
HP SOA Registry Foundation

Software Version: 6.61

Product Documentation

Document Release Date: June 2008
Software Release Date: June 2008

Legal Notices

Warranty

The only warranties for HP products and services are set forth in the express warranty statements
accompanying such products and services. Nothing herein should be construed as constituting an additional
warranty. HP shall not be liable for technical or editorial errors or omissions contained herein.

The information contained herein is subject to change without notice.

Restricted Rights Legend

Confidential computer software. Valid license from HP required for possession, use or copying. Consistent
with FAR 12.211 and 12.212, Commercial Computer Software, Computer Software Documentation, and
Technical Data for Commercial Items are licensed to the U.S. Government under vendor's standard
commercial license.

Third-Party Web Sites

Mercury provides links to external third-party Web sites to help you find supplemental information. Site
content and availability may change without notice. Mercury makes no representations or warranties
whatsoever as to site content or availability.

Copyright Notices

' Copyright 2001-2008 Hewlett-Packard Development Company, L.P.

Trademark Notices

Java™ is a US trademark of Sun Microsystems, Inc. Microsoft®, Windows® and Windows XP® are U.S.
registered trademarks of Microsoft Corporation. IBM®, AIX® and WebSphere® are trademarks or registered
trademarks of International Business Machines Corporation in the United States and/or other countries.
BEA® and WebLogic® are registered trademarks of BEA Systems, Inc.

Contents

1 Read This First. 5

HP SOA Registry Foundation Features Overview. 5

Release Notes. 7

Supported Platforms. 19

Specifications. 21

Document Conventions. 22

Documentation Updates. 23

Support. 24

Legal. 25

2 Installation Guide. 39

System Requirements. 40

Installation. 42

Licensing and Evaluation. 82

Server Configuration. 87

Database Installation. 93

External Accounts Integration. 116

Deployment to an Application Server. 146

Cluster Configuration. 172

Authentication Configuration. 180

Migration. 194

Backup. 200

NT Service Support. 208

Running in Linux. 214

Uninstallation. 217

3 User's Guide. 219

3

Introduction to HP SOA Registry Foundation. 220

Registry Console . 229

Demo Data. 230

Advanced Topics. 233

4 Administrator's Guide. 329

Registry Management. 330

Registry Configuration. 371

Configuration in Database. 381

Registry Console Configuration. 384

Permissions: Principles. 387

PStore Tool. 401

SSL Tool. 410

5 Developer's Guide. 415

Mapping of Resources. 415

Client-Side Development. 423

Server-Side Development. 549

UDDI from Developer Tools. 599

How to Debug. 606

6 Demos. 613

Basic Demos. 613

Advanced Demos. 654

Security Demos. 686

Resources Demos. 708

Index. 729

Glossary. 735

4

1 Read This First

Welcome to HP SOA Registry Foundation!

HP SOA Registry Foundation is the leading business service registry, providing discovery and publishing
of SOA business services. With full support for version 3 of the UDDI (Universal Description, Discovery
and Integration) standard, HP SOA Registry Foundation is a key component of a Service Oriented
Architecture (SOA).

This product documentation contains the following sections:

Read This First . This book is recommended for all readers. It provides a product overview, release notes,
product changes, the typographical conventions used throughout this guide.

Installation and Deployment Guide . This book guides you through installing HP SOA Registry Foundation,
installing and setting up databases, and deploying HP SOA Registry Foundation to application servers.

User's Guide . This book describes how to manually maintain HP SOA Registry Foundation contents. All
basic functions of the Registry Console are discussed here.

Developer's Guide . Introduces the basics of creating extensions and client programs in HP SOA Registry
Foundation. The Developer's Guide also documents the HP SOA Registry Foundation demo suite.

Administrator's Guide . Explains HP SOA Registry Foundation's configuration and management, and
introduces the tools and utilities you will need to perform these tasks.

HP SOA Registry Foundation Features Overview
HP SOA Registry Foundation is the only fully V3-compliant implementation of UDDI (Universal Description,
Discovery and Integration), and is a key component of a Service Oriented Architecture (SOA). HP SOA
Registry Foundation is an easy-to-use, standards-based mechanism for publishing and discovering Web
services and related resources like XML Schemas.

5

HP SOA Registry Foundation fully implements the OASIS UDDI V3 standard. HP SOA Registry Foundation
can be deployed in almost any Java environment and works with all popular database systems. In addition,
the registry has been designed specifically for enterprise deployment and includes many advanced features
that make it easy to configure, deploy, manage and secure. HP SOA Registry Foundation is also easy to
customize to support different enterprise user communities.

HP SOA Registry Foundation extends the core UDDI V3 standard with unique functionality designed for
enterprise applications:

• Advanced Security allows for defining granular access control for registered components. Component
publisher can specify find, get, modify and delete access permissions for every published object.

• Data Accuracy & Quality enforcement mechanisms ensure that component registrations are accurate
and up-to-date. HP SOA Registry clearly defines responsibility for every registered component.

• Subscription & Notification for automatically notifying registry users about changes to components
that they depend on.

• Selective Replication among multiple registries allow for automated propagation between different
registries (for e.g. between internal and external registries).

• Taxonomy Management for enforcement of well-defined taxonomies.

• Powerful Management for granular control, logging and auditing of the publishing and discovery
processes.

• Performance & Scalability UDDI provides maximum performance and scalability by efficient
implementation of web services stack and database algorithms and by supporting of a load balancing
and clustering mechanism.

HP SOA Registry Foundation is a platform-independent solution that can easy be deployed in a wide variety
of settings. The registry can run either standalone or within an application server: Many application servers,
ranging from Tomcat to BEA WebLogic, IBM Websphere or JBoss are supported. HP SOA Registry
Foundation also unrivalled support for a broad set of database management systems for storing registrations
(e.g. Oracle, MS SQL Server, Sybase, IBM DB/2, PostgreSQL and HSQL). Crucially, HP SOA Registry
Foundation also integrates with both LDAP and Microsoft ActiveDirectory.

Chapter 16

Release Notes

What's New

• The Configurations in Database feature enables the simple configuration of cluster deployment. The
database can also hold a history of configuration files. The administration console enables you to display
differences between current and past configurations and stored configuration collections.

• Replications are improved and more reliable.

• Client certificate authentication (Two Way SSL) is supported.

• IPv6 is supported except for literal addresses.

Known Issues

UDDI Version 3 Specification

The following parts of the UDDI Version 3 specification are not implemented:

• Inter-Node operation - this part of the specification is not implemented.

• Replication Specification - The Replication Specification describes the data replication process and the
programming interface required to achieve complete replication between UDDI Operators in the UBR
(Universal Business Registry ~ UDDI operator cloud). This part of the specification is mandatory for
members of the UBR and is not implemented.

• Policy - The policy description is not defined.

• Exclusive XML Canonicalization [http://www.w3.org/2001/10/xml-exc-c14n#] is used for
canonicalization of digital signatures. Schema-centric XML Canonicalization is not yet implemented.

UDDI Version 2 Specification

The following parts of the UDDI Version 2 specification are not implemented:

• Operator Specification - This part of the specification is mandatory for members of the UBR and is
implemented with the exceptions described in this section.

7Read This First

http://www.w3.org/2001/10/xml-exc-c14n#

• Custody transfer from version 2 is not implemented.

• Replication Specification - The Replication Specification describes the data replication process and the
programming interface required to achieve complete replication between UDDI Operators in the UBR.
This part of the specification is mandatory for members of the UBR and is not implemented.

Database

• Sybase ASE (Adaptive Server Enterprise) has a limit of 16 sub-selects for queries (SELECT ... FROM ...
WHERE EXISTS (SELECT...)). Because of this limit, some more complex queries (such as find by category
bag with more keyed references) do not work.

• There are the following caveats in data migration and backup:

• Deletion history for subscriptions is not migrated and backed up.

• Custody transfer requests are not migrated and backed up.

• We do not recommend installing HP SOA Registry Foundation with the HSQL database under IBM
Java 1.4.x since the installation may time out.

Other

• Use of SubjectAlternativeName in certificates is not yet supported. This has potential impact wherever
SSL is used and the secure host has more than one hostname. See WSDL Publishing below. The result
is a java.net.ssl.SSLException with a message that hostnames do not match.

• Installation fails if the installation path contains non-ASCII characters;

• Attempting to undeploy HP SOA Registry Foundation from an application server may appear to have
been successful but can leave files locked until the application server and its JVM exit. This means than
an attempt to redeploy HP SOA Registry Foundation to the application server will fail because these
files exist and cannot be overwritten. A workaround is to restart the application server;

• Selective One-way Replication has the following caveats:

• Checked taxonomies are replicated as unchecked. Taxonomy data replication and change of taxonomy
to checked must be done manually.

Chapter 18

• Custody transfer requests are not replicated.

• Publisher assertions are not replicated.

• LDAP

• Dynamic groups in LDAP account backends are not processed.

• The approximateMatch find qualifier is not supported in LDAP account backends. There is no
wildcard that can represent any single character in the directory (LDAP or AD). % is mapped to *,
it is not possible to map _.

• Groups from disabled domains are visible in the Registry Console.

• Intranet identity association is not implemented; the system#intranet group is reserved for future use.

• Password structure and length checking, expiration, checking of repeated failed logins and IP mask
restriction are not implemented.

• The Signer tool does not support the refresh operation. If you start the Signer and then modify a UDDI
structure, you must restart the Signer Tool.

• The Setup tool throws an exception when you try to configure registry ports on HP SOA Registry
Foundation that are not connected to a database. The exception does not affect the port configuration.

• WSDL Publishing:

• Unable to unpublish unreachable WSDLs in Registry Console.

• Publishing a WSDL at a URL that has https as protocol may fail because the server certificate uses
SubjectAlternativeName to specify alternative hostnames. This is not yet supported as noted above.
The result may be a WSDLException with fault code INVALID_WSDL but the underlying cause is in fact a
java.net.ssl.SSLException with a message that hostnames do not match.

• If you change the HP SOA Registry Foundation configuration using the Setup tool, demo data is always
imported the registry database.

9Read This First

Change Log

Systinet Registry 6.5

• Business Service Console:

• The Home tab has been redesigned as a dashboard of the most frequently used features;

• Context menus for Catalog tree - right click to display the set of operations allowed on the selected
entity type;

• The user interface now only displays links for actions that the user has permission to perform;

• Quick search - the user can search all data structures by keyword;

• The navigation panel on the left-hand side of the Catalog and Reports tabs can be hidden, with a
mouse click or Alt-Q;

• Duplicate scrollbars have been eliminated from the UI;

• Entities in the BSC:

• When viewing entity details, a new System Info tab provides information about the owner, creation
and modification dates and UDDI keys;

• Custom Entity Types - an administrator can define a new entity type based on a UDDI entity type
and a specific categorization. For example, a "Policy" can be a tModel (UDDI type) with a
keyedReference to uddi:schemas.xmlsoap.org:policytypes:2003_03 with "policy" as the keyValue.
Custom types are added seamlessly to the Catalog tree and Reports tab;

• References between entities - it is possible to create and browse references between entities. The
user can view all references from the current entity to other entities and find all entities which refer
to the current entity;

• Configurable Searches - an administrator can configure the search dialog for an entity type by
changing the appropriate categorization;

Chapter 110

• Localization - the registry console and Business Service Console are prepared for localization to other
languages;

• Publishing Services:

• A user can publish a service from a WSDL document stored on a web server requiring HTTP Basic
authentication;

• The performance of WSDL to UDDI publishing has been improved;

• Server-Side Development:

• Business Services Console Framework - enhancements to support customization and integration.

Systinet Registry 6.0

• Business Service Console - The functionality of the Business Service Console has been extended in the
following areas:

• Approval Process - The approval process has been implemented in the Business Service Console
for requestors and approvers. Requestors can create and submit requests, manage their requests, and
clone requests to the request work area. Requestors can also send reminders to their approvers.
Approvers can approve/reject requests and view approval histories.

• Subscriptions and Notifications - The Business Service Console allows you to create and manage
subscriptions for monitoring new, changed, and deleted entities. The following entities can be
monitored: providers, services, interfaces, and endpoints, as well as resources (WSDL, XML, XSD
and XSLT).

• User Profiles - Systinet Registry contains a list of predefined user profiles which differ in which
main menu tabs will be available to them. Each user profile also contains a definition of default
formats for result views. The registry administrator can adjust these user profiles.

• Reports are based on taxonomic classifications.

• Paging and large results set support - The Business Service Console supports paging for displaying
large result sets. The maximum number of pages and number or rows per page can be configured
for each component.

11Read This First

• Overall performance of the Business Service Console has been increased by Business Service
Console framework optimization.

• Approval Process

• Changed terminology from 5.5 - the staging registry has been renamed to publication registry; the
production registry has been renamed to discovery registry.

• New installation/configuration scenarios have been added. The approval process can be installed
with multiple publication registries and the approval process can be performed in multiple steps.

• Backup functionality - Backup functionality allows you to save the Systinet Registry data and
configuration to a filesystem directory. Later the backup data can serve for a full restore of HP SOA
Registry data and configuration.

• Documentation

• Introduction to HP SOA Registry Foundation

• Accessing UDDI from Developer Tools

Systinet Registry 5.5

• Business Service Console - Using the Business Service Console, developers, architects and business
users can browse the various perspectives of the Systinet Business Services Registry including business-
relevant classifications such as service and interface lifecycle, compliance or operational/readiness
status. They can browse information through business-relevant abstractions of SOA information such
as schemas, interface local names or namespaces. The Business Service Console also provides easy to
use and customizable publication wizards.

• Advanced query capabilities - Range Queries - users can search for UDDI structures using >,< operators
when searching by categories.

• Taxonomy management

Chapter 112

Taxonomy management has been enhanced by drag and drop taxonomy structure editing. You can
move a category item in the taxonomy hierarchy without de-associating it with current UDDI entities
categorized with this item’s value.

•

• Administrators can edit an enterprise taxonomy list. Users can edit their lists of favorite taxonomies.

• Mapping resources. New publishing wizards and APIs. The WSDL2UDDI publishing wizard and API
have been enhanced. New wizards and APIs for publishing of resources have be been created.

• Publish a WSDL document

• Publish an XML document

• Publish an XML schema document

• Publish an XSL Transformation

Systinet Registry 5.0

• UDDI Multi-version Registry

• UDDI Version 3 Registry - Implementation of the UDDI Version 3 Specification - Committee
Specification v3.0.1

• UDDI Version 2 Registry - Implementation of the UDDI Version 2 Specifications - OASIS Standard

• UDDI Version 1 Registry - Implementation of the UDDI Version 1 Specifications - contributed

• WSDL Publishing - Implementation of Using WSDL in a UDDI Registry, Version 2.0 [http://www.oasis-
open.org/committees/uddi-spec/doc/tn/uddi-spec-tc-tn-wsdl-v200-20031104.htm] for UDDI Version 2
and Version 3

• Access Control - Allows definition of granular access control for registered components. Component
publisher can specify find, get, modify, and delete access permissions for every published object.

• Account and Group Management - Allows management of user's account and groups.

13Read This First

http://www.oasis-open.org/committees/uddi-spec/doc/tn/uddi-spec-tc-tn-wsdl-v200-20031104.htm

• External Accounts Integration - Allows integration of the registry with custom account storages including
three integration scenarios with LDAP.

• Taxonomy Management and Validation - Allows administrator to create, download, upload, browse and
manage taxonomies.

• Approval Process - component promotion and approval mechanisms for promoting components between
development, staging, and production environments.

• Selective One-way Replication - Replication based on subscription-notification mechanism. An
asynchronous subscription listener listens to incoming subscription data from a master registry.

• Registry Console - User-friendly UI enables user to query and publish the registry, manage user's account
and provide various administration tasks.

• Administration Tools

• GUI Setup and Administration Tool - Allows administrator to set up, port, and configure the registry;
create and drop the registry database; and migrate data from other registry databases.

• Web Administration Console - Allows administrator to configure and manage registry permissions,
data, and users; configure replications; and view registry access statistics.

• Support for leading database engines including Oracle, MS SQL 2000 or 2005, IBM DB2, PostgreSQL,
Sybase, Hypersonic SQL. Systinet Registry contains both a bundled and a pre-configured Hypersonic
SQL 1.7.1 database.

• Support for application servers - Systinet Registry supports BEA WebLogic and Apache Tomcat
application servers.

• Client Libraries - This distribution includes UDDI Version 1,UDDI Version 2, and UDDI Version 3
account, groups, and permissions management, taxonomy management, approval, administration and
configuration clients with generated javadocs.

• Open Server-Side Architecture

Chapter 114

Registry Integration and Embedding - Developers can directly access instances of registry APIs,
run custom classes inside the registry, create custom login modules, and write custom integration
with external accounts and groups storages.

•

• Registry Extensions - Developers can write their own extension services, create and use external
and internal validation services, write custom interceptors to intercept registry messages, customize
the approval process, and customize or create their own Registry Console using a supplied JSP Web
Framework.

WASP UDDI 4.6

• Evaluation License Enforcement Mechanism - evaluation version of WASP UDDI requires an evaluation
license

• Integration with LDAP/MS Active Directory - WASP UDDI; accounts able to integrate with legacy
systems using WASP Userstore

• Approval Process - staging-production pattern used to approve data stored in the registry;

• Direct access to back-end services - WASP UDDI services implementations are now directly accessible

• Administration

• configuration is now transparent for clustered installations

• selected elements in configuration file can be signed to avoid their changes

• created registry privileged users - extended administrators

• admin and superuser able to switch to different user identity

• Localization - support for easier localization.

• Wildcards - selected databases support wildcard queries.

• Demos - demos simplified and refactored.

• WSDL Best Practice - Using WSDL in a UDDI Registry, Version 2.0 Technical Note supported.

15Read This First

• UDDI Client

• Operation timeout can be set per request.

• Serialization of UDDI API structures from/to XML file, DOM, String.

• Distribution contains the new UDDI client to be used in future releases of WASP UDDI.

WASP UDDI 4.5.2

• Bugfixes - Fixes of major bugs found after 4.5 and 4.5.1 releases

• New application servers - Sun ONE Application Server 7

• Taxonomies - Added possibility to configure all combinations of tModelKey and keyName, and keyValue
(tModelKey and keyName; tModelKey and keyValue; and tModelKey, keyName, and keyValue) when
searching for specific taxonomies by keyedReferences.

• Administration - Added cleaner for account audit and subscriptions

WASP UDDI 4.5.1

• Runtime - Used WASP Server for Java, 4.5.1 runtime.

• Database schema - Database schemas changed to reflect optimizations.

• Performance optimizations - Improved performance for high load of data in database.

• New application servers - WebSphere 5.0, JBoss 3.0.4, BEA WebLogic 6.1 SP3, BEA WebLogic 7.0.

• Database installation - Added database installation to WASP UDDI installation.

• GUI database tool - New database tool for database creation, delete and migration.

• Security Enhancements - Security enhanced with:

• password structure and length checking

• password/account expiration

Chapter 116

• repeated failed logins checking

• access to configuration access can be restricted by IP mask

• WASP Secure Identity - Integration with WASP Secure Identity is not supported any more.

• Web Interface look and feel - New web interface look and feel used.

• Support for NT service - WASP UDDI can be now run as NT service.

WASP UDDI 4.5

• Hypersonic SQL - Embedded Hypersonic SQL 1.7.1 database. New demo database pre-configured for
evaluation purposes.

• GUI Upgrade - New graphical upgrade of both registry and database.

• Taxonomy refactoring - Taxonomy publication and validation refactored.

• Added new TaxonomyAdminApi for taxonomy administration.

• Changed specification of taxonomy compatibility

• Unified definition of validation services as specified in Providing a Taxonomy for Use in UDDI
Version 2.

• Created Validation Plug-ins to allow creation of custom taxonomy validators.

• Change UUID - UUIDs can be now changed for all UDDI basic data structures (businessEntity,
businessService, bindingTemplate, tModel) using AdminToolApi

• Category dependencies - New tModel systinet-org:dependency introduced to allow specification of
dependencies between UDDI entities.

• Other API Changes:

• UDDIProxy - added save_wsdlTmodel methods

17Read This First

• find_relatedServices extended with fromServiceKey and toServiceKey

• Demos - Created new demos structure.

• Database schema - Database schemas changed to reflect new features.

• GUI Installation - New graphical installation.

• Subscriptions - Allows client to subscribe for changes of any UDDI entities that occur in WASP UDDI.
There are two basic ways how the subscription is used: asynchronous notification and synchronous pull
subscription.

• WASP UDDI Interceptor API - The UDDI interceptor allows implementing customized handling of
UDDI requests and responses.

• Selective One Way Replication - Replication based on subscription-notification mechanism. An
asynchronous subscription listener listens to incoming subscription data from a master registry.

• UDDI Errata - Incorporated last errata from UDDI.org

• UDDI Version 2.04 API

• UDDI Version 2.03 Data Structure Reference

• API Extensions - Extended Inquiry Extensions merged with Access Control API and enhanced with:

• new assertion related API calls

• enhanced wsdl related API calls

• added categoryBag into bindingTemplate and related API calls extended with categoryBag

• Administration - Configurable direct deletion of tModels.

WASP UDDI 4.0

• InstallShield - Graphical installation tool, InstallShield added.

Chapter 118

• PointBase - Support for PointBase 4.3 database added.

• Oracle 9i - Oracle 9i AS (OC4J) deployment added.

• Disabled Runtime Services - System services removed from WASP UDDI runtime.

• Extended installation - Installation extended with security providers configuration.

• Web interface design changed - Improved the look and feel of the web interface.

• JDK 1.4 Support - WASP UDDI now support Sun's implementation of JDK 1.4.

• Deployment - BEA WebLogic, IBM WebSphere, Orion, Tomcat deployment scripts and documentation
included.

• Taxonomy and Validation - Additional Taxonomy and Validation services integrated into the web
interface.

Supported Platforms
HP SOA Registry Foundation 6.61 has been tested on the following platforms.

• Operating systems:

• RedHat Enterprise 4.0 and 5.0 [http://www.redhat.com]

• Solaris 10 [http://www.sun.com/software/solaris/]

• Windows 2003 Server [http://www.microsoft.com/windows2003/]

• AIX 5.3 [http://www-1.ibm.com/servers/aix/]

• Suse Linux Enterpise Server 10 [http://www.suse.com/]

• HPUX 11.23 and 11.31 (Itanium) [http://docs.hp.com/]

• JDKs:

• Sun 1.5.0 [http://java.sun.com/j2se/]

19Read This First

http://www.redhat.com
http://www.sun.com/software/solaris/
http://www.microsoft.com/windows2003/
http://www-1.ibm.com/servers/aix/
http://www.suse.com/
http://docs.hp.com/
http://java.sun.com/j2se/

• BEA JRockit 1.5 (for BEA WebLogic deployment only)

• IBM Java 1.5 (for IBM WebSphere deployment only)

• HP JDK 1.5

• Databases:

• Oracle 10g [http://www.oracle.com]

• Microsoft SQL Server 2005 [http://www.microsoft.com/sql/default.asp]

• DB2 9.1 [http://www.ibm.com/software/data/db2/]

• LDAP:

• Sun One Directory Server 5.2 [http://www.sun.com]

• Microsoft Active Directory (Windows 2003 Server) [http://www.microsoft.com]

• Application Servers:

• BEAWebLogic 9.2, and 10.0 [http://www.bea.com]

• IBM WebSphere 6.1 [http://www.ibm.com/software/info1/websphere/index.jsp]

• Oracle Application Server 10.1.3.3 [http://www.oracle.com]

• JBoss 4.2.2 [http://www.jboss.org]

• Browsers:

• Microsoft Internet Explorer 6.0 and 7.0

• Firefox 2.0

Chapter 120

http://www.oracle.com
http://www.microsoft.com/sql/default.asp
http://www.ibm.com/software/data/db2/
http://www.sun.com
http://www.microsoft.com
http://www.bea.com
http://www.ibm.com/software/info1/websphere/index.jsp
http://www.oracle.com
http://www.jboss.org

Specifications
HP SOA Registry Foundation conforms to the following specifications:

• UDDI Specifications [http://uddi.org/specification.html]

• UDDI Version 1 Specification [http://www.oasis-open.org/committees/uddi-
spec/doc/contribs.htm#uddiv1]

• UDDI Version 2 Specification [http://www.oasis-open.org/committees/uddi-spec/doc/tcspecs.htm#uddiv2]

• UDDI Version 3 Specification [http://www.oasis-open.org/committees/uddi-spec/doc/tcspecs.htm#uddiv3]

• Technical Note Using WSDL in a UDDI Registry, Version 2.0 [http://www.oasis-
open.org/committees/uddi-spec/doc/tn/uddi-spec-tc-tn-wsdl-v2.htm]

21Read This First

http://uddi.org/specification.html
http://www.oasis-open.org/committees/uddi-spec/doc/contribs.htm#uddiv1
http://www.oasis-open.org/committees/uddi-spec/doc/tcspecs.htm#uddiv2
http://www.oasis-open.org/committees/uddi-spec/doc/tcspecs.htm#uddiv3
http://www.oasis-open.org/committees/uddi-spec/doc/tn/uddi-spec-tc-tn-wsdl-v2.htm

Document Conventions
This document uses the following typographical conventions:

Script name or other executable command plus mandatory arguments.run.bat make

Command-line option.[--help]

Choice of arguments.either | or

Command-line argument that should be replaced with an actual value.replace_value

Choice between two command-line arguments where one or the other is
mandatory.

{arg1 | arg2}

User input.rmdir /S /Q System32

Filenames, directory names, paths and package names.C:\System.ini

Program source code.a.append(b);

Inline Java class name.server.Version

Inline Java method name.getVersion()

Combination of keystrokes.Shift+N

Label, word, or phrase in a GUI window, often clickable.Service View

Button in a user interface.OK

Menu option.New→Service

Chapter 122

Documentation Updates
This manual's title page contains the following identifying information:

• Software version number

• Document release date, which changes each time the document is updated

• Software release date, which indicates the release date of this version of the software

To check for recent updates, or to verify that you are using the most recent edition of a document, go to:

http://h20230.www2.hp.com/selfsolve/manuals

23Read This First

http://h20230.www2.hp.com/selfsolve/manuals

Support

Mercury Product Support

You can obtain support information for products formerly produced by Mercury as follows:

• If you work with an HP Software Services Integrator (SVI) partner (http://h20230.www2.hp.-
com/svi_partner_list.jsp), contact your SVI agent.

• If you have an active HP Software support contract, visit the HP Software Support Web site and use
the Self-Solve Knowledge Search to find answers to technical questions.

• For the latest information about support processes and tools available for products formerly produced
by Mercury, we encourage you to visit the Mercury Customer Support Web site at: http://hp.-
com/go/hpsoftwaresupport .

• If you have additional questions, contact your HP Sales Representative.

HP Software Support

You can visit the HP Software Support Web site at:

http://www.hp.com/go/hpsoftwaresupport

HP Software online support provides an efficient way to access interactive technical support tools. As a
valued support customer, you can benefit by using the support site to:

• Search for knowledge documents of interest

• Submit and track support cases and enhancement requests

• Download software patches

• Manage support contracts

• Look up HP support contacts

• Review information about available services

Chapter 124

http://h20230.www2.hp.com/svi_partner_list.jsp
http://h20230.www2.hp.com/svi_partner_list.jsp
http://hp.com/go/hpsoftwaresupport
http://hp.com/go/hpsoftwaresupport
http://www.hp.com/go/hpsoftwaresupport

• Enter into discussions with other software customers

• Research and register for software training

Most of the support areas require that you register as an HP Passport user and sign in. Many also require a
support contract. To find more information about access levels, go to: http://h20230.www2.hp.-
com/new_access_levels.jsp

To register for an HP Passport ID, go to: http://h20229.www2.hp.com/passport-registration.html

Legal

Third Party Licenses

HSQLDB License

Copyright (c) 1995-2000, The Hypersonic SQL Group. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided
that the following conditions are met:

Redistributions of source code must retain the above copyright notice, this list of conditions and the following
disclaimer.

Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other materials provided with the distribution.

Neither the name of the Hypersonic SQL Group nor the names of its contributors may be used to endorse
or promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE HYPERSONIC SQL GROUP, OR CONTRIBUTORS
BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING

25Read This First

http://h20230.www2.hp.com/new_access_levels.jsp
http://h20230.www2.hp.com/new_access_levels.jsp
http://h20229.www2.hp.com/passport-registration.html

IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY
OF SUCH DAMAGE.

This software consists of voluntary contributions made by many individuals on behalf of the Hypersonic
SQL Group.

For work added by the HSQL Development Group:

Copyright (c) 2001-2004, The HSQL Development Group All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided
that the following conditions are met:

Redistributions of source code must retain the above copyright notice, this list of conditions and the following
disclaimer.

Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other materials provided with the distribution.

Neither the name of the HSQL Development Group nor the names of its contributors may be used to endorse
or promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL HSQL DEVELOPMENT GROUP, HSQLDB.ORG, OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
OF THE POSSIBILITY OF SUCH DAMAGE.

The Apache XML License, Version 1.1

The Apache Software License, Version 1.1

Copyright (c) 1999-2000 The Apache Software Foundation. All rights reserved.

Chapter 126

Redistribution and use in source and binary forms, with or without modification, are permitted provided
that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the
following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other materials provided with the distribution.

3. The end-user documentation included with the redistribution, if any, must include the following
acknowledgment: "This product includes software developed by the Apache Software Foundation
(http://www.apache.org/)." Alternately, this acknowledgment may appear in the software itself, if and
wherever such third-party acknowledgments normally appear.

4. The names "Xerces" and "Apache Software Foundation" must not be used to endorse or promote products
derived from this software without prior written permission. For written permission, please contact
apache@apache.org.

5. Products derived from this software may not be called "Apache", nor may "Apache" appear in their name,
without prior written permission of the Apache Software Foundation.

THIS SOFTWARE IS PROVIDED "AS IS'' AND ANY EXPRESSED OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
APACHE SOFTWARE FOUNDATION OR ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
==

This software consists of voluntary contributions made by many individuals on behalf of the Apache Software
Foundation and was originally based on software copyright (c) 1999, International Business Machines, Inc.,
http://www.ibm.com. For more information on the Apache Software Foundation, please see
<http://www.apache.org/>.

27Read This First

Apache Jakarta License, Version 1.1

==

The Apache Software License, Version 1.1

Copyright (c) 1999 The Apache Software Foundation. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided
that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the
following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other materials provided with the distribution.

3. The end-user documentation included with the redistribution, if any, must include the following
acknowlegement: "This product includes software developed by the Apache Software Foundation
(http://www.apache.org/)." Alternately, this acknowlegement may appear in the software itself, if and
wherever such third-party acknowlegements normally appear.

4. The names "The Jakarta Project", "Tomcat", and "Apache Software Foundation" must not be used to
endorse or promote products derived from this software without prior written permission. For written
permission, please contact apache@apache.org.

5. Products derived from this software may not be called "Apache" nor may "Apache" appear in their names
without prior written permission of the Apache Group.

THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESSED OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
APACHE SOFTWARE FOUNDATION OR ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,

Chapter 128

EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
==

This software consists of voluntary contributions made by many individuals on behalf of the Apache Software
Foundation. For more information on the Apache Software Foundation, please see <http://www.apache.org/>.

CUP Parser Generator

CUP Parser Generator Copyright Notice, License, and Disclaimer

Copyright 1996-1999 by Scott Hudson, Frank Flannery, C. Scott Ananian

Permission to use, copy, modify, and distribute this software and its documentation for any purpose and
without fee is hereby granted, provided that the above copyright notice appear in all copies and that both
the copyright notice and this permission notice and warranty disclaimer appear in supporting documentation,
and that the names of the authors or their employers not be used in advertising or publicity pertaining to
distribution of the software without specific, written prior permission.

The authors and their employers disclaim all warranties with regard to this software, including all implied
warranties of merchantability and fitness. In no event shall the authors or their employers be liable for any
special, indirect or consequential damages or any damages whatsoever resulting from loss of use, data or
profits, whether in an action of contract, negligence or other tortious action, arising out of or in connection
with the use or performance of this software.

Jetty License, Version 3.6

Jetty License

Revision: 3.6

Preamble:

The intent of this document is to state the conditions under which the Jetty Package may be copied, such
that the Copyright Holder maintains some semblance of control over the development of the package, while
giving the users of the package the right to use, distribute and make reasonable modifications to the Package
in accordance with the goals and ideals of the Open Source concept as described at
http://www.opensource.org.

29Read This First

It is the intent of this license to allow commercial usage of the Jetty package, so long as the source code is
distributed or suitable visible credit given or other arrangements made with the copyright holders.

Definitions:

- "Jetty" refers to the collection of Java classes that are distributed as a HTTP server with servlet capabilities
and associated utilities.

- "Package" refers to the collection of files distributed by the Copyright Holder, and derivatives of that
collection of files created through textual modification.

- "Standard Version" refers to such a Package if it has not been modified, or has been modified in accordance
with the wishes of the Copyright Holder.

- "Copyright Holder" is whoever is named in the copyright or copyrights for the package.

Mort Bay Consulting Pty. Ltd. (Australia) is the "Copyright Holder" for the Jetty package.

- "You" is you, if you're thinking about copying or distributing this Package.

- "Reasonable copying fee" is whatever you can justify on the basis of media cost, duplication charges, time
of people involved, and so on. (You will not be required to justify it to the Copyright Holder, but only to
the computing community at large as a market that must bear the fee.)

- "Freely Available" means that no fee is charged for the item itself, though there may be fees involved in
handling the item. It also means that recipients of the item may redistribute it under the same conditions
they received it.

0. The Jetty Package is Copyright (c) Mort Bay Consulting Pty. Ltd. (Australia) and others. Individual files
in this package may contain additional copyright notices. The javax.servlet packages are copyright Sun
Microsystems Inc.

1. The Standard Version of the Jetty package is available from http://www.mortbay.com.

2. You may make and distribute verbatim copies of the source form of the Standard Version of this Package
without restriction, provided that you include this license and all of the original copyright notices and
associated disclaimers.

Chapter 130

3. You may make and distribute verbatim copies of the compiled form of the Standard Version of this
Package without restriction, provided that you include this license.

4. You may apply bug fixes, portability fixes and other modifications derived from the Public Domain or
from the Copyright Holder. A Package modified in such a way shall still be considered the Standard Version.

5. You may otherwise modify your copy of this Package in any way, provided that you insert a prominent
notice in each changed file stating how and when you changed that file, and provided that you do at least
ONE of the following:

a) Place your modifications in the Public Domain or otherwise make them Freely Available, such as by
posting said modifications to Usenet or an equivalent medium, or placing the modifications on a major
archive site such as ftp.uu.net, or by allowing the Copyright Holder to include your modifications in the
Standard Version of the Package.

b) Use the modified Package only within your corporation or organization.

c) Rename any non-standard classes so the names do not conflict with standard classes, which must also
be provided, and provide a separate manual page for each non-standard class that clearly documents how
it differs from the Standard Version.

d) Make other arrangements with the Copyright Holder.

6. You may distribute modifications or subsets of this Package in source code or compiled form, provided
that you do at least ONE of the following:

a) Distribute this license and all original copyright messages, together with instructions (in the about dialog,
manual page or equivalent) on where to get the complete Standard Version.

b) Accompany the distribution with the machine-readable source of the Package with your modifications.
The modified package must include this license and all of the original copyright notices and associated
disclaimers, together with instructions on where to get the complete Standard Version.

c) Make other arrangements with the Copyright Holder.

7. You may charge a reasonable copying fee for any distribution of this Package. You may charge any fee
you choose for support of this Package. You may not charge a fee for this Package itself. However, you
may distribute this Package in aggregate with other (possibly commercial) programs as part of a larger

31Read This First

(possibly commercial) software distribution provided that you meet the other distribution requirements of
this license.

8. Input to or the output produced from the programs of this Package do not automatically fall under the
copyright of this Package, but belong to whomever generated them, and may be sold commercially, and
may be aggregated with this Package.

9. Any program subroutines supplied by you and linked into this Package shall not be considered part of
this Package.

10. The name of the Copyright Holder may not be used to endorse or promote products derived from this
software without specific prior written permission.

11. This license may change with each release of a Standard Version of the Package. You may choose to
use the license associated with version you are using or the license of the latest Standard Version.

12. THIS PACKAGE IS PROVIDED "AS IS" AND WITHOUT ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

13. If any superior law implies a warranty, the sole remedy under such shall be , at the Copyright Holders
option either a) return of any price paid or b) use or reasonable endeavours to repair or replace the software.

14. This license shall be read under the laws of Australia.

W3C Software Notice and License

W3C(C) SOFTWARE NOTICE AND LICENSE

Copyright (C) 1994-2002 World Wide Web Consortium, (Massachusetts Institute of Technology, Institut
National de Recherche en Informatique et en Automatique, Keio University). All Rights Reserved.
http://www.w3.org/Consortium/Legal/

This W3C work (including software, documents, or other related items) is being provided by the copyright
holders under the following license. By obtaining, using and/or copying this work, you (the licensee) agree
that you have read, understood, and will comply with the following terms and conditions:

Permission to use, copy, modify, and distribute this software and its documentation, with or without
modification, for any purpose and without fee or royalty is hereby granted, provided that you include the

Chapter 132

following on ALL copies of the software and documentation or portions thereof, including modifications,
that you make:

The full text of this NOTICE in a location viewable to users of the redistributed or derivative work. Any
pre-existing intellectual property disclaimers, notices, or terms and conditions. If none exist, a short notice
of the following form (hypertext is preferred, text is permitted) should be used within the body of any
redistributed or derivative code: "Copyright (C) [$date-of-software] World Wide Web Consortium,
(Massachusetts Institute of Technology, Institut National de Recherche en Informatique et en Automatique,
Keio University). All Rights Reserved. http://www.w3.org/Consortium/Legal/"

Notice of any changes or modifications to the W3C files, including the date changes were made. (We
recommend you provide URIs to the location from which the code is derived.)

THIS SOFTWARE AND DOCUMENTATION IS PROVIDED "AS IS," AND COPYRIGHT HOLDERS
MAKE NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT
NOT LIMITED TO, WARRANTIES OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR
PURPOSE OR THAT THE USE OF THE SOFTWARE OR DOCUMENTATION WILL NOT INFRINGE
ANY THIRD PARTY PATENTS, COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS.

COPYRIGHT HOLDERS WILL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL OR
CONSEQUENTIAL DAMAGES ARISING OUT OF ANY USE OF THE SOFTWARE OR
DOCUMENTATION.

The name and trademarks of copyright holders may NOT be used in advertising or publicity pertaining to
the software without specific, written prior permission. Title to copyright in this software and any associated
documentation will at all times remain with copyright holders.

Xalan, Version 2.5.1

The Apache Software License, Version 1.1

Copyright (c) 1999-2003 The Apache Software Foundation. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided
that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the
following disclaimer.

33Read This First

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other materials provided with the distribution.

3. The end-user documentation included with the redistribution, if any, must include the following
acknowledgment: "This product includes software developed by the Apache Software Foundation
(http://www.apache.org/)." Alternately, this acknowledgment may appear in the software itself, if and
wherever such third-party acknowledgments normally appear.

4. The names "Xalan" and "Apache Software Foundation" must not be used to endorse or promote products
derived from this software without prior written permission. For written permission, please contact
apache@apache.org.

5. Products derived from this software may not be called "Apache", nor may "Apache" appear in their name,
without prior written permission of the Apache Software Foundation.

THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESSED OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
APACHE SOFTWARE FOUNDATION OR ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
==

This software consists of voluntary contributions made by many individuals on behalf of the Apache Software
Foundation and was originally based on software copyright (c) 1999, Lotus Development Corporation.,
http://www.lotus.com. For more information on the Apache Software Foundation, please see
<http://www.apache.org/>.

XML Pull Parser for Java, 1.1.1

Indiana University Extreme! Lab Software License

Version 1.1.1

Copyright (c) 2002 Extreme! Lab, Indiana University. All rights reserved.

Chapter 134

Redistribution and use in source and binary forms, with or without modification, are permitted provided
that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the
following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other materials provided with the distribution.

3. The end-user documentation included with the redistribution, if any, must include the following
acknowledgment:

"This product includes software developed by the Indiana University Extreme! Lab
(http://www.extreme.indiana.edu/)."

Alternately, this acknowledgment may appear in the software itself, if and wherever such third-party
acknowledgments normally appear.

4. The names "Indiana Univeristy" and "Indiana Univeristy Extreme! Lab" must not be used to endorse or
promote products derived from this software without prior written permission. For written permission,
please contact http://www.extreme.indiana.edu/.

5. Products derived from this software may not use "Indiana Univeristy" name nor may "Indiana Univeristy"
appear in their name, without prior written permission of the Indiana University.

THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESSED OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
AUTHORS, COPYRIGHT HOLDERS OR ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Unix crypt(3C) utility

Copyright ' 1996 Aki Yoshida. All rights reserved.

35Read This First

Permission to use, copy, modify and distribute this software for non-commercial or commercial purposes
and without fee is hereby granted provided that this copyright notice appears in all copies.

Notices

Legal Notices

Warranty

The only warranties for HP products and services are set forth in the express warranty statements
accompanying such products and services. Nothing herein should be construed as constituting an additional
warranty. HP shall not be liable for technical or editorial errors or omissions contained herein.

The information contained herein is subject to change without notice.

Restricted Rights Legend

Confidential computer software. Valid license from HP required for possession, use or copying. Consistent
with FAR 12.211 and 12.212, Commercial Computer Software, Computer Software Documentation, and
Technical Data for Commercial Items are licensed to the U.S. Government under vendor's standard
commercial license.

Third-Party Web Sites

Mercury provides links to external third-party Web sites to help you find supplemental information. Site
content and availability may change without notice. Mercury makes no representations or warranties
whatsoever as to site content or availability.

Copyright Notices

' Copyright 2001-2008 Hewlett-Packard Development Company, L.P.

Trademark Notices

Java™ is a US trademark of Sun Microsystems, Inc. Microsoft®, Windows® and Windows XP® are U.S.
registered trademarks of Microsoft Corporation. IBM®, AIX® and WebSphere® are trademarks or registered
trademarks of International Business Machines Corporation in the United States and/or other countries.
BEA® and WebLogic® are registered trademarks of BEA Systems, Inc.

Chapter 136

Acknowledgements

This product includes software developed by the Apache Software Foundation (http://www.apache.org).

This product includes code licensed from RSA Data Security (http://www.rsasecurity.com).

This product includes software developed by jGuru.com (MageLang Institute) (http://www.jGuru.com).

This product includes Antlr (http://www.antlr.org).

This product contains components derived from software developed by the Indiana University Extreme!
Lab (http://www.extreme.indiana.edu).

The Standard Version of the Jetty package is available from http://www.mortbay.com.

37Read This First

http://www.apache.org
http://www.rsasecurity.com
http://www.jGuru.com
http://www.antlr.org
http://www.extreme.indiana.edu
http://www.mortbay.com

Chapter 138

2 Installation Guide

HP SOA Registry Foundation may be installed using the following scenarios:

Standalone Registry

This is the default installation scenario; under it the HP SOA Registry Foundation server is installed
on a local machine and connects to a local or external registry database. To perform a standalone
installation, follow the instructions at Installation on page 42. For more configuration information,
refer to Server Configuration on page 87 and Database Installation on page 93.

Deployed to an Application Server

The installed standalone HP SOA Registry Foundation server may be deployed to several application
servers. To deploy HP SOA Registry Foundation to an application server, perform the standalone
installation as described in Installation on page 42 and then follow the instructions in Deployment
to an Application Server on page 146.

Standalone registry with data migration

In this case, a standalone installation is performed and data is migrated to it from a previous
installation of HP SOA Registry Foundation. Follow the instructions in Migration on page 194.

External Accounts Integration

HP SOA Registry Foundation server may be optionally configured to use external accounts on an
LDAP or other account store. It is possible to set up external accounts integration during database
installation. For more information, please see Database Installation on page 93 and External
Accounts Integration on page 116

Registry cluster

A UDDI cluster is a group of UDDI registries deployed on multiple servers possibly with a clustered
database in the back-end. Load balancing is used to distribute requests amongst HP SOA Registry
Foundation servers to get the optimal load distribution. Standalone Registry or registry deployed
to an application server could be configured to cluster with instructions in Cluster Configuration
on page 172

39

Support for Windows NT service and Unix Daemon

HP SOA Registry Foundation can be run as a service on Windows 2000/XP. Support for NT service
installation is installed by default on Windows servers, see instructions in NT Service Support on
page 208. Also, HP SOA Registry Foundation can be run as a system daemon on Unix machines,
see instructions in Running in Linux on page 214.

System Requirements
This section explains the requirements which must be met before you start installation. Supported Platforms
on page 19 in Chapter 1, Read This First summarizes the software platform options for the current release.
So you should:

1 Ensure the installation machine meets the requirements that follow in Hardware on page 40;

2 Decide which combination of supported platform components will be used;

3 Ensure each component is installed as described in this section.

Then you can proceed with installation.

Hardware

Table 1 summarizes hardware requirements for the installation machine. The minimum specifications are
suitable for experimental use of HP SOA Registry Foundation on a workstation. Although it may be possible
to install the product on a machine with lower specifications, performance and reliability may be severely
affected. The requirements of servers in a production environment are greater and depend on patterns of
use. See Support in Read This First if you need assistance.

Chapter 240

Table 1. Minimum Hardware Specifications

NotesMinimumSpecification

Actual requirements depend on the on patterns of use in the target
environment.

1GHzCPU

1GBRAM

This is sufficient if the selected database system is installed on
another machine.

The database server machine must have sufficient space for the
selected database system. The requirements for registry data are
quite modest. Each GB typically provides for registration of
several thousand additional entities.

So disk performance is more significant.

300MBDisk Space

Java™ Platform

A supported Java Development Kit is required on the installation machine. A Java Runtime Environment
is not sufficient because it must be possible to compile JSP pages at runtime.

IBM JDK 1.4 and higher must contain a JCE provider. Bouncy Castle provider [http://www.bouncycastle.org/]
is supported, and JCE Unlimited Strength Jurisdiction Policy Files [http://java.sun.com/products/jce/index-
14.html] are required.

1 Copy the file bcprov-jdk14-*.jar from Bouncy Castle provider [http://www.bouncycastle.org/] to
IBMJava2/jre/lib/ext;

2 Add the following line to the the file java.security located in IBMJava2/jre/lib/security:

security.provider.5=org.bouncycastle.jce.provider.BouncyCastleProvider

Relational Database

Setting up a relational database during installation is optional - you can instead set it up after installation
using the setup tool. See Database Installation on page 93. In both cases you can use the pre-configured
HSQL database system that comes with HP SOA Registry Foundation.

41Installation Guide

http://www.bouncycastle.org/
http://java.sun.com/products/jce/index-14.html
http://www.bouncycastle.org/

The installation process allows you to setup a database using one of the other supported database systems,
in which case the database server must be installed and running (not necessarily on the same machine).
JDBC driver files must generally be available locally, but some drivers are distributed with HP SOA Registry
Foundation.

Installation
This section describes the standalone installation of HP SOA Registry Foundation and all settings.

To install the registry, type the following at a command prompt:

java -jar hp-soa-registry-foundation-6.61.jar

and follow the wizard panels. If you have associated javaw with *.jar files on Windows, just double-click
the icon for the file hp-soa-registry-foundation-6.61.jar.

Command-line Options

Installation may be launched with following optional arguments:
java -jar hp-soa-registry-foundation-6.61.jar [[--help] | [-h] | [--gui] | [-g]]
[[-u configfile] | [--use-config configfile]]
[[-s configfile] | [--save-config configfile]]
[--debug]

-g | --gui starts the installation in gui mode (default).

-c | [--console] runs command-line installation

-h | [--help] shows help messages

-s configfile | --save-config configfile saves the installation settings into the configuration file without
actually installing the registry.

-u configfile | --use-config configfile installs the registry using the settings contained in the configuration
file.

--debug the installation produces more information to localize problems or errors.

Chapter 242

Installation Panels

This section discusses the content of the installation wizard. It goes through installation panels using default
settings.

Figure 1. Welcome Panel

43Installation Guide

Figure 1 shows the first panel of the installation wizard. The installation wizard helps you to install HP
SOA Registry Foundation on a local computer. To continue, click Next. To stop this installation at any
time, click Exit. To return to a previous panel, click Back. This panel also contains links to HP SOA Registry
Foundation documentation and to the Systinet Web site.

Figure 2. License Panel

Chapter 244

Figure 2 shows the HP SOA Registry Foundation license. To continue with the installation of the registry,
read the license agreement and agree to it. To accept the license agreement, select the radio button labeled
I accept the terms of the license agreement and click Next.

If you do not accept the terms of the license agreement, select the radio button labeled I DO NOT accept
the terms of the license agreement, and click Exit.

Until you agree to the license, only the Exit button is enabled. You cannot proceed with the installation
without agreeing to the license.

Evaluation Key

If you are installing the evaluation version of HP SOA Registry Foundation, you must provide your user
name and key. If you have the full version, skip to Installation Type on page 47.

45Installation Guide

Figure 3. Evaluation Key

User name

In this field use the e-mail address you provided at www.systinet.com.

License Key

The key has been sent to you via e-mail. If you have difficulties, please contact
http://www.systinet.com/support for assistance.

Chapter 246

http://www.systinet.com/support

You must provide a valid user name and license key to continue the installation.

Installation Type

Figure 4. Installation Type

Figure 4 shows two installation scenarios. Select one.

47Installation Guide

Standalone registry

Default installation. Installs a standalone registry and enables the creation of a new registry database.

Standalone registry with data migration

Installs standalone registry with migration of data from a previous installation of the registry. For
more information, please see Migration on page 194.

Figure 5. Installation Directory

Chapter 248

On the panel shown in Figure 5, type the path to the installation directory where HP SOA Registry Foundation
will be installed. The default directory is the current working directory.

Installation directory can consist of ASCII characters. International characters in installation
directory path are not supported.

If you are installing on a Windows platform you can selected from the following:

Create shortcut icons on the desktop

If selected, icons for accessing the Registry Console and for starting and stopping the registry will
be created on the desktop.

Add shortcut icons to the Start menu

If selected, the icons noted above are added to the Start menu.

Program group name

Group name created in the Start menu where shortcut icons will be placed.

You must have read and write permissions on the installation directory.

49Installation Guide

SMTP Configuration

Figure 6. SMTP Configuration

Figure 6 shows SMTP configuration. The SMTP configuration is important when users needs to receive
email notification from subscriptions.

Chapter 250

SMTP Host Name

Host name of the SMTP server associated with this installation of HP SOA Registry Foundation

SMTP Port

Port number for this SMTP server

SMTP Password

Self explanatory

Confirm password

Retype the same password. Note that if it is not same as the password in the previous box, you
cannot continue.

SMTP Default Sender E-mail, Name

HP SOA Registry Foundation will generate email messages with this identity.

51Installation Guide

Setup Administrator Account

Figure 7. Administrator Account

Database Settings

The registry requires a database which may be created during installation. During installation you can create
a new database, create schema in an existing empty database or connect to an existing database with created

Chapter 252

schema. Using the Setup tool, you can also drop the database or database schema. Select your database
creation method on the following panel.

Figure 8. Database Creation Method

53Installation Guide

Create database

Create new database/users/tablespaces (depending on the type of the database server) and database
schema. This is the most comfortable way, but please note that you must know the credentials of
the database administrator.

Create schema

Create a new schema in an existing database. Use this option if you have access to an existing
empty database and the ability to create tables and indexes. This option is suitable when you do
not know the administrator's credentials. We assume admin has already created a new
database/users/tablespaces for this option.

See Database Installation on page 93, for more information.

Configure database

Configure registry database. Use this option if the registry database already exists (For example,
from a previous installation) and fill in only the connection parameters.

No database

Choose it if you intend to create a registry database later. Note that HP SOA Registry Foundation
cannot be started without a database.

Chapter 254

Figure 9. Select Database

Figure 9 shows the supported database engines that can be prepared for HP SOA Registry Foundation.

You can specify the name of HP SOA Registry Foundation installation. The name is saved to the operational
business entity. The registry name appears in the upper right corner of Registry Console and Business
Service Console.

55Installation Guide

Select Install demo data if you want to evaluate the provided HP SOA Registry Foundation demos after
installation.

The default database to create is the Preconfigured HSQL (HSQL). This database is recommended for
evaluation purposes.

Note that it is possible to change the database after installation, using the Setup tool.

Please see Database Installation on page 93 for more information on database installation.

Chapter 256

Figure 10. Preconfigured HSQL

On the panel displayed in Figure 7 you are only required to provide administrator account settings. The
database files will be installed into the REGISTRY_HOME/hsqldb/uddinode directory. The database user is uddiuser
and the password is uddi.

57Installation Guide

Figure 11. Optional JDBC Driver

You can also specify custom JDBC connection string. Such string may be useful for special environments
like database clusters where JDBC driver does load-balancing or failover. This setting is useful only in
Create Schema, Drop Schema and Configure Database. We do not recommend to use this option unless
there is special need to do so.

Chapter 258

Enter path to JDBC Drivers on the panel shown in Figure 11. It is not necessary to configure this path for
the HSQL and PostgreSQL databases as the JDBC drivers for these databases are installed in the distribution.

Figure 12. Authentication Provider

Figure 12 allows you to select an authentication provider.

59Installation Guide

Database

All accounts will be stored in the registry database.

LDAP

Registry accounts integrated with LDAP server.

External

Registry accounts integrated with other external storage. The the interface
com.systinet.uddi.account.ExternalBackendApi must be implemented and added to the registry
installation.

Chapter 260

Direct deployment

Figure 13. Direct deployment

Direct deployment allows to create EAR or WAR file for deployment in application server directly from
installer. You can also deploy later with setup. See Creating a Web Application Archive (WAR,EAR) on
page 147 for information on how to deploy from setup. Deployment from installer is similar.

61Installation Guide

Server Settings

Figure 14. Server Configuration

Figure 14 shows the server configuration settings. These settings will be used for the HTTP and HTTPS
servers. The default recommended settings are filled in the text fields.

Chapter 262

Host name

The host name of this computer; change the auto-completed entry if it is different.

HTTP Port

The nonsecure port for accessing the Registry Console (default value: 8080)

SSL (HTTPS) Port

Secure port for accessing the Registry Console (default value: 8443)

Connector

The connector port is used by standalone server to listen for control signals. Note that no other
application may use this port (default value: 8081).

SSL Certificate Alias

Alias used to identify the SSL private key in protected store management. For more information
see PStore Tool on page 401. (default value: uddiadmin)

SSL Certificate Password

Password to encrypt SSL private key. (default value: changeit)

Confirm Password

Retype the same password. Note that if it is not same as previous, you cannot continue.

The host name, SSL Certificate Alias, and SSL password are used to create a new security identity in the
local protected store. It creates a certificate and adds this certificate to REGISTRY_HOME/conf/clientconf.xml,
REGISTRY_HOME/conf/pstore.xml, and also exports it to the certificate file REGISTRY_HOME/doc/registry.crt. See
PStore Tool on page 401 for instructions in how to operate the protected security store.

The server configuration may be changed after install. See Reconfiguring After Installation on
page 74.

Single Login

This panel allows you to set up HP SOA Registry Foundation as a HP Single Login partner. Users can be
transferred between HP products that are installed as partners in the same Single Login affiliation without
logging in more than once.

63Installation Guide

Figure 15. Single Login

To set up registry as a Single Login partner:

1 Check the box provided;

2 Enter a unique Partner Name;

Chapter 264

3 Enter the URL for Single login server, including context of its service. This URL might look like
http://host:8080/sso;

4 Enter a user name for Single login administrator;

5 Enter a password and password confirmation for Single login administrator.

The registry should also be configured to use the same account provider as the identity provider
(and other partners). See Figure 12 in Database Settings on page 52. User groups defined at the
side ofidentity provider are lost without keeping the same account provider.

In fact the partner name must be unique amongst Single Login entities, which includes both partners
and the identity provider. So it cannot be ip, since this is the name used by the identity provider.

65Installation Guide

Confirmation and Installation Process

Figure 16. Confirmation

Figure 16 shows a summary of installation information. All required and optional properties are set. If you
want to continue with the installation, click Next and the install process will start. If you want to change
any property click Back.

Chapter 266

Figure 17. Installation Process

Figure 17 shows the installation output and progress. Installation consists of copying files, configuring the
server, and installing the database. When the installation has completed successfully, the Next button is
enabled. If there is a problem, an error message and Recovery button will appear on the screen.

For more information on recovery, see Troubleshooting on page 80

67Installation Guide

Figure 18. Finish Panel

On this panel, click Finish to conclude the installation.

Chapter 268

Installation Summary

Directory Structure

The installation directory structure contains the following directories:

app

Contains HP SOA Registry Foundation deployed as Web services in Systinet Server for Java.

bin

Contains command-line scripts for running HP SOA Registry Foundation. See Command-line
Scripts on page 72.

conf

Contains the HP SOA Registry Foundation configuration files

demos

Contains demos of HP SOA Registry Foundation functionality. For more information, please see
Chapter 6, Demos.

dist

Contains HP SOA Registry Foundation client packages.

doc

Contains the HP SOA Registry Foundation documentation.

etc

Contains additional data and scripts.

hsqldb

Contains the preconfigured HSQL database with registry data.

lib

Contains the HP SOA Registry Foundation libraries

log

Contains logs of installation, setup, and server output. See Logs on page 79.

work

This directory is available after the first launch of the server; it is a working image of the app
directory.

69Installation Guide

Registry Endpoints

HP SOA Registry Foundation is configured as follows. The <host name>, <http port> and <ssl port> are
specified during installation. For more information, please see Server Settings in Server Settings on page
62. For each endpoint you can use either http or ssl port.

• Business Service Console home page: http://<host name>:<http port>/uddi/bsc/web

• Registry Console home page: http://<host name>:<http port>/uddi/web

• UDDI Inquiry API endpoint - http://<host name>:<port>/uddi/inquiry

See Developer's Guide, UDDI Version 1 on page 431, UDDI Version 2 on page 431, UDDI Version 3 on
page 432.

• UDDI Publishing API endpoint - http://<host name>:<port>/uddi/publishing

See Developer's Guide, UDDI Version 1 on page 431, UDDI Version 2 on page 431, UDDI Version 3 on
page 432.

• UDDI Security Policy v3 API endpoint - http://<host name>:<port>/uddi/security

See Developer's Guide, UDDI Version 3 on page 432.

• UDDI Custody API endpoint - http://<host name>:<port>/uddi/custody

See Developer's Guide, UDDI Version 3 on page 432.

• UDDI Subscription API endpoint - http://<host name>:<port>/uddi/subscription

See Developer's Guide, UDDI Version 3 on page 432.

• Taxonomy API endpoint - http://<host name>:<port>/uddi/taxonomy

See Developer's Guide, Taxonomy on page 444.

• Category API endpoint - http://<host name>:<port>/uddi/category

See Developer's Guide, Category on page 458.

Chapter 270

• Administration Utilities API endpoint - http://<host name>:<port>/uddi/administrationUtils

See Developer's Guide, Administration Utilities on page 465.

• Replication API endpoint - http://<host name>:<port>/uddi/replication

See Developer's Guide, Replication on page 471.

• Statistics API endpoint - http://<host name>:<port>/uddi/statistics

See Developer's Guide, Statistics on page 472.

• WSDL2UDDI API endpoint - http://<host name>:<port>/uddi/wsdl2uddi

See Developer's Guide, WSDL Publishing on page 477.

• XSD2UDDI API endpoint - http://<host name>:<port>/uddi/xsd2uddi

See Developer's Guide, XSD Publishing on page 492.

• Extended Inquiry API endpoint - http://<host name>:<port>/uddi/inquiryExt

• Extended Publishing API endpoint - http://<host name>:<port>/uddi/publishingExt

• Configurator API endpoint - http://<host name>:<port>/uddi/configurator

• Account API endpoint - http://<host name>:<port>/uddi/account

See Developer's Guide, Account on page 513.

• Group API endpoint - http://<host name>:<port>/uddi/group

See Developer's Guide, Group on page 522.

• Permission API endpoint - http://<host name>:<port>/uddi/permission

See Developer's Guide, Permission on page 531.

Pre-installed Data

HP SOA Registry Foundation contains the following data:

71Installation Guide

• Operational business - This entity holds miscellaneous nodes' registry settings such as the validation
service configuration.

• Built in tModels - tModels required by the UDDI specification.

• Demo data - Data required by the HP SOA Registry Foundation demos. For more information, please
see Chapter 6, Demos.

Command-line Scripts

The bin subdirectory contains scripts, including those for launching the server, installing Windows services,
and changing configuration.

serverstart

serverstart.batWindows:

./serverstart.shUNIX:

Starts the standalone registry server.

serverstop

serverstop.batWindows:

./serverstop.shUNIX:

Stops the standalone registry server.

server

server.batWindows:

./server.shUNIX:

Helper script to manipulate the standalone HP SOA Registry Foundation server. To start and stop the
registry, use serverstart or serverstop without parameters instead of server with parameters. For more
information, please see Server Properties on page 76.

Chapter 272

Setup

setup.batWindows:

./setup.shUNIX:

Setup may be launched with the following optional arguments:
setup.sh (.bat) [[--help] | [-h] | [--gui] | [-g] | [-u file] | [--use-config file]] [[-s file] | [--save-config file
]] [--debug]

-h | --help shows help message

-g | --gui starts the setup wizard. The wizard is the default mode.

-u | --use-config file starts setup in non-interactive mode; it reads all properties from the specified file.

-s | --save-config file starts the setup wizard. All configuration will be saved into specified file instead
of execute configuration. The file may be used later in a non-interactive installation.

--debug the setup produces more information to localize problems or errors.

To change the HP SOA Registry Foundation configuration after installation follow Reconfiguring After
Installation on page 74.

Signer

signer.batWindows:

./signer.shUNIX:

The Signer is a graphical application that can be used to add, remove, and verify the signatures of UDDI
structures you have published. Follow Signer Tool on page 323.

register

register.batWindows:

./register.shUNIX:

73Installation Guide

Registers evaluation version of HP SOA Registry Foundation. Follow Licensing and Evaluation on page
82.

SoapSpy

SoapSpy.batWindows:

./SoapSpy.shUNIX:

Debugging tool to control low level soap communication. Follow How to Debug on page 606.

PStoreTool

PStoreTool.batWindows:

./PStoreTool.shUNIX:

Protected security storage manipulation tool. See PStore Tool on page 401.

env

env.batWindows:

./env.shUNIX:

Helper script to set system variables. We recommend not to use it directly.

Reconfiguring After Installation

All settings may be changed after installation using the Setup tool.

The Setup tool also facilitates other functions such as deploying to an application server (described in
Deployment to an Application Server on page 146) and data migration from previous installation (described
in Migration on page 194).

The Setup tool contains similar panels to those in the installation tool. To run this tool, execute the following
script from the bin subdirectory of your installation:

setup.batWindows:

Chapter 274

./setup.shUNIX:

See command-line parameters in Setup on page 73.

By default setup starts in wizard mode as shown here:

The following topics may be configured:

75Installation Guide

Configuration

Change server and registry configuration. Follow Server Configuration on page 87.

Database

Create, drop, or connect to a database. Follow Database Installation on page 93.

Deployment

Deploy registry to an application server. Follow Deployment to an Application Server on page 146.

Migration

Migrate registry data from other registry. Follow Migration on page 194.

Backup and Restore

Backup and restore HP SOA Registry Foundation. Follow Backup on page 200

Authentication account provider

Change account backend configuration. Follow External Accounts Integration on page 116.

Server Properties

System properties are the main means of configuring HP SOA Registry Foundation as deployed into Systinet
Server for Java. Default values for these properties are in the resource META-INF/wasp.properties, which is
located in lib/runner.jar.

There are two ways to alter system properties, for the two different types of HP SOA Registry Foundation
installation:

• Standalone Installation: Set the property from the command line when starting the server from either
the REGISTRY_HOME/bin/server.bat or server.sh script. The syntax is:
server(.sh) [-Dname of property=value] { start | stop }

For example:

server -Didoox.debug.level=4 start

• HP SOA Registry Foundation deployed to an application server: Default property values can be
overridden in the init-param elements in the web application deployment descriptor, web.xml.

Chapter 276

The following properties are checked when HP SOA Registry Foundation is initialized:

DescriptionProperty

This property is mandatory for running a HP SOA Registry Foundation
server. It must point to the directory in which HP SOA Registry
Foundation is installed.

wasp.location

This is an absolute or wasp.location-relative path pointing to the registry
configuration file. Setting this property is optional; the default value
is conf/clientconf.xml.

wasp.config.location

Comma-separated list of additional config paths to include. These
paths can be either absolute or relative to the working directory. This
property is optional.

wasp.config.include

Sets a classpath for the registry implementation. This property is
optional; if it is not set, registry interfaces and implementation are
loaded in the same classloader.

wasp.impl.classpath

Set to true if HP SOA Registry Foundation should be automatically
destroyed just before JVM is destroyed. Set to false if you want to
manage the shutdown process yourself. The default setting is true.

wasp.shutdownhook

77Installation Guide

DescriptionProperty

Determines the number of debugging messages produced by HP SOA
Registry Foundation:

• 0: none

• 1: errors

• 2: warnings

• 3: infos

• 4: debugs

This property is optional; the default value is 2 for the client and 3 for
the server. The debug level is available in the non-stripped distribution
only.

The logging level specified by the idoox.debug.level property overrides
the level specified in the configuration file determined by the
log4j.configuration property

idoox.debug.level

Specifies which logging system is used, waspLogger or log4j. Default is
log4j. Setting the value of this property to waspLogger uses this logger,
instead.

idoox.debug.logger

Specifies the location of the configuration (properties file) for log4j.
This property can contain a relative (conf/log4j.config) or absolute
(/home/waspuser/log4j.config) path to the configuration file.

If it is not set, the default configuration (ConsoleAppender with the pattern
%p: %c{2} - %m\n) will be used.

An example configuration file for log4j, log4j.config, is located in the
conf subdirectory of the HP SOA Registry Foundation installation
directory.

log4j.configuration

Chapter 278

Windows Services

Use the following scripts to install, uninstall, start, and stop HP SOA Registry Foundation as a Windows
service:

InstallService

InstallService.bat

Installs HP SOA Registry Foundation into system services

UnInstallService

UnInstallService.bat

Uninstalls HP SOA Registry Foundation from system services.

StartService

StartService.bat

Starts the already installed HP SOA Registry Foundation service.

StopService

StopService.bat

Stops the started HP SOA Registry Foundation service.

Follow NT Service Support on page 208.

Logs

There are four log files in REGISTRY_HOME/log directory.

These two log files are produced by the Installation and Setup processes:

install.log

This log contains installation output information including all properties set during installation,
and output from the installation process. If an error occurs during installation, see this log for
details.

79Installation Guide

setup.log

The log of the Setup tool. Any execution of the Setup tool writes the set properties and output from
setup processes here. Errors occurring during setup are written to this log.

The default server logs are:

logEvents.log

The standard server output contains informative events which occur on the HP SOA Registry
Foundation server.

errorEvents.log

This file contains detailed logs of error events which occur on the HP SOA Registry Foundation
server.

replicationEvents.log

Replication process logs can be found in the REGISTRY_HOME/log/replicationEvents.log file.

configuratorEvents.log

Cluster configuration events are logged in the REGISTRY_HOME/log/configuratorEvents.log file

wasp_NTService.log

Events of the server are written into the REGISTRY_HOME\log\wasp_NTService.log file.

The server logs may be configured by one of two logging systems, the in-house waspLogger and log4j. By
default, log4j is used. The default log4j configuration file is located in REGISTRY_HOME/conf/log4j.config.

An explanation of using log4j is outside the scope of this documentation; please see the Apache
log4j documentation [http://logging.apache.org/log4j/docs/index.html] for more information.

Troubleshooting

If errors occur during the installation process, the installer displays a message and a Recovery button.

Execution of Task fails. You can click Recovery and correct erroneous selections or click Exit to exit the
installation.

Chapter 280

http://logging.apache.org/log4j/docs/index.html
http://logging.apache.org/log4j/docs/index.html

If you click Recovery, the installation returns to the step that should be corrected. For example, if the
installation fails during copying files, it will return to the installation type panel. If the process fails during
configuring database it will return to the database panels.

If errors occur when using the Setup tool, only the error message is displayed, you can continue by clicking
Next.

The following general problems may occur:

Installation backend timeout

If the task does not respond for a long time, a timeout error is thrown and the task is stopped. The
default timeout is 30 minutes. If you have a slow machine, try to redefine the timeout system
property for a greater value in minutes at a java command line.

For 60 minutes, run installation by following command: java -Dtimeout=60 -jar hp-soa-registry-
foundation-6.61.jar

For 60 minutes, edit the setup.sh (setup.bat) file; add the -Dtimeout=60 option into the java command
line so it looks like:

"%JAVA_CMD%" -Dtimeout=60Windows:

"$JAVA_CMD" -Dtimeout=60UNIX:

Cannot find JDBC driver
java.lang.ClassNotFoundException

Some external classes cannot be found. Usually the path to JDBC driver does not contain the
needed *.jar or *.zip files. Another reason this error may be thrown is that the JDBC driver is not
supported by HP SOA Registry Foundation. See Database Installation on page 93 for more
information about supported databases.

Cannot access database
java.sql.SQLException

This usually happens during the creation of database which already exists. To resolve this error,
try to connect or drop this database first.

This error is also thrown when trying to drop a database which is currently in use, or does not exist.
Note that some set properties must exist on the database engine and some of them are optional.
Please see Database Installation on page 93 for more information about supported databases.

81Installation Guide

Couldn't create or access important files. Wrong path

This error is displayed when the installation directory specified is bad or the user does not have
read and write permissions for it. Try to install to another directory or reset the read and write
permissions.

Licensing and Evaluation
When you download the evaluation version of HP SOA Registry Foundation from Systinet, the license key
is provided via email. This license is valid for 30 days. At the end of this period, you may request an extension
of the evaluation license key. (If you wish to continue using HP SOA Registry Foundation after the expiration
of the extended license key, you must purchase it. For information on purchasing HP SOA Registry
Foundation, visit the Systinet Purchase Page [http://systinet.com/products/buy].)

You will be prompted for your User name and License key during installation.

Obtaining an Evaluation License Key

When you download HP SOA Registry Foundation from Systinet
[http://www.systinet.com/products/download_center], a license key is sent to the email address you provided
at registration.

Save this email. It contains a link to the page on which you request an extension of your evaluation
license.

Entering the License Key

Enter the valid license key during installation of the evaluation version.

Chapter 282

http://systinet.com/products/buy
http://www.systinet.com/products/download_center

Figure 19. Evaluation Key

User name

User name is the e-mail address that you provided at www.systinet.com.

License Key

The key has been sent to you via e-mail. If you have difficulties, please contact
http://www.systinet.com/support for assistance.

83Installation Guide

http://www.systinet.com/support

You must provide valid user name and license key otherwise you cannot continue with installation. Continue
installation the installation as described in Installation Type on page 47

Extending the Evaluation Period

When the license period expires, the Registry Console displays a page indicating that your key is no longer
valid as shown below:

To acquire an extension of the evaluation license:

1 Follow the link in the email containing your initial license key.

2 Provide your user name and password, and the reason for your extension request.

3 If approved, you will receive a reply via email with a new key.

Chapter 284

4 When you receive your new license key, enter it as described in Obtaining an Evaluation Key above.

GUI Version

After expiration you can enter a new license key via the Registry Console:

1 Point a browser at the HP SOA Registry Foundation registration URL, http://<host name>:8080/uddi/web
(assuming that registry runs on <host name> using the default port).

2 Type the email address associated with this download in the box labeled User name.

3 Copy the key from the email and paste it into the box labeled License key and click Register.

4 A valid key returns the message "License key was accepted."

85Installation Guide

Command-line Version

If you do not wish to launch the HP SOA Registry Foundation user interface, you can also enter the license
key from a command line.

To provide your license key via console:

1 Change your working directory to the bin subdirectory of your installation, and type the following:

register --licenseKey <license key> --userName <email address>

2 Replace <license key> with the key provided in your email and replace <email address> with the
email address used to register with Systinet. For example, if your license key is W1116-7IYU4-RDCNE-
GC777-HHVVV and your email address is crunch@breakfast.com, you would type:

register --licenseKey W1116-7IYU4-RDCNE-GC777-HHVVV --userName crunch@breakfast.com

3 A valid license key will return the message "License key was accepted."

Evaluation Limitations

The following limitations are put on HP SOA Registry Foundation installations under evaluation licenses:

1 User is not allowed change the system clock back to extend the evaluation period. If the system clock
is altered in this way, the validation of the license key fails.

2 User cannot use HP SOA Registry Foundation without a valid, non-expired license key. HP SOA
Registry Foundation is rendered inaccessible until a valid key is entered using one of the methods
described above.

3 The registry's database is not accessible without a valid, non-expired license key; the database is
accessible only from a registry using same license key or its extension keys.

4 The database export/import/migrate tools take the license into account. You cannot transfer data
between databases containing different licenses. In other words, if you download a new evaluation
version of HP SOA Registry Foundation, you will not be able to transfer the database to it using these
tools.

Chapter 286

Server Configuration
The server configuration may be set during installation or by using the Setup tool after installation. Both
of these scenarios use the same set of GUI panels for server configuration shown in this section.

To run the Setup tool, execute the following script from the bin subdirectory of your installation:

setup.batWindows:

./setup.shUNIX:

See command-line parameters in Setup on page 73.

Select Configuration on the first panel.

87Installation Guide

Figure 20. Setup

For more information on the Setup tool, please see Reconfiguring After Installation on page 74.

Select whether you want to setup HP SOA Registry Foundation that has been deployed (second choice) or
not (first choice).

Chapter 288

Figure 21. Setup

89Installation Guide

Server Configuration

Figure 22. Server Configuration

Figure 22 shows server configuration settings. These settings are used for the HTTP and HTTPS servers.

Chapter 290

Host name

Host name of the computer on which HP SOA Registry Foundation is installed; change the auto-
completed entry if it is different.

HTTP Port

The non-secure port for accessing the Registry Console (default value: 8080)

SSL (HTTPS) Port

Secure port for accessing the Registry Console (default value: 8443)

Connector

Connector port is used by standalone server to listen for control signals. No other application could
use this port (default value: 8081)

SSL Certificate Alias

Alias used for identify SSL private key in protected store management. For more information see
PStore Tool on page 401. (default value: uddiadmin)

SSL Certificate password

Password to encrypt SSL private key.(default value: changeit)

Confirm password

Retype the same password. Note that if it is not same as previous, you cannot continue.

The host name, SSL Certificate Alias, and SSL password are used to create a new security identity in the
local protected store. It creates a certificate and adds this certificate to REGISTRY_HOME/conf/clientconf.xml,
REGISTRY_HOME/conf/pstore.xml, and also exports it to the certificate file REGISTRY_HOME/doc/registry.crt. See
PStore Tool on page 401 for instructions in how to operate the protected security store.

The certificate generated by Registry is signed by our Demo Certification Authority. This enables
HP SOA Systinet 3.00 to access HP SOA Registry Foundation without additional trust setup when
deployed to JBoss. Using the generated certificate for production is not recommended.

After setting these properties, the server will be available at http://[host name]:[HTTP Port]/[Context of URL].
For example, in Figure 22, the server is available at http://mydomain.mycompany.com:8080/uddi and at
https://mydomain.mycompany.com:8443/uddi. Note that the communication could be spied by SoapSpy tool, see
How to Debug on page 606

91Installation Guide

SMTP Configuration

Figure 23. SMTP Configuration

Figure 23 allows you to configure SMTP. The SMTP configuration is important when users needs to receive
email notification from subscriptions.

Chapter 292

SMTP Host Name

Host name of the SMTP server, through which all e-mail alerts and notification are sent to
administrator and users.

SMTP Port

Port number for this SMTP server

SMTP Password

Password to access SMTP server

Confirm password

Retype the same password. Note that if it is not same as the password in the previous box, you
cannot continue.

SMTP Default Sender E-mail, Name

HP SOA Registry Foundation will generate email messages with this identity.

Database Installation
The database may be set up during installation or by using the Setup tool after installation. Both of these
scenarios use the same set of GUI panels shown in this section.

To run the Setup tool, execute the following script from the bin subdirectory of your installation:

setup.batWindows:

./setup.shUNIX:

See command-line parameters in Setup on page 73.

93Installation Guide

Figure 24. Setup Select Database

Select your database. For more information on the Setup tool, please see Reconfiguring After Installation
on page 74.

Chapter 294

Database Creation Method

The registry requires a database. During installation you can create a new database, create schema in an
existing empty database or connect to an existing database with created schema. Using the Setup tool, you
can also drop a database or database schema. Select your database operation on the following panel:

Figure 25. Database Creation Method

95Installation Guide

Select a method from those shown in Figure 25.

Create database

Create new database/users/tablespaces (depending on the type of database server) and database
schema. This is the easiest way to attach the required database to HP SOA Registry Foundation.
Note that you must have the credentials of the database administrator.

Create schema

Create a new schema in existing database. Select this method if you have access to an existing
empty database with the ability to create tables and indexes. This option is suitable when you does
not know the administrator's credentials. We assume the administrator has already created a new
database/users/tablespaces for this option.

Drop database

Drops the whole database/users/tablespaces. Note that this option depends on the type of database
server.

Drop schema

Drops all tables in the database but leave the empty database.

Configure database

Configure registry database. Use this method if the registry database already exists, for example,
from a previous HP SOA Registry Foundation installation of the same release number, and fill in
only the connection parameters.

Select Database Type

Figure 26 shows the supported database engines that can be prepared for HP SOA Registry Foundation.
The panel may differ if another method was selected in the previous step.

Chapter 296

Figure 26. Select Database Type

Follow these links for selected database.

• Preconfigured HSQL on page 98

• HSQL on page 108

97Installation Guide

• Oracle on page 99

• MSSQL 2000 or 2005 on page 101

• DB2 on page 104

Preconfigured HSQL

The default database is the preconfigured HSQL. The installer or Setup tool creates database named
REGISTRY_HOME/hsqldb/uddinode and the user account uddiuser with the password uddi in the database. Note
that all database files can be found in REGISTRY_HOME/hsqldb directory.

This database is recommended for evaluation and testing purposes only.

If you use HSQL then user credentials are stored in the HSQL database files in plain text. So you
must protect these files from unauthorized reading using appropriate filesystem access rights. The
files are located in the directory REGISTRY_HOME/hsqldb/ by default.

Chapter 298

Oracle

The Create database option on the installer/Setup tool does not mean to create a new physical database.
The installation process only creates a new tablespace in an existing database and a new user of the default
tablespace is set up on the created one. Then a database schema is created and UDDI data are loaded.
Because relational tables are created in the schema of the specified user, if you want to create more UDDI
databases, you must create UDDI databases with different database users.

99Installation Guide

Oracle database creation requires the following properties. To connect or create a schema requires a subset
of these properties. Please note that properties marked with an asterisk (*) must not collide with existing
objects in the database.

Database Server Address

Usually the host name or IP address of the computer where the database server is accessible.

Chapter 2100

Database Server Port

Port on which the database listens for a connection

Existing Database Name

Name of a database that already exists into which the HP SOA Registry Foundation tablespace
will be created.

Database Administrator Name

User name of the administrator of the database; required to create a new tablespace on the existing
database

Database Administrator Password

Password for the administrator account specified in the previous text box.

Database Tablespace Name *

Name of the tablespace to be created in the existing database and which will store UDDI data
structures.

Database User *

A new user account which will be created to connect to the tablespace.

Database User Password

Password for the user account specified in the previous text box.

Confirm password

Again, if it is not the same as in the previous text box, you cannot continue.

Tablespace Datafile *

Enter the path to the tablespace data file.

Continue with JDBC Driver on page 109.

MSSQL 2000 or 2005

You have to select right version of MSSQL. Either MSSQL 2000 or MSSQL 2005 can be selected in panel
shown on Figure 26. The options that follow are same for both but the versions differ in connection string
and JDBC class name so that the selected version must match the version of database.

101Installation Guide

The installation process creates a new database on the database server under the given user name. The
database schema is created and UDDI data are loaded. This user should have the Database Creators server
role.

Make sure your database server has case-sensitive collation, otherwise all comparisons will be
case insensitive, even if the caseSensitiveMatch findQualifier is set. Alternatively, you can create
a database with case-sensitive collation manually and use the create schema option.

If you selected the option Create database in the installation/Setup panel shown in Figure 25, you
need a database user account with the Database creators server role. To create such account, you
can use the SQL Server Enterprise Manager:

1 Select the Console Root > Microsoft SQL Servers > SQL Server Group > server name >
Security > Logins.

2 Right-click on Logins and select the New Login from the context menu.

3 Enter the account name, click on the SQL Server Authentication option and fill in the
password.

4 Select Server Roles tab, mark the Database Creators, click OK, and retype the password.

Chapter 2102

MSSQL database creation requires the following properties. To connect or create schema requires a subset
of these properties. Please note that properties marked with an asterisk (*) must not collide with existing
objects in the database.

Database Server Address

Usually the host name or IP address where the database server is accessible.

103Installation Guide

Database Server Port

Port on which the database listens for a connection.

Database name *

Name of the database that will hold UDDI data structures.

Database user

User name of a user who is able to create a new database.

Database User Password *

Password for the user specified above.

Continue with JDBC Driver on page 109.

DB2

The Create database option from the installer/Setup tool does not create a new database physically. The
installation process creates a new tablespace in an existing database with the given (existing) bufferpool
and associates the tablespace with the given file. Permission to use the tablespace is given to the specified
user. Then, a database schema is created and UDDI data are loaded.

Because relational tables are created in the implicit schema, if you want to create more UDDI
databases, you must create UDDI databases with different database users.

The Create database option requires a bufferpool with 8k page size and an database user account,
that can use a temporary tablespace with such bufferpool.

• To create such a bufferpool using the DB2 Control Center:

1 Select Control Center > All Databases > database > Buffer Pools from the left side
tree.

2 Right-click on Buffer Pools, and select the Create... option from the context menu.

3 Fill in a Buffer pool name, such as "uddipool" and select 8k page size.

Chapter 2104

• To create such a temporary tablespace using the DB2 Control Center:

1 Select Control Center > All Databases > database > Table Spaces from the left side
tree.

2 Right-click on Table Spaces and select the Create... option from the context menu.

3 Fill a tablespace name such as "udditempspace" and click Next.

4 Select the user temporary option, and click Next.

5 Select the uddipool buffer pool and click Next twice.

6 Select the location where data are physically stored such as C:\Db2\data\udditempspace,
click Next 3 times and then click Finish.

• To create the database user that can use the temporary tablespace using DB2 Control Center:

1 Select Control Center > All Databases > database > User and Group Objects >
DBUsers from the left side tree.

2 Right-click on DBUsers and select the Add... option from the context menu.

3 Select the username, check Connect to database, Create tables and Create schemas
implicitly.

4 Click on the Table Space tab, the Add Tablespace... button, select the udditempspace
and click OK.

5 Select the udditempspace and select the Yes option from the Privileges drop down list
.

6 Click OK to save the account.

105Installation Guide

DB2 database creation requires the following properties. To connect or create schema requires a subset of
these properties. Please note that properties marked with an asterisk (*) must not collide with existing objects
in the database.

Database Server Address

Usually the host name or IP address where the database server is accessible.

Chapter 2106

Database Server Port

Port on which the database listens for connection.

Existing Database Name

Name of a database that already exists. The UDDI tablespace will be created in this database.

Database Administrator Name

User name of the administrator of the database; this is required to create a new tablespace on the
existing database.

Database Administrator Password

Password for the user specified in the previous text box.

Database Tablespace Name *

Name of tablespace to be created in the existing database and which will store UDDI data structures

Tablespace Datafile *

Full path of the host machine where the tablespace files will be stored

You must have read and write permissions to this directory.

Buffer pool with 8k page size

Buffer pool for database; it must have pages with a size of 8k.

Existing Database User

User name of a user having the following authorities: connect database, create table and create
schema implicitly.

The user also must have access to a temporary tablespace with the associated 8k-length
bufferpool to use for temporary tables.

Database User Password

Password for the user specified in the previous text box.

Specify the HP SOA Registry Foundation Administrator account which will be created in the database. (If
configure database is selected, this administrator account must correspond to one existing in the database.)

107Installation Guide

Increase transaction log size (parameter logfilsiz) from default value 250 to 1000. You can use
the Control Center tool to make this change.

Continue with JDBC Driver on page 109.

HSQL

Chapter 2108

The installation process creates a new database and a user who is able to create schema/tables.

The HSQL database requires the following properties.

Database File Name

Full path to the file which will hold data structures.

Database User

User name for one account authorized to access this database

If you use HSQL then user credentials are stored in the HSQL database files in plain text. So you
must protect these files from unauthorized reading using appropriate filesystem access rights. The
files are located in the directory REGISTRY_HOME/hsqldb/ by default.

JDBC Driver

Select the JDBC Driver as shown in Figure 11. It is not necessary to configure this path for the HSQL
database as the JDBC drivers for this database are installed in the distribution. It is also not necessary if
you have already configured this path previously for the selected database. The JDBC drivers are usually
supplied by database vendors.

109Installation Guide

Figure 27. Optional JDBC Driver

You can also specify custom JDBC connection string. Such string may be useful for special environments
like database clusters where JDBC driver does load-balancing or failover. This setting is useful only in
Create Schema, Drop Schema and Configure Database. We do not recommend to use this option unless
there is special need to do so.

Chapter 2110

Account Backend

If you created a database or schema, you can configure an authentication account provider.

Figure 28. Authentication Account Provider

Figure 12 allows you to select the authentication account provider.

111Installation Guide

Database

All accounts will be stored in the registry database. This is the recommended backend.

LDAP

Registry accounts integrated with LDAP server.

External

Registry accounts integrated with other external storage. To integrate HP SOA Registry Foundation,
with an external backend, you must implement the interface
com.systinet.uddi.account.ExternalBackendApi and add it to the registry installation.

For more information about LDAP and External account backends, please see External Accounts Integration
on page 116

Multilingual Data

This section describes how HP SOA Registry Foundation supports the storage of UDDI structures in the
multilingual data format.

There are two types of text fields in UDDI structures: Unicode fields and ASCII fields.

Unicode fields

are intended for human readable information, the field length is measured in number of characters
as follows:

Max Length (in
chars)

Field Name

255name of businessEntity and businessService

255keyName

255keyValue

255useType

255description

80addressLine

255personName

Chapter 2112

ASCII fields

are intended for machine processing, such as URIs. The length is measured in bytes. ASCII fields
can typically hold multilingual data. Its length is limited by the number of bytes of its serialized
form in UTF-8 encoding. For example, the name of a tModel can carry 85 Japanese characters,
because Japanese characters are encoded into three bytes each under UTF-8 encoding (255/3=85).

Max Length (in bytes)Field Name

255name of tModel

4096overviewURL

4096discoveryURL

10sortCode

255email

50phone

4096accessPoint

8192instanceParms

HSQL

HSQL supports Unicode characters in both types (Unicode and ASCII) of fields.

MSSQL

MSSQL supports Unicode characters only in Unicode fields. Unicode characters are stored successfully to
ASCII fields only if they match with the server collation, otherwise are converted to question marks (?).
For example, Japanese characters are stored correctly if the Japanese_Unicode_Cl_AS collation is default
to the server. If the English collation is set up, Japanese characters are converted to ? characters.

Oracle

Oracle database supports Unicode characters in both types (Unicode and ASCII) of fields.

DB2

The DB2 database supports Unicode characters in both types of fields. Maximal length of a field is measured
in bytes in the default database schema despite it being a Unicode field. You can use any Unicode characters,

113Installation Guide

but allowed string length is not guarantied. For example, the name of a tModel can carry 85 Japanese
characters, because Japanese characters are encoded into three bytes each under UTF-8 encoding (255/3=85).

Note that longer strings produce a database exception. The restriction is made because the cumulative length
of indexed columns is limited to 800 bytes. The default schema prefers performance to multiple language
support.

If you want to use Unicode fields with longer byte-length you must enlarge appropriate database columns.
However indexes with cumulative length longer than 800 bytes must be removed as these can harm
performance. Follow these steps:

1 Install HP SOA Registry Foundation with the no database option.

2 Modify the database schema file REGISTRY_HOME/etc/db/db2/schema_core.sql

a Increase column lengths for names and keyValues.

b Remove appropriate indexes.

3 Use the Setup tool to create the database.

JDBC Drivers

HP SOA Registry Foundation requires by default the following classes for connection to the database.
Please ensure that your downloaded JDBC JAR(s) includes them:

Driver classDatabase

com.ibm.db2.jcc.DB2DriverDB2

org.hsqldb.jdbcDriverHSQL

com.microsoft.jdbc.sqlserver.SQLServerDriverMSSQL

oracle.jdbc.driver.OracleDriverOracle

Alternative JDBC Drivers

This section describes the use JDBC drivers other than the default drivers mentioned above. Suppose you
downloaded FooJDBC.jar, where the driver class is foo.jdbc.Driver and the connection string is jdbc:foo:....

Chapter 2114

If you want to use an alternative JDBC driver while you already installed the registry and set up database
with the default JDBC driver, edit the file REGISTRY_HOME/app/uddi/conf/database.xml as follows:

1 Add

<universalDriver name="fooDriver">
 <JDBC_driver>foo.jdbc.Driver</JDBC_driver>
 <URI_pattern>jdbc:foo:...</URI_pattern>
</universalDriver>

at the end of <databaseMappings/> element

You can use following parameters in the <URI_pattern> element

• ${hostname} - hostname or IP address of the database server

• ${port} - Port where the database server listens for requests

• ${dbName} - Name of the database

• ${userName} - Name of database account

• ${userPassword} - Password of the account

Replace the parameters with corresponding values using the Setup tool or the Registry Console.

2 Replace the className attribute of the interfaceMapping element with fooDriver value for your database.
Determine the right databaseMapping element by value of type attribute.)

If you want to create a database with the alternative JDBC driver (without needing to use the default driver):

1 Install the HP SOA Registry Foundation without the database.

2 Modify REGISTRY_HOME/app/uddi/conf/database.xml as described above.

3 Replace the driver class and connection string in the installation scripts in REGISTRY_HOME/etc/db/
<database_type>/installXXX.xml

4 Run the Setup tool to create database.

115Installation Guide

External Accounts Integration
During database installation or by employing the Setup tool, you may choose to use accounts from external
repositories. This chapter describes how to integrate accounts from an LDAP server and from non-LDAP
user stores into HP SOA Registry Foundation.

An LDAP server can be integrated with HP SOA Registry Foundation with these scenarios:

• LDAP with a single search base - The scenario is very simple. There is only one LDAP server in this
scenario. All identities are stored under a single search base.

• LDAP with multiple search bases - In this scenario there is also only one LDAP server, but it has multiple
search bases mapped to a domain. The domain is a specified part of the user's login name (that is,
DOMAIN/USERNAME). All users must specify the domain name in the login dialog. When managing accounts
or groups, we recommend using the DOMAIN/USERNAME format for performance reasons. If no domain is
set, searches are performed across all domains.

• Multiple LDAP services - More than one LDAP service is used in this scenario. The correct LDAP
service is chosen via DNS. As in the previous scenario, users must specify a domain name during login.
When managing accounts or groups, users have to set domain name. If the domain name is not specified,
then no domain is processed.

This chapter also contains the following configuration examples:

• Sun One with a single search base

• Sun One with multiple search bases

• Active Directory with a single search base

HP SOA Registry Foundation treats external stores as read-only. User account properties stored
in these external stores cannot be modified by HP SOA Registry Foundation.

The Administrator account must not be stored in the LDAP. We strongly recommend that users
stored in account_list.xml (by default, only administrator) should not be in the LDAP. If you really
need to have users from LDAP in the file account_list.xml, delete password items from the file and

Chapter 2116

change of all the accounts' properties according to the LDAP. The account_list.xml file contains a
list of users that can be logged into a registry without connection to the database.

Sometimes HP SOA Registry Foundation displays various warnings into logs. We recommend to
edit file directory.xml and file group_core.xml manually in order to suppress warnings related to
account / group integration - LDAP (set true for attribute suppressWarnings).

To integrate external accounts from another repository, either:

• Create a database or create a new schema on the connected database by following the instructions in
Database Settings on page 52, or

• Use the Setup tool and choose Authentication provider. To run the Setup tool, execute the following
script from the bin subdirectory of your installation:

setup.batWindows:

./setup.shUNIX:

See command-line parameters in Setup on page 73.

117Installation Guide

Figure 29. Setup Select Authentication Account Provider

For more information on the Setup tool, please see Reconfiguring After Installation on page 74.

LDAP

Select LDAP on the Account Provider panel.

Chapter 2118

Enter the following settings:

119Installation Guide

Figure 30. LDAP Service

HP SOA Registry Foundation uses a JNDI interface to connect to LDAP servers. The following JNDI
properties must be known to the server. (The default properties are noted in parentheses.)

Java naming provider URL

A URL string for configuring the service provider specified by the "Java naming factory initial"
property. (ldap://hostname:389).

Initial Naming Factory

Class name of the initial naming factory. (com.sun.jndi.ldap.LdapCtxFactory).

Security Principal

The name of the principal for anonymous read access to the directory service.

Chapter 2120

Password

Password of security principal.

Authentication

Security level. (simple)

Figure 31. LDAP Usage Scenarios

You can select the following LDAP usage scenarios:

LDAP with a single search base

The scenario is very simple. There is only one LDAP server in this scenario. All identities are
stored under a single search base.

121Installation Guide

LDAP with multiple search bases

In this scenario there is also only one LDAP server, but it has multiple search bases mapped to a
domain. The domain is a specified part of user's login name (that is, DOMAIN/USERNAME). All users
must specify the domain name in the login dialog. During the managing with accounts or groups
it is recommended to use DOMAIN/USERNAME because of performance. If no domain is set then search
is performed across all domains.

Domains can be specified dynamically or statically. For dynamic settings it is necessary to specify,
for example, a domain prefix or postfix. Static domains are set during the installation directly and
so they must be known in time of installation.

Multiple LDAP services

More than one LDAP service are used in this scenario. The correct LDAP service is chosen via
DNS. As in the previous scenario, users must specify a domain name during login. When managing
accounts or groups users have to set domain name. If domain name is not specified then no domain
is processed.

Automatic discovery of the LDAP service using the URL's distinguished name is supported only
in Java 2 SDK, versions 1.4.1 and later, so be sure of the Java version you are using.

The automatic discovery of LDAP servers allows you not to hardwire the URL and port of the
LDAP server. For example, you can use ldap:///o=JNDITutorial,dc=example,dc=com as a URL and
the real URL will be deduced from the distinguished name o=JNDITutorial,dc=example,dc=com.

HP SOA Registry Foundation integration with LDAP uses the JNDI API. For more information,
see http://java.sun.com/products/jndi/tutorial/ldap/connect/create.html and http://java.sun.com/j2se/1.-
4.2/docs/guide/jndi/jndi-dns.html#URL

LDAP with a Single Search Base

The installation consists of the following steps:

1 Specify user/account search properties as shown in Figure 32.

2 Map Registry user properties to LDAP properties as shown in Figure 33.

3 Specify group search properties as shown in Figure 34.

Chapter 2122

http://java.sun.com/products/jndi/tutorial/ldap/connect/create.html
http://java.sun.com/j2se/1.4.2/docs/guide/jndi/jndi-dns.html#URL
http://java.sun.com/j2se/1.4.2/docs/guide/jndi/jndi-dns.html#URL

4 Map Registry group properties to LDAP properties as shown in Figure 35.

Figure 32. User Search Properties

Field description:

Search Filter

The notation of the search filter conforms to the LDAP search notation. You can specify the LDAP
node property that matches the user account.

Search Base

LDAP will be searched from this base including the current LDAP node and all possible child
nodes.

123Installation Guide

Search Scope

Here you can specify how deep the LDAP tree structure's data will be searched.

• Object Scope - Only the search base node will be searched.

• One-level Scope - Only direct sub-nodes of the search base (entries one level below the search
base) will be searched. The base entry is not included in the scope.

• Subtree Scope - Search base and all its sub-nodes will be searched.

Results Limit

Number of items returned when searching LDAP.

If an LDAP search returns more results than the limit then the following warning is returned:

WARN: ldap.LdapBackendImpl - The result of LDAP query
 (searchbase: 'dc=in,dc=idoox,dc=com', filter:
'(&(uid=*)(objectClass=person))')
 is truncated by using the count limit search control which is set
to '100'.
 The query produced too many answers and so please narrow your search
 filter or increase default limit count.
 Read the documentation in order to suppress the warning.

Chapter 2124

Figure 33. User Properties Mapping

You can specify mapping between HP SOA Registry Foundation user account properties and LDAP
properties. You can add rows by clicking Add. To edit an entry, double click on the value you wish to edit.

The following user account properties can be mapped from an LDAP server:

java.lang.String loginName
java.lang.String email
java.lang.String fullName
java.lang.String languageCode
java.lang.String password
java.lang.String description
java.lang.String businessName
java.lang.String phone
java.lang.String alternatePhone

125Installation Guide

java.lang.String address
java.lang.String city
java.lang.String stateProvince
java.lang.String country
java.lang.String zip
java.util.Date expiration
java.lang.Boolean expires
java.lang.Boolean external
java.lang.Boolean blocked
java.lang.Integer businessesLimit
java.lang.Integer servicesLimit
java.lang.Integer bindingsLimit
java.lang.Integer tModelsLimit
java.lang.Integer assertionsLimit
java.lang.Integer subscriptionsLimit

The Registry account property dn specifies the LDAP distinguished name. The value depends on
the LDAP vendor.

• On the Sun ONE Directory Server, the value is entryDN

• On Microsoft Active Directory, the value is distinguishedName

If an optional property (such as email) does not exist in the LDAP, then the property's value is set
according to the default account. The default account is specified in the config file whose name is
account_core.xml.

User account properties that you specify at the Figure 33 will be treated as read-only from Registry
Console and registry APIs.

For more information, please see Developer's Guide, userAccount data structure .

Chapter 2126

Figure 34. Group Search Properties

Field description:

Search Filter

The notation of the search filter conforms to LDAP search notation. You can specify the LDAP
node property that matches the group.

Search Base

LDAP, including the current LDAP node and possible all child nodes, will be searched from this
base.

Search Scope

Here you can specify how deep the LDAP tree structure data will be searched.

127Installation Guide

• Object Scope - Only the search base node will be searched.

• One-level Scope - Search base and its direct sub-nodes will be searched.

• Subtree Scope - Search base and all its sub-nodes will be searched.

Figure 35. Group Properties Mapping

You can specify mapping between HP SOA Registry Foundation group properties and LDAP properties.
You can add rows by clicking Add. To edit an entry, double click on the value you wish to edit.

If a property (such as description) does not exist in the LDAP then property value is set according to the
default group. The default group (groupInfo) is specified in the config file whose name is group.xml.

Chapter 2128

For more information, please see Developer's Guide, group data structure

LDAP with Multiple Search Bases

The installation consists of the following steps:

1 Specify the domain delimiter, domain prefix and postfix as shown in Figure 36.

2 Enable/Disable domains as shown in Figure 37.

3 Specify User Search properties as shown in Figure 32.

4 Map Registry user properties to LDAP properties as shown in Figure 33.

5 Specify group search properties as shown in Figure 34.

6 Map Registry group properties to LDAP properties as shown in Figure 35

129Installation Guide

Figure 36. Domain Delimiter

Field descriptions:

Domain Delimiter

Specifies the character that delimits domain and user name. When left empty, users are searched
from all domains.

Domain Prefix, Domain Postfix

Domains are searched using the following pattern: {domain prefix}domain_name{domain postfix}{search
base}

Chapter 2130

where {domain prefix} is value of property whose name is domain prefix, {domain postfix} is
value of property whose name is domain postfix and {searchbase} is value of property whose name
is searchbase.

Figure 37. Enable/Disable Domains

Enable Domains

Left column: domain name that users will be using during login. Right column: distinguished
domain name.

Disable Domains

Enter distinguished domain name of domains you wish to disable.

131Installation Guide

Multiple LDAP Services

The correct LDAP service is chosen via DNS. The installation consists of the following steps:

1 Specify user/account search properties as shown in Figure 32.

2 Map Registry user properties to LDAP properties as shown in Figure 33.

3 Specify group search properties as shown in Figure 34.

4 Map Registry group properties to LDAP properties as shown in Figure 35.

LDAP over SSL/TLS

It is only a matter of configuration to setup LDAP over SSL (or TLS) with a directory server of your choice.
We recommend that you first install HP SOA Registry Foundation with a connection to LDAP that does
not use SSL. You can then verify the configuration by logging in as a user defined in this directory before
configuring use of SSL.

The configuration procedure assumes that you have already installed HP SOA Registry Foundation with
an LDAP account provider. HP SOA Registry Foundation must not be running.

LDAP over SSL Without Client Authentication

In this case only LDAP server authentication is required. This is usually the case.

Edit the REGISTRY_HOME/app/uddi/conf/directory.xml file in one of the following ways depending on
the version of Java used to run HP SOA Registry Foundation:

• If HP SOA Registry Foundation will always be running with Java 1.4.2 or later:

1 Change the java.naming.provider.url property to use the ldaps protocol and the port on which the
directory server accepts SSL/TLS connections. For example ldaps://sranka.in.idoox.com:636;

• Otherwise, if HP SOA Registry Foundation may be run with a Java version less than 1.4.2:

1 Change the java.naming.provider.url property to the appropriate URL using the ldap protocol. For
example ldap://sranka.in.idoox.com:636;

Chapter 2132

2 Add a new property, after the java.naming.provider.url property, with name
java.naming.security.protocol and value ssl;

This is shown in the following example:

Example 1: Directory configuration

<config name="directory" savingPeriod="5000">
 <directory>
 <!-- LDAP over (SSL/TLS) unprotected connection -->
 <!--
 <property name="java.naming.provider.url" value="ldap://hostname:47361"/>
 -->
 <!-- LDAP over SSL/TLS for Java 1.4.2 and later -->
 <!--
 <property name="java.naming.provider.url" value="ldaps://hostname:636"/>
 -->
 <!-- LDAP over SSL/TLS for Java where LDAP over SSL is supported -->
 <property name="java.naming.provider.url" value="ldap://hostname:636"/>
 <property name="java.naming.security.protocol" value="ssl"/>
 ...
 ...
 ...
 </directory>
</config>

In both cases, be sure that the hostname specified in the java.naming.provider.url property matches the name
that is in the directory server certificate's subject common name (CN part of certificate's Subject). Otherwise
you will get an exception during startup of HP SOA Registry Foundation. It will inform you of a hostname
verification error. The stacktrace contains the hostname that you must use.

LDAP over SSL With Mutual Authentication

HP SOA Registry Foundation can be configured to communicate with LDAP server over 2 way SSL. In
this case HP SOA Registry Foundation has to authenticates itself to LDAP server via client certificate.

To enable 2 way SSL communication with LDAP server:

• Specify the client certificate for HP SOA Registry Foundation via Java system properties.

133Installation Guide

DescriptionProperty

Absolute path to client keystore file. Keystore file must
contain keyEntry that identifies the client.

javax.net.ssl.keyStore

Password for the keystore file.javax.net.ssl.keyStorePassword

• Ensure trust to LDAP server. For more information see section bellow. Briefly:

• Get the certificate of LDAP server or the certificate of its CA.

• Import the certificate to keystore file via keytool.

• Add the following properties to Java system properties.

DescriptionProperty

Absolute path of your trust store file.javax.net.ssl.trustStore

Password for the trust store file.javax.net.ssl.trustStorePassword

• Modify REGISTRY_HOME/app/uddi/conf/directory.xml

• Change the java.naming.provider.url property to LDAPs URL or alternatively add
java.naming.security.protocol (for Java version less 1.4.2). More details are described above.

• Change the value of the java.naming.security.authentication from simple to EXTERNAL. In this
case LDAP server does not use principal and his password so properties java.naming.security.principal
and java.naming.security.credentials have no sense.

If LDAP server requires client authentication then it is necessary to set
uddi.ldap.clientCertificateAuthentication to true. In this case HP SOA Registry Foundation must
be installed in two way SSL mode, in order to check client identity properly.

Chapter 2134

Ensuring Trust of the LDAP Server

The client that connects to the SSL/TLS server must trust the server certificate in order to establish
communication with that server. The configuration of LDAPS explained above inherits the default rule for
establishing trust from JSSE (the Java implementation of SSL/TLS). This is based on trust stores.

When a trust store is needed to verify a client/server certificate, it is searched for in the following locations
in order:

1 The file specified by the javax.net.ssl.trustStore system property, if defined;

2 Otherwise the file JAVA_HOME\jre\lib\security\jssecacerts if it exists;

3 Otherwise the file JAVA_HOME\jre\lib\security\cacerts if it exists;

It is recommended to use the first option to define a trust store specifically for the application you are
running. In this case, you have to change the command that starts the registry (or the JVM environment of
the deployed registry) to define the following Java system properties:

DescriptionProperty

Absolute path of your trust store file.javax.net.ssl.trustStore

Password for the trust store file.javax.net.ssl.trustStorePassword

To ensure that the server certificate is trusted, you have to:

1 Contact the administrator of the LDAP server and get the certificate of the server or the certificate of
the authority that signed it;

2 Import the certificate into the trust store of your choice using the Java keytool:

keytool -import -trustcacerts -alias alias -file file -keystore keystore -storepass storepass

where the parameters are as follows:

alias

A mandatory, unique alias for the certificate in the trust store;

The file containing the certificate (usually with .crt extension);

135Installation Guide

The keystore file of your choice;

A password designed to protect the keystore file from tampering. Java level keystores (cacerts
and jssecacerts) usually require the password changeit;

file

The file containing the certificate (usually with .crt extension);

The keystore file of your choice;

A password designed to protect the keystore file from tampering. Java level keystores (cacerts
and jssecacerts) usually require the password changeit;

keystore

The keystore file of your choice;

A password designed to protect the keystore file from tampering. Java level keystores (cacerts
and jssecacerts) usually require the password changeit;

storepass

A password designed to protect the keystore file from tampering. Java level keystores (cacerts
and jssecacerts) usually require the password changeit;

LDAP Configuration Examples

SUN One with Single Search Base

In this example, we show how to configure a Sun One Directory Server 5.2 under the LDAP Single Search
Base scenario.

SUN One with Single Search Base on page 136 shows user properties that are stored in the LDAP server.

Chapter 2136

Figure 38. User Properties in LDAP

SUN One with Single Search Base on page 136 shows group properties that are stored in the LDAP server.

Figure 39. Group Properties in LDAP

The following table shows how to configure HP SOA Registry Foundation using this scenario.

137Installation Guide

SeeConfig ValueConfig Property

Figure 30ldap://localhost:389Java naming provider URL

Figure 30com.sun.jndi.ldap.LdapCtxFactoryInitial Naming Factory

Figure 30uid=JPatroni,ou=people,dc=in,dc=idoox,dc=comSecurity Principal

Figure 30simpleSecurity Protocol

 User Properties

Figure 32objectClass=personSearch Filter

Figure 32ou=people,dc=in,dc=idoox,dc=comSearch Base

Figure 32Subtree ScopeSearch Scope

Figure 32100Result Limit

Figure 33phonetelephoneNumber

Figure 33loginNameuid

Figure 33fullNamecn

Figure 33emailmail

 Group Properties

Figure 34objectClass=groupofuniquenamesSearch Filter

Figure 34ou=groups,dc=in,dc=idoox,dc=comSearch Base

Figure 34Subtree ScopeSearch Scope

Figure 34100Result Limit

Figure 35ownercreatorsName

Figure 35descriptiondescription

Figure 35memberuniqueMember

Figure 35namecn

Sun One with Multiple Search Bases

In this example, we show how to configure Sun One Directory Server 5.2 with multiple search bases. In
Figure 41, you can see users and domains that are stored on the LDAP server. We want to configure the
LDAP integration with HP SOA Registry Foundation in this way:

Chapter 2138

• Only users from domain1 and domain10 can log into HP SOA Registry Foundation. LDAP domain2 will be
disabled.

• LDAP domain10 will be mapped to the domain3 user group in HP SOA Registry Foundation.

Figure 41 shows how users from LDAP are mapped to HP SOA Registry Foundation

Figure 40. LDAP Users and Groups

139Installation Guide

Figure 41. Registry Users

The following table shows how to configure HP SOA Registry Foundation using this scenario.

SeeConfig valueConfig Property

Figure 30ldap://localhost:1000Java naming provider URL

Figure 30com.sun.jndi.ldap.LdapCtxFactoryInitial Naming Factory

Figure 30uid=JPatroni,ou=people,dc=in,dc=idoox,dc=comSecurity Principal

Figure 30simpleSecurity Protocol

Figure 36/uddi.ldap.domain.delimiter

Figure 36ou=uddi.ldap.domain.prefix

Figure 36leave emptyuddi.ldap.domain.postfix

 Enable domains

Figure 37domain3domain name

Figure 37ou=domain10,ou=example,dc=in,dc=idoox,dc=comDistinguished name

Chapter 2140

SeeConfig valueConfig Property

 Disable domains

Figure 37ou=domain2,ou=example,dc=in,dc=idoox,dc=comDistinguished name

 User Properties

Figure 32objectClass=personSearch Filter

Figure 32ou=people,dc=in,dc=idoox,dc=comSearch Base

Figure 32Subtree ScopeSearch Scope

Figure 32100Result Limit

Figure 33phonetelephoneNumber

Figure 33loginNameuid

Figure 33fullNamecn

Figure 33emailmail

 Group Properties

Figure 34objectClass=groupofuniquenamesSearch Filter

Figure 34ou=groups,dc=in,dc=idoox,dc=comSearch Base

Figure 34Subtree ScopeSearch Scope

Figure 34100Result Limit

Figure 35ownercreatorsName

Figure 35descriptiondescription

Figure 35memberuniqueMember

Figure 35namecn

Active Directory with Single Search Base

In this example, we show how to configure an Active Directory with a single search base. Figure 42 shows
group properties that are stored in the Active Directory. These group properties will be mapped to HP SOA
Registry Foundation as shown in Figure 43.

141Installation Guide

Figure 42. LDAP User Group

Figure 43. User Group in HP SOA Registry Foundation

Figure 44 shows user properties that are stored in the Active Directory. These user properties will be mapped
to HP SOA Registry Foundation as shown in Figure 43.

Chapter 2142

Figure 44. LDAP User Properties

143Installation Guide

Figure 45. User Properties in HP SOA Registry Foundation

The following table shows how to configure HP SOA Registry Foundation using this scenario.

SeeConfig valueConfig Property

Figure 30ldap://localhost:389Java naming provider URL

Figure 30com.sun.jndi.ldap.LdapCtxFactoryInitial Naming Factory

Figure 30CN=userx,OU=root,DC=registry,DC=in,DC=mycompany,DC=comSecurity Principal

Figure 30DIGEST-MD5Security Protocol

 User Properties

Figure 32objectClass=personSearch Filter

Chapter 2144

SeeConfig valueConfig Property

Figure 32ou=example,dc=registry,dc=in,dc=mycompany,dc=comSearch Base

Figure 32Subtree ScopeSearch Scope

Figure 32100Result Limit

Figure 33loginNamesAMAccountName

Figure 33fullNamecn

Figure 33emailmail

Figure 33phonetelephoneNumber

 Group Properties

Figure 34objectClass=groupSearch Filter

Figure 34ou=example,dc=registry,dc=in,dc=mycompany,dc=comSearch Base

Figure 34Subtree ScopeSearch Scope

Figure 34100Result Limit

Figure 35membermember

Figure 35namecn

Figure 35memberuniqueMember

Figure 35namecn

Custom (Non-LDAP)

Select External on the Advanced Account Settings panel.

145Installation Guide

External accounts require implementation of the interface org.systinet.uddi.account.ExternalBackendApi.

Deployment to an Application Server
To deploy HP SOA Registry Foundation to any application server, it must be installed as standalone server,
as described Installation on page 42. After installation, use the Setup tool as described in Creating a Web
Application Archive (WAR,EAR) on page 147 to create Web application archive (WAR,EAR) for the specific
application server.

The WAR file or EAR file is then prepared for deployment to the application server. You must deploy it
into the application server manually, according to your specific application server's instructions:

Chapter 2146

If you are going to use the HSQL (despite the fact it is recommended only for demo/testing purposes)
and deploying the wasp.war on a different machine, do not forget to copy the database files from
the REGISTRY_HOME/hsqldb directory to the host where the application server is running. Then, change
the database configuration accordingly after the first start of HP SOA Registry Foundation.

Creating a Web Application Archive (WAR,EAR)

To create a Web application archive:

1 Briefly, launch the Setup tool by executing the following command from the bin directory of your
installation:

setup.batWindows:

./setup.shUNIX:

See command-line parameters in Setup on page 73.

2 Select Deployment on the first panel:

147Installation Guide

3 Select the application server on the next panel.

Chapter 2148

Select the application server to which you want to deploy HP SOA Registry Foundation .

4 The next panel shows deployment settings on the application server.

149Installation Guide

HTTP Port

HTTP port of the application server

SSL(HTTPS) Port

HTTPS port of the application server

Host name

Host name of the application server

Application Server Context

Use the context you will use to deploy on the application server. (default: wasp)

Chapter 2150

Figure 46. Deployment Process After Confirmation of Settings

To continue the deployment process, follow the instruction in the log window. For further details, see the
instructions in the individual sections below dedicated to the individual application servers.

• WebLogic on page 152

• WebSphere on page 153

• JBoss on page 161

• Oracle on page 169

151Installation Guide

WebLogic

The BEA WebLogic 8.x and 9.x are supported.

WL_HOME refers to the directory where WebLogic is installed.

REGISTRY_HOME refers to the directory in which the HP SOA Registry Foundation distribution is
installed.

The REGISTRY_HOME/conf/porting/weblogic/build/[context_name].war file is ready for deployment. Please follow
these steps to complete the integration:

1 Deploy the package using WebLogic's administration console.

2 Modify the BEA WebLogic server launch script which is:

• WL_HOME/user_projects/domains/DOMAIN_NAME/startWebLogic.sh or startWebLogic.cmd

• Add the following property to the Java command line for starting the WebLogic server:

-Djava.security.auth.login.config=REGISTRY_HOME/conf/jaas.config

3 Import the SSL certificate of the WebLogic server to the HP SOA Registry Foundation configuration.

Obtain the WebLogic SSL certificate. There are two methods:

a You can get certificate using Internet Explorer 6.0 web browser connected to WebLogic via
HTTPS. Select "Properties" in context menu of the page, button "Certificates", tab "Details",
button "Copy to file", and then export certificate in Base 64 encoded X.509 .cer format.

b You can also use REGISTRY_HOME/bin/sslTool.sh or REGISTRY_HOME\bin\sslTool.bat to get certificate.
Run command:

sslTool serverInfo --url https://HOST:9043 --certFile weblogic.cer

This command will connect to specified host and port using HTTPS and it will store server
certificate into specified file.

Chapter 2152

To import this certificate use

PStoreTool located in [registry_home]/bin PStoreTool.sh add -config
[registry_home]/conf/clientconf.xml -certFile [weblogic.cer]

4 Enable SSL in WebLogic if not yet enabled and (re)start the BEA WebLogic server.

Deployment should now be complete. The HP SOA Registry Foundation URL is
http://[hostname]:[http_port]/[context]/uddi/web

WebLogic 8.x: When "Segmentation fault" problems occur during WebLogic startup on RedHat
Enterprise Linux, you have to set environment variable LD_ASSUME_KERNEL to value 2.4.1.
Add this line to WebLogic startup script: export LD_ASSUME_KERNEL="2.4.1"

WebSphere

This process has been tested on WebSphere 6.0 and 6.1

REGISTRY_HOME refers to the directory in which the HP SOA Registry Foundation distribution is
installed.

WEBSPHERE_HOME refers to the directory in which IBM WebSphere is installed.

PORTING_CONTEXT refers to context under which the HP SOA Registry Foundation is deployed.

The REGISTRY_HOME/conf/porting/websphere/6.x/build/PORTING_CONTEXT.ear file is ready for deployment. Please
follow these steps to complete the integration:

1 The IBM WebSphere server uses IBM java, which is installed in the WEBSPHERE_HOME/java directory.
You must set up the security for this IBM JVM. To do so, follow the java security section in System
Requirements on page 40.

You should not download and replace the following security jars: US_ExportPolicy.jar and
local_policy.jar

153Installation Guide

2 Modify the file WEBSPHERE_HOME/profiles/default/config/cells/DOMAIN_NAME/security.xml (for version 6.0)
by adding the following lines between the tags <applicationLoginConfig> and </applicationLoginConfig>:

Chapter 2154

Example 2: WebSphere Configuration

 <entries xmi:id="WaspCredentials" alias="Credentials">
 <loginModules xmi:id="Credentials"
 moduleClassName="com.ibm.ws.security.common.auth.module.proxy.WSLoginModuleProxy"
 authenticationStrategy="REQUIRED">
 <options xmi:id="debug_property_1" name="debug" value="true"/>
 <options xmi:id="delegate_property_1" name="delegate"
 value="com.idoox.security.jaas.GSSLoginModule"/>
 </loginModules>
</entries>
<entries xmi:id="WaspReceivedCredentials" alias="ReceivedCredentials">
 <loginModules xmi:id="ReceivedCredentials"
 moduleClassName="com.ibm.ws.security.common.auth.module.proxy.WSLoginModuleProxy"
 authenticationStrategy="REQUIRED">
 <options xmi:id="debug_property_2" name="debug" value="true"/>
 <options xmi:id="delegate_property_2" name="delegate"
 value="com.idoox.security.jaas.GSSLoginModuleNoAuth"/>
 </loginModules>
</entries>
<entries xmi:id="WaspHttpCredentials" alias="HttpCredentials">
 <loginModules xmi:id="HttpCredentials"
 moduleClassName="com.ibm.ws.security.common.auth.module.proxy.WSLoginModuleProxy"
 authenticationStrategy="REQUIRED">
 <options xmi:id="debug_property_3" name="debug" value="true"/>
 <options xmi:id="delegate_property_3" name="delegate"
 value="com.idoox.security.jaas.HttpLoginModule"/>
 </loginModules>
</entries>
<entries xmi:id="WaspKrbCredentials" alias="KrbCredentials">
 <loginModules xmi:id="KrbCredentials"
 moduleClassName="com.ibm.ws.security.common.auth.module.proxy.WSLoginModuleProxy"
 authenticationStrategy="REQUIRED">
 <options xmi:id="debug_property_4" name="debug" value="false"/>
 <options xmi:id="krb_property_1" name="storeKey" value="true"/>
 <options xmi:id="delegate_property_4" name="delegate"
 value="com.sun.security.auth.module.Krb5LoginModule"/>
 </loginModules>
</entries>
<entries xmi:id="WaspCachedKrbCredentials" alias="CachedKrbCredentials">
 <loginModules xmi:id="CachedKrbCredentials"
 moduleClassName="com.ibm.ws.security.common.auth.module.proxy.WSLoginModuleProxy"
 authenticationStrategy="REQUIRED">
 <options xmi:id="debug_property_5" name="debug" value="false"/>

155Installation Guide

 <options xmi:id="krb_property_2" name="useTicketCache" value="true"/>
 <options xmi:id="delegate_property_5" name="delegate"
 value="com.sun.security.auth.module.Krb5LoginModule"/>
 </loginModules>
</entries>
<entries xmi:id="WaspNamePasswordNoAN" alias="NamePasswordNoAN">
 <loginModules xmi:id="NamePasswordNoAN"
 moduleClassName="com.ibm.ws.security.common.auth.module.proxy.WSLoginModuleProxy"
 authenticationStrategy="REQUIRED">
 <options xmi:id="debug_property_6" name="debug" value="true"/>
 <options xmi:id="delegate_property_6" name="delegate"
 value="com.idoox.security.jaas.NamePasswordLoginModuleNoAuth"/>
 </loginModules>
</entries>
<entries xmi:id="UDDINamePasswordAN" alias="NamePasswordAN">
 <loginModules xmi:id="NamePasswordAN"
 moduleClassName="com.ibm.ws.security.common.auth.module.proxy.WSLoginModuleProxy"
 authenticationStrategy="REQUIRED">
 <options xmi:id="debug_property_7" name="debug" value="true"/>
 <options xmi:id="delegate_property_7" name="delegate"
 value="com.systinet.uddi.security.jaas.NamePasswordLoginModule"/>
 </loginModules>
</entries>
<entries xmi:id="UDDIAuthTokenAN" alias="AuthTokenAN">
 <loginModules xmi:id="AuthTokenAN"
 moduleClassName="com.ibm.ws.security.common.auth.module.proxy.WSLoginModuleProxy"
 authenticationStrategy="REQUIRED">
 <options xmi:id="debug_property_8" name="debug" value="true"/>
 <options xmi:id="delegate_property_8" name="delegate"
 value="com.systinet.uddi.security.jaas.AuthTokenLoginModule"/>
 </loginModules>
</entries>
<entries xmi:id="WaspNameDigestAN" alias="NameDigestAN">
 <loginModules xmi:id="NameDigestAN"
 moduleClassName="com.ibm.ws.security.common.auth.module.proxy.WSLoginModuleProxy"
 authenticationStrategy="REQUIRED">
 <options xmi:id="debug_property_9" name="debug" value="true"/>
 <options xmi:id="delegate_property_9" name="delegate"
value="com.idoox.security.jaas.NameDigestLoginModule"/>
 </loginModules>
</entries>
<entries xmi:id="WaspNameMapping" alias="NameMapping">
 <loginModules xmi:id="NameMapping"
 moduleClassName="com.ibm.ws.security.common.auth.module.proxy.WSLoginModuleProxy"
 authenticationStrategy="REQUIRED">
 <options xmi:id="debug_property_10" name="debug" value="true"/>
 <options xmi:id="delegate_property_10" name="delegate"

Chapter 2156

 value="com.idoox.security.jaas.NameLoginModuleNoAuth"/>
 </loginModules>
</entries>
<entries xmi:id="WaspCertsMapping" alias="CertsMapping">
 <loginModules xmi:id="CertsMapping"
 moduleClassName="com.ibm.ws.security.common.auth.module.proxy.WSLoginModuleProxy"
 authenticationStrategy="REQUIRED">
 <options xmi:id="debug_property_11" name="debug" value="true"/>
 <options xmi:id="delegate_property_11" name="delegate"
 value="com.idoox.security.jaas.CertsLoginModule"/>
 </loginModules>
</entries>
<entries xmi:id="HttpRequestMapping" alias="HttpRequest">
 <loginModules xmi:id="HttpRequest"
 moduleClassName="com.ibm.ws.security.common.auth.module.proxy.WSLoginModuleProxy"
 authenticationStrategy="REQUIRED">
 <options xmi:id="debug_property_12" name="debug" value="true"/>
 <options xmi:id="delegate_property_12" name="delegate"
 value="com.systinet.uddi.security.jaas.SmLoginModule"/>
 </loginModules>
</entries>
<entries xmi:id="RegistryIdentityAsserter" alias="IdentityAsserter">
 <loginModules xmi:id="IdentityAsserter"
 moduleClassName="com.ibm.ws.security.common.auth.module.proxy.WSLoginModuleProxy"
 authenticationStrategy="REQUIRED">
 <options xmi:id="debug_property_13" name="debug" value="true"/>
 <options xmi:id="delegate_property_13" name="delegate"
 value="com.systinet.uddi.security.jaas.IdentityAsserterLoginModule"/>
 </loginModules>
</entries>

3 Deploy the file REGISTRY_HOME/conf/porting/websphere/6.x/build/PORTING_CONTEXT.ear file using the IBM
WebSphere admin console, leaving all the options set at their default values.

4 After you finish the deployment, use WebSphere's admin console to set following properties. They
are in "Class loading and update detection" section inside of enterprise application properties (in
WebSphere 6.1).

• mode of the WASP Application's classloader to 'PARENT_LAST' or "Classes loaded with
application class loader first" option

157Installation Guide

• WAR Classloader Policy to 'Application' or "Single class loader for application" option

5 Import the SSL certificate of the Websphere server to the HP SOA Registry configuration. Follow
these steps:

a Obtain the WebSphere SSL certificate. There are two methods:

i You can get certificate using Internet Explorer 6.0 web browser connected to WebSphere
via HTTPS. Select "Properties" in context menu of the page, button "Certificates", tab
"Details", button "Copy to file", and then export certificate in Base 64 encoded X.509 .cer
format.

ii You can also use REGISTRY_HOME/bin/sslTool.sh or REGISTRY_HOME\bin\sslTool.bat to get certificate.
Run command:

sslTool serverInfo --url https://HOST:9043 --certFile websphere.cer

This command will connect to specified host and port using HTTPS and it will store server
certificate into specified file.

b Import this certificate using the PStoreTool located in REGISTRY_HOME/bin. The command follows
(replace variables with real values):

PStoreTool add -config REGISTRY_HOME/conf/clientconf.xml -certFile websphere.cer

HP SOA Registry Foundation is now running on http://<hostname>:9080/wasp/uddi/web.

• The lines added to login-config.xml are an analogy of jaas.config expressed in XML.

• The PARENT_LAST option and Application ClassLoader policy need to be set because there is a
conflict between our implementations of the saaj, jaxm, jaxrpc and wsdl interfaces. PARENT_LAST
assures that the servlet classloader is the first to be asked for the definition of classes.

Chapter 2158

Tomcat

Tested on Tomcat 5.0.28

REGISTRY_HOME refers to the directory in which HP SOA Registry Foundation is installed.

TOMCAT_HOME refers to the directory in which Tomcat is installed

The file REGISTRY_HOME/conf/porting/tomcat/build/[context_name].war is ready for deployment. Please follow
these steps to complete the integration:

1 Copy this file into the directory TOMCAT_HOME/webapps

2 Adjust the Tomcat launch script:

• Add the following jars to the beginning of the Tomcat classpath:

REGISTRY_HOME/lib/xercesImpl.jar

REGISTRY_HOME/lib/xmlParserAPIs.jar

REGISSTRY_HOME/lib/xalan.jar

Some version of Tomcat needs xercesImpl.jar (or xerces.jar) to be removed from
TOMCAT_HOME/common subdirectory.

• Add the following jars to the end of the Tomcat classpath:

REGISTRY_HOME/lib/xml-apis.jar

REGISTRY_HOME/lib/security-ng.jar

REGISTRY_HOME/conf/porting/dist/security3-ng.jar

• Set the following Java VM property:

159Installation Guide

-Djava.security.auth.login.config=REGISTRY_HOME/conf/jaas.config

• Increase maximum size of Java VM memory allocation pool to at least 300M, set the following
Java VM properties:

-Xmx300m -Xms128m

3 Copy REGISTRY_HOME/lib/activation.jar to TOMCAT_HOME/common/lib.

4 Enable HTTPS for Tomcat

a If not yet done, enable SSL in Tomcat. Briefly:

• Uncomment the HTTPS connector in TOMCAT_HOME/conf/server.xml. It should look like:

Example 3: Enable HTTPS Connector - Tomcat

 <Connector port="8443"
 maxThreads="150" minSpareThreads="25" maxSpareThreads="75"
 enableLookups="false" disableUploadTimeout="true"
 acceptCount="100" debug="0" scheme="https" secure="true"
 clientAuth="false" sslProtocol="TLS"/>

• Create the SSL keystore.

keytool -genkey -alias tomcat -keyalg RSA -storepass changeit

By default the keystore will be placed in your home directory and named .keystore (note the
leading dot). To change the location of the keystore use keytool's -keystore flag. Note that if
you locate the keystore outside of the home directory of the user under which Tomcat runs,
you must modify the HTTPS connector element in the TOMCAT_HOME/conf/server.xml file and add
the keystoreFile attribute as documented in the SSL HOW-TO
[http://jakarta.apache.org/tomcat/tomcat-4.1-doc/ssl-howto.html].

b Export the certificate from your SSL keystore and import it into HP SOA Registry Foundation:

Chapter 2160

http://jakarta.apache.org/tomcat/tomcat-4.1-doc/ssl-howto.html

Export the certificate:

keytool -export -file tomcat.crt -alias tomcat -storepass changeit

•

• Import the certificate into the Registry:

REGISTRY_HOME/bin/PStoreTool.bat (.sh) add -certFile tomcat.crt -alias tomcat -
config REGISTRY_HOME/conf/clientconf.xml

See Tomcat's original documentation for details.

5 Restart Tomcat.

The HP SOA Registry Foundation URL = http://localhost:8080/[context]/uddi/web

JBoss

Tested on JBoss 4.2.2

REGISTRY_HOME refers to the directory in which the HP SOA Registry Foundation distribution is
installed.

JBOSS_HOME refers to the directory in which JBoss is installed.

REGISTRY_HOME/conf/porting/jboss/build/[context_name].war is now ready for deployment. Please follow these
steps to complete the integration:

1 Unpack the created file into the [context_name].war subdirectory of the JBoss deployment directory,
which is usually JBOSS_HOME/server/[jboss_configuration]/deploy.

2 Modify the JBoss launch script (usually in JBOSS_HOME/bin/run.sh) as follows:

• Add the following jars to the beginning of the JBoss classpath:

REGISTRY_HOME/lib/security-ng.jar

REGISTRY_HOME/conf/porting/dist/security3-ng.jar

161Installation Guide

3 Enable security: Add the following lines to the file JBOSS_HOME/server/[jboss_configuration]/conf/login-
config.xml between the tags <policy>...</policy>:

Chapter 2162

Example 4: Enabling Security - JBoss

 <application-policy name="Credentials">
 <authentication>
 <login-module code="com.idoox.security.jaas.GSSLoginModule"
 flag="required">
 <module-option name = "debug">true</module-option>
 </login-module>
 </authentication>
</application-policy>

<application-policy name="ReceivedCredentials">
 <authentication>
 <login-module code="com.idoox.security.jaas.GSSLoginModuleNoAuth"
 flag="required">
 <module-option name = "debug">true</module-option>
 </login-module>
 </authentication>
</application-policy>
<application-policy name="HttpCredentials">
 <authentication>
 <login-module code="com.idoox.security.jaas.HttpLoginModule"
 flag="required">
 <module-option name = "debug">true</module-option>
 </login-module>
 </authentication>
</application-policy>

<application-policy name="NamePasswordNoAN">
 <authentication>
 <login-module code="com.idoox.security.jaas.NamePasswordLoginModuleNoAuth"
 flag="required">
 <module-option name = "debug">true</module-option>
 </login-module>
 </authentication>
</application-policy>

<application-policy name="NamePasswordAN">
 <authentication>
 <login-module code="com.systinet.uddi.security.jaas.NamePasswordLoginModule"
 flag="required">
 <module-option name = "debug">true</module-option>
 </login-module>
 </authentication>

163Installation Guide

</application-policy>

<application-policy name="NameDigestAN">
 <authentication>
 <login-module code="com.idoox.security.jaas.NameDigestLoginModule"
 flag="required">
 <module-option name = "debug">true</module-option>
 </login-module>
 </authentication>
</application-policy>

<application-policy name="NameMapping">
 <authentication>
 <login-module code="com.idoox.security.jaas.NameLoginModuleNoAuth"
 flag="required">
 <module-option name = "debug">true</module-option>
 </login-module>
 </authentication>
</application-policy>

<application-policy name="CertsMapping">
 <authentication>
 <login-module code="com.idoox.security.jaas.CertsLoginModule"
 flag="required">
 <module-option name = "debug">true</module-option>
 </login-module>
 </authentication>
</application-policy>

<application-policy name="AuthTokenAN">
 <authentication>
 <login-module code="com.systinet.uddi.security.jaas.AuthTokenLoginModule"
 flag="required">
 <module-option name = "debug">true</module-option>
 </login-module>
 </authentication>
</application-policy>

<application-policy name="HttpRequest">
 <authentication>
 <login-module code="com.systinet.uddi.security.jaas.SmLoginModule"
 flag="required">
 <module-option name = "debug">true</module-option>
 </login-module>
 </authentication>
</application-policy>

Chapter 2164

<application-policy name="IdentityAsserter">
 <authentication>
 <login-module code="com.systinet.uddi.security.jaas.IdentityAsserterLoginModule"
 flag="required">
 <module-option name = "debug">true</module-option>
 </login-module>
 </authentication>
</application-policy>

4 Configure log4j for HP SOA Registry: Add the following lines to the file
JBOSS_HOME/server/[jboss_configuration]/conf/jboss-log4j.xml after the last tag </appender>:

165Installation Guide

Example 5: Log4j Configuration - JBoss

 <!-- Registry log4j appenders -->
<appender name="sr_eventLog" class="org.apache.log4j.RollingFileAppender">
 <errorHandler class="org.jboss.logging.util.OnlyOnceErrorHandler"/>
 <param name="File"
 value="${jboss.server.home.dir}/log/HPSOARegistry_logEvents.log"/>
 <param name="MaxFileSize" value="10000KB"/>
 <param name="MaxBackupIndex" value="10"/>
 <layout class="org.apache.log4j.PatternLayout">
 <param name="ConversionPattern" value="(%d) - %m%n"/>
 </layout>
</appender>
<appender name="sr_errorLog" class="org.apache.log4j.RollingFileAppender">
 <errorHandler class="org.jboss.logging.util.OnlyOnceErrorHandler"/>
 <param name="File"
 value="${jboss.server.home.dir}/log/HPSOARegistry_errorEvents.log"/>
 <param name="MaxFileSize" value="10000KB"/>
 <param name="MaxBackupIndex" value="10"/>
 <layout class="org.apache.log4j.PatternLayout">
 <param name="ConversionPattern" value="(%d) - %m%n"/>
 </layout>
</appender>
<appender name="sr_clusterLog" class="org.apache.log4j.RollingFileAppender">
 <errorHandler class="org.jboss.logging.util.OnlyOnceErrorHandler"/>
 <param name="File"
 value="${jboss.server.home.dir}/log/HPSOARegistry_configuratorEvents.log"/>
 <param name="MaxFileSize" value="10000KB"/>
 <param name="MaxBackupIndex" value="10"/>
 <layout class="org.apache.log4j.PatternLayout">
 <param name="ConversionPattern" value="(%d) - %m%n"/>
 </layout>
</appender>
<appender name="sr_replicationLog" class="org.apache.log4j.RollingFileAppender">
 <errorHandler class="org.jboss.logging.util.OnlyOnceErrorHandler"/>
 <param name="File"
 value="${jboss.server.home.dir}/log/HPSOARegistry_replicationEvents.log"/>
 <param name="MaxFileSize" value="10000KB"/>
 <param name="MaxBackupIndex" value="10"/>
 <layout class="org.apache.log4j.PatternLayout">
 <param name="ConversionPattern" value="(%d) - %m%n"/>
 </layout>
</appender>
<appender name="sr_notificationLog" class="org.apache.log4j.RollingFileAppender">

Chapter 2166

 <errorHandler class="org.jboss.logging.util.OnlyOnceErrorHandler"/>
 <param name="File"
 value="${jboss.server.home.dir}/log/HPSOARegistry_notificationEvents.log"/>
 <param name="MaxFileSize" value="10000KB"/>
 <param name="MaxBackupIndex" value="10"/>
 <layout class="org.apache.log4j.PatternLayout">
 <param name="ConversionPattern" value="(%d) - %m%n"/>
 </layout>
</appender>
<!-- Registry log4j categories -->
<category name="com.idoox.wasp.server.adaptor.RawAdaptor" additivity="false">
 <priority value="ERROR"/>
</category>
<category name="com.systinet.wasp.events" additivity="false">
 <priority value="INFO"/>
 <appender-ref ref="sr_eventLog"/>
</category>
<category name="com.systinet.wasp.errors" additivity="false">
 <priority value="ERROR"/>
 <appender-ref ref="sr_errorLog"/>
</category>
<category name="org.apache.xml.security" additivity="true">
 <priority value="ERROR"/>
</category>
<category
 name="configurator.com.systinet.uddi.configurator.cluster.ConfiguratorManagerApiImpl"
 additivity="false">
 <priority value="INFO"/>
 <appender-ref ref="sr_clusterLog"/>
</category>
<category name="replication_v3.com.systinet.uddi.replication.v3.ReplicatorTask"
 additivity="false">
 <priority value="DEBUG"/>
 <appender-ref ref="sr_replicationLog"/>
</category>
<category name="uddi_subscription_v3.com.systinet.uddi.subscription.v3"
 additivity="false">
 <priority value="DEBUG"/>
 <appender-ref ref="sr_notificationLog"/>
</category>

5 If you do not have SSL keys and certificate, generate them using the keytool from the JDK distribution
as follows:

167Installation Guide

Change the directory to the bin subdirectory of JBOSS_HOME and enter the following command:

keytool -keystore JBOSS_HOME/server/[jboss_configuration]/conf/server.keystore -genkey -alias jboss
-keyalg RSA -storepass changeit

•

• Change your directory to the bin subdirectory of REGISTRY_HOME.

• Export the certificate to a file using the following command:

keytool -keystore JBOSS_HOME/server/[jboss_configuration]/conf/server.keystore -export -file
jboss.crt -alias jboss -storepass changeit

• Import the certificate to clientconf.xml in the HP SOA Registry Foundation distribution using this
command:

PStoreTool.sh (bat) add -certFile jboss.crt -alias jboss -config REGISTRY_HOME/conf/clientconf.xml

6 Enable SSL in JBoss.

• Uncomment following lines in the file JBOSS_HOME/server/[jboss_configuration]/deploy/jboss-
web.deployer/server.xml

<Connector port="8443" address="${jboss.bind.address}"
 maxThreads="100" strategy="ms" maxHttpHeaderSize="8192"
 emptySessionPath="true"
 scheme="https" secure="true" clientAuth="false"
 keystoreFile="${jboss.server.home.dir}/conf/server.keystore"
 keystorePass="123456" sslProtocol = "TLS" />

Change the values of keystoreFile to ${jboss.server.home.dir}/conf/server.keystore a keystorePass
to changeit.

Use the actual values you used when invoking the keytool utility if those values differ
from the values shown here.

7 (Re)start the JBoss server

Chapter 2168

Installation should be complete. The HP SOA Registry Foundation URL is
http://hostname:8080/[context_name]/uddi/web.

• The lines added to login-config.xml are an analogy of jaas.config expressed in XML.

Oracle

The Oracle Application Server 10g 10.1.3.1.0 was tested.

REGISTRY_HOME refers to the directory in which HP SOA Registry Foundation is installed.

ORACLE_HOME refers to the directory in which Oracle Application Server is installed

The REGISTRY_HOME/conf/porting/oracle/build contains .ear file ready for deployment. Please follow these
steps to complete the integration:

1 Stop Oracle Application Server (e.g. ORACLE_HOME/opmn/bin/opmnctl stopall)

2 Adjust available memory for the Oracle Application Server as follows:

• Open the configuration file ORACLE_HOME/opmn/conf/opmn.xml

• Change start-parameters for OC4J as follows:

• -XX:MaxPermSize=128m -Xmx1024m -Doc4j.userThreads=true

3 Configure JAAS login modules.

• Open the file ORACLE_HOME/j2ee/home/config/system-jazn-data.xml

• Locate jazn-loginconfig element.

• Insert content of REGISTRY_HOME/conf/porting/oracle/jaas.xml or the following lines between jazn-
loginconfig elements if registry login modules are not already presented.

169Installation Guide

Example 6: Configure JAAS login modules

 <application>
 <name>IdentityAsserter</name>
 <login-modules>
 <login-module>
 <class>com.systinet.uddi.security.jaas.IdentityAsserterLoginModule</class>
 <control-flag>required</control-flag>
 <options>
 <option>
 <name>debug</name>
 <value>true</value>
 </option>
 </options>
 </login-module>
 </login-modules>
 </application>

 <application>
 <name>NamePasswordAN</name>
 <login-modules>
 <login-module>
 <class>com.systinet.uddi.security.jaas.NamePasswordLoginModule</class>
 <control-flag>required</control-flag>
 <options>
 <option>
 <name>debug</name>
 <value>true</value>
 </option>
 </options>
 </login-module>
 </login-modules>
 </application>

 <application>
 <name>NamePasswordNoAN</name>
 <login-modules>
 <login-module>
 <class>com.idoox.security.jaas.NamePasswordLoginModuleNoAuth</class>
 <control-flag>required</control-flag>
 <options>
 <option>
 <name>debug</name>
 <value>true</value>

Chapter 2170

 </option>
 </options>
 </login-module>
 </login-modules>
 </application>

 <application>
 <name>HttpRequest</name>
 <login-modules>
 <login-module>
 <class>com.systinet.uddi.security.jaas.SmLoginModule</class>
 <control-flag>required</control-flag>
 <options>
 <option>
 <name>debug</name>
 <value>true</value>
 </option>
 </options>
 </login-module>
 </login-modules>
 </application>

4 Enable SSL and HTTPS in SSL is not already enabled. Enable SSL in OHS (Oracle HTTP Server).
Briefly as follows (for more details please see Oracle documentation):

• generate real identity for OHS

• setup OHS to use the created wallet file

• import CA certificate to client's java

5 Start Oracle Application Server (e.g. ORACLE_HOME/opmn/bin/opmnctl startall).

6 Use Oracle Application Server Control to deploy EAR file.

Installation should be completed. The HP SOA Registry Foundation URL =
http://localhost:80/[context_name]/uddi/web.

171Installation Guide

Registry port numbers must match the Oracle HTTP port numbers in your existing OAS installation.
These values can be found in ORACLE_HOME/install/readme.txt.

Cluster Configuration
This chapter contains general notes about the synchronized configuration of a HP SOA Registry Foundation
cluster and gives instructions on how to deploy HP SOA Registry Foundation to a WebLogic Cluster
(WebLogic specific configuration for use with cluster on page 177).

Cluster operation

Cluster operation is achieved by running multiple registries and joining their functionality with a load
balancer (proxy).

Load balancing is used to distribute requests among registries to get the optimal load distribution. The load
balancer should be configured to distribute requests among all physical endpoints of the registry nodes. If
using an application server, refer to its documentation for details about configuring load balancing.

Figure 47. HP SOA Registry Foundation in WebLogic Cluster

Clients to HP SOA Registry Foundation access TCP ports on the balancer which forwards the connection
to a running cluster node with an actual HP SOA Registry Foundation. Each HP SOA Registry Foundation

Chapter 2172

has a connection to a common database so that each HP SOA Registry Foundation has access to the latest
data. This connection also serves as a distribution point for changed configurations and inter-node events.

When a HP SOA Registry Foundation node fails (there are various reasons for this such as hardware
problems, network conection problems or software failure), other nodes can work without it. The intelligent
load balancer will detect this and further requests will not be directed there until the node starts to respond.

Every node has a Node ID - a string identifying the node. Each node should have a different ID. Breaking
this rule will cause nodes with the same ID miss some configuration changes and synchronization events.

Node ID can be specified by the administrator in the REGISTRY_HOME\app\uddi\conf\nodeid.xml file.
If it is not specified before the initial start of HP SOA Registry Foundation, it will be generated as a unique
UUID string. It is possible to change it later, but node-local configurations under the old ID will be left in
database. Ensure that EAR/WAR file generated for deployment have either:

1 Empty Node ID - so that each deployment of the file will generate unique Node ID on first run and
retain it until deletition or redeployment of EAR/WAR. You can use such EAR/WAR to deploy on all
nodes.

2 Specified Node ID - when you deploy that EAR/WAR to single node and generate another EAR/WAR
for others. You can choose meaningful names for Node ID this way.

You can set the Node ID in the nodeid.xml file before starting setup to generate EAR/WAR. If you use
generation of EAR/WAR file directly from installer the Node ID will be empty.

Latest configurations are identified by internal index sequencing. Time stamps of configurations
as displayed in configuration management UI are not relevant as they may be unreliable in case
of clock skew on a cluster node.

Cluster operation is affected by the interaction of connection security (HTTPS) and the load balancer. For
security reasons, client access is done using the HTTPS protocol. This protocol requires that there is a valid
and matching security certificate on the server side (possibly on the client side too if client authentication
is required). There are generally two methods how to achieve clustered operation via independent load
balancer. If you use deploymeny with some application server it may provide integrated load balancer for
you which may be easier to configure than independent load balancer.

173Installation Guide

1 Secure connection can take a place between a client and the load balancer which would be the end
point for the secure connection originated at the client. Load balancer will make independent connection
to some of the HP SOA Registry Foundation nodes. This connection may be either in HTTP or HTTPS.
The certificate which the client checks has to be placed at load balancer. A connection between load
balancer and each HP SOA Registry Foundation can be protected by HTTPS in which case the load
balancer and the registries should know each other certificates.

Figure 48. Security in cluster, method 1.

2 Secure connection can be passed by the load balancer and terminated at the cluster node. This case
requires that the certificates on all the nodes have to be the same to provide the illusion of a single
service. However the common name inside the certificate should specify the DNS name of the balancer.

Chapter 2174

Figure 49. Security in cluster, method 2.

Load balancer is not part of HP SOA Registry Foundation product. You can use almost any
HTTP/HTTPS load balancer that supports described configurations.

Most of the Client - HP SOA Registry Foundation interactions require an authentication token to be passed
along the way. This token is encrypted by the HP SOA Registry Foundation certificate. Therefore each HP
SOA Registry Foundation behind the balancer has to have the same certificate.

WEB interfaces of HP SOA Registry Foundation (both Registry Console and Business Service Console)
need to know the absolute HTTP addresses of themselves. This address in the cluster is the address of the
load balancer and the possible context under which it is deployed. This address can be changed during setup.

Cluster installation

Cluster installation requires the setup of a load balancer and multiple registries. These steps are recommended
on the HP SOA Registry Foundation side when an application server is used:

175Installation Guide

1 Install HP SOA Registry Foundation.

• Fill-in the hostname and ports of the load balancer.

2 Port HP SOA Registry Foundation via the Deploy option in the HP SOA Registry Foundation Setup
program (or directly in Installer program).

3 Deploy the generated WAR or EAR to all cluster nodes via the application server.

These steps are recommended on the HP SOA Registry Foundation side where multiple standalone instances
of HP SOA Registry Foundation are used:

1 Install the first HP SOA Registry Foundation.

• Fill-in the hostname and ports of the load balancer.

2 Setup SSL certificates as required in the first HP SOA Registry Foundation.

3 Install other Registries.

• Do not create new databases, just connect to database of first HP SOA Registry Foundation.

• Copy REGISTRY_HOME\conf\pstore.xml from the first registry to each HP SOA Registry Foundation.
This assures that each HP SOA Registry Foundation will have same identity with respect to
authentication tokens.

• Copy the configuration files in the REGISTRY_HOME\app\uddi\conf\ directory from the first HP SOA
Registry Foundation. This is requireded because some fields in the configuration files are coded
by key specified in application_core.xml. Failure to do so may result in error messages during
startup and inconsistent configuration data in database.

4 Run the first installed HP SOA Registry Foundation first so that its configuration files are stored in
database first. Next time you can run the Registries in any order (including the first one).

Chapter 2176

Setting Up Security

If using a cluster of standalone registries, they must share the same private key for validating authentication
tokens.

Sharing Token Key

If HP SOA Registry Foundation is installed as a cluster of standalone registries, you must ensure that all
cluster nodes share the same private key for checking authentication token validity. (By a standalone registry,
we mean HP SOA Registry Foundation that is not deployed to an application server. You do not need to
do this if HP SOA Registry Foundation is deployed to an application server). To set this up, choose one of
the cluster nodes and copy its private key to all other nodes in the cluster by entering this command at a
command prompt:

PStoreTool copy -alias authTokenIdentity -keyPassword SSL_CERTIFICATE_PASSWORD -config
REGISTRY_HOME\conf\pstore.xml -config2 TARGET_REGISTRY_HOME\conf\pstore.xml

SSL_CERTIFICATE_PASSWORD is a ssl certificate password entered during the installation

TARGET_REGISTRY_HOME is the directory where a cluster node is installed.

WebLogic specific configuration for use with cluster

This section will guide you through an example setup of clustering with a WebLogic application server.

To deploy HP SOA Registry Foundation to a WebLogic cluster follow these steps:

1 Install WebLogic, then configure it by adding machines to the cluster. In our case, the cluster is named
cluster, and the configuration manager, named myserver, is running on 10.0.0.79. The nodes in the
WebLogic cluster are named:

• kila (10.0.0.79), running on kila.mycompany.com, with an http port of 7101 and https port of 7102

• fido (10.0.0.134), running on fido.mycompany.com, with an http port of 7101 and https port of 7102

2 Generate the certificates of all cluster nodes: Let's create proper certificates for our two nodes. It will
be done via the CertGen tool provided by WebLogic. Go to the directory

177Installation Guide

%WEB_LOGIC_HOME%\weblogic81\server\lib. CertGen is located in weblogic.jar's utils package. Invoke it
with the command:

java -cp weblogic.jar utils.CertGen changeit kilacert kilakey export kila.mycompany.com

The output resembles the following:

kilacert kilakey export kila.mycompany.com
 Will generate certificate signed by CA from CertGenCA.der file
 With Export Key Strength
 Common Name will have Host name kila.mycompany.com
 Issuer CA name is
 CN=CertGenCAB,OU=FOR TESTING ONLY,O=MyOrganization,L=MyTown,ST=MyState,C=US

Use the password changeit for starting the UDDI node servers. The output file with the certificate is
kilacert, and kilakey is the output file containing the private key. Generate certificates for all remaining
nodes from their CertGen tools. (In our case, the other node is fido.mycompany.com.)

3 Once you have certificates from all nodes (in our case files kilacert.der and fidocert.der), import them
to pstore.xml using the PstoreTool. Also include CertGenCA.der (from the directory
%WEB_LOGIC_HOME%\weblogic81\server\lib). The pstore.xml file is now ready. For more info about WebLogic
certificates and SSL settings, please see Configuring SSL [http://e-
docs.bea.com/wls/docs81/secmanage/ssl.html#1185171] in BEA's WebLogic product documentation.

4 Prepare a registry deployment package (REGISTRY_HOME\conf\porting\weblogic\wasp.war) as described in
Deployment to an Application Server on page 146.

In our case, the http port is 7101, the https port is 7102, and the application server context is wasp.

5 Check that the paths for log4j.appender.eventLog.File, log4j.appender.errorLog.File, and
wasp.war\conf\log4j.config are valid on all cluster nodes.

6 Deploy wasp.war into all WebLogic cluster nodes

You must also prepare the package for the balancer which will only be deployed to the cluster manager
server. To do so:

1 Create a balancer directory, in, for example, REGISTRY_HOME. This directory is referenced in this section
as PACKAGE_HOME.

2 Create a subdirectory of PACKAGE_HOME named WEB-INF.

Chapter 2178

http://e-docs.bea.com/wls/docs81/secmanage/ssl.html#1185171

3 In this subdirectory, create the file web.xml containing the following text. Under WebLogicCluster specify
the names and ports of your cluster nodes separated by a pipe (|). In our case, the file looks like:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE web-app PUBLIC "-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN"
 "http://java.sun.com/dtd/web-app_2_3.dtd">
<web-app>
 <servlet>
 <servlet-name>HttpClusterServlet</servlet-name>
 <servlet-class>weblogic.servlet.proxy.HttpClusterServlet</servlet-class>
 <init-param>
 <param-name>WebLogicCluster</param-name>
 <param-value>kila:7101|fido:7101</param-value>
 </init-param>
 </servlet>

 <servlet>
 <servlet-name>FileServlet</servlet-name>
 <servlet-class>weblogic.servlet.FileServlet</servlet-class>
 </servlet>

 <servlet-mapping>
 <servlet-name>FileServlet</servlet-name>
 <url-pattern>/uddi/webdata*</url-pattern>
 </servlet-mapping>

 <servlet-mapping>
 <servlet-name>HttpClusterServlet</servlet-name>
 <url-pattern>/</url-pattern>
 </servlet-mapping>

 <servlet-mapping>
 <servlet-name>FileServlet</servlet-name>
 <url-pattern>/uddi/bsc/webdata*</url-pattern>
 </servlet-mapping>
</web-app>

4 In the WEB-INF subdirectory, create the file weblogic.xml containing the following text, where /wasp is
the context of HP SOA Registry Foundation deployed to this application server. Your text must be
customized for your own installation.

<!DOCTYPE weblogic-web-app PUBLIC "-//BEA Systems, Inc.//DTD Web Application 8.1//EN"
"http://www.bea.com/servers/wls810/dtd/weblogic810-web-jar.dtd">
<weblogic-web-app>
 <context-root>/wasp</context-root>
</weblogic-web-app>

179Installation Guide

5 Create the directory %PACKAGE_HOME%\uddi\webdata.

6 Unjar REGISTRY_HOME\app\uddi\bsc.jar and copy the content of the webroot subdirectory from the jar to
%PACKAGE_HOME%\uddi\bsc\webdata

7 Unjar REGISTRY_HOME\app\uddi\web.jar and copy the content of the webroot subdirectory from the jar to
%PACKAGE_HOME%\uddi\webdata.

8 Package the content of %PACKAGE_HOME% into the file balancer.war using jar or some other compression
utility.

9 Deploy balancer.war into the cluster manager server.

Authentication Configuration
In this section, we will show you how to change the HP SOA Registry Foundation configuration to allow
the following authentication options:

• HTTP Basic

• Netegrity SiteMinder

• SSL Client Authentication

• J2EE Server Authentication

• Internal SSL Client Authentication Mapping in J2EE

• Disabling Normal Authentication

• Outgoing Connections Protected with SSL Client Authentication

HTTP Basic

To allow HTTP Basic authentication:

1 Modify REGISTRY_HOME/app/uddi/services/Wasp-inf/package.xml to enable HTTP basic authentication as
follows:

Chapter 2180

Under <processing name="UDDIv1v2v3PublishingProcessing"/>, uncomment <use
ref="tns:HttpBasicInterceptor"/>. This enables the HTTP Basic authentication for UDDI Publishing
API v1, v2, v3.

a

b Under <processing name="UDDIv1v2v3InquiryProcessing">, add <use ref="tns:HttpBasicInterceptor"/>
. This enables the HTTP Basic authentication for all three versions of the UDDI Inquiry API.

c Under <processing name="wsdl2uddiProcessing">, add <use ref="tns:HttpBasicInterceptor"/> . This
enables the HTTP Basic authentication for versions 2 and 3 of the WSDL2UDDI API.

d Add the attribute accepting-security-providers="HttpBasic" to other service-endpoints (except UDDI
publishing and Inquiry endpoint) you wish to access via HTTP Basic authentication.

A fragment of the package.xml is shown in Example 7 on page 182

2 Shutdown HP SOA Registry Foundation, delete the REGISTRY_HOME/work directory, and restart the registry.

181Installation Guide

Example 7: package.xml - HTTP Basic Enabled

.....
 <service-endpoint path="/inquiry" version="3.0" name="UDDIInquiryV3Endpoint"
 service-instance="tns:UDDIInquiryV3" processing="tns:UDDIv1v2v3InquiryProcessing"
 accepting-security-providers="HttpBasic">
 <wsdl uri="uddi_api_v3.wsdl" service="uddi_api_v3:UDDI_Inquiry_SoapService"/>
 <envelopePrefix xmlns="arbitraryNamespace" value=""/>
 <namespaceOptimization xmlns="arbitraryNamespace">false</namespaceOptimization>
 </service-endpoint>
 <service-instance
 implementation-class="com.systinet.uddi.publishing.v3.PublishingApiImpl"
 name="UDDIPublishingV3"/>
 <service-endpoint path="/publishing" version="3.0" name="UDDIPublishingV3Endpoint"
 service-instance="tns:UDDIPublishingV3"
 processing="tns:UDDIv1v2v3PublishingProcessing"
 accepting-security-providers="HttpBasic">
 <wsdl uri="uddi_api_v3.wsdl" service="uddi_api_v3:UDDI_Publication_SoapService"/>
 <envelopePrefix xmlns="arbitraryNamespace" value=""/>
 <namespaceOptimization xmlns="arbitraryNamespace">false</namespaceOptimization>
 </service-endpoint>

 <processing name="UDDIv3Processing">
 <use ref="uddiclient_v3:UDDIClientProcessing"/>
 <fault-serialization name="MessageTooLargeFaultSerializer"
 serializer-class="com.systinet.uddi.publishing.v3.serialization.MessageTooLargeFaultSerializer"
 serialized-exception-class="com.systinet.uddi.interceptor.wasp.MessageTooLargeException"/>
 </processing>

 <processing name="UDDIv1v2v3PublishingProcessing">
 <use ref="uddiclient_v3:UDDIClientProcessing"/>
 <use ref="uddiclient_v2:UDDIClientProcessing"/>
 <use ref="uddiclient_v1:UDDIClientProcessing"/>
 <!-- HttpBasic (without authtoken) -->
 <use ref="tns:HttpBasicInterceptor"/>

 <interceptor name="MessageSizeCheckerInterceptor"
 implementation-class="com.systinet.uddi.interceptor.wasp.MessageSizeCheckerInterceptor"
 direction="in">
 <config:maxMessageSize>2097152</config:maxMessageSize>
 </interceptor>
 </processing>

 <processing name="UDDIv1v2v3InquiryProcessing">
 <use ref="tns:UDDIv3Processing"/>

Chapter 2182

 <use ref="tns:UDDIv2Processing"/>
 <use ref="tns:UDDIv1Processing"/>
 <use ref="tns:HttpBasicInterceptor"/>
 </processing>
.....

Netegrity SiteMinder

To allow Netegrity SiteMinder authentication:

1 Modify REGISTRY_HOME/app/uddi/services/Wasp-inf/package.xml as follows:

a Under <processing name="UDDIv1v2v3PublishingProcessing"/>, add <use
ref="tns:SiteMinderInterceptor"/>. This enables the SiteMinder authentication for all three versions
of the UDDI Publishing API.

b Under <processing name="UDDIv1v2v3InquiryProcessing">, add <use ref="tns:SiteMinderInterceptor"/>.
This enables the SiteMinder authentication for versions 1, 2, and 3 of the Inquiry API.

c Under <processing name="wsdl2uddiProcessing">, add <use ref="tns:SiteMinderInterceptor"/> . This
enables the SiteMinder authentication for versions 2 and 3 of the WSDL2UDDI API.

d Add the attribute accepting-security-providers="Siteminder" to other service-endpoints (except
UDDI publishing and Inquiry endpoint) you wish to access via Netegrity SiteMinder authentication.

e Under the elements <securityProviderPreferences> and <interceptor name="SiteMinderInterceptor",
fill in:

• <loginNameHeader> - login name header

• <groupHeader> - group header

• <delimiter> - group name delimiter.

You must set the same element values to both <securityProviderPreferences> and
<interceptor name="SiteMinderInterceptor" elements.

183Installation Guide

A fragment of the package.xml is shown in Example 8 on page 184

2 Shutdown HP SOA Registry Foundation, delete the REGISTRY_HOME/work directory, and restart the registry.

Example 8: package.xml - Netegrity SiteMinder Enabled

.....
 <!-- Netegrity SiteMinded security provider preferences for the server side -->
 <securityProviderPreferences xmlns="http://systinet.com/wasp/package/extension"
 name="Siteminder">
 <loginNameHeader>sm-userdn</loginNameHeader>
 <groupHeader>sm-role</groupHeader>
 <delimiter>^</delimiter>
 </securityProviderPreferences>

 <!-- Netegrity SiteMinded interceptor-->
 <interceptor name="SiteMinderInterceptor"
 implementation-class="com.systinet.uddi.security.siteminder.SmInterceptor" >
 <config:loginNameHeader>sm-userdn</config:loginNameHeader>
 <config:groupHeader>sm-role</config:groupHeader>
 <config:delimiter>^</config:delimiter>
 </interceptor>
.....

SSL Client authentication

Standalone registry can be configured to perform authentication using client certificate obtained via 2-way
SSL, where also the client has to authenticate itself to a server. Setup instructions differes for a standalone
and a deployed registry. This section is focused on a standalone registry. See J2EE Server Authentication
on page 188 for instruction of how to configure SSL client authentication for deployed registry.

To allow SSL client authentication for a standalone registry:

1 Make sure that the registry is not running.

2 Modify REGISTRY_HOME/conf/serverconf.xml as follows:

• Under <httpsPreferences name="https">, change <needsClientAuth> to true. This will setup HTTPS
transport to require client certificates.

Chapter 2184

• Under <securityPreferences name="main">, add
<acceptingSecurityProvider>SSL</acceptingSecurityProvider>. This will turn on mapping of client
certificates to a user name.

A fragment of changed REGISTRY_HOME/conf/serverconf.xml is shown in Example 9 on page 187.

3 Trust the certificate of a certification authority that is used to issue client certificates. Run the PStoreTool
tool from the REGISTRY_HOME/bin directory to import this certificate to a truststore that is used by registry.

PStoreTool add --certFile <client certificates authority certificate file>

4 Configure a way how a client certificate is mapped to a user name. Registry comes with JAAS login
module that extracts the user name out of a subject that is necessary part of a client certificate. The
login module that performs this mapping is configured under the CertsMapping entry of the
REGISTRY_HOME/conf/jaas.conf file. An example of CertsMapping entry is shown in Example 10 on page
188.

You can configure the following options:

• debug - if set it to true, debug actions of the login module are printed to error stream. False by
default.

• issuer - issuer name, recommended to set. If set, mapped certificate must be issued by a certification
authority with this subject name.

• pattern - regular expession (as per java.util.regexp) that is used to get user name. The first capturing
group of a specified pattern is used as a user name. When there is no capturing group and the pattern
matches, the whole subject becomes a user name. Used regular expressions are case-insensitive.
Examples are:

• The default is (?<!\\,\s?)EMAILADDRESS=(.+)@. It matches a name listed in EMAILADDRESS.
This regular expression ignores the case of EMAILADDRESS possibly contained in another
part of subject.

• CN=([^,]+) matches common name.

• .* matches every subject. Since it has no capturing group, the whole subject DN is used.

185Installation Guide

You can configure more than one login module to perform certificate mapping. This is usefull when
you have to accept different issuers and/or provide a fallback to a failed certificate mapping of the first
configured login module. An example of a CertsMapping entry that allows to map certificates issued by
2 issuers with a different way of mapping is shown in Example 11 on page 188.

5 Now the registry is configured for SSL client authentication. You may also change the applicability
of SSL client authentication by changing configuration of SSL security provider. This configuration
is in the <securityProviderPreferences name="SSL"> element of the REGISTRY_HOME/conf/serverconf.xml file.
An example is shown in Example 9 on page 187.

Chapter 2186

Example 9: A fragment of serverconf.xml with 2-way SSL turned on

<?xml version="1.0" encoding="UTF-8"?>
<config name="main">
 ...
 <securityPreferences name="main">
 <!-- Added acceptingSecurityProvider -->
 <acceptingSecurityProvider>SSL</acceptingSecurityProvider>
 <pstoreInitParams/>
 ...
 </securityPreferences>
 ...
 <httpsPreferences name="https">
 ...
 <!-- Client authentication required -->
 <needsClientAuth>true</needsClientAuth>
 ...
 </httpsPreferences>
 ...
 <!-- security provider preferences intended mainly for SSL client authentication -->
 <securityProviderPreferences name="SSL">
 <!-- What to do when SSL is not used to access the resource? Avalaible options:
 redirect
 - perform HTTP redirect to associated HTTPS URL (302 Moved Temporarily)
 fail
 - return a message that informs to use HTTPS URL (400 Bad Request)
 skip
 - do not perform certififate mapping at all
 perform
 - try to perform certificate mapping with no client certificates
 -->
 <whenNotSsl>skip</whenNotSsl>
 <!-- Can certificate mapping fail? If set to true and it fails, no received subject will be
constructed. -->
 <certMappingMayFail>false</certMappingMayFail>
 <!-- Can a default account be created when no account for a mapped user exists? -->
 <createDefaultAccount>false</createDefaultAccount>
 </securityProviderPreferences>
</config>

187Installation Guide

Example 10: CertsMapping JAAS configuration

CertsMapping{
 com.systinet.uddi.security.jaas.CertMappingLoginModule sufficient pattern="(?<!\\,\s?)EMAILADDRESS=(.+)@"
 debug=false issuer="CN=Company CA, OU=mycomp";
};

Example 11: CertsMapping JAAS configuration with 2 possible issuers

CertsMapping{
 com.systinet.uddi.security.jaas.CertMappingLoginModule sufficient pattern="(?<!\\,\s?)EMAILADDRESS=(.+)@"
 debug=false issuer="CN=Company CA, OU=mycomp";
 com.systinet.uddi.security.jaas.CertMappingLoginModule sufficient pattern="CN=([^,]*)" issuer="CN=Company
 CA2, OU=mycomp" debug=false;
};

J2EE Server Authentication

The registry can be configured to let a J2EE application server perform authentication. Unlike Netegrity
SiteMinder on page 183 and HTTP Basic on page 180, the authentication takes place for a whole registry
application. To allow J2EE server authentication:

1 Create a deployment package using instructions provided in Deployment to an Application Server on
page 146.

2 Modify WEB-INF/web.xml file of the resulted war file as follows:

a Change the value of context parameter use.request.user to true.

b Add a login-config element with a type of chosen J2EE authentication. Example 12 on page 189
shows a login config that will turn on CLIENT-CERT authentication method, which is essentially used
for SSL client authentication.

You may also add security-constraint element to specify a set of resources where confidentialy
and/or integrity is required. Example 12 on page 189 contains a security-constraint that requires
confidential communication between client and server for all registry resources, which typically
means to allow only HTTPS in the communication with registry.

Chapter 2188

c Configure a J2EE application server for an authentication method of your choice. For SSL client
authentication, this typically means to setup HTTPS transport to require client certificates and to
map client certificates to user name. Consult documentation of a target J2EE application server
for details.

3 Go on with deploymement of a modified war file.

Example 12: A fragment of web.xml

<?xml version="1.0" encoding="UTF-8"?>
<web-app>
 <display-name>Registry</display-name>
...
 <context-param>
 <param-name>use.request.user</param-name>
 <param-value>true</param-value>
 </context-param>
....
<!-- Added CLIENT-CERT authentication method -->
 <login-config>
 <auth-method>CLIENT-CERT</auth-method>
 </login-config>

<!-- Added security contraint that allow to access registry only via HTTPS -->
 <security-constraint>
 <display-name>HTTPS required to access registry</display-name>
 <web-resource-collection>
 <web-resource-name>Protected Area</web-resource-name>
 <url-pattern>/*</url-pattern>
 <http-method>DELETE</http-method>
 <http-method>GET</http-method>
 <http-method>POST</http-method>
 <http-method>PUT</http-method>
 </web-resource-collection>
 <user-data-constraint>
 <description>Require confidentiality</description>
 <transport-guarantee>CONFIDENTIAL</transport-guarantee>
 </user-data-constraint>
 </security-constraint>
</web-app>

189Installation Guide

Internal SSL Client Authentication Mapping in J2EE

While J2EE application authentication can be configured in many ways, some configurations can be
cumbersome on some application servers. Internal SSL client authentication mapping can be easier to
configure for simple deployments. This method has been tested on Tomcat 5.5 and JBOSS 4.0.5.

Internal client authentication mapping offers the same options for configuration as CertMapper described
in SSL Client authentication on page 184. Installation steps:

1 Ensure that certificates are trusted by the J2EE server. Some servers have dedicated trust stores, while
others use the cacerts java keystore file inside Java runtime. Add the certificate of the Certification
Authority you are using to the server's trust store as a trusted certificate.

2 Set up your J2EE server SSL. You usually need to provide the Java trust store file with the server
identity. Configure the server SSL to use the trust store by specifying file, alias and store password.

3 Set up your J2EE server to ask for or require Client Authentification.

4 Edit web.xml inside the deployed registry.

• Change tag servlet-class to contain
com.systinet.transport.servlet.server.registry.RegistryServletTwoWaySSL.

• Add the CLIENT-CERT authentification method (as seen in Example 13 on page 191).

• Add context parameters. Set the context parameter "twowayssl.use_user" to value "true".

• Set the context parameter "twowayssl.issuer" to the X.509 Issuer DN of certificates you want to
allow.

• You can set the context parameter "twowayssl.mapping" to a regular expression for matching parts
of Subject DN (by default, it is set to the name part of the email address in the email field).

• You can set the context parameter "twowayssl.debug" to "true" for run-time information about
matching.

All context parameters that you set correspond to parameters in SSL Client authentication on page 184.
For examples of these parameters, see Example 13 on page 191.

Chapter 2190

Example 13: A fragment of web.xml

 <login-config>
 <auth-method>CLIENT-CERT</auth-method>
 </login-config>

 <context-param>
 <param-name>twowayssl.use_user</param-name>
 <param-value>true</param-value>
 </context-param>
 <context-param>
 <param-name>twowayssl.issuer</param-name>
 <param-value>C=CZ, ST=Czech, L=Prague, O=Example company, OU=Security Team, CN=CA</param-value>
 </context-param>

Disabling Normal Authentication

After you implement a custom authentication mechanism, such as a client SSL certificate, you may want
to disable normal authentication. Disable normal authentication by removing permission for the get_authToken
UDDI API from the system#everyone group. (The get_authToken API has this permission by default.)

To remove permission for the get_authToken UDDI API from the system#everyone group:

1 Log into the WEB UI using your administrative account and open the Management tab.

2 Open the Permissions page.

3 Select the Group radio button.

4 Edit the group system#everyone and remove the following permissions (Permission type / Api name /
Actions):

• org.systinet.uddi.security.permission.ApiUserPermission /
org.systinet.uddi.client.v3.UDDI_Security_PortType / get_authToken,

• org.systinet.uddi.security.permission.ApiUserPermission / org.systinet.uddi.client.v2.Publish /
get_authToken,

• org.systinet.uddi.security.permission.ApiUserPermission / org.systinet.uddi.client.v1.PublishSoap
/ get_authToken.

191Installation Guide

Remember that you will not be able to log in to WEB user interfaces with the normal login dialog
after you disable normal authentication.

Consoles Configuration

In this section, we will show you how to configure HTTP Basic or Netegrity Siteminder authentication for
both Registry Console and Business Service Console. The configuration of consoles is very similar to the
configuration of other endpoints.

Referring to jar packages

The file path REGISTRY_HOME/app/uddi/web.jar/WASP-INF/package.xml means the /WASP-INF/package.xml
inside the jar package REGISTRY_HOME/app/uddi/web.jar.

For the Registry Console, modify the file REGISTRY_HOME/app/uddi/web.jar/WASP-INF/package.xml with the
following:

<service-endpoint path="/web" name="WebUIEndpoint1"
 service-instance="tns:WebUI" type="raw" other-methods="get"
 accepting-security-providers="HttpBasic"/>
<service-endpoint path="/web/*" name="WebUIEndpoint2"
 service-instance="tns:WebUI" type="raw" other-methods="get"
 accepting-security-providers="HttpBasic"/>

If you want to set Netegrity SiteMinder provider, use accepting-security-providers="Siteminder"

For the Business Service Console do the same in the file REGISTRY_HOME/app/uddi/bsc.jar/WASP-INF/package.xml

We just set authentication providers for both HTTP and HTTPS protocols. Now, we must specify which
protocol consoles will be using for user authentication. The default registry configuration is to use HTTP
for browsing and searching. HTTPS is used for publishing. To avoid displaying the login dialog twice, (for
the first time when accessing via HTTP then the second time when accessing via HTTPS), modify the
configuration to use only one protocol.

For the Registry Console, modify url and secureUrl elements in the file REGISTRY_HOME/app/uddi/conf/web.xml
to have the same value:

Chapter 2192

<url>https://servername:8443</url>
<secureUrl>https://servername:8443</secureUrl>

For the Business Service Console, make the same change in the REGISTRY_HOME/app/uddi/bsc.jar/conf/web.xml
file.

Outgoing Connections Protected with SSL Client Authentication

HP SOA Registry Foundation can be the client in SSL Client Authentication. This allows the following
scenarios:

• SOAP Client - This is commonly used in following scenarios

• Approval process

• Replications

• Cluster

Approval process, Replications, or Cluster functionality connects via SOAP endpoints. Deployment in
those scenarios does not usually need SSL protection because all registries are located in a dedicated
internal network, but HP SOA Registry Foundation can be configured to use client SSL certificates in
those scenarios. When registry on the other side is protected with Client SSL Authentication and plain
HTTP connection is not allowed, your registry has to connect with an SSL Certificate. This can be
achieved by configuring destinationConfig inside security.xml. See the documentation for sslTool in the
Administration Guide, which describes the tool for SSL related tasks and destinationConfig. Destination
config allows you to specify different certificates for different endpoints by either specifying the SOAP
stub or the URL prefix.

• HTTPS protected resources

• WSDL

• XML

• XSD

• XSLT

193Installation Guide

Resources which are downloaded for processing by HP SOA Registry Foundation can be behind HTTPS
protected by Client SSL Authentication. HP SOA Registry Foundation can be set up so that these
connections use a specified certificate. The certificate has to be present as a key entry inside pstore.xml.
This key entry is identified by its alias. The alias and password has to be specified in
REGISTRY_HOME/app/uddi/conf/security.xml inside security which is contained in config as shown in example:

 <sslConnectionAlias>myAliasName</sslConnectionAlias>
 <sslConnectionPassword_coded>9vTJ9GKyjIURFY0qrWvADA==</sslConnectionPassword_coded>

To get encoded password from clear-text password, use REGISTRY_HOME/bin/sslTool(.bat or .sh) with
"encrypt" option.

Migration
Migration is used to migrate data from one database to another. You can migrate data during installation
or during setup. Often users evaluate HP SOA Registry Foundation using the preconfigured Hypersonic
SQL database, and migrate data to another database after evaluation.

Demo data are not migrated. Internal UDDI data such as built-in T-Models are not migrated since
they are avaiable in any installation by default. The list of such skipped entities is inside
migration*.xml in app\uddi\conf directory which you may view before migration if you use Migration
After Installation on page 197.

Migration During Installation

To migrate data during installation:

1 Select Standalone registry with data migration as shown in Figure 50.

Chapter 2194

Figure 50. Standalone Installation with Migration

2 Click Next. This returns the Migration panel shown below.

195Installation Guide

3 Fill the following properties:

• Previous Registry Version - HP SOA Registry version from which you are migrating data

• Previous Registry Directory - the directory containing the previous installation of HP SOA
Registry Foundation. The existing data will be migrated from it.

• Previous Registry Administrator Username - name of the user having rights to retrieve data
from the previous version Registry. By default, only administrator can migrate all data including
private data.

• Installation directory - select the directory where HP SOA Registry Foundation will be installed.

Chapter 2196

4 Click Next and continue your Standalone installation as described in Server Settings on page 62. During
the installation process, all data will be migrated from the specified previous HP SOA Registry
Foundation installation to the current installation.

Migration After Installation

Migration is additive. It does not delete entities that are already present in HP SOA Registry
Foundation and not present in migration source.

To migrate data after installation, use the Setup tool described in Reconfiguring After Installation on page
74. Briefly:

1 Launch the Setup tool by issuing the following command from the bin subdirectory of your installation:

setup.batWindows:

./setup.shUNIX:

See command-line parameters in Setup on page 73.

2 Select the Migration tool on first panel:

197Installation Guide

3 Fill in the following properties:

Chapter 2198

• Previous Registry Version - HP SOA Registry version from which you are migrating data

• Previous Registry Directory - the directory in which the previous HP SOA Registry Foundation
is installed. The existing data will be migrated from it.

• Previous Registry Administrator Username - name of the user having rights to retrieve data
from the previous version Registry.

• Current Registry Administrator Username - name of the user having rights to save UDDI
structure keys. By default, only administrator can migrate all data including private data.

• JDBC drivers - Set path to the directory in which the .jar (.zip) of JDBC drivers is located.

199Installation Guide

Enter this path only if the previous HP SOA Registry Foundation installation is configured
with a different type of database than the current one.

Backup
Backup functionality allows you to save the HP SOA Registry Foundation data and configuration to a
filesystem directory. Later the backup data can serve for full restore of HP SOA Registry Foundation data
and configuration.

What is subject to backup?

• All registry data stored in the database.

• Configuration files.

• HP SOA Registry Foundation libraries and JSP files.

The HP SOA Registry Foundation server must be shut down before you start backup or restore
operations.

Backup HP SOA Registry Foundation

To back up HP SOA Registry Foundation data:

1 Use the Setup tool and choose Backup. To run the Setup tool, execute the following script from the
bin subdirectory of your installation:

setup.batWindows:

./setup.shUNIX:

For more information, see command-line parameters in Setup on page 73.

Chapter 2200

Figure 51. Setup Tool - Select Backup

2 Select whether you want to use HP SOA Registry Foundation that has been deployed (second choice)
or not (first choice).

201Installation Guide

Figure 52. Setup

3 Specify the location of the backup directory. You can check which items you wish to back up as shown
in Figure 53.

Item description.

Chapter 2202

Backup data makes a backup of UDDI data such as different kind of entites and taxonomies.a

b Backup configuration files makes a backup of configuration files from REGISTRY_HOME/app/uddi/conf
and REGISTRY_HOME/work/uddi/bsc.jar/conf.

c Backup configuration from Database makes a backup of configuration files and their history
as they are stored in database. See Configuration in Database on page 381.

d Backup libraries makes a backup of bsc.jar and web.jar from both app and work directories. These
files and directories contain UI customizations and modifications.

203Installation Guide

Figure 53. Setup Tool - Backup

Restore HP SOA Registry Foundation

To restore registry data and configuration from a backup:

Chapter 2204

1 Use the Setup tool and choose Restore. To run the Setup tool, execute the following script from the
bin subdirectory of your installation:

setup.batWindows:

./setup.shUNIX:

See command-line parameters in Setup on page 73.

205Installation Guide

Figure 54. Setup Tool - Select Restore

2 Select whether you want to use HP SOA Registry Foundation that has been deployed (second choice)
or not (first choice).

Chapter 2206

Figure 55. Setup

3 Specify the location of backup directory and check the items you wish to restore. The restore will work
only for items that have been backed up previously.

207Installation Guide

Figure 56. Setup Tool - Restore from Backup

NT Service Support
The HP SOA Registry Foundation server can be run as a service on Windows 2000/XP. Support for NT
service installation is installed by default on Windows servers, and cannot be installed on UNIX machines.

Chapter 2208

The support is a set of executable files that let you install, start, stop, and uninstall HP SOA Registry
Foundation as an NT service.

The server log is by default written into the log file. The output to the NT log can be manually configured.

Installation

When the HP SOA Registry Foundation installation is complete, the REGISTRY_HOME\bin directory contains
these four batch files related to NT service support:

• InstallService.bat

• UnInstallService.bat

• StartService.bat

• StopService.bat

After installing HP SOA Registry Foundation with NT Service support, the registry server is not
installed as an NT service. It must be installed manually, as follows.

If you want to customize the NT service first (set-up the JVM max memory, add files to classpath, etc.),
please read the Customizing section now.

Make sure that the JAVA_HOME environment variable points to your JDK and run the InstallService.bat
command.

When the installation is finished, the name of the installed NT service is printed to the screen. The default
name is HP SOA Registry Foundation.

You may need extra permissions to install a new service into your OS. To determine whether you
have these permissions, please consult your system administrator.

If the installation fails, read the Customizing section. If it does not contain the solution, contact Systinet
support [http://www.systinet.com/support].

209Installation Guide

http://www.systinet.com/support
http://www.systinet.com/support

Starting and Stopping

Once the HP SOA Registry Foundation server NT service is installed, start it as you would any NT service,
by selecting Control Panel> Administrative Tools > Services > start.

As a shortcut, you can use the StartService.bat command in the REGISTRY_HOME\bin directory.

You may need extra permissions to start or stop an NT service in your OS. To determine whether
you have these permissions, please consult your system administrator.

To stop the server, use either the system tools or the StopService.bat command.

For security reasons, you cannot use serverstop.bat or server.bat stop to stop a HP SOA Registry
Foundation server that is running as an NT service.

Logging

By default, the logs of the server are written into the REGISTRY_HOME\log\registry_NTService.log file. The
default maximum size of the log file is 1MB. When the file is full, a backup is created and the content of
the file is cleaned. By default, 3 backups are kept and older backups are deleted.

Logging Customization

HP SOA Registry Foundation uses the Log4J library for logging. You can manually change its logging
behavior. The configuration is stored in the file REGISTRY_HOME\conf\log4j_NTservice.config. You can change
the log output, message priority and other settings in this file as follows:

Message Priority Settings

To change the message priority from INFO to ERROR, comment out the following lines in the config file:

log4j.category.com.systinet.wasp.events=INFO,R
log4j.additivity.com.systinet.wasp.events=false

log4j.category.com.systinet.wasp.events=INFO,ntlog
log4j.additivity.com.systinet.wasp.events=false

Chapter 2210

Log File Properties

To change the log file properties, change the Rolling File appender settings:

log4j.appender.R.File=log/registry_NTService.log
log4j.appender.R.MaxFileSize=1024KB
log4j.appender.R.MaxBackupIndex=3

Switching to NT Log

To switch logging from file to NT log, comment out the lines:

log4j.category.com.systinet.wasp.events=INFO,R
log4j.additivity.com.systinet.wasp.events=false
log4j.category.com.systinet.wasp.errors=ERROR,R
log4j.additivity.com.systinet.wasp.errors=false

and uncomment the lines:

#log4j.category.com.systinet.wasp.events=INFO,ntlog
#log4j.additivity.com.systinet.wasp.events=false
#log4j.category.com.systinet.wasp.errors=ERROR,ntlog
#log4j.additivity.com.systinet.wasp.errors=false

from this section:

Assigning appenders to categories
(using rolling file appender by default)
log4j.category.com.systinet.wasp.events=INFO,R
log4j.additivity.com.systinet.wasp.events=false
log4j.category.com.systinet.wasp.errors=ERROR,R
log4j.additivity.com.systinet.wasp.errors=false

Uncomment next line if you want use NT Event Log
for logging of error messages
#log4j.category.com.systinet.wasp.events=INFO,ntlog
#log4j.additivity.com.systinet.wasp.events=false
#log4j.category.com.systinet.wasp.errors=ERROR,ntlog
#log4j.additivity.com.systinet.wasp.errors=false

so that the section reads:

Assigning appenders to categories
(using rolling file appender by default)
#log4j.category.com.systinet.wasp.events=INFO,R
#log4j.additivity.com.systinet.wasp.events=false
#log4j.category.com.systinet.wasp.errors=ERROR,R

211Installation Guide

#log4j.additivity.com.systinet.wasp.errors=false

Uncomment next line if you want use NT Event Log
for logging of error messages
log4j.category.com.systinet.wasp.events=INFO,ntlog
log4j.additivity.com.systinet.wasp.events=false
log4j.category.com.systinet.wasp.errors=ERROR,ntlog
log4j.additivity.com.systinet.wasp.errors=false

We recommend that you log only errors to the NT log.

The REGISTRY_HOME\lib\NTEventLogAppender.dll file must be copied into the system PATH if you want
to use the NT event log for logging.

Using other Log4J Appenders

Rolling File and NTLog are the two default appenders. You can choose any Log4J appender that suits your
needs. To add custom classes to the HP SOA Registry Foundation NT service classpath, please see the
Customizing section.

You must restart the HP SOA Registry Foundation NT service to put the changes into effect.

For more information about Log4J and its settings, please visit Apache/Jakarta's Log4j Project website
[http://jakarta.apache.org/log4j].

Customizing

You can manually set up the name "HP SOA Registry Foundation NT Service" and the JVM parameters
that are used to start HP SOA Registry Foundation as an NT service. To customize logging, please visit the
previous section, Logging.

All customizable files in the following instructions are located in the REGISTRY_HOME\bin directory.

All the following changes require reinstallation of the HP SOA Registry Foundation NT Service.
Uninstall it first, make your modifications and reinstall the service.

Chapter 2212

http://jakarta.apache.org/log4j

NT Service Name Change

To change the service name:

1 Uninstall the existing service by running UnInstallService.bat.

2 Manually edit the files

• UnInstallService.bat

• InstallService.bat

• StartService.bat

• StopService.bat

3 Change the system variable NT_SERVICE_NAME, so the row with the variable resembles:

set NT_SERVICE_NAME=HP SOA Registry Foundation

4 Install your NT service with its new name by running InstallService.bat.

5 Start the new service by running StartService.bat.

JVM Startup Parameters

The parameters of the Java Virtual Machine are set up during the installation of the NT service. If you
modify the parameters, you must reinstall the NT service to put the changes into effect. To modify the
parameters of the NT service, open InstallService.bat in a text editor and do the following:

• To change the maximum size of available memory, change the value of the JVM_MEM variable, with a
command like set JVM_MEM=-Xmx256m.

• To add custom files to the classpath, edit the RegistryService.exe parameters. These are in the line
"-Djava.class.path=%REGISTRY_HOME%\lib\wasp.jar".

213Installation Guide

HP SOA Registry Foundation deployed to Application Server

Systinet does not support installation of deployed HP SOA Registry Foundation as an NT Service. For more
information, please see the documentation of your application server provider. However, any Java application
can be installed as an NT Service with Systinet's NT service solution. Please contact http://www.systinet.-
com/support if you need to run a deployed HP SOA Registry Foundation server as an NT service.

Uninstallation

To uninstall the HP SOA Registry Foundation server NT service, run UnInstallService.bat from the
REGISTRY_HOME\bin directory. The uninstaller first tries to stop the NT service. It then removes the NT service
from your OS.

Running in Linux

Using the syslog Daemon with HP SOA Registry Foundation

The log4j system used in HP SOA Registry Foundation can be configured to send log messages to the syslog
daemon. In order to utilize this feature, your system must be configured as follows:

1 Change log4j in REGISTRY_HOME/conf/log4j.config. First add a syslog appender, as shown in Example 14
on page 214. Note the following properties in particular:

• syslogHost - Set to host name of the computer where syslog is running.

• Facility - HP SOA Registry Foundation log message facility recognized by syslog.

Example 14: log4j.config--syslog Appender

Appender to syslog
log4j.appender.syslog=org.apache.log4j.net.syslogAppender
log4j.appender.syslog.syslogHost=localhost
log4j.appender.syslog.Facility=local6
log4j.appender.syslog.layout=org.apache.log4j.PatternLayout
log4j.appender.syslog.layout.ConversionPattern=%p: %c{2} - %m%n

Then add syslog to the value of the property log4j.category.com.systinet.wasp.events under # event
monitoring, as follows:

Chapter 2214

http://www.systinet.com/support
http://www.systinet.com/support

Example 15: log4j.config--Event Monitoring

event monitoring
log4j.category.com.systinet.wasp.events=INFO,eventLog,syslog

2 Set the syslogd configuration to recognize log messages from HP SOA Registry Foundation. Implicitly,
HP SOA Registry Foundation sends log messages to syslog under the facility local6. Therefore, modify
the /etc/syslog.conf file by adding the following line of text:

local6.* /var/log/registry.log

HP SOA Registry Foundation will now log messages of all priorities into the file /var/log/registry.log.
You should create this file now with appropriate permissions (otherwise syslogd will create it for you
automatically with default permissions, which may not be suitable for you).

3 Your syslog daemon must be started with remote logging enabled (the -r command line option). To
make sure that:

• syslogd is running, use the pgrep syslogd command.

• remote logging is enabled, use the netstat -l command (syslog's udp port is 514).

The local6 facility is not mandatory in any way. You may use other localX facilities instead.

Running HP SOA Registry Foundation as a UNIX Daemon

HP SOA Registry Foundation can be forced to start as a system daemon using the script
REGISTRY_HOME/etc/bin/registry.sh. This script can be renamed registry as per UNIX conventions. The
directions for using this script follow.

1 Tailor the service script as needed. The meaning of variables is shown in Table 2.

215Installation Guide

Table 2. Variables in the HP SOA Registry Service Script

Default valueDescriptionName of variable
in registry service
script

HP SOA Registry Foundation
Installation directory.

Home directory of HP SOA Registry
Foundation

REGISTRY_HOME

None. This variable must be set
manually.

Home directory of JavaJAVA_HOME

Determined during runtime according
to the user who owns the REGISTRY_HOME
directory. If the user is root, this value
reverts to "nobody".

User under whom the HP SOA Registry
server should run. If this is set to root,
it will be changed to "nobody".

REGISTRY_USER

60 seconds.Number of seconds the system waits for
HP SOA Registry to successfully start
up.

TIMEOUT

2 Rename the script registry (without the .sh extension) and save it in the /etc/init.d/ directory.

3 (optional) To start HP SOA Registry Foundation automatically in the appropriate run-level, create
SXXregistry and KXXregistry symbolic links in the appropriate /etc/rcX.d/ directory.

Now you may start and stop HP SOA Registry Foundation using the installed script. You can invoke this
script directly or by using specific OS tools. For example, on RedHat, by using the redhat-config-services
command.

The parameters of the script are shown in Table 3.

Chapter 2216

Table 3. Parameters of init.d Scripts

FunctionParameter

Starts HP SOA Registry Foundationstart

Stops HP SOA Registry Foundationstop

Restarts HP SOA Registry Foundationrestart

Restarts HP SOA Registry Foundation only if it is already runningcondrestart

Displays whether HP SOA Registry Foundation is running or notstatus

The provided startup script may be run by the root user. The script uses the su command to run as
REGISTRY_USER.

Uninstallation

Windows

1 If you installed HP SOA Registry Foundation as NT service, uninstall it by executing script
REGISTRY_HOME\bin\UninstallService.bat. See more information on NT Service Support on
page 208.

2 Remove Icons and Start menu items on Windows platform.

3 Drop database manually via the Setup tool. Setup should automatically detect the current configuration
of the database. See Reconfiguring After Installation on page 74.

4 Delete installation directory of HP SOA Registry Foundation.

Linux

1 If you installed HP SOA Registry Foundation as Linux daemon, remove the registry files from
/etc/init.d. Remove also links KXXregistry and SXXregistry from appropriate directory /etc/rcX.d.
Unregister the daemon by system tools.

2 Drop database manually via the Setup tool. Setup should automatically detect the current configuration
of the database. See Reconfiguring After Installation on page 74.

217Installation Guide

3 Delete installation directory of HP SOA Registry Foundation.

Chapter 2218

3 User's Guide

The HP SOA Registry Foundation User's Guide is mainly focused on the web user interface. The users to
whom this guide is addressed are those who query the registry or publish to it using this interface as opposed
to accessing the registry over SOAP. It is comprised of the following sections:

Introduction to HP SOA Registry Foundation

This section is a brief intoduction to HP SOA Registry Foundation including basic concepts of
UDDI specifications.

Registry Consoles

This section presents both Business Service Console and Registry Console

Demo Data Description

The HP SOA Registry Foundation's Demo Data chapter describes the business domain and UDDI
data structures used in the HP SOA Registry Foundation Demo Suite and both registry consoles.

Advanced Topics

Access Control Principles

Describes principles of permissions and access control to UDDI data structures.

Publisher-Assigned Keys

Under UDDI v3, users may assign alpha-numeric keys to structures rather than having
these keys automatically generated by the registry (as was the case under UDDI v1 and
v2).

Range Queries

HP SOA Registry Foundation's range queries functionality allows you to search UDDI
entities with the ability to use comparative operators (>, <).

Taxonomy: Principles, Creation and Validation

This section gives you a brief overview of taxonomy classification in HP SOA Registry
Foundation

219

Registry Console Reference

Describes the Registry Console and basic tasks you can perform with it.

Signer Tool

Allows the user to digitally sign published UDDI structures and validate digital signatures.

Introduction to HP SOA Registry Foundation
HP SOA Registry Foundation is a fully V3-compliant implementation of the UDDI (Universal Description,
Discovery and Integration) specification, and is a key component of a Service Oriented Architecture (SOA).
A UDDI registry provides a standards-based foundation for locating services, invoking services and managing
metadata about services (security, transport or quality of service). A UDDI registry can store and provide
these metadata using arbitrary categorizations. These categorizations are called taxonomies.

This introduction has the following sections:

• UDDI's Role in the Web Services World - UDDI Benefits on page 220

• Typical Application of a UDDI Registry on page 221

• Basic Concepts of the UDDI Specification on page 221

• Subscriptions in HP SOA Registry Foundation on page 227

UDDI's Role in the Web Services World - UDDI Benefits

When development teams start to build Web service interfaces into their applications, they face such issues
as code reuse, ongoing maintenance and documentation. The need to manage these services can increase
rapidly.

The UDDI registry can help to address these issues and provides the following benefits:

• It delivers visibility when identifying which services within the organization can be reused to address
a business need.

• It promotes reuse and prevents reinvention. It accelerates development time and improves productivity.
This ability of UDDI to categorize a growing portfolio of services makes it easier to manage them. It
helps you understand relationships between components, supports versioning and manages dependencies.

Chapter 3220

• It supports service configurability and adaptability by using the service-oriented architectural principle
of location and transport independence. Users can dynamically discover services stored in the UDDI
registry.

• It allows you to understand and manage relationships between services, component versions and
dependencies.

Typical Application of a UDDI Registry

A UDDI registry stores data and metadata about business services. A UDDI registry offers a standards-
based mechanism to classify, catalog and manage Web services so that they can be discovered and consumed
by other applications. As part of a generalized strategy of indirection among services-based applications,
UDDI offers several benefits to IT managers at both design-time and run-time, including increasing code
reuse and improving infrastructure management by:

• Publishing information about Web services and categorization rules (taxonomies) specific to an
organization.

• Finding Web services that meet given criteria.

• Determining the security and transport protocols supported by a given Web service and the parameters
necessary to invoke the service.

• Providing a means to insulate applications (and providing fail-over and intelligent routing) from failures
or changes in invoked services.

Basic Concepts of the UDDI Specification

UDDI is based upon several established industry standards, including HTTP, XML, XML Schema (XSD),
SOAP, and WSDL. The latest version of the UDDI specification is available at: http://www.oasis-open.-
org/committees/uddi-spec/doc/tcspecs.htm#uddiv3.

The UDDI specification describes a registry of Web services and its programmatic interfaces. UDDI itself
is a set of Web services. The UDDI specification defines services that support the description and discovery
of:

• Businesses, organizations and other providers of Web services;

• The Web services they make available;

221User's Guide

http://www.oasis-open.org/committees/uddi-spec/doc/tcspecs.htm#uddiv3
http://www.oasis-open.org/committees/uddi-spec/doc/tcspecs.htm#uddiv3

• The technical interfaces which may be used to access and manage those services.

UDDI Data Model

The basic information model and interaction framework of UDDI registries consist of the following data
structures:

• A description of a service business function is represented as a businessService.

• Information about a provider that publishes the service is put into a businessEntity.

• The service's technical details, including a reference to the service's programmatic interface or API, is
stored in a bindingTemplate.

• Various other attributes, or metadata, such as taxonomy, transports, and policies, are stored in tModels.

These UDDI data structures are expressed in XML and are stored persistently by a UDDI registry. Within
a UDDI registry, each core data structure is assigned a unique identifier according to a standard scheme.
This identifier is referred as a UDDI key.

Business Entity

A business entity represents an organization or group of people responsible for a set of services (a service
provider). It can also represent anything that overreaches a set of services; for example a development
project, department or organization. The business entity structure contains the following elements:

• Names and Descriptions. The business entity can have a set of names and descriptions, in a variety of
languages if necessary.

• Contacts. The list of people who are associated with the business entity. A contact can include, for
example, a contact name, addresses, phone numbers, and use type.

• Categories. Set of categories that represent the business entity's features or quantities. For example the
business entity can be associated with the category California to say that the business entity is located
in that geographical area.

• Identifiers. The business entity can be associated with arbitrary number of identifiers that uniquely
identify it. For example, the business entity can be identified by a department number or D-U-N-S
number.

Chapter 3222

• Discovery URLs are additional links to documents describing the business entity.

Business entities can be linked to one another using so-called assertions that model a relationships between
them.

Business Service

Business services represent functionality or resources provided by business entities. A business entity can
reference multiple business services. A business service is described by the following elements:

• Names and descriptions. The business service can have a set of names and descriptions, in a variety of
languages if necessary.

• Categories. A set of categories that represent the business service features and quantities. For example,
the business service can be associated by a category that represents service availability, version, etc.

A business service in a UDDI registry does not necessarily represent a Web service. The UDDI registry
can register arbitrary services such as example EJB, CORBA, etc.

Binding Template

A business service can contain one or more binding templates. A binding template represents the technical
details of how to invoke its service. Binding templates are described by the following elements:

• Access point represents the service endpoint. It contains endpoint URI and specification of the protocol.

• tModel instance infos can be used to represent any other information about the binding template

• Categories. The binding template can be associated with categories to reference specific features of the
binding template, for example certification status (test, production) or versions.

tModel

The tModel provides a reference to an abstraction describing compliance with a specification and concepts.
TModels are described by the following elements:

• Name and description. The tModel can have a set of names and descriptions, in different languages if
required.

• An overview document is a reference to a document that specifies the tModel's purpose.

223User's Guide

• Categories. Like all the other UDDI entities, tModels can be categorized.

• Identifiers. The tModel can be associated with an arbitrary number of identifiers that uniquely identify
it.

UDDI entities are categorized through tModels via taxonomies. Business entities, business services, and
binding templates declare associations to a certain category by presence of specific tModels in their
categoryBags.

Taxonomic Classifications

UDDI provides a foundation and best practices that help provide semantic structure to the information about
Web services contained in a registry. UDDI allows users to define multiple taxonomies that can be used in
a registry. Users can employ an unlimited number of appropriate classification systems simultaneously.
UDDI also defines a consistent way for a publisher to add new classification schemes to their registrations.

Taxonomies are used for representing various UDDI entity features and qualities (such as product types,
geographical regions or departments in a company).

The UDDI specification mandates several standard taxonomies that must be shipped with each UDDI
registry product. Some are internal UDDI taxonomies such as the UDDI types taxonomy or geographical
taxonomy. A taxonomy can be marked as specific to business, service, binding template or tModel or it can
be used with any type of the UDDI entity

Enterprise Taxonomies

Enterprise taxonomies are taxonomies that are specific to the particular enterprise or application. These
taxonomies reflect specific categories like company departments, types of applications, and access protocols.

HP SOA Registry Foundation allows definition of enterprise taxonomies. Users can also download and
upload any taxonomy as an XML file. HP SOA Registry Foundation offers tools for browsing taxonomies
on both the web user interface and SOAP API levels.

Checked and Unchecked Taxonomies

There are two types of taxonomies: checked and unchecked. Checked taxonomies are rigid, meaning that
the UDDI registry does not allow the use of any categories other than those predefined in the taxonomy.
Checked taxonomies are usually used when the taxonomy author can enumerate all distinct values within

Chapter 3224

the taxonomy. A checked taxonomy can be validated using the internal validation service that is available
in HP SOA Registry Foundation or by using an external validation service.

Unchecked taxonomies do not prescribe any set of fixed values and any name and value pair can be used
for categorization of UDDI entities. Unchecked taxonomies are used for things like volume, weight, price,
etc. A special case of the unchecked taxonomy is the general_keywords taxonomy that allows categorizations
using arbitrary keywords.

Security Considerations

UDDI specification does not define an access control mechanism. The UDDI specification allows
modification of the specific entity only by its owner (creator). This does not scale in the enterprise
environment where the right to modify or delete a specific UDDI entity must be assigned with more identities
or even better with some role.

HP SOA Registry Foundation addresses this issue with the ACL (Access Control List) extension to the
UDDI security model. Every UDDI entity can be associated with the ACL that defines who can find (list
it in some UDDI query result), get (retrieve all details of the UDDI object), modify or delete it. The ACL
can reference either the specific user account or user group.

The UDDI v3 specification provides support for digital signatures. In HP SOA Registry Foundation, the
publisher of a UDDI structure can digitally sign that structure. The digital signature can be validated to
verify the information is unmodified by any means and confirm the publisher's identity.

Notification and Subscription

The UDDI v3 specification introduces notification and subscription features. Any UDDI registry user can
subscribe to a set of UDDI entities and monitor their creation, modification and deletion. The subscription
is defined using standard UDDI get or find API calls. The UDDI registry notifies the user whenever any
entity that matches the subscription query changes even if the change causes the entity to not match the
query anymore. It also notifies about entities that were changed in a way that after the change they match
the subscription query.

The notification might be synchronous or asynchronous. By synchronous, we mean solicited notification
when the interested party explicitly asks for all changes that have happened since the last notification.
Asynchronous notifications are run periodically in a configurable interval and the interested party is notified
whenever the matched entity is created, modified, or deleted.

225User's Guide

Replication

Content of the UDDI registry can be replicated using the simple master-slave model. The UDDI registry
can replicate data according to multiple replication definitions that are defined using UDDI standard queries.
The master-slave relationship is specific to the replication definition. So one registry might be master for
one specific replication definition and slave for another. The security settings (ACL, users, and groups) are
not subject to replication but you can set permissions on replicated data.

UDDI APIs

The core data management tools functions of a UDDI registry are:

• Publishing information about a service to a registry.

• Searching a UDDI registry for information about a service.

The UDDI specification also includes concepts of:

• Replicating and transferring custody of data about a service.

• Registration key generation and management.

• Registration subscription API set.

• Security and authorization.

The UDDI specification divides these functions into Node API sets that are supported by a UDDI server and
Client API Sets that are supported by a UDDI client .

Technical Notes

Technical Notes (TN) are non-normative documents accompanying the UDDI Specification that provide
guidance on how to use UDDI registries. Technical Notes can be found at http://www.oasis-open.-
org/committees/uddi-spec/doc/tns.htm. One of the most important TNs is "Using WSDL in a UDDI Registry".

Benefits of UDDI Version 3

The most important features include:

• User-friendly identifiers facilitate reuse of service descriptions among registries.

Chapter 3226

http://www.oasis-open.org/committees/uddi-spec/doc/tns.htm
http://www.oasis-open.org/committees/uddi-spec/doc/tns.htm

• Support for digital signatures allows UDDI to deliver a higher degree of data integrity and authenticity.

• Extended discovery features can combine previous, multi-step queries into a single-step, complex
query. UDDI now also provides the ability to nest sub-queries within a single query, letting clients
narrow their searches much more efficiently.

Subscriptions in HP SOA Registry Foundation

Subscriptions are used to alert interested users in changes made to structures in HP SOA Registry Foundation.
The HP SOA Registry Foundation Subscription API provides users the ability to manage (save and delete)
subscriptions and evaluate notification. Notifications are lists of changes made within a specified time
interval. The Subscription mechanism allows the user to monitor new, changed, and deleted entries for
businessEntities, businessServices, bindingTemplates, tModels or publisherAssertions. The set of entities
in which a user is interested is expressed by a SubscriptionFilter, which can be any one of the following
UDDI v3 API queries:

• find_business, find_relatedBusinesses, find_services, find_bindings, find_tmodel

• get_businessDetail, get_serviceDetail, get_bindingDetail, get_tModelDetail, get_assertionStatusReport

In Business Service Console, users can also create subscriptions also resources (WSDL, XML,
XSD and XSLT) without a detailed knowledge of how resources are mapped to UDDI data
structures.

Subscription Arguments

A subscription is the subscriber's interest in changes made to entities as defined by the following arguments:

• SubscriptionKey - The identifier of the subscription, as generated by the server when the subscription
is registered.

• Subscription Filter - Specifies the set of entities in which the user is interested. This field is required.
Note that once the subscription filter is set, it cannot be changed.

• Expires After - The time after which the subscription is invalid (optional).

• Notification Interval - How often the client will be notified (optional). The server can extend it to the
minimum supported notification interval supported by the server as configured by the administrator.

227User's Guide

For more information, please see Administrator's Guide, Registry Configuration on page 371.

• Max Entities - how many entities can be listed in a notification (optional). When the number of entities
in a notification exceeds max entities, the notification will contain only the number of entities specified
here or in the registry configuration. A chunkToken different from "0" will be specified in the notification.
This chunkToken can be used to retrieve trailing entities.

• BindingKey - points to the bindingTemplate that includes the endpoint of the notification handling service
(optional). Only http and mail transports are currently supported. If this bindingKey is not specified,
the notification can be retrieved only by synchronous calls.

• Brief - By default, notifications contain results corresponding to the type of the Subscription Filter.
For example, when the subscription filter is find_business, notifications contain Business Entities in the
businessInfos form. If brief is toggled on, notifications will contain only the keys of entities. (optional)

Subscription Notification

Notification is the mechanism by which subscribers learn about changes. Notifications inform subscribers
about entities that:

1 Satisfy the Subscription Filter now and were last changed, or created, within a given time period. The
entities are included in a list of the appropriate data type by default. For example, when find_business
represents the Subscription Filter, notifications contain Business Entities in the businessList/businessInfo
form. (If the brief switch is toggled on, only the entity keys in the keyBag are included.)

2 Were changed or deleted in the given time period and no longer satisfy the Subscription Filter. Only
the keys of the appropriate entities are included in the keyBag structure and the deleted flag is toggled
on.

There are two types of notifications:

• Asynchronous notification - Using asynchronous notification, the server periodically checks for changes
and offers them to the client via HTTP or SMTP. HTTP is suitable for services listening to UDDI
changes. SMTP (that is, mail notification) is suitable for both services and users. With this transport,
the user is notified at each notification interval by email. To perform asynchronous notification, the
subscription must be populated with notification interval and bindingKey. See Developer's Guide, Writing
a Subscription Notification Service on page 572 for details.

Chapter 3228

• Synchronous notification - Using synchronous notification, the server checks for changes and offers them
when the client explicitly asks for them outside of periodical asynchronous notifications. It is useful for
client applications which cannot listen for notifications, and for services that want to manage the time
of notification by themselves. See Demos, Subscription on page 666 for details.

XSLT Over Notification

To improve the readability of notifications sent to users via email, HP SOA Registry Foundation provides
the ability to process the XSL transformation before the notification is sent. To enable this feature:

1 Register the XSL transformation in UDDI as a tModel that refers to XSL transformation in its first
overviewDoc.

2 Modify the bindingTemplate (with the bindingKey specified in the subscription) to refer to the XSLT
tModel by its tModelInstanceInfo.

3 Tag the XSLT tModel by a keyedReference to uddi:uddi.org:resource:type with the keyValue="xslt".

Suppressing Empty Notifications

Another HP SOA Registry Foundation extension to the specification is the ability to suppress empty
notifications. To do this, tag the bindingTemplate referenced from the subscription with a keyedReference
to the tModel uddi:uddi.org:categorization:general_keywords with keyValue="suppressEmptyNotification" and
keyName="suppressEmptyNotification".

Related Links

• To manage subscriptions via the Registry Console, see the Registry Console Reference.

• To use and manage subscriptions, see the Subscription API.

• More details about subscriptions can be found in the Subscription API [http://uddi.org/pubs/uddi-v3.00-
published-20020719.htm#_Toc42047327] chapter of the UDDI v3 Specification.

Registry Console
HP SOA Registry Foundation web console.

229User's Guide

http://uddi.org/pubs/uddi-v3.00-published-20020719.htm#_Toc42047327

• Registry Console. Using the Registry Console users can browse and publish registry contents, create
subscriptions and perform ownership changes. The Registry Console is the primary console for
administrators to perform registry management.

The Registry Console can be found at http://<hostname>:<port>/uddi/web. Host name and port are defined
when HP SOA Registry Foundation is installed. The default port is 8080. See Registry Console Overview
on page 270

Make sure your browser allows HTTPS connections, supports JavaScript and does not block popup
windows.

Demo Data
Demo data is pre-installed with HP SOA Registry Foundation. There are two demo data sets:

• demo data to demonstrate Business Service Console

• demo data to demonstrate Registry Console and Demo Suite

Demo Data for Business Service Console

Demo data is pre-installed with HP SOA Registry Foundation for use with the Business Service Console.
This data describes a financial institution (bank) with several departments. It contains entities providing
services for its operations. Entities providing services are modelled as service providers. There are the
following providers and their services in the demo data:

Account Services

Account Services provides services related to account information, transfers, check orders, bill
pay, online statements.

• Account - The account service provides the account related operations :getAccount,
listAccountDetail, listRelatedAccounts, listTransactionHistory.

• Bill Payment - The bill payment service provides the ability to establish bill payment service,
cancel bill payment service and get information about bill payment for a customer. Operations:
authorizeAcctForBillPymt, cancelBillPymtSvc, createBillPymtSvc.

Chapter 3230

• Check Order - This service supports new check orders, check reorders, check order inquiry.
Operations: getLastCheckOrder, orderChecks, reorderChecks.

• Direct Deposit Advance -This service supports the operations used to set up the advancement
of money. Operation: addDirectDepositAdvance.

• Notification Services - This service is used to provide notifications. Operation:
sendAccountTransferNotification.

• Stop Payment - This service allows stops to be set and maintained. Operations:
addStopPaymentForCheck, cancelStopPay

• Transfer Funds - This service allows funds to be transferred from one account to another.
Operations: authorizeTransfer, sendInvoicePayment, transferFunds.

Customer Management System

Customer relationship and management system.

• Add Customer - This service allows a customer to be added to the enterprise customer system.
Operation: addCustomer.

• Customer Notification - This service provides notification messages for various customer
changes. Operations: customerNameChangeNotif, customerAddressChangeNotif.

Outlet Locator

Provides information about outlets and sites.

• Outlet - The Outlet service gets all of the information about a Company outlet. Operation:
getOutletDetail.

• Site - This service gets information about a site. Operations: getSiteDetail, listSites, searchSites

Document Services

Provides access to company forms.

• Electronic Forms - Provides access to company forms. Operations: updateAddrPhone,
updateNameAndTitle.

231User's Guide

Transaction Services

Middleware applications for posting transactions with high performance SLA.

• Monetary Transaction - Monetary Posting. Operation: postTransaction.

Each service has a WSDL definition. Demo data also contains information about service interfaces and
endpoints including categorization as certification statuses, availability statuses, and stages of lifecycle.

Demo data for Registry Console and demos

Demo data describes a multinational company with offices in several locations and HP SOA Registry
Foundation installed in its headquarters division. The headquarters division has two departments: IT and
HR.

There are two predefined users, demo_john and demo_jane. The passwords for these users are the same as
their log on names.

Departments are represented as the following Business Entities:

• Headquarters

• HR

• IT

The following taxonomies are used:

demo:hierarchy

Represents the organizational structure (hierarchy). KeyValue is the businessKey of the parent
department.

demo:location:floor

Represents the geographical location of departments. Headquarters is located in a building; IT and
HR are located in different floors of the same building. KeyValue is the number of the floor.

demo:departmentID

Identifies each department uniquely. The value from keyValue can be used as an argument in
WSDL services.

Pre-published services are shown in Table 4:

Chapter 3232

Table 4. Pre-published Demo Web Services

DescriptionWSDL ServiceName

stored in the HR department; used by employees to
submit holiday request

YesHoliday request

stored in the IT department; used by employees to
call IT phone support for help with their PCs.

NoPhone support

stored in the HR department, projected to IT
department; takes single argument - departmentId;
used by employees to view a list of employees that
belong to a department.

YesEmployee list

Assertions are an alternate way to represent relationships between business entities. In the HP SOA Registry
Foundation demo data, assertions are created between the Headquarters and HR departments.

The demo data also contains the following resource files located in the REGISTRY_HOME/demos/conf directory:

• EmployeeList.wsdl

• employees.xml

• employees.xsd

• employeesToDepartments.xsl

• departments.xml

• departments.xsd

Advanced Topics

Data Access Control: Principles

This chapter describes the entity access control mechanism, which defines permissions for users and groups
to access structures in HP SOA Registry Foundation

233User's Guide

There are two types of user groups: public and private. Both public and private groups are visible to all
users in the registry, meaning that all users are able to see which groups exist. Public and private groups
differ in that members of public groups are visible to all users of the registry whereas members of private
groups are visible only to the owner of the group.

There are other permissions in HP SOA Registry Foundation used to control access to APIs and
their operations. API permissions are relations between the user or group and operation only. Please
see Permissions: Principles on page 387 in the Administration Guide for details.

Permission in this chapter is limited to Data Access Permission - ACL permission.

We use the following terms with regard to ACL permissions:

• Party. A user or group of users

• Core Structure. One of the major UDDI data structures: businessEntity, businessService,
bindingTemplate or tModel

• Action. An operation: "find", "get", "save", or "delete" on the entity plus special action "create", which
means to save sub-entities. (For example, a user with the "create" permission on a businessService can
save new bindingTemplates under the businessService, but can not update whole businessService.) Note
that the "create" permission makes sense only on businessEntity and businessService, because
bindingTemplates and tModels have no sub-entities.

Standard UDDI access control defines that only the owner of a UDDI core structure can update or delete
it. Every user can find or get the structure (with the exception that deleted/hidden tModels are visible for
get_tModelDetail but not for the find_tModel operation). ACLs (Access Control Lists) added to a UDDI entity
can override standard UDDI access control as there are several cases in which standard access control is
not sufficient.

Examples:

• When a Web service is under construction, its UDDI representation (businessService and
bindingTemplate) should be visible only to members of the development team. Arbitrary users should
not be able to obtain it in the result set of get_serviceDetail or find_service operations. Moreover, a
get_businessDetail or find_business operation result, which includes a superior businessEntity, should
not give away the existence of the businessService.

Chapter 3234

• On the other hand when the server (where the service prototype is running) goes down, the administrator
should be able to deploy the Web service on another server and repair the service endpoint in the
accessPoint within its bindingTemplate, despite not being the owner of the bindingTemplate.

Explicit Permissions

Explicit permission gives (positive permission), or revokes (negative permission), access rights to a party
to process an action on a specified entity.

Explicit permissions are saved with the entity as special keyedReferences in the categoryBag. For more
information, please see Setting ACLs on UDDI v3 Structures and Setting ACLs on UDDI v1 and v2
Structures below.

Permission Rules

When no explicit permission is set for the find/get action on an entity, everyone can find/get it. When no
explicit permission is set for the save/delete action on an entity, only owner of the entity can save/delete it.
This is a standard UDDI access control. When an explicit Permission is set for an action, a completely
different access control is used which is defined by the following rules:

1 Owner always has full control. The owner can always process an operation over an owned entity,
even if the permission is explicitly revoked.

2 Negative permission for a user overrides positive permission for a user.. Example: User U has
explicit positive permission on businessEntity BE for the get action. However, if U also has explicit
negative permission on BE for action get, then an attempt to process get_businessDetail by user U on
the BE will fail.

3 Negative permission for group overrides positive permission for group.. Example: User U has
belongs to groups G1 and G2. Group G1, has explicit positive permission on the BE for action get.
Group G2, has explicit negative permission on the BE for action get. Because of this negative permission,
any attempt to process get_businessDetail by user U on the BE will fail.

4 Permission for user has more weight than permission for group. Example: User U has explicit
positive permission on businessEntity BE for action get. Group G, to which U belongs, has explicit
negative permission on the BE for action get. User U can process get_businessDetail on the BE, even
though U belongs to group G.

235User's Guide

5 The owner of an entity can always process get_XXX on a direct sub-entity. Example: User U1 owns
businessEntity BE. U1 (as owner) grants "create" permission to user U2. Then U2 saves new
businessService BS with bindingTemplate BT under BE. When user U1 executes get_businessDetail,
U1 obtains BE with BS but without BT, because BT is not a direct sub-element of the BE.

Motivation: This rule ensures that the owner of an entity will see all direct sub-entities. The number
of sub-entities is limited. By default, a user can save only one businessEntity, four businessServices
per businessEntity, two bindingTemplates per businessService and 10 tModels. Suppose that user U1
has businessEntity BE. User U2 can save businessServices in BE (permission "create" on BE). If U2
has already saved four businessServices under BE, user U1 cannot, therefore, save a new
businessService. Therefore, the owner of an businessEntity should see why the limit is reached.

6 Delete and Save positive permissions are inherited from parent entities and override negative
permissions on sub-entities. Example: User U has "delete" permission on businessEntity BE. Then
U can execute the delete_business operation, which deletes the BE with all its businessServices and
bindingTemplates, even if some of these sub-entities have negative permission for deletion by the user
U.

Motivation: Sub-entities can not survive parent entity deletion. This rule ensures that a user who can
save/delete an entity can do this despite not having sufficient privileges on sub-entities.

7 To perform update by save_XXX operation, it is necessary to have both "save" and "get"
permissions. Example: User U1 has "save" and "get" permissions on businessEntity BE, but he is not
the owner. User U2 owns the BE and saves businessService BS1, which has "get" permission for U1,
and businessService BS2 without any permissions. Both BS1 and BS2 are created under BE. U1 gets
BE with only BS1 and updates BE in this way: U1 can add a category and save BE again without BS1.
In fact, when BE is updated, BS1 is deleted but BS2 remains.

Example:

User U1 owns a businessEntity BE. The user U1 defines the explicit get allowed permission to user group
G1. Everyone can find the BE, because there is no explicit permission for find and therefore the standard
UDDI access control is used. On the other hand, only user U1 (as the owner) and all users from group G1
can get the BE.

Chapter 3236

Composite Operations

BusinessService BS can be moved from one businessEntity BE1 to other businessEntity BE2. By performing
the save_service operation on BS, where BS has updated businessKey to point to the BE2. To perform this
action, the party must have permission to save BE1, BE2, and BS, because all these entities are changed.

Similarly bindingTemplate BT can be moved from businessService BS1 to businessService BS2. The party
who moves it must have save permission on BS1, BS2 and BT.

BusinessService BS hosted in businessEntity BE1 can be projected into businessEntity BE2. The party who
projects BS must have save permission on BE2.

Pre-installed Groups

ACL logic considers some special pre-published abstract groups during permission evaluation. These abstract
groups allow a publisher to give a permission to a specific set of HP SOA Registry Foundation users.

system#everyone

Holds all users of HP SOA Registry Foundation (both users who have and who do not have a HP
SOA Registry Foundation account, authenticated and non-authenticated). If this group is used, all
users always have the specified permission to the associated data.

system#registered

Holds all authenticated HP SOA Registry Foundation users. Every user who is authenticated (that
is, who has an account and has logged into the registry) is a member of this group. If this group is
used, all authenticated users always have the specified permission to the associated data.

system#intranet

Holds users who access HP SOA Registry Foundation via a local intranet. (This group is reserved
for a future release. There is no implementation behind it as of HP SOA Registry Foundation 6.61)

ACL tModels

ACL permissions are represented as tModels as detailed below:

v2 tModelKeyv3 tModelKeyACL
Permission

uuid:aacfc8e0-dcf5-11d5-b238-cbbeaea0a8d4uddi:systinet.com:acl:find-allowedfind allowed

237User's Guide

v2 tModelKeyv3 tModelKeyACL
Permission

uuid:ced3c160-dcf5-11d5-b238-
cbbeaea0a8d4

uddi:systinet.com:acl:find-deniedfind denied

uuid:f9977a90-dcf5-11d5-b238-
cbbeaea0a8d4

uddi:systinet.com:acl:get-allowedget allowed

uuid:09e202d0-dcf6-11d5-b238-
cbbeaea0a8d4

uddi:systinet.com:acl:get-deniedget denied

uuid:19885bd0-dcf6-11d5-b239-
cbbeaea0a8d4

uddi:systinet.com:acl:save-allowedsave allowed

uuid:2a25e610-dcf6-11d5-b239-
cbbeaea0a8d4

uddi:systinet.com:acl:save-deniedsave denied

uuid:37f44ac0-dcf6-11d5-b239-
cbbeaea0a8d4

uddi:systinet.com:acl:delete-alloweddelete
allowed

uuid:4e51d8f0-dcf6-11d5-b239-
cbbeaea0a8d4

uddi:systinet.com:acl:delete-denieddelete denied

uuid:5bc32980-dcf6-11d5-b239-
cbbeaea0a8d4

uddi:systinet.com:acl:create-allowedcreate
allowed

uuid:6d0be7e0-dcf6-11d5-b239-
cbbeaea0a8d4

uddi:systinet.com:acl:create-deniedcreate denied

Setting ACLs on UDDI v3 Structures

In UDDI v3, explicit ACL permission is saved in a special keyedReferenceGroup having the tModelKey
uddi:systinet.com:acl. This keyedReferenceGroup can contain only keyedReferences to ACL tModels. Only
the terms "user" and "group" are allowed in the included keyName, and the keyValue must contain the
name of the user or group (according to keyName value).

For example, user demo_john can save (update) following businessEntity even if he is not the owner:

Chapter 3238

Example 1: Setting ACLs - v3

<businessEntity xmlns="urn:uddi-org:api_v3">
 ...
 <categoryBag>
 ...
 <keyedReferenceGroup tModelKey="uddi:systinet.com:acl">
 <keyedReference tModelKey="uddi:systinet.com:acl:save-allowed"
 keyName="user" keyValue="demo_john"/>
 ...
 </keyedReferenceGroup>
 </categoryBag>
</businessEntity>

Setting ACLs on UDDI v1/v2 Structures

Under versions 1 and 2 of UDDI, explicit ACL permission is saved as a special keyedReference in the
categoryBag. This keyedReference refers to one of the tModels representing ACL permissions. Only the
terms "user" and "group" are allowed in the included keyName and the keyValue must contain the name
of the user or group (according to the keyName value).

For example, user demo_john can save (update) following businessEntity even if he is not the owner:

<businessEntity ...>
 ...
 <categoryBag>
 <keyedReference tModelKey="uuid:19885bd0-dcf6-11d5-b239-cbbeaea0a8d4"
 keyName="user" keyValue="demo_john"/>
 ...
 </categoryBag>
</businessEntity>

ACL permissions cannot be set on the bindingTemplate structure because this structure has no
categoryBag in UDDI v1/v2.

239User's Guide

Publisher-Assigned Keys

Under UDDI v1 and v2, keys are generated automatically when a structure is published. Generated keys in
these versions are in form (uuid:)8-4-4-4-12 where the numbers indicate a count of hexadecimal values. For
example, uuid:327A56F0-3299-4461-BC23-5CD513E95C55. Note that the prefix "uuid:" was only used in tModelKeys.

In UDDI v3 users may assign keys when saving a structure for the first time. These Keys can be 255
characters long and can contain numbers and Latin characters, so that the key itself describes what the UDDI
structure means. For example, the key uddi:systinet.com:uddiRegistry:demo:businessService has the following
elements:

• The prefix uddi: is a schema much like http: or ftp: and must be always present.

• systinet.com is an optional host name.

• The elements uddiRegistry, demo, and businessService represent a hierarchy of domains. The domain demo
is a subdomain of uddiRegistry.

This description is sufficient for our purposes for now. For a more precise description of keys, please see
the UDDI v3 Specification [http://uddi.org/pubs/uddi-v3.00-published-20020719.htm#_Toc42047261].

Generating Keys

The key generator tModel is a tModel with a key in the form domain:keygenerator. This tModel permits its
owner to save structures with keys in the form domain:string. For example, the tModel
uddi:systinet.com:uddiRegistry:demo:keygenerator allows its owner to publish structures with keys like:

• uddi:systinet.com:uddiRegistry:demo:businessService

• uddi:systinet.com:uddiRegistry:demo:b52

These are derived keys of the uddi:systinet.com:uddiRegistry:demo domain.

With one exception, the key generator tModel does not allow the user to save keys from subdomains such
as uddi:systinet.com:uddiRegistry:demo:businessService:exchangeRate, that is, derived keys of
uddi:systinet.com:uddiRegistry:demo:businessService.

The key generator tModel, however, permits the user to save the key generator for each direct subdomain.
For example, the user can save uddi:systinet.com:uddiRegistry:demo:businessService:keygenerator. After

Chapter 3240

http://uddi.org/pubs/uddi-v3.00-published-20020719.htm#_Toc42047261

creating this second key generator, the user is permitted to save structures with keys of the
uddi:systinet.com:uddiRegistry:demo:businessService domain, such as
uddi:systinet.com:uddiRegistry:demo:businessService:exchangeRate.

To generate keys for a domain, the user must own the domain's key generator tModel. Only the
administrator can save structures with assigned keys without having the key generator tModel. To
enable this process for other users, the administrator must save the domain's tModel and then
change its ownership to the user via custody transfer. For more information, please see Publish
Custody Transfer on page 313.

Affiliations of Registries

The rules above ensure that two users can not create structures with the same key. A complicated situation
arises when one user wants to copy UDDI structures from one registry to another while preserving the keys
of those structures. There are two problems:

1 The key of the copied structure must not exist on the second registry. The key must be unique - this is
required by the UDDI specification.

2 The user must be allowed to save a structure with a specified key on the second registry.

The Affiliated registries mechanism solves both problems. An affiliation is a relationship between two
registries. The first registry gives up generation of keys for a certain domain and transfers this privilege to
the second registry. This ensures that keys from both registries are unique.

In the examples below we name the two registries 'master' and 'slave'. Moreover there are three
people:

• The person 1 is an administrator of the master registry, this account is called master-admin.

• The person 2 is an administrator of the slave registry (account slave-admin) and a common
user on the master registry (account master-user2).

• The person 3 is a common user on slave registry (account slave-user3) and a common user on
master registry (account master-user3).

241User's Guide

Affiliation Setup

To set up an affiliation:

1 The administrator of the slave registry (slave-admin) registers a user account on the master registry
(master-user2).

2 Master-user2 requests a key generator tModel from the administrator of the Master registry.

3 This administrator, master-admin, creates the key generator tModel and transfers it to the master-user2
account using custody transfer.

4 Person 2 manually copies the key generator tModel to the slave registry (his slave-admin account has
permission to assign any key) and sets up the slave registry to generate all keys based on this key
generator. For more information, please see Node on page 379 in the Administrator's Guide.

All keys generated by the slave registry or its users will be from the domain or some subdomain defined
by the key generator.

Copying Structures with Key Preservation

Given key should refer to the same structure no matter which registry the structure is in.

Suppose that slave-admin creates a key generator tModel for slave-user3 and this user uses the key generator
to generate a key for a structure in the slave registry. To copy the structure to the master registry, this key
generator tModel must exist on both registries.

To copy a structure from the slave to the master registry:

1 The slave-user3 must ask person 2 (slave-admin) to copy the second key generator, because only the
holder of the account master-user2, as owner of the first key generator, can do this on the master
registry.

2 Then master-user2 transfers ownership of the second key generator in the master registry to master-
user3. Now master-user3 can copy the structure while preserving the generated keys.

Chapter 3242

Range Queries

HP SOA Registry Foundation's range queries functionality allows you to search UDDI entities with the
ability to use comparative operators (>, <) for matching keyValues in keyedReferences. There must be a
defined type of keyValues in the taxonomy which defines the ordering. The following ordering types are
supported: string, numeric, and custom. KeyedReferences in find_XXX queries are extended by a list of find
qualifiers. Do not mix with find qualifiers of the whole query. Find Qualifiers are used for specifying
comparison operators.

See Find Business by Categories on page 286 how to search UDDI data structures using range queries with
Registry Console.

The HP SOA Registry Foundation implementation of range queries goes beyond the current UDDI
v3 specification since the specification does not define this functionality.

The following findQualifiers are supported:

• equal - the default find qualifier. If no one from the group of (equal, greaterThan, lesserThan qualifiers)
is specified. This is done due to the backward compatibility with a standard UDDI. When used, the
keyedReference from the request matches to the all keyedReferences from the database with the same
tModelKey and the same keyValue.

• greaterThan - When used, the keyedReference from the request match to the all keyedReferences from
the database with the same tModelKey and a greater keyValue.

• lesserThan - When used, the keyedReference from the request match to the all keyedReferences from
the database with the same tModelKey and a lesser keyValue.

• notExists - This findQualifier has validity for the whole keyedReference (not just for keyValues). An
entity matches the find request with notExists findQualifier if and only if the specific keyedReference
does not exist in its categoryBag. This findQualifier can be arbitrarily combined with greaterThan,
lesserThan and equal findQualifiers. If the notExists findQualifier is used alone, then the equal findQualifier
is considered automatically.

Comparators can be combined:

243User's Guide

• greaterThan and equal find qualifiers can be used together with the keyedReference match to the all
keyedReferences with the same tModelKey and a greater or equal keyValue (>=).

• lesserThan and equal find qualifiers can be used together with the keyedReference match to the all
keyedReferences with the same tModelKey and a lesser or equal keyValue (<=).

• lesserThan and greaterThan find qualifiers can be used together with the keyedReference match to the all
keyedReferences with the same tModelKey and a not equals keyValue (<>).

• Combination of lesserThan, greaterThan and equal is not allowed.

Examples

The following examples demonstrate the usage of range queries. Suppose that the keyedReferences are
placed in the category bag of the find_business request.

greaterThan. Only business entities that have a keyedReference with tModelKey equal to tmKey, and a
keyValue that is greater than kv, in their categoryBags are returned.

<keyedReference tModelKey="tmKey" keyValue="kv" keyName="kn">
 <findQualifiers>
 <findQualifier>greaterThan</findQualifier>
 </findQualifiers>
</keyedReference>

greaterThan and lesserThan. Only business entities that have keyedReference with tModelKey that is
equal to tmKey, and a keyValue not equal to kv, in their categoryBags are returned.

<keyedReference tModelKey="tmKey" keyValue="kv" keyName="kn">
 <findQualifiers>
 <findQualifier>greaterThan</findQualifier>
 <findQualifier>lesserThan</findQualifier>
 </findQualifiers>
</keyedReference>

notExists. Only business entities that do not have a keyedReference with a tModelKey equal to tmKey,
and a keyValue equal to kv, in their categoryBags are returned.

<keyedReference tModelKey="tmKey" keyValue="kv" keyName="kn">
 <findQualifiers>

Chapter 3244

 <findQualifier>notExists</findQualifier>
 </findQualifiers>
</keyedReference>

notExists and greaterThan. Only business entities that do not have a keyedReference with a tModelKey
equal to tmKey, and a keyValue greater than kv, in their categoryBags are returned.

<keyedReference tModelKey="tmKey" keyValue="kv" keyName="kn">
 <findQualifiers>
 <findQualifier>notExists</findQualifier>
 <findQualifier>greaterThan</findQualifier>
 </findQualifiers>
</keyedReference>

notExists, greaterThan, equal. Only business entities that do not have a keyedReference with a tModelKey
equal to tmKey, and a keyValue greater than or equal to kv, in their categoryBags are returned.

<keyedReference tModelKey="tmKey" keyValue="kv" keyName="kn">
 <findQualifiers>
 <findQualifier>notExists</findQualifier>
 <findQualifier>greaterThan</findQualifier>
 <findQualifier>equal</findQualifier>
 </findQualifiers>
</keyedReference>

See also Demos, Advanced Inquiry - Range Queries on page 655.

Taxonomy: Principles, Creation and Validation

The UDDI Version 3 Specification [http://www.oasis-open.org/committees/uddi-
spec/doc/tcspecs.htm#uddiv3] provides tools for setting the context on all four major UDDI structures:
businessEntities, businessServices, bindingTemplates and tModels. This document covers basic principles
and management of this feature - the taxonomies.

What Is a Taxonomy?

A taxonomy, or value set in the terminology of the UDDI specifications, is a tModel which can be used in
categoryBags, identifier bags, or Publisher Assertions. This tModel must be in a specific form, so that HP
SOA Registry Foundation can recognize it as a taxonomy. The tModel must be categorized with the type
of taxonomy and, optionally, with information concerning whether and how to validate the values in
keyedReferences.

245User's Guide

http://www.oasis-open.org/committees/uddi-spec/doc/tcspecs.htm#uddiv3

Taxonomy Types

The UDDI specification distinguishes four types of taxonomies: categorizations, categorizationGroups,
identifiers, and relationships.

Categorizations

Categorizations can be used in all four main UDDI structures. They are used to tag them with
additional information, such as identity, location, and what the taxonomy describes.

CategorizationGroups

New in UDDI version 3, CategorizationGroups group several categorizations into one logical
categorization. For example, a geographical location comprised of two categorizations: longitude
and latitude.

Identifiers

Used in businessEntities and tModels, Identifiers reference published information.

Relationships

Used only in Publisher Assertions, Relationships define the relation between two businessEntities.

Validation of Values

The publisher of a taxonomy can decide whether the values in keyedReferences within the taxonomy will
be checked or not.

Unchecked Taxonomies

HP SOA Registry Foundation does not perform any checks on values used in keyedReferences associated
with unchecked taxonomies. Unchecked taxonomies are those that are marked as such, or those that are not
marked as checked. These two states are equivalent.

Checked Taxonomies

If a taxonomy is checked, HP SOA Registry Foundation executes its validation service for every
keyedReference in which the checked taxonomy is used. The validation service may check the expected
syntax of values, such as the format of a credit card or ISBN number. Taxonomies like the ISO 3166
Geographic taxonomy, which permits only existing countries, check the existence of the value against a
list. A validation service may even permit or deny values depending on the context in which they are used.

Chapter 3246

HP SOA Registry Foundation Requirements

HP SOA Registry Foundation conforms to the technical note Providing A Value Set For Use In UDDI
Version 3 [http://oasis-open.org/committees/uddi-spec/doc/tn/uddi-spec-tc-tn-valuesetprovider-
20030212.htm]. To create a checked taxonomy, you must:

1 Prepare and deploy a validation service which implements the Valueset_validation API.

2 Publish the tModel categorized as a checked taxonomy and mark it as unvalidatable.

3 Publish the bindingTemplate that implements the Valueset_validation API and the taxonomy's tModel.

4 Republish the tModel, without the unvalidatable categorization, and with the categorization uddi-
org:validatedBy pointing to the bindingTemplate.

HP SOA Registry Foundation requires that the bindingTemplate be published in the businessService of the
Operational Business Entity. If this businessService is not part of the Operational Business Entity, the
checked taxonomy will not be validatable and thus it may not be used in keyedReferences. This implies
that only the HP SOA Registry Foundation administrator may publish checked taxonomies.

The bindingTemplate must contain an accessPoint with its useType attribute set to "endPoint".

If the accessPoint starts with the prefix class:, then the remaining part is assumed to contain the fully
qualified name of the class that implements interface
org.systinet.uddi.client.valueset.validation.v3.UDDI_ValueSetValidation_PortType and is accessible by the
HP SOA Registry Foundation classloader.

If the accessPoint does not start with the prefix class:, it is assumed to be the URL of the Web service
implementing the Valueset_validation API and a stub is created for this Web service.

Internal Validation Service

HP SOA Registry Foundation contains a special validation service called the Internal Validation Service.
This service is used by checked taxonomies that declare a list of available values published using the Systinet
Taxonomy API.

247User's Guide

http://oasis-open.org/committees/uddi-spec/doc/tn/uddi-spec-tc-tn-valuesetprovider-20030212.htm
http://oasis-open.org/committees/uddi-spec/doc/tn/uddi-spec-tc-tn-valuesetprovider-20030212.htm

Types of keyValues

The creator of the taxonomy must specify types of keyValues by assigning the appropriate comparator
reference (comparator tModel) of the systinet-com:isOrderedBy taxonomy to the categorization taxonomy
you want to use to categorize a UDDI entity. The following types of key values types are supported:

• string - keyValues are treated as string values. If keyValues type is unknown then keyValues are treated
as strings. The maximum length is 255 characters.

• numeric - keyValues are treated as decimal numbers. The value can have maximum 19 digits before the
decimal point and maximum 6 digits after the decimal point.

• custom - keyValues must be transformed to string or numeric values using a transformation service.
Please see Custom Ordinal Types on page 249 for more information.

For example, the tModel of the categorization taxonomy with numeric key values must have the following
keyedReference in its category bag:

<keyedReference tModelKey="uddi:systinet.com:isOrderedBy"
 keyValue="uddi:systinet.com:comparator:numeric"/>

Figure 57. Example of Numeric Categorization

Chapter 3248

Figure 57 shows how the demo:location:floor taxonomy from Demo data can be assigned numeric key values.

If you change type of keyValues of the taxonomy and there are entities in the HP SOA Registry
Foundation that were already categorized with the taxonomy, the HP SOA Registry Foundation
administrator must execute the task Transform keyed references. The button for executing this
task is located in the Registry Console under the Manage tab, Registry Management link. See
Administrator's Guide, Accessing Registry Management on page 330

• To learn how to make this assignment using the Registry Console , see User's Guide, Adding a Category
on page 304.

• See User's Guide, Searching on page 283 how to search UDDI data structures using range queries with
Registry Console.

Custom Ordinal Types

You can define your custom ordinal types. To demonstrate possible extensions, HP SOA Registry Foundation
contains two demo comparators:

• systinet-com:comparator:date

• systinet-com:comparator:stringToLowerCase

Let's assume you want to create a taxonomy with date values in keyValues. You must mark the taxonomy
tModel (that is, add the following keyedReference into its categoryBag) by <keyedReference
tModelKey="uddi:systinet.com:isOrderedBy" keyValue="uddi:systinet.com:comparator:date"/>. It is quite easy
because there is a demo comparator for date in the registry. Imagine the date comparator is not present.
Take the following steps to create it in the registry:

1 Create a transformer service that transforms the date value into a string or numeric value. The
transformer service must implement org.systinet.uddi.client.transformer.kr.TransformerKeyedReferenceApi
and add this class to the HP SOA Registry Foundation class path.

2 Create a new comparator tModel for date. The tModel must be categorized as a comparator using the
systinet-com:comparator taxonomy. The comparator must refer to the transformer service. This reference
is specified by the taxonomy IsTransformedBy (where "uddi:cba104c0-fb5c-11d8-8761-eb2505508761"
is the key of the bindingTemplate with the specification of the transformer service.

249User's Guide

If you change implementation of the of the transformer service of the taxonomy and there are
entities in the HP SOA Registry Foundation that were already categorized with the taxonomy, the
HP SOA Registry Foundation administrator must execute the task Transform keyed references.
The button for executing this task is located in the Registry Console under the Manage tab, Registry
Management link. See Administrator's Guide, Accessing Registry Management on page 330

Figure 58 shows the tModel references for date categorization ordering. It describes a purchase order
document that has been mapped to HP SOA Registry Foundation via XML-to-UDDI functionality, and
then categorized by the acceptancedate taxonomy. The categorization taxonomy must refer to the comparator
tModel uddi:systinet.com:comparator:date that references a bindingTemplate with the location of the date
transformation service.

Chapter 3250

Figure 58. Example of Custom Categorization (date)

The transformer service is called whenever the appropriate keyedReference is processed. If any entity
contains the keyedReference with a taxonomy tModel whose type is custom then the transformer service
is called to discover the correct (that is, transformed) keyValue of the keyedReference. Such transformed
values are stored into the database. If you want to find entities by this keyedReference (the keyedReference
with the same taxonomy tModel), the service is called again to get the transformed value. Transformed
values are used for the saving and searching of keyedReferences.

251User's Guide

Taxonomy API

This section demonstrates the basics of taxonomy API and taxonomy persistence format. A comprehensive
description of the Taxonomy API can be found in the Developer's Guide, Taxonomy on page 444.

For clarity, we use an XML representation, but you can achieve the same results with Java objects.

<taxonomy xmlns="http://systinet.com/uddi/taxonomy/v3/5.0"
 xmlns:uddi="urn:uddi-org:api_v3"
 check="false">
 <tModel tModelKey="uddi:systinet.com:demo:myTaxonomy">
 <uddi:name>My taxonomy</uddi:name>
 <uddi:description>Category system</uddi:description>
 </tModel>
 <compatibilityBag>
 <compatibility>businessEntity</compatibility>
 </compatibilityBag>
 <categorizationBag>
 <categorization>categorization</categorization>
 </categorizationBag>
</taxonomy>

Each taxonomy, in order to be saved, requires a valid tModel. While it must contain a tModelKey and a
name, you do not need to set the content of the categoryBag.

• The Taxonomy attribute check determines whether the taxonomy will be checked or not.

• The compatibilityBag is an interface to Systinet's uddi:systinet.com:taxonomy:categorization taxonomy,
which is used to limit usage of the selected taxonomy within the four main UDDI structure types. In
this way you can enforce that your taxonomy can be used only within the UDDI structures of your
choice and not in others.

• The categorizationBag is used to declare the type of the taxonomy, for example, whether it is a
categorization, categorizationGroup, identifier or relationship taxonomy.

Note that values may be combined.

Chapter 3252

Let's enhance the previous example and convert the taxonomy from unchecked to checked. Checked
taxonomies must contain Validation. In this example, the taxonomy is checked by the Custom Validation
Web service located at http://www.foo.com/MyValidationService.wsdl.

<taxonomy xmlns="http://systinet.com/uddi/taxonomy/v3/5.0"
 xmlns:uddi="urn:uddi-org:api_v3"
 check="true">
 <tModel tModelKey="uddi:foo.com:demo:myTaxonomy">
 <uddi:name>My taxonomy</uddi:name>
 <uddi:description>Category system</uddi:description>
 </tModel>
 <compatibilityBag>
 <compatibility>businessEntity</compatibility>
 </compatibilityBag>
 <categorizationBag>
 <categorization>categorization</categorization>
 </categorizationBag>
 <validation>
 <bindingTemplate bindingKey="" serviceKey="" xmlns="urn:uddi-org:api_v3">
 <accessPoint useType="endPoint">
 http://www.foo.com/MyValidationService.wsdl
 </accessPoint>
 <tModelInstanceDetails>
 <tModelInstanceInfo
 tModelKey="uddi:uddi.org:v3_valueSetValidation"/>
 <tModelInstanceInfo
 tModelKey="uddi:systinet.com:demo:myTaxonomy"/>
 </tModelInstanceDetails>
 </bindingTemplate>
 </validation>
</taxonomy>

The validation element must hold the bindingTemplate identifying the validation Web service or categories
structures. In this example we chose bindingTemplate. It must contain complete accessPoint and
tModelInstanceDetails must hold the Valueset_validation API and tModelKey of the saved taxonomy. If the
serviceKey is specified and if the businessService already exists, it must be part of the Operational Business
Entity.

Be aware that the service will be replaced during the save_taxonomy process.

253User's Guide

If you can provide a list of allowed values, you do not need to implement your own validation Web service.
Just provide the allowed values inside the categories structure (as shown below) and the Internal Validation
Service will be responsible for validation of the keyedReferences.

<taxonomy xmlns="http://systinet.com/uddi/taxonomy/v3/5.0"
 xmlns:uddi="urn:uddi-org:api_v3"
 check="true">
 <tModel tModelKey="uddi:foo.com:demo:myTaxonomy">
 <uddi:name>My taxonomy</uddi:name>
 <uddi:description>Category system</uddi:description>
 </tModel>
 <compatibilityBag>
 <compatibility>businessEntity</compatibility>
 </compatibilityBag>
 <categorizationBag>
 <categorization>categorization</categorization>
 </categorizationBag>
 <validation>
 <categories>
 <category keyName="Value A" keyValue="A"/>
 <category keyName="Value B" keyValue="B">
 <category keyName="Value B1" keyValue="B1"/>
 <category keyName="Value B3" keyValue="B3" disabled="true" />
 </category>
 <category keyName="Value C" keyValue="C"/>
 </categories>
 </validation>
</taxonomy>

As you can see, you can arrange your values hierarchically. This is useful for the Registry Console that
implements the drill-down pattern. If you really need, you can even specify bindingTemplate along with
the categories structure, but its accessPoint must point to the Internal Validation Service.

Predeployed Taxonomies

HP SOA Registry Foundation comes with the following predeployed taxonomies:

• uddi-org:types is a UDDI Type Category System.

uddi:uddi.org:categorization:typesv3 UDDI key

uuid:c1acf26d-9672-4404-9d70-39b756e62ab4v2 UUID key

Chapter 3254

categorizationCategorization

tModelCompatibility

yes, Internal Validation ServiceChecked

• uddi-org:general_keywords is a category system consisting of namespace identifiers and the keywords
associated with namespaces.

uddi:uddi.org:categorization:general_keywordsv3 UDDI key

uuid:A035A07C-F362-44dd-8F95-E2B134BF43B4v2 UUID key

categorizationCategorization

tModel, businessEntity, businessService, bindingTemplateCompatibility

yesChecked

• uddi-org:entityKeyValues is a category system used to declare that a value set uses entity keys as valid
values.

uddi:uddi.org:categorization:entitykeyvaluesv3 UDDI key

uuid:916b87bf-0756-3919-8eae-97dfa325e5a4v2 UUID key

categorizationCategorization

tModelCompatibility

yes, Internal Validation ServiceChecked

• uddi-org:isreplacedby is the identifier system used to point to the UDDI entity, using UDDI keys, that
is the logical replacement for the one in which isReplacedBy is used.

uddi:uddi.org:identifier:isReplacedByv3 UDDI key

uuid:e59ae320-77a5-11d5-b898-0004ac49cc1ev2 UUID key

identifierCategorization

tModel, businessEntityCompatibility

255User's Guide

yesChecked

• uddi-org:nodes is a category system for identifying the nodes of a registry.

uddi:uddi.org:categorization:nodesv3 UDDI key

uuid:327A56F0-3299-4461-BC23-5CD513E95C55v2 UUID key

categorizationCategorization

businessEntityCompatibility

yesChecked

• uddi-org:owningBusiness_v3 is a category system used to point to the businessEntity associated with the
publisher of the tModel.

uddi:uddi.org:categorization:owningbusinessv3 UDDI key

uuid:4064c064-6d14-4f35-8953-9652106476a9v2 UUID key

categorizationCategorization

tModelCompatibility

yesChecked

• uddi-org:validatedBy is a category system used to point a value set or category group system tModel to
associated value set Web service implementations.

uddi:uddi.org:categorization:validatedbyv3 UDDI key

uuid:25b22e3e-3dfa-3024-b02a-3438b9050b59v2 UUID key

categorizationCategorization

tModelCompatibility

yesChecked

• uddi-org:wsdl:types is a WSDL Type Category System.

Chapter 3256

uddi:uddi.org:wsdl:typesv3 UDDI key

uuid:6e090afa-33e5-36eb-81b7-1ca18373f457v2 UUID key

categorizationCategorization

tModel, businessEntity, businessService, bindingTemplateCompatibility

yes, Internal Validation ServiceChecked

• uddi-org:wsdl:categorization:protocol

uddi:uddi.org:wsdl:categorization:protocolv3 UDDI key

uuid:4dc74177-7806-34d9-aecd-33c57dc3a865v2 UUID key

categorizationCategorization

tModelCompatibility

yesChecked

• uddi-org:wsdl:categorization:transport

uddi:uddi.org:wsdl:categorization:transportv3 UDDI key

uuid:e5c43936-86e4-37bf-8196-1d04b35c0099v2 UUID key

categorizationCategorization

tModelCompatibility

yesChecked

• uddi-org:wsdl:portTypeReference is a category system tModel that can be used to identify a relationship
to a portType tModel.

uddi:uddi.org:wsdl:portTypeReferencev3 UDDI key

uuid:082b0851-25d8-303c-b332-f24a6d53e38ev2 UUID key

categorizationCategorization

257User's Guide

tModelCompatibility

yesChecked

• systinet-com:taxonomy:compatibility enhances a taxonomy tModel with additional information, in which
structures the taxonomy can be used.

uddi:systinet.com:taxonomy:compatibilityv3 UDDI key

uuid:cf68c700-f93d-11d6-8cfc-b8a03c50a862v2 UUID key

categorizationCategorization

tModelCompatibility

yes, Internal Validation ServiceChecked

• systinet-com:dependency creates link between two structures (may be different types). Both keyName
and keyValue must be specified. KeyName must be one of businessEntity, businessService,
bindingTemplate and tModel. KeyValue must be existing UDDI key of specified structure.

uddi:systinet.com:dependencyv3 UDDI key

uuid:179e5540-f27b-11d6-9738-b8a03c50a862v2 UUID key

categorizationCategorization

tModel, businessEntity, businessService, bindingTemplateCompatibility

yesChecked

• dnb-com:D-U-N-S - Thomas Registry Suppliers

uddi:uddi.org:ubr:identifier:dnb.com:d-u-n-sv3 UDDI key

uuid:8609c81e-ee1f-4d5a-b202-3eb13ad01823v2 UUID key

identifierCategorization

tModel, businessEntity, businessService, bindingTemplateCompatibility

noChecked

Chapter 3258

• microsoft-com:geoweb:2000 - Geographic Taxonomy: GeoWeb (2000 Release)

uddi:297aaa47-2de3-4454-a04a-cf38e889d0c4v3 UDDI key

uuid:297aaa47-2de3-4454-a04a-cf38e889d0c4v2 UUID key

categorizationCategorization

tModel, businessEntity, businessService, bindingTemplateCompatibility

noChecked

• ntis-gov:naics:1997 - Business Taxonomy: NAICS (1997 Release)

uddi:uddi.org:ubr:categorization:naics:1997v3 UDDI key

uuid:c0b9fe13-179f-413d-8a5b-5004db8e5bb2v2 UUID key

categorizationCategorization

tModel, businessEntity, businessService, bindingTemplateCompatibility

yes, Internal Validation ServiceChecked

• ntis-gov:sic:1997 - Business Taxonomy: SIC (1997 Release)

uddi:70a80f61-77bc-4821-a5e2-2a406acc35ddv3 UDDI key

uuid:70a80f61-77bc-4821-a5e2-2a406acc35ddv2 UUID key

categorizationCategorization

tModel, businessEntity, businessService, bindingTemplateCompatibility

yes, Internal Validation ServiceChecked

• ntis-gov:naics:2002 - Business Taxonomy: Business Taxonomy: NAICS (2002 Release

uddi:uddi.org:ubr:categorization:naics:2002v3 UDDI key

uuid:1ff729f2-1948-46cf-b660-31ec107f1663v2 UUID key

categorizationCategorization

259User's Guide

tModel businessEntity businessService bindingTemplateCompatibility

yes, Internal Validation ServiceChecked

• unspsc-org:unspsc:3-1 - Product Taxonomy: UNSPSC (Version 3.1)

uddi:db77450d-9fa8-45d4-a7bc-04411d14e384v3 UDDI key

uuid:db77450d-9fa8-45d4-a7bc-04411d14e384v2 UUID key

categorizationCategorization

tModel, businessEntity, businessService, bindingTemplateCompatibility

noChecked

• unspsc-org:unspsc - Product Taxonomy: UNSPSC (Version 7.3)

uddi:unspsc-org:unspscv3 UDDI key

uuid:cd153257-086a-4237-b336-6bdcbdcc6634v2 UUID key

categorizationCategorization

tModel, businessEntity, businessService, bindingTemplateCompatibility

yes, Internal Validation ServiceChecked

• unspsc-org:unspsc:v6.0501 - Product and Service Category System: United Nations Standard Products
and Services Code (UNSPSC)

uddi:uddi.org:ubr:categorization:unspscv3 UDDI key

uuid:4614C240-B483-11D7-8BE8-000629DC0A53v2 UUID key

categorizationCategorization

tModel businessEntity businessService bindingTemplateCompatibility

yes, Internal Validation ServiceChecked

Chapter 3260

• ws-i-org:conformsTo:2002_12 is a category system used for UDDI entities to point to the WS-I concept to
which they conform.

uddi:65719168-72c6-3f29-8c20-62defb0961c0v3 UDDI key

uuid:65719168-72c6-3f29-8c20-62defb0961c0v2 UUID key

categorizationCategorization

tModelCompatibility

noChecked

WSM Taxonomies

The following taxonomies are used for integration with a web service management system:

systinet-com:management:metrics:avg-byte

Average sum of incoming and outgoing message length

uddi:systinet.com:management:metrics:avg-bytev3 UDDI key

uuid:3c13a2e2-dfd0-30a2-bd58-c5de8c2ae3bbv2 UUID key

categorizationCategorization

tModelCompatibility

noChecked

systinet-com:management:metrics:avg-byte-input

Average input message length per hour

uddi:systinet.com:management:metrics:avg-byte-inputv3 UDDI key

uuid:f18a50ad-ddb2-392a-b97c-1181c67b2817v2 UUID key

categorizationCategorization

tModelCompatibility

noChecked

261User's Guide

systinet-com:management:metrics:avg-byte-output

Average output message length

uddi:systinet.com:management:metrics:avg-byte-outputv3 UDDI key

uuid:7664723d-896a-3ed2-b7e9-46c9f38e7681v2 UUID key

categorizationCategorization

tModelCompatibility

noChecked

systinet-com:management:metrics:avg-hits

Average message hits per hour

uddi:systinet.com:management:metrics:avg-hitsv3 UDDI key

uuid:bf010bf9-cafa-3f68-bf51-3cde3bd0f483v2 UUID key

categorizationCategorization

tModelCompatibility

noChecked

systinet-com:management:metrics:avg-response-time

Average response time in milliseconds

uddi:systinet.com:management:metrics:avg-response-timev3 UDDI key

uuid:099d67a9-eae6-3c30-8be9-48b44c5d9728v2 UUID key

categorizationCategorization

tModelCompatibility

noChecked

systinet-com:management:metrics:errors

Count of application failures in the last hour

Chapter 3262

uddi:systinet.com:management:metrics:errorsv3 UDDI key

uuid:b074de10-e781-383a-bd00-248a1c42f0fav2 UUID key

categorizationCategorization

tModelCompatibility

noChecked

systinet-com:management:metrics:hits

Count of hits in the last hour

uddi:systinet.com:management:metrics:hitsv3 UDDI key

uuid:720689a4-dce4-398c-adba-e5c0f50d1eb2v2 UUID key

categorizationCategorization

tModelCompatibility

noChecked

systinet-com:management:metrics:median-byte

Median sum of incoming and outgoing message lengths

uddi:systinet.com:management:metrics:median-bytev3 UDDI key

uuid:0adefd4c-7624-3973-91a5-ea4971d6b0efv2 UUID key

categorizationCategorization

tModelCompatibility

noChecked

systinet-com:management:metrics:median-byte-input

Median value of incoming message lengths

uddi:systinet.com:management:metrics:median-byte-inputv3 UDDI key

uuid:c9c2fd87-f806-3ca0-819e-3f788cc8fd95v2 UUID key

263User's Guide

categorizationCategorization

tModelCompatibility

noChecked

systinet-com:management:metrics:median-byte-output

Median output message length

uddi:systinet.com:management:metrics:median-byte-outputv3 UDDI key

uuid:bdb4e8f8-1aba-3558-b1f5-cf89b5455529v2 UUID key

categorizationCategorization

tModelCompatibility

noChecked

systinet-com:management:metrics:median-response-time

Median response time in milliseconds

uddi:systinet.com:management:metrics:median-response-timev3 UDDI key

uuid:62f08146-1d3f-30e3-8c6a-1f2062c332d4v2 UUID key

categorizationCategorization

tModelCompatibility

noChecked

systinet-com:management:metrics:policy-violations

Count of policy violations in the last hour

uddi:systinet.com:management:metrics:policy-violationsv3 UDDI key

uuid:be42511a-3c68-34d2-b137-d00e56bb4de4v2 UUID key

categorizationCategorization

tModelCompatibility

Chapter 3264

noChecked

systinet-com:management:metrics:reference

Reference to a tModel containing all metrics about the service. The keyValues in keyedReferences that
refer to this tModel must be a tModelKey of the metric tModel.

uddi:systinet.com:management:metrics:referencev3 UDDI key

uuid:0d709256-b9f3-30a3-9aa1-51a1adb11324v2 UUID key

categorizationCategorization

bindingTemplateCompatibility

yesChecked

systinet-com:management:proxy-reference

WSM Proxy Reference Taxonomy

uddi:systinet.com:management:proxy-referencev3 UDDI key

uuid:79bf6f6d-b0b7-3f08-b45e-9893b525de9bv2 UUID key

categorizationCategorization

bindingTemplateCompatibility

yesChecked

systinet-com:management:server-reference

WSM Server Reference Taxonomy.

uddi:systinet.com:management:server-referencev3 UDDI key

uuid:1583604a-57a2-3887-9b1d-2549e270390cv2 UUID key

categorizationCategorization

bindingTemplateCompatibility

yesChecked

265User's Guide

systinet-com:management:state

WSM State Taxonomy

uddi:systinet.com:management:statev3 UDDI key

uuid:73c7ef28-6150-36a0-ba82-414424ede582v2 UUID key

categorizationCategorization

bindingTemplateCompatibility

yesChecked

systinet-com:management:state-change-request-type

WSM State Change Request Taxonomy

uddi:systinet.com:management:state-change-request-typev3 UDDI key

uuid:64473cda-4a78-3ddb-b0c6-801533ce1943v2 UUID key

categorizationCategorization

bindingTemplateCompatibility

yesChecked

systinet-com:management:system

WS Management System Taxonomy

uddi:systinet.com:management:systemv3 UDDI key

uuid:e148d85e-cc08-32f6-8f00-db85e258e511v2 UUID key

categorizationCategorization

bindingTemplateCompatibility

noChecked

systinet-com:management:type

WSM Type Taxonomy

Chapter 3266

uddi:systinet.com:management:typev3 UDDI key

uuid:5d14645d-66ea-39ac-8122-49d06b09b492v2 UUID key

categorizationCategorization

bindingTemplateCompatibility

yesChecked

systinet-com:management:url

Endpoint URL Taxonomy

uddi:systinet.com:management:urlv3 UDDI key

uuid:4897f99b-bd23-3889-af37-b80351cf8b52v2 UUID key

categorizationCategorization

bindingTemplateCompatibility

noChecked

Registry Console Reference

• Registry Console Overview

• Manage user account and user groups

• Browsing the registry;

• Searching the registry

• Publishing in the registry

Register/Create Account

Register

Before you can publish data to the registry, you must have a HP SOA Registry Foundation account. You
can create an account via the web interface.

267User's Guide

Figure 59. Register Account

Follow these steps to register a user account:

1 Click the Register link on the main Registry Console page. This returns the Create account page.

2 Fill in all fields. Those labeled with an asterisk (*) are required. Your email address may be used later
for enabling your account.

Chapter 3268

Figure 60. Create Account

3 Click the Create account button.

269User's Guide

The new account is now enabled.

HP SOA Registry Foundation may be configured to require email confirmation in order to enable
the user account. In this case, the registry sends an email confirmation. Follow the instructions in
this email to enable your account.

Login

To log on, click the Login link on the upper part of the Registry Console, and enter your username and
password.

Figure 61. Login Tab

Once logged into the registry, you are able to publish, delete, and update the various UDDI structures. Users
have access to their own account information. Administrators also have account administration access; that
is, the ability to delete and edit accounts and produce account audit reports.

Registry Console Overview

Registry Console is comprised of the following objects:

A: Main Menu Tabs.

Browse

This tab allows you to browse UDDI entities using taxonomies.

Search

This tab allows you to search the registry. You can perform inquiry on UDDI entities, you can
find business entity, service, bindings, tModels, and related businesses. The menu option also
allows you to browse taxonomies and directly get information from HP SOA Registry Foundation
when you know a key of UDDI data types (business, service, binding, and tModel)

Chapter 3270

Publish

This tab allows you to publish UDDI structures (businessEntities, businessServices,
bindingTemplates, and tModels). On this tab, you can also assert relationships between business
entities, subscribe interest in receiving information about changes made to a registry, transfer
ownership of selected UDDI structures (Custody Transfer), and publish WSDLs to the registry.

Profile

Here you can manage your user account properties, account groups and favorite taxonomies.

Manage

This tab is used by the HP SOA Registry Foundation administrator to perform management tasks.
See Administrators Guide for more information.

B: Menu Bar. Sub menu options are located here.

271User's Guide

Figure 62. Registry Console Overview

C: History path (breadcrumbs). This area displays the log of your recent actions. You can return to any
of these previous actions by clicking on the hyperlinks.

D: User Actions. This area contains several control elements that enable a user to:

• Create an account

• Log On

Chapter 3272

• Log Out

F: Main Display Area. Information chosen from the tabs and the tree display is made available in the Main
Display Area.

G: Display Tabs. These tabs allow the user to control the main area's display based on information type.
A plain listing of all business properties would be very long and very difficult to read. Dividing the properties
into tabs reduces the amount of information and improves page readability. The displayed information
changes with the context.

H: Action Buttons. The action buttons allow you to perform operations on the contents of the main display.

J: Action Icons. There are two icons in this area. The first one allows you to refresh the page content,
second one will open the product documentation page.

K: Action Icons . Icons from this area allow you to switch on/off display tabs and open the current page
in the printer friendly mode.

For more information, please see Figure 62.

User Profile

You can manage your user account, user groups, and favorite taxonomies under the Profile menu tab.

Figure 63. Profile Menu Tab

To update your account properties, select My account and click the Edit Account button

273User's Guide

Figure 64. View Account

Field descriptions (self-explanatory fields are omitted):

Default Language Code

Set the default language code. Used when publishing, it is the language code associated with a
particular field when the language is not specified.

Use the following profile

Profile preference - Select your preferred predefined user profile from this drop down list

To maintain user groups, click the Groups link. From the Groups screen, you can:

• Create and manage your own groups

Chapter 3274

• Manage group membership

Figure 65. View User Groups

Create and Manage Groups

To create a new group:

1 Click on the Profile menu tab, and select the Groups link. This returns the Group list shown in
Figure 65.

2 Click the Add Group button.

275User's Guide

Figure 66. Edit Group Membership

3 In the edit box labeled Group name, type the name of your group.

4 Use the radio buttons labeled public and private to establish whether this group should be visible to
all members (public) or visible only to the group owner (private).

5 Click Filter to display a list of the registry's users.

6 Check the boxes for all members you wish to include, then click the right-pointing arrow to move them
to the Group members table.

Chapter 3276

7 Once users are added, click Save Group to update HP SOA Registry Foundation

Manage Group Membership

To add or remove members from a group:

1 Click on the Profile menu tab.

2 Click on the Groups link. This returns the Group list shown in Figure 65.

3 Click on the Edit button.

4 Use arrow buttons to add and remove users as shown in Figure 66

favorite Taxonomies

You can manage your favorite taxonomies under the Profile tab. You can define which taxonomies will be
present in the list of your favorite taxonomies. Favorite taxonomies help you to search and categorize UDDI
entities.

To manage your list of favorite taxonomies:

1 Click on the Profile menu tab. Click on the favorite taxonomies link. This returns the list of your
favorite taxonomies shown in Figure 67.

2 Click Filter to search taxonomies by name.

3 Check the boxes for all taxonomies you wish to include, and click the right-pointing arrow to copy
them to the favorite taxonomies table.

4 Once taxonomies are added, click the Save button to update the registry.

277User's Guide

Figure 67. Manage favorite Taxonomies

Browsing

In this section, we will show you how to browse taxonomy structures to discover UDDI entities categorized
or identified by taxonomies. You can also define a taxonomy filter and put your search criteria to a query.
We present a demo data set that is installed with HP SOA Registry Foundation. This demonstration set is
designed to help familiarize you with the registry.

To browse taxonomies and UDDI entities:

1 Click on the Taxonomies link under the Browse main menu tab.

2 The page shown in Figure 68 will appear.

Chapter 3278

Figure 68. Browse Menu Tab

On this page, you can use the drop down list to switch the taxonomy list to favorite taxonomies,
enterprise taxonomies, and a defined filter.

The favorite taxonomies option appears in the drop down list only if your list of favorite taxonomies
is not empty. To add a taxonomy to your favorites, follow the direction in favorite Taxonomies
on page 277. The list of enterprise taxonomies is defined by an administrator. For more information,
see Taxonomy Management on page 345 in the Administrator's guide.

Initially, the filter contains all taxonomies except system taxonomies. Icons next to the drop down list serve
to show/hide categorized entities, and show all/suppress empty categories.

Drill down through the taxonomy tree to see all taxonomy categories. Those with sub-categories can be
expanded and collapsed.

When you browse internally checked taxonomies you can see their value set to see UDDI entities categorized
by these key values. For unchecked or externally checked taxonomies, you can search UDDI entities by
key values. We will show you how to browse an unchecked taxonomy from the demo data.

To browse the demo data using demo:location:floor taxonomy:

1 Switch the drop down list shown in Figure 68 to the filter option.

279User's Guide

2 Click on the demo:location:floor taxonomy. Expand the taxonomy by clicking on the plus sign in
front of the taxonomy name. The key name and key value field pair appears.

3 Enter key value as 5, then click Search button.

4 You will get a list of UDDI entities categorized by this taxonomy with matching key value (IT in this
case) as shown in Figure 69.

Figure 69. Browse Demo

You can also add this search criterion to a query.

Define Filter

You can reduce the number of taxonomies in the taxonomy list by defining a taxonomy filter. To switch
from taxonomy browsing to filter definition, click on the filter link in the lower left corner. The page shown
in Figure 70 will appear.

Chapter 3280

Figure 70. Taxonomy Filter

You can filter taxonomies by name using the wild card characters % and _. You can specify taxonomy type,
compatibility, and a validation type. Once you define the filter criteria, click Apply filter. This will return
you to the browse taxonomy page.

281User's Guide

Define Query

You can also combine search criteria in a query. To add a search criterion to a query, use the button Add
to query shown in Figure 69. Then, you can expand another taxonomy and specify a new criterion. The
page shown at Figure 71 presents the query displaying business entities located on the 5th floor
(demo:location:floor taxonomy) having Headquarter department as the superior department (demo:hierarchy
taxonomy).

Figure 71. Query

To remove a category from the query, right-click on the query and select remove from query from the
context menu.

Chapter 3282

The query definition is not persistent. Once you leave the Browse menu tab, the query will disappear.

Searching

HP SOA Registry Foundation search function allows you to perform the following searches:

Find UDDI data structures

You can search for business entities, services, bindings, and tModels using names and categories
in combination with find qualifiers including range queries.

• Find Business

• Find Services

• Find Binding

• Find tModel

Direct Get

You can retrieve data from HP SOA Registry Foundation when you know the key of the UDDI
entity you want to retrieve.

Find Resources

You can search for resources:

• Find WSDL

• Find XSD

In the Search section, we present a demonstration data set that is installed with HP SOA Registry Foundation.
This demonstration set is designed to help familiarize you with the registry.

HP SOA Registry Foundation supports the use of wildcard characters. You can use both % and _.

283User's Guide

Use % in place of any number of characters and spaces. For example, if you wish to find all business
beginning with A, type A%. Use the underscore wildcard (_) in place of any single character. For
example, to find Dan or Dane, type Dan_.

See Find Business by Categories on page 286 how to use range queries functionality.

Find Business

In this section, we cover locating business entities using a number of different methods. You can locate
business entities by:

• Name

• Categories

• Identifiers

• Discovery URL

• tModel

For each find method, you can specify qualifiers located on the Find Qualifiers tab of the Search panel.

Chapter 3284

Figure 72. Find Qualifiers

Find Business by Name

To find a business by name:

1 Under the main Search tab, click the Businesses link.

2 Click the Add Name button in the Search panel.

3 Type in the business name, such as IT from the pre-installed demo data. Then click the Find tab at the
bottom right corner.

To see all businesses, type the wildcard % and click Find.

4 The search result will appear on the Results panel. Click on the link with the business name, this opens
the page shown at Figure 73.

285User's Guide

Figure 73. View Business Detail

Find Business by Categories

In this section we will show you how to search for business entities by categories. We will use demo data
to demonstrate how to find all departments located on specific floors. Also, an example how to use range
queries will be shown.

To find a business by category:

1 Under the main Search tab, click the Businesses link

2 Click the Categories tab, then click the Add category button. This returns a list of available taxonomies.

You can switch the Show drop down list from favorite taxonomies to see all taxonomies. To manage
favorite taxonomies see User Profile on page 273.

Chapter 3286

3 Click on the desired taxonomy.

The taxonomy is shown as a tree; its sub-branches include categories.

Select demo:location:floor from our demo data.

4 Now you can enter Key name and Key value.

Type 1 in the box labeled Key value and then click the Add category icon.

Figure 74. Find Business by Category

5 Once a category is added as your search criteria, click Find.

You will get the department with that is located on the first floor. If you want search for all departments
located on higher floors you must use range queries functionality. We will continue with the previous search.

1 Click the tab Search to return to the Find business by categories page.

2 Click the Edit category icon. The page shown in Figure 75 is returned.

287User's Guide

Figure 75. Find Business by Range Category

3 From the Operator drop down list, select the > operator, and click the Update icon.

4 Click Find. You will get all departments located higher than the first floor.

Find Business by Identifier

In this section we will show you how to find a business entity by identifier. We will use demo data to
demonstrate how to find departments by their department number identifiers.

To find a business by identifier:

1 Under the main Search tab, click the Businesses link

2 Click the Identifiers tab. Then click the Add identifier button. This returns a list of available
taxonomies.

3 Click on the desired taxonomy

The taxonomy is shown as a tree with its sub-branches including categories.

Select demo:departmentID from the demo data.

4 Now you can enter Key name and Key value.

Type 002 in the box labeled Key value, and click Add identifier.

Chapter 3288

Figure 76. Find Business by Identifier

5 Once the Identifier is added as your search criteria, click Find.

Find Business by Discovery URL

To find a business entity by discovery URL:

1 Under the main Search tab, click the Businesses link.

2 Select the Discovery URLs tab.

3 Type in the discovery URL and click Find.

Find Services

You can find services using a number of different methods including by:

• Name

• Category

• tModel

Search principles for finding services are the similar to those used for finding business entities.

289User's Guide

Find Binding

You can find bindings using a number of different methods including by:

• Parent service

• Category

• tModel

The search principles for finding bindings are similar to those used for finding business entities.

Find tModel

You can find tModels using a number of different methods including by:

• Name

• Category

• Identifiers

The search principles for finding tModels are similar to those used for finding business entities.

Direct Get

You can also use Direct get from the Search menu tab to retrieve data from HP SOA Registry Foundation
when you know the key of the UDDI structure you want to retrieve. HP SOA Registry Foundation allows
you to specify keys for both UDDI version 2 and UDDI version 3. Click the Find by v2 tab if you want to
search using UDDI v2 keys.

Chapter 3290

Figure 77. Direct Get

Direct Get of XML Structures

You can also acquire the XML form of businesses, services, bindings, and tModels for use in automated
processing by entering the key of the structure into a URI.

The form of the URI is:

http://<hostname>:<port>/uddi/web/directGetXml?<structureKey>=<key>

URI Examples. Note that UDDI v3 is assumed by default.

• http://localhost:8080/uddi/web/directGetXml?businessKey=uddi:systinet.com:uddinodebusinessKey

291User's Guide

• http://localhost:8080/uddi/web/directGetXml?serviceKey=...

• http://localhost:8080/uddi/web/directGetXml?bindingKey=...

• http://localhost:8080/uddi/web/directGetXml?tModelKey=...

Example with Login. This URI includes username and password.

• https://localhost:8080/uddi/web/directGetXml?businessKey=uddi:systinet.com:uddinodebusinessKey&userName=admin&password=changeit

Example with UDDI Version Specification. Use this format when getting information associated with v1
and v2 structures.

• http://localhost:8080/uddi/web/directGetXml?businessKey=8f3033d0-c22f-11d5-b84b-cc663ab09294&version=2

Find WSDL

You can find all WSDL documents published in HP SOA Registry Foundation. When you supply the WSDL
location URI, you can review how artifacts of the WSDL document are published in HP SOA Registry
Foundation. The following criteria: a WSDL document location, a tModel key, a business service key, and
a binding template key can be used. To search for a WSDL document in HP SOA Registry Foundation:

1 Select the Search menu tab and click the WSDL link. The page shown in Figure 78 will appear.

2 Click the Find all published WSDLs button, or

Enter WSDL location URI , then click Examine this WSDL button.

Chapter 3292

Figure 78. Find WSDL

Find XSD

You can search for an XML Schema in HP SOA Registry Foundation according to location URI of the
XML document.

To search an XML document:

1 Select the Search menu tab and click the XSD link. The page shown in Figure 79 will appear.

2 You can search by the location of the XML Schema document, namespaces, and by xsd:elements and
xsd:types defined in the XML Schema document. Once you specify the search criteria, click Find.

293User's Guide

Figure 79. Find XSD

Publishing

Publishing in HP SOA Registry Foundation has several components:

• Publish UDDI core structures:

• Publishing a Business on page 295

• Publishing a Service on page 301

• Publishing a Binding Template on page 302

• Publishing a tModel on page 303

• Publishing Assertions on page 305 - Asserting relationships between business entities.

Chapter 3294

• Publishing Subscriptions on page 307 - Subscribing interest in receiving alerts regarding changes made
to a registry.

• Publish Custody Transfer on page 313 - Transferring ownership of selected UDDI structures.

• Publish Resources

• Publishing WSDL Documents on page 314 - Publishing Web Services Description Language
documents (WSDL) to HP SOA Registry Foundation.

• Publish XSD on page 319 - Publishing XML Schema Definition (XSD) Documents.

You must be logged into HP SOA Registry Foundation to publish to it. There is a limitation of
how many UDDI structures a user can store. See Administrator's Guide, Account Limits on page
336

Figure 80. Publish Page

Publishing a Business

This section explains how to publish a businessEntity and edit businessEntity-related structures:

295User's Guide

• Add business name and description

• Add Contact

• Add a Discovery URL

• Add a Category

• Add an Identifier

• Add Business Services

• Add Projected Services

• Assert Business Relationships

To publish a business:

1 Click the Add Business button in the right-hand panel of the publish page, or select Add Business
from the context menu that appears when you right-click the Business Entities node.

Figure 81. Add Business

2 Enter the business name and a description, then click Add Business.

3 The business will appear in the left tree panel under the Business entities node

To edit a business entity:

Chapter 3296

1 Select the Publish menu tab.

2 Click the Publish link.

3 Click the List Businesses link and click on edit icon next the name of business you wish to edit.

Figure 82. Edit Business

4 After you modified the business entity, click the Save changes button.

Adding a Contact

The contact structure provides you with a space where you can list the people associated with the business
entity. It is comprised of six properties: name, phone, email, address, description, and use type.

It is recommended that you use the description field to give a brief explanation of how the contact should
be used.

Use types can be used to indicate the expected way in which the contact should be used. For example, "New
Franchises", "Sales contact", "Technical Questions".

To add a contact:

1 On the Contacts tab of the Edit business or View business page, click the Add contact button. This
displays the Add contact page where you can specify the contact's name and use type, as shown in
Figure 83:

297User's Guide

Figure 83. Add Contact

2 Click Add contact.

3 Build your lists of information for descriptions, phone numbers, and addresses. Each collection page,
with the exception of Address collection, functions in the same manner. Click the Add button for the
element you want to add. You will see two or more edit fields to be completed.

Once the fields have been edited, you must click the Update icon on the right.

For addresses, click the Addresses tab. On this tab, add, edit, or delete existing address structures by
clicking through the appropriate buttons.

When you add or edit an address, fill in the desired fields, add the data to your list, and click Update
when finished.

4 Once you have updated all of the contact's information, click Save changes at the bottom of the Edit
contact page. You will see the name and use type of your new contact entry in the contacts list.

Adding a Discovery URL

To add a Discovery URL:

1 On the Edit business page click on the Add discovery URL button at the bottom of the Discovery
URLs tab.

2 Complete the Discovery URL and Use Type edit fields with the relevant data.

3 When the fields are complete, click Update on the right to add this information to the list.

Chapter 3298

4 Click Save changes

Adding a Category

With categories you can make your business more visible to searches by associating it with a number of
accepted taxonomies. These taxonomic categories identify a business and its services by location, product
or service line, and industry.

HP SOA Registry Foundation comes with keys for three basic checked taxonomies by default: These are
the ISO 3166 geographical classification system and the NAICS and SIC industry and product classifications.

A key is also provided for Microsoft GeoWeb 2000, but as this is an unchecked taxonomy, key names and key
values must be entered by hand.

To add a category to your list:

1 On the Categories tab of the Edit business page, click the Edit button. If there are already categories
associated with this business entity, a list of them will be returned along with the Add category button.
Otherwise, only the button will be displayed.

2 Click the Add category button beneath the Categories tab. This returns a list of available taxonomies
from which you can choose categories to add to the list.

3 Click on an available taxonomy. Checked taxonomies will expand to a tree of categories valid for that
model. You can type a known key name in the search box for faster retrieval. Note that larger branches
are limited to ten items per page.

4 You can also search for the name of the taxonomy through the search box at the top of the taxonomy
form. Use the starts with, contains, and exact match radio buttons as necessary. Like standard wild
cards, these buttons search for the entered string as specified. For example, The pattern Cana, when
used with the starts with button and a geographic taxonomy, returns the set {"Canada" "Canarias"}.
The result set is limited to a maximum of 250 items.

If you provide too broad a search pattern, the resulting list will be truncated to 100 items.

With unchecked taxonomies (for example, Microsoft's GeoWeb taxonomy), it is possible to supply the
key name and value through edit fields.

299User's Guide

5 To add multiple categories, for example Albania and Armenia from the uddi-org:iso-ch:3166:1999
taxonomy, check the boxes to the right of those key names, and click Add category. If you would like
to add categories from different pages, you must click Add category on the first page before continuing
to the next page containing your selections. For example, to choose Albania and Kazakhstan:

a Select Albania and click Add category.

b Click Add category on the Find service page.

c Click the link for page 8 on the expanded Find service page.

d Check the box next to Kazakhstan and click Add category.

Figure 84. Add Category

6 When you find the taxonomic classification you want, click the Add category button for checked
taxonomies. For unchecked taxonomies, click Add category once the edit fields have been completed.

Chapter 3300

Adding an Identifier

You can also make your organization more visible by supplying any of your public or private identifiers,
such as D-U-N-S, Tax, or Geographical Locator numbers to the registry. UDDI identifier structures are
composed of the following elements:

tModel Key

Identifies a namespace or service in which the key name and key value have significance

keyName

The name or description of the key being used

keyValue

The value of the key

To add an identifier to your list:

1 On the Edit business page, switch to the Identifiers tab.

2 Click the Add identifier button at the bottom of the Identifiers list.

3 Choose the identifier type from the displayed list of available taxonomical tmodels. This returns a field
in which you enter key names and key values.

4 When you have filled in the fields, click the Add identifier button to the right to add the new identifier
to the list.

If you use a tModel for a checked identifier, the key value must be of a recognizable form and
value. For example, if you want to use a uddi-org:isReplacedBy key, you must supply the valid
business entity UUID key in the keyValue field. Failure to do so will generate an error when you
attempt to submit your business data to the database.

Publishing a Service

To publish a service:

1 Select the Publish menu tab and click the Publish link

301User's Guide

2 In the left panel, click on the business to which you want to add a service. The right display area will
show business details.

3 Select the Services tab, and click the Add Service button.

Alternately, right-click on the business node to which you want to add a service, and select Add Service
from the context menu.

Figure 85. Add Service

4 Enter the service name and description and click Add service.

The service is added to the left panel tree.

Publishing a Binding Template

Once you have declared and defined a business service, you must establish how current and potential
business partners can access that service, a technical description of the service including where it can be
found. This is accomplished through bindingTemplates.

A bindingTemplate represents a Web service instance where you obtain (among other things) the access
point of an instance of the parent business service. Every bindingTemplate has a unique bindingKey for
identification. (An access point contains contact information such as a URL, email address, or telephone
number used to locate the service.)

The AccessPoint in a bindingTemplate structure can contain a URL of the endpoint of the web service. If
there is more than one businessEntity that provides the same business service we recommend you reuse
this information in a bindingTemplate. Create a bindingTemplate on the businessService that holds technical
information. Other businessServices should contain bindingTemplates with accessPoints containing the key
of the first technical bindingTemplate. These accessPoints should also contain useTypes with the value
hostingRedirector.

Chapter 3302

Alternatively, reference to another bindingTemplate can be stored in a hostingRedirector structure
instead of in an accessPoint. However the hostingRedirector structure (not the hostingRedirector
value of useType) is a relic of UDDI v2 and is deprecated in UDDI v3.

To add a bindingTemplate:

1 Select the Publish menu tab and click the Publish link

2 In the left panel, click on the service to which you want to add a binding. The right display area will
show service details. Select the Bindings tab and click the Add Binding button.

Alternatively, right-click the service node to which you want to add a binding, and select Add Binding
from the context menu.

Figure 86. Add Binding

Publishing a tModel

The tModel is a structure that takes the form of keyed metadata (data about data). In a general sense, the
purpose of a tModel within HP SOA Registry Foundation is to provide a reference system based on
abstraction. Among the roles that a tModel plays in UDDI is the ability to provide and to describe compliance
with a specification or concept, to a taxonomy, for example.

To publish a tModel:

1 Select the Publish tab, and click the Publish link.

2 On the right Publish panel, click the Add tModel button.

303User's Guide

Alternatively, right-click on the tModels node in the left panel and select Add tModel from the context
menu.

Figure 87. Add tModel

3 Enter tModel name and description, and click the Add tModel button.

If you delete an unused tModel, the tModel will be deleted from the database. The HP SOA Registry
Foundation Administrator can change this behavior that tModels will be only marked as deleted.
See Administrator's Guide, Node on page 379.

Adding a Category

In this section we will show you how to assign demo:location:floor taxonomy to the numeric ordering as
show at Figure 57.

1 Log on as demo_john user. (password is the same as the username).

2 Click the Publish tab in the main menu. Click on the tModel demo:location:floor item in the tree in the
left part of the page. Edit tModel 'demo:location:floor' page will appear.

3 Click Add category button. A taxonomy list will appear.

4 Select the taxonomy systinet-com:isOrderedBy, enter Key value uddi:systinet.com:comparator:numeric.

5 Click the button Add category , then Save changes button.

Chapter 3304

Publishing Assertions

You can assert relationships that businesses under your HP SOA Registry Foundation custody have with
others under your custody or with those under the custody of another user registered at the same operator
node. The success of the latter assertion depends upon the approval of the user to whom the assertion is
made.

When making an assertion you must supply:

• The identity of the business from which the assertion is being made

• The identity of the business to which it is making a claim. HP SOA Registry Foundation specifies these
business identities through their UUID keys.

• A reference explaining the nature of the relationship. References about the nature of the asserted
relationship are derived from your own tModels or from the uddi-org:relationships tModel.

Adding an Assertion

To add a new assertion:

1 On the Edit business panel, switch to the Relationships tab. This displays the Relationship assertions
page. If you have already set assertions you will see a list of those previously published. If not, you
will see the message "No assertions found."

2 Click the Add new assertion button to display the Add assertion page shown in Figure 88.

Figure 88. Add Assertion

305User's Guide

3 If the business for which you are making an assertion will assume the "To" role, click the Change
Direction button.

4 Find the business with which you want to assert a relationship in the same way you would on the
inquiry side of UDDI. The difference is that, along with the business name, you will see the business
descriptions in the retrieved record set and a Select business key icon next to each record.

When you locate the target business among the records, click its Select business key icon. This returns
you to the Add assertion page with the UUID key of the selected business as the previously missing
role.

A Keyed Reference will be required for the assertion to be valid. Click the Set button on the
right of the Keyed Reference line. The Set keyed reference page displays.

5 Locate a tModel for your reference in the same way you would on the inquiry side of UDDI. The
difference is that there are edit fields for Key Names and Key Values next to the tModel names and a
Set button at the end of each row. Pertinent tModels include uddi-orgs:relationship and those you have
published yourself.

a Enter the key value and the key name or description. For uddi-orgs:relationship, the key value
may be parent-child, peer-peer, or identity.

b Click the Set value. This returns you to the Add assertion page. The tModel, key name, and key
value added to the Keyed Reference record are displayed there.

6 Click the Add assertion button.

7 If the assertion is made to a business of which you have custody, the assertion will be completed
automatically. If it is made to a business in the custody of another user, that user will need to review
the assertion and complete it through his or her own account. This process is described below.

Accepting an Assertion

Assume that you have been notified by a parent company, a subsidiary, a peer, or a cooperative member
that they have asserted a relationship with your company. Now you must review that assertion and, if you
are in agreement, complete it.

Chapter 3306

To accept the assertion:

1 On the Edit business page, switch to the Relationships tab.

2 View the incomplete assertions made toward your business in the Requested assertions list. Each
assertion will have a Complete assertion button next to its status message.

3 Click the Complete assertion button to accept the assertion.

4 If you wish to refuse, leave the assertion incomplete by omitting step 3. Return to the Publisher assertions
page by clicking the link at the top of the page. Contact the business making the assertion to resolve
the details of your relationship. Incomplete assertions will not appear when users query for related
businesses.

Publishing Subscriptions

Subscriptions give you the ability to register interest in receiving information about changes made to HP
SOA Registry Foundation. It allows the monitoring of new, changed, and deleted UDDI structures. Each
subscription has a filter that limits the subscription scope to a subset of registry entities.

You can establish a subscription based on a specific query or set of entities in which you are interested.
Query-based subscriptions notify the user if the result set changes within a given time span; entity-based
subscriptions notify the user if the contents of the specified entities change.

Subscriptions enable:

• notification of the registration of new businesses or services

• monitoring of existing businesses or services

• acquiring registry information for use in a private registry

• acquiring data for use in a marketplace or portal registry

This filter should be one of the following ordinary UDDI inquiry calls:

• find_business

• find_relatedBusinesses

307User's Guide

• find_service

• find_binding

• find_tModel

• get_businessDetail

• get_serviceDetail

• get_bindingDetail

• get_tModelDetail

Figure 89. Add Subscription

Adding Subscriptions

To add new subscription:

1 Click on the Subscriptions link under the Publish menu tab to display the Subscriptions page.

2 Click the Add subscription button to display the Add subscriptions page shown in Figure 89.

3 Click Change filter to specify a filter for your subscriptions. This returns the Subscription filter type
page.

4 Select the filter type from the drop down list labeled Subscription filter type.

5 Click Select filter.

Chapter 3308

6 Set the filter properties in the same way you would for ordinary search calls.

7 Click the Preview results button to check filter results.

8 Click Save filter to return to the page with the filter settings shown in Figure 89.

9 Fill in the other subscription fields if needed. These are described below.

Notification Listener Types

Figure 90. Add Subscription - Email Notification Listener Type

• Subscription filter - Specifies on which UDDI structure change the notification will occur.

• Notification listener type - Select notification listener type

• Email address

• Service endpoint

• Binding template

309User's Guide

• Email address - Email address to which notifications will be sent

• XSLT transformer tModel - tModel that references XSLT

• Business service and Business entity - Business service and business entity to which the bindingTemplate
representing the notification listener service will be saved. These drop down lists lists only business
entities and business services under which you have the permission to create the binding template.

• Notification interval - Specifies how often change notifications are to be provided to a subscriber.
Required only for asynchronous notifications.

• Expires after - Specifies the period of time for which the administrator would like the subscription to
exist.

• Max entities - Contains the maximum number of entities in a notification returned to a subscription
listener.

• Brief - Controls the level of detail returned to a subscription listener.

Figure 91. Add Subscription - Service Endpoint Listener Type

• Subscription filter - Specifies on which UDDI structure change the notification will occur.

Chapter 3310

• Notification listener type - Select notification listener type here.

• Email address

• Service endpoint

• Binding template

• Notification listener endpoint - URL to which the notification will be sent

• Business service and Business entity - business service and business entity to which the bindingTemplate
representing the notification listener service will be saved. These drop down lists lists only business
entities and business services under which you have the permission to create the binding template.

• Notification interval - Specifies how often change notifications are to be provided to a subscriber.
Required only for asynchronous notifications.

• Expires after - Specifies the period of time for which the administrator would like the subscription to
exist.

• Max entities - Contains the maximum number of entities in a notification returned to a subscription
listener.

• Brief - Controls the level of detail returned to a subscription listener.

311User's Guide

Figure 92. Add Subscription - Binding Template Listener Type

• Subscription filter - Specifies on which UDDI structure change the notification will occur.

• Notification listener type - Select notification listener type here.

• Email address

• Service endpoint

• Binding template

• Binding Template - The bindingTemplate representing the notification listener service.

• Notification interval - Specifies how often change notifications are to be provided to a subscriber.
Required only for asynchronous notifications.

• Expires after - Specifies the period of time for which the administrator would like the subscription to
exist.

• Max entities - Contains the maximum number of entities in a notification returned to a subscription
listener.

• Brief - Controls the level of detail returned to a subscription listener.

Chapter 3312

Editing Subscriptions

To edit an existing subscription:

1 Click on the Subscriptions link under Publish menu tab to display the Subscriptions page.

2 Click the Edit button beside the subscription you want to edit. This returns the Edit subscription page.
Here you can edit all subscription arguments except Subscription filter.

Deleting Subscriptions

To delete subscription:

1 Click on the Subscriptions link under Publish menu tab to display the Subscriptions page.

2 Check the boxes beside subscriptions you want to delete.

3 Click the Delete selected button. This returns a confirmation page.

4 The confirmation page contains a list of subscriptions marked for deletion. If it is correct, press the
Yes button to delete subscriptions permanently.

Publish Custody Transfer

Custody transfer is a service used to transfer ownership of a selected structure (business entity, business
service, binding template or tModel) from one user to another. It consists of two steps: selecting structure(s)
to transfer and generating a custody transfer token. When the potential new owner receives the transfer
token (by a secure transport such as encrypted email), that user may accept or reject the custody transfer.

This token must be kept secret, as it is sufficient information to transfer custody of the structure
to any user!

If you decide to cancel the request (for example the transfer token has been compromised), use the Discard
transfer token button.

Requesting Custody Transfer

To request custody transfer:

313User's Guide

1 Click on the Custody link under Publish menu tab to display the Custody transfer page.

2 Click the Request transfer token link. This returns a list of UDDI data structures you own.

3 Check the box next to the UDDI structure(s) you wish to transfer, and click Request transfer token.

4 The next page will generate the transfer token. Copy the text of the transfer token to a file and send
this file to the user who shall become the new owner of selected structures. Keep the token secret, as
anyone who knows it can use it to transfer custody of that structure. Unencrypted email, for example,
is not good data transfer choice.

Accepting Custody Transfer

To accept custody transfer:

1 Click on the Custody link under Publish menu tab to display the Custody transfer page.

2 Click on the Transfer custody link.

3 Open the file with the transfer token, copy its contents to clipboard and paste it to the edit area on the
Transfer structures page.

4 Click Transfer button.

Publishing WSDL Documents

HP SOA Registry Foundation WSDL to UDDI (WSDL2UDDI) mapping is compliant with OASIS's technical
note Using WSDL in a UDDI registry Version 2.0 [http://www.oasis-open.org/committees/uddi-
spec/doc/tn/uddi-spec-tc-tn-wsdl-v200-20031104.htm]. It enables the automatic publishing of WSDL
documents to UDDI, enables precise and flexible UDDI queries based on specific WSDL artifacts and
metadata, and provides a consistent mapping for UDDI v2.

Publish WSDL

To publish a WSDL document:

1 Click on the WSDL link under the Publish main menu tab.

2 The page shown at Figure 93 will appear.

Chapter 3314

http://www.oasis-open.org/committees/uddi-spec/doc/tn/uddi-spec-tc-tn-wsdl-v200-20031104.htm

Figure 93. Publish WSDL

3 Enter the Business key of the business where services from WSDL document will be published. You
can find a business key by clicking on the Find business key button.

4 Enter a WSDL location. You can try the WSDL document from HP SOA Registry Foundation demos
from REGISTRY_HOME/demos/conf/employeeList.wsdl.

5 Leave the Advanced mode check box unchecked, then click Publish button.

The WSDL document will be published to HP SOA Registry Foundation. You can review how WSDL
artifacts of the document have been mapped to HP SOA Registry Foundation at Figure 94.

315User's Guide

Figure 94. Publish WSDL Summary

The Business Entity button in the summary screen enables you to copy permissions from the business
entity for which the WSDL was published to all other entities involved in the publishing operation. If the
entities already contain permissions, the permission lists are merged.

When a business service is reused during the publishing step, it may also contain permissions to distribute
to associated binding templates and tModels.

Chapter 3316

The Business Service button, shown only when a business service is reused, enables you to copy permissions
from a business service to associated binding templates and tModels involved in the publishing operation.
If the entities already contain permissions, the permission lists are merged.

Publishing WSDL Documents (Advanced Mode)

The advanced publishing mode allows you to specify certain details of how the WSDL document will be
mapped to the UDDI registry. To publish in this mode, follow the steps from the previous section, and
toggle the Advanced mode check box on. Once you click on the button Publish the Advanced Mode Publish
page shown in Figure 95 will appear.

Figure 95. Publish WSDL (Advanced Mode)

317User's Guide

In the left tree panel, you can see how artifacts of the WSDL document will be published. Click on a tree
branch to edit how WSDL artifacts will be mapped to HP SOA Registry Foundation. Explanatory instructions
in the right panel describe the mapping options. Click Preview to see how each part of the WSDL document
will be mapped to the registry. From the Preview page, you can go back to adjust the WSDL mapping.

The wizard's default selection in Figure 95 is based on the following rules:

• If a possible mapping of a WSDL artifact already exists in the registry, and the user owns this UDDI
structure, the wizard will suggest rewriting that mapping in the registry.

• If a possible mapping of a WSDL artifact already exists in the registry, and the user does not own this
UDDI structure, the wizard will suggest reusing that UDDI entity.

• If no mapping of the WSDL artifact exists in the registry, the wizard will suggest creating a new UDDI
entity to represent the mapping.

HP SOA Registry Foundation applies these rules automatically when you publish a WSDL document without
the Advanced mode option.

Publishing of WSDL operations and WSDL messages is not implemented in this HP SOA Registry
Foundation release.

Unpublish WSDL

To unpublish a WSDL definition:

1 Search for the WSDL document in the registry.

2 In the result view, click on a business service.

3 The page with business service details will appear, click the Unpublish button at the page.

4 The Unpublish WSDL document wizard will appear.

Chapter 3318

Publish XSD

HP SOA Registry Foundation XSD to UDDI (XSD2UDDI) mapping enables the automatic publishing of
XML schema documents to UDDI, enabling precise and flexible UDDI queries based on specific XML
schema artifacts and metadata.

If you want to unpublish an XML schema document, use the Find XSD button and click the Unpublish
button in the search result page.

Publishing an XML Schema

To publish an XML Schema document:

1 Click on the XSD link under the Publish main menu tab.

2 The page shown in Figure 96 will appear.

319User's Guide

Figure 96. Publish XSD

3 Enter an XML Schema location. To demonstrate, use the file REGISTRY_HOME/demos/conf/employees.xsd
from the HP SOA Registry Foundation demos.

4 Leave the Advanced mode check box unchecked, then click Publish.

5 The XML Schema document will be published to the registry. You can review mappings of the XML
Schema document itself and its elements at Figure 97.

Chapter 3320

Figure 97. Publish XSD Summary

Publishing an XML Schema (Advanced Mode)

The advanced publishing mode allows you to specify certain details of how the XML Schema document
will be mapped to the UDDI registry. To publish in this mode:

1 Follow the steps from the previous section, but check the Advanced mode box

2 Click Publish. This returns the Advanced Mode Publish page shown in Figure 98.

321User's Guide

Figure 98. Publish XSD - Advanced

3 In the left tree panel, you can see how the XML Schema and its possible XML Schema imports will
be published. Click on an XML Schema model node to edit how the parts of the XML Schema will
be mapped to the HP SOA Registry Foundation. The explanatory instructions in the right panel describe
the mapping options.

4 Click the Preview to see how the XML Schema document will be mapped to HP SOA Registry
Foundation. From the Preview page, you can go back to edit the XML Schema mapping.

Unpublish an XML Schema

The Unpublish XML operation allows you to delete the XML Schema mapping from HP SOA Registry
Foundation. To unpublish an XML Schema document, you must search for the XML Schema document
first.

Chapter 3322

Signer Tool

One of the most important advantages of UDDI version 3 is its support for digital signatures. Without
signatures you cannot verify whether the publisher of a business entity is really who that publisher claims
to be. But if the publisher has signed the UDDI structure, anyone can verify that the information is unmodified
by any means (including by UDDI registry operators) and to confirm the publisher's identity.

The HP SOA Registry Foundation Signer tool simplifies signature manipulation. You can find this tool's
script in the bin directory of your HP SOA Registry Foundation installation. The Signer is a graphical
application that can be used to add, remove, and verify the signatures of UDDI structures you have published.

If you are using IBM Java, you must install Bouncy Castle security provider. See Installation
Guide, System Requirements on page 40

Starting the Signer

1 To start the Signer tool, first ensure that HP SOA Registry Foundation is running, then execute the
following script from the bin subdirectory of your HP SOA Registry Foundation installation:

signer.batWindows:

./signer.shUNIX:

2 When the tool starts, you must first authenticate yourself against the selected UDDI version 3 registry.
Simply provide your user name and password. If your registry is not running on a local machine, you
must configure its endpoints. This can be accomplished via the Configure UDDI button.

Figure 99. Login Dialog

323User's Guide

3 On the returned screen, set the endpoints of the Security, Inquiry, and Publishing Web services. For
help, ask the administrator of your registry.

Figure 100. Configure Dialog

4 Once you have entered your user name and password, click the Login button. The Signer tool will
attempt to authorize you at the selected registry. If authorization fails, you can correct your login
information. Once it succeeds, the Login dialog disappears and the Signer tool asks HP SOA Registry
Foundation for your registered information (businessEntities and tModels that you have published).

Main Screen

In the Signer tool's interface, the left part of the main screen consists of a tree containing all your
businessEntities and tModels. If you wish to add or remove a digital signature, select the structure to sign
from this tree. The Signer will fetch it from the registry. When the structure is fetched, its XML representation
is displayed in the right panel. The Sign button is unblocked. If the structure has been already signed, the
Remove signatures button is unblocked as well.

Chapter 3324

Figure 101. Signature Tool - Main Screen

The status bar at the bottom of the application informs the user of current action progress and results.

Sign

To sign a UDDI structure, you must set up the Java keystore. Use JDK tool keytool to generate the keystore.
Please, see your JDK documentation for more information how to use keytool. The Signer tool has been
tested with keystores in JKS and PKCS12 formats.

To generate the certificate issue the following command

keytool -genkey -keyalg RSA -storetype JKS -alias demo_john -keystore test_certificate.jks

Example of the dialog:

 Enter keystore password: changeit
What is your first and last name?
 [Unknown]: John Johnson

325User's Guide

What is the name of your organizational unit?
 [Unknown]: UDDI
What is the name of your organization?
 [Unknown]: Myorg
What is the name of your City or Locality?
 [Unknown]: San Diego
What is the name of your State or Province?
 [Unknown]: California
What is the two-letter country code for this unit?
 [Unknown]: CA
Is CN=John Johnson, OU=UDDI, O=Myorg, L=San Diego, ST=California, C=CA correct?
 [no]: yes
Enter key password for <demo_john>
 (RETURN if same as keystore password):

To sign a UDDI structure, you must set the Java keystore file, alias, and password as follows:

1 Click on the Sign button. This returns the Select identity dialog.

2 In the box labeled Select identity, type the path to the file with your Java keystore.

3 In the box labeled Alias, type the alias located in the identity.

4 In the box labeled Password, type the password used to encrypt the private key.

If you enter the wrong value for the alias or the password, the tool will not be able to open
the identity.

5 If the keystore is in the Sun JKS format, you do not have to click on Choose format button. You can
leave default values there. If the keystore is not in the Sun JKS format, you can specify the format by
clicking the Choose format button. In the returned dialog window, set the keystore format and its

Chapter 3326

provider. For example, to use the PKCS12 format, set the format to PKCS12 and the provider to
SunJSSE.

Figure 102. KeyStore Format Dialog

6 When the signing operation succeeds, the selected UDDI structure will have a digital signature and its
XML representation will be updated. For security reasons, the signing process takes place on your
computer so as not to risk compromise to your private key.

7 Finally the Publish changes and Remove signatures buttons are enabled.

Validation

The Validate button is used to perform validity check of UDDI structures that contain XML digital signatures.
The result of this operation is displayed in the status bar.

Remove Signatures

The Remove signatures button is used to remove all digital signatures from the selected UDDI structure.
When this operation is complete, the XML representation of the UDDI structure is updated. If the Publish
changes button had been disabled, it is enabled.

Publish Changes

If you have signed the selected UDDI structure or removed digital signatures from it, you can select the
Publish changes button to publish the changes to the registry. Its invocation uses standard UDDI publishing
methods (save_tModel, etc.) to update this UDDI structure on the registry. The private key is not used during
this operation.

Signer Configuration

The Signer tool automatically remembers the actual configuration such as registry endpoints or keystore
location and format. The config file is saved in the user's home directory with the name signer.conf. You

327User's Guide

can change the location (and filename) by using the signer script's -c option. If you do not want this feature,
use -n. The list of valid options can be obtained with -h option.

Chapter 3328

4 Administrator's Guide

The HP SOA Registry Foundation Administrator's Guide contains information necessary for the management
of HP SOA Registry Foundation. It is aimed at the user responsible for configuring the registry and managing
permissions, and replication. This guide is divided into the following sections:

Registry Management on page 330 . Registry management includes also management of user accounts and
permissions and taxonomy management.

Registry Configuration on page 371 . How to configure the Registry Console.

Registry Console Configuration on page 384 . This section covers setting the URLs, directories, contexts,
timeouts and limits associated with the HP SOA Registry Foundation interface.

Permissions: Principles on page 387 . This section discusses the mechanism HP SOA Registry Foundation
provides for the management of users' rights; permissions allow the administrator to manage or make
available different parts of the registry to different users.

PStore Tool on page 401 . Describes a tool for management of protected stores for certificates and security
identities.

Make sure HP SOA Registry Foundation is running before attempting to use its consoles for
configuration. To start it change to the bin subdirectory of REGISTRY_HOME and run:

serverstart.batWindows:

./serverstart.shUNIX:

The Registry Console can be found at http://<hostname>:<port>/uddi/web and the Business Service Console
can be found at http://<hostname>:<port>/uddi/bsc/web.

Hostname and port are defined when HP SOA Registry Foundation is installed. The default port is 8080.

329

Log on as administrator. Initially, the administrator's user name is set to admin and the password to changeit.

We strongly advise you to change the password for user admin once you have logged in.

Be very careful when editing the Operational business entity, or deleting of the taxonomy uddi-
org:types. Modification of these structures can lead to registry instability.

Registry Management

Accessing Registry Management

Registry Management is a set of tasks that the administrator can address through the Registry Console.
These tasks are listed in Figure 103

To access the Registry Management console:

1 Log on as administrator or as a user with privilege to display Manage tab as described in Rules to
Display the Manage Tab.

2 Click the Manage main menu tab.

3 Select the Registry management link under Manage tab. This returns the screen shown in Figure 103.

Rules to Display the Manage Tab

The Manage tab is available if at least one of the following conditions is satisfied:

• You have ApiManagerPermission to all methods (*) of one or more APIs
(Account,Group,Permission,Taxonomy,Statistics,Administration Utils).

• You have ConfiguratorManagerPermission to all operations (*) and all configurations (*).

• You have ApiManagerPermission to all methods (*) of ReplicationApi and
ConfiguratorManagerPermission to all operations (*) for replication configuration.

Chapter 4330

• You have ConfiguratorManagerPermission to all operations (*) for web configuration.

Figure 103. Registry Management

• Account Management - Create, edit, and delete user accounts.

• Group Management - Create, edit, and delete accounts groups.

• Permissions - Set up permissions using the Registry Console

• Taxonomy Management - Upload, download and removing taxonomies via the Registry Console.

331Administrator's Guide

• Replication Management - Set up a subscription-based replication mechanism under which a slave
registry receives notification from a master registry regarding updates and changes. (For more information
on replication, please see Replication Management on page 352.)

• Replace UDDI keys - Replace the UDDI keys of businessEntities, businessServices, tModels, and
bindingTemplates.

• Replace URLs - Replace URL prefixes in the following entities:

• tModel - OverviewDoc URL

• tModelInstanceInfo - overviewDoc URL and DiscoveryURL

• binding template - accessPoint URL

• Delete deprecated tModels - This option lets the administrator permanently delete deprecated tModels.
A tModel is considered deprecated when it is marked as deleted by its owner. By default, tModels are
deleted permanently by users. See Node on page 379 how to change this behavior.

• Transform keyed references - This operation is necessary when the type of taxonomy keyValues or
the implementation of the taxonomy transformation service have been changed. For more information
see, User's Guide, Taxonomy: Principles, Creation and Validation on page 245.

• Statistics - This option displays two statistics tabs:

• The first tab displays information about the number of accesses made to the various UDDI interface
methods. One column displays the total request counts and a count of calls that fail and therefore
return exceptions.

• The second one contains counts of the main data structures (businessEntities, businessServices,
tModels, bindingTemplates) in the database.

Account Management

The HP SOA Registry Foundation administrator manages user accounts using the Registry Console. Use
this console whenever you want to disable an account, change limits for a particular account, or take care
of general housekeeping.

Chapter 4332

To access the Account management console:

1 Log on as administrator.

2 Click the Registry management link under the Manage tab.

3 Click the Account management button.

This displays a list of all accounts, as shown in Figure 104.You can search accounts using the Find
users button.

Figure 104. Find Account

Create Account

To create an account:

1 On the Find Account page, click Create Account button. This returns the Create account page shown
in Figure 105.

333Administrator's Guide

Figure 105. Create Account

2 Provide the information shown in . Fields marked with a red asterisk (*) are required.

Chapter 4334

Figure 106. New Account - All Fields

Field descriptions (self-explanatory fields are omitted):

Default Language Code

Set the default language to be used during publishing when the language code associated with
a particular field is not specified.

Use the following profile

Profile preference - deprecated and unused now.

335Administrator's Guide

Blocked

Here you can enable/disable a user account. This is the account flag which prevents/permits
a user from successfully logging onto the server.

Limits

These fields (Assertions limit, Bindings limit, Businesses limit, Services limit, Subscriptions
limit, andTModels limit) indicate the number of these items allowed by the user. Changing
default user limits is discussed in the Accounts section of Registry Configuration.

3 When finished, click Create account. This returns the Find account page. Note that the list of accounts
now includes the account you have just created.

Account Limits

Each user account has the following limits for data saved under the account:

• Businesses limit - maximum number of businessEntities the account can hold. (1 by default).

• Services limit - maximum number of businessServices in the same businessEntity (4 by default).

• bindings limit - maximum number of bindingTemplates in the same businessService (2 by default).

• tModels limit - maximum number of tModels the account can hold. (100 by default).

• Assertions limit - maximum number of publisherAssertions the account can hold (10 by default).

• Subscriptions limit - maximum number of subscriptions an account can hold. (5 by default)

Common users can not change these limits. Only the administrator can change limits for a user or change
default limits for newly created users.

The number of businessServices/bindingTemplates are checked against the limit on the user account owning
the parent structure, not against the limit of the user processing the save_XXX call. For example, a user U1
owns a businessEntity BE_U1 and provides create ACL right to the user U2. The user U2 saves a new
businessService under the BE_U1, total count of businessServices under the BE_U1 (no matter who is the
owner) is checked against the service limit of the BE account.

Limit checking is skipped if a user who performs the operation has an ApiManagerPermission with the
appropriate permission name and action:

Chapter 4336

• API (permission name)

• org.systinet.uddi.client.v3.UDDI_Publication_PortType for skipping limit tests on Publishing V3 API.

• org.systinet.uddi.client.v2.Publish for skipping limit tests on Publishing V2 API.

• org.systinet.uddi.client.v1.PublishSoap for skipping limit tests on Publishing V1 API.

• org.systinet.uddi.client.subscription.v3.UDDI_Subscription_PortType for skipping limit tests on
Subscription API.

• operation (action)

• save_business for skipping businesses limit test on Publishing V1/V2/V3 API

• save_service for skipping services limit test on Publishing V1/V2/V3 API

• save_binding for skipping bindings limit test on Publishing V1/V2/V3 API

• save_tModel for skipping tModels limit test on Publishing V1/V2/V3 API

• add_publisherAssertions for skipping assertions limit test on Publishing V2/V3 API

• set_publisherAssertions for skipping assertions limit test on Publishing V2/V3 API

• save_subscription for skipping subscriptions limit test on Subscription API

For more information see Permissions: Principles on page 387. By default, only the administrator has these
permissions, and therefore the administrator has an unlimited account.

Edit Account

To edit an account:

1 On the Find account page shown in Figure 104, click the Edit Account icon () associated with
the account you want to edit.

This returns the Edit account page.

337Administrator's Guide

2 On the Edit account page, provide or change the information in the various fields. These are the same
as the fields shown in Figure 106.

Field descriptions (self-explanatory fields are omitted):

Default Language Code

Set the default language to be used during publishing when the language code associated with
a particular field is not specified.

Blocked

Here you can enable/disable a user account. This is the account flag which prevents/permits
a user from successfully logging onto the server.

Limits

These fields (Assertions limit, Bindings limit, Businesses limit, Services limit, Subscriptions
limit, andTModels limit) indicate the number of these items allowed by the user. These are
described in detail in the Accounts section of Registry Configuration.

3 When finished, click the button labeled Save Changes. This returns the Find account page.

Delete Account

To delete an account:

1 On the Find account page, check the box next to the Login name of the account you want to delete.

2 Click the Delete Selected button.

3 If you are certain you want to delete the account, click Yes when prompted. Note that on publication
registries and standard installations of HP SOA Registry Foundation, all published information associated
with the user will be lost.

If you are using LDAP for storing users, the user account will not be deleted from the LDAP store,
because LDAP stores are treated as read-only. The delete account operation will delete an account
only from the registry database.

Chapter 4338

Group Management

User groups simplify management of access rights to each UDDI data structure. You can use groups to
group users with similar rights.

The administrator can:

• Create and manage user groups

• Manage group membership

Figure 107. View User Groups

Create and Manage Groups

To create a new group:

1 Click on the Manage menu tab. On the Manage tab, select the Registry management link, and then
click the Group management button. This returns the Group Management page.

2 To display all groups on the registry, click Filter. This returns a Group list like the one shown in
Figure 107.

3 Click the Add Group button. This returns a blank Add group page much like the one shown in
Figure 108.

339Administrator's Guide

Figure 108. Add Group Page

4 In the edit box labeled Group name, type the name of your group. In the edit box labeled Group
owner, type the owner of the group. The default owner is Admin. These two fields are required.

5 Use the radio buttons labeled public and private to set group visibility.

Both public and private groups are visible to all users in the registry, meaning that all users are able
to see which groups exist. Public and private groups differ in that members of public groups are visible
to all users of the registry whereas members of private groups are visible only to the owner of the
group.

6 Optionally, Enter a description of the group in the box labeled Description.

7 Click the Save group properties button. This returns the Users list and Group members sections
shown in Figure 107.

Chapter 4340

Figure 109. Edit Group Membership

8 In the Users list section, click Filter to display a list of all of the registry's users.

Use the drop down list in this section to sort users by Login name or Full name.

Use the text box to further filter users. You can use % as wildcard in this field.

9 Check the boxes next to all members you wish to include, and click the right-pointing arrow (
) to move them to the Group members table.

Group members are updated in the database once you click the arrow buttons.

Manage Group Membership

To add or remove members from a group:

1 Click on the Manage main menu tab.

341Administrator's Guide

2 Click on the Registry management link. This returns the main Registry Management page.

Click the Group management button. This returns the Group list shown in Figure 107.

3 Enter your search criteria, then click the Filter button. Click Filter without search criteria to return a
list of all groups.

4 Click the Edit button () in the row with the group you want to manage. This returns the Edit Group
page. Specify search criterion for user accounts, then click the Filter button.

5 Use the arrow buttons (and) to add and remove users as shown in Figure 109

Permissions

This chapter describes how you can set permissions using the Registry Console. Before you start to work
with permissions, we recommend reading Permissions: Principles on page 387 to become familiar with
permissions principles.

HP SOA Registry Foundation uses the same interface for managing both user permissions and group
permissions. In this section we discuss user permissions, but group permissions are handled the same way.

Accessing Permission Management

To access permission management:

1 Log on as Administrator or as a user who has permission to set permissions, as described in Permissions
Definitions on page 388.

2 Click the Manage main menu tab. On the Manage tab, select the Registry management link, and
then click the Permissions button.

3 On the initial Select Principal screen, click Filter, without changing the default settings, to view a list
of all users (principals).

Use the drop down list in this section, labeled Filter: to sort users by Login name or Full
name.

Use the text box to further filter users by name. You can use % as wildcard in this field.

Chapter 4342

Select the radio button labeled User to manage permissions for individual users. Select the button
labeled Group to manage group permissions.

Check the box labeled Show only users/groups with some permission to filter out principals who
have not already been granted permissions.

This returns the list of users shown in Figure 110.

Figure 110. Select Principal

4 Click the Edit icon () associated with the user or group whose permissions you wish to set.

Add Permission

To add permissions:

1 Access permission management as described above in Accessing Permission Management on page
342.

2 On the principal list page shown in Figure 110, click the Edit icon () associated with the group or
user to whom you wish to add permissions. On the returned Permissions page, click Add permission.

3 An Add permissions page much like the one shown in Figure 111 will appear.

343Administrator's Guide

Figure 111. Add Permission

4 • Select the type of permission from the drop down list labeled Permission type.

• From the drop down list labeled Permission name, select the name of the permission to add.

• Check the box(es) next to the actions associated with the permission name in order to grant
permission to perform those actions. Check the box next to the asterisk (*) to permit all the actions
on the list.

5 Click Save Changes to save the permission.

Editing and Deleting Permissions

To edit a permission:

Chapter 4344

1 On the principal list page shown in Figure 110, click the Edit icon () associated with the user whose
permissions you want to edit or delete.

2 If the principal has permissions defined, a permission list like the one shown in Figure 112 will appear.

Figure 112. Permissions List

3 Click the Edit or Delete icon () associated with the permission you want to address.

Assigning Administrator's Permission

If you want to give administrator's permissions to an existing user, you must assign the following permissions
types to the user:

• org.systinet.uddi.security.permission.ApiManagerPermission

• org.systinet.uddi.security.permission.ApiUserPermission

• org.systinet.uddi.security.permission.ConfigurationManagerPermission

For each Permission type set all Permission names and all actions using the asterisk (*)

Taxonomy Management

This chapter describes how administrators can build and maintain taxonomies using the Registry Console.
Before you start to manage taxonomies, we recommend reading User's Guide, Taxonomy: Principles,
Creation and Validation on page 245 to become familiar with taxonomy principles.

The following tasks are described in this chapter:

345Administrator's Guide

• Finding taxonomies - How to locate taxonomies in HP SOA Registry Foundation.

• Uploading a taxonomy

• Downloading a taxonomy

To view the Taxonomy management page:

1 Log on as administrator.

2 Click the Manage tab under the Main menu, and then click on the Registry management link under
the Manage menu tab.

3 Click Taxonomy management. This returns a blank Taxonomy management page. To view a selection
of taxonomies, select a filter from the drop down list labeled Show. Possible filters are:

• Favorite taxonomies

• Enterprise taxonomies

• All taxonomies hide system

• All taxonomies including system

This returns a list of taxonomies similar to that shown in Figure 113.

Chapter 4346

Figure 113. Find Taxonomy (Enterprise Taxonomies)

Use the page shown in Figure 113 to search enterprise taxonomies. You can classify taxonomies according
to the following overlapping groups:

347Administrator's Guide

• Enterprise taxonomies - The HP SOA Registry Foundation administrator can define which taxonomies
will be present in the enterprise taxonomies list. The Enterprise taxonomies button located in the
bottom part of Figure 113 allows you to manage a list of enterprise taxonomies for all registry user
accounts.

• Favorite taxonomies - All registry users can define their list of favorite taxonomies. See User's Guide,
favorite Taxonomies on page 277 for more information on how to manage your list of favorite taxonomies.

• System taxonomies - When you edit a taxonomy you can assign whether the taxonomy is a system
taxonomy using the check box System taxonomy.

The reason for this taxonomy classification is to make taxonomy management and UDDI entity categorization
easier.

If you want to manage taxonomies which are not in the enterprise taxonomy list, select see all taxonomies
including system taxonomies from the drop down list labeled Show. The page shown in Figure 114 will
appear. You can search taxonomies using the following criteria: taxonomy name, type, compatibility, and
validation.

Chapter 4348

Figure 114. Find Taxonomy

349Administrator's Guide

Finding Taxonomies

To locate a taxonomy in HP SOA Registry Foundation:

1 Log on as administrator.

2 Click the Manage tab under the Main menu, and then click on the Registry management link under
the Manage menu tab.

3 Click Taxonomy management. This returns a blank Taxonomy management page. Select a filter from
the drop down list labeled Show. Possible filters are:

• Favorite taxonomies

• Enterprise taxonomies

• All taxonomies hide system

• All taxonomies including system

This returns a list of taxonomies similar to that shown in Figure 113.

4 On the returned Find taxonomy page, you can further filter the results by

a name

b type - Types are discussed in Taxonomy Types on page 246

c compatibility

d validation

5 From the list of taxonomies the fit the filter criteria, select the taxonomy you wish to view by clicking
on its name.

Uploading Taxonomies

To upload a taxonomy:

Chapter 4350

1 Log on as administrator.

2 Click Manage main menu tab, then click on the link Registry management under the Manage menu
tab.

3 A list of taxonomies like the one shown in Figure 114 will appear.

4 Click the Upload taxonomy button.

5 Choose a taxonomy file using the Browse button.

6 Click the Upload taxonomy button.

The format of data on this page is described in the Persistence Format on page 454 of the Developer's
Guide.

To upload multiple taxonomies at once you should add them into one ZIP archive and upload this
archive.

Downloading Taxonomies

There are two obvious cases in which you will want to download a taxonomy from the database:

1 If you are planning to edit the taxonomy, it is good to keep a safe copy for version control. You can
either edit the downloaded copy directly, and even manage it through a versioning system, or keep the
downloaded copy as the safety copy and edit the taxonomy directly through the Registry Console and
save changes directly to the database.

2 You may wish to replicate the taxonomy for other systems in other departments of your organization.
These departments or branches may even tailor the taxonomy for their own purposes.

To download the taxonomy, click the Download () icon. This returns the system Save file dialog. The
default name for the destination file is the taxonomy name with a .xml extension appended. Rename the file
if you choose, then save the taxonomy file as you would any other.

351Administrator's Guide

Deleting Taxonomies

If at any point you decide that a taxonomy is no longer necessary, you can delete it by clicking the Delete
taxonomy icon () in the Find Taxonomy page.

Because this procedure is irreversible you will be asked to confirm your deletion.

Replication Management

Selective One-way Replication is a subscription-based replication mechanism under which a slave registry
retrieves update and change notifications from a master registry. The slave registry then applies these to its
own data.

Replication is set up by a subscription defining the set of businessEntities or tModels being replicated. The
subscription filter is a find_business or find_tModel query with no special requirements.

Each time replication is invoked, the slave registry retrieves a set of changed businessEntities and referenced
tModels. The tModels are referenced in tModelKeys of either tModelInstanceInfos or keyedReferences.
These changes are then saved.

Referenced tModels are only replicated if the slave registry does not already contain them. If a
tModel is already present in the slave registry, it will not be replicated to the slave registry, even
if the tModel has been modified in the master registry.

Replicated data should not be changed because such changes in the slave registry will be lost when
someone changes these entities in the master registry and the replication is automatically processed.
Note also that replicated data should be stored under an account having administrator's privileges
(admin).

Replication may fail or produce warning messages. The failure may occur for one of the following reasons:

• The master registry is not accessible or the connection is broken during data replication;

• Saving/Deleting of a subscribed businessEntity on the slave registry fails.

Chapter 4352

A warning is produced when:

• The subscribed businessEntity is not accessible on the master registry. For example because of ACL
GET denied permission;

• Referenced tModels are not accessible on the master registry;

• Referenced tModels are saved/deleted.

Replication tries to obtain all changes to subscribed data since the last successful replication.

Replication process logs can be found in the REGISTRY_HOME/log/replicationEvents.log file. You can edit the
REGISTRY_HOME/conf/log4j.config and make replication logging more detailed by uncommenting the following
statement:

log4j.category.replication_v3.com.systinet.uddi.replication.v3.ReplicatorTask=DEBUG,replicationLog

Master Registry Setup

To set up the master registry:

1 If you do not have an account on the master registry, you must create one. It can be a standard account.

The default subscription limit for a new user is five. The HP SOA Registry Foundation
Administrator may increase the subscriptions limit for the user.

2 Log into the master registry account.

3 Create a subscription for the replication with the following details:

• The subscription filter must be a find_business or find_tModel query.

• Set the Notification listener type drop down list to None

• The brief option is recommended to reduce the amount of transferred data.

For more information, please see Publishing Subscriptions on page 307.

353Administrator's Guide

Slave Registry Setup

Only the administrator of the slave registry should do this.

There are two parts to the slave registry configuration:

• Master registry information including the location of master registry endpoints for inquiry, subscription
and security APIs, and the username/password pair on the master registry needed to obtain notifications;

• Slave registry information including the username/password pair on the slave registry for the user who
will own the replicated data, and the notification interval.

To set up replication:

1 Log on as Administrator to the slave registry.

2 Click the Manage main menu tab, then click on the link Registry management under the Manage
menu tab.

3 Click Replication management. This returns a list of replications.

4 Click Add replication.

5 Fill in the form under the Master tab as described in Figure 115.

6 Fill in the form under the Slave tab as described in Figure 116.

7 Specify permissions for replicated data under the Permissions tab as shown in Figure 117.

8 Click Save replication.

Chapter 4354

Figure 115. Add Replication Master

• User name - Name of the user who created the replication subscription on the master registry

• Password - Password of the user who created this subscription. This password is encrypted in the
configuration file.

• URLs of Master Registry - All URLs (Inquiry URL, Subscription URL and Security URL) must refer
to the same master registry. Moreover the URLs must not refer to the slave registry itself, otherwise
you can loose some data.

• Inquiry URL - Inquiry URL of master registry. For example,
http://master.mycompany.com:8080/uddi/inquiry. The inquiry URL is used to obtain full standard UDDI
v3 structures.

UDDI v2 keys are not included in the UDDI v3 structure and replicated structures differ
with regard to v2 keys. To replicate v2 keys, specify the URL of the proprietary inquiry

355Administrator's Guide

API, which returns extended structures including v2 keys. This extended API has the context
/uddi/export. For example, http://master.mycompany.com:8080/uddi/export.

• Subscription URL - Master registry's subscription URL. For example,
http://master.mycompany.com:8080/uddi/subscription.

• Security URL - Master registry's security URL. For example,
https://master.mycompany.com:8443/uddi/security.

• Replication subscription key - key of the find_business or find_tModel subscription from the master
registry.

• tModel subscription key - key of the helper subscription for changes to tModels from the master
registry.

Figure 116. Add Replication Slave

Chapter 4356

• Replication name - Name the replication for better orientation within the list of replications.

• Disabled - Check this box to disable replication.

• User name - User account name under which replicated data will be stored.

The user must have the ApiManagerPermission on
org.systinet.uddi.client.v3.UDDI_Publication_PortType API for all * actions to be able to generate
keys without having the appropriate keyGenerator. For more information, see User's Guide,
Generating Keys on page 240. By default, the only user who can do this is the admin.

• Replication period - Specify the period between replications by entering the appropriate number in the
boxes for years, months, days, hours, minutes, and seconds. The default period is one hour.

• Last replication time - The date and time when the last replication occurred.

357Administrator's Guide

Figure 117. Add Replication Permissions

In the page shown in Figure 117, the administrator can set up permissions for replicated data. If you do not
enter any data on this page, all users from the slave registry have find and get permissions on replicated
data.

To specify permissions on replicated data:

1 Enter a filter criteria for users or groups, and click Filter.

2 Check the box in front of users or groups. Then, click the Add selected users button. Selected users
or groups will be added to the permissions list.

3 Click the Edit icon to change permissions for Find, Get, Save and Delete operations

4 Click the Save replication button.

Chapter 4358

Use the button Replicate now on the replication page to test the replication settings.

Replacing UDDI Keys

Replacing keys of businessEntities, businessServices, tModels, and bindingTemplates is intended to correct
errors in keys before entities are commonly used by users.

To access the key replacement page:

1 Log on as administrator.

2 Click the Registry management link under the Manage tab.

3 In the row labeled Replace UDDI keys, click the appropriate button tModel, business, service, or
binding.

The replace key operation can break digital signatures on changing entity as well as on other entities
which reference to the changing entity.

Replacing tModel keys

When you replace a tModel key, the key will be updated in the following data structures:

• tModel

• keyedReferenceGroups

• keyedReferences

• tModelInstanceInfos

• publisherAssertions

• addresses

• taxonomies

359Administrator's Guide

Replacing businessEntity keys

When you replace a businessEntity key, the key will be updated in the following data structures:

• businessEntity

• services

• keyedReferences

Replacing businessService keys

When you replace a businessService key, the key will be updated in the following data structures:

• businessService

• bindingTemplates

• keyedReferences

Replacing bindingTemplate keys

When you replace a bindingTemplate key, the key will be updated in the following data structures:

• bindingTemplate

• keyedReferences

• subscriptions

• hostingRedirector

• accessPoint with bindingTemplate useType

Registry Statistics

Registry statistics include statistics on::

• UDDI structure counts versus limits imposed by the product license;

Chapter 4360

• invocations of registry APIs;

• UDDI structure counts generally;

To access the registry statistics page:

1 Log on as administrator.

2 Click the Registry management link under the Manage tab.

3 Click the Statistics button.

4 The page similar as shown in Figure 118 will appear, summarizing publishing limits imposed by the
product license, current counts and the number remaining.

Figure 118. Statistics - Publication Limits

361Administrator's Guide

5 Click the API Usage tab and you will see a page as in Figure 119 showing the number of requests for
each API, number of unsuccessful requests and datetime of last API call. You can reset count separately
for each API by clicking the Reset button or reset counts for all API by clicking on the Reset all
statistics.

Figure 119. Statistics - API usage

Chapter 4362

6 You can click on the Structure tab. The page similar as shown in Figure 120 appears. On that page
you can see number of UDDI entities stored in HP SOA Registry Foundation.

Figure 120. Statistics - Structure

Management of configuration - User Interface

Configuration Management User Interface is available on the Registry Console, "Manage" tab, "Registry
management" sub-tab (default), Configuration management button.

This management tool has two main parts designed for the following tasks:

1 Inspection of current configurations and their history.

2 Saving configuration states into collections to compare or restore them later.

363Administrator's Guide

Current configurations and their history

View configuration

Figure 121. View of current configurations

This view shows current configurations. You can either sort it alphabetically or by time by clicking on the
relevant column heading. Configurations that are local to a cluster node are displayed for all nodes. You
can switch to the named collections view with the left tab.

Two actions are available:

1 View the current configuration by clicking on the configuration name or in the case of cluster-local
configurations on its Node ID.

2 View all versions of some configuration by clicking on the icon in the last column.

Chapter 4364

When the list is sorted by time the configurations with the same name but different Node IDs are not grouped
together.

All versions

Figure 122. View of all versions

This view shows all versions of a specified configuration. If such a configuration is local, multiple entries
may be marked as latest, one for each node. Latest nodes are also highlighted. The Length of this list is
limited by rules for retaining older configurations (see Configuration in database section).

Clicking on a configuration name will show the configuration which is described in the row.

365Administrator's Guide

Configuration view

Figure 123. Configuration view

This view shows specified configuration information including the content. There are also links to related
versions of the configurations (such as latest, later, older, or oldest). You can see these related configurations
by clicking on the view icon or compare differences between the displayed version and a selected version
by clicking the differences icon in the selected row.

If the displayed configuration is not the latest, a Reactivate button appears in the window. Its function is
to make the displayed configuration active (after confirmation). It does so by adding it as a new configuration
entry with the latest time stamp.

Chapter 4366

Differences

Figure 124. Differences

This view can be invoked from the configuration view. It shows a comparison between two versions of the
configuration. You can alter the options for differences comparison: whether it is case sensitive and whether
the full text is shown or omitted.

367Administrator's Guide

Named collections of configuration

List of named collections

Figure 125. List of named collections

This view shows named collections of configurations which are stored in the database. It also allows you
to capture the current state of configurations into such a collection so that you can later compare or restore
them.

Creating new collections is easy. Just fill in the name and optionally the description of the collection and
press the Make a snapshot button.

Once some collections are created, you can view their contents (by clicking the name) and compare them
to the current set of configurations (by clicking the differences icon).

Chapter 4368

Activation of a collection means that all configurations that the collection holds will be added as new current
configurations. Activation can be done on the collection as a whole (by clicking the icon in this view) or
selectively on specified configurations (by button in the collection configuration view). Before activation
proceeds a confirmation is required.

All Differences

Figure 126. All Differences

369Administrator's Guide

This is what a comparison between a collection and the current set of configurations looks like. It shows
the differences of matching pairs of all configurations. Matching configurations where no differences appear
are listed below. Non-matching configurations (when the configuration appears in the collection only or in
the current set only) are also listed below.

You can alter the options for differences comparison: whether it is case sensitive and whether the full text
is shown or omitted. It is not recommended to show full text in all differences because the resulting page
might get very long.

View collection

Figure 127. View collection

Collection content usually looks like this. When you click on the configuration name its view with actions
is displayed.

Chapter 4370

View configuration

Figure 128. View configuration

This view shows a configuration stored inside a collection. You can see the comparison between this
configuration and the current configuration by clicking on button Differences. You can also make this
configuration the current with the Activate button (after confirmation).

Registry Configuration
Registry configuration is used whenever you want to set up the database, registry parameters, or account
properties.

To access Registry configuration:

371Administrator's Guide

1 Log on as administrator or as a user with privilege to display the Manage tab. For more information,
see Rules to Display the Manage Tab.

2 Click the Manage main menu tab.

3 Select the Registry configuration link under Manage tab. This returns the Registry configuration
panel shown in Figure 129.

Figure 129. Registry Configuration

The Registry configuration panel includes the following tabs:

• Core Config

• Database

• Security

• Account

Chapter 4372

• Group

• Subscription

In this part of the chapter, each of these sections settings is described in detail. Fields marked with an asterisk
(*) are the most important.

Core Config
Threads

Maximum number of threads used in statement execution

The default is 2.

Mail

SMTP Host Name, SMTP Host Port, SMTP Auth User, SMTP Auth Password, Default sender
email, and Default sender name are used to set up the entity that sends emails on behalf the registry
administrator.

Database

This section details how to set up the database connection. The default values are set according to the
database chosen at installation. For details, please see Table 5.

Database installation, that is, creating the database schema and loading basic data, is described in
Database Installation on page 93.

373Administrator's Guide

Figure 130. Registry Configuration - Database

Backend type *

A menu of databases from which to select the vendor of your database.

Hostname *

Database host name or IP address, for example, dbserver.mycompany.com

Port *

Database port number. For default values see Table 5. Note that if you are using the HSQL database,
it is embedded in the same JVM and therefore the port number is ignored in this case.

Chapter 4374

Database Name *

Database name; for example, uddinode

User Name *

User name; uddiuser by default

User Password *

Database user password;uddi by default

Default pool size

Count of concurrent database connections initialized at start time

Max pool size

Maximum count of concurrent database connections. Each request books one connection until the
request is served. If all connections are booked and new request comes in, the connection pool
creates a new connection till the maximum count is reached. If this maximum is reached and new
request comes in, this request must wait for a free connection to be released by a previous request.

Pool cleaning interval

How often database connections are closed over the default count. This value represents time in
hours.

Database cache

This is used for performance optimization.

Table 5. Default Ports for Supported Database Servers

Default PortDatabase

1521Oracle 8i

1433MS SQL 2000 or 2005

6789DB2 8.0

5000Sybase ASE 12.5

5432PostgreSQL

-hsqldb 1.7.3

375Administrator's Guide

Security

On the Security tab, you can configure your digital signature token and key properties.

Figure 131. Registry Configuration - Security

AuthInfo Time Out

Authorization token is obtained by invoking the get_authToken method. This token is used for each
operation on the publishing port. Here you can set up the authorization token time-out in seconds.
The default value is one hour.

Token Creation Time Tolerance

Tolerance interval of token validity, expressed in milliseconds

Token Signature

Whether authorization token is signed. We recommend you toggle this switch on.

Chapter 4376

Account

On this tab, you can specify accounts properties applicable for all HP SOA Registry Foundation user
accounts.

Figure 132. Registry Configuration - Account

Backend type

This field is not editable. Its value is specified during installation.

Default result size

Number of items returned in search results when querying accounts

Confirm registration by email

Check this box if you would like new users to confirm account creation.

377Administrator's Guide

Confirmation URL

URL where new users can confirm registration

Default User Limits. Limits are used as default values only when creating a new account. Accounts that
exist at the time of change are exempt from new limit values. Limits for existing accounts can be updated
with the Account Management tool.

Business entities

Business entity limit; default is 1.

Business services

Number of allowed business services per business entity; default is 4.

Binding templates

Number of allowed bindingTemplates per businessService; default is 2.

TModels

Number of allowed tModels; default is 100.

Publisher assertions

Number of allowed relationship assertions; default is 10.

Subscriptions

Number of allowed subscriptions saved by user. Default is 5.

Group

On this tab, you can specify the properties of the group API.

Backend type

Not editable, this field's value is specified during installation.

Default result size

Number of items returned in search results when querying groups; the default value for this field
is 10.

Subscription

On the Subscription tab, you can configure server limits for subscriptions. If a user saves a subscription
which does not match these limits, the registry automatically adjusts the user's values.

Chapter 4378

Figure 133. Registry Configuration - Subscriptions

There are three fields to configure on this tab:

Min. notification interval

Minimal interval between notifications provided to a subscriber

Sender Pool size

Number of stubs ready for notification

Transformer Cache Size

Number of cached XSLT transformations

Node

On the Node tab, you can configure UDDI node properties.

379Administrator's Guide

Figure 134. Registry Configuration - Node

Default key generator

The Default Key generator tModel allows the Registry to generate keys in the form domain:string
instead of only in the form uuid. For example, uddi:mycompany.com:myservice:61c08bf0-be41-11d8-aa33-
b8a03c50a862 instead of only 61c08bf0-be41-11d8-aa33-b8a03c50a862. Enter the key of the tModel that
is the key generator. For example, if you enter uddi:mycompany.com:myservice:keyGenerator, keys will
be generated with the prefix uddi:mycompany.com:myservice:. For more information, please see
Publisher-Assigned Keys on page 240 in the User's Guide.

Operator name

The name of the operator of the UDDI node. The default entry for this field is configured during
installation.

Operational business key

The key of the Operational business entity. This entity holds miscellaneous registry settings such
as the validation service configuration.

Chapter 4380

Operational business key v2

The key of the Operational business entity in UDDI v2 format.

Web UI URL

The URL of the Registry Console.

tModel deletion

If this box is checked then deleted tModels are deleted permanently. Otherwise, tModels are marked
as deprecated. (Deprecated tModels are visible by direct get tModel call, but do not appear in any
search results.)

Configuration in Database
HP SOA Registry Foundation uses many configuration files. They are stored in REGISTRY_HOME\app\uddi\conf
and REGISTRY_HOME\work\uddi\bsc.jar\conf directories. Some of them may be changed during setup or with
web interfaces.

Each such configuration file is an XML file containing tag config with some information about how the
configuration file is used.

These attributes are generally recognized:

Table 6. Attributes of config tag

Default valueOptionalMeaningAttribute

 noconfiguration namename

falseyestrue when the file is local to the cluster nodelocal

falseyeswhen true the file is stored in the database on HP SOA
Registry Foundation start

updateDB

trueyeswhen false configuration history is not loggedhistory

2000yesdelay before changes in memory are written to file in
milliseconds

savingPeriod

The most important attribute is name which is the identifier by which HP SOA Registry Foundation tries to
find the configuration. Some configuration files have attribute local set to true. That means that the
configuration is only used by this HP SOA Registry Foundation and other Registries in the cluster will not

381Administrator's Guide

share it. Other nodes will have their own independent versions. These cluster nodes are distinguished by
the Node ID which is specified inside nodeid.xml. If its value is empty, a unique ID will be generated at HP
SOA Registry Foundation startup.

The configuration files are always present in the directories, however their copy is in the database. If a
configuration file is present in both database and file-system, the one in the database has priority. After the
initial startup of HP SOA Registry Foundation all configurations are put into the database. When HP SOA
Registry Foundation needs to change some configuration settings it does so in the both the database and
file-system.

If a user or another program like HP SOA Registry Foundation setup wants to edit the configuration file
the priority of the configuration in database has to be overridden. This can be done in two ways:

1 By setting attribute updateDB to true in the top-level tag config in all configuration files where
modifications have been done. Once HP SOA Registry Foundation starts, the attribute will be
automatically removed.

2 By setting attribute updateDBAll (see in table below) to true in tag dbconfig in database.xml Once HP
SOA Registry Foundation starts the attribute will be automatically cleared. There can be also time
stamp in this attribute in format like 20070321133058 where digits denote year, month, day of month,
hour, minute, and second in GMT time zone. Such time stamp is compared to time stamp in database.
When config files have more recent time, they will be put in database on HP SOA Registry Foundation
start. When stamp in database is more recent, database version will be used. In both cases the attribute
will be cleared.

Time stamp in updateDBAll is used by setup. Each time setup task is run it updates time stamp except
for task that do not modify configuration files like drop database and backup. Purpose of the time
stamp is to prevent overwritting current configuration with old one while redeploying same EAR/WAR
file to application server.

When HP SOA Registry Foundation operates in cluster mode the other means than the time stamp is
used for synchronization. Clocks on cluster nodes are assumed to be not enough precise for that, but
enough precise for redeployment and configuration changes. There is only one time stamp in
database.xml, individual configuration files allow only true/false values in updateDB attribute.

The other important configuration setting for configurations is inside the database.xml file, in the dbconfig
tag. The tag has following attributes:

Chapter 4382

Table 7. Attributes of dbconfig tag

Default
value

OptionalMeaningAttribute

10yesnumber of latest configuration versions that are not
deleted

configRetainCount

10yesage of configuration version before it can be deletedconfigRetainMinutes

5yesage of event information before it can be deletedeventRetainMinutes

falseyeswhen true all configuration files will be stored in the
database at HP SOA Registry Foundation startup,
can be also a time stamp

updateDBAll

HP SOA Registry Foundation setup automatically sets the updateDBAll attribute when its operation
has been successful so that all changed configurations will be stored in the database at HP SOA
Registry Foundation startup. This is usually desirable behavior.

When HP SOA Registry Foundation encounters an identical configuration in the database to the
one that is being stored (e.g. when set updateDB or updateDBAll is encountered) then the store operation
is ignored. This may be surprising as there would be no entry in the log of configurations, however
the resulting state of the configurations is correct.

The database not only holds the current set of configurations but also their history in a log. You can monitor
configuration changes, what the previous content was, or let HP SOA Registry Foundation show you
differences between versions. This configuration history log is purged every few minutes. Old configurations
are not retained indefinitely. There are rules on how many older versions are left there and the age of a
configuration before it can be deleted. The purpose of these rules is to avoid running out of space in the
database and yet still have information about recent changes. Rules can be configured inside tag dbconfig
in database.xml. Their defaults are in the table above. Default settings specify that there must be at least
configRetainCount new versions of the configuration before it can be deleted automatically. Also, the
configuration has to be older than configRetainMinutes before it can be deleted automatically. This allows
the correction of most non-fatal configuration errors after an invalid change or to track which configuration
change might have caused unexpected behavior.

383Administrator's Guide

To allow easy comparison of current and older configurations or try-then-rollback scenarios, the current
set of configurations can be stored into a named collection of configurations. These collections are not
deleted automatically. They allow you to store a configuration that works correctly and compare it with the
current version if something breaks later. You can then activate the old one if needed or change the incorrect
setting manually.

Backup tool in setup can store both file and database configurations. You can select which you
want to backup.

Configurations in the database can be managed with the "Configuration Management" component of Registry
Console. You can find it under tab Manage, then Registry management sub-tab (default), then Configuration
Management button.

Registry Console Configuration
This section provides you with a catalog of web engine parameters.

Initially almost every web engine parameter is set correctly by default.

To access the Registry Console configuration:

1 Log on as administrator.

2 Click the Manage menu tab.

3 Click Registry console configuration link under the Manage tab. This returns the configuration screen
shown in Figure 135. The Registry Console Configuration screen has two tabs:

• On the Web Interface tab, you can set various parameters associated with HP SOA Registry
Foundation's interface.

• On the Paging tab, configure the number of rows per page and the maximum number of pages
associated with the returns of various searches.

Note that on both tabs there is a button labeled Reload Configuration. When you change a registry
configuration file directly, and save it, use this button to put the configuration changes into effect.

Chapter 4384

Web Interface Configuration

Figure 135. Registry Console Configuration - Web Interface Tab

Field description:

• URL - nonsecure registry URL

• Secure URL - secure registry URL

• Context - context of the Registry Console URL

• Data context - context where static objects such as JavaScript and images are stored

• JSP directory - location of JSP pages relative to $REGISTRY_HOME/work/uddi

• Upload directory - upload directory used for tasks such as uploading taxonomies

385Administrator's Guide

• Maximum upload size - maximum upload size in bytes

• Server session timeout - session timeout (measured in seconds)

• Name cache timeout - cache timeout for the names of UDDI structures. If someone renames a UDDI
structure, the Registry Console will load the new name after this interval has passed (measured in
seconds).

• Entity cache enabled - If you check this check box, entities will be cached.

Click Save configuration when finished.

Chapter 4386

Paging Configuration

Figure 136. Registry Console Configuration - Paging Tab

Paging limits - On this tab, you can specify how many records and on how many pages searched data will
appear. Click Save configuration when finished.

Permissions: Principles
Permissions in HP SOA Registry Foundation were developed so that administrators might exercise control
over users. Permissions:

387Administrator's Guide

• Provide a simple mechanism for the management of users' rights in HP SOA Registry Foundation.

• Allow the administrator to manage or make available different parts of the registry to different users.

• Help HP SOA Registry Foundation better reflect the real world where there are many roles with different
responsibilities.

This chapter describes permissions in detail with some examples and a description of permission
configuration.

Permission is defined as the right to perform an action on some interface. Put another way: permission is
the ability to process some method on some interface. Permissions are very different from the other
mechanism for rights in HP SOA Registry Foundation, the Access Control List.

Access Control enables the user to control access to the basic UDDI data structures (businessEntity,
businessService, bindingTemplate, and tModel). Access Control on HP SOA Registry Foundation is provided
by the Access Control List (ACL). The ACL is based on permissions given to a user or group. In the context
of ACL, this means that a given user can access only that information in HP SOA Registry Foundation
made available to the user by the registry administrator or other users. For more information about the
Access Control List, see the Access Control chapter in the User's guide.

Access Control Lists limit the visibility of entities and so restrict the access to data in HP SOA Registry
Foundation. Permissions on the other hand restrict access to interfaces. The ACLs restrain users by the
restricting the visibility of UDDI structures. Permissions limit users through the visibility of interfaces.

Permissions Definitions

There are two basic kinds of permission:

• The first, consisting of ApiUserPermission and ApiManagerPermission, is used to restrict access for
some users on some interfaces.

• The second, ConfigurationManagerPermission, is used to restrict the ability to change configurations
in HP SOA Registry Foundation.

ApiUserPermission

ApiUserPermission consists of the interface's name and method from the given interface. This
permission provides the user common access to the specified method on the given API.

Chapter 4388

ApiUserPermission enables the user to call methods on an interface as a common user. Users
usually must have this permission to perform any call.

ApiManagerPermission

ApiManagerPermission also consists of the names of an interface and of a method. This permission
allows the user to call a determined method on the given API. It is very similar to
ApiUserPermission. The only difference is in the user's significance. If a user has
ApiManagerPermission, that user is considered to be a privileged user. There are many API calls
where the result depends on user's importance.

ConfigurationManagerPermission

ConfigurationManagerPermission consists of configuration files and a method's name. The name
of the method is either get or set. The ConfigurationManagerPermission combined with the get
method allows user to read (get) data from the configuration file. On the other hand, the
ConfigurationManagerPermission combined with the set method enables the user to write to the
configuration.

HP SOA Registry Foundation Permission Rules

The following permissions' rules are always valid:

• Permission is the ability to process a method on an API.

• Permission contains the type of permission (ApiUserPermission, ApiManagerPermission,
ConfigurationManagerPermission), the name (interface's or config's name) and an action (method's
name).

You are allowed to use the asterisk wildcard (*) to substitute all names - names of interfaces,
configurations, or actions.

• There is no hierarchy in permissions. The ability to set permission for users is also a permission (for
some methods on PermissionApi).

• The HP SOA Registry Foundation administrator has all permissions for all methods on all APIs.

• Permissions are always positive. This means that permissions say what is possible or allowed. Permissions
allow user to perform an action (some method on some API). Any action that is not expressly permitted
is denied.

389Administrator's Guide

• Permissions can be set for an individual user or for a group of members. Each user is member of the
group system#everyone, therefore every user has the default permissions associated with this group.

For more information, see Data Access Control: Principles on page 233

Setting Permissions

This section describes the configuration of permissions. The setting of permissions is written from the
administrator's point of view.

There are three basic ways to set permissions for a user:

• By performing methods on PermissionApi. A user can call these methods only if that user has the
appropriate permissions.

• By calling methods via SOAP or via the Registry Console.

• By changing permissions directly in the configuration file.

The PermissionApi contains several methods for managing permissions. These methods are described below:

get_permission

Used for obtaining all of a user's permissions. A user possessing the ApiManagerPermission can obtain
permissions of other users. A user with only ApiUserPermission, can only discover his or her own
permissions.

Note that users who have neither ApiUserPermission nor ApiManagerPermission for a method on
PermissionApi, cannot call this method.

set_permission

Provides users the ability to set permissions for other users. It is necessary to possess
ApiManagerPermission for this call.

get_permissionDetail

Similar to get_permission, this method can be called for more than one user at a time.

get_permission takes a principal as the input parameter. On the other hand, get_permissionDetail
takes an array of principals as the input parameter. If you want to find out the permissions of three
users, you can call get_permission three times or you can call get_permissionDetail once.

Chapter 4390

who_hasPermission

Enables a user to find out who owns a given permission.

It is not recommended to change permissions directly in the configuration file. However, if the
administrator wants to change default permissions for new users (meaning changing permissions
for the group system#everyone), there is no other possibility. Before making any changes to these
permissions, we strongly recommend making a reserve copy of the configuration. The permissions
for special users or groups are stored in the file permission_list.xml.

Permissions and User Roles

Many systems use user roles in addition to permissions. A user role is usually a set of permissions; it can
be predefined in the system or be user-defined. In HP SOA Registry Foundation, the user roles mechanism
is implemented by groups. The administrator is allowed to set permissions not only for individual users but
also for groups. Instead of restricting the relationship to users and roles, it is possible to create groups, set
permissions for them and then add users into these groups. This "group" mechanism in HP SOA Registry
Foundation is nearly the same as user role mechanism and it is used instead of user roles.

HP SOA Registry Foundation contains the following built-in groups that represent basic roles. Each role
has appropriate permissions already defined. So, administrator can set simply permissions by adding users
into these groups. For more information, see Group Management on page 339.

accountManagerGroup

Members of the group accountManagerGroup are able to manage accounts. For example, they can
create new accounts, edit and delete existing ones.

administrationUtilsManagerGroup

Members of the group administrationUtilsManagerGroup are able to use administration utilities. For
example, they can delete tModels permanently, replace keys, replace URLs.

bscConfiguratorGroup

Members of the group bscConfiguratorGroup are able to configure settings for Business Service
Console.

configuratorGroup

Members of the group configuratorGroup are able to configure setting for HP SOA Registry
Foundation. This means that they can set consoles, database, mail settings and so on.

391Administrator's Guide

groupManagerGroup

Members of the group groupManagerGroup are able to manage groups. For example, they can create
new groups, edit or delete existing ones.

permissionManagerGroup

Members of the group permissionManagerGroup are able to manage permissions. For example, they
can add permission to some principal or remove permission from some principal.

replicationManagerGroup

Members of the group replicationManagerGroup are able to manage replication. For example, they
can create new replication or manage the existing one.

statisticsManagerGroup

Members of the group statisticsManagerGroup are able to view or reset statistics.

taxonomyManagerGroup

Members of the group taxonomyManagerGroup are able to manage taxonomies. For example, they can
upload or delete taxonomy.

webConfiguratorGroup

Members of the group webConfiguratorGroup are able to configure Registry Console.

ApiManagerPermission Reference

ApiManagerPermission allow user to use operation in a privileged mode. The following tables explain what
does it mean for certain APIs and operations.

Table 8. Account API (org.systinet.uddi.account.AccountApi)

Descriptionoperation (action)

Not used.find_userAccount

Allows to get foreign account.get_userAccount

Allows to save/update any account. Allows to set up non default limits. Allows to
skip mail confirmation (if it is required).

save_userAccount

Allows to delete any account.delete_userAccount

Not used.enable_userAccount

Chapter 4392

Table 9. Admin Utils API (org.systinet.uddi.admin.AdministrationUtilsApi)

Descriptionoperation (action)

Allows to call the deleteTModel operation. (ApiUserPermission is not sufficient to
call the operation.)

deleteTModel

Allows to call the replaceKey operation. (ApiUserPermission is not sufficient to call
the operation.)

replaceKey

Allows to call the cleanSubscriptionHistory operation. (ApiUserPermission is not
sufficient to call the operation.)

cleanSubscriptionHistory

Allows to call the resetDiscoveryURLs operation. (ApiUserPermission is not sufficient
to call the operation.)

resetDiscoveryURLs

Allows to call the transform_keyedReferences operation. (ApiUserPermission is not
sufficient to call the operation.)

transform_keyedReferences

Allows to call the rebuild_cache operation. (ApiUserPermission is not sufficient to
call the operation.)

rebuild_cache

Allows to call the replaceURL operation. (ApiUserPermission is not sufficient to
call the operation.)

replaceURL

393Administrator's Guide

Table 10. Category API (org.systinet.uddi.client.category.v3.CategoryApi)

Descriptionoperation (action)

Allows to call the set_category operation. (ApiUserPermission is not sufficient to
call the operation.)

set_category

Allows to call the add_category operation. (ApiUserPermission is not sufficient to
call the operation.)

add_category

Allows to call the move_category operation. (ApiUserPermission is not sufficient
to call the operation.)

move_category

Allows to call the delete_category operation. (ApiUserPermission is not sufficient
to call the operation.)

delete_category

Not used.find_category

Not used.get_category

Not used.get_rootCategory

Not used.get_rootPath

Table 11. Custody API (org.systinet.uddi.client.custody.v3.UDDI_CustodyTransfer_PortType)

Descriptionoperation (action)

Allows to call the get_transferToken operation on foreign entities.get_transferToken

Allows to call the discard_transferToken operation on foreign tokens.discard_transferToken

Chapter 4394

Table 12. Group API (org.systinet.uddi.group.GroupApi)

Descriptionoperation (action)

Allows to find foreign private groups.find_group

Allows to get foreign private groups.get_group

Allows to save/update foreign groups.save_group

Allows to delete foreign groups.delete_group

Not used.where_amI

Not used.find_user

Not used.add_user

Not used.remove_user

Table 13. Inquiry V1 API (org.systinet.uddi.client.v1.InquireSoap)

Descriptionoperation (action)

Allows to find all bindingTemplates despite ACL rights.find_binding

Allows to find all businessEntities despite ACL rights.find_business

Allows to find all services despite ACL rights.find_services

Allows to find all tModels despite ACL rights.find_tModel

Allows to get any bindingTemplate despite ACL rights.get_bindingDetail

Allows to get any businessEntity despite ACL rights.get_businessDetail

Not used.get_businessDetailExt

Allows to get any businessService despite ACL rights.get_serviceDetail

Allows to get any tModel despite ACL rights.get_tModelDetail

395Administrator's Guide

Table 14. Inquiry V2 API (org.systinet.uddi.client.v2.Inquire)

Descriptionoperation (action)

Allows to find all bindingTemplates despite ACL rights.find_binding

Allows to find all businessEntities despite ACL rights.find_business

Allows to find all related businessEntities despite ACL rights.find_relatedBusinesses

Allows to find all services despite ACL rights.find_services

Allows to find all tModels despite ACL rights.find_tModel

Allows to get any bindingTemplate despite ACL rights.get_bindingDetail

Allows to get any businessEntity despite ACL rights.get_businessDetail

Not used.get_businessDetailExt

Allows to get any businessService despite ACL rights.get_serviceDetail

Allows to get any tModel despite ACL rights.get_tModelDetail

Table 15. Inquiry V3 API (org.systinet.uddi.client.v3.UDDI_Inquiry_PortType)

Descriptionoperation (action)

Allows to find all bindingTemplates despite ACL rights.find_binding

Allows to find all businessEntities despite ACL rights.find_business

Allows to find all related businessEntities despite ACL rights.find_relatedBusinesses

Allows to find all services despite ACL rights.find_services

Allows to find all tModels despite ACL rights.find_tModel

Allows to get any bindingTemplate despite ACL rights.get_bindingDetail

Allows to get any businessEntity despite ACL rights.get_businessDetail

Not used.get_operationalInfo

Allows to get any businessService despite ACL rights.get_serviceDetail

Allows to get any tModel despite ACL rights.get_tModelDetail

Chapter 4396

Table 16. Permission API (org.systinet.uddi.permission.PermissionApi)

Descriptionoperation (action)

Allows to call the get_permission operation on foreign accounts and groups.get_permission

Allows to call the set_permission operation. (ApiUserPermission is not sufficient to
call the operation.)

set_permission

Allows to call the who_hasPermission operation. (ApiUserPermission is not sufficient
to call the operation.)

who_hasPermission

Allows to call the find_principal operation. (ApiUserPermission is not sufficient to
call the operation.)

find_principal

Table 17. Publishing V1 API (org.systinet.uddi.client.v1.PublishSoap)

Descriptionoperation (action)

Allows deletion of any bindingTemplate despite ACL rights.delete_binding

Allows deletion of any businessEntity despite ACL rightsdelete_business

Allows deletion of any businessService despite ACL rightsdelete_service

Allows deletion of any tModel despite ACL rightsdelete_tModel

* Allows to update any bindingTemplate or create new bindingTemplate in any
businessService despite ACL rights. * Skips bindings limit checking.

save_binding

* Allows to update any businessEntity despite ACL rights. * Skips businesses limit
checking.

save_business

* Allows to update any businessService or create new businessService in any
businessEntity despite ACL rights. * Skips services limit checking.

save_service

* Allows to update any tModel despite ACL rights. * Skips tModels limit checking.save_tModel

Default in system#everyone group. When removed, only other authentication methods
will work.

get_authToken

Default in system#everyone group.discard_authToken

Not used.get_registeredInfo

Not used.validate_categorization

397Administrator's Guide

Table 18. Publishing V2 API (org.systinet.uddi.client.v2.Publish)

Descriptionoperation (action)

Allows deletion of any bindingTemplate despite ACL rights.delete_binding

Allows deletion of any businessEntity despite ACL rightsdelete_business

Allows deletion of any businessService despite ACL rightsdelete_service

Allows deletion of any tModel despite ACL rightsdelete_tModel

* Allows to update any bindingTemplate or create new bindingTemplate in any
businessService despite ACL rights. * Skips bindings limit checking.

save_binding

* Allows to update any businessEntity despite ACL rights. * Skips businesses limit
checking.

save_business

* Allows to update any businessService or create new businessService in any
businessEntity despite ACL rights. * Skips services limit checking.

save_service

* Allows to update any tModel despite ACL rights. * Skips tModels limit checking.save_tModel

Skips assertions limit checking in add_publisherAssertions operation.add_publisherAssertions

Skips assertions limit checking in set_publisherAssertions operation.set_publisherAssertions

Not used.delete_publisherAssertions

Not used.get_publisherAssertions

Not used.get_assertionStatusReport

Default in system#everyone group. When removed, only other authentication methods
will work.

get_authToken

Default in system#everyone group.discard_authToken

Not used.get_registeredInfo

Chapter 4398

Table 19. Publishing V3 API (org.systinet.uddi.client.v3.UDDI_Publication_PortType)

Descriptionoperation (action)

Allows deletion of any bindingTemplate despite ACL rights.delete_binding

Allows deletion of any businessEntity despite ACL rightsdelete_business

Allows deletion of any businessService despite ACL rightsdelete_service

Allows deletion of any tModel despite ACL rightsdelete_tModel

* Allows to update any bindingTemplate or create new bindingTemplate in any
businessService despite ACL rights. * Skips bindings limit checking.

save_binding

* Allows to update any businessEntity despite ACL rights. * Skips businesses limit
checking.

save_business

* Allows to update any businessService or create new businessService in any
businessEntity despite ACL rights. * Skips services limit checking.

save_service

* Allows to update any tModel despite ACL rights. * Skips tModels limit checking.save_tModel

Skips assertions limit checking in add_publisherAssertions operation.add_publisherAssertions

Skips assertions limit checking in set_publisherAssertions operation.set_publisherAssertions

Not used.delete_publisherAssertions

Not used.get_publisherAssertions

Not used.get_assertionStatusReport

Not used.get_registeredInfo

Table 20. Replication V3 API (org.systinet.uddi.replication.v3.ReplicationApi)

Descriptionoperation (action)

Allows to call the replicate operation. (ApiUserPermission is not sufficient to call
the operation.)

replicate

399Administrator's Guide

Table 21. Statistics API (org.systinet.uddi.statistics.StatisticsApi)

Descriptionoperation (action)

Allows to call the get_accessStatistics operation. (ApiUserPermission is not sufficient
to call the operation.)

get_accessStatistics

Allows to call the reset_accessStatistics operation. (ApiUserPermission is not
sufficient to call the operation.)

reset_accessStatistics

Allows to call the get_structureStatistics operation. (ApiUserPermission is not
sufficient to call the operation.)

get_structureStatistics

Table 22. Subscription V3 API
(org.systinet.uddi.client.subscription.v3.UDDI_Subscription_PortType)

Descriptionoperation (action)

Allows to delete any subscription despite the caller is not a subscription owner.delete_subscription

* Allows to update any subscription despite the caller is not a subscription owner. *
Skips subscription limit checking.

save_subscription

Allows to get result of any subscription despite the caller is not a subscription owner.get_subscriptionResults

Allows to get any subscription despite the caller is not a subscription owner.get_subscriptions

Chapter 4400

Table 23. Taxonomy API (com.systinet.uddi.taxonomy.v3.TaxonomyApi)

Descriptionoperation (action)

Allows to obtain all categories in the taxonomy.get_taxonomy

Not used.find_taxonomy

Allows to call the save_taxonomy operation. (ApiUserPermission is not sufficient
to call the operation.)

save_taxonomy

Allows to call the delete_taxonomy operation. (ApiUserPermission is not sufficient
to call the operation.)

delete_taxonomy

Allows to call the download_taxonomy operation. (ApiUserPermission is not sufficient
to call the operation.)

download_taxonomy

Allows to call the upload_taxonomy operation. (ApiUserPermission is not sufficient
to call the operation.)

upload_taxonomy

PStore Tool
The PStoreTool provides HP SOA Registry Foundation Protected Store management. It provides functionality
to:

• Import and export trusted certificates locally to or from a file.

• Create new security identities in the HP SOA Registry Foundation configuration file.

• Copy identities between protected stores.

Use SSL Tool on page 410 to import and export a key entry to or from HP SOA Registry Foundation
protected store.

Remote protected store management via SOAP is not supported with HP SOA Registry Foundation.

The general usage is:
PStoreTool [command [options]]

401Administrator's Guide

You can perform operations from the command line or start up a GUI interface.

Commands

The PStore tool has the following commands (see also Options on page 403):

• new - Creates a new security identity in the local protected store. The configuration file of the protected
store can be specified using the -config parameter.

• newServer - Creates a new security identity on HP SOA Registry Foundation. The location of the server
is specified with the -url parameter.

• copy - Copies the existing security identity from one protected source to another or to the HP SOA
Registry Foundation protected store.

• add - Adds a trusted X.509 certificate to the local protected store. The X.509 certificate can be supplied
as a local file.

This command can also add mapping between the security identity alias and the X.509 certificate to the
user store part of the protected store. (The certificate is needed only for the server-side protected store.)
This can be requested by using -user with the -alias option.

• addServer - Adds a trusted certificate to HP SOA Registry Foundation. This command also adds the
mapping between the security identity alias and its X.509 certificate to the user store part of the HP
SOA Registry Foundation protected store. The certificate can be given in the local file or can be fetched
from the local protected store. The configuration file can be specified using the -config option.

• remove - Removes the given alias from the local protected store. This command can also remove an
alias from the user store part of the protected store using the -user option. When removing a mapping
from the user store, the X.509 certificates mapped to the given alias are also removed from the key
store.

• removeServer - Removes a given alias from the protected store. The alias is removed from the user
store part of the protected store if it is not found in the key store. When removing mapping from the
user store part, the X.509 certificates mapped to the given alias are also removed from the key store.

• lsTrusted - Displays a list of the trusted certificate's Subject-distinguished names from the local protected
store.

Chapter 4402

• lsTrustedServer - Displays a list of the trusted certificate's Subject distinguished names from the server.

• list - Displays all aliases contained in the key store part of the local protected store.

• listServer - Displays all aliases contained in the key store part of the HP SOA Registry Foundation
protected store.

• export - Exports the X.509 certificate chain stored in the key store or in the user store of the local
protected store with the given alias.

• exportServer - Exports the X.509 certificate chain stored in the key store or in the user store of the
protected store with the given alias.

• gui - Launches the graphical version of this tool.

Options

The PStore tool has the following options:

• -alias alias - This option must be used with a command that refers to an alias.

• -keyPassword password - Password for encrypting/decrypting the security identity private key.

• -subject subjectDN - Subject-distinguished name to be used in the generated X.509 certificate.

• -config configPath - File and path to the configuration file to be used during command execution for
the source of the local protected store.

• -username username - Username for authentication process. Not required if the HP SOA Registry
Foundation server is unsecured.

• -password password - Password for authentication process. Not required if the server is unsecured.

• -secprovider provider - Authentication mechanism used during the authentication process. Not required
if the server is unsecured.

• -certFile certPath - File and path to the X.509 certificate stored in a local file.

• -user - Indicates that a command should be executed only with the contents of the user store of the
protected store.

403Administrator's Guide

• -config2 secondConfigPath - Path to the second configuration file. Used for the copy command, when
copying an identity from one local protected store to another.

PStore Tool - GUI Version

You can add, edit, or remove any user properties in the user store. You can also add, edit, and remove
certificates and identities in the key store. You can do all of this with a local file containing the protected
store.

Figure 137. PStore Tool

Running the GUI PStore Tool

To run the graphical version of this tool, use gui as parameter with the PStoreTool command.
PStoreTool gui

Chapter 4404

Opening and Closing the Protected Store

Opening Protected Store from a File

The GUI PStore Tool can manipulate every protected store in a file. To manipulate the client's protected
store, open clientconf.xml. To open the server protected store, open pstore.xml.

To open protected store from file, select Open From File... from the PStore menu. This returns the file
chooser dialog. Select the file you want to open as shown in Figure 138.

Figure 138. Open Protected Store from a File

Closing Protected Store

To close the protected store, select Close from the PStore menu.

405Administrator's Guide

Open Next Protected Store

In some cases you need to work with more than one protected store at the same time. Typically you want
to copy certificates from one protected store to another. To open another protected store, select the New
Window from the PStore menu. New windows appear. Now you can open the protected store from a file.

Copy Data Between Protected Stores

With the PStore Tool, you can manipulate more than one protected store at the same time. You can simply
copy identities, certificates, users, and user properties from one protected store to another using the Copy
and Paste actions located in context menus of the Aliases, Users, and Properties panels.

When you copy data from one area to another, the Paste action is disabled for some categories of
data. This means that data may be copied, but cannot be pasted to the selected area. For example,
the password property from the user store cannot be pasted to the key store.

Key Store

To work with the key store, select the Key Store tab. This tab has two panels. The left side has a list of all
entries. The right has detailed information for the selected entry.

Chapter 4406

Figure 139. Key Store Tab

Create New Identity

To create a new identity, select New Identity... from the Key Store menu. This opens a dialog for information
such as Alias, Distinguished Name, and Password. (The Distinguished Name is not mandatory.) If the
specified information is valid, the new identity will be added to the key store with the specified Alias.
Otherwise an error dialog will be returned.

Key Store Trust

If you want to trust a key entry, select Trust from the Key Store menu. This action is available only for
the key entry type.

407Administrator's Guide

Import Alias

To import a certificate from a file into the key store, select Import Alias from the Key Store menu. This
opens a dialog in which you can specify Alias, Type, and value that depend on the entry type. In the current
implementation, you can import only the certificate chain entry type.

Remove Alias

To remove an alias from the key store, select the alias you want to remove and select Remove Alias from
the Key Store menu. You can remove several aliases at once.

Refresh Aliases

To synchronize information shown in this tool with the original key store source, perform a refresh by
selecting Refresh Aliases from the Key Store menu.

Alias Details Panel

It is not surprising that the Details panel has more details about the selected alias. This panel shows details
that depend on the entry type. You can also change this value. If you want to store a new value, press the
Apply Changes button. To return to the original value, press Restore.

User Store

There are three panels on the User Store tab. The left side has a list of all entries. On the right top are
properties available for the selected user. On the right bottom is detailed information for the selected user
property.

Chapter 4408

Figure 140. User Store Tab

Add User

To add a new user, select Add User from the User Store menu. This opens a dialog for entering the
Username. Press OK when done.

Remove User

To remove a user from the user store, select the user you want to remove and choose Remove User from
the User Store menu. You can remove several users at once.

Refresh Users

Refresh synchronizes information shown in this tool with the original user store source. To refresh, select
Refresh Users from the User Store menu.

409Administrator's Guide

Add Property

To add a new user property, select Properties and Add Property from the User Store menu. This returns
a dialog for the property you want to create and its value.

Remove Property

To remove one or more user properties from the user store, select them and select Properties and Remove
Property from the User Store menu.

Refresh Properties

To synchronize information on the Properties panel with the original user store source, perform a refresh.
Select Properties and Refresh Properties from the User Store menu.

User Properties Details Panel

The Details panel has more information about user properties that depend on the property type. Select the
property you want to see. You can also change this value. If you want to store a new value press Apply
Changes.

To return to the original value, press Restore.

SSL Tool
The sslTool helps with setup of SSL on the client side of HP SOA Registry Foundation. The general usage
is:
sslTool [command [options]]

The SSL tool has the following commands:

• serverInfo - Prints out security requirements of an SSL server and saves a server certificate to a file.

• encrypt - Prints out the encrypted form of a password supplied as plain text. Encrypted passwords are
used in the configuration files of HP SOA Registry Foundation.

• pstoreEI - Exports and imports a java keystore to or from the HP SOA Registry Foundation Protected
Store. Both PKCS12 and JKS keystores are supported. The type of a supplied keystore is automatically
detected during import.

Chapter 4410

Running the sslTool with a command followed by a --help option prints out a complete help for the command.
See SSL Tool Examples on page 411 for the most typical usage.

SSL Tool Examples

To print out security requirements of an SSL server:

sslTool serverInfo --url https://localhost:8443

To print out security requirements of an SSL server and save server certificates:

sslTool serverInfo --url https://localhost:8443 --certFile /tmp/sever.cer

To print out an encrypted password for use in HP SOA Registry Foundation configuration files:

sslTool encrypt --password changeit

To import a key entry from a java keystore to HP SOA Registry Foundation client Protected Store:

sslTool pstoreEI -i --keystore /tmp/java.keystore
 --storepass changeit --alias mykey --keypass changeit
 --pstore ../conf/clientconf.xml
 --pstoreAlias registryclient --pstoreKeypass changeit2

To export a key entry from HP SOA Registry Foundation Protected Store to a java keystore:

sslTool pstoreEI -e --keystore /tmp/java.keystore2
 --storepass changeit --alias mykey --keypass changeit
 --pstore ../conf/clientconf.xml
 --pstoreAlias registryclient --pstoreKeypass changeit2

Associating an SSL client identity with a registry client

Instructions on how to associate an SSL client identity with a registry client are explained in Example Client
on page 546. In this case, a key entry must be imported to registry's client protected store, which is the

411Administrator's Guide

conf/clientconf.xml file of the registry installation directory and a few system properties must be added to
a script that runs the client application.

There are also cases where a registry acts as a client to another registry. These include:

• Communication between nodes in a clustered HP SOA Registry Foundation.

Associating an SSL client identity with a HP SOA Registry Foundation server can be done in the
app/uddi/conf/security.xml file of a registry installation directory (or deployed package for a deployed
registry) by adding the destinationConfig elements. A fragment of the security.xml with example
destinationConfig elements is shown in Example 1 on page 412.

Example 1: Association of client identities with a registry server

<?xml version="1.0" encoding="UTF-8"?>
<config name="security" savingPeriod="5000">
 ...
 <security>
 ...
 </security>
 <!-- For communication with other nodes in the cluster -->
 <destinationConfig>
 <alias>clusterClient</alias>
 <password_coded>gNFDFWMNdkU=</password_coded>
 <destination proxyName="com.systinet.uddi.configurator.cluster.ConfiguratorManagerStub"/>
 <destination proxyName="com.systinet.uddi.configurator.cluster.ConfiguratorListenerStub"/>
 </destinationConfig>
 <!-- For communication via registry client to services accessible
 at URLs that start with https://pc1.mycom.com or https://pc2.mycom.com -->
 <destinationConfig>
 <alias>otherClient</alias>
 <password_coded>Vr+i+UzC2WLJXWg0ih6J+Q==</password_coded>
 <destination url="https://pc1.mycom.com/*"/>
 <destination url="https://pc2.mycom.com/*"/>
 </destinationConfig>
</destinationConfig>

</config>

There can be more destinationConfig elements. A destinationConfig element is used to associate a particular
SSL client identity with a set of destinations. It contains:

Chapter 4412

• alias in the server protected store. A key entry with the same name as the alias must exist in a server's
Protected Store. This key entry represents security material used to establish SSL with a destination
server. The HP SOA Registry Foundation server Protected Store is in the conf/pstore.xml file of a registry
deployment package. Use this file when importing a key entry from a java keystore, as shown in SSL
Tool Examples on page 411.

• password_coded element, which contains the encrypted password that is used to access a private key stored
under the alias supplied. See SSL Tool Examples on page 411 for an example that prints out the encrypted
form of a password supplied in plain text.

• One or more destination elements each specify a rule. The rule can contain url or proxyName attributes.
The rule matches when a client use a proxy class specified by the proxyName attribute or connects to a
URL that is specified by the url attribute. The value of the url can end with a wildcard * to specify a
match of all URLs that start with the string specified before the wildcard. The whole destinationConfig
element matches if at least one rule matches.

The first matching destinationConfig is used.

413Administrator's Guide

Chapter 4414

5 Developer's Guide

The Developer's Guide is divided into the following main parts:

• Mapping of Resources covers registering various XML resources in HP SOA Registry Foundation
including WSDL definitions, schemas, and transformations.

• Client-Side Development describes the basic principles of using HP SOA Registry Foundation APIs.
For each client API, there is a comprehensive description of data structures and operations including
links to JavaDoc, XML Schemas and WSDL documents.

• Server-Side Development discusses how to access server-side APIs, including custom modules,
interceptors, external validation services, and subscription notification services. The HP SOA Registry
Foundation web framework is also described in this section.

• UDDI From Developer Tools discusses how to access UDDI from HP Developer for Eclipse and
Microsoft Visual Studio .NET.

• How to debug describes logging and using the SOAPSpy tool.

Mapping of Resources
HP SOA Registry Foundation provides you with functionality to register the following resources:

• WSDL definition

• XML Schema (XSD)

WSDL

This describes how to publish a WSDL file to HP SOA Registry Foundation. The implementation reflects
the OASIS UDDI technical note Using WSDL in a UDDI Registry, Version 2.0 [http://www.oasis-
open.org/committees/uddi-spec/doc/tn/uddi-spec-tc-tn-wsdl-v202-20040631.htm]. As shown in Figure 141,
the technical note suggests a mapping between WSDL and UDDI.

415

http://www.oasis-open.org/committees/uddi-spec/doc/tn/uddi-spec-tc-tn-wsdl-v202-20040631.htm

Figure 141. WSDL TO UDDI

WSDL PortTypes

As shown in Table 24, each WSDL portType maps to a tModel having the the same name as the local name
of the portType in the WSDL specification. The overviewURL of the tModel becomes the URL of the
WSDL specification. The tModel contains a categoryBag with a keyedReference for the type of WSDL
artifact and the namespace of the WSDL definitions element containing the portType, as follows:

• The type is categorized as portType.

• The namespace is categorized as the WSDL binding namespace.

Chapter 5416

Table 24. WSDL portType:UDDI Mapping

UDDIWSDL

tModel (categorized as portType)portType

keyedReference in categoryBagNamespace of portType

tModel nameLocal name of portType

overviewURLWSDL location

WSDL Bindings

In similar fashion, as summarized in Table 25, WSDL bindings are mapped to tModels created for each
binding, with name of the tModel gathered from the WSDL binding local name and the overviewURL again
being the URL of the WSDL specification. Again, the tModel contains a categoryBag, this time with the
following keyedReferences:

• The type is categorized as binding.

• The namespace is categorized as the WSDL binding namespace.

• A portType category on the binding is used to refer to the portType tModel that was created for the
WSDL portType (as described above).

• The protocol and transport categories are set to the same attributes as described in the WSDL binding,
such as SOAP and HTTP, respectively.

417Developer's Guide

Table 25. wsdl binding:UDDI mapping

UDDIWSDL

tModel (categorized as binding and wsdlSpec)Binding

keyedReference in categoryBagNamespace of binding

tModel nameLocal name of binding

overviewURLWSDL location

keyedReference in categoryBagportType binding

keyedReference in categoryBagProtocol

keyedReference in categoryBagTransport

WSDL Service

WSDL services are represented as UDDI businessServices. The name is a human readable name. The tModel
again contains a categoryBag which this time contains the following keyedReferences:

• The type is categorized as service

• The namespace is again categorized as the WSDL binding namespace.

• The local name is categorized as the local name of the service.

The businessService also contains a bindingTemplate:

• The access type is categorized as the access point of the service.

• The portType is categorized as the tModel of the portType.

• The binding is categorized as the tModel of the binding information.

• The local name is categorized as the local name of the port.

Chapter 5418

Table 26. wsdl service:UDDI mapping

UDDIWSDL

businessService (categorized as service)Service

keyedReference in categoryBagNamespace of service

keyedReference in categoryBag; optionally used
name of service

Local name of service

Use Cases

HP SOA Registry Foundation supports the following use cases:

• Publishing a WSDL file. You can also specify how artifacts of the WSDL file will be mapped to the
existing UDDI structures.

• Search for a WSDL. You can search for the WSDL file by WSDL location (URI).

• Unpublish and republish the WSDL. You can unpublish and republish the WSDL

For more information, also see:.

• User's Guide, Publishing WSDL Documents on page 314

• User's Guide, Find WSDL on page 292

• Developer's Guide, WSDL Publishing on page 477

XML

As shown in Figure 142, an XML file is mapped to a tModel. The location of the XML file is added to the
tModel's overviewURL element. Namespaces are mapped to keyedReferences in the tModel categoryBag.
Each namespace is mapped to a tModel.

419Developer's Guide

Figure 142. XML TO UDDI

XSD

As shown in Figure 143, an XML Schema file is mapped to a tModel. The location URI of the XSD file is
put to the tModels overviewURL element and the target namespace is mapped to a keyedReference in the
tModel category bag. xsd:types, xsd:elements and xsd:imports are mapped to the tModel keyedReferences.
For each type, element or import, a new tModel is created.

Chapter 5420

Figure 143. XSD to UDDI

Use Cases

HP SOA Registry Foundation supports the following use cases:

• Publish an XML Schema . You can also specify how artifacts of the XML Schema file will be mapped
to existing UDDI structures

• Search for an XML schema:.

421Developer's Guide

Search for an XML Schema that imports artifacts declared in the specified XSD file.•

• Search for an XML Schema located in a specified server or folder.

• Search for all XSL transformations that can process documents using a specified XSD.

• Search for all XSL transformations producing documents that use the specified XSD.

• Unpublish and republish the XML Schema. You can unpublish and republish the XML Schema

For more information, also see:.

• User's Guide, Find XSD on page 293

• User's Guide, Publish XSD on page 319

• Developer's Guide, XSD Publishing on page 492

XSLT

As shown in Figure 144 an XSL Transformation is mapped to a tModel:

• The location URI of the XSLT file is added to the tModel's overviewURL element.

• Namespaces are mapped to keyedReferences in the tModel's categoryBag.

• The xsl:import elements are also mapped to keyedReferences in the tModel's categoryBag.

For each import and namespace, a new tModel is created.

Chapter 5422

Figure 144. XSLT TO UDDI

Client-Side Development
Client-Side Development includes the following sections:

• UDDI APIs - Describes the principles of how to use HP SOA Registry Foundation APIs. The UDDI
API set can be split by typical use case into two parts. The Inquiry API set is used to locate and obtain
details on entries in the UDDI registry. For example to find out endpoint of given web service. The
publication API set is used to publish and update information in the UDDI registry.

423Developer's Guide

• Advanced APIs - Advanced APIs cover the following APIs: Validation API, Taxonomy API, Category
APIs, Administration Utilities API, Replication API, Statistics API, Inquiry UI API, Subscription Ext
Api, and Publishing API for resources:

• WSDL Publishing

• XSD Publishing

• Security APIs - Security APIs cover the following APIs: Account API, Group API, Permission API.

• Registry Client - This section describes how to prepare your own client distribution. A client created
this way allows you to access the HP SOA Registry Foundation API through a SOAP interface.

• Client authentication - describes how to create a client that autheticates thru HTTP Basic.

UDDI APIs

UDDI (Universal Description Discovery and Integration) is set of Web service that supports the description
and discovery of Web service providers, Web services and technical fingerprints of those Web service.

The UDDI API set can be split by typical use case into two parts. The Inquiry API set is used to locate and
obtain details on entries in the UDDI registry. For example to find out endpoint of given web service. The
publication API set is used to publish and update information in the UDDI registry.

Principles To Use UDDI API

This section will show you how to use the HP SOA Registry Foundation API. Examples are based on UDDI
version 3 Specification [http://uddi.org/pubs/uddi-v3.00-published-20020719.htm].

To use Inquiry APIs you can follow these steps. The complete code fragment is shown in Example 1 on
page 427.

1 Get API implementation from stub

String url = "http://localhost:8080/uddi/inquiry";
UDDI_Inquiry_PortType inquiry = UDDIInquiryStub.getInstance(url);

2 Collect inquiry parameters

Chapter 5424

http://uddi.org/pubs/uddi-v3.00-published-20020719.htm
http://uddi.org/pubs/uddi-v3.00-published-20020719.htm

String serviceKey = "uddi:systinet.com:demo:hr:employeesList";
String tModelKey = "uddi:systinet.com:demo:employeeList:binding";
Find_binding find_binding = new Find_binding();
find_binding.setServiceKey(serviceKey);
find_binding.addTModelKey(tModelKey);
find_binding.setMaxRows(new Integer(10));

3 Call inquiry method

BindingDetail bindingDetail = inquiry.find_binding(find_binding);

4 Operate with inquiry result

ListDescription listDescription = bindingDetail.getListDescription();
if (listDescription != null) {
 int includeCount = listDescription.getIncludeCount();
 int actualCount = listDescription.getActualCount();
 int listHead = listDescription.getListHead();
 System.out.println("Displaying " + includeCount + " of " +
 actualCount+ ", starting at position " + listHead);
}

If you get the java.lang.reflect.UndeclaredThrowableException exception, check whether HP SOA
Registry Foundation is running.

To use the publishing API, follow these steps. The complete code fragment is shown in Example 2 on page
429.

1 Get API of security stub

String securityUrl = "http://localhost:8080/uddi/security";
UDDI_Security_PortType security = UDDISecurityStub.getInstance(securityUrl);
String publishingUrl = "http://localhost:8080/uddi/publishing";
UDDI_Publication_PortType publishing = UDDIPublishStub.getInstance(publishingUrl);

2 Get authentication token

AuthToken authToken = security.get_authToken(new Get_authToken(userName, password));
String authInfo = authToken.getAuthInfo();

425Developer's Guide

3 Create save object

String businessKey = "uddi:systinet.com:demo:it";
String serviceKey = ""; // serviceKey is optional
int count = 1;
String[] serviceNames = new String[count];
String[] languageCodes = new String[count];
languageCodes[0] = null; // can set an array of language codes
serviceNames[0] = "Requests Service"; //service name
String serviceDescription = "Saved by Example"; //service description
BusinessService businessService = new BusinessService();
businessService.setBusinessKey(businessKey);
if (serviceKey != null && serviceKey.length() > 0)
 businessService.setServiceKey(serviceKey);
businessService.addName(new Name(serviceNames[0], languageCodes[0]));
businessService.addDescription(new Description(serviceDescription));
Save_service save = new Save_service();
save.addBusinessService(businessService);
save.setAuthInfo(authInfo);

4 Call publishing method

ServiceDetail serviceDetail = publishing.save_service(save);

5 Operate with publishing result

BusinessServiceArrayList
 businessServiceArrayList = serviceDetail.getBusinessServiceArrayList();
int position = 1;
for (Iterator iterator = businessServiceArrayList.iterator();
 iterator.hasNext();) {
 BusinessService service = (BusinessService) iterator.next();
 System.out.println("Service " + position + " : " + service.getServiceKey());
 System.out.println(service.toXML());
 position++;
}

6 Discard the authentication token

security.discard_authToken(new Discard_authToken(authInfo));

Chapter 5426

Example 1: FindBinding v3

// (c) Copyright 2001-2008 Hewlett-Packard Development Company, L.P.
// Use is subject to license terms.

package example.inquiry;

import org.systinet.uddi.client.v3.UDDIInquiryStub;
import org.systinet.uddi.client.v3.UDDI_Inquiry_PortType;
import org.systinet.uddi.client.v3.struct.*;

import java.util.Iterator;

public class PrincipleFindBinding {

 public static void main(String args[]) throws Exception {

 //1. Get API implementation from stub
 String url = "http://localhost:8080/uddi/inquiry";
 System.out.print("Using Inquiry at url " + url + " ..");
 UDDI_Inquiry_PortType inquiry = UDDIInquiryStub.getInstance(url);
 System.out.println(" done");

 //2. Collect inquiry parameters
 String serviceKey = "uddi:systinet.com:demo:hr:employeesList";
 String tModelKey = "uddi:systinet.com:demo:employeeList:binding";
 Find_binding find_binding = new Find_binding();
 find_binding.setServiceKey(serviceKey);
 find_binding.addTModelKey(tModelKey);
 find_binding.setMaxRows(new Integer(10));

 //3. Call inquiry method
 System.out.print("Search in progress ..");
 BindingDetail bindingDetail = inquiry.find_binding(find_binding);
 System.out.println(" done");

 //4. Operate with result
 ListDescription listDescription = bindingDetail.getListDescription();
 if (listDescription != null) {
 int includeCount = listDescription.getIncludeCount();
 int actualCount = listDescription.getActualCount();
 int listHead = listDescription.getListHead();
 System.out.println("Displaying " + includeCount + " of " + actualCount
 + ", starting at position " + listHead);
 }

427Developer's Guide

 BindingTemplateArrayList bindingTemplateArrayList
 = bindingDetail.getBindingTemplateArrayList();
 if (bindingTemplateArrayList == null) {
 System.out.println("Nothing found");
 return;
 }

 int position = 1;
 for (Iterator iterator = bindingTemplateArrayList.iterator();
 iterator.hasNext();) {
 BindingTemplate bindingTemplate = (BindingTemplate) iterator.next();
 System.out.println("Binding " + position + " : " +
 bindingTemplate.getBindingKey());
 System.out.println(bindingTemplate.toXML());
 position++;
 }
 }
}

Chapter 5428

Example 2: SaveService v3

// (c) Copyright 2001-2008 Hewlett-Packard Development Company, L.P.
// Use is subject to license terms.

package example.publishing;

import org.systinet.uddi.InvalidParameterException;
import org.systinet.uddi.client.v3.UDDIException;
import org.systinet.uddi.client.v3.UDDIPublishStub;
import org.systinet.uddi.client.v3.UDDISecurityStub;
import org.systinet.uddi.client.v3.UDDI_Publication_PortType;
import org.systinet.uddi.client.v3.UDDI_Security_PortType;
import org.systinet.uddi.client.v3.struct.AuthToken;
import org.systinet.uddi.client.v3.struct.BusinessService;
import org.systinet.uddi.client.v3.struct.BusinessServiceArrayList;
import org.systinet.uddi.client.v3.struct.Description;
import org.systinet.uddi.client.v3.struct.Discard_authToken;
import org.systinet.uddi.client.v3.struct.DispositionReport;
import org.systinet.uddi.client.v3.struct.Get_authToken;
import org.systinet.uddi.client.v3.struct.Name;
import org.systinet.uddi.client.v3.struct.Save_service;
import org.systinet.uddi.client.v3.struct.ServiceDetail;

import javax.xml.soap.SOAPException;
import java.util.Iterator;

public class PrincipleSaveService {

 public static void main(String[] args) throws UDDIException,
 InvalidParameterException, SOAPException {

 String userName = "demo_john";
 String password = "demo_john";

 //1. Get API implementation from stub
 String securityUrl = "http://localhost:8080/uddi/security";
 System.out.print("Using Security at url " + securityUrl + " ..");
 UDDI_Security_PortType security = UDDISecurityStub.getInstance(securityUrl);
 System.out.println(" done");
 String publishingUrl = "http://localhost:8080/uddi/publishing";
 System.out.print("Using Publishing at url " + publishingUrl + " ..");
 UDDI_Publication_PortType publishing = UDDIPublishStub.getInstance(publishingUrl);
 System.out.println(" done");

429Developer's Guide

 //2. Get authentication token
 System.out.print("Logging in ..");
 AuthToken authToken =
 security.get_authToken(new Get_authToken(userName, password));
 System.out.println(" done");
 String authInfo = authToken.getAuthInfo();

 //3. Create save object
 String businessKey = "uddi:systinet.com:demo:it";
 String serviceKey = ""; // serviceKey is optional
 int count = 1;
 String[] serviceNames = new String[count];
 String[] languageCodes = new String[count];
 languageCodes[0] = null; // can set an array of language codes
 serviceNames[0] = "Requests Service"; //service name
 String serviceDescription = "Saved by Example"; //service description
 BusinessService businessService = new BusinessService();
 businessService.setBusinessKey(businessKey);
 if (serviceKey != null && serviceKey.length() > 0)
 businessService.setServiceKey(serviceKey);
 businessService.addName(new Name(serviceNames[0], languageCodes[0]));
 businessService.addDescription(new Description(serviceDescription));

 Save_service save = new Save_service();
 save.addBusinessService(businessService);
 save.setAuthInfo(authInfo);

 //4. Call publishing method
 System.out.print("Save in progress ...");
 ServiceDetail serviceDetail = publishing.save_service(save);
 System.out.println(" done");

 //5. Operate with publishing result
 BusinessServiceArrayList businessServiceArrayList =
 serviceDetail.getBusinessServiceArrayList();
 int position = 1;
 for (Iterator iterator = businessServiceArrayList.iterator();
 iterator.hasNext();) {
 BusinessService service = (BusinessService) iterator.next();
 System.out.println("Service " + position + " : "
 + service.getServiceKey());
 System.out.println(service.toXML());
 position++;
 }
 //6. Discard authentication token
 System.out.print("Logging out ..");
 security.discard_authToken(new Discard_authToken(authInfo));

Chapter 5430

 System.out.println(" done");
 }
}

UDDI Version 1

The UDDI version 1 Specification [http://www.oasis-open.org/committees/uddi-
spec/doc/contribs.htm#uddiv1] has provided a foundation for next versions.

Inquire

• WSDL: inquire_v1.wsdl [http://www.hp.com/go/hpsoftwaresupport/wsdl/inquire_v1.wsdl]

• API endpoint: http://<host name>:<port>/uddi/inquiry

• Java API: org.systinet.uddi.client.v1.InquireSoap

• Demos: Inquiry demos v1

Publish

• WSDL: publish_v1.wsdl [http://www.hp.com/go/hpsoftwaresupport/wsdl/publish_v1.wsdl]

• API endpoint: http://<host name>:<port>/uddi/publishing

• Java API: org.systinet.uddi.client.v1.PublishSoap

• Demos: Publishing demos v1

UDDI Version 2

The UDDI version 2 Specification [http://uddi.org/pubs/ProgrammersAPI-V2.04-Published-20020719.htm]
has introduced many improvements of existing concepts and new features like service projections.

Inquiry

• Specification: Inquiry API functions [http://uddi.org/pubs/ProgrammersAPI-V2.04-Published-
20020719.htm#_Toc25137711]

• WSDL: inquire_v2.wsdl [http://www.hp.com/go/hpsoftwaresupport/wsdl/inquire_v2.wsdl]

431Developer's Guide

http://www.oasis-open.org/committees/uddi-spec/doc/contribs.htm#uddiv1
http://www.hp.com/go/hpsoftwaresupport/wsdl/inquire_v1.wsdl
http://www.hp.com/go/hpsoftwaresupport/wsdl/publish_v1.wsdl
http://uddi.org/pubs/ProgrammersAPI-V2.04-Published-20020719.htm
http://uddi.org/pubs/ProgrammersAPI-V2.04-Published-20020719.htm#_Toc25137711
http://www.hp.com/go/hpsoftwaresupport/wsdl/inquire_v2.wsdl

• API endpoint: http://<host name>:<port>/uddi/inquiry

• Java API: org.systinet.uddi.client.v2.Inquire

• Demos: Inquiry demos v2

Publish

• Specification: Publishing API Function [http://uddi.org/pubs/ProgrammersAPI-V2.04-Published-
20020719.htm#_Toc25137730]

• WSDL: publish_v2.wsdl [http://www.hp.com/go/hpsoftwaresupport/wsdl/publish_v2.wsdl]

• API endpoint: http://<host name>:<port>/uddi/publishing

• Java API: org.systinet.uddi.client.v2.Publish

• Demos: Publishing demos v2

UDDI Version 3

The UDDI version 3 Specification [http://uddi.org/pubs/uddi-v3.00-published-20020719.htm] is a major
step in providing industry standard for building and querying XML web services registries useful in both
public and private deployments.

Inquiry

• Specification: Inquiry API set [http://uddi.org/pubs/uddi-v3.00-published-20020719.htm#_Toc42047277]

• API endpoint: http://<host name>:<port>/uddi/inquiry

• Java API: org.systinet.uddi.client.v3.UDDI_Inquiry_PortType

• Demos: Inquiry demos v3

Publication

• Specification: Publication API set [http://uddi.org/pubs/uddi-v3.00-published-
20020719.htm#_Toc42047296]

Chapter 5432

http://uddi.org/pubs/ProgrammersAPI-V2.04-Published-20020719.htm#_Toc25137730
http://www.hp.com/go/hpsoftwaresupport/wsdl/publish_v2.wsdl
http://uddi.org/pubs/uddi-v3.00-published-20020719.htm
http://uddi.org/pubs/uddi-v3.00-published-20020719.htm#_Toc42047277
http://uddi.org/pubs/uddi-v3.00-published-20020719.htm#_Toc42047296

• API endpoint: http://<host name>:<port>/uddi/publishing

• Java API: org.systinet.uddi.client.v3.UDDI_Publication_PortType

• Demos: Publishing demos v3

Security

• Specification: Security API set [http://uddi.org/pubs/uddi-v3.00-published-20020719.htm#_Toc42047316]

• API endpoint: http://<host name>:<port>/uddi/security

• Java API: org.systinet.uddi.client.v3.UDDI_Security_PortType

Custody

The Custody and Ownership Transfer API is used to transfer UDDI structures between UDDI nodes and
to change their ownership. One use case is when the publisher wishes to transfer responsibility for a selected
UDDI structure to another user, typically after a business reorganization.

• Specification: Custody and Ownership Transfer API Set [http://uddi.org/pubs/uddi-v3.00-published-
20020719.htm#_Toc42047319]

• API endpoint: http://<host name>:<port>/uddi/custody

• Java API: org.systinet.uddi.client.custody.v3.UDDI_CustodyTransfer_PortType

• Demos: Custody Demos

Subscription

The Subscription API is a service that asynchronously sends notification to users who have registered an
interest in changes to a registry. These users have a range of options in specifying matching criteria so that
they receive only the information in which they are interested.

• Specification: Subscription API Set [http://uddi.org/pubs/uddi-v3.00-published-
20020719.htm#_Toc42047327]

• API endpoint: http://<host name>:<port>/uddi/custody

433Developer's Guide

http://uddi.org/pubs/uddi-v3.00-published-20020719.htm#_Toc42047316
http://uddi.org/pubs/uddi-v3.00-published-20020719.htm#_Toc42047319
http://uddi.org/pubs/uddi-v3.00-published-20020719.htm#_Toc42047327

• Java API: org.systinet.uddi.client.subscription.v3.UDDI_Subscription_PortType

• Demos: Subscription Demos

UDDI Version 3 Extension

UDDI Version 3 Extensions are HP extensions of the UDDI Version 3 Specification [http://www.oasis-
open.org/committees/uddi-spec/doc/tcspecs.htm#uddiv3]. The following data structures are used by APIs
for the Registry Console and APIs that will be approved as official technical notes of the UDDI specification.

Data Structures

businessEntityExt

Table 27. Attributes

RequiredName

OptionalbusinessKey

This structure is used by the Registry Console for performance enhancements. The structure is an extension
of businessEntity [http://uddi.org/pubs/uddi-v3.0.1-20031014.htm#_Toc53709226], the added element is

Chapter 5434

http://www.oasis-open.org/committees/uddi-spec/doc/tcspecs.htm#uddiv3
http://uddi.org/pubs/uddi-v3.0.1-20031014.htm#_Toc53709226

uddi:assertionStatusItem [http://uddi.org/pubs/uddi-v3.0.1-20031014.htm#_Toc53709302] that points to
the related businessEntity,

businessInfoExt

Table 28. Attributes

RequiredName

OptionalbusinessKey

This structure is an extension of the businessInfo structure; the added element is uddi_ext:contactInfos.

contactInfo

Table 29. Attributes

RequiredName

OptionaluseType

This structure represents a person name for the businessInfoExt.

435Developer's Guide

http://uddi.org/pubs/uddi-v3.0.1-20031014.htm#_Toc53709302

contactInfos

Table 30. Attributes

RequiredName

OptionaluseType

This structure holds a list of contactInfos.

operationalInfoExt

Table 31. Attributes

RequiredName

RequiredentityKey

OptionalentityKeyV2

This structure is an extension of the operationalInfo [http://uddi.org/pubs/uddi-v3.0.1-
20031014.htm#_Toc53709242] structure, the added element is uddi:name. The entityKeyV2 holds UDDI v2
key values.

Chapter 5436

http://uddi.org/pubs/uddi-v3.0.1-20031014.htm#_Toc53709242

qualifiedKeyedReference

Table 32. Attributes

RequiredName

RequiredtModelKey

OptionalkeyName

RequiredkeyValue

This structure holds findQualifiers that are used in Range Queries.

registeredInfoExt

Table 33. Attributes

RequiredName

Optionaltruncated

This structure is used by ACL functionality. The added elements are uddi:serviceInfos and
uddi:bindingTemplates that point to UDDI entities the user does not own but has privileges to modify.

437Developer's Guide

serviceInfoExt

Table 34. Attributes

RequiredName

RequiredserviceKey

RequiredbusinessKey

This structure is an extension of serviceInfo. It is used by the web interface for performance enhancements.
The added elements are uddi:description and uddi:bindingTemplates.

Find Qualifiers

UDDI V3 Specification [http://uddi.org/pubs/uddi-v3.0.1-20031014.htm#_Toc53709434] permits vendors
to define new find qualifiers. Table 35 summarizes the additional find qualifiers in HP SOA Registry
Foundation and the find_xx operations that support them. See Inquiry on page 432 for more information on
inquiry API operations.

Each short name in Table 35 links to a subsection that follows. Note that the tModel key is the short name
prefixed with uddi:systinet.com:findQualifier:.

Chapter 5438

http://uddi.org/pubs/uddi-v3.0.1-20031014.htm#_Toc53709434

Table 35. Summary of Additional Find Qualifiers in HP SOA Registry Foundation

Supporting OperationsShort Name

find_relatedBusinessesfind_tModelfind_bindingfind_servicefind_business

 ✓ deletedTModels

 ✓✓✓✓foreignEntities

✓✓✓✓✓keyNameMatch

 ✓✓✓✓myEntities

✓✓✓✓✓omitKeyNameMatch

✓✓✓✓✓omitKeyValueMatch

✓✓✓✓✓omitTModelKeyMatch

✓✓✓✓✓tModelKeyApproximateMatch

deletedTModels

This find qualifier returns only hidden tModels, hence enabling administrators to locate and permanently
delete garbage tModels.

Note that the registry settings determine whether delete_tModel:

• just hides the tModel from find_tModel operations (default behaviour required by the specification);

• really deletes the tModel, provided there are no dependencies on it;

See Administrator's Guide, Node on page 379.

uddi:systinet.com:findQualifier:deletedTModelstModel Key

find_tModel.Supporting Operations

foreignEntities

This find qualifier restricts results to entities that do not belong to the caller.

439Developer's Guide

This qualifier does not make any sense for an anonymous caller because all entities will be returned
in the query.

uddi:systinet.com:findQualifier:foreignEntitiestModel Key

All find_xx operations except find_relatedBusinesses.Supporting Operations

keyNameMatch

This find qualifier changes default rules for matching keyedReferences. By default keyNames are only
compared when the General Keywords tModelKey is specified. This find qualifier enforces comparison of
keyNames.

The keyNameMatch and omitKeyNameMatch findQualifiers are mutually exclusive.

uddi:systinet.com:findQualifier:keyNameMatchtModel Key

All find_xx operations.Supporting Operations

myEntities

This find qualifier restricts results to entities that belong to the caller.

This qualifier does not make any sense for an anonymous caller. All entities would be returned in
that case.

uddi:systinet.com:findQualifier:myEntitiestModel Key

All find_xx operations except find_relatedBusinesses.Supporting Operations

omitKeyNameMatch

This find qualifier changes default rules for matching keyedReferences. By default keyNames are only
compared when the General Keywords tModelKey is specified. This find qualifier skips comparison of
keyNames.

The keyNameMatch and omitKeyNameMatch findQualifiers are mutually exclusive.

Chapter 5440

uddi:systinet.com:findQualifier:omitKeyNameMatchtModel Key

All find_xx operations.Supporting Operations

omitKeyValueMatch

This find qualifier changes default rules for matching keyedReferences. By default keyValues are compared.
This find qualifier skips comparison of keyValues.

The omitKeyValueMatch and omitTModelKeyMatch findQualifiers are mutually exclusive.

uddi:systinet.com:findQualifier:omitKeyValueMatchtModel Key

All find_xx operations.Supporting Operations

omitTModelKeyMatch

This find qualifier changes default rules for matching keyedReferences. By default tModelKeys are compared.
This find qualifier skips comparison of tModelKeys.

The omitKeyValueMatch and omitTModelKeyMatch findQualifiers are mutually exclusive.

uddi:systinet.com:findQualifier:omitTModelKeyMatchtModel Key

All find_xx operations.Supporting Operations

tModelKeyApproximateMatch

This find qualifier changes the default rules for matching keyedReferences. By default tModelKeys are
compared without wildcards and case insensitively. This find qualifier enables a tModelKey in a query to
include wildcards:

• '%' interpreted as zero or more arbitrary characters;

• '_' interpreted as an arbitrary character.

The behavior is similar to the approximateMatch find qualifier.

uddi:systinet.com:findQualifier:tModelKeyApproximateMatchtModel Key

441Developer's Guide

All find_xx operations.Supporting Operations

Advanced APIs

Advanced APIs cover the following APIs:

• Validation API - The Valueset Validation API is used to validate values in keyedReferences involved
in save operations that reference checked taxonomies. Valueset validation is defined in the UDDI version
3 specification [http://uddi.org/pubs/uddi_v3.htm]. Every checked taxonomy requires a Web service
that implements this API.

• Taxonomy API - The Systinet Taxonomy API provides a high-level view of taxonomies and makes
them easy to manage and query. This API was designed according to the UDDI technical note Providing
A Value Set For Use In UDDI Version 3 [http://oasis-open.org/committees/uddi-spec/doc/tn/uddi-spec-
tc-tn-valuesetprovider-20030212.htm].

• Category APIs - The Systinet Category API complements the Systinet Taxonomy API. It is used to
query and to manipulate Internal taxonomies in HP SOA Registry Foundation. More information on
the subject of internal taxonomies can be found in the API documentation. The categories may be
hierarchically organized. Each category may be top-level (without parent), it may have children, or it
may be a child of another category. You can drill down through this pattern In the Registry Console.

• Administration Utilities API - The Systinet Administration Utilities API provides an interface to perform
several low level administrative tasks in HP SOA Registry Foundation.

• Replication API - The Replication API is used to launch replications in HP SOA Registry Foundation.

• Statistics API - The Systinet Statistics API provides useful information about HP SOA Registry
Foundation usage.

• WSDL Publishing API - HP SOA Registry Foundation WSDL-to-UDDI mapping is compliant with
OASIS's Technical Note, Using WSDL in a UDDI registry Version 2.0 [http://www.oasis-
open.org/committees/uddi-spec/doc/tn/uddi-spec-tc-tn-wsdl-v2.htm]. It enables the automatic publishing
of WSDL documents to UDDI, enables precise and flexible UDDI queries based on specific WSDL
artifacts and metadata, and provides a consistent mapping for UDDI v2 and UDDI v3.

• Resources Publishing APIs - XSD2UDDI. These API sets allow you to manipulate with resources in
HP SOA Registry Foundation. XML Schemas are supported.

Chapter 5442

http://uddi.org/pubs/uddi_v3.htm
http://uddi.org/pubs/uddi_v3.htm
http://oasis-open.org/committees/uddi-spec/doc/tn/uddi-spec-tc-tn-valuesetprovider-20030212.htm
http://oasis-open.org/committees/uddi-spec/doc/tn/uddi-spec-tc-tn-valuesetprovider-20030212.htm
http://www.oasis-open.org/committees/uddi-spec/doc/tn/uddi-spec-tc-tn-wsdl-v2.htm

• Inquiry UI API - The Inquiry UI API has been implemented for improving the performance of the
Business Service Console. The basic idea is to retrieve data that appear in the Business Service Console
using a single API call.

Validation

The Valueset validation API is used to validate values in keyedReferences involved in save operations that
reference checked taxonomies. Valueset validation is defined in the UDDI version 3 specification
[http://uddi.org/pubs/uddi_v3.htm]. Every checked taxonomy requires a Web service that implements this
API. The API is defined by the uddi:uddi.org:v3_valueSetValidation tModel for UDDI version 3,
uddi:systinet.com:v2_validateValues for UDDI version 2 and uddi:systinet.com:v1_validateValues for UDDI
version 1.

HP SOA Registry Foundation is built according to the UDDI technical note Providing A Value Set For Use
In UDDI Version 3 [http://oasis-open.org/committees/uddi-spec/doc/tn/uddi-spec-tc-tn-valuesetprovider-
20030212.htm]. To function correctly, checked taxonomies must be categorized with uddi-org:validatedBy
taxonomy pointing to the bindingTemplate with the valueset validation Web service accessPoint. This Web
service is called whenever the checked taxonomy occurs within a keyedReference during a save operation.

If the Web service is accessible by HP SOA Registry Foundation's classloader, the validation Web service
does not need to be invoked over SOAP, but it may run inside the registry's Java Virtual Machine.

The accessPoint value must be in a special form: It must start with the class: prefix and continue with fully
qualified class name. For example, the internal validation service endpoint is defined as follows:
class:com.systinet.uddi.publishing.v3.validation.service.AclValidator.

For more information, consult the UDDI version 3 specification, section 5.6
[http://uddi.org/pubs/uddi_v3.htm#_Toc53709335] .

SOAP

• Specification: uddi_vs_v3.wsdl [http://www.hp.com/go/hpsoftwaresupport/wsdl/uddi_vs_v3.wsdl]

Java

• Java API: org.systinet.uddi.client.valueset.validation.v3.UDDI_ValueSetValidation_PortType

• Demos: Validation demos

443Developer's Guide

http://uddi.org/pubs/uddi_v3.htm
http://oasis-open.org/committees/uddi-spec/doc/tn/uddi-spec-tc-tn-valuesetprovider-20030212.htm
http://oasis-open.org/committees/uddi-spec/doc/tn/uddi-spec-tc-tn-valuesetprovider-20030212.htm
http://uddi.org/pubs/uddi_v3.htm#_Toc53709335
http://www.hp.com/go/hpsoftwaresupport/wsdl/uddi_vs_v3.wsdl

Taxonomy

The Systinet Taxonomy API provides high-level view of taxonomies and makes them easy to manage and
query. This API was built according to the UDDI technical note Providing A Value Set For Use In UDDI
Version 3 [http://oasis-open.org/committees/uddi-spec/doc/tn/uddi-spec-tc-tn-valuesetprovider-
20030212.htm].

Data Structures

The following structures are used by the Systinet Taxonomy API:

Categories

This structure is a container for zero or more category structures. If the taxonomy is internal, then categories
are used to hold possible values of its keyedReferences.

categorizationBag

This structure is a container for one or more categorizations. It defines the containers (categoryBag,
keyedReferenceGroup, identifierBag and Publisher Assertion) in which this taxonomy can be used. Possible
values are categorization, categorizationGroup, identifier, and relationship. A save operation containing a
keyedReference referencing a taxonomy in the wrong container will be denied with E_valueNotAllowed
UDDI exception.

Category

Chapter 5444

http://oasis-open.org/committees/uddi-spec/doc/tn/uddi-spec-tc-tn-valuesetprovider-20030212.htm
http://oasis-open.org/committees/uddi-spec/doc/tn/uddi-spec-tc-tn-valuesetprovider-20030212.htm

This structure corresponds to the keyedReference. It defines the keyedReference of the taxonomy in which
it is used. The keyValue must be unique. The disabled attribute is used to mark the category as either helper
or deprecated, so it cannot be used as a valid option in keyedReferences. The keyName attribute serves as a
label for this category.

Table 36. Attributes

RequiredName

YeskeyName

YeskeyValue

Nodisabled

compatibilityBag

This structure is a container for one or more compatibilities. It defines the compatibility of the taxonomy
with the four basic UDDI data structures - tModel, businessEntity, businessService and bindingTemplate.
If the taxonomy is not compatible with one of these UDDI structures, then a save operation containing a
keyedReference referencing this taxonomy in this structure will be denied with E_valueNotAllowed UDDI
exception.

taxonomy

445Developer's Guide

Table 37. Attributes

RequiredName

Nocheck

Nounvalidatable

Nobrief

Each taxonomy is identified by its tModel.

• The optional check attribute is used to define whether the taxonomy is checked or not. If the tModel is
checked, then a validation structure must be present.

• The unvalidatable attribute is used to mark the checked taxonomy as unvalidatable. Unvalidatable
taxonomies cannot be used in keyedReferences.

• The brief attribute is related to categories structure and its meaning depends on context, in which it is
used.

taxonomyDetail

Table 38. Attributes

RequiredName

Notruncated

This structure is a container for zero or more taxonomies. The truncated attribute indicates whether the list
of taxonomies is truncated.

Chapter 5446

taxonomyInfo

Table 39. Attributes

RequiredName

Yescheck

Nounvalidatable

The taxonomyInfo is an extension of the tModelInfo structure.

• The check attribute indicates whether or not the taxonomy is checked.

• The unvalidatable attribute is used to mark the checked taxonomy as unvalidatable. Unvalidatable
taxonomies cannot be used in keyedReferences.

taxonomyInfos

This structure is a container for zero or more taxonomyInfo structures.

taxonomyList

447Developer's Guide

This structure serves as a container for optional listDescription and optional taxonomyInfos structures. The
truncated attribute indicates whether the list of taxonomies is truncated.

Table 40. Attributes

RequiredName

Notruncated

validation

This structure is used to hold information for validating a checked taxonomy. The categories structure
defines the list of available values for keyedReferences checked by the Internal validation service. Binding
templates contains the valueset validation Web service endpoint.

Operations

delete_taxonomy

The delete_taxonomy API call is used to delete one or more taxonomies from HP SOA Registry Foundation.
The taxonomy consists of a tModel and optional business services and categories.

Arguments

• uddi:authInfo - This optional argument is an element that contains an authentication token.

• uddi:tModelKey - One or more required uddiKey values that represent existing taxonomy tModels.

Chapter 5448

Upon successful completion, a disposition report is returned with a single success indicator.

Permissions

This API call requires API manager permission with the name org.systinet.uddi.client.taxonomy.v3.TaxonomyApi
and the action delete_taxonomy.

download_taxonomy

The download_taxonomy API call is used to fetch a selected taxonomy from HP SOA Registry Foundation.
This call is stream oriented and is useful for fetching the content of very large taxonomies.

Arguments

• taxonomy:authInfo - This optional argument is an element that contains an authentication token.

• uddi:tModelKey - required uddiKey value that represents an existing taxonomy tModel.

Returns

This API call returns a ResponseMessageAttachment with the selected taxonomy upon success.

Permissions

This API call requires the API manager permission with name org.systinet.uddi.client.taxonomy.v3.TaxonomyApi
and the action download_taxonomy.

find_taxonomy

The find_taxonomy API call is used to find all taxonomies in a registry that match given criteria. This call
is an extension of the UDDI v3 find_tModel API call.

449Developer's Guide

Table 41. Attributes

RequiredName

Nocheck

Nounvalidatable

Arguments

• uddi:authInfo - This optional argument is an element that contains an authentication token.

• uddi:findQualifiers - The collection of findQualifier used to alter default behavior.

• uddi:name - The string value represents the name of tModel to be found.

• uddi:identifierBag - The list of keyedReferences from tModel IdentifierBag.

• uddi:categoryBag - The list of keyedReferences from tModel categoryBag.

• taxonomy:compatibilityBag - An optional list of Compatibilities.

• taxonomy:categorizationBag - An optional list of Categorizations.

• check - Optional boolean value that limits returned data to checked (or unchecked) taxonomies only.

• unvalidatable - Optional boolean value that limits returned data to unvalidatable taxonomies only.

Chapter 5450

The unvalidatable attribute of the tModel of a checked taxonomy will be set to true, if one of the
following rules is met:

• The tModel of a checked taxonomy does not contain the validatedBy keyedReference

• The bindingTemplate from keyedReferences does not exists or is not readable because of
ACLs.

Returns

This API call returns the TaxonomyList upon success.

Permissions

This API call requires API user permission org.systinet.uddi.client.taxonomy.v3.TaxonomyApi and the action
find_taxonomy.

get_taxonomy

The get_taxonomy API call returns the Taxonomy structure corresponding to each of the tModelKey values
specified.

Table 42. Attributes

RequiredName

Nobrief

Arguments

• uddi:authInfo - This optional argument is an element that contains an authentication token.

451Developer's Guide

• uddi:tModelKey - Required uddiKey value representing an existing taxonomy tModel.

• brief - Requests not to fetch the categories element. Note that only the API manager can set this attribute
to false.

Returns

This API call returns the TaxonomyList on success.

If the tModel of a checked taxonomy does not contain the validatedBy keyedReference, the
taxonomy's unvalidatable attribute will be set to true and the validation structure will be missing.

Permissions

This API call requires the API user permission org.systinet.uddi.client.taxonomy.v3.TaxonomyApi and the
action get_taxonomy.

save_taxonomy

The save_taxonomy API call is used to publish taxonomies to HP SOA Registry Foundation.

The taxonomy properties (checked, unvalidatable, compatibilityBag, and categorizationBag) are first
combined with their counterparts in the tModel's categoryBag.

It is an error to specify a validation structure for an unchecked taxonomy. If the taxonomy contains
a validation structure, it is automatically set to be checked. If the taxonomy is neither checked nor
unchecked, it will be saved as unchecked. If a checked taxonomy does not have a validation
structure, the taxonomy is saved with the unvalidatable attribute set to true.

Chapter 5452

If the categories structure is defined in the validation structure, then the taxonomy will be checked by the
Internal validation service. The bindingTemplates are optional; if they are specified, then their AccessPoint
must point to the Internal validation service's Web service endpoint.

If the categories structure is not defined in the validation structure, then there must be at least one
bindingTemplate. The bindingTemplate must implement valueset validation API (either
uddi:uddi.org:v3_valueSetValidation, uddi:systinet.com:v2_validateValues or uddi:systinet.com:v1_validateValues).
There must be a valid AccessPoint.

If the serviceKey is given, then this businessService must be part of the Operational business entity
(uddi:systinet.com:uddinodebusinessKey). During the save_taxonomy operation, the businessService will be
overwritten.

Arguments

• taxonomy:authInfo - This optional argument is an element that contains an authentication token.

• taxonomy:taxonomy - A list of taxonomies to be saved.

Returns

This API call returns the TaxonomyDetail on success.

Permissions

This API call requires the API manager permission org.systinet.uddi.client.taxonomy.v3.TaxonomyApi and
the action save_taxonomy.

upload_taxonomy

The upload_taxonomy API call is used to publish a Taxonomy into HP SOA Registry Foundation. This
call is stream oriented and is useful for publishing very large taxonomies.

453Developer's Guide

Permissions

This API call requires the API manager permission named org.systinet.uddi.client.taxonomy.v3.TaxonomyApi
and the action upload_taxonomy.

Persistence Format

The taxonomy persistence format is used by taxonomy Download/Upload operations. Following is an
example of the taxonomy persistence format:

<taxonomy xmlns="http://systinet.com/uddi/taxonomy/v3/5.0"
 xmlns:uddi="urn:uddi-org:api_v3"
 check="true">
 <tModel tModelKey="uddi:foo.com:demo:myTaxonomy">
 <uddi:name>My taxonomy</uddi:name>
 <uddi:description>Category system</uddi:description>
 </tModel>
 <compatibilityBag>
 <compatibility>businessEntity</compatibility>
 </compatibilityBag>
 <categorizationBag>
 <categorization>categorization</categorization>
 </categorizationBag>
 <validation>
 <bindingTemplate bindingKey="" serviceKey="" xmlns="urn:uddi-org:api_v3">
 <accessPoint useType="endPoint">
 http://www.foo.com/MyValidationService.wsdl
 </accessPoint>
 <tModelInstanceDetails>
 <tModelInstanceInfo
 tModelKey="uddi:uddi.org:v3_valueSetValidation"/>
 <tModelInstanceInfo
 tModelKey="uddi:systinet.com:demo:myTaxonomy"/>
 </tModelInstanceDetails>
 </bindingTemplate>
 </validation>
</taxonomy>

This format reflects the taxonomy.xsd [http://www.hp.com/go/hpsoftwaresupport/wsdl/taxonomy.xsd]
XML Schema Definition file. For more information, see the data structure of taxonomy on page 445.

Chapter 5454

http://www.hp.com/go/hpsoftwaresupport/wsdl/taxonomy.xsd

WSDL

You can find the WSDL specification in the file taxonomy.wsdl
[http://www.hp.com/go/hpsoftwaresupport/wsdl/taxonomy.wsdl].

API Endpoint

You can find the Taxonomy API endpoint at http://<host name>:<port>/uddi/taxonomy.

Java

Systinet Java API is generated from Taxonomy WSDL. You are encouraged to browse
org.systinet.uddi.client.taxonomy.v3.TaxonomyApi and to read and try Taxonomy demos.

Taxonomy 5.5 Extension

This section describes the taxonomy 5.5. extension intended for Range queries functionality implementation.

Data Structures

The following structures are used by the Systinet Taxonomy 5.5 API:

455Developer's Guide

http://www.hp.com/go/hpsoftwaresupport/wsdl/taxonomy.wsdl

Taxonomy

Table 43. Attributes

RequiredName

Nocheck

Nounvalidatable

Nobrief

This structure is almost identical to taxonomy, except that the transformation argument has been added

taxonomyInfo

Chapter 5456

Table 44. Attributes

RequiredName

Yescheck

yestModelKey

Nounvalidatable

NoisOrderedBy

This structure is almost identical to taxonomyInfo, except that the optional attribute isOrderedBy was added
to contain the name of the comparator tModel.

transformation

This structure holds a reference to a transformation service implementation. For more information about
the transformation service, please see Administrator's Guide, Custom Ordinal Types on page 249.

• uddi:tModel - The tModel that represents a comparator taxonomy.

• uddi:bindingTemplate - This argument holds the reference of the transformation service implementation.
The accessPoint element of the bindingTemplate includes the name of the java class implementation of
the sevice with the prefix class:.

• uddi:tModelKey The key of the tModel that represents the transformation.

API Endpoint

You can find the Taxonomy 5.5 API endpoint at http://<host name>:<port>/uddi/taxonomy55.

457Developer's Guide

Category

The Systinet Category API complements the Systinet Taxonomy API. It is used to query and to manipulate
Internal taxonomies in HP SOA Registry Foundation. The categories may be hierarchically organized. Each
category may be top-level (without parent), it may have children, or it may be a child of another category.
You can drill down through this pattern in the Registry Console.

Data Structures

The following structures are used by the Systinet Category API:

Categories

This structure is a container for zero or more category elements.

category

Table 45. Attributes

RequiredAttribute

Nodisabled

Noleaf

This element contains a single keyedReference element that defines value of the category.

The disabled attribute is used to indicate that a category cannot be used as a valid option in keyedReferences.
Either it has been deprecated or it is only a parent for other categories. The tModel key value in the uddi-
org:types taxonomy is one such disabled category.

The leaf attribute indicates whether this category is a leaf in the category tree.

Chapter 5458

categoryList

Table 46. Attributes

RequiredAttribute

Notruncated

This structure serves as a container for optional listDescription and categories structures. The truncated
attribute indicates whether a returned list of categories is truncated.

Operations

add_category

The add_category API call is used to add a new category to the Internal taxonomy identified by the tModelKey
in the keyedReference. The parentKeyedReference element is used to define the parent category of new category
to be saved. If the parentKeyedReference element is missing, then the new category will have no parent.

Syntax

Arguments

• category:authInfo - This optional argument is an element that contains an authentication token.

• category:category - Category to be added.

• parentKeyedReference - Optional keyedReference; serves as parent of the new category.

459Developer's Guide

Permissions

This API call requires API manager permission for org.systinet.uddi.client.category.v3.CategoryApi and
for the action add_category.

delete_category

The delete_category API call deletes the selected category from HP SOA Registry Foundation.

Syntax

Arguments

• category:authInfo - This optional argument is an element that contains an authentication token.

• keyedReference - Category to be deleted.

Permissions

This API call requires API manager permission for org.systinet.uddi.client.category.v3.CategoryApi and
the action delete_category.

find_category

The find_category API call is used to query HP SOA Registry Foundation for categories that match given
criteria.

Syntax

Chapter 5460

Arguments

• category:authInfo - This optional argument is an element that contains an authentication token.

• category:findQualifiers - Optional list of findQualifiers, that modifies default behavior.

• uddi:keyedReference - The category containing search arguments.

Behavior

FindByName and findByValue findQualifiers are used to distinguish whether the call will search by keyName
or keyValue from the keyedReference that is the argument of the call. The default is to search by value.

The caseSensitiveMatch and caseInsensitiveMatch findQualifiers are used to control whether the search
will be case sensitive; the default is case sensitive.

The ApproximateMatch findQualifier is used to search with SQL wildcards. The default findQualifier,
exactMatch, instructs the search to perform an exact comparison.

Finally there are four findQualifiers that affect the order in which categories are returned:

• sortByNameAsc

• sortByNameDesc

• sortByValueAsc (default)

• sortByValueDesc

These find qualifiers are exclusive. If you combine them, an exception is thrown.

Returns

This API call returns a CategoryList upon success.

get_category

The get_category API call is used to get categories having a relation, identified by getQualifier, to the category
identified by given keyedReference. If the getQualifier is childCategories, then the call returns categories

461Developer's Guide

that have the selected category as their parent. If the siblingCategories getQualifier is used, then categories
having same parent as selected category are returned.

Syntax

Arguments

• category:authInfo - This optional argument is an element that contains an authentication token.

• category:getQualifier and category:getQualifier - Control search behavior.

• uddi:keyedReference - The category whose relatives shall be received.

Returns

This API call returns a CategoryList upon success.

get_rootCategory

The get_rootCategory API call returns all categories of the Internal taxonomy identified by given tModelKey
that have no parent.

Syntax

Chapter 5462

Arguments

• category:authInfo - This optional argument is an element that contains an authentication token.

• uddi:tModelKey - Required uddiKey value that represents an existing taxonomy tModel.

• category:getQualifiers - Control search behavior.

Returns

This API call returns a CategoryList upon success.

get_rootPath

The get_rootPath API call returns categories from root category, then its child categories until the selected
category in this order: root category, parent's parent, parent and the selected category.

Syntax

Arguments

• category:authInfo - This optional argument is an element that contains an authentication token.

• uddi:keyedReference - Category to be searched

Returns

This API call returns a CategoryList upon success.

move_category

The move_category API call is used to move selected category from current parent (if any) to a new parent
category. If the newParentKeyedReference is not defined, then the category will have no parent.

463Developer's Guide

Syntax

Arguments

• category:authInfo - This optional argument is an element that contains an authentication token.

• keyedReference - Category to be deleted.

• newParentKeyedReference - Optional category, that becomes new parent of the category.

Permissions

This API call requires API manager permission for org.systinet.uddi.client.category.v3.CategoryApi and
the action move_category.

set_category

The set_category API call is used to update the selected category in HP SOA Registry Foundation.

Syntax

Arguments

• category:authInfo - This optional argument is an element that contains an authentication token.

• oldKeyedReference - Current category to be updated.

• category:category - New category, that will replace selected category.

Chapter 5464

Permissions

This API call requires API manager permission for org.systinet.uddi.client.category.v3.CategoryApi and
the action set_category.

WSDL

You can find this API's WSDL specification in the file category.wsdl
[http://www.hp.com/go/hpsoftwaresupport/wsdl/category.wsdl].

API Endpoint

You can find the Category API at http://<host name>:<port>/uddi/category.

Java

Systinet Java API is generated from Category WSDL. You are encouraged to browse
org.systinet.uddi.client.category.v3.CategoryApi and to read and try Category demos.

Administration Utilities

The Systinet Administration Utilities API provides an interface to perform several low level administration
tasks in HP SOA Registry Foundation.

Operations

cleanSubscriptionHistory

This utility removes subscription histories from HP SOA Registry Foundation. If the olderThan value is not
specified, the utility deletes all historical data; otherwise it deletes data older than the specified value.

Syntax

465Developer's Guide

http://www.hp.com/go/hpsoftwaresupport/wsdl/category.wsdl

Arguments

• uddi_v3:authInfo - This optional argument is an element that contains an authentication token.

• olderThan - Optional argument specifying the date before which subscription history is deleted.

Permissions

This API call requires API manager permissions for org.systinet.uddi.admin.AdministrationUtilsApi and for
the cleanSubscriptionHistory action.

clean_unusedAccounts

This utility is useful when LDAP is used as a user store. HP SOA Registry Foundation treats LDAP as read-
only and all data from LDAP is mirrored to the registry's database. After you remove users from LDAP
using LDAP tools, data removed from LDAP stays in the database. To remove the orphan data from the
database, execute the clean_unusedAccounts operation.

Syntax

Permissions

This API call requires API manager permissions for org.systinet.uddi.admin.AdministrationUtilsApi and for
the clean_unusedAccounts action.

deleteTModel

The delete_tModel API removes one or more tModels from HP SOA Registry Foundation. Note that the
delete_tModel call in the UDDI version 3 specification does not physically remove the tModel from the
database; it marks the tModel as deprecated. The delete_tModel call from Administration Utilities can be
used to delete such deprecated tModels from the database.

Chapter 5466

Syntax

Arguments

• uddi_v3:authInfo - This optional argument is an element that contains an authentication token.

• uddi_v3:tModelKey - One or more required uddiKey values that represent existing tModels.

Permissions

This API call requires API manager permission for org.systinet.uddi.admin.AdministrationUtilsApi and the
action deleteTModel.

rebuild_cache

Database cache stores v3 UDDI structures in database as objects. Using this cache increases performance
of v3 inquiry get_business, get_service, get_binding, get_tModel and find_binding operations. On the other
hand the cache synchronization take some time mainly in v1 and v2 publishing API operations. The cache
can be enabled or disabled by Registry Console. By default, the cache is enabled. Each time caching is
switched on, the cache is rebuilt. After the initial rebuild the cache is incrementally synchronized each time
save_xxx or delete_xxx operation is performed on v1, v2, v3 publishing API. Explicit rebuild is enabled
by rebuild_cache operation. This operation is suitable when data is changed by an administrator in a SQL
console (note that such data changing is not recommended).

Syntax

Arguments

• uddi_v3:authInfo - This optional argument is an element that contains an authentication token.

467Developer's Guide

Permissions

This API call requires API manager permissions for org.systinet.uddi.admin.AdministrationUtilsApi and for
the rebuild_cache action.

replaceURL

The replaceURL API call is used to replace URL prefixes in the following entities:

• tModel - OverviewDoc URL

• tModelInstanceInfo - overviewDoc URL and DiscoveryURL

• binding template - accessPoint URL

Syntax

Arguments

• uddi_v3:authInfo - This optional argument is an element that contains an authentication token.

• oldURLPrefix - old value of URL prefix

• newURLPrefix - new value of URL prefix

Permissions

This API call requires API manager permission for org.systinet.uddi.admin.AdministrationUtilsApi and the
action replaceURL.

Chapter 5468

replaceKey

The replaceKey API call is used to change the uddiKey of a selected UDDI structure in HP SOA Registry
Foundation. The key must be specified in either UDDI version 3 format or UDDI version 2 format. The
optional elements uddiKeyNewV2 anduddiKeyNewV3 hold new values of uddiKeys for the selected UDDI structure.

Syntax

Arguments

• uddi_v3:authInfo - This optional argument is an element that contains an authentication token.

• uddiKeyOldV2 - Value of the uddiKey of an existing UDDI structure in UDDI version 2 format.

• uddiKeyOldV3 - Value of a uddiKey of an existing UDDI structure in UDDI version 3 format.

• uddiKeyNewV2 - New value of the uddiKey in UDDI version 2 format.

• uddiKeyNewV3 - New value of the uddiKey in UDDI version 3 format.

Permissions

This API call requires API manager permission for org.systinet.uddi.admin.AdministrationUtilsApi and the
action replaceKey.

resetDiscoveryURLs

Sets the discoveryURL value of each businessEntity in HP SOA Registry Foundation to its default value.

469Developer's Guide

Syntax

Arguments

• uddi_v3:authInfo - This optional argument is an element that contains an authentication token.

Permissions

This API call requires API manager permission for org.systinet.uddi.admin.AdministrationUtilsApi and the
action resetDiscoveryURLs.

transform_keyedReferences

This operation is necessary when the type of taxonomy keyValues or the implementation of the taxonomy
transformation service have been changed. For more information see, User's Guide, Taxonomy: Principles,
Creation and Validation on page 245.

Syntax

Arguments

• uddi_v3:authInfo - This optional argument is an element that contains an authentication token.

• uddi_v3:tModelKey

Permissions

This API call requires API manager permission for org.systinet.uddi.admin.AdministrationUtilsApi and the
action transform_keyedReferences.

Chapter 5470

WSDL

You can find the WSDL specification for this API in administrationUtils.wsdl
[http://www.hp.com/go/hpsoftwaresupport/wsdl/administrationUtils.wsdl].

API Endpoint

You can find the Administration Utilities API endpoint at http://<host name>:<port>/uddi/administrationUtils.

Java

The Systinet Java API is generated from Administration Utils WSDL. You are encouraged to browse
org.systinet.uddi.admin.AdministrationUtilsApi for more information.

Replication

The Replication API is used to launch replications in HP SOA Registry Foundation.

Operations

Replicate

The replicate API call is used to immediately start replications.

Arguments

• authInfo - This optional argument is an element that contains an authentication token.

Behavior

When this API call is invoked, it stops the scheduling of replications and, if needed, waits until the completion
of current replications. It then starts a new replication process in which replications are rescheduled from
this time with the normal replication interval. This results in one of two scenarios:

• If no replications are in process when the replicate call is made, the call stops the replication schedule,
runs the replication, and restarts the schedule from the time the call was made. For example, if replications

471Developer's Guide

http://www.hp.com/go/hpsoftwaresupport/wsdl/administrationUtils.wsdl

had been scheduled on the hour, and the call is made at 9:15, replications will then occur at 10:15, 11:15,
and so forth.

• If there is a replication in process when the replicate call is made, scheduling is stopped, the call waits
for the current process to conclude, runs the replication, and restarts schedule from the time the call was
made as in the previous scenario.

WSDL

You can find the WSDL specification in the file replication_v3.wsdl
[http://www.hp.com/go/hpsoftwaresupport/wsdl/replication_v3.wsdl].

API Endpoint

You can find the Replication API endpoint at http://<host name>:<port>/uddi/replication.

Java

The Systinet Java API is generated from the Replication WSDL. You are encouraged to browse its
org.systinet.uddi.replication.v3.ReplicationApi.

Statistics

The Systinet Statistics API provides useful information about HP SOA Registry Foundation usage.

Data Structures

The following structures are used by the Systinet Statistics API:

accessStatisticsDetail

Table 47. Attributes

RequiredAttribute

yesenable

Chapter 5472

http://www.hp.com/go/hpsoftwaresupport/wsdl/replication_v3.wsdl

This structure is a container for zero or more apiStatisticsDetail elements. The enable attribute is used to
distinguish whether the returned data is consistent or not. If set to false, the Statistics interceptor has been
configured not to run and returned data will be outdated.

apiStatisticsDetail

Table 48. Attributes

RequiredAttribute

YesapiName

YesrequestCount

YesexceptionCount

YeslastCall

This structure contains information about usage of the API specified in the attribute apiName and its methods.
It also serves as a container for methodStatisticsDetail elements.

The requestCount attribute holds a number indicating how many times this API has been used since its last
reset or since HP SOA Registry Foundation installation.

The exceptionCount attribute indicates the number of exceptions that have interrupted execution of the API's
methods.

The lastCall attribute contains the time this API was last invoked.

473Developer's Guide

methodStatisticsDetail

Table 49. Attributes

RequiredAttribute

YesmethodName

YesrequestCount

YesexceptionCount

YeslastCall

This element contains information about usage of the method specified in the attribute methodName.

The requestCount attribute holds a number indicating how many times this method has been called since its
last reset or since HP SOA Registry Foundation installation.

The exceptionCount attribute indicates the number of exceptions that have interrupted execution of this
method.

The lastCall attribute contains the time this method was last invoked.

structureStatisticsDetail

This structure serves as a container for the structure element.

Structure

Table 50. Attributes

RequiredAttribute

Yesname

Yescount

Chapter 5474

The structure element indicates how many UDDI structures of the type given by the name attribute are stored
in the registry.

Operations

get_accessStatistics

The get_accessStatistics API call is used to fetch information about usage of selected UDDI APIs in HP
SOA Registry Foundation. The filter element is used to specify which APIs' statistics will be returned. If
it is empty, the statistics for all APIs are returned.

Arguments

• statistics:authInfo - This optional argument is an element that contains an authentication token.

• statistics:filter - Optional regular expression to match selected APIs by their name. The wildcard
characters ? and * are supported.

Returns

Upon successful completion, an accessStatisticsDetail structure is returned.

Permissions

This API call requires API manager permission for org.systinet.uddi.statistics.StatisticsApi and the action
get_accessStatistics.

get_structureStatistics

The get_structureStatistics API call is used to get overview information about how many UDDI structures
is stored within HP SOA Registry Foundation.

475Developer's Guide

Arguments

• statistics:authInfo - This optional argument is an element that contains an authentication token.

Returns

Upon successful completion, an structureStatisticsDetail structure is returned.

Permissions

This API call requires API manager permission for org.systinet.uddi.statistics.StatisticsApi and the action
get_structureStatistics.

reset_accessStatistics

The reset_accessStatistics API call is used to reset API usage statistics in HP SOA Registry Foundation.
The optional filter element is used to limit affected APIs, if it is not set, statistics for all APIs is removed.

Arguments

• statistics:authInfo - This optional argument is an element that contains an authentication token.

• statistics:filter - Optional regular expression to match selected APIs by their name. The wildcard
characters ? and * are supported.

Permissions

This API call requires API manager permission for org.systinet.uddi.statistics.StatisticsApi and the action
reset_accessStatistics.

WSDL

You can find the WSDL specification in the file statistics.wsdl
[http://www.hp.com/go/hpsoftwaresupport/wsdl/statistics.wsdl].

Chapter 5476

http://www.hp.com/go/hpsoftwaresupport/wsdl/statistics.wsdl

API Endpoint

You can find the Statistics API endpoint at http://<host name>:<port>/uddi/statistics.

Java

Systinet Java API is generated directly from WSDL. You are encouraged to browse
org.systinet.uddi.statistics.StatisticsApi.

WSDL Publishing

HP SOA Registry Foundation WSDL-to-UDDI mapping is compliant with OASIS's Technical Note, Using
WSDL in a UDDI registry Version 2.0 [http://www.oasis-open.org/committees/uddi-spec/doc/tn/uddi-spec-
tc-tn-wsdl-v2.htm]. It enables the automatic publishing of WSDL documents to UDDI, enables precise and
flexible UDDI queries based on specific WSDL artifacts and metadata, and provides a consistent mapping
for UDDI v2 and UDDI v3.

Data Structures

wsdlDetail

wsdlDetail completes information about the WSDL to be mapped.

Arguments

• wsdl2uddi:wsdl - Contains URI or physical location of mapped WSDL.

• wsdl2uddi:wsdlMapping - Describes wsdl:types to be mapped.

wsdl

477Developer's Guide

http://www.oasis-open.org/committees/uddi-spec/doc/tn/uddi-spec-tc-tn-wsdl-v2.htm
http://www.oasis-open.org/committees/uddi-spec/doc/tn/uddi-spec-tc-tn-wsdl-v2.htm

WSDL contains information about location of a mapped WSDL.

Arguments

• wsdlLocation - The URI or physical location of a mapped WSDL.

• any - Used to make extensible documents (see XML schema [http://www.w3.org/TR/xmlschema-1/]).
It is generally used as the DOM pattern of a mapped WSDL.

wsdlMapping

WsdlMapping describes the wsdl:types to be mapped. It is used to alter the default behavior of mapping the
specified WSDL. In contained structures, it is possible to describe each mapped wsdl:type correctly. This
is to ensure exact mapping and prevent duplication of data in the registry.

Arguments

• uddi:businessKey - Represents the businessKey of an existing uddi:businessEntity to which the assigned
wsdl:types will be mapped.

• uddi:businessEntity - Represents an existing businessEntity to which the assigned wsdl:types will be
mapped.

• wsdl2uddi:porttypes - Represents the container of wsdl:portTypes to be mapped. wsdl2uddi:porttypes makes
it possible map a uddi:tModel to its corresponding wsdl:portType .

• wsdl2uddi:bindings - Represents the container of wsdl:bindings to be mapped. wsdl2uddi:bindings makes
it possible to map a uddi:tModel to its corresponding wsdl:binding.

• wsdl2uddi:services - Represents the container of wsdl:services to be mapped. wsdl2uddi:services makes
it possible to map a uddi:businessService to its corresponding wsdl:service.

Chapter 5478

http://www.w3.org/TR/xmlschema-1/

Note that uddi:businessKey and uddi:businessEntity are mutually exclusive.

portTypes

The portTypes structure is a simple container of one or more wsdl2uddi:portTypes.

portType

PortType represents a mapping of wsdl:portType in UDDI. It contains information necessary to map the
wsdl:portType to a corresponding uddi:tModel accurately.

Arguments

• uddi:tModelKey - Represents the tModelKey of an existing uddi:tModel which will be reused or rewritten
(depending on the publishingMethod selected by the user) with data from wsdl:portType.

• uddi:tModel - Represents an existing uddi:tModel which will be reused or rewritten (depending on the
publishingMethod selected by the user) with data from wsdl:portType.

Note that uddi:tModelKey and uddi:tModel are mutually exclusive.

479Developer's Guide

Table 51. Attributes

RequiredName

optionalname

optionalnamespace

optionalpublishingMethod

These attributes describe the wsdl:portType of the appropriate WSDL. Name and namespace represent the
wsdl:portType QName. publishingMethod represents an enumeration of available mapping use cases. It can be
set to rewrite, create, reuse, or ignore. The default publishingMethod is reuse.

Bindings

The bindings structure is a simple container of one or more wsdl2uddi:bindings.

binding

A binding represents a mapping of wsdl:binding in UDDI. It contains information necessary for the precise
mapping of a wsdl:binding to the appropriate uddi:tModel.

Arguments

• uddi:tModelKey - Represents the tModelKey of an existing uddi:tModel which will be reused or rewritten
(depending on the publishingMethod selected by the user) with data from wsdl:binding.

• uddi:tModel - Represents an existing uddi:tModel which will be reused or rewritten (depending on the
publishingMethod selected by the user) with data from wsdl:binding.

Chapter 5480

Note that uddi:tModelKey and uddi:tModel are mutually exclusive.

Table 52. Attributes

RequiredName

optionalname

optionalnamespace

optionalpublishingMethod

These attributes describe the wsdl:binding from the appropriate WSDL. Name and namespace represent the
wsdl:binding QName.

publishingMethod represents an enumeration of the available mapping use cases. It can be set to rewrite,
create, reuse, or ignore. The default publishingMethod is reuse.

Services

The services structure is a simple container of one or more wsdl2uddi:services.

service

Service represents the mapping of wsdl:service in UDDI. It contains information necessary to map a
wsdl:service to the appropriate uddi:businessService precisely.

481Developer's Guide

Arguments

• uddi:businessKey - represents businessKey of an existing uddi:businessEntity to which the translated
wsdl:service will be stored.

• uddi:serviceKey - represents the serviceKey of an existing uddi:businessService which will be reused or
rewritten (depending on the publishingMethod selected by user) with data from wsdl:service.

• uddi:businessService - represents an existing uddi:businessService which will be reused or rewritten
(depending on the publishingMethod selected by user) with data from wsdl:service.

• wsdl:ports - represents existing uddi:bindingTemplates which will be reused or rewritten (depending on
the publishingMethod selected by user) with data from wsdl:service ports.

Note that uddi:serviceKey and uddi:businessService are mutually exclusive.

Table 53. Attributes

UseName

optionalname

optionalnamespace

optionalpublishingMethod

These attributes describe the wsdl:service from an appropriate WSDL. Name and namespace represents the
wsdl:service QName.

publishingMethod represents an enumeration of available mapping use cases. It can be set to rewrite, create,
reuse, or ignore. The default publishingMethod is reuse.

ports

The ports structure is a simple container for one or more wsdl2uddi:ports.

Chapter 5482

port

Port represents a mapping of wsdl:port in UDDI. It contains information necessary to map the wsdl:port to
the appropriate uddi:bindingTemplate precisely.

Arguments

• uddi:bindingKey - Represents the bindingKey of an existing uddi:bindingTemplate which will be reused or
rewritten (depending on the publishingMethod selected by user) with data from wsdl:port.

• uddi:bindingTemplate - Represents an existing uddi:bindingTemplate which will be reused or rewritten
(depending on the publishingMethod selected by user) with data from wsdl:service.

Note that uddi:bindingKey and uddi:bindingTemplate are mutually exclusive.

Table 54. Attributes

RequiredName

optionalname

optionalpublishingMethod

These attributes describe the wsdl:port from an appropriate WSDL.Name represents the wsdl:port name.
publishingMethod represents an enumeration of available mapping use cases. It can be set to rewrite, create,
or reuse. The default publishingMethod is reuse.

wsdlServiceInfos

483Developer's Guide

The wsdlServiceInfo structure is a simple container of one or more wsdl2uddi:wsdlServiceInfos.

wsdlServiceInfo

The wsdlServiceInfo completes information about the wsdlLocation and uddi:businessService being searched.

Arguments

• wsdlLocation - The URI or physical location of a WSDL.

• wsdl2uddi:portInfos - Container for wsdl2uddi:ports which contain the wsdl:port mapped to the appropriate
uddi:bindingTemplate.

Table 55. Attributes

RequiredName

requiredname

requirednamespace

requiredserviceKey

These attributes describes how the wsdl:service is mapped from the appropriate WSDL. Name and namespace
represent the wsdl:service QName.

The serviceKey represents the uddi:businessService on which the wsdl:service is mapped.

PortInfos

The portInfos structure is a simple container of one or more wsdl2uddi:portInfos.

Chapter 5484

portInfo

The portInfo completes information about uddi:bindingTemplates used in the uddi:businessService being
searched.

Arguments

• uddi:accessPoint contains information about accessing the uddi:businessService being searched.

Table 56. Attributes

RequiredName

requiredname

requiredbindingKey

These attributes describe how the wsdl:port is mapped from the appropriate WSDL. Name represents the
wsdl:port name. BindingKey represents the uddi:bindingTemplate on which the wsdl:port is mapped.

Operations

publish_wsdl

Publish_wsdl ensures the publishing of a WSDL to a UDDI registry. It uses the Publishing API to store
translated wsdl:types to the UDDI registry. For more information about the Publishing API, please see UDDI
v3 - publishing API [http://uddi.org/pubs/uddi_v3.htm#_Toc53709290]).

By default UDDI entities are rewritten by data contained in wsdl:types as follows: Each wsdl:type is first
searched on the specified registry. The found UDDI entity is rewritten, or a new entity is created if one is
not found. However, the user can specify how the wsdl:types will be published to the registry.

485Developer's Guide

http://uddi.org/pubs/uddi_v3.htm#_Toc53709290
http://uddi.org/pubs/uddi_v3.htm#_Toc53709290

You can alter the default publish behavior and define which wsdl:types will be mapped on the appropriate
UDDI entity and, naturally, whether the UDDI entity will be created, rewritten, or reused.

For more information about publish behavior and its use cases, see publishingMethod. Below are some
rules by which wsdl:types are assigned to the appropriate UDDI entities depending on whether the wsdl:type
is found on the user account or on a foreign account. Note that wsdl:services are searched only on the user's
account, unlike wsdl:portType or wsdl:binding. This is because it is preferable to use tModels from a foreign
account rather then tModels translated from a WSDL.

publishingMethod

PublishingMethod describes the behavior of the publish operation. In accordance with the set behavior, the
corresponding wsdl:type will be mapped to the UDDI registry.

Note that publish_wsdl is set to reuse by default. However, if a user wants to rewrite an entity or a create a
new entity, the default behavior can be changed from "reuse" to "rewrite" or "create" to ensure unique
mapping.

Use cases

• rewrite - wsdl:type is searched on the registry and the found UDDI structure is redrawn by data of that
wsdl:type. If the wsdl:type is not found, a new one will be created.

• reuse - The default behavior of the publish operation. Using this behavior, the user is able to reuse an
entire existing UDDI structure. The found UDDI entity will not be redrawn by data of that wsdl:type.
Note that when using this method, inconsistencies may occur between the published wsdl:type and the
corresponding UDDI entity. This behavior should be helpful when we need to use existing tModels
instead of tModels mapped from wsdl:portTypes or wsdl:bindings (For example, uddi:hostingRedirectors).

• create - This method is used mainly for testing purposes. By using this behavior a new UDDI entity is
created from the wsdl:type regardless of whether the UDDI entity already exists on the registry.

When using this behavior, undesirable duplications may occur. It is necessary to use this
behavior carefully.

• ignore - This method is used when you do not want to publish the UDDI entity. You can restrict which
parts of the WSDL document will be published.

Chapter 5486

Arguments

• uddi:authInfo - This required argument is the string representation of the uddi:authToken.

• wsdl2uddi:wsdlDetail - Completes WSDL location and user-defined WSDL mapping rules. For more
information, please see wsdl2uddi:wsdlDetaill.

Here the user can specify which wsdl:type from the WSDL corresponds to the entity on the target registry
and how the specified wsdl:type will be mapped. For more information, please see
wsdl2uddi:publishingMethod.

Returns

wsdl2uddi:wsdlDetail - Contains detailed information about how the individual wsdl:types are published. For
more information, please see wsdl2uddi:wsdlDetaill.

unpublish_wsdl

Unpublish_wsdl ensures unpublishing of WSDL from UDDI registry. It uses the Publishing API to delete
UDDI entities corresponding to wsdl:types from a UDDI registry. For more information about the Publishing
API, please see UDDI v3 - publishing API [http://uddi.org/pubs/uddi_v3.htm#_Toc53709290].

Each wsdl:type is first searched on the specified registry. The found UDDI entity is deleted or if the entity
is not found it is simply omitted. Found tModels are either physically deleted or only marked as deprecated
in accordance with configuration. (When tModels are deleted by their owners, they are generally marked
as deprecated. Usually only the administrator can permanently delete deprecated tModels from the registry.
)

Arguments

• uddi:authInfo - This required argument is the string representation of the uddi:authToken.

• wsdl2uddi:wsdlDetail - completes the WSDL location and user-defined WSDL unpublish rules. For more
information, please see wsdl2uddi:wsdlDetaill. Here the user can specify which wsdl:type from a WSDL

487Developer's Guide

http://uddi.org/pubs/uddi_v3.htm#_Toc53709290

corresponds to the UDDI entity existing on the target registry. This is because that wsdl:type can occur
more than once on a registry.

Returns

wsdl2uddi:wsdlDetail - Contains detailed information about how individual wsdl:types are unpublished from
a target registry. For more information, please see wsdl2uddi:wsdlDetaill.

get_wsdlServiceInfo

Get_wsdlServiceInfo discovers uddi:businessServices corresponding to wsdl:services from a particular
WSDL. It uses the Inquiry API to get UDDI entities matching wsdl:types. For more information about the
Inquiry API, please see UDDI-inquiry API [http://uddi.org/pubs/uddi_v3.htm#_Toc53709271].

This operation discovers corresponding UDDI entities either on the user's account or on the foreign account
(in accordance with the specified uddi:authInfo). In consideration with multiple occurrences of UDDI entities
corresponding to wsdl:types, the search algorithm optimizes output in accordance with relations between
individual wsdl:types from the given WSDL. Only the wsdl2uddi:wsdlServiceInfo corresponding exactly
to the wsdl:service from the WSDL (that is, that contains all wsdl:types from the appropriate WSDL) will
be returned.

Arguments

• uddi:authInfo - This optional argument is the string representation of the uddi:authToken.

• wsdl2uddi:wsdl - An argument used to discover wsdl2uddi:wsdlServiceInfos. This argument ensures that
only the uddi:businessService corresponding exactly to the wsdl:service from that WSDL will be returned.
For more information, please see wsdl2uddi:wsdl).

Chapter 5488

http://uddi.org/pubs/uddi_v3.htm#_Toc53709271

• uddi:serviceKey - uddi:serviceKey of uddi:businessService existing on the target registry. Note that only
uddi:businessServices containing a "WSDL Type Category System" (that is, the uddi:categoryBag of a
found uddi:businessService must contain a uddi:keyedReference with a uddi:tModelKey representing "WSDL
Type Category System" and the keyValue "service") will be returned.

• uddi:bindingKey - uddi:bindingKey of uddi:bindingTemplate existing on the target registry. For UDDI v3
holds that only uddi:businessServices which contain uddi:bindingTemplate corresponding to a given
uddi:bindingKey with the "WSDL Type" Category System. (that is, the uddi:categoryBag of a found
uddi:bindingTemplate must contain uddi:keyedReference with uddi:tModelKey representing "WSDL Type
Category System" and the keyValue "binding") will be returned. Naturally this "WSDL Type Category
System" must also be contained in the appropriate uddi:businessService.

Note that uddi:bindingTemplates in v2 do not contain uddi:categoryBag. Even though the found
uddi:bindingTemplate must contain uddi:tModels compliant with "WSDL Type Category System" in its
uddi:tModelInstanceDetails.

• uddi:tModelKey - the uddi:tModelKey of the uddi:tModel existing on the target registry. Note that only
uddi:businessServices which use uddi:tModels compliant with "WSDL Type Category System" will be
returned. That is, the uddi:categoryBag of the found uddi:tModel must contain uddi:keyedReference with
uddi:tModelKey representing "WSDL Type Category System" and the keyValue "binding" or "portType").
Naturally, this "WSDL Type Category System" must also be contained in the appropriate
uddi:businessService.

Note that wsdl2uddi:wsdl, uddi:serviceKey, uddi:bindingKey and uddi:tModelKey are mutually exclusive.

Returns

wsdl2uddi:wsdlServiceInfos - Contains UDDI entities corresponding to wsdl:types from the specified WSDL.
For more information, please see wsdl2uddi:wsdlServiceInfos.

489Developer's Guide

find_wsdlServiceInfo

This operation is a bit more complex than wsdl2uddi:get_wsdlServiceInfo. Find_wsdlServiceInfo discovers
uddi:businessServices corresponding to wsdl:services from a particular WSDL. It uses the Inquiry API to
find UDDI entities matching wsdl:types. For more information about the Inquiry API, please see UDDI-
inquiry API [http://uddi.org/pubs/uddi_v3.htm#_Toc53709271]).

This operation discovers corresponding UDDI entities either on the user's account or on a foreign account
(in accordance with the specified uddi:authInfo). In consideration for multiple occurrence of UDDI entities
corresponding to wsdl:types, the search algorithm optimizes output in accordance with relations between
individual wsdl:types from the specified WSDL and the uddi:find_xx structure specified by the user. Only
the wsdl2uddi:wsdlServiceInfo corresponding exactly to the wsdl:service from the WSDL will be returned,
that is, the wsdl2uddi:wsdlServiceInfo containing all wsdl:types from the appropriate WSDL at once, and
satisfying the user's defined uddi:find_xx.

Arguments

• uddi:authInfo - This optional argument is the string representation of the uddi:authToken.

• wsdl2uddi:wsdl - required argument used to discover wsdl2uddi:wsdlServiceInfos. This argument ensures
that only the uddi:businessService corresponding exactly to the wsdl:service from that WSDL will be
returned. For more information, please see wsdl2uddi:wsdl.

• uddi:find_service - Argument used for a more detailed description of search criteria. For more information,
see uddi:find_service [http://uddi.org/pubs/uddi_v3.htm#_Toc53709283]. Found uddi:businessServices
must follow the same rules as in the case of wsdl2uddi:get_wsdlServiceInfo.

• uddi:find_binding - Argument used for a more detailed description of search criteria. For more information,
see uddi:find_binding [http://uddi.org/pubs/uddi_v3.htm#_Toc53709280]. Found uddi:businessServices
and uddi:bindingTemplates must follow the same rules as in the case of wsdl2uddi:get_wsdlServiceInfo.

Chapter 5490

http://uddi.org/pubs/uddi_v3.htm#_Toc53709271
http://uddi.org/pubs/uddi_v3.htm#_Toc53709271
http://uddi.org/pubs/uddi_v3.htm#_Toc53709283
http://uddi.org/pubs/uddi_v3.htm#_Toc53709280

• uddi:find_tModel - Argument used for a more detailed description of search criteria. For more information,
see uddi:find_tModel [http://uddi.org/pubs/uddi_v3.htm#_Toc53709284]. Found UDDI entities must
follow the same rules as in the case of wsdl2uddi:get_wsdlServiceInfo.

Note that uddi:find_service, uddi:find_binding and uddi:find_tModel are mutually exclusive.

Returns

wsdl2uddi:wsdlServiceInfos - Contains UDDI entities corresponding to wsdl:types from the specified WSDL.
For more information, please see wsdl2uddi:wsdlServiceInfos.

find_wsdlMapping

This operation finds mapping of the WSDL document.

Arguments

• uddi:authInfo - This argument is the string representation of the uddi:authToken.

• uddi:findQualifiers - See Find Qualifiers [http://uddi.org/pubs/uddi-v3.0.1-20031014.htm#_Toc53709275]

• wsdl2uddi:wsdl

Returns

This operation returns wsdl2uddi:wsdlMapping.

WSDL

wsdl2uddi_v2.wsdl.wsdl [http://www.hp.com/go/hpsoftwaresupport/wsdl/wsdl2uddi_v2.wsdl]

wsdl2uddi_v3.wsdl.wsdl [http://www.hp.com/go/hpsoftwaresupport/wsdl/wsdl2uddi_v3.wsdl]

491Developer's Guide

http://uddi.org/pubs/uddi_v3.htm#_Toc53709284
http://uddi.org/pubs/uddi-v3.0.1-20031014.htm#_Toc53709275
http://www.hp.com/go/hpsoftwaresupport/wsdl/wsdl2uddi_v2.wsdl
http://www.hp.com/go/hpsoftwaresupport/wsdl/wsdl2uddi_v3.wsdl

API Endpoint

You can find the WSDL2UDDI API endpoint at http://<host name>:<port>/uddi/wsdl2uddi.

Java

org.systinet.uddi.client.wsdl2uddi.v3.Wsdl2uddiApi

Demos v2: WSDL2UDDI demos

Demos v3: WSDL2UDDI demos

XSD Publishing

Systinet XSD-to-UDDI mapping enables the automatic publishing of XML Schema Documents into UDDI
and enables precise, flexible UDDI queries based on specific XML schema metadata.

The mapping of XML Schema Document information to UDDI covers:

• XML types - Types declared at the global level in the XML Schema Document. These types are mapped
to tModels in UDDI.

• XML elements - XML elements declared at the global level in the XML Schema Document. These
elements are mapped to tModels in UDDI.

• References to other XML namespaces - Information about imported schemas are stored in the registry.

The API allows the user to search for an schema's tModels based on the namespace they define, or the
elements and types they declare within that namespace. The API can also extract the published information
back from the registry, so it can be accessed as a list of elements, types, and schemas rather than tModels
and other UDDI entities.

Data Structures

Elements

Chapter 5492

This structure represents elements declared by the published XML Schema Document.

Arguments

• element - This argument represents an element declared by the published XML Schema Document.

importedSchemaModel

This structure contains the basics of the imported XML Schema tModel.

Arguments

• uddi:tModelKey - The key of the tModel of the schema of the imported XML namespace.

• uddi:name - The name of that schema's tModel.

resourceInfo

This structure describes the location of the XML Schema Document.

schemaCandidate

This structure holds possible mappings of how the XML Schema Document can be published.

Arguments

• location - The location of the candidate XML Schema Document.

493Developer's Guide

• xsd2uddi:schemaMapping - The mapping of the candidate XML Schema Document contents

schemaImport

This structure holds the imported namespace, that is, the list of possible mappings for this xsd:import, for
an xsd:import clause in the XML Schema Document. If a specific location is specified in the XML Schema
Document text for the imported XML Schema Document, it is also present.

Arguments

• xsd2uddi:namespace - The imported namespace. If missing, a no-namespaced XML schema is imported

• schemaLocation - The location for the XML Schema Document, if given explicitly. If the imported XML
Schema Document does not specify an exact schema location, this value is null.

• xsd2uddi:importedSchemaModel - The tModel information of the candidates for this import.

schemaImports

This structure describes a list of xs:imports in the schema.

Chapter 5494

schemaMapping

This structure describes a mapping of the XSD contents to an individual XSD tModel and its contents.

Arguments

• uddi:name - Name of the XML Schema tModel.

• uddi:tModelKey - tModelKey for the XML Schema tModel

• xsd2uddi:elements - Mapping for contained XML elements

• xsd2uddi:types - Mapping for contained XML types.

schemaMappings

This structure describes a mapping from the contents of a XML Schema Document to UDDI entities. There
are two parts. The first part describes possible matches for xs:imports specified by the XML Schema
Document; the second, individual candidates that may match the XML Schema Document contents. The
candidate structure then contains a mapping of the XML Schema Document onto the particular candidate
tModel and the related UDDI entities.

Arguments

• xsd2uddi:schemaImports - mapping for referenced (imported) XML Schema Documents.

• xsd2uddi:schemaCandidate - an individual mapping candidate.

495Developer's Guide

symbol

This structure holds mapping of an individual symbol (XSD element and type) to the registry.

Arguments

• localName - Local name of the mapped symbol.

• xsd2uddi:symbolModel - The basics of the tModel that represents the symbol.

symbols

A common structure for mapping types and elements.

symbolModel

Basic information about a tModel that represents an element or a type declared by the XML Schema
Document

Arguments

• uddi:name - Name of the symbol's tModel. This argument is optional when publishing a XML Schema
Document; it is always filled in API responses.

• uddi:tModelKey - tModelKey of the symbol's model

Chapter 5496

types

Mapping of types declared by the XML Schema Document being mapped

xsdDetail

The structure provides detailed information about a specific XML Schema Document, its contents and its
references.

Arguments

• xsd2uddi:xsdInfo - General information about the XML Schema Document itself

• xsd2uddi:schemaImports - Information about XML namespaces imported into the XML Schema Document

• xsd2uddi:elements - List of elements in the schema

• xsd2uddi:types - List of types in the schema

xsdDetails

Details of the XSD

497Developer's Guide

xsdInfo

This structure holds general information about the XML Schema Document.

Arguments

• location - The location of the XML Schema Document. This location can be used to retrieve the contents

• xsd2uddi:namespace - The URI of the XML namespace defined by the XML Schema Document

• uddi:tModelKey - tModel key for the schema's tModel

• uddi:name - tModel name for the schema's tModel

xsdResourceList

Table 57. Attributes

RequiredName

optionaltruncated

This structure holds a list of XSDs, returned from a find_xsd call.

Arguments

• uddi:listDescription - holds a list of descriptions as specified in UDDI's API documentation.

Chapter 5498

• xsd2uddi:xsdInfo - holds information about individual registered XSD models.

Operations

find_xsd

Syntax

This operation finds the XML Schema Document. The caller can limit the number of search results to be
returned and can iterate through the search results using the listHead and maxRows arguments.

The name and URI lists passed as the input search criteria may use wildcard characters provided that the
approximateMatch findQualifier is present. If the ownEntities findQualifier is used, the operation returns only
entities owned by the authenticated user. Other entities are not returned even though they match the other
search criteria.

Table 58. Attributes

RequiredName

optionallistHead

optionalmaxRows

Arguments

• uddi:authInfo - This optional argument is the string representation of the uddi:authToken.

499Developer's Guide

• xsd2uddi:resourceInfo - URI location of the published XML Schema Document. The registry does not
read from the location, it is used as a search criteria for the current UDDI contents only.

• xsd2uddi:namespace - Allows to search by the namespace defined by a XML Schema Document. Contains
a list of XML namespace URIs. An XML Schema Document satisfies this condition if its targetNamespace
attribute is among the URIs.

• definesType - Allows the user to search by defined type. Contains a list of type names. An XML Schema
Document satisfies this condition if it defines a global type with a name passed in the list.

• definesElement - The returned schemas must define the named element.

• uddi:find_tModel - An argument used for a more detailed description of search criteria. For more
information, see uddi:find_tModel [http://uddi.org/pubs/uddi_v3.htm#_Toc53709284]. These criteria
are combined with the other criteria specified by the find_xsd structure. In the case of a conflict, the
criteria in find_xsd take precedence.

Returns

This API call returns thexsdResourceList on success. If the caller specifies the maxRows attribute, the returned
xsdResourceList will contain, at most, that many results. Note that the search may yield a tModel, which
does not entirely comply with the XSD-to-UDDI mapping specification, such as when the tModel information
is altered manually. In these cases, an attempt to use get_xsdDetail on such a tModel will produce an
exception.

find_xsdMapping

Syntax

This operation finds a suitable mapping for contents of the given XML Schema Document. The operation
downloads and parses the XML Schema Document at the given location, and matches the contents against

Chapter 5500

http://uddi.org/pubs/uddi_v3.htm#_Toc53709284

the information already published in the registry. It will produce zero or more possible mappings for the
given XML Schema Document.

The caller may request that the mapping is attempted only against a specific tModel that represents an XML
Schema Document. In that case, only one mapping will be returned.

If the document at the specified location, or one of its dependencies (for example, schemas for XML
namespaces which the document imports) are not accessible to the registry, an exception will be raised. If
the document is not an XML schema or contains errors, the operation will throw an exception.

Arguments

• uddi:authInfo - (Optional) - authentication

• xsd2uddi:resourceInfo - The XSD identification (location)

• uddi:tModelKey - (Optional), the proposed schema tModel whose contents should be matched. If set, only
published contents of that XML Schema Document will be considered for mapping.

Returns

This API call returns xsd2uddi:schemaMapping upon success. The structure contains possible matches for the
XML Schema Document at the specified location, which are already stored in the UDDI. There are also
possible matches for the XML Schema Documents for XML namespaces imported into the main XML
Schema Document.

The call will fail if it cannot access the XML Schema Document or one of its dependencies.

get_xsdDetail

Syntax

Gets the detail about a published XML Schema Document tModels.

501Developer's Guide

Arguments

• uddi:authInfo - This optional argument is the string representation of the uddi:authToken.

• uddi:tModelKey - Required uddiKey value representing an existing XML Schema Document tModel.

Returns

This API call returns the xsd2uddi:xsdDetails.

If the passed tModelKey does not exist, or identifies a tModel that does not represent an XML Schema
Document, an exception is raised.

publish_xsd

Syntax

Table 59. Attributes

RequiredName

optionalimportPolicy

optionalcontentPolicy

optionalpublishingMethod

optionalcontentPublishingMethod

optionalimportPublishingMethod

Request to publish XML schema information to the registry. The user may pass only minimal information
and rely on the matching algorithm used internally to find the appropriate mapping for the published XML
Schema Document.

Chapter 5502

Using the importPolicy and contentPolicy, the caller may limit the scope of the published data. By
thepublishingMethod, contentPublishingMethod and importPublishingMethod attributes, the caller may specify the
default behavior for publishing - whether an existing UDDI entity is reused and possibly updated, or a new
UDDI entity is created, or the particular kind of information is ignored at all.

The registry will need to read the XML Schema Document during the call as well as any resources referenced
(imported) by it. If a XML Schema Document or a referenced resource is not available, the operation will
fail.

If the caller does not specify a mapping for some element, type, or XML namespace import and there will
be more possible matching UDDI entities, the call will fail because the mapping of that XML schema entity
is considered ambiguous. It is the responsibility of the caller to provide specific directions for the publishing
in such cases.

If the schemaMapping entry for a type, an element or an import specifies a publishingMethod reuse, the API
will try to find a suitable UDDI entity. If such an entity is not found, the API will create one. If the caller
provides a specific tModelKey with the reuse publishingMethod, the tModelKey must exist and that tModel
will be updated with the element, type or import data.

If the schemaMapping entry for a type, an element or an import specifies a publishing method create, the API
will always create a new UDDI entity for that XML Schema Document piece. If the caller specifies the
tModelKey in the schemaMapping entry, the new UDDI entity will be assigned that tModelKey. The caller
may specify a name for the new tModel, too.

If the caller specifies ignore publishing method for an element, a type or an import, that particular XML
Schema Document piece will not be published at all. If the publishing operation updates an existing entity
in the registry that contains a reference to the element, type or an import, the reference will be purged. When
an element or type is ignored, the matching UDDI entity will be deleted from the registry as well by the
publish operation.

Arguments

• uddi:authInfo - (Optional) - authentication

• location - XSD identification (location).

• xsd2uddi:schemaImports - Mapping for referenced (imported) XML Schema Documents

• xsd2uddi:schemaMapping - (Optional) customized mapping for the schema contents and references

503Developer's Guide

• importPolicy - attribute specifying which imports will be published

• contentPolicy - attribute specifying which content will be published

• publishingMethod - attribute specifying the default publishing method for the contents (elements, types)
declared by the schema; default = update

• contentPublishingMethod - The default publishing method for elements and types (ignore, create, reuse);
default = reuse. This publishing method will be used for all elements or types unless the schemaMapping
contains an entry for the element or type that provides a different value.

• contentPublishingMethod - The default publishing method for imports (ignore, create, reuse); default =
reuse. This publishing method will be used for all imported XML namespaces unless the schemaMapping
contains an entry for the XML namespace that provides a different value.

Returns

This API call returns the xsdDetail with the published XML Schema Document information on success.

unpublish_xsd

Syntax

Unpublish the XML Schema Document. The operation checks whether the XML Schema Document is
referenced from other data published in the UDDI. If so, the operation fails as the semantics of the referencing
data might break if the XML Schema Document information is removed from the UDDI registry.

Arguments

• uddi:authInfo - This optional argument is the string representation of the uddi:authToken.

• uddi:tModelKey - tModelKey of the tModel that represents the XML Schema Document.

Chapter 5504

Returns

This API call returns the xsdDetail on success.

WSDL

xsd2uddi_v3.wsdl [http://www.hp.com/go/hpsoftwaresupport/wsdl/xsd2uddi_v3.wsdl]

API Endpoint

You can find the XSD2UDDI API endpoint at http://<host name>:<port>/uddi/xsd2uddi.

Java

org.systinet.uddi.client.xsd2uddi.v3.Xsd2uddiApi

Inquiry UI

The Inquiry UI API has been implemented for improving the performance of the Business Service Console.
The basic idea is to retrieve data that appear in the Business Service Console using a single API call.

This API contains only one operation get_entityDetail. Its input includes a query specification and an output
format:

• The query specification comprises one of the standard UDDI v3 API data structures: find_business,
find_services, find_binding, find_tModel, get_businessDetail, get_serviceDetail, get_bindingDetail and
get_tModelDetail.

• The output format defines which data structures will be returned and how they will be pruned.

The operation get_entityDetail returns a list of UDDI data structures. ACLs are also applied to retrieved
data.

For example, if you specify the following inquiry:

<get_entityDetail xmlns="http://systinet.com/uddi/inquiryUI/6.0">
 <outputFormat>
 <businessEntityMask descriptionIncluded="true" identifierBagIncluded="true"/>
 <businessServiceMask descriptionIncluded="true"/>
 </outputFormat>
 <find_binding serviceKey="uddi:systinet.com:demo:hr:employeesList"

505Developer's Guide

http://www.hp.com/go/hpsoftwaresupport/wsdl/xsd2uddi_v3.wsdl

 xmlns="urn:uddi-org:api_v3"/>
</get_entityDetail>

You will receive the following output:

<entityDetail xmlns="http://systinet.com/uddi/inquiryUI/6.0">
 <businessEntity businessKey="uddi:systinet.com:demo:hr"
 xmlns="urn:uddi-org:api_v3">
 <name>HR</name>
 <description>HR department</description>
 <businessServices>
 <businessService serviceKey="uddi:systinet.com:demo:hr:employeesList"
 businessKey="uddi:systinet.com:demo:hr">
 <name>EmployeeList</name>
 <description>wsdl:type representing service</description>
 </businessService>
 </businessServices>
 <identifierBag>
 <keyedReference tModelKey="uddi:systinet.com:demo:departmentID"
 keyName="department id" keyValue="002"/>
 </identifierBag>
 </businessEntity>
</entityDetail>

If there are matching bindingTemplates accessible while associated businessServices are not (because of
ACLs), such bindingTemplates will be included in the result in a separate list of bindingTemplates. The
same behavior applies to accessible businessServices of inaccessible businessEntities.

Data Structures

The following structures are used by the Systinet Inquiry UI API:

• bindingTemplateMask on page 507

• businessEntityMask on page 507

• businessServiceMask on page 508

• contactMask on page 509

• entityDetail on page 509

• outputFormat on page 510

Chapter 5506

• tModelInstanceInfoMask on page 510

• tModelMask on page 511

bindingTemplateMask

Table 60. Attributes

RequiredAttribute

NodescriptionIncluded

NocategoryBagIncluded

NoSignatureIncluded

The bindingTemplateMask structure specifies the mask of the binding template of the outputFormat. Optional
attributes define which elements will be returned in the entityDetail

businessEntityMask

507Developer's Guide

Table 61. Attributes

RequiredAttribute

NodiscoveryURLIncluded

NodescriptionIncluded

NoidentifierBagIncluded

NocategoryBagIncluded

NoSignatureIncluded

The businessEntityMask structure specifies the mask of the business entity of the outputFormat. It also include
a contactMask. Optional attributes define which elements will be returned in the entityDetail.

businessServiceMask

Table 62. Attributes

RequiredAttribute

NodescriptionIncluded

NocategoryBagIncluded

NoSignatureIncluded

The businessServiceMask structure specifies the mask of the business service of the outputFormat. Optional
attributes define which elements will be returned in the entityDetail.

Chapter 5508

contactMask

The contactMask structure specifies the submask of the business entity mask of the outputFormat. Optional
attributes define which elements will be returned in the entityDetail

Table 63. Attributes

RequiredAttribute

NodescriptionIncluded

NophoneIncluded

NoemailIncluded

NoaddressIncluded

entityDetail

509Developer's Guide

The entityDetail structure is returned by the get_entityDetail operation. The attribute truncated indicates a
truncated result list.

Table 64. Attributes

RequiredAttribute

Nouddi:truncated

outputFormat

The outputFormat is a mask for data to be returned and can prune returned structures. The output format is
defined by the following arguments.

Arguments

• inquiryUI:businessEntityMask

• inquiryUI:businessServiceMask

• inquiryUI:bindingTemplateMask

• inquiryUI:tModelMask

tModelInstanceInfoMask

Chapter 5510

The tModelInstanceInfoMask structure specifies the mask of the tModel instance info of the outputFormat.
Optional attributes define which elements will be returned in the entityDetail

Table 65. Attributes

RequiredAttribute

NodescriptionIncluded

NoinstanceDetailsIncluded

tModelMask

The tModelMask structure specifies the mask of the tModel of the outputFormat. Optional attributes define
which elements will be returned in the entityDetail

Table 66. Attributes

RequiredAttribute

NodescriptionIncluded

NooverviewDocIncluded

NoidentifierBagIncluded

NocategoryBagIncluded

NoSignatureIncluded

511Developer's Guide

Operations

get_entityDetail

This is the core operation of the Inquiry UI API.

Arguments

• uddi:authInfo - This optional argument is an element that contains an authentication token.

• inquiryUI:outputFormat

• uddi:get_businessDetail, uddi:get_bindingDetail, uddi:get_tModelDetail, uddi:find_business,
uddi:find_service, uddi:find_binding, uddi:find_tModel - standard UDDI v3 structures.

Returns

Upon successful completion, an entityDetail structure is returned.

WSDL

You can find the WSDL specification in the file inquiryUI.wsdl
[http://www.hp.com/go/hpsoftwaresupport/wsdl/inquiryUI.wsdl].

Chapter 5512

http://www.hp.com/go/hpsoftwaresupport/wsdl/inquiryUI.wsdl

API Endpoint

You can find the Inquiry UI API endpoint at http://<host name>:<port>/uddi/inquiryUI.

Java

Systinet Java API is generated directly from WSDL. You are encouraged to browse
org.systinet.uddi.client.v3.ui.InquiryUIApi.

Security APIs

Security APIs cover the following APIs:

• Account API - Systinet Account API is used to query and manage user accounts in HP SOA Registry
Foundation.

• Group API - Systinet Group API is used to query and manage user groups in HP SOA Registry
Foundation.

• Permission API - Systinet Permission API is used to query and manage permissions in HP SOA Registry
Foundation.

Account

Systinet Account API is used to query and manage user accounts in HP SOA Registry Foundation.

Data Structures

The following structures are used by the Systinet Account API:

513Developer's Guide

userAccount

Chapter 5514

515Developer's Guide

The userAccount element is container that holds the attributes of a user account in the HP SOA Registry
Foundation. The required elements are:

• loginName

• email

• fullName

• languageCode

All other elements are optional.

DescriptionElement

contains the login name of the user accountloginName

contains the password used to authorize the userpassword

holds the user's email addressemail

holds the user's full namefullName

use for describing the user or the user's roledescription

the language the user speakslanguageCode

name of organization where the user is employedbusinessName

telephone number used to contact the userphone

second telephone number used to contact the useralternatePhone

 address

 city

 stateProvince

 country

 zip

may hold the time when the user account expiresexpiration

indicates whether the account may expire over timeexpires

Chapter 5516

a flag indicating whether the user account is external
or stored in the UDDI registry

external

a flag indicating whether the user is blockedblocked

an unspecified string; its meaning depends on
UserStore type

account:property

specifies how many business entities the user account
may save

businessesLimit

specifies maximum number of business services
within a single business entity that the user account
may own

servicesLimit

specifies how many bindingTemplates the user
account may save within a single businessService

bindingsLimit

specifies the number of tModels the user account
may save

tModelsLimit

specifies the number of publisherAssertions the user
account may save

assertionsLimit

specifies the number of subscriptions the user
account may save

subscriptionsLimit

contains information regarding when the user last
logged into the registry

lastLoginTime

userInfo

This element serves as a container for short information about single userAccount. It contains the required
element loginName, and the optional elements fullName, description, and email.

517Developer's Guide

userInfos

This element holds one or more userInfo elements.

userList

This element contains optional listDescription and userInfos elements.

Operations

find_userAccount

The find_userAccount API call is used to find user accounts in HP SOA Registry Foundation that match
given criteria.

Syntax

Arguments

• authInfo - This optional argument is an element that contains an authentication token.

• name - Name to be searched.

• account:findQualifier - The collection of findQualifier used to alter default behavior.

Chapter 5518

Behavior

The following findQualifiers affect behavior of the call:

• The findByLoginName findQualifier (default) is used to specify that user accounts shall be searched
by loginName.

• With the findByFullName findQualifier, user accounts are searched by the fullName property.

• If the exactMatch findQualifier is present, an exact match is required.

• The default approximateMatch findQualifier enables SQL wildcard queries.

• If the findBlockedAccount findQualifier is present, only blocked accounts are returned.

• The sortByNameAsc (default) and sortByNameDesc findQualifiers controls the order in which the data
is returned.

Returns

This API call returns the userList upon success.

Permissions

This API call requires the API user permission for org.systinet.uddi.account.AccountApi and the action
find_userAccount.

get_userAccount

The get_userAccount API call returns userAccount structure of selected user.

Syntax

519Developer's Guide

Arguments

• authInfo - This optional argument is an element that contains an authentication token.

• loginName - This required argument uniquely identifies the user account.

Returns

This API call returns userAccount upon success.

Permissions

This API call requires the API user permission for org.systinet.uddi.account.AccountApi and the action
get_userAccount to get user's own account detail and API manager permission for
org.systinet.uddi.account.AccountApi and the action get_userAccount to get other users' accounts.

save_userAccount

The save_userAccount API call is used to save or update userAccount in HP SOA Registry Foundation.
Whether public registration is allowed or not depends on the HP SOA Registry Foundation configuration.
It may be also configured to block registered account until it is enabled by code sent by email.

Syntax

Arguments

• authInfo - This optional argument is an element that contains an authentication token.

• account:userAccount - The user account to be saved.

Returns

This API call returns userAccount upon success.

Chapter 5520

Permissions

This API call requires the API user permission for org.systinet.uddi.account.AccountApi and the action
save_userAccount to save user's own account or register new account and API manager permission for
org.systinet.uddi.account.AccountApi and the action save_userAccount to save other users' accounts.

delete_userAccount

The delete_userAccount API call causes selected user account to be removed from HP SOA Registry
Foundation.

Syntax

Arguments

• authInfo - This optional argument is an element that contains an authentication token.

• loginName - This required argument uniquely identifies the user account.

Returns

This API call returns UserAccount upon success.

Permissions

This API call requires the API user permission for org.systinet.uddi.account.AccountApi and the action
delete_userAccount to delete user's own account and API manager permission for
org.systinet.uddi.account.AccountApi and the action delete_userAccount to delete other users' accounts.

enable_userAccount

The enable_userAccount API call is used to activate user account identified by loginName argument in HP
SOA Registry Foundation.

521Developer's Guide

Syntax

Arguments

• loginName - This required argument uniquely identifies the user account.

• account:enableCode - Confirmation string.

WSDL

You can find the WSDL specification in the file account.wsdl
[http://www.hp.com/go/hpsoftwaresupport/wsdl/account.wsdl].

API Endpoint

You can find the Account API endpoint at http://<host name>:<port>/uddi/account .

Java

The Systinet Java API is generated from Account WSDL. You are encouraged to browse
org.systinet.uddi.account.AccountApi and to read and try Account demos.

Group

Systinet Group API is used to query and manage user groups in HP SOA Registry Foundation.

Data Structures

The following structures are used by the Systinet Group API:

Chapter 5522

http://www.hp.com/go/hpsoftwaresupport/wsdl/account.wsdl

group

This element serves as a container for groupInfo and userInfos structures.

groups

This element serves as a container for one or more group structures.

groupInfo

This element contains information about one user group:

• The required name element holds the name of the group.

• The optional description element is used to describe group and its usage.

• The owner element contains the loginName of the user who created this group.

• The privateGroup element indicates whether the group is public or private.

523Developer's Guide

• The external element indicates whether the group is external (For example, in LDAP) or not.

groupInfos

This element serves as a container for one or more groupInfo elements.

groupList

Table 67. Attributes

RequiredAttribute

Notruncated

This structure server as a container for optional listDescription and optional groupInfos structures. The
truncated attribute indicates whether the list of groupInfos is truncated.

Operations

add_user

The add_user API call is used to add a user to a user group.

Chapter 5524

Syntax

Arguments

• authInfo - This optional argument is an element that contains an authentication token.

• groupName - the group to which the user will be added.

• account:userInfos - user that will be added to the group.

Permissions

This API call requires API user or manager permission for org.systinet.uddi.client.group.GroupApi and the
action add_user.

find_user

The find_user API call is used to find user within the user group.

Syntax

525Developer's Guide

Arguments

• authInfo - This optional argument is an element that contains an authentication token.

• name - login name of the user

• account:findQualifier - find qualifier

• groupName - the group in which the user will be searched.

Permissions

This API call requires API user or manager permission for org.systinet.uddi.client.group.GroupApi and the
action find_user.

Returns

Upon successful completion, the UserList structure is returned.

find_group

The find_group API call is used to search groups in HP SOA Registry Foundation.

Syntax

Arguments

• authInfo - This optional argument is an element that contains an authentication token.

Chapter 5526

• group:findQualifier - The collection of findQualifier used to alter default behavior.

• name - The required value contains name of the group to be searched.

Behavior

The following findQualifiers affect behavior of the call. The exactMatch findQualifier causes that exact
match on group name is required, while default approximateMatch findQualifier enables SQL wildcard
query. The findPrivateGroups findQualifier enables search between private groups, findPublicGroups
enables search between public groups and findMyGroups will cause the search to be performed only between
groups owned by the user who executed this call. The sortByNameAsc and sortByNameDesc findQualifiers
controls order, in which the data is returned.

If no findQualifier is defined, default findQualifier set contains approximateMatch, findPrivateGroups,
findPublicGroups and sortByNameAsc findQualifiers.

Returns

Upon successful completion, the groupList structure is returned.

Permissions

This API call requires API user or manager permission for org.systinet.uddi.client.group.GroupApi and the
action find_group.

get_group

The get_group API call is used to get details for one or more groups in HP SOA Registry Foundation.

Syntax

527Developer's Guide

Arguments

• authInfo - This optional argument is an element that contains an authentication token.

• name - The required value contains name of the group to be returned.

• brief - if you set this attribute, the result will not contain members of the group. Setting the attribute is
useful when working with large groups with thousands of members.

Returns

Upon successful completion, the groups structure is returned.

Permissions

This API call requires API user or manager permission for org.systinet.uddi.client.group.GroupApi and the
action get_group. The user permission is needed to get user's own groups, the manager permission is required
to get other users' groups.

save_group

The save_group API call is used to save collection of groups to HP SOA Registry Foundation.

Syntax

Arguments

• authInfo - This optional argument is an element that contains an authentication token.

• group:groups - The groups to be saved.

Returns

Upon successful completion, the groups structure is returned.

Chapter 5528

Permissions

This API call requires API user or manager permission for org.systinet.uddi.client.group.GroupApi and the
action save_group. The user permission is needed to save user's own groups, the manager permission is
required to update other users' groups.

remove_user

The remove_user API call removes user from the group.

Syntax

Arguments

• authInfo - This optional argument is an element that contains an authentication token.

• name - login name of the user

• groupName - the group from which the user will be removed

Permissions

This API call requires API user or manager permission for org.systinet.uddi.client.group.GroupApi and the
action remove_user.

delete_group

The delete_group API call causes that groups identified by their names will be removed from HP SOA
Registry Foundation.

529Developer's Guide

Syntax

Arguments

• authInfo - This optional argument is an element that contains an authentication token.

• name - The required value contains names of the groups to be deleted.

Returns

Upon successful completion, the groups structure is returned.

Permissions

This API call requires API user or manager permission for org.systinet.uddi.client.group.GroupApi and the
action delete_group. The user permission is needed to delete user's own groups, the manager permission is
required to delete other users' groups.

where_amI

The where_amI API call is there to return list of groups where the user executing this call is member. The
call returns both private and public groups.

Syntax

Arguments

• authInfo - This optional argument is an element that contains an authentication token.

Chapter 5530

• loginName - This required argument uniquely identifies the user account.

Returns

Upon successful completion, the groupList structure is returned.

Permissions

This API call requires API user or manager permission for org.systinet.uddi.client.group.GroupApi and the
action where_amI. The user permission is needed to get groups for the user himself, the manager permission
is required to get groups for other user.

WSDL

You can find the WSDL specification in the file group.wsdl
[http://www.hp.com/go/hpsoftwaresupport/wsdl/group.wsdl].

API Endpoint

You can find the Group API endpoint at http://<host name>:<port>/uddi/group.

Java

The Systinet Java API is generated from Group WSDL. You are encouraged to browse
org.systinet.uddi.group.GroupApi and to read and try Group demos.

Permission

The Systinet Permission API is used to query and manage permissions in HP SOA Registry Foundation.

Data Structures

The following structures are used by the Systinet Permission API:

531Developer's Guide

http://www.hp.com/go/hpsoftwaresupport/wsdl/group.wsdl

permissionDescriptor

This structure serves as a container for one permission and its actions. The type element contains the type
of the permission. The name element contains the permission's name. Optional action elements are used to
provide finer granularity to the permission and contain individual actions of this permission.

permissionDescriptors

This structure holds an optional principal element and zero or more permissionDescriptor structures.

permissionDetail

This structure is a container for zero or more permissionDescriptors structures.

principal

This element contains the optional attributeprincipalType, which may be assigned to a user or group. The
element's text contains the loginName of the user, or the group name, depending on the principalType value.

Chapter 5532

principals

This structure serves as a container for zero or more principal elements.

principalList

This structure serves as a list principals returned from the operation find_principal.

Operations

find_principal

This operation is used to find principals, it replaces the deprecared operation who_hasPermission .

Syntax

Arguments

• permission:authInfo - This optional argument is an element that contains an authentication token.

• permissionDescriptor

• name - name of the principal

533Developer's Guide

• findQualifier

Returns

Upon successful completion, the principalList structure is returned.

Permissions

This API call requires API user or manager permission for org.systinet.uddi.permission.PermissionApi and
the action get_permission. The user permission is needed to get permissions for the user himself, the manager
permission is required to get permissions for other users.

get_permission

The get_permission API call is used to get permissions in HP SOA Registry Foundation, that have been
assigned to users or groups identified by the principal's structure.

Syntax

Arguments

• permission:authInfo - This optional argument is an element that contains an authentication token.

• permission:principals - This mandatory structure contains list of users or groups to be searched.

Returns

Upon successful completion, the permissionDetail structure is returned.

Permissions

This API call requires API user or manager permission for org.systinet.uddi.permission.PermissionApi and
the action get_permission. The user permission is needed to get permissions for the user himself, the manager
permission is required to get permissions for other users.

Chapter 5534

set_permission

The set_permission API call serves to set permissions in HP SOA Registry Foundation. Existing permissions
for users or groups referenced in permissionDescriptors are overwritten by this call.

Syntax

Arguments

• permission:authInfo - This optional argument is an element that contains an authentication token.

• permission:permissionDescriptors - This mandatory structure holds permissions to be set.

Permissions

This API call requires API manager permission for org.systinet.uddi.permission.PermissionApi and the action
set_permission.

who_hasPermission

The who_hasPermission operation is deprecated. We recommend to use the operation find_principal
instead.

The who_hasPermission API call is used to find out which users or groups have the specified permissions.

Syntax

535Developer's Guide

Arguments

• permission:authInfo - This optional argument is an element that contains an authentication token.

• permission:permissionDescriptor - This argument contains a description of permissions to be searched.

Returns

Upon successful completion, the principals structure is returned.

Permissions

This API call requires API manager permission for org.systinet.uddi.permission.PermissionApi and the action
who_hasPermission.

WSDL

You can find the WSDL specification in the file permission.wsdl
[http://www.hp.com/go/hpsoftwaresupport/wsdl/permission.wsdl].

API Endpoint

You can find the Permission API endpoint at http://<host name>:<port>/uddi/permission.

Java

The Systinet Java API is generated from Permission WSDL. You are encouraged to browse its
org.systinet.uddi.permission.PermissionApi and to read and try the Permission demos.

Registry Client

This section describes how to prepare your own client distribution. A client created this way allows you to
access the HP SOA Registry Foundation API through a SOAP interface.

Client Package

CLIENT_HOME refers to the directory in which the HP SOA Registry Foundation Client distribution
will be created.

Chapter 5536

http://www.hp.com/go/hpsoftwaresupport/wsdl/permission.wsdl

REGISTRY_HOME refers to the directory in which HP SOA Registry Foundation is installed

To create a client application distribution follow these steps:

1 Make sure HP SOA Registry Foundation is successfully installed.

2 In the CLIENT_HOME directory, create a subdirectory named lib.

Copy the following files from REGISTRY_HOME/lib to CLIENT_HOME/lib

activation.jar
builtin-serialization.jar
core_services_client.jar
jaas.jar
jaxm.jar
jaxrpc.jar
jetty.jar
runner.jar
saaj.jar
security-ng.jar
security2-ng.jar
security_providers_client.jar
wasp.jar
wsdl_api.jar
xercesImpl.jar
xml-apis.jar
xmlParserApis.jar

3 In the CLIENT_HOME directory, create a subdirectory named dist.

Copy the following files from REGISTRY/dist to CLIENT_HOME/dist:

account_client.jar
admin_utils_client.jar
category_client_v3.jar
configurator_client.jar
configurator_cluster_client.jar
group_client.jar
permission_client.jar
replication_client_v3.jar
statistics_client.jar

537Developer's Guide

taxonomy_client_v3.jar
taxonomy_client_v31.jar
transformer_kr_client.jar
uddiclient_api_ext.jar
uddiclient_api_v1.jar
uddiclient_api_v2.jar
uddiclient_api_v3.jar
uddiclient_api_v3_ext.jar
uddiclient_core.jar
uddiclient_custody_v3.jar
uddiclient_subscription_listener_v3.jar
uddiclient_subscription_v3.jar
uddiclient_validate_values_v1.jar
uddiclient_validate_values_v2.jar
uddiclient_value_set_caching_v3.jar
uddiclient_value_set_validation_v3.jar
wsdl2uddi_client_v2.jar
wsdl2uddi_client_v3.jar
xsd2uddi_client_v3.jar

4 In the CLIENT_HOME directory, create a subdirectory named conf. Copy the following files from
REGISTRY_HOME/conf to CLIENT_HOME/conf:

clientconf.xml
log4j.config

If you want to use the https connection in HP SOA Registry Foundation, you must import the
certificate file into clientconf.xml using the PStoreTool. This file contains the certificate of the HP
SOA Registry Foundation installation by default.

You do not have to copy client files to directories that have specific names (lib, dist, and conf).
All client files can be copied to the flat directory CLIENT_HOME, for example. If you do this, however,
replace CONF_DIRECTORY, DIST_DIRECTORY, and LIB_DIRECTORY with CLIENT_HOME in this section's instructions.

Chapter 5538

JARs on the Client Classpath

For each client package, the associated .jar files must be added to the classpath. These .jar files are listed
in the appropriate sections below.

HP SOA Registry Foundation Runtime

To enable the HP SOA Registry Foundation Runtime client package, add these .jar files to the classpath.

activation.jar
builtin-serialization.jar;
core_services_client.jar;
jaas.jar;
jaxm.jar;
jaxrpc.jar
runner.jar
saaj.jar;
security-ng.jar;
security2-ng.jar;
security_providers_client.jar;
wasp.jar;
wsdl_api.jar
xercesImpl.jar;
xml-apis.jar;
xmlParserApis.jar;

UDDI API Client v1

To enable the UDDI API (v1) client package, add these .jar files to the classpath. For more information on
this client package, please see UDDI Version 1 on page 431

uddiclient_api_v1.jar
uddiclient_core.jar

UDDI API Client v2

To enable the UDDI API (v2) client package, add these .jar files to the classpath. For more information on
this client package, please see UDDI Version 2 on page 431.

539Developer's Guide

uddiclient_api_v2.jar
uddiclient_core.jar

UDDI API Client v3

To enable the UDDI API (v3) client package, add these .jar files to the classpath. For more information on
this client packages, please see UDDI Version 3 on page 432.

uddiclient_api_v3.jar
uddiclient_core.jar

UDDI API Client v3 ext X

To enable the UDDI API (v3, ext X) client package, add these .jar files to the classpath.

uddiclient_api_v3_ext.jar
uddiclient_api_v3.jar
uddiclient_core.jar

Account Client

To enable the Account client package, add these .jar files to the classpath. For more information on this
client package, please see Account on page 513.

account_client.jar
uddiclient_core.jar

Admin Utilities Client

To enable the Admin Utilities client package, add these .jar files to the classpath. For more information on
this client package, please see Administration Utilities on page 465.

admin_utils_client.jar
uddiclient_api_v3.jar
uddiclient_core.jar

Chapter 5540

Category Client v3

To enable the Category (v3) client package, add these .jar files to the classpath. For more information on
this client package, please see Category on page 458

category_client_v3.jar
uddiclient_api_v3.jar
uddiclient_core.jar

Group Client

To enable the Group client package, add these .jar files to the classpath. For more information on this client
package, please see Group on page 522.

group_client.jar
account_client.jar
uddiclient_core.jar

Permission Client

To enable the Permission client package, add these .jar files to the classpath. For more information on this
client package, please see Permission on page 531.

permission_client.jar
account_client.jar
uddiclient_core.jar

Replication Client v3

To enable the Replication (v3) client package, add these .jar files to the classpath. For more information on
this client package, please see Replication on page 471.

replication_client_v3.jar
uddiclient_core.jar

541Developer's Guide

Statistics Client

To enable the Statistics client package, add these .jar files to the classpath. For more information on this
client package, please see Statistics on page 472.

statistics_client.jar
uddiclient_core.jar

Taxonomy Client v3

To enable the v3 Taxonomy client package, add these .jar files to the classpath. For more information on
this client package, please see Taxonomy on page 444.

taxonomy_client_v3.jar
taxonomy_client_v31.jar
uddiclient_api_v3.jar
uddiclient_core.jar

UDDI Custody Client v3

To enable the v3 UDDI Custody client package, add these .jar files to the classpath. For more information
on this client package, please see Custody on page 433.

uddiclient_custody_v3.jar
uddiclient_api_v3.jar
uddiclient_core.jar

UDDI Subscription Client v3

To enable the v3 UDDI Subscription client package, add these .jar files to the classpath. For more information
on this client package, please see Subscription on page 433.

uddiclient_subscription_v3.jar
uddiclient_api_v3.jar
uddiclient_core.jar

Chapter 5542

UDDI Subscription Listener Client v3

To enable the v3 UDDI Subscription Listener client package, add these .jar files to the classpath. For more
information on this client package, please see Subscription on page 433.

uddiclient_subscription_listener_v3.jar
uddiclient_subscription_v3.jar
uddiclient_api_v3.jar
uddiclient_core.jar

UDDI Validate Values Client v1

To enable the UDDI Validate Values (v1) client package, add these .jar files to the classpath. For more
information on this client package, please see Validation on page 443.

uddiclient_validate_values_v1.jar
uddiclient_api_v1.jar
uddiclient_core.jar

UDDI Validate Values v2

To enable the UDDI Validate Values (v2) client package, add these .jar files to the classpath. For more
information on this client package, please see Validation on page 443.

uddiclient_validate_values_v2.jar
uddiclient_api_v2.jar
uddiclient_core.jar

UDDI Value Set Caching Client v3

To enable the UDDI Value Set Caching (v3) client package, add these .jar files to the classpath.

uddiclient_value_set_caching_v3.jar
uddiclient_api_v3.jar
uddiclient_core.jar

543Developer's Guide

UDDI Value Set Validation Client v3

To enable the UDDI Value Set Validation (v3) client package, add these .jar files to the classpath. For more
information on this client package, please see Validation on page 443.

uddiclient_value_set_validation_v3.jar
uddiclient_api_v3.jar
uddiclient_core.jar

WSDL2UDDI Client v2

To enable the WSDL2UDDI (v2) client package, add these .jar files to the classpath. For more information
on this client package, please see WSDL Publishing on page 477

wsdl2uddi_client_v2.jar
uddiclient_api_v2.jar
uddiclient_core.jar

WSDL2UDDI Client v3

To enable the WSDL2UDDI (v3) client package, add these .jar files to the classpath. For more information
on this client package, please see WSDL Publishing on page 477

wsdl2uddi_client_v3.jar
uddiclient_api_v3.jar
uddiclient_core.jar

Resources publishing (XSD) Client

To enable the client package, add these .jar files to the classpath.

uddiclient_api_v3.jar
uddiclient_core.jar
xsd2uddi_client_v3.jar

Chapter 5544

Classpath Examples

To run your HP SOA Registry Foundation client code you must add a config directory, wasp.jar, and client's
jars to the classpath.

CLIENT_HOME=. CONF_DIRECTORY=CLIENT_HOME\conf DIST_DIRECTORY=CLIENT_HOME\dist

LIB_DIRECTORY=CLIENT_HOME\lib

• If you want to use only UDDI Version 3:

CONF_DIRECTORY;LIB_DIRECTORY\wasp.jar;DIST_DIRECTORY\uddiclient_api_v3.jar

• If you want to use only UDDI Version 3 and UDDI Subscription Version 3:

CONF_DIRECTORY;LIB_DIRECTORY\wasp.jar;DIST_DIRECTORY\uddiclient_api_v3.jar%;
DIST_DIRECTORY\uddiclient_subscription_v3.jar

• If you want to use only UDDI Version 3, UDDI Subscription Version 3, and Taxonomy:

CONF_DIRECTORY;LIB_DIRECTORY\wasp.jar;DIST_DIRECTORY\uddiclient_api_v3.jar%;
DIST_DIRECTORY\uddiclient_subscription_v3.jar;DIST_DIRECTORY\taxonomy_client_v3.jar

Client Authentication

By default, all exposed registry APIs use the UDDI authentication scheme, where an authentication token
is passed with every call to identify a remote user. This is shown in registry demos such as Publishing v3
on page 646. The UDDI authentication scheme can be replaced.

In this section, we will show you an example client that publishes a new business entity using HTTP-Basic
or SSL client authentication.

545Developer's Guide

Example Client

For simplicity, the example client uses a SOAP stack provided with HP SOA Registry Foundation. You
can use a SOAP stack of your choice to communicate with the registry.

Example 3: ExampleClient.java

// (c) Copyright 2001-2008 Hewlett-Packard Development Company, L.P.
// Use is subject to license terms.

import org.systinet.uddi.client.v3.UDDIPublishStub;
import org.systinet.uddi.client.v3.UDDI_Publication_PortType;
import org.systinet.uddi.client.v3.struct.*;

public class ExampleClient {
 public static void main(String[] args) {
 String registryBaseUrl = System.getProperty("registry.base.url","http://localhost:8080");
 String urlPublishing = registryBaseUrl+ "/uddi/publishing";
 System.out.print("Using publishing URL "+urlPublishing + " .");

 try {
 UDDI_Publication_PortType publish = UDDIPublishStub.getInstance(urlPublishing);
 System.out.println(publish.save_business(new Save_business
 (new BusinessEntityArrayList(new BusinessEntity(new NameArrayList
 (new Name("Created by Client Authentication Example")))))));

 System.out.println(" done");
 } catch (Exception e) {
 e.printStackTrace();
 }
 }
}

The client is created as follows:

1 Create the directory CLIENT_HOME.

2 Create a client class in the CLIENT_HOME directory. The example client is shown in Example 3 on page
546. It has no security calls or structures internally. Client-side security will be configured later using
properties supplied to the java command that runs the client.

Chapter 5546

3 Create the lib subdirectory of CLIENT_HOME. Copy the jar files required for compilation and client
execution to this directory. All the jars are in the HP SOA Registry Foundation installation directory.
They are:

• lib/activation.jar

• lib/builtin_serialization.jar

• lib/core_services_client.jar

• lib/jaxm.jar

• lib/jaxrpc.jar

• lib/jetty.jar

• lib/log4j.jar

• lib/saaj.jar

• lib/security-ng.jar

• lib/security2-ng.jar

• lib/security_providers_client.jar

• lib/wasp.jar

• lib/wsdl_api.jar

• lib/xalan.jar

• lib/xercesImpl.jar

• lib/xml-apis.jar

• dist/uddiclient_core.jar

• dist/uddiclient_api_ v3.jar

547Developer's Guide

4 Create the conf subdirectory of CLIENT_HOME. Copy configuration files required to run the client
to this directory. These files are are also in the HP SOA Registry Foundation installation directory:

• conf/clientconf.xml

• conf/package12.xml

• conf/package13.xml

• conf/jaas.config

5 Compile the example client class using a CLASSPATH that includes all jar files in the lib subdirectory
of CLIENT_HOME

Before running the client, configure registry for a particular authentication scheme, as explained in HTTP
Basic on page 180 or SSL Client authentication on page 184. If you want to configure a deployed registry for
SSL client authentication, follow instructions given in J2EE Server Authentication on page 188

To run the client:

1 Use a classpath that includes all jar files from the CLIENT_HOME/lib directory, and the directory containing
the compiled example class.

2 Add the following property definitions to the java command line:

• -Dwasp.location=CLIENT_HOME

• -Djava.security.auth.login.config=CLIENT_HOME/conf/jaas.config

3 To run the client with HTTP Basic authentication also add the following:

• -Dwasp.username=USERNAME

• -Dwasp.password=PASSWORD

• -Dwasp.securityMechanism=HttpBasic

• -Dregistry.base.url=http://HOST:PORT/CONTEXT

Chapter 5548

Use the credentials of a registered user instead of USERNAME and PASSWORD. To register a new user, start
with the main page of registry console. See Registry Console on page 229 for details. You may also use
the demo user demo_john with password demo_john if you imported demo data during installation.

The base URL of registry is specified using the registry.base.url property as shown in Example 3 on
page 546. Replace HOST,PORT and CONTEXT to match your registry deployment; for example
http://pc1.mycomp.com:8080.

4 To run the client with SSL client authentication add the following:

• -Dwasp.username=USERNAME

• -Dwasp.password=PASSWORD

• -Dwasp.securityMechanism=SSL

• -Dregistry.base.url=https://HOST:PORT/CONTEXT

Unlike HTTP Basic authentication, USERNAME and PASSWORD are used to obtain the client identity from a
local protected store. You have to import the client identity using instructions provided in SSL Tool
on page 410. The protected store of the example client is in the file CLIENT_HOME/conf/clientconf.xml. You
also have to import a server certificate (or the certificate of a certification authority that issued the
server certificate) in the same protected store using instructions provided in PStore Tool on page 401.

Use an alias in the protected store instead of USERNAME. PASSWORD stands for the password that is used to
protect the private key stored under that alias.

The base URL of registry is specified using the registry.base.url System property as shown in Example
3 on page 546. Replace HOST,PORT and CONTEXT to match your registry deployment; for example
https://pc1.mycomp.com:8443.

Server-Side Development
This chapter focuses on the server-side development of HP SOA Registry Foundation extensions. Possible
ways of accessing HP SOA Registry Foundation are discussed including examples.

• Accessing backend APIs via servlet deployed on an application server.

549Developer's Guide

• Custom HP SOA Registry Foundation Modules - how to create and deploy custom HP SOA Registry
Foundation modules.

• Interceptors can monitor or modify the requests and responses of HP SOA Registry Foundation.
Interceptors are at the lowest level of HP SOA Registry Foundation API call processing.

• Writing custom Validation services - HP SOA Registry Foundation provides several ways to define and
use validation services for taxonomies or identifier systems inluding remotely and locally deployed
validation services and an internal validation service. For details, please see User's Guide, Taxonomy:
Principles, Creation and Validation on page 245. This chapter focuses how to create a validation service.

• Writing subscription notification services - How to implement subscription notification service deployed
on Systinet Server for Java.

• JSP Framework - This section covers the Systinet Web Framework.

• Business Service Console Framework - This section covers the Business Service Console Framework.

Accessing Backend APIs

This section will show you how to integrate HP SOA Registry Foundation with your application. Your
application can be deployed as a servlet to the same context of the application server as the registry. In this
case, the servlet of your application can access instances of HP SOA Registry Foundation APIs as shown
in Figure 145.

Chapter 5550

Figure 145. Accessing Backend Registry APIs - Architecture View

The sequence of steps that precedes access to the HP SOA Registry Foundation API is shown in Figure 146.

1 HP SOA Registry Foundation's API implementations are registered in the WASP context during the boot
of the registry.

2 The example servlet deployed in the WASP context calls the getInstance() method with the required
UDDI Registry interface as a parameter to obtain a reference of the interface implementation.

3 The example servlet can call the API methods of HP SOA Registry Foundation.

Figure 146. Accessing Backend Registry APIs - Sequence Diagram

551Developer's Guide

We assume HP SOA Registry Foundation is deployed to Tomcat. TOMCAT_HOME refers to the directory
in which the application server is installed. The step-by-step procedure has been tested on Tomcat
5.0.28.

Follow these steps to create and deploy the example servlet:

1 Create the example servlet class shown in Example 4 on page 554.

Compile the ExampeServlet.java using:

javac -classpath %REGISTRY_HOME%\dist\uddiclient_api_v3.jar;
%REGISTRY_HOME%\dist\uddiclient_core.jar;
%REGISTRY_HOME%\lib\wasp.jar;
%TOMCAT_HOME%\common\lib\servet-api.jar ExampleServlet.java

2 Copy ExampleServlet.class to the directory TOMCAT_HOME/webapps/wasp/Web-
inf/classes/com/systinet/example/servlet.

3 Add the example servlet to TOMCAT_HOME/webapps/wasp/Web-inf/web.xml as shown in Example 5 on page
556.

4 Restart the Tomcat application server.

The example servlet will be available at http://localhost:8080/wasp/myexamples.

You can test it as shown at Figure 147.

Chapter 5552

Figure 147. Example Servlet Output

553Developer's Guide

Example 4: ExampleServet.java

 package com.systinet.example.servlet;

import org.idoox.wasp.Context;
import org.idoox.wasp.InstanceNotFoundException;
import org.systinet.uddi.InvalidParameterException;
import org.systinet.uddi.client.v3.UDDIException;
import org.systinet.uddi.client.v3.UDDI_Inquiry_PortType;
import org.systinet.uddi.client.v3.struct.*;

import javax.servlet.ServletException;
import javax.servlet.http.HttpServlet;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
import java.io.IOException;
import java.io.PrintWriter;
import java.util.Iterator;

public class ExampleServlet extends HttpServlet {

 public void doGet(HttpServletRequest request, HttpServletResponse response)
 throws IOException, ServletException {
 try {
 String searchedBusiness = request.getParameter("sbusiness");
 if (searchedBusiness == null) searchedBusiness = "";
 response.setContentType("text/html");
 PrintWriter out = response.getWriter();
 out.println("<HTML>");
 out.println("<HEAD>");
 out.println("<H1>Example servlet integration with HP SOA Registry</H1>");
 out.println("<P>Enter the business name you wish to search");
 out.println("<FORM METHOD=GET ACTION=/wasp/myexamples/>");
 out.println("<INPUT NAME=sbusiness SIZE=20 VALUE=" + searchedBusiness + ">");
 out.println("<INPUT TYPE=SUBMIT VALUE=Search>");
 out.println("</FORM>");

 // get UDDI API V3 Inquiry implementation
 UDDI_Inquiry_PortType inquiry =
 (UDDI_Inquiry_PortType) Context.getInstance(UDDI_Inquiry_PortType.class);

 // prepare find_business call
 Find_business find_business = new Find_business();
 if (searchedBusiness.length() > 0) {

Chapter 5554

 find_business.addName(new Name(searchedBusiness));
 out.println("<P>Searching business :" + searchedBusiness);
 // call find_business
 BusinessList businessList = inquiry.find_business(find_business);
 // process the result
 BusinessInfoArrayList businessInfoArrayList
 = businessList.getBusinessInfoArrayList();
 if (businessInfoArrayList == null) {
 out.println("<P>Nothing found");
 } else {

 out.println("<P>Business "+searchedBusiness+" found");
 for (Iterator iterator =
 businessInfoArrayList.iterator(); iterator.hasNext();) {
 BusinessInfo businessInfo = (BusinessInfo) iterator.next();
 out.println("<P>Business key : " +
 businessInfo.getBusinessKey()+"");
 out.println("<P><TEXTAREA ROWS=10 COLS=70>");
 out.println(businessInfo.toXML());
 out.println("</TEXTAREA");

 }

 }
 }
 out.println("</HTML>");
 } catch (InvalidParameterException e) {
 } catch (InstanceNotFoundException e) {
 } catch (UDDIException e) {
 }

 }
}

555Developer's Guide

Example 5: Example Servlet's web.xml

 <servlet>
 <servlet-name>ExampleServlet</servlet-name>
 <servlet-class>com.systinet.example.servlet.ExampleServlet</servlet-class>
</servlet>

<servlet-mapping>
 <servlet-name>ExampleServlet</servlet-name>
 <url-pattern>/myexamples/*</url-pattern>
</servlet-mapping>

Custom Registry Modules

In this section, we will show you how to extend HP SOA Registry Foundation functionality with your
custom modules. Custom modules can be added to HP SOA Registry Foundation as shown in Figure 148.

Figure 148. Custom Registry Module - Architecture View

To create and deploy a registry module, follow these steps:

1 Write a class that implements org.systinet.uddi.module.Module.

2 Copy your module implementation class to the directory REGISTRY_HOME/app/uddi/services/WASP-INF/classes.

3 Create a configuration file for the module in REGISTRY_HOME/app/uddi/conf.

Chapter 5556

4 Shutdown HP SOA Registry Foundation, delete the REGISTRY_HOME/work directory, and restart the registry.

The main class of the custom module must implement org.systinet.uddi.module.Module interface that has
these methods:

• load() is invoked as the first method of the module. You can put reading of the configuration file in
here.

• init() is invoked after the load() method. Put the core implementation of your module in here. Write
non-blocking code or start a new thread.

• destroy() is invoked just before the HP SOA Registry Foundation shutdown.

Accessing Registry APIs

To access the HP SOA Registry Foundation API you must obtain the API stub using the getApiInstance()
method of the API implementation class. For example to obtain the stub of the Statistics API use:

StatisticsApi statapi = StatisticsApiImpl.getApiInstance();

Mapping between API interface classes and implementation classes is stored in the
REGISTRY_HOME/app/uddi/services/WASP-INF/package.xml file. See Table 68.

557Developer's Guide

Table 68. Mapping API Interface and Implemenation Classes

Implementation classInterface class

com.systinet.uddi.inquiry.v1.InquiryApiImplorg.systinet.uddi.client.v1.InquireSoap

com.systinet.uddi.publishing.v1.PublishingApiImplorg.systinet.uddi.client.v1.PublishSoap

com.systinet.uddi.publishing.v2.PublishingApiImplorg.systinet.uddi.client.v2.Publish

com.systinet.uddi.inquiry.v2.InquiryApiImplorg.systinet.uddi.client.v2.Inquire

com.systinet.uddi.v3.SecurityApiImplorg.systinet.uddi.client.v3.UDDI_Security_PortType

com.systinet.uddi.publishing.v3.PublishingApiImplorg.systinet.uddi.client.v3.UDDI_Publication_PortType

com.systinet.uddi.inquiry.v3.InquiryApiImplorg.systinet.uddi.client.v3.UDDI_Inquiry_PortType

com.systinet.uddi.subscription.v3.SubscriptionApiImplorg.systinet.uddi.client.subscription.v3.UDDI_Subscription_PortType

com.systinet.uddi.custody.v3.CustodyApiImplorg.systinet.uddi.client.custody.v3.UDDI_CustodyTransfer_PortType

com.systinet.uddi.replication.v3.ReplicationApiImplorg.systinet.uddi.replication.v3.ReplicationApi

com.systinet.uddi.wsdl2uddi.v3.Wsdl2uddiApiImplorg.systinet.uddi.client.wsdl2uddi.v3.Wsdl2uddiApi

com.systinet.uddi.wsdl2uddi.v2.Wsdl2uddiApiImplorg.systinet.uddi.client.wsdl2uddi.v2.Wsdl2uddiApi

com.systinet.uddi.category.v3.CategoryApiImplorg.systinet.uddi.client.category.v3.CategoryApi

com.systinet.uddi.taxonomy.v3.TaxonomyApiImplorg.systinet.uddi.client.taxonomy.v3.TaxonomyApi

com.systinet.uddi.statistics.StatisticsApiImplorg.systinet.uddi.statistics.StatisticsApi

com.systinet.uddi.admin.AdministrationUtilsApiImplorg.systinet.uddi.admin.AdministrationUtilsApi

com.systinet.uddi.permission.PermissionApiImplorg.systinet.uddi.permission.PermissionApi

com.systinet.uddi.group.GroupApiImplorg.systinet.uddi.group.GroupApi

com.systinet.uddi.account.AccountApiImplorg.systinet.uddi.account.AccountApi

com.systinet.uddi.configurator.cluster.ConfiguratorApiImplorg.systinet.uddi.configurator.ConfiguratorApi

Custom Module Sample

This section includes step-by-step instructions how to create a registry module that counts the number of
restarts of HP SOA Registry Foundation and saves the result to a configuration file.

Follow these steps:

Chapter 5558

1 Create Java file ExampleModule.java as shown in Example 6 on page 560

2 Compile the module using java -classpath "%REGISTRY_HOME%\app\uddi\services\WASP-
INF\lib\application_ core.jar; %REGISTRY_HOME%\lib\wasp.jar" ExampleModule.java

3 Copy all module classes (ExampleModule.class, ExampleModule$RestartConfig$Counter.class,
ExampleModule$RestartConfig.class) to the REGISTRY_HOME/app/uddi/services/WASP-
INF/classes/com/systinet/example/module directory.

4 Create the configuration file mymodule.xml in REGISTRY_HOME/app/uddi/conf folder. For details, please see
Example 7 on page 561.

5 Shutdown HP SOA Registry Foundation, delete the REGISTRY_HOME/work directory, and restart the registry.

The number of restarts will be printed in the window console in which you started HP SOA Registry
Foundation. See also the configuration file of the module where a new element counter is created.

559Developer's Guide

Example 6: ExampleModule.java

package com.systinet.example.module;

import org.idoox.config.Configurable;
import org.systinet.uddi.module.Module;

public class ExampleModule implements Module {
 private long restart = 0;
 private RestartConfig.Counter counter;

 interface RestartConfig {
 public Counter getCounter();
 public void setCounter(Counter counter);
 public Counter newCounter();
 interface Counter {
 public long getRestart();
 public void setRestart(long restart);
 }
 }

 public void load(Configurable config) {
 System.out.println("MY MODULE CONFIG READING");
 RestartConfig restartConfig = (RestartConfig) config.narrow(RestartConfig.class);
 if (restartConfig != null) {
 counter = restartConfig.getCounter();
 if (counter == null) {
 counter = restartConfig.newCounter();
 restartConfig.setCounter(counter);
 }
 try {
 restart = counter.getRestart();
 } catch (Exception e) {
 counter.setRestart(0);
 }
 }
 }

 public void init() {
 System.out.println("MY MODULE STARTED");
 counter.setRestart(++restart);
 System.out.println("UDDI REGISTRY: number of restarts = " + restart);
 }

 public void destroy() {

Chapter 5560

 }
}

Example 7: Example configuration file for custom module

<?xml version="1.0" encoding="UTF-8"?>
<config name="myconf">
 <module loader="com.systinet.example.module.ExampleModule" name="MyModule">
 </module>
</config>

Interceptors

Interceptors can monitor or modify the requests and responses of HP SOA Registry Foundation as shown
in Figure 149. They are at the lowest level of HP SOA Registry Foundation API call processing, and can
be used for:

• Logging requests. See Logging Interceptor Sample on page 562.

• Computing message statistics. See Request Counter Interceptor Sample on page 566.

• Changing request arguments (adding default values)

• Prohibiting some API calls

Figure 149. Registry Interceptors

There are three types of HP SOA Registry Foundation interceptor:

561Developer's Guide

• Request Interceptor. Monitors or modifies request arguments, stops processing requests, or throws an
exception. This type of interceptor accepts a called method object and its arguments.

• Response Interceptor. Monitors or modifies response values or throws an exception. This interceptor
accepts a called method object and its response value.

• Exception Interceptor. Monitors, modifies, or changes an exception. This interceptor accepts a called
method object and its thrown exception.

If you want to directly access the HP SOA Registry Foundation API see Accessing Registry APIs on page
557 for more information.

Creating and Deploying Interceptors

To create an Interceptor, follow these steps:

1 Write a class that implements the org.systinet.uddi.interceptor interface.

2 Copy your interceptor implementation class to the directory REGISTRY_HOME/app/uddi/services/Wasp-
inf/classes.

3 Create a configuration file for your interceptor in the REGISTRY_HOME/app/uddi/conf directory. See
Interceptor Configuration on page 565.

4 Shutdown HP SOA Registry Foundation, delete the REGISTRY_HOME/work directory, and restart the registry.

Logging Interceptor Sample

This section includes step-by-step instructions how to create the interceptor that logs requests.

To create a logging interceptor:

1 Create Java file LoggingInterceptor.java as shown in Example 8 on page 564.

2 Compile the interceptor using Java -classpath "%REGISTRY_HOME%\app\uddi\services\Wasp-
inf\lib\application_core.jar; %REGISTRY_HOME%\lib\wasp.jar" LoggingInterceptor.java

3 Copy LoggingInterceptor.class to the REGISTRY_HOME/app/uddi/services/Wasp-inf/classes/interceptor
directory.

Chapter 5562

4 Create the configuration file Myinterceptor.xml in REGISTRY_HOME/app/uddi/conf folder. For details, please
see Example 9 on page 565.

5 Shutdown HP SOA Registry Foundation, delete the REGISTRY_HOME/work directory, and restart the registry.

563Developer's Guide

Example 8: Logging Interceptor Class

package interceptor;

import org.idoox.config.Configurable;
import org.idoox.wasp.WaspInternalException;
import org.idoox.wasp.interceptor.InterceptorChain;
import org.systinet.uddi.interceptor.ExceptionInterceptor;
import org.systinet.uddi.interceptor.RequestInterceptor;
import org.systinet.uddi.interceptor.ResponseInterceptor;
import org.systinet.uddi.interceptor.StopProcessingException;
import java.lang.reflect.Method;

public class LoggingInterceptor implements RequestInterceptor,
 ResponseInterceptor, ExceptionInterceptor {

 public void load(Configurable config)
 throws WaspInternalException {
 // no initialization required
 }

 public void destroy() {
 // no destroy required
 }

 public void intercept(Method method,
 Object[] args,
 InterceptorChain chain,
 int position)
 throws StopProcessingException, Exception {
 System.out.println("request: " + method.getName());
 }

 public Object intercept(Method method,
 Object returnValue,
 InterceptorChain chain,
 int position)
 throws Exception {
 System.out.println("response: " + method.getName());
 return returnValue;
 }

 public Exception intercept(Method method,
 Exception e,

Chapter 5564

 InterceptorChain chain,
 int position) {
 System.out.println("exception: " + method.getName());
 return e;
 }
}

Example 9: Logging Interceptor Configuration File

<?xml version="1.0" encoding="UTF-8"?>
<config name="MyInterceptorConfig">
 <UDDIInterceptorInstance name="LoggingInterceptorInstance"
 instancePerCall="false"
 className="interceptor.LoggingInterceptor"/>
 <UDDIInterceptor name="LoggingInterceptor"
 instanceName="LoggingInterceptorInstance"
 interceptorChain="inquiry_v3"
 request="true"
 response="true"
 fault="true" />
</config>

Interceptor Configuration

The configuration file must be present in the REGISTRY_HOME/app/uddi/conf directory. For details please see
Example 9 on page 565. Interceptors are called in the same order as they appear in the configuration file.

• config name - the unique (unambiguous) name of the configuration.

• UDDIInterceptorInstance - contains information about the implementation class and its instantiation.

• name - The name of interceptor instance. This name is used as a link to the
UDDIInterceptor/instanceName section of the configuration.

• instancePerCall - If the instancePerCall attribute is set to true, then the class will be instantiated once
per API call. Otherwise, this interceptor instantiates only once for all calls.

• className - name of the class that implements the interceptor.

• UDDIInterceptor - The UDDIInterceptor contains references to UDDI Interceptors and their types.

565Developer's Guide

name - name of the interceptor.•

• instanceName - this attribute contains the name of the UDDIInterceptorInstance section of the
configuration file.

• interceptorChain - UDDIInterceptorChains are defined for each API in their configuration files. This
attribute contains a reference to the required API.

• request - when set true, the interceptor catches requests.

• response - when set true, the interceptor catches responses.

• fault - when set true, the interceptor catches faults.

Request Counter Interceptor Sample

In this section, we will create an interceptor that counts requests and stores the number of request to a
configuration file. The steps required to create a Request Counter Interceptor are the same as those in the
Logging Interceptor Sample on page 562.

Interceptor implementation is shown in Example 10 on page 567; the configuration file is shown in Example
11 on page 568.

Chapter 5566

Example 10: Request Counter Interceptor Class

package interceptor;

import org.idoox.config.Configurable;
import org.idoox.wasp.WaspInternalException;
import org.idoox.wasp.interceptor.InterceptorChain;
import org.systinet.uddi.interceptor.RequestInterceptor;
import org.systinet.uddi.interceptor.StopProcessingException;
import java.lang.reflect.Method;

public class RequestCounterInterceptor implements RequestInterceptor {

 private long request = 0;
 private RequestCounterInterceptorConfig.Counter counter;

 /**
 * RequestCounterInterceptor config interface
 */
 interface RequestCounterInterceptorConfig {
 public Counter getCounter();
 public void setCounter(Counter counter);
 public Counter newCounter();
 interface Counter {
 public long getRequest();
 public void setRequest(long request);
 }
 }
 public void intercept(Method method,
 Object[] args,
 InterceptorChain chain,
 int position)
 throws StopProcessingException, Exception {
 counter.setRequest(++request);
 System.out.println("request: " + request);
 }

 public void load(Configurable config)
 throws WaspInternalException {
 RequestCounterInterceptorConfig intinterceptorConfig =
 (RequestCounterInterceptorConfig)
 config.narrow(RequestCounterInterceptorConfig.class);
 if (intinterceptorConfig != null) {
 counter = intinterceptorConfig.getCounter();
 if (counter == null) {

567Developer's Guide

 counter = intinterceptorConfig.newCounter();
 intinterceptorConfig.setCounter(counter);
 }
 try {
 request = counter.getRequest();
 } catch (Exception e) {
 counter.setRequest(0);
 }
 }
 }

 /**
 * Destroys the interceptor.
 */
 public void destroy() {
 // no destroy required
 }
}

Example 11: Request Counter Interceptor Configuration File

<?xml version="1.0" encoding="UTF-8"?>
<config name="myInterceptors">
 <UDDIInterceptorInstance className="interceptor.RequestCounterInterceptor"
 instancePerCall="false" name="RequestCounterInterceptorSampleInstance">
 </UDDIInterceptorInstance>
 <UDDIInterceptor fault="false"
 instanceName="RequestCounterInterceptorSampleInstance"
 interceptorChain="inquiry_v3" name="RequestCounter" request="true"
 response="false"/>
</config>

Writing a Custom Validation Service

HP SOA Registry Foundation provides several ways to define and use validation services for taxonomies
or identifier systems. For details about HP SOA Registry Foundation taxonomies, please see User's Guide,
Taxonomy: Principles, Creation and Validation on page 245. This chapter focuses on custom validation
services that you can deploy:

• Locally on HP SOA Registry Foundation - Local validation service.

• Remotely to a SOAP server, for example the Systinet Server for Java - External validation service.

Chapter 5568

There are three different Java interfaces for validation services, one for each of the main UDDI data structures.
These interfaces correspond to the WSDL Port Types of the Validation Service defined in the UDDI
specification.

• UDDI v3 validation services must implement
org.systinet.uddi.client.valueset.validation.v3.UDDI_ValueSetValidation_PortType.

• UDDI v2 validation services must implement org.systinet.uddi.client.vv.v2.ValidateValues.

• UDDI v1 validation services must implement org.systinet.uddi.client.vv.v1.ValidateValues.

These interfaces are similar enough that we will only describe v3 validation. Your validation service must
implement the interface UDDI_ValueSetValidation_PortType. This interface only has the validate_values method
which has only one parameter, Validate_values. This parameter is a wrapper for real parameters: optional
authInfo and basic UDDI data structures (businessEntities, businessServices, bindingTemplates, tModels
and publisherAssertions) to validate. The validate_values method returns
org.systinet.uddi.client.v3.struct.DispositionReport. If validation passes successfully, the DispositionReport
should contain only one org.systinet.uddi.client.v3.struct.Result with errNo equals
org.systinet.uddi.client.UDDIErrorCodes.

Deploying Validation Service

Once the validation service is implemented, you can deploy the validation service locally on HP SOA
Registry Foundation. To deploy the validation service on HP SOA Registry Foundation

1 Create a classes subdirectory under REGISTRY_HOME/app/uddi/services/WASP-INF and copy the class file
into this directory (with respect to subdirectories corresponding to packages).

2 Shutdown HP SOA Registry Foundation, delete the REGISTRY/work directory, and restart HP SOA
Registry Foundation.

For more information, please see the Demos, Validation on page 674. For details about the configuration of
Validation Services, please see Administrator's Guide, Taxonomy Management on page 345

To deploy an external validation service, you must create a deployment package.

569Developer's Guide

External Validation Service

This section shows you how to implement and package an external validation service that will be deployed
to Systinet Server for Java 5.5. We show you how to package and deploy the ISBN validation service from
the validation demo described in Validation on page 674. We assume you have already built the Validation
demo.

We also assume HP SOA Registry Foundation is installed in the REGISTRY_HOME folder and running
at http://localhost:8080/ and that

Systinet Server for Java is installed in WASP_HOME folder and running at http://localhost:6060/

To package and deploy a validation service to Systinet Server for Java:

1 Create a deployment package.

Create the jar file ExampleValidation.jar with the following structure:

Copy ISBNValidation.class from REGISTRY_HOME/demos/advanced/validation/build/classes to the package.

Copy the wsdl and xsd files from REGISTRY_HOME/doc/wsdl to the package.

Chapter 5570

Copy the package.xml file shown at Example 12 on page 572 to the package.

2 Deploy the validation package with required HP SOA Registry Foundation client packages into Systinet
Server for Java 5.5.

a copy %REGISTRY_HOME%\dist\uddiclient_api_v3.jar
%WASP_HOME%\app\system\uddi

b copy %REGISTRY_HOME%\dist\uddiclient_value_set_validation_v3.jar
%WASP_HOME%\app\system\uddi

c copy ExampleValidation.jar %WASP_HOME%\app\system\uddi

3 Shutdown the Systinet Server for Java, delete the WASP_HOME/work directory, and restart the Systinet
Server for Java

Now you can upload the checked taxonomy from REGISTRY/demos/advanced/validation/data. For more
information, please see User's Guide Uploading Taxonomies on page 350.

Modify the validation service endpoint as shown in Figure 150

Figure 150. Validation for Checked Taxonomy

571Developer's Guide

You can run and test the validation service using Validation demo described in Validation on page 674.

Sample Files

Example 12: package.xml

<?xml version="1.0" encoding="UTF-8"?>
<package xmlns="http://systinet.com/wasp/package/1.2"
 xsi:schemaLocation=
 "http://systinet.com/wasp/package/1.2 http://systinet.com/wasp/package/1.2"
 targetNamespace="http://my.org" version="1.0"
 name="ISBNValidation" client-package="false" library="false"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:tns="http://my.org"

 xmlns:UDDIClient-value-set-validation-v3=
 "http://systinet.com/uddi/client/value-set-validation/v3/5.0">

<dependency ref="UDDIClient-value-set-validation-v3:UDDIClient-value-set-validation-v3"
 version="5.0"/>
 <service-endpoint name="ISBNValidation"
 path="/ISBNValidation"
 service-instance="tns:ISBNValidationInstance"
 processing="UDDIClient-value-set-validation-v3:UDDIClientProcessing">
 <wsdl uri="uddi_vs_v3.wsdl" xmlns:wsdl="urn:uddi-org:vs_v3_binding"
 service="wsdl:UDDI_ValueSetValidation_SoapService"/>
 </service-endpoint>
 <service-instance name="ISBNValidationInstance"
 implementation-class="demo.uddi.validation.ISBNValidation"
 preload="false" ttl="600" instantiation-method="shared"/>
</package>

Writing a Subscription Notification Service

This section will show you how to implement a subscription notification service. When you create a HP
SOA Registry Foundation subscription you can specify a notification listener service endpoint as described
in Subscriptions in HP SOA Registry Foundation on page 227. In this chapter, we describe the following use
case: The user wants to create a service that will be executed when a subscription notification is sent. The
listener notification service will be deployed on the Systinet Server for Java.

The procedure of creating and deploying the subscription notification consist of the following steps:

Chapter 5572

1 Create subscription notification service class. Package the notification service class with necessary
wsdl, schema, and deployment descriptor files.

2 Deploy the service notification package with the required HP SOA Registry Foundation client packages
into Systinet Server for Java.

3 Create a subscription using the Registry Console.

We assume HP SOA Registry Foundation is installed in REGISTRY_HOME folder and running at
http://localhost:8080/, and that

Systinet Server for Java is installed in WASP_HOME folder and running at http://localhost:6060/.

Now we will describe the process in detail:

1 Create the subscription notification service class shown in Example 13 on page 576

2 Compile the ExampleNotificationListener.java using:

javac -classpath%REGISTRY_HOME%\dist\uddiclient_api_v3.jar;
%REGISTRY_HOME%\dist\uddiclient_core.jar;
%REGISTRY_HOME%\dist\uddiclient_subscription_listener_v3.jar;
%REGISTRY_HOME%\dist\uddiclient_subscription_v3.jar ExampleNotificationListener.java

3 Package the ExampleNotificationListener.class with necessary wsdl, schema and deployment descriptor
file as follows:

a Create a jar file ExampleNotificationListener.jar with the following structure:

573Developer's Guide

b Copy the wsdl and schema files from REGISTRY_HOME/doc/wsdl to the package.

c Copy the package.xml file shown in Example 14 on page 577 to the package.

4 Deploy the service notification package with required HP SOA Registry Foundation client packages
into Systinet Server for Java 5.5.

a copy %REGISTRY_HOME%\dist\uddiclient_api_v3.jar
%WASP_HOME%\app\system\uddi

b copy %REGISTRY_HOME%\dist\uddiclient_subscription_v3.jar
%WASP_HOME%\app\system\uddi

c copy %REGISTRY_HOME%\dist\uddiclient_subscription_listener_v3.jar
%WASP_HOME%\app\system\uddi

d copy ExampleNotificationListener.jar %WASP_HOME%\app\system\uddi

5 Shutdown the Systinet Server for Java, delete the WASP_HOME/work directory, and restart the Systinet
Server for Java

Chapter 5574

6 Create a subscription using the Registry Console.

See Publishing Subscriptions on page 307 for instructions on how to create a subscription.

7 Publish the subscription with the Notification listener type Service endpoint. Enter the Notification
listener endpoint as http://your.computer.name.com:6060/ExampleNotificationListener as shown in
Figure 151

Figure 151. Create Subscription

575Developer's Guide

Sample Files

Example 13: ExampleNotificationListener.java

package com.systinet.subscription;

import org.systinet.uddi.client.subscription.listener.v3.UDDI_SubscriptionListener_PortType;
import org.systinet.uddi.client.subscription.listener.v3.struct.Notify_subscriptionListener;
import org.systinet.uddi.client.v3.UDDIException;
import org.systinet.uddi.client.v3.struct.DispositionReport;

public class ExampleNotificationListener implements UDDI_SubscriptionListener_PortType{

 public DispositionReport notify_subscriptionListener(Notify_subscriptionListener body)
 throws UDDIException {
 System.out.println(body.toXML());
 DispositionReport result = DispositionReport.DISPOSITION_REPORT_SUCCESS;
 return result;
 }
}

Chapter 5576

Example 14: package.xml

<?xml version="1.0" encoding="UTF-8"?>
<package xmlns="http://systinet.com/wasp/package/1.2"
 xsi:schemaLocation="http://systinet.com/wasp/package/1.2 http://systinet.com/wasp/package/1.2"
 targetNamespace="http://my.org" version="1.0"
 name="ExampleNotificationListener" client-package="false" library="false"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:tns="http://my.org"

 xmlns:uddi_subr_v3="urn:uddi-org:subr_v3_binding"
 xmlns:uddiclient_subscription_listener_v3=
 "http://systinet.com/uddi/client/subscription/listener/v3/5.0">

 <dependency ref=
 "uddiclient_subscription_listener_v3:UDDIClient-subscription-listener-v3" version="5.0"/>

 <service-endpoint name="ExampleNotificationListener"
 path="/ExampleNotificationListener"
 service-instance="tns:ExampleNotificationListenerInstance"
 processing="uddiclient_subscription_listener_v3:UDDIClientProcessing">
 <wsdl uri="uddi_subr_v3.wsdl"
 service="uddi_subr_v3:UDDI_SubscriptionListener_SoapService"/>
 </service-endpoint>
 <service-instance name="ExampleNotificationListenerInstance"
 implementation-class="com.systinet.subscription.ExampleNotificationListener"
 preload="false" ttl="600" instantiation-method="shared"/>
</package>

Systinet Web Framework

This section describes HP SOA Registry Foundation from the developer's point of view. It describes the
HP SOA Registry Foundation Framework architecture and configuration.

• Architecture Description on page 578

• Directory Structure on page 585

• Framework Configuration on page 587

• syswf JSP tag library on page 591

577Developer's Guide

• Typical Customization Tasks on page 598

Architecture Description

The framework uses the Jasper engine, a part of the Tomcat server. It is able to run on Jasper1 from Tomcat
version 4.1 (Servlet API 2.3/JSP spec 1.2) or Jasper2 from Tomcat version 5 (Servlet API 2.4/JSP spec
2.0). It also uses a customized JSTL 1.0 tag library implementation which is based on Apache tag libraries
from the Jakarta project [http://jakarta.apache.org/].

Applications using the Systinet Web Framework are composed of pages. Every page of the web has a URI
where it can be accessed. In the Systinet Web Framework, we call each page of the web as a task.

The Systinet Web Framework uses a component model to build up the web application. Every task is
assigned to a component which is the real entity behind the process that generates the resulting HTML page
displayed to the user. Thus, every task references a component, but components need not be associated with
tasks, as we will see later.

Each component is built from two parts:

• a JSP part

• a Java part

The JSP part serves as a template and takes care of parsing and visualization of the data that comes in a
session, or in a request to which they are stored in the Java part of a component.

The framework functionality is accessible from the JSP parts of components through the Systinet custom
JSP tag library. This library contains tags for creating references to tasks, nesting components, and tags for
creating HTML form elements that support dynamic behavior.

Sometimes, a component is purely JSP-based as the one associated with this documentation page. But when
the page must process user-entered information, or when data must be modified before presentation, you
must use the Java part of the component.

To switch from one page to a another, use the syswf:control custom tag in the JSP part of the source task
component. The syswf:control tag's targetTask attribute defines the task (that is, the page) the user should
be transferred to. The custom tag is translated into a piece of JavaScript code responsible for correct page
submitting.

Chapter 5578

http://jakarta.apache.org/

Tasks can be accessed directly using a web browser. For example, if the registry's web interface runs on
the address http://localhost:8080/uddi/web, a task with the URI /findBusiness can be accessed directly from
the client browser at http://localhost:8080/uddi/web/findBusiness.

Component Java Interface Part

The Java part of the component must implement the com.systinet.webfw.Component interface from the Web
Framework library. However, it usually extends its default implementation: com.systinet.webfw.ComponentImpl.
For those components that do not declare their Java part, this default implementation is automatically used.

The interface consists of two methods:

• void process(String action, Map params)

• void populate(String action, Map params)

The process() method is called just before the translation of the component's JSP part is started, so it should
take care of data preparation and it should also handle the actions requested by the user (react to pressed
buttons, etc.).

The populate() method is called only when the POST request to the URI comes from the same URI , so it's
a perfect place to modify the way data from a web page is populated back into objects. Actually, the target
objects are always Java Beans which simplify their handling quite a bit.

Request Diagram

The diagram shown in Figure 152 demonstrates how requests for the page are handled by the Web
Framework:

579Developer's Guide

Figure 152. Request Diagram

1 The request is sent by the client browser from a different page than the page requested.

2 The process() method is called on taskA component's Java part. This method should perform actions
triggered by controls in the web page and/or prepare data for taskA component's JSP part.

3 Processing of taskA component's JSP part is initialized.

4 While taskA component's JSP part is being processed, the resulting HTML is generated.

5 Processing of taskA component's JSP part finishes; the response is returned to the client's browser.

If the request is sent by the client browser from the same page as the page requested (meaning the
source and target tasks are the same), then the populate() method is called on the task component's
Java part before the process() method.

Nesting Components

As we noted above, the component JSP part can include other components using the syswf:component custom
tag right in the JSP code. The diagram shown in Figure 153 presents how a request is handled when there
are such nested components. Note that now the request comes from the same task it is targeted to:

Chapter 5580

Figure 153. Nesting Components Diagram

1 The request is sent by the client browser from the same page as the page requested.

2 The populate() method is called on taskA component's Java part. This method is responsible for the
transfer of data from web page form elements (input fields, radio buttons, etc.) to JavaBeans objects
on the server.

3 The process() method is called on taskA component's Java part. This method should perform actions
triggered by controls in the web page and/or prepare data for taskA component's JSP part.

4 Processing of taskA component's JSP part is initialized.

5 Request for insertion of component A is found.

6 The process() method is called on the Java part of component A. This method should prepare data for
component presentation.

581Developer's Guide

7 Processing of the JSP part of component A is performed. Once finished, the result is included in the
parent JSP page.

8 Request for insertion of component B is found.

9 The process() method is called on the Java part of component B. This method should prepare data for
component presentation.

10 Processing of the JSP part of component B is performed. Once finished, the result is included in the
parent JSP page.

11 Processing of taskA component's JSP part finishes. The response is returned in the client's browser.

Component JSP Part

Example 15: Skeleton of the JSP Page

The following example displays the WSDL URL for a WSDL service.

<%@ taglib prefix="c" uri="http://java.sun.com/jstl/core" %>
<%@ taglib prefix="syswf" uri="http://systinet.com/jsp/syswf" %>

<syswf:page headerTemplate="pageHeader.jsp" footerTemplate="pageFooter.jsp">

 <syswf:wrap headerTemplate="design/pageHeader.jsp"
 footerTemplate="design/pageFooter.jsp">
 ...
 </syswf:wrap>

</syswf:page>

The core of the JSTL (standard tag library) together with the Registry Web Framework custom tag library
are imported. The beginning of the page is declared (syswf:page tag); page header and footer represented
as JSP pages are passed as attributes. These pages contain the basic HTML tags and declaration of Java
Scripts that will be used in the page.

To enable automatic wrapping and resizing, all of the page's content is packed into the syswf:wrap tag to
which page header and footer JSP pages are passed as attributes. The header and footer pages contain:

Chapter 5582

• The design part - the logo and menu, such as the labels at the top of this page under the product name

• The navigation path - shown in the top right corner of this page

• Text that should be displayed in the bottom of the page, such as copyright information.

Implicit Objects

Implicit objects allow you to interact with various framework parts, from Java code or JSP pages. A reference
to an implicit object should be obtained from the com.systinet.uddi.util.CallContext class, or by using simple
getter methods from com.systinet.webfw.ComponentImpl.

• request. HTTP request interface; here you can read, for example, http headers included in user's request.
Using request attributes is the preferred way to transfer data from Java to JSP pages.

• response. HTTP response interface; can be used, for example, to set content type and other response
header data or to send binary data back to client.

• localSession. Contains the java.util.Map object, which is accessible from the current task only. For
example, when you have tasks A and B in navigation history, each has a separate local session. When
you return from task B to task A, the whole local session content of task B is discarded.

• globalSession. Contains the java.util.Map object, which is shared among all tasks; this session can be
used, for example, to store the current user's authToken, or other application-wide data.

Data Types

Data type classes are responsible for converting values between web page HTML form fields and underlying
Java Beans objects. The Data type class must implement the simple interface
com.systinet.webfw.datatype.DataType with two methods:

• String objectToWeb(Object value) provides conversion from arbitrary Java type to String usable in web
pages.

• Object webToObject(String value) provides conversion in the opposite direction.

There are predefined implementations of this object for converting the simple Java data types string, int,
long, and boolean.

583Developer's Guide

Client-side Validators

Validators can be used to validate user input before a web page is submitted to a server. The validation is
invoked by a specific page control (a button or a link). There is a predefined set of validators for common
input field checks.

Table 69. Predefined Validators

DescriptionName

Checks if the field is not empty.required

Checks if the field content starts with the uddi: prefix.uddiKey

Checks if the field contains no more than the specified number of characters.length50, length80,
length255, length4096,
length8192

Checks if the field contains an email address.email

Checks if the field contains a number of type long.long

Checks if the field contains a number of type int.int

To add a validator to an input field or a text area, use the sysfw:checker tag. To trigger the validation control,
use the syswf:validate tag.

Example 16: Validators Usage

<syswf:input name="businessKey" value="">
 <syswf:checker name="required" action="viewBusinessV3"/>
 <syswf:checker name="uddiKey" action="viewBusinessV3"/>
</syswf:input>
...
<syswf:control action="viewBusiness" caption="View business" mode="button">
 <syswf:validate action="viewBusinessV3"/>
</syswf:control>

The Example 16 on page 584 shows an input field with two checkers, the first one checks if the field is not
empty and the second one checks if the field contains a string starting with the prefix uddi: (uddi key). Both
checkers are invoked when a user clicks the View business button.

Chapter 5584

Validation is performed using a JavaScript function. The validator name is required to be defined in the
JavaScript function with the name check_required. The return value from the validator is of the boolean
type: true when the field content is valid, and false when content is invalid. In case of error, the validator
displays an error message with the description of the allowed field content. This validator is also responsible
for transferring the focus to the field with an error.

Example 17: Required Validator Implementation

// is required checker
function check_required (formID, fieldID)
{
 var value = getFieldValue(formID, fieldID);
 if (isEmpty(value))
 {
 alertRequired();
 setFocus(formID, fieldID);
 return false;
 }
 return true;
}

Custom validators should be can be added to the file REGISTRY_HOME/app/uddi/web.jar/webroot/script/uddi.js.
Many functions for validation are defined in the file REGISTRY_HOME/app/uddi/web.jar/webroot/script/wf.js.

Directory Structure

JSP pages for the HP SOA Registry Foundation user interface are placed in the
REGISTRY_HOME/app/uddi/web.jar/jsp directory. Static content, such as scripts and images, is stored in the
REGISTRY_HOME/app/uddi/web.jar/webroot directory.

585Developer's Guide

JSP Page Reference

Table 70. Root Files

DescriptionFile

skeleton for error pageerror.jsp

main page with welcome texthome.jsp

login pagelogin.jsp

page with buttons for all registry management tasksmanagement.jsp

page header containing required JavaScripts and HTML form. Do not write any
design here; use design/pageFooter.jsp instead

pageFooter.jsp

contains mainly page hidden fields. Do not write any design here; use
design/pageHeader.jsp instead

pageHeader.jsp

component responsible for displaying error messagesuddiErrorComponent.jsp

Chapter 5586

Table 71. Content of Page Directories

DescriptionDirectory

All pages related to account managementaccount

Administration tools for tModel deletion and key replacementadmin

Registry and web configuration pagesconfiguration

User interface for custody transfercustody

Contains various design elements such as frames and tabsdesign

Group managementgroup

UDDI inquiry pagesinquiry

Permission managementpermission

UDDI publishing pagespublishing

Replication managementreplication

Shows registry statisticsstatistics

UDDI subscription pagessubscription

Taxonomy browsing and managementtaxonomy

Various page componentsutil

WSDL-to-UDDI mapping pageswsdl2uddi

Inquiry and publishing pages for mapping of XML schemas to UDDIxsd2uddi

Framework Configuration

All needed configuration settings are stored in the file REGISTRY_HOME/app/uddi/conf/web.xml

Component

Specifies configuration of page components.

587Developer's Guide

Table 72. Component Attributes

RequiredDescriptionAttribute

yesUnique component identificationname

noFully qualified class name of the component implementation
class

className

noPath to JSP page with component design; path is relative to
root JSP directory.

page

Task

Contains definition of tasks.

Table 73. Task Attributes

RequiredDescriptionAttribute

yesUnique string used to call a task from controls or directly using
http URL; the URI must start with a forward slash (/) character.

URI

notask description to be displayed, for example as page titlecaption

yesName of task root componentcomponent

Table 74. Subelement

RequiredDescriptionElement

noAdditional parameters to be passed to the root component; each
parameter is specified as name-value pair.

param

Data Type

Contains the definition of the data types.

Chapter 5588

Table 75. Data Type Attributes

RequiredDescriptionAttribute

yesUnique name of the data type; this name is used to reference a
data type, for example from the syswf:input tag.

typeName

yesName of data type implementation classclassName

Other Configuration

Table 76. Configuration Elements

DescriptionElement

First part of the URL used to access HP SOA Registry Foundation without
encryption (plain HTTP); this part should contain the http protocol prefix,
hostname, and port.

url

First part of the URL used to access HP SOA Registry Foundation using
encryption. This part should contain https protocol prefix, hostname and port.

secureUrl

Context part of the URL, used to access HP SOA Registry Foundation tasks;
the default value is uddi/web for standalone registries and wasp/uddi/web for
registries deployed to an application server.

context

Context part of the URL, used to access HP SOA Registry Foundation's static
content, for example, images and cascading style sheets. The default value is
uddi/webdata for standalone registries and wasp/uddi/webdata for registries deployed
to an application server.

dataContext

Default timeout of server-side sessions (measured in seconds).serverSessionTimeout

Directory used to store temporary files during the upload process; this path
should be relative to service context directory.

uploadTempDir

Maximum size of uploaded files; larger files are rejected.maxUploadSize

Directory with JSP pages; the path should be relative to service context directory.jspDir

Contains JSP engine initialization parameters and the compilation classpath. A
complete list of available Jasper initialization parameters can be found below.

jspEngine

589Developer's Guide

Jasper Configuration

Table 77. Jasper init Configuration Parameters

DescriptionDefault valueParameter name

If the development parameter is false and reloading parameter is
true, background compiles are enabled. checkInterval is the time
in seconds between checks to see if a JSP page needs to be
recompiled.

300checkInterval

Which compiler Ant should be used to compile JSP pages. See
the Ant documentation for more information.

javaccompiler

Indicates whether the class file should be compiled with
debugging information

trueclassdebuginfo

Indicates whether Jasper is used in development mode; checks
for JSP modification on every access.

truedevelopment

Determines whether tag handler pooling is enabledtrueenablePooling

The class-id value sent to Internet Explorer when using
>jsp:plugin< tags.

clsid:8AD9C840-
044E-11D1-B3E9-
00805F499D93

ieClassId

Tells Ant to fork compiles of JSP pages so that a separate JVM
is used for JSP page compiles from the JVM in which Tomcat
is running.

truefork

Java file encoding to use for generating java source files.UTF8javaEncoding

Indicates whether generated Java source code for each page is
kept or deleted.

truekeepgenerated

The level of detailed messages to be produced by this servlet.
Increasing levels cause the generation of more messages. Valid
values are FATAL, ERROR, WARNING, INFORMATION,
and DEBUG.

WARNINGlogVerbosityLevel

Indicates whether the static content is generated with one print
statement per input line, to ease debugging.

falsemappedfile

Indicates whether Jasper checks for modified JSPs.truereloading

Chapter 5590

syswf JSP tag library

A JSP page using the syswf tag library must include this header <%@ taglib prefix="syswf"
uri="http://systinet.com/jsp/syswf" %>

syswf:component

Includes the component with specified parameters.

Table 78. syswf:component Attributes

RequiredDescriptionAttribute

yesAll parameter names in component will be prefixed with this
prefix; the prefix must be unique within each JSP page.

prefix

yesName of component, as written in the config file.name

Table 79. syswf:component Subelements

RequiredDescriptionElement

optionalWhen this parameter value is passed into a component, it will
be accessible in the request scope in the component Java class
and in the JSP page.

param

The value of the parameter should be specified in two ways: As a value attribute or as a content of the value
tag.

Example 18: Component Parameters

<syswf:component prefix="names" name="nameList">
 <syswf:param name="color1" value="white"/>
 <syswf:param name="color2">black</syswf:param>
</syswf:component>

591Developer's Guide

syswf:page

Creates an HTML page form with all required internal fields. This must be the root element of all components
used as tasks.

Table 80. syswf:page Attributes

RequiredDescriptionAttribute

yesThe filename of the JSP page containing the page header, this
file is designed to create elements required for framework
functionality. Note that there should be no graphic design.

headerTemplate

yesThe filename of the JSP page containing the page footer, this
file is designed to create elements required for framework
functionality. Note that there should be no graphic design.

footerTemplate

syswf:wrap

This tag helps you to separate page functionality from its design. It includes specified header and footer
templates before and after the body element. Header and footer templates should be parametrized using
syswf:param tags.

Table 81. syswf:wrap Attributes

RequiredDescriptionAttribute

noFile name of JSP page containing the header.headerTemplate

noFile name of JSP page containing the footer.footerTemplate

Table 82. syswf:wrap Subelements

RequiredDescriptionElement

noWhen you pass the parameter value into a component, this
parameter will be accessible in the request scope in the
component Java class and JSP page.

param

Chapter 5592

syswf:control

Creates a button or link, which should be used to trigger actions and transfers to other tasks.

Table 83. syswf:control Attributes

RequiredDescriptionAttribute

noAction to be passed to a control's parent component.action

yesAllowed values are button, anchor, script, or image. The script
generates the submit JavaScript command, which can be used,
for example, as a value for the HTML onClick attribute. Image
is a graphic button.

mode

noURI of task to be called.targetTask

noSpecifies level in navigation path to be used.targetDepth

noSpecifies the URL to be used to submit data; usable, for
example, when you need to switch from http to https.

targetUrl

required in anchor
and button mode

control captioncaption

noHelp text, displayed as tooltip.hint

noIf set to true, button is disabled and link cannot be clicked.disabled

noIf set to true, the task is only redirected to another task. This
means that task data stored in a local session will also be
accessible from the target task. Normal behavior is that a local
session is not transferred between tasks.

redirect

required in image
mode

Path to the image file used as graphic button.src

Table 84. syswf:control Subelements

RequiredDescriptionElement

noAdds action parameters.param

noAdds attributes to created input or an HTML tag.attribute

593Developer's Guide

syswf:input

Inserts input field into JSP page.

Table 85. syswf:input Attributes

RequiredDescriptionAttribute

yesSpecifies the name of the accessible value of this input field.name

yesSpecifies a value which appears in the input field, or a base
object for the property attribute.

value

noContains the property name of the object specified by the
expression in the value attribute.

property

noHelp text, displayed as a tooltip.hint

noData type which will be used to transform values between the
underlying Java Bean object and the input field.

dataType

noIf set to true, the input field will be disabled.disabled

noA possible value is password, used for password fields.mode

Table 86. syswf:input Subelements

RequiredDescriptionElement

noAppends a name and value pair as attribute to the resulting
HTML tag; usable, for example, for the CSS class specification
for an input field.

attribute

syswf:selectOne

Displays controls which enable the user to select one value from a list of available values.

Chapter 5594

Table 87. syswf:selectOne Attributes

RequiredDescriptionAttribute

yesSpecifies the name under which this value will be accessible;
select one element.

name

noSpecifies visual style; possible values are radio, check box, and
menu.

mode

yesSpecifies a value which will be selected, or a base object for
the property attribute.

value

noContains the property name of the object specified by expression
in the value attribute.

property

yesSpecifies a comma-delimited list of available values, the
expression of which evaluates either to String[], or to an array
of object for the optionValuesProperty attribute.

optionValues

noContains property name of objects specified by expression in
the optionValues attribute.

optionValuesProperty

noSpecifies a comma-delimited list of available captions, the
expression of which evaluates either to String[], or to an array
of object for the optionCaptionsProperty attribute.

optionCaptions

noContains property name of objects specified by expression in
the optionCaptions attribute.

optionCaptionsProperty

noHelp text, displayed as tooltip.hint

noData type which will be used to transform values between the
underlying Java Bean object and the selected element.

dataType

Table 88. syswf:selectOne Subelements

RequiredDescriptionElement

noAppends a name/value pair as an attribute to resulting HTML
tags.

attribute

595Developer's Guide

syswf:selectMany

Displays controls which enable the user to select multiple values from list of available values.

Table 89. syswf:selectMany Attributes

RequiredDescriptionAttribute

yesSpecifies the name under which the value of this selectMany
element will be accessible.

name

noSpecifies visual style possible values check, box and menu.mode

yesSpecifies an array of values which will be selected, or base
objects, for the property attribute.

value

noContains property name of objects specified by expression in
the value attribute.

property

yesSpecifies a comma-delimited list of available values the
expression of which evaluates to String[], or to an array of
object for the optionValuesProperty attribute.

optionValues

noContains the property name of objects specified by expression
in the optionValues attribute.

optionValuesProperty

noSpecifies a comma-delimited list of available captions, the
expression of which evaluates to either String[], or to an array
of object for the optionCaptionsProperty attribute.

optionCaptions

noContains a property name for objects specified by expression
in the optionCaptions attribute.

optionCaptionsProperty

noHelp text, displayed as tooltip.hint

Table 90. syswf:selectMany Subelements

RequiredDescriptionElement

noAppends a name/value pair as an attribute to result HTML tags.attribute

syswf:textArea

Creates a text area HTML component.

Chapter 5596

Table 91. syswf:textArea Attributes

RequiredDescriptionAttribute

yesSpecifies the name under which the value of this text area will
be accessible.

name

yesSpecifies a value which appears in the text area, or a base object
for the property attribute.

value

noContains a property name of an object specified by expression
in the value attribute.

property

noHelp text, displayed as tooltip.hint

noData type which will be used to transform values between
underlying the Java Bean object and the text area.

dataType

optionalIf set to true, the text area will be disabled.disabled

Table 92. syswf:textArea Subelements

RequiredDescriptionElement

noAppends a name/value pair as an attribute to the result HTML
tag; usable, for example, for CSS class specification for the text
area.

attribute

syswf:value

Evaluates the given expression and transform result using data type.

Table 93. syswf:value Attributes

RequiredDescriptionAttribute

yesSpecifies the expression which will be evaluated.value

noHelp text, displayed as tooltip.hint

noData type which will be used to transform value.dataType

597Developer's Guide

syswf:size

This tag will fill the page attribute with size of given List, UDDIList, StringArrayList or Array.

Table 94. syswf:size Attributes

RequiredDescriptionAttribute

yesName of variable to store the size of a given list or array.var

yesSpecifies an expression to be evaluated; the result must be List,
UDDIList, StringArrayList or Array.

value

noScope of the variable to store the size of a given list or array.
Allowed values are request, session, application, or default.

scope

navigationPath

This component renders the history path (bread crumbs links)

navigationPath component in action

Example 19: Component Parameters

 <syswf:component name="navigationPath" prefix="path"/>

Typical Customization Tasks

• Q: Where can I find the code which generates the page header?. A: It is defined in the file
design/pageHeader.jsp.

• Q: How do I change the text displayed on a page's title bar?. A: Modify content of <title> tag in the
file pageHeader.jsp.

• Q: Where is the right place to include my own JavaScript files?. A: Reference to your files should
be placed in pageHeader.jsp. Place your script files in the REGISTRY_HOME/app/uddi/web.jar/webroot/script
directory.

Chapter 5598

• Q: Where is it possible to change the text displayed in the page footer?. A: The page footer is
defined in the file design/pageFooter.jsp.

UDDI from Developer Tools
In this section, we will show you how to access UDDI from the following tools:

• HP Developer for Eclipse

• Microsoft Visual Studio .NET

Developer tools include wizards for searching a UDDI registry and publishing to a UDDI registry. We can
say that UDDI searching and publishing rely on getting and publishing WSDL files.

Figure 154 shows how a WSDL is mapped to UDDI. For more information, see OASIS Technical Note
"Using WSDL in a UDDI Registry" [http://www.oasis-open.org/committees/uddi-
spec/doc/tns.htm#WSDLTNV2]

Figure 154. WSDL Mapping to UDDI

599Developer's Guide

http://www.oasis-open.org/committees/uddi-spec/doc/tns.htm#WSDLTNV2
http://www.oasis-open.org/committees/uddi-spec/doc/tns.htm#WSDLTNV2

UDDI from HP Developer for Eclipse

Eclipse is an open source platform for tool integration. HP Developer for Eclipse, 5.5 extends the Eclipse
IDE to support Web services creation, debugging, and deployment. Systinet Developer provides a simple
point-and-click code generation experience that can turn any existing Java application into a Web service.
HP Developer for Eclipse provides support for:

• Getting data from a UDDI registry for creating Web services and their clients, and for retrieving WSDL
files to your project.

• Publishing WSDL definition to a UDDI registry

Getting Data from UDDI

UDDI searching wizards support the following use cases:

• Retrieving a WSDL document from a UDDI registry into your project.

• Creating Web service client applications from the WSDL document retrieved from a UDDI registry.

• Creating Web service implementations from a WSDL document retrieved from a UDDI registry.

As you see, the core is to retrieve the WSDL document from a UDDI registry. Then, the WSDL document
can be used for generating a Web service implementation or a Web service client.

You can obtain the WSDL file by the following methods:

• You can get the WSDL file by WSDL service key or binding keys as shown in Figure 155. In this case,
you must know exact UDDI keys. You can get these keys by searching a UDDI registry using a web
interface. For searching HP SOA Registry Foundation, you can use both the Registry Console and the
Business Service Console.

HP SOA Registry Foundation is fully compliant with the latest UDDI Specification version 3. One of
the benefits of the UDDI Specification version 3 is the option to use human readable UDDI keys. The
first step of the UDDI inquiry wizard is selection of the version of UDDI Specification that you wish
to use for accessing the UDDI registry. HP Developer for Eclipse 5.5 supports version 2 and version 3
of the UDDI Specification.

• You can search by qualified names of the following sections of the WSDL definition:

Chapter 5600

WSDL portType (interface)•

• WSDL binding (transport)

• WSDL service (endpoint)

You can specify a target namespace for these qualified names as shown in Figure 156. You can also
combine searching the UDDI registry with searching via HP SOA Registry Foundation Business Service
Console that use names as interface, transport and endpoint for sections of a WSDL file.

Figure 155. UDDI Search by Keys

601Developer's Guide

Figure 156. UDDI Search by Qualified Names

Publishing WSDL to UDDI

UDDI publishing wizards allows you to publish the WSDL representing the Web service to a UDDI registry.
The publishing wizard supports both version 2 and version 3 of the UDDI Specification. The selected WSDL
file from your project will be published to the UDDI registry under the user account you provide in the
publishing wizards as shown in Figure 157. Note that before you can publish a WSDL to a UDDI registry,
you must create a business entity under which the WSDL definition representing the Web service will be
published as shown in Figure 154.

Chapter 5602

Figure 157. UDDI Publish Wizard

UDDI from MS Visual Studio

Microsoft Visual Studio .NET 2003 includes a wizard for accessing a UDDI registry that allows you to find
a WSDL/ASMX file in the UDDI registry. Once you have found a WSDL, you can add a web reference to
the Web service definition file to your project.

To start the Web Reference Wizard:

1 On the Project menu in Visual Studio .NET, click Add Web Reference.

2 The Add Web Reference dialog box shown in Figure 158 appears. Enter the URI of a UDDI registry
or the URI of a WSDL document representing the Web service. To browse the Live HP SOA Registry
Foundation at HP's web site, enter http://systinet.com/uddi/web or http://systinet.com/uddi/bsc/web.

603Developer's Guide

Figure 158. Add Web Reference Default

Figure 159 shows how to browse/search HP SOA Registry Foundation via the Add Web Reference Wizard.

Chapter 5604

Figure 159. Searching HP SOA Registry Foundation via Web Reference Wizard

605Developer's Guide

Figure 160. Add Web Reference - Found Web service

If you find a WSDL file, the wizard shown in Figure 160 parses the WSDL file displaying Web service
method. Then, you can click Add Reference button to add the reference to your project.

How to Debug

SOAPSpy Tool

When debugging, it can be useful to track communication between the client and server. SOAPSpy allows
the inspection of messages that the client and server exchange. Messages, or more precisely, requests and
responses, are coupled to calls. Figure 161 shows the SOAPSpy dialog box.

Chapter 5606

Figure 161. SOAPSpy Tool

SOAPSpy works as an HTTP proxy server. It accepts HTTP requests from clients and resends them to their
final destinations, or to another HTTP proxy server. SOAPSpy can track not only SOAP and WSDL
messages, but also any other documents (HTML pages, binary data, etc.). However, the binary data is shown
only schematically; all invalid text characters are translated into question mark (?) characters. SOAPSpy
can also work as an HTTP server client: you can make it contact another proxy server instead of connecting
to the final destination.

Running SOAPSpy

This tool is placed in the bin subdirectory of your HP SOA Registry Foundation server distribution. To start
SOAPSpy, enter the command SoapSpy.bat on Windows platforms, or ./SoapSpy.sh on UNIX machines.

Figure 162. Start Spying

607Developer's Guide

Spying must be started first by selecting Start Spying from the Spy menu or by clicking the spy icon in
the main panel, shown in Figure 162.

Figure 163. Status Line

The lower part of the window contains a status bar, shown in Figure 163, with information about the state
of the tool. Once started, the status line displays the proxy host and port number.

The following options can be used on the command line when activating SOAPSpy:

• --port [PORT]

Starts SOAPSpy at the given port

• --help

Shows the help screen on the console

• --version

shows the version of SOAPSpy on the console

To make SOAPSpy contact another proxy server instead of making a direct connection to the destination,
use the standard Java system properties for HTTP proxies:

• -Dhttp.proxyHost=PROXY_HOST - The host name of the proxy server

• -Dhttp.proxyPort=PROXY_PORT - The port of the proxy server

There are two possible ways to load the tool:

1 ./SoapSpy

2 ./SoapSpy --port PROXY_PORT

Using SOAPSpy

The program consists of a call list and a message viewer.

Chapter 5608

Received calls are stored in a list on the left side of the window. Calls can be selected and examined.
Unwanted calls can by removed from the list using the Call menu or context pop-up.

The message viewer displays the selected call, as shown in Figure 164. Every call contains HTTP Request
and HTTP Response tabs, which contain raw data caught by SOAPSpy. SOAP calls contain two specific
panels, SOAP Request and SOAP Response, for advanced manipulation of SOAP messages. The same
applies for WSDL calls.

Figure 164. Call Types

SOAP Request Tab

The SOAP Request tab, shown in Figure 165, consists of the SOAP Action, SOAP message and Target
URL where the original request was sent. Every file can be edited. Click the Resend to produce a new
HTTP request. The resent request appears in the call list.

Figure 165. Request Tab

609Developer's Guide

How to Run Clients Using SOAPSpy

Java system properties http.proxyHost and http.proxyPort need to be set. Use the command java -
Dhttp.proxyHost=CLIENT_COMPUTER_NAME -Dhttp.proxyPort=4444... before running SoapSpy.
E.g.:

java -Dhttp.proxyHost=%CLIENT_COMPUTER_NAME% -Dhttp.proxyPort=4444 org.my.FooClient

Because SoapSpy works with the java.net proxy classes, it will not work with a localhost address.
This applies to the endpoint URL that your client calls. If you do not see any activity when using
SoapSpy, this is a likely cause. If you want to try running a service locally, simply obtain the
machine's hostname via the java.net.InetAddress class.

Logging

HP SOA Registry Foundation wraps the Log4j [http://logging.apache.org/log4j/docs/index.html] logging
service to log errors, warnings, and other information. By default:

• All such events are logged to REGISTRY_HOME\log\logEvents.log.

• All errors including stack traces are logged to REGISTRY_HOME\log\errorEvents.log.

• Behavior descriptions are configured in REGISTRY_HOME\conf\log4j.config.

To use the same logging mechanism in custom server code (such as the Custom Validation Service):

1 Import com.idoox.debug.Category to your java class:

import com.idoox.debug.Category;

2 Create static instance with name of the category:

private static Category log = Category.getCategory("com.company.MyValidationService");

Chapter 5610

http://logging.apache.org/log4j/docs/index.html

3 It is a good habit to name the category according to its class name. You can use the category

...
try{
 ...
} catch(Exception e){
 log.error("Fatal error", e);
 }
...

611Developer's Guide

Chapter 5612

6 Demos

The HP SOA Registry Foundation demos suite is used to teach the capabilities of the HP SOA Registry
Foundation APIs and how to make use of these to interact with the registry over a SOAP interface.

If you want to run demos on HP SOA Registry Foundation deployed to an application server, make
sure you have properly imported the SSL certificate of the application server to the HP SOA
Registry Foundation configuration. For more information see Installation Guide, Deployment to
an Application Server on page 146. You may also need to modify the HP SOA Registry Foundation
URLs used in demos as shown in the demos property file, REGISTRY_HOME/demos/env.properties.

If you get the java.lang.reflect.UndeclaredThrowableException, check whether HP SOA Registry is
running

The demos are divided into the following categories:

Basic Demos

The Basic demos cover inquiry and publishing for versions 1, 2, and 3 of the UDDI specification
and WSDL2UDDI for versions 2 and 3.

Advanced Demos

The Advanced demos discuss custody, subscriptions, validation, and taxonomies.

Security Demos

In the Security demos, we cover accounts, groups, permissions, and access control lists (ACLs).

Resources Demos

In the resources demos, we cover publishing of WSDL and XSD.

Basic Demos
Basic Demos section includes the following demos:

613

• UDDI v1 demos

• UDDI v2 demos

• UDDI v3 demos

UDDI v1

• UDDI v1 Inquiry demos

• UDDI v1 Publishing demos

Inquiry v1

The HP SOA Registry Foundation basic inquiry demo set is used to demonstrate the HP SOA Registry
Foundation application programming interface's capabilities and to teach the reader how to use this API to
perform basic inquiry calls to a UDDI registry. This documentation covers the UDDI Version 1 Specification
[http://www.oasis-open.org/committees/uddi-spec/doc/contribs.htm#uddiv1].

You will learn how to use the HP SOA Registry Foundation client API to contact and get information from
a UDDI registry over a SOAP interface. There is one demo for each UDDI call, from find_business to
get_tModelDetail.

The HP SOA Registry Foundation basic inquiry demo set contains following demos to assist you in learning
the HP SOA Registry Foundation client API.

FindBinding. Demonstrates how to construct and fill the Find_binding object, get an Inquiry stub for the
UDDI registry, perform a find_binding call, and display the results.

FindBusiness. Demonstrates how to construct and fill a Find_business object, get an Inquiry stub for the
UDDI registry, perform a find_business call and display the results.

FindService. Demonstrates how to construct and fill a Find_service object, get an Inquiry stub for the UDDI
registry, perform a find_service call and display the results.

FindTModel. Demonstrates how to construct and fill a Find_tModel object, get an Inquiry stub for the UDDI
registry, perform a find_tModel call and display the results.

Chapter 6614

http://www.oasis-open.org/committees/uddi-spec/doc/contribs.htm#uddiv1

GetBindingDetail. Demonstrates how to create a Get_bindingDetail object, set the bindingKey of the
bindingTemplate to be fetched, get an Inquiry stub for the UDDI registry, perform a get_bindingDetail call,
and display the result.

GetBusinessDetail. Demonstrates how to create a Get_businessDetail object, set the businessKey of the
businessEntity to be fetched, get an Inquiry stub for the UDDI registry, perform a get_businessDetail call,
and display the result.

GetServiceDetail. Demonstrates how to create a Get_serviceDetail object, set the serviceKey of the business
service to be fetched, get an Inquiry stub for the UDDI registry, perform a get_serviceDetail call, and display
the result.

GetTModeDetail. Demonstrates how to create a Get_tModelDetail object, set the tModelKey of the tModel
to be fetched, get an Inquiry stub for the UDDI registry, perform a get_tModelDetail call, and display the
result.

Prerequisites and Preparatory Steps: Code

We expect, that you have already installed the HP SOA Registry Foundation and set the REGISTRY_HOME
environment variable to its installation location.

To run the HP SOA Registry Foundation's demos, your UDDI registry must be running. To start the registry,
execute the serverstart script:

%REGISTRY_HOME%\bin\serverstart.batWindows:

$REGISTRY_HOME/bin/serverstart.shUNIX:

It is necessary to configure the demos. The configuration system has two levels: global and local. The
properties defined at the global level may be overwritten at the local level. The global properties are located
in the file:

%REGISTRY_HOME%\demos\env.propertiesWindows:

$REGISTRY_HOME/demos/env.propertiesUNIX:

The values set during the installation of the HP SOA Registry Foundation work out of box, and their
modification affects all demos. If you need to redefine a property's value for a single demo (that is, at the

615Demos

local level), edit the file env.properties in the directory where run.bat (run.sh) is located. Local properties
for Basic/Inquiry demos are loaded in the file:

%REGISTRY_HOME%\demos\basic\inquiry\v1\env.propertiesWindows:

$REGISTRY_HOME/demos/basic/inquiry/v1/env.propertiesUNIX:

Table 95. Properties Used in Demos

DescriptionDefault ValueName

limit on data returned from
registry

5uddi.demos.result.max_rows

the inquiry Web service port
URL

http://localhost:8080/uddi/inquiryuddi.demos.url.inquiry

Presentation and Functional Presentation

This section describes programing pattern used in all demos using the FindTModel demo as an example.
You can find its source code in the file:

%REGISTRY_HOME%\demos\basic\inquiry\src\demo\uddi\v1\inquiry\FindTModel.javaWindows:

$REGISTRY_HOME/demos/basic/inquiry/src/demo/uddi/v1/inquiry/FindTModel.javaUNIX:

The main method is straightforward. It gathers user's input (tModel name), calls a method to initialize the
Find_tModel object, executes the find_tModel UDDI call, and displays the list of found tModels:

String name = UserInput.readString("Enter name", "demo%");
Find_tModel find_tModel = createFindByTModel(name, findQualifier);
TModelList result = findTModel(find_tModel);
printTModelList(result);

The createFindTModel() method is used to create a new instance of the Find_tModel class and initialize it with
values from parameters:

public static Find_tModel createFindByTModel(String name)
 throws InvalidParameterException {
 System.out.println("name = " + name);
 Find_tModel find = new Find_tModel();
 find.setName(name);
 find.setMaxRows(new Integer(MAX_ROWS));

Chapter 6616

 find.setGeneric(Constants.GENERIC_1_0);
 return find_tModel;
}

The helper method getInquiryStub() returns the UDDI Inquiry stub of the web service listening at the URL
specified in the URL_INQUIRY property.

public static InquireSoap getInquiryStub()
 throws SOAPException {
 // you can specify your own URL in property - uddi.demos.url.inquiry
 String url = DemoProperties.getProperty(URL_INQUIRY, "http://localhost:8080/uddi/inquiry");
 System.out.print("Using Inquiry at url " + url + " ..");
 InquireSoap inquiry = UDDIInquiryStub.getInstance(url);
 System.out.println(" done");
 return inquiry;
}

The UDDI API call find_tModel is performed in the method findTModel:

public static TModelList findTModel(Find_tModel find_tModel)
 throws UDDIException, SOAPException {
 InquireSoap inquiry = getInquiryStub();
 System.out.print("Search in progress ..");
 TModelList tModelList = inquiry.find_tModel(find_tModel);
 System.out.println(" done");
 return tModelList;
}

The list of found tModels is printed with the method printTModelList. One interesting aspect of the HP SOA
Registry Foundation client API is that each UDDIObject contains the method toXML(), which returns a
human-readable, formatted listing of its XML representation.

public static void printTModelList(TModelList tModelList) {
 System.out.println();

 TModelInfoArrayList tModelInfoArrayList = tModelList.getTModelInfoArrayList();
 if (tModelInfoArrayList==null) {
 System.out.println("Nothing found");
 return;
 }

 int position = 1;
 for (Iterator iterator = tModelInfoArrayList.iterator(); iterator.hasNext();) {
 TModelInfo tModelTemplate = (TModelInfo) iterator.next();
 System.out.println("TModel "+position+" : "+tModelTemplate.getTModelKey());
 System.out.println(tModelTemplate.toXML());

617Demos

 System.out.println();
 System.out.println("**");
 position++;
 }
}

Building and Running Demos

This section shows how to build and run the HP SOA Registry Foundation Basic Inquiry demo set. Our
example continues with the FindTModel demo.

1 Be sure that the demos are properly configured and the HP SOA Registry Foundation is up and running.

2 Change your working directory to:

%REGISTRY_HOME%\demos\basic\inquiry\v1Windows:

$REGISTRY_HOME/demos/basic/inquiry/v1UNIX:

3 Build all demos using:

run.bat makeWindows:

./run.sh makeUNIX:

When compiling demos on Windows platforms, you may see the following text:

A subdirectory or file ..\..\common\.\build\classes already exists.

This is expected and does not indicate a problem.

4 To get list of all available demos, run

run.bat helpWindows:

./run.sh helpUNIX:

Chapter 6618

5 Run a selected demo by executing the run command with the name of the demo as a parameter. For
example, to run the FindTModel demo, invoke

run.bat FindTModelWindows:

./run.sh FindTModelUNIX:

The output of this demo will resemble the following:

Running FindTModel demo...
**
*** HP SOA Registry Demo - FindTModelDemo ***
**

Searching for tModel where
Enter name [demo%]:
name = demo%
Using Inquiry at url http://mycomp.com:8080/uddi/inquiry .. done
Search in progress .. done

TModel 1 : uuid:13aee5be-8531-343c-98f8-d2d3a9308329
<tModelInfo tModelKey="uuid:13aee5be-8531-343c-98f8-d2d3a9308329" xmlns="urn:uddi-org:api_v1">
<name>demo:departmentID</name>
</tModelInfo>

**
TModel 2 : uuid:8af5f49e-e793-3719-92f3-6ab8998eb5a9
<tModelInfo tModelKey="uuid:8af5f49e-e793-3719-92f3-6ab8998eb5a9" xmlns="urn:uddi-org:api_v1">
<name>demo:hierarchy</name>
</tModelInfo>

**
TModel 3 : uuid:5c1d5d80-a4d4-11d8-91cd-5c1d367091cd
<tModelInfo tModelKey="uuid:5c1d5d80-a4d4-11d8-91cd-5c1d367091cd" xmlns="urn:uddi-org:api_v1">
<name>Demo identifier</name>
</tModelInfo>

 **

6 To rebuild demos, execute run.bat clean (./run.sh clean) to delete the classes directory and run.bat
make (./run.sh make) to rebuild the demo classes.

619Demos

Publishing v1

The HP SOA Registry Foundation basic publishing demo set demonstrates the HP SOA Registry Foundation
application programming interface's capabilities and teaches how to use this API to perform basic publishing
calls to a UDDI registry.

The HP SOA Registry Foundation basic publishing demos cover the publication aspect of the UDDI Version
1 Specification [http://www.oasis-open.org/committees/uddi-spec/doc/contribs.htm#uddiv1]. You will
learn, how to use the HP SOA Registry Foundation client API to publish information to a UDDI registry
over a SOAP interface. There is one demo for each UDDI call, from delete_binding to save_business.

The HP SOA Registry Foundation basic publishing demo set contains the following demos to assist you in
learning the HP SOA Registry Foundation client API.

DeleteBinding. Demonstrates how to construct and fill the Delete_binding object, get a Publishing stub for
the UDDI registry, get an authToken, and perform the delete_binding call.

DeleteBusiness. Demonstrates how to construct and fill the Delete_business object, get Publishing stub for
the UDDI registry, get an authToken, and perform the delete_business call.

DeleteService. Demonstrates how to construct and fill the Delete_service object, get Publishing stub for the
UDDI registry, get an authToken, and perform the delete_service call.

DeleteTModel. Demonstrates how to construct and fill the Delete_tModel object, get a Publishing stub for
the UDDI registry, get an authToken, and perform the delete_tModel call.

GetRegisteredInfo. Demonstrates how to construct and fill the Get_registeredInfo object, get a Publishing
stub for the UDDI registry, get an authToken, and perform the get_registeredInfo call.

SaveBinding. Demonstrates how to construct and fill the Save_binding object, get a Publishing stub for the
UDDI registry, get an authToken, and perform the save_binding call.

SaveBusiness. Demonstrates how to construct and fill the Save_business object, get a Publishing stub for
the UDDI registry, get an authToken, and perform the save_business call.

SaveService. Demonstrates how to construct and fill the Save_service object, get a Publishing stub for the
UDDI registry, get an authToken, and perform the save_service call.

Chapter 6620

http://www.oasis-open.org/committees/uddi-spec/doc/contribs.htm#uddiv1
http://www.oasis-open.org/committees/uddi-spec/doc/contribs.htm#uddiv1

SaveTModel. Demonstrates how to construct and fill the Save_tModel object, get a Publishing stub for the
UDDI registry, get an authToken, and perform the save_tModel call.

Prerequisites and Preparatory Steps: Code

We expect that you have already installed the HP SOA Registry Foundation and set the REGISTRY_HOME
environment variable to its installation location.

To run the HP SOA Registry Foundation's demos, your UDDI registry must be running. To start the registry,
execute the serverstart script:

%REGISTRY_HOME%\bin\serverstart.batWindows:

$REGISTRY_HOME/bin/serverstart.shUNIX:

It is necessary to configure the demos. The configuration system has two levels: global and local. The
properties defined at the global level may be overwritten at the local level. The global properties are located
in the file:

%REGISTRY_HOME%\demos\env.propertiesWindows:

%REGISTRY_HOME/demos/env.propertiesUNIX:

The values set during the installation of the HP SOA Registry Foundation work out of the box, and their
modification affects all demos. If you need to redefine a property's value for a single demo (that is, at the
local level), edit the file env.properties in the directory where run.sh(run.bat) is located. Local level properties
for the Basic/Inquiry demos are loaded from the file:

%REGISTRY_HOME%\demos\basic\publishing\v1\env.propertiesWindows:

$REGISTRY_HOME/demos/basic/publishing/v1/env.propertiesUNIX:

621Demos

Table 96. Properties Used in the demos

DescriptionDefault ValueName

First user's namedemo_johnuddi.demos.user.john.name

First user's passworddemo_johnuddi.demos.user.john.password

Second user's namedemo_janeuddi.demos.user.jane.name

Second user's passworddemo_janeuddi.demos.user.jane.password

The publication Web service
port URL

http://localhost:8080/uddi/publishinguddi.demos.url.publishing

The security Web service port
URL

http://localhost:8080/uddi/securityuddi.demos.url.security

Presentation and Functional Presentation

This section describes the programming pattern used in all demos using the SaveBusiness demo as an
example. You can find this demo's source code in the file:

%REGISTRY_HOME%\demos\basic\publishing\src\demo\uddi\v1\publishing\SaveBusiness.javaWindows:

$REGISTRY_HOME/demos/basic/publishing/src/demo/uddi/v1/publishing/SaveBusiness.javaUNIX:

The main method is easy to understand:

1 It gathers the user's input: an optional publisher-assigned businessKey, an array of business entity
names with their language codes, and the business' description.

2 The next step is to get the security stub and authorize the user. The resulting authInfo string is a secret
key passed in all requests.

3 Next, the Save_business object is created, filled, and passed to the saveBusiness method as a parameter.

When successful, the BusinessDetail object is returned from the UDDI registry and printed.

4 The last step is to discard the authInfo string, so that no malicious user can use it to compromise a
user's account.

Chapter 6622

String name = UserInput.readString("Enter business name", "Marketing");
String description = UserInput.readString("Enter description", "Saved by SaveBusiness demo");
System.out.println();

UDDI_Security_PortType security = getSecurityStub();
String authInfo = getAuthInfo(user, password, security);
Save_business save = createSaveBusiness(businessKey, names, languageCodes, description, authInfo);
BusinessDetail result = saveBusiness(save);
printBusinessDetail(result);
discardAuthInfo(authInfo, security);

The helper method, getSecurityStub() returns the UDDI Security stub of the web service listening at the
URL specified by the URL_SECURITY property.

public static UDDI_Security_PortType getSecurityStub()
 throws SOAPException {
 // you can specify your own URL in property - uddi.demos.url.security
 String url = DemoProperties.getProperty(URL_SECURITY, "http://localhost:8080/uddi/security");
 System.out.print("Using Security at url " + url + " ..");
 UDDI_Security_PortType security = UDDISecurityStub.getInstance(url);
 System.out.println(" done");
 return security;
}

Similarly, the helper method getPublishingStub() returns the UDDI Publication stub of the Web service
listening at the URL specified by the URL_PUBLISHING property.

public static UDDI_Publication_PortType getPublishingStub()
 throws SOAPException {
 // you can specify your own URL in property - uddi.demos.url.publishing
 String url = DemoProperties.getProperty(URL_PUBLISHING,
 "http://localhost:8080/uddi/publishing");
 System.out.print("Using Publishing at url " + url + " ..");
 UDDI_Publication_PortType inquiry = UDDIPublishStub.getInstance(url);
 System.out.println(" done");
 return inquiry;
}

The getAuthInfo() method is used to authorize the user against the UDDI registry and to get the secret key
authInfo.

public static String getAuthInfo(String userName,
 String password, UDDI_Security_PortType security)
 throws InvalidParameterException, UDDIException {
 System.out.print("Logging in ..");
 AuthToken authToken = security.get_authToken(new Get_authToken(userName, password));

623Demos

 System.out.println(" done");
 return authToken.getAuthInfo();
}

The discardAuthInfo() method invalidates the secret key authInfo, so it cannot be reused.

public static DispositionReport discardAuthInfo(String authInfo,
 UDDI_Security_PortType security)
 throws InvalidParameterException, UDDIException {
 System.out.print("Logging out ..");
 DispositionReport dispositionReport = security.discard_authToken(new Discard_authToken(authInfo));
 System.out.println(" done");
 return dispositionReport;
}

The createSaveBusiness() method is used to create a new instance of the Save_business class and initialize it
with values from parameters:

public static Save_business createSaveBusiness(String name,
 String description, String authInfo)
 throws InvalidParameterException {
 System.out.println("name = " + name);
 System.out.println("description = " + description);

 BusinessEntity businessEntity = new BusinessEntity();
 businessEntity.setBusinessKey("");
 businessEntity.setName(name);
 businessEntity.addDescription(new Description(description));

 Save_business save = new Save_business();
 save.addBusinessEntity(businessEntity);
 save.setAuthInfo(authInfo);
 save.setGeneric(Constants.GENERIC_1_0);
 return save;
}

The UDDI API call save_business is performed in the saveBusiness() method:

public static BusinessDetail saveBusiness(Save_business save)
 throws UDDIException, SOAPException {
 UDDI_Publication_PortType publishing = getPublishingStub();
 System.out.print("Save in progress ...");
 BusinessDetail businessDetail = publishing.save_business(save);
 System.out.println(" done");
 return businessDetail;
}

Chapter 6624

The saved businessEntity is displayed by the printBusinessDetail() method. One interesting aspect of the
HP SOA Registry Foundation client API is that each UDDIObject contains the toXML(), which returns a
human-readable formatted listing of the XML representation.

public static void printBusinessDetail(BusinessDetail businessDetail) {
 System.out.println();
 BusinessEntityArrayList businessEntityArrayList = businessDetail.getBusinessEntityArrayList();
 int position = 1;
 for (Iterator iterator = businessEntityArrayList.iterator(); iterator.hasNext();) {
 BusinessEntity entity = (BusinessEntity) iterator.next();
 System.out.println("Business " + position + " : " + entity.getBusinessKey());
 System.out.println(entity.toXML());
 System.out.println();
 System.out.println("**");
 position++;
 }
}

Building and Running Demos

This section shows how to build and run the HP SOA Registry Foundation Basic Publishing demo set. Let
us continue with our SaveBusiness demo.

1 Be sure that the demos are properly configured and the HP SOA Registry Foundation is up and running.

2 Change your working directory to

%REGISTRY_HOME%\demos\basic\publishing\v1Windows:

$REGISTRY_HOME/demos/basic/publishing/v1UNIX:

3 Build all demos using:

run.bat makeWindows:

./run.sh makeUNIX:

When compiling demos on Windows platforms, you may see the following text:

subdirectory or file ..\..\common\.\build\classes already exists.

625Demos

This is expected and does not indicate a problem.

4 To get list of all available demos, run

run.bat helpWindows:

./run.sh helpUNIX:

5 The selected demo can be executed via the run command using the name of demo as a parameter. For
example, to run the SaveBusiness demo, invoke

run.bat SaveBusinessWindows:

./run.sh SaveBusinessUNIX:

The output of this demo will resemble the following:

Running SaveBusiness demo...
**
 HP SOA Registry Demo - SaveBusiness
**

Saving business entity where
Enter business name [Marketing]:
Enter description [Saved by SaveBusiness demo]:

Using Publishing at url https://mycomp.com:8443/uddi/publishing .. done
Logging in .. done
name = Marketing
description = Saved by SaveBusiness demo
Save in progress ... done

Business 1 : 79596f30-a5a9-11d8-91cd-5c1d367091cd
<businessEntity businessKey="79596f30-a5a9-11d8-91cd-5c1d367091cd" operator="Systinet"
 authorizedName="demo_john" xmlns="urn:uddi-org:api">
 <name>Marketing</name>
 <description>Saved by SaveBusiness demo</description>
</businessEntity>

**
Logging out .. done

Chapter 6626

6 To rebuild demos, execute run.bat clean (./run.sh clean) to delete the classes directory and run.bat
make (./run.sh make) to rebuild the demo classes.

UDDI v2

• UDDI v2 Inquiry demos

• UDDI v2 Publishing demos

Inquiry v2

The HP SOA Registry Foundation basic inquiry demo set is used to demonstrate the HP SOA Registry
Foundation application programming interface's capabilities and to teach the reader how to use this API to
perform basic inquiry calls to a UDDI registry.

The HP SOA Registry Foundation basic inquiry demos cover inquiry aspects of the UDDI Version 2.0.4
Specification [http://www.oasis-open.org/committees/uddi-spec/doc/tcspecs.htm#uddiv2]. You will learn
how to use the HP SOA Registry Foundation client API to contact and get information from a UDDI registry
over a SOAP interface. There is one demo for each UDDI call, from find_business to get_tModelDetail.

The HP SOA Registry Foundation basic inquiry demo set contains following demos to assist you in learning
the HP SOA Registry Foundation client API.

FindBinding. Demonstrates how to construct and fill the Find_binding object, get an Inquiry stub for the
UDDI registry, perform a find_binding call, and display the results.

FindBusiness. Demonstrates how to construct and fill a Find_business object, get an Inquiry stub for the
UDDI registry, perform a find_business call and display the results.

FindRelatedBusiness. Demonstrates how to construct and fill a Find_relatedBusiness object, get an Inquiry
stub for the UDDI registry, perform a find_relatedBusiness call and display the results.

FindService. Demonstrates how to construct and fill a Find_service object, get an Inquiry stub for the UDDI
registry, perform a find_service call and display the results.

FindTModel. Demonstrates how to construct and fill a Find_tModel object, get an Inquiry stub for the UDDI
registry, perform a find_tModel call and display the results.

627Demos

http://www.oasis-open.org/committees/uddi-spec/doc/tcspecs.htm#uddiv2
http://www.oasis-open.org/committees/uddi-spec/doc/tcspecs.htm#uddiv2

GetBindingDetail. Demonstrates how to create a Get_bindingDetail object, set the bindingKey of the
bindingTemplate to be fetched, get an Inquiry stub for the UDDI registry, perform a get_bindingDetail call,
and display the result.

GetBusinessDetail. Demonstrates how to create a Get_businessDetail object, set the businessKey of the
businessEntity to be fetched, get an Inquiry stub for the UDDI registry, perform a get_businessDetail call,
and display the result.

GetServiceDetail. Demonstrates how to create a Get_serviceDetail object, set the serviceKey of the business
service to be fetched, get an Inquiry stub for the UDDI registry, perform a get_serviceDetail call, and display
the result.

GetTModeDetail. Demonstrates how to create a Get_tModelDetail object, set the tModelKey of the tModel
to be fetched, get an Inquiry stub for the UDDI registry, perform a get_tModelDetail call, and display the
result.

Prerequisites and Preparatory Steps: Code

We expect, that you have already installed the HP SOA Registry Foundation registry and set the
REGISTRY_HOME environment variable to its installation location.

To run HP SOA Registry Foundation's demos, your UDDI registry must be running. To start the registry,
execute the serverstart script:

%REGISTRY_HOME%\bin\serverstart.batWindows:

$REGISTRY_HOME/bin/serverstart.shUNIX:

It is necessary to configure the demos. The configuration system has two levels: global and local. The
properties defined at the global level may be overwritten at the local level. The global properties are located
in the file:

%REGISTRY_HOME%\demos\env.propertiesWindows:

$REGISTRY_HOME/demos/env.propertiesUNIX:

The values set during the installation of the HP SOA Registry Foundation work out of box, and their
modification affects all demos. If you need to redefine the value of some property for a single demo (that

Chapter 6628

is, at the local level), edit the file env.properties in the directory where run.bat (run.sh) is located. Local
level properties for Basic/Inquiry demos are loaded in the file:

%REGISTRY_HOME%\demos\basic\inquiry\v2\env.propertiesWindows:

$REGISTRY_HOME/demos/basic/inquiry/v2/env.propertiesUNIX:

Table 97. Properties Used in Demos

DescriptionDefault ValueName

limit of data returned from
registry

5uddi.demos.result.max_rows

the inquiry Web service port
URL

http://localhost:8080/uddi/inquiryuddi.demos.url.inquiry

Presentation and Functional Presentation

This section describes the programing pattern used in all demos using the FindTModel demo as an example.
You can find its source code in the file:

%REGISTRY_HOME%\demos\basic\inquiry\src\demo\uddi\v2\inquiry\FindTModel.javaWindows:

$REGISTRY_HOME/demos/basic/inquiry/src/demo/uddi/v2/inquiry/FindTModel.javaUNIX:

The main method is straightforward. It gathers user's input (tModel name), calls a method to initialize the
Find_tModel object, executes the find_tModel UDDI call, and displays the list of found tModels:

String name = UserInput.readString("Enter name", "demo%");
Find_tModel find_tModel = createFindByTModel(name, findQualifier);
TModelList result = findTModel(find_tModel);
printTModelList(result);

The createFindTModel() method is used to create new instance of the Find_tModel class and initialize it with
values from parameters:

public static Find_tModel createFindByTModel(String name)
 throws InvalidParameterException {
 System.out.println("name = " + name);
 Find_tModel find = new Find_tModel();
 find.setName(new Name(name));
 find.setMaxRows(new Integer(MAX_ROWS));

629Demos

 find.setGeneric(Constants.GENERIC_2_0);
 return find_tModel;
}

The helper method getInquiryStub() returns the UDDI Inquiry stub of the web service listening at the URL
specified in the URL_INQUIRY property.

public static UDDI_Inquiry_PortType getInquiryStub()
 throws SOAPException {
 // you can specify your own URL in property - uddi.demos.url.inquiry
 String url = DemoProperties.getProperty(URL_INQUIRY, "http://localhost:8080/uddi/inquiry");
 System.out.print("Using Inquiry at url " + url + " ..");
 UDDI_Inquiry_PortType inquiry = UDDIInquiryStub.getInstance(url);
 System.out.println(" done");
 return inquiry;
}

The UDDI API call find_tModel is performed in the method findTModel:

public static TModelList findTModel(Find_tModel find_tModel)
 throws UDDIException, SOAPException {
 UDDI_Inquiry_PortType inquiry = getInquiryStub();
 System.out.print("Search in progress ..");
 TModelList tModelList = inquiry.find_tModel(find_tModel);
 System.out.println(" done");
 return tModelList;
}

The list of found tModels is printed with the method printTModelList. One interesting aspect of the HP SOA
Registry Foundation client API is that each UDDIObject contains method toXML(), which returns a human-
readable, formatted listing of its XML representation.

public static void printTModelList(TModelList tModelList) {
 System.out.println();

 TModelInfoArrayList tModelInfoArrayList = tModelList.getTModelInfoArrayList();
 if (tModelInfoArrayList==null) {
 System.out.println("Nothing found");
 return;
 }

 int position = 1;
 for (Iterator iterator = tModelInfoArrayList.iterator(); iterator.hasNext();) {
 TModelInfo tModelTemplate = (TModelInfo) iterator.next();
 System.out.println("TModel "+position+" : "+tModelTemplate.getTModelKey());
 System.out.println(tModelTemplate.toXML());

Chapter 6630

 System.out.println();
 System.out.println("**");
 position++;
 }
}

Building and Running Demos

This section shows how to build and run the HP SOA Registry Foundation Basic Inquiry demo set. Our
example continues with the FindTModel demo.

1 Be sure that the demos are properly configured and the HP SOA Registry Foundation is up and running.

2 Change your working directory to:

%REGISTRY_HOME%\demos\basic\inquiry\v2Windows:

$REGISTRY_HOME/demos/basic/inquiry/v2UNIX:

3 Build all demos using:

run.bat makeWindows:

./run.sh makeUNIX:

When compiling demos on Windows platforms, you may see the following text:

A subdirectory or file ..\..\common\.\build\classes already exists.

This is expected and does not indicate a problem.

4 To get list of all available demos, run

run.bat helpWindows:

./run.sh helpUNIX:

631Demos

5 Run a selected demo by executing the run command with the name of the demo as a parameter. For
example, to run the FindTModel demo, invoke

run.bat FindTModelWindows:

./run.sh FindTModelUNIX:

The output of this demo will resemble the following:

Running FindTModel demo...
**
*** HP SOA Registry Demo - FindTModelDemo ***
**

Searching for tModel where
Enter name [demo%]:
name = demo%
Using Inquiry at url http://mycomp.com:8080/uddi/inquiry .. done
Search in progress .. done

TModel 1 : uuid:13aee5be-8531-343c-98f8-d2d3a9308329
<tModelInfo tModelKey="uuid:13aee5be-8531-343c-98f8-d2d3a9308329" xmlns="urn:uddi-org:api_v2">
<name>demo:departmentID</name>
</tModelInfo>

**
TModel 2 : uuid:8af5f49e-e793-3719-92f3-6ab8998eb5a9
<tModelInfo tModelKey="uuid:8af5f49e-e793-3719-92f3-6ab8998eb5a9" xmlns="urn:uddi-org:api_v2">
<name>demo:hierarchy</name>
</tModelInfo>

**
TModel 3 : uuid:5c1d5d80-a4d4-11d8-91cd-5c1d367091cd
<tModelInfo tModelKey="uuid:5c1d5d80-a4d4-11d8-91cd-5c1d367091cd" xmlns="urn:uddi-org:api_v2">
<name>Demo identifier</name>
</tModelInfo>

 **

6 To rebuild demos, execute run.bat clean (./run.sh clean) to delete the classes directory and run.bat
make (./run.sh make) to rebuild the demo classes.

Chapter 6632

Publishing v2

The HP SOA Registry Foundation basic publishing demo set demonstrates the HP SOA Registry Foundation
application programming interface's capabilities and teaches how to use this API to perform basic publishing
calls to a UDDI registry.

The HP SOA Registry Foundation basic publishing demos cover the publication aspect of the UDDI Version
2 Specification [http://www.oasis-open.org/committees/uddi-spec/doc/tcspecs.htm#uddiv2]. You will learn
how to use the HP SOA Registry Foundation client API to publish information to a UDDI registry over a
SOAP interface. There is one demo for each UDDI call, from add_publisherAssertion through get_registeredInfo
to save_business.

The HP SOA Registry Foundation basic publishing demo set contains the following demos. They will assist
you in learning the HP SOA Registry Foundation client API.

AddAssertion. Demonstrates how to construct and fill the Add_publisherAssertion object, get a Publishing
stub for the UDDI registry, get an authToken, and perform the add_publisherAssertion call.

DeleteAssertion. Demonstrates how to construct and fill the Delete_publisherAssertion object, get a Publishing
stub for the UDDI registry, get an authToken, and perform the delete_publisherAssertion call.

DeleteBinding. Demonstrates how to construct and fill the Delete_binding object, get a Publishing stub for
the UDDI registry, get an authToken, and perform the delete_binding call.

DeleteBusiness. Demonstrates how to construct and fill the Delete_business object, get Publishing stub for
the UDDI registry, get an authToken, and perform the delete_business call.

DeleteService. Demonstrates how to construct and fill the Delete_service object, get Publishing stub for the
UDDI registry, get an authToken, and perform the delete_service call.

DeleteTModel. Demonstrates how to construct and fill the Delete_tModel object, get a Publishing stub for
the UDDI registry, get an authToken, and perform the delete_tModel call.

GetAssertionStatusReport. Demonstrates how to construct and fill the Get_assertionStatusReport object,
get a Publishing stub for the UDDI registry, get an authToken, and perform the get_assertionStatusReport
call.

GetPublisherAssertions. Demonstrates how to construct and fill the Get_publisherAssertions object, get a
Publishing stub for the UDDI registry, get an authToken, and perform the get_publisherAssertions call.

633Demos

http://www.oasis-open.org/committees/uddi-spec/doc/tcspecs.htm#uddiv2
http://www.oasis-open.org/committees/uddi-spec/doc/tcspecs.htm#uddiv2

GetRegisteredInfo. Demonstrates how to construct and fill the Get_registeredInfo object, get a Publishing
stub for the UDDI registry, get an authToken, and perform the get_registeredInfo call.

SaveBinding. Demonstrates how to construct and fill the Save_binding object, get a Publishing stub for the
UDDI registry, get an authToken, and perform the save_binding call.

SaveBusiness. Demonstrates how to construct and fill the Save_business object, get a Publishing stub for
the UDDI registry, get an authToken, and perform the save_business call.

SaveService. Demonstrates how to construct and fill the Save_service object, get a Publishing stub for the
UDDI registry, get an authToken, and perform the save_service call.

SaveTModel. Demonstrates how to construct and fill the Save_tModel object, get a Publishing stub for the
UDDI registry, get an authToken, and perform the save_tModel call.

SetAssertions. Demonstrates how to construct and fill the Set_publisherAssertions object, get a Publishing
stub for the UDDI registry, get an authToken, and perform the set_publisherAssertions call.

Prerequisites and Preparatory Steps: Code

We expect that you have already installed the HP SOA Registry Foundation and set the REGISTRY_HOME
environment variable to its installation location.

To run the HP SOA Registry Foundation's demos, your UDDI registry must be running. To start the registry,
execute the serverstart script:

%REGISTRY_HOME%\bin\serverstart.batWindows:

cd $REGISTRY_HOME/bin/serverstart.shUNIX:

It is neccessary to configure the demos. The configuration system has two levels: global and local. The
properties defined at the global level may be overwritten at the local level. The global properties are located
in the file:

%REGISTRY_HOME%\demos\env.propertiesWindows:

$REGISTRY_HOME/demos/env.propertiesUNIX:

The values set during the installation of the HP SOA Registry Foundation work out of the box, and their
modification affects all demos. If you need to redefine a property's value for a single demo (that is, at the

Chapter 6634

local level), edit the file env.properties in the directory where run.sh(run.bat) is located. Local level properties
for the Basic/Inquiry demos are loaded from the file:

%REGISTRY_HOME%\demos\basic\publishing\v2\env.propertiesWindows:

$REGISTRY_HOME/demos/basic/publishing/v2/env.propertiesUNIX:

Table 98. Properties Used in the Demos

DescriptionDefault ValueName

First user's namedemo_johnuddi.demos.user.john.name

First user's passworddemo_johnuddi.demos.user.john.password

Second user's namedemo_janeuddi.demos.user.jane.name

Second user's passworddemo_janeuddi.demos.user.jane.password

The publication Web service
port URL

http://localhost:8080/uddi/publishinguddi.demos.url.publishing

The security Web service port
URL

http://localhost:8080/uddi/securityuddi.demos.url.security

Presentation and Functional Presentation

This section describes the programming pattern used in all demos using the SaveBusiness demo as an
example. You can find this demo's source code in the file:

%REGISTRY_HOME%\demos\basic\publishing\src\demo\uddi\v2\publishing\SaveBusiness.javaWindows:

$REGISTRY_HOME/demos/basic/publishing/src/demo/uddi/v2/publishing/SaveBusiness.javaUNIX:

The main method is easy to understand. First it gathers the user's input. Namely optional publisher assigned
businessKey, then an array of business entity names with their language codes and finally a description of
the business.

The next step is to get the security stub and authorize the user. The resulting authInfo string is a secret key
passed in all requests.

Next, the Save_business object is created, filled, and passed to the saveBusiness method as a parameter.

635Demos

When successful, the BusinessDetail object is returned from the UDDI registry and printed. The last step is
to discard the authInfo string, so it cannot be used to compromise a user's account.

int count = UserInput.readInt("Enter count of names", 1);
String[] names = new String[count];
String[] languageCodes = new String[count];
for (int i = 0; i < count; i++) {
 String tmp = UserInput.readString("Enter language code", "");
 languageCodes[i] = (tmp.length() > 0) ? tmp : null;
 names[i] = UserInput.readString("Enter name in language " + tmp, "Marketing");
}
String description = UserInput.readString("Enter description",
 "Saved by SaveBusiness demo");
System.out.println();

UDDI_Security_PortType security = getSecurityStub();
String authInfo = getAuthInfo(user, password, security);
Save_business save = createSaveBusiness(businessKey, names, languageCodes, description, authInfo);
BusinessDetail result = saveBusiness(save);
printBusinessDetail(result);
discardAuthInfo(authInfo, security);

The helper method, getSecurityStub() returns the UDDI Security stub of the Web service listening at the
URL specified by the URL_SECURITY property.

public static UDDI_Security_PortType getSecurityStub()
 throws SOAPException {
 // you can specify your own URL in property - uddi.demos.url.security
 String url = DemoProperties.getProperty(URL_SECURITY, "http://localhost:8080/uddi/security");
 System.out.print("Using Security at url " + url + " ..");
 UDDI_Security_PortType security = UDDISecurityStub.getInstance(url);
 System.out.println(" done");
 return security;
}

The helper method getPublishingStub() returns the UDDI Publication stub of the Web service listening at
the URL specified by the URL_PUBLISHING property.

public static UDDI_Publication_PortType getPublishingStub()
 throws SOAPException {
 // you can specify your own URL in property - uddi.demos.url.publishing
 String url = DemoProperties.getProperty(URL_PUBLISHING,
 "http://localhost:8080/uddi/publishing");
 System.out.print("Using Publishing at url " + url + " ..");
 UDDI_Publication_PortType inquiry = UDDIPublishStub.getInstance(url);
 System.out.println(" done");

Chapter 6636

 return inquiry;
}

The getAuthInfo() method is used to authorize the user against the UDDI registry and to get the secret
authInfo key.

public static String getAuthInfo(String userName,
 String password, UDDI_Security_PortType security)
 throws InvalidParameterException, UDDIException {
 System.out.print("Logging in ..");
 AuthToken authToken = security.get_authToken(new Get_authToken(userName, password));
 System.out.println(" done");
 return authToken.getAuthInfo();
}

The discardAuthInfo() method invalidates the secret authInfo key, so it cannot be used anymore.

public static DispositionReport discardAuthInfo(String authInfo,
 UDDI_Security_PortType security)
 throws InvalidParameterException, UDDIException {
 System.out.print("Logging out ..");
 DispositionReport dispositionReport = security.discard_authToken(new Discard_authToken(authInfo));
 System.out.println(" done");
 return dispositionReport;
}

The createSaveBusiness() method is used to create a new instance of the Save_business class and initialize it
with values from parameters:

public static Save_business createSaveBusiness(String[] names,
String[] nameLangCodes, String description, String authInfo)
 throws InvalidParameterException {
 for (int i = 0; i < names.length; i++) {
 System.out.println("lang = " + nameLangCodes[i] + ", name = " + names[i]);
 }
 System.out.println("description = " + description);

 BusinessEntity businessEntity = new BusinessEntity();
 businessEntity.setBusinessKey("");
 for (int i = 0; i < names.length; i++) {
 if (nameLangCodes[i] == null) {
 businessEntity.addName(new Name(names[i]));
 } else {
 businessEntity.addName(new Name(names[i], nameLangCodes[i]));
 }
 }
 businessEntity.addDescription(new Description(description));

637Demos

 Save_business save = new Save_business();
 save.addBusinessEntity(businessEntity);
 save.setAuthInfo(authInfo);
 save.setGeneric(Constants.GENERIC_2_0);
 return save;
}

The UDDI API call save_business is performed in the method saveBusiness():

public static BusinessDetail saveBusiness(Save_business save)
 throws UDDIException, SOAPException {
 UDDI_Publication_PortType publishing = getPublishingStub();
 System.out.print("Save in progress ...");
 BusinessDetail businessDetail = publishing.save_business(save);
 System.out.println(" done");
 return businessDetail;
}

The saved businessEntity is displayed by the printBusinessDetail() method. One interesting aspect of the
HP SOA Registry Foundation client API is that each UDDIObject contains the toXML(), which returns a
human-readable formatted listing of the XML representation.

public static void printBusinessDetail(BusinessDetail businessDetail) {
 System.out.println();
 BusinessEntityArrayList businessEntityArrayList = businessDetail.getBusinessEntityArrayList();
 int position = 1;
 for (Iterator iterator = businessEntityArrayList.iterator(); iterator.hasNext();) {
 BusinessEntity entity = (BusinessEntity) iterator.next();
 System.out.println("Business " + position + " : " + entity.getBusinessKey());
 System.out.println(entity.toXML());
 System.out.println();
 System.out.println("**");
 position++;
 }
}

Building and Running Demos

This section shows how to build and run the HP SOA Registry Foundation Basic Publishing demo set. Let
us continue with our SaveBusiness demo.

1 Be sure that the demos are properly configured and the HP SOA Registry Foundation is up and running.

2 Change your working directory to

Chapter 6638

%REGISTRY_HOME%\demos\basic\publishing\v2Windows:

$REGISTRY_HOME/demos/basic/publishing/v2UNIX:

3 Build all demos using:

run.bat makeWindows:

./run.sh makeUNIX:

When compiling demos on Windows platforms, you may see the following text:

A subdirectory or file ..\..\common\.\build\classes already exists.

This is expected and does not indicate a problem.

4 To get list of all available demos, run

run.bat helpWindows:

./run.sh helpUNIX:

5 The selected demo can be executed via the run command using the name of the demo as a parameter.
For example to run the SaveBusiness demo, invoke

run.bat SaveBusinessWindows:

./run.sh SaveBusinessUNIX:

The output of this demo will resemble the following:

Running SaveBusiness demo...
**
*** HP SOA Registry Demo - SaveBusiness ***
**

Saving business entity where
Enter count of names [1]:
Enter language code []:

639Demos

Enter name in language [Marketing]:
Enter description [Saved by SaveBusiness demo]:

Using Publishing at url https://mycomp.com:8443/uddi/publishing .. done
Logging in .. done
lang = null, name = Marketing
description = Saved by SaveBusiness demo
Save in progress ... done

Business 1 : c9e8be50-a5a5-11d8-91cd-5c1d367091cd
<businessEntity businessKey="c9e8be50-a5a5-11d8-91cd-5c1d367091cd" operator="Systinet"
authorizedName="demo_john" xmlns="urn:uddi-org:api_v2">
 <name>Marketing</name>
 <description>Saved by SaveBusiness demo</description>
</businessEntity>

**
Logging out .. done

6 To rebuild demos, execute run.bat clean (./run.sh clean) to delete the classes directory and run.bat
make (./run.sh make) to rebuild the demo classes.

UDDI v3

• UDDI v3 Inquiry demos

• UDDI v3 Publishing demos

Inquiry v3

The HP SOA Registry Foundation basic inquiry demo set is used to demonstrate the HP SOA Registry
Foundation application programming interface's capabilities and to teach the reader how to use this API to
perform basic inquiry calls to a UDDI registry.

The HP SOA Registry Foundation basic inquiry demos cover the inquiry aspect of the UDDI Version 3.0.1
Specification [http://www.oasis-open.org/committees/uddi-spec/doc/tcspecs.htm#uddiv3]. You will learn
how to use the HP SOA Registry Foundation client API to contact and get information from a UDDI registry
over a SOAP interface. There is one demo for each UDDI call, from find_business to get_tModel.

The HP SOA Registry Foundation basic inquiry demo set contains following demos. They will assist you
in learning the HP SOA Registry Foundation client API.

Chapter 6640

http://www.oasis-open.org/committees/uddi-spec/doc/tcspecs.htm#uddiv3
http://www.oasis-open.org/committees/uddi-spec/doc/tcspecs.htm#uddiv3

FindBinding. Demonstrates how to construct and fill the Find_binding object, get an Inquiry stub for the
UDDI registry, perform a find_binding call, and display the results.

FindBusiness. Demonstrates how to construct and fill a Find_business object, get an Inquiry stub for the
UDDI registry, perform a find_business call and display the results.

FindRelatedBusiness. Demonstrates how to construct and fill a Find_relatedBusiness object, get an Inquiry
stub for the UDDI registry, perform a find_relatedBusiness call and display the results.

FindService. Demonstrates how to construct and fill a Find_service object, get an Inquiry stub for the UDDI
registry, perform a find_service call and display the results.

FindTModel. Demonstrates how to construct and fill a Find_tModel object, get an Inquiry stub for the UDDI
registry, perform a find_tModel call and display the results.

GetBindingDetail. Demonstrates how to create a Get_bindingDetail object, set the bindingKey of the
bindingTemplate to be fetched, get an Inquiry stub for the UDDI registry, perform a get_bindingDetail call,
and display the result.

GetBusinessDetail. Demonstrates how to create a Get_businessDetail object, set the businessKey of the
businessEntity to be fetched, get an Inquiry stub for the UDDI registry, perform a get_businessDetail call,
and display the result.

GetOperationalInfo. Demonstrates how to create a Get_operationalInfo object, set a UDDI key, get an
Inquiry stub for the UDDI registry, perform a get_operationalInfo call, and display the operational info of
the selected UDDI structure.

GetServiceDetail. Demonstrates how to create a Get_serviceDetail object, set the serviceKey of the business
service to be fetched, get an Inquiry stub for the UDDI registry, perform a get_serviceDetail call, and display
the result.

GetTModeDetail. Demonstrates how to create a Get_tModelDetail object, set the tModelKey of the tModel
to be fetched, get an Inquiry stub for the UDDI registry, perform a get_tModelDetail call, and display the
result.

Prerequisites and Preparatory Steps: Code

We expect, that you have already installed the HP SOA Registry Foundation and set the REGISTRY_HOME
environment variable to its installation location.

641Demos

To run HP SOA Registry Foundation's demos, your UDDI registry must be running. To start the UDDI
registry, execute the serverstart script:

%REGISTRY_HOME%\bin\serverstart.batWindows:

$REGISTRY_HOME/bin/serverstart.shUNIX:

It is necessary to configure the demos. The configuration system has two levels: global and local. The
properties defined at the global level may be overwritten at the local level. The global properties are located
in the file:

%REGISTRY_HOME%\demos\env.propertiesWindows:

$REGISTRY_HOME/demos/env.propertiesUNIX:

The values set during the installation of the HP SOA Registry Foundation work out of box, and their
modification affects all demos. If you need to redefine the value of some property for a single demo (that
is, at the local level), edit the file env.properties in the directory where run.bat (run.sh) is located. Local
level properties for Basic/Inquiry demos are loaded in the file:

%REGISTRY_HOME%\demos\basic\inquiry\v3\env.propertiesWindows:

$REGISTRY_HOME/demos/basic/inquiry/v3/env.propertiesUNIX:

Table 99. Properties Used in Demos

DescriptionDefault valueName

limit of data returned from registry5uddi.demos.result.max_rows

the inquiry Web service port URLhttp://localhost:8080/uddi/inquiryuddi.demos.url.inquiry

Presentation and Functional Presentation

This section describes programing pattern used in all demos using the FindTModel demo as an example.
You can find its source code in the file:

%REGISTRY_HOME%\demos\basic\inquiry\src\demo\uddi\v3\inquiry\FindTModel.javaWindows:

$REGISTRY_HOME/demos/basic/inquiry/src/demo/uddi/v3/inquiry/FindTModel.javaUNIX:

Chapter 6642

The main method is straightforward. It gathers user's input (tModel name and findQualifier name), calls a
method to initialize the Find_tModel object, executes the find_tModel UDDI call, and displays the list of found
tModels:

String name = UserInput.readString("Enter name", "demo%");
String findQualifier = UserInput.readString("Enter findQualifier", "approximateMatch");
Find_tModel find_tModel = createFindByTModel(name, findQualifier);
TModelList result = findTModel(find_tModel);
printTModelList(result);

The createFindTModel() method is used to create new instance of Find_tModel class and initialize it with
values from parameters:

public static Find_tModel createFindByTModel(String name, String findQualifier)
 throws InvalidParameterException {
 System.out.println("findQualifier = " + findQualifier);
 System.out.println("name = " + name);
 Find_tModel find_tModel = new Find_tModel();
 find_tModel.setName(new Name(name));
 find_tModel.setMaxRows(new Integer(MAX_ROWS));
 find_tModel.addFindQualifier(findQualifier);
 return find_tModel;
}

The helper method getInquiryStub() returns the UDDI Inquiry stub of the web service listening at the URL
specified in the URL_INQUIRY property.

public static UDDI_Inquiry_PortType getInquiryStub()
 throws SOAPException {
 // you can specify your own URL in property - uddi.demos.url.inquiry
 String url = DemoProperties.getProperty(URL_INQUIRY, "http://localhost:8080/uddi/inquiry");
 System.out.print("Using Inquiry at url " + url + " ..");
 UDDI_Inquiry_PortType inquiry = UDDIInquiryStub.getInstance(url);
 System.out.println(" done");
 return inquiry;
}

The UDDI API call find_tModel is performed in the method findTModel:

public static TModelList findTModel(Find_tModel find_tModel)
 throws UDDIException, SOAPException {
 UDDI_Inquiry_PortType inquiry = getInquiryStub();
 System.out.print("Search in progress ..");
 TModelList tModelList = inquiry.find_tModel(find_tModel);
 System.out.println(" done");

643Demos

 return tModelList;
}

The list of found tModels are printed with the method printTModelList. One interesting aspect of the HP
SOA Registry Foundation client API is that each UDDIObject contains method toXML(), which returns a
human-readable, formatted, listing of its XML representation.

public static void printTModelList(TModelList tModelList) {
 System.out.println();
 ListDescription listDescription = tModelList.getListDescription();
 if (listDescription!=null) {
 // list description is mandatory part of result,
 // if the resultant list is subset of available data
 int includeCount = listDescription.getIncludeCount();
 int actualCount = listDescription.getActualCount();
 int listHead = listDescription.getListHead();
 System.out.println("Displaying "+includeCount+" of "+
 actualCount+", starting at position " + listHead);
 }

 TModelInfoArrayList tModelInfoArrayList = tModelList.getTModelInfoArrayList();
 if (tModelInfoArrayList==null) {
 System.out.println("Nothing found");
 return;
 }

 int position = 1;
 for (Iterator iterator = tModelInfoArrayList.iterator(); iterator.hasNext();) {
 TModelInfo tModelTemplate = (TModelInfo) iterator.next();
 System.out.println("TModel "+position+" : "+tModelTemplate.getTModelKey());
 System.out.println(tModelTemplate.toXML());
 System.out.println();
 System.out.println("**");
 position++;
 }
}

Building and Running Demos

This section shows how to build and run the HP SOA Registry Foundation Basic Inquiry demo set. Our
example continues with the FindTModel demo.

1 Be sure that the demos are properly configured and the HP SOA Registry Foundation is up and running.

2 Change your working directory to:

Chapter 6644

%REGISTRY_HOME%\demos\basic\inquiry\v3Windows:

$REGISTRY_HOME/demos/basic/inquiry/v3UNIX:

3 Build all demos using:

run.bat makeWindows:

./run.sh makeUNIX:

When compiling demos on Windows platforms, you may see the following text:

A subdirectory or file ..\..\common\.\build\classes already exists.

This is expected and does not indicate a problem.

4 To get list of all available demos, run

run.bat helpWindows:

./run.sh helpUNIX:

5 Run a selected demo by executing the run command with the name of the demo as a parameter. For
example, to run the FindTModel demo, invoke

run.bat FindTModelWindows:

./run.sh FindTModelUNIX:

The output of this demo will resemble the following:

**
*** HP SOA Registry Demo - FindTModelDemo ***
 **

Searching for tModel where
Enter name [demo%]:
Enter findQualifier [approximateMatch]:
findQualifier = approximateMatch

645Demos

name = demo%
Using Inquiry at url http://localhost:8080/uddi/inquiry .. done
Search in progress .. done

Displaying 3 of 3, starting at position 1
TModel 1 : uddi:systinet.com:demo:departmentID

<tModelInfo tModelKey="uddi:systinet.com:demo:departmentID"
 xmlns="urn:uddi-org:api_v3">
 <name>demo:departmentID</name>
 <description>Identifier of the department</description>
</tModelInfo>

**
TModel 2 : uddi:systinet.com:demo:hierarchy

<tModelInfo tModelKey="uddi:systinet.com:demo:hierarchy"
 xmlns="urn:uddi-org:api_v3">
 <name>demo:hierarchy</name>
 <description>Business hierarchy taxonomy</description>
</tModelInfo>

**
TModel 3 : uddi:systinet.com:demo:location:floor

<tModelInfo tModelKey="uddi:systinet.com:demo:location:floor" xmlns="
 urn:uddi-org:api_v3">
 <name>demo:location:floor</name>
 <description>Specifies floor, on which the department is located</description>
</tModelInfo>

**

6 To rebuild demos, execute run.bat clean (./run.sh clean) to delete the classes directory and run.bat
make (./run.sh make) to rebuild the demo classes.

Publishing v3

The HP SOA Registry Foundation basic publishing demo set demonstrates the HP SOA Registry Foundation
application programming interface's capabilities and teaches how to use this API to perform basic publishing
calls to a UDDI registry.

The HP SOA Registry Foundation basic publishing demos cover the publication aspect of the UDDI Version
3 Specification [http://www.oasis-open.org/committees/uddi-spec/doc/tcspecs.htm#uddiv3]. You will learn,

Chapter 6646

http://www.oasis-open.org/committees/uddi-spec/doc/tcspecs.htm#uddiv3
http://www.oasis-open.org/committees/uddi-spec/doc/tcspecs.htm#uddiv3

how to use the HP SOA Registry Foundation client API to publish information to a UDDI registry over a
SOAP interface. There is one demo for each UDDI call, from add_publisherAssertion through get_registeredInfo
to save_business.

The HP SOA Registry Foundation basic publishing demo set contains the following demos. They will assist
you in learning the HP SOA Registry Foundation client API.

AddAssertion. Demonstrates how to construct and fill the Add_publisherAssertion object, get a Publishing
stub for the UDDI registry, get an authToken, and perform the add_publisherAssertion call.

DeleteAssertion. Demonstrates how to construct and fill the Delete_publisherAssertion object, get a Publishing
stub for the UDDI registry, get an authToken, and perform the delete_publisherAssertion call.

DeleteBinding. Demonstrates how to construct and fill the Delete_binding object, get a Publishing stub for
the UDDI registry, get an authToken, and perform the delete_binding call.

DeleteBusiness. Demonstrates how to construct and fill the Delete_business object, get Publishing stub for
the UDDI registry, get an authToken, and perform the delete_business call.

DeleteService. Demonstrates how to construct and fill the Delete_service object, get Publishing stub for the
UDDI registry, get an authToken, and perform the delete_service call.

DeleteTModel. Demonstrates how to construct and fill the Delete_tModel object, get a Publishing stub for
the UDDI registry, get an authToken, and perform the delete_tModel call.

GetAssertionStatusReport. Demonstrates how to construct and fill the Get_assertionStatusReport object,
get a Publishing stub for the UDDI registry, get an authToken, and perform the get_assertionStatusReport
call.

GetPublisherAssertions. Demonstrates how to construct and fill the Get_publisherAssertions object, get a
Publishing stub for the UDDI registry, get an authToken, and perform the get_publisherAssertions call.

GetRegisteredInfo. Demonstrates how to construct and fill the Get_registeredInfo object, get a Publishing
stub for the UDDI registry, get an authToken, and perform the get_registeredInfo call.

SaveBinding. Demonstrates how to construct and fill the Save_binding object, get a Publishing stub for the
UDDI registry, get an authToken, and perform the save_binding call.

647Demos

SaveBusiness. Demonstrates how to construct and fill the Save_business object, get a Publishing stub for
the UDDI registry, get an authToken, and perform the save_business call.

SaveService. Demonstrates how to construct and fill the Save_service object, get a Publishing stub for the
UDDI registry, get an authToken, and perform the save_service call.

SaveTModel. Demonstrates how to construct and fill the Save_tModel object, get a Publishing stub for the
UDDI registry, get an authToken, and perform the save_tModel call.

SetAssertions. Demonstrates how to construct and fill the Set_publisherAssertions object, get a Publishing
stub for the UDDI registry, get an authToken, and perform the set_publisherAssertions call.

Prerequisites and Preparatory Steps: Code

We expect that you have already installed the HP SOA Registry Foundation and set the REGISTRY_HOME
environment variable to its installation location.

To run the HP SOA Registry Foundation's demos, your UDDI registry must be running. To start the registry,
execute the serverstart script:

%REGISTRY_HOME%\bin\serverstart.batWindows:

$REGISTRY_HOME/bin/serverstart.shUNIX:

It is neccessary to configure the demos. The configuration system has two levels: global and local. The
properties defined at the global level may be overwritten at the local level. The global properties are located
in the file:

%REGISTRY_HOME%\demos\env.propertiesWindows:

$REGISTRY_HOME/demos/env.propertiesUNIX:

The values set during the installation of the HP SOA Registry Foundation work out of the box, and their
modification affects all demos. If you need to redefine the value of some property for a single demo (that
is, at the local level), edit the file env.properties in the directory where run.sh(run.bat) is located. Local level
properties for the Basic/Inquiry demos are loaded from the file:

%REGISTRY_HOME%\demos\basic\publishing\v3\env.propertiesWindows:

$REGISTRY_HOME/demos/basic/publishing/v3/env.propertiesUNIX:

Chapter 6648

Table 100. Properties Used in the Demos

DescriptionDefault ValueName

First user's namedemo_johnuddi.demos.user.john.name

First user's passworddemo_johnuddi.demos.user.john.password

Second user's namedemo_janeuddi.demos.user.jane.name

Second user's passworddemo_janeuddi.demos.user.jane.password

The publication Web service port
URL

http://localhost:8080/uddi/publishinguddi.demos.url.publishing

The security web service port URLhttp://localhost:8080/uddi/securityuddi.demos.url.security

Presentation and Functional Presentation

This section describes the programming pattern used in all demos using the SaveBusiness demo as an
example. You can find this demo's source code in the file:

%REGISTRY_HOME%\demos\basic\publishing\src\demo\uddi\v3\publishing\SaveBusiness.javaWindows:

$REGISTRY_HOME/demos/basic/publishing/src/demo/uddi/v3/publishing/SaveBusiness.javaUNIX:

The main method is easy to understand. First it gathers the user's input: an optional publisher-assigned
businessKey, then variable long array of business entity names with their language codes, and a description
of the business.

The next step is to get the security stub and authorize the user. The resulting authInfo string is a secret key
passed in all requests.

Next, the Save_business object is created, filled, and passed to the saveBusiness method as a parameter.

When successful, the BusinessDetail object is returned from the UDDI registry and printed. The last step is
to discard the authInfo string, so no malicious user can use it to compromise a user's account.

String businessKey = UserInput.readString("Enter (optional) businessKey", "");
int count = UserInput.readInt("Enter count of names", 1);
String[] names = new String[count];
String[] languageCodes = new String[count];
for (int i = 0; i < count; i++) {
 String tmp = UserInput.readString("Enter language code", "");

649Demos

 languageCodes[i] = (tmp.length() > 0) ? tmp : null;
 names[i] = UserInput.readString("Enter name in language " + tmp, "Marketing");
}
String description = UserInput.readString("Enter description", "Saved by SaveBusiness demo");
System.out.println();

UDDI_Security_PortType security = getSecurityStub();
String authInfo = getAuthInfo(user, password, security);
Save_business save = createSaveBusiness(businessKey, names, languageCodes, description, authInfo);
BusinessDetail result = saveBusiness(save);
printBusinessDetail(result);
discardAuthInfo(authInfo, security);

The helper method, getSecurityStub() returns the UDDI Security stub of the web service listening at the
URL specified by the URL_SECURITY property.

public static UDDI_Security_PortType getSecurityStub()
 throws SOAPException {
 // you can specify your own URL in property - uddi.demos.url.security
 String url = DemoProperties.getProperty(URL_SECURITY, "http://localhost:8080/uddi/security");
 System.out.print("Using Security at url " + url + " ..");
 UDDI_Security_PortType security = UDDISecurityStub.getInstance(url);
 System.out.println(" done");
 return security;
}

Similarly, the helper method getPublishingStub() returns the UDDI Publication stub of the web service
listening at the URL specified by the URL_PUBLISHING property.

public static UDDI_Publication_PortType getPublishingStub()
 throws SOAPException {
 // you can specify your own URL in property - uddi.demos.url.publishing
 String url = DemoProperties.getProperty(URL_PUBLISHING, "http://localhost:8080/uddi/publishing");
 System.out.print("Using Publishing at url " + url + " ..");
 UDDI_Publication_PortType inquiry = UDDIPublishStub.getInstance(url);
 System.out.println(" done");
 return inquiry;
}

The getAuthInfo() method is used to authorize the user against the UDDI registry and to get the secret
authInfo key.

public static String getAuthInfo(String userName, String password, UDDI_Security_PortType security)
 throws InvalidParameterException, UDDIException {
 System.out.print("Logging in ..");
 AuthToken authToken = security.get_authToken(new Get_authToken(userName, password));

Chapter 6650

 System.out.println(" done");
 return authToken.getAuthInfo();
}

The discardAuthInfo() method invalidates the secret authInfo key, so it cannot be used anymore.

public static void discardAuthInfo(String authInfo, UDDI_Security_PortType security)
 throws InvalidParameterException, UDDIException {
 System.out.print("Logging out ..");
 security.discard_authToken(new Discard_authToken(authInfo));
 System.out.println(" done");
}

The createSaveBusiness() method is used to create a new instance of the Save_business class and initialize it
with values from parameters:

public static Save_business createSaveBusiness(String businessKey, String[] names,
 String[] nameLangCodes, String description, String authInfo)
 throws InvalidParameterException {
 System.out.println("businessKey = " + businessKey);
 for (int i = 0; i < names.length; i++) {
 System.out.println("lang = " + nameLangCodes[i] + ", name = " + names[i]);
 }
 System.out.println("description = " + description);

 BusinessEntity businessEntity = new BusinessEntity();
 if (businessKey!=null && businessKey.length()>0)
 businessEntity.setBusinessKey(businessKey);
 for (int i = 0; i < names.length; i++) {
 if (nameLangCodes[i] == null) {
 businessEntity.addName(new Name(names[i]));
 } else {
 businessEntity.addName(new Name(names[i], nameLangCodes[i]));
 }
 }
 businessEntity.addDescription(new Description(description));

 Save_business save = new Save_business();
 save.addBusinessEntity(businessEntity);
 save.setAuthInfo(authInfo);
 return save;
}

The UDDI API call save_business is performed in the method saveBusiness():

public static BusinessDetail saveBusiness(Save_business save)
 throws UDDIException, SOAPException {

651Demos

 UDDI_Publication_PortType publishing = getPublishingStub();
 System.out.print("Save in progress ...");
 BusinessDetail businessDetail = publishing.save_business(save);
 System.out.println(" done");
 return businessDetail;
}

The saved businessEntity is displayed by the printBusinessDetail() method. One interesting aspect of the
HP SOA Registry Foundation client API is that each UDDIObject contains the toXML(), which returns a
human-readable formatted listing of the XML representation.

public static void printBusinessDetail(BusinessDetail businessDetail) {
 System.out.println();
 BusinessEntityArrayList businessEntityArrayList = businessDetail.getBusinessEntityArrayList();
 int position = 1;
 for (Iterator iterator = businessEntityArrayList.iterator(); iterator.hasNext();) {
 BusinessEntity entity = (BusinessEntity) iterator.next();
 System.out.println("Business " + position + " : " + entity.getBusinessKey());
 System.out.println(entity.toXML());
 System.out.println();
 System.out.println("**");
 position++;
 }
}

Building and Running Demos

This section shows how to build and run the HP SOA Registry Foundation Basic Publishing demo set. Let's
continue with our SaveBusiness demo.

1 Be sure that the demos are properly configured and the HP SOA Registry Foundation is up and running.

2 Change your working directory to:

%REGISTRY_HOME%\demos\basic\publishing\v3Windows:

$REGISTRY_HOME/demos/basic/publishing/v3UNIX:

3 Build all demos using:

run.bat makeWindows:

./run.sh makeUNIX:

Chapter 6652

When compiling demos on Windows platforms, you may see the following text:

A subdirectory or file ..\..\common\.\build\classes already exists.

This is expected and does not indicate a problem.

4 To get list of all available demos, run

run.bat helpWindows:

./run.sh helpUNIX:

5 The selected demo can be executed via the run command using the name of the demo as a parameter.
For example to run the SaveBusiness demo, invoke

run.bat SaveBusinessWindows:

./run.sh SaveBusinessUNIX:

The output of this demo will resemble the following:

**
*** HP SOA Registry Demo - SaveBusiness ***
**

Saving business entity where
Enter (optional) businessKey []: uddi:systinet.com:demo:marketing
Enter count of names [1]: 1
Enter language code []:
Enter name in language [Marketing]:
Enter description [Saved by SaveBusiness demo]: Marketing department

Using Security at url http://localhost:8080/uddi/security .. done
Logging in .. done
businessKey = uddi:systinet.com:demo:marketing
lang = null, name = Marketing
description = Marketing department
Using Publishing at url http://localhost:8080/uddi/publishing .. done
Save in progress ... done

Business 1 : uddi:systinet.com:demo:marketing

653Demos

<businessEntity businessKey="uddi:systinet.com:demo:marketing" xmlns="urn:uddi-org:api_v3">
 <name>Marketing</name>
 <description>Marketing department</description>
</businessEntity>

**
Logging out .. done

6 To rebuild demos, execute run.bat clean (./run.sh clean) to delete the classes directory and run.bat
make (./run.sh make) to rebuild the demo classes.

Advanced Demos
Advanced demos section includes the following demos:

• Inquiry Range Queries demo - The HP SOA Registry Foundation Range queries demos set demonstrates,
how to use HP SOA Registry Foundation inquiry enhancement - Range Queries. HP SOA Registry
Foundation range queries functionality allows you to search UDDI entities with the ability to use
comparative operators (>, <) for matching keyValues in keyedReferences.

• Custody demos - The HP SOA Registry Custody demo covers the custody transfer aspects of the UDDI
API specification. You will learn how to generate a custody transfer token and transfer the ownership
of selected structures to another user.

• Subscription demos - The HP SOA Registry advanced subscription demos cover the subscription aspects
of the UDDI Version 3 Specification. They teach how to use the HP SOA Registry client API to create
new subscriptions, get lists of subscriptions, get subscription results, and delete subscriptions.

• Validation demos - The valueset validation API provides methods to validate values used in the
keyedReferences of checked taxonomies. The checks might range from very simple (check value against
list of available values as in the InternalValidation service), to complex, such as performing contextual
checks.

• Taxonomy demos - The Taxonomy API is used to manage and query taxonomies in the HP SOA Registry.
These demos cover all API methods, so you can learn how to download, upload, save, delete, get and
find taxonomies. In addition, you can manage individual values in internally checked taxonomies using
the Category API.

Chapter 6654

Advanced Inquiry - Range Queries

The HP SOA Registry Foundation Range queries demos set demonstrates, how to use HP SOA Registry
Foundation inquiry enhancement - Range Queries. HP SOA Registry Foundation range queries functionality
allows you to search UDDI entities with the ability to use comparative operators (>, <) for matching
keyValues in keyedReferences.

The demos set includes the following demo:

• FindBusiness

Prerequisites and Preparatory Steps: Code

We expect that you have already installed the HP SOA Registry Foundation and set the REGISTRY_HOME
environment variable to the registry's installation location.

To run the HP SOA Registry Foundation's demos, your registry must be running. To start the HP SOA
Registry Foundation, execute the serverstart script:

%REGISTRY_HOME%\bin\serverstart.batWindows:

$REGISTRY_HOME/bin/serverstart.shUNIX:

It is necessary to configure the demos. The configuration system has two levels: global and local. The
properties defined at the global level may be overwritten at the local level. The global properties are located
in the file:

%REGISTRY_HOME%\demos\env.propertiesWindows:

$REGISTRY_HOME/demos/env.propertiesUNIX:

The values set during the installation of the HP SOA Registry Foundation work out of box, and their
modification affects all demos. If you need to redefine the value of some property for a single demo (that
is, at the local level), edit env.properties. This file is located in the same directory as the file run.sh (run.bat).
Local level properties for the Advanced Inquiry demos are loaded from the file:

%REGISTRY_HOME%\demos\advanced\inquiry\env.propertiesWindows:

$REGISTRY_HOME/demos/advanced/inquiry/env.propertiesUNIX:

655Demos

Table 101. Properties Used in Demos

DescriptionDefault ValueName

limit of data returned from
registry

5uddi.demos.result.max_rows

the extended inquiry web
service port URL

http://localhost:8080/uddi/inquiryExtuddi.demos.url.inquiryExt

Presentation and Functional Presentation

This section describes the programming pattern used in demos using the FindBusiness demo as an example.
You can find its source code in the file:

%REGISTRY_HOME%\demos\advanced\inquiry\src\demo\uddi\rq\FindBusiness.javaWindows:

$REGISTRY_HOME/demos/advanced/inquiry/src/demo/uddi/rq/FindBusiness.javaUNIX:

The helper method createFindBusiness creates a FindBusiness structure:

public Find_business createFindBusiness(String tModelKey, String keyValue,
 String operator, String quantifier)
 throws InvalidParameterException {
 System.out.println("tModelKey = " + tModelKey);
 System.out.println("keyValue = " + keyValue);
 System.out.println("operator = " + operator);
 System.out.println("quantifier = " + quantifier);

 Find_business find_business = new Find_business();
 QualifiedKeyedReference qualifiedKeyedReference = new QualifiedKeyedReference();
 qualifiedKeyedReference.setTModelKey(tModelKey);
 qualifiedKeyedReference.setKeyValue(keyValue);
 qualifiedKeyedReference.setFindQualifierArrayList(parseFindQualifiers(operator, quantifier));
 find_business.setCategoryBag(new CategoryBag(new KeyedReferenceArrayList(qualifiedKeyedReference)));

 find_business.setMaxRows(new Integer(MAX_ROWS));

 return find_business;
}

Chapter 6656

The findBusiness method performs the searching operation:

public BusinessList findBusiness(Find_business find_business) throws UDDIException, SOAPException {
 System.out.print("Check structure validity .. ");
 try {
 find_business.check();
 } catch (InvalidParameterException e) {
 System.out.println("Failed!");
 throw new UDDIException(e);
 }
 System.out.println("OK");

 UDDI_Inquiry_PortType inquiry = getInquiryStub();
 System.out.print("Search in progress ..");
 BusinessList businessList = inquiry.find_business(find_business);
 System.out.println(" done");
 return businessList;
}

Building and Running Demos

This section shows, how to build and run the HP SOA Registry Foundation Advanced Inquiry demo set.
Let us continue with our FindBusiness demo.

1 Be sure that the demo are properly configured and the HP SOA Registry Foundation is up and running.

2 Change your working directory to

%REGISTRY_HOME%\demos\advanced\inquiryWindows

$REGISTRY_HOME/demos/advanced/inquiryUNIX

3 Build demo using:

UNIX:Windows:

./run.sh makerun.bat make

657Demos

When compiling demo on Windows platforms, you may see the following text:

A subdirectory or file ..\..\common\.\build\classes already exists.

. This is expected and does not indicate a problem.

4 To get list of all available demos, run

run.bat helpWindows:

./run.sh helpUNIX:

5 The selected demo can be executed via the run command using the name of the demo as a parameter.
For example, to run the FindBusiness demo, invoke

run.bat FindBusinessWindows:

./run.sh FindBusinessUNIX:

The output of this demo will resemble the following:

**
*** HP SOA Registry Demo - FindBusiness ***
**

Searching for businesses by category where keyedReference
Enter tModelKey [uddi:systinet.com:demo:location:floor]:
Enter keyValue [1]: 3
Enter operator (=,<,>,<=,>=,<>) [=]:>
Enter quantifier (exists,notExists) [exists]:
tModelKey = uddi:systinet.com:demo:location:floor
keyValue = 3
operator = >
quantifier = exists
Check structure validity .. OK
Using Inquiry at url http://van.in.idoox.com:8080/uddi/inquiryExt .. done
Search in progress .. done

Displaying 1 of 1, starting at position 1

Chapter 6658

Business 1 : uddi:systinet.com:demo:it
<businessInfoExt businessKey="uddi:systinet.com:demo:it"
xmlns="http://systinet.com/uddi/api/v3/ext/5.0">
 <name xmlns="urn:uddi-org:api_v3">IT</name>
 <description xmlns="urn:uddi-org:api_v3">IT department</description>
 <serviceInfos xmlns="urn:uddi-org:api_v3">
 <serviceInfoExt serviceKey="uddi:systinet.com:demo:it:support"
businessKey="uddi:systinet.com:demo:it" xmlns="http://systinet.com/uddi/api/v3/ext/5.0">
 <name xmlns="urn:uddi-org:api_v3">Support</name>
 <description xmlns="urn:uddi-org:api_v3">Telephone support</description>
 <bindingTemplates xmlns="urn:uddi-org:api_v3">
 <bindingTemplate bindingKey="uddi:b77eb8f0-86ce-11d8-ba05-123456789012"
serviceKey="uddi:systinet.com:demo:it:support">
 <description>IT related issues shall be reported there</description>
 <accessPoint useType="endPoint">tel:+1-123-456-7890</accessPoint>
 <tModelInstanceDetails>
 <tModelInstanceInfo tModelKey="uddi:uddi.org:transport:telephone"/>
 </tModelInstanceDetails>
 </bindingTemplate>
 </bindingTemplates>
 </serviceInfoExt>
 <serviceInfoExt serviceKey="uddi:systinet.com:demo:hr:employeesList"
businessKey="uddi:systinet.com:demo:hr" xmlns="http://systinet.com/uddi/api/v3/ext/5.0">
 <name xmlns="urn:uddi-org:api_v3">EmployeeList</name>
 <description xmlns="urn:uddi-org:api_v3">wsdl:type representing service</description>
 <bindingTemplates xmlns="urn:uddi-org:api_v3">
 <bindingTemplate bindingKey="uddi:5c546520-78b8-11d8-bec4-123456789012"
serviceKey="uddi:systinet.com:demo:hr:employeesList">
 <description>wsdl:type representing port</description>
 <accessPoint useType="http://schemas.xmlsoap.org/soap/http">urn:unknown-location-
uri</accessPoint>
 <tModelInstanceDetails>
 <tModelInstanceInfo tModelKey="uddi:systinet.com:demo:employeeList:binding">
 <instanceDetails>
 <instanceParms>EmployeeList</instanceParms>
 </instanceDetails>
 </tModelInstanceInfo>
 <tModelInstanceInfo tModelKey="uddi:systinet.com:demo:employeeList:portType">
 <instanceDetails>
 <instanceParms>EmployeeList</instanceParms>
 </instanceDetails>
 </tModelInstanceInfo>
 </tModelInstanceDetails>
 <categoryBag>
 <keyedReference tModelKey="uddi:uddi.org:xml:namespace" keyName="uddi.org:xml:namespace"
 keyValue="http://systinet.com/wsdl/demo/uddi/services/"/>
 <keyedReference tModelKey="uddi:uddi.org:wsdl:types" keyName="uddi.org:wsdl:types"

659Demos

keyValue="port"/>
 <keyedReference tModelKey="uddi:uddi.org:xml:localName" keyName="uddi.org:xml:localName"
 keyValue="EmployeeList"/>
 <keyedReference tModelKey="uddi:systinet.com:taxonomy:endpoint:availability"
keyName="Available" keyValue="Available"/>
 <keyedReference tModelKey="uddi:systinet.com:taxonomy:endpoint:status"
keyName="Operational" keyValue="Operational"/>
 </categoryBag>
 </bindingTemplate>
 </bindingTemplates>
 </serviceInfoExt>
 </serviceInfos>
 <contactInfos>
 <contactInfo useType="Technical support">
 <personName xmlns="urn:uddi-org:api_v3">John Demo</personName>
 </contactInfo>
 </contactInfos>
</businessInfoExt>

**

Custody

The HP SOA Registry Foundation demo is used to demonstrate the registry's application programming
interface's capabilities and to demonstrate how to use this API.

The HP SOA Registry Foundation Custody demo covers the custody transfer aspects of the UDDI Version
3.01 Specification [http://www.oasis-open.org/committees/uddi-spec/doc/tcspecs.htm#uddiv3].. You will
learn how to generate a custody transfer token and transfer the ownership of selected structure to another
user.

There is a single demo within this package - CustodyDemo. It demonstrates how to generate a transfer token
for a selected UDDI key and how to use it to transfer the custody of the structure identified by the UDDI
key to another user.

Prerequisites and Preparatory Steps: Code

We expect that you have already installed the HP SOA Registry Foundation and set the REGISTRY_HOME
environment variable to the registry's installation location.

Chapter 6660

http://www.oasis-open.org/committees/uddi-spec/doc/tcspecs.htm#uddiv3
http://www.oasis-open.org/committees/uddi-spec/doc/tcspecs.htm#uddiv3

To run the HP SOA Registry Foundation's demos, your registry must be running. To start the HP SOA
Registry Foundation, execute the serverstart script:

%REGISTRY_HOME%\bin\serverstart.batWindows:

$REGISTRY_HOME/bin/serverstart.shUNIX:

It is necessary to configure the demos. The configuration system has two levels: global and local. The
properties defined at the global level may be overwritten at the local level. The global properties are located
in the file:

%REGISTRY_HOME%\demos\env.propertiesWindows:

$REGISTRY_HOME/demos/env.propertiesUNIX:

The values set during the installation of the HP SOA Registry Foundation work out of the box, and their
modification affects all demos. If you need to redefine a property's value for a single demo (that is,, at the
local level), edit env.properties. This file is located in the same directory as the file run.sh (run.bat). Local
level properties for the Custody demo are loaded from the file:

%REGISTRY_HOME%\demos\advanced\custody\env.propertiesWindows:

$REGISTRY_HOME/demos/advanced/custody/env.propertiesUNIX:

Table 102. Properties used in demos

DescriptionDefault ValueName

first user's namedemo_johnuddi.demos.user.john.name

first user's passworddemo_johnuddi.demos.user.john.password

second user's namedemo_janeuddi.demos.user.jane.name

second user's passworddemo_janeuddi.demos.user.jane.password

the custody Web service port
URL

http://localhost:8080/uddi/custodyuddi.demos.url.custody

the security Web service port
URL

http://localhost:8080/uddi/securityuddi.demos.url.security

661Demos

Presentation and Functional Presentation

This section describes programming pattern of the Custody demo. You can find its source code in the file:

%REGISTRY_HOME%\demos\advanced\custody\src\demo\uddi\custody\CustodyDemo.javaWindows:

$REGISTRY_HOME/demos/advanced/custody/src/demo/uddi/custody/CustodyDemo.javaUNIX:

To make the demo easier to use, it contains two use cases. The first use case shows the owner of a UDDI
structure who wants to transfer it to another user. The second use case is the second user transferring the
same structure to his own custody. Let us start with first use case.

We must gather user input first. It is necessary to read user credentials and the key of the structure owned
by the user. If you use default values, this means that the user demo_john is transferring custody of the
systinet.com:departmentID tModel to user demo_jane. The user logs in and generates a transfer token for the
given UDDI key. The transfer token contains information about the registry, expiration time, and secret
opaqueToken. Any user who knows these data, can transfer the structure(s) covered by the transferToken.

String user = UserInput.readString("Enter first user name",
 DemoProperties.getProperty(USER_JOHN_NAME));
String password = UserInput.readString("Enter password",
 DemoProperties.getProperty(USER_JOHN_PASSWORD));
String uddiKey = UserInput.readString("Enter UDDI key",
 "uddi:systinet.com:demo:departmentID");
System.out.println();

UDDI_Security_PortType security = getSecurityStub();
String authInfo = getAuthInfo(user, password, security);
Get_transferToken get = createGetTransferToken(uddiKey, authInfo);
TransferToken token = getTransferToken(get);
printTransferToken(token);
discardAuthInfo(authInfo, security);

The helper method getCustodyStub() returns the UDDI Custody stub of the Web service listening at the URL
specified by the URL_CUSTODY property.

public static UDDI_CustodyTransfer_PortType getCustodyStub() throws SOAPException {
 // you can specify your own URL in property - uddi.demos.url.custody
 String url = DemoProperties.getProperty(URL_CUSTODY, "http://localhost:8080/uddi/custody");
 System.out.print("Using Custody at url " + url + " ..");
 UDDI_CustodyTransfer_PortType custody = UDDICustodyStub.getInstance(url);
 System.out.println(" done");
 return custody;
}

Chapter 6662

The createGetTransferToken() method is used to create the Get_transferToken object, which encapsulates
the parameters of this UDDI call. In this example we set authInfo and a single key for the UDDI structure
to be transferred int the custody of the second user.

public static Get_transferToken createGetTransferToken(String uddiKey, String authInfo)
 throws InvalidParameterException {
 System.out.println("uddiKey = " + uddiKey);
 Get_transferToken get = new Get_transferToken();
 get.addKey(uddiKey);
 get.setAuthInfo(authInfo);
 return get;
}

The next step is to invoke the get_transferToken UDDI call and get the result, which is a TransferToken.

public static TransferToken getTransferToken(Get_transferToken get)
 throws UDDIException, SOAPException {
 UDDI_CustodyTransfer_PortType custody = getCustodyStub();
 System.out.print("Get in progress ...");
 TransferToken token = custody.get_transferToken(get);
 System.out.println(" done");
 return token;
}

At this point the first user, John Demo, has generated a transfer token. He can discard it or send it to the
second user Jane Demo, so she can transfer the entities to her custody. The transfer token must be kept
secret, so plain text transports such as unencrypted emails are not suitable for this purpose. Let us suppose
that Jane Demo has received the transfer token already. She logs in, creates a Transfer_entities object and
invokes the UDDI call transfer_entities.

user = UserInput.readString("Enter second user name",
 DemoProperties.getProperty(USER_JANE_NAME));
password = UserInput.readString("Enter password", DemoProperties.getProperty(USER_JANE_PASSWORD));
System.out.println();

authInfo = getAuthInfo(user, password, security);
Transfer_entities transfer = createTransferEntities(uddiKey, token, authInfo);
transferEntities(transfer);
discardAuthInfo(authInfo, security);

The createTransferEntities() method is used to create Transfer_entities object, which encapsulates parameters
of same name UDDI call. In this example we set Jane's authInfo, UDDI key to be transferred, and the
TransferToken generated by John.

663Demos

public static Transfer_entities createTransferEntities(String uddiKey,
 TransferToken token, String authInfo)
 throws InvalidParameterException {
 Transfer_entities transfer = new Transfer_entities();
 transfer.addKey(uddiKey);
 transfer.setTransferToken(token);
 transfer.setAuthInfo(authInfo);
 return transfer;
}

The final step is to make the transfer_entities UDDI call. When it successfully returns, the second user
(Jane) is the happy owner of the UDDI structure systinet.com:demo:departmentID.

public static void transferEntities(Transfer_entities transfer)
 throws UDDIException, SOAPException {
 UDDI_CustodyTransfer_PortType custody = getCustodyStub();
 System.out.print("Transfer in progress ...");
 custody.transfer_entities(transfer);
 System.out.println(" done");
}

Building and Running Demos

This section shows how to build and run the HP SOA Registry Foundation Custody demo.

1 Be sure that the demos are properly configured and the HP SOA Registry Foundation is up and running.

2 Change your working directory to

%REGISTRY_HOME%\demos\advanced\custodyWindows:

$REGISTRY_HOME/demos/advanced/custodyUNIX:

3 Build demo using:

run.bat makeWindows:

./run.sh makeUNIX:

When compiling demos on Windows platforms, you may see the following text:

Chapter 6664

A subdirectory or file ..\..\common\.\build\classes already exists.

This is expected and does not indicate a problem.

4 To get list of all available commands, run

run.bat helpWindows:

./run.sh helpUNIX:

5 The demo can be executed via the run command, using the name of the demo as a parameter. To run
the Custody demo, invoke

run.bat CustodyDemoWindows:

./run.sh CustodyDemoUNIX:

The output of this demo will resemble the following:

Running CustodyDemo demo...
**
*** HP SOA Registry Demo - CustodyDemo ***
**

Getting transfer token where
Enter first user name [demo_john]:
Enter password [demo_john]:
Enter UDDI key [uddi:systinet.org:demo:departmentID]:

Using Security at url https://mycomp.com:8443/uddi/security .. done
Logging in .. done
uddiKey = uddi:systinet.org:demo:departmentID
Using Custody at url https://mycomp.com:8443/uddi/custody .. done
Get in progress ... done

TransferToken
<transferToken xmlns="urn:uddi-org:custody_v3">
<nodeID xmlns="urn:uddi-org:api_v3">Systinet</nodeID>
<expirationTime>2004-05-17T12:32:51.236+02:00</expirationTime>
<opaqueToken>ZmZmZmZmZmZlMDVmZGEzNg==</opaqueToken>
</transferToken>

665Demos

Logging out .. done

Transfering custody where
Enter second user name [demo_jane]:
Enter password [demo_jane]:

Logging in .. done
Using Custody at url https://mycomp.com:8443/uddi/custody .. done
Transfer in progress ... done
Logging out .. done

6 To rebuild demos, execute run.bat clean (./run.sh clean) to delete the classes directory and run.bat
make (./run.sh make) to rebuild the demo classes.

Subscription

The HP SOA Registry Foundation advanced subscription demo set demonstrates the HP SOA Registry
Foundation application programming interface's capabilities and shows how to use the Subscription API
to perform subscription calls to the registry.

The HP SOA Registry Foundation advanced subscription demos cover the subscription aspects of the UDDI
Version 3 Specification [http://www.oasis-open.org/committees/uddi-spec/doc/tcspecs.htm#uddiv3]. They
teach how to use the HP SOA Registry Foundation client API to create new subscriptions, get lists of
subscriptions, get subscription results, and delete subscriptions.

The HP SOA Registry Foundation basic publishing demo set contains the following demos to assist you in
learning the HP SOA Registry Foundation client API:

SaveSubscription. Demonstrates how to construct and fill the Save_subscription object, get a Subscription
stub for the UDDI registry, and perform the save_subscription call.

GetSubscriptions. Demonstrates how to construct and fill the Get_subscriptions object, get a Subscription
stub for the UDDI registry, and perform the get_subscriptions call.

GetSubscriptionResults. Demonstrates how to construct and fill the Get_subscriptionResults object, get a
Subscription stub for the UDDI registry, and perform the get_subscriptionResults call.

DeleteSubscription. Demonstrates how to construct and fill the Delete_subscription object, get a Subscription
stub for the UDDI registry, and perform the delete_subscription call.

Chapter 6666

http://www.oasis-open.org/committees/uddi-spec/doc/tcspecs.htm#uddiv3
http://www.oasis-open.org/committees/uddi-spec/doc/tcspecs.htm#uddiv3

Prerequisites and Preparatory Steps: Code

We expect that you have already installed the HP SOA Registry Foundation and set the REGISTRY_HOME
environment variable to the registry's installation location.

To run the HP SOA Registry Foundation's demos, your registry must be running. To start the HP SOA
Registry Foundation, execute the serverstart script:

%REGISTRY_HOME%\bin\serverstart.batWindows:

$REGISTRY_HOME/bin/serverstart.shUNIX:

It is necessary to configure the demos. The configuration system has two levels: global and local. The
properties defined at the global level may be overwritten at the local level. The global properties are located
in the file:

%REGISTRY_HOME%\demos\env.propertiesWindows:

$REGISTRY_HOME/demos/env.propertiesUNIX:

The values set during the installation of the HP SOA Registry Foundation work out of box, and their
modification affects all demos. If you need to redefine the value of some property for a single demo (that
is, at the local level), edit env.properties. This file is located in the same directory as the file run.sh (run.bat).
Local level properties for the Subscription demos are loaded from the file:

%REGISTRY_HOME%\demos\advanced\subscription\env.propertiesWindows:

$REGISTRY_HOME/demos/advanced/subscription/env.propertiesUNIX:

Table 103. Properties used in demos

DescriptionDefault ValueName

first user's namedemo_johnuddi.demos.user.john.name

first user's passworddemo_johnuddi.demos.user.john.password

the subscription web service
port URL

http://localhost:8080/uddi/subscriptionuddi.demos.url.subscription

the security web service port
URL

http://localhost:8080/uddi/securityuddi.demos.url.security

667Demos

Presentation and Functional Presentation

This section describes the programming pattern used in all demos using the GetSubscriptionResults demo
as an example. You can find this demo's source code in the file:

%REGISTRY_HOME%\demos\basic\subscription\src\demo\uddi\subscription\GetSubscriptionResults.javaWindows:

$REGISTRY_HOME/demos/basic/subscription/src/demo/uddi/subscription/GetSubscriptionResults.javaUNIX:

Let us start with a description of main method. The first part is used to configure the demo by the user. Then
it logs the user into the UDDI registry, creates a Get_subscriptionResults object holding the parameters of
the request. This object is transformed in the next step into the SOAP UDDI call get_subscriptionResults.
Its results are then displayed and the user is logged off from the UDDI registry.

String user = UserInput.readString("Enter user name",
 DemoProperties.getProperty(USER_JOHN_NAME));
String password = UserInput.readString("Enter password",
 DemoProperties.getProperty(USER_JOHN_PASSWORD));
String key = UserInput.readString("Enter subscription key", "");
int shift = UserInput.readInt("Enter start of coverage period in minutes", 60);
System.out.println();

UDDI_Security_PortType security = getSecurityStub();
String authInfo = getAuthInfo(user, password, security);
Get_subscriptionResults get = createGetSubscriptionResults(key, shift, authInfo);
SubscriptionResultsList result = getSubscriptionResults(get);
printSubscriptionResults(result);
discardAuthInfo(authInfo, security);

The method createGetSubscriptionResults takes subscriptionKey as a parameter that identifies the subscription
in the UDDI registry, coveragePeriod, and authInfo of the user. The CoveragePeriod is used to identify the
time period for which the user is interested in changes matched by the selected Subscription.

public static Get_subscriptionResults createGetSubscriptionResults(String subscriptionKey,
 int coveragePeriod, String authInfo) throws InvalidParameterException {
 Get_subscriptionResults getSubscriptionResults = new Get_subscriptionResults();
 getSubscriptionResults.setSubscriptionKey(subscriptionKey);

 // calculate coverage period
 long coveragePeriodShiftInMs = coveragePeriod * 60 * 1000;
 long endPoint = System.currentTimeMillis();
 long startPoint = endPoint - coveragePeriodShiftInMs;
 getSubscriptionResults.setCoveragePeriod(new CoveragePeriod(new Date(startPoint),

Chapter 6668

 new Date(endPoint)));
 getSubscriptionResults.setAuthInfo(authInfo);

 return getSubscriptionResults;
}

The helper method, getSubscriptionStub(), returns the UDDI Subscription stub of the web service listening
at the URL specified by the URL_SUBSCRIPTION property.

public static UDDI_Subscription_PortType getSubscriptionStub() throws SOAPException {
 String url = DemoProperties.getProperty(URL_SUBSCRIPTION,
 "http://localhost:8080/uddi/subscription");
 System.out.print("Using Subscription at url " + url + " ..");
 UDDI_Subscription_PortType subscriptionStub = UDDISubscriptionStub.getInstance(url);
 System.out.println(" done");
 return subscriptionStub;
}

The UDDI API call get_subscriptionResults is performed in the method getSubscriptionResults():

public static SubscriptionResultsList getSubscriptionResults(Get_subscriptionResults save)
 throws UDDIException, SOAPException {
 UDDI_Subscription_PortType subscriptionStub = getSubscriptionStub();
 System.out.print("Get in progress ...");
 SubscriptionResultsList result = subscriptionStub.get_subscriptionResults(save);
 System.out.println(" done");
 return result;
}

Building and Running Demos

This section shows how to build and run the HP SOA Registry Foundation Advanced Subscription demo
set. Let us continue with our GetSubscriptionResults demo.

1 Be sure that the demos are properly configured and the HP SOA Registry Foundation is up and running.

2 Change your working directory to:

%REGISTRY_HOME%\demos\advanced\subscriptionWindows:

$REGISTRY_HOME/demos/advanced/subscriptionUNIX:

669Demos

3 Build all demos using:

run.bat makeWindows:

./run.sh makeUNIX:

When compiling demos on Windows platforms, you may see the following text:

A subdirectory or file ..\..\common\.\build\classes already exists.

This is expected and does not indicate a problem.

4 To get a list of all available demos, run

run.bat helpWindows:

./run.sh helpUNIX:

5 The selected demo can be executed via the run with the name of the demo as parameter. For example,
to run the GetSubscriptionResults demo, invoke

run.bat GetSubscriptionResultsWindows:

./run.sh GetSubscriptionResultsUNIX:

6 The HP SOA Registry Foundation Subscription demos show a complete use case for the Subscription
API. The SaveSubscription demo creates a new subscription for the user John Demo. This subscription
monitors changes to the business entity named Marketing.

Running SaveSubscription demo...
**
*** HP SOA Registry Demo - SaveSubscriptionDemo ***
**

Saving subscription where
Enter user name [demo_john]:
Enter password [demo_john]:
Enter business name to watch [Marketing]:
Enter subscription validity in days [2]:

Chapter 6670

Enter limit of subscription results [5]:

Using Security at url https://mycomp.com:8443/uddi/security .. done
Logging in .. done
businessName = Marketing
limit = 5
valid = 2
Using Subscription at url https://mycomp.com:8443/uddi/subscription .. done
Save in progress ... done

Subscription 1 : uddi:4f0d7450-a578-11d8-91cd-5c1d367091cd
<subscription brief="false" xmlns="urn:uddi-org:sub_v3">
 <subscriptionKey>uddi:4f0d7450-a578-11d8-91cd-5c1d367091cd</subscriptionKey>
 <subscriptionFilter>
 <find_business xmlns="urn:uddi-org:api_v3">
 <name>Marketing</name>
 </find_business>
 </subscriptionFilter>
 <maxEntities>5</maxEntities>
 <expiresAfter>2004-05-14T11:28:30.721+02:00</expiresAfter>
</subscription>

**
Logging out .. done

If you want to list your available subscriptions, run the GetSubscriptions demo:

Finding subscriptions where
Enter user name [demo_john]:
Enter password [demo_john]:

Using Security at url https://mycomp.com:8443/uddi/security .. done
Logging in .. done
Using Subscription at url https://mycomp.com:8443/uddi/subscription .. done
Get in progress ... done

Subscription 1 : uddi:4f0d7450-a578-11d8-91cd-5c1d367091cd
<subscription brief="false" xmlns="urn:uddi-org:sub_v3">
 <subscriptionKey>uddi:4f0d7450-a578-11d8-91cd-5c1d367091cd</subscriptionKey>
 <subscriptionFilter>
 <find_business xmlns="urn:uddi-org:api_v3">
 <name>Marketing</name>
 </find_business>
 </subscriptionFilter>
 <maxEntities>5</maxEntities>
 <expiresAfter>2004-05-14T11:28:30.721+02:00</expiresAfter>
</subscription>

671Demos

**
Logging out .. done

Now we need to generate some traffic on UDDI registry, that matches the subscription filter, that we
have defined. You can use SaveBusiness demo from HP SOA Registry Foundation Basic Publishing
demos to save business entity named Marketing.

Running SaveBusiness demo...
**
*** HP SOA Registry Demo - SaveBusinessDemo ***
**

Saving business entity where
Enter (optional) businessKey []:
Enter count of names [1]:
Enter language code []:
Enter name in language [Marketing]:
Enter description [Saved by SaveBusiness demo]:

Using Security at url https://mycomp.com:8443/uddi/security .. done
Logging in .. done
businessKey =
lang = null, name = Marketing
description = Saved by SaveBusiness demo
Using Publishing at url https://mycomp.com:8443/uddi/publishing .. done
Save in progress ... done

Business 1 : uddi:8097cc00-a578-11d8-91cd-5c1d367091cd
<businessEntity businessKey="uddi:8097cc00-a578-11d8-91cd-5c1d367091cd" xmlns="urn:uddi-org:api_v3">

 <name> Marketing</name>
 <description> Saved by SaveBusiness demo</description>
</businessEntity>

Then we want to get the results of the subscription. It is necessary to specify correct subscription key
and sufficient coverage period.

Running GetSubscriptionResults demo...
**
*** HP SOA Registry Demo - GetSubscriptionResultsDemo ***
**

Finding subscription results where
Enter user name [demo_john]:
Enter password [demo_john]:

Chapter 6672

Enter subscription key []: uddi:4f0d7450-a578-11d8-91cd-5c1d367091cd
Enter start of coverage period in minutes [60]:

Using Security at url https://mycomp.com:8443/uddi/security .. done
Logging in .. done
Using Subscription at url https://mycomp.com:8443/uddi/subscription .. done
Get in progress ... done
Subscription uddi:4f0d7450-a578-11d8-91cd-5c1d367091cd
Coverage period=Fri May 14 08:30:28 CEST 2004 - Fri May 14 09:30:28 CEST 2004

Subscription results:
<subscriptionResultsList xmlns="urn:uddi-org:sub_v3">
 <chunkToken>0</chunkToken>
 <coveragePeriod>
 < startPoint>2004-05-14T08:30:28.565+02:00</startPoint>
 < endPoint>2004-05-14T09:30:28.824+02:00</endPoint>
 </coveragePeriod>
 < subscription brief="false">
 < subscriptionKey> uddi:4f0d7450-a578-11d8-91cd-5c1d367091cd</subscriptionKey>
 < subscriptionFilter>
 < find_business xmlns="urn:uddi-org:api_v3">
 < name> Marketing</name>
 </find_business>
 </subscriptionFilter>
 < maxEntities>5</maxEntities>
 < expiresAfter>2004-05-14T11:28:30.721+02:00</expiresAfter>
 </subscription>
 < businessList>
 < businessInfos>
 < businessInfo businessKey="uddi:8097cc00-a578-11d8-91cd-5c1d367091cd">
 < name> Marketing</name>
 < description> Saved by SaveBusiness demo</description>
 </businessInfo>
 </businessInfos>
 </businessList>
</subscriptionResultsList>

**

If we do not need the subscription anymore, we can delete it with DeleteSubscription demo.

**
*** HP SOA Registry Demo - DeleteSubscriptionDemo ***
**

Deleting subscription where
Enter subscription key []: uddi:4f0d7450-a578-11d8-91cd-5c1d367091cd

673Demos

Using Security at url https://mycomp.com:8443/uddi/security .. done
Logging in .. done
subscriptionKey = uddi:4f0d7450-a578-11d8-91cd-5c1d367091cd
Using Subscription at url https://mycomp.com:8443/uddi/subscription .. done
Delete in progress ... done
Logging out .. done

Validation

The HP SOA Registry Foundation Validation demo shows how to implement, deploy, and use a custom
valueset validation service.

The valueset validation API provides methods to validate values used in keyedReferences of checked
taxonomies. The checks might range from very simple (check value against list of available values like in
InternalValidation service) to complex, which performs contextual checks.

There are two classes and one xml file to import taxonomy, that are used by the Validation demo.

ISBNValidation. Valueset validation interface implementation. It checks keyValues from keyedReferences
in all structures. The keyValue must be in ISBN format, otherwise E_invalidValue UDDI exception is
thrown to deny the save operation.

isbn.xml. Taxonomy description used to import checked categorization demo:ISBN into the HP SOA
Registry Foundation.

ValidationDemo. Demonstrates how to save a tModel with the keyedReference, that uses demo:ISBN
categorization checked by ISBNValidation.

Prerequisites and Preparatory Steps: Code

We expect that you have already installed the HP SOA Registry Foundation and set the REGISTRY_HOME
environment variable to the registry's installation location.

To run the HP SOA Registry Foundation's demos, your registry must be running. To start the HP SOA
Registry Foundation, execute the serverstart script:

%REGISTRY_HOME%\bin\serverstart.batWindows:

$REGISTRY_HOME/bin/serverstart.shUNIX:

Chapter 6674

It is necessary to configure the demos. The configuration system has two levels: global and local. The
properties defined at the global level may be overwritten at local level. The global properties are located in
the file:

%REGISTRY_HOME%\demos\env.propertiesWindows:

$REGISTRY_HOME/demos/env.propertiesUNIX:

The values set during the installation of the HP SOA Registry Foundation work out of box, and their
modification affects all demos. If you need to redefine the value of some property for a single demo (that
is, at the local level), edit env.properties. This file is located in the same directory as the file run.sh (run.bat).
Local level properties for the Validation demo is loaded from the file:

%REGISTRY_HOME%\demos\advanced\validation\env.propertiesWindows:

$REGISTRY_HOME/demos/advanced/validation/env.propertiesUNIX:

Table 104. Properties Used in Demos

DescriptionDefault ValueName

first user's namedemo_johnuddi.demos.user.john.name

first user's passworddemo_johnuddi.demos.user.john.password

the publishing Web service port
URL

http://localhost:8080/uddi/publishinguddi.demos.url.publishing

the security Web service port URLhttp://localhost:8080/uddi/securityuddi.demos.url.security

Presentation and Functional Presentation

This section describes programming pattern used in ISBNValidation class. You can find its source code in
the file

%REGISTRY_HOME%\demos\advanced\validation\src\demo\uddi\validation\ISBNValidation.javaWindows:

$REGISTRY_HOME/demos/advanced/validation/src/demo/uddi/validation/ISBNValidation.javaUNIX:

The HP SOA Registry Foundation simplifies the development of Valueset validation services. It intelligently
performs some checks automatically based on the properties of the taxonomy (content of categoryBag), so
you as developer may concentrate on logic of your validation service. For example it ensures, that

675Demos

categorization tModelKey is not used in identifierBag or that it is used only in UDDI structures, for which
its compatibility was declared.

Let's start with description of validate_values method. It serves as starting point to the validation service.
The Validate_values object contains at least one tModel, businessEntity, businessService, bindingTemplate
or publisherAsertion, which contains reference to the taxonomy validated by this web service. If the validation
service is shared between several taxonomies, UDDI structures, which use them, are grouped in single
validate_values call.

When the method validate_values finds the structure type to be validated, it calls validate_values on the list
of UDDI structures, which iterates over each element in the list and call validate method on single structure.
If there is at least one error in dispositionReport, UDDI exception is thrown to deny the save operation.

public DispositionReport validate_values(Validate_values body) throws UDDIException {
 DispositionReport report = new DispositionReport();

 if (body.getBusinessEntityArrayList() != null)
 validate_values(body.getBusinessEntityArrayList(), report);

 else if (body.getBusinessServiceArrayList() != null)
 validate_values(body.getBusinessServiceArrayList(), report);

 else if (body.getTModelArrayList() != null)
 validate_values(body.getTModelArrayList(), report);

 else if (body.getPublisherAssertionArrayList() != null)
 validate_values(body.getPublisherAssertionArrayList(), report);

 else if (body.getBindingTemplateArrayList() != null)
 validate_values(body.getBindingTemplateArrayList(), report);

 ResultArrayList results = report.getResultArrayList();
 if (results == null || results.size() == 0)
 return DispositionReport.DISPOSITION_REPORT_SUCCESS;

 throw new UDDIException(report);
}

This method than validates all keyedReferences and if the structure contains children (for example
businessServices in businessEntity), it recursively validates the too. For demo:ISBN categorization the
check of identifierBag is useless, because the HP SOA Registry Foundation would already detect it as error
and stop the execution of save operation.

Chapter 6676

private void validate(TModel tModel, DispositionReport report) throws UDDIException {
 CategoryBag categoryBag = tModel.getCategoryBag();
 IdentifierBag identifierBag = tModel.getIdentifierBag();
 KeyedReferenceArrayList keyedReferences;

 if (categoryBag != null) {
 keyedReferences = categoryBag.getKeyedReferenceArrayList();
 if (keyedReferences != null) {
 validate(keyedReferences, report);
 }

 validateKeyedReferenceGroups(categoryBag.getKeyedReferenceGroupArrayList(), report);
 }

 if (identifierBag != null) {
 keyedReferences = identifierBag.getKeyedReferenceArrayList();
 if (keyedReferences != null) {
 validate(keyedReferences, report);
 }
 }
}

The method validate iterates over all keyedReferences and if they reference demo:ISBN taxonomy, than it
checks the keyValue, if it is in valid ISBN format. If not, it adds error report to dispositionReport.

private void validate(KeyedReferenceArrayList keyedReferenceArrayList, DispositionReport report)
 throws UDDIException {
 for (Iterator iter = keyedReferenceArrayList.iterator(); iter.hasNext();) {
 KeyedReference keyedReference = (KeyedReference) iter.next();
 if (TMODEL_KEY.equalsIgnoreCase(keyedReference.getTModelKey())) {
 if (!checkISBN(keyedReference.getKeyValue())) {
 String message = "KeyValue is not valid ISBN number in " + keyedReference.toXML();
 report.addResult(createResult(UDDIErrorCodes.E_INVALID_VALUE, message));
 }
 }
 }
}

The implementation of ISBNValidation web service is not optimal. It scans all UDDI structures and containers
of keyedReferences, even if the HP SOA Registry Foundation was configured to deny such usage. The
optimal code would check only categoryBag in tModels.

677Demos

Building and Running Demos

This section shows, how to build, deploy and run the HP SOA Registry Foundation Advanced Validation
demo.

1 Be sure that the demos are properly configured and the HP SOA Registry Foundation is up and running.

2 Change your working directory to

%REGISTRY_HOME%\demos\advanced\validationWindows:

$REGISTRY_HOME/demos/advanced/validationUNIX:

3 Build all classes using:

run.bat makeWindows:

./run.sh makeUNIX:

When compiling demos on Windows platforms, you may see the following text:

A subdirectory or file ..\..\common\.\build\classes already exists.

This is expected and does not indicate a problem.

4 Copy the file ISBNValidation.class to REGISTRY_HOME/app/uddi/services/Wasp-inf/classes

cd %REGISTRY_HOME%\demos\advanced\validation\buildWindows:

xcopy classes %REGISTRY_HOME%\app\uddi\services\Wasp-inf\classes /S

cd $REGISTRY_HOME/demos/advanced/validation/buildUNIX:

cp -r classes $REGISTRY_HOME/app/uddi/services/Wasp-inf

5 Now use Advanced Taxonomy demo UploadTaxonomy to upload the file isbn.xml located in data
subdirectory of Validation demo directory. For more information, how to do it, read Taxonomy demo
documentation.

Chapter 6678

6 When the demo:ISBN taxonomy has been uploaded and ISBNValidation.class copied, you must shutdown
the HP SOA Registry Foundation, delete the REGISTRY_HOME/work directory, and restart the HP
SOA Registry Foundation.

7 The ValidationDemo can be executed via command run with

run.bat ValidationDemoWindows:

./run.sh ValidationDemoUNIX:

The output of this demo will resemble the following:

8 To rebuild demos, execute run.bat clean (./run.sh clean) to delete the classes directory and run.bat
make (./run.sh make) to rebuild the demo classes.

Taxonomy

The HP SOA Registry Foundation Taxonomy demos demonstrates the HP SOA Registry Foundation's
Taxonomy capabilities and show how to use this API.

The Taxonomy is used to manage and query taxonomies in the HP SOA Registry Foundation. These demos
cover all API methods, so you can learn how to download, upload, save, delete, get and find taxonomies.
In addition, you can manage individual values in internally checked taxonomies using the Category API.

The HP SOA Registry Foundation contains the following demos to assist you in learning the HP SOA
Registry Foundation Taxonomy and Category APIs.

SaveTaxonomy. Demonstrates how to save unchecked taxonomy, which can be used in businessEntities
and tModels.

DeleteTaxonomy. Demonstrates how to deletes selected taxonomy. If the taxonomy was checked, associated
binding template is automatically removed too.

UploadTaxonomy. Demonstrates how to upload the file containg taxonomy. This API call is usefull, when
you need to process really large taxonomies, because it operates on stream of data.

DownloadTaxonomy. Demonstrates how to download selected taxonomy. Again this method is stream
oriented.

679Demos

GetTaxonomy. Demonstrates how to get details of selected taxonomy.

FindTaxonomy. Demonstrates how to search for taxonomies based on given criteria.

AddCategory. Demonstrates how to add new category (keyedReference value) to existing internal taxonomy.

DeleteCategory. Demonstrates how to delete the category in existing internal taxonomy.

SetCategory. Demonstrates how to update the category in existing internal taxonomy.

MoveCategory. Demonstrates how to change the parent of the category in existing internal taxonomy.

GetCategory. Demonstrates how to get the category of the internal taxonomy.

GetRootCategory. Demonstrates how to get list of the top-level categories of the internal taxonomy.

GetRootPath. Demonstrates how to get list of parents of selected category, from the top-level category to
the selected one.

FindCategory. Demonstrates how to get list of categories, that match some criterias.

Prerequisites and Preparatory Steps: Code

We expect that you have already installed the HP SOA Registry Foundation and set the REGISTRY_HOME
environment variable to the registry's installation location.

To run the HP SOA Registry Foundation's demos, your registry must be running. To start the HP SOA
Registry Foundation, execute the serverstart script:

%REGISTRY_HOME%\bin\serverstart.batWindows:

$REGISTRY_HOME/bin/serverstart.shUNIX:

It is necessary to configure the demos. The configuration system has two levels: global and local. The
properties defined at the global level may be overwritten at local level. The global properties are located in
the file:

%REGISTRY_HOME%\demos\env.propertiesWindows:

$REGISTRY_HOME/demos/env.propertiesUNIX:

Chapter 6680

The values set during the installation of the HP SOA Registry Foundation work out of box, and their
modification affects all demos. If you need to redefine the value of some property for a single demo (that
is, at the local level), edit env.properties. This file is located in the same directory as the file run.sh (run.bat).
Local level properties for the Taxonomy demo is loaded from the file:

%REGISTRY_HOME%\demos\advanced\taxonomy\env.propertiesWindows:

$REGISTRY_HOME/demos/advanced/taxonomy/env.propertiesUNIX:

Table 105. Properties Used in Demos

DescriptionDefault ValueName

first user's namedemo_johnuddi.demos.user.john.name

first user's passworddemo_johnuddi.demos.user.john.password

the taxonomy Web service port
URL

http://localhost:8080/uddi/taxonomyuddi.demos.url.taxonomy

the category Web service port
URL

http://localhost:8080/uddi/categoryuddi.demos.url.category

the security Web service port URLhttp://localhost:8080/uddi/securityuddi.demos.url.security

Presentation and Functional Presentation

This section describes programming pattern used in all demos using the SaveTaxonomy demo as an example.
You can find its source code in the file:

%REGISTRY_HOME%\demos\advanced\taxonomy\src\demo\uddi\taxonomy\SaveTaxonomy.javaWindows:

$REGISTRY_HOME/demos/advanced/taxonomy/src/demo/uddi/taxonomy/SaveTaxonomy.javaUNIX:

The main method of this demo is straightforward. It gathers user's input, logs the user in the HP SOA
Registry Foundation, creates an object of Save_taxonomy, sends it to UDDI registry over SOAP and displays
the result.

String user = UserInput.readString("Enter user name", "admin");
String password = UserInput.readString("Enter password", "changeit");
String name = UserInput.readString("Enter name", "Demo identifier");
String description = UserInput.readString("Enter description", "Saved by SaveTaxonomy demo");
System.out.println();

681Demos

UDDI_Security_PortType security = getSecurityStub();
String authInfo = getAuthInfo(user, password, security);
Save_taxonomy save = createSaveTaxonomy(name, description, authInfo);
TaxonomyDetail result = saveTaxonomy(save);
printTaxonomyDetail(result);
discardAuthInfo(authInfo, security);

When saving taxonomy, you must first create a tModel, that will represent it. You can set your publisher
assigned tModelKey and other properties. The only mandatory property is name. You don't need to specify
taxonomy related keyedReferences in categoryBag, they shall be set in Taxonomy.

The Categorization is used to define usage of the taxonomy. Valid values are identifier, categorization,
categorizationGroup and relationship. The compatibility marks tModel with information, in which UDDI
structures it can be used.

This example creates an unchecked identifier, that can be used only in categoryBags of business entities
and tModels.

public static Save_taxonomy createSaveTaxonomy(String name, String description, String authInfo)
 throws InvalidParameterException {
 System.out.println("name = " + name);
 System.out.println("description = " + description);

 TModel tModel = new TModel();
 tModel.setName(new Name(name));
 tModel.addDescription(new Description(description));

 Taxonomy taxonomy = new Taxonomy(tModel);
 taxonomy.setCheck(Boolean.FALSE);
 taxonomy.addCategorization(Categorization.identifier);
 taxonomy.addCompatibility(Compatibility.businessEntity);
 taxonomy.addCompatibility(Compatibility.tModel);

 Save_taxonomy save = new Save_taxonomy();
 save.addTaxonomy(taxonomy);
 save.setAuthInfo(authInfo);

 return save;
}

The helper method getTaxonomyStub() returns the Taxonomy stub of the Web service listening at the URL
specified by the URL_TAXONOMY property.

Chapter 6682

public static TaxonomyApi getTaxonomyStub() throws SOAPException {
 String url = DemoProperties.getProperty(URL_TAXONOMY, "http://localhost:8080/uddi/taxonomy");
 System.out.print("Using Taxonomy at url " + url + " ..");
 TaxonomyApi taxonomy = TaxonomyStub.getInstance(url);
 System.out.println(" done");
 return taxonomy;
}

The Taxonomy API call save_taxonomy is performed in the method saveTaxonomy().

public static TaxonomyDetail saveTaxonomy(Save_taxonomy save)
 throws UDDIException, SOAPException {
 TaxonomyApi taxonomy = getTaxonomyStub();
 System.out.print("Save in progress ...");
 TaxonomyDetail taxonomyDetail = taxonomy.save_taxonomy(save);
 System.out.println(" done");
 return taxonomyDetail;
}

The returned TaxonomyDetail object is displayed in printTaxonomyDetail method.

public static void printTaxonomyDetail(TaxonomyDetail taxonomyDetail) {
 System.out.println();

 TaxonomyArrayList taxonomyArrayList = taxonomyDetail.getTaxonomyArrayList();
 int position = 1;
 for (Iterator iterator = taxonomyArrayList.iterator(); iterator.hasNext();) {
 Taxonomy taxonomy = (Taxonomy) iterator.next();
 System.out.println("Taxonomy " + position + " : " + taxonomy.getTModel().getTModelKey());
 System.out.println(taxonomy.toXML());
 System.out.println();
 System.out.println("**");
 position++;
 }
}

Building and Running Demos

This section shows, how to build and run the HP SOA Registry Foundation Advanced Taxonomy demo
set. Let's continue with our SaveTaxonomy demo.

1 Be sure that the demos are properly configured and the HP SOA Registry Foundation is up and running.

2 Change your working directory to

683Demos

%REGISTRY_HOME%\demos\advanced\taxonomyWindows:

$REGISTRY_HOME/demos/advanced/taxonomyUNIX:

3 Build all demos using:

run.bat makeWindows:

./run.sh makeUNIX:

When compiling demos on Windows platforms, you may see the following text:

A subdirectory or file ..\..\common\.\build\classes already exists.

This is expected and does not indicate a problem.

4 To get list of all available demos, run

run.bat helpWindows:

./run.sh helpUNIX:

5 The selected demo can be executed via command run with name of demo as parameter. For example
to run the SaveTaxonomy demo, invoke

run.bat SaveTaxonomyWindows:

./run.sh SaveTaxonomyUNIX:

The output of this demo will resemble the following:

Running SaveTaxonomy demo...
**
*** HP SOA Registry Demo - SaveTaxonomyDemo ***
**

Saving taxonomy where
Enter user name [admin]:
Enter password [changeit]:

Chapter 6684

Enter name [Demo identifier]:
Enter description [Saved by SaveTaxonomy demo]:

Using Security at url https://mycomp.com:8443/uddi/security .. done
Logging in .. done
name = Demo identifier
description = Saved by SaveTaxonomy demo
Using Taxonomy at url https://mycomp.com:8443/uddi/taxonomy .. done
Save in progress ... done

Taxonomy 1 : uddi:5c1d5d80-a4d4-11d8-91cd-5c1d367091cd
<taxonomy check="false" xmlns="http://systinet.com/uddi/taxonomy/v3/5.0">
 <tModel tModelKey="uddi:5c1d5d80-a4d4-11d8-91cd-5c1d367091cd"
 xmlns="urn:uddi-org:api_v3">
 <name>Demo identifier</name>
 <description>Saved by SaveTaxonomy demo</description>
 <categoryBag>
 <keyedReference tModelKey="uddi:uddi.org:categorization:types"
 keyName="Identifier system" keyValue="identifier"/>
 <keyedReference tModelKey="uddi:systinet.com:taxonomy:compatibility"
 keyName="Compatibility" keyValue="businessEntity"/>
 <keyedReference tModelKey="uddi:systinet.com:taxonomy:compatibility"
 keyName="Compatibility" keyValue="tModel"/>
 <keyedReference tModelKey="uddi:uddi.org:categorization:types"
 keyName="Unchecked value set" keyValue="unchecked"/>
 </categoryBag>
 </tModel>
 <compatibilityBag>
 <compatibility>businessEntity</compatibility>
 <compatibility>tModel</compatibility>
 </compatibilityBag>
 <categorizationBag>
 <categorization>identifier</categorization>
 </categorizationBag>
</taxonomy>

**
Logging out .. done

6 To rebuild demos, execute run.bat clean (./run.sh clean) to delete the classes directory and run.bat
make (./run.sh make) to rebuild the demo classes.

685Demos

Security Demos
Security Demos section includes the following demos:

• Account Demos - You will learn how to register new accounts (or update existing accounts), enable,
get, find, and delete accounts.

• Group Demos - You will learn how to create or update, get, find and delete groups.

• Permission Demos - You will learn how to set and search permissions.

• ACL Demos - The Systinet ACL extension is used to grant or revoke rights to selected users or groups.
You will learn how to create, save, delete, get and find ACLs.

Account

The HP SOA Registry Foundation Account Demos are used to demonstrate the HP SOA Registry Foundation
application programming interface's capabilities and to demonstrate how to use this API.

You will learn how to register new accounts (or update existing accounts), enable, get, find, and delete
accounts.

The HP SOA Registry Foundation security account demo set contains the following demos to assist you in
learning the HP SOA Registry Foundation client API:

SaveAccount. Demonstrates how to construct and fill the Save_account object, get an Account stub for the
UDDI registry, and perform the save_account call.

DeleteAccount. Demonstrates how to construct and fill the Delete_account object, get an Account stub for
the UDDI registry, and perform the delete_account call.

Prerequisites and Preparatory Steps: Code

We expect that you have already installed the HP SOA Registry Foundation and set the REGISTRY_HOME
environment variable to the registry's installation location.

To run the HP SOA Registry Foundation's demos, your HP SOA Registry Foundation must be running. To
start the registry, execute the serverstart script:

Chapter 6686

%REGISTRY_HOME%\bin\serverstart.batWindows:

$REGISTRY_HOME/bin/serverstart.shUNIX:

It is necessary to configure the demos. The configuration system has two levels: global and local. The
properties defined at the global level may be overwritten at the local level. The global properties are located
in the file:

%REGISTRY_HOME%\demos\env.propertiesWindows:

$REGISTRY_HOME/demos/env.propertiesUNIX:

The values set during the installation of the HP SOA Registry Foundation work out of the box, and their
modification affects all demos. If you need to redefine a property's value for a single demo (that is,, at the
local level), edit env.properties. This file is located in the same directory as the file run.sh (run.bat). Local
level properties for the Account demo are loaded from the file:

%REGISTRY_HOME%\demos\security\account\env.propertiesWindows:

$REGISTRY_HOME/demos/security/account/env.propertiesUNIX:

Table 106. Properties Used in Demos

DescriptionDefault ValueName

the account Web service port
URL

http://localhost:8080/uddi/accountuddi.demos.url.account

the security Web service port
URL

http://localhost:8080/uddi/securityuddi.demos.url.security

Presentation and Functional Presentation

This section describes the programming pattern used in all demos using the SaveAccount demo as an
example. You can find this demo's source code in the file:

%REGISTRY_HOME%\demos\security\account\src\demo\uddi\account\SaveAccount.javaWindows:

$REGISTRY_HOME/demos/security/account/src/demo/uddi/account/SaveAccount.javaUNIX:

687Demos

The main method is divided into two parts. The first part serves to configure the demo by the user. It reads
the credentials of the user who will run the demo. If you wish to save new user on a registry that supports
public registration, then the demo may be modified to skip authentication. It then reads information about
the new user to be saved (or about the user to be updated) including login name, password, name, and email
address.

The second part contains the execution of the demo. It looks up the security stub and authenticates the user.
It then creates a Save_userAccount object and sends it over SOAP to the UDDI registry as a save_userAccount
operation. The returned UserAccount object is printed to the console and the authInfo is discarded.

String admin = UserInput.readString("Enter admin login","admin");
String admin_password = UserInput.readString("Enter admin password","changeit");
String login = UserInput.readString("Enter new user's login","demo_eric");
String password = UserInput.readString("Enter password","demo_eric");
String name = UserInput.readString("Enter full name","Eric Demo");
String email = UserInput.readString("Enter email","demo_eric@localhost");
System.out.println();

UDDI_Security_PortType security = getSecurityStub();
String authInfo = getAuthInfo(admin, admin_password, security);
Save_userAccount save = createSaveUserAccount(login, password, name, email, authInfo);
UserAccount userAccount = saveUserAccount(save);
printUserAccount(userAccount);
discardAuthInfo(authInfo, security);

The method createSaveUserAccount is used to create an object representing the save_userAccount operation.
The authInfo is required under two circumstances: if the HP SOA Registry Foundation is configured not
to allow public registration or if the account already exists.

public static Save_userAccount createSaveUserAccount(String login, String password,
 String name, String email, String authInfo) throws InvalidParameterException {
 System.out.println("login = " + login);
 System.out.println("password = " + password);
 System.out.println("name = " + name);
 System.out.println("email = " + email);

 UserAccount account = new UserAccount();
 account.setLoginName(login);
 account.setPassword(password);
 account.setFullName(name);
 account.setEmail(email);
 account.setLanguageCode("EN");

 Save_userAccount save = new Save_userAccount(account, authInfo);

Chapter 6688

 return save;
}

The helper method, getAccountStub(), returns the UDDI Account stub of the web service listening at the
URL specified by the URL_ACCOUNT property.

public static AccountApi getAccountStub() throws SOAPException {
 // you can specify your own URL in property - uddi.demos.url.account
 String url = DemoProperties.getProperty(URL_ACCOUNT, "http://localhost:8080/uddi/account");
 System.out.print("Using Account at url " + url + " ..");
 AccountApi account = AccountStub.getInstance(url);
 System.out.println(" done");
 return account;
}

The HP SOA Registry Foundation API call save_userAccount is performed in the method saveUserAccount.

public static UserAccount saveUserAccount(Save_userAccount save) throws SOAPException, AccountException
 {
 AccountApi accountApi = getAccountStub();
 System.out.print("Save in progress ...");
 UserAccount userAccount = accountApi.save_userAccount(save);
 System.out.println(" done");
 return userAccount;
}

Building and Running Demos

This section shows how to build and run the HP SOA Registry Foundation Account demos.

1 Be sure that the demos are properly configured and the HP SOA Registry Foundation is up and running.

2 Change your working directory to

%REGISTRY_HOME%\demos\security\accountWindows:

$REGISTRY_HOME/demos/security/accountUNIX:

3 Build demos using:

run.bat makeWindows:

./run.sh makeUNIX:

689Demos

When compiling demos on Windows platforms, you may see the following text:

A subdirectory or file ..\..\common\.\build\classes already exists.

This is expected and does not indicate a problem.

4 To get list of all available commands, run

run.bat helpWindows:

./run.sh helpUNIX:

5 The selected demo can be executed via the run command using the name of the demo as a parameter.
For example, to run the SaveAccount demo, invoke

run.bat SaveAccountWindows:

./run.sh SaveAccountUNIX:

The output of this demo will resemble the following:

Running SaveAccount demo...
**
*** HP SOA Registry Demo - SaveAccount ***
**

Saving user account where
Enter admin login [admin]:
Enter admin password [changeit]:
Enter new user's login [demo_eric]:
Enter password [demo_eric]:
Enter full name [Eric Demo]:
Enter email [demo_eric@localhost]:

Using Security at url https://mycomp.com:8443/uddi/security .. done
Logging in .. done
login = demo_eric
password = demo_eric
name = Eric Demo
email = demo_eric@localhost
Using Account at url https://mycomp.com:8443/uddi/account .. done

Chapter 6690

Save in progress ... done

User account
<userAccount xmlns="http://systinet.com/uddi/account/5.0">
<loginName>demo_eric</loginName>
<password>GD70gCeNfkwBph1m2bgGxQ==</password>
<email>demo_eric@localhost</email>
<fullName>Eric Demo</fullName>
<languageCode>EN</languageCode>
<expiration>1970-01-01T02:00:00.000+02:00</expiration>
<external>false</external>
<blocked>false</blocked>
<businessesLimit>1</businessesLimit>
<servicesLimit>4</servicesLimit>
<bindingsLimit>2</bindingsLimit>
<tModelsLimit>100</tModelsLimit>
<assertionsLimit>10</assertionsLimit>
<subscriptionsLimit>0</subscriptionsLimit>
<lastLoginTime>2004-05-18T16:20:09.084+02:00</lastLoginTime>
</userAccount>

**
Logging out .. done

6 To rebuild demos, execute run.bat clean (./run.sh clean) to delete the classes directory and run.bat
make (./run.sh make) to rebuild the demo classes.

Group

The HP SOA Registry Foundation Group demos are used to demonstrate the HP SOA Registry Foundation
application programming interface's capabilities and to demonstrate how to use this API.

You will learn how to create or update, get, find and delete groups.

The HP SOA Registry Foundation security group demo set contains the following demos to assist you in
learning the HP SOA Registry Foundation client API:

Save. Demonstrates how to construct and fill the Save_group object, get a Group stub for the UDDI registry,
and perform the save_group call.

Delete. Demonstrates how to construct and fill the Delete_group object, get a Group stub for the UDDI
registry, and perform the delete_group call.

691Demos

Get. Demonstrates how to construct and fill the Get_group object, get a Group stub for the UDDI registry,
and perform the get_group call.

Find. Demonstrates how to construct and fill the Find_group object, get a Group stub for the UDDI registry,
and perform the find_group call.

WhereIAm. Demonstrates how to construct and fill the Where_amI object, get a Group stub for the UDDI
registry, and perform the where_amI call.

Prerequisites and Preparatory Steps: Code

We expect that you have already installed the HP SOA Registry Foundation and set the REGISTRY_HOME
environment variable to the registry's installation location.

To run the HP SOA Registry Foundation's demos, your HP SOA Registry Foundation must be running. To
start the registry, execute the serverstart script:

%REGISTRY_HOME%\bin\serverstart.batWindows:

$REGISTRY_HOME/bin/serverstart.shUNIX:

It is necessary to configure the demos. The configuration system has two levels: global and local. The
properties defined at the global level may be overwritten at the local level. The global properties are located
in the file:

%REGISTRY_HOME%\demos\env.propertiesWindows:

$REGISTRY_HOME/demos/env.propertiesUNIX:

The values set during the installation of the HP SOA Registry Foundation work out of the box, and their
modification affects all demos. If you need to redefine a property's value for a single demo (that is,, at the
local level), edit env.properties. This file is located in the same directory as the file run.sh (run.bat). Local
level properties for the Group demo are loaded from the file:

%REGISTRY_HOME%\demos\security\group\env.propertiesWindows:

$REGISTRY_HOME/demos/security/group/env.propertiesUNIX:

Chapter 6692

Table 107. Properties Used in Demos

DescriptionDefault ValueName

the group Web service port
URL

http://localhost:8080/uddi/groupuddi.demos.url.group

the security Web service port
URL

http://localhost:8080/uddi/securityuddi.demos.url.security

Presentation and Functional Presentation

This section describes the programming pattern used in all demos using the WhereIAm demo as an example.
You can find this demo's source code in the file:

%REGISTRY_HOME%\demos\security\group\src\demo\uddi\group\WhereIAm.javaWindows:

$REGISTRY_HOME/demos/security/group/src/demo/uddi/group/WhereIAm.javaUNIX:

The main method starts by gathering configuration information from the user. The first, login name, is used
to run the command; the second is argument of the where_amI operation. It then logs the user to the registry,
creates the Where_amI object, sends it over SOAP and prints a list of groups to which the login belongs.

String user = UserInput.readString("Enter login to authenticate",
 DemoProperties.getProperty(USER_JOHN_NAME));
String password = UserInput.readString("Enter password",
 DemoProperties.getProperty(USER_JOHN_PASSWORD));
String login = UserInput.readString("Enter login to search", user);
System.out.println();

UDDI_Security_PortType security = getSecurityStub();
String authInfo = getAuthInfo(user, password, security);
Where_amI save = createWhereAmI(login, authInfo);
GroupList groups = whereAmI(save);
printGroupList(groups);
discardAuthInfo(authInfo, security);

The method createWhereAmI is used to create an object representation of the where_amI operation.

public static Where_amI createWhereAmI(String login, String authInfo)
 throws InvalidParameterException {
 System.out.println("login = " + login);

 Where_amI find = new Where_amI();

693Demos

 find.setLoginName(login);
 find.setAuthInfo(authInfo);

 return find;
}

The helper method, getGroupStub(), returns the UDDI Group stub of the Web service listening at the URL
specified by the URL_GROUP property.

public static GroupApi getGroupStub() throws SOAPException {
 // you can specify your own URL in property - uddi.demos.url.group
 String url = DemoProperties.getProperty(URL_GROUP, "http://localhost:8080/uddi/group");
 System.out.print("Using Group API at url " + url + " ..");
 GroupApi account = GroupStub.getInstance(url);
 System.out.println(" done");
 return account;
}

The HP SOA Registry Foundation API call where_amI is performed in the method whereAmI.

public static GroupList whereAmI(Where_amI find)
 throws SOAPException, GroupException {
 GroupApi groupApi = getGroupStub();
 System.out.print("Search in progress ...");
 GroupList groups = groupApi.where_amI(find);
 System.out.println(" done");
 return groups;
}

Finally the method printGroupList is used to print the found groups to the console.

public static void printGroupList(GroupList groups) {
 System.out.println();
 ListDescription listDescription = groups.getListDescription();
 if (listDescription != null) {
 // list description is mandatory part of result, if the resultant list is subset of available
data
 int includeCount = listDescription.getIncludeCount();
 int actualCount = listDescription.getActualCount();
 int listHead = listDescription.getListHead();
 System.out.println("Displaying " + includeCount + " of " + actualCount + ",
 starting at position " + listHead);
 }

 GroupInfoArrayList groupInfoArrayList = groups.getGroupInfoArrayList();
 if (groupInfoArrayList == null) {
 System.out.println("Nothing found");

Chapter 6694

 return;
 }

 int position = 1;
 for (Iterator iterator = groupInfoArrayList.iterator(); iterator.hasNext();) {
 GroupInfo group = (GroupInfo) iterator.next();
 System.out.println("Group " + position);
 System.out.println(group.toXML());
 System.out.println();
 System.out.println("**");
 position++;
 }
}

Building and Running Demos

This section shows how to build and run the HP SOA Registry Foundation Group demos.

1 Be sure that the demos are properly configured and the HP SOA Registry Foundation is up and running.

2 Change your working directory to:

%REGISTRY_HOME%\demos\security\groupWindows:

$REGISTRY_HOME/demos/security/groupUNIX:

3 Build demos using:

run.bat makeWindows:

./run.sh makeUNIX:

When compiling demos on Windows platforms, you may see the following text:

A subdirectory or file ..\..\common\.\build\classes already exists.

This is expected and does not indicate a problem.

4 To get list of all available commands, run

695Demos

run.bat helpWindows:

./run.sh helpUNIX:

5 The selected demo can be executed via the run command with the name of the demo as parameter.
For example, to run the WhereIAm demo, invoke

run.bat WhereIAmWindows:

./run.sh WhereIAmUNIX:

The output of this demo will resemble the following:

Running WhereIAm demo...
**
*** HP SOA Registry Demo - WhereIAm ***
**

Find groups of user where
Enter login to authenticate [demo_john]:
Enter password [demo_john]:
Enter login to search [demo_john]:

Using Security at url https://mycomp.com:8443/uddi/security .. done
Logging in .. done
login = demo_john
Using Group API at url https://mycomp.com:8443/uddi/group .. done
Search in progress ... done

Group 1
<groupInfo xmlns="http://systinet.com/uddi/group/5.0">
<name>system#everyone</name>
<description>The special group that contains all users.</description>
<privateGroup>false</privateGroup>
<external>false</external>
</groupInfo>

**
Group 2
<groupInfo xmlns="http://systinet.com/uddi/group/5.0">
<name>system#registered</name>
<description>The special group that contains all users who are logged
onto the UDDI registry.</description>
<privateGroup>false</privateGroup>

Chapter 6696

<external>false</external>
</groupInfo>

**
Logging out .. done

6 To rebuild demos, execute run.bat clean (./run.sh clean) to delete the classes directory and run.bat
make (./run.sh make) to rebuild the demo classes.

Permission

The HP SOA Registry Foundation Permission Demos are used to demonstrate the HP SOA Registry
Foundation application programming interface's capabilities and to demonstrate how to use this API.

You will learn how to set and search permissions.

The HP SOA Registry Foundation security permission demo set contains the following demos to assist you
in learning the HP SOA Registry Foundation client API:

SetPermission. Demonstrates how to construct and fill the Set_permission object, get a Permission stub for
the UDDI registry, and perform the set_permission call.

WhoHasPermission. Demonstrates how to construct and fill the Who_hasPermission object, get a Permission
stub for the UDDI registry, and perform the who_hasPermission call.

GetPermission. Demonstrates how to construct and fill the Get_permission object, get a Permission stub for
the UDDI registry, and perform the get_permission call.

Prerequisites and Preparatory Steps: Code

We expect that you have already installed the HP SOA Registry Foundation and set the REGISTRY_HOME
environment variable to the registry's installation location.

To run the HP SOA Registry Foundation's demos, your HP SOA Registry Foundation must be running. To
start the registry, execute the serverstart script:

%REGISTRY_HOME%\bin\serverstart.batWindows:

$REGISTRY_HOME/bin/serverstart.shUNIX:

697Demos

It is necessary to configure the demos. The configuration system has two levels: global and local. The
properties defined at the global level may be overwritten at the local level. The global properties are located
in the file:

%REGISTRY_HOME%\demos\env.propertiesWindows:

$REGISTRY_HOME/demos/env.propertiesUNIX:

The values set during the installation of the HP SOA Registry Foundation work out of the box, and their
modification affects all demos. If you need to redefine a property's value for a single demo (that is,, at the
local level), edit env.properties. This file is located in the same directory as the file run.sh (run.bat). Local
level properties for the Permission demos are loaded from the file:

%REGISTRY_HOME%\demos\security\permission\env.propertiesWindows:

$REGISTRY_HOME/demos/security/permission/env.propertiesUNIX:

Table 108. Properties Used in Demos

DescriptionDefault ValueName

the permission Web service
port URL

http://localhost:8080/uddi/permissionuddi.demos.url.permission

the security Web service port
URL

http://localhost:8080/uddi/securityuddi.demos.url.security

Presentation and Functional Presentation

This section describes the programming pattern used in all demos using the SetPermission demo as an
example. You can find this demo's source code in the file:

%REGISTRY_HOME%\demos\security\permission\src\demo\uddi\permission\SetPermission.javaWindows:

$REGISTRY_HOME/demos/security/permission/src/demo/uddi/permission/SetPermission.javaUNIX:

The main method is divided into two parts. The first part serves to configure the demo by the user. It reads
the credentials of the user who will run the demo and is allowed to set permissions. Then it reads permission
type, name, and action.

Chapter 6698

The second part contains the execution of the demo. It looks up the security stub and authenticates the user.
It then creates a Set_permission object and sends it over SOAP to the UDDI registry as a set_permission
operation. If the user has explicitly declared permissions that are not present in this operation, these will be
removed.

String user = UserInput.readString("Enter login","admin");
String password = UserInput.readString("Enter password","changeit");
String principal = UserInput.readString("Enter principal type", PrincipalType.user.getValue());
String login = UserInput.readString("Enter login/group name",
 DemoProperties.getProperty(USER_JOHN_NAME));
String type = UserInput.readString("Enter permission type",
 "org.systinet.uddi.security.permission.ApiManagerPermission");
String name = UserInput.readString("Enter permission name",
 "org.systinet.uddi.client.taxonomy.v3.TaxonomyApi");
String action = UserInput.readString("Enter action", "download_taxonomy");
System.out.println();

UDDI_Security_PortType security = getSecurityStub();
String authInfo = getAuthInfo(user, password, security);
Set_permission set = createSetPermission(login, principal, name, type, action, authInfo);
setPermission(set);
discardAuthInfo(authInfo, security);

The method createSetPermission creates an object representing the set_permission operation.

public static Set_permission createSetPermission(String login, String principal,
 String name, String type, String action, String authInfo) throws InvalidParameterException {
 System.out.println(principal+", login/name = " + login);
 System.out.println("type = " + type);
 System.out.println("name = " + name);
 System.out.println("action = " + action);

 PermissionDescriptors permissionDescriptors = new PermissionDescriptors();
 permissionDescriptors.setPrincipal(new Principal(login, PrincipalType.getPrincipalType(principal)));

 PermissionDescriptor descriptor = new PermissionDescriptor();
 descriptor.setName(name);
 descriptor.setType(type);
 descriptor.addAction(action);
 permissionDescriptors.addPermissionDescriptor(descriptor);

 Set_permission set = new Set_permission();
 set.setPermissionDescriptors(permissionDescriptors);
 set.setAuthInfo(authInfo);

699Demos

 return set;
}

The helper method, getPermissionStub(), returns the UDDI Permission stub of the Web service listening at
the URL specified by the URL_PERMISSION property.

public static PermissionApi getPermissionStub() throws SOAPException {
// you can specify your own URL in property - uddi.demos.url.permission
String url = DemoProperties.getProperty(URL_PERMISSION, "http://localhost:8080/uddi/permission");
System.out.print("Using Permission API at url " + url + " ..");
PermissionApi permission = PermissionStub.getInstance(url);
System.out.println(" done");
return permission;
}

The HP SOA Registry Foundation API call set_permission is performed in the method setPermission.

public static void setPermission(Set_permission set) throws
 SOAPException, PermissionException {
 PermissionApi permissionApi = getPermissionStub();
 System.out.print("Save in progress ...");
 permissionApi.set_permission(set);
 System.out.println(" done");
}

Building and Running Demos

This section shows how to build and run the HP SOA Registry Foundation Permission demos.

1 Be sure that the demos are properly configured and the HP SOA Registry Foundation is up and running.

2 Change your working directory to

%REGISTRY_HOME%\demos\security\permissionWindows:

$REGISTRY_HOME/demos/security/permissionUNIX:

3 Build demos using:

run.bat makeWindows:

./run.sh makeUNIX:

Chapter 6700

When compiling demos on Windows platforms, you may see the following text:

A subdirectory or file ..\..\common\.\build\classes already exists.

This is expected and does not indicate a problem.

4 To get list of all available commands, run

run.bat helpWindows:

./run.sh helpUNIX:

5 The selected demo can be executed via the run command using the name of the demo as a parameter.
For example, to run the SetPermission demo, invoke

run.bat SetPermissionWindows:

./run.sh SetPermissionUNIX:

The output of this demo will resemble the following:

Running SetPermission demo...
**
*** HP SOA Registry Demo: SetPermission ***
**

Setting permission where
Enter login [admin]:
Enter password [changeit]:
Enter principal type [user]:
Enter login/group name [demo_john]:
Enter permission type [org.systinet.uddi.security.permission.ApiManagerPermission]:
Enter permission name [org.systinet.uddi.client.taxonomy.v3.TaxonomyApi]:
Enter action [download_taxonomy]:

Using Security at url https://mycomp.com:8443/uddi/security .. done
Logging in .. done
user, login/name = demo_john
type = org.systinet.uddi.security.permission.ApiManagerPermission
name = org.systinet.uddi.client.taxonomy.v3.TaxonomyApi
action = download_taxonomy

701Demos

Using Permission API at url https://mycomp.com:8443/uddi/permission .. done
Save in progress ... done
Logging out .. done

6 To rebuild demos, execute run.bat clean (./run.sh clean) to delete the classes directory and run.bat
make (./run.sh make) to rebuild the demo classes.

ACL

The HP SOA Registry Foundation ACL Demos demonstrate the HP SOA Registry Foundation ACL
application programming interface's capabilities and how to use this API.

The Systinet ACL extension is used to grant or revoke rights to selected users or groups. You will learn
how to create, save, delete, get and find ACLs.

The HP SOA Registry Foundation Security ACL demo set contains the following demos to assist you in
learning the HP SOA Registry Foundation client API:

Create. Demonstrates how to use Create ACL to give one user rights to create a service in the business
entity of another user.

Save. Demonstrates how to use Save ACL to give one user rights to update the business entity of another
user.

Delete. Demonstrates how to use Delete ACL to give one user rights to delete a business entity of another
user.

Get. Demonstrates how to use Get ACL to revoke from a selected user the right to get the business detail
of a business entity.

Find. Demonstrates how to use Find ACL to hide the business entity in a find_business operation from a
selected user.

Prerequisites and Preparatory Steps: Code

We expect that you have already installed the HP SOA Registry Foundation and set the REGISTRY_HOME
environment variable to the registry's installation location.

Chapter 6702

To run the HP SOA Registry Foundation's demos, your HP SOA Registry Foundation must be running. To
start the registry, execute the serverstart script:

%REGISTRY_HOME%\bin\serverstart.batWindows:

$REGISTRY_HOME/bin/serverstart.shUNIX:

It is necessary to configure the demos. The configuration system has two levels: global and local. The
properties defined at the global level may be overwritten at the local level. The global properties are located
in the file:

%REGISTRY_HOME%\demos\env.propertiesWindows:

$REGISTRY_HOME/demos/env.propertiesUNIX:

The values set during the installation of the HP SOA Registry Foundation work out of the box, and their
modification affects all demos. If you need to redefine a property's value for a single demo (that is,, at the
local level), edit env.properties. This file is located in the same directory as the file run.sh (run.bat). Local
level properties for the ACL demos are loaded from the file:

%REGISTRY_HOME%\demos\security\acl\env.propertiesWindows:

$REGISTRY_HOME/demos/security/acl/env.propertiesUNIX:

Table 109. Properties Used in Demos

DescriptionDefault ValueName

first user's namedemo_johnuddi.demos.user.john.name

first user's passworddemo_johnuddi.demos.user.john.password

second user's namedemo_janeuddi.demos.user.jane.name

second user's passworddemo_janeuddi.demos.user.jane.password

The publication Web service
port URL

http://localhost:8080/uddi/publishinguddi.demos.url.publishing

the security Web service port
URL

http://localhost:8080/uddi/securityuddi.demos.url.security

703Demos

Presentation and Functional Presentation

This section describes the programming pattern used in all demos using the Find demo as an example. You
can find this demo's source code in the file:

%REGISTRY_HOME%\demos\security\acl\src\demo\uddi\acl\Find.javaWindows:

$REGISTRY_HOME/demos/security/acl/src/demo/uddi/acl/Find.javaUNIX:

The main method is divided into several logical parts. The first part is used to configure the demo for the
user. The "good" user represents the user who will receive a positive ACL; the "bad" user represents the
user who will receive a negative ACL.

The second part contains the save_business operation with extra information. The ACLs are set in the
categoryBag. In the next section, the bad user unsuccessfully tries to find the business entity by name, and
finally the good user finds the business entity.

String name = UserInput.readString("Enter business name", "ACL find demo");
String description = UserInput.readString("Enter description",
 "Demonstration of find-allowed, find-denied ACLs");
String searchName = UserInput.readString("Enter search string", "ACL%");
String owner = UserInput.readString("Enter entity owner", "admin");
String password = UserInput.readString("Enter owner's password", "changeit");
String loginGood = UserInput.readString("Enter good user's login",
 DemoProperties.getProperty(USER_JOHN_NAME));
String passwordGood = UserInput.readString("Enter good user's password",
 DemoProperties.getProperty(USER_JOHN_PASSWORD));
String loginBad = UserInput.readString("Enter bad user's login",
 DemoProperties.getProperty(USER_JANE_NAME));
String passwordBad = UserInput.readString("Enter bad user's password",
 DemoProperties.getProperty(USER_JANE_PASSWORD));
System.out.println();

UDDI_Security_PortType security = getSecurityStub();
String authInfoOwner = getAuthInfo(owner, password, security);
Save_business saveBusiness = createSaveBusiness(name, description, loginGood, loginBad, authInfoOwner);
BusinessDetail result = saveBusiness(saveBusiness);
printBusinessDetail(result);
discardAuthInfo(authInfoOwner, security);

System.out.println(" ");
System.out.println("Finding business entity where");
String authInfoGood = getAuthInfo(loginGood, passwordGood, security);
Find_business findBusiness = createFindByName(searchName, authInfoGood);

Chapter 6704

BusinessList businessList = findBusiness(findBusiness);
printBusinessList(businessList);
discardAuthInfo(authInfoGood, security);

System.out.println(" ");
System.out.println("Finding business entity where");
String authInfoBad = getAuthInfo(loginBad, passwordBad, security);
findBusiness = createFindByName(searchName, authInfoBad);
businessList = findBusiness(findBusiness);
printBusinessList(businessList);
discardAuthInfo(authInfoGood, security);

The createSaveBusiness operation is used to create the Save_business object. The ACLs are stored in the
keyedReferenceGroup with the uddi:systinet.com:acl tModelKey as keyedReference, where the tModelKey
specifies the tModelKey of the ACL, keyValue holds the login name of the user or group, and finally
keyName is used to distinguish between users and groups in the keyValue.

public static Save_business createSaveBusiness(String name,
 String description, String goodUser,
 String badUser, String authInfo) throws InvalidParameterException {
 System.out.println("name = " + name);
 System.out.println("description = " + description);
 System.out.println("goodUser = " + goodUser);
 System.out.println("badUser = " + badUser);

 BusinessEntity businessEntity = new BusinessEntity();
 businessEntity.addName(new Name(name));
 businessEntity.addDescription(new Description(description));

 CategoryBag categoryBag = new CategoryBag();
 businessEntity.setCategoryBag(categoryBag);
 KeyedReferenceGroup aclGroup = new KeyedReferenceGroup("uddi:systinet.com:acl");
 aclGroup.addKeyedReference(new KeyedReference("uddi:systinet.com:acl:find-allowed",
 goodUser, "user"));
 aclGroup.addKeyedReference(new KeyedReference("uddi:systinet.com:acl:find-denied",
 badUser, "user"));
 categoryBag.addKeyedReferenceGroup(aclGroup);

 Save_business save = new Save_business();
 save.addBusinessEntity(businessEntity);
 save.setAuthInfo(authInfo);

 return save;
}

The find_business operation takes the authInfo parameter used to identify the user who runs the query.

705Demos

public static Find_business createFindByName(String name, String authInfo)
 throws InvalidParameterException {
System.out.println("name = " + name);
Find_business find_business = new Find_business();
find_business.addName(new Name(name));
find_business.setMaxRows(new Integer(MAX_ROWS));
find_business.setAuthInfo(authInfo);
find_business.addFindQualifier("approximateMatch");
return find_business;
}

Building and Running Demos

This section shows how to build and run the HP SOA Registry Foundation ACL demos.

1 Be sure that the demos are properly configured and the HP SOA Registry Foundation is up and running.

2 Change your working directory to:

%REGISTRY_HOME%\demos\security\aclWindows:

$REGISTRY_HOME/demos/security/aclUNIX:

3 Build demos using:

run.bat makeWindows:

./run.sh makeUNIX:

When compiling demos on Windows platforms, you may see the following text:

A subdirectory or file ..\..\common\.\build\classes already exists.

This is expected and does not indicate a problem.

4 To get list of all available commands, run

run.bat helpWindows:

./run.sh helpUNIX:

Chapter 6706

5 The selected demo can be executed via the run command with the name of the demo as parameter.
For example, to run the Find demo, invoke

run.bat FindWindows:

./run.sh FindUNIX:

The output of this demo will resemble the following:

Running Find demo...
**
*** HP SOA Registry Demo - ACLFind ***
**

Saving business entity where
Enter business name [ACL find demo]:
Enter description [Demonstration of find-allowed, find-denied ACLs]:
Enter search string [ACL%]:
Enter entity owner [admin]:
Enter owner's password [changeit]:
Enter good user's login [demo_john]:
Enter good user's password [demo_john]:
Enter bad user's login [demo_jane]:
Enter bad user's password [demo_jane]:

Using Security at url https://mycomp.com:8443/uddi/security .. done
Authenticating the user admin .. done
name = ACL find demo
description = Demonstration of find-allowed, find-denied ACLs
goodUser = demo_john
badUser = demo_jane
Using Publishing at url https://mycomp.com:8443/uddi/publishing .. done
Save business in progress ... done

Business 1 : uddi:91ba8390-a8e0-11d8-b2ad-779f83c0b2ad
<businessEntity businessKey="uddi:91ba8390-a8e0-11d8-b2ad-779f83c0b2ad"
xmlns="urn:uddi-org:api_v3">
<name>ACL find demo</name>
<description>Demonstration of find-allowed, find-denied ACLs</description>
<categoryBag>
<keyedReferenceGroup tModelKey="uddi:systinet.com:acl">
<keyedReference tModelKey="uddi:systinet.com:acl:find-allowed"
keyName="user" keyValue="demo_john"/>
<keyedReference tModelKey="uddi:systinet.com:acl:find-denied"
keyName="user" keyValue="demo_jane"/>

707Demos

</keyedReferenceGroup>
</categoryBag>
</businessEntity>

Logging out .. done

Finding business entity where
Authenticating the user demo_john .. done
name = ACL%
Using Inquiry at url http://mycomp.com:8080/uddi/inquiry .. done
Search in progress .. done

Displaying 1 of 1, starting at position 1
Business 1 : uddi:91ba8390-a8e0-11d8-b2ad-779f83c0b2ad
<businessInfo businessKey="uddi:91ba8390-a8e0-11d8-b2ad-779f83c0b2ad"
xmlns="urn:uddi-org:api_v3">
<name>ACL find demo</name>
<description>Demonstration of find-allowed, find-denied ACLs</description>
</businessInfo>

Logging out .. done

Finding business entity where
Authenticating the user demo_jane .. done
name = ACL%
Using Inquiry at url http://mycomp.com:8080/uddi/inquiry .. done
Search in progress .. done

Displaying 0 of 0, starting at position 1
Nothing found
Logging out .. done

6 To rebuild demos, execute run.bat clean (./run.sh clean) to delete the classes directory and run.bat
make (./run.sh make) to rebuild the demo classes.

Resources Demos
The Resources Demos section includes the following demos:

• WSDL - Teaches how to publish, unpublish and find a WSDL document in UDDI version 2 and UDDI
version 3.

• XSD - Teaches how to publish, unpublish and find an XML Schema.

Chapter 6708

WSDL2UDDI v2

The HP SOA Registry Foundation WSDL2UDDI demo set is used to demonstrate the HP SOA Registry
Foundation WSDL2UDDI application programming interface's capabilities and to demonstrate how to use
this API. The HP SOA Registry Foundation WSDL2UDDI demos cover the UDDI Version 2.0.4 Specification
[http://www.oasis-open.org/committees/uddi-spec/doc/tcspecs.htm#uddiv2]. You will learn how to query
and publish a WSDL to a UDDI registry over a SOAP interface. The HP SOA Registry Foundation
WSDL2UDDI demo set contains following demos to assist you in learning the WSDL2UDDI client API.

PublishWSDL. Demonstrates how to construct and fill the Publish_wsdl object, get the WSDL2UDDI stub
for the UDDI registry, get an authToken, and perform the publish_wsdl call.

UnPublishWSDL. Demonstrates how to construct and fill the Unpublish_wsdl object, get WSDL2UDDI
stub for the UDDI registry, get an authToken, and perform the unpublish_wsdl call.

FindWSDL. Demonstrates how to construct and fill the Find_wsdlServiceInfo object, get the WSDL2UDDI
stub for the UDDI registry, get an authToken, and perform the find_wsdlServiceInfo call.

GetWSDL. Demonstrates how to construct and fill the Get_wsdlServiceInfo object, get the WSDL2UDDI
stub for the UDDI registry, get an authToken, and perform the get_wsdlServiceInfo call.

Prerequisites and Preparatory Steps: Code

We expect that you have already installed the HP SOA Registry Foundation and set the REGISTRY_HOME
environment variable to the registry's installation location.

To run the HP SOA Registry Foundation's demos, your HP SOA Registry Foundation must be running. To
start the registry, execute the serverstart script:

%REGISTRY_HOME%\bin\serverstart.batWindows:

$REGISTRY_HOME/bin/serverstart.shUNIX:

It is necessary to configure the demos. The configuration system has two levels: global and local. The
properties defined at the global level may be overwritten at local level. The global properties are located in
the file:

%REGISTRY_HOME%\demos\env.propertiesWindows:

709Demos

http://www.oasis-open.org/committees/uddi-spec/doc/tcspecs.htm#uddiv2

$REGISTRY_HOME/demos/env.propertiesUNIX:

The values set during the installation of the HP SOA Registry Foundation work out of the box, and their
modification affects all demos. If you need to redefine the value of some property for a single demo (that
is, at the local level), edit env.properties. This file is located in the same directory as the file run.sh (run.bat).
Local level properties for the WSDL2UDDI demos are loaded from the file:

%REGISTRY_HOME%\demos\basic\wsdl\v2\env.propertiesWindows:

$REGISTRY_HOME/demos/basic/wsdl/v2/env.propertiesUNIX:

Table 110. Properties Used in Demos

DescriptionDefault ValueName

first user's namedemo_johnuddi.demos.user.john.name

first user's passworddemo_johnuddi.demos.user.john.password

the wsdl2uddi Web service port
URL

http://localhost:8080/uddi/wsdl2uddiuddi.demos.url.wsdl2uddi

the security Web service port URLhttp://localhost:8080/uddi/securityuddi.demos.url.security

Presentation and Functional Presentation

This section describes programming pattern used in all demos using the PublishWSDL demo as an example.
You can find its source code in the file:

%REGISTRY_HOME%\demos\basic\wsdl2uddi\src\demo\uddi\v2\wsdl2uddi\PublishWSDL.javaWindows:

$REGISTRY_HOME/demos/basic/wsdl2uddi/src/demo/uddi/v2/wsdl2uddi/PublishWSDL.javaUNIX:

The main method is very short. After gathering the user's input, it gets the security stub and authorizes the
user. The resulting authInfo string is a secret key passed to the Publish request, which is created and initialized
in the createPublish() method.

The user's choice of WSDL is published to the selected businessEntity within the publishWSDL() method.

When successful, the WsdlDetail object is returned from the UDDI registry and printed.

Chapter 6710

The last step is to discard the authInfo string, so that no malicious user can use it to compromise another
user's account.

String businessKey = UserInput.readString("Enter businessKey",
 "d7222f66-08aa-3a6e-a299-2ed4ac785682");
String url = UserInput.readString("Enter WSDL URL",
 "http://localhost:8080/uddi/doc/demos/EmployeeList.wsdl");
System.out.println();

UDDI_Security_PortType security = getSecurityStub();
String authInfo = getAuthInfo(user, password, security);
Publish_wsdl publish = createPublish(businessKey, url, authInfo);
WsdlDetail result = publishWSDL(publish);
printWsdlDetail(result);
discardAuthInfo(authInfo, security);

The helper method getSecurityStub() returns the UDDI Security stub of the Web service listening at the
URL specified by the URL_SECURITY property.

public static UDDI_Security_PortType getSecurityStub()
 throws SOAPException {
 // you can specify your own URL in property - uddi.demos.url.security
 String url = DemoProperties.getProperty(URL_SECURITY,
 "http://localhost:8080/uddi/security");
 System.out.print("Using Security at url " + url + " ..");
 UDDI_Security_PortType security = UDDISecurityStub.getInstance(url);
 System.out.println(" done");
 return security;
}

Similarly, the helper method getWsdl2uddiStub() returns the WSDL2UDDI stub of the Web service listening
at URL specified by the URL_WSDL2UDDI property.

public static Wsdl2uddiApi getWsdl2uddiStub() throws SOAPException {
 // you can specify your own URL in property - uddi.demos.url.wsdl2uddi
 String url = DemoProperties.getProperty(URL_WSDL2UDDI,
 "http://localhost:8080/uddi/wsdl2uddi");
 System.out.print("Using WSDL2UDDI at url " + url + " ..");
 Wsdl2uddiApi inquiry = Wsdl2uddiStub.getInstance(url);
 System.out.println(" done");
 return inquiry;
}

The getAuthInfo() method is used to authorize the user against the UDDI registry and to get the secret
authInfo key.

711Demos

public static String getAuthInfo(String userName,
 String password, UDDI_Security_PortType security)
 throws InvalidParameterException, UDDIException {
 System.out.print("Logging in ..");
 AuthToken authToken = security.get_authToken(new Get_authToken(userName, password));
 System.out.println(" done");
 return authToken.getAuthInfo();
}

The discardAuthInfo() method invalidates the secret authInfo key, so that it cannot be reused.

public static DispositionReport discardAuthInfo(String authInfo,
 UDDI_Security_PortType security)
 throws InvalidParameterException, UDDIException {
 System.out.print("Logging out ..");
 DispositionReport dispositionReport = security.discard_authToken(new Discard_authToken(authInfo));
 System.out.println(" done");
 return dispositionReport;
}

The createPublish() method is used to create a new instance of the Publish class and initialize it with values
from parameters:

public static Publish_wsdl createPublish(String businessKey,
 String url, String authInfo)
 throws InvalidParameterException {
 System.out.println("businessKey = " + businessKey);
 System.out.println("url = " + url);

 WsdlMapping wsdlMapping = new WsdlMapping();
 wsdlMapping.setBusinessKey(businessKey);
 Wsdl wsdl = new Wsdl(url);
 WsdlDetail wsdlDetail = new WsdlDetail(wsdl, wsdlMapping);
 Publish_wsdl publish = new Publish_wsdl(wsdlDetail, authInfo);
 return publish;
}

The WSDL2UDDI API call Publish_wsdl is performed in the method publishWSDL().

public static WsdlDetail publishWSDL(Publish_wsdl save)
 throws UDDIException, SOAPException {
 Wsdl2uddiApi publishing = getWsdl2uddiStub();
 System.out.print("Save in progress ...");
 WsdlDetail wsdlDetail = publishing.publish_wsdl(save);
 System.out.println(" done");
 return wsdlDetail;
}

Chapter 6712

The returned WsdlDetail is displayed by the printWsdlDetail() method.

One interesting aspect of HP SOA Registry Foundation client API is that each UDDIObject contains the
toXML() method, which returns a human-readable formatted listing of its XML representation.

public static void printWsdlDetail(WsdlDetail wsdlDetail) {
 System.out.println();
 System.out.println(wsdlDetail.toXML());
}

Building and Running Demos

This section shows, how to build and run the HP SOA Registry Foundation Basic Publishing demo set.
Let's continue with our SaveBusiness demo.

1 Be sure that the demos are properly configured and the HP SOA Registry Foundation is up and running.

2 Change your working directory to

%REGISTRY_HOME%\demos\basic\wsdl\v2Windows

$REGISTRY_HOME/demos/basic/wsdl/v2UNIX

3 Build all demos using:

run.bat makeWindows:

./run.sh makeUNIX:

When compiling demos on Windows platforms, you may see the following text:

A subdirectory or file ..\..\common\.\build\classes already exists.

This is expected and does not indicate a problem.

4 To get list of all available demos, run

run.bat helpWindows:

713Demos

./run.sh helpUNIX:

5 The selected demo can be executed via the run command using the name of demo as parameter. For
example, to run the PublishWSDL demo, invoke

run.bat PublishWSDLWindows:

./run.sh PublishWSDLUNIX:

The output of this demo will resemble the following:

Running PublishWSDL demo...
**
*** HP SOA Registry Demo - PublishWSDL ***
**

Publishing WSDL where
Enter businessKey [d7222f66-08aa-3a6e-a299-2ed4ac785682]:
Enter WSDL URL [http://localhost:8080/uddi/inquiry/wsdl]:
 http://localhost:8080/uddi/doc/demos/EmployeeList.wsdl

Using Publishing at url https://mycomp.com:8443/uddi/publishing .. done
Logging in .. done
businessKey = d7222f66-08aa-3a6e-a299-2ed4ac785682
url = http://localhost:8080/uddi/doc/demos/EmployeeList.wsdl
Using WSDL2UDDI at url https://mycomp.com:8443/uddi/wsdl2uddi .. done
Save in progress ... done

<wsdlDetail xmlns="http://systinet.com/uddi/wsdl2uddi/v2/5.0">
 <wsdl>
 <wsdlLocation>http://localhost:8080/uddi/doc/demos/EmployeeList.wsdl</wsdlLocation>
 </wsdl>
 <wsdlMapping>
 <businessKey xmlns="urn:uddi-org:api_v2">d7222f66-08aa-3a6e-a299-2ed4ac785682<
 /businessKey>
 <services>
 <service name="EmployeeList" namespace="
 http://systinet.com/wsdl/demo/uddi/services/"
 publishingMethod="rewrite">
 <serviceKey xmlns="urn:uddi-org:api_v2">
 d0a50390-af1c-11d8-b9bf-eb2d7e20b9bf</serviceKey>
 <ports>
 <port name="EmployeeList" publishingMethod="rewrite">
 <bindingKey xmlns="urn:uddi-org:api_v2">

Chapter 6714

 d0aca4b0-af1c-11d8-b9bf-eb2d7e20b9bf</bindingKey>
 </port>
 </ports>
 </service>
 </services>
 <bindings>
 <binding name="EmployeeList_binding"
 namespace="http://systinet.com/wsdl/demo/uddi/services/"
 publishingMethod="rewrite">
 <tModelKey xmlns="urn:uddi-org:api_v2">
 uuid:d07da570-af1c-11d8-b9bf-eb2d7e20b9bf</tModelKey>
 </binding>
 </bindings>
 <portTypes>
 <portType name="EmployeeList_portType"
 namespace="http://systinet.com/wsdl/demo/uddi/services/"
 publishingMethod="rewrite">
 <tModelKey xmlns="urn:uddi-org:api_v2">
 uuid:d0658990-af1c-11d8-b9bf-eb2d7e20b9bf</tModelKey>
 </portType>
 </portTypes>
 </wsdlMapping>
</wsdlDetail>
Logging out .. done

6 To rebuild demos, execute run.bat clean (./run.sh clean) to delete the classes directory and run.bat
make (./run.sh make) to rebuild the demo classes.

WSDL2UDDI v3

The HP SOA Registry Foundation WSDL2UDDI demo set is used to demonstrate the HP SOA Registry
Foundation WSDL2UDDI application programming interface's capabilities and to show how to use this
API. The HP SOA Registry Foundation WSDL2UDDI demos cover the UDDI Version 3.01 Specification
[http://www.oasis-open.org/committees/uddi-spec/doc/tcspecs.htm#uddiv3]. You will learn how to query
and publish a WSDL to a UDDI registry over a SOAP interface.

The HP SOA Registry Foundation WSDL2UDDI demo set contains following demos to assist you in
learning the WSDL2UDDI client API.

PublishWSDL. Demonstrates how to construct and fill the Publish_wsdl object, get the WSDL2UDDI stub
for the UDDI registry, get an authToken, and perform the publish_wsdl call.

715Demos

http://www.oasis-open.org/committees/uddi-spec/doc/tcspecs.htm#uddiv3

UnPublishWSDL. Demonstrates how to construct and fill the Unpublish_wsdl object, get WSDL2UDDI
stub for the UDDI registry, get an authToken, and perform the unpublish_wsdl call.

FindWSDL. Demonstrates how to construct and fill the Find_wsdlServiceInfo object, get the WSDL2UDDI
stub for the UDDI registry, get an authToken, and perform the find_wsdlServiceInfo call.

GetWSDL. Demonstrates how to construct and fill the Get_wsdlServiceInfo object, get the WSDL2UDDI
stub for the UDDI registry, get an authToken, and perform the get_wsdlServiceInfo call.

Prerequisites and Preparatory Steps: Code

We expect that you have already installed the HP SOA Registry Foundation and set the REGISTRY_HOME
environment variable to the registry's installation location.

To run the HP SOA Registry Foundation's demos, your HP SOA Registry Foundation must be running. To
start the registry, execute the serverstart script:

%REGISTRY_HOME%\bin\serverstart.batWindows:

$REGISTRY_HOME/bin/serverstart.shUNIX:

It is necessary to configure the demos. The configuration system has two levels: global and local. The
properties defined at the global level may be overwritten at local level. The global properties are located in
the file:

%REGISTRY_HOME%\demos\env.propertiesWindows:

$REGISTRY_HOME/demos/env.propertiesUNIX:

The values set during installation of the HP SOA Registry Foundation work out of the box, and their
modification affects all demos. If you need to redefine the value of some property for a single demo (that
is, at the local level), edit env.properties. This file is located in the same directory as the file run.sh (run.bat).
Local level properties for the WSDL2UDDI demos are loaded from the file:

%REGISTRY_HOME%\demos\basic\wsdl\v3\env.propertiesWindows:

$REGISTRY_HOME/demos/basic/wsdl/v3/env.propertiesUNIX:

Chapter 6716

Table 111. Properties Used in Demos

DescriptionDefault ValueName

first user's namedemo_johnuddi.demos.user.john.name

first user's passworddemo_johnuddi.demos.user.john.password

the wsdl2uddi Web service port
URL

http://localhost:8080/uddi/wsdl2uddiuddi.demos.url.wsdl2uddi

the security Web service port URLhttp://localhost:8080/uddi/securityuddi.demos.url.security

Presentation and Functional Presentation

This section describes programming pattern used in all demos using the PublishWSDL demo as an example.
You can find its source code in file

%REGISTRY_HOME%\demos\basic\wsdl2uddi\src\demo\uddi\v3\wsdl2uddi\PublishWSDL.javaWindows:

$REGISTRY_HOME/demos/basic/wsdl2uddi/src/demo/uddi/v3/wsdl2uddi/PublishWSDL.javaUNIX:

The main method is very short. After gathering the user's input, it gets the security stub and authorizes the
user. The resulting authInfo string is a secret key passed to the Publish request, which is created and initialized
in the createPublish() method.

The user's choice of WSDL is published to the selected businessEntity within the publishWSDL() method.

When successful, the WsdlDetail object is returned from the UDDI registry and printed.

The last step is to discard the authInfo string, so that no malicious user can use it to compromise another
user's account.

String businessKey = UserInput.readString("Enter businessKey", "uddi:systinet.com:demo:hq");
String url = UserInput.readString("Enter WSDL URL",
"http://localhost:8080/uddi/doc/demos/EmployeeList.wsdl");
System.out.println();

UDDI_Security_PortType security = getSecurityStub();
String authInfo = getAuthInfo(user, password, security);
Publish_wsdl publish = createPublish(businessKey, url, authInfo);
WsdlDetail result = publishWSDL(publish);
printWsdlDetail(result);
discardAuthInfo(authInfo, security);

717Demos

The helper method getSecurityStub() returns the UDDI Security stub of the Web service listening at the
URL specified by the URL_SECURITY property.

public static UDDI_Security_PortType getSecurityStub()
 throws SOAPException {
 // you can specify your own URL in property - uddi.demos.url.security
 String url = DemoProperties.getProperty(URL_SECURITY, "http://localhost:8080/uddi/security");
 System.out.print("Using Security at url " + url + " ..");
 UDDI_Security_PortType security = UDDISecurityStub.getInstance(url);
 System.out.println(" done");
 return security;
}

Similarly, the helper method getWsdl2uddiStub() returns the WSDL2UDDI stub of the Web service listening
at URL specified by the URL_WSDL2UDDI property.

public static Wsdl2uddiApi getWsdl2uddiStub() throws SOAPException {
 // you can specify your own URL in property - uddi.demos.url.wsdl2uddi
 String url = DemoProperties.getProperty(URL_WSDL2UDDI, "http://localhost:8080/uddi/wsdl2uddi");
 System.out.print("Using WSDL2UDDI at url " + url + " ..");
 Wsdl2uddiApi inquiry = Wsdl2uddiStub.getInstance(url);
 System.out.println(" done");
 return inquiry;
}

The getAuthInfo() method is used to authorize the user against the UDDI registry and to get the secret
authInfo key.

public static String getAuthInfo(String userName, String password, UDDI_Security_PortType security)
 throws InvalidParameterException, UDDIException {
 System.out.print("Logging in ..");
 AuthToken authToken = security.get_authToken(new Get_authToken(userName, password));
 System.out.println(" done");
 return authToken.getAuthInfo();
}

The discardAuthInfo() method invalidates the secret authInfo key, so that it cannot be reused.

public static void discardAuthInfo(String authInfo, UDDI_Security_PortType security)
 throws InvalidParameterException, UDDIException {
 System.out.print("Logging out ..");
 security.discard_authToken(new Discard_authToken(authInfo));
 System.out.println(" done");
}

Chapter 6718

The createPublish() method is used to create a new instance of the Publish class and initialize it with values
from parameters:

public static Publish_wsdl createPublish(String businessKey, String url, String authInfo)
 throws InvalidParameterException {
 System.out.println("businessKey = " + businessKey);
 System.out.println("url = " + url);

 WsdlMapping wsdlMapping = new WsdlMapping();
 wsdlMapping.setBusinessKey(businessKey);
 Wsdl wsdl = new Wsdl(url);
 WsdlDetail wsdlDetail = new WsdlDetail(wsdl, wsdlMapping);
 Publish_wsdl publish = new Publish_wsdl(wsdlDetail, authInfo);
 return publish;
}

The WSDL2UDDI API call Publish_wsdl is performed in the method publishWSDL().

public static WsdlDetail publishWSDL(Publish_wsdl save)
 throws UDDIException, SOAPException {
 Wsdl2uddiApi publishing = getWsdl2uddiStub();
 System.out.print("Save in progress ...");
 WsdlDetail wsdlDetail = publishing.publish_wsdl(save);
 System.out.println(" done");
 return wsdlDetail;
}

The returned WsdlDetail is displayed by the printWsdlDetail() method.

One interesting aspect of HP SOA Registry Foundation client API is that each UDDIObject contains the
toXML() method, which returns a human-readable formatted listing of its XML representation.

public static void printWsdlDetail(WsdlDetail wsdlDetail) {
 System.out.println();
 System.out.println(wsdlDetail.toXML());
}

Building and Running Demos

This section shows, how to build and run the HP SOA Registry Foundation Basic Publishing demo set.
Let's continue with our SaveBusiness demo.

1 Be sure that the demos are properly configured and the HP SOA Registry Foundation is up and running.

2 Change your working directory to

719Demos

%REGISTRY_HOME%\demos\basic\wsdl\v3Windows

$REGISTRY_HOME/demos/basic/wsdl/v3UNIX

3 Build all demos using:

run.bat makeWindows:

./run.sh makeUNIX:

When compiling demos on Windows platforms, you may see the following text:

A subdirectory or file ..\..\common\.\build\classes already exists.

This is expected and does not indicate a problem.

4 To get list of all available demos, run

run.bat helpWindows:

./run.sh helpUNIX:

5 The selected demo can be executed via the run command using the name of the demo as a parameter.
For example, to run the PublishWSDL demo, invoke

run.bat PublishWSDLWindows:

./run.sh PublishWSDLUNIX:

The output of this demo will resemble the following:

Running PublishWSDL demo...
**
*** HP SOA Registry Demo - PublishWSDL ***
**

Publishing WSDL where
Enter businessKey [uddi:systinet.com:demo:hq]:
Enter WSDL URL [http://localhost:8080/uddi/doc/demos/EmployeeList.wsdl]:

Chapter 6720

Using Security at url https://mycomp.com:8443/uddi/security .. done
Logging in .. done
businessKey = uddi:systinet.com:demo:hq
url = http://localhost:8080/uddi/doc/demos/EmployeeList.wsdl
Using WSDL2UDDI at url https://mycomp.com:8443/uddi/wsdl2uddi .. done
Save in progress ... done

<wsdlDetail xmlns="http://systinet.com/uddi/wsdl2uddi/v3/5.0">
 <wsdl>
 <wsdlLocation>http://localhost:8080/uddi/doc/demos/EmployeeList.wsdl</wsdlLocation>
 </wsdl>
 <wsdlMapping>
 <businessKey xmlns="urn:uddi-org:api_v3">uddi:systinet.com:demo:hq</businessKey>
 <services>
 <service name="EmployeeList" namespace="http://systinet.com/wsdl/demo/uddi/services/"
 publishingMethod="rewrite">
 <serviceKey xmlns="urn:uddi-org:api_v3">uddi:dde19a70-af1a-11d8-b9bf-eb2d7e20b9bf</serviceKey>

 <ports>
 <port name="EmployeeList" publishingMethod="rewrite">
 <bindingKey xmlns="urn:uddi-org:api_v3">uddi:dde85130-af1a-11d8-b9bf-
eb2d7e20b9bf</bindingKey>
 </port>
 </ports>
 </service>
 </services>
 <bindings>
 <binding name="EmployeeList_binding" namespace="http://systinet.com/wsdl/demo/uddi/services/"

 publishingMethod="rewrite">
 <tModelKey xmlns="urn:uddi-org:api_v3">uddi:ddc84610-af1a-11d8-b9bf-
eb2d7e20b9bf</tModelKey>
 </binding>
 </bindings>
 <portTypes>
 <portType name="EmployeeList_portType"
namespace="http://systinet.com/wsdl/demo/uddi/services/"
 publishingMethod="rewrite">
 <tModelKey xmlns="urn:uddi-org:api_v3">uddi:ddbc3820-af1a-11d8-b9bf-
eb2d7e20b9bf</tModelKey>
 </portType>
 </portTypes>
 </wsdlMapping>
</wsdlDetail>
Logging out .. done

721Demos

6 To rebuild demos, execute run.bat clean (./run.sh clean) to delete the classes directory and run.bat
make (./run.sh make) to rebuild the demo classes.

XSD2UDDI

The HP SOA Registry Foundation XSD2UDDI demo set demonstrates the HP SOA Registry Foundation
application programming interface's capabilities and shows how to use the XSD2UDDI API to manipulate
XSD documents.

The demos set includes the following demos:

• FindXsd

• FindXsdMapping

• GetXsdDetail

• PublishXsd

• UnpublishXsd

Prerequisites and Preparatory Steps: Code

We expect that you have already installed the HP SOA Registry Foundation and set the REGISTRY_HOME
environment variable to the registry's installation location.

To run the HP SOA Registry Foundation's demos, your registry must be running. To start the HP SOA
Registry Foundation, execute the serverstart script:

%REGISTRY_HOME%\bin\serverstartWindows:

$REGISTRY_HOME/bin/serverstart.shUNIX:

It is necessary to configure the demos. The configuration system has two levels: global and local. The
properties defined at the global level may be overwritten at the local level. The global properties are located
in the file:

%REGISTRY_HOME%\demos\env.propertiesWindows:

$REGISTRY_HOME/demos/env.propertiesUNIX:

Chapter 6722

The values set during the installation of the HP SOA Registry Foundation work out of box, and their
modification affects all demos. If you need to redefine the value of some property for a single demo (that
is, at the local level), edit env.properties. This file is located in the same directory as the file run.sh (run.bat).
Local level properties for the XSD2UDDI demos are loaded from the file:

%REGISTRY_HOME%\demos\resources\xsd\env.propertiesWindows:

$REGISTRY_HOME/demos/resources/xsd/env.propertiesUNIX:

Table 112. Properties Used in Demos

DescriptionDefault ValueName

first user's namedemo_johnuddi.demos.user.john.name

first user's passworddemo_johnuddi.demos.user.john.password

the xsd2uddi web service port
URL

http://localhost:8080/uddi/xsd2uddiuddi.demos.url.xsd2uddi

the security web service port
URL

http://localhost:8080/uddi/securityuddi.demos.url.security

Presentation and Functional Presentation

This section describes the programming pattern used in all demos using the PublishXsd demo as an example.
You can find its source code in the file:

%REGISTRY_HOME%\demos\resources\xsd\src\demo\uddi\xsd\PublishXsd.javaWindows:

$REGISTRY_HOME/demos/resources/xsd/src/demo/uddi/xsd/PublishXsd.javaUNIX:

The helper method createPublishXsd creates a Publish_xsd structure:

public Publish_xsd createPublishXsd(String location, String publishingMethod, String importMethod, String
 importPolicy,
 String contentMethod, String contentPolicy, String authInfo)
 throws InvalidParameterException {
 System.out.println("location = " + location);

 Publish_xsd publish = new Publish_xsd();
 publish.setLocation(location);

723Demos

 publish.setPublishingMethod(XsdPublishingMethod.getXsdPublishingMethod(publishingMethod));
 publish.setImportPolicy(ImportPublishPolicy.getImportPublishPolicy(importMethod));
 publish.setImportPublishingMethod(ImportPublishingMethod.getImportPublishingMethod(importPolicy));

 publish.setContentPolicy(ContentPublishPolicy.getContentPublishPolicy(contentPolicy));

publish.setContentPublishingMethod(ContentPublishingMethod.getContentPublishingMethod(contentMethod));
 publish.setAuthInfo(authInfo);

 return publish;
}

The publishXsdResource method performs the publishing operation:

public XsdDetail publishXsdResource(Publish_xsd publish) throws UDDIException, SOAPException {
 System.out.print("Check structure validity .. ");
 try {
 publish.check();
 } catch (InvalidParameterException e) {
 System.out.println("Failed!");
 throw new UDDIException(e);
 }
 System.out.println("OK");

 Xsd2uddiApi xsdApi = getXsd2UddiStub();
 System.out.print("Publishing in progress ...");
 XsdDetail xsdDetail = xsdApi.publish_xsd(publish);
 System.out.println(" done");
 return xsdDetail;
}

Building and Running Demos

This section shows, how to build and run the HP SOA Registry Foundation XSD2UDDI demo set. Let us
continue with our PublishXsd demo.

1 Be sure that the demos are properly configured and the HP SOA Registry Foundation is up and running.

2 Change your working directory to

%REGISTRY_HOME%\demos\resources\xsdWindows

Chapter 6724

$REGISTRY_HOME/demos/resources/xsdUNIX

3 Build all demos using:

run.bat makeWindows:

./run.sh makeUNIX:

When compiling demos on Windows platforms, you may see the following text:

A subdirectory or file ..\..\common\.\build\classes already exists.

. This is expected and does not indicate a problem.

4 To get list of all available demos, run

run.bat helpWindows:

./run.sh helpUNIX:

5 The selected demo can be executed via the run command using the name of the demo as a parameter.
For example, to run the PublishWSDL demo, invoke

run.bat PublishXsdWindows:

./run.sh PublishXsdUNIX:

The output of this demo will resemble the following:

Running PublishXsd demo...
**
*** HP SOA Registry Demo - PublishXsd ***
**

Publishing XML schema with the following parameters:
Enter XSD location (URI) [http://localhost:8080/uddi/doc/demos/employees.xsd]:
Enter publishing method (update,create) [update]:
Enter import publishing policy (all,explicit) [all]:

725Demos

Enter import publishing method (reuse,create,ignore) [reuse]:
Enter content publishing policy (all,explicit) [all]:
Enter content publishing method (reuse,create,ignore) [reuse]:

Using Security at url https://localhost:8443/uddi/security .. done
Logging in .. done
location = http://localhost:8080/uddi/doc/demos/employees.xsd
Check structure validity .. OK
Using XSD2UDDI at url https://localhost:8443/uddi/xsd2uddi .. done
Publishing in progress ... done

XML Schema http://localhost:8080/uddi/doc/demos/employees.xsd
<xsdDetail xmlns="http://systinet.com/uddi/xsd2uddi/v3/5.5">
 <xsdInfo>
 <location>http://localhost:8080/uddi/doc/demos/employees.xsd</location>
 <namespace>http://systinet.com/uddi/demo/employeeList</namespace>
 <tModelKey xmlns="urn:uddi-org:api_v3">uddi:systinet.com:demo:xsd:employees</tModelKey>
 <name xmlns="urn:uddi-org:api_v3">employees.xsd</name>
 </xsdInfo>
 <elements>
 <element>
 <localName>persons</localName>
 <symbolModel>
 <name xmlns="urn:uddi-org:api_v3">persons</name>
 <tModelKey xmlns="urn:uddi-org:api_v3">uddi:ca43cec0-20f8-11d9-9c6a-1d0743509c6a</tModelKey>

 </symbolModel>
 </element>
 <element>
 <localName>person</localName>
 <symbolModel>
 <name xmlns="urn:uddi-org:api_v3">person</name>
 <tModelKey xmlns="urn:uddi-org:api_v3">uddi:ca5e82b0-20f8-11d9-9c6a-1d0743509c6a</tModelKey>

 </symbolModel>
 </element>
 <element>
 <localName>department</localName>
 <symbolModel>
 <name xmlns="urn:uddi-org:api_v3">department</name>
 <tModelKey xmlns="urn:uddi-org:api_v3">uddi:ca6a90a0-20f8-11d9-9c6a-1d0743509c6a</tModelKey>

 </symbolModel>
 </element>
 </elements>
 <types>
 <type>

Chapter 6726

 <localName>persons</localName>
 <symbolModel>
 <name xmlns="urn:uddi-org:api_v3">persons</name>
 <tModelKey xmlns="urn:uddi-org:api_v3">uddi:ca742d90-20f8-11d9-9c6a-1d0743509c6a</tModelKey>

 </symbolModel>
 </type>
 <type>
 <localName>person</localName>
 <symbolModel>
 <name xmlns="urn:uddi-org:api_v3">person</name>
 <tModelKey xmlns="urn:uddi-org:api_v3">uddi:ca856ba0-20f8-11d9-9c6a-1d0743509c6a</tModelKey>

 </symbolModel>
 </type>
 <type>
 <localName>department</localName>
 <symbolModel>
 <name xmlns="urn:uddi-org:api_v3">department</name>
 <tModelKey xmlns="urn:uddi-org:api_v3">uddi:ca908f30-20f8-11d9-9c6a-1d0743509c6a</tModelKey>

 </symbolModel>
 </type>
 </types>
</xsdDetail>
Logging out .. donee

727Demos

Chapter 6728

Index

A
account

API, 513
configuration, 371

account limits, 332
account management, 332

create account, 332
delete account, 332
edit account, 332
user groups, 339

ACL, 233
Active directory

installation, 118
administration utilities

API, 465
API

account, 513
administration utilities, 465
category API

(see also taxonomy)
custom module, 556
group, 522
inquiry UI, 505
interceptor, 561
mapping WSDL, 477
mapping XML Schema, 492
permission, 531
replication, 471
server-side API, 550
servlet integration, 550

statistics, 472
subscription service, 572
taxonomy, 444
UDDI, 424
validation, 443
validation service, 568

application server
installation, 147

authentication
client, 545
configuration, 180
HTTP basic, 180
LDAP, 132
Netegrity Siteminder, 180

B
backup, 200
BEA WebLogic

installation, 152
Business Service Console, 229

C
category

API, 458
certificate

LDAP, 135
client

authentication, 545
logging, 610

client API
principles, 424

cluster
WebLogic, 172

configuration, 87
account, 371
authentication, 180
backup, 200

729

cluster, 172
database, 93, 371, 381
groups, 371
management, 363
node, 371
Registry Console, 384
security, 371
SMTP, 87

consoles, 229

D
data

backup, 200
database

configuration, 363, 371
DB2, 93
HSQL, 93
installation and configuration, 93
JDBC, 93
MSSQL, 93
multilingual data, 93
Oracle, 93
preconfigured HSQL, 93

data migration (see migration)
DB2, 93
debugging

SOAPSpy Tool, 606
deletedTModels, 439
demo data, 230
digital signatures, 323

PStore tool, 401

E
evaluation, 82
external accounts, 116

LDAP, 118

F
find qualifiers, 438

range queries, 243
foreignEntities, 439

G
groups

configuration, 371

H
hardware

system requirements, 40
hostname verification error

LDAP, 132
HP SOA Registry Foundation

introduction, 220
HSQL, 93
HTTP basic

authentication, 180
client, 545

I
inquiry UI

API, 505
installation, 42

Active directory, 118
application server, 147
cluster, 172
configuration, 87
database

(see also database)
evaluation, 82
external accounts, 116
JBoss, 161
LDAP, 118
licensing, 82

730

Linux, 214
migration, 194
NT service, 208
Oracle application server, 169
standalone, 42
Tomcat, 159
WebLogic, 152
WebSphere, 153

interceptor, 561

J
JBoss

installation, 161
JSP

web framework, 577
JSSE

LDAP, 135

K
key generator, 240
keyNameMatch, 440
keys, 240
keytool, 323

LDAP server trust, 135

L
LDAP

installation, 118
SSL, 132
TLS, 132

ldaps, 132
licensing, 82
Linux

installation, 214
Log4j

logging, 610

logging
UDDI client, 610

M
management

accounts, 332
configuration, 363
replication, 352
taxonomy, 345
user groups, 339

manage tab
rules to display, 330

mapping WSDL
API, 477

mapping XML Schema
API, 492

migration, 194
after installation, 194
during installation, 194

module
API, 556

MSSQL, 93
multilingual support

database, 93
myEntities, 440

N
Netegrity SiteMinder

authentication, 180
node

configuration, 371
NT service

installation, 208

O
omitKeyNameMatch, 440

731

omitKeyValueMatch, 441
omitTModelKeyMatch, 441
Oracle, 93
Oracle application server

installation, 169

P
permission

API, 531
principles, 387
setting, 342

permissions, 233
PStore tool, 401

R
range queries, 243
registry

client, 536
registry client package, 536
registry configuration, 371
Registry Console, 229

browsing, 278
configuration, 384
manage user account, 273
overview, 270
publishing, 294
register user account, 267
searching, 283

registry management, 330
replication

API, 471
management, 352
master registry, 353
slave registry, 354

restore, 200
running registry

Linux, 214

NT service, 208

S
security

configuration, 371
setup tool, 87
Signer tool, 323

config, 323
sign, 323
validate, 323

SiteMinder
authentication, 180

SMTP configuration, 87
SOAPSpy Tool, 606
SSL

client, 545
LDAP, 132
SSL tool, 410

SSL tool, 410
SSL tool examples, 411
statistics, 360

API, 472
subscription service

developing, 572
system property

LDAP, 135
system requirements, 40

hardware, 40

T
taxonomy

API, 444
developing validation service, 568
pre-deployed, 245
principles, 245
types, 245
validation API, 443

732

taxonomy management, 345
download taxonomy, 345
upload taxonomy, 345

tModelKeyApproximateMatch, 441
Tomcat

installation, 159
trust

LDAP, 135

U
UDDI

API, 424
client, 536
client API, 424

uninstallation, 217
user group

API, 522
management, 339

user roles, 387

V
validation

API, 443
validation service

developing, 568

W
web framework, 577
web interfaces, 229
WebLogic

cluster, 172
installation, 152

WebSphere
installation, 153

733

734

Glossary
.NET A software platform designed by the Microsoft Corporation. It is an

environment for writing C#, Visual Basic, and C++ programs that can
easily and securely interoperate.

.NET Framework An environment for building, deploying, and running Web services and
other applications. It consists of three main parts: the Common Language
Runtime, the Framework classes, and ASP.NET.

.NET Framework Software
Development Kit (SDK)

A set of documentation, samples, command-line tools, compilers, and
the .NET Framework; that is, everything you need to write, build, test,
and deploy .NET Framework applications.

Accepting Security Provider A security provider that is responsible for accepting secure requests
and usually also for determining the invoker identity.
See also Identity.

Access Control Restrictions of a subject's access to a resource.
See also Access Controller, Subject.

Access Controller An application component that is responsible for access control
decisions.
See also Access Control.

accessPoint A binding template element that indicates where you can find the
endpoint of the Web service that is described by this entity. This may
be a URL, an electronic mail address, or even a telephone number.
See also Universal Description, Discovery and Integration.

ACL Access Control List — A list of entities, together with their access
rights, the members of which have authorized access to a resource.
See also Subject.

Admin Service The core System Web service, allowing you to manage advanced
settings for each deployed service on a Systinet Server. Using this Web
service it is possible to manage settings like security mechanisms,

735

transport interceptors, polymorphism, automatic Web service
authentication, and automatic authorization checks per Web service
method.

Alias A name that an entity uses in place of its real name.

Apache Containers A schema for transferring containers proposed by Apache group. This
schema is not compatible with Microsoft .NET.

Application Server-Dependent
Deployment Descriptor

When an enterprise application is deployed on the server, it contains a
set of deployment descriptors. They contain application metadata.
Format and meaning of Application Server Dependent Deployment
Descriptor is closely related to the application server and cannot be
used in the context of any other application server.

Application Web services Web services can be categorized into the three groups: System,
Application, and Utility Web services. Application Services are created
for specific tasks by the developer. To accomplish the task they typically
use Utility Web services.

ASP .NET ASP .NET is a unified Web development platform that provides the
services necessary for developers to build enterprise-class Web
applications.

Asynchronous Client Invocation Client invocation of any Web service in an asynchronous way.

Asynchronous Return
Mechanism

A service implementation returning the results of a call to Systinet
Server in an asynchronous way.

Asynchronous Transport
Coupling

Sending the response from a Web service invocation over a different
transport channel than the one on which the request came.

Authentication The process of establishing the validity of a claimed identity, it usually
consists of two steps: 1/ identification - presenting identity credentials
to the security system, 2/ verification - generating identity that
corroborates the binding between the identity principals and credentials.

Authorization The process of determining what types of activities are permitted.
Usually, authorization is in the context of authentication. Once you

736

have authenticated principals, they may be authorized different types
of access or activity.
See also Authentication.

BEA WebLogic Application
Server

An application server provided by BEA Systems, Inc.

Binding Template For a businessService entry, a list of binding templates that point to
specifications and other technical information about the service is
associated. For example, a binding template might point to a URL that
supplies information on how to invoke the service. The binding template
also associates the service with a service type.
See also Universal Description, Discovery and Integration.

Borland Application Server An application server provided by the Borland Software Corporation.

Borland Enterprise Server An application server provided by Borland Software Corporation.

Business Entity A representation of information about a business. Each business entity
contains a unique identifier, the business name, a short description of
the business, some basic contact information, a list of categories and
identifiers that describe the business, and a URL pointing to more
information about the business.
See also Universal Description, Discovery and Integration.

Business Policy A set of requirements, codified in Technical Policies, and their
associations with a set of artifacts in an SOA. A Business Policy should
always represent a course of action that is needed to achieve a particular
business objective.

Systinet business policies are covered by the WS-PolicyAttachment
specification
[http://msdn.microsoft.com/webservices/default.aspx?pull=/library/en-
us/dnglobspec/html/ws-policyattachment.asp].
See also Technical Policy.

Business Service A structure associated with a businessEntity that consists of a list of
businessService structures offered by the businessEntity. Each
businessService entry contains a business description of the service, a

737

http://msdn.microsoft.com/webservices/default.aspx?pull=/library/en-us/dnglobspec/html/ws-policyattachment.asp
http://msdn.microsoft.com/webservices/default.aspx?pull=/library/en-us/dnglobspec/html/ws-policyattachment.asp

list of categories that describe the service, and a list of pointers to
references and information related to the service.
See also Universal Description, Discovery and Integration.

C# A modern, object-oriented language that enables programmers to build
a applications for the Microsoft .NET platform.

Catalina Servlet Container A Tomcat 4.0 servlet container. Tomcat is the servlet container that is
used in the official Reference Implementation for the Java Servlet and
JavaServer Pages technologies.

Certificate An electronic identifier from a certification authority that includes the
certification authority signature made with its private key. The
authenticity of the signature is validated by other users who trust the
certification authority public key.
See also Certification Authority.

Certificate Chain A list of Certificates (usually X.509 Certificates), starting with a
certificate for a given subject that is signed by the authority represented
by the next certificate in the list. This list usually ends with the root
certification authority certificate.
See also X.509.

Certificate Revocation List A data structure that enumerates digital certificates that have been
invalidated by their issuer prior to when they were scheduled to expire.
See also Certificate.

Certification Authority An entity that issues digital certificates (especially X.509 certificates)
and vouches for the binding between the data items in a certificate.
See also X.509.

Client Package Client side-specific information needed to invoke a specific Web service.
This usually consists of a deployment descriptor and custom code, such
as header processors, interceptors, serializers.

Client Profile (in Systinet
Developer)

A set of client packages and additional configuration, such as security
settings.
See also Client Package.

738

Clustering The act of connecting multiple computers and making them act like a
single machine. Corporations often cluster servers to distribute
computing-intensive tasks and risks. If one server in a cluster fails,
some operating systems can move its processes to another server,
allowing end users to continue working while the first server is revived.

Content Based Routing (CBR) An advanced and easy to use technique for message routing based on
message content.
See also XPath.

Credentials Data that is transferred to establish the claimed identity of an entity.
According to RFC2828, a credential is the information one entity
presents to another to authenticate the other's identity.

CRL See Certificate Revocation List.

CTS (Common Types System) A definition of how types work within runtime (their declaration and
usage), which enables types in one language to interoperate with types
in another language, including cross-language exception handling.
See also .NET.

DMZ (Demilitarized Zone) An unprotected server on which all parties have access to everything.
A web server may be put in the DMZ while the assets it accesses, such
as databases, remain behind a firewall. It works in conjunction with
transport layer security.
See also TLS.

Deploy Service A System Web service that is used to deploy packages to a Systinet
Server.

Deploy Tool A part of Systinet Server that deploys and undeploys deployment
packages to Systinet Servers.

Deployed Web service (in
Systinet Developer)

A Web service that is assigned to a particular Deployment Package in
the Project.
See also Deployment Package.

Deployment The process of installing a deployment package to particular Systinet
Server.

739

See also Deployment Package, Deployment Descriptor.

Deployment Descriptor An XML document describing a package.
See also Deployment.

Deployment Package A definition of Web services plus deployment information.
See also Deployment.

Deserialization The process of creating Java objects out of a SOAP message.

Deserializer A class that creates a Java object and fills it with the data from a SOAP
message.

Distinguished Name A distinguished name (DN) is a set of attribute values that identify the
path leading from the base of the directory information tree to the object
that is named. An X.509 public-key certificate or CRL contains a DN
that identifies its issuer, and an X.509 attribute certificate contains a
DN or other form of a name that identifies its subject.
See also Certificate, X.509.

Document/Literal One possible encoding for a SOAP message, indicating that the message
must strictly follow a schema written in the WSDL Document.

DOM Document Object Model - a tree of objects with interfaces for traversing
the tree and writing an XML version of it, as defined by the W3C
specification.

DOM element A structure representing an XML element as defined by DOM.

Dynamic Call Constructing and issuing a request whose signature is possibly not
known until runtime.

Dynamic Invocation Constructing and issuing a request whose signature is possibly not
known until runtime.

EAR File Applications deployed on an application server are usually delivered
as one compressed file with .ear extension. The file may contain
software components, web applications, and resources.

740

EJB Enterprise JavaBean.

Embedded Server The Systinet Server in Systinet Developer that is used for testing
purposes. It is tightly bound with the IDE.

Encoded Serialization Serialization that uses an encoding layer to read/write data.

Endpoint A referenceable entity (using, for example, a URL or URI).

Entity JavaBean The kind of EJB that provides an object view of data in the database.
See also EJB.

Exception (Unhandled Java
Exception)

An event during program execution that prevents the program from
continuing normally.

Forte For Java Sun Microsystems Forte For Java. An IDE for development of Java
applications. It was a branded and commercial version of NetBeans;
now it is named Sun ONE Studio (SOS). Systinet Developer for Sun
ONE Studio is a plug-in that can be plugged into SOS and lets
developers develop Web service based applications right in the IDE.
See also Sun ONE Studio.

GSS-API Generic Security Services API (GSS-API) is a programming interface
that allows two applications to establish a security context independent
of the underlying security mechanisms. Specified in RFC-2743.
See also Security Mechanism.

Header A part of a SOAP message usually carrying some metadata.

Header Processor A Java class for parsing/creating headers.

HTTP HyperText Transfer Protocol. The Internet protocol, based on TCP/IP.

HTTPS HyperText Transfer Protocol layered over the SSL protocol.
See also HTTP, Security Mechanism.

IBM WebSphere Application
Server

An application server provided by the International Business Machines
Corporation.

741

Identity Information that is unique within a security domain and that is
recognized as denoting a particular entity within that domain.

IETF Internet Engineering Task Force (www.ietf.org).

IIS (Internet Information
Services)

A secure platform for building and deploying business applications,
hosting and managing Web sites, and publishing and sharing information
across a company intranet or the Internet.

In Parameter A parameter that is passed from client to server.

In/Out Parameter A parameter that is passed in both directions. For example, it may
contain an input value for the server and the processed result for the
client.

Incoming Message A message that is sent to Systinet Server runtime. On the client side,
this is a response message. On the server side, a request message.

Initiating Security Provider A security provider that is responsible for initiating and maintaining
secure communication from the client to the server side.
See also Security Provider.

Interceptor A class for intercepting (that is, inspecting or modifying) the content
of a message.

J2EE Application Server An application server that is compliant with the J2EE specification
published by Sun Microsystems Incorporated.

J2EE Specification The Java 2 Platform, Enterprise Edition specification published by Sun
Microsystems Incorporated.

JAAS The Java Authentication and Authorization Service (JAAS) is a set of
Java packages that enable services to authenticate and enforce access
controls upon users.
See also Authentication, Authorization, Access Control.

JAR File A file compressed using the Java Archive (JAR) file format.

742

Java Collections A set of collections defined by the Java Platform specification
(java.util.Map, java.util.Set, java.util.List).

Java Security A set of Java security concepts based on the security framework
provided by Java itself.
See also JSSE, JCE, JAAS.

Java2WSDL tool A tool for converting Java classes and/or interfaces into their WSDL
description.

JavaBeans Activation
Framework

Standard services used to determine the type of an arbitrary piece of
data, encapsulate access to it, discover the operations available on it,
and to instantiate the appropriate bean to perform said operation(s).

JAX-RPC A standard created by Sun's Java Community Process (#101) intended
as a high-level API for calling Web services.

JAXM A standard created by Sun's Java Community Process (#67) intended
as a low-level API for calling Web services.

JBoss Application Server An open source Application Server available from JBoss.

JCE The Java Cryptography Extension - a set of packages that provide a
framework and implementations for encryption, key generation and
key agreement, and Message Authentication Code (MAC) algorithms.
Support for encryption includes symmetric, asymmetric, block, and
stream ciphers. The software also supports secure streams and sealed
objects.

JDBC Java DataBase Connectivity (JDBC) Data Access API.

JMS The Java Message Service API.

JMS Destination For sending and receiving messages, JMS uses a destination, which
may be either JMS Topic or JMS Queue.
See also JMS.

JMS Message A message sent by the Java Message Service.
See also JMS.

743

JMS Provider A provider of JMS administered objects, such as JMS Queue or JMS
Queue Connection Factory.
See also JMS.

JMS Queue Used by the Java Message Service in Point-to-Point communications.
See also JMS.

JMS Queue Connection Factory Used by the Java Message Service in Point-to-Point communications
for creating JMS Connections.
See also JMS.

JMS Topic Used by the Java Message Service in Publish/Subscribe
communications.
See also JMS.

JMS Topic Connection Factory Used by the Java Message Service in Publish/Subscribe communications
for creating JMS Connections.
See also JMS.

JMS Transport A pluggable transport that enables the sending of SOAP messages using
the Java Message Service.
See also JMS.

JNDI The Java Naming and Directory Interface; provides support for the
common features of naming services including COS (Common Object
Services), DNS (Domain Name System), LDAP (Lightweight Directory
Access Protocol), and NIS (Network Information System).
See also LDAP.

JNDI Lookup A lookup based on a unique JNDI name that returns an object bounded
in the JNDI namespace.
See also JNDI.

JNDI Property To use a specific implementation of JNDI, JNDI properties might be
required to be set in the environment.
See also JNDI.

JSSE The Java Secure Socket Extension - a set of Java packages that enable
secure Internet communications. It implements a Java version of SSL

744

(Secure Sockets Layer) and TLS (Transport Layer Security) protocols
and includes functionality for data encryption, server authentication,
message integrity, and optional client authentication. Using JSSE,
developers can provide for the secure passage of data between a client
and a server running any application protocol (such as HTTP, Telnet,
NNTP, and FTP) over TCP/IP.

JTA The Java Transaction API.

Kerberos A system developed at the Massachusetts Institute of Technology that
uses passwords and symmetric cryptography (DES) to implement a
ticket-based, peer-entity authentication service and an access control
service distributed in a client-server network environment.

Key Short for Cryptographic Key - an input parameter that varies the
transformation performed by a cryptographic algorithm.

Key Entry An entry in the key store consisting of an alias, a cryptographic key,
and a certificate chain.
See also Alias, Key Store, Key, Certificate Chain.

Key Store A Systinet Server component responsible for management of key entries.
See also Key Entry.

LDAP Lightweight Directory Access Protocol (RFC-1777) - a client-server
protocol that supports basic use of the directory servers, that is, database
servers or other systems that provide information (such as digital
certificates or CRL) about an entity whose name is known.
See also Certificate, CRL.

Library Package Java class packages that provide their classes to other deployed
packages. Java classes deployed in Systinet Server are normally
accessible only inside their own packages.

Literal Serialization Serialization driven only by XML Schema-type definitions.

Load-Balancing Distributing processing and communications activity evenly across a
computer network so that no single device is overwhelmed.

745

Local Name A local part (without namespace) of a Qname.
See also Qualified Name.

Message Data plus meta-information indicating how it is to be routed and
handled. An example of a message is a SOAP message or transport-
level message.

Message Processing The process through which a message is processed by interceptors,
serializers, and deserializers.

MIME Multipurpose Internet Mail Extensions - a standard for sending data
with attachments. This standard is set out in RFCs 2045, 2046, 2047,
and 2048.

MOM Message Oriented Middleware. An integration paradigm based on
asynchronous message exchange.

Multipart Content Content encoded in accordance with the MIME specification.

Namespace Namespaces are typically established to distinguish between multiple
interpretations of a single token or phrase. For example, a "nut" in the
"food" namespace is something to eat, while in the "hardware"
namespace something to fasten to a bolt (something you would not
want to attempt with a "food:nut" and vice-versa). In XML, it can be
thought of as a collection of names, identified by a URI reference
[RFC2396], that are used in XML documents.

NetBeans An open source platform primarily used for development of Java
applications; it has evolved into a Tools Platform. The commercial and
branded version of NetBeans is a product called Sun ONE Studio
(formerly Sun Forte For Java).
See also Sun ONE Studio.

OASIS Organization for the Advancement of Structured Information Standards
(http://www.oasis-open.org) - an international, not-for-profit consortium
that designs and develops industry standard specifications for
interoperability based on XML.

Orion Application Server An Application Server available from IronFlare AB of Sweden.

746

Out Parameter A parameter that is sent from the server to the client.

Outgoing Message A message sent out during Systinet Server runtime. On the client side,
this message is called a request; on the server side, it is a response.

Package Manager (in Systinet
Developer)

A part of a Systinet Server representation/Client Profile that is
responsible for management of deployment/client packages. It also lets
you view the installed packages and their Web services.

Package, Client Package See Client Package.

Package, Library Package See Library Package.

Package, Server Package See Server Package.

Permission An action that can be performed on a particular resource by a specific
principal or role.

PDP- Policy Decision Point A logical entity that is responsible for authorizing or denying access to
services and/or resources.

Ping Service A ping service is a System Web service that can be used as a lightweight
method for determining whether a Systinet Server is running.

PKCS The Public-Key Cryptography Standards are specifications produced
by RSA Laboratories in cooperation with secure systems developers
worldwide for the purpose of accelerating the deployment of public-
key cryptography.

PKI Public-Key Infrastructure - a system of certification authorities (and,
optionally, other supporting servers and agents) that perform some set
of certificate management, archive management, key management, and
token management functions for a community of users in an application
of asymmetric cryptography.
See also Certification Authority.

PEP - Policy Enforcement Point A logical entity that enforces policy decisions.

747

POP, POP3 Post Office Protocol - a protocol for retrieval of email messages from
mail servers.
See also POP3 server.

POP3 server A mail server that supports the POP3 protocol from retrieval of email
messages.
See also POP, POP3.

Port A part of WSDL that binds an endpoint address and its interface.

PortType Part of a WSDL document that describes the interface of a service.
See also WSDL.

Principal An entity whose identity can be authenticated. A principal can represent
any entity, such as an in individual, a corporation, or a login id.

Protected Store A Systinet Server component consisting of a user store and key store.
See also User Store, Key Store.

Proxy Host The host name of a proxy server.

Proxy Port Port number of a proxy server.

Proxy, dynamically generated A Java object that acts as a proxy to a Web service. Invoking methods
on this object results in a SOAP request and response exchange with
the Web service.

Public Cloud A Universal Business Registry where businesses can describe and
publish their web services to the general public.
See also UBR.

Publisher Assertion A structure that allows you to emphasize a relationship between two
Business Entities.
See also Universal Description, Discovery and Integration.

QName See Qualified Name.

Qualified Name A name that consists of a namespace and a unique name from that
namespace.

748

See also Namespace.

Receiver A referenceable entity that accepts messages. This can be overseen as
a Web service, an asynchronous endpoint, or a stub/proxy that accepts
a response.

Reference A reference to data that are defined in another part of the message. An
example might be a reference to the next MIME part of a message or
a reference to repeated Java objects.

Reliability The ability of messages to be delivered regardless of software
component, system, or network failures.
See also WS-ReliableMessaging.

Remote Debugging (in Systinet
Developer)

Debugging of Web services that are deployed to a remote Systinet
Server. In Systinet Server for Java Developer, you can place a breakpoint
into your Web service source code, switch-on Remote Debugging
Support for Systinet Server and debug this Web service remotely even
when it is running on a remote machine.

Remote Server In Systinet Developer, you have a list of Systinet Servers that you can
work with. You can register any running Systinet Server into this list
so you can work with it (remotely manage this server, deploy Web
services to this server etc.).

REST REpresentational State Transfer is an architectural module used to
implement networked IT systems. The modeling of communication
between components is similar to that used by HTTP. The main
distinguishing features of this model relate to resources.

Return Value A single value returned from a service.

Role A category that applies to a set of principals.

RFC An IETF Request For Comments (see http://www.ietf.org/rfc) - usually
a standard or a recommendation.

749

RPC Remote Procedure Call - an extension of a common procedure call used
inside one application to span multiple processes running on multiple
hosts.

RPC/Encoded One possible SOAP message encoding, indicating that the message
format is logically given by the XML schema present in the WSDL.
The physical representation of the message is given by the encoding of
the message.
See also WSDL.

SAML Security Assertions Markup Language - an XML framework for
exchanging security information over the Internet. SAML enables
disparate security services systems to interoperate. It resides within a
system's security mechanisms to enable exchange of identities and
entitlements with other services.

Scalability How well a system can adapt to increased demands. For example, a
scalable network system would be one that can start with just a few
nodes, but easily expand to thousands of nodes.

Schema Type Defines the type of a part of XML data.

Security Manager The component of Systinet Server responsible for security management.

Security Mechanism A mechanism that implements a security function. Some examples of
security mechanisms are authentication exchange, checksum, digital
signature, encryption, and traffic padding.

Security Provider A provider for particular security mechanism(s).
See also Security Mechanism.

Sender An entity that sends messages.

Sequence Owner A load balancer node that handles all the messages in a WS-RM reliable
managing sequence. The reliable message sequence corresponds to a
load balancer session.
See also WS-ReliableMessaging.

750

Serialization The process by which binary objects are written into a structured stream;
for example, when Java objects are written into a SOAP message.

Serializer A class that writes a Java object into a SOAP message.

Server Package The package that holds all the service-related files.
See also Deployment Package, Deployment.

Service Class The implementation class of the Web service.

Service Endpoint A single endpoint of a service instance with an associated path and
additional configuration (such as header processors, serializers, etc.).

Service Instance A service class instance registered in Systinet Server for Java.

Service Lookup See Web Service Lookup.

Service Manager A component of Systinet Server that is responsible for management of
deployed Web services.

Service State The current state of a service instance; for example, Offline, Starting,
Running, Stopping, Stopped.

Service, Asynchronous Java
Service

A Web service implemented in Java that returns the results of an
invocation in an asynchronous manner.

Service, Java Service A Web service implemented in Java that handles the messages using
Java types representation of their content.

Service, Raw Service A Service written in Java that handles the messages using a low-level
transport message API.

Service, XML Service A Service written in Java that handles the messages using the low-level
SOAP Message API.

Servlet The basic part of Java Servlet Technology.

Servlet Container A container application that allows servlets to run.
See also Servlet.

751

Single Login A system of applications, where a principal (user) authenticates with
one system entity (called identity provider) and has that authentication
honored by other system entities (called service providers or partners).
See also SSO (Single Sign-On).

SMTP Simple Mail Transfer Protocol - a protocol for sending email messages
between servers. Most email systems that send mail over the Internet
use SMTP to send messages from one server to another; the messages
can then be retrieved with an email client using either POP or IMAP.
In addition, SMTP is generally used to send messages from a mail client
to a mail server.

SMTP Server A mail server that supports the SMTP protocol for email transfer.
See also SMTP.

SOAP Simple Object Access Protocol - a lightweight protocol based on XML
for the exchange of information in a decentralized, distributed
environment.

SOAP Body The part of a SOAP message that contains the actual data.
See also SOAP.

SOAP Digital Signature The W3C document SOAP Security Extensions: Digital Signature
specifies the syntax and processing rules for a SOAP header entry to
carry digital signature information within a SOAP 1.1 Envelope.
See also SOAP, SOAP Header, SOAP Envelope, XML Signature.

SOAP Envelope The root element of a SOAP message. It contains exactly one body sub-
element and optionally one header sub-element.
See also SOAP.

SOAP Fault Used to return errors that occur during the routing/processing of a SOAP
message.
See also SOAP.

SOAP Fault-Actor Part of a SOAP Fault. It provides information about who/what caused
the fault.
See also SOAP Fault.

752

SOAP Fault-Code Part of a SOAP Fault. It provides an numeric identification of the fault.
See also SOAP Fault.

SOAP Fault-Detail Part of a SOAP Fault that provides more details about the fault. In
Systinet Server for Java, this element usually contains a server stack
trace.
See also SOAP Fault.

SOAP Header The part of soap message that contains metadata (for example,
authentication information or instance identification) of the message.
See also SOAP Body.

SOAP Message A message encoded in accordance with the SOAP specification.
See also SOAP.

SOAP with Attachments Binding for a SOAP message to be carried within a MIME
multipart/related message in such a way that the processing rules for
the SOAP 1.1 message are preserved.
See also SOAP.

SOAPSpy A SOAP message-tracking tool that scans communication between the
client and sever. The communication is visually displayed. You can
also manually change and send the messages.
See also SOAP.

SOS See Sun ONE Studio.

SPKM Simple Public Key Mechanism - a security mechanism specified by the
IETF in RFC-2025.

SQL Statement A statement of the Structured Query Language.

SSJ Abbreviation for Systinet Server for Java™.

SSL The Secure Sockets Layer (SSL) and Transport Layer Security (TLS)
protocols were designed to help protect the privacy and integrity of
data while it is transferred across a network. The Internet Engineering
Task Force (IETF) standard called Transport Layer Security (TLS) is
based on SSL.

753

See also TLS.

SSO (Single Sign-On) A system that enables a user to access multiple computer platforms or
application systems after being authenticated only once.
See also SAML, Kerberos.

Static Invocation Constructing a request at compile time. Calling an operation via a proxy
procedure.

Stub A statically-generated service interface, which in turn dynamically
generates the proxy during runtime.

Subject A grouping of related information for a single entity, such as a person.
Such information includes the Subject's identities, as well as its security-
related attributes (passwords and cryptographic keys, for example).
See also Identity.

Sun ONE Studio Sun ONE Studio (formerly Sun Forte For Java) is an IDE for
development of Java applications. It is a branded and commercial
version of NetBeans. Systinet Developer for Sun ONE Studio is a plug-
in that can be used with SOS and lets developers develop Web service-
based applications in the IDE.
See also NetBeans.

Systinet Developer A product of Systinet Corporation that lets developers create, test,
debug, and manage Web services using their favorite IDE. Systinet
Developer is a plug-in that enhances IDEs such as Sun Microsystems
Sun ONE Studio, Borland JBuilder, and IBM Eclipse.

Systinet Server for Java
Application Directory

A directory to which the WASP_HOME parameter points.
See also Deployment, WASP_HOME.

Systinet Server for Java Root
URL

The URL where Systinet Server runs. The Global URL of the Web
service running on Systinet Server is <Systinet Server for Java Root
URL> + <path of the Service Endpoint>.

System Web Services Web services can be categorized into three groups: System, Application,
and Utility Web services. System Web services facilitates fundamental

754

functions such as service deployment, administration and security
settings management.

Target Namespace In WSDL, XML Schema, or a deployment descriptor document, the
namespace into which the content of the document is placed.

Technical Policy A set of assertions that represent a business requrement. Technical
policies are associated with SOA artifacts to which the requirement
applies; a set of technical policies and associated artifacts forms a
Business Policy.

In WS-Policy terms, a Systinet technical policy = WS-Policy + name
+ documentation.
See also Business Policy.

TLS Transport Layer Security protocol. Its primary goal is to provide privacy
and data integrity between two communicating applications. The first
version of TLS is described in RFC-2246.
See also SSL.

tModel A structure that takes the form of keyed metadata (data about data). In
a general sense, the purpose of a tModel within the UDDI registry is
to provide a reference system based on abstraction. Among the roles
that a tModel plays in UDDI is the ability to provide and to describe
compliance with a specification or concept to a taxonomy, for example.

Tomcat Servlet Container The servlet container that is used in the official Reference
Implementation for the Java Servlet and JavaServer Pages technologies.

Transport A component of Systinet Server that is responsible for transferring
messages to a Web service using particular transport protocol.

Transport Message A message accessible via Systinet Server Transport API.
See also Message.

Transport Repository A repository of all Systinet Server transports.

Trusted Certificate Entry An entry managed by the key store that represents a trusted certificate
or certificate chain.

755

See also Key Store, Certificate Chain.

UBR Universal Business Registry (also known as Public Cloud) - a set of
UDDI Registries that form a global distributed registry of information
about Web services. Note that UBR nodes (members of the Public
Cloud) are run by Microsoft, IBM, SAP, HP, and NNTP. They replicate
the content of Public Cloud.

UDDI See Universal Description, Discovery and Integration.

UDDI Green Pages UDDI accepts and organizes three types of information into three broad
categories: White, Yellow, and Green Pages. Green Pages hold the
technical information about services that are exposed by the business,
including references and interfaces to the services a company can
deliver.

UDDI Inquiry Port Every UDDI Registry implementation provides two ports with which
you can interact: inquiry and publishing. The inquiry port allows you
to browse and search information that is published to a UDDI Registry.

UDDI node The UDDI node is a collection of Web services, each of which
implements the APIs in a UDDI API set, and that are managed according
to a common set of policies. Typically, a node consists of at least an
implementation of the Inquiry, the Publication, and the Custody and
Ownership Transfer API sets; often a node will implement additional
API sets such as Subscription and Replication.

UDDI Operator A UDDI Operator is a role of a person who sets node policy and runs
a node. There is exactly one operator for a given node.

UDDI Publishing Port Every UDDI Registry implementation provides two ports with which
you can interact with: inquiry and publishing. The publishing port allows
you to publish information about your Web services.

UDDI Registry A UDDI Registry is an implementation of the UDDI specification that
allows Web service vendors to register information about the Web
services they offer so that others can find them.

756

UDDI White Pages UDDI accepts and organizes three types of information into three broad
categories: White, Yellow, and Green Pages. White Pages include
address, contact, and known identifiers.

UDDI Yellow Pages UDDI accepts and organizes three types of information into three broad
categories: White, Yellow, and Green Pages. Yellow Pages include
industrial categorizations based on standard taxonomies.

Undeployment Undeployment is a process of uninstalling deployed packages from
Systinet Server.
See also Deployment.

Universal Description,
Discovery and Integration

UDDI is a specification for distributed Web-based information registries
of Web services.

Updatable Policy A Systinet Server component responsible for management of access
control lists.
See also ACL.

URI Uniform Resource Identifier - the generic term for all types of names
and addresses that refer to objects on the World Wide Web. A URL is
one kind of URI.

URL Uniform Resource Locator - the global address of documents and other
resources on the World Wide Web. The first part of the address indicates
what protocol to use and the second part specifies the IP address or the
domain name where the resource is located.

User Any person who interacts directly with a computer system. Note that
'users' do not typically include 'operators,' 'system programmers,'
'technical control officers,' 'system security officers,' and other system
support personnel.

User Group A named collection of user identifiers.
See also User.

User Property In the context of Systinet Server for Java, a user attribute that can be
stored in the user store.
See also User Store.

757

User Store A Systinet Server component responsible for management of user
(security) properties, such as passwords and certificates.

Utility Web services Web services can be categorized into three groups: System, Application,
and Utility Web. A Utility Service typically provides commonly required
functionality utilized by any Application Web service. It provides an
easy way for developers to reuse common functions to produce more
reliable code and reduce redundancy.

UUID Universally Unique Identifier as used in http://www.ietf.org/
recommendations or drafts.

WAR File A format for compressing files, similar to a JAR file. Web applications
that may be deployed to an application server are often compressed
into WAR files.
See also JAR File.

WASP, WASP Server for Java The former name of Systinet Server for Java™.

WASP_HOME The directory where the Systinet Server distribution is installed.

WaspPackager Tool A part of Systinet Server for Java that creates deployment packages
that can be deployed to Systinet Servers or client packages that are used
for Web service Clients.
See also Deployment, Deployment Package, Client Package.

Web Service Loosely coupled software components delivered over Internet standard
technologies.

Web Service Client An application that uses Web services.

Web Service Debugger (in
Systinet Developer)

A special kind of Sun ONE Studio Debugger Type that must be used
for debugging Web service clients. This Debugger Type ensures the
correct initialization of the client part of Systinet Server for Java.

Web Service Executor (in
Systinet Developer)

A special kind of Sun ONE Studio Executor that must be used for
running Web service Clients. This Executor ensures the correct
initialization of the client part of Systinet Server for Java.

758

http://www.ietf.org/

Web Service Lookup A process through which a remote Web service is bound to a Java
interface. The result of this process is a Java stub for the Web service.

Web Services Description
Language Utility (wsdl.exe)

Used to generate code for XML Web service clients and XML Web
services using ASP.NET from WSDL contract files and XSD schemas.

WSDL An XML-based language that describes an interface of a Web service
plus information on how to call the Web service and where to find it.

WSDL Compiler The previous name for WSDL2Java, a Systinet Server tool that converts
a WSDL document into Java code.

WSDL Compiler tool See WSDL Compiler.

WSDL Compiler Web service Former name of the WSDL2Java Web service, a utility Web service
that offers SOAP access to the WSDL2Java tool used for the generation
of Java source files from a WSDL document.

WSDL Operation Part of a WSDL Document representing the interface of an operation
that can be invoked on a Web service.

WSDL Port Part of a WSDL Document that binds the endpoint of a service with an
interface.

WSDL Service Part of WSDL Document that specifies the set of endpoints that define
one logical service.

WS-Addressing A protocol that provides transport-neutral mechanisms to address Web
services and messages. Specifically, WS-Addressing defines XML
elements to identify Web service endpoints and to secure end-to-end
endpoint identification in messages. It enables messaging systems to
support message transmission through networks that include processing
nodes such as endpoint managers, firewalls, and gateways in a transport-
neutral manner.

For more information, please see the WS-Addressing specification.
[http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/dnglobspec/html/ws-addressing.asp]

759

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnglobspec/html/ws-addressing.asp

WS-Eventing Specification which describes a protocol that allows Web services to
subscribe to or accept subscriptions for event notification messages.

For more information, please see the WS-Eventing specification.
[http://msdn.microsoft.com/webservices/community/workshops/default.aspx?pull=/library/en-
us/dnglobspec/html/ws-eventing.asp]

WS-Policy The Web Services Policy Framework (WS-Policy) provides a general
purpose model and corresponding syntax to describe and communicate
the policies of a Web Service. WS-Policy defines a base set of constructs
that can be used and extended by other Web Services specifications to
describe a broad range of service requirements, preferences, and
capabilities.

For more information, please see the WS-Policy specification.
[http://msdn.microsoft.com/webservices/default.aspx?pull=/library/en-
us/dnglobspec/html/ws-policy.asp]

WS-ReliableMessaging A protocol that allows messages to be delivered reliably between
distributed applications in the presence of software component, system,
or network failures. Is used in conjunction with other specifications
and application-specific protocols within the SOAP [SOAP] and WSDL
[WSDL] extensibility model. The draft version of this protocol was
known as WS-Reliability.

For more information, please see the WS-ReliableMessaging
specification.
[http://msdn.microsoft.com/webservices/default.aspx?pull=/library/en-
us/dnglobspec/html/ws-reliablemessaging.asp]

WS-RM See WS-ReliableMessaging.

WS-Security WS-Security describes enhancements to SOAP messaging to provide
quality of protection through message integrity, message confidentiality,
and single message authentication. It enables the user to encrypt and/or
sign individual SOAP messages.

Systinet Server for Java provides an implementation of OASIS' working
draft 13 [http://www.oasis-open.org]. It is based on a Systinet-modified

760

http://msdn.microsoft.com/webservices/community/workshops/default.aspx?pull=/library/en-us/dnglobspec/html/ws-eventing.asp
http://msdn.microsoft.com/webservices/default.aspx?pull=/library/en-us/dnglobspec/html/ws-policy.asp
http://msdn.microsoft.com/webservices/default.aspx?pull=/library/en-us/dnglobspec/html/ws-reliablemessaging.asp
http://msdn.microsoft.com/webservices/default.aspx?pull=/library/en-us/dnglobspec/html/ws-reliablemessaging.asp
http://www.oasis-open.org
http://www.oasis-open.org

version of Apache XML-Security package 1.0.4
[http://xml.apache.org/security].

For more information, please see the WS-Security specification.
[http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/dnglobspec/html/ws-security.asp]

X.509 Part of the ITU-T X.500 specification that defines a framework to
provide and support data origin authentication and peer entity
authentication services, including formats for X.509 public-key
certificates, X.509 attribute certificates, and X.509 CRLs.
See also CRL.

XKMS The XML Key Management Specification - a specification designed
to extend the public key infrastructure (PKI) model by using XML to
provide new levels of ease and interoperability when implementing
secure applications.
See also PKI, XML.

XML eXtensible Markup Language - a W3C-sponsored format for structured
documents and data, used mostly on the Web.

XML Canonicalization A method for generating a physical representation, the canonical form,
of an XML document that accounts for permissible changes or variations
in syntax. It is a reduction of a document to a standard minimal form
useful, among other things, for document or structure comparisons.
Except for limitations regarding a few unusual cases, if two documents
have the same canonical form, then the two documents are logically
equivalent within the given application context.

XML Encryption A standard that specifies the process for encrypting data and representing
the result in an XML document. The data may be an XML element, or
XML element content, or any arbitrary data (including an XML
document).
See also XML, XML Signature.

XML protocol A communication or messaging protocol based on XML.

761

http://xml.apache.org/security
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnglobspec/html/ws-security.asp

XML Schema A means for defining the structure, content and semantics of XML
documents through XML itself. It defines a richer set of data types -
such as booleans, numbers, dates and times, and currencies - than the
more traditional DTD. XML Schemas make it easier to validate
documents based on namespaces. It is defined in the W3C's XML
Schema Working Group.

XML Signature A way of providing integrity, message authentication, and/or signer
authentication services for data of any type, whether located within the
XML that includes the signature or elsewhere.
See also XML, XML Encryption.

XPath A language for addressing parts of an XML document. See XPath 1.0
[http://www.w3.org/TR/xpath] and XPath 2.0
[http://www.w3.org/TR/2004/WD-xpath20-20041029/].
See also XSLT, XQuery, Content Based Routing (CBR).

XQuery A query language able to express queries across data structured as XML.
The result of an XQuery program is also XML. XQuery can be viewed
as a transformation language. See XQuery 1.0
[http://www.w3.org/TR/2004/WD-xquery-20041029/].
See also XPath.

XSLT A language for transforming XML documents to other XML documents
or more generally any text output. Its expressive power is greater than
XQuery. Hence it is more universal. See XSLT 1.0
[http://www.w3.org/TR/xslt] and XSLT 2.0
[http://www.w3.org/TR/xslt20/].
See also XPath, XQuery.

762

http://www.w3.org/TR/xpath
http://www.w3.org/TR/2004/WD-xpath20-20041029/
http://www.w3.org/TR/2004/WD-xquery-20041029/
http://www.w3.org/TR/xslt
http://www.w3.org/TR/xslt20/

	HP SOA Registry Foundation
	Contents
	1 Read This First
	HP SOA Registry Foundation Features Overview
	Release Notes
	What's New
	Known Issues
	UDDI Version 3 Specification
	UDDI Version 2 Specification
	Database
	Other

	Change Log
	Systinet Registry 6.5
	Systinet Registry 6.0
	Systinet Registry 5.5
	Systinet Registry 5.0
	WASP UDDI 4.6
	WASP UDDI 4.5.2
	WASP UDDI 4.5.1
	WASP UDDI 4.5
	WASP UDDI 4.0

	Supported Platforms
	Specifications
	Document Conventions
	Documentation Updates
	Support
	Mercury Product Support
	HP Software Support

	Legal
	Third Party Licenses
	HSQLDB License
	The Apache XML License, Version 1.1
	Apache Jakarta License, Version 1.1
	CUP Parser Generator
	Jetty License, Version 3.6
	W3C Software Notice and License
	Xalan, Version 2.5.1
	XML Pull Parser for Java, 1.1.1
	Unix crypt(3C) utility

	Notices
	Legal Notices
	Acknowledgements

	2 Installation Guide
	System Requirements
	Hardware
	Java™ Platform
	Relational Database

	Installation
	Command-line Options
	Installation Panels
	Evaluation Key
	Installation Type
	SMTP Configuration
	Setup Administrator Account
	Database Settings
	Direct deployment
	Server Settings
	Single Login
	Confirmation and Installation Process

	Installation Summary
	Directory Structure
	Registry Endpoints
	Pre-installed Data

	Command-line Scripts
	serverstart
	serverstop
	server
	Setup
	Signer
	register
	SoapSpy
	PStoreTool
	env

	Reconfiguring After Installation
	Server Properties
	Windows Services
	Logs
	Troubleshooting

	Licensing and Evaluation
	Obtaining an Evaluation License Key
	Entering the License Key
	Extending the Evaluation Period
	GUI Version
	Command-line Version

	Evaluation Limitations

	Server Configuration
	Server Configuration
	SMTP Configuration

	Database Installation
	Database Creation Method
	Select Database Type
	Preconfigured HSQL
	Oracle
	MSSQL 2000 or 2005
	DB2
	HSQL
	JDBC Driver
	Account Backend
	Multilingual Data
	HSQL
	MSSQL
	Oracle
	DB2

	JDBC Drivers
	Alternative JDBC Drivers

	External Accounts Integration
	LDAP
	LDAP with a Single Search Base
	LDAP with Multiple Search Bases
	Multiple LDAP Services
	LDAP over SSL/TLS
	LDAP over SSL Without Client Authentication
	LDAP over SSL With Mutual Authentication
	Ensuring Trust of the LDAP Server

	LDAP Configuration Examples
	SUN One with Single Search Base
	Sun One with Multiple Search Bases
	Active Directory with Single Search Base

	Custom (Non-LDAP)

	Deployment to an Application Server
	Creating a Web Application Archive (WAR,EAR)
	WebLogic
	WebSphere
	Tomcat
	JBoss
	Oracle

	Cluster Configuration
	Cluster operation
	Cluster installation
	Setting Up Security
	Sharing Token Key

	WebLogic specific configuration for use with cluster

	Authentication Configuration
	HTTP Basic
	Netegrity SiteMinder
	SSL Client authentication
	J2EE Server Authentication
	Internal SSL Client Authentication Mapping in J2EE
	Disabling Normal Authentication
	Consoles Configuration
	Outgoing Connections Protected with SSL Client Authentication

	Migration
	Migration During Installation
	Migration After Installation

	Backup
	Backup HP SOA Registry Foundation
	Restore HP SOA Registry Foundation

	NT Service Support
	Installation
	Starting and Stopping
	Logging
	Logging Customization
	Message Priority Settings
	Log File Properties
	Switching to NT Log
	Using other Log4J Appenders

	Customizing
	NT Service Name Change
	JVM Startup Parameters
	HP SOA Registry Foundation deployed to Application Server

	Uninstallation

	Running in Linux
	Using the syslog Daemon with HP SOA Registry Foundation
	Running HP SOA Registry Foundation as a UNIX Daemon

	Uninstallation
	Windows
	Linux

	3 User's Guide
	Introduction to HP SOA Registry Foundation
	UDDI's Role in the Web Services World - UDDI Benefits
	Typical Application of a UDDI Registry
	Basic Concepts of the UDDI Specification
	UDDI Data Model
	Business Entity
	Business Service
	Binding Template
	tModel

	Taxonomic Classifications
	Enterprise Taxonomies
	Checked and Unchecked Taxonomies

	Security Considerations
	Notification and Subscription
	Replication
	UDDI APIs
	Technical Notes
	Benefits of UDDI Version 3

	Subscriptions in HP SOA Registry Foundation
	Subscription Arguments
	Subscription Notification
	XSLT Over Notification
	Suppressing Empty Notifications
	Related Links

	Registry Console
	Demo Data
	Demo Data for Business Service Console
	Demo data for Registry Console and demos

	Advanced Topics
	Data Access Control: Principles
	Explicit Permissions
	Permission Rules
	Composite Operations
	Pre-installed Groups
	ACL tModels
	Setting ACLs on UDDI v3 Structures
	Setting ACLs on UDDI v1/v2 Structures

	Publisher-Assigned Keys
	Generating Keys
	Affiliations of Registries
	Affiliation Setup
	Copying Structures with Key Preservation

	Range Queries
	Examples

	Taxonomy: Principles, Creation and Validation
	What Is a Taxonomy?
	Taxonomy Types
	Validation of Values
	Unchecked Taxonomies
	Checked Taxonomies
	HP SOA Registry Foundation Requirements
	Internal Validation Service

	Types of keyValues
	Custom Ordinal Types

	Taxonomy API
	Predeployed Taxonomies
	WSM Taxonomies
	systinet-com:management:metrics:avg-byte
	systinet-com:management:metrics:avg-byte-input
	systinet-com:management:metrics:avg-byte-output
	systinet-com:management:metrics:avg-hits
	systinet-com:management:metrics:avg-response-time
	systinet-com:management:metrics:errors
	systinet-com:management:metrics:hits
	systinet-com:management:metrics:median-byte
	systinet-com:management:metrics:median-byte-input
	systinet-com:management:metrics:median-byte-output
	systinet-com:management:metrics:median-response-time
	systinet-com:management:metrics:policy-violations
	systinet-com:management:metrics:reference
	systinet-com:management:proxy-reference
	systinet-com:management:server-reference
	systinet-com:management:state
	systinet-com:management:state-change-request-type
	systinet-com:management:system
	systinet-com:management:type
	systinet-com:management:url

	Registry Console Reference
	Register/Create Account
	Register
	Login

	Registry Console Overview
	User Profile
	Create and Manage Groups
	Manage Group Membership
	favorite Taxonomies

	Browsing
	Define Filter
	Define Query

	Searching
	Find Business
	Find Business by Name
	Find Business by Categories
	Find Business by Identifier
	Find Business by Discovery URL

	Find Services
	Find Binding
	Find tModel
	Direct Get
	Direct Get of XML Structures

	Find WSDL
	Find XSD

	Publishing
	Publishing a Business
	Adding a Contact
	Adding a Discovery URL
	Adding a Category
	Adding an Identifier

	Publishing a Service
	Publishing a Binding Template
	Publishing a tModel
	Adding a Category

	Publishing Assertions
	Adding an Assertion
	Accepting an Assertion

	Publishing Subscriptions
	Adding Subscriptions
	Notification Listener Types

	Editing Subscriptions
	Deleting Subscriptions

	Publish Custody Transfer
	Requesting Custody Transfer
	Accepting Custody Transfer

	Publishing WSDL Documents
	Publish WSDL
	Publishing WSDL Documents (Advanced Mode)
	Unpublish WSDL

	Publish XSD
	Publishing an XML Schema
	Publishing an XML Schema (Advanced Mode)
	Unpublish an XML Schema

	Signer Tool
	Starting the Signer
	Main Screen
	Sign
	Validation
	Remove Signatures
	Publish Changes
	Signer Configuration

	4 Administrator's Guide
	Registry Management
	Accessing Registry Management
	Account Management
	Create Account
	Account Limits

	Edit Account
	Delete Account

	Group Management
	Create and Manage Groups
	Manage Group Membership

	Permissions
	Accessing Permission Management
	Add Permission
	Editing and Deleting Permissions
	Assigning Administrator's Permission

	Taxonomy Management
	Finding Taxonomies
	Uploading Taxonomies
	Downloading Taxonomies
	Deleting Taxonomies

	Replication Management
	Master Registry Setup
	Slave Registry Setup

	Replacing UDDI Keys
	Replacing tModel keys
	Replacing businessEntity keys
	Replacing businessService keys
	Replacing bindingTemplate keys

	Registry Statistics
	Management of configuration - User Interface
	Current configurations and their history
	View configuration
	All versions
	Configuration view
	Differences

	Named collections of configuration
	List of named collections
	All Differences
	View collection
	View configuration

	Registry Configuration
	Core Config
	Database
	Security
	Account
	Group
	Subscription
	Node

	Configuration in Database
	Registry Console Configuration
	Web Interface Configuration
	Paging Configuration

	Permissions: Principles
	Permissions Definitions
	HP SOA Registry Foundation Permission Rules
	Setting Permissions
	Permissions and User Roles
	ApiManagerPermission Reference

	PStore Tool
	Commands
	Options
	PStore Tool - GUI Version
	Running the GUI PStore Tool
	Opening and Closing the Protected Store
	Opening Protected Store from a File
	Closing Protected Store

	Open Next Protected Store
	Copy Data Between Protected Stores
	Key Store
	Create New Identity
	Key Store Trust
	Import Alias
	Remove Alias
	Refresh Aliases
	Alias Details Panel

	User Store
	Add User
	Remove User
	Refresh Users
	Add Property
	Remove Property
	Refresh Properties
	User Properties Details Panel

	SSL Tool
	SSL Tool Examples
	Associating an SSL client identity with a registry client

	5 Developer's Guide
	Mapping of Resources
	WSDL
	WSDL PortTypes
	WSDL Bindings
	WSDL Service
	Use Cases

	XML
	XSD
	Use Cases

	XSLT

	Client-Side Development
	UDDI APIs
	Principles To Use UDDI API
	UDDI Version 1
	Inquire
	Publish

	UDDI Version 2
	Inquiry
	Publish

	UDDI Version 3
	Inquiry
	Publication
	Security
	Custody
	Subscription

	UDDI Version 3 Extension
	Data Structures
	businessEntityExt
	businessInfoExt
	contactInfo
	contactInfos
	operationalInfoExt
	qualifiedKeyedReference
	registeredInfoExt
	serviceInfoExt

	Find Qualifiers
	deletedTModels
	foreignEntities
	keyNameMatch
	myEntities
	omitKeyNameMatch
	omitKeyValueMatch
	omitTModelKeyMatch
	tModelKeyApproximateMatch

	Advanced APIs
	Validation
	SOAP
	Java

	Taxonomy
	Data Structures
	Categories
	categorizationBag
	Category
	compatibilityBag
	taxonomy
	taxonomyDetail
	taxonomyInfo
	taxonomyInfos
	taxonomyList
	validation

	Operations
	delete_taxonomy
	Arguments
	Permissions

	download_taxonomy
	Arguments
	Returns
	Permissions

	find_taxonomy
	Arguments
	Returns
	Permissions

	get_taxonomy
	Arguments
	Returns
	Permissions

	save_taxonomy
	Arguments
	Returns
	Permissions

	upload_taxonomy
	Permissions

	Persistence Format
	WSDL
	API Endpoint
	Java
	Taxonomy 5.5 Extension
	Data Structures
	Taxonomy
	taxonomyInfo
	transformation

	API Endpoint

	Category
	Data Structures
	Categories
	category
	categoryList

	Operations
	add_category
	Syntax
	Arguments
	Permissions

	delete_category
	Syntax
	Arguments
	Permissions

	find_category
	Syntax
	Arguments
	Behavior
	Returns

	get_category
	Syntax
	Arguments
	Returns

	get_rootCategory
	Syntax
	Arguments
	Returns

	get_rootPath
	Syntax
	Arguments
	Returns

	move_category
	Syntax
	Arguments
	Permissions

	set_category
	Syntax
	Arguments
	Permissions

	WSDL
	API Endpoint
	Java

	Administration Utilities
	Operations
	cleanSubscriptionHistory
	Syntax
	Arguments
	Permissions

	clean_unusedAccounts
	Syntax
	Permissions

	deleteTModel
	Syntax
	Arguments
	Permissions

	rebuild_cache
	Syntax
	Arguments
	Permissions

	replaceURL
	Syntax
	Arguments
	Permissions

	replaceKey
	Syntax
	Arguments
	Permissions

	resetDiscoveryURLs
	Syntax
	Arguments
	Permissions

	transform_keyedReferences
	Syntax
	Arguments
	Permissions

	WSDL
	API Endpoint
	Java

	Replication
	Operations
	Replicate
	Arguments
	Behavior

	WSDL
	API Endpoint
	Java

	Statistics
	Data Structures
	accessStatisticsDetail
	apiStatisticsDetail
	methodStatisticsDetail
	structureStatisticsDetail
	Structure

	Operations
	get_accessStatistics
	Arguments
	Returns
	Permissions

	get_structureStatistics
	Arguments
	Returns
	Permissions

	reset_accessStatistics
	Arguments
	Permissions

	WSDL
	API Endpoint
	Java

	WSDL Publishing
	Data Structures
	wsdlDetail
	Arguments

	wsdl
	Arguments

	wsdlMapping
	Arguments

	portTypes
	portType
	Arguments

	Bindings
	binding
	Arguments

	Services
	service
	Arguments

	ports
	port
	Arguments

	wsdlServiceInfos
	wsdlServiceInfo
	Arguments

	PortInfos
	portInfo
	Arguments

	Operations
	publish_wsdl
	publishingMethod
	Arguments
	Returns

	unpublish_wsdl
	Arguments
	Returns

	get_wsdlServiceInfo
	Arguments
	Returns

	find_wsdlServiceInfo
	Arguments
	Returns

	find_wsdlMapping
	Arguments
	Returns

	WSDL
	API Endpoint
	Java

	XSD Publishing
	Data Structures
	Elements
	Arguments

	importedSchemaModel
	Arguments

	resourceInfo
	schemaCandidate
	Arguments

	schemaImport
	Arguments

	schemaImports
	schemaMapping
	Arguments

	schemaMappings
	Arguments

	symbol
	Arguments

	symbols
	symbolModel
	Arguments

	types
	xsdDetail
	Arguments

	xsdDetails
	xsdInfo
	Arguments

	xsdResourceList
	Arguments

	Operations
	find_xsd
	Syntax
	Arguments
	Returns

	find_xsdMapping
	Syntax
	Arguments
	Returns

	get_xsdDetail
	Syntax
	Arguments
	Returns

	publish_xsd
	Syntax
	Arguments
	Returns

	unpublish_xsd
	Syntax
	Arguments
	Returns

	WSDL
	API Endpoint
	Java

	Inquiry UI
	Data Structures
	bindingTemplateMask
	businessEntityMask
	businessServiceMask
	contactMask
	entityDetail
	outputFormat
	Arguments

	tModelInstanceInfoMask
	tModelMask

	Operations
	get_entityDetail
	Arguments
	Returns

	WSDL
	API Endpoint
	Java

	Security APIs
	Account
	Data Structures
	userAccount
	userInfo
	userInfos
	userList

	Operations
	find_userAccount
	Syntax
	Arguments
	Behavior
	Returns
	Permissions

	get_userAccount
	Syntax
	Arguments
	Returns
	Permissions

	save_userAccount
	Syntax
	Arguments
	Returns
	Permissions

	delete_userAccount
	Syntax
	Arguments
	Returns
	Permissions

	enable_userAccount
	Syntax
	Arguments

	WSDL
	API Endpoint
	Java

	Group
	Data Structures
	group
	groups
	groupInfo
	groupInfos
	groupList

	Operations
	add_user
	Syntax
	Arguments
	Permissions

	find_user
	Syntax
	Arguments
	Permissions
	Returns

	find_group
	Syntax
	Arguments
	Behavior
	Returns
	Permissions

	get_group
	Syntax
	Arguments
	Returns
	Permissions

	save_group
	Syntax
	Arguments
	Returns
	Permissions

	remove_user
	Syntax
	Arguments
	Permissions

	delete_group
	Syntax
	Arguments
	Returns
	Permissions

	where_amI
	Syntax
	Arguments
	Returns
	Permissions

	WSDL
	API Endpoint
	Java

	Permission
	Data Structures
	permissionDescriptor
	permissionDescriptors
	permissionDetail
	principal
	principals
	principalList

	Operations
	find_principal
	Syntax
	Arguments
	Returns
	Permissions

	get_permission
	Syntax
	Arguments
	Returns
	Permissions

	set_permission
	Syntax
	Arguments
	Permissions

	who_hasPermission
	Syntax
	Arguments
	Returns
	Permissions

	WSDL
	API Endpoint
	Java

	Registry Client
	Client Package
	JARs on the Client Classpath
	HP SOA Registry Foundation Runtime
	UDDI API Client v1
	UDDI API Client v2
	UDDI API Client v3
	UDDI API Client v3 ext X
	Account Client
	Admin Utilities Client
	Category Client v3
	Group Client
	Permission Client
	Replication Client v3
	Statistics Client
	Taxonomy Client v3
	UDDI Custody Client v3
	UDDI Subscription Client v3
	UDDI Subscription Listener Client v3
	UDDI Validate Values Client v1
	UDDI Validate Values v2
	UDDI Value Set Caching Client v3
	UDDI Value Set Validation Client v3
	WSDL2UDDI Client v2
	WSDL2UDDI Client v3
	Resources publishing (XSD) Client
	Classpath Examples

	Client Authentication
	Example Client

	Server-Side Development
	Accessing Backend APIs
	Custom Registry Modules
	Accessing Registry APIs
	Custom Module Sample

	Interceptors
	Creating and Deploying Interceptors
	Logging Interceptor Sample
	Interceptor Configuration

	Request Counter Interceptor Sample

	Writing a Custom Validation Service
	Deploying Validation Service
	External Validation Service
	Sample Files

	Writing a Subscription Notification Service
	Sample Files

	Systinet Web Framework
	Architecture Description
	Component Java Interface Part
	Request Diagram
	Nesting Components

	Component JSP Part
	Implicit Objects
	Data Types
	Client-side Validators

	Directory Structure
	JSP Page Reference

	Framework Configuration
	Component
	Task
	Data Type
	Other Configuration
	Jasper Configuration

	syswf JSP tag library
	syswf:component
	syswf:page
	syswf:wrap
	syswf:control
	syswf:input
	syswf:selectOne
	syswf:selectMany
	syswf:textArea
	syswf:value
	syswf:size
	navigationPath

	Typical Customization Tasks

	UDDI from Developer Tools
	UDDI from HP Developer for Eclipse
	Getting Data from UDDI
	Publishing WSDL to UDDI

	UDDI from MS Visual Studio

	How to Debug
	SOAPSpy Tool
	Running SOAPSpy
	Using SOAPSpy
	SOAP Request Tab
	How to Run Clients Using SOAPSpy

	Logging

	6 Demos
	Basic Demos
	UDDI v1
	Inquiry v1
	Prerequisites and Preparatory Steps: Code
	Presentation and Functional Presentation
	Building and Running Demos

	Publishing v1
	Prerequisites and Preparatory Steps: Code
	Presentation and Functional Presentation
	Building and Running Demos

	UDDI v2
	Inquiry v2
	Prerequisites and Preparatory Steps: Code
	Presentation and Functional Presentation
	Building and Running Demos

	Publishing v2
	Prerequisites and Preparatory Steps: Code
	Presentation and Functional Presentation
	Building and Running Demos

	UDDI v3
	Inquiry v3
	Prerequisites and Preparatory Steps: Code
	Presentation and Functional Presentation
	Building and Running Demos

	Publishing v3
	Prerequisites and Preparatory Steps: Code
	Presentation and Functional Presentation
	Building and Running Demos

	Advanced Demos
	Advanced Inquiry - Range Queries
	Prerequisites and Preparatory Steps: Code
	Presentation and Functional Presentation
	Building and Running Demos

	Custody
	Prerequisites and Preparatory Steps: Code
	Presentation and Functional Presentation
	Building and Running Demos

	Subscription
	Prerequisites and Preparatory Steps: Code
	Presentation and Functional Presentation
	Building and Running Demos

	Validation
	Prerequisites and Preparatory Steps: Code
	Presentation and Functional Presentation
	Building and Running Demos

	Taxonomy
	Prerequisites and Preparatory Steps: Code
	Presentation and Functional Presentation
	Building and Running Demos

	Security Demos
	Account
	Prerequisites and Preparatory Steps: Code
	Presentation and Functional Presentation
	Building and Running Demos

	Group
	Prerequisites and Preparatory Steps: Code
	Presentation and Functional Presentation
	Building and Running Demos

	Permission
	Prerequisites and Preparatory Steps: Code
	Presentation and Functional Presentation
	Building and Running Demos

	ACL
	Prerequisites and Preparatory Steps: Code
	Presentation and Functional Presentation
	Building and Running Demos

	Resources Demos
	WSDL2UDDI v2
	Prerequisites and Preparatory Steps: Code
	Presentation and Functional Presentation
	Building and Running Demos

	WSDL2UDDI v3
	Prerequisites and Preparatory Steps: Code
	Presentation and Functional Presentation
	Building and Running Demos

	XSD2UDDI
	Prerequisites and Preparatory Steps: Code
	Presentation and Functional Presentation
	Building and Running Demos

	Index
	Glossary

