:type.
Note that when using this method, inconsistencies may occur between the published wsdl:type and the
corresponding UDDI entity. This behavior should be helpful when we need to use existing tModels
instead of tModels mapped from wsdl:portTypes or wsdl:bindings (For example, uddi:hostingRedirectors).

• create - This method is used mainly for testing purposes. By using this behavior a new UDDI entity is
created from the wsdl:type regardless of whether the UDDI entity already exists on the registry.

When using this behavior, undesirable duplications may occur. It is necessary to use this
behavior carefully.

• ignore - This method is used when you do not want to publish the UDDI entity. You can restrict which
parts of the WSDL document will be published.

Arguments

• uddi:authInfo - This required argument is the string representation of the uddi:authToken.

• wsdl2uddi:wsdlDetail - Completes WSDL location and user-defined WSDL mapping rules. For more
information, please see wsdl2uddi:wsdlDetaill.

Chapter 5630

Here the user can specify which wsdl:type from the WSDL corresponds to the entity on the target registry
and how the specified wsdl:type will be mapped. For more information, please see
wsdl2uddi:publishingMethod.

Returns

wsdl2uddi:wsdlDetail - Contains detailed information about how the individual wsdl:types are published. For
more information, please see wsdl2uddi:wsdlDetaill.

unpublish_wsdl

Unpublish_wsdl ensures unpublishing of WSDL from UDDI registry. It uses the Publishing API to delete
UDDI entities corresponding to wsdl:types from a UDDI registry. For more information about the Publishing
API, please see UDDI v3 - publishing API [http://uddi.org/pubs/uddi_v3.htm#_Toc53709290].

Each wsdl:type is first searched on the specified registry. The found UDDI entity is deleted or if the entity
is not found it is simply omitted. Found tModels are either physically deleted or only marked as deprecated
in accordance with configuration. (When tModels are deleted by their owners, they are generally marked
as deprecated. Usually only the administrator can permanently delete deprecated tModels from the registry.
)

Arguments

• uddi:authInfo - This required argument is the string representation of the uddi:authToken.

• wsdl2uddi:wsdlDetail - completes the WSDL location and user-defined WSDL unpublish rules. For more
information, please see wsdl2uddi:wsdlDetaill. Here the user can specify which wsdl:type from a WSDL
corresponds to the UDDI entity existing on the target registry. This is because that wsdl:type can occur
more than once on a registry.

Returns

wsdl2uddi:wsdlDetail - Contains detailed information about how individual wsdl:types are unpublished from
a target registry. For more information, please see wsdl2uddi:wsdlDetaill.

631Developer's Guide

http://uddi.org/pubs/uddi_v3.htm#_Toc53709290

get_wsdlServiceInfo

Get_wsdlServiceInfo discovers uddi:businessServices corresponding to wsdl:services from a particular
WSDL. It uses the Inquiry API to get UDDI entities matching wsdl:types. For more information about the
Inquiry API, please see UDDI-inquiry API [http://uddi.org/pubs/uddi_v3.htm#_Toc53709271].

This operation discovers corresponding UDDI entities either on the user's account or on the foreign account
(in accordance with the specified uddi:authInfo). In consideration with multiple occurrences of UDDI entities
corresponding to wsdl:types, the search algorithm optimizes output in accordance with relations between
individual wsdl:types from the given WSDL. Only the wsdl2uddi:wsdlServiceInfo corresponding exactly
to the wsdl:service from the WSDL (that is, that contains all wsdl:types from the appropriate WSDL) will
be returned.

Arguments

• uddi:authInfo - This optional argument is the string representation of the uddi:authToken.

• wsdl2uddi:wsdl - An argument used to discover wsdl2uddi:wsdlServiceInfos. This argument ensures that
only the uddi:businessService corresponding exactly to the wsdl:service from that WSDL will be returned.
For more information, please see wsdl2uddi:wsdl).

• uddi:serviceKey - uddi:serviceKey of uddi:businessService existing on the target registry. Note that only
uddi:businessServices containing a "WSDL Type Category System" (that is, the uddi:categoryBag of a
found uddi:businessService must contain a uddi:keyedReference with a uddi:tModelKey representing "WSDL
Type Category System" and the keyValue "service") will be returned.

• uddi:bindingKey - uddi:bindingKey of uddi:bindingTemplate existing on the target registry. For UDDI v3
holds that only uddi:businessServices which contain uddi:bindingTemplate corresponding to a given
uddi:bindingKey with the "WSDL Type" Category System. (that is, the uddi:categoryBag of a found
uddi:bindingTemplate must contain uddi:keyedReference with uddi:tModelKey representing "WSDL Type

Chapter 5632

http://uddi.org/pubs/uddi_v3.htm#_Toc53709271

Category System" and the keyValue "binding") will be returned. Naturally this "WSDL Type Category
System" must also be contained in the appropriate uddi:businessService.

Note that uddi:bindingTemplates in v2 do not contain uddi:categoryBag. Even though the found
uddi:bindingTemplate must contain uddi:tModels compliant with "WSDL Type Category System" in its
uddi:tModelInstanceDetails.

• uddi:tModelKey - the uddi:tModelKey of the uddi:tModel existing on the target registry. Note that only
uddi:businessServices which use uddi:tModels compliant with "WSDL Type Category System" will be
returned. That is, the uddi:categoryBag of the found uddi:tModel must contain uddi:keyedReference with
uddi:tModelKey representing "WSDL Type Category System" and the keyValue "binding" or "portType").
Naturally, this "WSDL Type Category System" must also be contained in the appropriate
uddi:businessService.

Note that wsdl2uddi:wsdl, uddi:serviceKey, uddi:bindingKey and uddi:tModelKey are mutually exclusive.

Returns

wsdl2uddi:wsdlServiceInfos - Contains UDDI entities corresponding to wsdl:types from the specified WSDL.
For more information, please see wsdl2uddi:wsdlServiceInfos.

find_wsdlServiceInfo

This operation is a bit more complex than wsdl2uddi:get_wsdlServiceInfo. Find_wsdlServiceInfo discovers
uddi:businessServices corresponding to wsdl:services from a particular WSDL. It uses the Inquiry API to
find UDDI entities matching wsdl:types. For more information about the Inquiry API, please see UDDI-
inquiry API [http://uddi.org/pubs/uddi_v3.htm#_Toc53709271]).

633Developer's Guide

http://uddi.org/pubs/uddi_v3.htm#_Toc53709271
http://uddi.org/pubs/uddi_v3.htm#_Toc53709271

This operation discovers corresponding UDDI entities either on the user's account or on a foreign account
(in accordance with the specified uddi:authInfo). In consideration for multiple occurrence of UDDI entities
corresponding to wsdl:types, the search algorithm optimizes output in accordance with relations between
individual wsdl:types from the specified WSDL and the uddi:find_xx structure specified by the user. Only
the wsdl2uddi:wsdlServiceInfo corresponding exactly to the wsdl:service from the WSDL will be returned,
that is, the wsdl2uddi:wsdlServiceInfo containing all wsdl:types from the appropriate WSDL at once, and
satisfying the user's defined uddi:find_xx.

Arguments

• uddi:authInfo - This optional argument is the string representation of the uddi:authToken.

• wsdl2uddi:wsdl - required argument used to discover wsdl2uddi:wsdlServiceInfos. This argument ensures
that only the uddi:businessService corresponding exactly to the wsdl:service from that WSDL will be
returned. For more information, please see wsdl2uddi:wsdl.

• uddi:find_service - Argument used for a more detailed description of search criteria. For more information,
see uddi:find_service [http://uddi.org/pubs/uddi_v3.htm#_Toc53709283]. Found uddi:businessServices
must follow the same rules as in the case of wsdl2uddi:get_wsdlServiceInfo.

• uddi:find_binding - Argument used for a more detailed description of search criteria. For more information,
see uddi:find_binding [http://uddi.org/pubs/uddi_v3.htm#_Toc53709280]. Found uddi:businessServices
and uddi:bindingTemplates must follow the same rules as in the case of wsdl2uddi:get_wsdlServiceInfo.

• uddi:find_tModel - Argument used for a more detailed description of search criteria. For more information,
see uddi:find_tModel [http://uddi.org/pubs/uddi_v3.htm#_Toc53709284]. Found UDDI entities must
follow the same rules as in the case of wsdl2uddi:get_wsdlServiceInfo.

Note that uddi:find_service, uddi:find_binding and uddi:find_tModel are mutually exclusive.

Returns

wsdl2uddi:wsdlServiceInfos - Contains UDDI entities corresponding to wsdl:types from the specified WSDL.
For more information, please see wsdl2uddi:wsdlServiceInfos.

Chapter 5634

http://uddi.org/pubs/uddi_v3.htm#_Toc53709283
http://uddi.org/pubs/uddi_v3.htm#_Toc53709280
http://uddi.org/pubs/uddi_v3.htm#_Toc53709284

find_wsdlMapping

This operation finds mapping of the WSDL document.

Arguments

• uddi:authInfo - This argument is the string representation of the uddi:authToken.

• uddi:findQualifiers - See Find Qualifiers [http://uddi.org/pubs/uddi-v3.0.1-20031014.htm#_Toc53709275]

• wsdl2uddi:wsdl

Returns

This operation returns wsdl2uddi:wsdlMapping.

WSDL

wsdl2uddi_v2.wsdl.wsdl [http://www.hp.com/managementsoftware/services/wsdl/wsdl2uddi_v2.wsdl]

wsdl2uddi_v3.wsdl.wsdl [http://www.hp.com/managementsoftware/services/wsdl/wsdl2uddi_v3.wsdl]

API Endpoint

You can find the WSDL2UDDI API endpoint at http://<host name>:<port>/uddi/wsdl2uddi.

Java

org.systinet.uddi.client.wsdl2uddi.v3.Wsdl2uddiApi

Demos v2: WSDL2UDDI demos

Demos v3: WSDL2UDDI demos

635Developer's Guide

http://uddi.org/pubs/uddi-v3.0.1-20031014.htm#_Toc53709275
http://www.hp.com/managementsoftware/services/wsdl/wsdl2uddi_v2.wsdl
http://www.hp.com/managementsoftware/services/wsdl/wsdl2uddi_v3.wsdl

XML Publishing

Systinet XML-to-UDDI mapping enables the automatic publishing of XML documents to UDDI and precise,
flexible UDDI queries based on specific XML metadata.

Data Structures

namespace

This structure is a container for a namespace.

Table 34. Attributes

optionalpublishingMethod

Arguments

• uri - URI of the namespace.

• schemaLocation - This argument holds the location of the schema specified by the XML document using
xsi:schemaLocation declaration.

• tns:namespaceModel - This argument holds mappings that represent this namespace.

namespaceList

This structure represent a list of namespaces.

Chapter 5636

Arguments

• tns:namespace - represents a member of the namespaceList.

namespaceModel

This structure describes mapping of a particular namespace (or no namespace) within the XML document.

Arguments

• uddi:name - name of the tModel corresponding to the namespace's XML Schema

• uddi:tModelKey - tModelKey name of the tModel corresponding to the namespace's XML Schema

resourceInfo

This structure holds the location of the resource.

usesNamespaces

This structure represents a list of namespaces.

usesSchemas

637Developer's Guide

This structure holds a list of schemas.

xmlMapping

This structure represents an XML mapping.

Arguments

• uddi:tModelKey - tModelKeys of tModels that correspond to the XML document. When used with
publish_xml, zero tModelKeys or a single tModelKey can be used.

• tns:namespace - List of namespaces used in the XML document with their mappings to UDDI tModels

xmlResourceDetail

This structure describes the published XML document. It contains the location of the document and a list
of the namespaces referenced by the XML document. The document declares a prefix for the XML namespace
using the xmlns: declaration.

Arguments

• tns:xmlResourceInfo - contains the location of the XML document (URI)

• tns:namespace - a list of namespace information, one entry for each namespace used in the XML document

Chapter 5638

xmlResourceDetails

Table 35. Attributes

optionaltruncated

This structure, used in the result list of the find_xml query, provides information about a published XML
document.

xmlResourceInfo

This structure, served as a result from the find_xml query, represents a simple information object about an
XML document. It contains information needed for a simple presentation and identifies the UDDI tModel
holding the rest of the information.

Arguments

• location - the location (URI) of the XML document

• uddi:tModelKey - tModelKey of the tModel that corresponds to the XML document. The key can be used
with get_xmlDetail

• uddi:name - name of the tModel

639Developer's Guide

xmlResourceList

This structure contains a list of XML resources, possibly a sublist or a large result set. When only a sublist
is returned, the structure must contain the listDescription element.

Arguments

• uddi:listDescription - description of the result list, in case it is a subset of a larger result set.

• tns:xmlResourceInfo - information about individual results (published XML documents)

Operations

find_xml

Syntax

This operation finds the XML document.

Table 36. Attributes

optionallistHead

optionalmaxRows

Chapter 5640

Arguments

• uddi:authInfo - This optional argument is the string representation of the uddi:authToken.

• tns:resourceInfo - URI location of the published XML document.

• tns:usesNamespaces - search by XML namespace URIs of the published XML document.

• tns:usesSchemas - schemas of the published XML document.

• uddi:find_tModel - Argument used for a more detailed description of search criteria. For more information,
see uddi:find_tModel [http://uddi.org/pubs/uddi_v3.htm#_Toc53709284]. The search criteria implied
by the other members of find_xml structure will be merged with the contents of uddi:find_tModel contents.

Returns

This API call returns the xmlResourceList on success.

find_xmlMapping

Syntax

This operation finds a mapping among the UDDI entities for the XML resource.

Table 37. Attributes

optionalpolicy

Arguments

• policy - The policy (attribute) may be one of:

641Developer's Guide

http://uddi.org/pubs/uddi_v3.htm#_Toc53709284

automatic (default) switches the operation to find UDDI entities for all XSD references, even those
assumed from the XML namespace. For each used namespace URI, the function attempts to find

•

all XML Schema tModels registered in UDDI which define the namespace contents and return their
tModelKeys.

• locations restricts the search only to namespaces containing xsi:schemaLocation or
xsi:noNamespaceSchemaLocation. For these namespaces, the function returns tModelKeys of the XML
Schema tModels stored in the registry matching the namespace. The operation ignores usage of
namespaces lacking the schemaLocation attribute and does not return matching UDDI tModelKeys
in this case.

• uddi:authInfo - This required argument is the string representation of the uddi:authToken.

• tns:resourceInfo - URI location of the XML document.

Returns

This API call returns xml2uddi:xmlMapping upon success.

get_xmlDetail

Syntax

This operation returns the registered mapping information for the XML document identified by a key.

Arguments

• uddi:authInfo - This optional argument is the string representation of the uddi:authToken.

• uddi:tModelKey - Required uddiKey value representing an existing XML tModel.

Chapter 5642

Returns

This API call returns the xml2uddi:xmlResourceDetails which describes the XML and the schemas used
to define the document elements.

publish_xml

Syntax

Table 38. Attributes

optionalpolicy

optionalpublishingMethod

optionalnamespacePublishing

This operation creates a new instance of a tModel representing the XML document.

This operation does not publish the contents of an XSD file.

All existing information which overlaps with the XML-to-UDDI mapping are overwritten, or removed from
the registry, according to the input data. If the arguments pass information about a namespace, the passed
information will be used. Any extraneous schema tModel references will be purged from the XML tModel's
category bag.

Arguments

• policy - This optional attribute may have one of the following values:

• automatic (default) - all XSD references found in the XML document, even those assumed from
XML namespace prefix declarations will be published.

643Developer's Guide

• explicit - Only the XSD references provided in the call will be published.

• locations - references to XSDs that are given with the xsi:schemaLocation or
xsi:noNamespaceSchemaLocation will be published.

• publishingMethod - This optional attribute specifies whether the operation creates a new tModel (possibly
assigned its name/value from the caller-supplied structure), or renews the passed tModel contents.

• namespacePublishingMethod - This optional attribute controls whether new tModels will be created for
namespaces, the existing tModels will be reused, or the namespaces will be ignored. When reuse is
specified, the target tModelKey can be also given. It is an error to specify a tModelKey that does not
exist in the Registry. When create is specified for a namespace and the tModelKey is given, it is used
as the publisher-assigned key for the new tModel. Possible values are create, reuse, and ignore.

• uddi:authInfo - This optional argument is the string representation of the uddi:authToken.

• location - location of the XML document.

• tns:xmlMapping - mapping structure to be used in XML publishing.

Returns

This API call returns the xmlResourceDetail on success.

unpublish_xml

Syntax

This operation removes the metadata (tModel) for the XML document, identified by tModelKey. Since the
XML structure is not published, data about the XML document are effectively discarded. If the XML
document's metadata is referenced from outside, the unpublish call fails. The dispositionReport will contain
keys of the UDDI entities that refer to the XML document.

Chapter 5644

Arguments

• uddi:authInfo - This optional argument is the string representation of the uddi:authToken.

• uddi:tModelKey - tModelKey of the XML document.

Returns

This API call returns the xmlResourceDetail on success.

WSDL

xml2uddi_v3.wsdl [http://www.hp.com/managementsoftware/services/wsdl/xml2uddi_v3.wsdl]

API Endpoint

You can find the XML2UDDI API endpoint at http://<host name>:<port>/uddi/xml2uddi.

Java

org.systinet.uddi.client.xml2uddi.v3.Xml2uddiApi

XSD Publishing

Systinet XSD-to-UDDI mapping enables the automatic publishing of XML Schema Documents into UDDI
and enables precise, flexible UDDI queries based on specific XML schema metadata.

The mapping of XML Schema Document information to UDDI covers:

• XML types - Types declared at the global level in the XML Schema Document. These types are mapped
to tModels in UDDI.

• XML elements - XML elements declared at the global level in the XML Schema Document. These
elements are mapped to tModels in UDDI.

• References to other XML namespaces - Information about imported schemas are stored in the registry.

The API allows the user to search for an schema's tModels based on the namespace they define, or the
elements and types they declare within that namespace. The API can also extract the published information

645Developer's Guide

http://www.hp.com/managementsoftware/services/wsdl/xml2uddi_v3.wsdl

back from the registry, so it can be accessed as a list of elements, types, and schemas rather than tModels
and other UDDI entities.

Data Structures

Elements

This structure represents elements declared by the published XML Schema Document.

Arguments

• element - This argument represents an element declared by the published XML Schema Document.

importedSchemaModel

This structure contains the basics of the imported XML Schema tModel.

Arguments

• uddi:tModelKey - The key of the tModel of the schema of the imported XML namespace.

• uddi:name - The name of that schema's tModel.

resourceInfo

This structure describes the location of the XML Schema Document.

Chapter 5646

schemaCandidate

This structure holds possible mappings of how the XML Schema Document can be published.

Arguments

• location - The location of the candidate XML Schema Document.

• xsd2uddi:schemaMapping - The mapping of the candidate XML Schema Document contents

schemaImport

This structure holds the imported namespace, that is, the list of possible mappings for this xsd:import, for
an xsd:import clause in the XML Schema Document. If a specific location is specified in the XML Schema
Document text for the imported XML Schema Document, it is also present.

Arguments

• xsd2uddi:namespace - The imported namespace. If missing, a no-namespaced XML schema is imported

• schemaLocation - The location for the XML Schema Document, if given explicitly. If the imported XML
Schema Document does not specify an exact schema location, this value is null.

• xsd2uddi:importedSchemaModel - The tModel information of the candidates for this import.

647Developer's Guide

schemaImports

This structure describes a list of xs:imports in the schema.

schemaMapping

This structure describes a mapping of the XSD contents to an individual XSD tModel and its contents.

Arguments

• uddi:name - Name of the XML Schema tModel.

• uddi:tModelKey - tModelKey for the XML Schema tModel

• xsd2uddi:elements - Mapping for contained XML elements

• xsd2uddi:types - Mapping for contained XML types.

schemaMappings

This structure describes a mapping from the contents of a XML Schema Document to UDDI entities. There
are two parts. The first part describes possible matches for xs:imports specified by the XML Schema
Document; the second, individual candidates that may match the XML Schema Document contents. The

Chapter 5648

candidate structure then contains a mapping of the XML Schema Document onto the particular candidate
tModel and the related UDDI entities.

Arguments

• xsd2uddi:schemaImports - mapping for referenced (imported) XML Schema Documents.

• xsd2uddi:schemaCandidate - an individual mapping candidate.

symbol

This structure holds mapping of an individual symbol (XSD element and type) to the registry.

Arguments

• localName - Local name of the mapped symbol.

• xsd2uddi:symbolModel - The basics of the tModel that represents the symbol.

symbols

A common structure for mapping types and elements.

symbolModel

649Developer's Guide

Basic information about a tModel that represents an element or a type declared by the XML Schema
Document

Arguments

• uddi:name - Name of the symbol's tModel. This argument is optional when publishing a XML Schema
Document; it is always filled in API responses.

• uddi:tModelKey - tModelKey of the symbol's model

types

Mapping of types declared by the XML Schema Document being mapped

xsdDetail

The structure provides detailed information about a specific XML Schema Document, its contents and its
references.

Arguments

• xsd2uddi:xsdInfo - General information about the XML Schema Document itself

• xsd2uddi:schemaImports - Information about XML namespaces imported into the XML Schema Document

• xsd2uddi:elements - List of elements in the schema

• xsd2uddi:types - List of types in the schema

Chapter 5650

xsdDetails

Details of the XSD

xsdInfo

This structure holds general information about the XML Schema Document.

Arguments

• location - The location of the XML Schema Document. This location can be used to retrieve the contents

• xsd2uddi:namespace - The URI of the XML namespace defined by the XML Schema Document

• uddi:tModelKey - tModel key for the schema's tModel

• uddi:name - tModel name for the schema's tModel

xsdResourceList

651Developer's Guide

Table 39. Attributes

RequiredName

optionaltruncated

This structure holds a list of XSDs, returned from a find_xsd call.

Arguments

• uddi:listDescription - holds a list of descriptions as specified in UDDI's API documentation.

• xsd2uddi:xsdInfo - holds information about individual registered XSD models.

Operations

find_xsd

Syntax

This operation finds the XML Schema Document. The caller can limit the number of search results to be
returned and can iterate through the search results using the listHead and maxRows arguments.

The name and URI lists passed as the input search criteria may use wildcard characters provided that the
approximateMatch findQualifier is present. If the ownEntities findQualifier is used, the operation returns only

Chapter 5652

entities owned by the authenticated user. Other entities are not returned even though they match the other
search criteria.

Table 40. Attributes

RequiredName

optionallistHead

optionalmaxRows

Arguments

• uddi:authInfo - This optional argument is the string representation of the uddi:authToken.

• xsd2uddi:resourceInfo - URI location of the published XML Schema Document. The registry does not
read from the location, it is used as a search criteria for the current UDDI contents only.

• xsd2uddi:namespace - Allows to search by the namespace defined by a XML Schema Document. Contains
a list of XML namespace URIs. An XML Schema Document satisfies this condition if its targetNamespace
attribute is among the URIs.

• definesType - Allows the user to search by defined type. Contains a list of type names. An XML Schema
Document satisfies this condition if it defines a global type with a name passed in the list.

• definesElement - The returned schemas must define the named element.

• uddi:find_tModel - An argument used for a more detailed description of search criteria. For more
information, see uddi:find_tModel [http://uddi.org/pubs/uddi_v3.htm#_Toc53709284]. These criteria
are combined with the other criteria specified by the find_xsd structure. In the case of a conflict, the
criteria in find_xsd take precedence.

Returns

This API call returns thexsdResourceList on success. If the caller specifies the maxRows attribute, the returned
xsdResourceList will contain, at most, that many results. Note that the search may yield a tModel, which
does not entirely comply with the XSD-to-UDDI mapping specification, such as when the tModel information
is altered manually. In these cases, an attempt to use get_xsdDetail on such a tModel will produce an
exception.

653Developer's Guide

http://uddi.org/pubs/uddi_v3.htm#_Toc53709284

find_xsdMapping

Syntax

This operation finds a suitable mapping for contents of the given XML Schema Document. The operation
downloads and parses the XML Schema Document at the given location, and matches the contents against
the information already published in the registry. It will produce zero or more possible mappings for the
given XML Schema Document.

The caller may request that the mapping is attempted only against a specific tModel that represents an XML
Schema Document. In that case, only one mapping will be returned.

If the document at the specified location, or one of its dependencies (for example, schemas for XML
namespaces which the document imports) are not accessible to the registry, an exception will be raised. If
the document is not an XML schema or contains errors, the operation will throw an exception.

Arguments

• uddi:authInfo - (Optional) - authentication

• xsd2uddi:resourceInfo - The XSD identification (location)

• uddi:tModelKey - (Optional), the proposed schema tModel whose contents should be matched. If set, only
published contents of that XML Schema Document will be considered for mapping.

Returns

This API call returns xsd2uddi:schemaMapping upon success. The structure contains possible matches for the
XML Schema Document at the specified location, which are already stored in the UDDI. There are also
possible matches for the XML Schema Documents for XML namespaces imported into the main XML
Schema Document.

Chapter 5654

The call will fail if it cannot access the XML Schema Document or one of its dependencies.

get_xsdDetail

Syntax

Gets the detail about a published XML Schema Document tModels.

Arguments

• uddi:authInfo - This optional argument is the string representation of the uddi:authToken.

• uddi:tModelKey - Required uddiKey value representing an existing XML Schema Document tModel.

Returns

This API call returns the xsd2uddi:xsdDetails.

If the passed tModelKey does not exist, or identifies a tModel that does not represent an XML Schema
Document, an exception is raised.

publish_xsd

Syntax

655Developer's Guide

Table 41. Attributes

RequiredName

optionalimportPolicy

optionalcontentPolicy

optionalpublishingMethod

optionalcontentPublishingMethod

optionalimportPublishingMethod

Request to publish XML schema information to the registry. The user may pass only minimal information
and rely on the matching algorithm used internally to find the appropriate mapping for the published XML
Schema Document.

Using the importPolicy and contentPolicy, the caller may limit the scope of the published data. By
thepublishingMethod, contentPublishingMethod and importPublishingMethod attributes, the caller may specify the
default behavior for publishing - whether an existing UDDI entity is reused and possibly updated, or a new
UDDI entity is created, or the particular kind of information is ignored at all.

The registry will need to read the XML Schema Document during the call as well as any resources referenced
(imported) by it. If a XML Schema Document or a referenced resource is not available, the operation will
fail.

If the caller does not specify a mapping for some element, type, or XML namespace import and there will
be more possible matching UDDI entities, the call will fail because the mapping of that XML schema entity
is considered ambiguous. It is the responsibility of the caller to provide specific directions for the publishing
in such cases.

If the schemaMapping entry for a type, an element or an import specifies a publishingMethod reuse, the API
will try to find a suitable UDDI entity. If such an entity is not found, the API will create one. If the caller
provides a specific tModelKey with the reuse publishingMethod, the tModelKey must exist and that tModel
will be updated with the element, type or import data.

If the schemaMapping entry for a type, an element or an import specifies a publishing method create, the API
will always create a new UDDI entity for that XML Schema Document piece. If the caller specifies the
tModelKey in the schemaMapping entry, the new UDDI entity will be assigned that tModelKey. The caller
may specify a name for the new tModel, too.

Chapter 5656

If the caller specifies ignore publishing method for an element, a type or an import, that particular XML
Schema Document piece will not be published at all. If the publishing operation updates an existing entity
in the registry that contains a reference to the element, type or an import, the reference will be purged. When
an element or type is ignored, the matching UDDI entity will be deleted from the registry as well by the
publish operation.

Arguments

• uddi:authInfo - (Optional) - authentication

• location - XSD identification (location).

• xsd2uddi:schemaImports - Mapping for referenced (imported) XML Schema Documents

• xsd2uddi:schemaMapping - (Optional) customized mapping for the schema contents and references

• importPolicy - attribute specifying which imports will be published

• contentPolicy - attribute specifying which content will be published

• publishingMethod - attribute specifying the default publishing method for the contents (elements, types)
declared by the schema; default = update

• contentPublishingMethod - The default publishing method for elements and types (ignore, create, reuse);
default = reuse. This publishing method will be used for all elements or types unless the schemaMapping
contains an entry for the element or type that provides a different value.

• contentPublishingMethod - The default publishing method for imports (ignore, create, reuse); default =
reuse. This publishing method will be used for all imported XML namespaces unless the schemaMapping
contains an entry for the XML namespace that provides a different value.

Returns

This API call returns the xsdDetail with the published XML Schema Document information on success.

657Developer's Guide

unpublish_xsd

Syntax

Unpublish the XML Schema Document. The operation checks whether the XML Schema Document is
referenced from other data published in the UDDI. If so, the operation fails as the semantics of the referencing
data might break if the XML Schema Document information is removed from the UDDI registry.

Arguments

• uddi:authInfo - This optional argument is the string representation of the uddi:authToken.

• uddi:tModelKey - tModelKey of the tModel that represents the XML Schema Document.

Returns

This API call returns the xsdDetail on success.

WSDL

xsd2uddi_v3.wsdl [http://www.hp.com/managementsoftware/services/wsdl/xsd2uddi_v3.wsdl]

API Endpoint

You can find the XSD2UDDI API endpoint at http://<host name>:<port>/uddi/xsd2uddi.

Java

org.systinet.uddi.client.xsd2uddi.v3.Xsd2uddiApi

XSLT Publishing

Systinet XSLT-to-UDDI mapping enables the automatic publishing of XSLT into UDDI and enables precise,
flexible UDDI queries based on specific XSL Transformation Documents.

Chapter 5658

http://www.hp.com/managementsoftware/services/wsdl/xsd2uddi_v3.wsdl

The UDDI stores information about the input and output formats accepted and produced by the XSL
transformation and about other XSL stylesheets imported into the transformation. The input format is defined
by an XML Schema. The output format may be defined by an XML Schema (its representing tModel), or
it may be typed by a general tModel that represents the user's definition of the output. The UDDI also stores
the output method used by the stylesheet: html, xml, text.

The XSLT Publishing API allows to search for the stylesheets by types of their input and output in order
to locate a XSL suitable for processing a particular document, or a XSL that may produce some desired
format.

Data Structures

compatibleSchema

A query for the input format of the style sheet. Selects those style sheets, which accept the specified schema.
The schema can be given either using a namespace URI or directly using the tModelKey of the XML Schema
tModel representation in the UDDI.

Arguments

• namespace - the URI of the XML namespace defined by the schema

• uddi:tModelKey - tModelKey of the tModel that represents the XML Schema

compatibleSchemaList

This structure holds a list of compatibleSchemas.

659Developer's Guide

contentMapping

Describes how the contents of the XSLT transformation are mapped to the entities published in the registry.

Arguments

• xslt2uddi:inputSchemaList

• xslt2uddi:xsltImportMappingList

• xslt2uddi:outputTypeList

• outputMethod - One or more output methods, as defined by the XSLT specification. The default value
substituted by the API when no output method is given is "xml".

inputSchemaList

List of the XSL transformation's information structures and references to input schemas.

namespaceMatch

Chapter 5660

This structure represents matches found in the UDDI registry for a specific XML namespace UI referenced
by the XSL Transformation Document.

Arguments

• namespace - XML namespace URI referenced in the XSL transformation

• schemaLocation - explicit location of the XML schema for the namespace. Optional.

• candidates - possible mappings to tModels. For more information, please see xslt2uddi:tModelRef.

namespaceMatchList

This structure holds a list of namespaceMatches.

outputType

The types of resources the XSL transformation may produce. Currently only xml is supported, typed by a
XML Schema tModel

Arguments

• uddi:tModelKey - tModel that represents the formal description of the output format

• xslt2uddi:xmlSchema

outputTypeList

661Developer's Guide

List of descriptions of output formats the style sheet can produce.

producesOutput

Query parameter that selects results based on the output produced by the XSL Transformation Document

Arguments

• uddi:tModelKey - key of a tModel that represents the formal description of the output format. Currently
only tModels that represent XML schemas are supported

• namespace - the namespace URI of the XML namespace that defines output elements produced by the
XSL Transformation Document

producesOutputList

List of output format query parameters

resultMapping

This structure holds the result of find_xsltMapping. It describes possible mappings for XML namespaces
(their schemas) and mappings for stylesheet imported to the XSLT passed to the request. Finally, the tModels
that match the XSL Transformation Document itself are reported in the mapping. For each of tModel that

Chapter 5662

matches the mapped %xslt;, there's a suggested mapping of the XSLT Document contents onto the particular
tModel and its related data.

The nested contentMapping structure is a suggestion how to map the XSL Transformation Document on a
new tModel, rather than on some existing one. Mappings to already existing tModels are described in
xsltMappingList nested structure.

It may happen, that a XML namespace URI or an importer XSL Transformation Document has several
mappings into the UDDI. In such cases, the entries in the xsltMappingList or the contentMapping may contain
no tModelKeys as an indication that the mapping algorithm could not decide the mapping. It is up to the
caller to resolve such ambiguities.

Arguments

• xslt2uddi:namespaceMatchList

• xslt2uddi:xsltImportMatchList

• xslt2uddi:xsltMappingList

• xslt2uddi:contentMapping

tModelRef

This structure holds a reference to a tModel representing an XML Schema document, or XML style sheet
document.

Arguments

• uddi:name - name of the tModel. This name is always present in API response messages.

• uddi:tModelKey - tModelKey that represents an XML schema or XSLT document.

663Developer's Guide

usesStylesheet

This structure is used in find_xslt queries.

Arguments

• location - location of the XSLT document.

• uddi:tModelKey - tModelKey of the tModel that represents the XSLT document.

usesStylesheetList

This structure holds a list of usesStylesheets.

xmlSchema

Description of a referenced XML Schema

Arguments

• namespace - The namespace referenced from the XSL Transformation Document

• location - The explicit location of the XML Schema for the namespace, if given in the XSLT. Optional.

• xslt2uddi:tModelRef

Chapter 5664

xsltDetail

This structure holds the representation of an XSLT document in the UDDI registry.

Arguments

• uddi:name - name of the XSL Transformation Document tModel .

• uddi:tModelKey - the tModelKey of the tModel that represents the XSL Transformation Document

• location - the URI of the XSL Transformation Document document

• xslt2uddi:contentMapping

xsltDetailList

This structure represents a list of xsltDetails.

xsltImportMapping

This structure holds a mapping XSL Transformation Document imported to UDDI entities.

665Developer's Guide

Arguments

• location - location of the imported XSL Transformation Document.

• xslt2uddi:tModelRef - references to tModels that match the imported XSL Transformation Document.

xsltImportMappingList

This structure represents a list of xsltImportMappings.

xsltimportMatch

This structure represents a matching between imported XSL Transformation Documents and UDDI entities.

Arguments

• location - location of the imported XSL Transformation Document.

• candidates - possible mappings to UDDI tModels. See xslt2uddi:tModelRef

xsltImportMatchList

This structure holds a list of xsltImportMatches.

Chapter 5666

xsltInfo

This structure represents an item from the list returned by find_xslt operations.

Arguments

• location - location of the XSL Transformation Document

• uddi:name - name of the XSL Transformation Document

• uddi:tModelKey - the key of tModel that represents the XSL Transformation Document.

xsltInfos

This structure holds a list of xsltInfos.

xsltMapping

This structure describes the mapping of an XSL Transformation Document.

667Developer's Guide

Arguments

• uddi:name - name for the XSLT tModel

• uddi:tModelKey - tModelKey of the target tModel

• location - location of the XSL Transformation Document.

• xslt2uddi:contentMapping

xsltMappingList

This structure represents a list of xslMappings

Operations

find_xslt

Syntax

Chapter 5668

Table 42. Attributes

RequiredName

optionallistHead

optionalmaxRows

This operation finds the XSLT tModel that satisfies the search criteria. The caller may limit the number of
results or page through the list of results usinglistHead andmaxRows attributes. They have the same semantics
as in find_tModel in the UDDI Inquiry API.

The name and URI lists passed as the input search criteria may use wildcard characters provided that the
approximateMatch findQualifier is present. If the ownEntities findQualifier is used, the operation returns only
entities owned by the authenticated user. Other entities are not returned even though they match the other
search criteria.

Arguments

• uddi:authInfo - This optional argument is the string representation of the uddi:authToken.

• location - location of the XSL Transformation Document.

• xslt2uddi:compatibleSchemaList

• xslt2uddi:usesStylesheetList

• xslt2uddi:producesOutputList

• uddi:find_tModel - a generic query parameter to further restrict the search using user-defined criteria

• xslt2uddi:findQualifiers - see find qualifiers

Returns

This API call returns the a list of xsltInfos on success.

669Developer's Guide

find_xsltMapping

Syntax

This operation finds a suitable mapping for contents of the given XSL Transformation Document.

The mapping algorithm tries not to report ambiguous mapping unless necessary. If some reference to a
XML namespace or an imported XSL Transformation Document is ambiguous, the mapping algorithm will
consider the already published data and suggest the tModelKey used by the existing tModel that represents
the XSL Transformation Document. So in other words, if there is an XSL Transformation Document tModel
already published, that references a specific tModelKey for a XML namespace, that tModelKey will be
reported in the XsltMappingList even though there are more possible matching entities for the XML
namespace.

Arguments

• uddi:authInfo - authentication

• location - location of the XSL Transformation Document

• xslt2uddi:findQualifiers - see find qualifiers

Returns

This API call returns xslt2uddi:resultMapping upon success.

Chapter 5670

get_xsltDetail

Syntax

This operation gets the detail about published XSLT tModels.

Arguments

• uddi:authInfo - This optional argument is the string representation of the uddi:authToken.

• uddi:tModelKey - required key value representing an existing XSLT tModel.

Returns

This API call returns the xslt2uddi:xsltDetailList..

publish_xslt

Syntax

671Developer's Guide

Table 43. Attributes

RequiredName

optionalpublishingMethod

optionalschemaMethod

optionalimportMethod

A request to publish XSLT information to the UDDI registry.

The publishingMethod defines how the XSL Transformation Document will be published in the UDDI registry.
The schemaMethod and importMethod attributes define the defaults for publishing XML schema references, or
references to imported XSL Transformation Documents, respectively. It is possible to override those defaults
in entries of the passed contentMapping.

The registry will need to read the XSL Transformation Document document being published. If the XSLT
is not available to the UDDI registry, the operation will fail.

If the caller does not specify a mapping for some referenced XML namespace URI, or an imported XSL
Transformation Document, and there will be more possible matching UDDI entities, the call will fail because
the mapping is considered ambiguous. It is the responsibility of the caller to provide specific directions for
the publishing in such cases.

If a mapping entry specifies "create" as its publishing method, a new entity will be created to represent the
particular part of the XSL Transformation Document. In this case the tModelKey of the mapping, if present,
is used to provide a publisher-assigned key to the new entity.

If a mapping entry specifies "ignore" publishing method, the information is not propagated into the UDDI
registry at all. When updating an existing XSL Transformation Document tModel, such information are
purged. So when a XML namespace is "ignored", the publishing operation will remove the association
between the XSL Transformation Document and the ignored XML Schema. Ignoring an element or type
will delete the representing tModel entity from the UDDI.

Arguments

• uddi:authInfo - (Optional) - authentication

• location - XSLT identification (location) of the XSL Transformation Document.

Chapter 5672

• uddi:tModelKey - the tModelKey to be updated

• uddi:name - the name of the tModel, optional

• xslt2uddi:contentMapping

• publishingMethod - The publishing method for the XSLT itself (create, update). (default = update).

• schemaMethod - The publishing method for the referenced schemas (create, reuse, ignore). (Default =
reuse).

Returns

This API call returns the xsltDetail on success.

unpublish_xslt

Syntax

Unpublish the XSL Transformation Document.

The contents of the UDDI Registry are checked whether there are referencies to this XSLT representant. If
so, the operation fails with a disposition report that clearly shows tModelKeys of the referencing entities.
Only references between XSLTs are checked (the uddi:uddi.org:resource:reference taxonomy).

Arguments

• uddi:authInfo - This optional argument is the string representation of the uddi:authToken.

• uddi:tModelKey - tModelKey of the XSLT.

Returns

This API call returns the xsltDetail on success.

673Developer's Guide

WSDL

Xslt2uddi_v3.wsdl [http://www.hp.com/managementsoftware/services/wsdl/xslt2uddi_v3.wsdl]

API Endpoint

You can find the XSLT2UDDI API endpoint at http://<host name>:<port>/uddi/xslt2uddi.

Java

org.systinet.uddi.client.xslt2uddi.v3.Xslt2uddiApi

Inquiry UI

The Inquiry UI API has been implemented for improving the performance of the Business Service Console.
The basic idea is to retrieve data that appear in the Business Service Console using a single API call.

This API contains only one operation get_entityDetail. Its input includes a query specification and an output
format:

• The query specification comprises one of the standard UDDI v3 API data structures: find_business,
find_services, find_binding, find_tModel, get_businessDetail, get_serviceDetail, get_bindingDetail and
get_tModelDetail.

• The output format defines which data structures will be returned and how they will be pruned.

The operation get_entityDetail returns a list of UDDI data structures. ACLs are also applied to retrieved
data.

For example, if you specify the following inquiry:

<get_entityDetail xmlns="http://systinet.com/uddi/inquiryUI/6.0">
 <outputFormat>
 <businessEntityMask descriptionIncluded="true" identifierBagIncluded="true"/>
 <businessServiceMask descriptionIncluded="true"/>
 </outputFormat>
 <find_binding serviceKey="uddi:systinet.com:demo:hr:employeesList"
 xmlns="urn:uddi-org:api_v3"/>
</get_entityDetail>

You will receive the following output:

Chapter 5674

http://www.hp.com/managementsoftware/services/wsdl/xslt2uddi_v3.wsdl

<entityDetail xmlns="http://systinet.com/uddi/inquiryUI/6.0">
 <businessEntity businessKey="uddi:systinet.com:demo:hr"
 xmlns="urn:uddi-org:api_v3">
 <name>HR</name>
 <description>HR department</description>
 <businessServices>
 <businessService serviceKey="uddi:systinet.com:demo:hr:employeesList"
 businessKey="uddi:systinet.com:demo:hr">
 <name>EmployeeList</name>
 <description>wsdl:type representing service</description>
 </businessService>
 </businessServices>
 <identifierBag>
 <keyedReference tModelKey="uddi:systinet.com:demo:departmentID"
 keyName="department id" keyValue="002"/>
 </identifierBag>
 </businessEntity>
</entityDetail>

If there are matching bindingTemplates accessible while associated businessServices are not (because of
ACLs), such bindingTemplates will be included in the result in a separate list of bindingTemplates. The
same behavior applies to accessible businessServices of inaccessible businessEntities.

Data Structures

The following structures are used by the Systinet Inquiry UI API:

• bindingTemplateMask on page 676

• businessEntityMask on page 676

• businessServiceMask on page 677

• contactMask on page 678

• entityDetail on page 678

• outputFormat on page 679

• tModelInstanceInfoMask on page 679

• tModelMask on page 680

675Developer's Guide

bindingTemplateMask

Table 44. Attributes

RequiredAttribute

NodescriptionIncluded

NocategoryBagIncluded

NoSignatureIncluded

The bindingTemplateMask structure specifies the mask of the binding template of the outputFormat. Optional
attributes define which elements will be returned in the entityDetail

businessEntityMask

Chapter 5676

Table 45. Attributes

RequiredAttribute

NodiscoveryURLIncluded

NodescriptionIncluded

NoidentifierBagIncluded

NocategoryBagIncluded

NoSignatureIncluded

The businessEntityMask structure specifies the mask of the business entity of the outputFormat. It also include
a contactMask. Optional attributes define which elements will be returned in the entityDetail.

businessServiceMask

Table 46. Attributes

RequiredAttribute

NodescriptionIncluded

NocategoryBagIncluded

NoSignatureIncluded

The businessServiceMask structure specifies the mask of the business service of the outputFormat. Optional
attributes define which elements will be returned in the entityDetail.

677Developer's Guide

contactMask

The contactMask structure specifies the submask of the business entity mask of the outputFormat. Optional
attributes define which elements will be returned in the entityDetail

Table 47. Attributes

RequiredAttribute

NodescriptionIncluded

NophoneIncluded

NoemailIncluded

NoaddressIncluded

entityDetail

Chapter 5678

The entityDetail structure is returned by the get_entityDetail operation. The attribute truncated indicates a
truncated result list.

Table 48. Attributes

RequiredAttribute

Nouddi:truncated

outputFormat

The outputFormat is a mask for data to be returned and can prune returned structures. The output format is
defined by the following arguments.

Arguments

• inquiryUI:businessEntityMask

• inquiryUI:businessServiceMask

• inquiryUI:bindingTemplateMask

• inquiryUI:tModelMask

tModelInstanceInfoMask

679Developer's Guide

The tModelInstanceInfoMask structure specifies the mask of the tModel instance info of the outputFormat.
Optional attributes define which elements will be returned in the entityDetail

Table 49. Attributes

RequiredAttribute

NodescriptionIncluded

NoinstanceDetailsIncluded

tModelMask

The tModelMask structure specifies the mask of the tModel of the outputFormat. Optional attributes define
which elements will be returned in the entityDetail

Table 50. Attributes

RequiredAttribute

NodescriptionIncluded

NooverviewDocIncluded

NoidentifierBagIncluded

NocategoryBagIncluded

NoSignatureIncluded

Chapter 5680

Operations

get_entityDetail

This is the core operation of the Inquiry UI API.

Arguments

• uddi:authInfo - This optional argument is an element that contains an authentication token.

• inquiryUI:outputFormat

• uddi:get_businessDetail, uddi:get_bindingDetail, uddi:get_tModelDetail, uddi:find_business,
uddi:find_service, uddi:find_binding, uddi:find_tModel - standard UDDI v3 structures.

Returns

Upon successful completion, an entityDetail structure is returned.

WSDL

You can find the WSDL specification in the file inquiryUI.wsdl
[http://www.hp.com/managementsoftware/services/wsdl/inquiryUI.wsdl].

681Developer's Guide

http://www.hp.com/managementsoftware/services/wsdl/inquiryUI.wsdl

API Endpoint

You can find the Inquiry UI API endpoint at http://<host name>:<port>/uddi/inquiryUI.

Java

Systinet Java API is generated directly from WSDL. You are encouraged to browse
org.systinet.uddi.client.v3.ui.InquiryUIApi.

Subscription Ext

The Subscription Extension API has been implemented to allow the user to create subscriptions in the
discovery registry of the approval process. This means that subscription creation is not subject to the approval
process; users can save subscriptions directly to the discovery registry. However, under this API, users are
not allowed to save a bindingTemplate for the email address where notifications are sent. The Subscription
Extension API allows the user to specify a bindingTemplate in the subscriptionExt structure in the
save_subscription operation. This bindingTemplate is saved under the Notification Service Container of
the operator's business entity. The Notification Service Container is a businessService with the key
uddi:systinet.com:subscription:notification_service_container. This API can also be used for "read-only"
registry. In that case, users are not allowed to publish their data to the registry. Their subscriptions can be
saved with this API.

Data Structures

The following structures are used by the Subscription Extension API:

• Notification Service Container on page 682

• subscriptionExt on page 683

Notification Service Container

The Notification Service Container is a business service stored under the operator's business entity. It has
the key: uddi:systinet.com:subscription:notification_service_container. This business service is imported
together with other registry pre-deployed data.

Chapter 5682

subscriptionExt

Table 51. Attributes

RequiredAttribute

Nobrief

The subscriptionExt structure substitutes the uddi_sub:subscription structure in the save_subscription structure
of the standard UDDI v3 API.

Operations

The following operations extend the standard UDDI v3 API:

• save_subscription on page 683

• delete_subscription on page 684

save_subscription

• This operation is used when creating a new subscription. If the bindingTemplate is specified, then the
subscription is saved under the caller's user account under the Notification Service Container. The
bindingKey is generated by the registry, the other structures of the bindingTemplate remain untouched.

683Developer's Guide

The bindingKeys in both the subscription and the bindingTemplate are ignored. The subscription structure
returns a bindingKey referencing the saved bindingTemplate, but not the bindingTemplate itself.

• Updating the existing subscription. The algoritm of the standard saving of subscriptions is extended
with these steps:

1 If the subscription refers to a bindingTemplate under the Notification Service Container, then the
binding template will be deleted. See delete_subscription

2 If the bindingTemplate is specified in the subscription, then the bindingTemplate is stored under
the Notification Service Container

delete_subscription

If the subscription references a bindingTemplate which is under the Notification Service Container, then
the bindingTemplate will be deleted.

WSDL

You can find the WSDL specification in the file uddi_sub_v3_ext.wsdl
[http://www.hp.com/managementsoftware/services/wsdl/uddi_sub_v3_ext.wsdl].

API Endpoint

You can find the Statistics API endpoint at http://<host name>:<port>/uddi/subscriptionExt.

Java

The Systinet Java API is generated directly from WSDL. You are encouraged to browse
org.systinet.uddi.client.subscription.v3.ext.UDDISubscriptionExtStub.

Security APIs

Security APIs cover the following APIs:

• Account API - Systinet Account API is used to query and manage user accounts in HP SOA Systinet
Registry.

• Group API - Systinet Group API is used to query and manage user groups in HP SOA Systinet Registry.

Chapter 5684

http://www.hp.com/managementsoftware/services/wsdl/uddi_sub_v3_ext.wsdl

• Permission API - Systinet Permission API is used to query and manage permissions in HP SOA Systinet
Registry.

Account

Systinet Account API is used to query and manage user accounts in HP SOA Systinet Registry.

Data Structures

The following structures are used by the Systinet Account API:

685Developer's Guide

userAccount

Chapter 5686

687Developer's Guide

The userAccount element is container that holds the attributes of a user account in the HP SOA Systinet
Registry. The required elements are:

• loginName

• email

• fullName

• languageCode

All other elements are optional.

DescriptionElement

contains the login name of the user accountloginName

contains the password used to authorize the userpassword

holds the user's email addressemail

holds the user's full namefullName

use for describing the user or the user's roledescription

the language the user speakslanguageCode

name of organization where the user is employedbusinessName

telephone number used to contact the userphone

second telephone number used to contact the useralternatePhone

 address

 city

 stateProvince

 country

 zip

may hold the time when the user account expiresexpiration

indicates whether the account may expire over timeexpires

Chapter 5688

a flag indicating whether the user account is external
or stored in the UDDI registry

external

a flag indicating whether the user is blockedblocked

an unspecified string; its meaning depends on
UserStore type

account:property

specifies how many business entities the user account
may save

businessesLimit

specifies maximum number of business services
within a single business entity that the user account
may own

servicesLimit

specifies how many bindingTemplates the user
account may save within a single businessService

bindingsLimit

specifies the number of tModels the user account
may save

tModelsLimit

specifies the number of publisherAssertions the user
account may save

assertionsLimit

specifies the number of subscriptions the user
account may save

subscriptionsLimit

contains information regarding when the user last
logged into the registry

lastLoginTime

userInfo

This element serves as a container for short information about single userAccount. It contains the required
element loginName, and the optional elements fullName, description, and email.

689Developer's Guide

userInfos

This element holds one or more userInfo elements.

userList

This element contains optional listDescription and userInfos elements.

Operations

find_userAccount

The find_userAccount API call is used to find user accounts in HP SOA Systinet Registry that match given
criteria.

Syntax

Arguments

• authInfo - This optional argument is an element that contains an authentication token.

• name - Name to be searched.

• account:findQualifier - The collection of findQualifier used to alter default behavior.

Chapter 5690

Behavior

The following findQualifiers affect behavior of the call:

• The findByLoginName findQualifier (default) is used to specify that user accounts shall be searched
by loginName.

• With the findByFullName findQualifier, user accounts are searched by the fullName property.

• If the exactMatch findQualifier is present, an exact match is required.

• The default approximateMatch findQualifier enables SQL wildcard queries.

• If the findBlockedAccount findQualifier is present, only blocked accounts are returned.

• The sortByNameAsc (default) and sortByNameDesc findQualifiers controls the order in which the data
is returned.

Returns

This API call returns the userList upon success.

Permissions

This API call requires the API user permission for org.systinet.uddi.account.AccountApi and the action
find_userAccount.

get_userAccount

The get_userAccount API call returns userAccount structure of selected user.

Syntax

691Developer's Guide

Arguments

• authInfo - This optional argument is an element that contains an authentication token.

• loginName - This required argument uniquely identifies the user account.

Returns

This API call returns userAccount upon success.

Permissions

This API call requires the API user permission for org.systinet.uddi.account.AccountApi and the action
get_userAccount to get user's own account detail and API manager permission for
org.systinet.uddi.account.AccountApi and the action get_userAccount to get other users' accounts.

save_userAccount

The save_userAccount API call is used to save or update userAccount in HP SOA Systinet Registry. Whether
public registration is allowed or not depends on the HP SOA Systinet Registry configuration. It may be also
configured to block registered account until it is enabled by code sent by email.

Syntax

Arguments

• authInfo - This optional argument is an element that contains an authentication token.

• account:userAccount - The user account to be saved.

Returns

This API call returns userAccount upon success.

Chapter 5692

Permissions

This API call requires the API user permission for org.systinet.uddi.account.AccountApi and the action
save_userAccount to save user's own account or register new account and API manager permission for
org.systinet.uddi.account.AccountApi and the action save_userAccount to save other users' accounts.

delete_userAccount

The delete_userAccount API call causes selected user account to be removed from HP SOA Systinet
Registry.

Syntax

Arguments

• authInfo - This optional argument is an element that contains an authentication token.

• loginName - This required argument uniquely identifies the user account.

Returns

This API call returns UserAccount upon success.

Permissions

This API call requires the API user permission for org.systinet.uddi.account.AccountApi and the action
delete_userAccount to delete user's own account and API manager permission for
org.systinet.uddi.account.AccountApi and the action delete_userAccount to delete other users' accounts.

enable_userAccount

The enable_userAccount API call is used to activate user account identified by loginName argument in HP
SOA Systinet Registry.

693Developer's Guide

Syntax

Arguments

• loginName - This required argument uniquely identifies the user account.

• account:enableCode - Confirmation string.

WSDL

You can find the WSDL specification in the file account.wsdl
[http://www.hp.com/managementsoftware/services/wsdl/account.wsdl].

API Endpoint

You can find the Account API endpoint at http://<host name>:<port>/uddi/account .

Java

The Systinet Java API is generated from Account WSDL. You are encouraged to browse
org.systinet.uddi.account.AccountApi and to read and try Account demos.

Group

Systinet Group API is used to query and manage user groups in HP SOA Systinet Registry.

Data Structures

The following structures are used by the Systinet Group API:

Chapter 5694

http://www.hp.com/managementsoftware/services/wsdl/account.wsdl

group

This element serves as a container for groupInfo and userInfos structures.

groups

This element serves as a container for one or more group structures.

groupInfo

This element contains information about one user group:

• The required name element holds the name of the group.

• The optional description element is used to describe group and its usage.

• The owner element contains the loginName of the user who created this group.

• The privateGroup element indicates whether the group is public or private.

695Developer's Guide

• The external element indicates whether the group is external (For example, in LDAP) or not.

groupInfos

This element serves as a container for one or more groupInfo elements.

groupList

Table 52. Attributes

RequiredAttribute

Notruncated

This structure server as a container for optional listDescription and optional groupInfos structures. The
truncated attribute indicates whether the list of groupInfos is truncated.

Operations

add_user

The add_user API call is used to add a user to a user group.

Chapter 5696

Syntax

Arguments

• authInfo - This optional argument is an element that contains an authentication token.

• groupName - the group to which the user will be added.

• account:userInfos - user that will be added to the group.

Permissions

This API call requires API user or manager permission for org.systinet.uddi.client.group.GroupApi and the
action add_user.

find_user

The find_user API call is used to find user within the user group.

Syntax

697Developer's Guide

Arguments

• authInfo - This optional argument is an element that contains an authentication token.

• name - login name of the user

• account:findQualifier - find qualifier

• groupName - the group in which the user will be searched.

Permissions

This API call requires API user or manager permission for org.systinet.uddi.client.group.GroupApi and the
action find_user.

Returns

Upon successful completion, the UserList structure is returned.

find_group

The find_group API call is used to search groups in HP SOA Systinet Registry.

Syntax

Arguments

• authInfo - This optional argument is an element that contains an authentication token.

Chapter 5698

• group:findQualifier - The collection of findQualifier used to alter default behavior.

• name - The required value contains name of the group to be searched.

Behavior

The following findQualifiers affect behavior of the call. The exactMatch findQualifier causes that exact
match on group name is required, while default approximateMatch findQualifier enables SQL wildcard
query. The findPrivateGroups findQualifier enables search between private groups, findPublicGroups
enables search between public groups and findMyGroups will cause the search to be performed only between
groups owned by the user who executed this call. The sortByNameAsc and sortByNameDesc findQualifiers
controls order, in which the data is returned.

If no findQualifier is defined, default findQualifier set contains approximateMatch, findPrivateGroups,
findPublicGroups and sortByNameAsc findQualifiers.

Returns

Upon successful completion, the groupList structure is returned.

Permissions

This API call requires API user or manager permission for org.systinet.uddi.client.group.GroupApi and the
action find_group.

get_group

The get_group API call is used to get details for one or more groups in HP SOA Systinet Registry.

Syntax

699Developer's Guide

Arguments

• authInfo - This optional argument is an element that contains an authentication token.

• name - The required value contains name of the group to be returned.

• brief - if you set this attribute, the result will not contain members of the group. Setting the attribute is
useful when working with large groups with thousands of members.

Returns

Upon successful completion, the groups structure is returned.

Permissions

This API call requires API user or manager permission for org.systinet.uddi.client.group.GroupApi and the
action get_group. The user permission is needed to get user's own groups, the manager permission is required
to get other users' groups.

save_group

The save_group API call is used to save collection of groups to HP SOA Systinet Registry.

Syntax

Arguments

• authInfo - This optional argument is an element that contains an authentication token.

• group:groups - The groups to be saved.

Returns

Upon successful completion, the groups structure is returned.

Chapter 5700

Permissions

This API call requires API user or manager permission for org.systinet.uddi.client.group.GroupApi and the
action save_group. The user permission is needed to save user's own groups, the manager permission is
required to update other users' groups.

remove_user

The remove_user API call removes user from the group.

Syntax

Arguments

• authInfo - This optional argument is an element that contains an authentication token.

• name - login name of the user

• groupName - the group from which the user will be removed

Permissions

This API call requires API user or manager permission for org.systinet.uddi.client.group.GroupApi and the
action remove_user.

delete_group

The delete_group API call causes that groups identified by their names will be removed from HP SOA
Systinet Registry.

701Developer's Guide

Syntax

Arguments

• authInfo - This optional argument is an element that contains an authentication token.

• name - The required value contains names of the groups to be deleted.

Returns

Upon successful completion, the groups structure is returned.

Permissions

This API call requires API user or manager permission for org.systinet.uddi.client.group.GroupApi and the
action delete_group. The user permission is needed to delete user's own groups, the manager permission is
required to delete other users' groups.

where_amI

The where_amI API call is there to return list of groups where the user executing this call is member. The
call returns both private and public groups.

Syntax

Arguments

• authInfo - This optional argument is an element that contains an authentication token.

Chapter 5702

• loginName - This required argument uniquely identifies the user account.

Returns

Upon successful completion, the groupList structure is returned.

Permissions

This API call requires API user or manager permission for org.systinet.uddi.client.group.GroupApi and the
action where_amI. The user permission is needed to get groups for the user himself, the manager permission
is required to get groups for other user.

WSDL

You can find the WSDL specification in the file group.wsdl
[http://www.hp.com/managementsoftware/services/wsdl/group.wsdl].

API Endpoint

You can find the Group API endpoint at http://<host name>:<port>/uddi/group.

Java

The Systinet Java API is generated from Group WSDL. You are encouraged to browse
org.systinet.uddi.group.GroupApi and to read and try Group demos.

Permission

The Systinet Permission API is used to query and manage permissions in HP SOA Systinet Registry.

Data Structures

The following structures are used by the Systinet Permission API:

703Developer's Guide

http://www.hp.com/managementsoftware/services/wsdl/group.wsdl

permissionDescriptor

This structure serves as a container for one permission and its actions. The type element contains the type
of the permission. The name element contains the permission's name. Optional action elements are used to
provide finer granularity to the permission and contain individual actions of this permission.

permissionDescriptors

This structure holds an optional principal element and zero or more permissionDescriptor structures.

permissionDetail

This structure is a container for zero or more permissionDescriptors structures.

principal

This element contains the optional attributeprincipalType, which may be assigned to a user or group. The
element's text contains the loginName of the user, or the group name, depending on the principalType value.

Chapter 5704

principals

This structure serves as a container for zero or more principal elements.

principalList

This structure serves as a list principals returned from the operation find_principal.

Operations

find_principal

This operation is used to find principals, it replaces the deprecared operation who_hasPermission .

Syntax

Arguments

• permission:authInfo - This optional argument is an element that contains an authentication token.

• permissionDescriptor

• name - name of the principal

705Developer's Guide

• findQualifier

Returns

Upon successful completion, the principalList structure is returned.

Permissions

This API call requires API user or manager permission for org.systinet.uddi.permission.PermissionApi and
the action get_permission. The user permission is needed to get permissions for the user himself, the manager
permission is required to get permissions for other users.

get_permission

The get_permission API call is used to get permissions in HP SOA Systinet Registry, that have been assigned
to users or groups identified by the principal's structure.

Syntax

Arguments

• permission:authInfo - This optional argument is an element that contains an authentication token.

• permission:principals - This mandatory structure contains list of users or groups to be searched.

Returns

Upon successful completion, the permissionDetail structure is returned.

Permissions

This API call requires API user or manager permission for org.systinet.uddi.permission.PermissionApi and
the action get_permission. The user permission is needed to get permissions for the user himself, the manager
permission is required to get permissions for other users.

Chapter 5706

set_permission

The set_permission API call serves to set permissions in HP SOA Systinet Registry. Existing permissions
for users or groups referenced in permissionDescriptors are overwritten by this call.

Syntax

Arguments

• permission:authInfo - This optional argument is an element that contains an authentication token.

• permission:permissionDescriptors - This mandatory structure holds permissions to be set.

Permissions

This API call requires API manager permission for org.systinet.uddi.permission.PermissionApi and the action
set_permission.

who_hasPermission

The who_hasPermission operation is deprecated. We recommend to use the operation find_principal
instead.

The who_hasPermission API call is used to find out which users or groups have the specified permissions.

Syntax

Arguments

• permission:authInfo - This optional argument is an element that contains an authentication token.

707Developer's Guide

• permission:permissionDescriptor - This argument contains a description of permissions to be searched.

Returns

Upon successful completion, the principals structure is returned.

Permissions

This API call requires API manager permission for org.systinet.uddi.permission.PermissionApi and the action
who_hasPermission.

WSDL

You can find the WSDL specification in the file permission.wsdl
[http://www.hp.com/managementsoftware/services/wsdl/permission.wsdl].

API Endpoint

You can find the Permission API endpoint at http://<host name>:<port>/uddi/permission.

Java

The Systinet Java API is generated from Permission WSDL. You are encouraged to browse its
org.systinet.uddi.permission.PermissionApi and to read and try the Permission demos.

Registry Client

This section describes how to prepare your own client distribution. A client created this way allows you to
access the HP SOA Systinet Registry API through a SOAP interface.

Client Package

CLIENT_HOME refers to the directory in which the HP SOA Systinet Registry Client distribution will
be created.

REGISTRY_HOME refers to the directory in which HP SOA Systinet Registry is installed

To create a client application distribution follow these steps:

1 Make sure HP SOA Systinet Registry is successfully installed.

Chapter 5708

http://www.hp.com/managementsoftware/services/wsdl/permission.wsdl

2 In the CLIENT_HOME directory, create a subdirectory named lib.

Copy the following files from REGISTRY_HOME/lib to CLIENT_HOME/lib

activation.jar
builtin-serialization.jar
core_services_client.jar
jaas.jar
jaxm.jar
jaxrpc.jar
jetty.jar
runner.jar
saaj.jar
security-ng.jar
security2-ng.jar
security_providers_client.jar
wasp.jar
wsdl_api.jar
xercesImpl.jar
xml-apis.jar
xmlParserApis.jar

3 In the CLIENT_HOME directory, create a subdirectory named dist.

Copy the following files from REGISTRY/dist to CLIENT_HOME/dist:

account_client.jar
admin_utils_client.jar
approval_client_v3.jar
approval_content_checker_client_v3.jar
approval_management_client.jar
approval_production_client_v3.jar
category_client_v3.jar
configurator_client.jar
configurator_cluster_client.jar
group_client.jar
permission_client.jar
replication_client_v3.jar
statistics_client.jar
taxonomy_client_v3.jar
taxonomy_client_v31.jar
transformer_kr_client.jar
uddiclient_api_ext.jar

709Developer's Guide

uddiclient_api_v1.jar
uddiclient_api_v2.jar
uddiclient_api_v3.jar
uddiclient_api_v3_ext.jar
uddiclient_core.jar
uddiclient_custody_v3.jar
uddiclient_subscription_listener_v3.jar
uddiclient_subscription_v3.jar
uddiclient_validate_values_v1.jar
uddiclient_validate_values_v2.jar
uddiclient_value_set_caching_v3.jar
uddiclient_value_set_validation_v3.jar
wsdl2uddi_client_v2.jar
wsdl2uddi_client_v3.jar
xml2uddi_client_v3.jar
xsd2uddi_client_v3.jar
xslt2uddi_client_v3.jar

4 In the CLIENT_HOME directory, create a subdirectory named conf. Copy the following files from
REGISTRY_HOME/conf to CLIENT_HOME/conf:

clientconf.xml
log4j.config

If you want to use the https connection in HP SOA Systinet Registry, you must import the certificate
file into clientconf.xml using the PStoreTool. This file contains the certificate of the HP SOA Systinet
Registry installation by default.

You do not have to copy client files to directories that have specific names (lib, dist, and conf).
All client files can be copied to the flat directory CLIENT_HOME, for example. If you do this, however,
replace CONF_DIRECTORY, DIST_DIRECTORY, and LIB_DIRECTORY with CLIENT_HOME in this section's instructions.

JARs on the Client Classpath

For each client package, the associated .jar files must be added to the classpath. These .jar files are listed
in the appropriate sections below.

Chapter 5710

HP SOA Systinet Registry Runtime

To enable the HP SOA Systinet Registry Runtime client package, add these .jar files to the classpath.

activation.jar
builtin-serialization.jar;
core_services_client.jar;
jaas.jar;
jaxm.jar;
jaxrpc.jar
runner.jar
saaj.jar;
security-ng.jar;
security2-ng.jar;
security_providers_client.jar;
wasp.jar;
wsdl_api.jar
xercesImpl.jar;
xml-apis.jar;
xmlParserApis.jar;

UDDI API Client v1

To enable the UDDI API (v1) client package, add these .jar files to the classpath. For more information on
this client package, please see UDDI Version 1 on page 535

uddiclient_api_v1.jar
uddiclient_core.jar

UDDI API Client v2

To enable the UDDI API (v2) client package, add these .jar files to the classpath. For more information on
this client package, please see UDDI Version 2 on page 535.

uddiclient_api_v2.jar
uddiclient_core.jar

711Developer's Guide

UDDI API Client v3

To enable the UDDI API (v3) client package, add these .jar files to the classpath. For more information on
this client packages, please see UDDI Version 3 on page 536.

uddiclient_api_v3.jar
uddiclient_core.jar

UDDI API Client v3 ext X

To enable the UDDI API (v3, ext X) client package, add these .jar files to the classpath.

uddiclient_api_v3_ext.jar
uddiclient_api_v3.jar
uddiclient_core.jar

Account Client

To enable the Account client package, add these .jar files to the classpath. For more information on this
client package, please see Account on page 685.

account_client.jar
uddiclient_core.jar

Admin Utilities Client

To enable the Admin Utilities client package, add these .jar files to the classpath. For more information on
this client package, please see Administration Utilities on page 608.

admin_utils_client.jar
uddiclient_api_v3.jar
uddiclient_core.jar

Approval Client v3

To enable the Approval (v3) client package, add these .jar files to the classpath. For more information on
this client package, please seeApproval on page 569.

Chapter 5712

approval_client_v3.jar
uddiclient_api_v3.jar
uddiclient_api_v2.jar
uddiclient_core.jar

Approval Content Checker Client v3

To enable the v3 Approval Content Checker client package, add these .jar files to the classpath.

approval_content_checker_client_v3.jar
uddiclient_core.jar

Approval Management Client

To enable the Approval Management client package, add these .jar files to the classpath.

approval_management_client.jar
uddiclient_core.jar

Category Client v3

To enable the Category (v3) client package, add these .jar files to the classpath. For more information on
this client package, please see Category on page 561

category_client_v3.jar
uddiclient_api_v3.jar
uddiclient_core.jar

Group Client

To enable the Group client package, add these .jar files to the classpath. For more information on this client
package, please see Group on page 694.

group_client.jar
account_client.jar

713Developer's Guide

uddiclient_core.jar

Permission Client

To enable the Permission client package, add these .jar files to the classpath. For more information on this
client package, please see Permission on page 703.

permission_client.jar
account_client.jar
uddiclient_core.jar

Replication Client v3

To enable the Replication (v3) client package, add these .jar files to the classpath. For more information on
this client package, please see Replication on page 614.

replication_client_v3.jar
uddiclient_core.jar

Statistics Client

To enable the Statistics client package, add these .jar files to the classpath. For more information on this
client package, please see Statistics on page 615.

statistics_client.jar
uddiclient_core.jar

Taxonomy Client v3

To enable the v3 Taxonomy client package, add these .jar files to the classpath. For more information on
this client package, please see Taxonomy on page 548.

taxonomy_client_v3.jar
taxonomy_client_v31.jar
uddiclient_api_v3.jar
uddiclient_core.jar

Chapter 5714

UDDI Custody Client v3

To enable the v3 UDDI Custody client package, add these .jar files to the classpath. For more information
on this client package, please see Custody on page 537.

uddiclient_custody_v3.jar
uddiclient_api_v3.jar
uddiclient_core.jar

UDDI Subscription Client v3

To enable the v3 UDDI Subscription client package, add these .jar files to the classpath. For more information
on this client package, please see Subscription on page 537.

uddiclient_subscription_v3.jar
uddiclient_api_v3.jar
uddiclient_core.jar

UDDI Subscription Listener Client v3

To enable the v3 UDDI Subscription Listener client package, add these .jar files to the classpath. For more
information on this client package, please see Subscription on page 537.

uddiclient_subscription_listener_v3.jar
uddiclient_subscription_v3.jar
uddiclient_api_v3.jar
uddiclient_core.jar

UDDI Validate Values Client v1

To enable the UDDI Validate Values (v1) client package, add these .jar files to the classpath. For more
information on this client package, please see Validation on page 547.

uddiclient_validate_values_v1.jar
uddiclient_api_v1.jar
uddiclient_core.jar

715Developer's Guide

UDDI Validate Values v2

To enable the UDDI Validate Values (v2) client package, add these .jar files to the classpath. For more
information on this client package, please see Validation on page 547.

uddiclient_validate_values_v2.jar
uddiclient_api_v2.jar
uddiclient_core.jar

UDDI Value Set Caching Client v3

To enable the UDDI Value Set Caching (v3) client package, add these .jar files to the classpath.

uddiclient_value_set_caching_v3.jar
uddiclient_api_v3.jar
uddiclient_core.jar

UDDI Value Set Validation Client v3

To enable the UDDI Value Set Validation (v3) client package, add these .jar files to the classpath. For more
information on this client package, please see Validation on page 547.

uddiclient_value_set_validation_v3.jar
uddiclient_api_v3.jar
uddiclient_core.jar

WSDL2UDDI Client v2

To enable the WSDL2UDDI (v2) client package, add these .jar files to the classpath. For more information
on this client package, please see WSDL Publishing on page 620

wsdl2uddi_client_v2.jar
uddiclient_api_v2.jar
uddiclient_core.jar

Chapter 5716

WSDL2UDDI Client v3

To enable the WSDL2UDDI (v3) client package, add these .jar files to the classpath. For more information
on this client package, please see WSDL Publishing on page 620

wsdl2uddi_client_v3.jar
uddiclient_api_v3.jar
uddiclient_core.jar

Resources publishing (XML, XSD, XSLT) Client

To enable the client package, add these .jar files to the classpath.

uddiclient_api_v3.jar
uddiclient_core.jar
xml2uddi_client_v3.jar
xsd2uddi_client_v3.jar
xslt2uddi_client_v3.jar

Classpath Examples

To run your HP SOA Systinet Registry client code you must add a config directory, wasp.jar, and client's
jars to the classpath.

CLIENT_HOME=. CONF_DIRECTORY=CLIENT_HOME\conf DIST_DIRECTORY=CLIENT_HOME\dist

LIB_DIRECTORY=CLIENT_HOME\lib

• If you want to use only UDDI Version 3:

CONF_DIRECTORY;LIB_DIRECTORY\wasp.jar;DIST_DIRECTORY\uddiclient_api_v3.jar

• If you want to use only UDDI Version 3 and UDDI Subscription Version 3:

CONF_DIRECTORY;LIB_DIRECTORY\wasp.jar;DIST_DIRECTORY\uddiclient_api_v3.jar%;
DIST_DIRECTORY\uddiclient_subscription_v3.jar

717Developer's Guide

• If you want to use only UDDI Version 3, UDDI Subscription Version 3, and Taxonomy:

CONF_DIRECTORY;LIB_DIRECTORY\wasp.jar;DIST_DIRECTORY\uddiclient_api_v3.jar%;
DIST_DIRECTORY\uddiclient_subscription_v3.jar;DIST_DIRECTORY\taxonomy_client_v3.jar

Client Authentication

By default, all exposed registry APIs use the UDDI authentication scheme, where an authentication token
is passed with every call to identify a remote user. This is shown in registry demos such as Publishing v3
on page 920. The UDDI authentication scheme can be replaced.

In this section, we will show you an example client that publishes a new business entity using HTTP-Basic
or SSL client authentication.

Example Client

For simplicity, the example client uses a SOAP stack provided with HP SOA Systinet Registry. You can
use a SOAP stack of your choice to communicate with the registry.

Chapter 5718

Example 3: ExampleClient.java

// Copyright 2001-2006 Systinet Corp. All rights reserved.
// Use is subject to license terms.

import org.systinet.uddi.client.v3.UDDIPublishStub;
import org.systinet.uddi.client.v3.UDDI_Publication_PortType;
import org.systinet.uddi.client.v3.struct.*;

public class ExampleClient {
 public static void main(String[] args) {
 String registryBaseUrl = System.getProperty("registry.base.url","http://localhost:8080");
 String urlPublishing = registryBaseUrl+ "/uddi/publishing";
 System.out.print("Using publishing URL "+urlPublishing + " .");

 try {
 UDDI_Publication_PortType publish = UDDIPublishStub.getInstance(urlPublishing);
 System.out.println(publish.save_business(new Save_business
 (new BusinessEntityArrayList(new BusinessEntity(new NameArrayList
 (new Name("Created by Client Authentication Example")))))));

 System.out.println(" done");
 } catch (Exception e) {
 e.printStackTrace();
 }
 }
}

The client is created as follows:

1 Create the directory CLIENT_HOME.

2 Create a client class in the CLIENT_HOME directory. The example client is shown in Example 3 on page
719. It has no security calls or structures internally. Client-side security will be configured later using
properties supplied to the java command that runs the client.

3 Create the lib subdirectory of CLIENT_HOME. Copy the jar files required for compilation and client
execution to this directory. All the jars are in the HP SOA Systinet Registry installation directory. They
are:

• lib/activation.jar

719Developer's Guide

• lib/builtin_serialization.jar

• lib/core_services_client.jar

• lib/jaxm.jar

• lib/jaxrpc.jar

• lib/jetty.jar

• lib/log4j.jar

• lib/saaj.jar

• lib/security-ng.jar

• lib/security2-ng.jar

• lib/security_providers_client.jar

• lib/wasp.jar

• lib/wsdl_api.jar

• lib/xalan.jar

• lib/xercesImpl.jar

• lib/xml-apis.jar

• dist/uddiclient_core.jar

• dist/uddiclient_api_ v3.jar

4 Create the conf subdirectory of CLIENT_HOME. Copy configuration files required to run the client
to this directory. These files are are also in the HP SOA Systinet Registry installation directory:

• conf/clientconf.xml

• conf/package12.xml

Chapter 5720

• conf/package13.xml

• conf/jaas.config

5 Compile the example client class using a CLASSPATH that includes all jar files in the lib subdirectory
of CLIENT_HOME

Before running the client, configure registry for a particular authentication scheme, as explained in HTTP
Basic on page 186 or SSL Client authentication on page 190. If you want to configure a deployed registry for
SSL client authentication, follow instructions given in J2EE Server Authentication on page 194

To run the client:

1 Use a classpath that includes all jar files from the CLIENT_HOME/lib directory, and the directory containing
the compiled example class.

2 Add the following property definitions to the java command line:

• -Dwasp.location=CLIENT_HOME

• -Djava.security.auth.login.config=CLIENT_HOME/conf/jaas.config

3 To run the client with HTTP Basic authentication also add the following:

• -Dwasp.username=USERNAME

• -Dwasp.password=PASSWORD

• -Dwasp.securityMechanism=HttpBasic

• -Dregistry.base.url=http://HOST:PORT/CONTEXT

Use the credentials of a registered user instead of USERNAME and PASSWORD. To register a new user, start
with the main page of registry console. See Registry Consoles on page 241 for details. You may also
use the demo user demo_john with password demo_john if you imported demo data during installation.

721Developer's Guide

The base URL of registry is specified using the registry.base.url property as shown in Example 3 on
page 719. Replace HOST,PORT and CONTEXT to match your registry deployment; for example
http://pc1.mycomp.com:8080.

4 To run the client with SSL client authentication add the following:

• -Dwasp.username=USERNAME

• -Dwasp.password=PASSWORD

• -Dwasp.securityMechanism=SSL

• -Dregistry.base.url=https://HOST:PORT/CONTEXT

Unlike HTTP Basic authentication, USERNAME and PASSWORD are used to obtain the client identity from a
local protected store. You have to import the client identity using instructions provided in SSL Tool
on page 511. The protected store of the example client is in the file CLIENT_HOME/conf/clientconf.xml. You
also have to import a server certificate (or the certificate of a certification authority that issued the
server certificate) in the same protected store using instructions provided in PStore Tool on page 503.

Use an alias in the protected store instead of USERNAME. PASSWORD stands for the password that is used to
protect the private key stored under that alias.

The base URL of registry is specified using the registry.base.url System property as shown in Example
3 on page 719. Replace HOST,PORT and CONTEXT to match your registry deployment; for example
https://pc1.mycomp.com:8443.

Server-Side Development
This chapter focuses on the server-side development of HP SOA Systinet Registry extensions. Possible
ways of accessing HP SOA Systinet Registry are discussed including examples.

• Accessing backend APIs via servlet deployed on an application server.

• Custom HP SOA Systinet Registry Modules - how to create and deploy custom HP SOA Systinet
Registry modules.

• Interceptors can monitor or modify the requests and responses of HP SOA Systinet Registry. Interceptors
are at the lowest level of HP SOA Systinet Registry API call processing.

Chapter 5722

• Writing custom Validation services - HP SOA Systinet Registry provides several ways to define and
use validation services for taxonomies or identifier systems inluding remotely and locally deployed
validation services and an internal validation service. For details, please see User's Guide, Taxonomy:
Principles, Creation and Validation on page 306. This chapter focuses how to create a validation service.

• Writing subscription notification services - How to implement subscription notification service deployed
on Systinet Server for Java.

• JSP Framework - This section covers the Systinet Web Framework.

• Business Service Console Framework - This section covers the Business Service Console Framework.

Accessing Backend APIs

This section will show you how to integrate HP SOA Systinet Registry with your application. Your application
can be deployed as a servlet to the same context of the application server as the registry. In this case, the
servlet of your application can access instances of HP SOA Systinet Registry APIs as shown in Figure 5.

Figure 5. Accessing Backend Registry APIs - Architecture View

The sequence of steps that precedes access to the HP SOA Systinet Registry API is shown in Figure 6.

1 HP SOA Systinet Registry's API implementations are registered in the WASP context during the boot of
the registry.

723Developer's Guide

2 The example servlet deployed in the WASP context calls the getInstance() method with the required
UDDI Registry interface as a parameter to obtain a reference of the interface implementation.

3 The example servlet can call the API methods of HP SOA Systinet Registry.

Figure 6. Accessing Backend Registry APIs - Sequence Diagram

We assume HP SOA Systinet Registry is deployed to Tomcat. TOMCAT_HOME refers to the directory
in which the application server is installed. The step-by-step procedure has been tested on Tomcat
5.0.28.

Follow these steps to create and deploy the example servlet:

1 Create the example servlet class shown in Example 4 on page 726.

Compile the ExampeServlet.java using:

javac -classpath %REGISTRY_HOME%\dist\uddiclient_api_v3.jar;
%REGISTRY_HOME%\dist\uddiclient_core.jar;
%REGISTRY_HOME%\lib\wasp.jar;
%TOMCAT_HOME%\common\lib\servet-api.jar ExampleServlet.java

2 Copy ExampleServlet.class to the directory TOMCAT_HOME/webapps/wasp/Web-
inf/classes/com/systinet/example/servlet.

Chapter 5724

3 Add the example servlet to TOMCAT_HOME/webapps/wasp/Web-inf/web.xml as shown in Example 5 on page
728.

4 Restart the Tomcat application server.

The example servlet will be available at http://localhost:8080/wasp/myexamples.

You can test it as shown at Figure 7.

Figure 7. Example Servlet Output

725Developer's Guide

Example 4: ExampleServet.java

 package com.systinet.example.servlet;

import org.idoox.wasp.Context;
import org.idoox.wasp.InstanceNotFoundException;
import org.systinet.uddi.InvalidParameterException;
import org.systinet.uddi.client.v3.UDDIException;
import org.systinet.uddi.client.v3.UDDI_Inquiry_PortType;
import org.systinet.uddi.client.v3.struct.*;

import javax.servlet.ServletException;
import javax.servlet.http.HttpServlet;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
import java.io.IOException;
import java.io.PrintWriter;
import java.util.Iterator;

public class ExampleServlet extends HttpServlet {

 public void doGet(HttpServletRequest request, HttpServletResponse response)
 throws IOException, ServletException {
 try {
 String searchedBusiness = request.getParameter("sbusiness");
 if (searchedBusiness == null) searchedBusiness = "";
 response.setContentType("text/html");
 PrintWriter out = response.getWriter();
 out.println("<HTML>");
 out.println("<HEAD>");
 out.println("<H1>Example servlet integration with Systinet Registry</H1>");
 out.println("<P>Enter the business name you wish to search");
 out.println("<FORM METHOD=GET ACTION=/wasp/myexamples/>");
 out.println("<INPUT NAME=sbusiness SIZE=20 VALUE=" + searchedBusiness + ">");
 out.println("<INPUT TYPE=SUBMIT VALUE=Search>");
 out.println("</FORM>");

 // get UDDI API V3 Inquiry implementation
 UDDI_Inquiry_PortType inquiry =
 (UDDI_Inquiry_PortType) Context.getInstance(UDDI_Inquiry_PortType.class);

 // prepare find_business call
 Find_business find_business = new Find_business();
 if (searchedBusiness.length() > 0) {

Chapter 5726

 find_business.addName(new Name(searchedBusiness));
 out.println("<P>Searching business :" + searchedBusiness);
 // call find_business
 BusinessList businessList = inquiry.find_business(find_business);
 // process the result
 BusinessInfoArrayList businessInfoArrayList
 = businessList.getBusinessInfoArrayList();
 if (businessInfoArrayList == null) {
 out.println("<P>Nothing found");
 } else {

 out.println("<P>Business "+searchedBusiness+" found");
 for (Iterator iterator =
 businessInfoArrayList.iterator(); iterator.hasNext();) {
 BusinessInfo businessInfo = (BusinessInfo) iterator.next();
 out.println("<P>Business key : " +
 businessInfo.getBusinessKey()+"");
 out.println("<P><TEXTAREA ROWS=10 COLS=70>");
 out.println(businessInfo.toXML());
 out.println("</TEXTAREA");

 }

 }
 }
 out.println("</HTML>");
 } catch (InvalidParameterException e) {
 } catch (InstanceNotFoundException e) {
 } catch (UDDIException e) {
 }

 }
}

727Developer's Guide

Example 5: Example Servlet's web.xml

 <servlet>
 <servlet-name>ExampleServlet</servlet-name>
 <servlet-class>com.systinet.example.servlet.ExampleServlet</servlet-class>
</servlet>

<servlet-mapping>
 <servlet-name>ExampleServlet</servlet-name>
 <url-pattern>/myexamples/*</url-pattern>
</servlet-mapping>

Custom Registry Modules

In this section, we will show you how to extend HP SOA Systinet Registry functionality with your custom
modules. Custom modules can be added to HP SOA Systinet Registry as shown in Figure 8.

Figure 8. Custom Registry Module - Architecture View

To create and deploy a registry module, follow these steps:

1 Write a class that implements org.systinet.uddi.module.Module.

2 Copy your module implementation class to the directory REGISTRY_HOME/app/uddi/services/WASP-INF/classes.

3 Create a configuration file for the module in REGISTRY_HOME/app/uddi/conf.

Chapter 5728

4 Shutdown HP SOA Systinet Registry, delete the REGISTRY_HOME/work directory, and restart the registry.

The main class of the custom module must implement org.systinet.uddi.module.Module interface that has
these methods:

• load() is invoked as the first method of the module. You can put reading of the configuration file in
here.

• init() is invoked after the load() method. Put the core implementation of your module in here. Write
non-blocking code or start a new thread.

• destroy() is invoked just before the HP SOA Systinet Registry shutdown.

Accessing Registry APIs

To access the HP SOA Systinet Registry API you must obtain the API stub using the getApiInstance()
method of the API implementation class. For example to obtain the stub of the Statistics API use:

StatisticsApi statapi = StatisticsApiImpl.getApiInstance();

Mapping between API interface classes and implementation classes is stored in the
REGISTRY_HOME/app/uddi/services/WASP-INF/package.xml file. See Table 53 on page 730.

729Developer's Guide

Table 53. Mapping API Interface and Implemenation Classes

Implementation classInterface class

com.systinet.uddi.inquiry.v1.InquiryApiImplorg.systinet.uddi.client.v1.InquireSoap

com.systinet.uddi.publishing.v1.PublishingApiImplorg.systinet.uddi.client.v1.PublishSoap

com.systinet.uddi.publishing.v2.PublishingApiImplorg.systinet.uddi.client.v2.Publish

com.systinet.uddi.inquiry.v2.InquiryApiImplorg.systinet.uddi.client.v2.Inquire

com.systinet.uddi.v3.SecurityApiImplorg.systinet.uddi.client.v3.UDDI_Security_PortType

com.systinet.uddi.publishing.v3.PublishingApiImplorg.systinet.uddi.client.v3.UDDI_Publication_PortType

com.systinet.uddi.inquiry.v3.InquiryApiImplorg.systinet.uddi.client.v3.UDDI_Inquiry_PortType

com.systinet.uddi.subscription.v3.SubscriptionApiImplorg.systinet.uddi.client.subscription.v3.UDDI_Subscription_PortType

com.systinet.uddi.custody.v3.CustodyApiImplorg.systinet.uddi.client.custody.v3.UDDI_CustodyTransfer_PortType

com.systinet.uddi.replication.v3.ReplicationApiImplorg.systinet.uddi.replication.v3.ReplicationApi

com.systinet.uddi.wsdl2uddi.v3.Wsdl2uddiApiImplorg.systinet.uddi.client.wsdl2uddi.v3.Wsdl2uddiApi

com.systinet.uddi.wsdl2uddi.v2.Wsdl2uddiApiImplorg.systinet.uddi.client.wsdl2uddi.v2.Wsdl2uddiApi

com.systinet.uddi.category.v3.CategoryApiImplorg.systinet.uddi.client.category.v3.CategoryApi

com.systinet.uddi.taxonomy.v3.TaxonomyApiImplorg.systinet.uddi.client.taxonomy.v3.TaxonomyApi

com.systinet.uddi.statistics.StatisticsApiImplorg.systinet.uddi.statistics.StatisticsApi

com.systinet.uddi.admin.AdministrationUtilsApiImplorg.systinet.uddi.admin.AdministrationUtilsApi

com.systinet.uddi.permission.PermissionApiImplorg.systinet.uddi.permission.PermissionApi

com.systinet.uddi.group.GroupApiImplorg.systinet.uddi.group.GroupApi

com.systinet.uddi.account.AccountApiImplorg.systinet.uddi.account.AccountApi

com.systinet.uddi.configurator.cluster.ConfiguratorApiImplorg.systinet.uddi.configurator.ConfiguratorApi

Custom Module Sample

This section includes step-by-step instructions how to create a registry module that counts the number of
restarts of HP SOA Systinet Registry and saves the result to a configuration file.

Follow these steps:

Chapter 5730

1 Create Java file ExampleModule.java as shown in Example 6 on page 732

2 Compile the module using java -classpath "%REGISTRY_HOME%\app\uddi\services\WASP-
INF\lib\application_ core.jar; %REGISTRY_HOME%\lib\wasp.jar" ExampleModule.java

3 Copy all module classes (ExampleModule.class, ExampleModule$RestartConfig$Counter.class,
ExampleModule$RestartConfig.class) to the REGISTRY_HOME/app/uddi/services/WASP-
INF/classes/com/systinet/example/module directory.

4 Create the configuration file mymodule.xml in REGISTRY_HOME/app/uddi/conf folder. For details, please see
Example 7 on page 733.

5 Shutdown HP SOA Systinet Registry, delete the REGISTRY_HOME/work directory, and restart the registry.

The number of restarts will be printed in the window console in which you started HP SOA Systinet Registry.
See also the configuration file of the module where a new element counter is created.

731Developer's Guide

Example 6: ExampleModule.java

package com.systinet.example.module;

import org.idoox.config.Configurable;
import org.systinet.uddi.module.Module;

public class ExampleModule implements Module {
 private long restart = 0;
 private RestartConfig.Counter counter;

 interface RestartConfig {
 public Counter getCounter();
 public void setCounter(Counter counter);
 public Counter newCounter();
 interface Counter {
 public long getRestart();
 public void setRestart(long restart);
 }
 }

 public void load(Configurable config) {
 System.out.println("MY MODULE CONFIG READING");
 RestartConfig restartConfig = (RestartConfig) config.narrow(RestartConfig.class);
 if (restartConfig != null) {
 counter = restartConfig.getCounter();
 if (counter == null) {
 counter = restartConfig.newCounter();
 restartConfig.setCounter(counter);
 }
 try {
 restart = counter.getRestart();
 } catch (Exception e) {
 counter.setRestart(0);
 }
 }
 }

 public void init() {
 System.out.println("MY MODULE STARTED");
 counter.setRestart(++restart);
 System.out.println("UDDI REGISTRY: number of restarts = " + restart);
 }

 public void destroy() {

Chapter 5732

 }
}

Example 7: Example configuration file for custom module

<?xml version="1.0" encoding="UTF-8"?>
<config name="myconf">
 <module loader="com.systinet.example.module.ExampleModule" name="MyModule">
 </module>
</config>

Interceptors

Interceptors can monitor or modify the requests and responses of HP SOA Systinet Registry as shown in
Figure 9. They are at the lowest level of HP SOA Systinet Registry API call processing, and can be used
for:

• Logging requests. See Logging Interceptor Sample on page 734.

• Computing message statistics. See Request Counter Interceptor Sample on page 738.

• Changing request arguments (adding default values)

• Prohibiting some API calls

Figure 9. Registry Interceptors

There are three types of HP SOA Systinet Registry interceptor:

733Developer's Guide

• Request Interceptor. Monitors or modifies request arguments, stops processing requests, or throws an
exception. This type of interceptor accepts a called method object and its arguments.

• Response Interceptor. Monitors or modifies response values or throws an exception. This interceptor
accepts a called method object and its response value.

• Exception Interceptor. Monitors, modifies, or changes an exception. This interceptor accepts a called
method object and its thrown exception.

If you want to directly access the HP SOA Systinet Registry API see Accessing Registry APIs on page 729
for more information.

Creating and Deploying Interceptors

To create an Interceptor, follow these steps:

1 Write a class that implements the org.systinet.uddi.interceptor interface.

2 Copy your interceptor implementation class to the directory REGISTRY_HOME/app/uddi/services/Wasp-
inf/classes.

3 Create a configuration file for your interceptor in the REGISTRY_HOME/app/uddi/conf directory. See
Interceptor Configuration on page 737.

4 Shutdown HP SOA Systinet Registry, delete the REGISTRY_HOME/work directory, and restart the registry.

Logging Interceptor Sample

This section includes step-by-step instructions how to create the interceptor that logs requests.

To create a logging interceptor:

1 Create Java file LoggingInterceptor.java as shown in Example 8 on page 736.

2 Compile the interceptor using Java -classpath "%REGISTRY_HOME%\app\uddi\services\Wasp-
inf\lib\application_core.jar; %REGISTRY_HOME%\lib\wasp.jar" LoggingInterceptor.java

3 Copy LoggingInterceptor.class to the REGISTRY_HOME/app/uddi/services/Wasp-inf/classes/interceptor
directory.

Chapter 5734

4 Create the configuration file Myinterceptor.xml in REGISTRY_HOME/app/uddi/conf folder. For details, please
see Example 9 on page 737.

5 Shutdown HP SOA Systinet Registry, delete the REGISTRY_HOME/work directory, and restart the registry.

735Developer's Guide

Example 8: Logging Interceptor Class

package interceptor;

import org.idoox.config.Configurable;
import org.idoox.wasp.WaspInternalException;
import org.idoox.wasp.interceptor.InterceptorChain;
import org.systinet.uddi.interceptor.ExceptionInterceptor;
import org.systinet.uddi.interceptor.RequestInterceptor;
import org.systinet.uddi.interceptor.ResponseInterceptor;
import org.systinet.uddi.interceptor.StopProcessingException;
import java.lang.reflect.Method;

public class LoggingInterceptor implements RequestInterceptor,
 ResponseInterceptor, ExceptionInterceptor {

 public void load(Configurable config)
 throws WaspInternalException {
 // no initialization required
 }

 public void destroy() {
 // no destroy required
 }

 public void intercept(Method method,
 Object[] args,
 InterceptorChain chain,
 int position)
 throws StopProcessingException, Exception {
 System.out.println("request: " + method.getName());
 }

 public Object intercept(Method method,
 Object returnValue,
 InterceptorChain chain,
 int position)
 throws Exception {
 System.out.println("response: " + method.getName());
 return returnValue;
 }

 public Exception intercept(Method method,
 Exception e,

Chapter 5736

 InterceptorChain chain,
 int position) {
 System.out.println("exception: " + method.getName());
 return e;
 }
}

Example 9: Logging Interceptor Configuration File

<?xml version="1.0" encoding="UTF-8"?>
<config name="MyInterceptorConfig">
 <UDDIInterceptorInstance name="LoggingInterceptorInstance"
 instancePerCall="false"
 className="interceptor.LoggingInterceptor"/>
 <UDDIInterceptor name="LoggingInterceptor"
 instanceName="LoggingInterceptorInstance"
 interceptorChain="inquiry_v3"
 request="true"
 response="true"
 fault="true" />
</config>

Interceptor Configuration

The configuration file must be present in the REGISTRY_HOME/app/uddi/conf directory. For details please see
Example 9 on page 737. Interceptors are called in the same order as they appear in the configuration file.

• config name - the unique (unambiguous) name of the configuration.

• UDDIInterceptorInstance - contains information about the implementation class and its instantiation.

• name - The name of interceptor instance. This name is used as a link to the
UDDIInterceptor/instanceName section of the configuration.

• instancePerCall - If the instancePerCall attribute is set to true, then the class will be instantiated once
per API call. Otherwise, this interceptor instantiates only once for all calls.

• className - name of the class that implements the interceptor.

737Developer's Guide

• UDDIInterceptor - The UDDIInterceptor contains references to UDDI Interceptors and their types.

• name - name of the interceptor.

• instanceName - this attribute contains the name of the UDDIInterceptorInstance section of the
configuration file.

• interceptorChain - UDDIInterceptorChains are defined for each API in their configuration files. This
attribute contains a reference to the required API.

• request - when set true, the interceptor catches requests.

• response - when set true, the interceptor catches responses.

• fault - when set true, the interceptor catches faults.

Request Counter Interceptor Sample

In this section, we will create an interceptor that counts requests and stores the number of request to a
configuration file. The steps required to create a Request Counter Interceptor are the same as those in the
Logging Interceptor Sample on page 734.

Interceptor implementation is shown in Example 10 on page 739; the configuration file is shown in Example
11 on page 740.

Chapter 5738

Example 10: Request Counter Interceptor Class

package interceptor;

import org.idoox.config.Configurable;
import org.idoox.wasp.WaspInternalException;
import org.idoox.wasp.interceptor.InterceptorChain;
import org.systinet.uddi.interceptor.RequestInterceptor;
import org.systinet.uddi.interceptor.StopProcessingException;
import java.lang.reflect.Method;

public class RequestCounterInterceptor implements RequestInterceptor {

 private long request = 0;
 private RequestCounterInterceptorConfig.Counter counter;

 /**
 * RequestCounterInterceptor config interface
 */
 interface RequestCounterInterceptorConfig {
 public Counter getCounter();
 public void setCounter(Counter counter);
 public Counter newCounter();
 interface Counter {
 public long getRequest();
 public void setRequest(long request);
 }
 }
 public void intercept(Method method,
 Object[] args,
 InterceptorChain chain,
 int position)
 throws StopProcessingException, Exception {
 counter.setRequest(++request);
 System.out.println("request: " + request);
 }

 public void load(Configurable config)
 throws WaspInternalException {
 RequestCounterInterceptorConfig intinterceptorConfig =
 (RequestCounterInterceptorConfig)
 config.narrow(RequestCounterInterceptorConfig.class);
 if (intinterceptorConfig != null) {
 counter = intinterceptorConfig.getCounter();
 if (counter == null) {

739Developer's Guide

 counter = intinterceptorConfig.newCounter();
 intinterceptorConfig.setCounter(counter);
 }
 try {
 request = counter.getRequest();
 } catch (Exception e) {
 counter.setRequest(0);
 }
 }
 }

 /**
 * Destroys the interceptor.
 */
 public void destroy() {
 // no destroy required
 }
}

Example 11: Request Counter Interceptor Configuration File

<?xml version="1.0" encoding="UTF-8"?>
<config name="myInterceptors">
 <UDDIInterceptorInstance className="interceptor.RequestCounterInterceptor"
 instancePerCall="false" name="RequestCounterInterceptorSampleInstance">
 </UDDIInterceptorInstance>
 <UDDIInterceptor fault="false"
 instanceName="RequestCounterInterceptorSampleInstance"
 interceptorChain="inquiry_v3" name="RequestCounter" request="true"
 response="false"/>
</config>

Writing a Custom Validation Service

HP SOA Systinet Registry provides several ways to define and use validation services for taxonomies or
identifier systems. For details about HP SOA Systinet Registry taxonomies, please see User's Guide,
Taxonomy: Principles, Creation and Validation on page 306. This chapter focuses on custom validation
services that you can deploy:

• Locally on HP SOA Systinet Registry - Local validation service.

Chapter 5740

• Remotely to a SOAP server, for example the Systinet Server for Java - External validation service.

There are three different Java interfaces for validation services, one for each of the main UDDI data structures.
These interfaces correspond to the WSDL Port Types of the Validation Service defined in the UDDI
specification.

• UDDI v3 validation services must implement
org.systinet.uddi.client.valueset.validation.v3.UDDI_ValueSetValidation_PortType.

• UDDI v2 validation services must implement org.systinet.uddi.client.vv.v2.ValidateValues.

• UDDI v1 validation services must implement org.systinet.uddi.client.vv.v1.ValidateValues.

These interfaces are similar enough that we will only describe v3 validation. Your validation service must
implement the interface UDDI_ValueSetValidation_PortType. This interface only has the validate_values method
which has only one parameter, Validate_values. This parameter is a wrapper for real parameters: optional
authInfo and basic UDDI data structures (businessEntities, businessServices, bindingTemplates, tModels
and publisherAssertions) to validate. The validate_values method returns
org.systinet.uddi.client.v3.struct.DispositionReport. If validation passes successfully, the DispositionReport
should contain only one org.systinet.uddi.client.v3.struct.Result with errNo equals
org.systinet.uddi.client.UDDIErrorCodes.

Deploying Validation Service

Once the validation service is implemented, you can deploy the validation service locally on HP SOA
Systinet Registry. To deploy the validation service on HP SOA Systinet Registry

1 Create a classes subdirectory under REGISTRY_HOME/app/uddi/services/WASP-INF and copy the class file
into this directory (with respect to subdirectories corresponding to packages).

2 Shutdown HP SOA Systinet Registry, delete the REGISTRY/work directory, and restart HP SOA Systinet
Registry.

For more information, please see the Demos, Validation on page 947. For details about the configuration of
Validation Services, please see Administrator's Guide, Taxonomy Management on page 415

To deploy an external validation service, you must create a deployment package.

741Developer's Guide

External Validation Service

This section shows you how to implement and package an external validation service that will be deployed
to Systinet Server for Java 5.5. We show you how to package and deploy the ISBN validation service from
the validation demo described in Validation on page 947. We assume you have already built the Validation
demo.

We also assume HP SOA Systinet Registry is installed in the REGISTRY_HOME folder and running at
http://localhost:8080/ and that

Systinet Server for Java is installed in WASP_HOME folder and running at http://localhost:6060/

To package and deploy a validation service to Systinet Server for Java:

1 Create a deployment package.

Create the jar file ExampleValidation.jar with the following structure:

Copy ISBNValidation.class from REGISTRY_HOME/demos/advanced/validation/build/classes to the package.

Copy the wsdl and xsd files from REGISTRY_HOME/doc/wsdl to the package.

Copy the package.xml file shown at Example 12 on page 744 to the package.

Chapter 5742

2 Deploy the validation package with required HP SOA Systinet Registry client packages into Systinet
Server for Java 5.5.

a copy %REGISTRY_HOME%\dist\uddiclient_api_v3.jar
%WASP_HOME%\app\system\uddi

b copy %REGISTRY_HOME%\dist\uddiclient_value_set_validation_v3.jar
%WASP_HOME%\app\system\uddi

c copy ExampleValidation.jar %WASP_HOME%\app\system\uddi

3 Shutdown the Systinet Server for Java, delete the WASP_HOME/work directory, and restart the Systinet
Server for Java

Now you can upload the checked taxonomy from REGISTRY/demos/advanced/validation/data. For more
information, please see User's Guide Uploading Taxonomies on page 430.

Modify the validation service endpoint as shown in Figure 10

Figure 10. Validation for Checked Taxonomy

You can run and test the validation service using Validation demo described in Validation on page 947.

743Developer's Guide

Sample Files

Example 12: package.xml

<?xml version="1.0" encoding="UTF-8"?>
<package xmlns="http://systinet.com/wasp/package/1.2"
 xsi:schemaLocation=
 "http://systinet.com/wasp/package/1.2 http://systinet.com/wasp/package/1.2"
 targetNamespace="http://my.org" version="1.0"
 name="ISBNValidation" client-package="false" library="false"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:tns="http://my.org"

 xmlns:UDDIClient-value-set-validation-v3=
 "http://systinet.com/uddi/client/value-set-validation/v3/5.0">

<dependency ref="UDDIClient-value-set-validation-v3:UDDIClient-value-set-validation-v3"
 version="5.0"/>
 <service-endpoint name="ISBNValidation"
 path="/ISBNValidation"
 service-instance="tns:ISBNValidationInstance"
 processing="UDDIClient-value-set-validation-v3:UDDIClientProcessing">
 <wsdl uri="uddi_vs_v3.wsdl" xmlns:wsdl="urn:uddi-org:vs_v3_binding"
 service="wsdl:UDDI_ValueSetValidation_SoapService"/>
 </service-endpoint>
 <service-instance name="ISBNValidationInstance"
 implementation-class="demo.uddi.validation.ISBNValidation"
 preload="false" ttl="600" instantiation-method="shared"/>
</package>

Writing a Subscription Notification Service

This section will show you how to implement a subscription notification service. When you create a HP
SOA Systinet Registry subscription you can specify a notification listener service endpoint as described in
Subscriptions in HP SOA Systinet Registry on page 231. In this chapter, we describe the following use case:
The user wants to create a service that will be executed when a subscription notification is sent. The listener
notification service will be deployed on the Systinet Server for Java.

The procedure of creating and deploying the subscription notification consist of the following steps:

Chapter 5744

1 Create subscription notification service class. Package the notification service class with necessary
wsdl, schema, and deployment descriptor files.

2 Deploy the service notification package with the required HP SOA Systinet Registry client packages
into Systinet Server for Java.

3 Create a subscription using the Registry Console.

We assume HP SOA Systinet Registry is installed in REGISTRY_HOME folder and running at
http://localhost:8080/, and that

Systinet Server for Java is installed in WASP_HOME folder and running at http://localhost:6060/.

Now we will describe the process in detail:

1 Create the subscription notification service class shown in Example 13 on page 748

2 Compile the ExampleNotificationListener.java using:

javac -classpath%REGISTRY_HOME%\dist\uddiclient_api_v3.jar;
%REGISTRY_HOME%\dist\uddiclient_core.jar;
%REGISTRY_HOME%\dist\uddiclient_subscription_listener_v3.jar;
%REGISTRY_HOME%\dist\uddiclient_subscription_v3.jar ExampleNotificationListener.java

3 Package the ExampleNotificationListener.class with necessary wsdl, schema and deployment descriptor
file as follows:

a Create a jar file ExampleNotificationListener.jar with the following structure:

745Developer's Guide

b Copy the wsdl and schema files from REGISTRY_HOME/doc/wsdl to the package.

c Copy the package.xml file shown in Example 14 on page 749 to the package.

4 Deploy the service notification package with required HP SOA Systinet Registry client packages into
Systinet Server for Java 5.5.

a copy %REGISTRY_HOME%\dist\uddiclient_api_v3.jar
%WASP_HOME%\app\system\uddi

b copy %REGISTRY_HOME%\dist\uddiclient_subscription_v3.jar
%WASP_HOME%\app\system\uddi

c copy %REGISTRY_HOME%\dist\uddiclient_subscription_listener_v3.jar
%WASP_HOME%\app\system\uddi

d copy ExampleNotificationListener.jar %WASP_HOME%\app\system\uddi

5 Shutdown the Systinet Server for Java, delete the WASP_HOME/work directory, and restart the Systinet
Server for Java

Chapter 5746

6 Create a subscription using the Registry Console.

See Publishing Subscriptions on page 372 for instructions on how to create a subscription.

7 Publish the subscription with the Notification listener type Service endpoint. Enter the Notification
listener endpoint as http://your.computer.name.com:6060/ExampleNotificationListener as shown in Figure 11

Figure 11. Create Subscription

747Developer's Guide

Sample Files

Example 13: ExampleNotificationListener.java

package com.systinet.subscription;

import org.systinet.uddi.client.subscription.listener.v3.UDDI_SubscriptionListener_PortType;
import org.systinet.uddi.client.subscription.listener.v3.struct.Notify_subscriptionListener;
import org.systinet.uddi.client.v3.UDDIException;
import org.systinet.uddi.client.v3.struct.DispositionReport;

public class ExampleNotificationListener implements UDDI_SubscriptionListener_PortType{

 public DispositionReport notify_subscriptionListener(Notify_subscriptionListener body)
 throws UDDIException {
 System.out.println(body.toXML());
 DispositionReport result = DispositionReport.DISPOSITION_REPORT_SUCCESS;
 return result;
 }
}

Chapter 5748

Example 14: package.xml

<?xml version="1.0" encoding="UTF-8"?>
<package xmlns="http://systinet.com/wasp/package/1.2"
 xsi:schemaLocation="http://systinet.com/wasp/package/1.2 http://systinet.com/wasp/package/1.2"
 targetNamespace="http://my.org" version="1.0"
 name="ExampleNotificationListener" client-package="false" library="false"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:tns="http://my.org"

 xmlns:uddi_subr_v3="urn:uddi-org:subr_v3_binding"
 xmlns:uddiclient_subscription_listener_v3=
 "http://systinet.com/uddi/client/subscription/listener/v3/5.0">

 <dependency ref=
 "uddiclient_subscription_listener_v3:UDDIClient-subscription-listener-v3" version="5.0"/>

 <service-endpoint name="ExampleNotificationListener"
 path="/ExampleNotificationListener"
 service-instance="tns:ExampleNotificationListenerInstance"
 processing="uddiclient_subscription_listener_v3:UDDIClientProcessing">
 <wsdl uri="uddi_subr_v3.wsdl"
 service="uddi_subr_v3:UDDI_SubscriptionListener_SoapService"/>
 </service-endpoint>
 <service-instance name="ExampleNotificationListenerInstance"
 implementation-class="com.systinet.subscription.ExampleNotificationListener"
 preload="false" ttl="600" instantiation-method="shared"/>
</package>

Writing a Content Checker

In this section, we will show you how to create a content checker. The content checker provides an approver
the ability to programmatically check data for approval. We assume you are familiar with the Approval
Process, which is described in the following sections:

• User's Guide, Approval Process in Systinet Registry on page 234

• Administrator's Guide, Approval Process Principles on page 499

We will show you how to create and deploy a content checker on the following example: an Approver set
a rule that each business entity name must start with prefix "org_". Data that does not satisfy this rule cannot

749Developer's Guide

be approved (that is, copied to a discovery registry). The content checker is executed when a approver clicks
on the Approve button in the Approve request page of the HP SOA Systinet Registry console.

To set up this optional content checking:

1 Write a class that implements the class org.systinet.uddi.approval.checker.v3.CheckerApi.

2 Deploy the implementation class to the HP SOA Systinet Registry.

3 Register the implementation of the content checker class in the HP SOA Systinet Registry's data.

Now, we will look at the steps in detail:

1 Write a class that implements the org.systinet.uddi.approval.checker.v3.CheckerApi

a Create the content checker class as shown in Example 15 on page 752.

b Compile the CheckerApiImpl.java, and add jars from the directory PUBLICATION_REGISTRY_HOME/dist
to the class path.

2 Deploy the implementation class to the HP SOA Systinet Registry.

a Copy the CheckerApiImpl.class to the file PUBLICATION_REGISTRY_HOME/app/uddi/services/WASP-
INF/lib/approval_staging_v3.jar to the folder com/systinet/uddi/approval/v3/approver inside the jar
file.

b Shutdown the Publication Registry, delete the PUBLICATION_REGISTRY_HOME/work directory, and restart
the Publication Registry.

3 Register the implementation of the content checker class in the HP SOA Systinet Registry data.

a Log on to the Publication Registry as an approver. The content checker will be applicable to an
approver who follows these steps:

b Publish the WSDL of the checker service:

Publish the WSDL located at http://<host_name>:<http_port>/uddi/doc/wsdl/approval_checker.wsdl
to a new or already existing business entity. Use the Advanced publishing mode and be sure to

Chapter 5750

reuse the existing WSDL portType (tModel name:CheckerApi, tModel's key:
uddi:systinet.com:uddi:service:porttype:approvalchecker). The WSDL service
approval_checker_SoapService will be published under the business entity.

c Specify the checker in the access point of a new binding template under the
approval_checker_SoapService service.

Enter the value of access point which starts with the class: prefix and continue with the fully
qualified class name. For example, class:com.systinet.uddi.approval.v3.approver.CheckerApiImpl.

751Developer's Guide

Example 15: Content Checker Implementation

// Copyright 2001-2005 Systinet Corp. All rights reserved.
// Use is subject to license terms.
package com.systinet.uddi.approval.v3.approver;

import org.systinet.uddi.InvalidParameterException;
import org.systinet.uddi.approval.checker.v3.CheckerApi;
import org.systinet.uddi.approval.checker.v3.struct.CheckRequest;
import org.systinet.uddi.approval.v3.ApprovalErrorCodes;
import org.systinet.uddi.approval.v3.ApprovalException;
import org.systinet.uddi.approval.v3.struct.ApprovalEntitiesDetail;
import org.systinet.uddi.approval.v3.struct.EntitiesDetail;
import org.systinet.uddi.client.v3.struct.*;

/**
 * Checks if a BE starts with org_
 */
public class CheckerApiImpl implements CheckerApi {

 public DispositionReport checkRequest(CheckRequest checkRequest)
 throws ApprovalException {

 try {
 ResultArrayList resultArrayList = new ResultArrayList();

 ApprovalEntitiesDetail approvalEntitiesDetail =
 checkRequest.getApprovalEntitiesDetail();
 if (approvalEntitiesDetail != null) {
 EntitiesDetail entitiesDetail4Saving =
 approvalEntitiesDetail.getEntitiesDetail4Saving();
 BusinessEntityArrayList businessEntityArrayList =
 entitiesDetail4Saving.getBusinessEntityArrayList();
 if (businessEntityArrayList != null) {
 for (int i = 0; i < businessEntityArrayList.size(); i++) {
 BusinessEntity businessEntity = businessEntityArrayList.get(i);
 if (businessEntity != null) {
 NameArrayList nameArrayList =
 businessEntity.getNameArrayList();
 for (int j = 0; j < nameArrayList.size(); j++) {
 Name name = nameArrayList.get(j);
 if (name != null && !name.getValue().startsWith("org_")) {
 resultArrayList.add(
 new Result(ApprovalErrorCodes.INVALID_DATA,

Chapter 5752

 new ErrInfo(ApprovalErrorCodes.getCode(
 ApprovalErrorCodes.INVALID_DATA),
 "Only business entities whose name start with the " +
 "prefix \"org_\" are allowed" +
 " (BE [key: " + businessEntity.getBusinessKey() +
 ", name: " + name.getValue() + "])"),
 KeyType.businessKey));
 }
 }
 }
 }
 }
 }

 if (resultArrayList.size() > 0) {
 return new DispositionReport(resultArrayList);
 } else {
 return DispositionReport.DISPOSITION_REPORT_SUCCESS;
 }
 } catch (InvalidParameterException e) {
 // should not occur
 throw new ApprovalException(ApprovalErrorCodes.FATAL_ERROR, e.getMessage());
 }

 }
}

Systinet Web Framework

This section describes HP SOA Systinet Registry from the developer's point of view. It describes the HP
SOA Systinet Registry Framework architecture and configuration.

• Architecture Description on page 754

• Directory Structure on page 761

• Framework Configuration on page 763

• syswf JSP tag library on page 767

• Typical Customization Tasks on page 774

753Developer's Guide

Architecture Description

The framework uses the Jasper engine, a part of the Tomcat server. It is able to run on Jasper1 from Tomcat
version 4.1 (Servlet API 2.3/JSP spec 1.2) or Jasper2 from Tomcat version 5 (Servlet API 2.4/JSP spec
2.0). It also uses a customized JSTL 1.0 tag library implementation which is based on Apache tag libraries
from the Jakarta project [http://jakarta.apache.org/].

Applications using the Systinet Web Framework are composed of pages. Every page of the web has a URI
where it can be accessed. In the Systinet Web Framework, we call each page of the web as a task.

The Systinet Web Framework uses a component model to build up the web application. Every task is
assigned to a component which is the real entity behind the process that generates the resulting HTML page
displayed to the user. Thus, every task references a component, but components need not be associated with
tasks, as we will see later.

Each component is built from two parts:

• a JSP part

• a Java part

The JSP part serves as a template and takes care of parsing and visualization of the data that comes in a
session, or in a request to which they are stored in the Java part of a component.

The framework functionality is accessible from the JSP parts of components through the Systinet custom
JSP tag library. This library contains tags for creating references to tasks, nesting components, and tags for
creating HTML form elements that support dynamic behavior.

Sometimes, a component is purely JSP-based as the one associated with this documentation page. But when
the page must process user-entered information, or when data must be modified before presentation, you
must use the Java part of the component.

To switch from one page to a another, use the syswf:control custom tag in the JSP part of the source task
component. The syswf:control tag's targetTask attribute defines the task (that is, the page) the user should
be transferred to. The custom tag is translated into a piece of JavaScript code responsible for correct page
submitting.

Chapter 5754

http://jakarta.apache.org/

Tasks can be accessed directly using a web browser. For example, if the registry's web interface runs on
the address http://localhost:8080/uddi/web, a task with the URI /findBusiness can be accessed directly from
the client browser at http://localhost:8080/uddi/web/findBusiness.

Component Java Interface Part

The Java part of the component must implement the com.systinet.webfw.Component interface from the Web
Framework library. However, it usually extends its default implementation: com.systinet.webfw.ComponentImpl.
For those components that do not declare their Java part, this default implementation is automatically used.

The interface consists of two methods:

• void process(String action, Map params)

• void populate(String action, Map params)

The process() method is called just before the translation of the component's JSP part is started, so it should
take care of data preparation and it should also handle the actions requested by the user (react to pressed
buttons, etc.).

The populate() method is called only when the POST request to the URI comes from the same URI , so it's
a perfect place to modify the way data from a web page is populated back into objects. Actually, the target
objects are always Java Beans which simplify their handling quite a bit.

Request Diagram

The diagram shown in Figure 12 demonstrates how requests for the page are handled by the Web Framework:

755Developer's Guide

Figure 12. Request Diagram

1 The request is sent by the client browser from a different page than the page requested.

2 The process() method is called on taskA component's Java part. This method should perform actions
triggered by controls in the web page and/or prepare data for taskA component's JSP part.

3 Processing of taskA component's JSP part is initialized.

4 While taskA component's JSP part is being processed, the resulting HTML is generated.

5 Processing of taskA component's JSP part finishes; the response is returned to the client's browser.

If the request is sent by the client browser from the same page as the page requested (meaning the
source and target tasks are the same), then the populate() method is called on the task component's
Java part before the process() method.

Nesting Components

As we noted above, the component JSP part can include other components using the syswf:component custom
tag right in the JSP code. The diagram shown in Figure 13 presents how a request is handled when there
are such nested components. Note that now the request comes from the same task it is targeted to:

Chapter 5756

Figure 13. Nesting Components Diagram

1 The request is sent by the client browser from the same page as the page requested.

2 The populate() method is called on taskA component's Java part. This method is responsible for the
transfer of data from web page form elements (input fields, radio buttons, etc.) to JavaBeans objects
on the server.

3 The process() method is called on taskA component's Java part. This method should perform actions
triggered by controls in the web page and/or prepare data for taskA component's JSP part.

4 Processing of taskA component's JSP part is initialized.

5 Request for insertion of component A is found.

6 The process() method is called on the Java part of component A. This method should prepare data for
component presentation.

757Developer's Guide

7 Processing of the JSP part of component A is performed. Once finished, the result is included in the
parent JSP page.

8 Request for insertion of component B is found.

9 The process() method is called on the Java part of component B. This method should prepare data for
component presentation.

10 Processing of the JSP part of component B is performed. Once finished, the result is included in the
parent JSP page.

11 Processing of taskA component's JSP part finishes. The response is returned in the client's browser.

Component JSP Part

Example 16: Skeleton of the JSP Page

The following example displays the WSDL URL for a WSDL service.

<%@ taglib prefix="c" uri="http://java.sun.com/jstl/core" %>
<%@ taglib prefix="syswf" uri="http://systinet.com/jsp/syswf" %>

<syswf:page headerTemplate="pageHeader.jsp" footerTemplate="pageFooter.jsp">

 <syswf:wrap headerTemplate="design/pageHeader.jsp"
 footerTemplate="design/pageFooter.jsp">
 ...
 </syswf:wrap>

</syswf:page>

The core of the JSTL (standard tag library) together with the Registry Web Framework custom tag library
are imported. The beginning of the page is declared (syswf:page tag); page header and footer represented
as JSP pages are passed as attributes. These pages contain the basic HTML tags and declaration of Java
Scripts that will be used in the page.

To enable automatic wrapping and resizing, all of the page's content is packed into the syswf:wrap tag to
which page header and footer JSP pages are passed as attributes. The header and footer pages contain:

Chapter 5758

• The design part - the logo and menu, such as the labels at the top of this page under the product name

• The navigation path - shown in the top right corner of this page

• Text that should be displayed in the bottom of the page, such as copyright information.

Implicit Objects

Implicit objects allow you to interact with various framework parts, from Java code or JSP pages. A reference
to an implicit object should be obtained from the com.systinet.uddi.util.CallContext class, or by using simple
getter methods from com.systinet.webfw.ComponentImpl.

• request. HTTP request interface; here you can read, for example, http headers included in user's request.
Using request attributes is the preferred way to transfer data from Java to JSP pages.

• response. HTTP response interface; can be used, for example, to set content type and other response
header data or to send binary data back to client.

• localSession. Contains the java.util.Map object, which is accessible from the current task only. For
example, when you have tasks A and B in navigation history, each has a separate local session. When
you return from task B to task A, the whole local session content of task B is discarded.

• globalSession. Contains the java.util.Map object, which is shared among all tasks; this session can be
used, for example, to store the current user's authToken, or other application-wide data.

Data Types

Data type classes are responsible for converting values between web page HTML form fields and underlying
Java Beans objects. The Data type class must implement the simple interface
com.systinet.webfw.datatype.DataType with two methods:

• String objectToWeb(Object value) provides conversion from arbitrary Java type to String usable in web
pages.

• Object webToObject(String value) provides conversion in the opposite direction.

There are predefined implementations of this object for converting the simple Java data types string, int,
long, and boolean.

759Developer's Guide

Client-side Validators

Validators can be used to validate user input before a web page is submitted to a server. The validation is
invoked by a specific page control (a button or a link). There is a predefined set of validators for common
input field checks.

Table 54. Predefined Validators

DescriptionName

Checks if the field is not empty.required

Checks if the field content starts with the uddi: prefix.uddiKey

Checks if the field contains no more than the specified number of characters.length50, length80,
length255, length4096,
length8192

Checks if the field contains an email address.email

Checks if the field contains a number of type long.long

Checks if the field contains a number of type int.int

To add a validator to an input field or a text area, use the sysfw:checker tag. To trigger the validation control,
use the syswf:validate tag.

Example 17: Validators Usage

<syswf:input name="businessKey" value="">
 <syswf:checker name="required" action="viewBusinessV3"/>
 <syswf:checker name="uddiKey" action="viewBusinessV3"/>
</syswf:input>
...
<syswf:control action="viewBusiness" caption="View business" mode="button">
 <syswf:validate action="viewBusinessV3"/>
</syswf:control>

The Example 17 on page 760 shows an input field with two checkers, the first one checks if the field is not
empty and the second one checks if the field contains a string starting with the prefix uddi: (uddi key). Both
checkers are invoked when a user clicks the View business button.

Chapter 5760

Validation is performed using a JavaScript function. The validator name is required to be defined in the
JavaScript function with the name check_required. The return value from the validator is of the boolean
type: true when the field content is valid, and false when content is invalid. In case of error, the validator
displays an error message with the description of the allowed field content. This validator is also responsible
for transferring the focus to the field with an error.

Example 18: Required Validator Implementation

// is required checker
function check_required (formID, fieldID)
{
 var value = getFieldValue(formID, fieldID);
 if (isEmpty(value))
 {
 alertRequired();
 setFocus(formID, fieldID);
 return false;
 }
 return true;
}

Custom validators should be can be added to the file REGISTRY_HOME/app/uddi/web.jar/webroot/script/uddi.js.
Many functions for validation are defined in the file REGISTRY_HOME/app/uddi/web.jar/webroot/script/wf.js.

Directory Structure

JSP pages for the HP SOA Systinet Registry user interface are placed in the REGISTRY_HOME/app/uddi/web.jar/jsp
directory. Static content, such as scripts and images, is stored in the REGISTRY_HOME/app/uddi/web.jar/webroot
directory.

761Developer's Guide

JSP Page Reference

Table 55. Root Files

DescriptionFile

skeleton for error pageerror.jsp

main page with welcome texthome.jsp

login pagelogin.jsp

page with buttons for all registry management tasksmanagement.jsp

page header containing required JavaScripts and HTML form. Do not write any
design here; use design/pageFooter.jsp instead

pageFooter.jsp

contains mainly page hidden fields. Do not write any design here; use
design/pageHeader.jsp instead

pageHeader.jsp

component responsible for displaying error messagesuddiErrorComponent.jsp

Chapter 5762

Table 56. Content of Page Directories

DescriptionDirectory

All pages related to account managementaccount

Administration tools for tModel deletion and key replacementadmin

Pages for approval processapproval

Registry and web configuration pagesconfiguration

User interface for custody transfercustody

Contains various design elements such as frames and tabsdesign

Group managementgroup

UDDI inquiry pagesinquiry

Permission managementpermission

UDDI publishing pagespublishing

Replication managementreplication

Shows registry statisticsstatistics

UDDI subscription pagessubscription

Taxonomy browsing and managementtaxonomy

Various page componentsutil

WSDL-to-UDDI mapping pageswsdl2uddi

Inquiry and publishing pages for mapping of XML files to UDDIxml2uddi

Inquiry and publishing pages for mapping of XML schemas to UDDIxsd2uddi

Inquiry and publishing pages for mapping of XSLT style sheets to UDDIxslt2uddi

Framework Configuration

All needed configuration settings are stored in the file REGISTRY_HOME/app/uddi/conf/web.xml

Component

Specifies configuration of page components.

763Developer's Guide

Table 57. Component Attributes

RequiredDescriptionAttribute

yesUnique component identificationname

noFully qualified class name of the component implementation
class

className

noPath to JSP page with component design; path is relative to
root JSP directory.

page

Task

Contains definition of tasks.

Table 58. Task Attributes

RequiredDescriptionAttribute

yesUnique string used to call a task from controls or directly using
http URL; the URI must start with a forward slash (/) character.

URI

notask description to be displayed, for example as page titlecaption

yesName of task root componentcomponent

Table 59. Subelement

RequiredDescriptionElement

noAdditional parameters to be passed to the root component; each
parameter is specified as name-value pair.

param

Data Type

Contains the definition of the data types.

Chapter 5764

Table 60. Data Type Attributes

RequiredDescriptionAttribute

yesUnique name of the data type; this name is used to reference a
data type, for example from the syswf:input tag.

typeName

yesName of data type implementation classclassName

Other Configuration

Table 61. Configuration Elements

DescriptionElement

First part of the URL used to access HP SOA Systinet Registry without
encryption (plain HTTP); this part should contain the http protocol prefix,
hostname, and port.

url

First part of the URL used to access HP SOA Systinet Registry using encryption.
This part should contain https protocol prefix, hostname and port.

secureUrl

Context part of the URL, used to access HP SOA Systinet Registry tasks; the
default value is uddi/web for standalone registries and wasp/uddi/web for registries
deployed to an application server.

context

Context part of the URL, used to access HP SOA Systinet Registry's static
content, for example, images and cascading style sheets. The default value is
uddi/webdata for standalone registries and wasp/uddi/webdata for registries deployed
to an application server.

dataContext

Default timeout of server-side sessions (measured in seconds).serverSessionTimeout

Directory used to store temporary files during the upload process; this path
should be relative to service context directory.

uploadTempDir

Maximum size of uploaded files; larger files are rejected.maxUploadSize

Directory with JSP pages; the path should be relative to service context directory.jspDir

Contains JSP engine initialization parameters and the compilation classpath. A
complete list of available Jasper initialization parameters can be found below.

jspEngine

765Developer's Guide

Jasper Configuration

Table 62. Jasper init Configuration Parameters

DescriptionDefault valueParameter name

If the development parameter is false and reloading parameter is
true, background compiles are enabled. checkInterval is the time
in seconds between checks to see if a JSP page needs to be
recompiled.

300checkInterval

Which compiler Ant should be used to compile JSP pages. See
the Ant documentation for more information.

javaccompiler

Indicates whether the class file should be compiled with
debugging information

trueclassdebuginfo

Indicates whether Jasper is used in development mode; checks
for JSP modification on every access.

truedevelopment

Determines whether tag handler pooling is enabledtrueenablePooling

The class-id value sent to Internet Explorer when using
>jsp:plugin< tags.

clsid:8AD9C840-
044E-11D1-B3E9-
00805F499D93

ieClassId

Tells Ant to fork compiles of JSP pages so that a separate JVM
is used for JSP page compiles from the JVM in which Tomcat
is running.

truefork

Java file encoding to use for generating java source files.UTF8javaEncoding

Indicates whether generated Java source code for each page is
kept or deleted.

truekeepgenerated

The level of detailed messages to be produced by this servlet.
Increasing levels cause the generation of more messages. Valid
values are FATAL, ERROR, WARNING, INFORMATION,
and DEBUG.

WARNINGlogVerbosityLevel

Indicates whether the static content is generated with one print
statement per input line, to ease debugging.

falsemappedfile

Indicates whether Jasper checks for modified JSPs.truereloading

Chapter 5766

syswf JSP tag library

A JSP page using the syswf tag library must include this header <%@ taglib prefix="syswf"
uri="http://systinet.com/jsp/syswf" %>

syswf:component

Includes the component with specified parameters.

Table 63. syswf:component Attributes

RequiredDescriptionAttribute

yesAll parameter names in component will be prefixed with this
prefix; the prefix must be unique within each JSP page.

prefix

yesName of component, as written in the config file.name

Table 64. syswf:component Subelements

RequiredDescriptionElement

optionalWhen this parameter value is passed into a component, it will
be accessible in the request scope in the component Java class
and in the JSP page.

param

The value of the parameter should be specified in two ways: As a value attribute or as a content of the value
tag.

Example 19: Component Parameters

<syswf:component prefix="names" name="nameList">
 <syswf:param name="color1" value="white"/>
 <syswf:param name="color2">black</syswf:param>
</syswf:component>

767Developer's Guide

syswf:page

Creates an HTML page form with all required internal fields. This must be the root element of all components
used as tasks.

Table 65. syswf:page Attributes

RequiredDescriptionAttribute

yesThe filename of the JSP page containing the page header, this
file is designed to create elements required for framework
functionality. Note that there should be no graphic design.

headerTemplate

yesThe filename of the JSP page containing the page footer, this
file is designed to create elements required for framework
functionality. Note that there should be no graphic design.

footerTemplate

syswf:wrap

This tag helps you to separate page functionality from its design. It includes specified header and footer
templates before and after the body element. Header and footer templates should be parametrized using
syswf:param tags.

Table 66. syswf:wrap Attributes

RequiredDescriptionAttribute

noFile name of JSP page containing the header.headerTemplate

noFile name of JSP page containing the footer.footerTemplate

Table 67. syswf:wrap Subelements

RequiredDescriptionElement

noWhen you pass the parameter value into a component, this
parameter will be accessible in the request scope in the
component Java class and JSP page.

param

Chapter 5768

syswf:control

Creates a button or link, which should be used to trigger actions and transfers to other tasks.

Table 68. syswf:control Attributes

RequiredDescriptionAttribute

noAction to be passed to a control's parent component.action

yesAllowed values are button, anchor, script, or image. The script
generates the submit JavaScript command, which can be used,
for example, as a value for the HTML onClick attribute. Image
is a graphic button.

mode

noURI of task to be called.targetTask

noSpecifies level in navigation path to be used.targetDepth

noSpecifies the URL to be used to submit data; usable, for
example, when you need to switch from http to https.

targetUrl

required in anchor
and button mode

control captioncaption

noHelp text, displayed as tooltip.hint

noIf set to true, button is disabled and link cannot be clicked.disabled

noIf set to true, the task is only redirected to another task. This
means that task data stored in a local session will also be
accessible from the target task. Normal behavior is that a local
session is not transferred between tasks.

redirect

required in image
mode

Path to the image file used as graphic button.src

Table 69. syswf:control Subelements

RequiredDescriptionElement

noAdds action parameters.param

noAdds attributes to created input or an HTML tag.attribute

769Developer's Guide

syswf:input

Inserts input field into JSP page.

Table 70. syswf:input Attributes

RequiredDescriptionAttribute

yesSpecifies the name of the accessible value of this input field.name

yesSpecifies a value which appears in the input field, or a base
object for the property attribute.

value

noContains the property name of the object specified by the
expression in the value attribute.

property

noHelp text, displayed as a tooltip.hint

noData type which will be used to transform values between the
underlying Java Bean object and the input field.

dataType

noIf set to true, the input field will be disabled.disabled

noA possible value is password, used for password fields.mode

Table 71. syswf:input Subelements

RequiredDescriptionElement

noAppends a name and value pair as attribute to the resulting
HTML tag; usable, for example, for the CSS class specification
for an input field.

attribute

syswf:selectOne

Displays controls which enable the user to select one value from a list of available values.

Chapter 5770

Table 72. syswf:selectOne Attributes

RequiredDescriptionAttribute

yesSpecifies the name under which this value will be accessible;
select one element.

name

noSpecifies visual style; possible values are radio, check box, and
menu.

mode

yesSpecifies a value which will be selected, or a base object for
the property attribute.

value

noContains the property name of the object specified by expression
in the value attribute.

property

yesSpecifies a comma-delimited list of available values, the
expression of which evaluates either to String[], or to an array
of object for the optionValuesProperty attribute.

optionValues

noContains property name of objects specified by expression in
the optionValues attribute.

optionValuesProperty

noSpecifies a comma-delimited list of available captions, the
expression of which evaluates either to String[], or to an array
of object for the optionCaptionsProperty attribute.

optionCaptions

noContains property name of objects specified by expression in
the optionCaptions attribute.

optionCaptionsProperty

noHelp text, displayed as tooltip.hint

noData type which will be used to transform values between the
underlying Java Bean object and the selected element.

dataType

Table 73. syswf:selectOne Subelements

RequiredDescriptionElement

noAppends a name/value pair as an attribute to resulting HTML
tags.

attribute

771Developer's Guide

syswf:selectMany

Displays controls which enable the user to select multiple values from list of available values.

Table 74. syswf:selectMany Attributes

RequiredDescriptionAttribute

yesSpecifies the name under which the value of this selectMany
element will be accessible.

name

noSpecifies visual style possible values check, box and menu.mode

yesSpecifies an array of values which will be selected, or base
objects, for the property attribute.

value

noContains property name of objects specified by expression in
the value attribute.

property

yesSpecifies a comma-delimited list of available values the
expression of which evaluates to String[], or to an array of
object for the optionValuesProperty attribute.

optionValues

noContains the property name of objects specified by expression
in the optionValues attribute.

optionValuesProperty

noSpecifies a comma-delimited list of available captions, the
expression of which evaluates to either String[], or to an array
of object for the optionCaptionsProperty attribute.

optionCaptions

noContains a property name for objects specified by expression
in the optionCaptions attribute.

optionCaptionsProperty

noHelp text, displayed as tooltip.hint

Table 75. syswf:selectMany Subelements

RequiredDescriptionElement

noAppends a name/value pair as an attribute to result HTML tags.attribute

syswf:textArea

Creates a text area HTML component.

Chapter 5772

Table 76. syswf:textArea Attributes

RequiredDescriptionAttribute

yesSpecifies the name under which the value of this text area will
be accessible.

name

yesSpecifies a value which appears in the text area, or a base object
for the property attribute.

value

noContains a property name of an object specified by expression
in the value attribute.

property

noHelp text, displayed as tooltip.hint

noData type which will be used to transform values between
underlying the Java Bean object and the text area.

dataType

optionalIf set to true, the text area will be disabled.disabled

Table 77. syswf:textArea Subelements

RequiredDescriptionElement

noAppends a name/value pair as an attribute to the result HTML
tag; usable, for example, for CSS class specification for the text
area.

attribute

syswf:value

Evaluates the given expression and transform result using data type.

Table 78. syswf:value Attributes

RequiredDescriptionAttribute

yesSpecifies the expression which will be evaluated.value

noHelp text, displayed as tooltip.hint

noData type which will be used to transform value.dataType

773Developer's Guide

syswf:size

This tag will fill the page attribute with size of given List, UDDIList, StringArrayList or Array.

Table 79. syswf:size Attributes

RequiredDescriptionAttribute

yesName of variable to store the size of a given list or array.var

yesSpecifies an expression to be evaluated; the result must be List,
UDDIList, StringArrayList or Array.

value

noScope of the variable to store the size of a given list or array.
Allowed values are request, session, application, or default.

scope

navigationPath

This component renders the history path (bread crumbs links)

navigationPath component in action

Example 20: Component Parameters

 <syswf:component name="navigationPath" prefix="path"/>

Typical Customization Tasks

• Q: Where can I find the code which generates the page header?. A: It is defined in the file
design/pageHeader.jsp.

• Q: How do I change the text displayed on a page's title bar?. A: Modify content of <title> tag in the
file pageHeader.jsp.

• Q: Where is the right place to include my own JavaScript files?. A: Reference to your files should
be placed in pageHeader.jsp. Place your script files in the REGISTRY_HOME/app/uddi/web.jar/webroot/script
directory.

Chapter 5774

• Q: Where is it possible to change the text displayed in the page footer?. A: The page footer is
defined in the file design/pageFooter.jsp.

Business Service Console Framework

This section describes the Business Service Console (BSC) from the developer's point of view. It describes
the Business Service Console Framework architecture and configuration, and demonstrates how to customize
the console.

The Business Service Console implementation and configuration are contained in the JAR file bsc.jar
located in directory REGISTRY_HOME/app/uddi.

This section has the following subsections:

Business Service Console Localization on page 775 . How to localize the Business Service Console, or the
Registry Console.

Directory Structure on page 779 . The directory structure of bsc.jar.

Business Service Console Configuration on page 784 . Business Service Console configuration files in
bsc.jar.

Permission support on page 809 . Features to establish whether users have permission to perform operations.

Components and Tags on page 813 . Components and tags in bsc.jar used to develop Business Service
Console components.

Business Service Console Localization

HP SOA Systinet Registry is ready for localization. This chapter is focused on localization of web applications
such as the Business Service Console and Registry Console. It provides information on HP SOA Systinet
Registry localization support and how to write localizable web applications.

Basic concepts

The localization support is built upon standard Java resource bundles and the JSP formatting tag library.

775Developer's Guide

Locale detection

The user language-detection routine is invoked for each HTTP request. When the user is logged in, the
userAccount's languageCode is used, if it is set. Otherwise the browser's preferred language is used. The
system then finds the resource bundle for the chosen locale or uses a default resource bundle, if there is no
such localized resource bundle. See the ResourceBundle javadocs for details of the algorithm.

The system uses UTF-8 encoding by default, but it can be configured to use a custom locale-encoding
mapping in the file web.xml:

<webFramework>
 <encoding>
 <map locale="en" encoding="UTF-8"/>
 <map locale="zh" encoding="Big5"/>
 </encoding>
</webFramework>

Resource bundles

There is one resource bundle common to all JSP files serving as a dictionary -
com.systinet.uddi.bui.standard.BUIMessages. It contains keys for common words like "OK", "Cancel" or
names of entities (Provider, Service). Then each top-level directory in the jsp directory has a unique resource
bundle for its files and subdirectories. The resource bundles for Business Service Console are located within
the src directory and are copied to the WASP-INF/classes directory during build phase.

Resource keys naming convention

The resource key is composed of JSP file name (without suffix) and an English identifier in camel notation.
(Capital letters are used to indicate the start of words, instead of a space or underscore.) If the JSP file is
located in some subdirectory of the top-level directory, the subdirectory name is also encoded in the resource
key. For example resources for JSP file search/interfaces/simple.jsp are stored in the file
com.systinet.uddi.bui.standard.component.search.SearchMessages.properties and all keys have the prefix
interfaces.simple_.

In some configuration files it is necessary to use a custom resource bundle instead of the default bundle.
There is a way to encode the custom resource bundle name into the resource key. If the resource key contains
the character $, then the part before it will be treated as the resource bundle identifier and the rest of the
resource key as actual resource key. For example customBundle$resourceKey.

Chapter 5776

Localization of Configuration

The configuration files are localizable too. For example the file conf/bsc.xml has texts in the resource bundle
com.systinet.uddi.bui.framework.BSCMessages.properties. The attributes like caption and hint have their
localizable alternatives captionKey and hintKey, which have precedence over the original attributes providing
text. The exception to this rule is the task element in the file conf/web_component.xml, where caption attribute
has precedence over new captionKey attribute.

JSP localization

The localization of JSP files uses the standard formatting tag library. Every JSP must start with import of
this library and setting of the locale for the current user, if he is logged in. The user's language is stored in
the session variable userDefaultLanguage.

Example 21: Example of localization

<%@ taglib prefix="fmt" uri="http://java.sun.com/jstl/fmt" %>
<c:if test="${not empty globalSession['userName']}">
 <fmt:setLocale value="${globalSession['userDefaultLanguage']}" scope="page"/>
</c:if>
<fmt:setBundle basename="com.systinet.uddi.bui.standard.component.search.SearchMessages"
var="search_Message"/>
<fmt:message key="interfaces.simple_operationProperty" bundle="${search_Message}"/>

In addition to the full power of the standard formatting library there are several HP extensions that
complement localization needs.

ParseResourceKey tag

The parseResourceKey tag is used, when the resource key can contain an embedded resource bundle. It
detects such a situation and introduces two new variables that will hold the values of resource bundle and
resource key to be used.

777Developer's Guide

Table 80. ParseResourceKey tag Parameters

RequiredDescriptionParam

yesThe resource key that may contain an embedded custom
resource bundle.

key

yesDefault resource bundle to use if no custom bundle is detected.defaultBaseName

yesName of variable that will hold the name of the bundle for this
resource.

varBundle

yesName of variable that will hold resource key.varResource

Example 22: ParseResourceKey tag - Usage Example

<syswf:parseResourceKey key="${captionKey}"
 defaultBaseName="com.systinet.uddi.bui.framework.WebComponentMessages"
 varBundle="bundleName" varResource="finalCaptionKey"/>
<fmt:setBundle basename="${bundleName}" var="dynamic_Message"/>
<fmt:message key="${finalCaptionKey}" var="dialogCaption" bundle="${dynamic_Message}"/>

LocalizedFileName tag

LocalizedFileName tag finds the name of the localized file for the current locale. It uses the same heuristic
search as resource bundle loading. For example if there is a file scripts.js and the french locale is set, then
scripts_fr.js may be returned.

Table 81. localizedFileName tag Parameters

RequiredDescriptionParam

yesPrefix to be concatenated to fileName to access a resource from
the servlet context.

basedir

noName of file whose localized version is needed.fileName

yesName of variable that will hold the file name for the current
locale.

var

Chapter 5778

Example 23: localizedFileName - Usage Example

<syswf:localizedFileName basedir="/../webroot/" fileName="js/bui.js" var="jsBui"/>
 <script language="JavaScript" src="<c:out value="${jsBui}"/>"></script>

LocalizedInclude tag

Sometimes it is necessary to localize very long text and it would not be practical to store it in a resource
bundle as a key, especially when the text contains formatting information. For this purpose there is a tag
localizedInclude, which writes to output the content of file selected in the current locale. The rules for file
selection are same as for Resource bundles.

Table 82. localizedInclude tag Parameters

RequiredDescriptionParam

yesPath to resource with the text to be written to output.baseName

Example 24: localizedInclude - Usage Example

<syswf:localizedInclude baseName="publish/service/generic/selectInterfaces.html"/>

Java localization

The localization of web applications uses standard resource bundles. It is necessary to use
com.systinet.webfw.util.BundleHelper instead of java.util.ResourceBundle to retrieve a resource bundle otherwise
different rules for locale selection will be used in the java code and JSP files, which results in page with
portions in different languages.

Directory Structure

The following table summarize the directories inside bsc.jar.

779Developer's Guide

Table 83. bsc.jar Directories

DescriptionDirectory

Configuration files of the Business Service Console. See Business Service Console
Configuration on page 784

conf

JSP filesjsp

Source Java filessrc

Compiled Java and JSP classes, libraries, and Systinet Server for Java-related
configuration files

WASP-INF

Static content of Business Service Console pages such as HTML, Javascript, graphics
and CSS.

webroot

The bsc.jar package depends on the UDDI-service package. So services in the UDDI-service package are
available to Business Service Console developers.

If you want to edit and modify any of the Business Service Console's source JSP or Java files, perform the
following steps:

1 Unzip bsc.jar to a temporary location.

2 Edit the source files.

3 Compile the Java sources against the libraries in the REGISTRY_HOME/lib directory and the client libraries
from the REGISTRY_HOME/dist directory.

4 Copy the resulting .class files into the WASP-INF/classes directory of the unzipped JAR.

5 Stop HP SOA Systinet Registry

6 To preserve any changes made to the Business Service Console configuration at runtime, copy the
contents of directory REGISTRY_HOME/work/uddi/bsc.jar/conf to the conf directory of the unzipped JAR.

7 Zip the JAR again and deploy it over the original file in the REGISTRY_HOME/app/uddi directory.

If you intend to change the JSP files only for testing purposes, you do not have to redeploy the bsc.jar. It
is sufficient to modify the JSP files in REGISTRY_HOME/work/uddi/bsc.jar/jsp. You must reload pages in the

Chapter 5780

browser before any change is visible. Note that files under REGISTRY_HOME/work are liable to be overwritten
or deleted when packages are re-deployed.

conf Directory

This directory contains the following configuration files:

Table 84. conf Directory Contents

DescriptionFile

The Business Service Console configuration file. This contains the
configuration of tabs, user profiles, URLs, paging limits, enterprise
classifications, and settings for the approval process and
subscription components. Also API endpoints and a flag
determining whether SOAP communication is used for these. See
Business Service Console Configuration on page 784.

bsc.xml

The deployment configuration file. This contains Business Service
Console deployment information such as web interface URLs and
contexts. It also defines the location of JSP files, their pre-compiled
versions and declared libraries for the JSP engine.

web.xml

The web framework configuration file. This contains the web
framework's static settings including definitions of components,
tasks and data types, and configuration for menus, context menus,
trees and customizable taxonimies.

web_component.xml

This describes components in terms of their roles, relationships
and interfaces.

component_description.xml

jsp directory

This directory contains the JSP files that constitute the base of the Business Service Console and the following
subdirectories:

781Developer's Guide

Table 85. jsp Directory Contents

Contents (JSP files)Directory

Account managementaccount

Approval process interface (part of tools section).approval

Report section of console, includes also entity details pagesbrowse

Catalog section of consolecatalog

Common pages for table component actionscommon

Content of configuration sectionconfiguration

Design including miscellaneous page and frame headers and footersdesign

Component editor componentseditor

Catalog section of the consolepublish

Query framework componentsquery

Search section of consolesearch

Table framework componentstable

Taxonomy framework componentstaxonomy

Tools section componentstools

Utility components such as navigationPathutil

Entity list view pages of consoleview

Configuration files for JSP pages including declaration of use, tag
libraries, etc.

WEB-INF

The wizardIterator framework componentwizard

src directory

This directory contains the source files of the Business Service Console

Chapter 5782

Table 86. src Directory Contents

DescriptionEnclosing Package

Source Java files for the Business Service Console framework.com.systinet.uddi.bui.framework

Source Java files for Business Service Console default implementationcom.systinet.uddi.bui.standard

WASP-INF directory

This directory contains the package.xml file for the Business Service Console, and the subdirectories listed
in the following table:

Table 87. WASP-INF Subdirectories

ContentsDirectory

Compiled Java classes of the Business Service Console (including the
Java parts of components and several utility classes)

classes

Pre-compiled JSP pages (JSP parts of components) from the jsp
directory

jsp-classes

Libraries for the web application, including JSP, JSTL supporting
libraries, etc.

lib

webroot Directory

Contains subdirectories listed in the following table:

Table 88. webroot Subdirectories

ContentsDirectory

Resource files such as CSS, graphics, HTMLgui

A deprecated directory that contained miscellaneous graphic files such as icons, logos,
etc.

gfx

A deprecated directory that contained Java Scripts and the bui.css file for the Business
Service Console

script

783Developer's Guide

Business Service Console Configuration

The bsc.jar file in directory REGISTRY_HOME/app/uddi contains the configuration files for the entire Business
Service Console. They are located in the conf subdirectory, the contents of which were summarized in
Directory Structure. In this section, we focus on the file bsc.xml.

• HP SOA Systinet Registry API Endpoint URL on page 784

• Result Filtering on page 785

• Main Menu Tabs on page 785

• User Profiles on page 786

• Entity List Views on page 787

• Browsable Taxonomies on page 788

• Paging Limits on page 788

HP SOA Systinet Registry API Endpoint URL

This configuration part contains the endpoint URLs used by the Business Service Console to communicate
with HP SOA Systinet Registry:

<url>http://localhost:8080</url>
<secureUrl>https://localhost:8443</secureUrl>
<useSoap>false</useSoap>
<uddiEndpoints accountApiPath="/uddi/account" approverApiPath="/uddi/approver"
 categoryApiPath="/uddi/category" configuratorApiPath="/uddi/configurator"
 inquiryPath="/uddi/inquiryExt" inquiryUIApiPath="/uddi/inquiryUI"
 publishingPath="/uddi/publishingExt" requestorApiPath="/uddi/requestor"
 securityPath="/uddi/security" subscriptionPath="/uddi/subscriptionExt"
 taxonomyApiPath="/uddi/taxonomy" wsdlApiPath="/uddi/wsdl2uddi"
 xml2UddiApiPath="/uddi/xml2uddi" xsd2UddiApiPath="/uddi/xsd2uddi"
 xslt2UddiApiPath="/uddi/xslt2uddi"/>

The endpoint URL is composed of two parts:

• The prefix, taken from the url element (or secureURL element for a secure endpoint)

• The relative part, taken from the specified uddiEndpoints attribute (depending on the type of the endpoint).

Chapter 5784

If you want to use a different target registry, it is usually sufficient to change the prefix (the absolute part
of the URL).

The useSoap element indicates whether to use SOAP to access HP SOA Systinet Registry, or to
ignore the declared API endpoints and make the calls directly through the Java virtual machine.

Result Filtering

Use this section to filter data that should not be displayed in the Business Service Console. For example,
to hide the Operational business entity, you can set up a filter in the businessUI element. Note that child
elements of an element you filter will not be displayed in the Business Service Console.

The following sample will hide the Operational business entity in the Business Service Console:

<filteredKeys>
 <businessKey>uddi:systinet.com:uddinodebusinessKey</businessKey>
</filteredKeys>

Main Menu Tabs
<tab tabId="home" taskId="/home">
 <captionKey>bsc.tab_home</captionKey>
 <hintKey>bsc.tab_homeHint</hintKey>
</tab>
<tab tabId="search" taskId="/search">
 <captionKey>bsc.tab_search</captionKey>
 <hintKey>bsc.tab_searchHint</hintKey>
</tab>
<tab tabId="catalog" taskId="/publish">
 <captionKey>bsc.tab_catalog</captionKey>
 <hintKey>bsc.tab_catalogHint</hintKey>
</tab>
<tab tabId="tools" taskId="/tools">
 <captionKey>bsc.tab_tools</captionKey>
 <hintKey>bsc.tab_toolsHint</hintKey>
</tab>
<tab tabId="report" taskId="/browse">cat
 <captionKey>bsc.tab_reports</captionKey>
 <hintKey>bsc.tab_reportsHint</hintKey>
</tab>
<tab tabId="configure" taskId="/configure">
 <captionKey>bsc.tab_configure</captionKey>
 <hintKey>bsc.tab_configureHint</hintKey>
</tab>

785Developer's Guide

Each tab element contains the definition of one main menu tab. These tabs are rendered in the top left area
of the Business Service Console, under the product logo.

Some navigation tabs should not be visible in all cases. Tab visibility depends on the profile selected
for the current user. The HP SOA Systinet Registry administrator should define tab visibility using
the Configuration main menu tab.

Table 89. Tab element attributes

RequiredDescriptionAttribute

yesResource bundle key to caption visible for users.captionKey

yesUnique tab identification.tabId

yesURI of the task called when a user clicks on this tab.taskId

noResource bundle key to descriptive text displayed as tab tooltip.hintKey

User Profiles
<profile defaultTab="home" profileId="default" captionKey="bsc.profile_anonymousUserProfile">
 <visibleTab>search</visibleTab>
 <visibleTab>report</visibleTab>
 <visibleTab>home</visibleTab>
 <defaultView viewId="Common" viewType="providers"/>
 <defaultView viewId="Common" viewType="interfaces"/>
 <defaultView viewId="Common" viewType="endpoints"/>
 <defaultView viewId="Common" viewType="bindings"/>
 <defaultView viewId="Common" viewType="services"/>
</profile>

Each profile element contains the definition of one user profile. The user profile defines the visibility of
tabs, default navigation tab, and default views for various Business Service Console entity lists.

Users are able to change their profiles using the My Profile link from the Home page, unless an administrator
has prohibited this via the Configure tab.

Chapter 5786

Table 90. Profile Element Attributes

RequiredDescriptionAttribute

yesTab caption visible for users.caption

yesUnique profile identification.profileId

yesTabId of the tab which will be displayed after user login. This
attribute must contain the identification of one of the visible
tabs defined for this profile.

defaultTab

at least oneId of navigation which will be visible for this user profile.visibleTab

one for each
viewType

Specifies the viewId of the view used as default when the user
enters a page with a result list. The attribute viewType defines
the type of list and viewId defines view identification.

defaultView

Entity List Views
<!-- list of available views -->
<view captionKey="bsc.view_business" viewId="Business"/>
<view captionKey="bsc.view_common" viewId="Common"/>
<view captionKey="bsc.view_technical" viewId="Technical"/>
<view captionKey="bsc.view_operation" viewId="Operation"/>

<!-- list of available view types -->
<viewType captionKey="bsc.viewType_providers" viewTypeId="providers"/>
<viewType captionKey="bsc.viewType_services" viewTypeId="services"/>
<viewType captionKey="bsc.viewType_endpoints" viewTypeId="endpoints"/>
<viewType captionKey="bsc.viewType_interfaces" viewTypeId="interfaces"/>
<viewType captionKey="bsc.viewType_bindings" viewTypeId="bindings"/>

The view element defines a list of available views. The viewType element defines a list of available entity list
types.

The viewId and viewType values are used to determine which component will be used for view
presentation. The Business Service Console automatically checks the existence of all available
view components, and only existing views will be presented to user. The View component name
has the following format: [viewType][viewId]Results. For example, the component rendering the
business view on a list of providers is named providersBusinessResults

787Developer's Guide

Browsable Taxonomies

<browsableTaxonomy captionKey="bsc.browsableTaxonomy_usage" tModelKey="uddi:systinet.com:taxonomy:usage"/>
<browsableTaxonomy captionKey="bsc.browsableTaxonomy_endpoint"
tModelKey="uddi:systinet.com:taxonomy:endpoint:status"/>
<browsableTaxonomy captionKey="bsc.browsableTaxonomy_status"
tModelKey="uddi:systinet.com:taxonomy:interface:status"/>
<browsableTaxonomy captionKey="bsc.browsableTaxonomy_namespace" tModelKey="uddi:uddi.org:xml:namespace"/>
<browsableTaxonomy captionKey="bsc.browsableTaxonomy_localName" tModelKey="uddi:uddi.org:xml:localName"/>
<browsableTaxonomy captionKey="bsc.browsableTaxonomy_certification"
tModelKey="uddi:systinet.com:taxonomy:service:certification"/>
<browsableTaxonomy captionKey="bsc.browsableTaxonomy_availability"
tModelKey="uddi:systinet.com:taxonomy:endpoint:availability"/>
<browsableTaxonomy captionKey="bsc.browsableTaxonomy_wsiCompliance" tModelKey="uddi:65719168-72c6-3f29-
8c20-62defb0961c0"/>
<browsableTaxonomy captionKey="bsc.browsableTaxonomy_milestone"
tModelKey="uddi:systinet.com:versioning:milestone"/>
<browsableTaxonomy captionKey="bsc.browsableTaxonomy_releaseDate"
tModelKey="uddi:systinet.com:versioning:releasedate"/>
<browsableTaxonomy captionKey="bsc.browsableTaxonomy_version"
tModelKey="uddi:systinet.com:versioning:version"/>

This section holds information about the list of browsable taxonomies. Each taxonomy is displayed as one
node in the Business Service Console Reports tab. This list is also used when displaying the Classifications
tab on entity detail pages.

Table 91. BrowsableTaxonomy Attributes

RequiredDescriptionAttribute

yesTaxonomy display name used when rendering the navigation
tree on the Report tab.

caption

yesThe key of the taxonomical tModel in HP SOA Systinet
Registry.

tModelKey

Paging Limits

<pagingLimits component="resourcesXsltResults" pageSize="10" pageCount="20"/>
<pagingLimits component="resourcesWsdlResults" pageSize="10" pageCount="20"/>
<pagingLimits component="default" pageSize="10" pageCount="20"/>

Chapter 5788

In this section, the limits of rows displayed on one page and the number of pages displayed are defined.
Each component should define its specific settings, or that default values are used when settings are not
found.

Entity Configuration

In this section, we will explain how the Business Service Console can be configured to recognize UDDI
data as Business Service Console Entities and how to hook into standard actions for those entities.

Overview

The UDDI specification recognizes 4 entity types. However Business Service Console needs to present the
UDDI data in terms of the user's business. Because of various mappings of resources, business artifacts etc.
to UDDI, a single UDDI entity may correspond to several business-level entities.

The Entity Configuration defines how to recognize individual business artifacts. UDDI categorization is
used to annotate the UDDI data with information about their role or type. So for example, a tModel is just
a resource for the Business Service Console GUI. But when the tModel contains, for example, the
uddi:uddi.org:resource:type category with value xslt, it represents an XSL Transformation document.
Depending on business needs for the artifacts, different presentations, actions, or relationships may be
available.

The Entity Configuration further specifies Views to be used for the particular entity. A View is a web page,
or a portion of it, customized for the particular Entity. Views correspond to abstract operations that make
sense on several entities. For example, pages for Delete action are different for Services and Providers but
both pages perform the same abstract operation.

Configuration

The configuration is stored in the file conf/bsc.xml, inside the entityViews element. New Entities can be
created by adding new Entity definitions to that configuration, or behaviour of existing Entities can be
changed. In this release, we support creation of new Entities and customization of Entities based on tModels
(TM).

The following example shows a commented configuration of a "Categorization" entity, derived from a
tModel. It corresponds to a taxonomy tModel used by the Registry. The individual parts of the configuration
will be described below

789Developer's Guide

Example 25: Definition of an XML document

<!--
 Definition of a new entity, based on a TModel (TM). We specify an icon,
 a (localizable) name (caption) and (localizable) description.
-->
<entity entityId="xsd" type="TM" icon="xsd.gif"
 captionKey="bsc.entityViews_xsd_caption" descriptionKey="bsc.entityViews_xsd_description">
 <!--
 Categorization together with "type" attribute (above) tells the
 framework how to identify this type of entities
 -->
 <categorization>
 <keyedReference tModelKey="uddi:uddi.org:resource:type" keyValue="xsd"/>
 </categorization>

 <!--
 Views tells the BSC which components and tasks should be used
 to display information about the entity or to manipulate with
 the entity
 -->
 <views>
 <view type="list" task="/browse/resources/xsds">
 <parameter paramName="entityId" paramValue="${entityId}"/>
 <parameter paramName="editableMode" paramValue="${editableMode}"/>
 </view>
 <view type="listMy" task="/browse/resources/xsds">
 <parameter paramName="entityId" paramValue="${entityId}"/>
 <parameter paramName="editableMode" paramValue="${editableMode}"/>
 <parameter paramName="filterMyEntities" paramValue="true"/>
 </view>
 <view type="create" task="/publish/resources/xsds/createXSDResource">
 <parameter paramName="requiredCategories" paramValue="${categoryBag.KeyedReferenceArrayList}"/>

 </view>
 <view type="edit" task="/publish/resources/xsds/editXSDResource">
 <parameter paramName="tModelKey" paramValue="${entityKey}"/>
 </view>
 <view type="find" task="/search/resources/schemas">
 <parameter paramName="editableMode" paramValue="${editableMode}"/>
 </view>
 <view type="searchResults" component="resourcesXsdResults">
 <parameter paramName="query" paramValue="${query}"/>
 <parameter paramName="var" paramValue="${var}"/>
 </view>

Chapter 5790

 <view type="detail" task="/browse/xsdDetail">
 <parameter paramName="tModelKey" paramValue="${entityKey}"/>
 </view>
 <view type="treeContextMenu" component="contextMenu_xsdList"/>
 <view type="pageMenu" task="/catalog/xsdMenu"/>
 <view component="xsdsSubscriptionView" type="subscriptionChangeView"/>
 <view type="delete" task="/publish/resources/xsds/unpublishXSDResource">
 <parameter paramName="tModelKey" paramValue="${entityKey}"/>
 </view>
 </views>

 <!--
 References defines how to make associations with this type of entity,
 what keyedReferences to use and who can make the association
 -->
 <references>
 <!-- One or more references, leading to this entity type. -->
 <reference refName="schema"
 captionKey="bsc.entityViews_xsd_refSchema_caption"
 descriptionKey="bsc.entityViews_xsd_refSchema_description">
 <!-- originTypes may be either entityIds, or UDDI entity types.
 No origin means all entities match
 <originType>xml</originType>
 -->
 <originType>xml</originType>
 <keyedReference tModelKey="uddi:uddi.org:resource:reference" keyName="definition"/>
 </reference>
 <reference refName="schemaOfSource"
 captionKey="bsc.entityViews_xsd_refSchemaOfSource_caption"
 descriptionKey="bsc.entityViews_xsd_refSchemaOfSource_description">
 <originType>xslt</originType>
 <keyedReference tModelKey="uddi:uddi.org:resource:reference"
 keyName="transformation-source"/>
 </reference>
 <reference refName="schemaOfDestination"
 captionKey="bsc.entityViews_xsd_refSchemaOfDestination_caption"
 descriptionKey="bsc.entityViews_xsd_refSchemaOfDestination_description">
 <originType>xslt</originType>
 <keyedReference tModelKey="uddi:uddi.org:resource:reference"
 keyName="transformation-destination"/>
 </reference>
 <reference refName="dependencyOnXSD"
 captionKey="bsc.entityViews_dependencyOnXSD_caption"
 descriptionKey="bsc.entityViews_dependencyOnXSD_description">
 <keyedReference tModelKey="uddi:systinet.com:dependency" keyName="tModel"/>
 </reference>
 </references>

791Developer's Guide

</entity>

Entity Definition

The Business Service Console Entity definition element introduces a new Entity recognized by the Business
Service Console. The entity has an id, a title, an optional description and an icon.

Table 92. Entity definition attributes

RequiredDescriptionAttribute

YesAn unique identifier that identifies this entity type. It should start
with lowercase letter, and use only alphanumeric characters.

entityId

YesThis string serves as a key to the resource bundle, which stores
to actual string used for the entity caption. See below regarding
handling of singular and plural forms.

captionKey

NoThe key into the resource bundle, for the string that provides a
short decription of the entity type. The description may contain
HTML markup.

descriptionKey

When the Business Service Console needs to print a noun, that describes a collection of entities, it uses the
string denoted by the captionKey resource bundle key. In the case the Business Service Console needs to
print a singular noun, which stands for the entity type, it uses the key with _single suffix. All strings are
taken from the resource bundle src/BSCMessages.properties, unless specified otherwise by the captionKey
attribute (see Business Service Console Localization on page 775 for details).

The icon attribute is relative to directory webroot/gfx/tree. The icon is displayed in navigation trees to provide
an unique visual appearance for the entity type.

Chapter 5792

Example 26: Definition of a XML document

<!--
 The "XML Document" entity is derived from UDDI TModel.

 The definition also defines what name and icon should display for this
 type of data.
-->
<entity entityId="xml" type="TM" icon="xml.gif"
 captionKey="bsc.entityViews_xml_caption" descriptionKey="bsc.entityViews_xml_description">
 <categorization>
 <!--
 "XML Documents" are characterized by a keyedReference for the
 uddi:uddi.org:resource:type taxonomy, with "xml" value.
 -->
 <keyedReference tModelKey="uddi:uddi.org:resource:type" keyValue="xml"/>
 </categorization>
</entity>

Entity Categorization

As noted in the overview, an UDDI data structure may be used to represent several abstractions - Entities.
An Entity is characterized by two things:

• basic UDDI type

• categorization

The basic UDDI type is one of:

BE

Business Entity

BS

Business Service

BT

Binding Template

TM

tModel

793Developer's Guide

The UDDI entity needs to be of the specified type in order to be recognized as the particular BSC Entity.
In addition, you may specify mandatory keyedReferences, which the UDDI entity needs to have. The BSC
Entity that has most keyedReferences matching the UDDI data will be selected. If there remains a choice,
one is chosen at random.

Zero or more keyedReferences can be specified. When no categorization is present, all appropriate UDDI
structures match, regardless of their contents. When specified, each keyedReference entry can have the
following attributes:

Table 93. keyedReferenceAttributes

RequiredDescriptionAttribute

yesA tModel key of the taxonomy used for categorizationtModelKey

noThe keyName of the required keyedReference. If the attribute is omitted,
keyNames are ignored.

keyName

noThe keyValue of the required keyedReference. If the attribute is omitted,
keyValues are ignored (any matches).

keyValue

Chapter 5794

Example 27: Definition of a XML document

<!--
 This is a definition of a WSDL service. It is derived from the Business
 Service UDDI structure (BS)
-->
<entity entityId="service" type="BS" icon="service.gif"
 captionKey="bsc.entityViews_service_caption"
 descriptionKey="bsc.entityViews_service_description">
 <categorization>
 <!--
 A WSDL service is characterized by having the
 "uddi:uddi.org:wsdl:types" category with "service" value,
 according to the WSDL to UDDI mapping Technical Notes
 -->
 <keyedReference tModelKey="uddi:uddi.org:wsdl:types"
 keyValue="service"/>
 </categorization>
</entity>

<!--
 This is a specification of a XSL Transformation entity. It is derived from
 a TModel UDDI structure (TM)
-->
<entity entityId="xslt" type="TM" icon="xslt.gif"
 captionKey="bsc.entityViews_xslt_caption"
 descriptionKey="bsc.entityViews_xslt_description">
 <categorization>
 <!--
 The XSLT resource is characterized by the resource:type
 category which must have the "xslt" value, according to
 the proposed mapping Technical Note.
 -->
 <keyedReference tModelKey="uddi:uddi.org:resource:type"
 keyValue="xslt"/>
 </categorization>
</entity>

There must be an uncategorized Entity defined for each of the UDDI structures, to serve as a "catch-
all" for data that does not match any specific entity. The default Business Service Console
configuration provides such Entities.

795Developer's Guide

Entity Views

A View stands for a visualization of some aspect, or an abstract task, that is available for the entity. Some
tasks may or may not be available, depending on whether an appropriate View is available for the rendered
data. The Business Service Console implementation uses View definitions to lookup tasks and components,
which are appropriate for handling the data presentation, or to perform operations on the data.

A View is identified by a viewType. There can be at most one View for the particular viewType defined for
the given entity. If such View is not defined, the Entity does not support the relevant visualization, or
operation. The following table summarizes the supported viewTypes.

Chapter 5796

Table 94. Predefined View types

RequiredDescriptionviewType

NoEmbeddable component, that provides a search
results for a given type of Entity. The Component

searchResults

should accept a query, and render the matching
results on the screen. These Components are used
in Reports, Quicksearch etc.

NoTask for editing a specific entity. The task accepts
an entity key, and produces a screen (form, wizard)
suitable for editing the entity.

edit

YesProvides a task that displays detailed information
for an entity. The task accepts the key of the entity

detail

to display. This View is mandatory to ensure that
information about any entity can be reached.

NoProvides a searching task for the entity. The task
is supposed to display a form and results of the
search.

find

NoProvides a Component to render subscription
results for the particular entity type. The

subscriptionChangeView

Component accepts the list of subscriptions to filter
and display as a parameter

NoProvides a Task with a Wizard or a form to create
a new entity. The Task may process a parameter

create

that identifies a parent structure where the new
entity should be stored.

NoProvides a Task for deleting the entity. The Task
should accept a single key, or a collection of keys

delete

as a parameter, and it should handle deletion of a
single or several entities.

NoProvides a task, which displays all entities of the
particular type. The Task accepts a parameter,

list

which turns edit functions on/off. These tasks
require login.

797Developer's Guide

RequiredDescriptionviewType

NoProvides a task, which displays all entities of the
particular type. Similar to list but edit functions
are not allowed in these tasks. These tasks do not
require login.

browse

NoProvides a task, which displays all entities of the
type owned by the logged-in user; otherwise, the
function is just as with the list view.

listMy

NoProvides a context menu for the Catalog tree. If
missing, there will not be a context menu for the
entity.

treeContextMenu

NoProvides a Task that displays the entity's menu
when the Entity is selected in the Catalog tree. If
missing, the entity will not be shown in Catalog
at all.

pageMenu

Each view can take some parameters. The parameters are passed by the code that invokes the View, and
the framework passes them to the View's implementation component or task. The caller must be able to use
the same parameters for invoking a View on different Entity types to remain independent of implementation
details of individual Entities. To achieve this, the View definition not only contains parameter names, but
also uses a simple mechanism to translate View's parameters to the implementation Component or Task
parameters.

This is achieved by allowing JSTL EL expressions as parameter values. The parameter definition in the
View configuration specifies the name of the parameter passed to the implementation Component or Task
(paramName) and EL expression to construct the value from the parameter(s) passed by the caller (paramValue).
Those EL expressions are evaluated in the context of a special component used to invoke Views, so all
parameters, request and session variables can be used to create the resulting value.

The following example shows a definition for the "Detail" View for the "Service" entity. Note how the
general "entityKey" parameter, which is applicable to all Detail Views, translates to a specific parameter
of the particular implementation Task.

Chapter 5798

Example 28: Classification of data in Java

<!--
 We declare a view of type "detail", which is implemented by the
 Task /browse/serviceDetail
-->
<view type="detail" task="/browse/serviceDetail">
 <!--
 The implementation task accepts "serviceKey" parameter,
 we have to adapt the View's parameter to the custom name.
 -->
 <parameter paramName="serviceKey" paramValue="${entityKey}"/>
</view>

References

Entities may have some relationships or associations between them. An association between A and B is
established by creating a keyedReference, with the tModelKey that identifies the type of the relationship and a
keyValue which holds the entityKey of the other side of the association. Only directed associations between
two UDDI entities are supported, however because of Registry query capabilities, it is also possible to
navigate in the reverse direction of an association - and Business Service Console supports that with the
"Referenced By" action.

A reference is defined by:

refName

An identifier that identifies this reference.

keyedReference

A keyedReference which is used to represent the association in the Registry. The tModelKey is
mandatory, the keyName tag is optional: if present, the keyedReference must have such keyName value
in order to form this reference.

originType

Zero or more originTypes can be specified to restrict which Entities can establish associations. If
no originType is present, the association can originate at any type of entity. When originType is
present, only the listed entity types can serve as origins for the association. Multiple originType
values are supported.

799Developer's Guide

The permitted values are the values of the id Entity definition attribute. In addition, values that
represent the UDDI structure types are permitted (BE, BS, BT, TM). When an UDDI structure type
is specified, the Reference can originate from any entity derived from that UDDI structure.

The permitted origins should be a subset of the relationship Taxonomy compatibility list.
If you permit an originType, whose UDDI structure is incompatible with the relationship
Taxonomy, you will not be able to add such references (associations) to entities.

The Business Service Console presents References to other entities on Detail pages of entities, and provides
"Referenced By" action for an entity to discover where the entity is referenced from. References defined
in this configuration can also be added by the Business Service Console user using the Add Reference
Wizard.

The following example shows how Policies can be associated with an arbitrary Entity. We define a reference
to the "policy" entities, with a certain tModelKey (according to the WS-Policy specification), and we do
not restrict who can use such a reference.

Chapter 5800

Example 29: Policy Entity

<!--
 Definition of the "Policy" entity
-->
<entity entityId="policy" type="TM" icon="policy.gif"
 captionKey="bsc.entityViews_policies" descriptionKey="bsc.entityViews_policies">
 <!-- Some categorization that identifies the entity -->
 <categorization>
 <keyedReference tModelKey="uddi:schemas.xmlsoap.org:policytypes:2003_03"
 keyValue="policy" keyName="policy"/>
 </categorization>
 <views>
 <!-- List of views, not important for this example -->
 ...
 </views>

 <references>
 <!--
 We define a Reference named "refLocalPolicy", with a (localizable) caption and description.

 originTypes specifier is missing, so this Reference can originate from any type of
 Entity.
 -->
 <reference refName="refLocalPolicy"
 captionKey="bsc.entityViews_policy_refLocalPolicy_caption"
 descriptionKey="bsc.entityViews_policy_refLocalPolicy_description">
 <!--
 This Reference will be stored using a keyedReference, that have tModelKey set
 to "uddi:schemas.xmlsoap.org:localpolicyreference:2003_03" and keyName set to
 "Associated Policy"
 -->
 <keyedReference tModelKey="uddi:schemas.xmlsoap.org:localpolicyreference:2003_03"
 keyName="Associated Policy"/>
 </reference>
 </references>

</entity>

Permission Restriction Support

In View, RequiredPermissions specifies Permission APIs required to execute a View. This supports the
BSC Permission Restriction feature.

801Developer's Guide

Example 30: Required permissions to execute View

<view type="edit" task="/publish/resources/editGenericResource">
 <parameter paramName="tModelKey" paramValue="${entityKey}"/>
 <requiredPermissions>
 <permission
 type="org.systinet.uddi.security.permission.ApiUserPermission"
 apiName="org.systinet.uddi.client.v3.ui.InquiryUIApi"
 action="get_entityDetail"/>
 <permission
 type="org.systinet.uddi.security.permission.ApiUserPermission"
 apiName="org.systinet.uddi.client.v3.UDDI_Publication_PortType"
 action="save_tModel"/>
 </requiredPermissions>
</view>

How to classify UDDI data

If a Component wants to smoothly integrate, it should ask the Entity Configuration to classify the data it
works with. Then it can write proper nouns to the web page, and use tasks and components configured for
the entity instead of using hardcoded links. The first step is obviously to find out what Entity the data
correspond to.

In Java, you will use the EntityHelper to determine the classification:

Chapter 5802

Example 31: Classification of data in Java

UDDIObject fromInstance;

/**
 Assume, that the "fromInstance" variable is initialized to an UDDIObject
 instance
 */

// Extract CategoryBag from whatever UDDI structure we have
CategoryBag fromCatBag = BscObjectUtilities.getCategoryBag(fromInstance, true);
// Get the list of KeyedReferences
KeyedReferenceArrayList fromKr = fromCatBag.getKeyedReferenceArrayList();
// Lookup the appropriate Entity definition from Entity Configuration
EntityHelper.Entity myEntity = helper.findEntityByCategorization(fromKr, fromType);

The code snipped provides you with an EntityHelper.Entity instance, which describes the data type. Please
refer to API documentation for details how to use the retrieved data.

Using Entities in JSP pages

The EntityHelper API class is designed for simple usage from JSPs. For classification, you may use the
following snippet:

Example 32: Classification of data in JSP

<!--
 The "instance" variable should be initialized to some UDDIObject
 instance. The "entityType" variable will be created and set to the
 appropriate EntityHelper.Entity instance by the tag.
-->
<bsc:setEntityClassification var="entityType" instance="${instance}"/>

The bsc:setEntityClassification is a JSP alternative to call the findEntityByClassification method of the
EntityHelper class. Note the usage of the bscEntityClassifier. This is session variable, provided by the
Business Service Console Framework so the EntityHelper API is accessible from JSP pages.

803Developer's Guide

If you are given an entityId instead of a data structure, you may easily refer to the EntityHelper.Entity
instance using an EL expression in the JSP:

Example 33: Classification of data in JSP

<!--
 The "entityId" variable should be initialized
 to one of the entity types as defined in bsc.xml

 The "bscEntityClassifier" contains a framework-provided instance
 of the EntityHelper API, which provides a Map of available entities
 for easy lookup from JSP.
-->
<c:set var="bscEntityType" value="${bscEntityClassifier.entities[entityId]}"/>

In order to use the Entity's caption or description, the procedure described in Localization guide must be
used, to make use of the appropriate localized string. We recommend using the following pattern:

Chapter 5804

Example 34: Classification of data in JSP

<!--
 First, get the entity type for the given entityId, we are expected to
 work with
-->
<c:set var="bscEntityType" value="${bscEntityClassifier.entities[entityId]}"/>

<!--
 Handle embedded bundle path specification, see localization guide for
 the details. The evaluated bundle name and key name will be placed
 into named request variables
-->
<syswf:parseResourceKey key="${bscEntityType.captionKey}"
 defaultBaseName="com.systinet.uddi.bui.framework.BSCMessages"
 varBundle="bundleName" varResource="finalCaptionKey"/>

<!--
 Load the bundle, which actually contains the key.
 Note that the bundle name may not be known at design time,
 as it may be embedded in the generalized resource bundle key
-->
<fmt:setBundle basename="${bundleName}" var="dynamic_Message"/>

<!--
 Setup two variables, one holding plural noun for entity caption,
 the other will hold the singular
-->
<fmt:message key="${finalCaptionKey}" var="entityCaption"
 bundle="${dynamic_Message}"/>
<fmt:message key="${finalCaptionKey}_single" var="entityCaption_single"
 bundle="${dynamic_Message}"/>

<!--
 Finally, format some message (properly localizing it through a bundle),
 and substitute the entity nouns in it. Note that the message itself
 can control whether plural or singular is used - it can use {0} to denote
 plural and {1} for singular noun.
-->
<fmt:message key="some_message_key" bundle="${myBundle}">
 <fmt:param value="${entityCaption}"/>
 <fmt:param value="${entityCaption_single}"/>
</fmt:message>

805Developer's Guide

The snippet first parses the resource bundle key provided as entity.captionKey property, then loads the
appropriate ResourceBundle using the fmt:setBundle standard tag. Note the bundle key naming convention
used to load the singular and plural nouns for the Entity type.

Using Views

When working with some data structure, you may directly invoke a Component, using syswf:component, or
make a link to a specific task using syswf:control. If you work on a mixture of data structures, each structure
may require a different Component to display itself, or a different Task to perform the action. When the
Entity Configuration changes, so that, for example, the task URI of the Edit operation changes, pages which
use hardcoded component names or task URIs may become inconsistent with the rest of the UI.

You may perform the operation in an abstract way, using the invokeEntityView Component. You need to
pass in enough information to identify the entity type and you need to specify the type of invoked View
(see above for the overview of supported view types). Parameters defined by the View specification will
be forwarded to the View component or task. You may pass additional parameters, but you have to prefix
them with the prefix view_ so that they are recognized and forwarded.

Chapter 5806

Example 35: Invoking a Component configured in Entity Configuration

<!--
 The following code invokes a "searchResults", which produces a table
 of results for the entity and the passed query.
 The code is taken out from Reports tab implementation
-->
<syswf:component prefix="${tabId}" name="invokeEntityView">
 <!--
 The desired viewType
 -->
 <syswf:param name="viewType" value="searchResults"/>
 <!--
 The query to process, taken from a prepared Map
 of queries for individual entity types
 -->
 <syswf:param name="query" value="${entityQueries[type.id]}"/>
 <!--
 Output parameter, component stores the result list in a temporary
 to allow the caller to find out whether the result list is
 empty
 -->
 <syswf:param name="var" value="references_tmp"/>
 <!--
 Propagates the type of the entity, to cover the case
 the view is reusable and is used for multiple entity
 types
 -->
 <syswf:param name="entityId" value="${type.id}"/>
</syswf:component>

807Developer's Guide

Example 36: Linking to a Task configured in Entity Configuration

<!--
 This snippet invokes a Create Wizard for the given entity.
-->
<syswf:component name="invokeEntityView" prefix="create">
 <syswf:param name="entityId" value="${entityId}"/>
 <syswf:param name="viewType" value="create"/>

 <!-- A HTML link will be generated -->
 <syswf:param name="mode" value="anchor"/>
 <!-- Text for the hyperlink -->
 <syswf:param name="caption" value="Link text"/>
</syswf:component>

You may also need to determine whether a certain View is available. The EntityHelper.Entity provides you
with all supported views as a java.util.Map, so you use the contents from a JSP easily:

Example 37: Linking to a Task configured in Entity Configuration

<!-- Set the entity type into a variable, for convenience -->
<c:set var="bscEntityType" value="${bscEntityClassifier.entities[entityId]}"/>

<!-- Check whether the desired view is available -->
<c:if test="${not empty bscEntityType.views['create']}">
 <!-- Do some fancy stuff -->
 ...
</c:if>

The presence of a View indicates, that a certain function is available for an entity. You may conditionally
change the page appearance based on such an indication.

Linking to a Detail page

In places where an entity is mentioned, it is often appropriate to link to the entity Detail page. There is a
special component showEntityName for this purpose. It renders the entity's name as a hyperlink to the
entity's Details.

Chapter 5808

Example 38: Linking to entity details

<!--
 This example shows how to create a link to the detail
 page of an Entity. The entity is given by its key,
 UDDI type and the keyedReferences.
-->
<syswf:component name="showEntityName" prefix="name1">
 <syswf:param name="entityKey" value="${key}"/>
 <syswf:param name="uddiType" value="TM"/>
 <syswf:param name="keyedReferences" value="${keyedReferenceArrayList}"/>
</syswf:component>

<!--
 The following example shows how to use UDDI structure itself,
 if it is available to link to the relevant entity detail
-->
<syswf:component name="showEntityName" prefix="n_${row.key}">
 <syswf:param name="entityInstance" value="${theStructure}"/>
 <!--
 We override the rendered string with a custom value.
 If this was omitted, the entity name would be printed
 as the hyperlink text
 -->
 <syswf:param name="instanceName" value="Some string"/>
</syswf:component>

A description of the component and its parameters can be found in file jsp/browse/showEntityName.jsp, which
you can find in bsc.jar or in the BSC work directory.

Permission support

Business Service Console contains powerful support for user permission evaluation on selected objects.
The developer can easily find out, if the current user is allowed to manipulate some object. This feature
takes into consideration object ownership, Access Control Lists, groups and API permissions.

Data classes

The API contains two important Java types. The first is the class
com.systinet.uddi.bui.framework.component.util.permission.UserContext. An instance is created automatically,

809Developer's Guide

when a user logs into the Business Service Console and it is available in the global session under key
userContext. The instance holds the groups that the user is member of and a list of his permissions.

Then there is an interface com.systinet.uddi.bui.framework.component.util.permission.DataFeeder. It is the
developer's responsibility to create and feed an instance of its implementation. There are two implementations
available. com.systinet.uddi.bui.framework.component.util.permission.UDDIDataFeeder is initialized with list of
UDDI keys and it fetches specified UDDI structures from HP SOA Systinet Registry. If these structures
are already available, then it is better to use
com.systinet.uddi.bui.standard.component.util.permission.BuiDataFeeder for performance reasons.

PermissionEvaluator

To check user permissions in Java code you must use class
com.systinet.uddi.bui.framework.component.util.permission.PermissionEvaluator. It contains public methods
to check whether the user can create a business service in the given business entity, or binding template in
the given business service, and to check whether the user can update or delete a specified business entity,
business service, binding template or tModel. These methods take a UDDI key, the UserContext and a
DataFeeder implementation as arguments.

Example 39: ParseResourceKey tag - Usage Example

boolean allowed = PermissionEvaluator.checkPermissionDeleteTM(tModelKey, userContext, dataFeeder);

checkPermission tag

To check user permissions in JSP, there is a tag checkPermission. In addition to a UDDI key, the UserContext
and a DataFeeder implementation, it accepts operation and var attributes as arguments. It specified variable
receives the result of the check.

Chapter 5810

Table 95. checkPermission tag Parameters

RequiredDescriptionParam

yesName of the variable that will hold the result of the check.var

noScope for the new variable.scope

yesOperation identifier. One of create, edit and delete.operation

yesThe key of the UDDI structure for which we want to check
permissions.

key

yesContainer for user account specific data. Typically available in
global session, if the user is logged in.

userContext

yesData object holding information about UDDI structures on this
page.

dataFeeder

Example 40: ParseResourceKey tag - Usage Example

<bsc:checkPermission var="permission"
 operation="edit" key="${row.key}"
 userContext="${globalSession['userContext']}"
 dataFeeder="${dataFeeder}"/>
<c:if test="${permission}">
 <syswf:control targetTask="/publish/endpoints/editEndpoint"
 caption="Delete" mode="image" src="gfx/icon/i_edit.gif">
 <syswf:param name="bindingKey" value="${row.key}"/>
 </syswf:control>
</c:if>

checkApiPermission tag

In the BSC, besides ACL Permission checking, the user must have permission to use APIs to perform some
actions such as search, publish, edit, delete, etc. If the user does not have sufficient permissions, the action
must be made unavailable as early as possible. Each action in the BSC (represented as a link, button, image,
action list, etc.) requires some methods of the Permission API to execute and the checkApiPermission element
is used to check that the user has sufficient permissions to perform the action. It uses the sub-element
permission, to specify the Permission APIs that are used to to check that the user has sufficient permissions.
The boolean result is received via a variable. If it returns false, the task will be disabled so that the user
does not waste time attempting to perform a task that they cannot complete.

811Developer's Guide

Table 96. checkApiPermission Attributes

RequiredDescriptionName

yesName of the variable that will receive the result of the check.var

Table 97. checkApiPermission Sub-Elements

RequiredDescriptionName

yesSpecifies the Permission API that is used to check if the user
has permission to use this API.

permission

Table 98. permission Attributes

RequiredDescriptionName

yesType of the Permission API, it must be one of four types:
org.systinet.uddi.sercurity.permision.ApiUserrpermission
org.systinet.uddi.sercurity.permision.ApiManagerPermission
org.systinet.uddi.permission.ACLPermission
org.systinet.uddi.permission.ConfigurationManagerPermission

type

yesName (interface's or config's name) of the Permission API
correlative with the type.

name

yesAction (method's name) that the API support.action

Chapter 5812

Example 41: checkApiPermission tag - Usage Example

<bsc:checkApiPermission var="hasPermission">
 <bsc:permission type="org.systinet.uddi.security.permission.ApiUserPermission"
 name="org.systinet.uddi.client.v3.ui.InquiryUIApi"
 action="get_entityDetail"/>
</bsc:checkApiPermission>
<c:choose>
 <c:when test="${hasPermission}">
 <syswf:control action="root#quickSearch" mode="button" caption="${findCaption}"
 hint="${findHint}">
 <syswf:attribute name="class" value="submit"/>
 <syswf:validate action="checkFields" component="*"/>
 </syswf:control>
 </c:when>
 <c:otherwise>
 <syswf:control action="root#quickSearch" mode="button" caption="${findCaption}"
 disabled="true" hint="${disabledHint}">
 <syswf:attribute name="class" value="submit"/>
 <syswf:validate action="checkFields" component="*"/>
 </syswf:control>
 </c:otherwise>
</c:choose>

Components and Tags

This section describes selected components and tags of the Business Service Console (BSC) framework
and components of the Business Service Console. The BSC Framework is a set of components and tags
used by developers to develop Business Service Console components. For complete documentation of these
components, see the Java Doc located in the REGISTRY_HOME/doc/bsc-api directory.

• Framework Components

• Framework Tags

• Business Service Console Components

Framework Components

This section describes the following component types:

813Developer's Guide

Query
Wizard
Result
Taxonomy
Util

Query

In this section, we will show you how Query components are used in Business Service Console. We explain
query components on the page shown in Figure 14 with a page from a wizard for creating a new business
service

Figure 14. Query Components

Chapter 5814

The service name in the drop down list under the rewrite service option is produced via the Entity chooser
component

The following fields in Figure 14 are produced via Taxonomy filters components:

• The Usage, Release date, Version and Milestone fields are produced by inputCategorySetter component.

• The Certification field is produced by the selectCategorySetter component

Entity Choosers

The Entity Chooser component is used to select one entity from a list of entities obtained by a query.

There are four types of Entity Choosers, each representing a UDDI data structure:

• businessChooser for selecting business entities

• bindingChooser for selecting binding templates.

• serviceChooser for selecting business services

• tmodelChooser for selecting technical models.

All these choosers have the similar functionality.

815Developer's Guide

Table 99. entityChooser Parameters

I|ORequiredDescriptionTypeParam

inoptionalFilter used for getting a list of entities. If it is not
specified, all entities will be fetched.

Find_entity
(Find_business
,

filter

Find_service,
Find_binding
or
Find_tModel)

inrequiredThe bean where key of the selected entity will be
saved.

ObjectresultObject

inrequiredThe property of the resultObject bean, into which
the key will stored.

StringresultProperty

inoptionalThe sorting mode can be asc (for acsending) or desc
(for descending). Entities are sorted in the list
according to their name.

Stringsort

inoptionalString used as a hint which appears if the pointer is
on the component view area.

Stringhint

inoptionalAction sent to the parent component when a selection
has changed.

StringchangeAction

inoptionalTask used for rendering the detail of a selected entity.StringdetailTask

inoptionalName of the entity key used in detailTask for getting
details on an entity.

StringentityKeyName

inoptionalValue displayed if there are no entities to be
displayed.

StringemptyMessage

inoptionalMaximum number of entities to be displayed in the
list; default value is 50.

IntegerpageSize

inoptionalValue displayed in the list if a query generates more
entities than pageSize allows. Default value is "..."

StringentitiesTruncatedMessage

Chapter 5816

I|ORequiredDescriptionTypeParam

inoptionalPermission the user must have on an entity in order
for it to be selected. In other words an additional
filter criterion. Possible values are create, edit or
delete.

StringmandatoryPermission

Example 42: entityChooser Example

<%-- Import the Systinet framework custom tag library. --%>
<%@ taglib prefix="syswf" uri="http://systinet.com/jsp/syswf" %>
...
<syswf:component prefix="business" name="businessChooser">
 <syswf:param name="resultObject" value="${resultBusiness}"/>
 <syswf:param name="resultProperty" value="key"/>
 <syswf:param name="sort" value="ascending"/>
 <syswf:param name="changeAction" value="business"/>
 <syswf:param name="detailTask" value="/browse/providerDetail"/>
 <syswf:param name="entityKeyName" value="businessKey"/>
</syswf:component>

Taxonomy Filters

Taxonomy filters have been obsoleted by categorySetters are are deprecated. See the introduction
above.

Taxonomy filter components are used for selecting one category or a subset of all categories of the given
taxonomy. The result of the selection is stored in the given CategoryBag.

Taxonomy Filter

The taxonomy filter is used for selecting one or many categories of the given taxonomy specified by its
tModel key.

817Developer's Guide

Table 100. taxonomyFilter Parameters

I|ORequiredDescriptionTypeParam

inrequiredCategories from this taxonomy are rendered as
selection options.

StringtaxonomyTModelKey

in|outrequiredServes as storage for the result set of the selected
categories. The categoryBag component stores and

CategoryBagcategoryBag

returns the current status of the selection. This
parameter can be common for more taxonomies or
selectors. For one taxonomy there is an exclusivity
of selection, meaning that a new selection replaces
of the previous selection for a particular taxonomy.

inoptionalDefines selection mode as one or many. If mode one is
supported, it will be possible to select just one

StringselectMode

category of the given taxonomy. If mode many is
supported, it will be possible to select a subset of of
the given taxonomy's categories.

inoptionalDefines view modes radio, menu, or checkbox. If radio
or checkbox modes are used, the selection will be

StringviewMode

rendered as a set of checks or radio buttons
(depending on whether selectMode is one or many)
where one button represents one category of the
given taxonomy.

If menu mode is used, a list box is rendered with a
select one or multi-select property, depending on the
supported selectMode. Each line item of the list box
represents one selectable category.

inoptionalA list of selectable categories. If the parameter has
type String, it must be a list of comma-separated

String or
Category[]
(array)

categoryList

category values. This feature is useful if either the
subset of all categories of the given taxonomy isor

CategoryArrayList intended to be selectable, or the taxonomy does not
have all selectable categories specified. For example,
an unchecked taxonomy.

Chapter 5818

I|ORequiredDescriptionTypeParam

inoptionalAdds the functionality of the empty selection choice
useful for selectionMode = one. If the parameter is
used and is not empty, its String value is treated as
no selection and is added to the list of selectable
categories. If no category is selected, this nil value
is visually selected. If this nil value is selected, no
category of the given taxonomy is really selected.

This feature is useful when selectMode = one is
supported and a select one or nothing" feature is
actually desired.

StringfakeNil

Example 43: Taxonomy Filter - Usage Example

<%-- Import the Systinet framework custom tag library. --%>
<%@ taglib prefix="syswf" uri="http://systinet.com/jsp/syswf" %>
...
<syswf:component prefix="filter" name="taxonomyFilter">
 <syswf:param name="taxonomyTModelKey"
 value="uddi:uddi.org:categorization:types"/>
 <syswf:param name="categoryList" value="yes,no"/>
 <syswf:param name="categoryBag" value="${categoryBag}"/>
 <syswf:param name="viewMode" value="menu"/>
 <syswf:param name="selectMode" value="one"/>
 <syswf:param name="fakeNil" value="nil"/>
</syswf:component>

Taxonomy Pure Filter

The Taxonomy Pure Filter component is intended for incrementally adding to a list of selected categories
of the given taxonomy. It is useful for taxonomies without defined categories.

It renders input fields representing the specification of the category which will be added to the list.

819Developer's Guide

Table 101. taxonomyFilterPure Parameters

I|ORequiredDescriptionTypeParam

inrequiredSpecifies the taxonomy the categories of which can
be set to the resulting categoryBag.

StringtaxonomyTModelKey

in|outrequiredA storage of the result set of the selected categories.
The categoryBag component stores and returns the
current state of the selection. This parameter can be
common for more taxonomies or selectors. For one
taxonomy there is an exclusivity of selection. This
means that a new selection of categories replaces the
previous selection for a particular taxonomy.

CategoryBagcategoryBag

inoptionalIf entered and not empty, it renders one input field
for the specification of the value specifying category.
Neither captions nor a key name input field are
presented.

Stringrestricted

inoptionalIf the reuse parameter is not present, the category
specified by input fields is simply added to the given
categoryBag (if it is not there already). If the reuse
parameter is present and not empty, categoryBag is
used for redefinition of the category it stores for the
taxonomy given as the component parameter. This
means that if the categoryBag already stores a
category of the given taxonomy, this category is used
and input fields are prefilled using this category. If
a new specification of input fields gives the
specification of a new category, this category will
replace the old one stored in categoryBag.

Stringreuse

Chapter 5820

Example 44: Taxonomy Filter Pure - Usage Example

<%-- Import the Systinet framework custom tag library. --%>
<%@ taglib prefix="syswf" uri="http://systinet.com/jsp/syswf" %>
...
<syswf:component prefix="filterPure" name="taxonomyFilterPure">
 <syswf:param name="taxonomyTModelKey" value="uddi:uddi.org:wsdl:types"/>
 <syswf:param name="categoryBag" value="${categoryBag}"/>
 <syswf:param name="reuse" value=""/>
</syswf:component>

Wizard

wizardIterator

This component enables a wizard scenario and handles the navigation between the wizard steps. It renders
the wizard navigation buttons as Next, Previous, Cancel, and Finish. It is also able to render the complete
list of step names with an active step name highlighted.

There are two actions this component sends to the root component: Cancel and Finish. The Cancel action
is sent as a reaction when the user presses the Cancel button. The Finish action is sent as a reaction when
the user presses the Finish button. Both actions are declared in the Java part of the wizardIterator component
of com.systinet.uddi.bui.framework.component.wizard.WizardIterator as final static fields: CANCEL and FINISH.

821Developer's Guide

Table 102. wizardIterator Parameters

RequiredDescriptionParam

requiredThis value must hold a comma-separated list of Strings. Each
String must refer to the name of a component. Each component
then represents a step of the wizard. The order of the items in
the list is the order of the wizard steps.

componentNames

requiredThe value of this parameter must hold a comma-separated list
of Strings. Its length must be equal to the length of the list
passed to the componentNames parameter. Each item of the
list represents the title of the step that will be rendered at the
top of the resulting wizard step page. The order of the items
should correspond to the order of the items in the
componentNames parameter.

stepNames

requiredThe value of this parameter must hold an instance of Object.
This instance will be passed as a parameter to every component
that represents a wizard step . This is the main entity the wizard
iterates over.

form

optionalThe value of this parameter must hold a boolean. When set to
true, a list of the step names with an active step highlighted will
be displayed in the left part of the wizard's window.

showStepList

optionalThe value of this parameter must hold a boolean. When set to
true, disabled navigation buttons will also be displayed during
the iteration (that is,, the Back button in the first step, the Next
button in the last step, and the Finish button before the final
step).

By default only enabled navigation buttons are displayed.

showDisabledButtons

Chapter 5822

Example 45: wizardIterator - Usage Example

<syswf:component name="wizardIterator" prefix="wizard">
 <syswf:param name="componentNames" value="${wizardComponents}"/>
 <syswf:param name="stepNames" value="${wizardNames}"/>
 <syswf:param name="form" value="${form}"/>
 <syswf:param name="showStepList" value="true"/>
 <syswf:param name="showDisabledButtons" value="true"/>
</syswf:component>

Result

In this section, we will show how Result components are used in the Business Service Console. We explain
result components in Figure 15, which displays list of services

823Developer's Guide

Figure 15. Result Components

The selectResultView is responsible for rendering the Result View with a drop down list containing a list
of available result views.

The tableFilter component renders fields for filter specification including the Filter button.

The columnHeader component renders a single column header in the result table.

Chapter 5824

selectResultView

This component takes a list of components and displays the first component (or a component specified by
the defaultView parameter). SelectResultView also renders a drop down list, so the user can switch to
another view from the list.

Table 103. selectResultView Parameters

RequiredDescriptionParam

yesA comma-separated list of component names.views

yesA comma-separated list of titles for the components from the
views parameter. They will be displayed in the drop down list.

titles

noThe name of a component to be rendered by default.defaultView

This component accepts other parameters to be passed to the rendered component. In this way, for example,
you can pass the sorting column name, set a prefix, or set data to be displayed.

Example 46: selectResultView - Usage Example

<syswf:component prefix="providers" name="selectResultView">
 <syswf:param name="views" value="providersCommonResults,providersBizResults" />
 <syswf:param name="titles" value="Common,Business" />
 <syswf:param name="defaultView" value="${defaultView}"/>
 <syswf:param name="prefix" value="providers" />
 <syswf:param name="sortedBy" value="${sortedBy}"/>
 <syswf:param name="resultList"
 value="${availableProviders.businessEntityArrayList}"/>
</syswf:component>

tableFilter

This component renders a filter for the table identified by the parameter table.

825Developer's Guide

Table 104. tableFilter Parameters

RequiredDescriptionParam

yesValue must hold an instance of the
com.systinet.uddi.bui.framework.view.Table object.

table

yesThe prefix of the component that actually performs the filtering.
See the processTable component.

sortTablePrefix

Example 47: TableFilter - Usage Example

<syswf:component prefix="filter" name="tableFilter">
 <syswf:param name="table" value="${table}"/>
 <syswf:param name="sortTablePrefix" value="sortTable" />
</syswf:component>

processTable

This component filters and sorts the rows of the table passed as a parameter. The component is not visual,
it only handles actions and manipulates with data structures.

Table 105. processTable Parameters

RequiredDescriptionParam

yesValue must hold an instance of the
com.systinet.uddi.bui.framework.view.Table object.

table

noThe name of the column to be used for sorting the table provided
the user has not chosen a sorting column.

defaultSortColumn

Example 48: processTable - Usage Example

<syswf:component prefix="sortTable" name="processTable">
 <syswf:param name="table" value="${table}"/>
 <syswf:param name="defaultSortColumn" value="${defaultSortColumn}"/>
</syswf:component>

Chapter 5826

columnHeader

This component renders the column title for a single column. If a column is sortable, then its title is made
clickable, so it can be used to sort the table by this column.

Table 106. columnHeader Parameters

RequiredDescriptionParam

yesValue must hold an instance of the
com.systinet.uddi.bui.framework.view.Table object.

table

yesValue must hold an instance of the
com.systinet.uddi.bui.framework.view.Column object.

column

yesThe value of this parameter must be equal to the prefix used in
the processTable component, otherwise sorting will not work.

sortTablePrefix

Example 49: columnHeader - Usage Example

<syswf:component prefix="providerName" name="columnHeader">
 <syswf:param name="table" value="${table}"/>
 <syswf:param name="column" value="${table.columns[0]}"/>
 <syswf:param name="sortTablePrefix" value="sortTable" />
</syswf:component>

Taxonomy

taxonomyTree

This component fetches all referenced categories from a selected internal taxonomy, and constructs a
JavaScript tree, and adds it to the selected parent as a child node. Categories are considered to be referenced
when they are used in some published keyedReference.

827Developer's Guide

Table 107. taxonomyTree Parameters

RequiredDescriptionParam

yesKey of internal taxonomy's tModel. If the taxonomy is not
internal, it has no categories and thus no nodes in the tree under
the parent will be added.

tModelKey

noOptional parameter that in conjunction with tModelKey
constructs one concrete category. Only referenced child
categories of this category will be fetched from the registry.

keyValue

yesName of a JavaScript variable that will serve as parent for the
created tree.

parent

Example 50: taxonomyTree - Usage Example

<syswf:component prefix="iso3166" name="taxonomyTree">
 <syswf:param name="tModelKey" value="uddi:uddi.org:ubr:categorization:iso3166"/>
 <syswf:param name="targetTask" value="/browse/views/other/enterprise/taxonomy"/>
 <syswf:param name="parent" value="iso3166"/>
</syswf:component>

collectCategories

This component allows you to add and remove categories from the list. It consists of the two column areas.
The left column contains the taxonomy tree structure; the right contains the list of currently selected values.

Table 108. collectCategories Parameters

RequiredDescriptionParam

requiredMust contain the valid tModel key of the checked internal
taxonomy. The values of this taxonomy will be displayed in
the tree on the left side.

taxonomyTModelKey

requiredThe value of this parameter must contain an instance of the
org.systinet.uddi.client.v3.struct.CategoryBag class. This class
is used as a holder for the selected categories, which are
displayed in the right-hand column.

categoryBag

Chapter 5828

Example 51: collectCategories - Usage Example

<syswf:component name="collectCategories" prefix="unspsc">
 <syswf:param name="categoryBag" value="${form.business.entity.categoryBag}"/>
 <syswf:param name="taxonomyTModelKey"
 value="uddi:uddi.org:ubr:categorization:unspsc"/>
</syswf:component>

selectableTaxonomyTree

This component displays the taxonomy values in the tree-like structure. Each tree node also contains a check
box, which can be used to select a specified value. The tree is constructed on a per-node basis, so it can
handle potentially large taxonomy structures.

Table 109. selectableTaxonomyTree Parameters

RequiredDescriptionParam

requiredMust contain the valid tModel key of the checked internal
taxonomy. The values of this taxonomy will be displayed in
the tree.

taxonomyTModelKey

Usage of the selectableTaxonomyTree component: Note that taxonomy data are usually very large,
so it is a good idea to restrict the area occupied by this component using the HTML DIV tag with
a specified size. The example bellow displays the tree in a scrollable square area of 300 by 300
pixels.

Example 52: Component Parameters

<div style="width:300px; height:300px; overflow:scroll; clip:rect(0px 0px 0px 0px);">
 <syswf:component prefix="taxonomy" name="selectableTaxonomyTree">
 <syswf:param name="taxonomyTModelKey" value="${taxonomyTModelKey}"/>
 </syswf:component>
</div>

829Developer's Guide

Util

tabbedFrame (deprecated)

This component renders content divided into several tabs. These tabs are displayed down the right side of
screen. The tabbedFrame component is substituted for TabsComponent class.

Table 110. tabbedFrame Parameters

RequiredDescriptionParam

at least oneThe value of this parameter must refer to the name of the
component. The component then represents the content of a
tab. The string NN in the parameter name stands for some
number used for ordering the tabs. For example,
tab1_component will be rendered before tab2_component.

tabNN_component

at least oneThe value of this parameter must hold the tab's unique identifier.
Its value is also used to determine which icons should be
rendered as tab handles. For example, a tab with the id webpaging
will require the images webroot\gfx\tabs\webpaging_0.gif and
webroot\gfx\tabs\webpaging_1.gif to be present in bsc.jar. The
first image represents unselected tab and the second image
contains selected version. The prefix of the parameter name
must match the corresponding tabNN_component parameter.

tabNN_id

noThe value of this parameter must hold the id of the tab which
will be active by default. This value is used only when user
displays a page with a tabbed component for the first time. The
next time identification of the active tab is obtained from a
browser cookie rather than from this parameter.

defaultTab

Chapter 5830

Example 53: tabbedFrame configuration - Component Parameters

<config name="web" savingPeriod="5000">
 <webFramework>
 ...
 <component name="configuration_tabs"
className="com.systinet.uddi.bui.framework.component.util.TabbedFrame" page="util/tabbedFrame.jsp">
 <parameter paramName="tab1_id" paramValue="webtabs"/>
 <parameter paramName="tab1_component" paramValue="configuration_webtabs"/>
 <parameter paramName="tab2_id" paramValue="webviews"/>
 <parameter paramName="tab2_component" paramValue="configuration_webviews"/>
 <parameter paramName="tab3_id" paramValue="webtaxonomy"/>
 <parameter paramName="tab3_component" paramValue="configuration_webtaxonomy"/>
 <parameter paramName="tab4_id" paramValue="webpaging"/>
 <parameter paramName="tab4_component" paramValue="configuration_webpaging"/>
 <parameter paramName="tab5_id" paramValue="webui"/>
 <parameter paramName="tab5_component" paramValue="configuration_webui"/>
 </component>
 <component name="configuration_webtabs" page="configuration/webtabs.jsp"/>
 <component name="configuration_webviews" page="configuration/webviews.jsp"/>
 <component name="configuration_webtaxonomy" page="configuration/webtaxonomy.jsp"/>
 <component name="configuration_webpaging" page="configuration/webpaging.jsp"/>
 <component name="configuration_webui" page="configuration/webui.jsp"/>
 ...
 </webFramework>
...
</config>

TabsComponent

TabsComponent is a semi-complete component that is used to display a list of tabs defined in the configuration
file web_component.xml. It consists of:

• class com.systinet.uddi.bui.framework.component.util.TabsComponent that reads the configuration;

• JSP file util/tabsComponent.jsp that renders the tabs.

The developer creates a new component with these and the parameter tabs.

The tabs parameter contains its configuration in the form of XML stored within a paramValue element. It
must contain root element tabs, which contains tab elements.

831Developer's Guide

Table 111. tab attributes

RequiredDescriptionAttribute

yesThe value of this attribute defines a unique identifier for this tab within
this set of tabs. It can be used in tabs_disable_list component parameter.

tabId

yesThis value must be a reference to an existing component that represents
the content of the tab.

tabComponent

yesThe value of this attribute is a reference to a resource bundle with text
that will be rendered as the caption of the tab.

captionKey

noThe value of this attribute is a reference to a resource bundle with text
that will be rendered as a hint for this tab. It will be displayed when
the user points to the tab caption.

hintKey

The component accepts a parameter tabs_disable_list with a comma separated list of tab identifiers that
will be skipped during tab rendering. Leading and trailing commas are ignored. This way developers may
dynamically disable some tabs that are not available in the current context.

Chapter 5832

Example 54: TabsComponent configuration

<component
 name="recentChanges_tabs"
 className="com.systinet.uddi.bui.framework.component.util.TabsComponent"
 page="util/tabsComponent.jsp">
 <parameter paramName="tabs">
 <paramValue>
 <tabs>
 <tab tabId="providers" tabComponent="changes_providers"
 captionKey="webcomponent.recentChanges_tabs_caption_providers"
 hintKey="webcomponent.recentChanges_tabs_hint_providers"/>
 <tab tabId="services" tabComponent="changes_services"
 captionKey="webcomponent.recentChanges_tabs_caption_services"
 hintKey="webcomponent.recentChanges_tabs_hint_services"/>
 <tab tabId="endpoints" tabComponent="changes_endpoints"
 captionKey="webcomponent.recentChanges_tabs_caption_endpoints"
 hintKey="webcomponent.recentChanges_tabs_hint_endpoints"/>
 <tab tabId="interfaces" tabComponent="changes_interfaces"
 captionKey="webcomponent.recentChanges_tabs_caption_interfaces"
 hintKey="webcomponent.recentChanges_tabs_hint_interfaces"/>
 </tabs>
 </paramValue>
 </parameter>
</component>

Example 55: TabsComponent usage

<syswf:component name="recentChanges_tabs" prefix="tabs">
 <syswf:param name="tabs_disable_list" value="endpoints,interfaces"/>
</syswf:component>

TreeComponent

TreeComponent is used to display a static tree. Elements of the tree are links to actions and tasks. Sub-trees
can be expanded and collapsed. An icon can be shown next to each link.

TreeComponent is a semi-complete component. It consists of

833Developer's Guide

• class com.systinet.uddi.bui.framework.component.util.TreeComponent that reads the configuration
from web_component.xml;

• JSP util/treeComponent.jsp that renders the tree;

All elements of the tree are described in the component configuration, so different trees require different
components. The component configuration includes:

• configuration common to different trees:

• Java class file;

• JSP file;

• configuration specific to the particular tree:

• a parameter containing the tree layout;

Chapter 5834

Example 56: A tree configuration

<component name="publishTree"
 className="com.systinet.uddi.bui.framework.component.util.TreeComponent"
 page="util/treeComponent.jsp">
 <parameter paramName="treeContent">
 <paramValue>
 <node nodeId="publish" captionKey="publish" icon="publish.gif">
 <control action="" targetTask="/publish" targetUrl=""/>
 <node nodeId="providers" captionKey="publish_providers" icon="provider.gif">
 <control targetTask="/catalog/providerMenu"/>
 <contextMenuReference component="contextMenu_providersList"/>
 </node>
 <node nodeId="services" captionKey="publish_services" icon="service.gif">
 <control targetTask="/catalog/serviceMenu"/>
 <contextMenuReference component="contextMenu_servicesList"/>
 </node>
 <node nodeId="resources" captionKey="publish_resources" icon="resources_0.gif"
openIcon="resources_1.gif">
 <control targetTask="/publish/resources"/>
 <node nodeId="wsdl" captionKey="publish_resources_wsdl" icon="wsdl_0.gif">
 <control targetTask="/catalog/wsdlMenu"/>
 <contextMenuReference component="contextMenu_wsdlList"/>
 <node nodeId="portTypes" captionKey="publish_resources_wsdl_portTypes"
icon="porttype.gif">
 <control targetTask="/catalog/wsdl/portTypeMenu"/>
 <contextMenuReference component="contextMenu_portTypeList"/>
 </node>
 <node nodeId="ports" captionKey="publish_resources_wsdl_ports" icon="port.gif">

 <control targetTask="/catalog/wsdl/portMenu"/>
 <contextMenuReference component="contextMenu_portList"/>
 </node>
 </node>
 <node nodeId="xsd" captionKey="publish_resources_xsd" icon="xsd.gif">
 <control targetTask="/catalog/xsdMenu"/>
 <contextMenuReference component="contextMenu_xsdList"/>
 </node>
 </node>
 </node>
 </paramValue>
 </parameter>
 </component>

835Developer's Guide

Table 112. node attributes

RequiredDescriptionAttribute

yesAn identifier for the node, must be unique in the tree.nodeId

yesResource-bundle key for caption of the link.captionKey

noA relative path to the icon for the node. Default is file.png.icon

noLike icon attribute but for open nodes. Default is same as icon.openIcon

Table 113. node sub-elements

RequiredMore than onceDescriptionElement

noyesNode element of subtree.node

yesnoSpecifies syswf:control like
links.

control

nonoLink to
ContextMenuComponent on
page 837.

elementMenuReference

Table 114. control attributes

RequiredDescriptionAttribute

noAn action to syswf:controlaction

noA targetTask to syswf:controltargetTask

noA targetDepth to syswf:control, with default 0.targetDepth

noA targetUrl to syswf:controltargetUrl

A control element can contain parameters described in a parameter element. These parameters will be
available in the called task/component.

Chapter 5836

Table 115. parameter attributes

RequiredDescriptionAttribute

yesAn identifierparamName

yesAny string.paramValue

A contextMenuReference element links the tree node to a ContextMenuComponent on page 837, which is
activated by right-clicking the node. It contains a component attribute, which is used to:

• create an identifier for linking the node and the actual menu;

• call a component of that name to render a contextMenu component. The rendered component is hidden
until the menu is activated;

Up to 9 parameters can be specified in the contextMenuReference via parameter elements. They will be
merged with the parameters specified in the configuration of the called contextMenu component and used
within the syswf:control element.

A TreeComponent may be called without parameters.

ContextMenuComponent

ContextMenuComponent is used to display a context menu. Elements of the menu are links to actions and
tasks. An icon can be shown next to each link.

ContextMenuComponent is a semi-complete component. It consists of

• class com.systinet.uddi.bui.framework.component.util.ContextMenuComponent that reads the
configuration from component parameters in web_component.xml;

• util/contextMenuComponent.jsp that renders the menu.

All elements of the menu are described in the component the configuration, so different context menus
require different components. The component configuration includes:

• configuration common to different context menus:

• Java class file;

837Developer's Guide

• JSP file;

• configuration specific to the particular context menu:

• a parameter containing menu items;

Example 57: A context menu configuration

<component name="contextMenu_providersList"
className="com.systinet.uddi.bui.framework.component.util.ContextMenuComponent"
page="util/contextMenuComponent.jsp">
 <parameter paramName="menu">
 <paramValue>
 <contextMenu captionKey="providersList_caption">
 <menuItem captionKey="providersList_item_publish_providers" icon="ctx_bsn_add.gif">
 <control targetTask="/publish/providers">
 <parameter paramName="editableMode" paramValue="true"/>
 </control>
 </menuItem>
 <menuItem captionKey="providersList_item_search_providers" icon="ctx_bsn_add.gif">
 <control targetTask="/search/providers">
 <parameter paramName="editableMode" paramValue="true"/>
 </control>
 </menuItem>
 <menuItem captionKey="providersList_item_publish_myProviders" icon="ctx_bsn_add.gif">
 <control targetTask="/publish/myProviders">
 <parameter paramName="editableMode" paramValue="true"/>
 </control>
 </menuItem>
 <menuItem captionKey="providersList_item_publish_providers_createProvider"
icon="ctx_bsn_add.gif">
 <control targetTask="/publish/providers/createProvider"/>
 </menuItem>
 </contextMenu>
 </paramValue>
 </parameter>
</component>

A contextMenu element contains attribute captionKey specifying the resource bundle key for the caption of
the menu. Its content is a list of menuItem elements that describe each menu item. Menu items have inks to
actions and tasks.a captionKey attribute and an icon attribute specifying the relative path to icon file. Menu

Chapter 5838

items also contain a control element, which is exactly same as the one described in TreeComponent on page
833.

The component can be called without any parameters, but is not usually called directly in code, but from
components such as TreeComponent that reference a context menu from their configuration.

Framework Tags

This section describes the Business Service Console web framework tag library.

• bsc:setLocalizedNames - selects names from a list in specified language

• bsc:setLocalizedDescriptions - selects descriptions from a list in a specified language

• bsc:setSelectedContacts - selects contacts of a certain useType from the given list

• bsc:setCategories - selects KeyedReferences from a specified list

• bsc:parseUddiQuery - sets UDDI query to a specified variable

• Table related tags: bsc:table, bsc:column, bsc:tableActions, bsc:row, bsc:cell , bsc:attribute

bsc:setLocalizedNames

This tag is used to set localized Names from a given list of names. The output JSP variable will contain
names that match given criteria. The algorithm selects all Names with a langCode equal to the attribute
langCode, if it is defined. Otherwise, Names with default (empty) langCodes are chosen. If there is no such
Name at all, then the first Name is selected from the list.

839Developer's Guide

Table 116. setLocalizedNames Parameters

RequiredDescriptionParam

yesOutput variable holding a list of names in the required language.var

yesThis parameter must hold an instance of the
org.systinet.uddi.client.v3.struct.NameArrayList object. This
object will be searched for localized Names.

value

noIdentifies the scope in which the variable will be set. It accepts
the following values: request, session, and application. If it is
not defined or has a different value, then the page scope is used.

scope

noCode of the preferred language. Names with this langCode will
be selected from the value parameter.

langCode

Example 58: setLocalizedNames - Usage Example

<bsc:setLocalizedNames var="DEFAULT_NAMES" value="${row.nameArrayList}" />
<c:out value="${DEFAULT_NAMES[0].value}"/>

bsc:setLocalizedDescriptions

This tag is used to set localized Descriptions from a given list. It creates a new JSP variable holding a
DescriptionArrayList of Descriptions that match the given criteria. The algorithm selects all Descriptions
with langCode equal to the attribute langCode, if it is defined. Otherwise, Descriptions with default (empty)
langCodes are chosen. If there is no such Description at all, then the first Description is selected from the
list.

Chapter 5840

Table 117. setLocalizedDescriptions Parameters

RequiredDescriptionParam

yesThe name of the output variable holding the list of descriptions
in the required language

var

yesMust hold an instance of the
org.systinet.uddi.client.v3.struct.DescriptionArrayList object.
This object is searched for localized Descriptions.

value

noThis parameter identifies the scope in which the variable are
to be set. It accepts the following values: request, session, and
application. If it is not defined or has a different value, then the
page scope is used.

scope

noCode of the required language. Names with this langCode will
be selected from the value parameter.

langCode

Example 59: setLocalizedDescriptions - Usage Example

<bsc:setLocalizedDescriptions var="descriptions" value="${row.descriptionArrayList}"
 langCode="${userDefaultLanguage}"/>
<c:out value="${descriptions[0].value}"/>

bsc:setSelectedContacts

This tag is used to set Contacts of a certain useType from the given list. It creates a new JSP variable holding
ContactArrayList of Contacts that matches given criteria.

The optional findQualifer parameter determines whether an exact match of the useType is required or if a
useType containing a regular expression is to be used. Regular expressions used must conform to UDDI
syntax, that is, it accepts ? and % as wildcards.

841Developer's Guide

Table 118. setSelectedContacts Parameters

RequiredDescriptionParam

yesThe name of the output variable.var

yesMust hold an instance of the
org.systinet.uddi.client.v3.struct.ContactArrayList object; this
object will be searched for the selected Contacts.

value

noThis parameter identifies the scope, where the variable shall be
set. It accepts the following values: request, session and
application. If it is not defined or has a different value, then the
page scope is used.

scope

yesThis parameter holds the value of useType that will be searched
in the list of Contacts. If the approximateMatch findQualifier
is used, then ? and % characters have the special meaning of
wild card characters, as described in the UDDI specification.

useType

noThe findQualifier parameter determines, whether the useType
shall be used for exact match (exactMatch) or whether it
contains wild card characters (approximateMatch). If it is not
specified, exactMatch is used.

findQualifier

Example 60: setSelectedContacts - Usage Example

<bsc:setSelectedContacts var="contact" value="${row.contactArrayList}"
 useType="%" findQualifier="approximateMatch" />
<c:out value="${contact[0].personNameArrayList[0].value}"/>

bsc:setCategories

This tag is used to set KeyedReferences from a given list. It creates a new JSP variable holding a
KeyedReferenceArrayList of KeyedReferences that match given criteria. The tModelKey parameter specifies
a tModelKey in which each KeyedReference must be selected. The optional keyValue parameter acts as a
secondary filter for KeyedReferences.

Chapter 5842

Table 119. setCategories Parameters

RequiredDescriptionParam

yesThe name of the output variablevar

yesMust hold an instance of the
org.systinet.uddi.client.v3.struct.KeyedReferenceArrayList

object. This object will be searched for matching
KeyedReferences. If the value is not defined, the variable will
be unset.

value

noThis parameter identifies the scope in which the variable shall
be set. It accepts the following values: request, session, and
application. If it is not defined or has a different value, then the
page scope is used.

scope

yesHolds the value of the tModelKey in which each selected
KeyedReference must be contained.

tModelKey

noThis optional parameter serves as an additional filter. If it is
specified then each KeyedReference must contain it.

keyValue

noIf specified, only keyedReferencies whose keyName equals to
the attribute value are copied to the result variable.

keyName

Example 61: setCategories - Usage Example

<bsc:setCategories var="unspc" value="${row.categoryBag.keyedReferenceArrayList}"
 tModelKey="uddi:uddi.org:ubr:categorization:unspsc" />
<c:out value="${unspc[0].keyName}"/>

bsc:parseUddiQuery

This tag is used to set a UDDI query to a specified variable. It can parse XML containing one of the following
operations:

find_binding
find_business
find_service
find_tModel

843Developer's Guide

get_binding
get_business
get_service
get_tModel
If the value parameter is not set, then the tag body is evaluated and used as the value.

Table 120. parseUddiQuery Parameters

RequiredDescriptionParam

yesThe name of the introduced variable.var

noMust hold a valid XML representation of the following UDDI
operations: find_binding, find_business, find_service,
find_tModel, get_binding, get_business, get_service and
get_tModel.

Note that namespaces must not be omitted!

value

Example 62: parseUddiQuery - Usage Example

<bsc:parseUddiQuery var="findQuery" scope="request">
 <find_tModel xmlns="urn:uddi-org:api_v3">
 <categoryBag>
 <keyedReference tModelKey="uddi:uddi.org:wsdl:types"
 keyValue="portType" />
 </categoryBag>
 </find_tModel>
</bsc:parseUddiQuery>

bsc:table

The table tag is a key component in the Business Service Console. It is used to define the Table object,
which holds data for query results, columns, and unfolded rows. Many components depends on this object,
such as tableFilter and columnHeader.

The behavior of this tag depends on whether the Table object can be found in the selected scope. If the
Table is missing, a new object is created and the tag body is evaluated. If the object is present in this scope,

Chapter 5844

then the body is skipped. The table also refreshes, if the request contains the tableRefresh attribute. This
prevents unnecessary data conversions when just redisplaying the same page

For example: when a different view is selected in the selectResultView component, then the tableRefresh
attribute is pushed to the request and Table is recreated.

Table 121. table Parameters

RequiredDescriptionParam

yesThe name of the variable holding the Table object.var

noIdentifies the scope in which the variable shall be set. It accepts
the following values: request, session, and application. If it is
not defined or has a different value, then the page scope is used.

scope

845Developer's Guide

Example 63: Table tag - Usage Example

<bsc:table var="${tableName}" scope="session">
 <bsc:column caption="Provider name" filterCaption="Provider name"
 name="providerName" sortable="true" filterable="true"/>
 <bsc:column caption="Keyword Name" filterCaption="Keyword Name"
 name="keywordName" sortable="true" filterable="true"/>
 <bsc:column caption="Keyword Value" filterCaption="Keyword Value"
 name="keywordValue" sortable="true" filterable="true"/>
 <bsc:column caption="Services" name="serviceCount" sortable="true"
 filterable="false"/>
 <c:forEach items="${resultList}" var="row" varStatus="status">
 <bsc:row>
 <bsc:attribute key="businessKey" value="${row.businessKey}" />
 <bsc:attribute key="services" value="${row.businessServiceArrayList}" />
 <bsc:setCategories var="keywords"
 value="${row.categoryBag.keyedReferenceArrayList}"
 tModelKey="uddi:uddi.org:categorization:general_keywords" />
 <bsc:cell trimWhitespace="yes">
 <bsc:setLocalizedNames var="DEFAULT_NAMES"
 value="${row.nameArrayList}" />
 <c:out value="${DEFAULT_NAMES[0].value}"/>
 </bsc:cell>
 <bsc:cell trimWhitespace="yes">
 <c:out value="${keywords[0].keyName}"/>
 </bsc:cell>
 <bsc:cell trimWhitespace="yes">
 <c:out value="${keywords[0].keyValue}"/>
 </bsc:cell>
 <bsc:cell trimWhitespace="yes">
 <syswf:size var="SERVICE_COUNT"
 value="${row.businessServiceArrayList}"/>
 <c:out value="${SERVICE_COUNT}"/>
 </bsc:cell>
 </bsc:row>
 </c:forEach>
</bsc:table>

bsc:tableActions

The bsc:tableActions tag initializes its output variable with a structure that describes actions that are rendered
on the page by the browser. The tag does not produce any HTML output, just the data. It is provided for
convenient and simple initialization of other UI components.

Chapter 5846

The list of actions is populated by bsc:action tags, nested in the bsc:tableActions tag. The standard UI uses
attributes of bsc:action to populate and initialize HTML page controls. The standard UI behavior will be
explained in attribute descriptions.

To support extensibility, bsc:action can specify an insertInto attribute, that directs the action into a specified
action list. This feature can be utilized by extensions that build on a basic UI.

Table 122. bsc:tableActions attributes

RequiredDescriptionAttribute

yesThe name of the output variable that will receive the list of
actions constructed by the tag.

var

noThe scope of the variable. See the JSP specification
[http://jcp.org/aboutJava/communityprocess/final/jsr152/] for
a list of scope names.

scope

Table 123. bsc:action attributes

RequiredDescriptionAttribute

yesURI of the task associated with the action.task

noThe action string associated with the UI action. This string can
be sent to the associated task.

action

yesA boolean value of true or false.default

The value must be of the type
com.systinet.uddi.bui.framework.view.TableActions. The action
produced by the tag will be appended to that list of actions.

insertInto

bsc:column

The column tag appends a new Column to the list of Columns in Table. This tag must be nested within the
Table tag.

847Developer's Guide

http://jcp.org/aboutJava/communityprocess/final/jsr152/

Table 124. column Parameters

RequiredDescriptionParam

yesThe caption for this column. Used by the columnHeader
component.

caption

noThe caption for this column in the tableFilter component. If
empty, no caption is used.

filterCaption

only if used for
filtering or sorting

The identifier of this column for sorting and filtering. If the
column is used for filtering or sorting rows, then this parameter
is mandatory.

name

noThe boolean property which determines, whether this column
can be used for sorting rows of the Table. A case-insensitive
match to yes and no is performed.

sortable

noThe boolean property which determines, whether this column
can be used for filtering rows of the Table. The values are yes
or no.

filterable

bsc:row

This tag appends a new Row to the list of Rows in Table. It must be nested within the Table tag. This tag
supports storing of attributes via a directly nested attribute tag. The key parameter is the unique identifier
of the row. The identifier must implement java.io.Serializable. If no key value is given, a key value is
generated when the row is inserted into a table. The row can contain <bsc:attribute> tags which populate
the row attributes property.

bsc:cell

The cell tag appends a new Cell to the current Row in the Table. This tag must be nested within the Row
tag. If the caption parameter is not specified, then the tag body is evaluated and body content is used. The
trimWhiteSpace attribute determines whether white spaces at both ends of the body content string shall be
removed. This tag supports the storing of attributes via directly nested attribute tags.

Chapter 5848

Table 125. cell Parameters

RequiredDescriptionParam

noThe caption for this cell.caption

noThe boolean property which determines, whether white space
characters from body content shall be removed. Used only if
caption is not defined. A case-insensitive match to yes and no
is performed.

trimWhiteSpace

bsc:attribute

The attribute tag is used to decorate the parent tag with additional data. The parent tag hierarchy is searched
for the first tag that implements the Attributive interface. This parent will receive this tag value via the
method void addAttribute(string key, String value) .

If the value parameter is not set, then the tag body is evaluated and used as the value.

Table 126. attribute Parameters

RequiredDescriptionParam

yesName of the attributekey

noThe string value for the specified key.value

Business Service Console Components

This section describes selected components of the Business Service Console.

• providerSearchResults - executes a find_business UDDI query and displays providers that match the
query.

• executeFindProviders - Executes a find_business UDDI query and produces a list of providers that
match the query.

• serviceSearchResults - Executes a find_service UDDI query and displays services that match the query.

• executeFindServices - Executes a find_service UDDI query and displays services that match the query.

849Developer's Guide

• endpointSearchResults - Executes a find_binding UDDI query and displays Endpoints that match the
query.

• executeFindEndpoints - Executes a find_binding UDDI query that processes the results that match the
query.

• interfaceSearchResults - Executes a find_tModel UDDI query and displays Interfaces that match the
query.

• executeFindInterfaces - Executes a find_tModel UDDI query and displays Interfaces that match the
query.

• bindingSearchResults - Executes a find_tModel UDDI query and displays Bindings that match the
query.

• executeFindBinding - Executes a find_tModel UDDI query in order to find Bindings.

• getOperations - Fetches a list of operations for a Binding or a PortType from a WSDL.

• getDocumentation - Extracts the useType documentation from an
org.systinet.uddi.client.v3.struct.OverviewDocArrayList.

• getServiceEndpoints - Analyzes the Binding Templates of a Business Service, and creates a list of valid
WSDL Endpoints mapped to those Binding Templates.

• selectCategory - Takes an existing query and adds a KeyedReference into the query's CategoryBag.

providerSearchResults

This component executes a find_business UDDI query and displays providers that match the query.
Alternatively, the component may be given a list of Businesses to display. This alternative approach is
recommended when the result cannot be produced by an UDDI query directly, such as when there is some
post-processing involved.

The results are displayed in a standard layout that allows selection of a view from a list of supported views.

Chapter 5850

Table 127. providerSearchResults Parameters

RequiredDescriptionParam

yes, exclusive with
query

Must hold an instance of one of the following:providerList

import org.systinet.uddi.client.v3.struct.BusinessList
org.systinet.uddi.client.v3.struct.BusinessDetail
org.systinet.uddi.client.v3.struct.BusinessEntityArrayList
The query will not be executed, rather Providers (Businesses)
which are given in the list will be displayed.

noThe component name of the view component that should be
displayed by default. Valid names are:

defaultView

• providerCommonResults - common results view

• providerBusinessResults - business results view

If the parameter is not present, the providersCommonResults
view will be displayed.

noThe name of the column for the initial sort order. The list of
applicable values depends on the selected default view
Component.

sortedBy

yes, exclusive with
providerList

Must hold an instance of the
org.systinet.uddi.client.v3.struct.Find_business object. The
query will be executed in UDDI using the logged user's
credentials.

query

noA variable that will also receive the results. An anticipated use
of this parameter is to enable the caller to detect if there are no
results.

var

851Developer's Guide

Example 64: providerSearchResults - Usage Example

This example shows how to display all Providers (UDDI business entities) whose name starts with "A".

<bsc:parseUddiQuery var="providersQuery" scope="session">
 <find_business xmlns="urn:uddi-org:api_v3">
 <findQualifiers>
 <findQualifier>
 uddi:uddi.org:findqualifier:approximatematch
 </findQualifier>
 </findQualifiers>
 <name>A%</name>
 </find_business>
</bsc:parseUddiQuery>

<syswf:component prefix="providers" name="findProviders">
 <syswf:param name="query" value="${providersQuery}"/>
</syswf:component>

executeFindProviders

This Component executes a find_business UDDI query and produces a list of providers that match the
query. The results will be placed into a specified result variable in the local session.

The specified result variable is a cache for the result value. If the variable is not empty, the query is not
executed. You must clear the variable in order to get a fresh result set. The cache is automatically cleared
when a task is selected.

Chapter 5852

Table 128. executeFindProviders Parameters

RequiredDescriptionParam

yesMust hold an instance of the
org.systinet.uddi.client.v3.struct.Find_business object. The
query will be executed in UDDI using the logged user's
credentials.

query

yesThis value will be used as the name of the result variable in the
local session where the component will store the result of the
query. The stored result will be of type
org.systinet.uddi.client.v3.struct.BusinessDetail.

var

Example 65: executeFindProviders - Usage Example

This example shows how to display the names of all Providers (UDDI business entities) whose name starts
with "A".

<bsc:parseUddiQuery var="providersQuery" scope="session">
 <find_business xmlns="urn:uddi-org:api_v3">
 <findQualifiers>
 <findQualifier>
 uddi:uddi.org:findqualifier:approximatematch
 </findQualifier>
 </findQualifiers>
 <name>A%</name>
 </find_business>
</bsc:parseUddiQuery>

<syswf:component prefix="providers" name="executeFindProviders">
 <syswf:param name="query" value="${providersQuery}"/>
 <syswf:param name="var" value="searchResults"/>
</syswf:component>

Providers whose names start with "A":
<c:forEach items="${searchResults}" var="provider">
 <c:out value="${provider.names[0].value}"/>

</c:forEach>

853Developer's Guide

serviceSearchResults

This component executes a find_service UDDI query and displays services that match the query.
Alternatively, the component may be given a list of Services to display. This alternative approach is
recommended when the result can not be produced by a UDDI query directly, for example, if there is some
post-processing required.

The results are displayed in a standard layout that allows the user to select a view from among the supported
ones (common, business, etc.).

Chapter 5854

Table 129. serviceSearchResults Parameters

RequiredDescriptionParam

yes, exclusive with
query

Must hold an instance of one of the following:serviceList

import org.systinet.uddi.client.v3.struct.ServiceList
org.systinet.uddi.client.v3.struct.ServiceDetail
org.systinet.uddi.client.v3.struct.BusinessServiceArrayList
The query will not be executed, rather Services which are given
in the list will be displayed.

noThe component name of the view component that should be
displayed by default. Valid names are:

defaultView

• serviceCommonResults - common results view

• serviceBusinessResults - business results view

• serviceTechnicalResults - technical results view

If the parameter is not present, the serviceCommonResults view
will be displayed.

noThe name of the column for the initial sort order. The list of
applicable values depends on the selected default view
Component.

sortedBy

yes, exclusive with
serviceList

Must hold an instance of the
org.systinet.uddi.client.v3.struct.Find_service object. The
query will be executed in UDDI using the logged user's
credentials.

query

855Developer's Guide

Example 66: serviceSearchResults - Usage Example

This example displays all services that are categorized within the Certification taxonomy.

<bsc:parseUddiQuery var="serviceQuery" scope="session">
 <find_service xmlns="urn:uddi-org:api_v3">
 <findQualifiers>
 <findQualifier>
 uddi:uddi.org:findqualifier:approximatematch
 </findQualifier>
 </findQualifiers>
 <categoryBag>
 <keyedReference
 tModelKey="uddi:systinet.com:taxonomy:service:certification"
 keyValue="%"
 />
 </categoryBag>
 </find_service>
</bsc:parseUddiQuery>

<syswf:component prefix="services" name="findServices">
 <syswf:param name="query" value="${serviceQuery}"/>
</syswf:component>

executeFindServices

This component executes a find_service UDDI query and displays services that match the query. The results
of the query will be post-processed using org.systinet.uddi.client.v3.struct.ServiceDetail so that information
about the owning Business Entity is easily available. The component will create wrapper structures (of type
com.systinet.uddi.bui.standard.util.Service) to link the Service to its parent Business Entity instance. The
wrappers will be placed into a specified result variable in the local session.

The specified result variable is a cache for the result value. If the variable is not empty, the query is not
executed. You must clear the variable in order to get a fresh result set. The cache is automatically cleared
when a task is selected.

Chapter 5856

Table 130. executeFindServices Parameters

RequiredDescriptionParam

yesValue must hold an instance of the
org.systinet.uddi.client.v3.struct.Find_service object. The
query will be executed in UDDI using the logged user's
credentials.

query

yesUsed to name the result variable in the local session, where the
component will store the result of the query. The stored result
will be of type com.systinet.uddi.bui.standard.util.Service[].

var

endpointSearchResults

This component executes a find_binding UDDI query and displays Endpoints that match the query.
Alternatively, the component may be given a list of Endpoints to display. This alternative approach is
recommended when the result can not be produced by an UDDI query directly, for example, if there is some
post-processing required.

The component will load more information from the UDDI Registry, for the interfaces and bindings available
on the matching Endpoints. These queries will be executed in UDDI using the logged user's credentials.

The results are displayed in a standard layout that allows the user to select a view from among the supported
ones (common, business, etc.).

857Developer's Guide

Table 131. endpointSearchResults Parameters

RequiredDescriptionParam

yes, exclusive with
query

Must hold an instance of either of the following:endpointList

org.systinet.uddi.client.v3.struct.BindingDetail
org.systinet.uddi.client.v3.struct.BindingTemplateArrayList
The query will not be executed, rather Endpoints which are
given in the list will be displayed.

noThe component name of the view component that should be
displayed by default. The valid names are:

defaultView

• endpointsCommonResults - common results view

• endpointsOperationResults - operations results view

• endpointsTechnicalResults - technical results view

If the parameter is not present, the serviceCommonResults view
will be displayed.

noThe name of the column used for the initial sort order. The list
of applicable values depends on the selected default view
component.

sortedBy

yes, exclusive with
endpointList

Must hold an instance of the
org.systinet.uddi.client.v3.struct.Find_binding object. The
query will be executed in UDDI using the logged user's
credentials.

query

Chapter 5858

Example 67: endpointSearchResults - Usage Example

This example displays all endpoints that are categorized within the Certification taxonomy.

<bsc:parseUddiQuery var="endpointQuery" scope="request">
 <find_binding xmlns="urn:uddi-org:api_v3">
 <findQualifiers>
 <findQualifier>
 uddi:uddi.org:findqualifier:approximatematch
 </findQualifier>
 </findQualifiers>
 <categoryBag>
 <keyedReference tModelKey="uddi:65719168-72c6-3f29-8c20-62defb0961c0"
 keyValue="%"/>
 <keyedReference tModelKey="uddi:uddi.org:wsdl:types"
 keyValue="portType"/>
 </categoryBag>
 </find_binding>
</bsc:parseUddiQuery>

<syswf:component prefix="endpoints" name="endpointSearchResults">
 <syswf:param name="query" value="${endpointQuery}"/>
</syswf:component>

executeFindEndpoints

This Component executes a find_binding UDDI query that processes the results that match the query. The
Component will load more information from the UDDI Registry, for the interfaces and bindings available
on the matching Endpoints. These queries will be executed using the logged user's credentials. The processed
information will be available as an array of wrapper structures of type
com.systinet.uddi.bui.standard.util.Endpoint.

The specified result variable is a cache for the result value. If the variable is not empty, the query is not
executed. You must clear the variable in order to get a fresh result set. The cache is automatically cleared
when a task is selected.

859Developer's Guide

Table 132. executeFindEndpoints Parameters

RequiredDescriptionParam

yesMust hold an instance of the
org.systinet.uddi.client.v3.struct.Find_binding object. The
query will be executed in UDDI using the logged user's
credentials.

query

yesUsed to name the result variable in the local session in which
the component will store the result of the query. The stored
result will be of type
com.systinet.uddi.bui.standard.util.Endpoint[].

var

Example 68: executeFindEndpoints - Usage Example

This example displays all endpoints that are categorized within the Certification taxonomy.

<bsc:parseUddiQuery var="endpointQuery" scope="request">
 <find_binding xmlns="urn:uddi-org:api_v3">
 <findQualifiers>
 <findQualifier>
 uddi:uddi.org:findqualifier:approximatematch
 </findQualifier>
 </findQualifiers>
 <categoryBag>
 <keyedReference tModelKey="uddi:65719168-72c6-3f29-8c20-62defb0961c0"
 keyValue="%"/>
 <keyedReference tModelKey="uddi:uddi.org:wsdl:types"
 keyValue="portType"/>
 </categoryBag>
 </find_binding>
</bsc:parseUddiQuery>

<syswf:component prefix="endpoints" name="executeFindEndpoints">
 <syswf:param name="query" value="${endpointQuery}"/>
</syswf:component>

Chapter 5860

interfaceSearchResults

This component executes a find_tModel UDDI query and displays Interfaces that match the query.
Alternatively, the component may be given a list of Endpoints to display. This alternative approach is
recommended when the result cannot be produced by an UDDI query directly, such as when some post-
processing required.

The results are displayed in a standard layout that allows the user to select a view from among the supported
ones (common, business, etc.).

Table 133. interfaceSearchResults Parameters

RequiredDescriptionParam

yes, exclusive with
query

Must hold an instance of either of the following:interfaceList

org.systinet.uddi.client.v3.struct.TModelList
org.systinet.uddi.client.v3.struct.TModelDetail
org.systinet.uddi.client.v3.struct.TModelArrayList
The query will not be executed, rather Interfaces which are
given in the list will be displayed.

noThe component name of the view component that should be
displayed by default. The valid names are:

defaultView

• resourcesPortTypeResults - common results view

• portTypeTechnicalResults - technical results view

If the parameter is not present, the resourcesPortTypeResults
view will be displayed.

noThe name of the column for the initial sort order. The list of
applicable values depends on the selected default view
component.

sortedBy

yes, exclusive with
endpointList

Must hold an instance of the
org.systinet.uddi.client.v3.struct.Find_tModel object. The query
will be executed in UDDI using the logged user's credentials.

query

interfaceSearchResults component in action

861Developer's Guide

Example 69: Component Parameters

This example displays all interfaces that are categorized as "Stable" in the interface:status taxonomy.

<bsc:parseUddiQuery var="interfaceQuery" scope="request">
 <find_tModel xmlns="urn:uddi-org:api_v3">
 <categoryBag>
 <keyedReference
 tModelKey="uddi:systinet.com:taxonomy:interface:status"
 keyValue="Stable"
 />
 </categoryBag>
 </find_tModel>
</bsc:parseUddiQuery>

<syswf:component prefix="interfaces" name="interfaceSearchResults">
 <syswf:param name="query" value="${interfaceQuery}"/>
</syswf:component>

executeFindInterfaces

This component executes a find_tModel UDDI query and provides a list of TModels (Interfaces) that match
the query. The result of the query is placed into a result variable into the local session.

The specified result variable is a cache for the result value. If the variable is not empty, the query is not
executed. You must clear the variable in order to get a fresh result set. The cache is automatically cleared
when a task is selected.

Table 134. executeFindInterfaces Parameters

RequiredDescriptionParam

yesMust hold an instance of the
org.systinet.uddi.client.v3.struct.Find_tModel object. The query
will be executed in UDDI using the logged user's credentials.

query

yesUsed to name the result variable in the local session in which
the component will store the result of the query. The stored
result will be of type
org.systinet.uddi.client.v3.struct.TModelDetail.

var

Chapter 5862

executeFindInterfaces component in action

Example 70: Component Parameters

This example displays tModel names of all interfaces that are categorized as "Stable" in the interface:status
taxonomy.

<bsc:parseUddiQuery var="interfaceQuery" scope="request">
 <find_tModel xmlns="urn:uddi-org:api_v3">
 <categoryBag>
 <keyedReference
 tModelKey="uddi:systinet.com:taxonomy:interface:status"
 keyValue="Stable"
 />
 </categoryBag>
 </find_tModel>
</bsc:parseUddiQuery>

<syswf:component prefix="interfaces" name="excuteFindInterfaces">
 <syswf:param name="query" value="${interfaceQuery}"/>
 <syswf:param name="var" value="searchResults"/>
</syswf:component>

Stable interface names:

<c:forEach items="${searchResults.TModelArrayList}" var="iface">
 <c:out value="${iface.name.value}"/>
</c:forEach>

bindingSearchResults

This component executes a find_tModel UDDI query and displays Bindings that match the query.
Alternatively, the component may be given a list of tModels (Bindings) to display. This alternative approach
is recommended when the result can not be produced by an UDDI query directly, such as when some post-
processing required.

The results are displayed in a standard layout that allows the user to select a view from among the supported
ones (common, business, etc.).

863Developer's Guide

Table 135. bindingSearchResults Parameters

RequiredDescriptionParam

yes, exclusive with
query

Must hold an instance of one of the following:bindingList

org.systinet.uddi.client.v3.struct.TModelList
org.systinet.uddi.client.v3.struct.TModelDetail
org.systinet.uddi.client.v3.struct.TModelArrayList
The query will not be executed, rather Interfaces which are
given in the list will be displayed.

noThe component name of the view component that should be
displayed by default. Valid names are:

defaultView

• bindingsCommonResults - common results view

• bindingsTechResults - technical results view

If the parameter is not present, the serviceCommonResults view
will be displayed.

noThe name of the column for the initial sort order. The list of
applicable values depends on the selected default view
Component.

sortedBy

yes, exclusive with
bindingList

Value must hold an instance of the
org.systinet.uddi.client.v3.struct.Find_tModel object. The query
will be executed in UDDI using the logged user's credentials.

query

Chapter 5864

Example 71: bindingSearchResults - Usage Example

This example displays all Bindings

<bsc:parseUddiQuery var="bindingQuery" scope="request">
 <find_tModel xmlns="urn:uddi-org:api_v3">
 </find_tModel>
</bsc:parseUddiQuery>

<syswf:component prefix="bindings" name="bindingSearchResults">
 <syswf:param name="query" value="${bindingQuery}"/>
</syswf:component>

executeFindBinding

This component executes a find_tModel UDDI query in order to find Bindings. The result of the query is
stored in a local session variable for use with other components and JSP pages.

The specified result variable is considered to be a cache for the result value. If the variable is not empty,
the query is not executed. You must clear the variable in order to get a fresh result set. The cache is
automatically cleared when a task is selected.

Table 136. executeFindBinding Parameters

RequiredDescriptionParam

yesMust hold an instance of the
org.systinet.uddi.client.v3.struct.Find_tModel object. The query
will be executed in UDDI using the logged user's credentials.

query

yesUsed to name the result variable in the local session in which
the component will store the result of the query. The stored
result will be of type
org.systinet.uddi.client.v3.struct.TModelDetail.

var

executeFindBinding component in action

865Developer's Guide

Example 72: Component Parameters

This example displays names of all Bindings

<bsc:parseUddiQuery var="bindingQuery" scope="request">
 <find_tModel xmlns="urn:uddi-org:api_v3">
 </find_tModel>
</bsc:parseUddiQuery>

<syswf:component prefix="bindings" name="executeFindBindings">
 <syswf:param name="query" value="${bindingQuery}"/>
 <syswf:param name="var" value="searchResults"/>
</syswf:component>

Binding names:

<c:forEach items="${searchResults.TModelArrayList}" var="binding">
 <c:out value="${binding.names.value}"/>
</c:forEach>

getOperations

This component fetches a list of operations for a Binding or a PortType from the WSDL. As the operation
list is not published into UDDI, the component will fetch and parse the WSDL from its original location.
It operates on a tModel that represents either a WSDL Binding or a WSDL PortType. It extracts the WSDL
location from the tModel (according to the WSDL mapping TN).

The result will be available as an array of com.systinet.uddi.bui.standard.view.OperationView. The result is
also cached in the local session, keyed by the WSDL location (URI) for faster access in subsequent calls.
If a Binding is given in the binding parameter, the result will include binding Operations. If a PortType is
given in the interface parameter, the result will include PortType operations and the messages used by those
operations.

The component will optionally extract all messages from the operations and collect them in the specified
result variable. Note that this applies to PortType operations only.

If WSDL parsing or download fails, the component will store the failure (java.lang.Throwable) in the specified
local session variable. The caller may then display an appropriate message.

Chapter 5866

Table 137. getOperations Parameters

RequiredDescriptionParam

yes, exclusive with
"binding"

Must hold an instance of the
org.systinet.uddi.client.v3.struct.TModel class. The tModel
should represent a WSDL PortType according to the WSDL
mapping technical notes.

interface

yes, exclusive with
"interface"

Must hold an instance of the
org.systinet.uddi.client.v3.struct.TModel class. The tModel
should represent a WSDL Binding according to the WSDL
mapping technical notes.

binding

noName of the output variable that will receive the
java.lang.Throwable instance if an error occurs during WSDL
processing. The result will be stored in the request scope.

error

noName of the output variable that will receive the collection of
all messages (java.util.Collection that contains an instances of
om.systinet.uddi.bui.standard.view.MessageView).

allMessages

Name of the output variable that will receive the list of
operations extracted from the PortType or Binding definition.
The value will be an instance of java.util.Collection that
contains an instances of
com.systinet.uddi.bui.standard.view.OperationView.

variable

867Developer's Guide

Example 73: getOperations example

The following example displays the list of operations of a WSDL PortType. It prints their names and
descriptions into an HTML table.

<!-- Get the list of operations for the WSDL PortType represented by the "tModel" -->
<syswf:component prefix="content" name="getOperations">
 <syswf:param name="variable" value="opers"/>
 <syswf:param name="interface" value="${tModel}"/>
</syswf:component>

<!-- Print out tabularized operation info -->
<table width="100%">
<tr>
 <th width="30%">Operation name</th>
 <th width="70%">Description</th>
</tr>
<c:forEach items="opers" var="operation">
 <tr>
 <!-- Print the operation name -->
 <td class="unfoldedRow" class="unfoldedHeader">
 <c:out value="${operation.name}"/>
 </td>

 <!-- Print the operation documentation -->
 <td class="unfoldedRow" class="unfoldedHeader">
 <c:out value="${operation.documentation}"/>
 </td>
 </tr>
</c:forEach>
</table>

getDocumentation

This component extracts the documentation of a certain type from an
org.systinet.uddi.client.v3.struct.OverviewDocArrayList instance. The useType can be given as an exact
value, or a regular expression match using the "approximateMatch" findQualifier. All OverviewURLs that
match the requested useType are returned in a collection through the result variable declared in the request
scope.

Chapter 5868

Table 138. getOperations Parameters

RequiredDescriptionParam

yesAn instance of
org.systinet.uddi.client.v3.struct.OverviewDocArrayList to search
in.

overviewDocArrayList

yesThe required useType of the OverviewURL. It can contain a
literal string or a regular expression.

useType

yesName of the variable in which the result should be stored. The
variable will be declared at the request scope. The stored value
will be a java.util.Collection that contains instances of
org.systinet.uddi.client.v3.struct.OverviewURL.

variable

noDetermines whether the value in the "useType" parameter is
interpreted as a literal or as a regular expression. The allowed
values are:

findQualifier

• approximateMatch - useType contains a regular expression
that the OverviewURL's useType must satisfy

• exactMatch - useType is a literal and the OverviewURL's
useType must be equal to this literal (case-insensitive).

Example 74: getDocumentation example

The following example displays the WSDL URL for a WSDL service:

<syswf:component prefix="doc" name="getDocumentation" >
 <syswf:param name="variable" value="documentation"/>
 <syswf:param name="docArrayList" value="${tModel.overviewDocArrayList}"/>
 <syswf:param name="useType" value="documentation"/>
</syswf:component>

<!-- Print out the URL -->
<a href="<c:out value="${documentation[0].overviewURL.value}"/>">
 <c:out value="${documentation[0].overviewURL.value}"/>

869Developer's Guide

getServiceEndpoints

This component analyzes the Binding Templates of a Business Service, and creates a list of valid WSDL
Endpoints mapped to those Binding Templates. The component produces an array of
com.systinet.uddi.bui.standard.util.Endpoints for endpoints found on the Service.

The Endpoint is identified by a URL (location); some Interfaces or some Bindings
(com.systinet.uddi.bui.standard.util.Binding) are deployed at that Location, that in turn communicate using
Interfaces (com.systinet.uddi.bui.standard.util.Interface). These structures will be returned for each of the
Endpoints. Each of the structures contains a reference to the underlying UDDI entity (Binding Template or
tModel) so the caller can access the registered information in full.

Table 139. getServiceEndpoints Parameters

RequiredDescriptionParam

yesThe instance of
org.systinet.uddi.client.v3.struct.BusinessService, whose
Endpoints should be returned.

service

yesName of the request-scoped variable where the component will
store the result. The result will be an array of
com.systinet.uddi.bui.standard.util.Endpoint, one instance for
each Endpoint.

variable

Chapter 5870

Example 75: getServiceEndpoints Example

The following example lists names and descriptions of all interfaces implemented for a service. It iterates
through all available Endpoints and the exposed Interfaces and produces the list into a HTML table.

<syswf:component prefix="content" name="getServiceEndpoints" >
 <syswf:param name="variable" value="endpoints"/>
 <syswf:param name="service" value="${service}"/>
</syswf:component>

<table width="100%">
 <tr>
 <th width="30%">Interface name</th>
 <th width="70%">Description</th>
 </tr>
 <c:forEach items="${endpoints}" var="endpoint">
 <c:forEach items="${endpoint.interfaces}" var="iface">
 <bsc:setLocalizedDescriptions var="descriptions"
 value="${iface.portTypeTModel.descriptionArrayList}"
 langCode="${userDefaultLanguage}"/>
 <tr>
 <td >
 <c:out value="${iface.name}"/>
 </td>
 <td><c:out value="${descriptions[0].value}"/></td>
 </tr>
 </c:forEach>
 </c:forEach>
</table>

selectCategory

This component helps with UDDI query construction. It takes an existing query and adds a KeyedReference
into the query's CategoryBag. This will either restrict, or broaden the search, depending on the findQualifiers
present in the query.

The component may act in several ways. It can:

• Select entities that are categorized within the given taxonomy. This is done by using keyValue of % and
the approximateMatch findQualifier.

871Developer's Guide

• Select entities that are categorized with exactly the passed value.

• Perform an approximateMatch on the keyValue.

The component takes the session variable identified by the passed variable name and modifies the structure
to contain the addition search criteria. The following query structures are supported:

• org.systinet.uddi.client.v3.struct.Find_binding

• org.systinet.uddi.client.v3.struct.Find_business

• org.systinet.uddi.client.v3.struct.Find_service

• org.systinet.uddi.client.v3.struct.Find_tModel

Table 140. selectCategory Parameters

RequiredDescriptionParam

yesThe tModelKey of the category. A KeyedReference with this
tModelKey will be added to the CategoryBag of the query.

category

yesThe name of the request-scoped variable where the component
will store the result. The result will be an array of
com.systinet.uddi.bui.standard.util.Endpoint, one instance for
each Endpoint.

variable

UDDI from Developer Tools
In this section, we will show you how to access UDDI from the following tools:

• HP Developer for Eclipse

• Microsoft Visual Studio .NET

Developer tools include wizards for searching a UDDI registry and publishing to a UDDI registry. We can
say that UDDI searching and publishing rely on getting and publishing WSDL files.

Chapter 5872

Figure 16 shows how a WSDL is mapped to UDDI. For more information, see OASIS Technical Note
"Using WSDL in a UDDI Registry" [http://www.oasis-open.org/committees/uddi-
spec/doc/tns.htm#WSDLTNV2]

Figure 16. WSDL Mapping to UDDI

UDDI from HP Developer for Eclipse

Eclipse is an open source platform for tool integration. HP Developer for Eclipse, 5.5 extends the Eclipse
IDE to support Web services creation, debugging, and deployment. Systinet Developer provides a simple
point-and-click code generation experience that can turn any existing Java application into a Web service.
HP Developer for Eclipse provides support for:

• Getting data from a UDDI registry for creating Web services and their clients, and for retrieving WSDL
files to your project.

• Publishing WSDL definition to a UDDI registry

873Developer's Guide

http://www.oasis-open.org/committees/uddi-spec/doc/tns.htm#WSDLTNV2
http://www.oasis-open.org/committees/uddi-spec/doc/tns.htm#WSDLTNV2

Getting Data from UDDI

UDDI searching wizards support the following use cases:

• Retrieving a WSDL document from a UDDI registry into your project.

• Creating Web service client applications from the WSDL document retrieved from a UDDI registry.

• Creating Web service implementations from a WSDL document retrieved from a UDDI registry.

As you see, the core is to retrieve the WSDL document from a UDDI registry. Then, the WSDL document
can be used for generating a Web service implementation or a Web service client.

You can obtain the WSDL file by the following methods:

• You can get the WSDL file by WSDL service key or binding keys as shown in Figure 17. In this case,
you must know exact UDDI keys. You can get these keys by searching a UDDI registry using a web
interface. For searching HP SOA Systinet Registry, you can use both the Registry Console and the
Business Service Console.

HP SOA Systinet Registry is fully compliant with the latest UDDI Specification version 3. One of the
benefits of the UDDI Specification version 3 is the option to use human readable UDDI keys. The first
step of the UDDI inquiry wizard is selection of the version of UDDI Specification that you wish to use
for accessing the UDDI registry. HP Developer for Eclipse 5.5 supports version 2 and version 3 of the
UDDI Specification.

• You can search by qualified names of the following sections of the WSDL definition:

• WSDL portType (interface)

• WSDL binding (transport)

• WSDL service (endpoint)

You can specify a target namespace for these qualified names as shown in Figure 18. You can also
combine searching the UDDI registry with searching via HP SOA Systinet Registry Business Service
Console that use names as interface, transport and endpoint for sections of a WSDL file.

Chapter 5874

Figure 17. UDDI Search by Keys

875Developer's Guide

Figure 18. UDDI Search by Qualified Names

Publishing WSDL to UDDI

UDDI publishing wizards allows you to publish the WSDL representing the Web service to a UDDI registry.
The publishing wizard supports both version 2 and version 3 of the UDDI Specification. The selected WSDL
file from your project will be published to the UDDI registry under the user account you provide in the
publishing wizards as shown in Figure 19. Note that before you can publish a WSDL to a UDDI registry,
you must create a business entity under which the WSDL definition representing the Web service will be
published as shown in Figure 16.

Chapter 5876

Figure 19. UDDI Publish Wizard

UDDI from MS Visual Studio

Microsoft Visual Studio .NET 2003 includes a wizard for accessing a UDDI registry that allows you to find
a WSDL/ASMX file in the UDDI registry. Once you have found a WSDL, you can add a web reference to
the Web service definition file to your project.

To start the Web Reference Wizard:

1 On the Project menu in Visual Studio .NET, click Add Web Reference.

2 The Add Web Reference dialog box shown in Figure 20 appears. Enter the URI of a UDDI registry
or the URI of a WSDL document representing the Web service. To browse the Live HP SOA Systinet
Registry at HP's web site, enter http://systinet.com/uddi/web or http://systinet.com/uddi/bsc/web.

877Developer's Guide

Figure 20. Add Web Reference Default

Figure 21 shows how to browse/search HP SOA Systinet Registry via the Add Web Reference Wizard.

Chapter 5878

Figure 21. Searching HP SOA Systinet Registry via Web Reference Wizard

879Developer's Guide

Figure 22. Add Web Reference - Found Web service

If you find a WSDL file, the wizard shown in Figure 22 parses the WSDL file displaying Web service
method. Then, you can click Add Reference button to add the reference to your project.

How to Debug

SOAPSpy Tool

When debugging, it can be useful to track communication between the client and server. SOAPSpy allows
the inspection of messages that the client and server exchange. Messages, or more precisely, requests and
responses, are coupled to calls. Figure 23 shows the SOAPSpy dialog box.

Chapter 5880

Figure 23. SOAPSpy Tool

SOAPSpy works as an HTTP proxy server. It accepts HTTP requests from clients and resends them to their
final destinations, or to another HTTP proxy server. SOAPSpy can track not only SOAP and WSDL
messages, but also any other documents (HTML pages, binary data, etc.). However, the binary data is shown
only schematically; all invalid text characters are translated into question mark (?) characters. SOAPSpy
can also work as an HTTP server client: you can make it contact another proxy server instead of connecting
to the final destination.

Running SOAPSpy

This tool is placed in the bin subdirectory of your HP SOA Systinet Registry server distribution. To start
SOAPSpy, enter the command SoapSpy.bat on Windows platforms, or ./SoapSpy.sh on UNIX machines.

881Developer's Guide

Figure 24. Start Spying

Spying must be started first by selecting Start Spying from the Spy menu or by clicking the spy icon in
the main panel, shown in Figure 24.

Figure 25. Status Line

The lower part of the window contains a status bar, shown in Figure 25, with information about the state
of the tool. Once started, the status line displays the proxy host and port number.

The following options can be used on the command line when activating SOAPSpy:

• --port [PORT]

Starts SOAPSpy at the given port

• --help

Shows the help screen on the console

• --version

shows the version of SOAPSpy on the console

To make SOAPSpy contact another proxy server instead of making a direct connection to the destination,
use the standard Java system properties for HTTP proxies:

• -Dhttp.proxyHost=PROXY_HOST - The host name of the proxy server

• -Dhttp.proxyPort=PROXY_PORT - The port of the proxy server

Chapter 5882

There are two possible ways to load the tool:

1 ./SoapSpy

2 ./SoapSpy --port PROXY_PORT

Using SOAPSpy

The program consists of a call list and a message viewer.

Received calls are stored in a list on the left side of the window. Calls can be selected and examined.
Unwanted calls can by removed from the list using the Call menu or context pop-up.

The message viewer displays the selected call, as shown in Figure 26. Every call contains HTTP Request
and HTTP Response tabs, which contain raw data caught by SOAPSpy. SOAP calls contain two specific
panels, SOAP Request and SOAP Response, for advanced manipulation of SOAP messages. The same
applies for WSDL calls.

Figure 26. Call Types

SOAP Request Tab

The SOAP Request tab, shown in Figure 27, consists of the SOAP Action, SOAP message and Target URL
where the original request was sent. Every file can be edited. Click the Resend to produce a new HTTP
request. The resent request appears in the call list.

883Developer's Guide

Figure 27. Request Tab

How to Run Clients Using SOAPSpy

Java system properties http.proxyHost and http.proxyPort need to be set. Use the command java -
Dhttp.proxyHost=CLIENT_COMPUTER_NAME -Dhttp.proxyPort=4444... before running SoapSpy.
E.g.:

java -Dhttp.proxyHost=%CLIENT_COMPUTER_NAME% -Dhttp.proxyPort=4444 org.my.FooClient

Because SoapSpy works with the java.net proxy classes, it will not work with a localhost address.
This applies to the endpoint URL that your client calls. If you do not see any activity when using
SoapSpy, this is a likely cause. If you want to try running a service locally, simply obtain the
machine's hostname via the java.net.InetAddress class.

Logging

HP SOA Systinet Registry wraps the Log4j [http://logging.apache.org/log4j/docs/index.html] logging
service to log errors, warnings, and other information. By default:

• All such events are logged to REGISTRY_HOME\log\logEvents.log.

• All errors including stack traces are logged to REGISTRY_HOME\log\errorEvents.log.

Chapter 5884

http://logging.apache.org/log4j/docs/index.html

• Behavior descriptions are configured in REGISTRY_HOME\conf\log4j.config.

To use the same logging mechanism in custom server code (such as the Custom Validation Service):

1 Import com.idoox.debug.Category to your java class:

import com.idoox.debug.Category;

2 Create static instance with name of the category:

private static Category log = Category.getCategory("com.company.MyValidationService");

3 It is a good habit to name the category according to its class name. You can use the category

...
try{
 ...
} catch(Exception e){
 log.error("Fatal error", e);
 }
...

885Developer's Guide

Chapter 5886

6 Demos

The HP SOA Systinet Registry demos suite is used to teach the capabilities of the HP SOA Systinet Registry
APIs and how to make use of these to interact with the registry over a SOAP interface.

If you want to run demos on HP SOA Systinet Registry deployed to an application server, make
sure you have properly imported the SSL certificate of the application server to the HP SOA
Systinet Registry configuration. For more information see Installation Guide, Deployment to an
Application Server on page 159. You may also need to modify the HP SOA Systinet Registry URLs
used in demos as shown in the demos property file, REGISTRY_HOME/demos/env.properties.

If you get the java.lang.reflect.UndeclaredThrowableException, check whether Systinet Registry is
running

The demos are divided into the following categories:

Basic Demos

The Basic demos cover inquiry and publishing for versions 1, 2, and 3 of the UDDI specification
and WSDL2UDDI for versions 2 and 3.

Advanced Demos

The Advanced demos discuss custody, subscriptions, validation, and taxonomies.

Security Demos

In the Security demos, we cover accounts, groups, permissions, and access control lists (ACLs).

Resources Demos

In the resources demos, we cover publishing of WSDL, XML, XSD and XSLT.

Basic Demos
Basic Demos section includes the following demos:

• UDDI v1 demos

887

• UDDI v2 demos

• UDDI v3 demos

UDDI v1

• UDDI v1 Inquiry demos

• UDDI v1 Publishing demos

Inquiry v1

The HP SOA Systinet Registry basic inquiry demo set is used to demonstrate the HP SOA Systinet Registry
application programming interface's capabilities and to teach the reader how to use this API to perform
basic inquiry calls to a UDDI registry. This documentation covers the UDDI Version 1 Specification
[http://www.oasis-open.org/committees/uddi-spec/doc/contribs.htm#uddiv1].

You will learn how to use the HP SOA Systinet Registry client API to contact and get information from a
UDDI registry over a SOAP interface. There is one demo for each UDDI call, from find_business to
get_tModelDetail.

The HP SOA Systinet Registry basic inquiry demo set contains following demos to assist you in learning
the HP SOA Systinet Registry client API.

FindBinding. Demonstrates how to construct and fill the Find_binding object, get an Inquiry stub for the
UDDI registry, perform a find_binding call, and display the results.

FindBusiness. Demonstrates how to construct and fill a Find_business object, get an Inquiry stub for the
UDDI registry, perform a find_business call and display the results.

FindService. Demonstrates how to construct and fill a Find_service object, get an Inquiry stub for the UDDI
registry, perform a find_service call and display the results.

FindTModel. Demonstrates how to construct and fill a Find_tModel object, get an Inquiry stub for the UDDI
registry, perform a find_tModel call and display the results.

GetBindingDetail. Demonstrates how to create a Get_bindingDetail object, set the bindingKey of the
bindingTemplate to be fetched, get an Inquiry stub for the UDDI registry, perform a get_bindingDetail call,
and display the result.

Chapter 6888

http://www.oasis-open.org/committees/uddi-spec/doc/contribs.htm#uddiv1

GetBusinessDetail. Demonstrates how to create a Get_businessDetail object, set the businessKey of the
businessEntity to be fetched, get an Inquiry stub for the UDDI registry, perform a get_businessDetail call,
and display the result.

GetServiceDetail. Demonstrates how to create a Get_serviceDetail object, set the serviceKey of the business
service to be fetched, get an Inquiry stub for the UDDI registry, perform a get_serviceDetail call, and display
the result.

GetTModeDetail. Demonstrates how to create a Get_tModelDetail object, set the tModelKey of the tModel
to be fetched, get an Inquiry stub for the UDDI registry, perform a get_tModelDetail call, and display the
result.

Prerequisites and Preparatory Steps: Code

We expect, that you have already installed the HP SOA Systinet Registry and set the REGISTRY_HOME
environment variable to its installation location.

To run the HP SOA Systinet Registry's demos, your UDDI registry must be running. To start the registry,
execute the serverstart script:

%REGISTRY_HOME%\bin\serverstart.batWindows:

$REGISTRY_HOME/bin/serverstart.shUNIX:

It is necessary to configure the demos. The configuration system has two levels: global and local. The
properties defined at the global level may be overwritten at the local level. The global properties are located
in the file:

%REGISTRY_HOME%\demos\env.propertiesWindows:

$REGISTRY_HOME/demos/env.propertiesUNIX:

The values set during the installation of the HP SOA Systinet Registry work out of box, and their modification
affects all demos. If you need to redefine a property's value for a single demo (that is, at the local level),
edit the file env.properties in the directory where run.bat (run.sh) is located. Local properties for Basic/Inquiry
demos are loaded in the file:

%REGISTRY_HOME%\demos\basic\inquiry\v1\env.propertiesWindows:

$REGISTRY_HOME/demos/basic/inquiry/v1/env.propertiesUNIX:

889Demos

Table 1. Properties Used in Demos

DescriptionDefault ValueName

limit on data returned from
registry

5uddi.demos.result.max_rows

the inquiry Web service port
URL

http://localhost:8080/uddi/inquiryuddi.demos.url.inquiry

Presentation and Functional Presentation

This section describes programing pattern used in all demos using the FindTModel demo as an example.
You can find its source code in the file:

%REGISTRY_HOME%\demos\basic\inquiry\src\demo\uddi\v1\inquiry\FindTModel.javaWindows:

$REGISTRY_HOME/demos/basic/inquiry/src/demo/uddi/v1/inquiry/FindTModel.javaUNIX:

The main method is straightforward. It gathers user's input (tModel name), calls a method to initialize the
Find_tModel object, executes the find_tModel UDDI call, and displays the list of found tModels:

String name = UserInput.readString("Enter name", "demo%");
Find_tModel find_tModel = createFindByTModel(name, findQualifier);
TModelList result = findTModel(find_tModel);
printTModelList(result);

The createFindTModel() method is used to create a new instance of the Find_tModel class and initialize it with
values from parameters:

public static Find_tModel createFindByTModel(String name)
 throws InvalidParameterException {
 System.out.println("name = " + name);
 Find_tModel find = new Find_tModel();
 find.setName(name);
 find.setMaxRows(new Integer(MAX_ROWS));
 find.setGeneric(Constants.GENERIC_1_0);
 return find_tModel;
}

The helper method getInquiryStub() returns the UDDI Inquiry stub of the web service listening at the URL
specified in the URL_INQUIRY property.

Chapter 6890

public static InquireSoap getInquiryStub()
 throws SOAPException {
 // you can specify your own URL in property - uddi.demos.url.inquiry
 String url = DemoProperties.getProperty(URL_INQUIRY, "http://localhost:8080/uddi/inquiry");
 System.out.print("Using Inquiry at url " + url + " ..");
 InquireSoap inquiry = UDDIInquiryStub.getInstance(url);
 System.out.println(" done");
 return inquiry;
}

The UDDI API call find_tModel is performed in the method findTModel:

public static TModelList findTModel(Find_tModel find_tModel)
 throws UDDIException, SOAPException {
 InquireSoap inquiry = getInquiryStub();
 System.out.print("Search in progress ..");
 TModelList tModelList = inquiry.find_tModel(find_tModel);
 System.out.println(" done");
 return tModelList;
}

The list of found tModels is printed with the method printTModelList. One interesting aspect of the HP SOA
Systinet Registry client API is that each UDDIObject contains the method toXML(), which returns a human-
readable, formatted listing of its XML representation.

public static void printTModelList(TModelList tModelList) {
 System.out.println();

 TModelInfoArrayList tModelInfoArrayList = tModelList.getTModelInfoArrayList();
 if (tModelInfoArrayList==null) {
 System.out.println("Nothing found");
 return;
 }

 int position = 1;
 for (Iterator iterator = tModelInfoArrayList.iterator(); iterator.hasNext();) {
 TModelInfo tModelTemplate = (TModelInfo) iterator.next();
 System.out.println("TModel "+position+" : "+tModelTemplate.getTModelKey());
 System.out.println(tModelTemplate.toXML());
 System.out.println();
 System.out.println("**");
 position++;
 }
}

891Demos

Building and Running Demos

This section shows how to build and run the HP SOA Systinet Registry Basic Inquiry demo set. Our example
continues with the FindTModel demo.

1 Be sure that the demos are properly configured and the HP SOA Systinet Registry is up and running.

2 Change your working directory to:

%REGISTRY_HOME%\demos\basic\inquiry\v1Windows:

$REGISTRY_HOME/demos/basic/inquiry/v1UNIX:

3 Build all demos using:

run.bat makeWindows:

./run.sh makeUNIX:

When compiling demos on Windows platforms, you may see the following text:

A subdirectory or file ..\..\common\.\build\classes already exists.

This is expected and does not indicate a problem.

4 To get list of all available demos, run

run.bat helpWindows:

./run.sh helpUNIX:

5 Run a selected demo by executing the run command with the name of the demo as a parameter. For
example, to run the FindTModel demo, invoke

run.bat FindTModelWindows:

./run.sh FindTModelUNIX:

The output of this demo will resemble the following:

Chapter 6892

Running FindTModel demo...
**
*** Systinet Registry Demo - FindTModelDemo ***
**

Searching for tModel where
Enter name [demo%]:
name = demo%
Using Inquiry at url http://mycomp.com:8080/uddi/inquiry .. done
Search in progress .. done

TModel 1 : uuid:13aee5be-8531-343c-98f8-d2d3a9308329
<tModelInfo tModelKey="uuid:13aee5be-8531-343c-98f8-d2d3a9308329" xmlns="urn:uddi-org:api_v1">
<name>demo:departmentID</name>
</tModelInfo>

**
TModel 2 : uuid:8af5f49e-e793-3719-92f3-6ab8998eb5a9
<tModelInfo tModelKey="uuid:8af5f49e-e793-3719-92f3-6ab8998eb5a9" xmlns="urn:uddi-org:api_v1">
<name>demo:hierarchy</name>
</tModelInfo>

**
TModel 3 : uuid:5c1d5d80-a4d4-11d8-91cd-5c1d367091cd
<tModelInfo tModelKey="uuid:5c1d5d80-a4d4-11d8-91cd-5c1d367091cd" xmlns="urn:uddi-org:api_v1">
<name>Demo identifier</name>
</tModelInfo>

 **

6 To rebuild demos, execute run.bat clean (./run.sh clean) to delete the classes directory and run.bat
make (./run.sh make) to rebuild the demo classes.

Publishing v1

The HP SOA Systinet Registry basic publishing demo set demonstrates the HP SOA Systinet Registry
application programming interface's capabilities and teaches how to use this API to perform basic publishing
calls to a UDDI registry.

The HP SOA Systinet Registry basic publishing demos cover the publication aspect of the UDDI Version
1 Specification [http://www.oasis-open.org/committees/uddi-spec/doc/contribs.htm#uddiv1]. You will
learn, how to use the HP SOA Systinet Registry client API to publish information to a UDDI registry over
a SOAP interface. There is one demo for each UDDI call, from delete_binding to save_business.

893Demos

http://www.oasis-open.org/committees/uddi-spec/doc/contribs.htm#uddiv1
http://www.oasis-open.org/committees/uddi-spec/doc/contribs.htm#uddiv1

The HP SOA Systinet Registry basic publishing demo set contains the following demos to assist you in
learning the HP SOA Systinet Registry client API.

DeleteBinding. Demonstrates how to construct and fill the Delete_binding object, get a Publishing stub for
the UDDI registry, get an authToken, and perform the delete_binding call.

DeleteBusiness. Demonstrates how to construct and fill the Delete_business object, get Publishing stub for
the UDDI registry, get an authToken, and perform the delete_business call.

DeleteService. Demonstrates how to construct and fill the Delete_service object, get Publishing stub for the
UDDI registry, get an authToken, and perform the delete_service call.

DeleteTModel. Demonstrates how to construct and fill the Delete_tModel object, get a Publishing stub for
the UDDI registry, get an authToken, and perform the delete_tModel call.

GetRegisteredInfo. Demonstrates how to construct and fill the Get_registeredInfo object, get a Publishing
stub for the UDDI registry, get an authToken, and perform the get_registeredInfo call.

SaveBinding. Demonstrates how to construct and fill the Save_binding object, get a Publishing stub for the
UDDI registry, get an authToken, and perform the save_binding call.

SaveBusiness. Demonstrates how to construct and fill the Save_business object, get a Publishing stub for
the UDDI registry, get an authToken, and perform the save_business call.

SaveService. Demonstrates how to construct and fill the Save_service object, get a Publishing stub for the
UDDI registry, get an authToken, and perform the save_service call.

SaveTModel. Demonstrates how to construct and fill the Save_tModel object, get a Publishing stub for the
UDDI registry, get an authToken, and perform the save_tModel call.

Prerequisites and Preparatory Steps: Code

We expect that you have already installed the HP SOA Systinet Registry and set the REGISTRY_HOME environment
variable to its installation location.

To run the HP SOA Systinet Registry's demos, your UDDI registry must be running. To start the registry,
execute the serverstart script:

%REGISTRY_HOME%\bin\serverstart.batWindows:

Chapter 6894

$REGISTRY_HOME/bin/serverstart.shUNIX:

It is necessary to configure the demos. The configuration system has two levels: global and local. The
properties defined at the global level may be overwritten at the local level. The global properties are located
in the file:

%REGISTRY_HOME%\demos\env.propertiesWindows:

%REGISTRY_HOME/demos/env.propertiesUNIX:

The values set during the installation of the HP SOA Systinet Registry work out of the box, and their
modification affects all demos. If you need to redefine a property's value for a single demo (that is, at the
local level), edit the file env.properties in the directory where run.sh(run.bat) is located. Local level properties
for the Basic/Inquiry demos are loaded from the file:

%REGISTRY_HOME%\demos\basic\publishing\v1\env.propertiesWindows:

$REGISTRY_HOME/demos/basic/publishing/v1/env.propertiesUNIX:

Table 2. Properties Used in the demos

DescriptionDefault ValueName

First user's namedemo_johnuddi.demos.user.john.name

First user's passworddemo_johnuddi.demos.user.john.password

Second user's namedemo_janeuddi.demos.user.jane.name

Second user's passworddemo_janeuddi.demos.user.jane.password

The publication Web service
port URL

http://localhost:8080/uddi/publishinguddi.demos.url.publishing

The security Web service port
URL

http://localhost:8080/uddi/securityuddi.demos.url.security

Presentation and Functional Presentation

This section describes the programming pattern used in all demos using the SaveBusiness demo as an
example. You can find this demo's source code in the file:

895Demos

%REGISTRY_HOME%\demos\basic\publishing\src\demo\uddi\v1\publishing\SaveBusiness.javaWindows:

$REGISTRY_HOME/demos/basic/publishing/src/demo/uddi/v1/publishing/SaveBusiness.javaUNIX:

The main method is easy to understand:

1 It gathers the user's input: an optional publisher-assigned businessKey, an array of business entity
names with their language codes, and the business' description.

2 The next step is to get the security stub and authorize the user. The resulting authInfo string is a secret
key passed in all requests.

3 Next, the Save_business object is created, filled, and passed to the saveBusiness method as a parameter.

When successful, the BusinessDetail object is returned from the UDDI registry and printed.

4 The last step is to discard the authInfo string, so that no malicious user can use it to compromise a
user's account.

String name = UserInput.readString("Enter business name", "Marketing");
String description = UserInput.readString("Enter description", "Saved by SaveBusiness demo");
System.out.println();

UDDI_Security_PortType security = getSecurityStub();
String authInfo = getAuthInfo(user, password, security);
Save_business save = createSaveBusiness(businessKey, names, languageCodes, description, authInfo);
BusinessDetail result = saveBusiness(save);
printBusinessDetail(result);
discardAuthInfo(authInfo, security);

The helper method, getSecurityStub() returns the UDDI Security stub of the web service listening at the
URL specified by the URL_SECURITY property.

public static UDDI_Security_PortType getSecurityStub()
 throws SOAPException {
 // you can specify your own URL in property - uddi.demos.url.security
 String url = DemoProperties.getProperty(URL_SECURITY, "http://localhost:8080/uddi/security");
 System.out.print("Using Security at url " + url + " ..");
 UDDI_Security_PortType security = UDDISecurityStub.getInstance(url);
 System.out.println(" done");
 return security;
}

Chapter 6896

Similarly, the helper method getPublishingStub() returns the UDDI Publication stub of the Web service
listening at the URL specified by the URL_PUBLISHING property.

public static UDDI_Publication_PortType getPublishingStub()
 throws SOAPException {
 // you can specify your own URL in property - uddi.demos.url.publishing
 String url = DemoProperties.getProperty(URL_PUBLISHING,
 "http://localhost:8080/uddi/publishing");
 System.out.print("Using Publishing at url " + url + " ..");
 UDDI_Publication_PortType inquiry = UDDIPublishStub.getInstance(url);
 System.out.println(" done");
 return inquiry;
}

The getAuthInfo() method is used to authorize the user against the UDDI registry and to get the secret key
authInfo.

public static String getAuthInfo(String userName,
 String password, UDDI_Security_PortType security)
 throws InvalidParameterException, UDDIException {
 System.out.print("Logging in ..");
 AuthToken authToken = security.get_authToken(new Get_authToken(userName, password));
 System.out.println(" done");
 return authToken.getAuthInfo();
}

The discardAuthInfo() method invalidates the secret key authInfo, so it cannot be reused.

public static DispositionReport discardAuthInfo(String authInfo,
 UDDI_Security_PortType security)
 throws InvalidParameterException, UDDIException {
 System.out.print("Logging out ..");
 DispositionReport dispositionReport = security.discard_authToken(new Discard_authToken(authInfo));
 System.out.println(" done");
 return dispositionReport;
}

The createSaveBusiness() method is used to create a new instance of the Save_business class and initialize it
with values from parameters:

public static Save_business createSaveBusiness(String name,
 String description, String authInfo)
 throws InvalidParameterException {
 System.out.println("name = " + name);
 System.out.println("description = " + description);

897Demos

 BusinessEntity businessEntity = new BusinessEntity();
 businessEntity.setBusinessKey("");
 businessEntity.setName(name);
 businessEntity.addDescription(new Description(description));

 Save_business save = new Save_business();
 save.addBusinessEntity(businessEntity);
 save.setAuthInfo(authInfo);
 save.setGeneric(Constants.GENERIC_1_0);
 return save;
}

The UDDI API call save_business is performed in the saveBusiness() method:

public static BusinessDetail saveBusiness(Save_business save)
 throws UDDIException, SOAPException {
 UDDI_Publication_PortType publishing = getPublishingStub();
 System.out.print("Save in progress ...");
 BusinessDetail businessDetail = publishing.save_business(save);
 System.out.println(" done");
 return businessDetail;
}

The saved businessEntity is displayed by the printBusinessDetail() method. One interesting aspect of the
HP SOA Systinet Registry client API is that each UDDIObject contains the toXML(), which returns a human-
readable formatted listing of the XML representation.

public static void printBusinessDetail(BusinessDetail businessDetail) {
 System.out.println();
 BusinessEntityArrayList businessEntityArrayList = businessDetail.getBusinessEntityArrayList();
 int position = 1;
 for (Iterator iterator = businessEntityArrayList.iterator(); iterator.hasNext();) {
 BusinessEntity entity = (BusinessEntity) iterator.next();
 System.out.println("Business " + position + " : " + entity.getBusinessKey());
 System.out.println(entity.toXML());
 System.out.println();
 System.out.println("**");
 position++;
 }
}

Building and Running Demos

This section shows how to build and run the HP SOA Systinet Registry Basic Publishing demo set. Let us
continue with our SaveBusiness demo.

Chapter 6898

1 Be sure that the demos are properly configured and the HP SOA Systinet Registry is up and running.

2 Change your working directory to

%REGISTRY_HOME%\demos\basic\publishing\v1Windows:

$REGISTRY_HOME/demos/basic/publishing/v1UNIX:

3 Build all demos using:

run.bat makeWindows:

./run.sh makeUNIX:

When compiling demos on Windows platforms, you may see the following text:

subdirectory or file ..\..\common\.\build\classes already exists.

This is expected and does not indicate a problem.

4 To get list of all available demos, run

run.bat helpWindows:

./run.sh helpUNIX:

5 The selected demo can be executed via the run command using the name of demo as a parameter. For
example, to run the SaveBusiness demo, invoke

run.bat SaveBusinessWindows:

./run.sh SaveBusinessUNIX:

The output of this demo will resemble the following:

Running SaveBusiness demo...
**
 Systinet Registry Demo - SaveBusiness
**

899Demos

Saving business entity where
Enter business name [Marketing]:
Enter description [Saved by SaveBusiness demo]:

Using Publishing at url https://mycomp.com:8443/uddi/publishing .. done
Logging in .. done
name = Marketing
description = Saved by SaveBusiness demo
Save in progress ... done

Business 1 : 79596f30-a5a9-11d8-91cd-5c1d367091cd
<businessEntity businessKey="79596f30-a5a9-11d8-91cd-5c1d367091cd" operator="Systinet"
 authorizedName="demo_john" xmlns="urn:uddi-org:api">
 <name>Marketing</name>
 <description>Saved by SaveBusiness demo</description>
</businessEntity>

**
Logging out .. done

6 To rebuild demos, execute run.bat clean (./run.sh clean) to delete the classes directory and run.bat
make (./run.sh make) to rebuild the demo classes.

UDDI v2

• UDDI v2 Inquiry demos

• UDDI v2 Publishing demos

Inquiry v2

The HP SOA Systinet Registry basic inquiry demo set is used to demonstrate the HP SOA Systinet Registry
application programming interface's capabilities and to teach the reader how to use this API to perform
basic inquiry calls to a UDDI registry.

The HP SOA Systinet Registry basic inquiry demos cover inquiry aspects of the UDDI Version 2.0.4
Specification [http://www.oasis-open.org/committees/uddi-spec/doc/tcspecs.htm#uddiv2]. You will learn
how to use the HP SOA Systinet Registry client API to contact and get information from a UDDI registry
over a SOAP interface. There is one demo for each UDDI call, from find_business to get_tModelDetail.

Chapter 6900

http://www.oasis-open.org/committees/uddi-spec/doc/tcspecs.htm#uddiv2
http://www.oasis-open.org/committees/uddi-spec/doc/tcspecs.htm#uddiv2

The HP SOA Systinet Registry basic inquiry demo set contains following demos to assist you in learning
the HP SOA Systinet Registry client API.

FindBinding. Demonstrates how to construct and fill the Find_binding object, get an Inquiry stub for the
UDDI registry, perform a find_binding call, and display the results.

FindBusiness. Demonstrates how to construct and fill a Find_business object, get an Inquiry stub for the
UDDI registry, perform a find_business call and display the results.

FindRelatedBusiness. Demonstrates how to construct and fill a Find_relatedBusiness object, get an Inquiry
stub for the UDDI registry, perform a find_relatedBusiness call and display the results.

FindService. Demonstrates how to construct and fill a Find_service object, get an Inquiry stub for the UDDI
registry, perform a find_service call and display the results.

FindTModel. Demonstrates how to construct and fill a Find_tModel object, get an Inquiry stub for the UDDI
registry, perform a find_tModel call and display the results.

GetBindingDetail. Demonstrates how to create a Get_bindingDetail object, set the bindingKey of the
bindingTemplate to be fetched, get an Inquiry stub for the UDDI registry, perform a get_bindingDetail call,
and display the result.

GetBusinessDetail. Demonstrates how to create a Get_businessDetail object, set the businessKey of the
businessEntity to be fetched, get an Inquiry stub for the UDDI registry, perform a get_businessDetail call,
and display the result.

GetServiceDetail. Demonstrates how to create a Get_serviceDetail object, set the serviceKey of the business
service to be fetched, get an Inquiry stub for the UDDI registry, perform a get_serviceDetail call, and display
the result.

GetTModeDetail. Demonstrates how to create a Get_tModelDetail object, set the tModelKey of the tModel
to be fetched, get an Inquiry stub for the UDDI registry, perform a get_tModelDetail call, and display the
result.

Prerequisites and Preparatory Steps: Code

We expect, that you have already installed the HP SOA Systinet Registry registry and set the
REGISTRY_HOME environment variable to its installation location.

901Demos

To run HP SOA Systinet Registry's demos, your UDDI registry must be running. To start the registry,
execute the serverstart script:

%REGISTRY_HOME%\bin\serverstart.batWindows:

$REGISTRY_HOME/bin/serverstart.shUNIX:

It is necessary to configure the demos. The configuration system has two levels: global and local. The
properties defined at the global level may be overwritten at the local level. The global properties are located
in the file:

%REGISTRY_HOME%\demos\env.propertiesWindows:

$REGISTRY_HOME/demos/env.propertiesUNIX:

The values set during the installation of the HP SOA Systinet Registry work out of box, and their modification
affects all demos. If you need to redefine the value of some property for a single demo (that is, at the local
level), edit the file env.properties in the directory where run.bat (run.sh) is located. Local level properties
for Basic/Inquiry demos are loaded in the file:

%REGISTRY_HOME%\demos\basic\inquiry\v2\env.propertiesWindows:

$REGISTRY_HOME/demos/basic/inquiry/v2/env.propertiesUNIX:

Table 3. Properties Used in Demos

DescriptionDefault ValueName

limit of data returned from
registry

5uddi.demos.result.max_rows

the inquiry Web service port
URL

http://localhost:8080/uddi/inquiryuddi.demos.url.inquiry

Presentation and Functional Presentation

This section describes the programing pattern used in all demos using the FindTModel demo as an example.
You can find its source code in the file:

%REGISTRY_HOME%\demos\basic\inquiry\src\demo\uddi\v2\inquiry\FindTModel.javaWindows:

Chapter 6902

$REGISTRY_HOME/demos/basic/inquiry/src/demo/uddi/v2/inquiry/FindTModel.javaUNIX:

The main method is straightforward. It gathers user's input (tModel name), calls a method to initialize the
Find_tModel object, executes the find_tModel UDDI call, and displays the list of found tModels:

String name = UserInput.readString("Enter name", "demo%");
Find_tModel find_tModel = createFindByTModel(name, findQualifier);
TModelList result = findTModel(find_tModel);
printTModelList(result);

The createFindTModel() method is used to create new instance of the Find_tModel class and initialize it with
values from parameters:

public static Find_tModel createFindByTModel(String name)
 throws InvalidParameterException {
 System.out.println("name = " + name);
 Find_tModel find = new Find_tModel();
 find.setName(new Name(name));
 find.setMaxRows(new Integer(MAX_ROWS));
 find.setGeneric(Constants.GENERIC_2_0);
 return find_tModel;
}

The helper method getInquiryStub() returns the UDDI Inquiry stub of the web service listening at the URL
specified in the URL_INQUIRY property.

public static UDDI_Inquiry_PortType getInquiryStub()
 throws SOAPException {
 // you can specify your own URL in property - uddi.demos.url.inquiry
 String url = DemoProperties.getProperty(URL_INQUIRY, "http://localhost:8080/uddi/inquiry");
 System.out.print("Using Inquiry at url " + url + " ..");
 UDDI_Inquiry_PortType inquiry = UDDIInquiryStub.getInstance(url);
 System.out.println(" done");
 return inquiry;
}

The UDDI API call find_tModel is performed in the method findTModel:

public static TModelList findTModel(Find_tModel find_tModel)
 throws UDDIException, SOAPException {
 UDDI_Inquiry_PortType inquiry = getInquiryStub();
 System.out.print("Search in progress ..");
 TModelList tModelList = inquiry.find_tModel(find_tModel);
 System.out.println(" done");
 return tModelList;
}

903Demos

The list of found tModels is printed with the method printTModelList. One interesting aspect of the HP SOA
Systinet Registry client API is that each UDDIObject contains method toXML(), which returns a human-
readable, formatted listing of its XML representation.

public static void printTModelList(TModelList tModelList) {
 System.out.println();

 TModelInfoArrayList tModelInfoArrayList = tModelList.getTModelInfoArrayList();
 if (tModelInfoArrayList==null) {
 System.out.println("Nothing found");
 return;
 }

 int position = 1;
 for (Iterator iterator = tModelInfoArrayList.iterator(); iterator.hasNext();) {
 TModelInfo tModelTemplate = (TModelInfo) iterator.next();
 System.out.println("TModel "+position+" : "+tModelTemplate.getTModelKey());
 System.out.println(tModelTemplate.toXML());
 System.out.println();
 System.out.println("**");
 position++;
 }
}

Building and Running Demos

This section shows how to build and run the HP SOA Systinet Registry Basic Inquiry demo set. Our example
continues with the FindTModel demo.

1 Be sure that the demos are properly configured and the HP SOA Systinet Registry is up and running.

2 Change your working directory to:

%REGISTRY_HOME%\demos\basic\inquiry\v2Windows:

$REGISTRY_HOME/demos/basic/inquiry/v2UNIX:

3 Build all demos using:

run.bat makeWindows:

./run.sh makeUNIX:

Chapter 6904

When compiling demos on Windows platforms, you may see the following text:

A subdirectory or file ..\..\common\.\build\classes already exists.

This is expected and does not indicate a problem.

4 To get list of all available demos, run

run.bat helpWindows:

./run.sh helpUNIX:

5 Run a selected demo by executing the run command with the name of the demo as a parameter. For
example, to run the FindTModel demo, invoke

run.bat FindTModelWindows:

./run.sh FindTModelUNIX:

The output of this demo will resemble the following:

Running FindTModel demo...
**
*** Systinet Registry Demo - FindTModelDemo ***
**

Searching for tModel where
Enter name [demo%]:
name = demo%
Using Inquiry at url http://mycomp.com:8080/uddi/inquiry .. done
Search in progress .. done

TModel 1 : uuid:13aee5be-8531-343c-98f8-d2d3a9308329
<tModelInfo tModelKey="uuid:13aee5be-8531-343c-98f8-d2d3a9308329" xmlns="urn:uddi-org:api_v2">
<name>demo:departmentID</name>
</tModelInfo>

**
TModel 2 : uuid:8af5f49e-e793-3719-92f3-6ab8998eb5a9
<tModelInfo tModelKey="uuid:8af5f49e-e793-3719-92f3-6ab8998eb5a9" xmlns="urn:uddi-org:api_v2">
<name>demo:hierarchy</name>
</tModelInfo>

905Demos

**
TModel 3 : uuid:5c1d5d80-a4d4-11d8-91cd-5c1d367091cd
<tModelInfo tModelKey="uuid:5c1d5d80-a4d4-11d8-91cd-5c1d367091cd" xmlns="urn:uddi-org:api_v2">
<name>Demo identifier</name>
</tModelInfo>

 **

6 To rebuild demos, execute run.bat clean (./run.sh clean) to delete the classes directory and run.bat
make (./run.sh make) to rebuild the demo classes.

Publishing v2

The HP SOA Systinet Registry basic publishing demo set demonstrates the HP SOA Systinet Registry
application programming interface's capabilities and teaches how to use this API to perform basic publishing
calls to a UDDI registry.

The HP SOA Systinet Registry basic publishing demos cover the publication aspect of the UDDI Version
2 Specification [http://www.oasis-open.org/committees/uddi-spec/doc/tcspecs.htm#uddiv2]. You will learn
how to use the HP SOA Systinet Registry client API to publish information to a UDDI registry over a SOAP
interface. There is one demo for each UDDI call, from add_publisherAssertion through get_registeredInfo to
save_business.

The HP SOA Systinet Registry basic publishing demo set contains the following demos. They will assist
you in learning the HP SOA Systinet Registry client API.

AddAssertion. Demonstrates how to construct and fill the Add_publisherAssertion object, get a Publishing
stub for the UDDI registry, get an authToken, and perform the add_publisherAssertion call.

DeleteAssertion. Demonstrates how to construct and fill the Delete_publisherAssertion object, get a Publishing
stub for the UDDI registry, get an authToken, and perform the delete_publisherAssertion call.

DeleteBinding. Demonstrates how to construct and fill the Delete_binding object, get a Publishing stub for
the UDDI registry, get an authToken, and perform the delete_binding call.

DeleteBusiness. Demonstrates how to construct and fill the Delete_business object, get Publishing stub for
the UDDI registry, get an authToken, and perform the delete_business call.

DeleteService. Demonstrates how to construct and fill the Delete_service object, get Publishing stub for the
UDDI registry, get an authToken, and perform the delete_service call.

Chapter 6906

http://www.oasis-open.org/committees/uddi-spec/doc/tcspecs.htm#uddiv2
http://www.oasis-open.org/committees/uddi-spec/doc/tcspecs.htm#uddiv2

DeleteTModel. Demonstrates how to construct and fill the Delete_tModel object, get a Publishing stub for
the UDDI registry, get an authToken, and perform the delete_tModel call.

GetAssertionStatusReport. Demonstrates how to construct and fill the Get_assertionStatusReport object,
get a Publishing stub for the UDDI registry, get an authToken, and perform the get_assertionStatusReport
call.

GetPublisherAssertions. Demonstrates how to construct and fill the Get_publisherAssertions object, get a
Publishing stub for the UDDI registry, get an authToken, and perform the get_publisherAssertions call.

GetRegisteredInfo. Demonstrates how to construct and fill the Get_registeredInfo object, get a Publishing
stub for the UDDI registry, get an authToken, and perform the get_registeredInfo call.

SaveBinding. Demonstrates how to construct and fill the Save_binding object, get a Publishing stub for the
UDDI registry, get an authToken, and perform the save_binding call.

SaveBusiness. Demonstrates how to construct and fill the Save_business object, get a Publishing stub for
the UDDI registry, get an authToken, and perform the save_business call.

SaveService. Demonstrates how to construct and fill the Save_service object, get a Publishing stub for the
UDDI registry, get an authToken, and perform the save_service call.

SaveTModel. Demonstrates how to construct and fill the Save_tModel object, get a Publishing stub for the
UDDI registry, get an authToken, and perform the save_tModel call.

SetAssertions. Demonstrates how to construct and fill the Set_publisherAssertions object, get a Publishing
stub for the UDDI registry, get an authToken, and perform the set_publisherAssertions call.

Prerequisites and Preparatory Steps: Code

We expect that you have already installed the HP SOA Systinet Registry and set the REGISTRY_HOME environment
variable to its installation location.

To run the HP SOA Systinet Registry's demos, your UDDI registry must be running. To start the registry,
execute the serverstart script:

%REGISTRY_HOME%\bin\serverstart.batWindows:

cd $REGISTRY_HOME/bin/serverstart.shUNIX:

907Demos

It is neccessary to configure the demos. The configuration system has two levels: global and local. The
properties defined at the global level may be overwritten at the local level. The global properties are located
in the file:

%REGISTRY_HOME%\demos\env.propertiesWindows:

$REGISTRY_HOME/demos/env.propertiesUNIX:

The values set during the installation of the HP SOA Systinet Registry work out of the box, and their
modification affects all demos. If you need to redefine a property's value for a single demo (that is, at the
local level), edit the file env.properties in the directory where run.sh(run.bat) is located. Local level properties
for the Basic/Inquiry demos are loaded from the file:

%REGISTRY_HOME%\demos\basic\publishing\v2\env.propertiesWindows:

$REGISTRY_HOME/demos/basic/publishing/v2/env.propertiesUNIX:

Table 4. Properties Used in the Demos

DescriptionDefault ValueName

First user's namedemo_johnuddi.demos.user.john.name

First user's passworddemo_johnuddi.demos.user.john.password

Second user's namedemo_janeuddi.demos.user.jane.name

Second user's passworddemo_janeuddi.demos.user.jane.password

The publication Web service
port URL

http://localhost:8080/uddi/publishinguddi.demos.url.publishing

The security Web service port
URL

http://localhost:8080/uddi/securityuddi.demos.url.security

Presentation and Functional Presentation

This section describes the programming pattern used in all demos using the SaveBusiness demo as an
example. You can find this demo's source code in the file:

%REGISTRY_HOME%\demos\basic\publishing\src\demo\uddi\v2\publishing\SaveBusiness.javaWindows:

Chapter 6908

$REGISTRY_HOME/demos/basic/publishing/src/demo/uddi/v2/publishing/SaveBusiness.javaUNIX:

The main method is easy to understand. First it gathers the user's input. Namely optional publisher assigned
businessKey, then an array of business entity names with their language codes and finally a description of
the business.

The next step is to get the security stub and authorize the user. The resulting authInfo string is a secret key
passed in all requests.

Next, the Save_business object is created, filled, and passed to the saveBusiness method as a parameter.

When successful, the BusinessDetail object is returned from the UDDI registry and printed. The last step is
to discard the authInfo string, so it cannot be used to compromise a user's account.

int count = UserInput.readInt("Enter count of names", 1);
String[] names = new String[count];
String[] languageCodes = new String[count];
for (int i = 0; i < count; i++) {
 String tmp = UserInput.readString("Enter language code", "");
 languageCodes[i] = (tmp.length() > 0) ? tmp : null;
 names[i] = UserInput.readString("Enter name in language " + tmp, "Marketing");
}
String description = UserInput.readString("Enter description",
 "Saved by SaveBusiness demo");
System.out.println();

UDDI_Security_PortType security = getSecurityStub();
String authInfo = getAuthInfo(user, password, security);
Save_business save = createSaveBusiness(businessKey, names, languageCodes, description, authInfo);
BusinessDetail result = saveBusiness(save);
printBusinessDetail(result);
discardAuthInfo(authInfo, security);

The helper method, getSecurityStub() returns the UDDI Security stub of the Web service listening at the
URL specified by the URL_SECURITY property.

public static UDDI_Security_PortType getSecurityStub()
 throws SOAPException {
 // you can specify your own URL in property - uddi.demos.url.security
 String url = DemoProperties.getProperty(URL_SECURITY, "http://localhost:8080/uddi/security");
 System.out.print("Using Security at url " + url + " ..");
 UDDI_Security_PortType security = UDDISecurityStub.getInstance(url);
 System.out.println(" done");

909Demos

 return security;
}

The helper method getPublishingStub() returns the UDDI Publication stub of the Web service listening at
the URL specified by the URL_PUBLISHING property.

public static UDDI_Publication_PortType getPublishingStub()
 throws SOAPException {
 // you can specify your own URL in property - uddi.demos.url.publishing
 String url = DemoProperties.getProperty(URL_PUBLISHING,
 "http://localhost:8080/uddi/publishing");
 System.out.print("Using Publishing at url " + url + " ..");
 UDDI_Publication_PortType inquiry = UDDIPublishStub.getInstance(url);
 System.out.println(" done");
 return inquiry;
}

The getAuthInfo() method is used to authorize the user against the UDDI registry and to get the secret
authInfo key.

public static String getAuthInfo(String userName,
 String password, UDDI_Security_PortType security)
 throws InvalidParameterException, UDDIException {
 System.out.print("Logging in ..");
 AuthToken authToken = security.get_authToken(new Get_authToken(userName, password));
 System.out.println(" done");
 return authToken.getAuthInfo();
}

The discardAuthInfo() method invalidates the secret authInfo key, so it cannot be used anymore.

public static DispositionReport discardAuthInfo(String authInfo,
 UDDI_Security_PortType security)
 throws InvalidParameterException, UDDIException {
 System.out.print("Logging out ..");
 DispositionReport dispositionReport = security.discard_authToken(new Discard_authToken(authInfo));
 System.out.println(" done");
 return dispositionReport;
}

The createSaveBusiness() method is used to create a new instance of the Save_business class and initialize it
with values from parameters:

public static Save_business createSaveBusiness(String[] names,
String[] nameLangCodes, String description, String authInfo)
 throws InvalidParameterException {

Chapter 6910

 for (int i = 0; i < names.length; i++) {
 System.out.println("lang = " + nameLangCodes[i] + ", name = " + names[i]);
 }
 System.out.println("description = " + description);

 BusinessEntity businessEntity = new BusinessEntity();
 businessEntity.setBusinessKey("");
 for (int i = 0; i < names.length; i++) {
 if (nameLangCodes[i] == null) {
 businessEntity.addName(new Name(names[i]));
 } else {
 businessEntity.addName(new Name(names[i], nameLangCodes[i]));
 }
 }
 businessEntity.addDescription(new Description(description));

 Save_business save = new Save_business();
 save.addBusinessEntity(businessEntity);
 save.setAuthInfo(authInfo);
 save.setGeneric(Constants.GENERIC_2_0);
 return save;
}

The UDDI API call save_business is performed in the method saveBusiness():

public static BusinessDetail saveBusiness(Save_business save)
 throws UDDIException, SOAPException {
 UDDI_Publication_PortType publishing = getPublishingStub();
 System.out.print("Save in progress ...");
 BusinessDetail businessDetail = publishing.save_business(save);
 System.out.println(" done");
 return businessDetail;
}

The saved businessEntity is displayed by the printBusinessDetail() method. One interesting aspect of the
HP SOA Systinet Registry client API is that each UDDIObject contains the toXML(), which returns a human-
readable formatted listing of the XML representation.

public static void printBusinessDetail(BusinessDetail businessDetail) {
 System.out.println();
 BusinessEntityArrayList businessEntityArrayList = businessDetail.getBusinessEntityArrayList();
 int position = 1;
 for (Iterator iterator = businessEntityArrayList.iterator(); iterator.hasNext();) {
 BusinessEntity entity = (BusinessEntity) iterator.next();
 System.out.println("Business " + position + " : " + entity.getBusinessKey());
 System.out.println(entity.toXML());

911Demos

 System.out.println();
 System.out.println("**");
 position++;
 }
}

Building and Running Demos

This section shows how to build and run the HP SOA Systinet Registry Basic Publishing demo set. Let us
continue with our SaveBusiness demo.

1 Be sure that the demos are properly configured and the HP SOA Systinet Registry is up and running.

2 Change your working directory to

%REGISTRY_HOME%\demos\basic\publishing\v2Windows:

$REGISTRY_HOME/demos/basic/publishing/v2UNIX:

3 Build all demos using:

run.bat makeWindows:

./run.sh makeUNIX:

When compiling demos on Windows platforms, you may see the following text:

A subdirectory or file ..\..\common\.\build\classes already exists.

This is expected and does not indicate a problem.

4 To get list of all available demos, run

run.bat helpWindows:

./run.sh helpUNIX:

5 The selected demo can be executed via the run command using the name of the demo as a parameter.
For example to run the SaveBusiness demo, invoke

Chapter 6912

run.bat SaveBusinessWindows:

./run.sh SaveBusinessUNIX:

The output of this demo will resemble the following:

Running SaveBusiness demo...
**
*** Systinet Registry Demo - SaveBusiness ***
**

Saving business entity where
Enter count of names [1]:
Enter language code []:
Enter name in language [Marketing]:
Enter description [Saved by SaveBusiness demo]:

Using Publishing at url https://mycomp.com:8443/uddi/publishing .. done
Logging in .. done
lang = null, name = Marketing
description = Saved by SaveBusiness demo
Save in progress ... done

Business 1 : c9e8be50-a5a5-11d8-91cd-5c1d367091cd
<businessEntity businessKey="c9e8be50-a5a5-11d8-91cd-5c1d367091cd" operator="Systinet"
authorizedName="demo_john" xmlns="urn:uddi-org:api_v2">
 <name>Marketing</name>
 <description>Saved by SaveBusiness demo</description>
</businessEntity>

**
Logging out .. done

6 To rebuild demos, execute run.bat clean (./run.sh clean) to delete the classes directory and run.bat
make (./run.sh make) to rebuild the demo classes.

UDDI v3

• UDDI v3 Inquiry demos

• UDDI v3 Publishing demos

913Demos

Inquiry v3

The HP SOA Systinet Registry basic inquiry demo set is used to demonstrate the HP SOA Systinet Registry
application programming interface's capabilities and to teach the reader how to use this API to perform
basic inquiry calls to a UDDI registry.

The HP SOA Systinet Registry basic inquiry demos cover the inquiry aspect of the UDDI Version 3.0.1
Specification [http://www.oasis-open.org/committees/uddi-spec/doc/tcspecs.htm#uddiv3]. You will learn
how to use the HP SOA Systinet Registry client API to contact and get information from a UDDI registry
over a SOAP interface. There is one demo for each UDDI call, from find_business to get_tModel.

The HP SOA Systinet Registry basic inquiry demo set contains following demos. They will assist you in
learning the HP SOA Systinet Registry client API.

FindBinding. Demonstrates how to construct and fill the Find_binding object, get an Inquiry stub for the
UDDI registry, perform a find_binding call, and display the results.

FindBusiness. Demonstrates how to construct and fill a Find_business object, get an Inquiry stub for the
UDDI registry, perform a find_business call and display the results.

FindRelatedBusiness. Demonstrates how to construct and fill a Find_relatedBusiness object, get an Inquiry
stub for the UDDI registry, perform a find_relatedBusiness call and display the results.

FindService. Demonstrates how to construct and fill a Find_service object, get an Inquiry stub for the UDDI
registry, perform a find_service call and display the results.

FindTModel. Demonstrates how to construct and fill a Find_tModel object, get an Inquiry stub for the UDDI
registry, perform a find_tModel call and display the results.

GetBindingDetail. Demonstrates how to create a Get_bindingDetail object, set the bindingKey of the
bindingTemplate to be fetched, get an Inquiry stub for the UDDI registry, perform a get_bindingDetail call,
and display the result.

GetBusinessDetail. Demonstrates how to create a Get_businessDetail object, set the businessKey of the
businessEntity to be fetched, get an Inquiry stub for the UDDI registry, perform a get_businessDetail call,
and display the result.

Chapter 6914

http://www.oasis-open.org/committees/uddi-spec/doc/tcspecs.htm#uddiv3
http://www.oasis-open.org/committees/uddi-spec/doc/tcspecs.htm#uddiv3

GetOperationalInfo. Demonstrates how to create a Get_operationalInfo object, set a UDDI key, get an
Inquiry stub for the UDDI registry, perform a get_operationalInfo call, and display the operational info of
the selected UDDI structure.

GetServiceDetail. Demonstrates how to create a Get_serviceDetail object, set the serviceKey of the business
service to be fetched, get an Inquiry stub for the UDDI registry, perform a get_serviceDetail call, and display
the result.

GetTModeDetail. Demonstrates how to create a Get_tModelDetail object, set the tModelKey of the tModel
to be fetched, get an Inquiry stub for the UDDI registry, perform a get_tModelDetail call, and display the
result.

Prerequisites and Preparatory Steps: Code

We expect, that you have already installed the HP SOA Systinet Registry and set the REGISTRY_HOME
environment variable to its installation location.

To run HP SOA Systinet Registry's demos, your UDDI registry must be running. To start the UDDI registry,
execute the serverstart script:

%REGISTRY_HOME%\bin\serverstart.batWindows:

$REGISTRY_HOME/bin/serverstart.shUNIX:

It is necessary to configure the demos. The configuration system has two levels: global and local. The
properties defined at the global level may be overwritten at the local level. The global properties are located
in the file:

%REGISTRY_HOME%\demos\env.propertiesWindows:

$REGISTRY_HOME/demos/env.propertiesUNIX:

The values set during the installation of the HP SOA Systinet Registry work out of box, and their modification
affects all demos. If you need to redefine the value of some property for a single demo (that is, at the local
level), edit the file env.properties in the directory where run.bat (run.sh) is located. Local level properties
for Basic/Inquiry demos are loaded in the file:

%REGISTRY_HOME%\demos\basic\inquiry\v3\env.propertiesWindows:

$REGISTRY_HOME/demos/basic/inquiry/v3/env.propertiesUNIX:

915Demos

Table 5. Properties Used in Demos

DescriptionDefault valueName

limit of data returned from registry5uddi.demos.result.max_rows

the inquiry Web service port URLhttp://localhost:8080/uddi/inquiryuddi.demos.url.inquiry

Presentation and Functional Presentation

This section describes programing pattern used in all demos using the FindTModel demo as an example.
You can find its source code in the file:

%REGISTRY_HOME%\demos\basic\inquiry\src\demo\uddi\v3\inquiry\FindTModel.javaWindows:

$REGISTRY_HOME/demos/basic/inquiry/src/demo/uddi/v3/inquiry/FindTModel.javaUNIX:

The main method is straightforward. It gathers user's input (tModel name and findQualifier name), calls a
method to initialize the Find_tModel object, executes the find_tModel UDDI call, and displays the list of found
tModels:

String name = UserInput.readString("Enter name", "demo%");
String findQualifier = UserInput.readString("Enter findQualifier", "approximateMatch");
Find_tModel find_tModel = createFindByTModel(name, findQualifier);
TModelList result = findTModel(find_tModel);
printTModelList(result);

The createFindTModel() method is used to create new instance of Find_tModel class and initialize it with
values from parameters:

public static Find_tModel createFindByTModel(String name, String findQualifier)
 throws InvalidParameterException {
 System.out.println("findQualifier = " + findQualifier);
 System.out.println("name = " + name);
 Find_tModel find_tModel = new Find_tModel();
 find_tModel.setName(new Name(name));
 find_tModel.setMaxRows(new Integer(MAX_ROWS));
 find_tModel.addFindQualifier(findQualifier);
 return find_tModel;
}

The helper method getInquiryStub() returns the UDDI Inquiry stub of the web service listening at the URL
specified in the URL_INQUIRY property.

Chapter 6916

public static UDDI_Inquiry_PortType getInquiryStub()
 throws SOAPException {
 // you can specify your own URL in property - uddi.demos.url.inquiry
 String url = DemoProperties.getProperty(URL_INQUIRY, "http://localhost:8080/uddi/inquiry");
 System.out.print("Using Inquiry at url " + url + " ..");
 UDDI_Inquiry_PortType inquiry = UDDIInquiryStub.getInstance(url);
 System.out.println(" done");
 return inquiry;
}

The UDDI API call find_tModel is performed in the method findTModel:

public static TModelList findTModel(Find_tModel find_tModel)
 throws UDDIException, SOAPException {
 UDDI_Inquiry_PortType inquiry = getInquiryStub();
 System.out.print("Search in progress ..");
 TModelList tModelList = inquiry.find_tModel(find_tModel);
 System.out.println(" done");
 return tModelList;
}

The list of found tModels are printed with the method printTModelList. One interesting aspect of the HP
SOA Systinet Registry client API is that each UDDIObject contains method toXML(), which returns a human-
readable, formatted, listing of its XML representation.

public static void printTModelList(TModelList tModelList) {
 System.out.println();
 ListDescription listDescription = tModelList.getListDescription();
 if (listDescription!=null) {
 // list description is mandatory part of result,
 // if the resultant list is subset of available data
 int includeCount = listDescription.getIncludeCount();
 int actualCount = listDescription.getActualCount();
 int listHead = listDescription.getListHead();
 System.out.println("Displaying "+includeCount+" of "+
 actualCount+", starting at position " + listHead);
 }

 TModelInfoArrayList tModelInfoArrayList = tModelList.getTModelInfoArrayList();
 if (tModelInfoArrayList==null) {
 System.out.println("Nothing found");
 return;
 }

 int position = 1;
 for (Iterator iterator = tModelInfoArrayList.iterator(); iterator.hasNext();) {

917Demos

 TModelInfo tModelTemplate = (TModelInfo) iterator.next();
 System.out.println("TModel "+position+" : "+tModelTemplate.getTModelKey());
 System.out.println(tModelTemplate.toXML());
 System.out.println();
 System.out.println("**");
 position++;
 }
}

Building and Running Demos

This section shows how to build and run the HP SOA Systinet Registry Basic Inquiry demo set. Our example
continues with the FindTModel demo.

1 Be sure that the demos are properly configured and the HP SOA Systinet Registry is up and running.

2 Change your working directory to:

%REGISTRY_HOME%\demos\basic\inquiry\v3Windows:

$REGISTRY_HOME/demos/basic/inquiry/v3UNIX:

3 Build all demos using:

run.bat makeWindows:

./run.sh makeUNIX:

When compiling demos on Windows platforms, you may see the following text:

A subdirectory or file ..\..\common\.\build\classes already exists.

This is expected and does not indicate a problem.

4 To get list of all available demos, run

run.bat helpWindows:

./run.sh helpUNIX:

Chapter 6918

5 Run a selected demo by executing the run command with the name of the demo as a parameter. For
example, to run the FindTModel demo, invoke

run.bat FindTModelWindows:

./run.sh FindTModelUNIX:

The output of this demo will resemble the following:

**
*** Systinet Registry Demo - FindTModelDemo ***
 **

Searching for tModel where
Enter name [demo%]:
Enter findQualifier [approximateMatch]:
findQualifier = approximateMatch
name = demo%
Using Inquiry at url http://localhost:8080/uddi/inquiry .. done
Search in progress .. done

Displaying 3 of 3, starting at position 1
TModel 1 : uddi:systinet.com:demo:departmentID

<tModelInfo tModelKey="uddi:systinet.com:demo:departmentID"
 xmlns="urn:uddi-org:api_v3">
 <name>demo:departmentID</name>
 <description>Identifier of the department</description>
</tModelInfo>

**
TModel 2 : uddi:systinet.com:demo:hierarchy

<tModelInfo tModelKey="uddi:systinet.com:demo:hierarchy"
 xmlns="urn:uddi-org:api_v3">
 <name>demo:hierarchy</name>
 <description>Business hierarchy taxonomy</description>
</tModelInfo>

**
TModel 3 : uddi:systinet.com:demo:location:floor

<tModelInfo tModelKey="uddi:systinet.com:demo:location:floor" xmlns="
 urn:uddi-org:api_v3">
 <name>demo:location:floor</name>
 <description>Specifies floor, on which the department is located</description>

919Demos

</tModelInfo>

**

6 To rebuild demos, execute run.bat clean (./run.sh clean) to delete the classes directory and run.bat
make (./run.sh make) to rebuild the demo classes.

Publishing v3

The HP SOA Systinet Registry basic publishing demo set demonstrates the HP SOA Systinet Registry
application programming interface's capabilities and teaches how to use this API to perform basic publishing
calls to a UDDI registry.

The HP SOA Systinet Registry basic publishing demos cover the publication aspect of the UDDI Version
3 Specification [http://www.oasis-open.org/committees/uddi-spec/doc/tcspecs.htm#uddiv3]. You will learn,
how to use the HP SOA Systinet Registry client API to publish information to a UDDI registry over a SOAP
interface. There is one demo for each UDDI call, from add_publisherAssertion through get_registeredInfo to
save_business.

The HP SOA Systinet Registry basic publishing demo set contains the following demos. They will assist
you in learning the HP SOA Systinet Registry client API.

AddAssertion. Demonstrates how to construct and fill the Add_publisherAssertion object, get a Publishing
stub for the UDDI registry, get an authToken, and perform the add_publisherAssertion call.

DeleteAssertion. Demonstrates how to construct and fill the Delete_publisherAssertion object, get a Publishing
stub for the UDDI registry, get an authToken, and perform the delete_publisherAssertion call.

DeleteBinding. Demonstrates how to construct and fill the Delete_binding object, get a Publishing stub for
the UDDI registry, get an authToken, and perform the delete_binding call.

DeleteBusiness. Demonstrates how to construct and fill the Delete_business object, get Publishing stub for
the UDDI registry, get an authToken, and perform the delete_business call.

DeleteService. Demonstrates how to construct and fill the Delete_service object, get Publishing stub for the
UDDI registry, get an authToken, and perform the delete_service call.

DeleteTModel. Demonstrates how to construct and fill the Delete_tModel object, get a Publishing stub for
the UDDI registry, get an authToken, and perform the delete_tModel call.

Chapter 6920

http://www.oasis-open.org/committees/uddi-spec/doc/tcspecs.htm#uddiv3
http://www.oasis-open.org/committees/uddi-spec/doc/tcspecs.htm#uddiv3

GetAssertionStatusReport. Demonstrates how to construct and fill the Get_assertionStatusReport object,
get a Publishing stub for the UDDI registry, get an authToken, and perform the get_assertionStatusReport
call.

GetPublisherAssertions. Demonstrates how to construct and fill the Get_publisherAssertions object, get a
Publishing stub for the UDDI registry, get an authToken, and perform the get_publisherAssertions call.

GetRegisteredInfo. Demonstrates how to construct and fill the Get_registeredInfo object, get a Publishing
stub for the UDDI registry, get an authToken, and perform the get_registeredInfo call.

SaveBinding. Demonstrates how to construct and fill the Save_binding object, get a Publishing stub for the
UDDI registry, get an authToken, and perform the save_binding call.

SaveBusiness. Demonstrates how to construct and fill the Save_business object, get a Publishing stub for
the UDDI registry, get an authToken, and perform the save_business call.

SaveService. Demonstrates how to construct and fill the Save_service object, get a Publishing stub for the
UDDI registry, get an authToken, and perform the save_service call.

SaveTModel. Demonstrates how to construct and fill the Save_tModel object, get a Publishing stub for the
UDDI registry, get an authToken, and perform the save_tModel call.

SetAssertions. Demonstrates how to construct and fill the Set_publisherAssertions object, get a Publishing
stub for the UDDI registry, get an authToken, and perform the set_publisherAssertions call.

Prerequisites and Preparatory Steps: Code

We expect that you have already installed the HP SOA Systinet Registry and set the REGISTRY_HOME environment
variable to its installation location.

To run the HP SOA Systinet Registry's demos, your UDDI registry must be running. To start the registry,
execute the serverstart script:

%REGISTRY_HOME%\bin\serverstart.batWindows:

$REGISTRY_HOME/bin/serverstart.shUNIX:

It is neccessary to configure the demos. The configuration system has two levels: global and local. The
properties defined at the global level may be overwritten at the local level. The global properties are located
in the file:

921Demos

%REGISTRY_HOME%\demos\env.propertiesWindows:

$REGISTRY_HOME/demos/env.propertiesUNIX:

The values set during the installation of the HP SOA Systinet Registry work out of the box, and their
modification affects all demos. If you need to redefine the value of some property for a single demo (that
is, at the local level), edit the file env.properties in the directory where run.sh(run.bat) is located. Local level
properties for the Basic/Inquiry demos are loaded from the file:

%REGISTRY_HOME%\demos\basic\publishing\v3\env.propertiesWindows:

$REGISTRY_HOME/demos/basic/publishing/v3/env.propertiesUNIX:

Table 6. Properties Used in the Demos

DescriptionDefault ValueName

First user's namedemo_johnuddi.demos.user.john.name

First user's passworddemo_johnuddi.demos.user.john.password

Second user's namedemo_janeuddi.demos.user.jane.name

Second user's passworddemo_janeuddi.demos.user.jane.password

The publication Web service port
URL

http://localhost:8080/uddi/publishinguddi.demos.url.publishing

The security web service port URLhttp://localhost:8080/uddi/securityuddi.demos.url.security

Presentation and Functional Presentation

This section describes the programming pattern used in all demos using the SaveBusiness demo as an
example. You can find this demo's source code in the file:

%REGISTRY_HOME%\demos\basic\publishing\src\demo\uddi\v3\publishing\SaveBusiness.javaWindows:

$REGISTRY_HOME/demos/basic/publishing/src/demo/uddi/v3/publishing/SaveBusiness.javaUNIX:

The main method is easy to understand. First it gathers the user's input: an optional publisher-assigned
businessKey, then variable long array of business entity names with their language codes, and a description
of the business.

Chapter 6922

The next step is to get the security stub and authorize the user. The resulting authInfo string is a secret key
passed in all requests.

Next, the Save_business object is created, filled, and passed to the saveBusiness method as a parameter.

When successful, the BusinessDetail object is returned from the UDDI registry and printed. The last step is
to discard the authInfo string, so no malicious user can use it to compromise a user's account.

String businessKey = UserInput.readString("Enter (optional) businessKey", "");
int count = UserInput.readInt("Enter count of names", 1);
String[] names = new String[count];
String[] languageCodes = new String[count];
for (int i = 0; i < count; i++) {
 String tmp = UserInput.readString("Enter language code", "");
 languageCodes[i] = (tmp.length() > 0) ? tmp : null;
 names[i] = UserInput.readString("Enter name in language " + tmp, "Marketing");
}
String description = UserInput.readString("Enter description", "Saved by SaveBusiness demo");
System.out.println();

UDDI_Security_PortType security = getSecurityStub();
String authInfo = getAuthInfo(user, password, security);
Save_business save = createSaveBusiness(businessKey, names, languageCodes, description, authInfo);
BusinessDetail result = saveBusiness(save);
printBusinessDetail(result);
discardAuthInfo(authInfo, security);

The helper method, getSecurityStub() returns the UDDI Security stub of the web service listening at the
URL specified by the URL_SECURITY property.

public static UDDI_Security_PortType getSecurityStub()
 throws SOAPException {
 // you can specify your own URL in property - uddi.demos.url.security
 String url = DemoProperties.getProperty(URL_SECURITY, "http://localhost:8080/uddi/security");
 System.out.print("Using Security at url " + url + " ..");
 UDDI_Security_PortType security = UDDISecurityStub.getInstance(url);
 System.out.println(" done");
 return security;
}

Similarly, the helper method getPublishingStub() returns the UDDI Publication stub of the web service
listening at the URL specified by the URL_PUBLISHING property.

public static UDDI_Publication_PortType getPublishingStub()
 throws SOAPException {

923Demos

 // you can specify your own URL in property - uddi.demos.url.publishing
 String url = DemoProperties.getProperty(URL_PUBLISHING, "http://localhost:8080/uddi/publishing");
 System.out.print("Using Publishing at url " + url + " ..");
 UDDI_Publication_PortType inquiry = UDDIPublishStub.getInstance(url);
 System.out.println(" done");
 return inquiry;
}

The getAuthInfo() method is used to authorize the user against the UDDI registry and to get the secret
authInfo key.

public static String getAuthInfo(String userName, String password, UDDI_Security_PortType security)
 throws InvalidParameterException, UDDIException {
 System.out.print("Logging in ..");
 AuthToken authToken = security.get_authToken(new Get_authToken(userName, password));
 System.out.println(" done");
 return authToken.getAuthInfo();
}

The discardAuthInfo() method invalidates the secret authInfo key, so it cannot be used anymore.

public static void discardAuthInfo(String authInfo, UDDI_Security_PortType security)
 throws InvalidParameterException, UDDIException {
 System.out.print("Logging out ..");
 security.discard_authToken(new Discard_authToken(authInfo));
 System.out.println(" done");
}

The createSaveBusiness() method is used to create a new instance of the Save_business class and initialize it
with values from parameters:

public static Save_business createSaveBusiness(String businessKey, String[] names,
 String[] nameLangCodes, String description, String authInfo)
 throws InvalidParameterException {
 System.out.println("businessKey = " + businessKey);
 for (int i = 0; i < names.length; i++) {
 System.out.println("lang = " + nameLangCodes[i] + ", name = " + names[i]);
 }
 System.out.println("description = " + description);

 BusinessEntity businessEntity = new BusinessEntity();
 if (businessKey!=null && businessKey.length()>0)
 businessEntity.setBusinessKey(businessKey);
 for (int i = 0; i < names.length; i++) {
 if (nameLangCodes[i] == null) {
 businessEntity.addName(new Name(names[i]));
 } else {

Chapter 6924

 businessEntity.addName(new Name(names[i], nameLangCodes[i]));
 }
 }
 businessEntity.addDescription(new Description(description));

 Save_business save = new Save_business();
 save.addBusinessEntity(businessEntity);
 save.setAuthInfo(authInfo);
 return save;
}

The UDDI API call save_business is performed in the method saveBusiness():

public static BusinessDetail saveBusiness(Save_business save)
 throws UDDIException, SOAPException {
 UDDI_Publication_PortType publishing = getPublishingStub();
 System.out.print("Save in progress ...");
 BusinessDetail businessDetail = publishing.save_business(save);
 System.out.println(" done");
 return businessDetail;
}

The saved businessEntity is displayed by the printBusinessDetail() method. One interesting aspect of the
HP SOA Systinet Registry client API is that each UDDIObject contains the toXML(), which returns a human-
readable formatted listing of the XML representation.

public static void printBusinessDetail(BusinessDetail businessDetail) {
 System.out.println();
 BusinessEntityArrayList businessEntityArrayList = businessDetail.getBusinessEntityArrayList();
 int position = 1;
 for (Iterator iterator = businessEntityArrayList.iterator(); iterator.hasNext();) {
 BusinessEntity entity = (BusinessEntity) iterator.next();
 System.out.println("Business " + position + " : " + entity.getBusinessKey());
 System.out.println(entity.toXML());
 System.out.println();
 System.out.println("**");
 position++;
 }
}

Building and Running Demos

This section shows how to build and run the HP SOA Systinet Registry Basic Publishing demo set. Let's
continue with our SaveBusiness demo.

925Demos

1 Be sure that the demos are properly configured and the HP SOA Systinet Registry is up and running.

2 Change your working directory to:

%REGISTRY_HOME%\demos\basic\publishing\v3Windows:

$REGISTRY_HOME/demos/basic/publishing/v3UNIX:

3 Build all demos using:

run.bat makeWindows:

./run.sh makeUNIX:

When compiling demos on Windows platforms, you may see the following text:

A subdirectory or file ..\..\common\.\build\classes already exists.

This is expected and does not indicate a problem.

4 To get list of all available demos, run

run.bat helpWindows:

./run.sh helpUNIX:

5 The selected demo can be executed via the run command using the name of the demo as a parameter.
For example to run the SaveBusiness demo, invoke

run.bat SaveBusinessWindows:

./run.sh SaveBusinessUNIX:

The output of this demo will resemble the following:

**
*** Systinet Registry Demo - SaveBusiness ***
**

Saving business entity where

Chapter 6926

Enter (optional) businessKey []: uddi:systinet.com:demo:marketing
Enter count of names [1]: 1
Enter language code []:
Enter name in language [Marketing]:
Enter description [Saved by SaveBusiness demo]: Marketing department

Using Security at url http://localhost:8080/uddi/security .. done
Logging in .. done
businessKey = uddi:systinet.com:demo:marketing
lang = null, name = Marketing
description = Marketing department
Using Publishing at url http://localhost:8080/uddi/publishing .. done
Save in progress ... done

Business 1 : uddi:systinet.com:demo:marketing

<businessEntity businessKey="uddi:systinet.com:demo:marketing" xmlns="urn:uddi-org:api_v3">
 <name>Marketing</name>
 <description>Marketing department</description>
</businessEntity>

**
Logging out .. done

6 To rebuild demos, execute run.bat clean (./run.sh clean) to delete the classes directory and run.bat
make (./run.sh make) to rebuild the demo classes.

Advanced Demos
Advanced demos section includes the following demos:

• Inquiry Range Queries demo - The HP SOA Systinet Registry Range queries demos set demonstrates,
how to use HP SOA Systinet Registry inquiry enhancement - Range Queries. HP SOA Systinet Registry
range queries functionality allows you to search UDDI entities with the ability to use comparative
operators (>, <) for matching keyValues in keyedReferences.

• Custody demos - The Systinet Registry Custody demo covers the custody transfer aspects of the UDDI
API specification. You will learn how to generate a custody transfer token and transfer the ownership
of selected structures to another user.

927Demos

• Subscription demos - The Systinet Registry advanced subscription demos cover the subscription aspects
of the UDDI Version 3 Specification. They teach how to use the Systinet Registry client API to create
new subscriptions, get lists of subscriptions, get subscription results, and delete subscriptions.

• Validation demos - The valueset validation API provides methods to validate values used in the
keyedReferences of checked taxonomies. The checks might range from very simple (check value against
list of available values as in the InternalValidation service), to complex, such as performing contextual
checks.

• Taxonomy demos - The Taxonomy API is used to manage and query taxonomies in the Systinet Registry.
These demos cover all API methods, so you can learn how to download, upload, save, delete, get and
find taxonomies. In addition, you can manage individual values in internally checked taxonomies using
the Category API.

Advanced Inquiry - Range Queries

The HP SOA Systinet Registry Range queries demos set demonstrates, how to use HP SOA Systinet Registry
inquiry enhancement - Range Queries. HP SOA Systinet Registry range queries functionality allows you
to search UDDI entities with the ability to use comparative operators (>, <) for matching keyValues in
keyedReferences.

The demos set includes the following demo:

• FindBusiness

Prerequisites and Preparatory Steps: Code

We expect that you have already installed the HP SOA Systinet Registry and set the REGISTRY_HOME environment
variable to the registry's installation location.

To run the HP SOA Systinet Registry's demos, your registry must be running. To start the HP SOA Systinet
Registry, execute the serverstart script:

%REGISTRY_HOME%\bin\serverstart.batWindows:

$REGISTRY_HOME/bin/serverstart.shUNIX:

Chapter 6928

It is necessary to configure the demos. The configuration system has two levels: global and local. The
properties defined at the global level may be overwritten at the local level. The global properties are located
in the file:

%REGISTRY_HOME%\demos\env.propertiesWindows:

$REGISTRY_HOME/demos/env.propertiesUNIX:

The values set during the installation of the HP SOA Systinet Registry work out of box, and their modification
affects all demos. If you need to redefine the value of some property for a single demo (that is, at the local
level), edit env.properties. This file is located in the same directory as the file run.sh (run.bat). Local level
properties for the Advanced Inquiry demos are loaded from the file:

%REGISTRY_HOME%\demos\advanced\inquiry\env.propertiesWindows:

$REGISTRY_HOME/demos/advanced/inquiry/env.propertiesUNIX:

Table 7. Properties Used in Demos

DescriptionDefault ValueName

limit of data returned from
registry

5uddi.demos.result.max_rows

the extended inquiry web
service port URL

http://localhost:8080/uddi/inquiryExtuddi.demos.url.inquiryExt

Presentation and Functional Presentation

This section describes the programming pattern used in demos using the FindBusiness demo as an example.
You can find its source code in the file:

%REGISTRY_HOME%\demos\advanced\inquiry\src\demo\uddi\rq\FindBusiness.javaWindows:

$REGISTRY_HOME/demos/advanced/inquiry/src/demo/uddi/rq/FindBusiness.javaUNIX:

The helper method createFindBusiness creates a FindBusiness structure:

public Find_business createFindBusiness(String tModelKey, String keyValue,

929Demos

 String operator, String quantifier)
 throws InvalidParameterException {
 System.out.println("tModelKey = " + tModelKey);
 System.out.println("keyValue = " + keyValue);
 System.out.println("operator = " + operator);
 System.out.println("quantifier = " + quantifier);

 Find_business find_business = new Find_business();
 QualifiedKeyedReference qualifiedKeyedReference = new QualifiedKeyedReference();
 qualifiedKeyedReference.setTModelKey(tModelKey);
 qualifiedKeyedReference.setKeyValue(keyValue);
 qualifiedKeyedReference.setFindQualifierArrayList(parseFindQualifiers(operator, quantifier));
 find_business.setCategoryBag(new CategoryBag(new KeyedReferenceArrayList(qualifiedKeyedReference)));

 find_business.setMaxRows(new Integer(MAX_ROWS));

 return find_business;
}

The findBusiness method performs the searching operation:

public BusinessList findBusiness(Find_business find_business) throws UDDIException, SOAPException {
 System.out.print("Check structure validity .. ");
 try {
 find_business.check();
 } catch (InvalidParameterException e) {
 System.out.println("Failed!");
 throw new UDDIException(e);
 }
 System.out.println("OK");

 UDDI_Inquiry_PortType inquiry = getInquiryStub();
 System.out.print("Search in progress ..");
 BusinessList businessList = inquiry.find_business(find_business);
 System.out.println(" done");
 return businessList;
}

Building and Running Demos

This section shows, how to build and run the HP SOA Systinet Registry Advanced Inquiry demo set. Let
us continue with our FindBusiness demo.

Chapter 6930

1 Be sure that the demo are properly configured and the HP SOA Systinet Registry is up and running.

2 Change your working directory to

%REGISTRY_HOME%\demos\advanced\inquiryWindows

$REGISTRY_HOME/demos/advanced/inquiryUNIX

3 Build demo using:

UNIX:Windows:

./run.sh makerun.bat make

When compiling demo on Windows platforms, you may see the following text:

A subdirectory or file ..\..\common\.\build\classes already exists.

. This is expected and does not indicate a problem.

4 To get list of all available demos, run

run.bat helpWindows:

./run.sh helpUNIX:

5 The selected demo can be executed via the run command using the name of the demo as a parameter.
For example, to run the FindBusiness demo, invoke

run.bat FindBusinessWindows:

./run.sh FindBusinessUNIX:

The output of this demo will resemble the following:

**
*** Systinet Registry Demo - FindBusiness ***
**

931Demos

Searching for businesses by category where keyedReference
Enter tModelKey [uddi:systinet.com:demo:location:floor]:
Enter keyValue [1]: 3
Enter operator (=,<,>,<=,>=,<>) [=]:>
Enter quantifier (exists,notExists) [exists]:
tModelKey = uddi:systinet.com:demo:location:floor
keyValue = 3
operator = >
quantifier = exists
Check structure validity .. OK
Using Inquiry at url http://van.in.idoox.com:8080/uddi/inquiryExt .. done
Search in progress .. done

Displaying 1 of 1, starting at position 1
Business 1 : uddi:systinet.com:demo:it
<businessInfoExt businessKey="uddi:systinet.com:demo:it"
xmlns="http://systinet.com/uddi/api/v3/ext/5.0">
 <name xmlns="urn:uddi-org:api_v3">IT</name>
 <description xmlns="urn:uddi-org:api_v3">IT department</description>
 <serviceInfos xmlns="urn:uddi-org:api_v3">
 <serviceInfoExt serviceKey="uddi:systinet.com:demo:it:support"
businessKey="uddi:systinet.com:demo:it" xmlns="http://systinet.com/uddi/api/v3/ext/5.0">
 <name xmlns="urn:uddi-org:api_v3">Support</name>
 <description xmlns="urn:uddi-org:api_v3">Telephone support</description>
 <bindingTemplates xmlns="urn:uddi-org:api_v3">
 <bindingTemplate bindingKey="uddi:b77eb8f0-86ce-11d8-ba05-123456789012"
serviceKey="uddi:systinet.com:demo:it:support">
 <description>IT related issues shall be reported there</description>
 <accessPoint useType="endPoint">tel:+1-123-456-7890</accessPoint>
 <tModelInstanceDetails>
 <tModelInstanceInfo tModelKey="uddi:uddi.org:transport:telephone"/>
 </tModelInstanceDetails>
 </bindingTemplate>
 </bindingTemplates>
 </serviceInfoExt>
 <serviceInfoExt serviceKey="uddi:systinet.com:demo:hr:employeesList"
businessKey="uddi:systinet.com:demo:hr" xmlns="http://systinet.com/uddi/api/v3/ext/5.0">
 <name xmlns="urn:uddi-org:api_v3">EmployeeList</name>
 <description xmlns="urn:uddi-org:api_v3">wsdl:type representing service</description>
 <bindingTemplates xmlns="urn:uddi-org:api_v3">
 <bindingTemplate bindingKey="uddi:5c546520-78b8-11d8-bec4-123456789012"
serviceKey="uddi:systinet.com:demo:hr:employeesList">
 <description>wsdl:type representing port</description>
 <accessPoint useType="http://schemas.xmlsoap.org/soap/http">urn:unknown-location-
uri</accessPoint>
 <tModelInstanceDetails>

Chapter 6932

 <tModelInstanceInfo tModelKey="uddi:systinet.com:demo:employeeList:binding">
 <instanceDetails>
 <instanceParms>EmployeeList</instanceParms>
 </instanceDetails>
 </tModelInstanceInfo>
 <tModelInstanceInfo tModelKey="uddi:systinet.com:demo:employeeList:portType">
 <instanceDetails>
 <instanceParms>EmployeeList</instanceParms>
 </instanceDetails>
 </tModelInstanceInfo>
 </tModelInstanceDetails>
 <categoryBag>
 <keyedReference tModelKey="uddi:uddi.org:xml:namespace" keyName="uddi.org:xml:namespace"
 keyValue="http://systinet.com/wsdl/demo/uddi/services/"/>
 <keyedReference tModelKey="uddi:uddi.org:wsdl:types" keyName="uddi.org:wsdl:types"
keyValue="port"/>
 <keyedReference tModelKey="uddi:uddi.org:xml:localName" keyName="uddi.org:xml:localName"
 keyValue="EmployeeList"/>
 <keyedReference tModelKey="uddi:systinet.com:taxonomy:endpoint:availability"
keyName="Available" keyValue="Available"/>
 <keyedReference tModelKey="uddi:systinet.com:taxonomy:endpoint:status"
keyName="Operational" keyValue="Operational"/>
 </categoryBag>
 </bindingTemplate>
 </bindingTemplates>
 </serviceInfoExt>
 </serviceInfos>
 <contactInfos>
 <contactInfo useType="Technical support">
 <personName xmlns="urn:uddi-org:api_v3">John Demo</personName>
 </contactInfo>
 </contactInfos>
</businessInfoExt>

**

Custody

The HP SOA Systinet Registry demo is used to demonstrate the registry's application programming interface's
capabilities and to demonstrate how to use this API.

The HP SOA Systinet Registry Custody demo covers the custody transfer aspects of the UDDI Version
3.01 Specification [http://www.oasis-open.org/committees/uddi-spec/doc/tcspecs.htm#uddiv3].. You will

933Demos

http://www.oasis-open.org/committees/uddi-spec/doc/tcspecs.htm#uddiv3
http://www.oasis-open.org/committees/uddi-spec/doc/tcspecs.htm#uddiv3

learn how to generate a custody transfer token and transfer the ownership of selected structure to another
user.

There is a single demo within this package - CustodyDemo. It demonstrates how to generate a transfer token
for a selected UDDI key and how to use it to transfer the custody of the structure identified by the UDDI
key to another user.

Prerequisites and Preparatory Steps: Code

We expect that you have already installed the HP SOA Systinet Registry and set the REGISTRY_HOME environment
variable to the registry's installation location.

To run the HP SOA Systinet Registry's demos, your registry must be running. To start the HP SOA Systinet
Registry, execute the serverstart script:

%REGISTRY_HOME%\bin\serverstart.batWindows:

$REGISTRY_HOME/bin/serverstart.shUNIX:

It is necessary to configure the demos. The configuration system has two levels: global and local. The
properties defined at the global level may be overwritten at the local level. The global properties are located
in the file:

%REGISTRY_HOME%\demos\env.propertiesWindows:

$REGISTRY_HOME/demos/env.propertiesUNIX:

The values set during the installation of the HP SOA Systinet Registry work out of the box, and their
modification affects all demos. If you need to redefine a property's value for a single demo (that is,, at the
local level), edit env.properties. This file is located in the same directory as the file run.sh (run.bat). Local
level properties for the Custody demo are loaded from the file:

%REGISTRY_HOME%\demos\advanced\custody\env.propertiesWindows:

$REGISTRY_HOME/demos/advanced/custody/env.propertiesUNIX:

Chapter 6934

Table 8. Properties used in demos

DescriptionDefault ValueName

first user's namedemo_johnuddi.demos.user.john.name

first user's passworddemo_johnuddi.demos.user.john.password

second user's namedemo_janeuddi.demos.user.jane.name

second user's passworddemo_janeuddi.demos.user.jane.password

the custody Web service port
URL

http://localhost:8080/uddi/custodyuddi.demos.url.custody

the security Web service port
URL

http://localhost:8080/uddi/securityuddi.demos.url.security

Presentation and Functional Presentation

This section describes programming pattern of the Custody demo. You can find its source code in the file:

%REGISTRY_HOME%\demos\advanced\custody\src\demo\uddi\custody\CustodyDemo.javaWindows:

$REGISTRY_HOME/demos/advanced/custody/src/demo/uddi/custody/CustodyDemo.javaUNIX:

To make the demo easier to use, it contains two use cases. The first use case shows the owner of a UDDI
structure who wants to transfer it to another user. The second use case is the second user transferring the
same structure to his own custody. Let us start with first use case.

We must gather user input first. It is necessary to read user credentials and the key of the structure owned
by the user. If you use default values, this means that the user demo_john is transferring custody of the
systinet.com:departmentID tModel to user demo_jane. The user logs in and generates a transfer token for the
given UDDI key. The transfer token contains information about the registry, expiration time, and secret
opaqueToken. Any user who knows these data, can transfer the structure(s) covered by the transferToken.

String user = UserInput.readString("Enter first user name",
 DemoProperties.getProperty(USER_JOHN_NAME));
String password = UserInput.readString("Enter password",
 DemoProperties.getProperty(USER_JOHN_PASSWORD));
String uddiKey = UserInput.readString("Enter UDDI key",
 "uddi:systinet.com:demo:departmentID");
System.out.println();

935Demos

UDDI_Security_PortType security = getSecurityStub();
String authInfo = getAuthInfo(user, password, security);
Get_transferToken get = createGetTransferToken(uddiKey, authInfo);
TransferToken token = getTransferToken(get);
printTransferToken(token);
discardAuthInfo(authInfo, security);

The helper method getCustodyStub() returns the UDDI Custody stub of the Web service listening at the URL
specified by the URL_CUSTODY property.

public static UDDI_CustodyTransfer_PortType getCustodyStub() throws SOAPException {
 // you can specify your own URL in property - uddi.demos.url.custody
 String url = DemoProperties.getProperty(URL_CUSTODY, "http://localhost:8080/uddi/custody");
 System.out.print("Using Custody at url " + url + " ..");
 UDDI_CustodyTransfer_PortType custody = UDDICustodyStub.getInstance(url);
 System.out.println(" done");
 return custody;
}

The createGetTransferToken() method is used to create the Get_transferToken object, which encapsulates
the parameters of this UDDI call. In this example we set authInfo and a single key for the UDDI structure
to be transferred int the custody of the second user.

public static Get_transferToken createGetTransferToken(String uddiKey, String authInfo)
 throws InvalidParameterException {
 System.out.println("uddiKey = " + uddiKey);
 Get_transferToken get = new Get_transferToken();
 get.addKey(uddiKey);
 get.setAuthInfo(authInfo);
 return get;
}

The next step is to invoke the get_transferToken UDDI call and get the result, which is a TransferToken.

public static TransferToken getTransferToken(Get_transferToken get)
 throws UDDIException, SOAPException {
 UDDI_CustodyTransfer_PortType custody = getCustodyStub();
 System.out.print("Get in progress ...");
 TransferToken token = custody.get_transferToken(get);
 System.out.println(" done");
 return token;
}

At this point the first user, John Demo, has generated a transfer token. He can discard it or send it to the
second user Jane Demo, so she can transfer the entities to her custody. The transfer token must be kept

Chapter 6936

secret, so plain text transports such as unencrypted emails are not suitable for this purpose. Let us suppose
that Jane Demo has received the transfer token already. She logs in, creates a Transfer_entities object and
invokes the UDDI call transfer_entities.

user = UserInput.readString("Enter second user name",
 DemoProperties.getProperty(USER_JANE_NAME));
password = UserInput.readString("Enter password", DemoProperties.getProperty(USER_JANE_PASSWORD));
System.out.println();

authInfo = getAuthInfo(user, password, security);
Transfer_entities transfer = createTransferEntities(uddiKey, token, authInfo);
transferEntities(transfer);
discardAuthInfo(authInfo, security);

The createTransferEntities() method is used to create Transfer_entities object, which encapsulates parameters
of same name UDDI call. In this example we set Jane's authInfo, UDDI key to be transferred, and the
TransferToken generated by John.

public static Transfer_entities createTransferEntities(String uddiKey,
 TransferToken token, String authInfo)
 throws InvalidParameterException {
 Transfer_entities transfer = new Transfer_entities();
 transfer.addKey(uddiKey);
 transfer.setTransferToken(token);
 transfer.setAuthInfo(authInfo);
 return transfer;
}

The final step is to make the transfer_entities UDDI call. When it successfully returns, the second user
(Jane) is the happy owner of the UDDI structure systinet.com:demo:departmentID.

public static void transferEntities(Transfer_entities transfer)
 throws UDDIException, SOAPException {
 UDDI_CustodyTransfer_PortType custody = getCustodyStub();
 System.out.print("Transfer in progress ...");
 custody.transfer_entities(transfer);
 System.out.println(" done");
}

Building and Running Demos

This section shows how to build and run the HP SOA Systinet Registry Custody demo.

1 Be sure that the demos are properly configured and the HP SOA Systinet Registry is up and running.

937Demos

2 Change your working directory to

%REGISTRY_HOME%\demos\advanced\custodyWindows:

$REGISTRY_HOME/demos/advanced/custodyUNIX:

3 Build demo using:

run.bat makeWindows:

./run.sh makeUNIX:

When compiling demos on Windows platforms, you may see the following text:

A subdirectory or file ..\..\common\.\build\classes already exists.

This is expected and does not indicate a problem.

4 To get list of all available commands, run

run.bat helpWindows:

./run.sh helpUNIX:

5 The demo can be executed via the run command, using the name of the demo as a parameter. To run
the Custody demo, invoke

run.bat CustodyDemoWindows:

./run.sh CustodyDemoUNIX:

The output of this demo will resemble the following:

Running CustodyDemo demo...
**
*** Systinet Registry Demo - CustodyDemo ***
**

Getting transfer token where
Enter first user name [demo_john]:

Chapter 6938

Enter password [demo_john]:
Enter UDDI key [uddi:systinet.org:demo:departmentID]:

Using Security at url https://mycomp.com:8443/uddi/security .. done
Logging in .. done
uddiKey = uddi:systinet.org:demo:departmentID
Using Custody at url https://mycomp.com:8443/uddi/custody .. done
Get in progress ... done

TransferToken
<transferToken xmlns="urn:uddi-org:custody_v3">
<nodeID xmlns="urn:uddi-org:api_v3">Systinet</nodeID>
<expirationTime>2004-05-17T12:32:51.236+02:00</expirationTime>
<opaqueToken>ZmZmZmZmZmZlMDVmZGEzNg==</opaqueToken>
</transferToken>

Logging out .. done

Transfering custody where
Enter second user name [demo_jane]:
Enter password [demo_jane]:

Logging in .. done
Using Custody at url https://mycomp.com:8443/uddi/custody .. done
Transfer in progress ... done
Logging out .. done

6 To rebuild demos, execute run.bat clean (./run.sh clean) to delete the classes directory and run.bat
make (./run.sh make) to rebuild the demo classes.

Subscription

The HP SOA Systinet Registry advanced subscription demo set demonstrates the HP SOA Systinet Registry
application programming interface's capabilities and shows how to use the Subscription API to perform
subscription calls to the registry.

The HP SOA Systinet Registry advanced subscription demos cover the subscription aspects of the UDDI
Version 3 Specification [http://www.oasis-open.org/committees/uddi-spec/doc/tcspecs.htm#uddiv3]. They
teach how to use the HP SOA Systinet Registry client API to create new subscriptions, get lists of
subscriptions, get subscription results, and delete subscriptions.

The HP SOA Systinet Registry basic publishing demo set contains the following demos to assist you in
learning the HP SOA Systinet Registry client API:

939Demos

http://www.oasis-open.org/committees/uddi-spec/doc/tcspecs.htm#uddiv3
http://www.oasis-open.org/committees/uddi-spec/doc/tcspecs.htm#uddiv3

SaveSubscription. Demonstrates how to construct and fill the Save_subscription object, get a Subscription
stub for the UDDI registry, and perform the save_subscription call.

GetSubscriptions. Demonstrates how to construct and fill the Get_subscriptions object, get a Subscription
stub for the UDDI registry, and perform the get_subscriptions call.

GetSubscriptionResults. Demonstrates how to construct and fill the Get_subscriptionResults object, get a
Subscription stub for the UDDI registry, and perform the get_subscriptionResults call.

DeleteSubscription. Demonstrates how to construct and fill the Delete_subscription object, get a Subscription
stub for the UDDI registry, and perform the delete_subscription call.

Prerequisites and Preparatory Steps: Code

We expect that you have already installed the HP SOA Systinet Registry and set the REGISTRY_HOME environment
variable to the registry's installation location.

To run the HP SOA Systinet Registry's demos, your registry must be running. To start the HP SOA Systinet
Registry, execute the serverstart script:

%REGISTRY_HOME%\bin\serverstart.batWindows:

$REGISTRY_HOME/bin/serverstart.shUNIX:

It is necessary to configure the demos. The configuration system has two levels: global and local. The
properties defined at the global level may be overwritten at the local level. The global properties are located
in the file:

%REGISTRY_HOME%\demos\env.propertiesWindows:

$REGISTRY_HOME/demos/env.propertiesUNIX:

The values set during the installation of the HP SOA Systinet Registry work out of box, and their modification
affects all demos. If you need to redefine the value of some property for a single demo (that is, at the local
level), edit env.properties. This file is located in the same directory as the file run.sh (run.bat). Local level
properties for the Subscription demos are loaded from the file:

%REGISTRY_HOME%\demos\advanced\subscription\env.propertiesWindows:

$REGISTRY_HOME/demos/advanced/subscription/env.propertiesUNIX:

Chapter 6940

Table 9. Properties used in demos

DescriptionDefault ValueName

first user's namedemo_johnuddi.demos.user.john.name

first user's passworddemo_johnuddi.demos.user.john.password

the subscription web service
port URL

http://localhost:8080/uddi/subscriptionuddi.demos.url.subscription

the security web service port
URL

http://localhost:8080/uddi/securityuddi.demos.url.security

Presentation and Functional Presentation

This section describes the programming pattern used in all demos using the GetSubscriptionResults demo
as an example. You can find this demo's source code in the file:

%REGISTRY_HOME%\demos\basic\subscription\src\demo\uddi\subscription\GetSubscriptionResults.javaWindows:

$REGISTRY_HOME/demos/basic/subscription/src/demo/uddi/subscription/GetSubscriptionResults.javaUNIX:

Let us start with a description of main method. The first part is used to configure the demo by the user. Then
it logs the user into the UDDI registry, creates a Get_subscriptionResults object holding the parameters of
the request. This object is transformed in the next step into the SOAP UDDI call get_subscriptionResults.
Its results are then displayed and the user is logged off from the UDDI registry.

String user = UserInput.readString("Enter user name",
 DemoProperties.getProperty(USER_JOHN_NAME));
String password = UserInput.readString("Enter password",
 DemoProperties.getProperty(USER_JOHN_PASSWORD));
String key = UserInput.readString("Enter subscription key", "");
int shift = UserInput.readInt("Enter start of coverage period in minutes", 60);
System.out.println();

UDDI_Security_PortType security = getSecurityStub();
String authInfo = getAuthInfo(user, password, security);
Get_subscriptionResults get = createGetSubscriptionResults(key, shift, authInfo);
SubscriptionResultsList result = getSubscriptionResults(get);
printSubscriptionResults(result);
discardAuthInfo(authInfo, security);

941Demos

The method createGetSubscriptionResults takes subscriptionKey as a parameter that identifies the subscription
in the UDDI registry, coveragePeriod, and authInfo of the user. The CoveragePeriod is used to identify the
time period for which the user is interested in changes matched by the selected Subscription.

public static Get_subscriptionResults createGetSubscriptionResults(String subscriptionKey,
 int coveragePeriod, String authInfo) throws InvalidParameterException {
 Get_subscriptionResults getSubscriptionResults = new Get_subscriptionResults();
 getSubscriptionResults.setSubscriptionKey(subscriptionKey);

 // calculate coverage period
 long coveragePeriodShiftInMs = coveragePeriod * 60 * 1000;
 long endPoint = System.currentTimeMillis();
 long startPoint = endPoint - coveragePeriodShiftInMs;
 getSubscriptionResults.setCoveragePeriod(new CoveragePeriod(new Date(startPoint),
 new Date(endPoint)));
 getSubscriptionResults.setAuthInfo(authInfo);

 return getSubscriptionResults;
}

The helper method, getSubscriptionStub(), returns the UDDI Subscription stub of the web service listening
at the URL specified by the URL_SUBSCRIPTION property.

public static UDDI_Subscription_PortType getSubscriptionStub() throws SOAPException {
 String url = DemoProperties.getProperty(URL_SUBSCRIPTION,
 "http://localhost:8080/uddi/subscription");
 System.out.print("Using Subscription at url " + url + " ..");
 UDDI_Subscription_PortType subscriptionStub = UDDISubscriptionStub.getInstance(url);
 System.out.println(" done");
 return subscriptionStub;
}

The UDDI API call get_subscriptionResults is performed in the method getSubscriptionResults():

public static SubscriptionResultsList getSubscriptionResults(Get_subscriptionResults save)
 throws UDDIException, SOAPException {
 UDDI_Subscription_PortType subscriptionStub = getSubscriptionStub();
 System.out.print("Get in progress ...");
 SubscriptionResultsList result = subscriptionStub.get_subscriptionResults(save);
 System.out.println(" done");
 return result;
}

Chapter 6942

Building and Running Demos

This section shows how to build and run the HP SOA Systinet Registry Advanced Subscription demo set.
Let us continue with our GetSubscriptionResults demo.

1 Be sure that the demos are properly configured and the HP SOA Systinet Registry is up and running.

2 Change your working directory to:

%REGISTRY_HOME%\demos\advanced\subscriptionWindows:

$REGISTRY_HOME/demos/advanced/subscriptionUNIX:

3 Build all demos using:

run.bat makeWindows:

./run.sh makeUNIX:

When compiling demos on Windows platforms, you may see the following text:

A subdirectory or file ..\..\common\.\build\classes already exists.

This is expected and does not indicate a problem.

4 To get a list of all available demos, run

run.bat helpWindows:

./run.sh helpUNIX:

5 The selected demo can be executed via the run with the name of the demo as parameter. For example,
to run the GetSubscriptionResults demo, invoke

run.bat GetSubscriptionResultsWindows:

./run.sh GetSubscriptionResultsUNIX:

943Demos

6 The HP SOA Systinet Registry Subscription demos show a complete use case for the Subscription
API. The SaveSubscription demo creates a new subscription for the user John Demo. This subscription
monitors changes to the business entity named Marketing.

Running SaveSubscription demo...
**
*** Systinet Registry Demo - SaveSubscriptionDemo ***
**

Saving subscription where
Enter user name [demo_john]:
Enter password [demo_john]:
Enter business name to watch [Marketing]:
Enter subscription validity in days [2]:
Enter limit of subscription results [5]:

Using Security at url https://mycomp.com:8443/uddi/security .. done
Logging in .. done
businessName = Marketing
limit = 5
valid = 2
Using Subscription at url https://mycomp.com:8443/uddi/subscription .. done
Save in progress ... done

Subscription 1 : uddi:4f0d7450-a578-11d8-91cd-5c1d367091cd
<subscription brief="false" xmlns="urn:uddi-org:sub_v3">
 <subscriptionKey>uddi:4f0d7450-a578-11d8-91cd-5c1d367091cd</subscriptionKey>
 <subscriptionFilter>
 <find_business xmlns="urn:uddi-org:api_v3">
 <name>Marketing</name>
 </find_business>
 </subscriptionFilter>
 <maxEntities>5</maxEntities>
 <expiresAfter>2004-05-14T11:28:30.721+02:00</expiresAfter>
</subscription>

**
Logging out .. done

If you want to list your available subscriptions, run the GetSubscriptions demo:

Finding subscriptions where
Enter user name [demo_john]:
Enter password [demo_john]:

Using Security at url https://mycomp.com:8443/uddi/security .. done

Chapter 6944

Logging in .. done
Using Subscription at url https://mycomp.com:8443/uddi/subscription .. done
Get in progress ... done

Subscription 1 : uddi:4f0d7450-a578-11d8-91cd-5c1d367091cd
<subscription brief="false" xmlns="urn:uddi-org:sub_v3">
 <subscriptionKey>uddi:4f0d7450-a578-11d8-91cd-5c1d367091cd</subscriptionKey>
 <subscriptionFilter>
 <find_business xmlns="urn:uddi-org:api_v3">
 <name>Marketing</name>
 </find_business>
 </subscriptionFilter>
 <maxEntities>5</maxEntities>
 <expiresAfter>2004-05-14T11:28:30.721+02:00</expiresAfter>
</subscription>

**
Logging out .. done

Now we need to generate some traffic on UDDI registry, that matches the subscription filter, that we
have defined. You can use SaveBusiness demo from HP SOA Systinet Registry Basic Publishing
demos to save business entity named Marketing.

Running SaveBusiness demo...
**
*** Systinet Registry Demo - SaveBusinessDemo ***
**

Saving business entity where
Enter (optional) businessKey []:
Enter count of names [1]:
Enter language code []:
Enter name in language [Marketing]:
Enter description [Saved by SaveBusiness demo]:

Using Security at url https://mycomp.com:8443/uddi/security .. done
Logging in .. done
businessKey =
lang = null, name = Marketing
description = Saved by SaveBusiness demo
Using Publishing at url https://mycomp.com:8443/uddi/publishing .. done
Save in progress ... done

Business 1 : uddi:8097cc00-a578-11d8-91cd-5c1d367091cd
<businessEntity businessKey="uddi:8097cc00-a578-11d8-91cd-5c1d367091cd" xmlns="urn:uddi-org:api_v3">

945Demos

 <name> Marketing</name>
 <description> Saved by SaveBusiness demo</description>
</businessEntity>

Then we want to get the results of the subscription. It is necessary to specify correct subscription key
and sufficient coverage period.

Running GetSubscriptionResults demo...
**
*** Systinet Registry Demo - GetSubscriptionResultsDemo ***
**

Finding subscription results where
Enter user name [demo_john]:
Enter password [demo_john]:
Enter subscription key []: uddi:4f0d7450-a578-11d8-91cd-5c1d367091cd
Enter start of coverage period in minutes [60]:

Using Security at url https://mycomp.com:8443/uddi/security .. done
Logging in .. done
Using Subscription at url https://mycomp.com:8443/uddi/subscription .. done
Get in progress ... done
Subscription uddi:4f0d7450-a578-11d8-91cd-5c1d367091cd
Coverage period=Fri May 14 08:30:28 CEST 2004 - Fri May 14 09:30:28 CEST 2004

Subscription results:
<subscriptionResultsList xmlns="urn:uddi-org:sub_v3">
 <chunkToken>0</chunkToken>
 <coveragePeriod>
 < startPoint>2004-05-14T08:30:28.565+02:00</startPoint>
 < endPoint>2004-05-14T09:30:28.824+02:00</endPoint>
 </coveragePeriod>
 < subscription brief="false">
 < subscriptionKey> uddi:4f0d7450-a578-11d8-91cd-5c1d367091cd</subscriptionKey>
 < subscriptionFilter>
 < find_business xmlns="urn:uddi-org:api_v3">
 < name> Marketing</name>
 </find_business>
 </subscriptionFilter>
 < maxEntities>5</maxEntities>
 < expiresAfter>2004-05-14T11:28:30.721+02:00</expiresAfter>
 </subscription>
 < businessList>
 < businessInfos>
 < businessInfo businessKey="uddi:8097cc00-a578-11d8-91cd-5c1d367091cd">
 < name> Marketing</name>
 < description> Saved by SaveBusiness demo</description>

Chapter 6946

 </businessInfo>
 </businessInfos>
 </businessList>
</subscriptionResultsList>

**

If we do not need the subscription anymore, we can delete it with DeleteSubscription demo.

**
*** Systinet Registry Demo - DeleteSubscriptionDemo ***
**

Deleting subscription where
Enter subscription key []: uddi:4f0d7450-a578-11d8-91cd-5c1d367091cd

Using Security at url https://mycomp.com:8443/uddi/security .. done
Logging in .. done
subscriptionKey = uddi:4f0d7450-a578-11d8-91cd-5c1d367091cd
Using Subscription at url https://mycomp.com:8443/uddi/subscription .. done
Delete in progress ... done
Logging out .. done

Validation

The HP SOA Systinet Registry Validation demo shows how to implement, deploy, and use a custom valueset
validation service.

The valueset validation API provides methods to validate values used in keyedReferences of checked
taxonomies. The checks might range from very simple (check value against list of available values like in
InternalValidation service) to complex, which performs contextual checks.

There are two classes and one xml file to import taxonomy, that are used by the Validation demo.

ISBNValidation. Valueset validation interface implementation. It checks keyValues from keyedReferences
in all structures. The keyValue must be in ISBN format, otherwise E_invalidValue UDDI exception is
thrown to deny the save operation.

isbn.xml. Taxonomy description used to import checked categorization demo:ISBN into the HP SOA
Systinet Registry.

947Demos

ValidationDemo. Demonstrates how to save a tModel with the keyedReference, that uses demo:ISBN
categorization checked by ISBNValidation.

Prerequisites and Preparatory Steps: Code

We expect that you have already installed the HP SOA Systinet Registry and set the REGISTRY_HOME environment
variable to the registry's installation location.

To run the HP SOA Systinet Registry's demos, your registry must be running. To start the HP SOA Systinet
Registry, execute the serverstart script:

%REGISTRY_HOME%\bin\serverstart.batWindows:

$REGISTRY_HOME/bin/serverstart.shUNIX:

It is necessary to configure the demos. The configuration system has two levels: global and local. The
properties defined at the global level may be overwritten at local level. The global properties are located in
the file:

%REGISTRY_HOME%\demos\env.propertiesWindows:

$REGISTRY_HOME/demos/env.propertiesUNIX:

The values set during the installation of the HP SOA Systinet Registry work out of box, and their modification
affects all demos. If you need to redefine the value of some property for a single demo (that is, at the local
level), edit env.properties. This file is located in the same directory as the file run.sh (run.bat). Local level
properties for the Validation demo is loaded from the file:

%REGISTRY_HOME%\demos\advanced\validation\env.propertiesWindows:

$REGISTRY_HOME/demos/advanced/validation/env.propertiesUNIX:

Chapter 6948

Table 10. Properties Used in Demos

DescriptionDefault ValueName

first user's namedemo_johnuddi.demos.user.john.name

first user's passworddemo_johnuddi.demos.user.john.password

the publishing Web service port
URL

http://localhost:8080/uddi/publishinguddi.demos.url.publishing

the security Web service port URLhttp://localhost:8080/uddi/securityuddi.demos.url.security

Presentation and Functional Presentation

This section describes programming pattern used in ISBNValidation class. You can find its source code in
the file

%REGISTRY_HOME%\demos\advanced\validation\src\demo\uddi\validation\ISBNValidation.javaWindows:

$REGISTRY_HOME/demos/advanced/validation/src/demo/uddi/validation/ISBNValidation.javaUNIX:

The HP SOA Systinet Registry simplifies the development of Valueset validation services. It intelligently
performs some checks automatically based on the properties of the taxonomy (content of categoryBag), so
you as developer may concentrate on logic of your validation service. For example it ensures, that
categorization tModelKey is not used in identifierBag or that it is used only in UDDI structures, for which
its compatibility was declared.

Let's start with description of validate_values method. It serves as starting point to the validation service.
The Validate_values object contains at least one tModel, businessEntity, businessService, bindingTemplate
or publisherAsertion, which contains reference to the taxonomy validated by this web service. If the validation
service is shared between several taxonomies, UDDI structures, which use them, are grouped in single
validate_values call.

When the method validate_values finds the structure type to be validated, it calls validate_values on the list
of UDDI structures, which iterates over each element in the list and call validate method on single structure.
If there is at least one error in dispositionReport, UDDI exception is thrown to deny the save operation.

public DispositionReport validate_values(Validate_values body) throws UDDIException {
 DispositionReport report = new DispositionReport();

 if (body.getBusinessEntityArrayList() != null)

949Demos

 validate_values(body.getBusinessEntityArrayList(), report);

 else if (body.getBusinessServiceArrayList() != null)
 validate_values(body.getBusinessServiceArrayList(), report);

 else if (body.getTModelArrayList() != null)
 validate_values(body.getTModelArrayList(), report);

 else if (body.getPublisherAssertionArrayList() != null)
 validate_values(body.getPublisherAssertionArrayList(), report);

 else if (body.getBindingTemplateArrayList() != null)
 validate_values(body.getBindingTemplateArrayList(), report);

 ResultArrayList results = report.getResultArrayList();
 if (results == null || results.size() == 0)
 return DispositionReport.DISPOSITION_REPORT_SUCCESS;

 throw new UDDIException(report);
}

This method than validates all keyedReferences and if the structure contains children (for example
businessServices in businessEntity), it recursively validates the too. For demo:ISBN categorization the
check of identifierBag is useless, because the HP SOA Systinet Registry would already detect it as error
and stop the execution of save operation.

private void validate(TModel tModel, DispositionReport report) throws UDDIException {
 CategoryBag categoryBag = tModel.getCategoryBag();
 IdentifierBag identifierBag = tModel.getIdentifierBag();
 KeyedReferenceArrayList keyedReferences;

 if (categoryBag != null) {
 keyedReferences = categoryBag.getKeyedReferenceArrayList();
 if (keyedReferences != null) {
 validate(keyedReferences, report);
 }

 validateKeyedReferenceGroups(categoryBag.getKeyedReferenceGroupArrayList(), report);
 }

 if (identifierBag != null) {
 keyedReferences = identifierBag.getKeyedReferenceArrayList();
 if (keyedReferences != null) {
 validate(keyedReferences, report);
 }

Chapter 6950

 }
}

The method validate iterates over all keyedReferences and if they reference demo:ISBN taxonomy, than it
checks the keyValue, if it is in valid ISBN format. If not, it adds error report to dispositionReport.

private void validate(KeyedReferenceArrayList keyedReferenceArrayList, DispositionReport report)
 throws UDDIException {
 for (Iterator iter = keyedReferenceArrayList.iterator(); iter.hasNext();) {
 KeyedReference keyedReference = (KeyedReference) iter.next();
 if (TMODEL_KEY.equalsIgnoreCase(keyedReference.getTModelKey())) {
 if (!checkISBN(keyedReference.getKeyValue())) {
 String message = "KeyValue is not valid ISBN number in " + keyedReference.toXML();
 report.addResult(createResult(UDDIErrorCodes.E_INVALID_VALUE, message));
 }
 }
 }
}

The implementation of ISBNValidation web service is not optimal. It scans all UDDI structures and containers
of keyedReferences, even if the HP SOA Systinet Registry was configured to deny such usage. The optimal
code would check only categoryBag in tModels.

Building and Running Demos

This section shows, how to build, deploy and run the HP SOA Systinet Registry Advanced Validation demo.

1 Be sure that the demos are properly configured and the HP SOA Systinet Registry is up and running.

2 Change your working directory to

%REGISTRY_HOME%\demos\advanced\validationWindows:

$REGISTRY_HOME/demos/advanced/validationUNIX:

3 Build all classes using:

run.bat makeWindows:

./run.sh makeUNIX:

951Demos

When compiling demos on Windows platforms, you may see the following text:

A subdirectory or file ..\..\common\.\build\classes already exists.

This is expected and does not indicate a problem.

4 Copy the file ISBNValidation.class to REGISTRY_HOME/app/uddi/services/Wasp-inf/classes

cd %REGISTRY_HOME%\demos\advanced\validation\buildWindows:

xcopy classes %REGISTRY_HOME%\app\uddi\services\Wasp-inf\classes /S

cd $REGISTRY_HOME/demos/advanced/validation/buildUNIX:

cp -r classes $REGISTRY_HOME/app/uddi/services/Wasp-inf

5 Now use Advanced Taxonomy demo UploadTaxonomy to upload the file isbn.xml located in data
subdirectory of Validation demo directory. For more information, how to do it, read Taxonomy demo
documentation.

6 When the demo:ISBN taxonomy has been uploaded and ISBNValidation.class copied, you must shutdown
the HP SOA Systinet Registry, delete the REGISTRY_HOME/work directory, and restart the HP SOA
Systinet Registry.

7 The ValidationDemo can be executed via command run with

run.bat ValidationDemoWindows:

./run.sh ValidationDemoUNIX:

The output of this demo will resemble the following:

8 To rebuild demos, execute run.bat clean (./run.sh clean) to delete the classes directory and run.bat
make (./run.sh make) to rebuild the demo classes.

Taxonomy

The HP SOA Systinet Registry Taxonomy demos demonstrates the HP SOA Systinet Registry's Taxonomy
capabilities and show how to use this API.

Chapter 6952

The Taxonomy is used to manage and query taxonomies in the HP SOA Systinet Registry. These demos
cover all API methods, so you can learn how to download, upload, save, delete, get and find taxonomies.
In addition, you can manage individual values in internally checked taxonomies using the Category API.

The HP SOA Systinet Registry contains the following demos to assist you in learning the HP SOA Systinet
Registry Taxonomy and Category APIs.

SaveTaxonomy. Demonstrates how to save unchecked taxonomy, which can be used in businessEntities
and tModels.

DeleteTaxonomy. Demonstrates how to deletes selected taxonomy. If the taxonomy was checked, associated
binding template is automatically removed too.

UploadTaxonomy. Demonstrates how to upload the file containg taxonomy. This API call is usefull, when
you need to process really large taxonomies, because it operates on stream of data.

DownloadTaxonomy. Demonstrates how to download selected taxonomy. Again this method is stream
oriented.

GetTaxonomy. Demonstrates how to get details of selected taxonomy.

FindTaxonomy. Demonstrates how to search for taxonomies based on given criteria.

AddCategory. Demonstrates how to add new category (keyedReference value) to existing internal taxonomy.

DeleteCategory. Demonstrates how to delete the category in existing internal taxonomy.

SetCategory. Demonstrates how to update the category in existing internal taxonomy.

MoveCategory. Demonstrates how to change the parent of the category in existing internal taxonomy.

GetCategory. Demonstrates how to get the category of the internal taxonomy.

GetRootCategory. Demonstrates how to get list of the top-level categories of the internal taxonomy.

GetRootPath. Demonstrates how to get list of parents of selected category, from the top-level category to
the selected one.

FindCategory. Demonstrates how to get list of categories, that match some criterias.

953Demos

Prerequisites and Preparatory Steps: Code

We expect that you have already installed the HP SOA Systinet Registry and set the REGISTRY_HOME environment
variable to the registry's installation location.

To run the HP SOA Systinet Registry's demos, your registry must be running. To start the HP SOA Systinet
Registry, execute the serverstart script:

%REGISTRY_HOME%\bin\serverstart.batWindows:

$REGISTRY_HOME/bin/serverstart.shUNIX:

It is necessary to configure the demos. The configuration system has two levels: global and local. The
properties defined at the global level may be overwritten at local level. The global properties are located in
the file:

%REGISTRY_HOME%\demos\env.propertiesWindows:

$REGISTRY_HOME/demos/env.propertiesUNIX:

The values set during the installation of the HP SOA Systinet Registry work out of box, and their modification
affects all demos. If you need to redefine the value of some property for a single demo (that is, at the local
level), edit env.properties. This file is located in the same directory as the file run.sh (run.bat). Local level
properties for the Taxonomy demo is loaded from the file:

%REGISTRY_HOME%\demos\advanced\taxonomy\env.propertiesWindows:

$REGISTRY_HOME/demos/advanced/taxonomy/env.propertiesUNIX:

Chapter 6954

Table 11. Properties Used in Demos

DescriptionDefault ValueName

first user's namedemo_johnuddi.demos.user.john.name

first user's passworddemo_johnuddi.demos.user.john.password

the taxonomy Web service port
URL

http://localhost:8080/uddi/taxonomyuddi.demos.url.taxonomy

the category Web service port
URL

http://localhost:8080/uddi/categoryuddi.demos.url.category

the security Web service port URLhttp://localhost:8080/uddi/securityuddi.demos.url.security

Presentation and Functional Presentation

This section describes programming pattern used in all demos using the SaveTaxonomy demo as an example.
You can find its source code in the file:

%REGISTRY_HOME%\demos\advanced\taxonomy\src\demo\uddi\taxonomy\SaveTaxonomy.javaWindows:

$REGISTRY_HOME/demos/advanced/taxonomy/src/demo/uddi/taxonomy/SaveTaxonomy.javaUNIX:

The main method of this demo is straightforward. It gathers user's input, logs the user in the HP SOA
Systinet Registry, creates an object of Save_taxonomy, sends it to UDDI registry over SOAP and displays
the result.

String user = UserInput.readString("Enter user name", "admin");
String password = UserInput.readString("Enter password", "changeit");
String name = UserInput.readString("Enter name", "Demo identifier");
String description = UserInput.readString("Enter description", "Saved by SaveTaxonomy demo");
System.out.println();

UDDI_Security_PortType security = getSecurityStub();
String authInfo = getAuthInfo(user, password, security);
Save_taxonomy save = createSaveTaxonomy(name, description, authInfo);
TaxonomyDetail result = saveTaxonomy(save);
printTaxonomyDetail(result);
discardAuthInfo(authInfo, security);

955Demos

When saving taxonomy, you must first create a tModel, that will represent it. You can set your publisher
assigned tModelKey and other properties. The only mandatory property is name. You don't need to specify
taxonomy related keyedReferences in categoryBag, they shall be set in Taxonomy.

The Categorization is used to define usage of the taxonomy. Valid values are identifier, categorization,
categorizationGroup and relationship. The compatibility marks tModel with information, in which UDDI
structures it can be used.

This example creates an unchecked identifier, that can be used only in categoryBags of business entities
and tModels.

public static Save_taxonomy createSaveTaxonomy(String name, String description, String authInfo)
 throws InvalidParameterException {
 System.out.println("name = " + name);
 System.out.println("description = " + description);

 TModel tModel = new TModel();
 tModel.setName(new Name(name));
 tModel.addDescription(new Description(description));

 Taxonomy taxonomy = new Taxonomy(tModel);
 taxonomy.setCheck(Boolean.FALSE);
 taxonomy.addCategorization(Categorization.identifier);
 taxonomy.addCompatibility(Compatibility.businessEntity);
 taxonomy.addCompatibility(Compatibility.tModel);

 Save_taxonomy save = new Save_taxonomy();
 save.addTaxonomy(taxonomy);
 save.setAuthInfo(authInfo);

 return save;
}

The helper method getTaxonomyStub() returns the Taxonomy stub of the Web service listening at the URL
specified by the URL_TAXONOMY property.

public static TaxonomyApi getTaxonomyStub() throws SOAPException {
 String url = DemoProperties.getProperty(URL_TAXONOMY, "http://localhost:8080/uddi/taxonomy");
 System.out.print("Using Taxonomy at url " + url + " ..");
 TaxonomyApi taxonomy = TaxonomyStub.getInstance(url);
 System.out.println(" done");
 return taxonomy;
}

The Taxonomy API call save_taxonomy is performed in the method saveTaxonomy().

Chapter 6956

public static TaxonomyDetail saveTaxonomy(Save_taxonomy save)
 throws UDDIException, SOAPException {
 TaxonomyApi taxonomy = getTaxonomyStub();
 System.out.print("Save in progress ...");
 TaxonomyDetail taxonomyDetail = taxonomy.save_taxonomy(save);
 System.out.println(" done");
 return taxonomyDetail;
}

The returned TaxonomyDetail object is displayed in printTaxonomyDetail method.

public static void printTaxonomyDetail(TaxonomyDetail taxonomyDetail) {
 System.out.println();

 TaxonomyArrayList taxonomyArrayList = taxonomyDetail.getTaxonomyArrayList();
 int position = 1;
 for (Iterator iterator = taxonomyArrayList.iterator(); iterator.hasNext();) {
 Taxonomy taxonomy = (Taxonomy) iterator.next();
 System.out.println("Taxonomy " + position + " : " + taxonomy.getTModel().getTModelKey());
 System.out.println(taxonomy.toXML());
 System.out.println();
 System.out.println("**");
 position++;
 }
}

Building and Running Demos

This section shows, how to build and run the HP SOA Systinet Registry Advanced Taxonomy demo set.
Let's continue with our SaveTaxonomy demo.

1 Be sure that the demos are properly configured and the HP SOA Systinet Registry is up and running.

2 Change your working directory to

%REGISTRY_HOME%\demos\advanced\taxonomyWindows:

$REGISTRY_HOME/demos/advanced/taxonomyUNIX:

3 Build all demos using:

957Demos

run.bat makeWindows:

./run.sh makeUNIX:

When compiling demos on Windows platforms, you may see the following text:

A subdirectory or file ..\..\common\.\build\classes already exists.

This is expected and does not indicate a problem.

4 To get list of all available demos, run

run.bat helpWindows:

./run.sh helpUNIX:

5 The selected demo can be executed via command run with name of demo as parameter. For example
to run the SaveTaxonomy demo, invoke

run.bat SaveTaxonomyWindows:

./run.sh SaveTaxonomyUNIX:

The output of this demo will resemble the following:

Running SaveTaxonomy demo...
**
*** Systinet Registry Demo - SaveTaxonomyDemo ***
**

Saving taxonomy where
Enter user name [admin]:
Enter password [changeit]:
Enter name [Demo identifier]:
Enter description [Saved by SaveTaxonomy demo]:

Using Security at url https://mycomp.com:8443/uddi/security .. done
Logging in .. done
name = Demo identifier
description = Saved by SaveTaxonomy demo
Using Taxonomy at url https://mycomp.com:8443/uddi/taxonomy .. done
Save in progress ... done

Chapter 6958

Taxonomy 1 : uddi:5c1d5d80-a4d4-11d8-91cd-5c1d367091cd
<taxonomy check="false" xmlns="http://systinet.com/uddi/taxonomy/v3/5.0">
 <tModel tModelKey="uddi:5c1d5d80-a4d4-11d8-91cd-5c1d367091cd"
 xmlns="urn:uddi-org:api_v3">
 <name>Demo identifier</name>
 <description>Saved by SaveTaxonomy demo</description>
 <categoryBag>
 <keyedReference tModelKey="uddi:uddi.org:categorization:types"
 keyName="Identifier system" keyValue="identifier"/>
 <keyedReference tModelKey="uddi:systinet.com:taxonomy:compatibility"
 keyName="Compatibility" keyValue="businessEntity"/>
 <keyedReference tModelKey="uddi:systinet.com:taxonomy:compatibility"
 keyName="Compatibility" keyValue="tModel"/>
 <keyedReference tModelKey="uddi:uddi.org:categorization:types"
 keyName="Unchecked value set" keyValue="unchecked"/>
 </categoryBag>
 </tModel>
 <compatibilityBag>
 <compatibility>businessEntity</compatibility>
 <compatibility>tModel</compatibility>
 </compatibilityBag>
 <categorizationBag>
 <categorization>identifier</categorization>
 </categorizationBag>
</taxonomy>

**
Logging out .. done

6 To rebuild demos, execute run.bat clean (./run.sh clean) to delete the classes directory and run.bat
make (./run.sh make) to rebuild the demo classes.

Security Demos
Security Demos section includes the following demos:

• Account Demos - You will learn how to register new accounts (or update existing accounts), enable,
get, find, and delete accounts.

• Group Demos - You will learn how to create or update, get, find and delete groups.

• Permission Demos - You will learn how to set and search permissions.

959Demos

• ACL Demos - The Systinet ACL extension is used to grant or revoke rights to selected users or groups.
You will learn how to create, save, delete, get and find ACLs.

Account

The HP SOA Systinet Registry Account Demos are used to demonstrate the HP SOA Systinet Registry
application programming interface's capabilities and to demonstrate how to use this API.

You will learn how to register new accounts (or update existing accounts), enable, get, find, and delete
accounts.

The HP SOA Systinet Registry security account demo set contains the following demos to assist you in
learning the HP SOA Systinet Registry client API:

SaveAccount. Demonstrates how to construct and fill the Save_account object, get an Account stub for the
UDDI registry, and perform the save_account call.

DeleteAccount. Demonstrates how to construct and fill the Delete_account object, get an Account stub for
the UDDI registry, and perform the delete_account call.

Prerequisites and Preparatory Steps: Code

We expect that you have already installed the HP SOA Systinet Registry and set the REGISTRY_HOME environment
variable to the registry's installation location.

To run the HP SOA Systinet Registry's demos, your HP SOA Systinet Registry must be running. To start
the registry, execute the serverstart script:

%REGISTRY_HOME%\bin\serverstart.batWindows:

$REGISTRY_HOME/bin/serverstart.shUNIX:

It is necessary to configure the demos. The configuration system has two levels: global and local. The
properties defined at the global level may be overwritten at the local level. The global properties are located
in the file:

%REGISTRY_HOME%\demos\env.propertiesWindows:

$REGISTRY_HOME/demos/env.propertiesUNIX:

Chapter 6960

The values set during the installation of the HP SOA Systinet Registry work out of the box, and their
modification affects all demos. If you need to redefine a property's value for a single demo (that is,, at the
local level), edit env.properties. This file is located in the same directory as the file run.sh (run.bat). Local
level properties for the Account demo are loaded from the file:

%REGISTRY_HOME%\demos\security\account\env.propertiesWindows:

$REGISTRY_HOME/demos/security/account/env.propertiesUNIX:

Table 12. Properties Used in Demos

DescriptionDefault ValueName

the account Web service port
URL

http://localhost:8080/uddi/accountuddi.demos.url.account

the security Web service port
URL

http://localhost:8080/uddi/securityuddi.demos.url.security

Presentation and Functional Presentation

This section describes the programming pattern used in all demos using the SaveAccount demo as an
example. You can find this demo's source code in the file:

%REGISTRY_HOME%\demos\security\account\src\demo\uddi\account\SaveAccount.javaWindows:

$REGISTRY_HOME/demos/security/account/src/demo/uddi/account/SaveAccount.javaUNIX:

The main method is divided into two parts. The first part serves to configure the demo by the user. It reads
the credentials of the user who will run the demo. If you wish to save new user on a registry that supports
public registration, then the demo may be modified to skip authentication. It then reads information about
the new user to be saved (or about the user to be updated) including login name, password, name, and email
address.

The second part contains the execution of the demo. It looks up the security stub and authenticates the user.
It then creates a Save_userAccount object and sends it over SOAP to the UDDI registry as a save_userAccount
operation. The returned UserAccount object is printed to the console and the authInfo is discarded.

String admin = UserInput.readString("Enter admin login","admin");
String admin_password = UserInput.readString("Enter admin password","changeit");
String login = UserInput.readString("Enter new user's login","demo_eric");

961Demos

String password = UserInput.readString("Enter password","demo_eric");
String name = UserInput.readString("Enter full name","Eric Demo");
String email = UserInput.readString("Enter email","demo_eric@localhost");
System.out.println();

UDDI_Security_PortType security = getSecurityStub();
String authInfo = getAuthInfo(admin, admin_password, security);
Save_userAccount save = createSaveUserAccount(login, password, name, email, authInfo);
UserAccount userAccount = saveUserAccount(save);
printUserAccount(userAccount);
discardAuthInfo(authInfo, security);

The method createSaveUserAccount is used to create an object representing the save_userAccount operation.
The authInfo is required under two circumstances: if the HP SOA Systinet Registry is configured not to
allow public registration or if the account already exists.

public static Save_userAccount createSaveUserAccount(String login, String password,
 String name, String email, String authInfo) throws InvalidParameterException {
 System.out.println("login = " + login);
 System.out.println("password = " + password);
 System.out.println("name = " + name);
 System.out.println("email = " + email);

 UserAccount account = new UserAccount();
 account.setLoginName(login);
 account.setPassword(password);
 account.setFullName(name);
 account.setEmail(email);
 account.setLanguageCode("EN");

 Save_userAccount save = new Save_userAccount(account, authInfo);
 return save;
}

The helper method, getAccountStub(), returns the UDDI Account stub of the web service listening at the
URL specified by the URL_ACCOUNT property.

public static AccountApi getAccountStub() throws SOAPException {
 // you can specify your own URL in property - uddi.demos.url.account
 String url = DemoProperties.getProperty(URL_ACCOUNT, "http://localhost:8080/uddi/account");
 System.out.print("Using Account at url " + url + " ..");
 AccountApi account = AccountStub.getInstance(url);
 System.out.println(" done");
 return account;
}

Chapter 6962

The HP SOA Systinet Registry API call save_userAccount is performed in the method saveUserAccount.

public static UserAccount saveUserAccount(Save_userAccount save) throws SOAPException, AccountException
 {
 AccountApi accountApi = getAccountStub();
 System.out.print("Save in progress ...");
 UserAccount userAccount = accountApi.save_userAccount(save);
 System.out.println(" done");
 return userAccount;
}

Building and Running Demos

This section shows how to build and run the HP SOA Systinet Registry Account demos.

1 Be sure that the demos are properly configured and the HP SOA Systinet Registry is up and running.

2 Change your working directory to

%REGISTRY_HOME%\demos\security\accountWindows:

$REGISTRY_HOME/demos/security/accountUNIX:

3 Build demos using:

run.bat makeWindows:

./run.sh makeUNIX:

When compiling demos on Windows platforms, you may see the following text:

A subdirectory or file ..\..\common\.\build\classes already exists.

This is expected and does not indicate a problem.

4 To get list of all available commands, run

run.bat helpWindows:

./run.sh helpUNIX:

963Demos

5 The selected demo can be executed via the run command using the name of the demo as a parameter.
For example, to run the SaveAccount demo, invoke

run.bat SaveAccountWindows:

./run.sh SaveAccountUNIX:

The output of this demo will resemble the following:

Running SaveAccount demo...
**
*** Systinet Registry Demo - SaveAccount ***
**

Saving user account where
Enter admin login [admin]:
Enter admin password [changeit]:
Enter new user's login [demo_eric]:
Enter password [demo_eric]:
Enter full name [Eric Demo]:
Enter email [demo_eric@localhost]:

Using Security at url https://mycomp.com:8443/uddi/security .. done
Logging in .. done
login = demo_eric
password = demo_eric
name = Eric Demo
email = demo_eric@localhost
Using Account at url https://mycomp.com:8443/uddi/account .. done
Save in progress ... done

User account
<userAccount xmlns="http://systinet.com/uddi/account/5.0">
<loginName>demo_eric</loginName>
<password>GD70gCeNfkwBph1m2bgGxQ==</password>
<email>demo_eric@localhost</email>
<fullName>Eric Demo</fullName>
<languageCode>EN</languageCode>
<expiration>1970-01-01T02:00:00.000+02:00</expiration>
<external>false</external>
<blocked>false</blocked>
<businessesLimit>1</businessesLimit>
<servicesLimit>4</servicesLimit>
<bindingsLimit>2</bindingsLimit>
<tModelsLimit>100</tModelsLimit>
<assertionsLimit>10</assertionsLimit>

Chapter 6964

<subscriptionsLimit>0</subscriptionsLimit>
<lastLoginTime>2004-05-18T16:20:09.084+02:00</lastLoginTime>
</userAccount>

**
Logging out .. done

6 To rebuild demos, execute run.bat clean (./run.sh clean) to delete the classes directory and run.bat
make (./run.sh make) to rebuild the demo classes.

Group

The HP SOA Systinet Registry Group demos are used to demonstrate the HP SOA Systinet Registry
application programming interface's capabilities and to demonstrate how to use this API.

You will learn how to create or update, get, find and delete groups.

The HP SOA Systinet Registry security group demo set contains the following demos to assist you in
learning the HP SOA Systinet Registry client API:

Save. Demonstrates how to construct and fill the Save_group object, get a Group stub for the UDDI registry,
and perform the save_group call.

Delete. Demonstrates how to construct and fill the Delete_group object, get a Group stub for the UDDI
registry, and perform the delete_group call.

Get. Demonstrates how to construct and fill the Get_group object, get a Group stub for the UDDI registry,
and perform the get_group call.

Find. Demonstrates how to construct and fill the Find_group object, get a Group stub for the UDDI registry,
and perform the find_group call.

WhereIAm. Demonstrates how to construct and fill the Where_amI object, get a Group stub for the UDDI
registry, and perform the where_amI call.

Prerequisites and Preparatory Steps: Code

We expect that you have already installed the HP SOA Systinet Registry and set the REGISTRY_HOME environment
variable to the registry's installation location.

965Demos

To run the HP SOA Systinet Registry's demos, your HP SOA Systinet Registry must be running. To start
the registry, execute the serverstart script:

%REGISTRY_HOME%\bin\serverstart.batWindows:

$REGISTRY_HOME/bin/serverstart.shUNIX:

It is necessary to configure the demos. The configuration system has two levels: global and local. The
properties defined at the global level may be overwritten at the local level. The global properties are located
in the file:

%REGISTRY_HOME%\demos\env.propertiesWindows:

$REGISTRY_HOME/demos/env.propertiesUNIX:

The values set during the installation of the HP SOA Systinet Registry work out of the box, and their
modification affects all demos. If you need to redefine a property's value for a single demo (that is,, at the
local level), edit env.properties. This file is located in the same directory as the file run.sh (run.bat). Local
level properties for the Group demo are loaded from the file:

%REGISTRY_HOME%\demos\security\group\env.propertiesWindows:

$REGISTRY_HOME/demos/security/group/env.propertiesUNIX:

Table 13. Properties Used in Demos

DescriptionDefault ValueName

the group Web service port
URL

http://localhost:8080/uddi/groupuddi.demos.url.group

the security Web service port
URL

http://localhost:8080/uddi/securityuddi.demos.url.security

Presentation and Functional Presentation

This section describes the programming pattern used in all demos using the WhereIAm demo as an example.
You can find this demo's source code in the file:

%REGISTRY_HOME%\demos\security\group\src\demo\uddi\group\WhereIAm.javaWindows:

Chapter 6966

$REGISTRY_HOME/demos/security/group/src/demo/uddi/group/WhereIAm.javaUNIX:

The main method starts by gathering configuration information from the user. The first, login name, is used
to run the command; the second is argument of the where_amI operation. It then logs the user to the registry,
creates the Where_amI object, sends it over SOAP and prints a list of groups to which the login belongs.

String user = UserInput.readString("Enter login to authenticate",
 DemoProperties.getProperty(USER_JOHN_NAME));
String password = UserInput.readString("Enter password",
 DemoProperties.getProperty(USER_JOHN_PASSWORD));
String login = UserInput.readString("Enter login to search", user);
System.out.println();

UDDI_Security_PortType security = getSecurityStub();
String authInfo = getAuthInfo(user, password, security);
Where_amI save = createWhereAmI(login, authInfo);
GroupList groups = whereAmI(save);
printGroupList(groups);
discardAuthInfo(authInfo, security);

The method createWhereAmI is used to create an object representation of the where_amI operation.

public static Where_amI createWhereAmI(String login, String authInfo)
 throws InvalidParameterException {
 System.out.println("login = " + login);

 Where_amI find = new Where_amI();
 find.setLoginName(login);
 find.setAuthInfo(authInfo);

 return find;
}

The helper method, getGroupStub(), returns the UDDI Group stub of the Web service listening at the URL
specified by the URL_GROUP property.

public static GroupApi getGroupStub() throws SOAPException {
 // you can specify your own URL in property - uddi.demos.url.group
 String url = DemoProperties.getProperty(URL_GROUP, "http://localhost:8080/uddi/group");
 System.out.print("Using Group API at url " + url + " ..");
 GroupApi account = GroupStub.getInstance(url);
 System.out.println(" done");
 return account;
}

967Demos

The HP SOA Systinet Registry API call where_amI is performed in the method whereAmI.

public static GroupList whereAmI(Where_amI find)
 throws SOAPException, GroupException {
 GroupApi groupApi = getGroupStub();
 System.out.print("Search in progress ...");
 GroupList groups = groupApi.where_amI(find);
 System.out.println(" done");
 return groups;
}

Finally the method printGroupList is used to print the found groups to the console.

public static void printGroupList(GroupList groups) {
 System.out.println();
 ListDescription listDescription = groups.getListDescription();
 if (listDescription != null) {
 // list description is mandatory part of result, if the resultant list is subset of available
data
 int includeCount = listDescription.getIncludeCount();
 int actualCount = listDescription.getActualCount();
 int listHead = listDescription.getListHead();
 System.out.println("Displaying " + includeCount + " of " + actualCount + ",
 starting at position " + listHead);
 }

 GroupInfoArrayList groupInfoArrayList = groups.getGroupInfoArrayList();
 if (groupInfoArrayList == null) {
 System.out.println("Nothing found");
 return;
 }

 int position = 1;
 for (Iterator iterator = groupInfoArrayList.iterator(); iterator.hasNext();) {
 GroupInfo group = (GroupInfo) iterator.next();
 System.out.println("Group " + position);
 System.out.println(group.toXML());
 System.out.println();
 System.out.println("**");
 position++;
 }
}

Building and Running Demos

This section shows how to build and run the HP SOA Systinet Registry Group demos.

Chapter 6968

1 Be sure that the demos are properly configured and the HP SOA Systinet Registry is up and running.

2 Change your working directory to:

%REGISTRY_HOME%\demos\security\groupWindows:

$REGISTRY_HOME/demos/security/groupUNIX:

3 Build demos using:

run.bat makeWindows:

./run.sh makeUNIX:

When compiling demos on Windows platforms, you may see the following text:

A subdirectory or file ..\..\common\.\build\classes already exists.

This is expected and does not indicate a problem.

4 To get list of all available commands, run

run.bat helpWindows:

./run.sh helpUNIX:

5 The selected demo can be executed via the run command with the name of the demo as parameter.
For example, to run the WhereIAm demo, invoke

run.bat WhereIAmWindows:

./run.sh WhereIAmUNIX:

The output of this demo will resemble the following:

Running WhereIAm demo...
**
*** Systinet Registry Demo - WhereIAm ***
**

969Demos

Find groups of user where
Enter login to authenticate [demo_john]:
Enter password [demo_john]:
Enter login to search [demo_john]:

Using Security at url https://mycomp.com:8443/uddi/security .. done
Logging in .. done
login = demo_john
Using Group API at url https://mycomp.com:8443/uddi/group .. done
Search in progress ... done

Group 1
<groupInfo xmlns="http://systinet.com/uddi/group/5.0">
<name>system#everyone</name>
<description>The special group that contains all users.</description>
<privateGroup>false</privateGroup>
<external>false</external>
</groupInfo>

**
Group 2
<groupInfo xmlns="http://systinet.com/uddi/group/5.0">
<name>system#registered</name>
<description>The special group that contains all users who are logged
onto the UDDI registry.</description>
<privateGroup>false</privateGroup>
<external>false</external>
</groupInfo>

**
Logging out .. done

6 To rebuild demos, execute run.bat clean (./run.sh clean) to delete the classes directory and run.bat
make (./run.sh make) to rebuild the demo classes.

Permission

The HP SOA Systinet Registry Permission Demos are used to demonstrate the HP SOA Systinet Registry
application programming interface's capabilities and to demonstrate how to use this API.

You will learn how to set and search permissions.

The HP SOA Systinet Registry security permission demo set contains the following demos to assist you in
learning the HP SOA Systinet Registry client API:

Chapter 6970

SetPermission. Demonstrates how to construct and fill the Set_permission object, get a Permission stub for
the UDDI registry, and perform the set_permission call.

WhoHasPermission. Demonstrates how to construct and fill the Who_hasPermission object, get a Permission
stub for the UDDI registry, and perform the who_hasPermission call.

GetPermission. Demonstrates how to construct and fill the Get_permission object, get a Permission stub for
the UDDI registry, and perform the get_permission call.

Prerequisites and Preparatory Steps: Code

We expect that you have already installed the HP SOA Systinet Registry and set the REGISTRY_HOME environment
variable to the registry's installation location.

To run the HP SOA Systinet Registry's demos, your HP SOA Systinet Registry must be running. To start
the registry, execute the serverstart script:

%REGISTRY_HOME%\bin\serverstart.batWindows:

$REGISTRY_HOME/bin/serverstart.shUNIX:

It is necessary to configure the demos. The configuration system has two levels: global and local. The
properties defined at the global level may be overwritten at the local level. The global properties are located
in the file:

%REGISTRY_HOME%\demos\env.propertiesWindows:

$REGISTRY_HOME/demos/env.propertiesUNIX:

The values set during the installation of the HP SOA Systinet Registry work out of the box, and their
modification affects all demos. If you need to redefine a property's value for a single demo (that is,, at the
local level), edit env.properties. This file is located in the same directory as the file run.sh (run.bat). Local
level properties for the Permission demos are loaded from the file:

%REGISTRY_HOME%\demos\security\permission\env.propertiesWindows:

$REGISTRY_HOME/demos/security/permission/env.propertiesUNIX:

971Demos

Table 14. Properties Used in Demos

DescriptionDefault ValueName

the permission Web service
port URL

http://localhost:8080/uddi/permissionuddi.demos.url.permission

the security Web service port
URL

http://localhost:8080/uddi/securityuddi.demos.url.security

Presentation and Functional Presentation

This section describes the programming pattern used in all demos using the SetPermission demo as an
example. You can find this demo's source code in the file:

%REGISTRY_HOME%\demos\security\permission\src\demo\uddi\permission\SetPermission.javaWindows:

$REGISTRY_HOME/demos/security/permission/src/demo/uddi/permission/SetPermission.javaUNIX:

The main method is divided into two parts. The first part serves to configure the demo by the user. It reads
the credentials of the user who will run the demo and is allowed to set permissions. Then it reads permission
type, name, and action.

The second part contains the execution of the demo. It looks up the security stub and authenticates the user.
It then creates a Set_permission object and sends it over SOAP to the UDDI registry as a set_permission
operation. If the user has explicitly declared permissions that are not present in this operation, these will be
removed.

String user = UserInput.readString("Enter login","admin");
String password = UserInput.readString("Enter password","changeit");
String principal = UserInput.readString("Enter principal type", PrincipalType.user.getValue());
String login = UserInput.readString("Enter login/group name",
 DemoProperties.getProperty(USER_JOHN_NAME));
String type = UserInput.readString("Enter permission type",
 "org.systinet.uddi.security.permission.ApiManagerPermission");
String name = UserInput.readString("Enter permission name",
 "org.systinet.uddi.client.taxonomy.v3.TaxonomyApi");
String action = UserInput.readString("Enter action", "download_taxonomy");
System.out.println();

UDDI_Security_PortType security = getSecurityStub();
String authInfo = getAuthInfo(user, password, security);
Set_permission set = createSetPermission(login, principal, name, type, action, authInfo);

Chapter 6972

setPermission(set);
discardAuthInfo(authInfo, security);

The method createSetPermission creates an object representing the set_permission operation.

public static Set_permission createSetPermission(String login, String principal,
 String name, String type, String action, String authInfo) throws InvalidParameterException {
 System.out.println(principal+", login/name = " + login);
 System.out.println("type = " + type);
 System.out.println("name = " + name);
 System.out.println("action = " + action);

 PermissionDescriptors permissionDescriptors = new PermissionDescriptors();
 permissionDescriptors.setPrincipal(new Principal(login, PrincipalType.getPrincipalType(principal)));

 PermissionDescriptor descriptor = new PermissionDescriptor();
 descriptor.setName(name);
 descriptor.setType(type);
 descriptor.addAction(action);
 permissionDescriptors.addPermissionDescriptor(descriptor);

 Set_permission set = new Set_permission();
 set.setPermissionDescriptors(permissionDescriptors);
 set.setAuthInfo(authInfo);

 return set;
}

The helper method, getPermissionStub(), returns the UDDI Permission stub of the Web service listening at
the URL specified by the URL_PERMISSION property.

public static PermissionApi getPermissionStub() throws SOAPException {
// you can specify your own URL in property - uddi.demos.url.permission
String url = DemoProperties.getProperty(URL_PERMISSION, "http://localhost:8080/uddi/permission");
System.out.print("Using Permission API at url " + url + " ..");
PermissionApi permission = PermissionStub.getInstance(url);
System.out.println(" done");
return permission;
}

The HP SOA Systinet Registry API call set_permission is performed in the method setPermission.

public static void setPermission(Set_permission set) throws
 SOAPException, PermissionException {
 PermissionApi permissionApi = getPermissionStub();
 System.out.print("Save in progress ...");
 permissionApi.set_permission(set);

973Demos

 System.out.println(" done");
}

Building and Running Demos

This section shows how to build and run the HP SOA Systinet Registry Permission demos.

1 Be sure that the demos are properly configured and the HP SOA Systinet Registry is up and running.

2 Change your working directory to

%REGISTRY_HOME%\demos\security\permissionWindows:

$REGISTRY_HOME/demos/security/permissionUNIX:

3 Build demos using:

run.bat makeWindows:

./run.sh makeUNIX:

When compiling demos on Windows platforms, you may see the following text:

A subdirectory or file ..\..\common\.\build\classes already exists.

This is expected and does not indicate a problem.

4 To get list of all available commands, run

run.bat helpWindows:

./run.sh helpUNIX:

5 The selected demo can be executed via the run command using the name of the demo as a parameter.
For example, to run the SetPermission demo, invoke

run.bat SetPermissionWindows:

./run.sh SetPermissionUNIX:

Chapter 6974

The output of this demo will resemble the following:

Running SetPermission demo...
**
*** Systinet Registry Demo: SetPermission ***
**

Setting permission where
Enter login [admin]:
Enter password [changeit]:
Enter principal type [user]:
Enter login/group name [demo_john]:
Enter permission type [org.systinet.uddi.security.permission.ApiManagerPermission]:
Enter permission name [org.systinet.uddi.client.taxonomy.v3.TaxonomyApi]:
Enter action [download_taxonomy]:

Using Security at url https://mycomp.com:8443/uddi/security .. done
Logging in .. done
user, login/name = demo_john
type = org.systinet.uddi.security.permission.ApiManagerPermission
name = org.systinet.uddi.client.taxonomy.v3.TaxonomyApi
action = download_taxonomy

Using Permission API at url https://mycomp.com:8443/uddi/permission .. done
Save in progress ... done
Logging out .. done

6 To rebuild demos, execute run.bat clean (./run.sh clean) to delete the classes directory and run.bat
make (./run.sh make) to rebuild the demo classes.

ACL

The HP SOA Systinet Registry ACL Demos demonstrate the HP SOA Systinet Registry ACL application
programming interface's capabilities and how to use this API.

The Systinet ACL extension is used to grant or revoke rights to selected users or groups. You will learn
how to create, save, delete, get and find ACLs.

The HP SOA Systinet Registry Security ACL demo set contains the following demos to assist you in learning
the HP SOA Systinet Registry client API:

Create. Demonstrates how to use Create ACL to give one user rights to create a service in the business
entity of another user.

975Demos

Save. Demonstrates how to use Save ACL to give one user rights to update the business entity of another
user.

Delete. Demonstrates how to use Delete ACL to give one user rights to delete a business entity of another
user.

Get. Demonstrates how to use Get ACL to revoke from a selected user the right to get the business detail
of a business entity.

Find. Demonstrates how to use Find ACL to hide the business entity in a find_business operation from a
selected user.

Prerequisites and Preparatory Steps: Code

We expect that you have already installed the HP SOA Systinet Registry and set the REGISTRY_HOME environment
variable to the registry's installation location.

To run the HP SOA Systinet Registry's demos, your HP SOA Systinet Registry must be running. To start
the registry, execute the serverstart script:

%REGISTRY_HOME%\bin\serverstart.batWindows:

$REGISTRY_HOME/bin/serverstart.shUNIX:

It is necessary to configure the demos. The configuration system has two levels: global and local. The
properties defined at the global level may be overwritten at the local level. The global properties are located
in the file:

%REGISTRY_HOME%\demos\env.propertiesWindows:

$REGISTRY_HOME/demos/env.propertiesUNIX:

The values set during the installation of the HP SOA Systinet Registry work out of the box, and their
modification affects all demos. If you need to redefine a property's value for a single demo (that is,, at the
local level), edit env.properties. This file is located in the same directory as the file run.sh (run.bat). Local
level properties for the ACL demos are loaded from the file:

%REGISTRY_HOME%\demos\security\acl\env.propertiesWindows:

$REGISTRY_HOME/demos/security/acl/env.propertiesUNIX:

Chapter 6976

Table 15. Properties Used in Demos

DescriptionDefault ValueName

first user's namedemo_johnuddi.demos.user.john.name

first user's passworddemo_johnuddi.demos.user.john.password

second user's namedemo_janeuddi.demos.user.jane.name

second user's passworddemo_janeuddi.demos.user.jane.password

The publication Web service
port URL

http://localhost:8080/uddi/publishinguddi.demos.url.publishing

the security Web service port
URL

http://localhost:8080/uddi/securityuddi.demos.url.security

Presentation and Functional Presentation

This section describes the programming pattern used in all demos using the Find demo as an example. You
can find this demo's source code in the file:

%REGISTRY_HOME%\demos\security\acl\src\demo\uddi\acl\Find.javaWindows:

$REGISTRY_HOME/demos/security/acl/src/demo/uddi/acl/Find.javaUNIX:

The main method is divided into several logical parts. The first part is used to configure the demo for the
user. The "good" user represents the user who will receive a positive ACL; the "bad" user represents the
user who will receive a negative ACL.

The second part contains the save_business operation with extra information. The ACLs are set in the
categoryBag. In the next section, the bad user unsuccessfully tries to find the business entity by name, and
finally the good user finds the business entity.

String name = UserInput.readString("Enter business name", "ACL find demo");
String description = UserInput.readString("Enter description",
 "Demonstration of find-allowed, find-denied ACLs");
String searchName = UserInput.readString("Enter search string", "ACL%");
String owner = UserInput.readString("Enter entity owner", "admin");
String password = UserInput.readString("Enter owner's password", "changeit");
String loginGood = UserInput.readString("Enter good user's login",
 DemoProperties.getProperty(USER_JOHN_NAME));
String passwordGood = UserInput.readString("Enter good user's password",

977Demos

 DemoProperties.getProperty(USER_JOHN_PASSWORD));
String loginBad = UserInput.readString("Enter bad user's login",
 DemoProperties.getProperty(USER_JANE_NAME));
String passwordBad = UserInput.readString("Enter bad user's password",
 DemoProperties.getProperty(USER_JANE_PASSWORD));
System.out.println();

UDDI_Security_PortType security = getSecurityStub();
String authInfoOwner = getAuthInfo(owner, password, security);
Save_business saveBusiness = createSaveBusiness(name, description, loginGood, loginBad, authInfoOwner);
BusinessDetail result = saveBusiness(saveBusiness);
printBusinessDetail(result);
discardAuthInfo(authInfoOwner, security);

System.out.println(" ");
System.out.println("Finding business entity where");
String authInfoGood = getAuthInfo(loginGood, passwordGood, security);
Find_business findBusiness = createFindByName(searchName, authInfoGood);
BusinessList businessList = findBusiness(findBusiness);
printBusinessList(businessList);
discardAuthInfo(authInfoGood, security);

System.out.println(" ");
System.out.println("Finding business entity where");
String authInfoBad = getAuthInfo(loginBad, passwordBad, security);
findBusiness = createFindByName(searchName, authInfoBad);
businessList = findBusiness(findBusiness);
printBusinessList(businessList);
discardAuthInfo(authInfoGood, security);

The createSaveBusiness operation is used to create the Save_business object. The ACLs are stored in the
keyedReferenceGroup with the uddi:systinet.com:acl tModelKey as keyedReference, where the tModelKey
specifies the tModelKey of the ACL, keyValue holds the login name of the user or group, and finally
keyName is used to distinguish between users and groups in the keyValue.

public static Save_business createSaveBusiness(String name,
 String description, String goodUser,
 String badUser, String authInfo) throws InvalidParameterException {
 System.out.println("name = " + name);
 System.out.println("description = " + description);
 System.out.println("goodUser = " + goodUser);
 System.out.println("badUser = " + badUser);

 BusinessEntity businessEntity = new BusinessEntity();
 businessEntity.addName(new Name(name));
 businessEntity.addDescription(new Description(description));

Chapter 6978

 CategoryBag categoryBag = new CategoryBag();
 businessEntity.setCategoryBag(categoryBag);
 KeyedReferenceGroup aclGroup = new KeyedReferenceGroup("uddi:systinet.com:acl");
 aclGroup.addKeyedReference(new KeyedReference("uddi:systinet.com:acl:find-allowed",
 goodUser, "user"));
 aclGroup.addKeyedReference(new KeyedReference("uddi:systinet.com:acl:find-denied",
 badUser, "user"));
 categoryBag.addKeyedReferenceGroup(aclGroup);

 Save_business save = new Save_business();
 save.addBusinessEntity(businessEntity);
 save.setAuthInfo(authInfo);

 return save;
}

The find_business operation takes the authInfo parameter used to identify the user who runs the query.

public static Find_business createFindByName(String name, String authInfo)
 throws InvalidParameterException {
System.out.println("name = " + name);
Find_business find_business = new Find_business();
find_business.addName(new Name(name));
find_business.setMaxRows(new Integer(MAX_ROWS));
find_business.setAuthInfo(authInfo);
find_business.addFindQualifier("approximateMatch");
return find_business;
}

Building and Running Demos

This section shows how to build and run the HP SOA Systinet Registry ACL demos.

1 Be sure that the demos are properly configured and the HP SOA Systinet Registry is up and running.

2 Change your working directory to:

%REGISTRY_HOME%\demos\security\aclWindows:

$REGISTRY_HOME/demos/security/aclUNIX:

3 Build demos using:

979Demos

run.bat makeWindows:

./run.sh makeUNIX:

When compiling demos on Windows platforms, you may see the following text:

A subdirectory or file ..\..\common\.\build\classes already exists.

This is expected and does not indicate a problem.

4 To get list of all available commands, run

run.bat helpWindows:

./run.sh helpUNIX:

5 The selected demo can be executed via the run command with the name of the demo as parameter.
For example, to run the Find demo, invoke

run.bat FindWindows:

./run.sh FindUNIX:

The output of this demo will resemble the following:

Running Find demo...
**
*** Systinet Registry Demo - ACLFind ***
**

Saving business entity where
Enter business name [ACL find demo]:
Enter description [Demonstration of find-allowed, find-denied ACLs]:
Enter search string [ACL%]:
Enter entity owner [admin]:
Enter owner's password [changeit]:
Enter good user's login [demo_john]:
Enter good user's password [demo_john]:
Enter bad user's login [demo_jane]:
Enter bad user's password [demo_jane]:

Using Security at url https://mycomp.com:8443/uddi/security .. done
Authenticating the user admin .. done

Chapter 6980

name = ACL find demo
description = Demonstration of find-allowed, find-denied ACLs
goodUser = demo_john
badUser = demo_jane
Using Publishing at url https://mycomp.com:8443/uddi/publishing .. done
Save business in progress ... done

Business 1 : uddi:91ba8390-a8e0-11d8-b2ad-779f83c0b2ad
<businessEntity businessKey="uddi:91ba8390-a8e0-11d8-b2ad-779f83c0b2ad"
xmlns="urn:uddi-org:api_v3">
<name>ACL find demo</name>
<description>Demonstration of find-allowed, find-denied ACLs</description>
<categoryBag>
<keyedReferenceGroup tModelKey="uddi:systinet.com:acl">
<keyedReference tModelKey="uddi:systinet.com:acl:find-allowed"
keyName="user" keyValue="demo_john"/>
<keyedReference tModelKey="uddi:systinet.com:acl:find-denied"
keyName="user" keyValue="demo_jane"/>
</keyedReferenceGroup>
</categoryBag>
</businessEntity>

Logging out .. done

Finding business entity where
Authenticating the user demo_john .. done
name = ACL%
Using Inquiry at url http://mycomp.com:8080/uddi/inquiry .. done
Search in progress .. done

Displaying 1 of 1, starting at position 1
Business 1 : uddi:91ba8390-a8e0-11d8-b2ad-779f83c0b2ad
<businessInfo businessKey="uddi:91ba8390-a8e0-11d8-b2ad-779f83c0b2ad"
xmlns="urn:uddi-org:api_v3">
<name>ACL find demo</name>
<description>Demonstration of find-allowed, find-denied ACLs</description>
</businessInfo>

Logging out .. done

Finding business entity where
Authenticating the user demo_jane .. done
name = ACL%
Using Inquiry at url http://mycomp.com:8080/uddi/inquiry .. done
Search in progress .. done

Displaying 0 of 0, starting at position 1

981Demos

Nothing found
Logging out .. done

6 To rebuild demos, execute run.bat clean (./run.sh clean) to delete the classes directory and run.bat
make (./run.sh make) to rebuild the demo classes.

Resources Demos
The Resources Demos section includes the following demos:

• WSDL - Teaches how to publish, unpublish and find a WSDL document in UDDI version 2 and UDDI
version 3.

• XML - Teaches how to publish, unpublish and find an XML document.

• XSD - Teaches how to publish, unpublish and find an XML Schema.

• XSLT - Teaches how to publish, unpublish and find a XSL Transformation.

WSDL2UDDI v2

The HP SOA Systinet Registry WSDL2UDDI demo set is used to demonstrate the HP SOA Systinet Registry
WSDL2UDDI application programming interface's capabilities and to demonstrate how to use this API.
The HP SOA Systinet Registry WSDL2UDDI demos cover the UDDI Version 2.0.4 Specification
[http://www.oasis-open.org/committees/uddi-spec/doc/tcspecs.htm#uddiv2]. You will learn how to query
and publish a WSDL to a UDDI registry over a SOAP interface. The HP SOA Systinet Registry
WSDL2UDDI demo set contains following demos to assist you in learning the WSDL2UDDI client API.

PublishWSDL. Demonstrates how to construct and fill the Publish_wsdl object, get the WSDL2UDDI stub
for the UDDI registry, get an authToken, and perform the publish_wsdl call.

UnPublishWSDL. Demonstrates how to construct and fill the Unpublish_wsdl object, get WSDL2UDDI
stub for the UDDI registry, get an authToken, and perform the unpublish_wsdl call.

FindWSDL. Demonstrates how to construct and fill the Find_wsdlServiceInfo object, get the WSDL2UDDI
stub for the UDDI registry, get an authToken, and perform the find_wsdlServiceInfo call.

GetWSDL. Demonstrates how to construct and fill the Get_wsdlServiceInfo object, get the WSDL2UDDI
stub for the UDDI registry, get an authToken, and perform the get_wsdlServiceInfo call.

Chapter 6982

http://www.oasis-open.org/committees/uddi-spec/doc/tcspecs.htm#uddiv2

Prerequisites and Preparatory Steps: Code

We expect that you have already installed the HP SOA Systinet Registry and set the REGISTRY_HOME environment
variable to the registry's installation location.

To run the HP SOA Systinet Registry's demos, your HP SOA Systinet Registry must be running. To start
the registry, execute the serverstart script:

%REGISTRY_HOME%\bin\serverstart.batWindows:

$REGISTRY_HOME/bin/serverstart.shUNIX:

It is necessary to configure the demos. The configuration system has two levels: global and local. The
properties defined at the global level may be overwritten at local level. The global properties are located in
the file:

%REGISTRY_HOME%\demos\env.propertiesWindows:

$REGISTRY_HOME/demos/env.propertiesUNIX:

The values set during the installation of the HP SOA Systinet Registry work out of the box, and their
modification affects all demos. If you need to redefine the value of some property for a single demo (that
is, at the local level), edit env.properties. This file is located in the same directory as the file run.sh (run.bat).
Local level properties for the WSDL2UDDI demos are loaded from the file:

%REGISTRY_HOME%\demos\basic\wsdl\v2\env.propertiesWindows:

$REGISTRY_HOME/demos/basic/wsdl/v2/env.propertiesUNIX:

Table 16. Properties Used in Demos

DescriptionDefault ValueName

first user's namedemo_johnuddi.demos.user.john.name

first user's passworddemo_johnuddi.demos.user.john.password

the wsdl2uddi Web service port
URL

http://localhost:8080/uddi/wsdl2uddiuddi.demos.url.wsdl2uddi

the security Web service port URLhttp://localhost:8080/uddi/securityuddi.demos.url.security

983Demos

Presentation and Functional Presentation

This section describes programming pattern used in all demos using the PublishWSDL demo as an example.
You can find its source code in the file:

%REGISTRY_HOME%\demos\basic\wsdl2uddi\src\demo\uddi\v2\wsdl2uddi\PublishWSDL.javaWindows:

$REGISTRY_HOME/demos/basic/wsdl2uddi/src/demo/uddi/v2/wsdl2uddi/PublishWSDL.javaUNIX:

The main method is very short. After gathering the user's input, it gets the security stub and authorizes the
user. The resulting authInfo string is a secret key passed to the Publish request, which is created and initialized
in the createPublish() method.

The user's choice of WSDL is published to the selected businessEntity within the publishWSDL() method.

When successful, the WsdlDetail object is returned from the UDDI registry and printed.

The last step is to discard the authInfo string, so that no malicious user can use it to compromise another
user's account.

String businessKey = UserInput.readString("Enter businessKey",
 "d7222f66-08aa-3a6e-a299-2ed4ac785682");
String url = UserInput.readString("Enter WSDL URL",
 "http://localhost:8080/uddi/doc/demos/EmployeeList.wsdl");
System.out.println();

UDDI_Security_PortType security = getSecurityStub();
String authInfo = getAuthInfo(user, password, security);
Publish_wsdl publish = createPublish(businessKey, url, authInfo);
WsdlDetail result = publishWSDL(publish);
printWsdlDetail(result);
discardAuthInfo(authInfo, security);

The helper method getSecurityStub() returns the UDDI Security stub of the Web service listening at the
URL specified by the URL_SECURITY property.

public static UDDI_Security_PortType getSecurityStub()
 throws SOAPException {
 // you can specify your own URL in property - uddi.demos.url.security
 String url = DemoProperties.getProperty(URL_SECURITY,
 "http://localhost:8080/uddi/security");
 System.out.print("Using Security at url " + url + " ..");
 UDDI_Security_PortType security = UDDISecurityStub.getInstance(url);
 System.out.println(" done");

Chapter 6984

 return security;
}

Similarly, the helper method getWsdl2uddiStub() returns the WSDL2UDDI stub of the Web service listening
at URL specified by the URL_WSDL2UDDI property.

public static Wsdl2uddiApi getWsdl2uddiStub() throws SOAPException {
 // you can specify your own URL in property - uddi.demos.url.wsdl2uddi
 String url = DemoProperties.getProperty(URL_WSDL2UDDI,
 "http://localhost:8080/uddi/wsdl2uddi");
 System.out.print("Using WSDL2UDDI at url " + url + " ..");
 Wsdl2uddiApi inquiry = Wsdl2uddiStub.getInstance(url);
 System.out.println(" done");
 return inquiry;
}

The getAuthInfo() method is used to authorize the user against the UDDI registry and to get the secret
authInfo key.

public static String getAuthInfo(String userName,
 String password, UDDI_Security_PortType security)
 throws InvalidParameterException, UDDIException {
 System.out.print("Logging in ..");
 AuthToken authToken = security.get_authToken(new Get_authToken(userName, password));
 System.out.println(" done");
 return authToken.getAuthInfo();
}

The discardAuthInfo() method invalidates the secret authInfo key, so that it cannot be reused.

public static DispositionReport discardAuthInfo(String authInfo,
 UDDI_Security_PortType security)
 throws InvalidParameterException, UDDIException {
 System.out.print("Logging out ..");
 DispositionReport dispositionReport = security.discard_authToken(new Discard_authToken(authInfo));
 System.out.println(" done");
 return dispositionReport;
}

The createPublish() method is used to create a new instance of the Publish class and initialize it with values
from parameters:

public static Publish_wsdl createPublish(String businessKey,
 String url, String authInfo)
 throws InvalidParameterException {
 System.out.println("businessKey = " + businessKey);

985Demos

 System.out.println("url = " + url);

 WsdlMapping wsdlMapping = new WsdlMapping();
 wsdlMapping.setBusinessKey(businessKey);
 Wsdl wsdl = new Wsdl(url);
 WsdlDetail wsdlDetail = new WsdlDetail(wsdl, wsdlMapping);
 Publish_wsdl publish = new Publish_wsdl(wsdlDetail, authInfo);
 return publish;
}

The WSDL2UDDI API call Publish_wsdl is performed in the method publishWSDL().

public static WsdlDetail publishWSDL(Publish_wsdl save)
 throws UDDIException, SOAPException {
 Wsdl2uddiApi publishing = getWsdl2uddiStub();
 System.out.print("Save in progress ...");
 WsdlDetail wsdlDetail = publishing.publish_wsdl(save);
 System.out.println(" done");
 return wsdlDetail;
}

The returned WsdlDetail is displayed by the printWsdlDetail() method.

One interesting aspect of HP SOA Systinet Registry client API is that each UDDIObject contains the toXML()
method, which returns a human-readable formatted listing of its XML representation.

public static void printWsdlDetail(WsdlDetail wsdlDetail) {
 System.out.println();
 System.out.println(wsdlDetail.toXML());
}

Building and Running Demos

This section shows, how to build and run the HP SOA Systinet Registry Basic Publishing demo set. Let's
continue with our SaveBusiness demo.

1 Be sure that the demos are properly configured and the HP SOA Systinet Registry is up and running.

2 Change your working directory to

%REGISTRY_HOME%\demos\basic\wsdl\v2Windows

$REGISTRY_HOME/demos/basic/wsdl/v2UNIX

Chapter 6986

3 Build all demos using:

run.bat makeWindows:

./run.sh makeUNIX:

When compiling demos on Windows platforms, you may see the following text:

A subdirectory or file ..\..\common\.\build\classes already exists.

This is expected and does not indicate a problem.

4 To get list of all available demos, run

run.bat helpWindows:

./run.sh helpUNIX:

5 The selected demo can be executed via the run command using the name of demo as parameter. For
example, to run the PublishWSDL demo, invoke

run.bat PublishWSDLWindows:

./run.sh PublishWSDLUNIX:

The output of this demo will resemble the following:

Running PublishWSDL demo...
**
*** Systinet Registry Demo - PublishWSDL ***
**

Publishing WSDL where
Enter businessKey [d7222f66-08aa-3a6e-a299-2ed4ac785682]:
Enter WSDL URL [http://localhost:8080/uddi/inquiry/wsdl]:
 http://localhost:8080/uddi/doc/demos/EmployeeList.wsdl

Using Publishing at url https://mycomp.com:8443/uddi/publishing .. done
Logging in .. done
businessKey = d7222f66-08aa-3a6e-a299-2ed4ac785682
url = http://localhost:8080/uddi/doc/demos/EmployeeList.wsdl

987Demos

Using WSDL2UDDI at url https://mycomp.com:8443/uddi/wsdl2uddi .. done
Save in progress ... done

<wsdlDetail xmlns="http://systinet.com/uddi/wsdl2uddi/v2/5.0">
 <wsdl>
 <wsdlLocation>http://localhost:8080/uddi/doc/demos/EmployeeList.wsdl</wsdlLocation>
 </wsdl>
 <wsdlMapping>
 <businessKey xmlns="urn:uddi-org:api_v2">d7222f66-08aa-3a6e-a299-2ed4ac785682<
 /businessKey>
 <services>
 <service name="EmployeeList" namespace="
 http://systinet.com/wsdl/demo/uddi/services/"
 publishingMethod="rewrite">
 <serviceKey xmlns="urn:uddi-org:api_v2">
 d0a50390-af1c-11d8-b9bf-eb2d7e20b9bf</serviceKey>
 <ports>
 <port name="EmployeeList" publishingMethod="rewrite">
 <bindingKey xmlns="urn:uddi-org:api_v2">
 d0aca4b0-af1c-11d8-b9bf-eb2d7e20b9bf</bindingKey>
 </port>
 </ports>
 </service>
 </services>
 <bindings>
 <binding name="EmployeeList_binding"
 namespace="http://systinet.com/wsdl/demo/uddi/services/"
 publishingMethod="rewrite">
 <tModelKey xmlns="urn:uddi-org:api_v2">
 uuid:d07da570-af1c-11d8-b9bf-eb2d7e20b9bf</tModelKey>
 </binding>
 </bindings>
 <portTypes>
 <portType name="EmployeeList_portType"
 namespace="http://systinet.com/wsdl/demo/uddi/services/"
 publishingMethod="rewrite">
 <tModelKey xmlns="urn:uddi-org:api_v2">
 uuid:d0658990-af1c-11d8-b9bf-eb2d7e20b9bf</tModelKey>
 </portType>
 </portTypes>
 </wsdlMapping>
</wsdlDetail>
Logging out .. done

6 To rebuild demos, execute run.bat clean (./run.sh clean) to delete the classes directory and run.bat
make (./run.sh make) to rebuild the demo classes.

Chapter 6988

WSDL2UDDI v3

The HP SOA Systinet Registry WSDL2UDDI demo set is used to demonstrate the HP SOA Systinet Registry
WSDL2UDDI application programming interface's capabilities and to show how to use this API. The HP
SOA Systinet Registry WSDL2UDDI demos cover the UDDI Version 3.01 Specification [http://www.oasis-
open.org/committees/uddi-spec/doc/tcspecs.htm#uddiv3]. You will learn how to query and publish a WSDL
to a UDDI registry over a SOAP interface.

The HP SOA Systinet Registry WSDL2UDDI demo set contains following demos to assist you in learning
the WSDL2UDDI client API.

PublishWSDL. Demonstrates how to construct and fill the Publish_wsdl object, get the WSDL2UDDI stub
for the UDDI registry, get an authToken, and perform the publish_wsdl call.

UnPublishWSDL. Demonstrates how to construct and fill the Unpublish_wsdl object, get WSDL2UDDI
stub for the UDDI registry, get an authToken, and perform the unpublish_wsdl call.

FindWSDL. Demonstrates how to construct and fill the Find_wsdlServiceInfo object, get the WSDL2UDDI
stub for the UDDI registry, get an authToken, and perform the find_wsdlServiceInfo call.

GetWSDL. Demonstrates how to construct and fill the Get_wsdlServiceInfo object, get the WSDL2UDDI
stub for the UDDI registry, get an authToken, and perform the get_wsdlServiceInfo call.

Prerequisites and Preparatory Steps: Code

We expect that you have already installed the HP SOA Systinet Registry and set the REGISTRY_HOME environment
variable to the registry's installation location.

To run the HP SOA Systinet Registry's demos, your HP SOA Systinet Registry must be running. To start
the registry, execute the serverstart script:

%REGISTRY_HOME%\bin\serverstart.batWindows:

$REGISTRY_HOME/bin/serverstart.shUNIX:

It is necessary to configure the demos. The configuration system has two levels: global and local. The
properties defined at the global level may be overwritten at local level. The global properties are located in
the file:

989Demos

http://www.oasis-open.org/committees/uddi-spec/doc/tcspecs.htm#uddiv3

%REGISTRY_HOME%\demos\env.propertiesWindows:

$REGISTRY_HOME/demos/env.propertiesUNIX:

The values set during installation of the HP SOA Systinet Registry work out of the box, and their modification
affects all demos. If you need to redefine the value of some property for a single demo (that is, at the local
level), edit env.properties. This file is located in the same directory as the file run.sh (run.bat). Local level
properties for the WSDL2UDDI demos are loaded from the file:

%REGISTRY_HOME%\demos\basic\wsdl\v3\env.propertiesWindows:

$REGISTRY_HOME/demos/basic/wsdl/v3/env.propertiesUNIX:

Table 17. Properties Used in Demos

DescriptionDefault ValueName

first user's namedemo_johnuddi.demos.user.john.name

first user's passworddemo_johnuddi.demos.user.john.password

the wsdl2uddi Web service port
URL

http://localhost:8080/uddi/wsdl2uddiuddi.demos.url.wsdl2uddi

the security Web service port URLhttp://localhost:8080/uddi/securityuddi.demos.url.security

Presentation and Functional Presentation

This section describes programming pattern used in all demos using the PublishWSDL demo as an example.
You can find its source code in file

%REGISTRY_HOME%\demos\basic\wsdl2uddi\src\demo\uddi\v3\wsdl2uddi\PublishWSDL.javaWindows:

$REGISTRY_HOME/demos/basic/wsdl2uddi/src/demo/uddi/v3/wsdl2uddi/PublishWSDL.javaUNIX:

The main method is very short. After gathering the user's input, it gets the security stub and authorizes the
user. The resulting authInfo string is a secret key passed to the Publish request, which is created and initialized
in the createPublish() method.

The user's choice of WSDL is published to the selected businessEntity within the publishWSDL() method.

When successful, the WsdlDetail object is returned from the UDDI registry and printed.

Chapter 6990

The last step is to discard the authInfo string, so that no malicious user can use it to compromise another
user's account.

String businessKey = UserInput.readString("Enter businessKey", "uddi:systinet.com:demo:hq");
String url = UserInput.readString("Enter WSDL URL",
"http://localhost:8080/uddi/doc/demos/EmployeeList.wsdl");
System.out.println();

UDDI_Security_PortType security = getSecurityStub();
String authInfo = getAuthInfo(user, password, security);
Publish_wsdl publish = createPublish(businessKey, url, authInfo);
WsdlDetail result = publishWSDL(publish);
printWsdlDetail(result);
discardAuthInfo(authInfo, security);

The helper method getSecurityStub() returns the UDDI Security stub of the Web service listening at the
URL specified by the URL_SECURITY property.

public static UDDI_Security_PortType getSecurityStub()
 throws SOAPException {
 // you can specify your own URL in property - uddi.demos.url.security
 String url = DemoProperties.getProperty(URL_SECURITY, "http://localhost:8080/uddi/security");
 System.out.print("Using Security at url " + url + " ..");
 UDDI_Security_PortType security = UDDISecurityStub.getInstance(url);
 System.out.println(" done");
 return security;
}

Similarly, the helper method getWsdl2uddiStub() returns the WSDL2UDDI stub of the Web service listening
at URL specified by the URL_WSDL2UDDI property.

public static Wsdl2uddiApi getWsdl2uddiStub() throws SOAPException {
 // you can specify your own URL in property - uddi.demos.url.wsdl2uddi
 String url = DemoProperties.getProperty(URL_WSDL2UDDI, "http://localhost:8080/uddi/wsdl2uddi");
 System.out.print("Using WSDL2UDDI at url " + url + " ..");
 Wsdl2uddiApi inquiry = Wsdl2uddiStub.getInstance(url);
 System.out.println(" done");
 return inquiry;
}

The getAuthInfo() method is used to authorize the user against the UDDI registry and to get the secret
authInfo key.

public static String getAuthInfo(String userName, String password, UDDI_Security_PortType security)
 throws InvalidParameterException, UDDIException {
 System.out.print("Logging in ..");

991Demos

 AuthToken authToken = security.get_authToken(new Get_authToken(userName, password));
 System.out.println(" done");
 return authToken.getAuthInfo();
}

The discardAuthInfo() method invalidates the secret authInfo key, so that it cannot be reused.

public static void discardAuthInfo(String authInfo, UDDI_Security_PortType security)
 throws InvalidParameterException, UDDIException {
 System.out.print("Logging out ..");
 security.discard_authToken(new Discard_authToken(authInfo));
 System.out.println(" done");
}

The createPublish() method is used to create a new instance of the Publish class and initialize it with values
from parameters:

public static Publish_wsdl createPublish(String businessKey, String url, String authInfo)
 throws InvalidParameterException {
 System.out.println("businessKey = " + businessKey);
 System.out.println("url = " + url);

 WsdlMapping wsdlMapping = new WsdlMapping();
 wsdlMapping.setBusinessKey(businessKey);
 Wsdl wsdl = new Wsdl(url);
 WsdlDetail wsdlDetail = new WsdlDetail(wsdl, wsdlMapping);
 Publish_wsdl publish = new Publish_wsdl(wsdlDetail, authInfo);
 return publish;
}

The WSDL2UDDI API call Publish_wsdl is performed in the method publishWSDL().

public static WsdlDetail publishWSDL(Publish_wsdl save)
 throws UDDIException, SOAPException {
 Wsdl2uddiApi publishing = getWsdl2uddiStub();
 System.out.print("Save in progress ...");
 WsdlDetail wsdlDetail = publishing.publish_wsdl(save);
 System.out.println(" done");
 return wsdlDetail;
}

The returned WsdlDetail is displayed by the printWsdlDetail() method.

One interesting aspect of HP SOA Systinet Registry client API is that each UDDIObject contains the toXML()
method, which returns a human-readable formatted listing of its XML representation.

Chapter 6992

public static void printWsdlDetail(WsdlDetail wsdlDetail) {
 System.out.println();
 System.out.println(wsdlDetail.toXML());
}

Building and Running Demos

This section shows, how to build and run the HP SOA Systinet Registry Basic Publishing demo set. Let's
continue with our SaveBusiness demo.

1 Be sure that the demos are properly configured and the HP SOA Systinet Registry is up and running.

2 Change your working directory to

%REGISTRY_HOME%\demos\basic\wsdl\v3Windows

$REGISTRY_HOME/demos/basic/wsdl/v3UNIX

3 Build all demos using:

run.bat makeWindows:

./run.sh makeUNIX:

When compiling demos on Windows platforms, you may see the following text:

A subdirectory or file ..\..\common\.\build\classes already exists.

This is expected and does not indicate a problem.

4 To get list of all available demos, run

run.bat helpWindows:

./run.sh helpUNIX:

5 The selected demo can be executed via the run command using the name of the demo as a parameter.
For example, to run the PublishWSDL demo, invoke

993Demos

run.bat PublishWSDLWindows:

./run.sh PublishWSDLUNIX:

The output of this demo will resemble the following:

Running PublishWSDL demo...
**
*** Systinet Registry Demo - PublishWSDL ***
**

Publishing WSDL where
Enter businessKey [uddi:systinet.com:demo:hq]:
Enter WSDL URL [http://localhost:8080/uddi/doc/demos/EmployeeList.wsdl]:

Using Security at url https://mycomp.com:8443/uddi/security .. done
Logging in .. done
businessKey = uddi:systinet.com:demo:hq
url = http://localhost:8080/uddi/doc/demos/EmployeeList.wsdl
Using WSDL2UDDI at url https://mycomp.com:8443/uddi/wsdl2uddi .. done
Save in progress ... done

<wsdlDetail xmlns="http://systinet.com/uddi/wsdl2uddi/v3/5.0">
 <wsdl>
 <wsdlLocation>http://localhost:8080/uddi/doc/demos/EmployeeList.wsdl</wsdlLocation>
 </wsdl>
 <wsdlMapping>
 <businessKey xmlns="urn:uddi-org:api_v3">uddi:systinet.com:demo:hq</businessKey>
 <services>
 <service name="EmployeeList" namespace="http://systinet.com/wsdl/demo/uddi/services/"
 publishingMethod="rewrite">
 <serviceKey xmlns="urn:uddi-org:api_v3">uddi:dde19a70-af1a-11d8-b9bf-eb2d7e20b9bf</serviceKey>

 <ports>
 <port name="EmployeeList" publishingMethod="rewrite">
 <bindingKey xmlns="urn:uddi-org:api_v3">uddi:dde85130-af1a-11d8-b9bf-
eb2d7e20b9bf</bindingKey>
 </port>
 </ports>
 </service>
 </services>
 <bindings>
 <binding name="EmployeeList_binding" namespace="http://systinet.com/wsdl/demo/uddi/services/"

 publishingMethod="rewrite">
 <tModelKey xmlns="urn:uddi-org:api_v3">uddi:ddc84610-af1a-11d8-b9bf-

Chapter 6994

eb2d7e20b9bf</tModelKey>
 </binding>
 </bindings>
 <portTypes>
 <portType name="EmployeeList_portType"
namespace="http://systinet.com/wsdl/demo/uddi/services/"
 publishingMethod="rewrite">
 <tModelKey xmlns="urn:uddi-org:api_v3">uddi:ddbc3820-af1a-11d8-b9bf-
eb2d7e20b9bf</tModelKey>
 </portType>
 </portTypes>
 </wsdlMapping>
</wsdlDetail>
Logging out .. done

6 To rebuild demos, execute run.bat clean (./run.sh clean) to delete the classes directory and run.bat
make (./run.sh make) to rebuild the demo classes.

XML2UDDI

The HP SOA Systinet Registry XML2UDDI demo set demonstrates the HP SOA Systinet Registry application
programming interface's capabilities and shows how to use the XML2UDDI API to manipulate XML
documents.

The demos set include the following demos:

• FindXml

• FindXmlMapping

• GetXmlDetail

• PublishXml

• UnpublishXml

Prerequisites and Preparatory Steps: Code

We expect that you have already installed the HP SOA Systinet Registry and set the REGISTRY_HOME environment
variable to the registry's installation location.

995Demos

To run the HP SOA Systinet Registry's demos, your registry must be running. To start the HP SOA Systinet
Registry, execute the serverstart script:

cd %REGISTRY_HOME%\bin serverstartWindows:

cd $REGISTRY_HOME/bin ./serverstart.shUNIX:

It is necessary to configure the demos. The configuration system has two levels: global and local. The
properties defined at the global level may be overwritten at the local level. The global properties are located
in the file:

%REGISTRY_HOME%\demos\env.propertiesWindows:

$REGISTRY_HOME/demos/env.propertiesUNIX:

The values set during the installation of the HP SOA Systinet Registry work out of box, and their modification
affects all demos. If you need to redefine the value of some property for a single demo (that is, at the local
level), edit env.properties. This file is located in the same directory as the file run.sh (run.bat). Local level
properties for the XML2UDDI demos are loaded from the file:

%REGISTRY_HOME%\demos\resources\xml\env.propertiesWindows:

$REGISTRY_HOME/demos/resources/xml/env.propertiesUNIX:

Table 18. Properties Used in Demos

DescriptionDefault ValueName

first user's namedemo_johnuddi.demos.user.john.name

first user's passworddemo_johnuddi.demos.user.john.password

the xml2uddi web service
port URL

http://localhost:8080/uddi/xml2uddiuddi.demos.url.xml2uddi

the security web service port
URL

http://localhost:8080/uddi/securityuddi.demos.url.security

Chapter 6996

Presentation and Functional Presentation

This section describes the programming pattern used in all demos using the PublishXml demo as an example.
You can find its source code in the file:

%REGISTRY_HOME%\demos\resources\xml\src\demo\uddi\xml\PublishXml.javaWindows:

$REGISTRY_HOME/demos/resources/xml/src/demo/uddi/xml/PublishXml.javaUNIX:

The helper method createPublishXml creates a Publish_xml structure:

public Publish_xml createPublishXml(String location, String publishingMethod, String nsPublishMethod,
String nsPublishPolicy,
 String authInfo) throws InvalidParameterException {
 System.out.println("location = " + location);

 Publish_xml publish = new Publish_xml();
 publish.setLocation(location);
 publish.setPublishingMethod(XmlPublishingMethod.getXmlPublishingMethod(publishingMethod));
 publish.setPolicy(PublishPolicy.getPublishPolicy(nsPublishMethod));
 publish.setNamespacePublishingMethod(NsPublishingMethod.getNsPublishingMethod(nsPublishPolicy));

 publish.setAuthInfo(authInfo);

 return publish;
}

The publishXmlResource method performs the publishing operation:

public XmlResourceDetail publishXmlResource(Publish_xml publish) throws UDDIException, SOAPException {
 System.out.print("Check structure validity .. ");
 try {
 publish.check();
 } catch (InvalidParameterException e) {
 System.out.println("Failed!");
 throw new UDDIException(e);
 }
 System.out.println("OK");

 Xml2uddiApi xmlApi = getXml2UddiStub();
 System.out.print("Publishing in progress ...");

997Demos

 XmlResourceDetail xmlDetail = xmlApi.publish_xml(publish);
 System.out.println(" done");
 return xmlDetail;
}

Building and Running Demos

This section shows, how to build and run the HP SOA Systinet Registry XML2UDDI demo set. Let us
continue with our PublishXml demo.

1 Be sure that the demos are properly configured and the HP SOA Systinet Registry is up and running.

2 Change your working directory to

%REGISTRY_HOME%\demos\resources\xmlWindows

$REGISTRY_HOME/demos/resources/xmlUNIX

3 Build all demos using:

run.bat makeWindows:

./run.sh makeUNIX:

When compiling demos on Windows platforms, you may see the following text:

A subdirectory or file ..\..\common\.\build\classes already exists.

. This is expected and does not indicate a problem.

4 To get list of all available demos, run

run.bat helpWindows:

./run.sh helpUNIX:

5 The selected demo can be executed via the run command using the name of the demo as a parameter.
For example, to run the PublishWSDL demo, invoke

Chapter 6998

run.bat PublishXmlWindows:

./run.sh PublishXmlUNIX:

The output of this demo will resemble the following:

**
*** Systinet Registry Demo - PublishXml ***
**

Publishing an XML document with the following parameters:
Enter XML location (URI) [http://localhost:8080/uddi/doc/demos/employees.xml]:
Enter publishing method (update,create) [update]:
Enter import publishing policy (automatic,explicit,locations) [automatic]:
Enter import publishing method (reuse,create,ignore) [reuse]:

Using Security at url https://localhost:8443/uddi/security ..

 done
Logging in .. done
location = http://localhost:8080/uddi/doc/demos/employees.xml
Check structure validity .. OK
Using XML2UDDI at url https://localhost:8443/uddi/xml2uddi .. done
Publishing in progress ... done

XML http://localhost:8080/uddi/doc/demos/employees.xml
<xmlResourceDetail xmlns="http://systinet.com/uddi/xml2uddi/v3/5.5">
 <xmlResourceInfo>
 <location>http://localhost:8080/uddi/doc/demos/employees.xml</location>
 <tModelKey xmlns="urn:uddi-org:api_v3">uddi:systinet.com:demo:xml:employees</tModelKey>
 <name xmlns="urn:uddi-org:api_v3">employees.xml</name>
 </xmlResourceInfo>
 <namespace>
 <uri>http://systinet.com/uddi/demo/employeeList</uri>
 <namespaceModel>
 <name xmlns="urn:uddi-org:api_v3">employees.xsd</name>
 <tModelKey xmlns="urn:uddi-org:api_v3">uddi:systinet.com:demo:xsd:employees</tModelKey>
 </namespaceModel>
 </namespace>
</xmlResourceDetail>
Logging out .. done

999Demos

XSD2UDDI

The HP SOA Systinet Registry XSD2UDDI demo set demonstrates the HP SOA Systinet Registry application
programming interface's capabilities and shows how to use the XSD2UDDI API to manipulate XSD
documents.

The demos set includes the following demos:

• FindXsd

• FindXsdMapping

• GetXsdDetail

• PublishXsd

• UnpublishXsd

Prerequisites and Preparatory Steps: Code

We expect that you have already installed the HP SOA Systinet Registry and set the REGISTRY_HOME environment
variable to the registry's installation location.

To run the HP SOA Systinet Registry's demos, your registry must be running. To start the HP SOA Systinet
Registry, execute the serverstart script:

%REGISTRY_HOME%\bin\serverstartWindows:

$REGISTRY_HOME/bin/serverstart.shUNIX:

It is necessary to configure the demos. The configuration system has two levels: global and local. The
properties defined at the global level may be overwritten at the local level. The global properties are located
in the file:

%REGISTRY_HOME%\demos\env.propertiesWindows:

$REGISTRY_HOME/demos/env.propertiesUNIX:

The values set during the installation of the HP SOA Systinet Registry work out of box, and their modification
affects all demos. If you need to redefine the value of some property for a single demo (that is, at the local

Chapter 61000

level), edit env.properties. This file is located in the same directory as the file run.sh (run.bat). Local level
properties for the XSD2UDDI demos are loaded from the file:

%REGISTRY_HOME%\demos\resources\xsd\env.propertiesWindows:

$REGISTRY_HOME/demos/resources/xsd/env.propertiesUNIX:

Table 19. Properties Used in Demos

DescriptionDefault ValueName

first user's namedemo_johnuddi.demos.user.john.name

first user's passworddemo_johnuddi.demos.user.john.password

the xsd2uddi web service port
URL

http://localhost:8080/uddi/xsd2uddiuddi.demos.url.xsd2uddi

the security web service port
URL

http://localhost:8080/uddi/securityuddi.demos.url.security

Presentation and Functional Presentation

This section describes the programming pattern used in all demos using the PublishXsd demo as an example.
You can find its source code in the file:

%REGISTRY_HOME%\demos\resources\xsd\src\demo\uddi\xsd\PublishXsd.javaWindows:

$REGISTRY_HOME/demos/resources/xsd/src/demo/uddi/xsd/PublishXsd.javaUNIX:

The helper method createPublishXsd creates a Publish_xsd structure:

public Publish_xsd createPublishXsd(String location, String publishingMethod, String importMethod, String
 importPolicy,
 String contentMethod, String contentPolicy, String authInfo)
 throws InvalidParameterException {
 System.out.println("location = " + location);

 Publish_xsd publish = new Publish_xsd();
 publish.setLocation(location);
 publish.setPublishingMethod(XsdPublishingMethod.getXsdPublishingMethod(publishingMethod));
 publish.setImportPolicy(ImportPublishPolicy.getImportPublishPolicy(importMethod));

1001Demos

 publish.setImportPublishingMethod(ImportPublishingMethod.getImportPublishingMethod(importPolicy));

 publish.setContentPolicy(ContentPublishPolicy.getContentPublishPolicy(contentPolicy));

publish.setContentPublishingMethod(ContentPublishingMethod.getContentPublishingMethod(contentMethod));
 publish.setAuthInfo(authInfo);

 return publish;
}

The publishXsdResource method performs the publishing operation:

public XsdDetail publishXsdResource(Publish_xsd publish) throws UDDIException, SOAPException {
 System.out.print("Check structure validity .. ");
 try {
 publish.check();
 } catch (InvalidParameterException e) {
 System.out.println("Failed!");
 throw new UDDIException(e);
 }
 System.out.println("OK");

 Xsd2uddiApi xsdApi = getXsd2UddiStub();
 System.out.print("Publishing in progress ...");
 XsdDetail xsdDetail = xsdApi.publish_xsd(publish);
 System.out.println(" done");
 return xsdDetail;
}

Building and Running Demos

This section shows, how to build and run the HP SOA Systinet Registry XSD2UDDI demo set. Let us
continue with our PublishXsd demo.

1 Be sure that the demos are properly configured and the HP SOA Systinet Registry is up and running.

2 Change your working directory to

%REGISTRY_HOME%\demos\resources\xsdWindows

$REGISTRY_HOME/demos/resources/xsdUNIX

Chapter 61002

3 Build all demos using:

run.bat makeWindows:

./run.sh makeUNIX:

When compiling demos on Windows platforms, you may see the following text:

A subdirectory or file ..\..\common\.\build\classes already exists.

. This is expected and does not indicate a problem.

4 To get list of all available demos, run

run.bat helpWindows:

./run.sh helpUNIX:

5 The selected demo can be executed via the run command using the name of the demo as a parameter.
For example, to run the PublishWSDL demo, invoke

run.bat PublishXsdWindows:

./run.sh PublishXsdUNIX:

The output of this demo will resemble the following:

Running PublishXsd demo...
**
*** Systinet Registry Demo - PublishXsd ***
**

Publishing XML schema with the following parameters:
Enter XSD location (URI) [http://localhost:8080/uddi/doc/demos/employees.xsd]:
Enter publishing method (update,create) [update]:
Enter import publishing policy (all,explicit) [all]:
Enter import publishing method (reuse,create,ignore) [reuse]:
Enter content publishing policy (all,explicit) [all]:
Enter content publishing method (reuse,create,ignore) [reuse]:

1003Demos

Using Security at url https://localhost:8443/uddi/security .. done
Logging in .. done
location = http://localhost:8080/uddi/doc/demos/employees.xsd
Check structure validity .. OK
Using XSD2UDDI at url https://localhost:8443/uddi/xsd2uddi .. done
Publishing in progress ... done

XML Schema http://localhost:8080/uddi/doc/demos/employees.xsd
<xsdDetail xmlns="http://systinet.com/uddi/xsd2uddi/v3/5.5">
 <xsdInfo>
 <location>http://localhost:8080/uddi/doc/demos/employees.xsd</location>
 <namespace>http://systinet.com/uddi/demo/employeeList</namespace>
 <tModelKey xmlns="urn:uddi-org:api_v3">uddi:systinet.com:demo:xsd:employees</tModelKey>
 <name xmlns="urn:uddi-org:api_v3">employees.xsd</name>
 </xsdInfo>
 <elements>
 <element>
 <localName>persons</localName>
 <symbolModel>
 <name xmlns="urn:uddi-org:api_v3">persons</name>
 <tModelKey xmlns="urn:uddi-org:api_v3">uddi:ca43cec0-20f8-11d9-9c6a-1d0743509c6a</tModelKey>

 </symbolModel>
 </element>
 <element>
 <localName>person</localName>
 <symbolModel>
 <name xmlns="urn:uddi-org:api_v3">person</name>
 <tModelKey xmlns="urn:uddi-org:api_v3">uddi:ca5e82b0-20f8-11d9-9c6a-1d0743509c6a</tModelKey>

 </symbolModel>
 </element>
 <element>
 <localName>department</localName>
 <symbolModel>
 <name xmlns="urn:uddi-org:api_v3">department</name>
 <tModelKey xmlns="urn:uddi-org:api_v3">uddi:ca6a90a0-20f8-11d9-9c6a-1d0743509c6a</tModelKey>

 </symbolModel>
 </element>
 </elements>
 <types>
 <type>
 <localName>persons</localName>
 <symbolModel>
 <name xmlns="urn:uddi-org:api_v3">persons</name>
 <tModelKey xmlns="urn:uddi-org:api_v3">uddi:ca742d90-20f8-11d9-9c6a-1d0743509c6a</tModelKey>

Chapter 61004

 </symbolModel>
 </type>
 <type>
 <localName>person</localName>
 <symbolModel>
 <name xmlns="urn:uddi-org:api_v3">person</name>
 <tModelKey xmlns="urn:uddi-org:api_v3">uddi:ca856ba0-20f8-11d9-9c6a-1d0743509c6a</tModelKey>

 </symbolModel>
 </type>
 <type>
 <localName>department</localName>
 <symbolModel>
 <name xmlns="urn:uddi-org:api_v3">department</name>
 <tModelKey xmlns="urn:uddi-org:api_v3">uddi:ca908f30-20f8-11d9-9c6a-1d0743509c6a</tModelKey>

 </symbolModel>
 </type>
 </types>
</xsdDetail>
Logging out .. donee

XSLT2UDDI

The HP SOA Systinet Registry XSLT2UDDI demo set demonstrates the HP SOA Systinet Registry
application programming interface's capabilities and shows how to use the XSLT2UDDI API to manipulate
XSLT documents.

The demos set includes the following demos:

• FindXslt

• FindXsltMapping

• GetXsltDetail

• PublishXslt

• UnpublishXslt

1005Demos

Prerequisites and Preparatory Steps: Code

We expect that you have already installed the HP SOA Systinet Registry and set the REGISTRY_HOME environment
variable to the registry's installation location.

To run the HP SOA Systinet Registry's demos, your registry must be running. To start the HP SOA Systinet
Registry, execute the serverstart script:

%REGISTRY_HOME%\bin\serverstart.batWindows:

$REGISTRY_HOME/bin/serverstart.shUNIX:

It is necessary to configure the demos. The configuration system has two levels: global and local. The
properties defined at the global level may be overwritten at the local level. The global properties are located
in the file:

%REGISTRY_HOME%\demos\env.propertiesWindows:

$REGISTRY_HOME/demos/env.propertiesUNIX:

The values set during the installation of the HP SOA Systinet Registry work out of box, and their modification
affects all demos. If you need to redefine the value of some property for a single demo (that is, at the local
level), edit env.properties. This file is located in the same directory as the file run.sh (run.bat). Local level
properties for the XSLT2UDDI demos are loaded from the file:

%REGISTRY_HOME%\demos\resources\xslt\env.propertiesWindows:

$REGISTRY_HOME/demos/resources/xslt/env.propertiesUNIX:

Chapter 61006

Table 20. Properties Used in Demos

DescriptionDefault ValueName

first user's namedemo_johnuddi.demos.user.john.name

first user's passworddemo_johnuddi.demos.user.john.password

the xslt2uddi Web service
port URL

http://localhost:8080/uddi/xslt2uddiuddi.demos.url.xslt2uddi

the security Web service port
URL

http://localhost:8080/uddi/securityuddi.demos.url.security

Presentation and Functional Presentation

This section describes the programming pattern used in all demos using the PublishXslt demo as an example.
You can find its source code in the file:

%REGISTRY_HOME%\demos\resources\xslt\src\demo\uddi\xslt\PublishXslt.javaWindows:

$REGISTRY_HOME/demos/resources/xslt/src/demo/uddi/xslt/PublishXslt.javaUNIX:

The helper method createPublishXslt creates a Publish_xslt structure:

public Publish_xslt createPublishXslt(String location, String publishingMethod, String importMethod,
String schemaMethod, String authInfo) throws InvalidParameterException {
 System.out.println("location = " + location);

 Publish_xslt publish = new Publish_xslt();
 publish.setLocation(location);
 publish.setPublishingMethod(PublishingMethod.getPublishingMethod(publishingMethod));
 publish.setImportMethod(RefPublishingMethod.getRefPublishingMethod(importMethod));
 publish.setSchemaMethod(RefPublishingMethod.getRefPublishingMethod(schemaMethod));
 publish.setAuthInfo(authInfo);

 return publish;
}

The publishXsltResource method performs the publishing operation:

1007Demos

public XsltMapping publishXsltResource(Publish_xslt publish) throws UDDIException, SOAPException {
 System.out.print("Check structure validity .. ");
 try {
 publish.check();
 } catch (InvalidParameterException e) {
 System.out.println("Failed!");
 throw new UDDIException(e);
 }
 System.out.println("OK");

 Xslt2uddiApi xsltApi = getXslt2UddiStub();
 System.out.print("Publishing in progress ...");
 XsltMapping xsltMapping = xsltApi.publish_xslt(publish);
 System.out.println(" done");
 return xsltMapping;
}

Building and Running Demos

This section shows, how to build and run the HP SOA Systinet Registry XSLT2UDDI demo set. Let us
continue with our PublishXslt demo.

1 Be sure that the demos are properly configured and the HP SOA Systinet Registry is up and running.

2 Change your working directory to

%REGISTRY_HOME%\demos\resources\xsltWindows

$REGISTRY_HOME/demos/resources/xsltUNIX

3 Build all demos using:

run.bat makeWindows:

./run.sh makeUNIX:

When compiling demos on Windows platforms, you may see the following text:

A subdirectory or file ..\..\common\.\build\classes already exists.

Chapter 61008

This is expected and does not indicate a problem.

4 To get list of all available demos, run

run.bat helpWindows:

./run.sh helpUNIX:

5 The selected demo can be executed via the run command using the name of the demo as a parameter.
For example, to run the PublishWSDL demo, invoke

run.bat PublishXsltWindows:

./run.sh PublishXsltUNIX:

The output of this demo will resemble the following:

**
*** Systinet Registry Demo - PublishXslt ***
**

Publishing XSLT with the following parameters:
Enter XSLT location (URI) [http://localhost:8080/uddi/doc/demos/employeesToDepartments.xsl]:
Enter publishing method (update,create) [update]:
Enter import publishing method (reuse,create,ignore) [reuse]:
Enter schema publishing method (reuse,create,ignore) [reuse]:

Using Security at url https://localhost:8443/uddi/security ..
 done
Logging in .. done
location = http://localhost:8080/uddi/doc/demos/employeesToDepartments.xsl
Check structure validity .. OK
Using XSLT2UDDI at url https://localhost:8443/uddi/xslt2uddi .. done
Publishing in progress ... done

XSL transformation http://localhost:8080/uddi/doc/demos/employeesToDepartments.xsl
<xsltMapping xmlns="http://systinet.com/uddi/xslt2uddi/v3/5.5">
 <name xmlns="urn:uddi-org:api_v3">employeesToDepartments.xsl</name>
 <tModelKey xmlns="urn:uddi-
org:api_v3">uddi:systinet.com:demo:xslt:employeesToDepartments</tModelKey>
 <location>http://localhost:8080/uddi/doc/demos/employeesToDepartments.xsl</location>

1009Demos

 <contentMapping>
 <inputSchemaList>
 <xmlSchema>
 <namespace>http://systinet.com/uddi/demo/employeeList</namespace>
 <location>http://localhost:8080/uddi/doc/demos/employees.xsd</location>
 <tModelRef>
 <name xmlns="urn:uddi-org:api_v3">employees.xsd</name>
 <tModelKey xmlns="urn:uddi-org:api_v3">uddi:systinet.com:demo:xsd:employees</tModelKey>
 </tModelRef>
 </xmlSchema>
 </inputSchemaList>
 <outputTypeList>
 <outputType>
 <xmlSchema>
 <namespace>http://systinet.com/uddi/demo/companyDepartments</namespace>
 <location>http://localhost:8080/uddi/doc/demos/departments.xsd</location>
 <tModelRef>
 <name xmlns="urn:uddi-org:api_v3">departments.xsd</name>
 <tModelKey xmlns="urn:uddi-org:api_v3">uddi:systinet.com:demo:xsd:departments</tModelKey>

 </tModelRef>
 </xmlSchema>
 </outputType>
 </outputTypeList>
 <outputMethod>xml</outputMethod>
 </contentMapping>
</xsltMapping>
Logging out .. done

Chapter 61010

Index

A
account

API, 685
configuration, 454

account limits, 403
account management, 403

create account, 403
delete account, 403
edit account, 403
user groups, 409

ACL, 295
Active directory

installation, 132
administration utilities

API, 608
API

account, 685
administration utilities, 608
approval content checker, 569
approval process, 569
approval process management, 569
category API

(see also taxonomy)
custom module, 728
group, 694
inquiry UI, 674
interceptor, 733
mapping WSDL, 620
mapping XML, 636
mapping XML Schema, 645

mapping XSL transformation, 658
permission, 703
replication, 614
server-side API, 723
servlet integration, 723
statistics, 615
subscription extension, 682
subscription service, 744
taxonomy, 548
UDDI, 528
validation, 547
validation service, 740

application server
installation, 160

approval process
API, 569
approve request, 292
Business Service Console, 282
cancel request, 282
clone request, 282
content checker developing, 749
create request, 282
discovery registry, 118
installation, 118
management, 438
overview, 234
principles, 499
publication registry, 118
reject request, 292
submit request, 282

approval process management
API, 569

authentication
client, 718
configuration, 186
HTTP basic, 186
LDAP, 146

1011

Netegrity Siteminder, 186

B
backup, 203
BEA WebLogic

installation, 164
Business Service Console, 241

approval process, 282
bsc.jar, 779
components and tags, 813
configuration, 467, 784
deployment, 779
directory structure, 779
entity, 271
notification, 274
overview, 246
publishing, 259
reports, 269
searching, 254
subscription, 274

C
category

API, 561
certificate

LDAP, 147
client

authentication, 718
logging, 884

client API
principles, 528

cluster
WebLogic, 178

configuration, 89
account, 454
authentication, 186
backup, 203

Business Service Console, 467, 784
cluster, 178
database, 95, 454, 464
groups, 454
management, 446
node, 454
Registry Console, 482
security, 454
SMTP, 89

consoles, 241
content checker

API, 569
create new account, 249

D
data

backup, 203
database

configuration, 446, 454
DB2, 95
HSQL, 95
installation and configuration, 95
JDBC, 95
MSSQL, 95
multilingual data, 95
Oracle, 95
preconfigured HSQL, 95

data migration (see migration)
DB2, 95
debugging

SOAPSpy Tool, 880
deletedTModels, 543
demo data, 242
developing

content checker, 749
digital signatures, 394

PStore tool, 503

1012

discovery registry
installation, 118

E
evaluation, 83
external accounts, 130

LDAP, 132

F
find qualifiers, 542

range queries, 304
foreignEntities, 543

G
groups

configuration, 454

H
hardware

system requirements, 40
hostname verification error

LDAP, 146
HP SOA Systinet Registry

introduction, 224
HSQL, 95
HTTP basic

authentication, 186
client, 718

I
inquiry UI

API, 674
installation, 42

Active directory, 132
application server, 160
approval process, 118

cluster, 178
configuration, 89
database

(see also database)
evaluation, 83
external accounts, 130
JBoss, 170
LDAP, 132
licensing, 83
Linux, 217
migration, 197
NT service, 211
standalone, 42
WebLogic, 164
WebSphere, 166

interceptor, 733

J
JBoss

installation, 170
JSP

Business Service Console, 813
web framework, 753

JSSE
LDAP, 147

K
key generator, 301
keyNameMatch, 544
keys, 301
keytool, 394

LDAP server trust, 147

L
LDAP

installation, 132

1013

SSL, 146
TLS, 146

ldaps, 146
licensing, 83
Linux

installation, 217
Log4j

logging, 884
logging

UDDI client, 884

M
management

accounts, 403
approval process, 438
configuration, 446
replication, 431
taxonomy, 415
user groups, 409

manage tab
rules to display, 400

mapping WSDL
API, 620

mapping XML
API, 636

mapping XML Schema
API, 645

mapping XSL transformation
API, 658

migration, 197
after installation, 197
during installation, 197

module
API, 728

MSSQL, 95
multilingual support

database, 95

myEntities, 544

N
Netegrity SiteMinder

authentication, 186
node

configuration, 454
NT service

installation, 211

O
omitKeyNameMatch, 544
omitKeyValueMatch, 545
omitTModelKeyMatch, 545
Oracle, 95

P
permission

API, 703
principles, 485
setting, 412

permissions, 295
PStore tool, 503
publication registry

installation, 118

R
range queries, 304
register

user account, 249
registry

client, 708
registry client package, 708
registry configuration, 454
Registry Console, 241

browsing, 340

1014

configuration, 482
manage user account, 335
overview, 331
publishing, 358
register user account, 328
searching, 345

registry management, 400
replication

API, 614
management, 431
master registry, 432
slave registry, 433

reports
Business Service Console, 269

restore, 203
running registry

Linux, 217
NT service, 211

S
security

configuration, 454
setup tool, 89
Signer tool, 394

config, 394
sign, 394
validate, 394

SiteMinder
authentication, 186

SMTP configuration, 89
SOAPSpy Tool, 880
SSL

client, 718
LDAP, 146
SSL tool, 511

SSL tool, 511
SSL tool examples, 512

statistics, 443
API, 615

subscription
extension API, 682

subscription service
developing, 744

system property
LDAP, 147

system requirements, 40
hardware, 40

T
taxonomy

API, 548
developing validation service, 740
pre-deployed, 306
principles, 306
types, 306
validation API, 547

taxonomy management, 415
create taxonomy, 415
download taxonomy, 415
edit taxonomy, 415
edit taxonomy structure, 415
upload taxonomy, 415

tModelKeyApproximateMatch, 545
trust

LDAP, 147

U
UDDI

API, 528
client, 708
client API, 528

uninstallation, 220
user account, 249
user group

1015

API, 694
management, 409

user roles, 485

V
validation

API, 547
validation service

developing, 740

W
web framework, 753

configuration, 784
web interfaces, 241
WebLogic

cluster, 178
installation, 164

WebSphere
installation, 166

1016

Glossary
.NET A software platform designed by the Microsoft Corporation. It is an

environment for writing C#, Visual Basic, and C++ programs that can
easily and securely interoperate.

.NET Framework An environment for building, deploying, and running Web services and
other applications. It consists of three main parts: the Common Language
Runtime, the Framework classes, and ASP.NET.

.NET Framework Software
Development Kit (SDK)

A set of documentation, samples, command-line tools, compilers, and
the .NET Framework; that is, everything you need to write, build, test,
and deploy .NET Framework applications.

Accepting Security Provider A security provider that is responsible for accepting secure requests
and usually also for determining the invoker identity.
See also Identity.

Access Control Restrictions of a subject's access to a resource.
See also Access Controller, Subject.

Access Controller An application component that is responsible for access control
decisions.
See also Access Control.

accessPoint A binding template element that indicates where you can find the
endpoint of the Web service that is described by this entity. This may
be a URL, an electronic mail address, or even a telephone number.
See also Universal Description, Discovery and Integration.

ACL Access Control List — A list of entities, together with their access
rights, the members of which have authorized access to a resource.
See also Subject.

Admin Service The core System Web service, allowing you to manage advanced
settings for each deployed service on a Systinet Server. Using this Web
service it is possible to manage settings like security mechanisms,

1017

transport interceptors, polymorphism, automatic Web service
authentication, and automatic authorization checks per Web service
method.

Alias A name that an entity uses in place of its real name.

Apache Containers A schema for transferring containers proposed by Apache group. This
schema is not compatible with Microsoft .NET.

Application Server-Dependent
Deployment Descriptor

When an enterprise application is deployed on the server, it contains a
set of deployment descriptors. They contain application metadata.
Format and meaning of Application Server Dependent Deployment
Descriptor is closely related to the application server and cannot be
used in the context of any other application server.

Application Web services Web services can be categorized into the three groups: System,
Application, and Utility Web services. Application Services are created
for specific tasks by the developer. To accomplish the task they typically
use Utility Web services.

ASP .NET ASP .NET is a unified Web development platform that provides the
services necessary for developers to build enterprise-class Web
applications.

Asynchronous Client Invocation Client invocation of any Web service in an asynchronous way.

Asynchronous Return
Mechanism

A service implementation returning the results of a call to Systinet
Server in an asynchronous way.

Asynchronous Transport
Coupling

Sending the response from a Web service invocation over a different
transport channel than the one on which the request came.

Authentication The process of establishing the validity of a claimed identity, it usually
consists of two steps: 1/ identification - presenting identity credentials
to the security system, 2/ verification - generating identity that
corroborates the binding between the identity principals and credentials.

Authorization The process of determining what types of activities are permitted.
Usually, authorization is in the context of authentication. Once you

1018

have authenticated principals, they may be authorized different types
of access or activity.
See also Authentication.

BEA WebLogic Application
Server

An application server provided by BEA Systems, Inc.

Binding Template For a businessService entry, a list of binding templates that point to
specifications and other technical information about the service is
associated. For example, a binding template might point to a URL that
supplies information on how to invoke the service. The binding template
also associates the service with a service type.
See also Universal Description, Discovery and Integration.

Borland Application Server An application server provided by the Borland Software Corporation.

Borland Enterprise Server An application server provided by Borland Software Corporation.

Business Entity A representation of information about a business. Each business entity
contains a unique identifier, the business name, a short description of
the business, some basic contact information, a list of categories and
identifiers that describe the business, and a URL pointing to more
information about the business.
See also Universal Description, Discovery and Integration.

Business Policy A set of requirements, codified in Technical Policies, and their
associations with a set of artifacts in an SOA. A Business Policy should
always represent a course of action that is needed to achieve a particular
business objective.

Systinet business policies are covered by the WS-PolicyAttachment
specification
[http://msdn.microsoft.com/webservices/default.aspx?pull=/library/en-
us/dnglobspec/html/ws-policyattachment.asp].
See also Technical Policy.

Business Service A structure associated with a businessEntity that consists of a list of
businessService structures offered by the businessEntity. Each
businessService entry contains a business description of the service, a

1019

http://msdn.microsoft.com/webservices/default.aspx?pull=/library/en-us/dnglobspec/html/ws-policyattachment.asp
http://msdn.microsoft.com/webservices/default.aspx?pull=/library/en-us/dnglobspec/html/ws-policyattachment.asp

list of categories that describe the service, and a list of pointers to
references and information related to the service.
See also Universal Description, Discovery and Integration.

C# A modern, object-oriented language that enables programmers to build
a applications for the Microsoft .NET platform.

Catalina Servlet Container A Tomcat 4.0 servlet container. Tomcat is the servlet container that is
used in the official Reference Implementation for the Java Servlet and
JavaServer Pages technologies.

Certificate An electronic identifier from a certification authority that includes the
certification authority signature made with its private key. The
authenticity of the signature is validated by other users who trust the
certification authority public key.
See also Certification Authority.

Certificate Chain A list of Certificates (usually X.509 Certificates), starting with a
certificate for a given subject that is signed by the authority represented
by the next certificate in the list. This list usually ends with the root
certification authority certificate.
See also X.509.

Certificate Revocation List A data structure that enumerates digital certificates that have been
invalidated by their issuer prior to when they were scheduled to expire.
See also Certificate.

Certification Authority An entity that issues digital certificates (especially X.509 certificates)
and vouches for the binding between the data items in a certificate.
See also X.509.

Client Package Client side-specific information needed to invoke a specific Web service.
This usually consists of a deployment descriptor and custom code, such
as header processors, interceptors, serializers.

Client Profile (in Systinet
Developer)

A set of client packages and additional configuration, such as security
settings.
See also Client Package.

1020

Clustering The act of connecting multiple computers and making them act like a
single machine. Corporations often cluster servers to distribute
computing-intensive tasks and risks. If one server in a cluster fails,
some operating systems can move its processes to another server,
allowing end users to continue working while the first server is revived.

Content Based Routing (CBR) An advanced and easy to use technique for message routing based on
message content.
See also XPath.

Credentials Data that is transferred to establish the claimed identity of an entity.
According to RFC2828, a credential is the information one entity
presents to another to authenticate the other's identity.

CRL See Certificate Revocation List.

CTS (Common Types System) A definition of how types work within runtime (their declaration and
usage), which enables types in one language to interoperate with types
in another language, including cross-language exception handling.
See also .NET.

DMZ (Demilitarized Zone) An unprotected server on which all parties have access to everything.
A web server may be put in the DMZ while the assets it accesses, such
as databases, remain behind a firewall. It works in conjunction with
transport layer security.
See also TLS.

Deploy Service A System Web service that is used to deploy packages to a Systinet
Server.

Deploy Tool A part of Systinet Server that deploys and undeploys deployment
packages to Systinet Servers.

Deployed Web service (in
Systinet Developer)

A Web service that is assigned to a particular Deployment Package in
the Project.
See also Deployment Package.

Deployment The process of installing a deployment package to particular Systinet
Server.

1021

See also Deployment Package, Deployment Descriptor.

Deployment Descriptor An XML document describing a package.
See also Deployment.

Deployment Package A definition of Web services plus deployment information.
See also Deployment.

Deserialization The process of creating Java objects out of a SOAP message.

Deserializer A class that creates a Java object and fills it with the data from a SOAP
message.

Distinguished Name A distinguished name (DN) is a set of attribute values that identify the
path leading from the base of the directory information tree to the object
that is named. An X.509 public-key certificate or CRL contains a DN
that identifies its issuer, and an X.509 attribute certificate contains a
DN or other form of a name that identifies its subject.
See also Certificate, X.509.

Document/Literal One possible encoding for a SOAP message, indicating that the message
must strictly follow a schema written in the WSDL Document.

DOM Document Object Model - a tree of objects with interfaces for traversing
the tree and writing an XML version of it, as defined by the W3C
specification.

DOM element A structure representing an XML element as defined by DOM.

Dynamic Call Constructing and issuing a request whose signature is possibly not
known until runtime.

Dynamic Invocation Constructing and issuing a request whose signature is possibly not
known until runtime.

EAR File Applications deployed on an application server are usually delivered
as one compressed file with .ear extension. The file may contain
software components, web applications, and resources.

1022

EJB Enterprise JavaBean.

Embedded Server The Systinet Server in Systinet Developer that is used for testing
purposes. It is tightly bound with the IDE.

Encoded Serialization Serialization that uses an encoding layer to read/write data.

Endpoint A referenceable entity (using, for example, a URL or URI).

Entity JavaBean The kind of EJB that provides an object view of data in the database.
See also EJB.

Exception (Unhandled Java
Exception)

An event during program execution that prevents the program from
continuing normally.

Forte For Java Sun Microsystems Forte For Java. An IDE for development of Java
applications. It was a branded and commercial version of NetBeans;
now it is named Sun ONE Studio (SOS). Systinet Developer for Sun
ONE Studio is a plug-in that can be plugged into SOS and lets
developers develop Web service based applications right in the IDE.
See also Sun ONE Studio.

GSS-API Generic Security Services API (GSS-API) is a programming interface
that allows two applications to establish a security context independent
of the underlying security mechanisms. Specified in RFC-2743.
See also Security Mechanism.

Header A part of a SOAP message usually carrying some metadata.

Header Processor A Java class for parsing/creating headers.

HTTP HyperText Transfer Protocol. The Internet protocol, based on TCP/IP.

HTTPS HyperText Transfer Protocol layered over the SSL protocol.
See also HTTP, Security Mechanism.

IBM WebSphere Application
Server

An application server provided by the International Business Machines
Corporation.

1023

Identity Information that is unique within a security domain and that is
recognized as denoting a particular entity within that domain.

IETF Internet Engineering Task Force (www.ietf.org).

IIS (Internet Information
Services)

A secure platform for building and deploying business applications,
hosting and managing Web sites, and publishing and sharing information
across a company intranet or the Internet.

In Parameter A parameter that is passed from client to server.

In/Out Parameter A parameter that is passed in both directions. For example, it may
contain an input value for the server and the processed result for the
client.

Incoming Message A message that is sent to Systinet Server runtime. On the client side,
this is a response message. On the server side, a request message.

Initiating Security Provider A security provider that is responsible for initiating and maintaining
secure communication from the client to the server side.
See also Security Provider.

Interceptor A class for intercepting (that is, inspecting or modifying) the content
of a message.

J2EE Application Server An application server that is compliant with the J2EE specification
published by Sun Microsystems Incorporated.

J2EE Specification The Java 2 Platform, Enterprise Edition specification published by Sun
Microsystems Incorporated.

JAAS The Java Authentication and Authorization Service (JAAS) is a set of
Java packages that enable services to authenticate and enforce access
controls upon users.
See also Authentication, Authorization, Access Control.

JAR File A file compressed using the Java Archive (JAR) file format.

1024

Java Collections A set of collections defined by the Java Platform specification
(java.util.Map, java.util.Set, java.util.List).

Java Security A set of Java security concepts based on the security framework
provided by Java itself.
See also JSSE, JCE, JAAS.

Java2WSDL tool A tool for converting Java classes and/or interfaces into their WSDL
description.

JavaBeans Activation
Framework

Standard services used to determine the type of an arbitrary piece of
data, encapsulate access to it, discover the operations available on it,
and to instantiate the appropriate bean to perform said operation(s).

JAX-RPC A standard created by Sun's Java Community Process (#101) intended
as a high-level API for calling Web services.

JAXM A standard created by Sun's Java Community Process (#67) intended
as a low-level API for calling Web services.

JBoss Application Server An open source Application Server available from JBoss.

JCE The Java Cryptography Extension - a set of packages that provide a
framework and implementations for encryption, key generation and
key agreement, and Message Authentication Code (MAC) algorithms.
Support for encryption includes symmetric, asymmetric, block, and
stream ciphers. The software also supports secure streams and sealed
objects.

JDBC Java DataBase Connectivity (JDBC) Data Access API.

JMS The Java Message Service API.

JMS Destination For sending and receiving messages, JMS uses a destination, which
may be either JMS Topic or JMS Queue.
See also JMS.

JMS Message A message sent by the Java Message Service.
See also JMS.

1025

JMS Provider A provider of JMS administered objects, such as JMS Queue or JMS
Queue Connection Factory.
See also JMS.

JMS Queue Used by the Java Message Service in Point-to-Point communications.
See also JMS.

JMS Queue Connection Factory Used by the Java Message Service in Point-to-Point communications
for creating JMS Connections.
See also JMS.

JMS Topic Used by the Java Message Service in Publish/Subscribe
communications.
See also JMS.

JMS Topic Connection Factory Used by the Java Message Service in Publish/Subscribe communications
for creating JMS Connections.
See also JMS.

JMS Transport A pluggable transport that enables the sending of SOAP messages using
the Java Message Service.
See also JMS.

JNDI The Java Naming and Directory Interface; provides support for the
common features of naming services including COS (Common Object
Services), DNS (Domain Name System), LDAP (Lightweight Directory
Access Protocol), and NIS (Network Information System).
See also LDAP.

JNDI Lookup A lookup based on a unique JNDI name that returns an object bounded
in the JNDI namespace.
See also JNDI.

JNDI Property To use a specific implementation of JNDI, JNDI properties might be
required to be set in the environment.
See also JNDI.

JSSE The Java Secure Socket Extension - a set of Java packages that enable
secure Internet communications. It implements a Java version of SSL

1026

(Secure Sockets Layer) and TLS (Transport Layer Security) protocols
and includes functionality for data encryption, server authentication,
message integrity, and optional client authentication. Using JSSE,
developers can provide for the secure passage of data between a client
and a server running any application protocol (such as HTTP, Telnet,
NNTP, and FTP) over TCP/IP.

JTA The Java Transaction API.

Kerberos A system developed at the Massachusetts Institute of Technology that
uses passwords and symmetric cryptography (DES) to implement a
ticket-based, peer-entity authentication service and an access control
service distributed in a client-server network environment.

Key Short for Cryptographic Key - an input parameter that varies the
transformation performed by a cryptographic algorithm.

Key Entry An entry in the key store consisting of an alias, a cryptographic key,
and a certificate chain.
See also Alias, Key Store, Key, Certificate Chain.

Key Store A Systinet Server component responsible for management of key entries.
See also Key Entry.

LDAP Lightweight Directory Access Protocol (RFC-1777) - a client-server
protocol that supports basic use of the directory servers, that is, database
servers or other systems that provide information (such as digital
certificates or CRL) about an entity whose name is known.
See also Certificate, CRL.

Library Package Java class packages that provide their classes to other deployed
packages. Java classes deployed in Systinet Server are normally
accessible only inside their own packages.

Literal Serialization Serialization driven only by XML Schema-type definitions.

Load-Balancing Distributing processing and communications activity evenly across a
computer network so that no single device is overwhelmed.

1027

Local Name A local part (without namespace) of a Qname.
See also Qualified Name.

Message Data plus meta-information indicating how it is to be routed and
handled. An example of a message is a SOAP message or transport-
level message.

Message Processing The process through which a message is processed by interceptors,
serializers, and deserializers.

MIME Multipurpose Internet Mail Extensions - a standard for sending data
with attachments. This standard is set out in RFCs 2045, 2046, 2047,
and 2048.

MOM Message Oriented Middleware. An integration paradigm based on
asynchronous message exchange.

Multipart Content Content encoded in accordance with the MIME specification.

Namespace Namespaces are typically established to distinguish between multiple
interpretations of a single token or phrase. For example, a "nut" in the
"food" namespace is something to eat, while in the "hardware"
namespace something to fasten to a bolt (something you would not
want to attempt with a "food:nut" and vice-versa). In XML, it can be
thought of as a collection of names, identified by a URI reference
[RFC2396], that are used in XML documents.

NetBeans An open source platform primarily used for development of Java
applications; it has evolved into a Tools Platform. The commercial and
branded version of NetBeans is a product called Sun ONE Studio
(formerly Sun Forte For Java).
See also Sun ONE Studio.

OASIS Organization for the Advancement of Structured Information Standards
(http://www.oasis-open.org) - an international, not-for-profit consortium
that designs and develops industry standard specifications for
interoperability based on XML.

Orion Application Server An Application Server available from IronFlare AB of Sweden.

1028

Out Parameter A parameter that is sent from the server to the client.

Outgoing Message A message sent out during Systinet Server runtime. On the client side,
this message is called a request; on the server side, it is a response.

Package Manager (in Systinet
Developer)

A part of a Systinet Server representation/Client Profile that is
responsible for management of deployment/client packages. It also lets
you view the installed packages and their Web services.

Package, Client Package See Client Package.

Package, Library Package See Library Package.

Package, Server Package See Server Package.

Permission An action that can be performed on a particular resource by a specific
principal or role.

PDP- Policy Decision Point A logical entity that is responsible for authorizing or denying access to
services and/or resources.

Ping Service A ping service is a System Web service that can be used as a lightweight
method for determining whether a Systinet Server is running.

PKCS The Public-Key Cryptography Standards are specifications produced
by RSA Laboratories in cooperation with secure systems developers
worldwide for the purpose of accelerating the deployment of public-
key cryptography.

PKI Public-Key Infrastructure - a system of certification authorities (and,
optionally, other supporting servers and agents) that perform some set
of certificate management, archive management, key management, and
token management functions for a community of users in an application
of asymmetric cryptography.
See also Certification Authority.

PEP - Policy Enforcement Point A logical entity that enforces policy decisions.

1029

POP, POP3 Post Office Protocol - a protocol for retrieval of email messages from
mail servers.
See also POP3 server.

POP3 server A mail server that supports the POP3 protocol from retrieval of email
messages.
See also POP, POP3.

Port A part of WSDL that binds an endpoint address and its interface.

PortType Part of a WSDL document that describes the interface of a service.
See also WSDL.

Principal An entity whose identity can be authenticated. A principal can represent
any entity, such as an in individual, a corporation, or a login id.

Protected Store A Systinet Server component consisting of a user store and key store.
See also User Store, Key Store.

Proxy Host The host name of a proxy server.

Proxy Port Port number of a proxy server.

Proxy, dynamically generated A Java object that acts as a proxy to a Web service. Invoking methods
on this object results in a SOAP request and response exchange with
the Web service.

Public Cloud A Universal Business Registry where businesses can describe and
publish their web services to the general public.
See also UBR.

Publisher Assertion A structure that allows you to emphasize a relationship between two
Business Entities.
See also Universal Description, Discovery and Integration.

QName See Qualified Name.

Qualified Name A name that consists of a namespace and a unique name from that
namespace.

1030

See also Namespace.

Receiver A referenceable entity that accepts messages. This can be overseen as
a Web service, an asynchronous endpoint, or a stub/proxy that accepts
a response.

Reference A reference to data that are defined in another part of the message. An
example might be a reference to the next MIME part of a message or
a reference to repeated Java objects.

Reliability The ability of messages to be delivered regardless of software
component, system, or network failures.
See also WS-ReliableMessaging.

Remote Debugging (in Systinet
Developer)

Debugging of Web services that are deployed to a remote Systinet
Server. In Systinet Server for Java Developer, you can place a breakpoint
into your Web service source code, switch-on Remote Debugging
Support for Systinet Server and debug this Web service remotely even
when it is running on a remote machine.

Remote Server In Systinet Developer, you have a list of Systinet Servers that you can
work with. You can register any running Systinet Server into this list
so you can work with it (remotely manage this server, deploy Web
services to this server etc.).

REST REpresentational State Transfer is an architectural module used to
implement networked IT systems. The modeling of communication
between components is similar to that used by HTTP. The main
distinguishing features of this model relate to resources.

Return Value A single value returned from a service.

Role A category that applies to a set of principals.

RFC An IETF Request For Comments (see http://www.ietf.org/rfc) - usually
a standard or a recommendation.

1031

RPC Remote Procedure Call - an extension of a common procedure call used
inside one application to span multiple processes running on multiple
hosts.

RPC/Encoded One possible SOAP message encoding, indicating that the message
format is logically given by the XML schema present in the WSDL.
The physical representation of the message is given by the encoding of
the message.
See also WSDL.

SAML Security Assertions Markup Language - an XML framework for
exchanging security information over the Internet. SAML enables
disparate security services systems to interoperate. It resides within a
system's security mechanisms to enable exchange of identities and
entitlements with other services.

Scalability How well a system can adapt to increased demands. For example, a
scalable network system would be one that can start with just a few
nodes, but easily expand to thousands of nodes.

Schema Type Defines the type of a part of XML data.

Security Manager The component of Systinet Server responsible for security management.

Security Mechanism A mechanism that implements a security function. Some examples of
security mechanisms are authentication exchange, checksum, digital
signature, encryption, and traffic padding.

Security Provider A provider for particular security mechanism(s).
See also Security Mechanism.

Sender An entity that sends messages.

Sequence Owner A load balancer node that handles all the messages in a WS-RM reliable
managing sequence. The reliable message sequence corresponds to a
load balancer session.
See also WS-ReliableMessaging.

1032

Serialization The process by which binary objects are written into a structured stream;
for example, when Java objects are written into a SOAP message.

Serializer A class that writes a Java object into a SOAP message.

Server Package The package that holds all the service-related files.
See also Deployment Package, Deployment.

Service Class The implementation class of the Web service.

Service Endpoint A single endpoint of a service instance with an associated path and
additional configuration (such as header processors, serializers, etc.).

Service Instance A service class instance registered in Systinet Server for Java.

Service Lookup See Web Service Lookup.

Service Manager A component of Systinet Server that is responsible for management of
deployed Web services.

Service State The current state of a service instance; for example, Offline, Starting,
Running, Stopping, Stopped.

Service, Asynchronous Java
Service

A Web service implemented in Java that returns the results of an
invocation in an asynchronous manner.

Service, Java Service A Web service implemented in Java that handles the messages using
Java types representation of their content.

Service, Raw Service A Service written in Java that handles the messages using a low-level
transport message API.

Service, XML Service A Service written in Java that handles the messages using the low-level
SOAP Message API.

Servlet The basic part of Java Servlet Technology.

Servlet Container A container application that allows servlets to run.
See also Servlet.

1033

Single Login A system of applications, where a principal (user) authenticates with
one system entity (called identity provider) and has that authentication
honored by other system entities (called service providers or partners).
See also SSO (Single Sign-On).

SMTP Simple Mail Transfer Protocol - a protocol for sending email messages
between servers. Most email systems that send mail over the Internet
use SMTP to send messages from one server to another; the messages
can then be retrieved with an email client using either POP or IMAP.
In addition, SMTP is generally used to send messages from a mail client
to a mail server.

SMTP Server A mail server that supports the SMTP protocol for email transfer.
See also SMTP.

SOAP Simple Object Access Protocol - a lightweight protocol based on XML
for the exchange of information in a decentralized, distributed
environment.

SOAP Body The part of a SOAP message that contains the actual data.
See also SOAP.

SOAP Digital Signature The W3C document SOAP Security Extensions: Digital Signature
specifies the syntax and processing rules for a SOAP header entry to
carry digital signature information within a SOAP 1.1 Envelope.
See also SOAP, SOAP Header, SOAP Envelope, XML Signature.

SOAP Envelope The root element of a SOAP message. It contains exactly one body sub-
element and optionally one header sub-element.
See also SOAP.

SOAP Fault Used to return errors that occur during the routing/processing of a SOAP
message.
See also SOAP.

SOAP Fault-Actor Part of a SOAP Fault. It provides information about who/what caused
the fault.
See also SOAP Fault.

1034

SOAP Fault-Code Part of a SOAP Fault. It provides an numeric identification of the fault.
See also SOAP Fault.

SOAP Fault-Detail Part of a SOAP Fault that provides more details about the fault. In
Systinet Server for Java, this element usually contains a server stack
trace.
See also SOAP Fault.

SOAP Header The part of soap message that contains metadata (for example,
authentication information or instance identification) of the message.
See also SOAP Body.

SOAP Message A message encoded in accordance with the SOAP specification.
See also SOAP.

SOAP with Attachments Binding for a SOAP message to be carried within a MIME
multipart/related message in such a way that the processing rules for
the SOAP 1.1 message are preserved.
See also SOAP.

SOAPSpy A SOAP message-tracking tool that scans communication between the
client and sever. The communication is visually displayed. You can
also manually change and send the messages.
See also SOAP.

SOS See Sun ONE Studio.

SPKM Simple Public Key Mechanism - a security mechanism specified by the
IETF in RFC-2025.

SQL Statement A statement of the Structured Query Language.

SSJ Abbreviation for Systinet Server for Java™.

SSL The Secure Sockets Layer (SSL) and Transport Layer Security (TLS)
protocols were designed to help protect the privacy and integrity of
data while it is transferred across a network. The Internet Engineering
Task Force (IETF) standard called Transport Layer Security (TLS) is
based on SSL.

1035

See also TLS.

SSO (Single Sign-On) A system that enables a user to access multiple computer platforms or
application systems after being authenticated only once.
See also SAML, Kerberos.

Static Invocation Constructing a request at compile time. Calling an operation via a proxy
procedure.

Stub A statically-generated service interface, which in turn dynamically
generates the proxy during runtime.

Subject A grouping of related information for a single entity, such as a person.
Such information includes the Subject's identities, as well as its security-
related attributes (passwords and cryptographic keys, for example).
See also Identity.

Sun ONE Studio Sun ONE Studio (formerly Sun Forte For Java) is an IDE for
development of Java applications. It is a branded and commercial
version of NetBeans. Systinet Developer for Sun ONE Studio is a plug-
in that can be used with SOS and lets developers develop Web service-
based applications in the IDE.
See also NetBeans.

Systinet Developer A product of Systinet Corporation that lets developers create, test,
debug, and manage Web services using their favorite IDE. Systinet
Developer is a plug-in that enhances IDEs such as Sun Microsystems
Sun ONE Studio, Borland JBuilder, and IBM Eclipse.

Systinet Server for Java
Application Directory

A directory to which the WASP_HOME parameter points.
See also Deployment, WASP_HOME.

Systinet Server for Java Root
URL

The URL where Systinet Server runs. The Global URL of the Web
service running on Systinet Server is <Systinet Server for Java Root
URL> + <path of the Service Endpoint>.

System Web Services Web services can be categorized into three groups: System, Application,
and Utility Web services. System Web services facilitates fundamental

1036

functions such as service deployment, administration and security
settings management.

Target Namespace In WSDL, XML Schema, or a deployment descriptor document, the
namespace into which the content of the document is placed.

Technical Policy A set of assertions that represent a business requrement. Technical
policies are associated with SOA artifacts to which the requirement
applies; a set of technical policies and associated artifacts forms a
Business Policy.

In WS-Policy terms, a Systinet technical policy = WS-Policy + name
+ documentation.
See also Business Policy.

TLS Transport Layer Security protocol. Its primary goal is to provide privacy
and data integrity between two communicating applications. The first
version of TLS is described in RFC-2246.
See also SSL.

tModel A structure that takes the form of keyed metadata (data about data). In
a general sense, the purpose of a tModel within the UDDI registry is
to provide a reference system based on abstraction. Among the roles
that a tModel plays in UDDI is the ability to provide and to describe
compliance with a specification or concept to a taxonomy, for example.

Tomcat Servlet Container The servlet container that is used in the official Reference
Implementation for the Java Servlet and JavaServer Pages technologies.

Transport A component of Systinet Server that is responsible for transferring
messages to a Web service using particular transport protocol.

Transport Message A message accessible via Systinet Server Transport API.
See also Message.

Transport Repository A repository of all Systinet Server transports.

Trusted Certificate Entry An entry managed by the key store that represents a trusted certificate
or certificate chain.

1037

See also Key Store, Certificate Chain.

UBR Universal Business Registry (also known as Public Cloud) - a set of
UDDI Registries that form a global distributed registry of information
about Web services. Note that UBR nodes (members of the Public
Cloud) are run by Microsoft, IBM, SAP, HP, and NNTP. They replicate
the content of Public Cloud.

UDDI See Universal Description, Discovery and Integration.

UDDI Green Pages UDDI accepts and organizes three types of information into three broad
categories: White, Yellow, and Green Pages. Green Pages hold the
technical information about services that are exposed by the business,
including references and interfaces to the services a company can
deliver.

UDDI Inquiry Port Every UDDI Registry implementation provides two ports with which
you can interact: inquiry and publishing. The inquiry port allows you
to browse and search information that is published to a UDDI Registry.

UDDI node The UDDI node is a collection of Web services, each of which
implements the APIs in a UDDI API set, and that are managed according
to a common set of policies. Typically, a node consists of at least an
implementation of the Inquiry, the Publication, and the Custody and
Ownership Transfer API sets; often a node will implement additional
API sets such as Subscription and Replication.

UDDI Operator A UDDI Operator is a role of a person who sets node policy and runs
a node. There is exactly one operator for a given node.

UDDI Publishing Port Every UDDI Registry implementation provides two ports with which
you can interact with: inquiry and publishing. The publishing port allows
you to publish information about your Web services.

UDDI Registry A UDDI Registry is an implementation of the UDDI specification that
allows Web service vendors to register information about the Web
services they offer so that others can find them.

1038

UDDI White Pages UDDI accepts and organizes three types of information into three broad
categories: White, Yellow, and Green Pages. White Pages include
address, contact, and known identifiers.

UDDI Yellow Pages UDDI accepts and organizes three types of information into three broad
categories: White, Yellow, and Green Pages. Yellow Pages include
industrial categorizations based on standard taxonomies.

Undeployment Undeployment is a process of uninstalling deployed packages from
Systinet Server.
See also Deployment.

Universal Description,
Discovery and Integration

UDDI is a specification for distributed Web-based information registries
of Web services.

Updatable Policy A Systinet Server component responsible for management of access
control lists.
See also ACL.

URI Uniform Resource Identifier - the generic term for all types of names
and addresses that refer to objects on the World Wide Web. A URL is
one kind of URI.

URL Uniform Resource Locator - the global address of documents and other
resources on the World Wide Web. The first part of the address indicates
what protocol to use and the second part specifies the IP address or the
domain name where the resource is located.

User Any person who interacts directly with a computer system. Note that
'users' do not typically include 'operators,' 'system programmers,'
'technical control officers,' 'system security officers,' and other system
support personnel.

User Group A named collection of user identifiers.
See also User.

User Property In the context of Systinet Server for Java, a user attribute that can be
stored in the user store.
See also User Store.

1039

User Store A Systinet Server component responsible for management of user
(security) properties, such as passwords and certificates.

Utility Web services Web services can be categorized into three groups: System, Application,
and Utility Web. A Utility Service typically provides commonly required
functionality utilized by any Application Web service. It provides an
easy way for developers to reuse common functions to produce more
reliable code and reduce redundancy.

UUID Universally Unique Identifier as used in http://www.ietf.org/
recommendations or drafts.

WAR File A format for compressing files, similar to a JAR file. Web applications
that may be deployed to an application server are often compressed
into WAR files.
See also JAR File.

WASP, WASP Server for Java The former name of Systinet Server for Java™.

WASP_HOME The directory where the Systinet Server distribution is installed.

WaspPackager Tool A part of Systinet Server for Java that creates deployment packages
that can be deployed to Systinet Servers or client packages that are used
for Web service Clients.
See also Deployment, Deployment Package, Client Package.

Web Service Loosely coupled software components delivered over Internet standard
technologies.

Web Service Client An application that uses Web services.

Web Service Debugger (in
Systinet Developer)

A special kind of Sun ONE Studio Debugger Type that must be used
for debugging Web service clients. This Debugger Type ensures the
correct initialization of the client part of Systinet Server for Java.

Web Service Executor (in
Systinet Developer)

A special kind of Sun ONE Studio Executor that must be used for
running Web service Clients. This Executor ensures the correct
initialization of the client part of Systinet Server for Java.

1040

http://www.ietf.org/

Web Service Lookup A process through which a remote Web service is bound to a Java
interface. The result of this process is a Java stub for the Web service.

Web Services Description
Language Utility (wsdl.exe)

Used to generate code for XML Web service clients and XML Web
services using ASP.NET from WSDL contract files and XSD schemas.

WSDL An XML-based language that describes an interface of a Web service
plus information on how to call the Web service and where to find it.

WSDL Compiler The previous name for WSDL2Java, a Systinet Server tool that converts
a WSDL document into Java code.

WSDL Compiler tool See WSDL Compiler.

WSDL Compiler Web service Former name of the WSDL2Java Web service, a utility Web service
that offers SOAP access to the WSDL2Java tool used for the generation
of Java source files from a WSDL document.

WSDL Operation Part of a WSDL Document representing the interface of an operation
that can be invoked on a Web service.

WSDL Port Part of a WSDL Document that binds the endpoint of a service with an
interface.

WSDL Service Part of WSDL Document that specifies the set of endpoints that define
one logical service.

WS-Addressing A protocol that provides transport-neutral mechanisms to address Web
services and messages. Specifically, WS-Addressing defines XML
elements to identify Web service endpoints and to secure end-to-end
endpoint identification in messages. It enables messaging systems to
support message transmission through networks that include processing
nodes such as endpoint managers, firewalls, and gateways in a transport-
neutral manner.

For more information, please see the WS-Addressing specification.
[http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/dnglobspec/html/ws-addressing.asp]

1041

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnglobspec/html/ws-addressing.asp

WS-Eventing Specification which describes a protocol that allows Web services to
subscribe to or accept subscriptions for event notification messages.

For more information, please see the WS-Eventing specification.
[http://msdn.microsoft.com/webservices/community/workshops/default.aspx?pull=/library/en-
us/dnglobspec/html/ws-eventing.asp]

WS-Policy The Web Services Policy Framework (WS-Policy) provides a general
purpose model and corresponding syntax to describe and communicate
the policies of a Web Service. WS-Policy defines a base set of constructs
that can be used and extended by other Web Services specifications to
describe a broad range of service requirements, preferences, and
capabilities.

For more information, please see the WS-Policy specification.
[http://msdn.microsoft.com/webservices/default.aspx?pull=/library/en-
us/dnglobspec/html/ws-policy.asp]

WS-ReliableMessaging A protocol that allows messages to be delivered reliably between
distributed applications in the presence of software component, system,
or network failures. Is used in conjunction with other specifications
and application-specific protocols within the SOAP [SOAP] and WSDL
[WSDL] extensibility model. The draft version of this protocol was
known as WS-Reliability.

For more information, please see the WS-ReliableMessaging
specification.
[http://msdn.microsoft.com/webservices/default.aspx?pull=/library/en-
us/dnglobspec/html/ws-reliablemessaging.asp]

WS-RM See WS-ReliableMessaging.

WS-Security WS-Security describes enhancements to SOAP messaging to provide
quality of protection through message integrity, message confidentiality,
and single message authentication. It enables the user to encrypt and/or
sign individual SOAP messages.

Systinet Server for Java provides an implementation of OASIS' working
draft 13 [http://www.oasis-open.org]. It is based on a Systinet-modified

1042

http://msdn.microsoft.com/webservices/community/workshops/default.aspx?pull=/library/en-us/dnglobspec/html/ws-eventing.asp
http://msdn.microsoft.com/webservices/default.aspx?pull=/library/en-us/dnglobspec/html/ws-policy.asp
http://msdn.microsoft.com/webservices/default.aspx?pull=/library/en-us/dnglobspec/html/ws-reliablemessaging.asp
http://msdn.microsoft.com/webservices/default.aspx?pull=/library/en-us/dnglobspec/html/ws-reliablemessaging.asp
http://www.oasis-open.org
http://www.oasis-open.org

version of Apache XML-Security package 1.0.4
[http://xml.apache.org/security].

For more information, please see the WS-Security specification.
[http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/dnglobspec/html/ws-security.asp]

X.509 Part of the ITU-T X.500 specification that defines a framework to
provide and support data origin authentication and peer entity
authentication services, including formats for X.509 public-key
certificates, X.509 attribute certificates, and X.509 CRLs.
See also CRL.

XKMS The XML Key Management Specification - a specification designed
to extend the public key infrastructure (PKI) model by using XML to
provide new levels of ease and interoperability when implementing
secure applications.
See also PKI, XML.

XML eXtensible Markup Language - a W3C-sponsored format for structured
documents and data, used mostly on the Web.

XML Canonicalization A method for generating a physical representation, the canonical form,
of an XML document that accounts for permissible changes or variations
in syntax. It is a reduction of a document to a standard minimal form
useful, among other things, for document or structure comparisons.
Except for limitations regarding a few unusual cases, if two documents
have the same canonical form, then the two documents are logically
equivalent within the given application context.

XML Encryption A standard that specifies the process for encrypting data and representing
the result in an XML document. The data may be an XML element, or
XML element content, or any arbitrary data (including an XML
document).
See also XML, XML Signature.

XML protocol A communication or messaging protocol based on XML.

1043

http://xml.apache.org/security
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnglobspec/html/ws-security.asp

XML Schema A means for defining the structure, content and semantics of XML
documents through XML itself. It defines a richer set of data types -
such as booleans, numbers, dates and times, and currencies - than the
more traditional DTD. XML Schemas make it easier to validate
documents based on namespaces. It is defined in the W3C's XML
Schema Working Group.

XML Signature A way of providing integrity, message authentication, and/or signer
authentication services for data of any type, whether located within the
XML that includes the signature or elsewhere.
See also XML, XML Encryption.

XPath A language for addressing parts of an XML document. See XPath 1.0
[http://www.w3.org/TR/xpath] and XPath 2.0
[http://www.w3.org/TR/2004/WD-xpath20-20041029/].
See also XSLT, XQuery, Content Based Routing (CBR).

XQuery A query language able to express queries across data structured as XML.
The result of an XQuery program is also XML. XQuery can be viewed
as a transformation language. See XQuery 1.0
[http://www.w3.org/TR/2004/WD-xquery-20041029/].
See also XPath.

XSLT A language for transforming XML documents to other XML documents
or more generally any text output. Its expressive power is greater than
XQuery. Hence it is more universal. See XSLT 1.0
[http://www.w3.org/TR/xslt] and XSLT 2.0
[http://www.w3.org/TR/xslt20/].
See also XPath, XQuery.

1044

http://www.w3.org/TR/xpath
http://www.w3.org/TR/2004/WD-xpath20-20041029/
http://www.w3.org/TR/2004/WD-xquery-20041029/
http://www.w3.org/TR/xslt
http://www.w3.org/TR/xslt20/

	HP SOA Systinet Registry
	Contents
	1 Read This First
	HP SOA Systinet Registry Features Overview
	Release Notes
	What's New
	Known Issues
	UDDI Version 3 Specification
	UDDI Version 2 Specification
	Database
	Consoles
	Other

	Change Log
	HP SOA Systinet Registry 6.0
	HP SOA Systinet Registry 5.5
	HP SOA Systinet Registry 5.0
	WASP UDDI 4.6
	WASP UDDI 4.5.2
	WASP UDDI 4.5.1
	WASP UDDI 4.5
	WASP UDDI 4.0

	Supported Platforms
	Specifications
	Document Conventions
	Documentation Updates
	Support
	Mercury Product Support
	HP Software Support

	Legal
	Third Party Licenses
	HSQLDB License
	The Apache XML License, Version 1.1
	Apache Jakarta License, Version 1.1
	CUP Parser Generator
	Jetty License, Version 3.6
	W3C Software Notice and License
	Xalan, Version 2.5.1
	XML Pull Parser for Java, 1.1.1
	Unix crypt(3C) utility

	Notices
	Copyright
	Disclaimer
	Trademarks
	Acknowledgements

	FAQs

	2 Installation Guide
	System Requirements
	Hardware
	Java™ Platform
	Relational Database

	Installation
	Command-line Options
	Installation Panels
	Evaluation Key
	Installation Type
	SMTP Configuration
	Setup Administrator Account
	Database Settings
	Direct deployment
	Server Settings
	Single Login
	Confirmation and Installation Process

	Installation Summary
	Directory Structure
	Registry Endpoints
	Pre-installed Data

	Command-line Scripts
	serverstart
	serverstop
	server
	Setup
	Signer
	register
	SoapSpy
	PStoreTool
	env

	Reconfiguring After Installation
	Server Properties
	Windows Services
	Logs
	Troubleshooting

	Licensing and Evaluation
	Obtaining an Evaluation License Key
	Entering the License Key
	Extending the Evaluation Period
	GUI Version
	Command-line Version

	Evaluation Limitations

	Server Configuration
	Server Configuration
	SMTP Configuration

	Database Installation
	Database Creation Method
	Select Database Type
	Preconfigured HSQL
	Oracle
	MSSQL 2000 or 2005
	DB2
	HSQL
	JDBC Driver
	Account Backend
	Multilingual Data
	HSQL
	MSSQL
	Oracle
	DB2

	JDBC Drivers
	Alternative JDBC Drivers

	Approval Process Registry Installation
	Discovery Registry Installation
	Publication Registry Installation
	Provide Certificate in a File
	Select the Certificate
	Two-way SSL
	Java Keystore

	Intermediate Registry Installation

	External Accounts Integration
	LDAP
	LDAP with a Single Search Base
	LDAP with Multiple Search Bases
	Multiple LDAP Services
	LDAP over SSL/TLS
	LDAP over SSL Without Client Authentication
	LDAP over SSL With Mutual Authentication
	Ensuring Trust of the LDAP Server

	LDAP Configuration Examples
	SUN One with Single Search Base
	Sun One with Multiple Search Bases
	Active Directory with Single Search Base

	Custom (Non-LDAP)

	Deployment to an Application Server
	Creating a Web Application Archive (WAR,EAR)
	WebLogic
	WebSphere
	JBoss

	Cluster Configuration
	Cluster operation
	Cluster installation
	Setting Up Security
	Sharing Token Key

	WebLogic specific configuration for use with cluster

	Authentication Configuration
	HTTP Basic
	Netegrity SiteMinder
	SSL Client authentication
	J2EE Server Authentication
	Consoles Configuration

	Migration
	Migration During Installation
	Migration After Installation

	Backup
	Backup HP SOA Systinet Registry
	Restore HP SOA Systinet Registry

	NT Service Support
	Installation
	Starting and Stopping
	Logging
	Logging Customization
	Message Priority Settings
	Log File Properties
	Switching to NT Log
	Using other Log4J Appenders

	Customizing
	NT Service Name Change
	JVM Startup Parameters
	HP SOA Systinet Registry deployed to Application Server

	Uninstallation

	Running in Linux
	Using the syslog Daemon with HP SOA Systinet Registry
	Running HP SOA Systinet Registry as a UNIX Daemon

	Uninstallation
	Windows
	Linux

	3 User's Guide
	Introduction to HP SOA Systinet Registry
	UDDI's Role in the Web Services World - UDDI Benefits
	Typical Application of a UDDI Registry
	Basic Concepts of the UDDI Specification
	UDDI Data Model
	Business Entity
	Business Service
	Binding Template
	tModel

	Taxonomic Classifications
	Enterprise Taxonomies
	Checked and Unchecked Taxonomies

	Security Considerations
	Notification and Subscription
	Replication
	UDDI APIs
	Technical Notes
	Benefits of UDDI Version 3

	Subscriptions in HP SOA Systinet Registry
	Subscription Arguments
	Subscription Notification
	XSLT Over Notification
	Suppressing Empty Notifications
	Related Links

	Approval Process in Systinet Registry
	Requestor's Actions
	Context Checking
	A Special Approval Case

	Approver's Actions
	Optional Content Checking

	Synchronization of Data
	Publication priority
	Publication Priority Example

	Partial Discovery Priority
	Partial Discovery Example

	Full Discovery Priority
	Full Discovery Example

	Mail notifications in approval process
	Related Links

	Registry Consoles
	Demo Data
	Demo Data for Business Service Console
	Demo data for Registry Console and demos

	Business Service Console
	Overview
	User Account
	User Profile Fields
	Predefined User Profiles

	Searching
	Searching Providers
	Searching Endpoints

	Publishing
	Publishing Providers
	Publishing Services

	Reports
	Entities
	Entity Details
	Resources

	Subscription and Notification
	Subscription On Selected Entities
	Subscription from Search Query
	Manage Subscriptions
	View Changed Entities

	Approval Process
	Requestor's Actions
	Create and Submit Request
	Manage Requests
	Cloning Requests

	Approver's Actions
	Approve/Reject Request
	View Approval History

	Advanced Topics
	Data Access Control: Principles
	Explicit Permissions
	Permission Rules
	Composite Operations
	Pre-installed Groups
	ACL tModels
	Setting ACLs on UDDI v3 Structures
	Setting ACLs on UDDI v1/v2 Structures

	Publisher-Assigned Keys
	Generating Keys
	Affiliations of Registries
	Affiliation Setup
	Copying Structures with Key Preservation

	Range Queries
	Examples

	Taxonomy: Principles, Creation and Validation
	What Is a Taxonomy?
	Taxonomy Types
	Validation of Values
	Unchecked Taxonomies
	Checked Taxonomies
	HP SOA Systinet Registry Requirements
	Internal Validation Service

	Types of keyValues
	Custom Ordinal Types

	Taxonomy API
	Predeployed Taxonomies
	WSM Taxonomies
	systinet-com:management:metrics:avg-byte
	systinet-com:management:metrics:avg-byte-input
	systinet-com:management:metrics:avg-byte-output
	systinet-com:management:metrics:avg-hits
	systinet-com:management:metrics:avg-response-time
	systinet-com:management:metrics:errors
	systinet-com:management:metrics:hits
	systinet-com:management:metrics:median-byte
	systinet-com:management:metrics:median-byte-input
	systinet-com:management:metrics:median-byte-output
	systinet-com:management:metrics:median-response-time
	systinet-com:management:metrics:policy-violations
	systinet-com:management:metrics:reference
	systinet-com:management:proxy-reference
	systinet-com:management:server-reference
	systinet-com:management:state
	systinet-com:management:state-change-request-type
	systinet-com:management:system
	systinet-com:management:type
	systinet-com:management:url

	Registry Console Reference
	Register/Create Account
	Register
	Login

	Registry Console Overview
	User Profile
	Create and Manage Groups
	Manage Group Membership
	favorite Taxonomies

	Browsing
	Define Filter
	Define Query

	Searching
	Find Business
	Find Business by Name
	Find Business by Categories
	Find Business by Identifier
	Find Business by Discovery URL

	Find Services
	Find Binding
	Find tModel
	Direct Get
	Direct Get of XML Structures

	Find WSDL
	Find XML
	Find XSD
	Find XSLT

	Publishing
	Publishing a Business
	Adding a Contact
	Adding a Discovery URL
	Adding a Category
	Adding an Identifier

	Publishing a Service
	Publishing a Binding Template
	Publishing a tModel
	Adding a Category

	Publishing Assertions
	Adding an Assertion
	Accepting an Assertion

	Publishing Subscriptions
	Adding Subscriptions
	Notification Listener Types

	Editing Subscriptions
	Deleting Subscriptions

	Publish Custody Transfer
	Requesting Custody Transfer
	Accepting Custody Transfer

	Publishing WSDL Documents
	Publish WSDL
	Publishing WSDL Documents (Advanced Mode)
	Unpublish WSDL

	Publish XML
	Publishing an XML Document
	Publishing an XML Document - Advanced Mode
	Unpublish an XML Document

	Publish XSD
	Publishing an XML Schema
	Publishing an XML Schema (Advanced Mode)
	Unpublish an XML Schema

	Publish XSLT
	Publishing an XSL Transformation
	Publishing an XSL Transformation (Advanced Mode)

	Signer Tool
	Starting the Signer
	Main Screen
	Sign
	Validation
	Remove Signatures
	Publish Changes
	Signer Configuration

	4 Administrator's Guide
	Registry Management
	Accessing Registry Management
	Account Management
	Create Account
	Account Limits

	Edit Account
	Delete Account

	Group Management
	Create and Manage Groups
	Manage Group Membership

	Permissions
	Accessing Permission Management
	Add Permission
	Editing and Deleting Permissions
	Assigning Administrator's Permission

	Taxonomy Management
	Adding Taxonomies
	Finding Taxonomies
	Editing Taxonomies
	Editing a Taxonomy Structure
	Adding Categories to a Taxonomy
	Moving categories
	Deleting and Disabling Nodes

	Uploading Taxonomies
	Downloading Taxonomies
	Deleting Taxonomies

	Replication Management
	Master Registry Setup
	Slave Registry Setup

	Approval Process Management
	Loading the Approval Management Page
	Create Approver
	Create Requestor

	Replacing UDDI Keys
	Replacing tModel keys
	Replacing businessEntity keys
	Replacing businessService keys
	Replacing bindingTemplate keys

	Registry Statistics
	Management of configuration - User Interface
	Current configurations and their history
	View configuration
	All versions
	Configuration view
	Differences

	Named collections of configuration
	List of named collections
	All Differences
	View collection
	View configuration

	Registry Configuration
	Core Config
	Database
	Security
	Account
	Group
	Subscription
	Node

	Configuration in Database
	Business Service Console Configuration
	Tabs Displayed
	Search Result View
	Browsable Taxonomies
	Paging Limits
	UI Configuration
	Customizable Taxonomies
	Customizing Individual Pages

	Registry Console Configuration
	Web Interface Configuration
	Paging Configuration

	Permissions: Principles
	Permissions Definitions
	HP SOA Systinet Registry Permission Rules
	Setting Permissions
	Permissions and User Roles
	ApiManagerPermission Reference

	Approval Process Principles
	Approval Process Roles
	Requestor
	Approver
	autoApprover
	Administrator

	Optional Content Checking Setup

	PStore Tool
	Commands
	Options
	PStore Tool - GUI Version
	Running the GUI PStore Tool
	Opening and Closing the Protected Store
	Opening Protected Store from a File
	Closing Protected Store

	Open Next Protected Store
	Copy Data Between Protected Stores
	Key Store
	Create New Identity
	Key Store Trust
	Import Alias
	Remove Alias
	Refresh Aliases
	Alias Details Panel

	User Store
	Add User
	Remove User
	Refresh Users
	Add Property
	Remove Property
	Refresh Properties
	User Properties Details Panel

	SSL Tool
	SSL Tool Examples
	Associating an SSL client identity with a registry client

	5 Developer's Guide
	Mapping of Resources
	WSDL
	WSDL PortTypes
	WSDL Bindings
	WSDL Service
	Use Cases

	XML
	Use Cases

	XSD
	Use Cases

	XSLT
	Use Cases

	Client-Side Development
	UDDI APIs
	Principles To Use UDDI API
	UDDI Version 1
	Inquire
	Publish

	UDDI Version 2
	Inquiry
	Publish

	UDDI Version 3
	Inquiry
	Publication
	Security
	Custody
	Subscription

	UDDI Version 3 Extension
	Data Structures
	businessEntityExt
	businessInfoExt
	contactInfo
	contactInfos
	operationalInfoExt
	qualifiedKeyedReference
	registeredInfoExt
	serviceInfoExt

	Find Qualifiers
	deletedTModels
	foreignEntities
	keyNameMatch
	myEntities
	omitKeyNameMatch
	omitKeyValueMatch
	omitTModelKeyMatch
	tModelKeyApproximateMatch

	Advanced APIs
	Validation
	SOAP
	Java

	Taxonomy
	Data Structures
	Categories
	categorizationBag
	Category
	compatibilityBag
	taxonomy
	taxonomyDetail
	taxonomyInfo
	taxonomyInfos
	taxonomyList
	validation

	Operations
	delete_taxonomy
	Arguments
	Permissions

	download_taxonomy
	Arguments
	Returns
	Permissions

	find_taxonomy
	Arguments
	Returns
	Permissions

	get_taxonomy
	Arguments
	Returns
	Permissions

	save_taxonomy
	Arguments
	Returns
	Permissions

	upload_taxonomy
	Permissions

	Persistence Format
	WSDL
	API Endpoint
	Java
	Taxonomy 5.5 Extension
	Data Structures
	Taxonomy
	taxonomyInfo
	transformation

	API Endpoint

	Category
	Data Structures
	Categories
	category
	categoryList

	Operations
	add_category
	Syntax
	Arguments
	Permissions

	delete_category
	Syntax
	Arguments
	Permissions

	find_category
	Syntax
	Arguments
	Behavior
	Returns

	get_category
	Syntax
	Arguments
	Returns

	get_rootCategory
	Syntax
	Arguments
	Returns

	get_rootPath
	Syntax
	Arguments
	Returns

	move_category
	Syntax
	Arguments
	Permissions

	set_category
	Syntax
	Arguments
	Permissions

	WSDL
	API Endpoint
	Java

	Approval
	Requestor
	Data Structures
	approvalKeys
	approvalRequest
	approvalRequestInfo
	approvalRequestList
	approvalRequestRecord
	keys4Deletion
	keys4Saving
	Request
	requestInfo
	requestList
	requestWrapper

	WSDL
	Java
	API Endpoint

	Approver
	Data Structures
	Operations
	approve_request
	Arguments
	Permissions

	Approve
	Arguments
	Permissions

	find_approvalRequest
	findRequest
	Arguments
	Behavior
	Permissions

	getBindingDetail
	Arguments
	Permissions

	getBusinessDetail
	Arguments
	Permissions

	getOperationalInfo
	Arguments
	Permissions

	get_approvalRequest
	getRequest
	Arguments
	Permissions

	getServiceDetail
	Arguments
	Permissions

	getTModelDetail
	Arguments
	Permissions

	reject_request
	Arguments
	Permissions

	Reject
	Arguments
	Permissions

	WSDL
	Java
	API Endpoint

	Approval Management
	Data Structures
	principalList
	Principal
	Approver
	Requestor

	Operations
	addApprover
	Arguments
	Permissions

	addRequestor
	Arguments
	Permissions

	deleteApprover
	Arguments
	Permissions

	deleteRequestor
	Arguments
	Permissions

	findApprover
	Arguments
	Returns
	Permissions

	findRequestor
	Arguments
	Returns
	Permissions

	isApprover
	Arguments

	Save
	Arguments
	Permissions

	WSDL
	Java
	API Endpoint

	Approval Content Checker
	Operations
	cancel_approvalRequest
	Arguments
	Permissions

	cancelRequest
	Arguments
	Permissions

	delete_approvalRequest
	Arguments
	Permissions

	find_approvalRequest
	Arguments
	Behavior
	Permissions

	findRequest
	Arguments
	Behavior
	Permissions

	get_approvalRequest
	Arguments
	Permissions

	getRequest
	Arguments
	Permissions

	remind_approver
	Arguments
	Permissions

	request_approver
	Arguments
	Permissions

	requestApprover
	Arguments
	Permissions

	save_approvalRequest
	Arguments
	Permissions

	synchronize
	Arguments
	Permissions

	Data Structures
	approvalEntitiesDetail
	entitiesDetail

	Operations
	checkRequest
	Arguments
	Returns

	WSDL
	Java

	Administration Utilities
	Operations
	cleanSubscriptionHistory
	Syntax
	Arguments
	Permissions

	clean_unusedAccounts
	Syntax
	Permissions

	deleteTModel
	Syntax
	Arguments
	Permissions

	rebuild_cache
	Syntax
	Arguments
	Permissions

	replaceURL
	Syntax
	Arguments
	Permissions

	replaceKey
	Syntax
	Arguments
	Permissions

	resetDiscoveryURLs
	Syntax
	Arguments
	Permissions

	transform_keyedReferences
	Syntax
	Arguments
	Permissions

	WSDL
	API Endpoint
	Java

	Replication
	Operations
	Replicate
	Arguments
	Behavior

	WSDL
	API Endpoint
	Java

	Statistics
	Data Structures
	accessStatisticsDetail
	apiStatisticsDetail
	methodStatisticsDetail
	structureStatisticsDetail
	Structure

	Operations
	get_accessStatistics
	Arguments
	Returns
	Permissions

	get_structureStatistics
	Arguments
	Returns
	Permissions

	reset_accessStatistics
	Arguments
	Permissions

	WSDL
	API Endpoint
	Java

	WSDL Publishing
	Data Structures
	wsdlDetail
	Arguments

	wsdl
	Arguments

	wsdlMapping
	Arguments

	portTypes
	portType
	Arguments

	Bindings
	binding
	Arguments

	Services
	service
	Arguments

	ports
	port
	Arguments

	wsdlServiceInfos
	wsdlServiceInfo
	Arguments

	PortInfos
	portInfo
	Arguments

	Operations
	publish_wsdl
	publishingMethod
	Arguments
	Returns

	unpublish_wsdl
	Arguments
	Returns

	get_wsdlServiceInfo
	Arguments
	Returns

	find_wsdlServiceInfo
	Arguments
	Returns

	find_wsdlMapping
	Arguments
	Returns

	WSDL
	API Endpoint
	Java

	XML Publishing
	Data Structures
	namespace
	Arguments

	namespaceList
	Arguments

	namespaceModel
	Arguments

	resourceInfo
	usesNamespaces
	usesSchemas
	xmlMapping
	Arguments

	xmlResourceDetail
	Arguments

	xmlResourceDetails
	xmlResourceInfo
	Arguments

	xmlResourceList
	Arguments

	Operations
	find_xml
	Syntax
	Arguments
	Returns

	find_xmlMapping
	Syntax
	Arguments
	Returns

	get_xmlDetail
	Syntax
	Arguments
	Returns

	publish_xml
	Syntax
	Arguments
	Returns

	unpublish_xml
	Syntax
	Arguments
	Returns

	WSDL
	API Endpoint
	Java

	XSD Publishing
	Data Structures
	Elements
	Arguments

	importedSchemaModel
	Arguments

	resourceInfo
	schemaCandidate
	Arguments

	schemaImport
	Arguments

	schemaImports
	schemaMapping
	Arguments

	schemaMappings
	Arguments

	symbol
	Arguments

	symbols
	symbolModel
	Arguments

	types
	xsdDetail
	Arguments

	xsdDetails
	xsdInfo
	Arguments

	xsdResourceList
	Arguments

	Operations
	find_xsd
	Syntax
	Arguments
	Returns

	find_xsdMapping
	Syntax
	Arguments
	Returns

	get_xsdDetail
	Syntax
	Arguments
	Returns

	publish_xsd
	Syntax
	Arguments
	Returns

	unpublish_xsd
	Syntax
	Arguments
	Returns

	WSDL
	API Endpoint
	Java

	XSLT Publishing
	Data Structures
	compatibleSchema
	Arguments

	compatibleSchemaList
	contentMapping
	Arguments

	inputSchemaList
	namespaceMatch
	Arguments

	namespaceMatchList
	outputType
	Arguments

	outputTypeList
	producesOutput
	Arguments

	producesOutputList
	resultMapping
	Arguments

	tModelRef
	Arguments

	usesStylesheet
	Arguments

	usesStylesheetList
	xmlSchema
	Arguments

	xsltDetail
	Arguments

	xsltDetailList
	xsltImportMapping
	Arguments

	xsltImportMappingList
	xsltimportMatch
	Arguments

	xsltImportMatchList
	xsltInfo
	Arguments

	xsltInfos
	xsltMapping
	Arguments

	xsltMappingList

	Operations
	find_xslt
	Syntax
	Arguments
	Returns

	find_xsltMapping
	Syntax
	Arguments
	Returns

	get_xsltDetail
	Syntax
	Arguments
	Returns

	publish_xslt
	Syntax
	Arguments
	Returns

	unpublish_xslt
	Syntax
	Arguments
	Returns

	WSDL
	API Endpoint
	Java

	Inquiry UI
	Data Structures
	bindingTemplateMask
	businessEntityMask
	businessServiceMask
	contactMask
	entityDetail
	outputFormat
	Arguments

	tModelInstanceInfoMask
	tModelMask

	Operations
	get_entityDetail
	Arguments
	Returns

	WSDL
	API Endpoint
	Java

	Subscription Ext
	Data Structures
	Notification Service Container
	subscriptionExt

	Operations
	save_subscription
	delete_subscription

	WSDL
	API Endpoint
	Java

	Security APIs
	Account
	Data Structures
	userAccount
	userInfo
	userInfos
	userList

	Operations
	find_userAccount
	Syntax
	Arguments
	Behavior
	Returns
	Permissions

	get_userAccount
	Syntax
	Arguments
	Returns
	Permissions

	save_userAccount
	Syntax
	Arguments
	Returns
	Permissions

	delete_userAccount
	Syntax
	Arguments
	Returns
	Permissions

	enable_userAccount
	Syntax
	Arguments

	WSDL
	API Endpoint
	Java

	Group
	Data Structures
	group
	groups
	groupInfo
	groupInfos
	groupList

	Operations
	add_user
	Syntax
	Arguments
	Permissions

	find_user
	Syntax
	Arguments
	Permissions
	Returns

	find_group
	Syntax
	Arguments
	Behavior
	Returns
	Permissions

	get_group
	Syntax
	Arguments
	Returns
	Permissions

	save_group
	Syntax
	Arguments
	Returns
	Permissions

	remove_user
	Syntax
	Arguments
	Permissions

	delete_group
	Syntax
	Arguments
	Returns
	Permissions

	where_amI
	Syntax
	Arguments
	Returns
	Permissions

	WSDL
	API Endpoint
	Java

	Permission
	Data Structures
	permissionDescriptor
	permissionDescriptors
	permissionDetail
	principal
	principals
	principalList

	Operations
	find_principal
	Syntax
	Arguments
	Returns
	Permissions

	get_permission
	Syntax
	Arguments
	Returns
	Permissions

	set_permission
	Syntax
	Arguments
	Permissions

	who_hasPermission
	Syntax
	Arguments
	Returns
	Permissions

	WSDL
	API Endpoint
	Java

	Registry Client
	Client Package
	JARs on the Client Classpath
	HP SOA Systinet Registry Runtime
	UDDI API Client v1
	UDDI API Client v2
	UDDI API Client v3
	UDDI API Client v3 ext X
	Account Client
	Admin Utilities Client
	Approval Client v3
	Approval Content Checker Client v3
	Approval Management Client
	Category Client v3
	Group Client
	Permission Client
	Replication Client v3
	Statistics Client
	Taxonomy Client v3
	UDDI Custody Client v3
	UDDI Subscription Client v3
	UDDI Subscription Listener Client v3
	UDDI Validate Values Client v1
	UDDI Validate Values v2
	UDDI Value Set Caching Client v3
	UDDI Value Set Validation Client v3
	WSDL2UDDI Client v2
	WSDL2UDDI Client v3
	Resources publishing (XML, XSD, XSLT) Client
	Classpath Examples

	Client Authentication
	Example Client

	Server-Side Development
	Accessing Backend APIs
	Custom Registry Modules
	Accessing Registry APIs
	Custom Module Sample

	Interceptors
	Creating and Deploying Interceptors
	Logging Interceptor Sample
	Interceptor Configuration

	Request Counter Interceptor Sample

	Writing a Custom Validation Service
	Deploying Validation Service
	External Validation Service
	Sample Files

	Writing a Subscription Notification Service
	Sample Files

	Writing a Content Checker
	Systinet Web Framework
	Architecture Description
	Component Java Interface Part
	Request Diagram
	Nesting Components

	Component JSP Part
	Implicit Objects
	Data Types
	Client-side Validators

	Directory Structure
	JSP Page Reference

	Framework Configuration
	Component
	Task
	Data Type
	Other Configuration
	Jasper Configuration

	syswf JSP tag library
	syswf:component
	syswf:page
	syswf:wrap
	syswf:control
	syswf:input
	syswf:selectOne
	syswf:selectMany
	syswf:textArea
	syswf:value
	syswf:size
	navigationPath

	Typical Customization Tasks

	Business Service Console Framework
	Business Service Console Localization
	Basic concepts
	Locale detection
	Resource bundles
	Resource keys naming convention

	Localization of Configuration
	JSP localization
	ParseResourceKey tag
	LocalizedFileName tag
	LocalizedInclude tag

	Java localization

	Directory Structure
	conf Directory
	jsp directory
	src directory
	WASP-INF directory
	webroot Directory

	Business Service Console Configuration
	HP SOA Systinet Registry API Endpoint URL
	Result Filtering
	Main Menu Tabs
	User Profiles
	Entity List Views
	Browsable Taxonomies
	Paging Limits

	Entity Configuration
	Overview
	Configuration
	Entity Definition
	Entity Categorization
	Entity Views
	References
	Permission Restriction Support
	How to classify UDDI data
	Using Entities in JSP pages
	Using Views
	Linking to a Detail page

	Permission support
	Data classes
	PermissionEvaluator
	checkPermission tag
	checkApiPermission tag

	Components and Tags
	Framework Components
	Query
	Entity Choosers
	Taxonomy Filters
	Taxonomy Filter
	Taxonomy Pure Filter

	Wizard
	wizardIterator

	Result
	selectResultView
	tableFilter
	processTable
	columnHeader

	Taxonomy
	taxonomyTree
	collectCategories
	selectableTaxonomyTree

	Util
	tabbedFrame (deprecated)
	TabsComponent
	TreeComponent
	ContextMenuComponent

	Framework Tags
	bsc:setLocalizedNames
	bsc:setLocalizedDescriptions
	bsc:setSelectedContacts
	bsc:setCategories
	bsc:parseUddiQuery
	bsc:table
	bsc:tableActions
	bsc:column
	bsc:row
	bsc:cell
	bsc:attribute

	Business Service Console Components
	providerSearchResults
	executeFindProviders
	serviceSearchResults
	executeFindServices
	endpointSearchResults
	executeFindEndpoints
	interfaceSearchResults
	executeFindInterfaces
	bindingSearchResults
	executeFindBinding
	getOperations
	getDocumentation
	getServiceEndpoints
	selectCategory

	UDDI from Developer Tools
	UDDI from HP Developer for Eclipse
	Getting Data from UDDI
	Publishing WSDL to UDDI

	UDDI from MS Visual Studio

	How to Debug
	SOAPSpy Tool
	Running SOAPSpy
	Using SOAPSpy
	SOAP Request Tab
	How to Run Clients Using SOAPSpy

	Logging

	6 Demos
	Basic Demos
	UDDI v1
	Inquiry v1
	Prerequisites and Preparatory Steps: Code
	Presentation and Functional Presentation
	Building and Running Demos

	Publishing v1
	Prerequisites and Preparatory Steps: Code
	Presentation and Functional Presentation
	Building and Running Demos

	UDDI v2
	Inquiry v2
	Prerequisites and Preparatory Steps: Code
	Presentation and Functional Presentation
	Building and Running Demos

	Publishing v2
	Prerequisites and Preparatory Steps: Code
	Presentation and Functional Presentation
	Building and Running Demos

	UDDI v3
	Inquiry v3
	Prerequisites and Preparatory Steps: Code
	Presentation and Functional Presentation
	Building and Running Demos

	Publishing v3
	Prerequisites and Preparatory Steps: Code
	Presentation and Functional Presentation
	Building and Running Demos

	Advanced Demos
	Advanced Inquiry - Range Queries
	Prerequisites and Preparatory Steps: Code
	Presentation and Functional Presentation
	Building and Running Demos

	Custody
	Prerequisites and Preparatory Steps: Code
	Presentation and Functional Presentation
	Building and Running Demos

	Subscription
	Prerequisites and Preparatory Steps: Code
	Presentation and Functional Presentation
	Building and Running Demos

	Validation
	Prerequisites and Preparatory Steps: Code
	Presentation and Functional Presentation
	Building and Running Demos

	Taxonomy
	Prerequisites and Preparatory Steps: Code
	Presentation and Functional Presentation
	Building and Running Demos

	Security Demos
	Account
	Prerequisites and Preparatory Steps: Code
	Presentation and Functional Presentation
	Building and Running Demos

	Group
	Prerequisites and Preparatory Steps: Code
	Presentation and Functional Presentation
	Building and Running Demos

	Permission
	Prerequisites and Preparatory Steps: Code
	Presentation and Functional Presentation
	Building and Running Demos

	ACL
	Prerequisites and Preparatory Steps: Code
	Presentation and Functional Presentation
	Building and Running Demos

	Resources Demos
	WSDL2UDDI v2
	Prerequisites and Preparatory Steps: Code
	Presentation and Functional Presentation
	Building and Running Demos

	WSDL2UDDI v3
	Prerequisites and Preparatory Steps: Code
	Presentation and Functional Presentation
	Building and Running Demos

	XML2UDDI
	Prerequisites and Preparatory Steps: Code
	Presentation and Functional Presentation
	Building and Running Demos

	XSD2UDDI
	Prerequisites and Preparatory Steps: Code
	Presentation and Functional Presentation
	Building and Running Demos

	XSLT2UDDI
	Prerequisites and Preparatory Steps: Code
	Presentation and Functional Presentation
	Building and Running Demos

	Index
	Glossary

