
HP QuickTest Professional

Software Version: 10.00

User Guide

Manufacturing Part Number: T6513-90039

Document Release Date: January 2009 

Software Release Date: January 2009 



ii

Legal Notices

Warranty

The only warranties for HP products and services are set forth in the express warranty 
statements accompanying such products and services. Nothing herein should be construed as 
constituting an additional warranty. HP shall not be liable for technical or editorial errors or 
omissions contained herein.

The information contained herein is subject to change without notice.

Restricted Rights Legend

Confidential computer software. Valid license from HP required for possession, use or copying. 
Consistent with FAR 12.211 and 12.212, Commercial Computer Software, Computer Software 
Documentation, and Technical Data for Commercial Items are licensed to the U.S. 
Government under vendor's standard commercial license.

Third-Party Web Sites

HP provides links to external third-party Web sites to help you find supplemental 
information.  Site content and availability may change without notice.  HP makes no 
representations or warranties whatsoever as to site content or availability.

Copyright Notices

©  1992 - 2009 Mercury Interactive (Israel) Ltd.

Trademark Notices

Adobe® and Acrobat® are trademarks of Adobe Systems Incorporated.

Intel®, Pentium®, and Intel® Xeon™ are trademarks of Intel Corporation in the U.S. and 
other countries.

Java™ is a US trademark of Sun Microsystems, Inc.

Microsoft®, Windows®, Windows NT®, and Windows® XP are U.S registered trademarks of 
Microsoft Corporation.

Oracle® is a registered US trademark of Oracle Corporation, Redwood City, California.

Unix® is a registered trademark of The Open Group.

SlickEdit® is a registered trademark of SlickEdit Inc.



iii

Documentation Updates

This guide’s title page contains the following identifying information:

• Software Version number, which indicates the software version.

• Document Release Date, which changes each time the document is updated.

• Software Release Date, which indicates the release date of this version of the software.

To check for recent updates, or to verify that you are using the most recent edition of a 
document, go to:

http://h20230.www2.hp.com/selfsolve/manuals 

This site requires that you register for an HP Passport and sign-in. To register for an HP 
Passport ID, go to: 

http://h20229.www2.hp.com/passport-registration.html 

Or click the New users - please register link on the HP Passport login page.

You will also receive updated or new editions if you subscribe to the appropriate product 
support service. Contact your HP sales representative for details.



iv

Support

You can visit the HP Software Support web site at:

http://www.hp.com/go/hpsoftwaresupport 

This web site provides contact information and details about the products, services, and 
support that HP Software offers.

HP Software Support Online provides customer self-solve capabilities. It provides a fast and 
efficient way to access interactive technical support tools needed to manage your business. As 
a valued support customer, you can benefit by using the HP Software Support web site to:

• Search for knowledge documents of interest

• Submit and track support cases and enhancement requests

• Download software patches

• Manage support contracts

• Look up HP support contacts

• Review information about available services

• Enter into discussions with other software customers

• Research and register for software training

Most of the support areas require that you register as an HP Passport user and sign in. Many 
also require a support contract.

To find more information about access levels, go to:

http://h20230.www2.hp.com/new_access_levels.jsp 

To register for an HP Passport ID, go to:

http://h20229.www2.hp.com/passport-registration.html 



v

Table of Contents

This Table of Contents lists all of the chapters in both volumes of the  
HP QuickTest Professional User Guide.

Welcome to This Guide ...................................................................... xxi
How This Guide Is Organized .......................................................... xxii
Who Should Read This Guide ..........................................................xxiv
QuickTest Professional Online Documentation ..............................xxiv
Additional Online Resources...........................................................xxvii

PART I:  INTRODUCING QUICKTEST PROFESSIONAL

Chapter 1: Introduction ........................................................................3
Testing with QuickTest..........................................................................5
Understanding the Testing Process .......................................................7
Programming in the Expert View........................................................13
Understanding Functions and Function Libraries ..............................14
Managing the Testing Process Using Quality Center .........................14
Understanding Business Process Testing.............................................15
Setting Required Access Permissions...................................................16
Using the Sample Site..........................................................................17
Modifying License Information ..........................................................17
Updating QuickTest Software..............................................................18



Table of Contents

vi

Chapter 2: QuickTest at a Glance .......................................................19
Starting QuickTest ...............................................................................20
The QuickTest Window.......................................................................23
Keyword View......................................................................................28
Expert View .........................................................................................29
Function Library..................................................................................30
Start Page .............................................................................................31
Active Screen .......................................................................................33
Available Keywords Pane.....................................................................34
Data Table............................................................................................35
Debug Viewer Pane..............................................................................36
Information Pane ................................................................................37
Missing Resources Pane .......................................................................38
Process Guidance Panes.......................................................................39
Resources Pane ....................................................................................40
Test Flow Pane.....................................................................................41
To Do Pane ..........................................................................................42
Using QuickTest Commands...............................................................43
Browsing the QuickTest Professional Program Folder ........................69
Viewing Product Information .............................................................73

PART II :  WORKING WITH TEST OBJECTS

Chapter 3: Understanding the Test Object Model.............................79
About Understanding the Test Object Model.....................................79
Applying the Test Object Model Concept ..........................................83
Understanding Object Repository Types ............................................89
Viewing Object Properties and Operations Using the Object Spy......97
The Object Spy Dialog Box................................................................100

Chapter 4: Configuring Object Identification ..................................105
About Configuring Object Identification .........................................106
Understanding the Object Identification Dialog Box.......................107
Configuring Smart Identification......................................................121
Mapping User-Defined Test Object Classes ......................................131

Chapter 5: Managing Test Objects in Object Repositories ..............135
Adding Test Objects to a Local or Shared Object Repository ...........136
Copying, Pasting, and Moving Objects in the Object Repository....150
Deleting Objects from the Object Repository ...................................153
Locating Objects................................................................................154
Maintaining Identification Properties...............................................162



Table of Contents

vii

Chapter 6: Using Object Repositories in Your Test ..........................181
Understanding the Object Repository Window................................182
The Object Properties Dialog Box .....................................................197
Managing Shared Object Repository Associations............................199
Mapping Repository Parameter Values .............................................202
Working with Test Objects During a Run Session ............................206

Chapter 7: Managing Object Repositories .......................................207
About Managing Object Repositories................................................208
The Object Repository Manager........................................................210
Working with Object Repositories ....................................................217
Managing Objects in Shared Object Repositories .............................222
Working with Repository Parameters ...............................................228
Modifying Object Details ..................................................................234
Locating Test Objects ........................................................................239
Performing Merge Operations...........................................................240
Performing Import and Export Operations.......................................241
Managing Object Repositories Using Automation ...........................244

Chapter 8: Merging Shared Object Repositories..............................247
About Merging Shared Object Repositories ......................................248
Understanding the Object Repository Merge Tool ...........................250
Using Object Repository Merge Tool Commands.............................257
Defining Default Settings ..................................................................262
Merging Two Object Repositories .....................................................267
Updating a Shared Object Repository from 

Local Object Repositories..............................................................269
Viewing Merge Statistics....................................................................276
Understanding Object Conflicts .......................................................277
Resolving Object Conflicts ................................................................280
Filtering the Target Repository Pane .................................................282
Finding Specific Objects ....................................................................284
Saving the Target Object Repository .................................................285



Table of Contents

viii

Chapter 9: Comparing Shared Object Repositories .........................287
About Comparing Shared Object Repositories .................................288
Understanding the Object Repository Comparison Tool .................289
Using Object Repository Comparison Tool Commands ..................293
Understanding Object Differences....................................................297
Changing Color Settings ...................................................................298
Comparing Object Repositories ........................................................299
Viewing Comparison Statistics..........................................................301
Filtering the Repository Panes...........................................................302
Synchronizing Object Repository Views ...........................................303
Finding Specific Objects ....................................................................304

PART III:  DESIGNING TESTS 

Chapter 10: Creating Tests — Overview...........................................309
About Creating Tests .........................................................................309
Deciding Which Methodology to Use - 

Keyword-Driven or Recording ......................................................311
Understanding Your Test ..................................................................313
Enhancing Your Test .........................................................................315
Using Relative Paths in QuickTest ....................................................316

Chapter 11: Managing Your Test......................................................321
Creating a New Test ..........................................................................321
Opening an Existing Test ..................................................................322
Saving a Test ......................................................................................324
Creating Portable Copies of Your Tests.............................................326
Zipping a Test ....................................................................................331
Unzipping a Test ...............................................................................331
Printing a Test ...................................................................................332

Chapter 12: Creating Tests Using the Keyword-Driven 
Methodology ................................................................................335

Understanding the Keyword-Driven Methodology ..........................336
Using the Keyword-Driven Methodology.........................................341
Sample Implementation of the Keyword-Driven Methodology.......351

Chapter 13: Creating Tests Using the Recording Mechanism .........361
About Recording Tests.......................................................................362
Recording a Test ................................................................................364
Choosing the Recording Mode .........................................................368
Working with the Active Screen .......................................................376



Table of Contents

ix

Chapter 14: Working with the Keyword View..................................383
About Working with the Keyword View...........................................384
The Keyword View.............................................................................385
Understanding the QuickTest Object Hierarchy...............................391
Adding a Standard Step to Your Test ................................................392
Adding Other Types of Steps to Your Test ........................................407
Modifying the Parts of a Step ............................................................410
Working with Comments .................................................................410
Managing Action Steps......................................................................412
Using Keyboard Commands in the Keyword View ..........................415
Defining Keyword View Display Options .........................................416
Viewing Properties of Step Elements in the Keyword View..............422
Working with Breakpoints in the Keyword View .............................423

Chapter 15: Working with Actions ...................................................425
About Working with Actions ............................................................426
Using Global and Action Data Sheets ...............................................429
Using the Test Flow Pane ..................................................................431
Using the Action Toolbar in the Keyword View ...............................435
Creating New Actions........................................................................436
Guidelines for Working with Actions ...............................................439
Setting Action Properties...................................................................441
Nesting Actions .................................................................................453
Splitting Actions ................................................................................455
Renaming Actions .............................................................................457
Removing Actions from a Test ..........................................................460
Creating an Action Template ............................................................462

Chapter 16: Working with Advanced Action Features .....................463
About Working with Advanced Action Features ..............................464
Inserting Calls to Existing Actions ....................................................464
Setting Action Parameters .................................................................472
Using Action Parameters ...................................................................476
Setting Action Call Properties ...........................................................481
Sharing Action Information..............................................................486
Understanding Action Syntax in the Expert View............................488
Exiting an Action...............................................................................491



Table of Contents

x

PART IV: ENHANCING TESTS 

Chapter 17: Understanding Checkpoints .........................................495
About Understanding Checkpoints ..................................................495
Adding New Checkpoints to a Test...................................................496
Adding Existing Checkpoints to a Test .............................................498
Understanding Types of Checkpoints...............................................501

Chapter 18: Checking Object Property Values Using Standard 
Checkpoints ..................................................................................505

About Checking Object Property Values ..........................................505
Creating Standard Checkpoints ........................................................506
Understanding the Checkpoint Properties Dialog Box ....................508
Understanding the Image Checkpoint Properties Dialog Box..........512
Modifying Checkpoints.....................................................................514

Chapter 19: Checking Bitmaps .........................................................515
About Checking Bitmaps ..................................................................515
Fine-Tuning the Bitmap Comparison ...............................................516
Creating and Modifying Bitmap Checkpoints..................................518
The Bitmap Checkpoint Properties Dialog Box ................................522

Chapter 20: Checking Tables ............................................................529
About Checking Tables .....................................................................529
Creating a Table Checkpoint ............................................................530
Understanding the Table Checkpoint Properties Dialog Box...........535
Checking Table Content ...................................................................536
Checking Table Properties.................................................................546
Modifying a Table Checkpoint .........................................................548

Chapter 21: Checking Text ...............................................................551
About Checking Text ........................................................................551
Creating a Text Checkpoint ..............................................................552
Creating a Text Area Checkpoint......................................................554
The Text / Text Area Checkpoint Properties Dialog Box ..................557
Modifying a Text or Text Area Checkpoint ......................................570
Creating a Standard Checkpoint for Checking Text.........................570

Chapter 22: Checking Databases ......................................................575
About Checking Databases................................................................575
Creating a Check on a Database .......................................................576
Understanding the Database Checkpoint Properties Dialog Box.....581
Modifying a Database Checkpoint....................................................590



Table of Contents

xi

xi

Chapter 23: Checking XML ...............................................................591
About Checking XML........................................................................592
Creating XML Checkpoints...............................................................594
Updating the XML Hierarchy for XML Test Object Operation

Checkpoints (for WebService Test Objects Only).........................614
Modifying XML Checkpoints............................................................622
Reviewing XML Checkpoint Results .................................................622
Using XML Objects and Methods to Enhance Your Test .................623

Chapter 24: Parameterizing Values ..................................................625
About Parameterizing Values ............................................................626
Parameterizing Values in Steps and Checkpoints.............................628
Using Test and Action Input Parameters ..........................................635
Using Data Table Parameters.............................................................639
Using Environment Variable Parameters ..........................................645
Using Random Number Parameters ..................................................655
Example of a Parameterized Test.......................................................657
Using the Data Driver to Parameterize Your Test .............................662

Chapter 25: Outputting Values .........................................................669
About Outputting Values ..................................................................669
Creating Output Values.....................................................................670
Outputting Property Values ..............................................................676
Specifying the Output Type and Settings .........................................683
Outputting Text Values .....................................................................688
Outputting Table Values ...................................................................698
Outputting Database Values..............................................................713
Outputting XML Values ....................................................................718
Updating the XML Hierarchy for XML Test Object Operation 

Output Value Steps (For WebService Test Objects Only) .............732
Adding Existing Output Values to a Test ..........................................736

Chapter 26: Working with Text Recognition for 
Windows-Based Objects ...............................................................741

About Working with Text Recognition for Windows-Based 
Objects ..........................................................................................742

The Options Dialog Box: General > Text Recognition Pane.............742
Guidelines for Text Recognition .......................................................746
Text Recognition and Development Environments .........................748
Use-Case Scenario: Checking Text in an Image................................750



Table of Contents

xii

xii

Chapter 27: Configuring Values........................................................755
About Configuring Values.................................................................755
Configuring Constant and Parameter Values ...................................756
Understanding and Using Regular Expressions ................................762
Defining Regular Expressions............................................................765

Chapter 28: Adding Steps Containing Programming Logic ............775
About Adding Steps Containing Programming Logic ......................776
Inserting Steps Using the Step Generator .........................................777
Using Conditional Statements ..........................................................797
Using Loop Statements......................................................................803
Generating With Statements for Your Test.......................................806
Generating Messages .........................................................................812
Adding Comments ............................................................................815
Synchronizing Your Test ...................................................................816

PART V: DEFINING FUNCTIONS AND OTHER PROGRAMMING TASKS 

Chapter 29: Working in the Expert View and Function Library 
Windows .......................................................................................825

About Working in the Expert View and Function Library 
Windows .......................................................................................826

Understanding and Using the Expert View ......................................827
Navigating in the Expert View and Function Libraries ....................843
Understanding Basic VBScript Syntax...............................................853
Using Programmatic Descriptions.....................................................863
Running and Closing Applications Programmatically .....................875
Using Comments, Control-Flow, and Other VBScript Statements...876
Retrieving and Setting Identification Property Values .....................886
Accessing Native Properties and Operations.....................................887
Running DOS Commands.................................................................889
Enhancing Your Tests and Function Libraries Using the 

Windows API.................................................................................889
Choosing Which Steps to Report During the Run Session...............893

Chapter 30: Customizing the Expert View and Function Library 
Windows .......................................................................................895

About Customizing the Expert View and Function Library 
Windows .......................................................................................896

Customizing Editor Behavior ............................................................897
Customizing Element Appearance....................................................900
Personalizing Editing Commands.....................................................902



Table of Contents

xiii

Chapter 31: Working with User-Defined Functions and Function
Libraries.........................................................................................905

About Working with User-Defined Functions and Function 
Libraries.........................................................................................906

Managing Function Libraries ............................................................908
Working with Associated Function Libraries ....................................919
Using the Function Definition Generator.........................................923
Registering User-Defined Functions as Test Object Methods ...........939
Additional Tips for Working with User-Defined Functions .............945
Executing Externally-Defined Functions from Your Test .................948

PART VI: RUNNING AND ANALYZING TESTS 

Chapter 32: Running Tests................................................................953
About Running Tests .........................................................................954
Running Your Entire Test..................................................................955
Running Part of Your Test.................................................................956
The Run Dialog Box: Results Location Tab .......................................960
The Run Dialog Box: Input Parameters Tab......................................962
Using Optional Steps.........................................................................963
Running a Test Batch ........................................................................966

Chapter 33: Viewing Run Session Results .........................................969
About Viewing Run Session Results ..................................................970
The Test Results Window ..................................................................971
Viewing the Results of a Run Session................................................980
Deleting Run Results ......................................................................1004
Submitting Defects Detected During a Run Session .......................1013
Viewing WinRunner Test Steps in the Test Results ........................1017
Customizing the Test Results Display .............................................1019

Chapter 34: Analyzing Run Session Results ....................................1023
Analyzing Smart Identification Information in the Test Results....1024
Viewing Checkpoint Results ...........................................................1028
Viewing Parameterized Values and Output Value Results..............1053
Viewing System Monitor Results.....................................................1063



Table of Contents

xiv

xiv

PART VII:  MAINTAINING AND DEBUGGING TESTS 

Chapter 35: Debugging Tests and Function Libraries....................1069
About Debugging Tests and Function Libraries..............................1070
Slowing a Debug Session .................................................................1072
Using the Single Step Commands...................................................1072
Using the Run to Step and Debug from Step Commands ..............1076
Pausing a Run Session .....................................................................1078
Using Breakpoints ...........................................................................1078
The Debug Viewer Pane ..................................................................1082
Handling Run Errors........................................................................1094
Practicing Debugging an Action or a Function...............................1096

Chapter 36: Maintaining Tests........................................................1101
Why Tests Fail .................................................................................1102
Running Tests with the Maintenance Run Wizard.........................1104
Updating a Test Using the Update Run Mode Option ...................1125

PART VIII :  WORKING WITH THE QUICKTEST IDE

Chapter 37: QuickTest Window Layout ..........................................1135
Modifying the QuickTest Window Layout .....................................1135
Customizing Toolbars and Menus ..................................................1146
Working with Multiple Documents................................................1159

Chapter 38: Managing Resources ...................................................1161
The Resources Pane .........................................................................1161

Chapter 39: Adding Keywords to Your Test...................................1165
Understanding the Available Keywords Pane .................................1165

Chapter 40: Managing QuickTest Tasks and Comments ...............1169
Working with Tasks and TODO Comments ...................................1169
The To Do Pane ...............................................................................1170
The Task Editor Dialog Box.............................................................1177

Chapter 41: Handling Missing Resources .......................................1179
About Handling Missing Resources.................................................1180
Handling Missing Actions ...............................................................1183
Handling Missing Environment Variables Files..............................1188
Handling Missing Function Libraries..............................................1189
Handling Missing Shared Object Repositories ................................1191
Handling Missing Recovery Scenarios ............................................1192
Handling Unmapped Shared Object Repository Parameter 

Values..........................................................................................1194



Table of Contents

xv

Chapter 42: Working with Data Tables ..........................................1197
About Working with Data Tables....................................................1197
Working with Global and Action Sheets ........................................1199
Saving the Data Table......................................................................1201
Editing the Data Table.....................................................................1202
Using Data Table Files with Quality Center....................................1212
Importing Data from a Database.....................................................1213
Using Formulas in the Data Table...................................................1216
Using Data Table Scripting Methods...............................................1220

Chapter 43: Working with Process Guidance .................................1221
Process Guidance Panes...................................................................1222
Opening Process Guidance..............................................................1224
Managing the List of Available Processes........................................1225
The Process Guidance Management Dialog Box ............................1226

PART IX: CONFIGURING QUICKTEST SETTINGS 

Chapter 44: Setting Global Testing Options ..................................1231
About Setting Global Testing Options ............................................1231
Using the Options Dialog Box ........................................................1232
Setting General Testing Options .....................................................1234
Setting Folder Testing Options........................................................1237
Setting Active Screen Options .........................................................1240
Setting Run Testing Options ...........................................................1253

Chapter 45: Setting Options for Individual Tests ...........................1261
Using the Test Settings Dialog Box .................................................1262
Defining Properties for Your Test....................................................1265
Defining Run Settings for Your Test ...............................................1270
Defining Resource Settings for Your Test........................................1274
Defining Parameters for Your Test ..................................................1280
Defining Environment Settings for Your Test ................................1283
Defining Recovery Scenario Settings for Your Test.........................1291
Enabling System Monitoring for Your Test ....................................1296

Chapter 46: Using the Setting Object to Set Testing Options 
During the Run Session ..............................................................1301

About Setting Testing Options During the Run Session.................1301
Setting Testing Options...................................................................1302
Retrieving Testing Options..............................................................1304
Controlling the Test Run.................................................................1305
Adding and Removing Run-Time Settings......................................1305



Table of Contents

xvi

PART X: WORKING WITH ADVANCED TESTING FEATURES 

Chapter 47: Learning Virtual Objects .............................................1309
About Learning Virtual Objects ......................................................1310
Understanding Virtual Objects .......................................................1311
Understanding the Virtual Object Manager ...................................1312
Defining a Virtual Object ................................................................1314
Removing or Disabling Virtual Object Definitions.........................1327

Chapter 48: Defining and Using Recovery Scenarios .....................1329
About Defining and Using Recovery Scenarios ..............................1330
Deciding When to Use Recovery Scenarios ....................................1332
Defining Recovery Scenarios ...........................................................1333
Understanding the Recovery Scenario Wizard ...............................1338
Managing Recovery Scenarios .........................................................1367
Associating Recovery Scenarios with Your Tests.............................1372
Programmatically Controlling the Recovery Mechanism ..............1379

Chapter 49: Working with the QuickTest Script Editor..................1381
About the QuickTest Script Editor ..................................................1382
Understanding the QuickTest Script Editor Window .....................1383
Customizing the QuickTest Script Editor Window.........................1384
Understanding the Flow Pane.........................................................1386
Understanding the Resources Pane.................................................1388
Understanding the Display Area .....................................................1391
Working with Tests .........................................................................1393
Working with Function Libraries....................................................1397

Chapter 50: Automating QuickTest Operations .............................1403
About Automating QuickTest Operations ......................................1404
Deciding When to Use QuickTest Automation Scripts...................1405
Choosing a Language and Development Environment for

Designing and Running Automation Scripts .............................1407
Learning the Basic Elements of a QuickTest Automation Script ....1409
Generating Automation Scripts ......................................................1410
Using the QuickTest Automation Reference...................................1411



Table of Contents

xvii

PART XI: WORKING WITH QUALITY CENTER 

Chapter 51: Integrating with Quality Center .................................1415
About Working with Quality Center ..............................................1416
Connecting to and Disconnecting from Quality Center................1418
Integrating QuickTest with Quality Center ....................................1424
Saving Tests to a Quality Center Project .........................................1425
Opening Tests from a Quality Center Project.................................1426
Working with Template Tests .........................................................1430
Running a Test Stored in a Quality Center Project 

from QuickTest ...........................................................................1437
Setting Preferences for Quality Center Test Runs ...........................1439

Chapter 52: Using the Resources and Dependencies Model .........1447
Resources and Dependencies Model Terminology .........................1448
About the Resources and Dependencies Model ..............................1449
Advantages of Working with Asset Dependencies..........................1451
Working With the Resources and Dependencies Model in 

Quality Center ............................................................................1452

Chapter 53: Viewing and Comparing Versions of QuickTest 
Assets ..........................................................................................1461

Working with the Asset Comparison Tool and Asset Viewer .........1462
The QuickTest Asset Comparison Tool ...........................................1465
The QuickTest Asset Viewer ............................................................1474

Chapter 54: Managing Assets Using Version Control ....................1479
Managing Versions of Assets in Quality Center .............................1480
Viewing Version History for an Asset .............................................1488
Viewing Baseline History.................................................................1490
Version History Versus Baseline History .........................................1494

Chapter 55: Working with Version Control in 
Quality Center 9.x .......................................................................1495

Opening Tests from a Quality Center 9.x Project with 
Version Control Support.............................................................1496

Managing Test Versions in QuickTest.............................................1496

PART XII:  WORKING WITH OTHER HP PRODUCTS 

Chapter 56: Working with Business Process Testing......................1507
About Working with Business Process Testing ...............................1507
Understanding Business Process Testing Roles ...............................1508
Understanding Business Process Testing Methodology..................1512



Table of Contents

xviii

Chapter 57: Working with WinRunner ...........................................1517
About Working with WinRunner ...................................................1517
Calling WinRunner Tests ................................................................1518
Calling WinRunner Functions ........................................................1522

Chapter 58: Working with HP Performance Testing and 
Business Availability Center Products.........................................1527

About Working with HP Performance Testing and 
Business Availability Center Products ........................................1528

Using QuickTest Performance Testing and 
Business Availability Center Features .........................................1529

Designing QuickTest Tests for Use with 
Performance Testing Products or Business Process Monitor ......1530

Inserting and Running Tests in a Performance Test or in 
Business Process Monitor............................................................1531

Measuring Transactions ..................................................................1534
Using Silent Test Runner ................................................................1538

PART XIII:  APPENDIXES 

Appendix A: Supported Checkpoints and Output Values 
Per Add-In ...................................................................................1545

Supported Checkpoints ...................................................................1546
Supported Output Values ................................................................1548

Appendix B: Frequently Asked Questions.......................................1551
Creating Tests ..................................................................................1552
Programming in the Expert View....................................................1553
Working with Dynamic Content ....................................................1555
Advanced Web Issues ......................................................................1557
Standard Windows Environment....................................................1560
Test Maintenance ............................................................................1561
Testing Localized Applications........................................................1563
Improving QuickTest Performance .................................................1564

Appendix C: Creating Custom Process Guidance Packages...........1569
About Process Guidance Packages...................................................1569
Understanding the Package Configuration File..............................1570
Creating Data Files ..........................................................................1573
Installing Custom Process Guidance Packages in QuickTest..........1574



Table of Contents

xix

Appendix D: Bitmap Checkpoint Customization............................1575
About Bitmap Checkpoint Customization .....................................1576
Developing a Custom Bitmap Comparer ........................................1579
Tutorial: Creating a Custom Comparer ..........................................1589
Using the Bitmap Checkpoint Customization Samples .................1600

Index................................................................................................... I-1



Table of Contents

xx



xxi

Welcome to This Guide

Welcome to the HP QuickTest Professional User Guide. This guide describes 
how to use QuickTest to test your applications. It provides step-by-step 
instructions to help you create, debug, and run tests, and report defects 
detected during the testing process.

This chapter includes:

 ➤  How This Guide Is Organized on page xxii

 ➤  Who Should Read This Guide on page xxiv

 ➤  QuickTest Professional Online Documentation on page xxiv

 ➤  Additional Online Resources on page xxvii



Welcome to This Guide

xxii

xxii

How This Guide Is Organized

The QuickTest Professional User Guide is divided into two volumes in the 
printed version. In the PDF and context-sensitive Help versions of this 
guide, which are included with the QuickTest Professional installation, the 
information from both volumes is combined into a single file.

This guide contains the following parts:

 Part I Introducing QuickTest Professional

Provides an overview of QuickTest and the main stages of the testing 
process.

 Part II Working with Test Objects

Introduces the test object model and describes how QuickTest identifies 
objects in your application. It describes how to work with objects, configure 
object identification, and create Smart Identification definitions. It also 
describes how to manage, merge, and compare object repositories.

 Part III Designing Tests

Describes how to plan and create tests, and how to work with actions.

 Part IV Enhancing Tests

Describes how to insert checkpoints, parameters, and output values, and use 
regular expressions.



Welcome to This Guide

xxiii

xxiii

 Part V Defining Functions and Other Programming Tasks

Describes how to enhance your test using the Expert View, how to 
customize the Expert View and function library windows, and how to work 
with user-defined functions and function libraries in QuickTest. 

 Part VI Running and Analyzing Tests

Describes how to run tests and analyze the results.

 Part VII Maintaining and Debugging Tests

Describes how to control run sessions to identify and isolate bugs in test 
scripts and function libraries.

 Part VIII Working with the QuickTest IDE

Describes how to modify the QuickTest layout, how to manage testing 
resources, and how to work with process guidance.

 Part IX Configuring QuickTest Settings

Describes how to modify global and local QuickTest testing options, and 
how to set testing options during a run session.

 Part X Working with Advanced Testing Features

Describes how to work with virtual objects and recovery scenarios. It also 
describes several programming techniques to create more powerful scripts, 
and describes how to automate QuickTest operations.

 Part XI Working with Quality Center

Describes how to integrate and work with HP Quality Center, which 
provides an intuitive and efficient method for running tests, collecting and 
analyzing test results, tracking defects, and managing test versions.



Welcome to This Guide

xxiv

xxiv

 Part XII Working with Other HP Products

Describes how you can run tests and call functions in compiled modules 
from WinRunner, the HP enterprise functional testing tool for Microsoft 
Windows applications. This section also describes how to use QuickTest 
with Business Process Testing, and how QuickTest interacts with Quality 
Center, the HP centralized quality solution. This section also describes 
considerations for designing QuickTest tests for use with HP performance 
testing and application management products.

 Part XIII Appendixes

Provides information on frequently asked questions, supported checkpoints 
and output values, creating customized process guidance packages, and 
customizing the algorithm used to compare bitmaps in bitmap checkpoints.

Who Should Read This Guide

This guide is intended for QuickTest Professional users at all levels. Readers 
should already have some understanding of functional testing concepts and 
processes, and know which aspects of their application they want to test.

QuickTest Professional Online Documentation

QuickTest Professional includes the following online documentation:

Readme provides the latest news and information about QuickTest. Select 
Start > Programs > QuickTest Professional > Readme.

HP QuickTest Professional Installation Guide explains how to install and set 
up QuickTest. Select Help > Printer-Friendly Documentation > HP QuickTest 
Professional Installation Guide.

HP QuickTest Professional Tutorial teaches you basic QuickTest skills and 
shows you how to design tests for your applications. Select Help > QuickTest 
Professional Tutorial.



Welcome to This Guide

xxv

xxv

Product Feature Movies provide an overview and step-by-step instructions 
describing how to use selected QuickTest features. Select Help > Product 
Feature Movies.

Printer-Friendly Documentation displays the complete documentation set in 
Adobe portable document format (PDF). Online books can be viewed and 
printed using Adobe Reader, which can be downloaded from the Adobe Web 
site (http://www.adobe.com). Select Help > Printer-Friendly Documentation.

QuickTest Professional Help includes:

➤ What’s New in QuickTest Professional describes the newest features, 
enhancements, and supported environments in the latest version of 
QuickTest.

➤ HP QuickTest Professional User Guide describes how to use QuickTest to 
test your application.

➤ HP QuickTest Professional for Business Process Testing User Guide 
provides step-by-step instructions for using QuickTest to create and 
manage assets for use with Business Process Testing.

➤ HP QuickTest Professional Add-ins Guide describes how to work with 
supported environments using QuickTest add-ins, and provides 
environment-specific information for each add-in.

➤ HP QuickTest Professional Object Model Reference describes QuickTest 
test objects, lists the methods and properties associated with each object, 
and provides syntax information and examples for each method and 
property.

http://www.adobe.com


Welcome to This Guide

xxvi

xxvi

➤ HP QuickTest Professional Advanced References contains documentation 
for the following QuickTest COM and XML references:

➤ HP QuickTest Professional Automation Object Model provides syntax, 
descriptive information, and examples for the automation objects, 
methods, and properties. It also contains a detailed overview to help 
you get started writing QuickTest automation scripts. The automation 
object model assists you in automating test management, by providing 
objects, methods and properties that enable you to control virtually 
every QuickTest feature and capability.

➤ HP QuickTest Professional Test Results Schema documents the test 
results XML schema, which provides the information you need to 
customize your test results.

➤ HP QuickTest Professional Test Object Schema documents the test 
object XML schema, which provides the information you need to 
extend test object support in different environments.

➤ HP QuickTest Professional Object Repository Schema documents the 
object repository XML schema, which provides the information you 
need to edit an object repository file that was exported to XML.

➤ HP QuickTest Professional Object Repository Automation documents 
the Object Repository automation object model, which provides the 
information you need to manipulate QuickTest object repositories and 
their contents from outside of QuickTest.

➤ VBScript Reference contains Microsoft VBScript documentation, 
including VBScript, Script Runtime, and Windows Script Host.

To access the QuickTest Professional Help, select Help > QuickTest 
Professional Help. You can also access the QuickTest Professional Help by 
clicking in selected QuickTest windows and dialog boxes and pressing F1. 
Additionally, you can view a description, syntax, and examples for a 
QuickTest test object, method, or property by placing the cursor on it and 
pressing F1.



Welcome to This Guide

xxvii

xxvii

Additional Online Resources

Mercury Tours sample Web site is the basis for many examples in this guide. 
The URL for this Web site is http://newtours.demoaut.com. Select Start > 
Programs > QuickTest Professional > Sample Applications > Mercury Tours 
Web Site.

The HP Software Web site provides you with the most up-to-date 
information on HP Software products. This includes new software releases, 
seminars and trade shows, customer support, and more. The URL for this 
Web site is www.hp.com/go/software.

The following additional online resources are available from the 
QuickTest Professional Help menu:

Troubleshooting & Knowledge Base accesses the Troubleshooting page on 
the HP Software Support Web site where you can search the Self-solve 
knowledge base. Choose Help > Troubleshooting & Knowledge Base. The 
URL for this Web site is http://h20230.www2.hp.com/troubleshooting.jsp.

HP Software Support accesses the HP Software Support Web site. This site 
enables you to browse the Self-solve knowledge base. You can also post to 
and search user discussion forums, submit support requests, download 
patches and updated documentation, and more. Choose Help > HP Software 
Support. The URL for this Web site is www.hp.com/go/hpsoftwaresupport.

Most of the support areas require that you register as an HP Passport user 
and sign in. Many also require a support contract.

To find more information about access levels, go to:

http://h20230.www2.hp.com/new_access_levels.jsp

To register for an HP Passport user ID, go to: 

http://h20229.www2.hp.com/passport-registration.html 

http://www.hp.com/go/software
http://h20230.www2.hp.com/troubleshooting.jsp
http://www.hp.com/go/hpsoftwaresupport
http://h20230.www2.hp.com/new_access_levels.jsp
http://h20229.www2.hp.com/passport-registration.html
http://newtours.demoaut.com


Welcome to This Guide

xxviii

xxviii



1

Part I

Introducing QuickTest Professional



2



3

1
Introduction

Welcome to HP QuickTest Professional, the advanced solution for functional 
test and regression test automation. This next-generation automated testing 
solution deploys the concept of keyword-driven testing to enhance test 
creation and maintenance. Keyword-driven testing is a technique that 
separates much of the programming work from the actual test steps so that 
the test steps can be developed earlier and can often be maintained with 
only minor updates, even when there are significant changes in your 
application or your testing needs. 

Using the keyword-driven approach, test automation experts have full 
access to the underlying test and object properties, via an integrated 
scripting and debugging environment that is round-trip synchronized with 
the Keyword View. 

QuickTest Professional meets the needs of both technical and non-technical 
users. It works hand-in-hand with HP Business Process Testing to bring 
non-technical subject matter experts into the quality process in a 
meaningful way. Plus, it empowers the entire testing team to create 
sophisticated test suites.

QuickTest Professional provides add-ins that enable you to test objects 
(controls) created in commonly used development environments. 



Chapter 1 • Introduction

4

 QuickTest Professional is Unicode compliant according to the requirements 
of the Unicode standard (http://www.unicode.org/standard/standard.html), 
enabling you to test applications in many international languages. Unicode 
represents the required characters using 8-bit or 16-bit code values. This 
allows processing and display of many diverse languages and character sets. 
You can test non-English language applications, as long as the relevant 
Windows language support is installed on the computer on which 
QuickTest Professional is installed (Start > Settings > Control Panel > 
Regional Options or similar). For additional information on Unicode and 
multi-lingual support issues, see the HP QuickTest Professional Readme.

This chapter includes:

 ➤  Testing with QuickTest on page 5

 ➤  Understanding the Testing Process on page 7

 ➤  Programming in the Expert View on page 13

 ➤  Understanding Functions and Function Libraries on page 14

 ➤  Managing the Testing Process Using Quality Center on page 14

 ➤  Understanding Business Process Testing on page 15

 ➤  Setting Required Access Permissions on page 16

 ➤  Using the Sample Site on page 17

 ➤  Modifying License Information on page 17

 ➤  Updating QuickTest Software on page 18

http://www.unicode.org/standard/standard.html


Chapter 1 • Introduction

5

Testing with QuickTest

When you open QuickTest, you can load environment-specific QuickTest 
add-ins, such as Java, .NET, and Web. 

Note: You load add-ins using the Add-in Manager dialog box described in 
“Starting QuickTest” on page 20. You can find more information on the 
Add-in Manager dialog box and all QuickTest add-in environments in the 
HP QuickTest Professional Add-ins Guide.

Loading the relevant add-in enables QuickTest Professional to recognize and 
learn the objects in your application so that you can design automated tests 
that perform the same types of operations and business processes that your 
customers do. You can then run these tests to check that your application 
works as expected. 

A test comprises calls to actions. Actions help divide your test into logical 
units, such as the main sections of a Web site, or specific activities that you 
perform in your application. By creating tests that call multiple actions, you 
can design tests that are more modular and efficient. 

Each action comprises steps. As you add steps to an actions, they are 
displayed in the table-based Keyword View, or in the VBScript-based Expert 
View. Every step includes automatically generated documentation that 
provides a plain language textual description of what the step does.

While editing your test, you can instruct QuickTest to check the properties 
of specific objects in your application. For example, you can instruct 
QuickTest to check that a specific text string is displayed in a particular 
location in a dialog box, or you can check that a hypertext link on your Web 
page goes to the correct URL address.



Chapter 1 • Introduction

6

You can further enhance your test by adding and modifying steps. You can 
also create function libraries and call their functions from your test. For 
example, you can define functions and use them as keywords in your test. 

When you perform a run session, QuickTest performs each step in your test. 
After the run session ends, you can view a report detailing which steps were 
performed, and which ones succeeded or failed.

Note: Many QuickTest operations are performed using the mouse. In 
accordance with Section 508 of the W3C accessibility standards, QuickTest 
also recognizes operations performed using the MouseKeys option in the 
Windows Accessibility Options utility. Additionally, you can perform many 
QuickTest operations using shortcut keys. For a list of shortcut keys, see 
“Performing QuickTest Commands” on page 46.

You can use QuickTest process guidance to guide you through the process of 
creating a test. For more information, see “Working with Process Guidance” 
on page 1221. 



Chapter 1 • Introduction

7

Understanding the Testing Process

Testing with QuickTest involves the following main stages: 



Chapter 1 • Introduction

8

Stage 1: Analyzing Your Application

Before you begin creating a test, you need to analyze your application and 
determine your testing needs. 

First, determine the development environments in which your application 
controls were developed, such as Web, Java, or .NET, so that you can load 
the required QuickTest add-ins. 

Then determine the functionality that you want to test. To do this, consider 
the various activities that customers perform in your application to 
accomplish specific tasks. Which objects and operations are relevant for the 
set of business processes that need to be tested? Which operations require 
customized keywords to provide additional functionality? 

While you are thinking about the business processes you want to test, 
consider how you can divide these processes into smaller units, which will 
be represented by your test’s actions. Each action should emulate an activity 
that a customer might perform when using your application. 

As you plan, try to keep the amount of steps you plan to include in each 
action to a minimum. Creating small, modular actions helps make your 
tests easier to read, follow, and maintain. 

Stage 2: Preparing the Testing Infrastructure

To complete the infrastructure that is part of the planning process, you need 
to build the set of resources to be used by your tests, including shared object 
repositories containing test objects (which are representations of the objects 
in your application), function libraries containing functions that enhance 
QuickTest functionality, and so on. For more information, see Chapter 5, 
“Managing Test Objects in Object Repositories” and Chapter 31, “Working 
with User-Defined Functions and Function Libraries.”

At this stage you also need to configure QuickTest according to your testing 
needs. This can include setting up your global testing preferences, your run 
session preferences, any test-specific preferences, and recovery scenarios. 
You can also create automation scripts that automatically set the required 
configurations (such as the add-ins to load) on the QuickTest client at the 
beginning of a run session. For more information, see Chapter 50, 
“Automating QuickTest Operations.”



Chapter 1 • Introduction

9

Lastly, you create one or more tests that serve as action repositories in which 
you can store the actions to be used in your tests. Generally, you create an 
action repository test for each area of your application to be tested. Storing 
all of your actions in specific tests enables you to maintain your actions in a 
central location. When you update an action in the action repository, the 
update is reflected in all tests that contain a call to that action. When you 
run a test, only the relevant action repository tests are loaded. 

You then associate the shared object repositories with the relevant actions. 
This enables you to later insert steps using the objects stored in the object 
repositories.

When you create your tests, you insert calls to one or more of the actions 
stored in this repository. 



Chapter 1 • Introduction

10

Stage 3: Adding Steps to Your Actions

In this stage, you add steps to the actions in your test action repository. 

Before you begin adding steps, make sure that you associate your function 
libraries and recovery scenarios with the relevant tests, so that you can 
insert steps using keywords. 

You can create steps using the keyword-driven functionality available in the 
table-like, graphical Keyword View—or you can use the Expert View, if you 
prefer to program steps directly in VBScript. You can add steps to your test in 
one or both of the following ways:

➤ Drag objects from your object repository or from the Available Keywords 
pane to add keyword-driven steps in the Keyword View or Expert View. The 
object repository and Available Keywords pane contain all of the objects 
that you want to test in your application. (You create one or more object 
repositories when you prepare the testing infrastructure, as described in 
“Stage 2: Preparing the Testing Infrastructure” on page 8.)

When you drag an object into the Keyword View, a step is created in the 
action with the default operation for that object. For example, if you drag a 
button object into the Keyword View, the click operation is automatically 
defined for the step. You can then modify the step as needed. For more 
information, see Chapter 14, “Working with the Keyword View” and 
Chapter 39, “Adding Keywords to Your Test.” Advanced users can also add 
steps using the Expert View. For more information, see Chapter 29, 
“Working in the Expert View and Function Library Windows.”

➤ Record on your application.

As you navigate through your application during a recording session, 
QuickTest graphically displays each step you perform as a row in the 
Keyword View. A step is something that causes or makes a change in your 
application, such as clicking a link or image, or submitting a data form. In 
the Expert View, these steps are displayed as lines in a test script (VBScript). 
The Documentation column of the Keyword View also displays a description 
of each step in easy-to-understand sentences. For more information, see 
Chapter 14, “Working with the Keyword View.”



Chapter 1 • Introduction

11

Stage 4: Enhancing Your Test

You can enhance the testing process by modifying your test with special 
testing options and/or with programming statements, such as:

➤ Insert checkpoints and output values into your test.

A checkpoint checks specific properties or other characteristics of an object 
and enables you to identify whether or not your application is functioning 
correctly. For more information, see Chapter 17, “Understanding 
Checkpoints.”

You can also use output values to extract data from your test. An output 
value is a value retrieved during the run session and entered into your Data 
Table or stored in a variable or a parameter. You can subsequently use this 
output value as input data in your test. This enables you to use data 
retrieved during a run session in other parts of the test. For more 
information, see Chapter 25, “Outputting Values.”

➤ Broaden the scope of your test by replacing fixed values with parameters.

When you test your application, you can parameterize your steps to check 
how your application performs the same operations with different data. You 
may supply data in the Data Table, define environment variables and values, 
define test or action parameters and values, or instruct QuickTest to generate 
random numbers for current user and test data.

When you parameterize your test, QuickTest substitutes the fixed values in 
your test with the values stored in the relevant parameters. When you use 
Data Table parameters, QuickTest uses the values from a different row in the 
Data Table for each iteration of the test or action. (Each run session that uses 
a different set of parameterized data is called an iteration.) For more 
information, see Chapter 24, “Parameterizing Values.”

➤ Add user-defined functions by creating function libraries and calling their 
functions from your test. For more information, see Chapter 31, “Working 
with User-Defined Functions and Function Libraries.”

➤ Use the many functional testing features included in QuickTest to enhance 
your test and/or add programming statements to achieve more complex 
testing goals. For more information, see Chapter 28, “Adding Steps 
Containing Programming Logic.”



Chapter 1 • Introduction

12

Stage 5: Running and Debugging Your Test

After you create your test, you can perform different types of runs to achieve 
different goals.

➤ Run your test to debug it. You can control your run session to help you 
identify and eliminate defects in your test. You can use the Step Into, Step 
Over, and Step Out commands to run your test step by step. You can begin 
your run session from a specific step in your test, or run the test until a 
specific step is reached. You can also set breakpoints to pause your test at 
predetermined points. You can view or change the value of variables in your 
test each time it stops at a breakpoint in the Debug Viewer. You can also 
manually run VBScript commands in the Debug Viewer. For more 
information, see Chapter 35, “Debugging Tests and Function Libraries.”

➤ Run your test to check your application. The test starts running from the 
first line in your test and stops at the end of the test. While running, 
QuickTest connects to your application and performs each operation in your 
test, including any checkpoints, such as checking any text strings, objects, 
tables, and so forth. If you parameterized your test with Data Table 
parameters, QuickTest repeats the test (or specific actions in your test) for 
each set of data values in the Data Table. For more information, see 
Chapter 32, “Running Tests.”

➤ Run your test to update it. 

➤ You can run your test using Maintenance Run Mode when you know that 
your application has changed, and you therefore expect that QuickTest 
will not be able to identify the objects in your test. When you run a test 
in Maintenance Run Mode, a wizard opens for steps that fail because an 
object could not be found in the application. The wizard then guides you 
through the steps of resolving the issue, and, after you resolve the issue, 
the run continues. For more information, see Chapter 36, “Maintaining 
Tests.”

➤ You can run your test using Update Run Mode to update the property 
sets used for test object descriptions, the expected checkpoint values, the 
data available to retrieve in output values, and/or the Active Screen 
images and values. 



Chapter 1 • Introduction

13

Stage 6: Analyzing Test Results and Reporting Defects

After you run your test, you can view the results of the run in the Test 
Results window. You can view a summary of your results as well as a detailed 
report. If you captured still images or movies of your application during the 
run, you can view these from the Screen Recorder tab of the Test Results 
window. For more information, see Chapter 33, “Viewing Run Session 
Results.” If you enabled local system monitoring for your test, you can view 
the results in the System Monitor tab of the Test Results window. For more 
information, see “Viewing System Monitor Results” on page 1063.

Finally, you can report defects detected during a run session. If you have 
access to Quality Center, the HP centralized quality solution, you can report 
the defects you discover to the project database. You can instruct QuickTest 
to automatically report each failed step in your test, or you can report them 
manually from the Test Results window. For more information, see 
Chapter 51, “Integrating with Quality Center.”

Programming in the Expert View

You can use the Expert View tab to view a text-based version of your test. 
The test is composed of statements written in VBScript (Microsoft Visual 
Basic Scripting Edition) that correspond to the steps and checks displayed in 
the Keyword View. For more information, see Chapter 29, “Working in the 
Expert View and Function Library Windows.”

For more information on the test objects and methods available for use in 
your test and how to program using VBScript, see the HP QuickTest 
Professional Object Model Reference and the VBScript Reference (select 
Help > QuickTest Professional Help).



Chapter 1 • Introduction

14

Understanding Functions and Function Libraries

If you have sets of steps that are repeated in several actions or tests, you may 
want to consider creating and using user-defined functions. A user-defined 
function encapsulates an activity (or a group of steps that require 
programming) into a keyword (also called an operation). By using 
user-defined functions in your tests, your tests are shorter, and easier to 
design, read, and maintain.

You can use the QuickTest function library editor to create and edit 
user-defined functions during your QuickTest session. A function library is a 
Visual Basic script containing VBscript functions, subroutines, modules, and 
so forth. You can also use the Function Definition Generator to assist you in 
defining new functions. 

When you create a function, you can insert it directly in an action to make 
it available only within that action, or you can insert it in a function library 
to make it available to any test that is associated with that function library. 
For more information, see Chapter 31, “Working with User-Defined 
Functions and Function Libraries.”

Managing the Testing Process Using Quality Center

You can use QuickTest together with Quality Center to manage the entire 
testing process. For example, you can use Quality Center to create a project 
(central repository) of manual and automated tests, build test cycles, run 
tests, and report and track defects. You can also create reports and graphs to 
help you review the progress of test planning, runs, and defect tracking 
before a software release.

In QuickTest, you can create tests and components and then save them 
directly to your Quality Center project. For more information, see 
Chapter 51, “Integrating with Quality Center.” You can also run QuickTest 
tests from Quality Center and then use Quality Center to review and 
manage the results. For more information, see the HP Quality Center User 
Guide.



Chapter 1 • Introduction

15

Finally, you can use Quality Center with Business Process Testing support to 
create business process tests, which are comprised of the business 
components you create either in QuickTest or Quality Center (with Business 
Process Testing support). For more information, see Chapter 56, “Working 
with Business Process Testing.”

Understanding Business Process Testing

Business Process Testing is a role-based testing model that enables Subject 
Matter Experts—who understand the various parts of the application being 
tested—to create business process tests in Quality Center. Automation 
Engineers—who are experts in QuickTest and automated testing—use 
QuickTest to define all of the resources and settings required to create 
business process tests. Integration between QuickTest and Quality Center 
enables the Automation Engineer to effectively maintain the resources and 
settings, while enabling Subject Matter Experts to implement business 
process tests.

Business Process Testing uses a keyword-driven methodology for testing, 
based on the creation and implementation of business components and 
business process tests. A business component is an easily-maintained, 
reusable unit comprising one or more steps that perform a specific task 
within an application. A business process test comprises a series of business 
components, which together test a specific scenario or business process. For 
example, for a Web-based application, a business process test might contain 
five components—one for logging on to the application, another for 
navigating to specific pages, a third for entering data and selecting options 
in each of these pages, a fourth for submitting a form, and a fifth 
component for logging off of the application. Business components and 
business process tests are generally created in Quality Center by Subject 
Matter Experts, although Automation Engineers can also create business 
components in QuickTest. 



Chapter 1 • Introduction

16

In QuickTest, Automation Engineers define the resources and settings 
needed to create and run business components and business process tests. 
For example, the Automation Engineer can create function libraries to 
define various keywords (operations) and populate shared object 
repositories with test objects for the specific part of the application being 
tested. All resources and settings are saved in an application area, which is 
stored in a Quality Center project. By associating a business component 
with an application area, the component can access specific settings and 
resource files, such as function libraries, shared object repositories that 
contain the test objects used by the application, associated QuickTest 
add-ins, recovery scenario files, and so forth. 

The Automation Engineer can create multiple application areas—each one 
focusing on a particular part (area) of the application being tested. For 
example, for a flight reservation application, one application area could be 
created for the login module, another application area for the flight search 
module, another for the flight reservation module, and still another for the 
billing module.

For more information on using QuickTest with Business Process Testing, see 
the HP QuickTest Professional for Business Process Testing User Guide. 

Setting Required Access Permissions

You must make sure the following access permissions are set to run 
QuickTest Professional or to work with Quality Center.

Permissions Required to Run QuickTest Professional

You must have the following file system permissions:

➤ Full read and write permissions for all the files and folders under the folder 
in which QuickTest is installed

➤ Full read and write permissions to the Temp folder

➤ Read permissions to the Windows folder and to the System folder



Chapter 1 • Introduction

17

You must have the following registry key permissions:

➤ Full read and write permissions to all the keys under 
HKEY_CURRENT_USER\Software\Mercury Interactive

➤ Read and Query Value permissions to all the HKEY_LOCAL_MACHINE and 
HKEY_CLASSES_ROOT keys

Permissions Required When Working with Quality Center

You must have the following permissions to use QuickTest with Quality 
Center:

➤ Full read and write permissions to the Quality Center cache folder

➤ Full read and write permissions to the QuickTest Add-in for Quality Center 
installation folder

Using the Sample Site

Many examples in this guide use the Mercury Tours sample Web site. The 
URL for this Web site is: http://newtours.demoaut.com.

Note that you must register a user name and password to use this site.

A sample Flight Windows-based application is also provided with the 
QuickTest Professional installation. You can access it from Start > Programs 
> QuickTest Professional > Sample Applications > Flight.

Modifying License Information

Working with QuickTest requires a license. When you install QuickTest, you 
select one of the following license types:

➤ a permanent seat license that is specific to the computer on which it is 
installed

➤ a network-based concurrent license that can be used by multiple QuickTest 
users

http://newtours.demoaut.com


Chapter 1 • Introduction

18

You can change your license type at any time (as long as you are logged in 
with administrator permissions on your computer). For example, if you are 
currently working with a seat license, you can choose to connect to a 
concurrent license server, if one is available on your network. 

For information on modifying your license information, see the 
HP QuickTest Professional Installation Guide.

Updating QuickTest Software

By default, QuickTest automatically checks for online software updates once 
every seven days. When you start QuickTest, it checks to see if the last 
automatic Check for Updates took place more than seven days ago, and if 
so, it checks for updates.

You can also manually check for updates at any time by choosing Help > 
Check for Updates from within QuickTest, or by choosing Start > Programs 
> QuickTest Professional > Check for Updates.

If updates are available, you can choose which ones you want to download 
and (optionally) install. Follow the on-screen instructions for more 
information.

Tip: You can disable automatic checking for updates by clearing the Check 
for software updates automatically check box in the General pane of the 
Options dialog box. To open the Options dialog box, select Tools > Options.

 



19

2
QuickTest at a Glance

This chapter explains how to start QuickTest and introduces the QuickTest 
window. 

This chapter includes:

 ➤  Starting QuickTest on page 20

 ➤  The QuickTest Window on page 23

 ➤  Keyword View on page 28

 ➤  Expert View on page 29

 ➤  Function Library on page 30

 ➤  Start Page on page 31

 ➤  Active Screen on page 33

 ➤  Available Keywords Pane on page 34

 ➤  Data Table on page 35

 ➤  Debug Viewer Pane on page 36

 ➤  Information Pane on page 37

 ➤  Missing Resources Pane on page 38

 ➤  Process Guidance Panes on page 39

 ➤  Resources Pane on page 40

 ➤  Test Flow Pane on page 41

 ➤  To Do Pane on page 42

 ➤  Using QuickTest Commands on page 43

 ➤  Browsing the QuickTest Professional Program Folder on page 69

 ➤  Viewing Product Information on page 73



Chapter 2 • QuickTest at a Glance

20

Starting QuickTest

To start QuickTest, select Programs > QuickTest Professional > QuickTest 
Professional in the Start menu, or double-click the QuickTest Professional 
shortcut on your desktop.

The first time you start QuickTest, the Add-in Manager dialog box opens, 
displaying the currently installed add-ins. Select the add-ins you want to 
load. 

QuickTest remembers the add-ins you load so that the next time you open 
QuickTest, the add-ins you selected in the previous session are selected by 
default. For best performance, it is recommended to clear any add-ins that 
are not needed for a particular session.



Chapter 2 • QuickTest at a Glance

21

Tip: If you do not want this dialog box to open the next time you start 
QuickTest, clear the Show on startup check box.

For more information on installing, loading, and working with add-ins, see 
the HP QuickTest Professional Installation Guide and the HP QuickTest 
Professional Add-ins Guide.

Click OK. The QuickTest Professional window opens displaying the Start 
Page and a blank test. To access a blank test, click the Test tab. 



Chapter 2 • QuickTest at a Glance

22

In the Start page, you can:

➤ Click a QuickTest process guidance link for best practices on working 
with QuickTest. If your organization has its own custom process 
guidance, you may be able to click the link for it in the Process Guidance 
List. 

➤ Click a shortcut button to open a new or existing test or function library. 
If business process testing is enabled, you can also open a new or existing 
business component or application area. 

➤ Click the links in the What’s New section to learn more about the new 
features provided with this version of QuickTest. 

For more information on the Start Page, see “Start Page” on page 31.



Chapter 2 • QuickTest at a Glance

23

The QuickTest Window

The QuickTest window displays your testing documents in the document 
area.  

You can work on one test and one or more function libraries simultaneously. 
(For your convenience, you can display one active document in the 
document area, or you can cascade or tile your open documents.) For more 
information, see “Working with Multiple Documents” on page 1159.

Title bar

Menu bar

Toolbars 

Data Table

Keyword 
View

Test Flow
pane 

Expert 
View tab

Tabs for
other panes

Document
tabs 



Chapter 2 • QuickTest at a Glance

24

Document Area

The document area of the QuickTest window can display the following:

➤ Test. Enables you to create, view, and modify your test in Keyword View or 
Expert View (described below).

➤ Function Library. Enables you to create, view, and modify functions and 
subroutines for use with your test. For more information, see Chapter 31, 
“Working with User-Defined Functions and Function Libraries.”

➤ Start Page. Welcomes you to QuickTest and provides links to Process 
Guidance. You can use the shortcut buttons to open new and existing 
documents. For more information, see “Start Page” on page 31. 

Note: The document area of the QuickTest window also enables you to 
create, view, and modify business components, scripted components, and 
application areas. For more information, see the HP QuickTest Professional for 
Business Process Testing User Guide.

Key Elements in the QuickTest Window

In addition to the document area, the QuickTest window contains the 
following key elements: 

➤ QuickTest title bar. Displays the name of the active document. If changes 
have been made since it was last saved, an asterisk (*) is displayed next to 
the document name in the title bar.

➤ Menu bar. Displays menus of QuickTest commands.

➤ Standard toolbar. Contains buttons to assist you in managing your 
document.

➤ Automation toolbar. Contains buttons to assist you in the testing process.

➤ Debug toolbar. Contains buttons to assist you in debugging your document. 
(Not displayed by default)

➤ Edit toolbar. Contains buttons to assist you in editing your test or function 
library.



Chapter 2 • QuickTest at a Glance

25

➤ Insert toolbar. Contains buttons to assist you when working with steps and 
statements in your test or function library.

➤ Tools toolbar. Contains buttons with tools to assist you in the testing 
process.

➤ View toolbar. Contains buttons to assist you in viewing your document.

➤ Action toolbar. Contains buttons and a list of actions, enabling you to view 
the details of an individual action or the entire test flow. (Not displayed by 
default)

➤ Document tabs and scroll arrows. Enables you to navigate open documents 
in the document area by selecting the tab of the document you want to 
activate (bring into focus). When there is not enough space in the 
document area to display all of the tabs simultaneously, you can use the left 
and right arrows to scroll between your open documents.

➤ Keyword View. Contains each step, and displays the object hierarchy, in a 
modular, icon-based table. For more information, see Chapter 14, “Working 
with the Keyword View.”

➤ Expert View. Contains each step as a VBScript line. In object-based steps, the 
VBScript line defines the object hierarchy. For more information, see 
Chapter 29, “Working in the Expert View and Function Library Windows.”

➤ Status bar. Displays the status of the QuickTest application and other 
relevant information.

You can show or hide the following panes from the View menu:

➤ Active Screen. Provides a snapshot of your application as it appeared when 
you performed a certain step during the recording session.

➤ Available Keywords. Displays all the keywords available to your test. Enables 
you to drag and drop objects or calls to functions into your test. 

➤ Data Table. Assists you in parameterizing your test. The Data Table contains 
the Global tab and a tab for each action.

➤ Debug Viewer. Assists you in debugging your document. The Debug Viewer 
pane contains the Watch, Variables, and Command tabs.

➤ Information. Displays a list of syntax errors found in your test and function 
library scripts.



Chapter 2 • QuickTest at a Glance

26

➤ Missing Resources. Provides a list of the resources that are specified in your 
test but cannot be found, such as missing calls to actions, unmapped shared 
object repositories, and parameters that are connected to shared object 
repositories. The Missing Resources pane then enables you to locate or 
remove them from your test. 

➤ Process Guidance. Displays two panes that provide procedures and 
descriptions on how to best perform specific processes, such as creating a 
test in QuickTest. The Process Guidance Activities pane lists the activities 
that you can perform, such as adding steps to a test. The Process Guidance 
Description pane describes the tasks that you need to perform for a selected 
activity. Your organization may also provide you with process guidance that 
is accessible from these panes.

➤ Resources. Displays all the resources associated with your current test and 
enables you to manage these resources. 

➤ Test Flow. Displays the hierarchy of actions and action calls in the current 
test, and shows the order in which they are run. 

➤ To Do. Displays and enables you to manage the tasks defined for the current 
test. The To Do pane also displays the TODO comment steps of the test’s 
actions or currently open function libraries.

You can modify the QuickTest window to create user-defined menus and to 
customize the appearance of existing menus and toolbars. For more 
information, see “Customizing Toolbars and Menus” on page 1146.

You can also customize the layout of the QuickTest window by moving, 
resizing, displaying, or hiding most of the elements. QuickTest remembers 
your preferred layout settings and opens subsequent sessions with your 
customized layout. For more information, see “Modifying the QuickTest 
Window Layout” on page 1135.



Chapter 2 • QuickTest at a Glance

27

Changing the Appearance of the QuickTest Window
By default, the QuickTest window uses the Microsoft Office 2003 theme. You 
can change the look and feel of the main QuickTest window, as required.

To change the appearance of the main QuickTest window:

In the QuickTest window, select View > Window Theme, and then select the 
way the window should appear from the list of available themes. For 
example, you can apply a Microsoft Office 2000 or Microsoft Windows XP 
theme.

Note: You can apply the Microsoft Windows XP theme to the QuickTest 
window only if your computer is set to use a Windows XP theme.

Tip: You can also change the theme used for the Test Results window. For 
more information, see “Changing the Appearance of the Test Results 
Window” on page 979.



Chapter 2 • QuickTest at a Glance

28

Keyword View

The Keyword View enables you to create and view the steps of your test in a 
keyword-driven, modular, table format. The Keyword View is comprised of a 
table-like view, in which each step is a separate row in the table, and each 
column represents different parts of the steps. You can modify the columns 
displayed to suit your requirements. 

You create and modify tests by selecting items and operations in the 
Keyword View and entering information as required. Each step is 
automatically documented as you complete it, enabling you to view a 
description of your test steps in understandable English.

Each operation performed on your application during a recording session is 
recorded as a row in the Keyword View.  

For each row in the Keyword View, QuickTest displays a corresponding line 
of script in the Expert View. If you focus on a specific step in the Keyword 
View and switch to the Expert View, the cursor is located in that 
corresponding line of the test. For more information on using the Keyword 
View, see Chapter 14, “Working with the Keyword View.”



Chapter 2 • QuickTest at a Glance

29

Expert View

In the Expert View, QuickTest displays each operation performed on your 
application in the form of a script, comprised of VBScript statements. The 
Expert View is a script editor with many script editing capabilities. For each 
object and method in an Expert View statement, a corresponding row exists 
in the Keyword View. The action list above the Expert View window lists the 
actions that are called from the test. For more information on using the 
Expert View, see Chapter 29, “Working in the Expert View and Function 
Library Windows.”  



Chapter 2 • QuickTest at a Glance

30

Function Library

QuickTest provides a built-in editor that enables you to create and debug 
function libraries using the same editing features that are available in the 
Expert View. Each function library is a separate QuickTest document 
containing VBscript functions, subroutines, classes, modules, and so forth. 
Each function library opens in its own window, in addition to the test that is 
already open. You can work on one or several function libraries at the same 
time. After you finish editing a function library, you can close it, leaving 
your QuickTest session open. You can also close all open function libraries 
simultaneously. For more information, see Chapter 31, “Working with User-
Defined Functions and Function Libraries.”

Title bar

Menu bar

Toolbars 

Debug Viewer 
pane

Function Library 
editor

Document
tabs 



Chapter 2 • QuickTest at a Glance

31

Start Page

The Start Page welcomes you to QuickTest and describes the new features in 
this release—including links to more information about these features. It 
also provides links to Process Guidance, a tool that offers best practices for 
working with QuickTest. If your organization has descriptions for its own 
custom processes, these processes may also be available from the Process 
Guidance List. For more information, see “Working with Process Guidance” 
on page 1221. 



Chapter 2 • QuickTest at a Glance

32

You can open a document from the list of Recently Used Files, or you can 
click the buttons in the Welcome! area to open new or existing documents:

Tip: If you do not want QuickTest to display the Start Page when you next 
open QuickTest, select the Don’t show the Start Page window on startup 
check box. When you select this option, the Start Page is also automatically 
hidden for the current QuickTest session as soon as you open another 
QuickTest document. To display the Start Page again, select View > Start 
Page. 

Click to...

Open a new test.

Open a new business component.

Open a new application area.

Open a new function library.

Open an existing test.

Open an existing business component.

Open an existing application area.

Open an existing function library.



Chapter 2 • QuickTest at a Glance

33

Active Screen

The Active Screen provides a snapshot of your application as it appeared 
when you performed a certain step during a recording session. Additionally, 
depending on the Active Screen capture options that you used while 
recording, the page displayed in the Active Screen can contain detailed 
property information about each object displayed on the page. To view the 
Active Screen, click the Active Screen button or select View > Active Screen. 
For more information, see “Working with the Active Screen” on page 376.



Chapter 2 • QuickTest at a Glance

34

Available Keywords Pane

The Available Keywords pane enables you to drag and drop objects or calls 
to functions into your test. When you drag and drop an object into your 
test, QuickTest inserts a step with the default operation for that object. 
When you drag and drop a function into your test, QuickTest inserts a call 
to that function. To view the Available Keywords pane, click the Available 
Keywords Pane button or select View > Available Keywords. 

For more information, see “Understanding the Available Keywords Pane” on 
page 1165.



Chapter 2 • QuickTest at a Glance

35

Data Table

The Data Table contains one Global tab plus an additional tab for each 
action in your test. The Data Table assists you in parameterizing your test. To 
view the Data Table, click the Data Table toolbar button or select 
View > Data Table. The Data Table is a spreadsheet-like sheet with columns 
and rows representing the data applicable to your test. For more 
information, see Chapter 42, “Working with Data Tables.”



Chapter 2 • QuickTest at a Glance

36

Debug Viewer Pane

The Debug Viewer pane assists you in debugging your tests or function 
libraries. To view the Debug Viewer pane, select View > Debug Viewer.

This pane contains three tabs—Watch, Variables, and Command. 

Watch

The Watch tab displays the current value and type of any variable or 
VBScript expression that you added to the Watch tab. You can also set or 
modify the values of the variables and properties that are displayed.

Variables

The Variables tab displays the current value and type of all variables that 
were recognized up to the last step performed during the run session that 
you are debugging. You can also set or modify the values of the variables 
that are displayed.

Command

The Command tab enables you to run lines of script to set or modify the 
current value of a variable or VBScript object in your test or function library. 

For more information, see “The Debug Viewer Pane” on page 1082.



Chapter 2 • QuickTest at a Glance

37

Information Pane

The Information pane provides a list of syntax errors in your test or function 
library scripts. To show or hide the Information pane, select 
View > Information. 

When you switch from the Expert View to the Keyword View, QuickTest 
automatically checks for syntax errors in your script, and shows them in the 
Information pane. If the Information pane is not currently displayed, 
QuickTest automatically opens it when a syntax error is detected. 

You can double-click a syntax error to locate the error in the script or 
function library, and then correct it. For more information, see “Handling 
VBScript Syntax Errors” on page 860.



Chapter 2 • QuickTest at a Glance

38

Missing Resources Pane

The Missing Resources pane provides a list of the resources that are specified 
in your test but cannot be found. Missing resources can include calls to 
missing actions, missing function libraries, missing recovery scenarios, 
missing environment variable XML files, unmapped shared object 
repositories, and parameters that are connected to shared object 
repositories. 

Each time you open your test, QuickTest automatically checks that all 
specified resources are accessible. If it finds any resources that are not 
accessible, QuickTest lists them in the Missing Resources pane. If the Missing 
Resources pane is not currently displayed, QuickTest automatically opens it 
when a missing resource is detected. To show or hide the Missing Resources 
pane, select View > Missing Resources or click the Missing Resource button.  

The Missing Resources pane contains the following columns. 

➤ The Item column lists the missing resources.

➤ The Details column provides information about each missing resource, such 
as the location in which QuickTest expects to find the resource. 

You can double-click a missing resource to remap it or remove it. You can 
also filter the pane to display a specific type of missing resource, such as 
Missing Object Repository and hide the other types. 

For more information, see “Handling Missing Resources” on page 1179.



Chapter 2 • QuickTest at a Glance

39

Process Guidance Panes

Process guidance is a tool that provides procedures and descriptions on how 
to best perform specific processes. You use process guidance to learn about 
new processes and to learn the preferred methodology for performing 
processes with which you are already familiar. 

Process guidance is displayed in two panes: the Process Guidance Activities 
pane and the Process Guidance Description pane. You display or hide these 
panes by choosing View > Process Guidance or clicking the Process 
Guidance panes toggle button.   

The Process Guidance Activities pane (shown on the left) lists the activities 
that are part of the selected process. The Process Guidance Description pane 
(shown on the right) displays the topic (description), for the selected 
activity. For more information, see Chapter 43, “Working with Process 
Guidance.”



Chapter 2 • QuickTest at a Glance

40

Resources Pane

Tests and actions are associated with resources such as function libraries, 
recovery scenarios, and object repositories. QuickTest displays all the 
resources associated with a test in the Resources pane. The Resources pane 
enables you to add, remove, and manage all of the resources in your test. To 
view the Resources pane, click the Resources Pane button or select View > 
Resources.

For more information, see “The Resources Pane” on page 1161.



Chapter 2 • QuickTest at a Glance

41

Test Flow Pane

The Test Flow pane is comprised of a hierarchy of actions and action calls in 
the current test, and shows the order in which they are run. Each action is 
displayed as a node in a tree, and includes calls to all of a test’s actions. The 
steps of the action that you double-click in the Test Flow pane are displayed 
in the Keyword View and Expert View. 

The Test Flow pane is displayed by default when you start 
QuickTest Professional. To view the Test Flow pane, click the Test Flow Pane 
button or select View > Test Flow.

For more information, see “Using the Test Flow Pane” on page 431.



Chapter 2 • QuickTest at a Glance

42

To Do Pane

The To Do pane enables you to create, view, and manage your TODO tasks. 
A TODO task is anything that needs to be done in a test, such as providing 
information relevant for handing over a testing document, or adding a 
reminder to yourself to add steps that test a new page in your application. 
You can assign tasks to others, and you can mark a task as complete when it 
is done. Your TODO tasks are saved with the test. 

The To Do pane also enables you to view the TODO comments that exist in 
the action or an open function library (for example, instructions or notes 
adjacent to a step). To show or hide the To Do pane, select View > To Do or 
click the To Do Pane toolbar button.  

For more information, see “Managing QuickTest Tasks and Comments” on 
page 1169.



Chapter 2 • QuickTest at a Glance

43

Using QuickTest Commands

You can select QuickTest commands from the menu bar or from a toolbar. 
QuickTest displays a different set of commands and toolbar buttons for tests. 
Each set is customized for the type of document you are creating or 
modifying. You can also perform some QuickTest commands by pressing 
shortcut keys or selecting commands from context (right-click) menus. The 
menus and toolbars are enabled according to the active document type. 

Most commands are available from the menu bar or by pressing shortcut 
keys. You can perform frequently used QuickTest commands by clicking 
buttons in the toolbars. For more information, see:

➤ “QuickTest Toolbars” on page 44 

➤ “File Menu Commands” on page 47

➤ “Edit Menu Commands” on page 50

➤ “View Menu Commands” on page 54

➤ “Insert Menu Commands” on page 55

➤ “Automation Menu Commands” on page 58

➤ “Resources Menu Commands” on page 60

➤ “Debug Menu Commands” on page 61

➤ “Tools Menu Commands” on page 62

➤ “Window Menu Commands” on page 64

➤ “Help Menu Commands” on page 64

➤ “Data Table Menu Commands” on page 66

➤ “Other QuickTest Commands” on page 68



Chapter 2 • QuickTest at a Glance

44

QuickTest Toolbars
This section describes the QuickTest built-in toolbars. 

You can add, remove, reorder, or change the appearance of the QuickTest 
toolbars using the Customize Toolbars and Menus dialog box and the 
Button Appearance Dialog Box. For more information, see “Customizing 
Toolbars and Menus” on page 1146.

Standard Toolbar

The Standard toolbar contains buttons for managing a test or function 
library. 

For information on the Standard toolbar buttons, see “File Menu 
Commands” on page 47.

Note: The icons for the New and Open buttons change depending on the 
type of active document, such as test or function library.

For more information on managing your test, see Chapter 12, “Creating 
Tests Using the Keyword-Driven Methodology.” For more information on 
managing business process tests, see Chapter 56, “Working with Business 
Process Testing.” For more information on working with function libraries, 
see Chapter 31, “Working with User-Defined Functions and Function 
Libraries.”

Automation Toolbar

The Automation toolbar contains buttons for recording and running your 
test. 

For information on the Automation toolbar buttons, see “Automation Menu 
Commands” on page 58.



Chapter 2 • QuickTest at a Glance

45

Debug Toolbar

The Debug toolbar contains buttons for the commands used when 
debugging the steps in your test and any associated function library. 

For information on the Debug toolbar buttons, see “Debug Menu 
Commands” on page 61.

Edit Toolbar

The Edit toolbar contains buttons for the commands used when editing 
your test or function library.

For information on the Edit toolbar buttons, see “Edit Menu Commands” 
on page 50.

Insert Toolbar

The Insert toolbar contains buttons for the commands used when creating 
and modifying your test steps and when working with function libraries.

For information on the Insert toolbar buttons, see “Insert Menu 
Commands” on page 55.

Tools Toolbar

The Tools toolbar contains buttons for the commands used to access tools 
that assist you when working with your test.  

For information on the Tools toolbar buttons, see “Tools Menu Commands” 
on page 62.



Chapter 2 • QuickTest at a Glance

46

View Toolbar

The View toolbar contains buttons for viewing different elements of the 
QuickTest window. 

For information on the View toolbar buttons, see “View Menu Commands” 
on page 54.

Action Toolbar

The Action toolbar is available in the Keyword View and contains options 
that enable you to view all actions in the test flow or to view the details of a 
selected action. The following options are displayed on the Action toolbar:

When your test contains reusable or external actions, the Action toolbar is 
always visible. If there are no reusable or external actions in your test, you 
can select View > Toolbars > Action to show the Action toolbar.

When you have reusable or external actions in your test, only the action 
icon is visible when viewing the entire Test Flow in the Keyword View. You 
can view the details of the reusable or external actions by double-clicking on 
the action, selecting the action name from the list in the Action toolbar, or 
selecting the action in the Keyword View and clicking the Show button. You 
can return to the Test Flow by clicking the Back button.

For more information on actions, see Chapter 15, “Working with Actions” 
and Chapter 16, “Working with Advanced Action Features.”

Performing QuickTest Commands

In addition to performing frequently-used commands by clicking toolbar 
buttons, you can perform most QuickTest commands by choosing the 
relevant menu option. You can also perform some QuickTest commands by 
pressing the relevant shortcut keys.

Action List

Back

Display selected action



Chapter 2 • QuickTest at a Glance

47

File Menu Commands
You can manage your test or function library using the following File menu 
commands:

Command Shortcut Key Function

New > Test CTRL+N Creates a new test. 

New > Business 
Component

CTRL+SHIFT+N Creates a new business 
component.

New > Scripted 
Component

Creates a new scripted 
component.

New > Application 
Area

CTRL+ALT+N Creates a new application area. 

New > Function 
Library

SHIFT+ALT+N Creates a new function library.

Open > Test CTRL+O Opens an existing test. 

Open > Business/
Scripted Component

CTRL+SHIFT+O Opens an existing business or 
scripted component. 

Open > Application 
Area

CTRL+ALT+O Opens an existing application 
area. 

Open > Function 
Library

SHIFT+ALT+O Opens an existing function 
library.

Close Closes the active function 
library.

Close All Function 
Libraries

Closes all open function 
libraries.



Chapter 2 • QuickTest at a Glance

48

Quality Center 
Connection

Opens the Quality Center 
Connection dialog box, enabling 
you to connect to a 
Quality Center project.

Tip: Double-click the 
Quality Center icon on the 
status bar to manage your 
connection. 
Point to the Quality Center icon 
on the status bar to view 
connection information.

Quality Center 
Version Control

Provides a sub-menu of options 
for managing versions of 
QuickTest assets and baselines in 
Quality Center. The version-
related sub-menu is available 
only when you are connected to 
version-control enabled 
Quality Center project.

Save CTRL+S Saves the active document. 

Save As Opens the relevant Save dialog 
box so you can save the open 
document.

Save Test with 
Resources

Saves a standalone copy of the 
current test together with its 
resource files.

Save All Saves all open documents.

Enable Editing Makes read-only function 
libraries editable.

Export Test to Zip File CTRL+ALT+S Creates a zip file of the active 
test.

Command Shortcut Key Function



Chapter 2 • QuickTest at a Glance

49

Many of the File menu commands are also available from the Standard 
toolbar (described on page 44).

Import Test from Zip 
File

CTRL+ALT+I Imports a test from a zip file.

Convert to Scripted 
Component

CTRL+ALT+C Converts a business component 
to a scripted component.

Print CTRL+P Prints the active document. 

Print Preview Displays the Keyword View as it 
will look when printed and 
enables you to modify the page 
setup.

Settings Opens the Settings dialog box, 
enabling you to define settings 
for the open document. (Not 
relevant for function libraries)

Process Guidance 
Management

Opens the Process Guidance 
Management dialog box, 
enabling you to manage the list 
of processes that are available in 
QuickTest. 

Associate Library 
’<Function Library 
Name>’ with 
’<Document Name>’

Associates the active function 
library with the open document. 
(Available only from function 
libraries)

Recent Files Lists the recently viewed files.

Exit Closes the QuickTest session.

Command Shortcut Key Function



Chapter 2 • QuickTest at a Glance

50

Edit Menu Commands
You can manage your test actions and your test or function library steps 
using the following Edit menu commands:

Command Shortcut Key Function

Undo CTRL+Z Reverses the last command or 
deletes the last entry you typed. 

Redo CTRL+Y Reverses the most recent 
operation of the Undo 
command. 

Cut CTRL+X Removes the selection from 
your document.

Copy CTRL+C Copies the selection from your 
document.

Paste CTRL+V Pastes the selection to your 
document. 

Delete DELETE Deletes the selection from your 
document. 

Copy Documentation 
to Clipboard

Copies the content of the 
Documentation column of the 
Keyword View, enabling you to 
paste it in an external 
application.

Action > Split Action Separates an action into two 
sibling actions or into parent-
child nested actions.

Action > Rename 
Action 

SHIFT+F2 Changes the name of an action.

Action > Delete 
Action

Enables you to remove the 
selected call to the action, or 
delete the action and its calls 
from the active test.



Chapter 2 • QuickTest at a Glance

51

Action > Action 
Properties

Enables you to specify options, 
parameters, and associated 
object repositories for a stored 
action.

Action > Action Call 
Properties

Enables you to specify the 
number of run iterations 
according to the number of 
rows in the Data Table, and to 
define the values of input 
parameters and the storage 
location of output parameters.

Step Properties > 
Comment Properties

CTRL+ENTER; 
ALT+ENTER

Opens the Comment Properties 
dialog box for a comment step. 
Available only when the 
selected step is a comment.

Step Properties > 
Object Properties

CTRL+ENTER; 
ALT+ENTER

Opens the Object Properties 
dialog box for a selected object. 
Available only when the 
selected step contains a test 
object.

Step Properties > 
Checkpoint 
Properties

Opens the relevant Checkpoint 
Properties dialog box for a 
selected object. Available only 
when the selected step is a 
checkpoint step.

Step Properties > 
Output Value 
Properties

Opens the relevant Output 
Value Properties dialog box for a 
selected object. Available only 
when the selected step is an 
output value step.

Step Properties > 
Report Properties

CTRL+ENTER; 
ALT+ENTER

Displays the Report Properties 
dialog box for a report step. 
Available only when the 
selected step is a 
Reporter.ReportEvent step.

Command Shortcut Key Function



Chapter 2 • QuickTest at a Glance

52

Find CTRL+F Searches for a specified string. 

Replace CTRL+H Searches and replaces a specified 
string. 

Go To CTRL+G Moves the cursor to a particular 
line in the test or function 
library. 

Bookmarks CTRL+B Creates bookmarks in your test 
or function library for easy 
navigation.  

Advanced > 
Comment Block

CTRL+M Comments out the current row, 
or selected rows. 

Advanced > 
Uncomment Block

CTRL+SHIFT+M Removes the comment 
formatting from the current or 
selected rows. 

Advanced > Indent TAB Indents the step according to 
the tab spacing defined in the 
Editor Options dialog box. 

Advanced > Outdent BACKSPACE Outdents the step (reduces the 
indentation) according to the 
tab spacing defined in the 
Editor Options dialog box. 

Advanced > Go to 
Function Definition

ALT+G Navigates to the definition of 
the selected function. 

Advanced > 
Complete Word

CTRL+SPACE Completes the word when you 
type the beginning of a 
VBScript method or object. 

Advanced > 
Argument Info

CTRL+SHIFT+
SPACE

Displays the syntax of a 
method. 

Advanced > Apply 
"With" to Script

CTRL+W Generates With statements for 
the action displayed in the 
Expert View, and enables 
IntelliSense within With 
statements.

Command Shortcut Key Function



Chapter 2 • QuickTest at a Glance

53

Many of the Edit menu commands are also available from the Edit toolbar 
(described on page 45).

Advanced > Remove 
"With" Statements

CTRL+SHIFT+W Converts any With statements 
in the action displayed in the 
Expert View to regular (single-
line) VBScript statements.

Optional Step Inserts an optional step (a step 
that is not required to 
successfully complete a run 
session).

Command Shortcut Key Function



Chapter 2 • QuickTest at a Glance

54

View Menu Commands
You can manage the way that QuickTest is displayed on your screen using 
the following View menu commands:

Some of the View menu commands are also available from the View toolbar 
(described on page 46).

Command Function

Start Page Opens the Start Page. (Enabled only when the Start 
Page is closed)

Active Screen Displays the Active Screen.

Available Keywords Shows and hides the Available Keywords Pane.

Data Table Displays the Data Table.

Debug Viewer Shows and hides the Debug Viewer Pane.

Information Shows and hides the Information Pane.

Missing Resources Shows and hides the Missing Resources Pane.

Process Guidance Shows and hides the Process Guidance Panes.

Resources Shows and hides the Resources Pane.

Test Flow Shows and hides the Test Flow Pane. (Relevant 
only for tests)

To Do Shows and hides the To Do Pane.

Expand All Expands all steps in the Keyword View.

Collapse All Collapses all steps in the Keyword View.

Keyword View Displays the Keyword View if the Expert View is 
displayed.

Expert View Displays the Expert View if the Keyword View is 
displayed.

Toolbars Enables you to show and hide QuickTest toolbars.

Window Theme Enables you to select a theme to apply to your 
QuickTest window.



Chapter 2 • QuickTest at a Glance

55

Insert Menu Commands
You can insert various types of test and function library steps using the 
following Insert menu commands:

Command Shortcut Key Function

Checkpoint > Existing 
Checkpoint

ALT +F12 Opens the Add Existing 
Checkpoint dialog box, 
enabling you to insert an 
existing checkpoint for an 
object or a table.

Note: From the menu option, 
context-menu option, or toolbar 
button, you can also insert other 
types of checkpoints, if 
available.

Checkpoint > 
Standard Checkpoint

F12 Opens the Checkpoint 
Properties dialog box, enabling 
you to create a standard 
checkpoint for an object or a 
table.

Note: From the menu option, 
context-menu option, or toolbar 
button, you can also insert other 
types of checkpoints, if 
available.

Output Value > 
Existing Output Value

SHIFT+CTRL+
F12

Opens the Add Existing Output 
Value dialog box, enabling you 
to create a standard output 
value for an object or a table.

Note: From the menu option, 
context-menu option, or toolbar 
button, you can also insert other 
types of output values, if 
available.



Chapter 2 • QuickTest at a Glance

56

Output Value > 
Standard Output 
Value

CTRL+F12 Opens the Output Value 
Properties dialog box, enabling 
you to create a standard output 
value for an object or a table.

Note: From the menu option, 
context-menu option, or toolbar 
button, you can also insert other 
types of output values, if 
available.

Step Generator F7 Opens the Step Generator. 

Function Definition 
Generator

Opens the Function Definition 
Generator.

Synchronization 
Point

Inserts a synchronization point 
in the test, instructing QuickTest 
to pause the test until the object 
property value is achieved (or 
times out). 

New Step F8; INSERT Inserts a new step in the 
Keyword View.

New Step After Block SHIFT+F8 Inserts a new step after a 
conditional or loop block in the 
Keyword View. 

Operation Inserts an operation (function) 
step in a component.

Comment Inserts a Comment step in the 
Keyword View.

Report Inserts a Reporter step in the 
Keyword View, instructing 
QuickTest to report an event to 
the Test Results.

Conditional 
Statement 

Inserts an If...Then, ElseIf...Then, 
or Else statement according to 
your selection.

Command Shortcut Key Function



Chapter 2 • QuickTest at a Glance

57

Some of the Insert menu commands are also available from the Insert 
toolbar (described on page 45). 

Loop Statement Inserts a While...Wend, 
For...Next, Do...While, or 
Do...Until statement according 
to your selection.

Call to New Action Creates a new action and inserts 
it in the specified location.

Call to Copy of 
Action

Inserts a call to an editable copy 
of an existing action.

Call to Existing 
Action

Inserts a call to an existing 
reusable action.

Call to WinRunner Inserts a call to a WinRunner 
test or user-defined function. 

(Available only if WinRunner is 
installed on the QuickTest 
computer)

Start Transaction Inserts a StartTransaction step in 
the test, marking the beginning 
of the transaction to be timed. 

(Relevant only if the test 
includes transactions to be used 
by LoadRunner or Business 
Availability Center)

End Transaction Inserts an EndTransaction step 
in the test, marking the end of 
the transaction to be timed. 

(Relevant only if the test 
includes transactions to be used 
by LoadRunner or Business 
Availability Center)

Command Shortcut Key Function



Chapter 2 • QuickTest at a Glance

58

Automation Menu Commands
You can manage your record and run sessions using the following 
Automation menu commands:

Command Shortcut Key Function

Record F3 Starts a recording session.

Run F5 Starts a run session from the 
beginning or from the line at 
which the session was paused.

Stop F4 (You can also 
define a shortcut 
key or key 
combination. See 
“Setting Run 
Testing Options” 
on page 1253.)

Stops the recording or run 
session.

Run Current Action Runs only the active action. 

Run from Step CTRL+F5 Starts a run session from the 
selected step.

Maintenance Run 
Mode 

Starts a run session during 
which the Maintenance Run 
Mode wizard opens for steps 
that failed because an object 
was not found in the 
application (if applicable).

Update Run Mode Starts a run session to update 
test object descriptions and 
other options (if applicable).

Analog Recording SHIFT+ALT+F3 Starts recording in Analog 
Recording mode. 

Low Level 
Recording

CTRL+SHIFT

+F3
Starts recording in Low Level 
Recording mode. 



Chapter 2 • QuickTest at a Glance

59

Some of the Automation menu commands are also available from the 
Automation toolbar (described on page 44).

Record and Run 
Settings

Opens the Record and Run 
Settings dialog box, enabling 
you to define browser 
preferences for recording and 
running your test. 

Process Guidance 
List

Lists the processes that are 
available for the current 
document type and for the 
currently loaded QuickTest 
add-ins, enabling you to open 
them.

Results Opens the Test Results viewer, 
enabling you to view results for 
a test run session. 

Command Shortcut Key Function



Chapter 2 • QuickTest at a Glance

60

Resources Menu Commands
You can manage your object repositories and other resources using the 
following Resources menu commands:

The Object Repository menu command is also available from the 
Automation toolbar (described on page 44).

Command Shortcut Key Function

Object Repository CTRL+R Opens the Object Repository 
window, which displays a tree 
containing all objects in the 
current test or component.

Object Repository 
Manager

Opens the Object Repository 
Manager dialog box, enabling 
you to open and modify 
multiple shared object 
repositories.

Associate 
Repositories

Opens the Associate Repositories 
dialog box, enabling you to 
manage the object repository 
associations for the test.

Map Repository 
Parameters

Opens the Map Repository 
Parameters dialog box, enabling 
you to map repository 
parameters, as needed.

Recovery Scenario 
Manager

Opens the Recovery Scenario 
Manager dialog box.

Associated Function 
Libraries

Lists the function libraries 
associated with the active 
document, enabling you to 
open them. 



Chapter 2 • QuickTest at a Glance

61

Debug Menu Commands
You can debug the steps in your test and any associated function library 
using the following Debug menu commands:

Command
Shortcut 
Key

Function

Pause Pauses the debug session.

Step Into F11 Runs only the current line of the 
script. If the current line calls a 
method, the method is displayed in 
the view but is not performed.

Step Over F10 Runs only the current line of the 
script. When the current line calls a 
method, the method is performed in 
its entirety, but is not displayed in the 
view.

Step Out SHIFT+F11 Runs to the end of the method then 
pauses the run session. (Available 
only after running a method using 
Step Into)

Run to Step CTRL+F10 Runs until the current step.

Debug from Step Runs from the selected step instead of 
the start of the test.

Add to Watch CTRL+T Adds the selected item to the Watch 
tab.

Insert/Remove 
Breakpoint

F9 Sets or clears a breakpoint in the test.

Enable/Disable 
Breakpoint

CTRL+F9 Enables or disables a breakpoint in 
the test.

Clear All Breakpoints CTRL+
SHIFT+F9

Deletes all breakpoints in the test.

Enable/Disable All 
Breakpoints

Enables or disables all breakpoints in 
the test.



Chapter 2 • QuickTest at a Glance

62

Some of the Debug commands are also available from the Debug toolbar 
(described on page 45).

Tools Menu Commands
You can perform the following Tools menu commands: 

Command Shortcut Key Function

Options Opens the Options dialog box, 
enabling you to modify global 
testing options.

View Options Opens the Editor Options dialog 
box, enabling you to customize 
how tests and function libraries 
are displayed in the Expert View 
and function library windows.

Check Syntax CTRL+F7 Checks the syntax of the active 
document.

Object Identification Opens the Object Identification 
dialog box, enabling you to 
specify how QuickTest identifies 
a particular test object.

Object Spy Opens the Object Spy dialog 
box, enabling you to view the 
native properties and operations 
of any object in an open 
application, as well as the test 
object hierarchy, identification 
properties, and test object 
operations that QuickTest uses 
to represent that object.

Web Event Recording 
Configuration

Opens the Web Event Recording 
Configuration dialog box, 
enabling you to specify a 
recording configuration level.



Chapter 2 • QuickTest at a Glance

63

Some of the Tools menu commands are also available from the Tools toolbar 
(described on page 45).

Data Driver Opens the Data Driver dialog 
box, which displays the default 
Constants list for the action.

Change Active 
Screen

Replaces the previously recorded 
Active Screen with the selected 
Active Screen.

Virtual Objects > 
New Virtual Object

Opens the Virtual Object 
Wizard, enabling you to teach 
QuickTest to recognize an area 
of your application as a standard 
test object.

Virtual Objects > 
Virtual Object 
Manager

Opens the Virtual object 
Manager, enabling you to 
manage all of the virtual object 
collections defined on your 
computer.

Customize Opens the Customize dialog 
box, which enables you to 
customize toolbars and menus, 
and create new menus. 

Command Shortcut Key Function



Chapter 2 • QuickTest at a Glance

64

Window Menu Commands

You can perform the following Window menu commands: 

Help Menu Commands

You can perform the following Help menu commands: 

Command Function

Cascade Displays the open documents cascaded.

Tile Horizontally Displays the open documents one above the other.

Tile Vertically Displays the open documents side-by-side.

Close All Function Libraries Closes all open function libraries.

open files section Lists the documents that are currently open in the 
QuickTest session.

Windows Opens the Windows dialog box, enabling you to 
manage your open document windows.

Command Shortcut Key Function

QuickTest Professional 
Help

F1 Opens the QuickTest Professional 
Help.

Printer-Friendly 
Documentation

Opens a page that provides links to 
printer-friendly versions of all 
QuickTest documentation, in Adobe 
Acrobat Reader (PDF) format.

QuickTest Professional 
Tutorial

Opens the QuickTest Professional 
tutorial, which teaches you basic 
QuickTest skills and shows you how 
to start testing your applications.

What’s New Opens the What’s New in 
QuickTest Professional Help.



Chapter 2 • QuickTest at a Glance

65

Product Feature Movies Enables you to view movies 
illustrating various QuickTest 
features.

Troubleshooting & 
Knowledge Base

Opens the Troubleshooting area of 
the HP Software Support Web site, 
enabling you to select from several 
self-help troubleshooting options, 
including a product-specific 
knowledge base articles. (Requires 
login.)

The URL is: http://
h20230.www2.hp.com/
troubleshooting.jsp

HP Software Support Opens the HP Software Support Web 
site. This site enables you to browse 
the HP Support Knowledge Base and 
add your own articles. You can also 
post to and search user discussion 
forums, submit support requests, 
download patches and updated 
documentation, and more. 

The URL is: www.hp.com/go/
hpsoftwaresupport

Send Feedback and Win! Opens the HP 
QuickTest Professional Send 
Feedback and Win Web site, where 
you can answer surveys about 
QuickTest and become eligible to 
win prizes in special prize drawings. 

The URL is: http://www.hpqtp.com

Check for Updates Checks online for any available 
updates to QuickTest Professional. 
You can choose which updates you 
want to download and (optionally) 
install.

Command Shortcut Key Function

http://h20230.www2.hp.com/troubleshooting.jsp
http://h20230.www2.hp.com/troubleshooting.jsp
http://www.hp.com/go/hpsoftwaresupport
http://www.hp.com/go/hpsoftwaresupport
http://www.hpqtp.com


Chapter 2 • QuickTest at a Glance

66

Data Table Menu Commands
You can perform the following Data Table menu commands by 
right-clicking in a Data Table cell or pressing the corresponding shortcut 
keys when one or more cells are selected in the Data Table.  

HP QuickTest Professional 
Software Web Page

Uses your default Web browser to 
access the HP QuickTest Professional 
software Web page within the HP 
corporate Web site. This site 
provides you with overview 
information, data sheets, demos and 
white papers about QuickTest as well 
as access to other technical 
resources.

The URL is: https://
h10078.www1.hp.com/cda/hpms/
display/main/
hpms_content.jsp?zn=bto&cp=1-11-
127-24^1352_4000_100__

About 
QuickTest Professional 

Displays information about the 
installed version of 
QuickTest Professional.

Command Shortcut Key Function

Edit > Cut CTRL+X Cuts the table selection and puts it 
on the Clipboard.

Edit > Copy CTRL+C Copies the table selection and puts 
it on the Clipboard.

Edit > Paste CTRL+V Pastes the contents of the 
Clipboard to the current table 
selection.

Edit > Clear > Contents CTRL+DEL Clears the contents from the 
current selection. 

Command Shortcut Key Function

https://h10078.www1.hp.com/cda/hpms/display/main/hpms_content.jsp?zn=bto&cp=1-11-127-24^1352_4000_100__
https://h10078.www1.hp.com/cda/hpms/display/main/hpms_content.jsp?zn=bto&cp=1-11-127-24^1352_4000_100__


Chapter 2 • QuickTest at a Glance

67

Edit > Insert CTRL+I Inserts empty cells at the location 
of the current selection. Cells 
adjacent to the insertion are shifted 
to make room for the new cells.

Edit > Delete CTRL+K Deletes the current selection. Cells 
adjacent to the deleted cells are 
shifted to fill the space left by the 
vacated cells.

Edit > Fill Right CTRL+R Copies data in the left-most cell of 
the selected range to all cells to the 
right of it, within the selected 
range.

Edit > Fill Down CTRL+D Copies data in the top cell of the 
selected range to all cells below it 
within the selected range.

Edit > Find CTRL+F Finds a cell containing specified 
text. You can search the table by 
row or column and specify to 
match case or find entire cells only.

Edit > Replace CTRL+H Finds a cell containing specified 
text and replaces it with different 
text. You can search the table by 
row or column and specify to 
match case and/or to find entire 
cells only. You can also replace all.

Data > Recalc F9 Recalculates the selected data in the 
Data Table.

Switch between Data 
Table sheets

CTRL+PAGE 
UP/PAGE 
DOWN

Switches through the Data Table 
sheets when the Data Table is in 
focus.

Command Shortcut Key Function



Chapter 2 • QuickTest at a Glance

68

Other QuickTest Commands

You can perform the following special options using shortcut keys:

Option Shortcut Key Function

Switch between 
Keyword View and 
Expert View

CTRL+PAGE UP/PAGE 
DOWN

Toggles between the Keyword 
View and Expert View.

Switch between open 
documents

CTRL+TAB Changes the display to 
another open document type.

Open context menu SHIFT+F10, 

or press the 
Application Key ( ) 
[Microsoft Natural 
Keyboard only]

Opens the context menu for 
the selected step data cell in 
the Data Table.

Expand all branches * 
[on the numeric 
keypad]

Expands all branches in the 
Keyword View.

Expand branch + 
[on the numeric 
keypad]

Expands the selected item 
branch and all branches 
below it in the Keyword View.

Collapse branch - 
[on the numeric 
keypad]

Collapses the selected item 
branch and all branches 
below it in the Keyword View.

Open the Item or 
Operation list

SHIFT+F4 or SPACE, 
when the Item or 
Operation column is 
selected in the 
Keyword View.

Opens the Item or Operation 
list in the Keyword View, 
when the Item or Operation 
column is selected.



Chapter 2 • QuickTest at a Glance

69

Browsing the QuickTest Professional Program Folder

After the QuickTest Professional setup process is complete, the following 
items are added to your QuickTest Professional program folder (Start > 
Programs > QuickTest Professional).

Note: If you uninstalled a previous version of QuickTest Professional before 
installing this version, you may have additional (outdated) items in your 
QuickTest Professional program folder. In addition, if you have 
QuickTest Professional add-ins or extensibility SDKs installed, you may have 
items in your program folder that relate specifically to these items.

➤ Documentation. Provides the following links to commonly used 
documentation files:

➤ Printer-Friendly Documentation. Opens a page that provides links to 
printer-friendly versions of all QuickTest documentation, in Adobe 
Acrobat Reader (PDF) format.

➤ QuickTest Automation Reference. Opens the QuickTest Professional 
Automation Object Model Reference. The automation object model 
assists you in automating test management, by providing objects, 
methods and properties that enable you to control QuickTest features 
and configurations. The Automation Object Model Reference provides 
syntax, descriptive information, and examples for the objects, methods, 
and properties. It also contains a detailed overview to help you get 
started writing QuickTest automation scripts.

➤ QuickTest Professional Code Samples Plus. Opens the 
QuickTest Professional Code Samples Plus Help, which provides sample 
function libraries, code, and SDK samples with accompanying 
explanations.



Chapter 2 • QuickTest at a Glance

70

➤ QuickTest Professional Help. Opens a comprehensive help file containing 
the HP QuickTest Professional User Guide, the HP QuickTest Professional for 
Business Process Testing User Guide, the HP QuickTest Professional Add-ins 
Guide, the HP QuickTest Professional Object Model Reference (including the 
relevant sections for any installed add-ins), QuickTest Advanced References 
(Automation API and XML Schema references), and the Microsoft VBScript 
Reference. 

➤ Tutorial. Opens the QuickTest Professional tutorial, which teaches you 
basic QuickTest skills and shows you how to start testing your 
applications.

➤ Extensibility. Provides links to the Help for the add-in Extensibility SDKs 
available with QuickTest Professional 10.00. If you install an extensibility 
SDK, this program folder may also contain additional items.

➤ Sample Applications. Contains the following links to sample applications 
that you can use to practice testing with QuickTest:

➤ Flight. Opens a sample flight reservation Windows application. To access 
the application, enter any username and the password mercury.

➤ Mercury Tours Web site. Opens a sample flight reservation Web 
application. This Web application is used as a basis for the QuickTest 
tutorial. For more information, see the HP QuickTest Professional Tutorial.

➤ Tools. Contains the following utilities and tools that assist you with the 
testing process:

Note: There may be additional tools depending on the installed QuickTest 
add-ins.

➤ Additional Installation Requirements. Opens the Additional Installation 
Requirements dialog box, which displays any prerequisite software that 
you must install or configure to work with QuickTest.

➤ HP Micro Player. Opens the HP Micro Player, which enables you to view 
captured movies of a run session without opening QuickTest. For more 
information, click the Help button in the HP Micro Player window.



Chapter 2 • QuickTest at a Glance

71

➤ License Validation Utility. Opens the License Validation utility, which 
enables you to retrieve and validate license information. For more 
information, click the Help button in the License Validation Utility 
window.

➤ Password Encoder. Opens the Password Encoder dialog box, which 
enables you to encode passwords. You can use the resulting strings as 
method arguments or Data Table parameter values (tests only). For more 
information, see “Inserting Encoded Passwords into Method Arguments 
and Data Table Cells” on page 406.

➤ QuickTest Script Editor. Opens the QuickTest Script Editor, which enables 
you to open and modify the scripts of multiple tests and function 
libraries, simultaneously. For more information, see “Working with the 
QuickTest Script Editor” on page 1381.

➤ Register New Browser Control. Opens the Register Browser Control 
Utility, which enables you to register your browser control application so 
that QuickTest Professional recognizes your Web object when recording 
or running tests. For more information, see the section on registering 
browser controls in the HP QuickTest Professional Add-ins Guide.

➤ Remote Agent. Activates the QuickTest Remote Agent, which enables 
you to configure how QuickTest behaves when a test is run by a remote 
application such as Quality Center. For more information, see “Enabling 
Quality Center to Run Tests on a QuickTest Computer” on page 1440.

➤ Save and Restore Settings. Opens the Save and Restore Settings dialog 
box, which enables you to save certain existing configurations before 
uninstalling a QuickTest 9.2 or older version, and then restore them after 
installing a new version. For more information, see “Save and Restore 
Settings” on page 1619.

➤ Silent Test Runner. (Relevant only for tests) Opens the Silent Test Runner 
dialog box, which enables you to run a QuickTest test the way it is run 
from LoadRunner and Business Availability Center. For more 
information, see “Using Silent Test Runner” on page 1538. 

➤ Test Batch Runner. (Relevant only for tests) Opens the Test Batch Runner 
dialog box, which enables you to set up QuickTest to run several tests in 
succession. For more information, see “Running a Test Batch” on 
page 966.



Chapter 2 • QuickTest at a Glance

72

➤ Test Results Deletion Tool. Opens the Test Results Deletion Tool dialog 
box, which enables you to delete unwanted or obsolete results from your 
system according to specific criteria that you define. For more 
information, see “Deleting Results Using the Test Results Deletion Tool” 
on page 1004.

➤ Check for Updates. Checks online for any available updates to 
QuickTest Professional. You can choose which updates you want to 
download and (optionally) install. 

➤ QuickTest Professional. Opens the QuickTest Professional application.

➤ Readme. Opens the HP QuickTest Professional Readme, which provides the 
latest news and information on QuickTest Professional and the 
QuickTest Professional add-ins.

➤ Test Results Viewer. Opens the Test Results window, which enables you to 
select a test and view information about the steps performed during the run 
session. For more information, see “The Test Results Window” on page 971.



Chapter 2 • QuickTest at a Glance

73

Viewing Product Information

You can view information regarding the QuickTest add-ins, hotfixes, and 
patches installed on your computer, as well as other basic information about 
your computer. This information is useful for troubleshooting and when 
working with HP Software Support.

To view the product information: 

 1 In QuickTest, select Help > About QuickTest Professional. The About 
QuickTest Professional dialog box opens. 



Chapter 2 • QuickTest at a Glance

74

The About QuickTest Professional window displays the following 
information:

➤ The version of QuickTest that is installed on your computer, its build 
number, and Product ID number. 

➤ The list of QuickTest add-ins that are installed on your computer. A check 
mark next to the add-in name indicates that the add-in is currently 
loaded. For more information on QuickTest add-ins, see the HP QuickTest 
Professional Add-ins Guide.

Tip: To view details for, or modify, the QuickTest Professional licenses 
installed on your computer, click the License button. For more 
information, see the HP QuickTest Professional Installation Guide.



Chapter 2 • QuickTest at a Glance

75

 2 To view more detailed information on the QuickTest Professional products 
installed on your computer, click the Product Information button. The 
Product Information window opens. 



Chapter 2 • QuickTest at a Glance

76

The Product Information window displays the following information:

➤ The QuickTest Professional version, product ID, and build numbers 
installed on your computer.

➤ Operating system. The operating system version installed on your 
computer.

➤ Internet Explorer version. The version of Microsoft Internet Explorer 
installed on your computer.

➤ Quality Center connectivity. The version of the Quality Center 
connectivity add-in installed on your computer.

➤ Add-in Information. The QuickTest add-ins installed on your computer. 

➤ Hotfix and Patch Information. The names of any QuickTest hotfixes or 
patches installed on your computer, and links to their readme files.



77

Part II

Working with Test Objects



78



79

3
Understanding the Test Object Model

This chapter describes how QuickTest learns and identifies objects in your 
application, explains the concepts of test object and run-time object, object 
repositories types, and explains how to view the available methods for an 
object and the corresponding syntax. With the help of this information, you 
can add statements to your script in the Expert View or use test objects and 
methods in your functions. 

This chapter includes:

 ➤  About Understanding the Test Object Model on page 79

 ➤  Applying the Test Object Model Concept on page 83

 ➤  Understanding Object Repository Types on page 89

 ➤  Viewing Object Properties and Operations Using the Object Spy on page 97

 ➤  The Object Spy Dialog Box on page 100

About Understanding the Test Object Model

QuickTest tests your dynamically changing application by learning and 
identifying test objects and their expected properties and values. To do this, 
QuickTest analyzes each object in your application in much the same way 
that a person would look at a photograph and remember its details. 

The following sections introduce the concepts related to the test object 
model and describe how QuickTest uses the information it gathers to test 
your application.



Chapter 3 • Understanding the Test Object Model

80

Understanding How QuickTest Learns Objects
QuickTest learns objects just as you would. For example, suppose as part of 
an experiment, Alex is told that he will be shown a photograph of a picnic 
scene for a few seconds during which someone will point out one item in 
the picture. Alex is told that he will be expected to identify that item again 
in identical or similar pictures one week from today. 

Before he is shown the photograph, Alex begins preparing himself for the 
test by thinking about which characteristics he wants to learn about the 
item that the tester indicates. Obviously, he will automatically note whether 
it is a person, inanimate object, animal, or plant. Then, if it is a person, he 
will try to commit to memory the gender, skin color, and age. If it is an 
animal, he will try to remember the type of animal, its color, and so forth. 

The tester shows the scene to Alex and points out one of three children 
sitting on a picnic blanket. Alex notes that it is a Caucasian girl about 8 
years old. In looking at the rest of the picture, however, he realizes that one 
of the other children in the picture could also fit that description. In 
addition to learning his planned list of characteristics, he also notes that the 
girl he is supposed to identify has long, brown hair. 

Now that only one person in the picture fits the characteristics he learned, 
he is fairly sure that he will be able to identify the girl again, even if the 
scene the tester shows him next week is slightly different. 

Since he still has a few moments left to look at the picture, he attempts to 
notice other, more subtle differences between the child he is supposed to 
remember and the others in the picture—just in case. 

If the two similar children in the picture appeared to be identical twins, Alex 
might also take note of some less permanent feature of the child, such as the 
child’s position on the picnic blanket. That would enable him to identify 
the child if he were shown another picture in which the children were 
sitting on the blanket in the same order.

QuickTest uses a very similar method when it learns objects. 



Chapter 3 • Understanding the Test Object Model

81

First, it "looks" at the object being learned and stores it as a test object, 
determining in which test object class it fits. In the same way, Alex 
immediately checked whether the item was a person, animal, plant, or 
inanimate object. QuickTest might classify the test object as a standard 
Windows dialog box (Dialog), a Web button (WebButton), or a Visual Basic 
scroll bar object (VbScrollBar), for example. 

Then, QuickTest "considers" the identification properties for the test object. 
For each test object class, QuickTest has a list of mandatory properties that it 
always learns; similar to the list of characteristics that Alex planned to learn 
before seeing the picture. When QuickTest learns an object, it always learns 
these default property values, and then "looks" at the rest of the objects on 
the page, dialog box, or other parent object to check whether this 
description is enough to uniquely identify the object. If not, QuickTest adds 
assistive properties, one by one, to the description, until it has compiled a 
unique description; similar to when Alex added the hair length and color 
characteristics to his list. If no assistive properties are available, or if those 
available are not sufficient to create a unique description, QuickTest adds a 
special ordinal identifier, such as the object’s location on the page or in the 
source code, to create a unique description, just as Alex would have 
remembered the child’s position on the picnic blanket if two of the children 
in the picture had been identical twins.

Understanding How QuickTest Identifies Objects During 
the Run Session
QuickTest also uses a very human-like technique for identifying objects 
during the run session.

Suppose as a continuation to the experiment, Alex is now asked to identify 
the same "item" he initially identified but in a new, yet similar environment. 

The first photograph he is shown is the original photograph. He searches for 
the same Caucasian girl, about eight years old, with long, brown hair that he 
was asked to remember and immediately picks her out. In the second 
photograph, the children are playing on the playground equipment, but 
Alex is still able to easily identify the girl using the same criteria.



Chapter 3 • Understanding the Test Object Model

82

Similarly, during a run session, QuickTest searches for a run-time object that 
exactly matches the description of the test object it learned previously. It 
expects to find a perfect match for both the mandatory and any assistive 
properties it used to create a unique description while learning the object. As 
long as the object in the application does not change significantly, the 
description learned is almost always sufficient for QuickTest to uniquely 
identify the object. This is true for most objects, but your application could 
include objects that are more difficult to identify during subsequent run 
sessions. 

Consider the final phase of Alex’s experiment. In this phase, the tester 
shows Alex another photograph of the same family at the same location, but 
the children are older and there are also more children playing on the 
playground. Alex first searches for a girl with the same characteristics he 
used to identify the girl in the other pictures (the test object), but none of 
the Caucasian girls in the picture have long, brown hair. Luckily, Alex was 
smart enough to remember some additional information about the girl’s 
appearance when he first saw the picture the previous week. He is able to 
pick her out (the run-time object), even though her hair is now short and 
dyed blond. 

How is he able to do this? First, he considers which features he knows he 
must find. Alex knows that he is still looking for a Caucasian female, and if 
he were not able to find anyone that matched this description, he would 
assume she is not in the photograph. 

After he has limited the possibilities to the four Caucasian females in this 
new photograph, he thinks about the other characteristics he has been using 
to identify the girl—her age, hair color, and hair length. He knows that 
some time has passed and some of the other characteristics he remembers 
may have changed, even though she is still the same person. 

Thus, since none of the Caucasian girls have long, dark hair, he ignores 
these characteristics and searches for someone with the eyes and nose he 
remembers. He finds two girls with similar eyes, but only one of these has 
the petite nose he remembers from the original picture. Even though these 
are less prominent features, he is able to use them to identify the girl. 



Chapter 3 • Understanding the Test Object Model

83

QuickTest uses a very similar process of elimination with its Smart 
Identification mechanism to identify an object, even when the learned 
description is no longer accurate. Even if the values of your identification 
properties change, QuickTest maintains your test’s reusability by identifying 
the object using Smart Identification. For more information on Smart 
Identification, see Chapter 4, “Configuring Object Identification.”

The remainder of this guide assumes familiarity with the concepts presented 
here, including test objects, run-time objects, object properties, mandatory 
and assistive properties, and Smart Identification. An understanding of 
these concepts will enable you to create well-designed, functional tests for 
your application.

Applying the Test Object Model Concept

The test object model is a large set of object types or classes that QuickTest 
uses to represent the objects in your application. Each test object class has a 
list of identification properties that QuickTest can learn about the object, a 
sub-set of these properties that can uniquely identify objects of that class, 
and a set of relevant operations that QuickTest can perform on the object. 

A test object is an object that QuickTest creates in the test to represent the 
actual object in your application. QuickTest stores information on the object 
that will help it identify and check the object during the run session. 

A run-time object is the actual object in your application on which methods 
are performed during the run session.

When QuickTest learns an object in your application, it adds the 
corresponding test object to an object repository, which is a storehouse for 
objects. You can add test objects to an object repository in several ways. For 
example, you can use the QuickTest Navigate and Learn option, add test 
objects manually, or perform an operation on your application while 
recording. For more information on object repositories, see Chapter 5, 
“Managing Test Objects in Object Repositories”, Chapter 7, “Managing 
Object Repositories” and Chapter 12, “Creating Tests Using the Keyword-
Driven Methodology”. 



Chapter 3 • Understanding the Test Object Model

84

When you add an object to an object repository, QuickTest:

➤ Identifies the QuickTest test object class that represents the learned object 
and creates the appropriate test object.

➤ Reads the current value of the object’s properties in your application and 
stores the list of identification properties and values with the test object.

➤ Chooses a unique name for the test object, generally using the value of one 
of its prominent properties. 

For example, suppose you add a Search button with the following HTML 
source code:

<INPUT TYPE="submit" NAME="Search" VALUE="Search">

QuickTest identifies the object as a WebButton test object. In the object 
repository, QuickTest creates a WebButton object with the name Search, 
learns a set of identification properties for the object, and decides to use the 
following properties and values to uniquely identify the Search WebButton: 

If you add an object to an object repository by recording on your 
application, QuickTest records the operation that you performed on the 
object using the appropriate QuickTest test object method. For example, 
QuickTest records that you performed a Click method on the WebButton.

QuickTest displays your step in the Keyword View like this: 



Chapter 3 • Understanding the Test Object Model

85

QuickTest displays your step in the Expert View as follows:

Browser("Search Results: Search").Page("Search Results:
Search").WebButton("Search").Click

When you run a test, QuickTest identifies each object in your application by 
its test object class and its description (the set of identification properties 
and values used to uniquely identify the object). The list of test objects and 
their properties and values are stored in the object repository. In the above 
example, QuickTest would search in the object repository during the run 
session for the WebButton object with the name Search to look up its 
description. Based on the description it finds, QuickTest would then look for 
a WebButton object in the application with the HTML tag INPUT, of type 
submit, with the value Search. When it finds the object, it performs the Click 
method on it.



Chapter 3 • Understanding the Test Object Model

86

Understanding Test Object Descriptions
For each test object class, QuickTest learns a set of identification properties 
when it learns an object, and selects a sub-set of these properties to serve as 
a unique object description. QuickTest then uses this description to identify 
the object when it runs the test.

For example, by default, QuickTest learns the image type (such as plain image 
or image button), the html tag, and the Alt text of each Web image it learns.    

If these three mandatory property values are not sufficient to uniquely 
identify the object within its parent object, QuickTest adds some assistive 
properties and/or an ordinal identifier to create a unique description.

When the test runs, QuickTest searches for the object that matches the 
description it learned. If it cannot find any object that matches the 
description, or if it finds more than one object that matches, QuickTest may 
use the Smart Identification mechanism to identify the object.

test object name
test object class

default 
properties

test object name

image icon



Chapter 3 • Understanding the Test Object Model

87

You can configure the mandatory, assistive, and ordinal identifier properties 
that QuickTest uses to learn the descriptions of the objects in your 
application, and you can enable and configure the Smart Identification 
mechanism. For more information, see Chapter 4, “Configuring Object 
Identification.”

Understanding Test Object and Native Properties and 
Operations
The identification property set for each test object is created and maintained 
by QuickTest. The native property set for each run-time object is created and 
maintained by the object creator (for example, Microsoft for Microsoft 
Internet Explorer objects, Netscape for Netscape Browser objects, the 
product developer for ActiveX objects, and so on).

Similarly, a test object operation is a method or property that QuickTest 
recognizes as applicable to a particular test object class. For example, the 
Click method is applicable to a WebButton test object. As you add steps to 
your test, you specify which operation to perform on each test object. If you 
record steps, QuickTest records the relevant operation as it is performed on 
an object.

During a run session, QuickTest performs the specified test object operation 
on the run-time object. Native operations are the methods of the object in 
your application as defined by the object creator. 

Property values of objects in your application may change dynamically each 
time your application opens, or based on certain conditions. You may need 
to modify the identification property values to match the native property 
values. You can modify identification properties manually while designing 
your test, or use SetTOProperty statements during a run session. You can 
also use regular expressions to identify property values based on conditions 
or patterns you define, or you can parameterize property values with Data 
Table parameters so that a different value is used during each iteration of the 
test. For more information on modifying object properties, see Chapter 5, 
“Managing Test Objects in Object Repositories.” For more information on 
parameterization, see Chapter 24, “Parameterizing Values.” For more 
information on regular expressions, see “Understanding and Using Regular 
Expressions” on page 762. 



Chapter 3 • Understanding the Test Object Model

88

You can view or modify the identification property values that are stored 
with your test in the Object Properties or Object Repository dialog box. For 
more information, see “Specifying or Modifying Property Values” on 
page 163.

You can view the current identification property values of any object on 
your desktop using the Properties tab of the Object Spy. For more 
information, see “Viewing Object Properties and Operations Using the 
Object Spy” on page 97.

You can view the syntax of the test object operations as well as the native 
operations of any object on your desktop using the Operations tab of the 
Object Spy. For more information, see “Viewing Object Properties and 
Operations Using the Object Spy” on page 97. 

You can retrieve or modify property values of the test object during the run 
session by adding GetTOProperty and SetTOProperty statements in the 
Keyword View or Expert View. You can retrieve property values from the 
run-time object during the run session by adding GetROProperty 
statements. For more information, see “Retrieving and Setting Identification 
Property Values” on page 886. 

If the available test object operations and identification properties for a test 
object do not provide the functionality you need, you can access the 
internal operations and properties of the run-time object using the Object 
property. You can also use the attribute object property to identify Web 
objects in your application according to user-defined properties. For 
information, see “Accessing Native Properties and Operations” on page 887.

For more information on test object operations and identification 
properties, see the HP QuickTest Professional Object Model Reference.



Chapter 3 • Understanding the Test Object Model

89

Understanding Object Repository Types

Objects can be stored in two types of object repositories—a shared object 
repository and a local object repository. A shared object repository stores 
objects in a file that can be accessed by multiple tests (in read-only mode). A 
local object repository stores objects in a file that is associated with one 
specific action, so that only that action can access the stored objects.

When you plan and create tests, you must consider how you want to store 
the objects in your tests. You can store the objects for each action in its 
corresponding local object repository, or you can store the objects in your 
tests in one or more shared object repositories. By storing objects in shared 
object repositories and associating these repositories with your actions, you 
enable multiple actions to use the objects. For each action, you can use a 
combination of objects from your local and shared object repositories, 
according to your needs. You can also transfer local objects to a shared 
object repository, if required. This reduces maintenance and enhances the 
reusability of your tests because it enables you to maintain the objects in a 
single, shared location instead of multiple locations. For more information, 
see “Deciding Whether to Use Local or Shared Object Repositories” on 
page 92.

If you are new to using QuickTest, you may want to use local object 
repositories. In this way, you can record and run tests without creating, 
choosing, or modifying shared object repositories because all objects are 
automatically saved in a local object repository that can be accessed by its 
corresponding action. If you modify an object in the local object repository, 
your changes do not have any effect on any other action or any other test 
(except tests that call the action, as described in “Inserting Calls to Existing 
Actions” on page 464).

If you are familiar with testing, it is probably most efficient to save objects 
in a shared object repository. In this way, you can use the same shared object 
repository for multiple actions—if the actions include the same objects. 
Object information that applies to many actions is kept in one central 
location. When the objects in your application change, you can update 
them in one location for all the actions that use this shared object 
repository.



Chapter 3 • Understanding the Test Object Model

90

If an object with the same name is located in both the local object 
repository and in a shared object repository associated with the same action, 
the action uses the local object definition. If an object with the same name 
is located in more than one shared object repository associated with the 
same action, the object definition is used from the first occurrence of the 
object, according to the order in which the shared object repositories are 
associated with the action. For more information on associating shared 
object repositories, see “Associating Object Repositories with Actions” on 
page 446.

Local objects are saved locally with the action, and can be accessed only 
from that action. When using a shared object repository, you can use the 
same object repository for multiple actions. You can also use multiple object 
repositories for each action.

When you open and work with an existing test, it always uses the object 
repositories that are specified in the Associated Repositories tab of the 
Action Properties dialog box or in the Associate Repositories dialog box. 
Shared object repositories are read-only when accessed from tests; you edit 
them using the Object Repository Manager.

Note: If you want to use a shared object repository from Quality Center, you 
must save the shared object repository in the Test Resources module in your 
Quality Center project before you associate the object repository using the 
Associated Repositories tab of the Action Properties dialog box or the 
Associate Repositories dialog box. (You can save the shared object repository 
to your Quality Center project using the Object Repository Manager.)



Chapter 3 • Understanding the Test Object Model

91

Note for users of previous QuickTest versions:

If you open a test stored in the file system that was created using 
QuickTest 9.0 or earlier, the object repository associations are changed as 
follows:

➤ If the test previously used per-action repositories, the objects in each 
per-action repository are transferred to the local object repository of 
each action in the test.

➤ If the whole test previously used one shared object repository, the same 
shared object repository is associated with each of the actions in the test, 
and the actions’ local object repositories are empty.

If the test is opened in read-only mode, these changes are not saved.



Chapter 3 • Understanding the Test Object Model

92

Deciding Whether to Use Local or Shared Object 
Repositories
To choose where to save objects, you need to understand the differences 
between local and shared object repositories.

In general, the local object repository is easiest to use when you are creating 
simple tests, especially under the following conditions:

➤ You have only one, or very few, tests that correspond to a given application, 
interface, or set of objects.

➤ You do not expect to frequently modify object properties.

➤ You generally create single-action tests.

Conversely, the shared object repository is generally the preferred option 
when:

➤ You are creating tests using keyword-driven methodologies (not by 
recording).

➤ You have several tests that test elements of the same application, interface, 
or set of objects.

➤ You expect the object properties in your application to change from time to 
time and/or you regularly need to update or modify object properties.

➤ You often work with multi-action tests and regularly use the Insert Copy of 
Action and Insert Call to Action options.

Understanding the Local Object Repository

When you use a local object repository, QuickTest uses a separate object 
repository for each action. (You can also use one or more shared object 
repositories if needed. For more information, see “Understanding the Shared 
Object Repository” on page 94.) The local object repository is fully editable 
from within its action.



Chapter 3 • Understanding the Test Object Model

93

When working with a local object repository:

➤ QuickTest creates a new (empty) object repository for each action.

➤ When QuickTest learns new objects (either because you add them to the 
local object repository, or you record operations on objects in your 
application), it automatically stores the information about those objects in 
the corresponding local object repository (if the test objects do not already 
exist in an associated shared object repository). 

QuickTest adds all new objects to the local object repository even if one or 
more shared object repositories are already associated with the action. (This 
assumes that a object with the same description does not already exist in 
one of the associated shared object repositories).

➤ If a child object is added to a local object repository, and its parents are in a 
shared object repository, its parents are automatically added to the local 
object repository.

➤ Every time you create a new action, QuickTest creates a new, corresponding 
local object repository and adds test objects to the repository as it learn 
them.

➤ If QuickTest learns the same object in your application in two different 
actions, the test object is stored as a separate test object in each of the local 
object repositories.

➤ When you save your test, all of the local object repositories are 
automatically saved with the test (as part of each action within the test). The 
local object repository is not accessible as a separate file (unlike the shared 
object repository).



Chapter 3 • Understanding the Test Object Model

94

Understanding the Shared Object Repository

When you use shared object repositories, QuickTest uses the shared object 
repositories you specify for the selected action. You can use one or more 
shared object repositories. (You can also save some objects in a local object 
repository for each action if you need to access them only from the specific 
action. For more information, see “Understanding the Local Object 
Repository” on page 92.)

After you begin creating your test, you can specify additional shared object 
repositories. You can also create new ones and associate them with your 
action. Before running the test, you must ensure that the object repositories 
being used by the test contain all of the objects in your test. Otherwise, the 
test may fail. For more information, see “Adding Test Objects to a Local or 
Shared Object Repository” on page 136.

You modify a shared object repository using the Object Repository Manager. 
For more information, see Chapter 7, “Managing Object Repositories.” 

When working with a shared object repository:

➤ If QuickTest Professional learns a test object that already exists in either the 
shared or local object repository, QuickTest uses the existing information 
and does not add the object to that object repository.

➤ If a child object is added to a local object repository, and its parents are in a 
shared object repository, its parents are automatically moved to the local 
object repository.

➤ When QuickTest learns a test object, it adds it to the local object repository 
(not the shared object repository)—unless the same test object already exists 
in an associated shared object repository. (In this case, QuickTest uses the 
existing information in the shared object repository.)



Chapter 3 • Understanding the Test Object Model

95

You can export objects from the local object repository to a shared object 
repository. You can also export the local object repository and replace it with 
a shared object repository. This enables you to make the local objects 
accessible to other actions. For more information, see “Exporting Local 
Objects to a Shared Object Repository” on page 193. 

You can also merge objects from the local object repository directly to a 
shared object repository that is associated with the same action. This can 
help reduce maintenance since you can maintain the objects in a single 
shared location, instead of multiple locations. For more information, see 
“Updating a Shared Object Repository from Local Object Repositories” on 
page 269.

The following table lists features and functionality, indicating if they are 
available in the Object Repository window or the Object Repository 
Manager:

Functionality
Object 
Repository 
window

Object 
Repository 
Manager

“Adding Test Objects to a Local or Shared Object 
Repository” on page 136

“Copying, Pasting, and Moving Objects in the Object 
Repository” on page 150

“Deleting Objects from the Object Repository” on 
page 153

“Highlighting an Object in Your Application” on 
page 157

“Locating a Test Object in the Object Repository” on 
page 159

“Specifying or Modifying Property Values” on 
page 163

“Updating Identification Properties from an Object in 
Your Application” on page 165

“Restoring Default Mandatory Properties for a Test 
Object” on page 168



Chapter 3 • Understanding the Test Object Model

96

“Renaming Test Objects” on page 169

“Adding Properties to a Test Object Description” on 
page 171

“Defining New Identification Properties” on page 174

“Removing Properties from a Test Object Description” 
on page 177

“Exporting Local Objects to a Shared Object 
Repository” on page 193

“Copying an Object to the Local Object Repository” 
on page 195

“Creating New Object Repositories” on page 217

“Opening Object Repositories” on page 217

“Saving Object Repositories” on page 219

“Closing Object Repositories” on page 221

“Editing Object Repositories” on page 224

“Adding Test Objects to Your Test Using the Object 
Repository Manager” on page 225

“Adding Test Objects Using the Navigate and Learn 
Option” on page 225

“Managing Repository Parameters” on page 229

“Adding Repository Parameters” on page 230

“Modifying Repository Parameters” on page 232

“Deleting Repository Parameters” on page 233

“Specifying a Property Value” on page 235

“Locating Test Objects” on page 239

“Performing Merge Operations” on page 240

Functionality
Object 
Repository 
window

Object 
Repository 
Manager



Chapter 3 • Understanding the Test Object Model

97

Viewing Object Properties and Operations Using the Object 
Spy

Using the Object Spy pointing hand mechanism, you can view the 
supported properties and operations of any object in an open application. 
As you move the pointing hand over the objects in the application, their 
details are displayed in the Object Spy. These details may include the test 
object’s hierarchy tree, its identification properties and values, and the 
operations associated with the object. For operations, the syntax is also 
displayed. For information about using the run-time object’s operations or 
retrieving the values of its properties, see “Retrieving and Setting 
Identification Property Values” on page 886 and “Accessing Native 
Properties and Operations” on page 887.

In most environments, you can choose to view the identification properties, 
the native properties, the test object operations, or the native operations. 

To view identification properties, native properties, test object operations, 
or native operations:

 1 Open your application to the page containing the object on which you want 
to spy.

 2 Select Tools > Object Spy or click the Object Spy toolbar button to open the 
Object Spy dialog box.

 3 Select the details you want to view for the object. For more information, see 
“The Object Spy Dialog Box” on page 100.

 4 If the objects on which you want to spy have a deep hierarchy, or long 
property names and values, resize the Object Spy dialog box to view all the 
information without scrolling.

“Importing from XML” on page 242

“Exporting to XML” on page 243

Functionality
Object 
Repository 
window

Object 
Repository 
Manager



Chapter 3 • Understanding the Test Object Model

98

 5 In the Object Spy dialog box, click the pointing hand. QuickTest is hidden. 
As you move the pointing hand over the objects in your application, the 
objects are highlighted, and you can view their test object hierarchy and 
properties or operations in the Object Spy dialog box.

Note: Highlighting the object in the application is supported only in some 
environments.

For more information on using the pointing hand, see “Tips for Working 
with the Pointing Hand” on page 99.

 6 Hover over an object in your application. The object is highlighted in the 
application, and the Object Spy displays the corresponding test object, its 
properties or operations, and the test object hierarchy tree. You can move 
your mouse from one object to another in your application (without 
clicking) to view information on each object.

To view different details about the test object in the Object Spy dialog box, 
hold the left CTRL key and click the relevant options in the dialog box.

To view the properties and operations of another test object currently 
displayed in the test object hierarchy tree, hold the left CTRL key and select 
the relevant test object. 

 7 To capture information about a particular object and its parent objects in 
the Object Spy, click on the object (in your application). The Object Spy 
displays the test object hierarchy tree and details for the selected object 
according to the object details tab and object type radio button that are 
selected.

After clicking on an object, you can change the selected radio button or tab 
to view additional details. 

To view properties, values, or operations of other test objects currently 
displayed in the test object hierarchy tree, select that test object in the tree.



Chapter 3 • Understanding the Test Object Model

99

Tips for Working with the Pointing Hand

➤ You can hold the left CTRL key to change the pointing hand to a standard 
pointer. You can then change the window focus or perform operations in 
QuickTest or in your application, such as right-clicking, using the scroll bars, 
or moving the pointer over an object to display a context menu.

➤ If the window containing the object you want to select is partially hidden 
by another window, hold the pointing hand over the partially hidden 
window for a few seconds until it comes to the foreground. Then point to 
and click the required object. You can configure the length of time required 
to bring a window into the foreground using the General pane of the 
Options dialog box. 

➤ If the window containing the object you want to select is fully hidden by 
another window, or if a dialog box is hidden behind a window, press the left 
CTRL key and arrange the windows as needed.

➤ If the window containing the object you want to select is minimized, you 
can display it by holding the left CTRL key, right-clicking the application in 
the Windows task bar, and choosing Restore from the context menu.

➤ If the object you want to select can be displayed only by performing an 
event (such as right-clicking or moving the pointer over an object to display 
a context menu), hold the left CTRL key. The pointing hand temporarily 
turns into a standard pointer and you can perform the event. When the 
object you want to select is displayed, release the left CTRL key. The pointer 
becomes a pointing hand again.



Chapter 3 • Understanding the Test Object Model

100

The Object Spy Dialog Box
 

Description Enables you to view the native properties and 
operations of any object in an open application, as 
well as the test object hierarchy, identification 
properties, and operations of the test object that 
QuickTest uses to represent that object.

How to Access ➤ Select the Tools > Object Spy menu command

➤ Click the Object Spy toolbar button  

➤ Press ALT+T+S

You can access the Object Spy dialog box using the 
methods described above, from any of the following 
locations: 

➤ The QuickTest Window (described on page 23) 

➤ The Object Repository Window (described on 
page 183) 

➤ The Object Repository Manager (described on 
page 210) 

Learn More Conceptual overview: “Understanding Test Object 
and Native Properties and Operations” on page 87

Primary task: “Viewing Object Properties and 
Operations Using the Object Spy” on page 97

Additional related topics: “Additional References” 
on page 104



Chapter 3 • Understanding the Test Object Model

101

Below is an image of the Object Spy dialog box:

test object 
hierarchy tree

object type filter

object properties

selected property, value, 
or operation

object details tab



Chapter 3 • Understanding the Test Object Model

102

Object Spy Dialog Box Options

Option Description

Click the pointing hand button to turn the 
mouse pointer into a pointing hand. Then use 
the pointing hand to highlight or click the object 
whose properties and/or operations you want to 
view. 

As you move the pointing hand over the objects 
in the application, the objects are highlighted in 
the application (in some environments), and 
their details are displayed in the Object Spy 
dialog box. 

To capture information about a particular object 
and its parent objects in the Object Spy, click on 
the object in the application.

See also: “Tips for Working with the Pointing 
Hand” on page 99.

Keep Object Spy on top while 
spying

Select this check box to keep the Object Spy 
dialog box in view while spying on an object in 
your application. 

Note: When this check box is cleared, the Object 
Spy dialog box may potentially be hidden on 
your screen behind your application. To view the 
Object Spy dialog box, press the left CTRL key and 
arrange the windows as needed.

Test object hierarchy tree Displays the hierarchy of test objects that are 
related to the object you selected. 

While an object is highlighted, test object classes 
are displayed in the tree, but test object names 
are not. Test object names (such as Atlanta to Las 
Vegas and Featured Destinations in the image 
shown above) are displayed only after clicking 
the object to capture the information in the 
Object Spy.

To view properties, values, or operations for 
another test object within the displayed tree, 
select that test object in the tree.



Chapter 3 • Understanding the Test Object Model

103

Native Properties / 
Native Operations 

Select this option to display the native properties 
or operations of the run-time object associated 
with the test object selected in the Object Spy test 
object hierarchy tree. Note that the label changes 
depending on whether the Properties or 
Operations tab is selected.

Identification Properties / 
Test Object Operations 

Select this option to display the identification 
properties or the test object operations of the test 
object selected in the Object Spy test object 
hierarchy tree. Note that the label changes 
depending on whether the Properties or 
Operations tab is selected.

Properties tab Displays the native properties or the 
identification properties of the selected object 
and the values of the properties.

➤ Properties. Displays the property names for 
the test object that is currently selected in the 
Object Spy test object hierarchy tree, or the 
run-time object associated with it.

➤ Values. Displays the property values for the 
properties listed in the Properties column.

Operations tab Displays the native operations or test object 
operations, and their corresponding syntax, for 
the test object that is currently selected in the 
Object Spy test object hierarchy tree, or the run-
time object associated with it.

Option Description



Chapter 3 • Understanding the Test Object Model

104

Additional References
 

Selected property, value, or 
operation box

Properties tab: Displays the property name or 
value that was most recently clicked.

Operations tab: Displays the syntax of the most 
recently clicked operation.

Tip: To copy the text that is displayed in this box 
to the Clipboard, highlight the text and press 
CTRL+C or right-click the highlighted text and 
select Copy.

Description Provides a description of the most recently 
clicked property or operation, when available.

Related Concepts ➤ “Accessing Native Properties and Operations” on 
page 887

➤ “Retrieving and Setting Identification Property 
Values” on page 886

Option Description



105

4
Configuring Object Identification

When QuickTest learns an object, it learns a set of properties and values that 
uniquely describe the object within the object hierarchy. In most cases, this 
description is sufficient to enable QuickTest to identify the object during the 
run session.

If you find that the description QuickTest uses for a certain object class is 
not the most logical one for the objects in your application, or if you expect 
that the values of the properties in the object description may change 
frequently, you can configure the way that QuickTest learns and identifies 
objects. You can also map user-defined objects to standard test object classes 
and configure the way QuickTest learns objects from your user-defined 
object classes.

This chapter includes:

 ➤  About Configuring Object Identification on page 106

 ➤  Understanding the Object Identification Dialog Box on page 107

 ➤  Configuring Smart Identification on page 121

 ➤  Mapping User-Defined Test Object Classes on page 131



Chapter 4 • Configuring Object Identification

106

About Configuring Object Identification

QuickTest has a predefined set of properties that it learns for each test 
object. If these mandatory property values are not sufficient to uniquely 
identify a learned object, QuickTest can add some assistive properties and/or 
an ordinal identifier to create a unique description. 

Mandatory properties are properties that QuickTest always learns for a 
particular test object class.

Assistive properties are properties that QuickTest learns only if the 
mandatory properties that QuickTest learns for a particular object in your 
application are not sufficient to create a unique description. If several 
assistive properties are defined for an object class, then QuickTest learns one 
assistive property at a time, and stops as soon as it creates a unique 
description for the object. If QuickTest does learn assistive properties, those 
properties are added to the test object description. 

Note: If the combination of all defined mandatory and assistive properties is 
not sufficient to create a unique test object description, QuickTest also 
learns the value for the selected ordinal identifier. For more information, see 
“Selecting an Ordinal Identifier” on page 113.

When you run a test, QuickTest searches for the object that matches the 
description it learned (without the ordinal identifier). If it cannot find any 
object that matches the description, or if more than one object matches the 
description, QuickTest uses the Smart Identification mechanism (if enabled) 
to identify the object. In many cases, a Smart Identification definition can 
help QuickTest identify an object, if it is present, even when the learned 
description fails due to changes in one or more property values. The test 
object description is used together with the ordinal identifier only in cases 
where the Smart Identification mechanism does not succeed in narrowing 
down the object candidates to a single object. 



Chapter 4 • Configuring Object Identification

107

You use the Object Identification dialog box (Tools > Object Identification) 
to configure the mandatory, assistive, and ordinal identifier properties that 
QuickTest uses to learn descriptions of the objects in your application, and 
to enable and configure the Smart Identification mechanism. 

The Object Identification dialog box also enables you to configure new 
user-defined classes and map them to an existing test object class so that 
QuickTest can recognize objects from your user-defined classes when you 
run your test.

Understanding the Object Identification Dialog Box

You use the main screen of the Object Identification dialog box to set 
mandatory and assistive properties, to select the ordinal identifier, and to 
specify whether you want to enable the Smart Identification mechanism for 
each test object.

From the Object Identification dialog box, you can also define user-defined 
object classes and map them to Standard Windows object classes, and you 
can configure the Smart Identification mechanism for any object displayed 
in the Test Object classes list for a selected environment.

Notes:

➤ Any changes you make in the Object Identification dialog box have no 
effect on objects already added to the object repository.

➤ The learned and Smart Identification properties of certain test objects 
cannot be configured, for example, the WinMenu, VbLabel, and 
VbToolbar objects. These objects are therefore not included in the 
Test Object classes list for the selected environment.



Chapter 4 • Configuring Object Identification

108

For more information, see:

➤ “Configuring Mandatory and Assistive Properties” on page 108

➤ “Selecting an Ordinal Identifier” on page 113

➤ “Enabling and Disabling Smart Identification” on page 118

➤ “Restoring Default Object Identification Settings for Test Objects” on 
page 119

➤ “Generating Automation Scripts for Your Object Identification Settings” on 
page 120

Configuring Mandatory and Assistive Properties
If you find that the description QuickTest uses for a certain object class is 
not the most logical one for the objects in your application, or if you expect 
that the values of the properties currently used in the object description 
may change, you can modify the mandatory and assistive properties that 
QuickTest learns when it learns an object of a given class.

During the run session, QuickTest looks for objects that match all properties 
in the test object description—it does not distinguish between properties 
that were learned as mandatory properties and those that were learned as 
assistive properties.

For example, the default mandatory properties for a Web Image object are 
the alt, html tag, and image type properties. There are no default assistive 
properties defined. Suppose your Web site contains several space holders for 
different collections of rotating advertisements. You want to create a test 
that clicks on the images in each one of these space holders.

However, since each advertisement image has a different alt value, one alt 
value would be added when you create the test, and most likely another alt 
value will be captured when you run the test, causing the run to fail. In this 
case, you could remove the alt property from the Web Image mandatory 
properties list. Instead, since each advertisement image displayed in a 
certain space holder in your site has the same value for the image name 
property, you could add the name property to the mandatory properties to 
enable QuickTest to uniquely identify the object.



Chapter 4 • Configuring Object Identification

109

Also, suppose that whenever a Web image is displayed more than once on a 
page (for example, a logo displayed on the top and bottom of a page), the 
Web designer adds a special ID property to the Image tag. The mandatory 
properties are sufficient to create a unique description for images that are 
displayed only once on the page, but you also want QuickTest to learn the 
ID property for images that are displayed more than once on a page. To do 
this, you add the ID property as an assistive property, so that QuickTest 
learns the ID property only when it is necessary for creating a unique test 
object description.

To configure mandatory and assistive properties for a test object class:

 1 Select Tools > Object Identification. The Object Identification dialog box 
opens.



Chapter 4 • Configuring Object Identification

110

 2 Select the appropriate environment in the Environment list. The test object 
classes associated with the selected environment are displayed 
alphabetically in the Test Object classes list. (In Standard Windows, the 
user-defined objects are displayed at the bottom of the list.)

Notes: 

➤ The environments included in the Environment list correspond to the 
loaded add-ins. For more information on loading add-ins, see the section 
on loading QuickTest add-ins in the HP QuickTest Professional Add-ins 
Guide.

➤ The Environment list might also include additional environments for 
which you or a third party developed support using add-in extensibility.

 3 In the Test Object classes list, select the test object class you want to 
configure.

 4 In the Mandatory Properties list, click Add/Remove. The Add/Remove 
Properties dialog box for mandatory properties opens.

AddinOverview.chm::/Ch_Working_with_Add-Ins.htm


Chapter 4 • Configuring Object Identification

111

 5 Select the properties you want to include in the Mandatory Properties list 
and/or clear the properties you want to remove from the list. 

Note: You cannot include the same property in both the mandatory and 
assistive property lists.

You can specify a new property by clicking New and specifying a valid 
property name in the displayed dialog box.

Tip: You can also add property names to the set of available properties for 
Web objects using the attribute/<PropertyName> notation. To do this, click 
New. The New Property dialog box opens. Enter a valid property using the 
format attribute/<PropertyName> and click OK. The new property is added to 
the Mandatory Properties list. For example, to add a property called 
MyColor, enter attribute/MyColor. 

 6 Click OK to close the Add/Remove Properties dialog box. The updated set of 
mandatory properties is displayed in the Mandatory Properties list.



Chapter 4 • Configuring Object Identification

112

 7 In the Assistive Properties list, click Add/Remove. The Add/Remove 
Properties dialog box for assistive properties opens.

 8 Select the properties you want to include in the assistive properties list and/
or clear the properties you want to remove from the list. 

Note: You cannot include the same property in both the mandatory and 
assistive property lists.

You can specify a new property by clicking New and specifying a valid 
property name in the displayed dialog box.

Tip: You can also add property names to the set of available properties for 
Web objects using the attribute/<PropertyName> notation. To do this, click 
New. The New Property dialog box opens. Enter a valid property in the 
format attribute/<PropertyName> and click OK. The new property is added to 
the Assistive Properties list. For example, to add a property called MyColor, 
enter attribute/MyColor.



Chapter 4 • Configuring Object Identification

113

 9 Click OK to close the Add/Remove Properties dialog box. The properties are 
displayed in the Assistive Properties list.

 10 Use the up and down arrows to set your preferred order for the assistive 
properties. When QuickTest learns an object, and assistive properties are 
necessary to create a unique object description, QuickTest adds the assistive 
properties to the description one at a time until it has enough information 
to create a unique description, according to the order you set in the Assistive 
Properties list.

Selecting an Ordinal Identifier
In addition to learning the mandatory and assistive properties specified in 
the Object Identification dialog box, QuickTest can also learn a backup 
ordinal identifier for each test object. The ordinal identifier assigns the 
object a numerical value that indicates its order relative to other objects 
with an otherwise identical description (objects that have the same values 
for all properties specified in the mandatory and assistive property lists). 
This ordered value enables QuickTest to create a unique description when 
the mandatory and assistive properties are not sufficient to do so.

The assigned ordinal property value is a relative value and is accurate only 
in relation to the other objects displayed when QuickTest learns an object. 
Therefore, changes in the layout or composition of your application page or 
screen can cause this value to change, even though the object itself has not 
changed in any way. For this reason, QuickTest learns a value for this backup 
ordinal identifier only when it cannot create a unique description using all 
available mandatory and assistive properties.



Chapter 4 • Configuring Object Identification

114

In addition, even if QuickTest learns an ordinal identifier, it will use the 
identifier during the run session only if the learned description and the 
Smart Identification mechanism are not sufficient to identify the object in 
your application. If QuickTest can use other identification properties to 
identify the object during a run session, the ordinal identifier is ignored.

QuickTest can use the following types of ordinal identifiers to identify an 
object:

➤ Index. Indicates the order in which the object appears in the application 
code relative to other objects with an otherwise identical description. For 
more information, see “Identifying an Object Using the Index Property” on 
page 115.

➤ Location. Indicates the order in which the object appears within the parent 
window, frame, or dialog box relative to other objects with an otherwise 
identical description. For more information, see “Identifying an Object 
Using the Location Property” on page 115.

➤ CreationTime. (Browser object only.) Indicates the order in which the 
browser was opened relative to other open browsers with an otherwise 
identical description. For more information, see “Identifying an Object 
Using the CreationTime Property” on page 117.

By default, an ordinal identifier type exists for each test object class. To 
modify the default ordinal identifier, you can select the desired type from 
the Ordinal identifier box.

Tip: While recording, if QuickTest successfully creates a unique test object 
description using the mandatory and assistive properties, it does not learn 
an ordinal identifier value. You can add an ordinal identifier to an object’s 
identification properties at a later time using the Add/Remove option from 
the Object Properties or Object Repository dialog box. For more 
information, see Chapter 5, “Managing Test Objects in Object Repositories.”



Chapter 4 • Configuring Object Identification

115

Identifying an Object Using the Index Property

While learning an object, QuickTest can assign a value to the test object’s 
Index property to uniquely identify the object. The value is based on the 
order in which the object appears within the source code. The first 
occurrence is 0.

Index property values are object-specific. Therefore, if you use Index:=3 to 
describe a WebEdit test object, QuickTest searches for the fourth WebEdit 
object in the page. However, if you use Index:=3 to describe a WebElement 
object, QuickTest searches for the fourth Web object on the page—regardless 
of the type—because the WebElement object applies to all Web objects.

For example, suppose a page contains the following objects:

➤ an image with the name Apple

➤ an image with the name UserName

➤ a WebEdit object with the name UserName

➤ an image with the name Password

➤ a WebEdit object with the name Password

The following statement refers to the third item in the list, as this is the first 
WebEdit object on the page with the name UserName:

WebEdit("Name:=UserName", "Index:=0") 

In contrast, the following statement refers to the second item in the list, as 
that is the first object of any type (WebElement) with the name UserName:

WebElement("Name:=UserName", "Index:=0") 

Identifying an Object Using the Location Property

While learning an object, QuickTest can assign a value to the test object’s 
Location property to uniquely identify the object. The value is based on the 
order in which the object appears within the window, frame, or dialog box, 
in relation to other objects with identical properties. The first occurrence of 
the object is 0. Values are assigned in columns from top to bottom, and left 
to right. 



Chapter 4 • Configuring Object Identification

116

In the following example, the radio buttons in the dialog box are numbered 
according to their Location property. 

Location property values are object-specific. Therefore, if you use Location:=3 
to describe a WinButton test object, QuickTest searches from top to bottom, 
and left to right for the fourth WinButton object in the page. However, if 
you use Location:=3 to describe a WinObject object, QuickTest searches from 
top to bottom, and left to right for the fourth standard object on the page—
regardless of the type—because the WinObject object applies to all standard 
objects.

For example, suppose a dialog box contains the following objects:

➤ A button object with the name OK

➤ A button object with the name Add/Remove

➤ A check box object with the name Add/Remove

➤ A button object with the name Help

➤ A check box object with the name Check spelling



Chapter 4 • Configuring Object Identification

117

The following statement refers to the third item in the list, as this is the first 
check box object on the page with the name Add/Remove.

WinCheckBox("Name:=Add/Remove", "Location:=0") 

In contrast, the following statement, refers to the second item in the list, as 
that is the first object of any type (WinObject) with the name Add/Remove.

WinObject("Name:=Add/Remove", "Location:=0") 

Identifying an Object Using the CreationTime Property

While learning a browser object, QuickTest assigns a value to the 
CreationTime identification property. This value indicates the order in 
which the browser was opened relative to other open browsers. The first 
browser that opens receives the value CreationTime = 0.

During the run session, if QuickTest is unable to identify a browser object 
based solely on its test object description, it examines the order in which the 
browsers were opened, and then uses the CreationTime property to identify 
the correct one. 

For example, if QuickTest learns three browsers that are opened at 9:01 pm, 
9:03 pm, and 9:05 pm, QuickTest assigns the CreationTime values, as 
follows: CreationTime = 0 to the 9:01 am browser, CreationTime = 1 to the 
9:03 am browser, and CreationTime = 2 to the 9:06 am browser.

At 10:30 pm, when you run a test with these browser objects, suppose the 
browsers are opened at 10:31 pm, 10:33 pm, and 10:34 pm. QuickTest 
identifies the browsers, as follows: the 10:31 pm browser is identified with 
the browser test object with CreationTime = 0, 10:33 pm browser is 
identified with the test object with CreationTime = 1, 10:34 pm browser is 
identified with the test object with CreationTime = 2. 

If there are several open browsers, the one with the lowest CreationTime is 
the first one that was opened and the one with the highest CreationTime is 
the last one that was opened. For example, if there are three or more 
browsers open, the one with CreationTime = 2 is the third browser that was 
opened. If seven browsers are opened during a recording session, the 
browser with CreationTime = 6 is the last browser opened. 



Chapter 4 • Configuring Object Identification

118

If a step was created on a Browser object with a specific CreationTime value, 
but during a run session there is no open browser with that CreationTime 
value, the step will run on the browser that has the highest CreationTime 
value. For example, if a step was created on a Browser object with 
CreationTime = 6, but during the run session there are only two open 
browsers, with CreationTime = 0 and CreationTime = 1, then the step runs 
on the last browser opened, which in this example is the browser with 
CreationTime = 1. 

Note: It is possible that at a particular time during a session, the available 
CreationTime values may not be sequential. For example, if you open six 
browsers during a record or run session, and then during that session, you 
close the second and fourth browsers (CreationTime values 1 and 3), then at 
the end of the session, the open browsers will be those with CreationTime 
values 0, 2, 4, and 5.

Enabling and Disabling Smart Identification
Selecting the Enable Smart Identification check box for a particular test 
object class instructs QuickTest to learn the property values of all properties 
specified as the object’s base and/or optional filter properties in the Smart 
Identification Properties dialog box. 

By default, some test objects already have Smart Identification 
configurations and others do not. Those with default configurations also 
have the Enable Smart Identification check box selected by default. 

You should enable the Smart Identification mechanism only for test object 
classes that have defined Smart Identification configuration. However, even 
if you define a Smart Identification configuration for a test object class, you 
may not always want to learn the Smart Identification property values. If 
you do not want to learn the Smart Identification properties, clear the 
Enable Smart Identification check box.



Chapter 4 • Configuring Object Identification

119

Note: Even if you choose to learn Smart Identification properties for an 
object, you can disable use of the Smart Identification mechanism for a 
specific object in the Object Properties or Object Repository dialog box. You 
can also disable use of the mechanism for an entire test in the Run node of 
the Test Settings dialog box. For more information, see Chapter 5, 
“Managing Test Objects in Object Repositories,” and “Defining Run Settings 
for Your Test” on page 1270. 

However, if you do not learn Smart Identification properties, you cannot 
enable the Smart Identification mechanism for an object later.

For more information on the Smart Identification mechanism, see 
“Configuring Smart Identification” on page 121.

Restoring Default Object Identification Settings for Test 
Objects
You can restore the default settings for object identification and the Smart 
Identification property settings for all loaded environments, for the current 
environment only, or for a selected test object.

Only built-in object properties can be reset. When you reset the settings for 
the Standard Windows environment, user-defined objects are also deleted. 
For more information on user-defined objects, see “Mapping User-Defined 
Test Object Classes” on page 131. 

Note: Only currently loaded environments are listed in the Environments 
box in the Object Identification dialog box.



Chapter 4 • Configuring Object Identification

120

By default, the Reset Test Object button is displayed, but you can click the 
down arrow to select one of the following options:

➤ Reset Test Object. Resets the settings for the selected test object to the 
system default.

➤ Reset Environment. Resets the settings for all the test objects in the current 
environment to the system default.

➤ Reset All. Resets the settings for all currently loaded environments to the 
system default.

Generating Automation Scripts for Your Object 
Identification Settings
You can click the Generate Script button to generate an automation script 
containing the current object identification settings. For more information, 
see “Automating QuickTest Operations” on page 1403 or the 
QuickTest Professional Automation Object Model Reference (Help > 
QuickTest Professional Help > HP QuickTest Professional Advanced 
References > HP QuickTest Professional Automation Object Model).



Chapter 4 • Configuring Object Identification

121

Configuring Smart Identification

Configuring Smart Identification properties enables you to help QuickTest 
identify objects in your application, even if some of the properties in the 
object’s learned description have changed.

When QuickTest uses the learned description to identify an object, it 
searches for an object that matches all of the property values in the 
description. In most cases, this description is the simplest way to identify 
the object, and, unless the main properties of the object change, this 
method will work.

If QuickTest is unable to find any object that matches the learned object 
description, or if it finds more than one object that fits the description, then 
QuickTest ignores the learned description, and uses the Smart Identification 
mechanism to try to identify the object. 

While the Smart Identification mechanism is more complex, it is more 
flexible. Therefore, if configured logically, a Smart Identification definition 
can probably help QuickTest identify an object, if it is present, even when 
the learned description fails.

The Smart Identification mechanism uses two types of properties: 

➤ Base Filter Properties. The most fundamental properties of a particular test 
object class; those whose values cannot be changed without changing the 
essence of the original object. For example, if a Web link’s tag was changed 
from <A> to any other value, you could no longer call it the same object.

➤ Optional Filter Properties. Other properties that can help identify objects of 
a particular class. These properties are unlikely to change on a regular basis, 
but can be ignored if they are no longer applicable.



Chapter 4 • Configuring Object Identification

122

Understanding the Smart Identification Process

If QuickTest activates the Smart Identification mechanism during a run 
session (because it was unable to identify an object based on its learned 
description), it follows the following process to identify the object:

 1 QuickTest "forgets" the learned test object description and creates a new 
object candidate list containing the objects (within the object’s parent 
object) that match all of the properties defined in the Base Filter Properties 
list.

 2 QuickTest filters out any object in the object candidate list that does not 
match the first property listed in the Optional Filter Properties list. The 
remaining objects become the new object candidate list.

 3 QuickTest evaluates the new object candidate list:

➤ If the new object candidate list still has more than one object, QuickTest 
uses the new (smaller) object candidate list to repeat step 2 for the next 
optional filter property in the list.

➤ If the new object candidate list is empty, QuickTest ignores this optional 
filter property, returns to the previous object candidate list, and repeats 
step 2 for the next optional filter property in the list.

➤ If the object candidate list contains exactly one object, then QuickTest 
concludes that it has identified the object and performs the statement 
containing the object.

 4 QuickTest continues the process described in steps 2 and 3 until it either 
identifies one object, or runs out of optional filter properties to use. 

If, after completing the Smart Identification elimination process, QuickTest 
still cannot identify the object, then QuickTest uses the learned description 
plus the ordinal identifier to identify the object.

If the combined learned description and ordinal identifier are not sufficient 
to identify the object, then QuickTest stops the run session and displays a 
Run Error message. 



Chapter 4 • Configuring Object Identification

123

Reviewing Smart Identification Information in the Test Results

If the learned description does not enable QuickTest to identify a specified 
object in a step, and a Smart Identification definition is defined (and 
enabled) for the object, then QuickTest tries to identify the object using the 
Smart Identification mechanism.

If QuickTest successfully uses Smart Identification to find an object after no 
object matches the learned description, the step is assigned a Warning status 
in the Test Results, and the result details for the step indicate that the Smart 
Identification mechanism was used. 

If the Smart Identification mechanism cannot successfully identify the 
object, QuickTest uses the learned description plus the ordinal identifier to 
identify the object. If the object is still not identified, the test fails and a 
normal failed step is displayed in the results.

For more information, see “Analyzing Smart Identification Information in 
the Test Results” on page 1024.

Walking Through a Smart Identification Example

The following example walks you through the object identification process 
for an object. 

Suppose you have the following statement in your test:

Browser("Mercury Tours").Page("Mercury Tours").Image("Login").Click 22,17

When you created your test, QuickTest learned the following object 
description for the Login image:

However, at some point after you created your test, a second login button 
(for logging into the VIP section of the Web site) was added to the page, so 
the Web designer changed the original Login button’s alt tag to: basic login.



Chapter 4 • Configuring Object Identification

124

The default description for Web Image objects (alt, html tag, image type) 
works for most images in your site, but it no longer works for the Login 
image, because that image’s alt property no longer matches the learned 
description. Therefore, when you run your test, QuickTest is unable to 
identify the Login button based on the learned description. However, 
QuickTest succeeds in identifying the Login button using its Smart 
Identification definition. 

The explanation below describes the process that QuickTest uses to find the 
Login object using Smart Identification:

 1 According to the Smart Identification definition for Web image objects, 
QuickTest learned the values of the following properties it learned the Login 
image:

The learned values are as follows: 

Base Filter Properties:
 

Property Value

html tag INPUT



Chapter 4 • Configuring Object Identification

125

Optional Filter Properties:

 2 QuickTest begins the Smart Identification process by identifying the five 
objects on the Mercury Tours page that match the base filter properties 
definition (html tag = INPUT). QuickTest considers these to be the object 
candidates and begins checking the object candidates against the Optional 
Filter Properties list.

 3 QuickTest checks the alt property of each of the object candidates, but none 
have the alt value: Login, so QuickTest ignores this property and moves on 
to the next one.

 4 QuickTest checks the image type property of the each of the object 
candidates, but none have the image type value: Image Button, so QuickTest 
ignores this property and moves on to the next one. 

 5 QuickTest checks the name property of each of the object candidates, and 
finds that two of the objects (both the basic and VIP Login buttons) have 
the name: login. QuickTest filters out the other three objects from the list, 
and these two login buttons become the new object candidates.

 6 QuickTest checks the file name property of the two remaining object 
candidates. Only one of them has the file name login.gif, so QuickTest 
correctly concludes that it has found the Login button and clicks it.

Property Value

alt Login

image type Image Button

name login

file name login.gif

class <null>

visible 1



Chapter 4 • Configuring Object Identification

126

Step-by-Step Instructions for Configuring a Smart 
Identification Definition

You use the Smart Identification Properties dialog box, accessible from the 
Object Identification dialog box, to configure the Smart Identification 
definition for a test object class.

To configure Smart Identification properties:

 1 Select Tools > Object Identification. The Object Identification dialog box 
opens.



Chapter 4 • Configuring Object Identification

127

 2 Select the appropriate environment in the Environment list. The test object 
classes associated with the selected environment are displayed in the Test 
Object classes list.

Note: The environments included in the Environment list are those that 
correspond to the loaded add-ins. For more information on loading add-ins, 
see the section on loading QuickTest add-ins in the HP QuickTest Professional 
Add-ins Guide.

 3 Select the test object class you want to configure.

 4 Click the Configure button next to the Enable Smart Identification check 
box. The Configure button is enabled only when the Enable Smart 
Identification option is selected. The Smart Identification Properties dialog 
box opens.



Chapter 4 • Configuring Object Identification

128

 5 In the Base Filter Properties list, click Add/Remove. The Add/Remove 
Properties dialog box for base filter properties opens.

 6 Select the properties you want to include in the Base Filter Properties list 
and/or clear the properties you want to remove from the list. 

Note: You cannot include the same property in both the base and optional 
property lists.

You can specify a new property by clicking New and specifying a valid 
property name in the displayed dialog box.

Tip: You can also add property names to the set of available properties for 
Web objects using the attribute/<PropertyName> notation. To do this, click 
New. The New Property dialog box opens. Enter a valid property in the 
format attribute/<PropertyName> and click OK. The new property is added to 
the Base Filter Properties list. For example, to add a property called MyColor, 
enter attribute/MyColor. 



Chapter 4 • Configuring Object Identification

129

 7 Click OK to close the Add/Remove Properties dialog box. The updated set of 
base filter properties is displayed in the Base Filter Properties list.

 8 In the Optional Filter Properties list, click Add/Remove. The Add/Remove 
Properties dialog box for optional filter properties opens.

 9 Select the properties you want to include in the Optional Filter Properties 
list and/or clear the properties you want to remove from the list. 

Note: You cannot include the same property in both the base and optional 
property lists.



Chapter 4 • Configuring Object Identification

130

You can specify a new property by clicking New and specifying a valid 
property name in the displayed dialog box.

Tip: You can also add property names to the set of available properties for 
Web objects using the attribute/<PropertyName> notation. To do this, click 
New. The New Property dialog box opens. Enter a valid property in the 
format attribute/<PropertyName> and click OK. The new property is added to 
the Optional Filter Properties list. For example, to add a property called 
MyColor, enter attribute/MyColor. 

 10 Click OK to close the Add/Remove Properties dialog box. The properties are 
displayed in the Optional Filter Properties list.

 11 Use the up and down arrows to set your preferred order for the optional 
filter properties. When QuickTest uses the Smart Identification mechanism, 
it checks the remaining object candidates against the optional properties 
one-by-one according to the order you set in the Optional Filter Properties 
list until it filters the object candidates down to one object.



Chapter 4 • Configuring Object Identification

131

Mapping User-Defined Test Object Classes

The Object Mapping dialog box enables you to map an object of an 
unidentified or custom class to a Standard Windows class. For example, if 
your application has a button that cannot be identified, this button is 
learned as a generic WinObject. You can teach QuickTest to identify your 
object as if it belonged to a standard Windows button class. Then, when you 
click the button while recording, QuickTest records the operation in the 
same way as a click on a standard Windows button. When you map an 
unidentified or custom object to a standard object, your object is added to 
the list of Standard Windows test object classes as a user-defined test object 
class. You can configure the object identification settings for a user-defined 
test object class just as you would any other test object class.

You should map an object that cannot be identified only to a Standard 
Windows class with comparable behavior. For example, do not map an 
object that behaves like a button to the edit class. 

Notes: 

➤ You can define user-defined classes only when Standard Windows is 
selected in the Environment box.

➤ If you click the down arrow on the Reset Test Object button and select 
Reset Environment, when Standard Windows is selected in the 
Environment box, all of the user-defined test object classes are deleted.

To map an unidentified or custom class to a standard Windows class:

 1 Select Tools > Object Identification. The Object Identification dialog box 
opens.

 2 Select Standard Windows in the Environment box. The User-Defined button 
becomes enabled.



Chapter 4 • Configuring Object Identification

132

 3 Click User-Defined. The Object Mapping dialog box opens.

 4 Click the pointing hand and then click the object whose class you want to 
add as a user-defined class. The name of the user-defined object is displayed 
in the Class name box. 

For more information about using the pointing hand feature, see “Tips for 
Using the Pointing Hand” on page 134.

 5 In the Map to box, select the standard object class to which you want to 
map your user-defined object class and click Add. The class name and 
mapping is added to the object mapping list.

 6 If you want to map additional objects to standard classes, repeat steps 4 to 5 
for each object.



Chapter 4 • Configuring Object Identification

133

 7 Click OK. The Object Mapping dialog box closes and your object is added to 
the list of Standard Windows test object classes as a user-defined test object. 
Note that your object has an icon with a red U in the lower-right corner, 
identifying it as a user-defined class.

 8 Configure the object identification settings for your user defined object class 
just as you would any other object class. For more information, see 
“Configuring Mandatory and Assistive Properties” on page 108, and 
“Configuring Smart Identification” on page 121.

To modify an existing mapping:

 1 In the Object Mapping dialog box, select the class you want to modify from 
the object mapping list. The class name and current mapping are displayed 
in the Class name and Map to boxes. 

 2 Select the standard object class to which you want to map the selected 
user-defined class and click Update. The class name and mapping is updated 
in the object mapping list.

 3 Click OK to close the Object Mapping dialog box.

To delete an existing mapping:

 1 In the Object Mapping dialog box, select the class you want to delete from 
the object mapping list. 

 2 Click Delete. The class name and mapping is deleted from the object 
mapping list in the Object Mapping dialog box.

 3 Click OK. The Object Mapping dialog box closes and the class name is 
deleted from the Standard Windows test object classes list in the Object 
Identification dialog box.



Chapter 4 • Configuring Object Identification

134

Tips for Using the Pointing Hand 

➤ You can hold the left CTRL key to change the pointing hand to a standard 
pointer. You can then change the window focus or perform operations in 
QuickTest or in your application, such as right-clicking, using the scroll bars, 
or moving the pointer over an object to display a context menu.

➤ If the window containing the object you want to select is partially hidden 
by another window, hold the pointing hand over the partially hidden 
window for a few seconds until it comes to the foreground. Then point to 
and click the required object. You can configure the length of time required 
to bring a window into the foreground using the General pane of the 
Options dialog box. 

➤ If the window containing the object you want to select is fully hidden by 
another window, or if a dialog box is hidden behind a window, press the left 
CTRL key and arrange the windows as needed.

➤ If the window containing the object you want to select is minimized, you 
can display it by holding the left CTRL key, right-clicking the application in 
the Windows task bar, and choosing Restore from the context menu.

➤ If the object you want to select can be displayed only by performing an 
event (such as right-clicking or moving the pointer over an object to display 
a context menu), hold the left CTRL key. The pointing hand temporarily 
turns into a standard pointer and you can perform the event. When the 
object you want to select is displayed, release the left CTRL key. The pointer 
becomes a pointing hand again.



135

5
Managing Test Objects in Object 
Repositories

This chapter explains how to manage and maintain the objects in your 
object repositories. It describes how to modify object properties and how to 
modify the way QuickTest identifies an object, which is useful when 
working with objects that change dynamically.

This chapter includes:

 ➤  Adding Test Objects to a Local or Shared Object Repository on page 136

 ➤  Copying, Pasting, and Moving Objects in the Object Repository on page 150

 ➤  Deleting Objects from the Object Repository on page 153

 ➤  Locating Objects on page 154

 ➤  Maintaining Identification Properties on page 162



Chapter 5 • Managing Test Objects in Object Repositories

136

Adding Test Objects to a Local or Shared Object Repository

The functionality described in this section is available in the Object 
Repository window for the local object repository, and the Object 
Repository Manager for shared object repositories.

When you create a shared object repository for your keyword-driven testing 
infrastructure, you can add test objects to it in different ways. You can 
choose to add only a selected test object, or to add all test objects of a certain 
type, such as all button objects, or to add all test objects of a specific class, 
such as all WebButton objects. 

You can use the Navigate and Learn option, for example, to add objects to 
the shared object repository according to your defined filter. If you record a 
test, QuickTest adds each object on which you perform an operation to the 
local object repository (for objects that do not already exist in an associated 
shared object repository). You can also add test objects to the local object 
repository while editing your test. 

For example, you may find that users need to perform a step on an object 
that is not in the object repository. You may also find that an additional 
object was added to the application you are testing after you built the object 
repository. You can add the object directly to a shared object repository 
using the Object Repository Manager, so that it is available in all actions 
that use this shared object repository. Alternatively, you can add it to the 
local object repository of the action. 

Note: You can add a test object to the local object repository only if that test 
object does not already exist in a shared object repository that is associated 
with the action. If a test object already exists in an associated shared object 
repository, you can add it to the local object repository using the Copy to 
Local option. For more information, see “Copying an Object to the Local 
Object Repository” on page 195.



Chapter 5 • Managing Test Objects in Object Repositories

137

If needed, you can merge test objects from the local object repository into a 
shared object repository. For more information, see Chapter 8, “Merging 
Shared Object Repositories.”

You can also add test objects to a shared object repository while navigating 
through your application. For more information, see “Adding Test Objects 
Using the Navigate and Learn Option” on page 225.

Tips: 

➤ You can also add a test object to the local object repository by choosing it 
from your application in the Select Object for Step dialog box (from a 
new step in the Keyword View or from the Step Generator).  

➤ You can add new test objects to your object repository that do not yet 
exist in your application. For more information, see “Defining New Test 
Objects” on page 147.

Adding a Test Object Using the Add Objects to Local or 
Add Objects Option
You can add test objects to a local or shared object repository directly from 
your application. You can choose to add a specific test object either with or 
without its descendants. You can also control which descendants to add, 
according to their object and class types, based on selections that you define 
in the object filter.

Note: You cannot add WinMenu objects directly to an object repository 
using the Add Objects to Local button in the Object Repository window or 
the Add Objects button in the Object Repository Manager. If you want to 
add a WinMenu object to the object repository, you can use the Add Objects 
or Add Objects to Local button to add its parent object and then select to 
add the parent object together with its descendants, or you can record a step 
on a WinMenu object and then delete the recorded step.



Chapter 5 • Managing Test Objects in Object Repositories

138

To add test objects to the object repository using the Add Objects to Local 
or Add Objects option:

 1 Perform one of the following:

➤ In the Object Repository window, Select Object > Add Objects to Local or 
click the Add Objects to Local toolbar button. If you select this option, 
the test object is added to the local object repository and can only be 
used by the current action.

➤ In the Object Repository Manager, select Object > Add Objects or click 
the Add Objects toolbar button. If you select this option, the test object 
is added to a shared object repository and can be used in multiple 
actions.

QuickTest and the Object Repository window or Object Repository Manager 
are hidden, and the pointer changes into a pointing hand. For more 
information on using the pointing hand, see “Tips for Using the Pointing 
Hand” on page 141.

 2 Click the object you want to add to your object repository. 

 3 If the location you click is associated with more than one object, the Object 
Selection dialog box opens. Select the object you want to add to the 
repository and click OK.

If the object you select in the Object Selection dialog box is a bottom-level 
object in the test object hierarchy, for example, a WebButton object, it is 
added directly to the object repository.



Chapter 5 • Managing Test Objects in Object Repositories

139

If the object you select in the Object Selection dialog box is a parent 
(container) object, such as a browser or page in a Web environment, or a 
dialog box in a standard Windows application, the Define Object Filter 
dialog box opens. The Define Object Filter dialog box retains the settings 
that you defined in the previous add object session. 

You can choose from the following options:

➤ Selected object only (no descendants). Adds to the object repository the 
previously selected object’s properties and values, without its descendant 
objects.

➤ Default object types. Adds to the object repository the previously selected 
object’s properties and values, with the properties and values of its 
descendant objects according to the object types specified by the default 
filter. You can see which objects are in the default filter by clicking the 
Select button and then clicking the Default button.

➤ All object types. Adds to the object repository the previously selected 
object’s properties and values, together with the properties and values of 
all of its descendant objects.

➤ Selected object types. Adds to the object repository the previously 
selected object’s properties and values, as well as the properties and 
values of its descendant objects according to the object types and classes 
you specify in the object filter. You specify the objects and classes in the 
filter by clicking the Select button and selecting the required items in the 
Select Object Types dialog box. For more information on the Select 
Object Types dialog box, see “Understanding the Select Object Types 
Dialog Box” on page 146.



Chapter 5 • Managing Test Objects in Object Repositories

140

 4 Select the required option and click OK to close the Define Object Filter 
dialog box and add the specified objects to the object repository according 
to the selected object filter.

 5 The Object Repository window is redisplayed, showing the new local objects 
and their properties and values in the object repository. If you chose to add 
the objects from the Object Repository Manager, the objects are added to the 
active shared object repository. 

QuickTest also adds the new object’s parent objects if they do not already 
exist in the object repository. Local objects are shown in black in the object 
repository tree to indicate they are editable; shared objects are shown in 
gray and can only be edited in the Object Repository Manager.

You can edit the new test object’s details just as you would edit any other 
object in a local or shared object repository. For more information, see 
“Maintaining Identification Properties” on page 162.



Chapter 5 • Managing Test Objects in Object Repositories

141

Tips for Using the Pointing Hand

➤ You can hold the left CTRL key to change the pointing hand to a standard 
pointer. You can then change the window focus or perform operations in 
QuickTest or in your application, such as right-clicking, using the scroll bars, 
or moving the pointer over an object to display a context menu.

➤ If the window containing the object you want to select is partially hidden 
by another window, hold the pointing hand over the partially hidden 
window for a few seconds until it comes to the foreground. Then point to 
and click the required object. You can configure the length of time required 
to bring a window into the foreground using the General pane of the 
Options dialog box. 

➤ If the window containing the object you want to select is fully hidden by 
another window, or if a dialog box is hidden behind a window, press the left 
CTRL key and arrange the windows as needed.

➤ If the window containing the object you want to select is minimized, you 
can display it by holding the left CTRL key, right-clicking the application in 
the Windows task bar, and choosing Restore from the context menu.

➤ If the object you want to select can be displayed only by performing an 
event (such as right-clicking or moving the pointer over an object to display 
a context menu), hold the left CTRL key. The pointing hand temporarily 
turns into a standard pointer and you can perform the event. When the 
object you want to select is displayed, release the left CTRL key. The pointer 
becomes a pointing hand again.

Adding Test Objects to the Local Object Repository from 
the Active Screen
You can add test objects to the local object repository of the current action 
by selecting the required object in the Active Screen.

To add test objects to the object repository using the Active Screen, the 
Active Screen must contain information for the object you want to add. You 
can control how much information is captured in the Active Screen in the 
Active Screen node of the Options dialog box. For more information, see 
“Setting Active Screen Options” on page 1240.



Chapter 5 • Managing Test Objects in Object Repositories

142

When you add a test object to the object repository in one of the ways 
described in this section, the test object is added to the local object 
repository and can only be used by the current action. If you want to add 
the test object to the shared object repository, so that it can be used in 
multiple actions, add it using the Object Repository Manager (not from the 
Active Screen).

To add a test object to the object repository using the View/Add Object 
option from the Active Screen:

 1 If the Active Screen is not displayed, select View > Active Screen or click the 
Active Screen toolbar button to display it.

 2 Select a step in your test whose Active Screen contains the object that you 
want to add to the object repository.

 3 In the Active Screen, right-click the object you want to add and select View/
Add Object. 

 4 If the location you clicked is associated with more than one object, the 
Object Selection dialog box opens. Select the object you want to add to the 
object repository, and click OK to close the Object Selection dialog box.

 5 The Object Properties dialog box opens and displays the default 
identification properties for the object. 



Chapter 5 • Managing Test Objects in Object Repositories

143

 6 Click Add to Repository. The selected object is added to the local object 
repository for the current action with the default identification properties 
and values. The Add to Repository button changes to View in Repository.

 7 Click View in Repository. The Object Repository window opens and displays 
the object properties for the selected test object. 

You can edit your new test object’s properties in the Object Repository 
window just as you would any other test object in your local object 
repository.

To add a test object to the object repository by inserting a step from the 
Active Screen:

 1 If the Active Screen is not displayed, select View > Active Screen or click the 
Active Screen toolbar button to display it.

 2 Select a step in your test whose Active Screen contains the object for which 
you want to add a step. 



Chapter 5 • Managing Test Objects in Object Repositories

144

 3 In the Active Screen, right-click the object for which you want to add a step 
and select the type of step you want to insert (checkpoint, output value, 
Step Generator, and so forth).

 4 If the location you clicked is associated with more than one object, the 
Object Selection dialog box opens. Select the object for which you want to 
add a step, and click OK.

The appropriate dialog box opens, enabling you to configure your 
preferences for the step you want to insert.

 5 Set your preferences and select whether to insert the step before or after the 
step currently selected in the Keyword View or in the Expert View. Click OK 
to close the dialog box. A new step is inserted in your test, and the object is 
added to the local object repository for the current action (if it was not yet 
included).

Understanding the Define Object Filter Dialog Box
When adding a test object to the object repository, if the object you select to 
add is typically a parent object, such as a browser or page in a Web 
environment or a dialog box in a standard Windows application, the Define 
Object Filter dialog box opens.

The object filter contains predefined settings that decide which objects 
should be learned (while using the Navigate and Learn option or the Add 
Objects option). The option you select in the Define Object Filter dialog box 
is saved and used for each subsequent learn session. 



Chapter 5 • Managing Test Objects in Object Repositories

145

You can choose from the following options:

➤ Selected object only (no descendants). Adds to the object repository the 
previously selected object’s properties and values, without its descendant 
objects.

➤ Default object types. Adds to the object repository the previously selected 
object’s properties and values, with the properties and values of its 
descendant objects according to the object types specified by the default 
filter. You can see which objects are in the default filter by selecting Selected 
object types, clicking the Select button, and then clicking the Default 
button.

➤ All object types. Adds to the object repository the previously selected 
object’s properties and values, together with the properties and values of all 
of its descendant objects.

➤ Selected object types. Adds to the object repository the previously selected 
object’s properties and values, as well as the properties and values of its 
descendant objects according to the object types and classes you specify in 
the object filter. You specify the objects and classes in the filter by clicking 
the Select button and selecting the required items in the Select Object Types 
dialog box. For more information on the Select Object Types dialog box, see 
“Understanding the Select Object Types Dialog Box” on page 146.



Chapter 5 • Managing Test Objects in Object Repositories

146

Understanding the Select Object Types Dialog Box
The Select Object Types dialog box enables you to specify a custom object 
filter for adding test objects to the object repository (while using the 
Navigate and Learn option or the Add Objects option).

When you define an object filter, it is automatically saved for future add 
object operations (performed from both the Navigate and Learn option and 
the Add Objects option).

You open the Select Object Types dialog box by clicking the Select button in 
the Define Object Filter dialog box.

The object types in this list are a generic grouping of objects according to 
the general object characteristics. For example, the List type contains list 
and list view objects, as well as combo boxes; the Table type contains both 
tables and grids.



Chapter 5 • Managing Test Objects in Object Repositories

147

The list shows all objects supported by the installed add-ins and is not 
specific to the object you selected. For some add-ins, certain child objects 
may be automatically filtered out and not added to the object repository 
when you choose to add all descendants of a specific object, even if those 
object types are selected in the list. If you want to add an object that is 
automatically filtered out, you can add it by selecting it in the Object 
Selection dialog box. To check whether your add-in automatically filters out 
certain objects, see the HP QuickTest Professional Add-ins Guide.

Tip: Click Select All or Clear All to select or clear all the check boxes in the 
Select Object Types dialog box. Click Default to restore the check box 
selections to their preset defaults. The preset defaults are equivalent to 
choosing the Default object types option in the Define Object Filter dialog 
box.

Make your selections and click OK to define your custom object filter and 
close the Select Object Types dialog box.

Defining New Test Objects
You can define test objects in your object repository that do not yet exist in 
your application. This enables you to prepare an object repository and build 
tests for your application before the application is ready for testing.

For example, you may already know the names, types, and descriptive 
properties of some of the objects in your application, and know only the 
types of other objects in your application. Before your application is ready, 
you can create WebEdit objects for UserName and Password fields in your 
Login page (plus the relevant parent Page and Browser objects). If you know 
the property values for these objects, you can also add them. If not, you can 
add them when your application is ready for testing.



Chapter 5 • Managing Test Objects in Object Repositories

148

When you define a new object in the object repository as described in this 
section, the object is added to the local object repository and can only be 
used by the current action. If you want to add the object to the shared 
object repository so that it can be used in multiple actions, you must add it 
using the Object Repository Manager. For more information, see Chapter 7, 
“Managing Object Repositories.” 

After you have defined the new test object, if the properties of the object in 
your application do not match the test object description that you defined, 
or if an object has been updated in your application, you can update the 
object description at any time. For more information, see “Updating 
Identification Properties from an Object in Your Application” on page 165.

To define a new test object:

 1 Select the object under which you want to define the new object, according 
to the correct object hierarchy.

 2 Click the Define New Test Object button or select Object > Define New Test 
Object. The Define New Test Object dialog box opens.



Chapter 5 • Managing Test Objects in Object Repositories

149

 3 In the Environment box, select the appropriate environment. The test object 
classes associated with the selected environment are displayed in the Class 
box.

Notes: 

➤ The environments included in the Environment list correspond to the 
loaded add-ins. For more information on loading add-ins, see the section 
on loading QuickTest add-ins in the HP QuickTest Professional Add-ins 
Guide.

➤ The Environment list might also include additional environments for 
which you or a third party developed support using add-in extensibility.

 4 In the Class box, select the class of the test object you want to define.

 5 In the Name box, enter a name for the new test object. After you enter a 
name, the Test object details area is enabled.

 6 In the Test object details area, define the properties and values for your test 
object. The Test object details area automatically contains the mandatory 
properties defined for the object class in the Object Identification dialog 
box. You can add or remove properties as required, and define values for the 
properties. For more information, see “Maintaining Identification 
Properties” on page 162.

 7 Click Add. The new test object is added to the local object repository in the 
selected location.

 8 Repeat step 3 to step 7 to define additional test objects, or click Close to 
close the Define New Test Object dialog box.

AddinOverview.chm::/Ch_Working_with_Add-Ins.htm


Chapter 5 • Managing Test Objects in Object Repositories

150

Copying, Pasting, and Moving Objects in the Object 
Repository

The functionality described in this section is available in the Object 
Repository window for objects in the local object repository, and the Object 
Repository Manager for objects in shared object repositories.

Note: You can use the Edit > Undo and Edit > Redo options or Undo and 
Redo buttons to cancel or repeat your changes. When you save the object 
repository, you cannot undo and redo operations that were performed 
before the save operation.

The following procedures describe the ways in which you can copy, paste, 
and move objects:

To move an object to a different location within an object repository:

Drag the object up or down the tree and drop it at the required location. By 
default, when you drag an object, any child objects are also moved with it. 

To copy an object to a different location within an object repository:

Press the CTRL key while dragging the object and drop it at the required 
location in the tree. By default, when you drag an object, any child objects 
are also moved with it. 

To move or copy an object without its child objects:

Drag the object using the right mouse button. When you drop the object at 
the required location, you can choose whether to drop it with or without its 
children. By default, when you drag an object, any child objects are also 
moved or copied with it. 

To cut, copy, and paste objects within an object repository:

Use the corresponding toolbar buttons or the options in the Edit menu. 
When you cut, copy, and paste objects, the operation is performed also on 
the child objects of the selected object, if any.



Chapter 5 • Managing Test Objects in Object Repositories

151

To cut, copy, and paste objects between shared object repositories:

In the Object Repository Manager, use the corresponding toolbar buttons or 
the options in the Edit menu. When you cut, copy, and paste objects, the 
operation is performed also on the child objects of the selected object, if 
any.

To copy objects from one shared object repository to another:

In the Object Repository Manager, open the required shared object 
repositories. Drag the object from one window and drop it at the required 
location in the other window.

To move objects from one shared object repository to another:

In the Object Repository Manager, open the required shared object 
repositories. Press the CTRL key while you drag the object from one window 
and drop it at the required location in the other window. Note that moving 
an object removes it from one shared object repository and adds it to the 
other shared object repository.

You can also copy objects from a shared object repository to the local object 
repository to modify them locally. For more information, see “Copying an 
Object to the Local Object Repository” on page 195. 

Guidelines for Copying, Pasting, and Moving Objects
When copying, pasting, or moving objects, consider the following 
guidelines:

➤ You cannot modify the root node of an object repository. 

➤ If you change the object hierarchy, ensure that the new hierarchy is valid.

➤ If you paste or move an object to a different hierarchical level, you can 
choose whether to copy all objects up to the shared parent object (in the 
message displayed when you perform such an operation).

➤ In the Object Repository window, when you copy, paste, and move objects 
from a shared object repository associated with a test, the objects are copied, 
pasted, or moved to the local object repository of the test.



Chapter 5 • Managing Test Objects in Object Repositories

152

➤ If you move an object to its immediate parent, QuickTest creates a copy of 
the object (renamed with an incremental suffix) and pastes it as a sibling of 
the original object.

➤ If you cut or copy an object, and then paste it on its parent object, QuickTest 
creates copy of the object (renamed with an incremental suffix) and inserts 
it at the same level as the original object.

➤ You cannot move an object to any of its descendants. 

➤ You cannot copy or move an object to be a child of a bottom-level object (an 
object that cannot contain a child object) in the object hierarchy.

➤ You cannot copy, paste, or move objects that have unmapped repository 
parameters from a shared object repository to the local object repository. If 
you copy, paste, or move an object from a shared object repository to the 
local object repository and the object or one of its parent objects are 
parameterized using one or more repository parameters, the repository 
parameter values are converted when you copy, paste, or move the object. 
For example, if the repository parameter is mapped to a Data Table 
parameter, the property is parameterized using a Data Table parameter. If the 
value is a constant value, the property receives the same constant value.



Chapter 5 • Managing Test Objects in Object Repositories

153

Deleting Objects from the Object Repository

The functionality described in this section is available in the Object 
Repository window for objects in the local object repository, and the Object 
Repository Manager for objects in shared object repositories.

When you remove a step from your test, its corresponding object remains in 
the object repository. 

If you are working with a local object repository and the object in the step 
you removed does not occur in any other steps within that action, you can 
delete the object from the object repository.

If you are working with a shared object repository, confirm that the object 
does not appear in any other action using the same shared object repository 
before you choose to delete the object from the object repository.

You delete objects in the local object repository using the Object Repository 
window, and objects in the shared object repository using the Object 
Repository Manager.

Note: If your action contains references to an object that you deleted from 
the object repository, your test run will fail.

To delete an object from the object repository:

 1 In the repository tree, select the object you want to delete.

 2 Click the Delete button or select Edit > Delete.

 3 Click Yes to confirm that you want to delete the object. The object is deleted 
from the object repository.

Tip: The Delete button enables you to delete any selected value or item in 
the object repository, not just test objects. For example, you can use it to 
delete part of an object name or a property value.



Chapter 5 • Managing Test Objects in Object Repositories

154

Locating Objects

The functionality described in this section is available in the Object 
Repository window for objects in the local object repository, and the Object 
Repository Manager for objects in shared object repositories.

You can search for a specific object in your object repository in several ways. 
You can search for an object according to its type. For example, you can 
search for a specific edit box, or you can point to an object in your 
application to automatically highlight that same object in your repository. 
You can select an object in your object repository and highlight it in your 
application to check which object it is. For local objects (and shared objects 
in an editable shared object repository when using the Object Repository 
Manager), you can also replace specific property values with other property 
values. For example, you can replace the property value userName with 
user name.

Finding Objects in an Object Repository
You can use the Find and Replace dialog box to find an object, property, or 
property value in an object repository. You can also find and replace 
specified property values. 

You replace property values for objects in the local object repository using 
the Object Repository window. You replace property values for objects in 
shared object repositories using the Object Repository Manager.

Notes: 

➤ The Find and Replace dialog box can only find checkpoint and output 
values by searching for the object name.

➤ You cannot use the Find and Replace dialog box to replace property or 
object names. You cannot replace property values in a read-only test.



Chapter 5 • Managing Test Objects in Object Repositories

155

To find an object, property, or property value in the object repository:

 1 Make sure that the relevant object repository is open (in the Object 
Repository window or Object Repository Manager).

 2 Click the Find & Replace button or select Edit > Find & Replace. The Find & 
Replace dialog box opens.



Chapter 5 • Managing Test Objects in Object Repositories

156

 3 Specify one or more criteria by which you want to search for the object, 
property, or property value:

➤ Object name. Enter the name or partial name of the object you want to 
find.

➤ Object type. Select the type of object you want to find, for example, 
Button.

Note: The object types in this list are a generic grouping of objects 
according to the general object characteristics. For example, the List type 
contains list and list view objects, as well as combo boxes; the Table type 
contains both tables and grids.

➤ Object class. Select the class of object you want to find, for example, 
WebButton. The classes available depend on the selection you made in 
the Object type box.

➤ Property name. Specify the name or partial name of the property you 
want to find.

➤ Property value. Specify the property value or partial property value you 
want to find.

 4 If you specified a property value and want to replace it with a different 
value, enter the new property value in the New property value box.

 5 Specify the search parameters, as follows:

➤ If you want the search to distinguish between upper and lower case 
letters, select Match case.

➤ If you want the search to find only complete words that exactly match 
the single word you entered, select Match whole word.

➤ Specify the direction in which you want to search: Up or Down.



Chapter 5 • Managing Test Objects in Object Repositories

157

 6 Perform the find or replace operation in one of the following ways. The 
search is performed on the entire object repository, starting with the 
currently selected object and in the direction you specified. To find the next 
instance, click Find Next again.

➤ To find the specified object, property, or property value, click Find Next. 
The first instance of the searched word is displayed.

➤ To individually find and replace each instance of the property value for 
which you are searching, click Find Next. When an instance is found, 
click Replace. The property value is replaced, and the next instance of the 
property value, if any, is highlighted.

➤ To replace all instances of the specified property value with the new 
property value, click Replace All. Instances in shared object repositories 
that are not editable are not changed.

Highlighting an Object in Your Application
You can select a test object in your object repository and highlight it in the 
application you are testing. When you choose to highlight a test object, 
QuickTest indicates the selected object's location in your application by 
temporarily showing a frame around the object and causing it to flash 
briefly. The application must be open to the correct context so that the 
object is visible.

For example, to locate the User Name edit box in a Web page, you can open 
the relevant page in the Web browser and then select the User Name test 
object in the object repository. When you choose the Highlight in 
Application option, the User Name edit box in your browser is framed in the 
Web page and flashes several times.

Note: Both the frame and the flashing behavior are temporary.



Chapter 5 • Managing Test Objects in Object Repositories

158

To highlight an object in your application:

 1 Make sure your application is open to the correct window or page.

 2 Select the test object you want to highlight in your object repository.

 3 Click the Highlight in Application button or select View > Highlight in 
Application. The selected object is highlighted with a border in the 
application. 

Note: If the application is not open to the correct context, the object is not 
highlighted and a message is displayed.



Chapter 5 • Managing Test Objects in Object Repositories

159

Locating a Test Object in the Object Repository
You can select an object in the application you are testing and highlight the 
test object in the object repository.

For example, to locate a Find a Flight image in a Web page, you can select it 
in your Web page using the pointing hand mechanism. After you select the 
Find a Flight image object from the selection dialog box and click OK, the 
parent hierarchy in the object repository tree expands and the Find a Flight 
image test object is highlighted.

To locate an object in the object repository:

 1 Make sure your application is open to the correct window or page.

 2 Click the Locate in Repository button or select View > Locate in Repository. 
QuickTest is hidden, and the pointer changes into a pointing hand. 

 3 Use the pointing hand to click on the required object in your application. 
For more information on using the pointing hand, see “Tips for Using the 
Pointing Hand” on page 161.

If the location you clicked is associated with more than one object, the 
Select an Object dialog box opens. 



Chapter 5 • Managing Test Objects in Object Repositories

160

 4 Select the object you want to locate in the object repository and click OK. 
The selected object is highlighted in the object repository. 

Tip: If the relevant object repository is not open or the object cannot be 
found, the object is not highlighted. In the Object Repository Manager, if 
more than one shared object repository is open, and QuickTest cannot 
locate the selected object in the active object repository, you can choose 
whether to look for the object in all of the currently open object 
repositories.



Chapter 5 • Managing Test Objects in Object Repositories

161

Tips for Using the Pointing Hand

➤ You can hold the left CTRL key to change the pointing hand to a standard 
pointer. You can then change the window focus or perform operations in 
QuickTest or in your application, such as right-clicking, using the scroll bars, 
or moving the pointer over an object to display a context menu.

➤ If the window containing the object you want to select is partially hidden 
by another window, hold the pointing hand over the partially hidden 
window for a few seconds until it comes to the foreground. Then point to 
and click the required object. You can configure the length of time required 
to bring a window into the foreground using the General pane of the 
Options dialog box. 

➤ If the window containing the object you want to select is fully hidden by 
another window, or if a dialog box is hidden behind a window, press the left 
CTRL key and arrange the windows as needed.

➤ If the window containing the object you want to select is minimized, you 
can display it by holding the left CTRL key, right-clicking the application in 
the Windows task bar, and choosing Restore from the context menu.

➤ If the object you want to select can be displayed only by performing an 
event (such as right-clicking or moving the pointer over an object to display 
a context menu), hold the left CTRL key. The pointing hand temporarily 
turns into a standard pointer and you can perform the event. When the 
object you want to select is displayed, release the left CTRL key. The pointer 
becomes a pointing hand again.



Chapter 5 • Managing Test Objects in Object Repositories

162

Maintaining Identification Properties

As applications change, you may need to change the property values of the 
steps in your test. Suppose an object in your application is modified. If that 
object is part of your test, you should modify its values so that QuickTest 
can continue to identify it. For example, if a company Web site contains a 
Contact Us hypertext link, and the text string in this link is changed to 
Contact My Company, you need to update the object’s details in the object 
repository so that QuickTest can continue to identify the link properly.

You can modify identification properties in a number of ways. For an object 
stored in a local object repository, you can modify its properties directly 
from the Object Repository window. For an object stored in a shared object 
repository, you can either open it in the Object Repository Manager and 
modify its properties, or you can copy it to the local object repository and 
then modify its properties.

For more information on different ways in which you can modify 
identification properties, see:

➤ “Specifying or Modifying Property Values” on page 163

➤ “Updating Identification Properties from an Object in Your Application” on 
page 165

➤ “Restoring Default Mandatory Properties for a Test Object” on page 168

➤ “Renaming Test Objects” on page 169

➤ “Adding Properties to a Test Object Description” on page 171

➤ “Defining New Identification Properties” on page 174

➤ “Removing Properties from a Test Object Description” on page 177

➤ “Specifying Ordinal Identifiers” on page 177



Chapter 5 • Managing Test Objects in Object Repositories

163

Specifying or Modifying Property Values
The functionality described in this section is available in the Object 
Repository window for objects in the local object repository, and the Object 
Repository Manager for objects in shared object repositories.

You can specify or modify values for properties in the test object description. 
You can specify a value using a constant value (either a simple value or a 
constant value that includes regular expressions) or you can parameterize it. 
You can also change the set of properties used to identify that object.

You can also automatically update the description of one or more test 
objects in your object repository based on the actual updated object 
properties in your application. For more information, see “Updating 
Identification Properties from an Object in Your Application” on page 165.

You can also find and replace specific identification property values. For 
more information, see “Finding Objects in an Object Repository” on 
page 154.

Note: In some cases, the Smart Identification mechanism may enable 
QuickTest to identify a test object, even when some of its property values 
change. However, if you know about property value changes for a specific 
test object, you should try to correct the test object definition so that 
QuickTest can identify the test object from its basic object description. For 
more information on the Smart Identification mechanism, see Chapter 4, 
“Configuring Object Identification.” 

Tip: You can use the Object Spy at any time to view the native properties 
and values of the objects in the application you are testing, or the 
identification properties of the test objects that represent them. You open 
the Object Spy by choosing Tools > Object Spy or clicking the Object Spy 
toolbar button. For more information, see “Viewing Object Properties and 
Operations Using the Object Spy” on page 97.



Chapter 5 • Managing Test Objects in Object Repositories

164

To specify an identification property value:

 1 In the Object Repository window or Manager, select the test object whose 
property value you want to specify.

 2 In the Test object details area, click in the value cell for the required 
property. 

Tips: For a test object in the local object repository, you can also right-click 
the step containing the test object and select Object Properties, and then 
make the following property value changes in the Object Properties dialog 
box.

If you want to view all objects in the action, click the View in Repository 
button. The Object Repository window opens and displays all objects stored 
in the repository in a repository tree. 

You can also open the object repository for the selected action by choosing 
Resources > Object Repository or by clicking the Object Repository toolbar 
button.

 3 Specify the property value in one of the following ways:

➤ If you want to specify a constant value, enter it in the value cell.

➤ If you want to parameterize the value or specify a constant value using a 
regular expression, click the parameterization button in the value cell. If 
you specify a constant value using a regular expression, the  icon is 
displayed next to the value. 

For information on specifying property values, see “Configuring a Selected 
Value” on page 760.



Chapter 5 • Managing Test Objects in Object Repositories

165

 4 If you specified a constant value, it is shown in the Value column of the Test 
object details area. If you parameterized the value, the parameter name is 
shown with one of the following icons in the Value column.

Updating Identification Properties from an Object in Your 
Application
The functionality described in this section is available in the Object 
Repository window for objects in the local object repository, and the Object 
Repository Manager for objects in shared object repositories.

You can update a test object in your object repository by selecting the 
corresponding object in your application and relearning its properties and 
property values from the application. When you update a test object 
description in this way, all currently defined properties and values are 
overwritten, including description properties and values, the ordinal 
identifier, and Smart Identification information. The updated object 
description is based on the current definitions in the Object Identifications 
dialog box. Only the object-specific comments, if any, are retained. 

This is useful if an object’s properties have changed since you added it to the 
object repository, since QuickTest may not be able to recognize the object 
unless you update its description. 

Parameter Icon Description

Indicates that the value of the property is currently a test 
or action parameter.

Indicates that the value of the property is currently a Data 
Table parameter.

Indicates that the value of the property is currently an 
environment variable parameter.

Indicates that the value of the property is currently a 
random number parameter.

Indicates that the value of the property is currently a 
repository parameter (in a shared object repository). 



Chapter 5 • Managing Test Objects in Object Repositories

166

You can also use this option to update an object that you defined (using the 
Object > Define New Test Object option) before the application was 
completely developed, and as a result some of the identification properties 
and values are missing in the test object description, or are no longer 
sufficient to identify the object. For more information on the Define New 
Test Object option, see “Defining New Test Objects” on page 147.

Note: If you just want to restore the original test object description property 
set, while retaining any property values you have modified, you can use the 
Restore mandatory property set option. For more information, see 
“Restoring Default Mandatory Properties for a Test Object” on page 168.

To update identification properties from an object in your application:

 1 In the object repository tree, select the test object whose description you 
want to update.

 2 Select Object > Update from Application or click the Update from 
Application button. QuickTest is hidden, and the pointer changes into a 
pointing hand. For more information on using the pointing hand, see “Tips 
for Using the Pointing Hand” on page 167.

 3 Find the object in your application whose properties you want to update in 
the object repository and click it. You must choose an object of the same 
object class as the test object you selected in the object repository tree.

The properties and property values for the selected object are updated in the 
object repository, according to the properties and values required to identify 
the object that were learned by QuickTest when you clicked the object in 
your application. Note that all properties and property values in the Test 
object details area are updated, together with the ordinal identifier and 
Smart Identification selections. Any object-specific comments that you may 
have entered are not removed.



Chapter 5 • Managing Test Objects in Object Repositories

167

Tips for Using the Pointing Hand

➤ You can hold the left CTRL key to change the pointing hand to a standard 
pointer. You can then change the window focus or perform operations in 
QuickTest or in your application, such as right-clicking, using the scroll bars, 
or moving the pointer over an object to display a context menu.

➤ If the window containing the object you want to select is partially hidden 
by another window, hold the pointing hand over the partially hidden 
window for a few seconds until it comes to the foreground. Then point to 
and click the required object. You can configure the length of time required 
to bring a window into the foreground using the General pane of the 
Options dialog box. 

➤ If the window containing the object you want to select is fully hidden by 
another window, or if a dialog box is hidden behind a window, press the left 
CTRL key and arrange the windows as needed.

➤ If the window containing the object you want to select is minimized, you 
can display it by holding the left CTRL key, right-clicking the application in 
the Windows task bar, and choosing Restore from the context menu.

➤ If the object you want to select can be displayed only by performing an 
event (such as right-clicking or moving the pointer over an object to display 
a context menu), hold the left CTRL key. The pointing hand temporarily 
turns into a standard pointer and you can perform the event. When the 
object you want to select is displayed, release the left CTRL key. The pointer 
becomes a pointing hand again.



Chapter 5 • Managing Test Objects in Object Repositories

168

Restoring Default Mandatory Properties for a Test Object
The functionality described in this section is available in the Object 
Repository window for objects in the local object repository, and the Object 
Repository Manager for objects in shared object repositories.

You can restore the default properties for a selected test object. When you 
restore the default properties, it restores the mandatory property set defined 
for the selected object class, based on the settings that were set in the Object 
Identification dialog box at the time the object was learned. If you added or 
removed properties to or from the description, those changes are 
overwritten. However, if property values were defined or modified for any of 
the mandatory properties, these values are not modified when you choose 
this option. In addition, restoring the default mandatory property set does 
not change the values for the ordinal identifier or Smart Identification 
settings for the test object.

Note: The Restore mandatory property set option restores the object 
description property set to the mandatory properties that were defined for 
that class when your object was learned. If the mandatory properties in the 
Object Identification dialog box is currently different for this test object 
class than it was when your object was learned, and you want to use the new 
definition, you can use the Update From Application option, which relearns 
the object properties and values based on the current definitions in the 
Object Identifications dialog box. For more information, see “Updating 
Identification Properties from an Object in Your Application” on page 165

To restore the mandatory property set:

 1 In the object repository tree, select the test object whose description you 
want to restore.

 2 In the Test object details area, click the Restore mandatory property set 
button.

 3 Click Yes to confirm the operation. The test object’s description properties 
are restored to the mandatory property set for the selected object class at the 
time that the object was learned.



Chapter 5 • Managing Test Objects in Object Repositories

169

Renaming Test Objects
The functionality described in this section is available in the Object 
Repository window for objects in the local object repository, and the Object 
Repository Manager for objects in shared object repositories.

When an object changes in your application, or if you are not satisfied with 
the current name of a test object for any reason, you can change the name 
that QuickTest assigns to the stored object. You can also provide test objects 
with meaningful names to assist users in identifying them when using them 
in test steps.

For example, suppose you have a graphics application in which all the tools 
in the toolbar are saved as WinObjects in the object repository with the 
names ToolChild1, ToolChild2, ToolChild3, and so forth. You may want to 
rename all the buttons to their actual labels to make them easier to identify, 
for example, Color_Picker, Eraser, Airbrush, and so forth.

If you are working with a shared object repository, your change applies to all 
occurrences of the test object in all tests that use this shared object 
repository. 

If you are working with a local object repository, your change applies to all 
occurrences of the test object in the selected action. If other actions in your 
test also include operations on the local test object, you should modify the 
test object’s name in each relevant action.

When you modify the name of a test object in the local object repository, 
the name is automatically updated in both the Keyword View and the 
Expert View for all occurrences of the test object. When you modify the 
name of a test object in a shared repository, the name is automatically 
updated in all tests open on the same computer that use the object 
repository as soon as you make the change, even if you have not yet saved 
the object repository with your changes. If you close the object repository 
without saving your changes, the changes are rolled back in any open tests 
that were open at the time. Changes that are saved are also automatically 
updated in tests that use the object repository as soon as you open them. To 
load and view saved changes in a test or object repository that is currently 
open on a different computer, you must open the object repository or lock it 
for editing on your computer.



Chapter 5 • Managing Test Objects in Object Repositories

170

Tip: If you do not want to automatically update test object names in the 
Keyword View and Expert View for all occurrences of the test object, you can 
clear the Automatically update test and component steps when you rename 
test objects check box in the General pane of the Options dialog box (Tools 
> Options > General node). If you clear this option, you will need to 
manually change the test object names in all steps in which they are used, 
otherwise your test run will fail.

Note: If you rename test objects in a shared object repository and save the 
changes, when you open another test using the same shared object 
repository, that test updates the test object name in all of its relevant steps. 
This process may take a few moments. If you save the changes to the second 
test, the renamed steps are saved. However, if you close the second test 
without saving, then the next time you open the same test, it will again take 
a few moments to update the test object names in its steps.

To rename a test object:

In the object repository tree of the Object Repository window or Manager, 
select the test object that you want to rename and perform one of the 
following:

➤ Select Edit > Rename and enter the new name for the test object in the 
selected node in the tree. Then press ENTER or click anywhere else to 
remove the focus from the test object.

➤ Press F2 and enter the new name for the test object.

➤ In the Name box in the Object Properties pane, enter the new name for 
the test object. Then click anywhere else to remove the focus from the 
object. The name you assign to the test object must be unique within the 
same class and hierarchy in the object repository. Object names are not 
case-sensitive.



Chapter 5 • Managing Test Objects in Object Repositories

171

Adding Properties to a Test Object Description
The functionality described in this section is available in the Object 
Repository window for objects in the local object repository, and the Object 
Repository Manager for objects in shared object repositories.

You can add to the list of properties that QuickTest uses to identify an 
object. For each object class, QuickTest has a default property set that it uses 
for the object description for a particular test object. You can use the Add 
Properties dialog box to change the properties that are included in the test 
object description. 

Note: You can also add any valid identification property to a test object 
description, even if it does not appear in the Add Properties dialog box. For 
more information, see “Defining New Identification Properties” on 
page 174.

Adding to the list of properties is useful when you want to create and run 
tests on an object that changes dynamically. An object may change 
dynamically if it is frequently updated, or if its property values are set using 
dynamic content (for example, from a database).

You can also change the properties that identify an object if you want to 
reference objects using properties that QuickTest did not learn automatically 
when it learned the object. For example, suppose you are testing a Web site 
that contains an archive of newsletters. The archive page includes a 
hypertext link to the current newsletter and additional hypertext links to all 
past newsletters. The text in the first hypertext link on the page changes as 
the current newsletter changes, but it always links to a page called 
current.html. Suppose you want to create a step in your test in which you 
always click the first hypertext link in your archive page. Since the news is 
always changing, the text in the hypertext link keeps changing. You need to 
modify how QuickTest identifies this hypertext link so that it can continue 
to find it.



Chapter 5 • Managing Test Objects in Object Repositories

172

The default properties for a Link object (hypertext link) are text and HTML 
tag. The text property is the text inside the link. The HTML tag property is 
always A, which indicates a link.

You can modify the default properties for a hypertext link for the learned 
object so that QuickTest can identify it by its destination page, rather than 
by the text in the link. You can use the href property to check the 
destination page instead of using the text property to check the link by the 
text in the link.

Tip: You can use the Object Spy at any time to view the native properties 
and values of the objects in the application you are testing, or the 
identification properties of the test objects that represent them. You open 
the Object Spy by choosing Tools > Object Spy or clicking the Object Spy 
toolbar button. For more information, see “Viewing Object Properties and 
Operations Using the Object Spy” on page 97.

Note: You can also modify the set of properties that QuickTest learns when 
it learns objects from a particular object class using the Object Identification 
dialog box. Such a change generally affects only those objects that QuickTest 
learns after you make the change. For more information, see “Configuring 
Object Identification” on page 105. You can also apply the changes you 
make in the Object Identification dialog box to the descriptions of all 
objects in an existing test using the Update Run Mode option. For more 
information, see “Updating a Test Using the Update Run Mode Option” on 
page 1125.



Chapter 5 • Managing Test Objects in Object Repositories

173

To add properties to a test object description:

 1 In the object repository tree of the Object Repository window or Manager, 
select the test object whose description you want to modify.

 2 In the Test object details area, click the Add description properties button.

Tip: For a test object in the local object repository, you can also select the 
required test object and select Edit > Step Properties > Object Properties, 
click the Add description properties button, and then perform the following 
steps in the Add Properties dialog box.

The Add Properties dialog box opens listing the properties that can be used 
to identify the object (properties that are not already part of the test object 
description). 

The value for each property is displayed in the Value column.



Chapter 5 • Managing Test Objects in Object Repositories

174

Notes: 

➤ Values for all properties are displayed only if the application that 
contains the object is currently open. If the application is closed, only 
values for properties that were part of the object description when the 
object was learned are shown.

➤ You can resize the Add Properties dialog box to enable you to view long 
property values.

➤ You can click the Define new property button to add valid identification 
properties to this properties list. For more information, see “Defining 
New Identification Properties” on page 174.

 3 Select one or more properties to add to the test object description and 
click OK. You can also double-click a property to add it to the test object 
description. You can type the first letters of a property to highlight the first 
property in the list that matches the pattern.

Tip: After you add a new property to the object description, you can modify 
its value. For more information on modifying object property values, see 
“Specifying or Modifying Property Values” on page 163.

Defining New Identification Properties
The functionality described in this section is available in the Object 
Repository window for objects in the local object repository, and the Object 
Repository Manager for objects in shared object repositories.

You can add any valid identification property to a test object description, 
even if it does not appear in the Add Properties dialog box. 

For example, suppose you want QuickTest to use a specific property to 
identify your object, but that property is not listed in the Add Properties 
dialog box. You can open the Add Properties dialog box and add that 
property to the list.



Chapter 5 • Managing Test Objects in Object Repositories

175

Tip: You can use the Properties tab of the Object Spy to view a complete list 
of valid identification properties for a selected object. You open the Object 
Spy by choosing Tools > Object Spy or clicking the Object Spy toolbar 
button. For more information, see “Viewing Object Properties and 
Operations Using the Object Spy” on page 97.

To define a new identification property:

 1 In the object repository tree of the Object Repository window or Manager, 
select the test object for which you want to define a new property.

 2 In the Test object details area, click the Add description properties button.

Tip: For a test object in the local object repository, you can also select the 
required test object and select Edit > Step Properties > Object Properties, 
click the Add description properties button, and then perform the following 
steps in the Add Properties dialog box.

The Add Properties dialog box opens.



Chapter 5 • Managing Test Objects in Object Repositories

176

 3 Click the Define new property button. The New Property dialog box opens.

 4 Specify a valid identification property:

➤ Property name. Enter the property name.

➤ Property value. Enter the value for the property.

Note: You must enter a valid identification property. If you enter an invalid 
property and then select it to be part of the object description, your run 
session will fail.

 5 Click OK to add the property to the list and close the New Property dialog 
box. The new property is highlighted in the Add Properties dialog box.

 6 Click OK while the new property is highlighted to include it in the object 
description and close the Add Properties dialog box.



Chapter 5 • Managing Test Objects in Object Repositories

177

Removing Properties from a Test Object Description
The functionality described in this section is available in the Object 
Repository window for objects in the local object repository, and the Object 
Repository Manager for objects in shared object repositories.

You can remove properties from the description of a test object if you no 
longer want them to be part of the description. 

To remove a property from a test object description:

 1 In the object repository tree of the Object Repository window or Manager, 
select the test object whose description you want to modify.

 2 In the Test object details area, select one or more properties that you want 
to remove from the test object description.

Tip: For an object in the local object repository, you can also select the 
required test object and select Edit > Step Properties > Object Properties, 
and then perform the following steps in the Object Properties dialog box.

 3 Click the Remove selected description properties button. The selected 
properties are removed from the test object description.

Specifying Ordinal Identifiers
The functionality described in this section is available in the Object 
Repository window for objects in the local object repository, and the Object 
Repository Manager for objects in shared object repositories.

An ordinal identifier assigns a numerical value to a test object that indicates 
its order or location relative to other objects with an otherwise identical 
description (objects that have the same values for all properties). This 
ordered value provides a backup mechanism that enables QuickTest to 
create a unique description to recognize an object when the defined 
properties are not sufficient to do so. 

For more information on ordinal identifiers, see “Selecting an Ordinal 
Identifier” on page 113.



Chapter 5 • Managing Test Objects in Object Repositories

178

To specify an ordinal identifier:

 1 In the object repository tree of the Object Repository window or Manager, 
select the test object whose ordinal identifier you want to specify.

 2 In the Test object details area, click in the cell to the right of the Type, Value 
cell under the Ordinal identifier row.

Tip: For an object in the local object repository, you can also select the 
required test object and select Edit > Step Properties > Object Properties, 
click in the cell to the right of the Type, Value cell under the Ordinal 
identifier row, and then perform the following steps in the Object Properties 
dialog box.

 3 Click the browse button. The Ordinal Identifier dialog box opens.

 4 In the Identifier type box, select one of the following options:

➤ Location. Indicates the order in which the object appears within the 
parent window, frame, or dialog box relative to other objects with an 
otherwise identical description.

➤ Index. Indicates the order in which the object appears in the application 
code relative to other objects with an otherwise identical description.

➤ CreationTime (Browser objects only). Indicates the order in which the 
browser was opened relative to other open browsers with an otherwise 
identical description. This identifier type is only available if more than 
one Browser object was open when the test object was learned.

➤ None. Does not specify an ordinal identifier. This is the default value if 
QuickTest did not learn an ordinal identifier.



Chapter 5 • Managing Test Objects in Object Repositories

179

 5 In the Identifier value box, enter the numeric value of the ordinal identifier.

 6 Click OK. The ordinal identifier appears in the relevant row of the Test 
object details area for the selected object.



Chapter 5 • Managing Test Objects in Object Repositories

180



181

6
Using Object Repositories in Your Test

This chapter explains how to use object repositories in your test. It describes 
how to use the Object Repository Window, manage shared repository 
associations, map repository parameter values, and create or modify test 
objects during a run session. 

This chapter includes:

 ➤  Understanding the Object Repository Window on page 182

 ➤  The Object Properties Dialog Box on page 197

 ➤  Managing Shared Object Repository Associations on page 199

 ➤  Mapping Repository Parameter Values on page 202

 ➤  Working with Test Objects During a Run Session on page 206



Chapter 6 • Using Object Repositories in Your Test

182

Understanding the Object Repository Window

The Object Repository window displays a tree of all test objects and all 
checkpoint and output objects in the selected action (including all local 
objects and all objects in any shared object repositories associated with the 
selected action).

For each object you select in the tree, the Object Repository window displays 
information on the object, its type, the repository in which it is stored, and 
its object details. Local objects are editable (black); shared objects are in 
read-only format (gray).

Note: Test objects of environments that are not installed with QuickTest will 
be displayed with a question mark icon in the object repository.

While the Object Repository window is open, you can continue using 
QuickTest, and you can continue modifying objects and object repositories. 
You can also resize the Object Repository window if needed. The Object 
Repository window reflects any changes you make to an associated object 
repository in realtime. For example, if you add objects to the local object 
repository, or if you associate an additional object repository with the 
current action, the Object Repository window immediately displays the 
updated content.

You can use the Object Repository window to view the object description of 
any object in the repository (in local and shared object repositories), to 
modify local objects and their properties, and to add test objects to your 
local object repository. You can also drag and drop test objects from the 
Object Repository window to your test. When you drag and drop a test 
object to your test, QuickTest inserts a step with the default operation for 
that test object in your test. Checkpoint and output objects cannot be 
dragged and dropped from the Object Repository window.

For example, if you drag and drop a button object to your test, a step is 
added to your test using the button object, with a Click operation (the 
default operation for a button object). 



Chapter 6 • Using Object Repositories in Your Test

183

The Object Repository Window
 

Description Enables you to manage identification properties and 
object repository associations for your action.

How to Access ➤ Click the Object Repository button  

➤ Double-click the repository in the Resources pane, or 
right-click it and choose Open Repository 

➤ Right-click an action in the Test Flow pane and 
choose Object Repository 

➤ Right-click an object in the repository in the 
Available Keywords pane and choose Open Resource 

➤ Choose Resources > Object Repository 

Learn More Conceptual overview: “Understanding the Object 
Repository Window” on page 182 

Primary tasks:

➤ “Adding Test Objects to a Local or Shared Object 
Repository” on page 136

➤ “Copying, Pasting, and Moving Objects in the Object 
Repository” on page 150

➤ “Deleting Objects from the Object Repository” on 
page 153

➤ “Locating Objects” on page 154

➤ “Maintaining Identification Properties” on page 162

Additional related topics: “Additional References” on 
page 189



Chapter 6 • Using Object Repositories in Your Test

184

Below is an image of the Object Repository window:

 



Chapter 6 • Using Object Repositories in Your Test

185

The Object Repository Window - Edit Toolbar

The Object Repository window Edit toolbar contains the following buttons:

Button Name Description

Compact 
View

Compact View mode displays only the object 
repository tree, while Full View mode displays the 
object repository tree together with the object details 
area.Full View

Undo All changes you make to a local object are 
automatically updated in all steps that use the local 
object as soon as you make the change. You can use 
the Edit > Undo and Edit > Redo menu options or 
Undo and Redo toolbar buttons to cancel or repeat 
your changes. After you save the current test, you 
cannot undo or redo operations that were performed 
before the save operation.

Redo

Cut Cuts the selected object from the object repository 
tree. For more information, see “Copying, Pasting, and 
Moving Objects in the Object Repository” on 
page 150.

Paste Pastes the object in the clipboard into the object 
repository tree as a child of the object selected in the 
tree. Bottom level objects cannot contain children. For 
more information, see “Copying, Pasting, and Moving 
Objects in the Object Repository” on page 150.

Copy Copies the selected object from the object repository 
tree into the clipboard. For more information, see 
“Copying, Pasting, and Moving Objects in the Object 
Repository” on page 150.

Delete Deletes the selected object from the object repository 
tree. For more information, see “Deleting Objects from 
the Object Repository” on page 153. 

Find & 
Replace

Finds and replaces an object in the object repository. 
For more information, see “Finding Objects in an 
Object Repository” on page 154.



Chapter 6 • Using Object Repositories in Your Test

186

Add Objects 
to Local

Adds an object to the local object repository. For more 
information, see “Adding Test Objects to a Local or 
Shared Object Repository” on page 136.

Update from 
Application

Updates the identification properties from an object in 
the application. For more information, see “Updating 
Identification Properties from an Object in Your 
Application” on page 165.

Define New 
Test Objects

Defines a new test object. For more information, see 
“Defining New Test Objects” on page 147.

Highlight in 
Application

Highlights the selected object in the object repository 
tree, in the application. For more information, see 
“Highlighting an Object in Your Application” on 
page 157.

Locate in 
Repository

Enables you to select an object in the application you 
are testing and highlight the test object in the object 
repository. For more information, see “Locating a Test 
Object in the Object Repository” on page 159.

Object Spy Enables you to view the native properties and 
operations of any object in an open application, as 
well as the test object hierarchy, identification 
properties, and operations of the test object that 
QuickTest uses to represent that object. For more 
information, see “The Object Spy Dialog Box” on 
page 100.

Associate 
Repositories

Enables you to manage the shared object repository 
associations of your action. For more information, see 
“Managing Shared Object Repository Associations” on 
page 199.

Button Name Description



Chapter 6 • Using Object Repositories in Your Test

187

The Object Repository Window - Filter Toolbar

The Filter toolbar contains the following options:

Option Description

You can use the Filter toolbar to filter the objects 
shown in the Object Repository window. 

You can choose to show objects that meet one of 
the following criteria:

➤ All objects in the selected action (all local objects 
and all objects in any shared object repositories 
associated with the selected action)

➤ Only the local objects in the selected action

➤ Only the objects in a specific shared object 
repository associated with the current action

To filter the Object Repository window:

In the Filter toolbar list, select one of the following 
options:

➤ All Objects

➤ Local Objects

➤ The name of a specific shared object repository 
associated with the current action

The object repository tree is filtered to display only 
the objects from the location that you selected. The 
title bar of the Object Repository window indicates 
the current filter.



Chapter 6 • Using Object Repositories in Your Test

188

Object Repository Window Options

The Object Repository window contains the following options:

Option Description

Action Enables you to select the action whose objects you want to 
view.

Test Objects tree Contains all test objects in the selected action (all local test 
objects and all test objects in any shared object repositories 
associated with the selected action).

Note: If there are test objects in different associated object 
repositories with the same name, object class, and parent 
hierarchy, the object repository tree shows only the first one 
it finds based on the priority order defined. For information 
on object repository priorities, see “Associating Object 
Repositories with Actions” on page 446.

You can filter the objects shown in the object repository tree. 
For more information, see “The Object Repository Window - 
Filter Toolbar” on page 187.

Checkpoint and 
Output Objects 
tree

Contains all the checkpoint and output objects in the 
selected action (all local checkpoint and output objects and 
all checkpoint and output objects in any shared object 
repositories associated with the selected action).

Name The name that QuickTest assigns to the object. You can 
change the name of a object in the local object repository. For 
more information, see “Renaming Test Objects” on page 169.

Class The class of the object.



Chapter 6 • Using Object Repositories in Your Test

189

Additional References
 

Repository The location (file name and path) of the object repository in 
which the object is located. If the object is located in the local 
object repository, Local is displayed.

Object details Enables you to view the properties and property values used 
to identify a test object during a run session or the properties 
of a checkpoint or output object. You can also modify the 
object details for an object in the local object repository. For 
more information, see “Understanding the Object Details 
Area” on page 190. You can choose whether to show or hide 
the object details area. For more information, see “The Object 
Repository Window - Edit Toolbar” on page 185.

Related Tasks ➤ “Mapping Repository Parameter Values” on 
page 202

➤ “Exporting Local Objects to a Shared Object 
Repository” on page 193

➤ “Copying an Object to the Local Object 
Repository” on page 195

➤ “Renaming Test Objects” on page 169

➤ You can drag and drop test objects from other 
locations. For more information, see 
“Understanding the Available Keywords Pane” 
on page 1165 and “Adding Test Objects to Your 
Test Using the Object Repository Manager” on 
page 225. 

➤ You can modify the properties of a test object 
during a test run. For more information, see 
“Working with Test Objects During a Run 
Session” on page 206.

➤ You can view and modify object properties from 
other locations. For more information, see 
“Maintaining Identification Properties” on 
page 162.

Option Description



Chapter 6 • Using Object Repositories in Your Test

190

Understanding the Object Details Area
The object details area in the lower right side of the Object Repository 
window enables you to view and modify the properties and property values 
used to identify an object during a run session or the properties of a 
checkpoint or output object.

In the Object Repository window, objects in a shared object repository are 
displayed in the Object Properties pane (including the object details area) in 
read-only format. To modify objects in a shared object repository, open the 
shared object repository using the Object Repository Manager. For more 
information, see Chapter 7, “Managing Object Repositories.” You can also 
modify an object in a shared object repository by copying to the local object 
repository and then modifying the local copy. For more information, see 
“Copying an Object to the Local Object Repository” on page 195.

Tips:

➤ You can view object properties and property values using the Object 
Properties dialog box. For more information, see “The Object Properties 
Dialog Box” on page 197.

➤ You can use the Object Spy at any time to view native or identification 
properties and values of the objects in the application you are testing. 
You open the Object Spy by choosing Tools > Object Spy or clicking the 
Object Spy toolbar button. For more information, see “Viewing Object 
Properties and Operations Using the Object Spy” on page 97.



Chapter 6 • Using Object Repositories in Your Test

191

You can modify test object details for objects saved in the local object 
repository. 

The object details area contains the following items for test objects:

Item Description

Description 
properties

The properties and property values used to identify the object 
during a run session.

You can add and remove properties to or from the test object 
description. For more information, see “Adding Properties to a Test 
Object Description” on page 171.

You can specify a property value as a constant, or you can 
parameterize the value. For more information, see “Specifying or 
Modifying Property Values” on page 163.

Ordinal 
identifier

A numerical value that indicates the object’s order or location 
relative to other objects with an otherwise identical description 
(objects that have the same values for all properties). For more 
information, see “Specifying Ordinal Identifiers” on page 177.



Chapter 6 • Using Object Repositories in Your Test

192

For checkpoints and output objects, the object details area contains the 
checkpoint or output value object properties. The object details area enables 
you to modify these properties. 

Tips: 

➤ You can modify checkpoint and output value details for objects saved in 
the local object repository.

➤ You can copy an object from a shared object repository to the local object 
repository, and then modify it.

For more information, see:  

➤ “Understanding the Checkpoint Properties Dialog Box” on page 508

➤ “Understanding the Image Checkpoint Properties Dialog Box” on page 512

➤ “The Bitmap Checkpoint Properties Dialog Box” on page 522 

➤ “Understanding the Table Checkpoint Properties Dialog Box” on page 535

➤ “The Text / Text Area Checkpoint Properties Dialog Box” on page 557

Additional 
details

Contains the following options:

➤ Enable Smart Identification. Enables you to select True or False 
to specify whether QuickTest should use Smart Identification to 
identify the test object during the run session if it is not able to 
identify the object using the test object description.

Note: This option is available only if Smart Identification 
properties are defined for the test object's class in the Object 
Identification dialog box. For more information on Smart 
Identification, see “Configuring Smart Identification” on 
page 121.

➤ Comment. Enables you to add textual information about the 
test object.

Item Description



Chapter 6 • Using Object Repositories in Your Test

193

➤ “Understanding the Database Checkpoint Properties Dialog Box” on 
page 581

➤ “Understanding the XML Checkpoint Properties Dialog Box” on page 607

➤ “About Outputting Values” on page 669

➤ The Web section of the HP QuickTest Professional Add-ins Guide (for Page and 
Accessibility checkpoints)

Exporting Local Objects to a Shared Object Repository
The functionality described in this section is available only when working in 
the Object Repository window.

You can export all of the test objects, checkpoint objects, and output value 
objects contained in an action’s local object repository to a new shared 
object repository in the file system or to a Quality Center project (if 
QuickTest is connected to Quality Center). This enables you to make the 
local objects accessible to other actions. 

You can choose to only export the local objects to a shared object repository, 
or to export and replace the local objects. The Export and Replace Local 
Objects option exports the local objects to a shared object repository, 
associates the new shared object repository with your action, and deletes the 
objects in the local object repository.

When you export local objects to a shared object repository, the parameters 
of any parameterized objects are converted to repository parameters using 
the same name as the source parameter. The default (mapped) value of each 
repository parameter is the corresponding source parameter. You can modify 
the mapping used within your action using the Map Repository Parameters 
dialog box (described in “Mapping Repository Parameter Values” on 
page 202). For more information on repository parameters, see Chapter 7, 
“Managing Object Repositories.”



Chapter 6 • Using Object Repositories in Your Test

194

Tip: After you export the local objects, you can use the Object Repository 
Merge Tool to merge the test objects from the shared object repository 
containing the exported objects with another shared object repository. For 
more information, see Chapter 8, “Merging Shared Object Repositories.”

To export local objects to a new shared object repository:

 1 Open the test that has the local objects you want to export.

 2 Open the Object Repository window by selecting Resources > Object 
Repository or clicking the Object Repository button. 

 3 In the Object Repository window, in the Action box, choose the action 
whose local objects you want to export.

 4 Select File > Export Local Objects, or File > Export and Replace Local Objects. 
The Save Shared Object Repository dialog box opens.

 5 In the sidebar, select the location in which you want to save the file, for 
example, File System or Quality Center Test Resources. 

 6 Browse to and select the folder in which you want to save the file.

 7 In the File name box, enter a name for the file. Use a descriptive name that 
will help you easily identify the file. Do not use any of the following 
characters in the object repository name:
\ / : * " ? < > | ’

If you save the object repository to Quality Center, the file path must not 
contain two consecutive semicolons (;;).

 8 Click Save.

Tip: If you want to save the file as an attachment to a test in the Test Plan 
module in Quality Center, select Quality Center Test Plan in the sidebar, 
browse to and double-click the test, and then click Save. 



Chapter 6 • Using Object Repositories in Your Test

195

If you chose Export Local Objects, the local objects are exported to the 
specified shared object repository (a file with a .tsr extension). Your test 
continues to use the objects in the local object repository, and the new 
shared object repository is not associated with your test.

If you chose Export and Replace Local Objects, the new shared object 
repository (a file with a .tsr extension) is associated with your test, and the 
objects in the local object repository are deleted. The objects in the Object 
Repository window are read-only (gray), as they are now in a shared object 
repository. In the Object Properties section of the Object Repository 
window, the repository location indicates the path and filename of the new 
shared object repository instead of Local.

You can now use the new shared object repository like any other shared 
object repository.

Copying an Object to the Local Object Repository
The functionality described in this section is available only when working in 
the Object Repository window.

If you want to modify an object stored in a shared object repository, you can 
modify it using the Object Repository Manager, or you can modify it locally 
using the Object Repository window. 

If you modify it using the Object Repository Manager, the changes you 
make will be reflected in all actions that use the shared object repository. If 
you make a local copy of the object and modify it in the Object Repository 
window, the changes you make will affect only the action in which you 
make the change. If you later modify the same object in the shared object 
repository, your changes will not affect the local copy of the object in your 
action.



Chapter 6 • Using Object Repositories in Your Test

196

When copying an object to the local object repository, consider the 
following:

➤ When you copy an object to the local object repository, its parent objects are 
also copied to the local object repository.

➤ If an object or its parent objects use unmapped repository parameters, you 
cannot copy the object to the local object repository. You must make sure 
that all repository parameters are mapped before copying an object to the 
local object repository.

➤ If an object or its parent objects are parameterized using one or more 
repository parameters, the repository parameter values are converted when 
you copy the object to the local object repository. For example, if the 
repository parameter is mapped to a Data Table parameter, the property is 
parameterized using a Data Table parameter. If the value is a constant value, 
the property receives the same constant value.

➤ If you are copying multiple objects to the local object repository, during the 
copy process you can choose to skip a specific object if it has unmapped 
repository parameters, or if it has mapped repository parameters whose 
values you do not want to convert. You can then continue copying the next 
object from your original selection.

To copy an object to the local object repository:

 1 In the Object Repository window, select an object from a shared object 
repository that you want to copy to the local object repository. Objects in a 
shared object repository are colored gray. You can select more than one 
object to copy, as long as the selected objects have the same parent objects.

 2 Select Object > Copy to Local or right-click the objects and select Copy to 
Local. The objects (and parent objects) are copied to the local object 
repository and are made editable.



Chapter 6 • Using Object Repositories in Your Test

197

The Object Properties Dialog Box

You can view identification properties and property values for objects in 
your test steps. You can also view identification properties and property 
values for objects in the Active Screen, regardless of whether the objects are 
stored in the object repository.

To view object properties and property values in your test:

➤ Click in the step of the object whose properties you want to view and 
choose Edit > Step Properties > Object Properties.

➤ In the Active Screen, right-click the object whose properties you want to 
view and choose View / Add Object.

The Object Properties dialog box opens.



Chapter 6 • Using Object Repositories in Your Test

198

Note: There are slight differences in the Object Properties dialog box, 
depending on whether the selected object is currently stored in the local 
object repository or a shared object repository associated with the current 
test. This section describes options shown in the dialog box for objects in 
the local object repository. For objects stored in a shared object repository 
the information is in read-only format.

The Object Properties dialog box shows the name and class of the selected 
object and enables you to:

➤ View the object’s properties and property values—its description properties, 
ordinal identifier, and other settings.

➤ Modify the properties and property values used to identify the object (for 
objects that are stored in the local object repository). You modify the 
properties and values in the Object Properties dialog box in the same way as 
you modify the test object details in the Object Repository window. For 
more information, see “Maintaining Identification Properties” on page 162.

➤ Click the View in Repository button (for objects that are stored in the object 
repository) to open the Object Repository window and display the selected 
object in the object hierarchy.

➤ Click the Add to Repository button (for objects that are not stored in the 
object repository) to add the selected object to the local object repository.



Chapter 6 • Using Object Repositories in Your Test

199

Managing Shared Object Repository Associations

You can manage the shared object repository associations of a selected test 
using the Associate Repositories dialog box. The Associate Repositories 
dialog box enables you to associate one or more shared object repositories 
with one or more actions in a test. You can also remove object repository 
associations from selected actions, or from all actions in the test. For more 
information on shared object repository associations, see “Associating 
Object Repositories with Actions” on page 446.

You can also associate, remove, prioritize, and view the properties of shared 
object repositories in the Resources pane. For more information, see “The 
Resources Pane” on page 1161.

To manage object repository associations in the Associate Repositories 
dialog box:

 1 Perform one of the following:

➤ Choose Resources > Associate Repositories.

➤ In the Object Repository window, choose Tools > Associate Repositories.

➤ In the Object Repository window, click the Associate Repositories 
button.



Chapter 6 • Using Object Repositories in Your Test

200

The Associate Repositories dialog box opens.

The Associate Repositories dialog box lists all the shared object repositories 
associated to each of the actions in the current test, and shows to which 
actions each repository is currently associated. You can add or remove object 
repositories from the list, and change the associations to actions in the test.

 2 To add a shared object repository to the list so you can associate it to one or 
more actions in the current test, click the Add Repository button. The Open 
Shared Object Repository dialog box opens. In the sidebar, select the 
location of the object repository file, for example, File System or Quality 
Center Resources. Browse to and select the object repository file you want to 
open, and click Open. The new object repository is displayed at the bottom 
of the Repositories list.



Chapter 6 • Using Object Repositories in Your Test

201

 3 To modify the name or path of an associated shared object repository, click a 
shared object repository in the Repositories list and then click the browse 
button to open a file selection dialog box in which you can select a different 
shared object repository. Alternatively, you can modify the shared object 
repository name or path directly in the Repositories list. The modified 
shared object repository remains associated with the same actions as the 
previous shared object repository. 

 4 To associate an object repository with one or more actions, or remove 
existing associations, select the object repository in the Repositories list, and 
then double-click the action names or select the action names and click the 
arrow buttons (> and <) to move them between the Available Actions and 
the Associated Actions lists.

Tip: Click the double arrow buttons (>> and <<) to move all the actions from 
one list to the other. Select multiple actions (using the SHIFT and/or CONTROL 
keys) and click the arrow buttons (> and <) to move only the selected 
actions from one list to the other.

Note: You cannot define the priorities of the object repositories associated 
with an action using the Associate Repositories dialog box. You prioritize the 
object repositories using the Associated Repositories tab of the Action 
Properties dialog box. For more information, see “Associating Object 
Repositories with Actions” on page 446.

 5 To remove an object repository from the list and thereby remove all of its 
associations to any actions in the current test, select the object repository 
and click the Remove Repository button.

 6 Click OK. The changes you made to the object repository associations are 
applied. You can view the new associations and change the object repository 
priorities in the Associated Repositories tab of the Action Properties dialog 
box. For more information, see “Associating Object Repositories with 
Actions” on page 446.



Chapter 6 • Using Object Repositories in Your Test

202

Mapping Repository Parameter Values

You can map repository parameters that are used in shared object 
repositories that are associated with your action. Mapping a repository 
parameter to a value or parameter specifies the property values used to 
identify the test object during a run session. You can specify that the 
property value is taken from a constant value, or parameterize it using a 
Data Table, random number, environment, or test parameter.

You can map each repository parameter as required in each test that has an 
associated object repository containing repository parameters. For example, 
in one test you may want to retrieve the username object’s text property 
value from an environment variable parameter, and in another test you may 
want the same object property value to use a constant value or a Data Table 
parameter. 

Before you map repository parameters, if you have more than one repository 
parameter with the same name in different shared object repositories that 
are associated with the same test, the repository parameter from the shared 
object repository with the highest priority (as defined in the shared object 
repositories list) is used. After you map repository parameters, QuickTest 
uses the mappings you defined. In addition, changing the priority or default 
values has no effect after the parameters are mapped. 

When you open a test that uses an object repository with an object property 
value that is parameterized using a repository parameter with no default 
value, an indication that there is a repository parameter that needs mapping 
is displayed in the Missing Resources pane. You can then map the repository 
parameter as needed in the test. You can also map repository parameters 
that have default values, and change mappings for repository parameters 
that are already mapped.

If you do not map a repository parameter, the default value that was defined 
with the parameter, if any, is used during the action run. If the parameter is 
unmapped, meaning no default value was specified for it, the test run may 
fail if a test object cannot be identified because it has an unmapped 
parameter value.



Chapter 6 • Using Object Repositories in Your Test

203

To map repository parameter values:

 1 Choose Resources > Map Repository Parameters. The Map Repository 
Parameters dialog box opens.

Tip: If you have unmapped repository parameters (repository parameters 
without a default value) in your test, you can also open this dialog box by 
double-clicking the Repository Parameters row in the Missing Resources 
pane. For more information, see Chapter 41, “Handling Missing Resources.” 



Chapter 6 • Using Object Repositories in Your Test

204

The Map Repository Parameters dialog box contains the following options:

Option name Description

Map parameters 
for filter

Enables you to filter the list of parameters that is displayed. 
You can choose to display:

➤ All unmapped parameters. Displays all of the parameters in 
your test with unmapped values.

➤ Entire test. Displays all of the parameters in your test (with 
mapped or unmapped values).

➤ <Action name>. (For example, LogIn) Displays all of the 
parameters in the specified action (with mapped or 
unmapped values).

Name column The name of the repository parameter.

Value column The parameter’s current value, if any. This column shows 
either the new value you defined, or the default value that was 
defined when the parameter was created. If no default value 
was defined, then the parameter is currently unmapped, and 
the text {No default value} is shown. 

You can perform one of the following:

➤ Enter a new constant value.

➤ Parameterize the value by clicking in the Value cell of the 
relevant parameter and then clicking the parameterization 
button .

➤ Reset a parameter to its default value by clicking in the 
Value cell of the relevant parameter and then clicking the 
Reset to Default Value button .

Description 
column

A textual description of the parameter, if any.

Find in 
Repository 
button

Opens the Object Repository window and highlights the first 
test object in the object repository tree that uses the selected 
repository parameter. You can click this button again to find 
the next occurrence of the selected parameter, and so forth.



Chapter 6 • Using Object Repositories in Your Test

205

Note: The repository parameter names, default values, and descriptions are 
defined in the Manage Repository Parameters dialog box. In addition, the 
names and descriptions can only be modified there. For more information, 
see “Managing Repository Parameters” on page 229.

 2 Click the Map parameters for arrow to select the list of parameter groups for 
which you want to define values. You can choose to display:

➤ All unmapped parameters. Displays all of the parameters in your test 
with unmapped values.

➤ Entire test. Displays all of the parameters in your test (with mapped or 
unmapped values).

➤ <Action name>. (For example, LogIn) Displays all of the parameters in the 
specified action (with mapped or unmapped values).

 3 Click in the Value cell of the parameter you want to map. You can choose to 
map the value in one of the following ways:

➤ Enter a new constant value or modify an existing constant value by 
typing directly in the Value cell. You can also enter a constant value in 
the Value Configuration Options dialog box by clicking the 
parameterization button. For information on using this dialog box, see 
“Configuring a Selected Value” on page 760.

➤ Parameterize the value by clicking the parameterization button. The 
Value Configuration Options dialog box opens. You can parameterize the 
value using a Data Table (Global sheet only), random number, 
environment, or test parameter. For information on using this dialog 
box, see “Configuring a Selected Value” on page 760.

➤ Restore the default value by clicking the Clear Default Value button. The 
default value, if any, that was defined in the Add Repository Parameter 
dialog box is displayed in the cell. For information on the Add Repository 
Parameter dialog box, see “Adding Repository Parameters” on page 230.

 4 Repeat step 3 for any additional parameter values that you want to map. 
Then click OK to close the Map Repository Parameter dialog box.



Chapter 6 • Using Object Repositories in Your Test

206

Working with Test Objects During a Run Session

The first time QuickTest encounters an object during a run session, it creates 
a temporary version of the test object for that run session. QuickTest uses 
the object description to create this temporary version of the object. For the 
remainder of the test, QuickTest refers to the temporary version of the test 
object rather than to the test object in the object repository.

Note: The Object Repository window is read-only during record and run 
sessions.

Creating Test Objects During a Run Session
You can use programmatic descriptions to create temporary versions of test 
objects that represent objects from your application. You can perform 
operations on those objects without referring to the object repository. For 
example, suppose an edit box was added to a form on your Web site. You 
can use a programmatic description to add a statement in the Expert View or 
in a user-defined function that enters a value in the new edit box. QuickTest 
could then identify the object even though the object was never added to 
the object repository. For more information on programmatic descriptions, 
see “Using Programmatic Descriptions” on page 863.

Modifying Identification Properties During a Run Session
You can modify the properties of the temporary version of the object during 
the run session without affecting the permanent values in the object 
repository by adding a SetTOProperty statement in the Keyword View, Expert 
View, or in a user-defined function.

Use the following syntax for the SetTOProperty method:

Object(description).SetTOProperty Property, Value

For information, see the HP QuickTest Professional Object Model Reference.



207

7 
Managing Object Repositories

The Object Repository Manager enables you to manage all of the shared 
object repositories used in your organization from a single, central location, 
including adding and defining objects, modifying objects and their 
descriptions, parameterizing repositories to make them more generic, 
maintaining and organizing repositories, merging repositories, and 
importing and exporting repositories in XML format.

This chapter includes:

 ➤  About Managing Object Repositories on page 208

 ➤  The Object Repository Manager on page 210

 ➤  Working with Object Repositories on page 217

 ➤  Managing Objects in Shared Object Repositories on page 222

 ➤  Working with Repository Parameters on page 228

 ➤  Modifying Object Details on page 234

 ➤  Locating Test Objects on page 239

 ➤  Performing Merge Operations on page 240

 ➤  Performing Import and Export Operations on page 241

 ➤  Managing Object Repositories Using Automation on page 244



Chapter 7 • Managing Object Repositories

208

About Managing Object Repositories

The Object Repository Manager enables you to create and maintain shared 
object repositories. You can work with object repositories saved both in the 
file system and in a Quality Center project. 

Each object repository contains the information that enables QuickTest to 
identify the objects in your application. QuickTest enables you to maintain 
the reusability of your tests by storing all the information regarding your 
test objects in a shared object repository. When objects in your application 
change, the Object Repository Manager provides a single, central location in 
which you can update test object information for multiple tests.

Note: Instead of, or in addition to, shared object repositories, you can 
choose to store all or some of the objects in a local object repository for each 
action. For more information on local object repositories, see Chapter 5, 
“Managing Test Objects in Object Repositories.”

If one or more of the property values of an object in your application differ 
from the property values QuickTest uses to identify the object, your test may 
fail. Therefore, when the property values of objects in your application 
change, you should modify the corresponding identification property values 
in the corresponding object repository so that you can continue to use your 
existing tests.

If an object with the same name and description is located in both the local 
object repository and in a shared object repository that is associated with 
the same action, the action uses the local object definition. If an object with 
the same name and description is located in more than one shared object 
repository, and these shared object repositories are all associated with the 
same action, QuickTest uses the object definition from the first occurrence 
of the object, according to the order in which the shared object repositories 
are associated with the action. For more information on associating shared 
object repositories, see “Associating Object Repositories with Actions” on 
page 446. 



Chapter 7 • Managing Object Repositories

209

You can use the same shared object repository with multiple actions. You 
can also use multiple object repositories with each action. In addition, you 
can save objects directly with an action in a local object repository. This 
enables them to be accessed only from that action. If your shared object 
repositories are stored in Quality Center, you can apply version control to 
them. For more information, see “Managing Assets Using Version Control” 
on page 1479.

You can modify objects in a shared object repository using the Object 
Repository Manager, as described in this chapter. You can modify objects 
stored in a local object repository using the Object Repository window. For 
information on the Object Repository window, see Chapter 5, “Managing 
Test Objects in Object Repositories.”



Chapter 7 • Managing Object Repositories

210

The Object Repository Manager

You open the Object Repository Manager by choosing Resources > Object 
Repository Manager. The Object Repository Manager enables you to open 
multiple shared object repositories and modify them as needed. You can 
open shared object repositories both from the file system and from a 
Quality Center project. 

Tip: While the Object Repository Manager is open, you can continue 
working with other QuickTest windows.



Chapter 7 • Managing Object Repositories

211

You can open as many shared object repositories as you want. Each shared 
object repository opens in a separate document window. You can then 
resize, maximize, or minimize the windows to arrange them as you require 
to copy, drag, and move objects between different shared object repositories, 
as well as perform operations on a single object repository. For more 
information on the details shown in the shared object repository windows, 
see “Understanding the Shared Object Repository Windows” on page 215.

You open shared object repositories from the Open Shared Object 
Repository dialog box. In this dialog box, the Open in read-only mode check 
box is selected, by default. If you clear this check box, the shared object 
repository opens in editable mode. Otherwise, the shared object repository 
opens in read-only mode and you must click the Enable Editing button to 
modify it. For more information, see “Editing Object Repositories” on 
page 224.

When you choose a menu item or click a toolbar button in the Object 
Repository Manager, the operation you select is performed on the shared 
object repository whose window is currently active (in focus). The name and 
file path of the shared object repository is shown in the title bar of the 
window. For more information on the Object Repository Manager toolbar 
buttons, see “Using the Object Repository Manager Toolbar” on page 212.

If QuickTest is connected to a Quality Center project with version control 
enabled, you can view and manage versions of your shared object 
repositories, view comparisons of two shared object repository versions, and 
view baseline history. For more information, see “Managing Assets Using 
Version Control” on page 1479 and “Viewing and Comparing Versions of 
QuickTest Assets” on page 1461.

Many of the shared object repository operations you can perform in the 
Object Repository Manager are done in a similar way to how you modify 
objects stored in a local object repository (using the Object Repository 
window). For this reason, many of the procedures are actually described in 
Chapter 5, “Managing Test Objects in Object Repositories.” Most of the 
procedures apply equally to the Object Repository Manager and the Object 
Repository window, but the windows and options may differ slightly.



Chapter 7 • Managing Object Repositories

212

Using the Object Repository Manager Toolbar
You can access frequently performed operations using the Object Repository 
Manager toolbar. The Object Repository Manager toolbar contains the 
following buttons:

Button Description

Enables you to create a new shared object repository. For more 
information, see “Creating New Object Repositories” on page 217.

Enables you to open a shared object repository from the file system or 
from Quality Center. For more information, see “Opening Object 
Repositories” on page 217.

Enables you to save the active shared object repository to the file 
system or to Quality Center. For more information, see “Saving Object 
Repositories” on page 219.

Enables you to edit the active shared object repository, by making the 
shared object repository editable. For more information, see “Editing 
Object Repositories” on page 224.

Enables you to undo the previous operation performed in the active 
shared object repository. You do this in the same way as in a local 
object repository. For more information, see “Copying, Pasting, and 
Moving Objects in the Object Repository” on page 150.

Enables you to redo the operation that was previously undone in the 
active shared object repository. You do this in the same way as in a 
local object repository. For more information, see “Copying, Pasting, 
and Moving Objects in the Object Repository” on page 150.

Enables you to cut the selected item or object in the active shared 
object repository. You do this in the same way as in a local object 
repository. For more information, see “Copying, Pasting, and Moving 
Objects in the Object Repository” on page 150.

Enables you to copy the selected item or object to the Clipboard in the 
active shared object repository. You do this in the same way as in a 
local object repository. For more information, see “Copying, Pasting, 
and Moving Objects in the Object Repository” on page 150.



Chapter 7 • Managing Object Repositories

213

Enables you to paste the data from the Clipboard to the active shared 
object repository. You do this in the same way as in a local object 
repository. For more information, see “Copying, Pasting, and Moving 
Objects in the Object Repository” on page 150.

Enables you to delete the selected item or object in the active shared 
object repository. You do this in the same way as in a local object 
repository. For more information, see “Deleting Objects from the 
Object Repository” on page 153.

Enables you to find an object, property, or property value in the active 
shared object repository. You can also find and replace specified 
property values. You do this in the same way as in a local object 
repository. For more information, see “Finding Objects in an Object 
Repository” on page 154.

Enables you to add objects to the active shared object repository. You 
do this in the same way as in a local object repository. For more 
information, see “Adding Test Objects to a Local or Shared Object 
Repository” on page 136.

Enables you to update identification properties in the active shared 
object repository according to the actual properties of the object in 
your application. You do this in the same way as in a local object 
repository. For more information, see “Updating Identification 
Properties from an Object in Your Application” on page 165.

Enables you to define a test object that does not yet exist in your 
application and add it to the active shared object repository. You do 
this in the same way as in a local object repository. For more 
information, see “Defining New Test Objects” on page 147.

Enables you to select an object in the active shared object repository 
and highlight it in your application. You do this in the same way as in 
a local object repository. For more information, see “Highlighting an 
Object in Your Application” on page 157.

Enables you to select an object in your application and highlight it in 
the active shared object repository. You do this in the same way as in a 
local object repository. For more information, see “Locating a Test 
Object in the Object Repository” on page 159.

Button Description



Chapter 7 • Managing Object Repositories

214

Enables you to connect to Quality Center to work with object 
repository files stored in a Quality Center project. You can connect to 
Quality Center from the main QuickTest window or from the Object 
Repository Manager. For more information, see “Connecting to and 
Disconnecting from Quality Center” on page 1418. 

Opens the Object Spy dialog box, enabling you to view the native 
properties and operations of any object in an open application, as well 
as the test object hierarchy, identification properties, and operations 
of the test object that QuickTest uses to represent that object. For more 
information, see “Viewing Object Properties and Operations Using the 
Object Spy” on page 97.

Enables you to add, edit, and delete repository parameters in the 
active shared object repository. For more information, see “Managing 
Repository Parameters” on page 229.

Button Description



Chapter 7 • Managing Object Repositories

215

Understanding the Shared Object Repository Windows
Each shared object repository that you open in the Object Repository 
Manager is displayed in a standalone document window. Each shared object 
repository window displays a tree of all the objects in the object repository, 
together with object information for the selected object. 

For each object you select in the tree, the Object Repository window displays 
information about the selected object. You can view the object description 
of any object in the shared object repository, modify objects and their 
properties, and add test objects to the shared object repository. 



Chapter 7 • Managing Object Repositories

216

Notes: 

➤ You cannot add checkpoint or output value objects to a shared object 
repository via the Object Repository Manager.

➤ Test objects of environments that are not installed with QuickTest are 
displayed with a question mark icon in the test object tree.

For more information, see “Managing Objects in Shared Object 
Repositories” on page 222 and “Modifying Object Details” on page 234.

Each object repository window contains the following information:

 

Note: Even when steps containing an object are deleted from your action, 
the objects remain in the object repository. You can delete objects from a 
shared object repository using the Object Repository Manager, in much the 
same was as you delete objects from a local object repository. For more 
information, see “Deleting Objects from the Object Repository” on 
page 153.

Information Description

Object Repository 
tree

Located on the left side of the Object Repository window. 
Contains all objects in the shared object repository.

Name Specifies the name that QuickTest assigns to the selected 
object. You can change the object name. For more 
information, see “Renaming Test Objects” on page 169.

Class Specifies the class of the selected object.

Object details Located on the lower right side of the Object Repository 
window. Enables you to view the properties and property 
values used to identify a test object during a run session or 
the properties of a checkpoint or output object. For more 
information, see “Modifying Object Details” on page 234.



Chapter 7 • Managing Object Repositories

217

Working with Object Repositories

You can use the Object Repository Manager to create new object 
repositories, open and modify existing object repositories, and save and 
close them when you are finished.

Creating New Object Repositories
The functionality described in this section is available only when working in 
the Object Repository Manager.

You can create a new object repository, add objects to it, and then save it. 
You can then associate one or more actions with the object repository from 
within QuickTest. For more information on associating shared object 
repositories, see “Associating Object Repositories with Actions” on page 446. 

To create a new object repository:

In the Object Repository Manager, select File > New or click the New button. 
A new object repository opens. You can now add objects to it, modify it, and 
save it. For more information, see “Managing Objects in Shared Object 
Repositories” on page 222 and “Saving Object Repositories” on page 219.

Opening Object Repositories
The functionality described in this section is available only when working in 
the Object Repository Manager.

You can open existing object repositories to view or modify them. You can 
open object repositories from the file system or from a Quality Center 
project.

You connect to a Quality Center project either from QuickTest or from the 
Object Repository Manager by choosing File > Quality Center Connection or 
clicking the Quality Center Connection button. For more information on 
connecting to Quality Center, see “Connecting to and Disconnecting from 
Quality Center” on page 1418. 



Chapter 7 • Managing Object Repositories

218

Note for users of previous QuickTest versions: 

When you open an object repository that is stored in the file system and was 
created using a version of QuickTest earlier than version 9.0, QuickTest 
converts it to the current format when you make it editable. 

If the object repository contains test objects from add-ins, the relevant 
add-in must be installed to convert the object repository to the current 
format. Otherwise, you can open it only in read-only format.

If you do not want to convert the object repository, you can view it in 
read-only format. After the file is converted and you save it, you cannot use 
it with earlier versions of QuickTest.

To open an object repository:

 1 In the Object Repository Manager, select File > Open or click the Open 
button. The Open Shared Object Repository dialog box opens.

 2 In the sidebar, select the location of the object repository file, for example, 
File System or Quality Center Test Resources. Browse to and select the object 
repository file you want to open, and click Open. The object repository 
opens.

By default, the object repository opens in read-only mode. You can open it 
in editable format by clearing the Open in read-only mode check box in the 
Open Shared Object Repository dialog box. You can also enable editing for 
an object repository as described in “Editing Object Repositories” on 
page 224.

If the object repository is editable, you can add objects to it, modify it, and 
save it. For more information, see “Managing Objects in Shared Object 
Repositories” on page 222 and “Saving Object Repositories” on page 219.

Tip: You can also open an object repository from the Recent Files list in the 
File menu.



Chapter 7 • Managing Object Repositories

219

Saving Object Repositories
The functionality described in this section is available only when working in 
the Object Repository Manager.

After you finish creating or modifying an object repository, you should save 
it. When you modify an object repository, an asterisk (*) is displayed in the 
title bar until the object repository is saved.

You can save an object repository to the file system or to a Quality Center 
project (if you are connected to a Quality Center project). You connect to a 
Quality Center project either from QuickTest or from the Object Repository 
Manager by choosing File > Quality Center Connection or clicking the 
Quality Center Connection button. For more information on connecting to 
Quality Center, see “Connecting to and Disconnecting from 
Quality Center” on page 1418. 

All changes you make to an object repository are automatically updated in 
all tests open on the same computer that use the object repository as soon as 
you make the change—even if you have not yet saved the object repository 
with your changes. If you close the object repository without saving your 
changes, the changes are rolled back in any open tests that were open at the 
time. 

When you open a test on the same computer on which you modified the 
object repository, the test is automatically updated with all saved changes 
made in the associated object repository. To see saved changes in a test or 
repository open on a different computer, you must open the test or object 
repository file or lock it for editing on your computer to load the changes. 

To save an object repository:

 1 Make sure that the object repository you want to save is the active window.

 2 Select File > Save or click the Save button. If the file has already been saved, 
the changes you made are saved. If the file has not yet been saved, the Save 
Shared Object Repository dialog box opens.

 3 In the sidebar, select the location in which you want to save the file, for 
example, File System or Quality Center Test Resources. 

 4 Browse to and select the folder in which you want to save the file.



Chapter 7 • Managing Object Repositories

220

 5 In the File name box, enter a name for the file. Use a descriptive name that 
will help you easily identify the file. Do not use any of the following 
characters in the object repository name:
\ / : * " ? < > | ’

If you save the object repository to Quality Center, the file path must not 
contain two consecutive semicolons (;;).

 6 Click Save.

Tip: If you want to save the file as an attachment to a test in the Test Plan 
module in Quality Center, select Quality Center Test Plan in the sidebar, 
browse to and double-click the test, and then click Save. 

Note: When you specify a path to a resource in the file system or in 
Quality Center 9.x, QuickTest checks if the path, or a part of the path, exists 
in the Folders pane of the Options dialog box (Tools > Options > Folders 
node). If the path exists, you are prompted to define the path using only the 
relative part of the path you entered. If the path does not exist, you are 
prompted to add the resource's location path to the Folders pane and define 
the path relatively. For more information, see “Using Relative Paths in 
QuickTest” on page 316.

If you are working with the Resources and Dependencies model with 
Quality Center 10.00, you should specify an absolute Quality Center path. 
For more information, see “Considerations for Working with Relative Paths 
in Quality Center” on page 1450.

QuickTest saves the object repository with a .tsr extension in the specified 
location and displays the object repository name and path in the title bar of 
the repository window.



Chapter 7 • Managing Object Repositories

221

Closing Object Repositories
The functionality described in this section is available only when working in 
the Object Repository Manager.

After you finish modifying or using an object repository, you should close it. 
While an object repository is being edited, it is locked so that it cannot be 
modified by others. When you close the object repository, it is automatically 
unlocked. You can also choose to close all open object repositories.

Note: If you close QuickTest, the Object Repository Manager also closes. If 
you have made changes that are not yet saved, you are prompted to do so 
before the Object Repository Manager closes.

To close an object repository:

 1 Make sure that the object repository you want to close is the active window.

 2 Select File > Close or click the Close button in the object repository 
window’s title bar. The object repository is closed and is automatically 
unlocked. If you have made changes that are not yet saved, you are 
prompted to do so before the file closes.

To close all open object repositories:

Select File > Close All Windows, or Window > Close All Windows. All open 
object repositories are closed and are automatically unlocked. If you have 
made changes that are not yet saved, you are prompted to do so before the 
files close.



Chapter 7 • Managing Object Repositories

222

Managing Objects in Shared Object Repositories

You can modify your shared object repositories in a variety of ways to either 
prepare them for initial use or update them throughout the testing process. 
You can add and modify objects and object properties in a shared object 
repository, copy or move objects from one object repository to another, drag 
objects to a different location in the hierarchy, delete objects, and rename 
objects. You can also drag and drop test objects from the Object Repository 
manager to your test. When you modify a shared object repository, an 
asterisk (*) is displayed in the title bar until the object repository is saved.

The following are tips and guidelines for working with the Object 
Repository Manager:

➤ You can use the Edit > Undo and Edit > Redo options or Undo and Redo 
buttons to cancel or repeat your changes as necessary. The Undo and Redo 
options are related to the active document. When you save an object 
repository, you cannot undo and redo operations that were performed on 
that file before the save operation.

➤ If you opened the object repository in read-only mode, you must enable 
editing for the object repository before you can modify it. This locks the 
object repository and prevents it from being modified simultaneously by 
multiple users.

➤ All changes you make to an object repository are automatically updated in 
all tests open on the same computer that use the object repository as soon as 
you make the change—even if you have not yet saved the object repository 
with your changes. 

If you close the object repository without saving your changes, the changes 
are rolled back in any open tests that were open at the time.

➤ When you open a test on the same computer on which you modified the 
object repository, the test is automatically updated with all saved changes 
made in the associated object repository. To see saved changes in a test or 
repository open on a different computer, you must open the test or object 
repository file or lock it for editing on your computer to load the changes.



Chapter 7 • Managing Object Repositories

223

➤ You can also modify a shared object repository by merging it with another 
shared object repository. When you merge two shared object repositories, a 
new shared object repository is created, containing the content of both 
object repositories. If you merge a shared object repository with a local 
object repository, the shared object repository is updated with the content 
of the local object repository. For more information, see Chapter 8, 
“Merging Shared Object Repositories.”

➤ After making sure that your shared object repository is editable, and that it 
is the active window, you can modify it in the same way as you modify a 
local object repository. In addition to adding objects to a shared object 
repository in the same manner as to a local repository, you can also add 
objects to a shared object repository using the Navigate and Learn option. 

For more information, see:

➤ “Editing Object Repositories” on page 224

➤ “Adding Test Objects to Your Test Using the Object Repository Manager” on 
page 225

➤ “Adding Test Objects to a Local or Shared Object Repository” on page 136

➤ “Adding Test Objects Using the Navigate and Learn Option” on page 225

➤ “Copying, Pasting, and Moving Objects in the Object Repository” on 
page 150

➤ “Deleting Objects from the Object Repository” on page 153



Chapter 7 • Managing Object Repositories

224

Editing Object Repositories
The functionality described in this section is available only when working in 
the Object Repository Manager.

When you open an object repository, it is opened in read-only mode by 
default. You can open it in editable format by clearing the Open in read-only 
mode check box in the Open Shared Object Repository dialog box when you 
open it.

If you opened the object repository in read-only mode, you must enable 
editing for the object repository before you can modify it. You do not need 
to enable editing for an object repository if you only want to view it or copy 
objects from it to another object repository.

When you enable editing for an object repository, the object repository is 
locked so that it cannot be modified by other users. To enable other users to 
modify the object repository, you must first unlock it (by disabling edit 
mode, or by closing it). If an object repository is already locked by another 
user, if it is saved in read-only format, or if you do not have the permissions 
required to open it, you cannot enable editing for it.

Note for users of previous QuickTest versions: If you want to edit an object 
repository stored in the file system, and the object repository was created 
using a version of QuickTest earlier than version 9.0, QuickTest must convert 
it to the current format before you can edit it. If you do not want to convert 
it, you can view it in read-only format. After the file is converted and saved, 
you cannot use it with earlier versions of QuickTest.

To enable editing for an object repository:

 1 Make sure that the object repository you want to edit is the active window.

 2 Select File > Enable Editing or click the Enable Editing button. The object 
repository becomes editable.



Chapter 7 • Managing Object Repositories

225

Adding Test Objects to Your Test Using the Object 
Repository Manager
The functionality described in this section is available in the Object 
Repository window for objects in the local object repository, and the Object 
Repository Manager for objects in shared object repositories.

You can drag and drop test objects from the Object Repository Manager to 
your test. When you drag and drop a test object to your test, QuickTest 
inserts a step with the default operation for that test object in your test. You 
cannot drag and drop checkpoint or output objects from the Object 
Repository Manager.

For example, if you drag and drop a button object to your test, a step is 
added to your test using the button object, with a Click operation (the 
default operation for a button object). 

You can also drag and drop test objects from other locations. For more 
information, see:

➤ “Understanding the Available Keywords Pane” on page 1165

➤ “The Object Repository Window” on page 183

Adding Test Objects Using the Navigate and Learn Option
The functionality described in this section is available only when working in 
the Object Repository Manager.

The Navigate and Learn option enables you to add multiple test objects to a 
shared object repository while navigating through your application. 

Each time you select a window to learn, the selected window and its 
descendant objects are added to the active shared object repository 
according to a predefined object filter. You can change the object filter 
definitions at any time to meet your requirements. The object filter is used 
for both the Navigate and Learn option and the Add Objects option. The 
settings you define are used in both places when QuickTest learns objects. 
For more information on modifying the filter definitions, see 
“Understanding the Define Object Filter Dialog Box” on page 144.



Chapter 7 • Managing Object Repositories

226

Note: The Navigate and Learn option is not supported for environments 
with mixed hierarchies (object hierarchies that include objects from 
different environments), for example, 
Browser("Homepage").Page("Welcome").AcxButton("Save") or 
Dialog("Edit").AcxEdit("MyEdit"). To add objects within mixed hierarchies, use 
other options, as described in “Adding Test Objects to a Local or Shared 
Object Repository” on page 136.

You can use the following keyboard shortcuts when learning objects using 
the Navigate and Learn option:

➤ Learn Focused Window. ENTER

➤ Define Object Filter. CTRL+F

➤ Help. F1

➤ Return to Object Repository Manager. ESC

Note: Minimized windows are not learned when using the Navigate and 
Learn option.

To add test objects using the Navigate and Learn option:

 1 In the Object Repository Manager, make sure that the object repository to 
which you want to add objects is the active window and that it is editable.

 2 Select Object > Navigate and Learn or press F6. The Navigate and Learn 
toolbar opens.



Chapter 7 • Managing Object Repositories

227

Note: If this is the first time you are adding objects to the object repository, 
you may want to change the filter definitions before you continue. You can 
view the current filter definitions in the Define Object Filter button tooltip 
(displayed in parentheses after the button name). You can change the filter 
definitions at any time by clicking the Define Object Filter button or 
pressing CTRL+F. For more information, see “Understanding the Define 
Object Filter Dialog Box” on page 144.

 3 Click the parent object (for example, Browser, Dialog, Window) you want to 
add to the object repository to focus it. The Learn button in the toolbar is 
enabled.

 4 Click the Learn button or focus the Navigate and Learn toolbar and press 
ENTER. A flashing highlight surrounds the focused window and the object 
and its descendants are added to the object repository according to the 
defined filter.

 5 Navigate in your application to the next window you want to add and then 
repeat step 4.

 6 When you finish adding the required objects to the object repository, click 
the Close button in the Navigate and Learn toolbar or press ESC. The 
Navigate and Learn toolbar closes and the Object Repository Manager is 
redisplayed, showing the objects you just added to the shared object 
repository.



Chapter 7 • Managing Object Repositories

228

Working with Repository Parameters

Repository parameters enable you to specify that certain property values 
should be parameterized, but leave the actual parameterization to be defined 
in each test that is associated with the object repository that contains the 
parameterized identification property values.

Repository parameters are useful when you want to create and run tests on 
an object that changes dynamically. An object may change dynamically if it 
is frequently updated in the application, or if its property values are set 
using dynamic content, for example, from a database.

For example, you may have a button whose text property value changes in a 
localized application depending on the language of the user interface. You 
can parameterize the name property value using a repository parameter, and 
then in each test that uses the object repository you can specify the location 
from which the property value should be taken. For example, in one test 
that uses this object repository you can specify that the property value 
comes from an environment variable, in another test it can come from the 
Data Table, and in a third test you can specify it as a constant value.

You define all the repository parameters for a specific object repository using 
the Manage Repository Parameters dialog box. You define each repository 
parameter together with an optional default value and meaningful 
description. For more information, see “Managing Repository Parameters” 
on page 229.

When you open a test that uses an object repository with a repository 
parameter that has no default value, an indication that there is a repository 
parameter that needs mapping is displayed in the Missing Resources pane. 
You can then map the repository parameter as needed in the test. You can 
also map repository parameters that have default values, and change 
mappings for repository parameters that are already mapped. For more 
information on mapping repository parameters, see “Handling Unmapped 
Shared Object Repository Parameter Values” on page 1194.



Chapter 7 • Managing Object Repositories

229

Managing Repository Parameters
The functionality described in this section is available only when working in 
the Object Repository Manager.

The Manage Repository Parameters dialog box enables you to add, edit, and 
delete repository parameters for a single shared object repository.

To manage repository parameters:

 1 Make sure that the object repository whose parameters you want to manage 
is the active window.

 2 If the object repository is in read-only format, select File > Enable Editing or 
click the Enable Editing button. The object repository becomes editable.

 3 Select Tools > Manage Repository Parameters or click the Manage 
Repository Parameters button. The Manage Repository Parameters dialog 
box opens.



Chapter 7 • Managing Object Repositories

230

The Manage Repository Parameters dialog box contains the following 
information and options:
 

Adding Repository Parameters
The functionality described in this section is available only when working in 
the Object Repository Manager.

The Add Repository Parameter dialog box enables you to define a new 
repository parameter. You can also specify a default value for the parameter, 
and a meaningful description to help identify it when it is used in a test 
step.

For more information on repository parameters, see “Working with 
Repository Parameters” on page 228.

Option Description

Repository name Displays the name and path of the object 
repository whose repository parameters you are 
managing.

Enables you to add a new repository parameter. For 
more information, see “Adding Repository 
Parameters” on page 230.

Enables you to delete the currently selected 
repository parameters. For more information, see 
“Deleting Repository Parameters” on page 233.

Parameter list 
(Name, Default Value, and 
Description)

Displays the list of repository parameters currently 
defined in this object repository. You can modify a 
parameter’s default value and description directly 
in the parameter list. For more information, see 
“Modifying Repository Parameters” on page 232.

Find in Repository button Searches for and highlights the first test object in 
the object repository tree that uses the selected 
repository parameter. You can click this button 
again to find the next occurrence of the selected 
parameter, and so forth.



Chapter 7 • Managing Object Repositories

231

To add a repository parameter:

 1 In the Manage Repository Parameters dialog box, click the Add Repository 
Parameter button. The Add Repository Parameter dialog box opens.

 2 In the Name box, specify a meaningful name for the parameter. Parameter 
names must start with an English (Roman) letter and can contain only 
English (Roman) letters, numbers, and underscores.

 3 In the Default value box, you can specify a default value to be used for the 
repository parameter. This value is used if you do not map the repository 
parameter to a value or parameter type in a test that uses this object 
repository. If you do not specify a default value, the repository parameter 
will appear as unmapped in any tests that use this shared object repository.

Tip: If you specify a default value, you can later remove it by clicking in the 
Default Value cell of the relevant parameter in the Manage Repository 
Parameters dialog box and then clicking the Clear Default Value button. The 
text {No Default Value} is displayed in the cell.

 4 In the Description box, you can enter a description of the repository 
parameter. The description will help you identify the parameter when 
mapping repository parameters within a test.

 5 Click OK to add the parameter to the list of parameters in the Manage 
Repository Parameters dialog box.



Chapter 7 • Managing Object Repositories

232

Modifying Repository Parameters
The functionality described in this section is available only when working in 
the Object Repository Manager.

You can modify the default value of a repository parameter or modify a 
repository parameter description directly in the Manage Repository 
Parameters dialog box. However, you cannot modify a repository parameter 
name.

To modify a repository parameter:

 1 In the Manage Repository Parameters dialog box, select the required 
parameter.

 2 To modify the default value, click in the Default Value cell of the required 
parameter. You can either modify the default value by entering a new value, 
or you can remove the default value by clicking the Clear Default Value 
button. If you remove the default value, the text {No Default Value} is 
displayed in the cell. If you do not specify a default value, the repository 
parameter will appear as unmapped in any tests that use this shared object 
repository.

Note: If you delete the text manually, it does not remove the default value. 
It creates a default value of an empty string. You must click the Clear Default 
Value button if you want to remove the default value.

 3 To modify the parameter description, click in the Description cell of the 
required parameter and enter the required description.



Chapter 7 • Managing Object Repositories

233

Deleting Repository Parameters
The functionality described in this section is available only when working in 
the Object Repository Manager.

You can delete a repository parameter definition if it is no longer needed. 
When you delete a repository parameter that is used in a test object 
definition, the identification property value remains mapped to the 
parameter, even though the parameter no longer exists. Therefore, before 
deleting a repository parameter, you should make sure that it is not used in 
any test object descriptions, otherwise tests that have steps using these test 
objects will fail when you run them.

Tip: You can use the Find in Repository button in the Manage Repository 
Parameters dialog box to see where a repository parameter is being used.

To delete a repository parameter:

 1 In the Manage Repository Parameters dialog box, select the repository 
parameters that you want to delete by clicking in the selection area to the 
left of the parameter name.

 2 Click the Delete Repository Parameter button. The selected repository 
parameter is deleted.



Chapter 7 • Managing Object Repositories

234

Modifying Object Details

The object details area for shared object repositories in the lower right side 
of the document window enables you to view and modify the properties 
and property values used to identify an object during a run session or the 
properties of a checkpoint or output object.

After making sure that your shared object repository is editable, and that it 
is the active window, you modify object details for objects in a shared object 
repository in the same way as you modify them for local objects. For more 
information, see:

➤ “Adding Properties to a Test Object Description” on page 171

➤ “Defining New Identification Properties” on page 174

➤ “Updating Identification Properties from an Object in Your Application” on 
page 165

➤ “Restoring Default Mandatory Properties for a Test Object” on page 168

➤ “Removing Properties from a Test Object Description” on page 177

➤ “Specifying Ordinal Identifiers” on page 177

➤ “Renaming Test Objects” on page 169

Note: You can use the Edit > Undo and Edit > Redo options or Undo and 
Redo buttons to cancel or repeat your changes as necessary. The Undo and 
Redo options are related to the active document. When you save a 
repository, you cannot undo and redo operations that were performed on 
that file before the save operation.

You use the Object Repository Manager to specify property values for object 
descriptions in a shared object repository. The options available when 
specifying property values for objects in shared object repositories are 
different from those available when specifying properties for objects in local 
repositories. For more information on specifying property values for objects 
in shared object repositories, see “Specifying a Property Value” on page 235.



Chapter 7 • Managing Object Repositories

235

Specifying a Property Value
The functionality described in this section is available only when working in 
the Object Repository Manager.

You can specify or modify values for properties in the test object description. 
You can specify a value using a constant value (either a simple value or a 
constant value that includes regular expressions) or you can parameterize it 
using a repository parameter. For more information on repository 
parameters, see “Working with Repository Parameters” on page 228. 

You can also specify or modify values for properties of a checkpoint or 
output object. 

Specifying and Modifying Values for Properties of a Test Object

You specify or modify the values for properties of a test object in the Test 
object details area.

To specify a property value of a test object:

 1 Select the test object whose property value you want to specify.

 2 In the Test object details area, click in the Value cell for the required 
property.



Chapter 7 • Managing Object Repositories

236

 3 Specify the property value in one of the following ways:

➤ If you want to specify a simple constant value, enter it in the Value cell. 
The remaining steps in this procedure are not necessary if you specify a 
constant value in the Value cell. You can also specify a constant value 
using a regular expression in the Repository Parameter dialog box, as 
described below.

➤ If you want to parameterize the value using a repository parameter, click 
the parameterization button in the Value cell. The Repository Parameter 
dialog box opens.

 4 Select one of the following options to specify a value for the property:

➤ Select the Constant radio button and specify a constant value. You can 
also enter a constant value directly in the Value cell of the Test object 
details area. If you used a regular expression in the constant value, select 
the Regular expression check box.

➤ Select the Parameter radio button and select a repository parameter from 
the list of defined parameters. If a default value is defined for the 
parameter, it is also shown.

Note: You define repository parameters using the Manage Repository 
Parameters dialog box. For more information, see “Managing Repository 
Parameters” on page 229.



Chapter 7 • Managing Object Repositories

237

 5 Click OK to close the Repository Parameter dialog box. If you parameterized 
the value, the parameter name is shown with an icon in the Value column 
of the Test object details area, as shown below. Otherwise, the constant 
value you specified is shown in the Value column.

Specifying and Modifying Values for Properties of a Checkpoint 
Object

You specify or modify the values for properties of a checkpoint object in the 
Object Properties pane. 

To specify or modify the values for properties of a checkpoint object:

 1 Select the checkpoint object whose property values you want to specify or 
modify from the Checkpoint and Output Objects tree.

 2 Specify or modify the values for properties of a checkpoint object the same 
way as you do in the relevant checkpoint properties dialog box.

For more information on specifying and modifying values for properties of a 
checkpoint object, see: 

➤ “Understanding the Checkpoint Properties Dialog Box” on page 508

➤ “Understanding the Image Checkpoint Properties Dialog Box” on 
page 512

➤ “The Bitmap Checkpoint Properties Dialog Box” on page 522 

➤ “Understanding the Table Checkpoint Properties Dialog Box” on 
page 535

➤ “The Text / Text Area Checkpoint Properties Dialog Box” on page 557

➤ “Understanding the Database Checkpoint Properties Dialog Box” on 
page 581



Chapter 7 • Managing Object Repositories

238

➤ “Understanding the XML Checkpoint Properties Dialog Box” on 
page 607

➤ The Web section of the HP QuickTest Professional Add-ins Guide (for Page 
and Accessibility checkpoints)

Specifying and Modifying Values for Properties of an Output 
Object

You specify or modify the values for properties of an output object in the 
Object Properties pane. 

To specify or modify the values for properties of an output object:

 1 Select the output object whose property values you want to specify or 
modify from the Checkpoint and Output Objects tree.

 2 Specify or modify the values for properties of an output object the same way 
as you do in the relevant output value properties dialog box.

For more information on specifying and modifying values for properties of 
an output object, see: 

➤ “Defining Standard Output Values” on page 679

➤ “Defining Text and Text Area Output Values” on page 692

➤ “Outputting Table Content” on page 703

➤ “Defining Database Output Values” on page 715

➤ “Understanding the XML Output Properties Dialog Box” on page 727



Chapter 7 • Managing Object Repositories

239

Locating Test Objects

The functionality described in this section is available in the Object 
Repository window for objects in the local object repository, and the Object 
Repository Manager for objects in shared object repositories.

You can search for a specific test object in your object repository in several 
ways. You can search for a test object according to its type. For example, you 
can search for a specific edit box, or you can point to an object in your 
application to automatically highlight that same object in your repository. 
You can replace specific property values with other property values. For 
example, you can replace a property value userName with the value 
user name. You can also select an object in your object repository and 
highlight it in your application to check which object it is.

After making sure that your shared object repository is the active window, 
you locate an object in a shared object repository in the same way as you 
locate it in a local object repository. If you want to replace property values, 
you must also make sure that the object repository is editable.

For more information, see:

➤ “Finding Objects in an Object Repository” on page 154

➤ “Highlighting an Object in Your Application” on page 157

➤ “Locating a Test Object in the Object Repository” on page 159



Chapter 7 • Managing Object Repositories

240

Performing Merge Operations

The functionality described in this section is available only when working in 
the Object Repository Manager.

The Object Repository Merge Tool enables you to merge test objects from 
the local object repository of one or more actions to a shared object 
repository using the Update from Local Repository option in the Object 
Repository Manager (Tools > Update from Local Repository). For example, 
you may have learned test objects locally in a specific action in your test and 
want to add them to the shared object repository so they are available to all 
actions in different tests that use that object repository. You can also use the 
Object Repository Merge Tool to merge two shared object repositories into a 
single shared object repository.

You open the Object Repository Merge Tool by choosing Tools > Object 
Repository Merge Tool in the Object Repository Manager. For more 
information on performing merge operations and updating object 
repositories with local objects, see Chapter 8, “Merging Shared Object 
Repositories.”

Notes: 

➤ While the Object Repository Merge Tool is open, you cannot work with 
the Object Repository Manager.

➤ The Object Repository Merge Tool does not merge checkpoint and output 
objects.



Chapter 7 • Managing Object Repositories

241

Performing Import and Export Operations

You can import and export object repositories from and to XML files. XML 
provides a structured, accessible format that enables you to make changes to 
object repositories using the XML editor of your choice and then import 
them back into QuickTest. You can view the required format for the object 
repository in the HP QuickTest Professional Object Repository Schema Help 
(Help > QuickTest Professional Help > HP QuickTest Professional Advanced 
References > HP QuickTest Professional Object Repository Schema), or by 
exporting a saved object repository.

You can import and export files either from and to the file system or a 
Quality Center project (if QuickTest is connected to Quality Center).

You connect to a Quality Center project either from QuickTest or from the 
Object Repository Manager by choosing File > Quality Center Connection or 
clicking the Quality Center Connection button. For more information on 
connecting to Quality Center, see “Connecting to and Disconnecting from 
Quality Center” on page 1418. 

For more information, see:

➤ “Importing from XML” on page 242

➤ “Exporting to XML” on page 243

➤ “Understanding the XML File Structure” on page 244

ObjectRepositorySchema.chm::/ObjectRepositorySchema_xsd.html


Chapter 7 • Managing Object Repositories

242

Importing from XML
The functionality described in this section is available only when working in 
the Object Repository Manager.

You can import an XML file (created using the required format) as an object 
repository. For information on the XML format, see “Understanding the 
XML File Structure” on page 244. The XML file can either be an object 
repository that you exported to XML format using the Object Repository 
Manager, or an XML file created using a tool such as QuickTest Siebel Test 
Express or a custom built utility. You must adhere to the XML structure and 
format.

Tip: To view the required XML structure and format, see the HP QuickTest 
Professional Object Repository Schema Help (Help > QuickTest Professional Help 
> HP QuickTest Professional Advanced References > HP 
QuickTest Professional Object Repository Schema). You can also export an 
existing shared object repository to XML and then use the XML file as a 
guide. For more information, see “Exporting to XML” on page 243.

To import from XML:

 1 Select File > Import from XML. The Open XML File dialog box opens.

Note: Checkpoint and output objects are not included when importing the 
contents of an object repository from an XML file.

 2 In the sidebar, select the location of the file, for example, File System or 
Quality Center Test Resources. Browse to and select the XML file you want to 
import, and click Open.

The XML file is imported and a summary message box opens showing 
information regarding the number of objects, parameters, and metadata 
that were successfully imported from the specified file.

ObjectRepositorySchema.chm::/ObjectRepositorySchema_xsd.html
ObjectRepositorySchema.chm::/ObjectRepositorySchema_xsd.html


Chapter 7 • Managing Object Repositories

243

 3 Click OK to close the message box. The imported XML file is opened as a 
new object repository. You can now modify it as required and save it as an 
object repository.

Exporting to XML
The functionality described in this section is available only when working in 
the Object Repository Manager.

You can export the test objects in an object repository to an XML file. This 
enables you to edit it using any XML editor, and also enables you to save it 
in an accessible, versatile format.

To export to XML:

 1 Make sure that the object repository whose test objects you want to export is 
the active window.

 2 Make sure that the object repository is saved.

 3 Select File > Export Test Objects to XML. The Save XML File dialog box 
opens.

Note: Checkpoint and output objects are not included when exporting the 
contents of an object repository to an XML file.

 4 In the sidebar, select the location in which you want to save the file, for 
example, File System or Quality Center Test Resources. 

 5 Browse to and select the folder in which you want to save the file.

 6 In the File name box, enter a name for the file and click Save.

Tip: If you want to save the file as an attachment to a test in the Test Plan 
module in Quality Center, select Quality Center Test Plan in the sidebar, 
browse to and double-click the test, and then click Save. 



Chapter 7 • Managing Object Repositories

244

The test objects of the object repository are exported to the specified XML 
file, and a summary message box opens showing information regarding the 
number of objects, parameters, and metadata that were successfully 
exported to the specified file.

 7 Click OK to close the message box. You can now open the XML file and view 
or modify it with any XML editor.

Understanding the XML File Structure
QuickTest uses a defined XML schema for object repositories. You must 
follow this schema when creating or modifying object repository files in 
XML format. The schema of this file is documented in the HP QuickTest 
Professional Object Repository Schema Help (Help > QuickTest Professional Help 
> HP QuickTest Professional Advanced References > HP 
QuickTest Professional Object Repository Schema).

Managing Object Repositories Using Automation

QuickTest provides an Object Repository automation object model that 
enables you to manage QuickTest shared object repositories and their 
contents from outside of QuickTest. The automation object model enables 
you to use a scripting tool to access QuickTest shared object repositories via 
automation.

Just as you use the QuickTest Professional automation object model to 
automate your QuickTest operations, you can use the objects and methods 
of the Object Repository automation object model to write scripts that 
manage shared object repositories, instead of performing these operations 
manually using the Object Repository Manager. For example, you can add, 
remove, and rename test objects; import from and export to XML; retrieve 
and copy test objects; and so forth. 

After you have retrieved a test object, you can manipulate it using the 
methods and properties available for that test object class. For example, you 
can use the GetTOProperty and SetTOProperty methods to retrieve and 
modify its properties. For more information on available test object 
methods and properties, see the HP QuickTest Professional Object Model 
Reference.

ObjectRepositorySchema.chm::/ObjectRepositorySchema_xsd.html
ObjectRepositorySchema.chm::/ObjectRepositorySchema_xsd.html


Chapter 7 • Managing Object Repositories

245

Automation programs are especially useful for performing the same tasks 
multiple times or on multiple object repositories. You can write your 
automation scripts in any language and development environment that 
supports automation. For example, you can use VBScript, JavaScript, Visual 
Basic, Visual C++, or Visual Studio .NET. For general information on 
controlling QuickTest using automation, see “Automating QuickTest 
Operations” on page 1403.

Using the QuickTest Professional Object Repository 
Automation Reference
The QuickTest Professional Object Repository Automation Reference is a 
Help file that provides detailed descriptions, syntax information, and 
examples for the objects and methods in the QuickTest object repository 
automation object model.

The Help topic for each automation object includes a list and description of 
the methods associated with that object. Method Help topics include 
detailed description, syntax, return value type, and argument value 
information.

You can open the QuickTest Professional Object Repository Automation Reference 
from the main QuickTest Help (Help > QuickTest Professional Help > HP 
QuickTest Professional Advanced References > HP QuickTest Professional 
Object Repository Automation).

Note: The syntax and examples in the Help file are written in VBScript-style. 
If you are writing your automation program in another language, the syntax 
for some methods may differ slightly from what you find in the 
corresponding Help topic. For information on syntax for the language you 
are using, see the documentation included with your development 
environment or to general documentation for the programming language.

ObjectRepositoryUtil.chm::/REPOSITORYUTILLib_P.html


Chapter 7 • Managing Object Repositories

246



247

8 
Merging Shared Object Repositories

QuickTest Professional enables you to merge two shared object repositories 
into a single shared object repository using the Object Repository Merge 
Tool. You can also use this tool to merge objects from the local object 
repository of one or more actions into a shared object repository.

This chapter includes:

 ➤  About Merging Shared Object Repositories on page 248

 ➤  Understanding the Object Repository Merge Tool on page 250

 ➤  Using Object Repository Merge Tool Commands on page 257

 ➤  Defining Default Settings on page 262

 ➤  Merging Two Object Repositories on page 267

 ➤  Updating a Shared Object Repository from Local Object Repositories 
on page 269

 ➤  Viewing Merge Statistics on page 276

 ➤  Understanding Object Conflicts on page 277

 ➤  Resolving Object Conflicts on page 280

 ➤  Filtering the Target Repository Pane on page 282

 ➤  Finding Specific Objects on page 284

 ➤  Saving the Target Object Repository on page 285



Chapter 8 • Merging Shared Object Repositories

248

About Merging Shared Object Repositories

When you have multiple shared object repositories that contain test objects 
from the same area of your application, it may be useful to combine those 
test objects into a single object repository for easier maintenance. You could 
do this by moving or copying objects in the Object Repository Manager. 
However, if you have test objects in different object repositories that 
represent the same object in your application, and the descriptions for these 
objects in the different object repositories are not identical, it may be 
difficult to recognize and handle these conflicts.

The Object Repository Merge Tool helps you to solve the above problem by 
merging two selected object repositories for you and providing options for 
addressing test objects with conflicting descriptions. Using this tool, you 
merge two shared object repositories (called the primary object repository 
and the secondary object repository), into a new third object repository, 
called the target object repository. Objects in the primary and secondary 
object repositories are automatically compared and then added to the target 
object repository according to preconfigurable rules that define the defaults 
for how conflicts between objects are resolved.

After the merge process, the Object Repository Merge Tool provides a 
graphic presentation of the original objects in the primary and secondary 
object repositories, which remain unchanged, as well as the objects in the 
merged target object repository. Objects that had conflicts are highlighted. 
The conflict of each object that you select in the target object repository is 
described in detail. The Object Repository Merge Tool provides specific 
options that enable you to keep the default resolution for each conflict, or 
modify conflict resolutions individually, according to your requirements.



Chapter 8 • Merging Shared Object Repositories

249

The Object Repository Merge Tool also enables you to merge objects from 
the local object repository of one or more actions into a shared object 
repository. For example, if QuickTest learned objects locally in a specific 
action in your test, you may want to add the objects to the shared object 
repository, so that they are available to all actions in different tests that use 
that object repository. 

Notes:

➤ The Object Repository Merge Tool does not merge checkpoint or output 
objects from the primary and secondary object repositories into the 
target shared object repository. You can copy or manually move these 
objects to your target object repository after you complete the merge 
process, using the Object Repository Manager.

➤ When the Object Repository Merge Tool is open, you cannot work with 
the Object Repository Manager or Object Repository Comparison Tool. 
For more information on the Object Repository Manager, see Chapter 7, 
“Managing Object Repositories.”



Chapter 8 • Merging Shared Object Repositories

250

Understanding the Object Repository Merge Tool

You open the Object Repository Merge Tool by choosing Tools > Object 
Repository Merge Tool in the Object Repository Manager. 

An example of the Object Repository - Merge Tool window is shown below:

Note: For information about changing the view presented by the Object 
Repository Merge Tool, see “Changing the View” on page 252.

Menu Bar
Toolbar

Status Bar

Target 
Repository 
Pane

Primary 
Repository 
Pane
Secondary 
Repository 
Pane

Resolution 
Options 
Pane



Chapter 8 • Merging Shared Object Repositories

251

The Object Repository - Merge Tool window contains the following key 
elements: 

➤ Menu bar. Displays menus of Object Repository Merge Tool commands. 
These commands are described in various places throughout this chapter. 
Shortcut keys for menu commands are described in “File Menu Commands” 
on page 258.

➤ Toolbar. Contains buttons of commonly used menu commands to assist you 
in merging, managing, and saving object repositories. Toolbar buttons are 
described in “Using Toolbar Commands” on page 257.

➤ Target Repository Pane. Displays the objects that were merged from the 
primary and secondary object repositories. You can also choose to show or 
hide the Target Repository Object Properties pane, which displays the 
properties of any object that is selected in the Target Repository pane. For 
more information, see “Target Repository Pane” on page 252.

➤ Primary Repository Pane. Displays the objects in the primary object 
repository. For more information, see “Primary and Secondary Repository 
Panes” on page 254. 

➤ Secondary Repository Pane. Displays the objects in the secondary object 
repository. For more information, see “Primary and Secondary Repository 
Panes” on page 254. 

➤ Resolution Options Pane. Provides source, conflict, and resolution details 
about the objects in the target object repository pane, and enables you to 
modify how a selected conflict is resolved. For more information, see 
“Resolution Options Pane” on page 254. 

➤ Status Bar. Provides source, conflict, and resolution details about the object 
selected in the target object repository pane, the filter status, and an icon 
legend. For more information, see “Status Bar” on page 255.



Chapter 8 • Merging Shared Object Repositories

252

Changing the View
You can change the view presented by the Object Repository Merge Tool 
according to your working preferences.

➤ Drag the edges of the panes to resize them in the Object Repository Merge 
Tool window.

➤ Select Primary Repository, Secondary Repository, Target Repository Object 
Properties, or Resolution Options from the View menu to hide or show 
these panes in the Object Repository Merge Tool. 

➤ Select View > Set as Default Layout to set your current view as the default 
view, which displays each time you open the Object Repository Merge Tool. 
You can select View > Restore Default Layout to restore the view to the 
default settings after you make changes.

Target Repository Pane
The target object repository pane displays a hierarchy of the objects, as well 
as their respective properties and values, that were merged from the primary 
and secondary object repositories. In the column to the left of the object 
hierarchy, the pane displays the source file of each object (1 is displayed for 
the primary file and 2 for the secondary file), and an icon representing the 
type of conflict, if any.

When you save the target object repository, the file path is displayed above 
the object hierarchy.

Note: To make it easier to see the status of an object at a glance, the text 
colors of the object names in the target object repository can be set 
according to their source and whether they caused a conflict. For more 
information, see “Specifying Color Settings” on page 265.



Chapter 8 • Merging Shared Object Repositories

253

The target object repository pane provides the following functionality:

➤ When you select an object in the target object repository, the corresponding 
object in the primary and/or secondary source file hierarchy is located and 
indicated by a check mark.

➤ When you select an object in the target object repository, its properties and 
values are displayed in the Object Properties - Target File area at the bottom 
of the target object repository pane (View > Target Repository Object 
Properties).

➤ If the merge results in a conflict, an icon is displayed to the left of the 
conflicting object in the target object repository. You can see a tooltip 
description of the conflict type by positioning your pointer over the icon.

➤ When you right-click an object, a context-sensitive menu opens. You can 
expand an option or collapse the entire hierarchy in the target object 
repository, or, when applicable, you can change the conflict resolution 
method and result.

➤ You can expand or collapse the hierarchy of the node by double-clicking a 
node. You can also expand or collapse the entire hierarchy in the target 
object repository by choosing Collapse All or Expand All from the View 
menu.

➤ You can jump directly to the next or previous conflict in the target object 
repository hierarchy by choosing Next Conflict or Previous Conflict from the 
Navigate menu, or by clicking the Next Conflict or Previous Conflict buttons 
in the toolbar or Resolution Options pane.

➤ You can locate one or more objects in the target object repository by using 
the Find dialog box. For more information, see “Finding Specific Objects” 
on page 284.

➤ You can show or hide the target object repository object properties by 
choosing View > Target Repository Object Properties.



Chapter 8 • Merging Shared Object Repositories

254

Primary and Secondary Repository Panes
The primary and secondary object repository panes display the hierarchies 
of the objects, and their properties and values, in the original source object 
repositories that you chose to merge. The file path is shown above each 
object hierarchy.

The panes provide the following functionality:

➤ You can expand or collapse the hierarchy of a selected item by 
double-clicking the item.

➤ You can view the properties and values of an object in the Test object details 
area by selecting it in the relevant pane.

➤ You can show or hide the panes by selecting or clearing Primary Repository 
or Secondary Repository in the View menu.

Resolution Options Pane
The Resolution Options pane provides information about any conflict 
encountered during the merge for the object selected in the target object 
repository. The pane also provides options that enable you to keep or 
change the conflict resolution method that was applied using the default 
resolution options. 

The Resolution Options pane provides the following functionality:

➤ When you select a conflicting object in the target object repository, the pane 
displays a textual description of the conflict and the resolution method used 
by the Object Repository Merge Tool. A choice of alternative resolution 
methods is offered.

➤ You can select a radio button to choose an alternative resolution method for 
the conflict. Every time you make a change, the target object repository is 
automatically updated and is redisplayed.

➤ You can jump directly to the next or previous conflict in the target object 
repository hierarchy by clicking the Previous Conflict or Next Conflict 
buttons.



Chapter 8 • Merging Shared Object Repositories

255

➤ For a local object repository merge, you can click the Ignore Object button 
to exclude a specific local object repository object from the merge process. 
The object remains in the local object repository when the merge is 
complete.

➤ You can show or hide the pane by selecting or clearing Resolution Options 
in the View menu.

Status Bar
The status bar shows the following information about the merge process 
and the results that are displayed:

➤ The conflict number (if any) of the object selected in the target object 
repository pane. 

➤ A progress bar is displayed during the merge process. Ready is displayed 
when the is complete.

➤ The Quality Center icon is displayed when QuickTest is connected to a 
Quality Center project.

➤ The filter status is shown next to the Filter icon: OFF indicates that the 
object repositories are not filtered and all objects are shown. ON indicates a 
filter is active and that some objects may have been filtered out of the 
display.

➤ A legend of the icons used in the target object repository pane. The 
following icons may be displayed: 

➤ Similar Description Conflict

➤ Same Name Different Description Conflict 

➤ Same Description Different Name Conflict 

For more information on conflict types, see “Understanding Object 
Conflicts” on page 277.



Chapter 8 • Merging Shared Object Repositories

256

Tips:

➤ Position your pointer over a conflict icon in the status bar to see a tooltip 
description of the conflict type.

➤ Click any of the conflict icons to view the Statistics dialog box. For more 
information, see “Viewing Merge Statistics” on page 276. 

➤ Click the Filter icon in the status bar to view the Filter dialog box. The 
filter is shown as ON in the status bar when a filter is currently in use. For 
more information, see “Filtering the Target Repository Pane” on 
page 282.



Chapter 8 • Merging Shared Object Repositories

257

Using Object Repository Merge Tool Commands

You can select Object Repository Merge Tool commands from the menu bar 
or from the toolbar. You can perform certain commands by pressing 
shortcut keys. You can also select an object in the target object repository 
pane and choose commands from the context (right-click) menu.

Using Toolbar Commands
You can perform frequently used commands by clicking buttons in the 
Object Repository Merge Tool toolbar. 

Description

New Merge (described in “File Menu Commands” on page 258)

Save (described in “File Menu Commands” on page 258)

Settings (described in “Tools Menu Commands” on page 261)

Statistics (described in “View Menu Commands” on page 259)

Filter (described in “Tools Menu Commands” on page 261)

Previous Conflict (described in “Navigate Menu Commands” on 
page 261)

Next Conflict (described in “Navigate Menu Commands” on page 261)

Find (described in “Navigate Menu Commands” on page 261)

Find Previous (described in “Navigate Menu Commands” on page 261)

Find Next (described in “Navigate Menu Commands” on page 261)

Quality Center Connection (described in “File Menu Commands” on 
page 258)



Chapter 8 • Merging Shared Object Repositories

258

Performing Object Repository Merge Tool Commands
You can perform frequently-used commands by clicking toolbar buttons or 
choosing the relevant menu option. You can also perform some commands 
by pressing the relevant shortcut keys.

File Menu Commands

You can manage your merged object repository using the following File 
menu commands: 

Command Shortcut Key Function

New Merge CTRL+N Enables you to specify two object 
repositories with which to perform a 
new merge operation. 

Save CTRL+S Saves the merged shared object 
repository.

Save As Opens the Save Shared Object 
Repository dialog box, enabling you 
to specify a name, file type, and 
storage location for the merged 
shared object repository.

Quality Center 
Connection

Enables you to connect QuickTest to 
a Quality Center project. For more 
information, see “Connecting to and 
Disconnecting from Quality Center” 
on page 1418.

Exit Closes the Object Repository - Merge 
Tool window. (Also prompts you to 
save the merged object repository if 
you did not yet save it.)



Chapter 8 • Merging Shared Object Repositories

259

View Menu Commands

You can manage the way that the Object Repository Merge Tool is displayed 
on your screen using the following View menu commands:

Command Function

Primary Repository Displays the Primary Repository File pane, 
containing a hierarchical view of the objects from 
the first source object repository that you chose to 
merge. Also displays the details for each object 
selected in this pane. For more information, see 
“Primary and Secondary Repository Panes” on 
page 254 and “Merging Two Object Repositories” 
on page 267. 

Secondary 
Repository

Displays the Secondary Repository File pane, 
containing a hierarchical view of the objects from 
the second source object repository that you chose 
to merge. Also displays the details for each object 
selected in this pane. For more information, see 
“Primary and Secondary Repository Panes” on 
page 254 and “Merging Two Object Repositories” 
on page 267. 

Target Repository 
Object Properties

Displays the Object Properties - Target File pane, 
which displays the details for each test object 
selected in the target repository pane. For more 
information, see “Target Repository Pane” on 
page 252. 

Resolution Options Displays the Resolution Options pane, which 
provides information about any conflict that 
occurred during the merge. For more information, 
see “Resolution Options Pane” on page 254 and 
“Resolving Object Conflicts” on page 280. 

Restore Default 
Layout

Restores the view that you saved using the Set as 
Default Layout option (described below). This is 
useful if you resize a pane, or show or hide specific 
panes and then want to restore your saved view. 
For more information, see “Changing the View” 
on page 252. 



Chapter 8 • Merging Shared Object Repositories

260

Set as Default Layout Enables you to save the current view so that each 
time you open the Object Repository - Merge Too, 
this view is displayed. If you later modify this view 
by resizing panes, or showing or hiding them, you 
can restore your default view using the Restore 
Default Layout option (described above). For more 
information, see “Changing the View” on 
page 252. 

Statistics Opens the Statistics dialog box, which describes 
how the files were merged, and the number and 
type of any conflicts that were resolved during the 
merge. For more information, see “Viewing Merge 
Statistics” on page 276.

Collapse All Collapses the entire hierarchy in the Target Object 
Repository pane. 

Tip: You can collapse a single node by 
double-clicking it. 

Expand All Expands the entire hierarchy in the Target Object 
Repository pane.

Tip: You can expand a single node by 
double-clicking it.

Command Function



Chapter 8 • Merging Shared Object Repositories

261

Navigate Menu Commands

You can perform the following Navigate menu commands:

Tools Menu Commands

You can perform the following Tools menu commands:

Command Shortcut Key Function

Next Conflict F4 Finds the next conflicting object in 
the merged object repository. 

Previous 
Conflict

SHIFT+F4 Finds the previous conflicting object 
in the merged object repository.

Find CTRL+F Opens the Find dialog box.

Find Next F3 Finds the next object in the merged 
object repository according to the 
search specifications in the Find 
dialog box.

Find Previous SHIFT+F3 Finds the previous object in the 
merged object repository according 
to the search specifications in the 
Find dialog box.

Command Function

Settings Opens the Settings dialog box, enabling you to:

➤ Configure how the Object Repository Merge Tool 
deals with conflicting objects during a merge

➤ Specify the text color of the object names displayed 
in the target object repository

For more information, see “Defining Default Settings” 
on page 262.

Filter Opens the Filter dialog box, enabling you to show all of 
the test objects in the Target Repository pane, or show 
only the objects that had conflicts that were resolved 
during the merge. For more information, see “Filtering 
the Target Repository Pane” on page 282.



Chapter 8 • Merging Shared Object Repositories

262

Help Menu Command

You can perform the following Help menu command:

Defining Default Settings

The Object Repository Merge Tool is supplied with predefined settings that 
are used when merging object repositories or when updating a shared object 
repository from local object repositories. These settings: 

➤ Configure how the Object Repository Merge Tool deals with conflicting 
objects in the primary and secondary object repositories (or local and shared 
object repositories when updating a shared object repository from local 
object repositories).

➤ Specify the text color of the object names that are displayed in the target 
object repository.

You can change these settings at any time to create new default settings. 
After you change the settings, all new merges are performed according to 
the new default settings.

Tip: If you want to change the settings before merging two object 
repositories, you must click Cancel to close the New Merge dialog box, 
change the settings as described in the next sections, and then perform the 
merge.

Command Shortcut Key Function

Object Repository 
Merge Tool Help

F1 Opens the Object Repository Merge 
Tool Help.



Chapter 8 • Merging Shared Object Repositories

263

Specifying Default Resolution Settings
You can configure how the Object Repository Merge Tool automatically 
deals with conflicting objects during the merge process or when performing 
an Update from Local Repository operation.

To specify default resolution settings:

 1 Select Tools > Settings or click the Settings button. The Settings dialog box 
opens.

 2 Click the Resolution tab.



Chapter 8 • Merging Shared Object Repositories

264

 3 Select the appropriate radio buttons to specify the default resolution settings 
that the Object Repository Merge Tool applies when dealing with conflicting 
objects.

➤ Take object description that is. Specifies how to resolve conflicts in 
which two objects have the same name, but their descriptions differ. You 
can specify that the target object repository takes the object description 
that is more generic or less generic. 

➤ More generic. Instructs the Object Repository Merge Tool to take the 
object that has fewer identifying properties than the object with which 
it conflicts, or uses regular expressions in its property values. This is 
the default setting.

➤ Less generic. Instructs the Object Repository Merge Tool to take the 
object that has all the identifying properties of the object with which 
it conflicts, plus additional identifying properties.

➤ Take object name from. Specifies how to resolve conflicts where two 
objects have the same or similar descriptions, but their names differ. You 
can select the source from which the target object repository takes the 
object name:

➤ Primary repository file. The target object repository takes the object 
name from the object in the primary object repository. This is the 
default setting. (When updating a shared object repository from a local 
object repository, this option is for the Local object repository.)

➤ Secondary repository file. The target object repository takes the object 
name from the object in the secondary object repository. (When 
updating a shared object repository from a local object repository, this 
option is for the Shared object repository.)

➤ Same file as the object description. The target object repository takes 
the object name from the object in the same object repository from 
which it took the object description.

Note: When updating a shared object repository from a local object 
repository, the object repositories are referred to as the Local and Shared 
object repository.



Chapter 8 • Merging Shared Object Repositories

265

 4 Click OK. The Object Repository Merge Tool will apply your selections when 
resolving conflicts between objects in all future object repository merges.

Note: If you make any change to the resolution settings while a merged 
object repository is open, you are asked whether you want to merge the 
open files again with the new settings. Click Yes to merge the files again 
with the new settings, or click No to keep the existing merge created with 
the previous settings. If you click No, the new settings will apply only to 
future merges.

Specifying Color Settings
You can specify the color in which object names are displayed in the target 
object repository according to their source, and whether they caused a 
conflict. This enables you to see the status of each object more easily.

Note: The options in the Colors tab of the Settings dialog box apply equally 
to objects added from the local (primary) and shared (secondary) object 
repositories, when performing an Update from Local Repository operation.



Chapter 8 • Merging Shared Object Repositories

266

To specify color settings:

 1 Select Tools > Settings or click the Settings button. The Settings dialog box 
opens. 

 2 For each item in the Colors tab, click the down arrow  next to the text 
box and select an identifying color from the Custom, Web, or System tabs.

 3 Click OK. Object names in the target object repository are displayed in the 
selected color according to your selections.



Chapter 8 • Merging Shared Object Repositories

267

Merging Two Object Repositories

Using the Object Repository Merge Tool, you can merge two source object 
repositories to create a new shared object repository. Objects in the object 
repositories are automatically compared and added to the new object 
repository according to configurable rules that define how conflicts between 
objects are resolved. The original source files are not changed.

Note: An object repository that is currently open by another user is locked. 
If you try to merge the locked file, a warning message displays, but you can 
still perform the merge because the merge process does not modify the 
source files. Note that changes made to the locked file by the other user may 
not be included in the merged object repository.

To merge two object repositories:

 1 In the Object Repository Manager, select Tools > Object Repository Merge 
Tool. The New Merge dialog box opens on top of the Object Repository - 
Merge Tool window.



Chapter 8 • Merging Shared Object Repositories

268

Tips:

➤ If the Object Repository - Merge Tool window is already open, you can 
select File > New Merge or click the New Merge button to open the New 
Merge dialog box.

➤ If you want to change the configured settings before merging the object 
repositories, click Cancel to close the New Merge dialog box, change the 
settings as described in “Defining Default Settings” on page 262, and 
then perform the merge.

 2 In the Primary file and Secondary file boxes, enter (or browse to) the .tsr 
object repositories that you want to merge into a single object repository. 
You can click the down arrow  next to each box to view and select 
recently used files.

Notes:

➤ It is recommended that you select as your primary object repository the 
object repository in which you have invested the most effort, meaning 
the object repository with more objects, object properties, and values.

➤ A warning icon is displayed next to the relevant text box if you enter the 
name of a file without a .tsr suffix, a file with an incorrect path, or a file 
that does not exist. You can position your pointer over the icon to see a 
tooltip explanation of the error. Enter or select an existing .tsr file with 
the correct path.

➤ If you want to merge an object repository that was created using a 
version of QuickTest earlier than version 9.0, you must first open and 
save it in the Object Repository Manager to update it to the new format.

➤ If you are connected to Quality Center, you can enter (or browse to) 
object repositories from Quality Center as well as from the file system.



Chapter 8 • Merging Shared Object Repositories

269

 3 Click OK. The Object Repository Merge Tool automatically merges the 
selected object repositories into a new target object repository according to 
the configured resolution settings, and displays the results in the Statistics 
dialog box on top of the Object Repository - Merge Tool window.

 4 Review the merge statistics, as described in “Viewing Merge Statistics” on 
page 276, and click Close.

In the Object Repository - Merge Tool window, you can:

➤ Modify any conflict resolutions between objects from the source object 
repositories, if necessary, as described in “Resolving Object Conflicts” on 
page 280.

➤ Filter the objects in the target object repository, as described in “Filtering 
the Target Repository Pane” on page 282.

➤ Save the target object repository to the file system or to a Quality Center 
project, as described in “Saving the Target Object Repository” on 
page 285.

Updating a Shared Object Repository from Local Object 
Repositories

You can update a shared object repository by merging local object 
repositories associated with actions in one or more tests into the shared 
object repository. The objects that are merged from the local object 
repositories are then available to any actions that use that shared object 
repository in any tests. 

In the merge process, the objects in the local object repository for the 
selected action are moved to the target shared object repository. The action 
then uses the objects from the updated shared object repository.

You can view or change how conflicting objects are dealt with during the 
update process in the Settings dialog box. For more information, see 
“Defining Default Settings” on page 262.



Chapter 8 • Merging Shared Object Repositories

270

If you choose to add local object repositories for more than one action, 
QuickTest performs multiple merges, merging each action’s local object 
repository with the target object repository one at a time, for all the actions 
in the list. You can view and modify the results of each merge if necessary.

Notes:

➤ The Object Repository Merge Tool does not merge checkpoint or output 
objects from a local object repository into the target shared object 
repository. You can export checkpoint or output objects from a local 
object repository to a shared object repository and then manually move 
the checkpoint and output objects from the exported object repository to 
your target object repository after you complete the merge process, using 
the Object Repository Manager.

➤ You can merge local object repositories only from actions that are 
associated with the shared object repository you are updating.

To update a shared object repository from a local object repository:

 1 Select Resources > Object Repository Manager. The Object Repository 
Manager opens.

Note: For more information on the Object Repository Manager, see 
Chapter 7, “Managing Object Repositories.”

 2 In the Object Repository Manager, select File > Open or click the Open 
button. The Open Shared Object Repository dialog box opens.

 3 In the sidebar, select the location of the object repository file, for example, 
File System or Quality Center Resources. Browse to and select the .tsr file that 
contains the shared object repository you want to update, clear the Open in 
read-only mode check box, and click Open. The file opens with the objects 
and properties displayed in editable format.



Chapter 8 • Merging Shared Object Repositories

271

Tip: If you opened the object repository in read-only mode, select File > 
Enable Editing or click the Enable Editing button in the Object Repository 
Manager toolbar. The object repository file is made editable.

 4 Select Tools > Update from Local Repository. The Update from Local 
Repository dialog box opens. 

 5 Click the down arrow  next to the Add Tests button, and select Browse for 
Test. The Open Test dialog box opens. 

In the sidebar, select the location of the test containing actions whose local 
object repositories you want to merge into the shared object repository, for 
example, File System or Quality Center Test Plan, and then select the test.

You can only add a test containing actions that are associated with the 
shared object repository you are updating and whose local object 
repositories contain objects.



Chapter 8 • Merging Shared Object Repositories

272

 6 Repeat step 5 to add additional tests if required.

Note: The local object repositories associated with all the actions contained 
in the listed tests are included in the merge. If you want to remove an action 
from the merge, select it in the list and click Delete.

 7 Click Update All. QuickTest automatically merges the first action local 
object repository into the shared object repository according to the 
configured settings, and displays the results in the Statistics dialog box on 
top of the Object Repository Merge Tool window.

Note: Before each merge, QuickTest checks whether the local object 
repository is in use by another user. If so, the local object repository is 
locked and the objects for the selected action cannot be moved to the target 
shared object repository. A warning message is displayed. The merge can be 
performed when the local object repository is no longer in use by the other 
user.



Chapter 8 • Merging Shared Object Repositories

273

 8 Review the merge statistics, as described in “Viewing Merge Statistics” on 
page 276, and click Close.

The Object Repository - Merge Tool window for a local object repository 
merge displays the local object repository as the primary object repository, 
and the shared object repository as the target object repository. 



Chapter 8 • Merging Shared Object Repositories

274

At the left of each object in the target object hierarchy is an icon that 
indicates the source of the objects:

 indicates that the object was added from the local object repository.

 indicates that the object already existed in the shared object repository.

Note: If you specified more than one action in the Update from Local 
Repository dialog box, QuickTest performs multiple merges, merging each 
action’s local object repository with the target object repository one at a 
time. The Statistics dialog box and the Object Repository Merge Tool - 
Multiple Merge window displayed after this step show the merge results of 
the first merge (the local object repository of the first action being merged 
into the shared object repository). QuickTest enables you to view, and 
modify if necessary, the results of each merge in sequence. The number of 
each merge set in a multiple merge is displayed in the title bar, for example, 
[Set 2 of 3].



Chapter 8 • Merging Shared Object Repositories

275

 9 For each object merged into the shared object repository, you can accept the 
automatic merge or use the Resolution Options pane to:

➤ Keep a specific object from the shared object repository and delete the 
conflicting object from the local object repository. 

➤ Keep a specific object from the local object repository and delete the 
conflicting object from the shared object repository.

➤ Keep conflicting objects from both the shared object repository and the 
local object repository.

➤ Exclude a specific local repository object from the merge process so that 
it is not included in the shared object repository. Select the object in the 
Shared Object Repository pane and click Ignore Object at the bottom of 
the Resolution Options pane. The object is removed from the shared 
object repository and grayed in the local object repository tree. It remains 
in the action’s local object repository when the merge is complete.

Notes:

➤ The Ignore Object button is only visible in the Merge Tool window for a 
local object repository merge, and is only enabled when an object in the 
local object repository is selected.

➤ The Ignore Object operation cannot be reversed. To include the object 
again in the merge process, you must repeat the merge by clicking Revert 
to Original Merged Files in the toolbar.

For more information, see “Resolving Object Conflicts” on page 280.

 10 If you are performing multiple merges, click the Save and Merge Next 
button in the Object Repository Merge Tool toolbar to perform the next 
merge (the local object repository of the next action being merged into the 
shared object repository). 

 11 Click Yes to save your changes between merges. If you click No, the current 
merge (objects merged from the last action) will not be saved.

 12 Repeat steps 8 to 11 to complete the multiple merges.

 13 Select File > Exit, then click Yes to save the updated object repository.



Chapter 8 • Merging Shared Object Repositories

276

Viewing Merge Statistics

After you merge two object repositories, the Object Repository Merge Tool 
displays the Statistics dialog box, which describes how the files were merged, 
and the number and type of any conflicts that were resolved during the 
merge.

Note: The Statistics dialog box shown after performing an Update from 
Local Repository merge differs slightly from the dialog box shown above.

Tip: You can view the merge statistics in the Statistics dialog box at any time 
by choosing View > Statistics in the Object Repository - Merge Tool window, 
by clicking the Statistics button in the toolbar, or by clicking a conflict icon 
in the status bar.



Chapter 8 • Merging Shared Object Repositories

277

The Statistics dialog box displays the following information:

➤ The number and type of any conflicts between the objects added to the 
target object repository. Conflict types are described in “Resolving Object 
Conflicts” on page 280.

➤ The number of items added to the target object repository that are 
unique in each of the primary or secondary (or local) files, or are 
identical in both files. 

Tip: Select the Go to first conflict check box to jump to the first conflict in 
the target object repository immediately after you close the Statistics dialog 
box.

Understanding Object Conflicts

Merging two object repositories can result in conflicts arising from 
similarities between the objects they contain. The Object Repository Merge 
Tool identifies three possible conflict types:

➤ Similar Description Conflict. Two objects that have the same name and the 
same object hierarchy, but that have slightly different descriptions. In this 
conflict type, one of the objects always has a subset of the properties set of 
the other object. These conflicts are described on page 278.

By default, the conflict resolution settings for conflicts of this type are 
configured so that the target object repository takes the object that has 
fewer identifying properties than the object with which it conflicts. For 
information on changing the default settings, see “Defining Default 
Settings” on page 262.

➤ Same Name Different Description Conflict. Two objects that have the same 
name and the same object hierarchy, but differ somehow in their 
description (for example, they have different properties, or the same 
property with different values). These conflicts are described on page 279.



Chapter 8 • Merging Shared Object Repositories

278

By default, the conflict resolution settings for conflicts of this type are 
configured so that the target object repository takes the object from both 
files. The object that is added from the secondary file is renamed by adding 
an incremental numeric suffix to the name, for example, Edit_1. For 
information on changing the default settings, see “Defining Default 
Settings” on page 262.

➤ Same Description Different Name Conflict. Two objects that have identical 
descriptions and have the same object hierarchy, but differ in their object 
names. These conflicts are described on page 280.

By default, the conflict resolution settings for conflicts of this type are 
configured so that the target object repository takes the object name from 
the primary source file. For information on changing the default settings, 
see “Defining Default Settings” on page 262.

Note: Objects that do not have a description, such as Page or Browser 
objects, are compared by name only. If the same object is contained in both 
the source object repositories but with different names, they will be merged 
into the target object repository as two separate objects.

Similar Description Conflict

An object in the primary object repository and an object in the secondary 
object repository have the same name, and they have similar, but not 
identical, description properties and values. One of the objects always has a 
subset of the properties set of the other object. For example, an object 
named Button_1 in the secondary object repository has the same description 
properties and values as an object named Button_1 in the primary object 
repository, but also has additional properties and values.



Chapter 8 • Merging Shared Object Repositories

279

You can resolve this conflict type by:

➤ Keeping the object added from the primary object repository only.

➤ Keeping the object added from the secondary object repository only.

➤ Keeping the objects from both object repositories. In this case, the Object 
Repository Merge Tool automatically renames the object that is added from 
the secondary file by adding an incremental numeric suffix to the name, for 
example, Edit_1.

➤ Ignoring the object from the local object repository and keeping the object 
from the shared object repository (when updating a shared object repository 
from a local object repository).

Same Name Different Description Conflict

An object in the primary object repository and an object in the secondary 
object repository have the same name, but completely different description 
properties and values.

You can resolve this conflict type by:

➤ Keeping the object added from the primary object repository only.

➤ Keeping the object added from the secondary object repository only.

➤ Keeping the objects from both object repositories. In this case, the Object 
Repository Merge Tool automatically renames the object that is added from 
the secondary file by adding an incremental numeric suffix to the name, for 
example, Edit_1.

➤ Ignoring the object from the local object repository and keeping the object 
from the shared object repository (when updating a shared object repository 
from a local object repository).



Chapter 8 • Merging Shared Object Repositories

280

Same Description Different Name Conflict

An object in the primary object repository and an object in the secondary 
object repository have different names, but the same description properties 
and values.

You can resolve this conflict type by: 

➤ Taking the object name from the object in the primary object repository.

➤ Taking the object name from the object in the secondary object repository.

➤ Ignoring the object from the local object repository and keeping the object 
from the shared object repository (when updating a shared object repository 
from a local object repository).

Resolving Object Conflicts

Conflicts between objects in the primary and secondary object repositories 
are resolved automatically by the Object Repository Merge Tool according to 
the default resolution settings that you can configure before performing the 
merge. For more information, see “Defining Default Settings” on page 262.

However, the Object Repository Merge Tool also allows you to change the 
way the merge was performed for each individual object that causes a 
conflict.

For example, an object in the primary object repository could have the same 
name as an object in the secondary object repository, but have a different 
description. You may have defined in the default settings that in this case, 
the object with the more generic object description, meaning the object 
with fewer properties, should be added to the target object repository. 
However, when you review the conflicts after the automatic merge, you 
could decide to handle the specific conflict differently, for example, by 
keeping both objects. 



Chapter 8 • Merging Shared Object Repositories

281

Note: Changes that you make to the default conflict resolution can 
themselves affect the target object repository by causing new conflicts. In 
the above example, keeping both objects would cause a name conflict. 
Therefore, the target object repository is updated after each conflict 
resolution change and redisplayed.

You can identify objects that caused conflicts, and the conflict type, by the 
icon displayed to the left of the object name in the target object repository 
pane of the Object Repository Merge Tool and the text color. When you 
select a conflicting object, a full description of the conflict, including how it 
was automatically resolved by the Object Repository Merge Tool, is 
displayed in the Resolutions Options pane. 

The Resolutions Options pane offers alternative resolution options. You can 
choose to keep the default resolution if it suits your needs, or use the 
alternative options to resolve the conflict in a different way. In addition, for 
a local object repository merge, you can click the Ignore Object button to 
exclude a specific local object repository object from the target shared object 
repository.

Tip: You can also change the default resolution settings and merge the files 
again. For more information, see “Defining Default Settings” on page 262.

To change the way in which object conflicts are resolved:

 1 In the target object repository, select an object that had a conflict, as 
indicated by the icon to the left of the object name. The conflicting objects 
are highlighted in the source object repositories.

A description of the conflict and the resolution method used by the Object 
Repository Merge Tool is described in the Resolution Options pane. A radio 
button for each possible alternative resolution method is displayed. For 
information on each of the conflict types, see “Understanding Object 
Conflicts” on page 277.



Chapter 8 • Merging Shared Object Repositories

282

 2 In the Resolution Options pane, select a radio button to choose an 
alternative resolution method. The target object repository is updated 
according to your selection and redisplayed. 

 3 In the Resolution Options pane, click the Previous Conflict or Next Conflict 
buttons to jump directly to the next or previous conflict in the target object 
repository hierarchy.

 4 Repeat steps 1 to 3 to modify additional conflict resolutions, as necessary.

 5 Save the target object repository, as described in “Saving the Target Object 
Repository” on page 285.

Filtering the Target Repository Pane

Merging two object repositories can result in a target object repository 
containing a large number of objects. To make navigation and the location 
of specific objects easier in the target object repository pane, the Object 
Repository Merge Tool enables you to filter the objects in the pane and show 
only the objects that had conflicts that were resolved during the merge.

Note: The filter only affects which objects are displayed in the target object 
repository pane. It does not affect which objects are included in the target 
object repository.



Chapter 8 • Merging Shared Object Repositories

283

To filter the objects in the target object repository pane:

 1 Select Tools > Filter or click the Filter button. The Filter dialog box opens.

Tip: You can also click the Filter icon in the status bar to view the Filter 
dialog box. The Filter is shown as ON in the status bar when a filter is 
currently in use. 

 2 Select a radio button according to the objects you want to view in the target 
object repository.

➤ Show all objects. Shows all objects in the target object repository

➤ Show only objects with conflicting descriptions. Shows only objects in 
the target object repository that have description conflicts

 3 Click OK. The objects in the pane are filtered and the target object 
repository displays only the requested object types. A progress bar is 
displayed in the status bar during the filter process. 



Chapter 8 • Merging Shared Object Repositories

284

Finding Specific Objects

You can use the Find feature in the Object Repository Merge Tool to locate 
one or more objects in the target object repository whose name contains a 
specified string. The located object is also highlighted in the relevant 
primary and/or secondary object repositories.

To find an object:

 1 Select Navigate > Find or click the Find button. The Find dialog box opens.

 2 In the Object name contains box, enter the full or partial name of the object 
you want to find.

 3 In the Criteria box, refine your search by selecting which objects to search. 
The following criteria are available:

➤ All objects

➤ Objects from one source

➤ Objects with conflicts

➤ Objects with conflicts or from one source

 4 Select one or both of the following options to help fine-tune your search:

➤ Match case. Distinguishes between upper-case and lower-case characters 
in the search. When Match case is selected, QuickTest finds only those 
occurrences in which the capitalization exactly matches the text you 
entered in the Object name contains box.

➤ Match whole word. Searches for occurrences that are whole words only 
and not part of larger words.



Chapter 8 • Merging Shared Object Repositories

285

 5 Specify the direction from the current cursor location in which you want to 
search: Up or Down. The Find operation will continue to search the entire 
object repository after it reaches the beginning or end of the file.

 6 Click Find Next to highlight the next object that matches the specified 
criteria in the target object repository.

You can also close the Find dialog box and use the following commands:

➤ Click the Find Next button or select Navigate > Find Next to highlight 
the next object that matches the specified criteria.

➤ Click the Find Previous button or select Navigate > Find Previous to 
highlight the previous object that matches the specified criteria.

Saving the Target Object Repository

When you are sure that the object conflicts are resolved satisfactorily, you 
can save the target object repository to the file system or to a Quality Center 
project (if QuickTest is currently connected to the Quality Center project).

Saving the Object Repository
You can save the new merged shared object repository to the file system. If 
you are connected to Quality Center, you can also save your merged shared 
object repository in the Test Resources module of your project.

To save an object repository to the file system:

 1 Select File > Save or click the Save button. If the file was saved previously, 
the current changes you made are saved. If the file has not yet been saved, 
the Save Shared Object Repository dialog box opens.

 2 In the sidebar, select the location in which you want to save the file, for 
example, File System or Quality Center Test Resources. 

 3 Browse to and select the folder in which you want to save the file.



Chapter 8 • Merging Shared Object Repositories

286

 4 In the File name box, enter a name for the file. Use a descriptive name that 
will help you easily identify the file. Do not use any of the following 
characters in the object repository name:
\ / : * " ? < > | ’

If you save the object repository to Quality Center, the file path must not 
contain two consecutive semicolons (;;).

 5 Click Save.

Tip: If you want to save the file as an attachment to a test in the Test Plan 
module in Quality Center, select Quality Center Test Plan in the sidebar, 
browse to and double-click the test, and then click Save. 

QuickTest saves the object repository with a .tsr extension in the specified 
location and displays the file name and path above the target object 
repository in the Object Repository - Merge Tool window.



287

9 
Comparing Shared Object Repositories

QuickTest Professional enables you to compare two shared object 
repositories using the Object Repository Comparison Tool, and view the 
differences in their objects, such as different object names, different object 
descriptions, and so on.

This chapter includes:

 ➤  About Comparing Shared Object Repositories on page 288

 ➤  Understanding the Object Repository Comparison Tool on page 289

 ➤  Using Object Repository Comparison Tool Commands on page 293

 ➤  Understanding Object Differences on page 297

 ➤  Changing Color Settings on page 298

 ➤  Comparing Object Repositories on page 299

 ➤  Viewing Comparison Statistics on page 301

 ➤  Filtering the Repository Panes on page 302

 ➤  Synchronizing Object Repository Views on page 303

 ➤  Finding Specific Objects on page 304

Tip: If you are connected to a Quality Center 10.00 project with version 
control enabled, you can compare two versions of the same object 
repository. For more information, see “Viewing and Comparing Versions of 
QuickTest Assets” on page 1461.



Chapter 9 • Comparing Shared Object Repositories

288

About Comparing Shared Object Repositories

QuickTest Professional enables you to compare existing assets from two 
different object repositories using the Object Repository Comparison Tool. 
The tool is accessible from the Object Repository Manager, and enables you 
to compare different object repository resources, or different versions of the 
same object repository resource, and identify similarities, variations, or 
changes.

Differences between objects in the two object repository files, named the 
First and Second files, are identified according to default rules. During the 
comparison process, the object repository files remain unchanged. For more 
information about the types of differences identified by the Object 
Repository Comparison Tool, see “Understanding Object Differences” on 
page 297.

After the compare process, the Comparison Tool provides a graphic 
presentation of the objects in the object repositories, which are shown as 
nodes in a hierarchy. Objects that have differences, as well as unique objects 
that are included in one object repository only, can be identified according 
to a color configuration that you can select. Objects that are included in one 
object repository only are identified in the other object repository by the 
text "Does not exist". You can also view the properties and values of each 
object that you select in either object repository.

You can use the information displayed by the Object Repository 
Comparison Tool when managing or merging object repositories. For more 
information, see Chapter 9, “Comparing Shared Object Repositories,” or 
Chapter 8, “Merging Shared Object Repositories.”

Notes:

➤ The Object Repository Comparison Tool does not compare checkpoint or 
output objects. 

➤ You cannot work with the Object Repository Manager or the Object 
Repository Merge Tool when the Object Repository Comparison Tool is 
open. 



Chapter 9 • Comparing Shared Object Repositories

289

Understanding the Object Repository Comparison Tool

You open the Object Repository Comparison Tool by choosing Tools > 
Object Repository Comparison Tool in the Object Repository Manager. 

An example window of the Object Repository - Comparison Tool is shown 
below: 

Menu Bar
Toolbar

Status Bar

First 
Repository 
Pane

Second 
Repository 
Pane

Test Object 
Details 
Areas



Chapter 9 • Comparing Shared Object Repositories

290

The Object Repository - Comparison Tool window contains the following 
key elements: 

➤ Menu bar. Displays menus of Object Repository Comparison Tool 
commands. These commands are described in various places throughout 
this chapter. Shortcut keys for menu commands are described in “Object 
Repository Comparison Tool Menu Commands and Shortcut Keys” on 
page 294.

➤ Toolbar. Contains buttons of commonly used menu commands to assist you 
in comparing your object repositories and viewing the similarities and 
differences in their objects. Toolbar buttons are described in “Object 
Repository Comparison Tool Toolbar Commands” on page 293.

➤ Repository Panes. Display a hierarchical view of the objects in the object 
repositories being compared. In the column to the left of the object 
hierarchies, each pane displays icons representing the comparison of each 
object. For more information, see “Understanding the Repository Panes” on 
page 290. 

➤ Test Object Details areas. Show the properties and values of the object 
selected in an object repository pane. For more information, see 
“Understanding the Repository Panes” on page 290.

➤ Status Bar. Shows the status of the comparison process and details of the 
differences found during the object repository comparison. For more 
information, see “Understanding the Status Bar” on page 292.

Understanding the Repository Panes
The object repository panes display the hierarchies of the objects, and their 
properties and values, in the object repository files that you are comparing. 
The file path is shown above each object hierarchy.

To make it easier to see the status of an object at a glance, the text and 
background of object names in the object repositories are displayed using 
different colors, according to the type of difference found. 

You can change the default colors used in the object repositories to indicate 
the difference type. For more information, see “Changing Color Settings” on 
page 298. 



Chapter 9 • Comparing Shared Object Repositories

291

Differences can also be identified by the icons used to the left of the objects 
in the object repository panes, as follows:

➤ Objects that are unique to the first file 

➤ Objects that are unique to the second file 

➤ Objects in both the first and second file that are not identical but partially 
match 

For more information on all difference types, see “Understanding Object 
Differences” on page 297.

The object repository panes provide the following functionality:

➤ When you select an object in one object repository pane, the corresponding 
object in the other file hierarchy is located and highlighted. You can press 
the CTRL button when you select an object to highlight only the selected 
object without highlighting the corresponding object in the other file.

➤ When you select an object in an object repository pane, its properties and 
values are displayed in the respective Test object details area at the bottom 
of the pane. 

➤ When you position your cursor over an icon to the left of an object in an 
object repository pane, the comparison details are displayed as a tooltip, for 
example, Partial match, or Unique to second file.

➤ You can expand or collapse the hierarchy of a parent node by 
double-clicking the node, or by clicking the expand (+) or collapse (-) 
symbol to the left of the node name. You can also expand or collapse the 
entire hierarchy in the object repository pane by choosing Collapse All or 
Expand All from the View menu.

➤ You can jump directly to the next or previous difference in the object 
repository hierarchy by choosing Next Difference or Previous Difference 
from the Navigate menu, by clicking the Next Difference or Previous 
Difference buttons in the toolbar, or by using keyboard shortcuts. For more 
information about shortcuts, see “Object Repository Comparison Tool Menu 
Commands and Shortcut Keys” on page 294.



Chapter 9 • Comparing Shared Object Repositories

292

➤ You can locate one or more objects in the object repository panes by using 
the Find dialog box. For more information, see “Finding Specific Objects” 
on page 304.

➤ You can drag the edges of the panes to resize them in the Object Repository 
Comparison Tool window.

Understanding the Status Bar
The status bar shows information about the comparison process and the 
results that are displayed:

➤ A progress bar is displayed on the left of the status bar during the 
comparison process. Ready is displayed when the process is complete.

➤ The Quality Center icon is displayed when QuickTest is connected to a 
Quality Center project.

➤ The filter status is shown next to the Filter icon: OFF indicates that the 
object repositories are not filtered and all objects are shown. ON indicates a 
filter is active and that some objects may have been filtered out of the 
display. You can click the Filter icon to view the Filter dialog box. For more 
information, see “Filtering the Repository Panes” on page 302.

➤ The number of differences found during the comparison are displayed, as 
follows: 

➤ The number of objects that are unique to the first file 

➤ The number of objects that are unique to the second file 

➤ The number of objects in the first and second file that are not identical 
but partially match 

For more information on all difference types, see “Understanding Object 
Differences” on page 297.



Chapter 9 • Comparing Shared Object Repositories

293

Using Object Repository Comparison Tool Commands

You can select Object Repository Comparison Tool commands from the 
menu bar or from the toolbar. You can also perform certain commands by 
pressing shortcut keys. 

Object Repository Comparison Tool Toolbar Commands
You can perform frequently used commands by clicking buttons in the 
toolbar.  

Description

New Comparison (described in “File Menu Commands” on page 294)

Color Settings (described in “Tools Menu Commands” on page 296)

Statistics (described in “View Menu Commands” on page 295)

Filter (described in “Tools Menu Commands” on page 296)

Synchronized Nodes (described in “Navigate Menu Commands” on 
page 295)

Previous Difference (described in “Navigate Menu Commands” on 
page 295)

Next Difference (described in “Navigate Menu Commands” on 
page 295)

Find (described in “Navigate Menu Commands” on page 295)

Find Previous (described in “Navigate Menu Commands” on page 295)

Find Next (described in “Navigate Menu Commands” on page 295)

Quality Center Connection (described in “File Menu Commands” on 
page 294)



Chapter 9 • Comparing Shared Object Repositories

294

Object Repository Comparison Tool Menu Commands and 
Shortcut Keys
You can perform frequently-used commands by clicking toolbar buttons or 
choosing the relevant menu option. You can also perform some commands 
by pressing the relevant shortcut keys.

File Menu Commands

You can manage your object repository comparison using the following File 
menu commands: 

Command Shortcut Key Function

New Comparison CTRL+N Enables you to specify two object 
repositories on which to perform a 
new comparison operation. 

Quality Center 
Connection

Enables you to connect QuickTest 
to a Quality Center project. For 
more information, see “Connecting 
QuickTest to Quality Center” on 
page 1418.

Exit Closes the Object Repository - 
Comparison Tool window. 



Chapter 9 • Comparing Shared Object Repositories

295

View Menu Commands

You can perform the following View menu commands:

Navigate Menu Commands

You can perform the following Navigate menu commands:

Command Function

Statistics Opens the Statistics dialog box, which describes 
the comparison between the two repositories, 
including the number and type of any differences 
found. For more information, see “Viewing 
Comparison Statistics” on page 301.

Collapse All Collapses the entire hierarchy in both comparison 
panes. 

Tip: Double-clicking an expanded node collapses it 
in both panes simultaneously. 

Expand All Expands the entire hierarchy in both comparison 
panes.

Tip: Double-clicking a collapsed node expands it in 
both panes simultaneously. 

Command Shortcut Key Function

Next Difference F4 Finds the next difference between 
objects in the object repositories. 

Previous 
Difference

SHIFT+F4 Finds the previous difference 
between objects in the object 
repositories.

Find CTRL+F Opens the Find dialog box.



Chapter 9 • Comparing Shared Object Repositories

296

Tools Menu Commands

You can perform the following Tools menu commands:

Help Menu Command

You can perform the following Help menu command:

Find Next F3 Finds the next object in the object 
repositories according to the search 
specifications in the Find dialog box.

Find Previous SHIFT+F3 Finds the previous object in the 
object repositories according to the 
search specifications in the Find 
dialog box.

Command Function

Synchronized 
Nodes

Enables you to navigate the two object repository panes 
simultaneously or independently of one another. For 
more information, see “Synchronizing Object 
Repository Views” on page 303.

Filter Opens the Filter dialog box, enabling you to specify the 
types of test object matches that you want to show. For 
more information, see “Filtering the Repository Panes” 
on page 302.

Color Settings Opens the Settings dialog box, enabling you to specify 
the text color and background of the object names and 
empty nodes displayed in the comparison panes.

For more information, see “Changing Color Settings” 
on page 298.

Command Shortcut Key Function

Object Repository 
Comparison Tool Help

F1 Opens the Object Repository 
Comparison Tool Help.

Command Shortcut Key Function



Chapter 9 • Comparing Shared Object Repositories

297

Understanding Object Differences

The Comparison Tool automatically identifies objects during the 
comparison process by classifying them into one of the following types:

➤ Identical. Objects that appear in both object repository files. There is no 
difference in their name or in their properties.

➤ Matching description, different name. Objects that appear in both object 
repository files that have different names, but the same description 
properties and values.

➤ Similar description. Objects that appear in both object repository files that 
have similar, but not identical, description properties and values. One of the 
objects always has a subset of the properties set of the other object. This 
implies that it is likely to be a less detailed description of the same object. 
For example, an object named Button_1 in the second object repository has 
the same description properties and values as an object named Button_1 in 
the first object repository, but also has additional properties and values.

Objects that do not have a description, such as Page or Browser objects, are 
compared by name only. If the same object is contained in both the object 
repositories but with different names, they will be shown in the object 
repositories as two separate objects.

Note: The Object Repository Comparison Tool gives precedence to matching 
object descriptions over the matching of object names. For this reason, 
certain object nodes may be linked during the comparison process and not 
others. 

➤ Unique to first file, or Unique to second file. Objects that appear in only one 
of the object repository files. 

➤ Does not exist. Objects that do not exist in one of the repository files, but do 
exist in the other file.



Chapter 9 • Comparing Shared Object Repositories

298

Changing Color Settings

The text and background of object names, and empty nodes representing 
objects that exist in the other object repository only, are displayed in the 
Comparison Tool window in default colors, according to their difference 
types. This enables you to see the status of each object in the object 
repository panes. These text colors are also used in the Statistics dialog box.

You can change the default color settings if required.

To change color settings:

 1 Select Tools > Color Settings or click the Color Settings button in the 
toolbar. The Color Settings dialog box opens. 

 2 For each difference type, click the down arrow  next to the text box and 
select an identifying text color and background color from the Custom, 
Web, or System tabs. 

 3 Click OK. After performing a comparison of object repositories, object 
names and empty nodes in the respective object repository panes are 
displayed according to your selections.



Chapter 9 • Comparing Shared Object Repositories

299

Comparing Object Repositories

Using the Object Repository Comparison Tool, you can compare two object 
repositories according to predefined settings that define how differences 
between objects are identified. 

To compare two object repositories:

 1 In QuickTest Professional, select Resources > Object Repository Manager.

 2 In the Object Repository Manager, select Tools > Object Repository 
Comparison Tool. The New Comparison dialog box opens on top of the 
Object Repository - Comparison Tool window.

Tips:

➤ If the Object Repository - Comparison Tool window is already open, you 
can select File > New Comparison or click the New Comparison button in 
the toolbar to open the New Comparison dialog box.

➤ If you want to change the color settings before comparing the object 
repositories, click Cancel to close the New Comparison dialog box, 
change the settings as described in “Changing Color Settings” on 
page 298, and then perform the comparison.



Chapter 9 • Comparing Shared Object Repositories

300

 3 In the First file and Second file boxes, enter or browse to and select the .tsr 
object repository files that you want to compare. The object repository files 
can be located in the file system or Quality Center. By default, the boxes 
display the last files selected for comparison using the Object Repository 
Comparison Tool. You can click the down arrow  next to each box to view 
and select recently used files.

Notes:

➤ A warning icon is displayed next to the relevant text box if you enter the 
name of a file without a .tsr suffix, a file with an incorrect path, or a file 
that does not exist. You can position your pointer over the icon to see a 
tooltip explanation of the error. Enter or select an existing .tsr file with 
the correct path.

➤ If you want to compare an object repository that was created using a 
version of QuickTest earlier than version 9.0, you must first open and 
save it in the Object Repository Manager to update it to the new format.

➤ If you are connected to Quality Center, you can enter (or browse to) 
object repositories from Quality Center as well as from the file system.

 4 Click OK. The Object Repository Comparison Tool compares the objects in 
the selected object repositories and displays the results in the Statistics 
dialog box on top of the Object Repository - Comparison Tool window.

 5 Review the statistics, as described in “Viewing Comparison Statistics” on 
page 301, and click Close.

 6 In the Object Repository - Comparison Tool window, you can:

➤ Filter the objects in the object repositories, as described in “Filtering the 
Repository Panes” on page 302.

➤ Find specific objects in the object repositories, as described in “Finding 
Specific Objects” on page 304.



Chapter 9 • Comparing Shared Object Repositories

301

Viewing Comparison Statistics

After you compare two object repositories, the Object Repository 
Comparison Tool displays the Statistics dialog box, which describes how the 
files were compared, and the number and type of any differences found.

Tip: You can choose not to view the Statistics dialog box every time you 
compare object repositories by clearing the Open this dialog box 
automatically after comparisons check box. You can view the comparison 
statistics in the Statistics dialog box at any time by choosing 
View > Statistics in the Comparison Tool window, or by clicking the 
Statistics button in the toolbar.

The Statistics dialog box displays the following information:

➤ The number and type of any differences between the objects in the 
object repositories. Difference types are described in “Understanding 
Object Differences” on page 297.

➤ The number of items that are unique to the first or the second file, or are 
identical in both files. 



Chapter 9 • Comparing Shared Object Repositories

302

The icons displayed for each difference type in the object statistics are the 
same as those used in the object repository panes. For more information, see 
“Understanding the Repository Panes” on page 290.

Tip: Select the Go to first difference check box to jump to the first difference 
in the object repositories immediately after you close the Statistics dialog 
box. 

Filtering the Repository Panes

Object repositories can contain a large number of objects. To make 
navigation and the location of specific objects easier in the object repository 
panes, the Object Repository Comparison Tool enables you to filter the 
objects and show only the objects that you want to view.

To filter the objects in the object repository panes:

 1 Select Tools > Filter or click the Filter button in the toolbar. The Filter dialog 
box opens.

Tip: The Filter button in the toolbar is surrounded by a border when a filter 
is currently in use. In addition, the filter is shown as ON in the status bar. 
You can click the Filter icon in the status bar to open the Filter dialog box. 



Chapter 9 • Comparing Shared Object Repositories

303

 2 Select one or more check boxes according to the objects you want to view in 
the object repositories.

➤ Identical Objects. Objects that appear in both object repository files and 
have no differences in their name or in their properties 

➤ Unique objects. Objects that appear only in the first object repository file 
or only in the second object repository file

➤ Partial match objects. Objects in the object repository files that match 
but have name or description differences

Tip: Select all the check boxes to view all the objects in both object 
repositories. 

 3 Click OK. The objects in the panes are filtered and the object repositories 
display only the requested object types.

Synchronizing Object Repository Views

The Object Repository Comparison Tool enables you to navigate the two 
object repositories independently. You can also resize the various panes to 
display only some of the objects contained in the object repositories. When 
using large object repositories, this can result in the various panes displaying 
different areas of the object repository hierarchies, making it difficult to 
locate and track specific objects affected by the comparison process.

To synchronize the object repositories to display the same object in both 
views, select the object in the first or second object repository in which it is 
currently visible and click the Synchronized Nodes button in the toolbar. 
The matching node is highlighted in the other object repository and both 
object repositories scroll simultaneously. 



Chapter 9 • Comparing Shared Object Repositories

304

Tip: The Synchronized Nodes button in the toolbar is surrounded by a 
border when the object repositories are currently synchronized. Click the 
Synchronized Nodes button again to navigate the two object repositories 
independently. When the object repositories are synchronized, you can also 
press the CTRL button while selecting an object to highlight the selected 
object only.

Finding Specific Objects

You can use the Find feature in the Object Repository Comparison Tool to 
locate one or more objects in a selected object repository whose name 
contains a specified string. The located object is also highlighted in the 
other object repository if it exists there.

To find an object:

 1 Click the object repository pane that contains the required object.

 2 Select Navigate > Find or click the Find button in the toolbar. The Find 
dialog box opens.

 3 In the Object name contains box, enter the full or partial name of the object 
you want to find. You can click the down arrow  next to the box to view 
and select a recently used string.



Chapter 9 • Comparing Shared Object Repositories

305

 4 In the Criteria box, refine your search by selecting which objects to search. 
The following criteria are available:

➤ All objects

➤ Unique objects 

➤ Partial match objects 

➤ Unique or partial match objects 

 5 Select one or both of the following options to help fine-tune your search:

➤ Match case. Distinguishes between upper-case and lower-case characters 
in the search. When Match case is selected, QuickTest finds only those 
occurrences in which the capitalization exactly matches the text you 
entered in the Object name contains box.

➤ Match whole word. Searches for occurrences that are whole words only 
and not part of larger words.

 6 Specify the direction from the current cursor location in which you want to 
search: Up or Down. The Find operation will continue to search the entire 
file after it reaches the beginning or end of the object repository.

 7 Click the Find Next button to highlight the next object that matches the 
specified criteria in the object repository.

You can also close the Find dialog box and use the following commands:

➤ Click the Find Next button in the toolbar, select Navigate > Find Next, or 
press F3, to highlight the next object that matches the specified criteria.

➤ Click the Find Previous button in the toolbar, select Navigate > Find 
Previous, or press SHIFT+F3, to highlight the previous object that matches 
the specified criteria.



Chapter 9 • Comparing Shared Object Repositories

306



307

Part III

Designing Tests



308



309

10
Creating Tests — Overview

You can create tests using the keyword-driven methodology, step recording, 
or a combination of both. The keyword-driven methodology enables you to 
select keywords to indicate the operations you want to perform on your 
application. Step recording enables you to record the operations you 
perform on your application. 

After you create your tests, you can enhance them using checkpoints and 
other special testing options.

This chapter includes:

 ➤  About Creating Tests on page 309

 ➤  Deciding Which Methodology to Use - Keyword-Driven or Recording 
on page 311

 ➤  Understanding Your Test on page 313

 ➤  Enhancing Your Test on page 315

 ➤  Using Relative Paths in QuickTest on page 316

About Creating Tests

You can create tests using the keyword-driven methodology, step recording, 
or a combination of both.

Creating tests using the keyword-driven methodology requires an 
infrastructure for all of the required resources. Resources include shared 
object repositories, function libraries, and recovery scenarios. Setting up the 
infrastructure requires in-depth knowledge of your application and a high 
level of QuickTest expertise. 



Chapter 10 • Creating Tests — Overview

310

Although setting up the infrastructure may initially require a longer time-
investment in comparison to recording tests, using the keyword-driven 
methodology enables you to create tests at a more application-specific level 
and with a more structured design. This enables you to maintain your tests 
more efficiently and provides you with more flexibility than a recorded test.

In some cases, you may want to let QuickTest generate test steps by 
recording the typical processes that you perform on your application. As 
you navigate through your application, QuickTest graphically displays each 
step you perform as a row in the Keyword View. A step is anything a user 
does that changes the content of a page or object in your application, for 
example, clicking a link or typing data into an edit box. Recording may be 
easier for new QuickTest users or when beginning to design tests for a new 
application or a new feature. 

While creating your test, you can insert checkpoints. A checkpoint compares 
the value of an element captured when the object was saved in the object 
repository, with the value of the same element captured during the run 
session. This helps you determine whether or not your application is 
functioning correctly. For more information, see “Understanding 
Checkpoints” on page 495.

When you test your application, you may want to check how it performs 
the same operations with different data. This is called parameterizing your 
test. You can supply data in the Data Table, define environment variables, 
instruct QuickTest to generate random numbers, and so on. For more 
information, see “Parameterizing Values” on page 625.

After creating your initial test, you can further enhance it by adding and 
modifying steps in the Keyword View or Expert View. 



Chapter 10 • Creating Tests — Overview

311

Deciding Which Methodology to Use - Keyword-Driven or 
Recording

You can create the steps in your tests using the keyword-driven 
methodology, recording, or a combination of both. 

Recording Tests

Recording can be useful in the following situations:

➤ Recording helps novice QuickTest users learn how QuickTest interprets the 
operations you perform on your application, and how it converts them to 
QuickTest objects and built-in operations.

➤ Recording can be useful for more advanced QuickTest users when working 
with a new application or major new features of an existing application (for 
the same reasons described above). Recording is also helpful while 
developing functions that incorporate built-in QuickTest keywords.

➤ Recording can be useful when you need to quickly create a test that tests the 
basic functionality of an application or feature, but does not require 
long-term maintenance.

For information on recording tests, see “Creating Tests Using the Recording 
Mechanism” on page 361.

Creating Tests Using Keyword-Driven Testing

Keyword-driven testing advantages include the following:

➤ Keyword-driven testing enables you to design your tests at a business level 
rather than at the object level. For example, QuickTest may recognize a 
single option selection in your application as several steps: a click on a 
button object, a mouse operation on a list object, and then a keyboard 
operation on a list sub-item. You can create an appropriately-named 
function to represent all of these lower-level operations in a single, 
business-level keyword.

➤ By incorporating technical operations, such as a synchronization statement 
that waits for client-server communications to finish, into higher level 
keywords, tests are easier to read and easier for less technical application 
testers to maintain when the application changes.



Chapter 10 • Creating Tests — Overview

312

➤ Keyword-driven testing naturally leads to a more efficient separation 
between resource maintenance and test maintenance. This enables the 
automation experts to focus on maintaining objects and functions while 
application testers focus on maintaining the test structure and design.

➤ When you record tests, you may not notice that new objects are being 
added to the local object repository. This may result in many testers 
maintaining local object repositories with copies of the same objects. When 
using a keyword-driven methodology, you select the objects for your steps 
from the existing object repository. When you need a new object, you can 
add it to your local object repository temporarily, but you are also aware that 
you need to add it to the shared object repository for future use.

➤ When you record a test, QuickTest enters the correct objects, methods, and 
argument values for you. Therefore, it is possible to create a test with little 
preparation or planning. Although this makes it easier to create tests 
quickly, such tests are harder to maintain when the application changes and 
often require re-recording large parts of the test. 

When you use a keyword-driven methodology, you select from existing 
objects and operation keywords. Therefore, you must be familiar with both 
the object repositories and the function libraries that are available. You must 
also have a good idea of what you want your test to look like before you 
begin inserting steps. This usually results in well-planned and 
better-structured tests, which also results in easier long-term maintenance.

➤ Automation experts can add objects and functions based on detailed 
product specifications even before a feature has been added to a product. 
Using keyword-driven testing, you can begin to develop tests for a new 
product or feature earlier in the development cycle. 

For information on creating tests using the keyword-driven methodology, 
see “Creating Tests Using the Keyword-Driven Methodology” on page 335.



Chapter 10 • Creating Tests — Overview

313

Understanding Your Test

When you create a test, QuickTest creates a graphical representation of the 
steps you perform on your application. These steps are displayed in the 
Keyword View tab.

The following is a sample test of a login procedure to the Mercury Tours site, 
the sample Web site. 



Chapter 10 • Creating Tests — Overview

314

The table below provides an explanation of each step in the Keyword View.

In the Expert View, these same steps are displayed using a VBScript program 
based on the QuickTest object model. 

Browser("Welcome: Mercury Tours").Page("Welcome: Mercury Tours").
WebEdit("userName").Set "tutorial"

Browser("Welcome: Mercury Tours").Page("Welcome: Mercury Tours").
WebEdit("password").SetSecure
"4082986e39ea469e70dbf8c5a29429fe138c6efc"

Browser("Welcome: Mercury Tours").Page("Welcome: Mercury Tours").
Image("Sign-In").Click 2,2

Step Description

 Action1 is the action name.

The browser invokes the Welcome: 
Mercury Tours Web site.

Welcome: Mercury Tours is the name 
of the Web page.

userName is the name of the edit box. 
Set is the method performed on the 
edit box. tutorial is the value of the edit 
box.

password is the name of the edit box. 
SetSecure is an encryption method 
performed on the edit box. 
4082986e39ea469e70dbf8c5a29429fe1
38c6efc is the encrypted value of the 
password.

Sign-In is the name of the image link. 
Click is the method performed on the 
image. 2, 2 are the x- and y-coordinates 
where the image was clicked.



Chapter 10 • Creating Tests — Overview

315

Enhancing Your Test

You can use a variety of options to enhance your existing tests. This section 
describes some of the ways in which you can enhance your existing tests.

Checkpoints

You can add checkpoints to your test. A checkpoint is a step in your test that 
compares the a specified item during a run session with the values stored for 
the same item within the test. This enables you to identify whether or not 
your application is functioning correctly. There are several different 
checkpoint types. For more information on creating checkpoints, see 
Chapter 17, “Understanding Checkpoints.” 

Tip: You can also use the CheckProperty method, which enables you to verify 
the property value of an object without using the checkpoint interface. For 
more information, see HP QuickTest Professional Object Model Reference.

Parameterization

You can parameterize your test to replace fixed values with values from an 
external source during your run session. The values can come from a Data 
Table, environment variables you define, or values that QuickTest generates 
during the run session. For more information, see Chapter 24, 
“Parameterizing Values.”

Output Values

You can retrieve values from your test and store them in the Data Table as 
output values. You can subsequently use these values as an input parameter 
in your test. This enables you to use data retrieved during a test in other 
parts of the test. For more information, see Chapter 25, “Outputting 
Values.”

Actions

You can divide your test into actions to streamline the testing process of 
your application. For more information, see Chapter 15, “Working with 
Actions.”



Chapter 10 • Creating Tests — Overview

316

Programming Statements

You can use special QuickTest options to enhance your test with 
programming statements. The Step Generator guides you step-by-step 
through the process of adding recordable and non-recordable operations 
(methods and properties) to your test. You can also synchronize your test to 
ensure that your application is ready for QuickTest to perform the next step 
in your test, and you can measure the amount of time it takes for your 
application to perform steps in a test by defining and measuring 
transactions. For more information, see Chapter 28, “Adding Steps 
Containing Programming Logic.” 

You can also manually enter standard VBScript statements, as well as 
statements using QuickTest test objects and operations, in the Expert View. 
For more information, see Chapter 29, “Working in the Expert View and 
Function Library Windows.”

Using Relative Paths in QuickTest

QuickTest enables you to define the path to a resource that you are adding 
to the file system or to Quality Center, as a relative or an absolute path. (For 
information about relative or absolute paths, see “Understanding Absolute 
and Relative Paths” on page 319.) 

Note:  If you are working with the Resources and Dependencies model with 
Quality Center 10.00, specify an absolute Quality Center path. For more 
information, see “Considerations for Working with Relative Paths in 
Quality Center” on page 1450.

When you specify a path to a function library, shared object repository, 
recovery scenario, or environment variable file, QuickTest checks if the 
path, or the initial part of the path, exists in the Folders pane of the Options 
dialog box (Tools > Options > Folders node). The Folders pane contains a 
search list in which you can define where QuickTest searches for tests, 
actions, or files.



Chapter 10 • Creating Tests — Overview

317

QuickTest then opens one of the following two dialog boxes, depending on 
whether the path you specified, or a part of the path, exists in the Folders 
pane.

Note: If you are connected to Quality Center 10.00, these dialog boxes are 
displayed only if you select a path in the file system or in a 
Quality Center 9.x project.

Path Exists in the Folders Pane

If the resource path you specify matches an existing search path in the 
Folders pane, you are prompted whether to define the path using only the 
relative part of the path.

➤ Click Yes to truncate the path to a relative path.

➤ Click No to define the path to the resource as an absolute path.

In cases where a part of the path you enter matches more than one path in 
the Folders pane, the closest match is applied. For example, if both 
C:\Current_Version and C:\Current_Version\Libraries are defined in the search 
path list, the latter is applied.



Chapter 10 • Creating Tests — Overview

318

Path Does Not Exist in the Folders Pane

If the resource path you specify does not match an existing search path in 
the Folders pane, you are prompted whether to add the resource's location 
path to the Folders pane and define the path relatively.

➤ Click Yes to add the resource's location path to the Folders pane and 
truncate the path to a relative path.

➤ Click No to define the path to the resource as an absolute path.  

Notes: 

➤ You can choose not to show one or both of these dialog boxes when you 
enter a path to a resource by selecting the Do not show this message 
again check box. To show these dialog boxes again, select the Remind me 
to use relative paths when specifying a path to a resource check box in 
the Folders pane of the Options dialog box. This check box is selected by 
default when you first start QuickTest.

➤ For more information on the Folders pane, which enables you to enter 
the folders (search paths) in which QuickTest searches for searches for 
tests, actions, or files, see “Setting Folder Testing Options” on page 1237.



Chapter 10 • Creating Tests — Overview

319

Understanding Absolute and Relative Paths
You can save QuickTest resources, such as shared object repositories, 
function libraries, recovery scenarios or environments, using absolute or 
relative paths. 

Note:  If you are working with the Resources and Dependencies model with 
Quality Center 10.00, specify an absolute Quality Center path. For more 
information, see “Considerations for Working with Relative Paths in 
Quality Center” on page 1450.

➤ An absolute path describes the full path to a specific file starting from a 
fixed location such as the root directory, or the drive on which the file is 
located, and contains all the other sub-directories in the path. An absolute 
path always points to the specified file, regardless of the current directory.

➤ A relative path describes the path to a specific file starting from a given 
directory, and is generally only a portion of the absolute path. A relative 
path therefore specifies the location of the file relative to the given location 
in the file system. 

Using relative paths means that the paths remain valid when files or folders 
containing files are moved or copied to other locations or computers, 
provided that they are moved within the same folder structure. For this 
reason, we recommend that you use relative paths when saving resources in 
QuickTest.



Chapter 10 • Creating Tests — Overview

320

For example, consider a QuickTest resource file named FunctionLibrary1.qfl 
located in C:\Current_Version\Libraries. The absolute path to the file is 
C:\Current_Version\Libraries\FunctionLibrary1.qfl. The relative path to the file 
from within the folder named Libraries is specified using only the name of 
the file, FunctionLibrary1.qfl. Alternatively, the relative path to the file from 
within another folder, such as C:\Current_Version\Libraries\MyFiles, would be 
Libraries\FunctionLibrary1.qfl.

Using a relative path, you could copy the FunctionLibrary1.qfl file from 
C:\Current_Version\Libraries to an updated version in 
C:\New_Version\Libraries, and the path used by QuickTest would remain 
valid. 

In addition, relative paths are quicker to type and, being shorter, minimize 
any chance for error. 

For more information, see “Using Relative Paths in QuickTest” on page 316.

Note: Prior to QuickTest 9.0, if you specified a path for a resource starting 
with \.., it was considered to be a relative path. In QuickTest 9.0 and later, a 
path that starts with \.. is considered to be a full path, with the backslash 
representing the root folder of the current drive.

If you defined paths starting with \.. using earlier versions of QuickTest, you 
should change the path to be a standard relative path by removing the 
backslash (\). 



321

11
Managing Your Test

You can use the File menu to create, open, save, zip, unzip, and print tests, 
as well as create standalone, portable tests. 

Tip: As the content of your application changes, you can update the selected 
Active Screen display and use the Active Screen to add new steps to your test 
instead of re-recording steps on new or modified objects. For more 
information, see "Updating a Test Using the Update Run Mode Option" on 
page 1125.

This chapter includes:

 ➤  Creating a New Test on page 321

 ➤  Opening an Existing Test on page 322

 ➤  Saving a Test on page 324

 ➤  Creating Portable Copies of Your Tests on page 326

 ➤  Zipping a Test on page 331

 ➤  Unzipping a Test on page 331

 ➤  Printing a Test on page 332

Creating a New Test

To create a new test, click the New button or select File > New > Test. A new 
test opens, with a new action selected in the Keyword View. You are ready to 
start creating your test.



Chapter 11 • Managing Your Test

322

Opening an Existing Test

You can open an existing test to enhance or run it. 

To open a test stored in Quality Center, QuickTest must be connected to the 
Quality Center project. For more information, see Chapter 51, "Integrating 
with Quality Center."

If the test you select was last saved in an older version of QuickTest, you may 
be asked whether to convert the test to the current version or view it in 
read-only format. For more information, see "Considerations for Opening 
Tests Created in Previous Versions of QuickTest" on page 323.

To open an existing test:

 1 (Optional) Connect to a Quality Center server and project. For more 
information, see "Connecting to and Disconnecting from Quality Center" 
on page 1418.

 2 Select File > Open > Test, or click the Open down arrow and select Test. The 
Open Test dialog box opens.

 3 In the sidebar, select the location of the test, for example, File System or 
Quality Center Test Plan.

 4 Browse to and select a test. You can select the Open in read-only mode 
option at the bottom of the dialog box. Click Open. The test opens and the 
title bar displays the test name.

Note: If the test is stored in a version control-enabled Quality Center 
project, the Open button contains a down arrow, enabling you to open the 
test and immediately check it out. For more information, see "Checking 
Assets Out of the Version Control Database" on page 1483.

Tip: You can open a recently used test by selecting it from the Recent Files 
list in the File menu.



Chapter 11 • Managing Your Test

323

Considerations for Opening Tests Created in Previous Versions 
of QuickTest

➤ If a test is stored in Quality Center and was created using an earlier version, 
it opens in read-only mode. To edit the test, it must be upgraded to the 
current version using the QuickTest Professional Asset Upgrade Tool for 
Quality Center. You install this tool from the QuickTest Professional 
installation DVD. After installation, this tool is available from the Start 
menu by choosing Start > Programs > QuickTest Professional > Tools > 
QuickTest Professional Asset Upgrade Tool.

➤ When you open a test that was created using an older version of QuickTest, 
you may be asked whether you want to convert it or view it in read-only 
format. 

➤ If the test contains objects in the local object repositories of one or more 
actions in the test, the relevant add-in must be installed to convert the 
test to the current format. Otherwise, it is opened in read-only format.

➤ If you choose to convert the test, it is updated to the current format and 
you can modify it as needed. If you save the converted test, it cannot be 
used with earlier versions of QuickTest.

➤ If you choose to view the test in read-only format, it appears as it did 
previously, using all of its original settings, but you cannot modify it. 

➤ If you have many tests that need to be updated to the current format, 
you can create an automation script that iterates through all of your tests 
to open and save each one in the new format. 

For more information on creating automation scripts, see Chapter 50, 
"Automating QuickTest Operations."

To view a sample automation script that converts old tests to the current 
version, see the QuickTest Professional Automation Object Model Reference 
(Help > QuickTest Professional Help > HP QuickTest Professional 
Advanced References > HP QuickTest Professional Automation Object 
Model).

➤ You cannot open a test that was created with a later version of QuickTest on 
a computer running an earlier version of QuickTest. For example, you 
cannot open a test created in QuickTest 10.00 on a computer running 
QuickTest 8.0.

AutomationObjectModel.chm::/QuickTest~Application~Open~Convert a Set of Tests from an Older QuickTest Version to the Current Version_E.html


Chapter 11 • Managing Your Test

324

Saving a Test

You can save a new test or save changes to an existing test.

Tip: If changes are made to an existing test, an asterisk (*) is displayed in the 
title bar until the test is saved.

Note: You must use the Save As option in QuickTest if you want to save a 
test under another name or create a copy of a test. You cannot copy a test or 
change its name directly in the file system or in Quality Center.

To save a new test:

 1 (Optional) Connect to a Quality Center server and project. For more 
information, see "Connecting to and Disconnecting from Quality Center" 
on page 1418.

 2 Click the Save button or select File > Save to save the test. The Save 
QuickTest Test dialog box opens.

 3 In the sidebar, select the location to save the test, for example, File System 
or Quality Center Test Plan.

 4 Browse to and choose the folder in which to save the test. 

Note: In the file system, QuickTest suggests a default folder called Tests. For 
all supported operating systems except Windows Vista, this folder is located 
under your QuickTest Professional installation folder. For Windows Vista, 
this folder is located under MyDocuments\HP\QuickTest Professional.



Chapter 11 • Managing Your Test

325

 5 Type a name for the test in the File name box. Note that the test name 
cannot exceed 220 characters (including the path), cannot begin or end 
with a space, and cannot contain the following characters:
\ / : * ? " < > | % ' 

If you save the test to Quality Center, the file path must not contain two 
consecutive semicolons (;;).

 6 If you are recording and want to save the Active Screen files with your test, 
confirm that Save Active Screen files is selected. 

If you clear this box, your Active Screen files will not be saved, and you will 
not be able to edit your test using the options that are normally available 
from the Active Screen. 

Clearing the Save Active Screen files check box can be especially useful for 
conserving disk space once you have finished designing the test and you are 
using the test only for test runs.

Tip: If you clear the Save Active Screen files check box and then later want to 
edit your test using Active Screen options, you can regenerate the Active 
Screen information by performing an Update Run operation. For more 
information, see "Updating a Test Using the Update Run Mode Option" on 
page 1125.

Note: You can also instruct QuickTest not to capture Active Screen files 
while recording or to only capture Active Screen information under certain 
conditions. You can set these preferences in the Active Screen pane of the 
Options dialog box. For more information, see "Setting Active Screen 
Options" on page 1240.

 7 Click Save. QuickTest displays the test name in the title bar.



Chapter 11 • Managing Your Test

326

To save changes to an existing test:

➤ Click the Save button to save changes to the current test.

➤ Select File > Save As to save an existing test to a new name or a new location. 
If you select File > Save As, the following options are available:

➤ Select or clear the Save Active Screen files check box to indicate whether 
or not you want to save the Active Screen files with the new test. For 
more information, see step 6 above.

➤ Select or clear the Save test results check box to indicate whether or not 
you want to save any existing test results with your test. 

Note that if you clear this box, your test result files will not be saved, and 
you will not be able to view them later. Clearing the Save test results 
check box can be useful for conserving disk space if you do not require 
the test results for later analysis, or if you are saving an existing test 
under a new name and do not need the test results.

Creating Portable Copies of Your Tests

Tests and their resource files are often stored on a network drive or in 
Quality Center, as this enables the reuse of actions and other resources, and 
helps ease test management.

Sometimes, you may need to open or run a test when you do not have 
access to a network drive or Quality Center. For example, you may need to 
create a portable copy of a test for use when travelling to other sites. You can 
save a standalone copy of your test and its resource files to a local drive or to 
another storage device using the File > Save Test with Resources command.



Chapter 11 • Managing Your Test

327

When you save a test in this manner, QuickTest creates a copy of the 
following and saves the files in the location you specify:

➤ Source test. QuickTest saves a copy of this test in the location you specify.

➤ Resource files. QuickTest saves a copy of all resource files associated with the 
source test, such as function libraries and shared object repositories. 
QuickTest stores these files in sub-folders of the copied test.

➤ Called actions. QuickTest saves a copy of any external actions called by the 
source test. For example, if Test A calls actions that are stored in Test B, 
QuickTest creates a local copy of the actions stored in Test B and stores them 
in a sub-folder of Test A. The sub-folder has the same name as the test from 
which the called actions were copied. In this example, the sub-folder is 
named Test_B. QuickTest also creates a copy of any resources associated 
directly with these actions, such as its local shared object repositories and 
action sheets in the Data Table. QuickTest does not, however, save the 
resource files associated with Test B, so you must ensure that these resources 
are associated with the source test, Test A.

This enables you to modify or run the test without access to a network drive 
or Quality Center.

Tip: If you use QuickTest with a concurrent license but do not have access to 
the concurrent license server (for example, during a business trip), you can 
install a commuter license. For more information, see the HP QuickTest 
Professional Installation Guide.



Chapter 11 • Managing Your Test

328

The Save Test with Resources Dialog Box
 

Description Enables you to save a full copy of a test and its resource files to a 
local drive or other storage device, eliminating the need for 
network or Quality Center connections. 

How to Access ➤ Select the File > Save Test with Resources menu command.

➤ Click the Save Test with Resources toolbar button .

Important 
Information

Before you create a copy of the test:

➤ Resolve any missing resources. 

➤ Save the original test.

➤ Make sure that all files associated with the source test are 
writable.

➤ Make sure you have write permissions for the folder in which 
you want to create a copy of the test.

After you make a copy of the test:

➤ A report is displayed in HTML format, listing:

➤ the name of the test, the name of the user that saved this 
copy of the test, and the date on which the test was 
copied.

➤ a record for each resource that was copied with the test, 
specifying:
-- the name of the resource
-- the type of resource (for example, function library)
-- the path from which the resource was copied
-- the status of the copied resource

(for example, the resource was saved successfully)
-- the current location of the copied resource

You can also open this file from the copied test’s root folder.

➤ The copied test becomes the active test in the QuickTest 
window. 

➤ All links to the source files are severed. Therefore, any 
modifications you make to the copied test are applied only to 
the copied test. 

Learn More Conceptual overview: "Creating Portable Copies of Your Tests" 
on page 326

Additional related topic: "Guidelines for Working with Tests 
Created Using an Earlier Version of QuickTest" on page 330



Chapter 11 • Managing Your Test

329

Below is an image of the Save Test with Resources dialog box:  

 

Save Test with Resources Dialog Box Options
 

Option Description

Save Location Specifies the root folder in which to save the test. By 
default, the root folder is <QuickTest installation 
folder>\Tests, however, you can specify any folder on 
a local, network, or portable drive.

Important: The folder you specify must not already 
contain a sub-folder with the same name as the test.

Resources tree Lists the external resources that are currently 
associated with or attached to your test.



Chapter 11 • Managing Your Test

330

Guidelines for Working with Tests Created Using an 
Earlier Version of QuickTest
Before you can save a standalone copy of a test that was created in an earlier 
version of QuickTest, you must upgrade the test and its resource files to the 
current version of QuickTest, as follows:

➤ Open the test in QuickTest and save it (Save or Save As). If the test contains 
calls to external actions (actions stored in other tests), you must open and 
save those tests, too. 

➤ Alternatively, if your tests are stored in Quality Center, you can use the 
QuickTest Professional Asset Upgrade Tool for Quality Center. This converts 
your test’s attached resource files to linked assets and upgrades your tests to 
the current version of QuickTest. 

Save Active Screen files (Relevant only for recorded tests.) Instructs QuickTest 
to save any existing Active Screen files with your test. 

Clearing the Save Active Screen files check box can be 
especially useful for conserving disk space if you have 
finished designing the test and are using the test only 
for test runs. 

Note: If you clear this box, your Active Screen files will 
not be copied over with the test and its resources, and 
you will not be able to edit your test using the options 
that are normally available from the Active Screen. 

Tip: If you clear the Save Active Screen files check box 
and then later want to edit your test using Active 
Screen options, you can regenerate the Active Screen 
information by performing an Update Run operation. 
For more information, see "Updating a Test Using the 
Update Run Mode Option" on page 1125. 

Archive test and 
resource files in a .zip 
file

Creates a .zip file of the test and its resources, and 
stores the .zip file in the folder you specified in the 
Save Location box. 

For more information, see "Zipping a Test" on 
page 331.

Option Description



Chapter 11 • Managing Your Test

331

Zipping a Test

QuickTest tests contain a series of configuration, run-time, setup data, and 
(optionally) Active Screen files. QuickTest saves these files together with the 
test. You can zip these files to conserve space and make the tests easier to 
transfer.

To zip a test:

 1 Do one of the following:

➤ Select File > Export Test to Zip File to open the Export to Zip File dialog 
box.

➤ Select the Archive test and resource files in a .zip file check box in the 
Save Test with Resources dialog box (File > Save Test with Resources). For 
more information, see "The Save Test with Resources Dialog Box" on 
page 328.

 2 Type a zip file name and path, or accept the default name and path, and 
click OK. QuickTest zips the test and its associated files.

Unzipping a Test

You can unzip a test when needed.

To unzip a zipped test:

 1 Select File > Import Test from Zip File. The Import from Zip File dialog box 
opens.

 2 Enter or select the name of the zip file that you want to unzip, choose a 
target folder into which you want to unzip the files, and click OK. QuickTest 
unzips the test and its associated files.



Chapter 11 • Managing Your Test

332

Printing a Test

You can print your entire test from the Keyword View (in table format). You 
can also print a single action either from the Keyword View (in table format) 
or the Expert View (in statement format). When printing from the Expert 
View, you can also specify additional information that you want to be 
included in the printout.

To print from the Keyword View:

 1 Click the Print button or select File > Print. A standard Print dialog box 
opens.

 2 Click OK to print the content of the Keyword View to your default Windows 
printer.

Tip: You can select File > Print Preview to display the Keyword View on 
screen as it will look when printed. Note that the Print Preview option 
works only with tests created using QuickTest 8.0 and later.

To print from the Expert View:

 1 Click the Print button or select File > Print. The Print dialog box opens.



Chapter 11 • Managing Your Test

333

 2 Specify the print options that you want to use:

➤ Printer. Displays the printer to which the print job will be sent. You can 
change the printer by clicking the Setup button.

➤ Selection only. Prints only the text that is currently selected (highlighted) 
in the Expert View.

➤ Insert document name in header. Includes the name of the active test or 
function library at the top of the printout.

➤ Insert date in header. Includes today’s date at the top of the printout. The 
date format is taken from your Windows regional settings.

➤ Page numbers. Includes page numbers on the bottom of the printout (for 
example, page 1 of 3).

➤ Show line numbers every __ lines. Displays line numbers to the left of the 
script lines, as specified.

➤ Number of copies. Specifies the number of times to print the document.

 3 If you want to print to a different printer, or change your printer 
preferences, click Setup to display the Print Setup dialog box.

 4 Click Print to print according to your selections. 



Chapter 11 • Managing Your Test

334



335

12
Creating Tests Using the Keyword-Driven 
Methodology

You can create a test using the keyword-driven methodology, which enables 
you to select keywords to indicate the operations you want to perform on 
your application. This enables you to create structured tests that are easier to 
update and maintain over time. 

The keyword-driven methodology is especially useful for organizations that 
have both technical and less technical users because it offers a clear division 
of automation tasks. This enables a few experts to maintain the resource 
framework while less technical users design and maintain automated test 
steps. Additionally, once the basic infrastructure is in place, both types of 
users can often do their tasks simultaneously.

Before you begin creating tests, you need to plan your tests to ensure that 
your tests cover your testing requirements. For more information on 
planning your tests, see “Creating Tests — Overview” on page 309.

After you create your test, you can enhance it using checkpoints and other 
special testing options. 

Tip: You can also create a test by recording the operations you perform on 
your application, as described in “Creating Tests Using the Recording 
Mechanism” on page 361. After you create your test, you can enhance it 
using checkpoints and other special testing options. 



Chapter 12 • Creating Tests Using the Keyword-Driven Methodology

336

This chapter includes:

 ➤  Understanding the Keyword-Driven Methodology on page 336

 ➤  Using the Keyword-Driven Methodology on page 341

 ➤  Sample Implementation of the Keyword-Driven Methodology on page 351

Understanding the Keyword-Driven Methodology

Keyword-driven testing is a technique that separates much of the 
programming work from the actual test steps so that the test steps can be 
developed earlier and can often be maintained with only minor updates, 
even when the application or testing needs change significantly.

This section provides a general overview of the steps you perform when 
planning and implementing your tests.

Stage 1: Analyzing Your Application

Before you begin creating a test, you need to analyze your application and 
determine your testing needs. 

First, determine the development environments in which your application 
controls were developed, such as Web, Java, or .NET, so that you can load 
the required QuickTest add-ins. 

Then determine the functionality that you want to test. To do this, consider 
the various activities that customers perform in your application to 
accomplish specific tasks. Which objects and operations are relevant for the 
set of business processes that need to be tested? Which operations require 
customized keywords to provide additional functionality? 

While you are thinking about the business processes you want to test, 
consider how you can divide these processes into smaller units, which will 
be represented by your test’s actions. Each action should emulate an activity 
that a customer might perform when using your application. 

As you plan, try to keep the amount of steps you plan to include in each 
action to a minimum. Creating small, modular actions helps make your 
tests easier to read, follow, and maintain. 



Chapter 12 • Creating Tests Using the Keyword-Driven Methodology

337

Stage 2: Preparing the Testing Infrastructure

To complete the infrastructure that is part of the planning process, you need 
to build the set of resources to be used by your tests, including shared object 
repositories containing test objects (which are representations of the objects 
in your application), function libraries containing functions that enhance 
QuickTest functionality, and so on. For more information, see Chapter 5, 
“Managing Test Objects in Object Repositories” and Chapter 31, “Working 
with User-Defined Functions and Function Libraries.”

At this stage you also need to configure QuickTest according to your testing 
needs. This can include setting up your global testing preferences, your run 
session preferences, any test-specific preferences, and recovery scenarios. 
You can also create automation scripts that automatically set the required 
configurations (such as the add-ins to load) on the QuickTest client at the 
beginning of a run session. For more information, see Chapter 50, 
“Automating QuickTest Operations.”

Lastly, you create one or more tests that serve as action repositories in which 
you can store the actions to be used in your tests. Generally, you create an 
action repository test for each area of your application to be tested. Storing 
all of your actions in specific tests enables you to maintain your actions in a 
central location. When you update an action in the action repository, the 
update is reflected in all tests that contain a call to that action. When you 
run a test, only the relevant action repository tests are loaded. 

You then associate the shared object repositories with the relevant actions. 
This enables you to later insert steps using the objects stored in the object 
repositories.

When you create your tests, you insert calls to one or more of the actions 
stored in this repository. 



Chapter 12 • Creating Tests Using the Keyword-Driven Methodology

338

Stage 3: Adding Steps to Your Actions

In this stage, you add steps to the actions in your test action repository. 

Before you begin adding steps, make sure that you associate your function 
libraries and recovery scenarios with the relevant tests, so that you can 
insert steps using keywords. 

You can create steps using the keyword-driven functionality available in the 
table-like, graphical Keyword View—or you can use the Expert View, if you 
prefer to program steps directly in VBScript. You can add steps to your test in 
one or both of the following ways:

➤ Drag objects from your object repository or from the Available Keywords 
pane to add keyword-driven steps in the Keyword View or Expert View. The 
object repository and Available Keywords pane contain all of the objects 
that you want to test in your application. (You create one or more object 
repositories when you prepare the testing infrastructure, as described in 
“Stage 2: Preparing the Testing Infrastructure” on page 337.)

When you drag an object into the Keyword View, a step is created in the 
action with the default operation for that object. For example, if you drag a 
button object into the Keyword View, the click operation is automatically 
defined for the step. You can then modify the step as needed. For more 
information, see Chapter 14, “Working with the Keyword View” and 
Chapter 39, “Adding Keywords to Your Test.” Advanced users can also add 
steps using the Expert View. For more information, see Chapter 29, 
“Working in the Expert View and Function Library Windows.”

➤ Record on your application.

As you navigate through your application during a recording session, 
QuickTest graphically displays each step you perform as a row in the 
Keyword View. A step is something that causes or makes a change in your 
application, such as clicking a link or image, or submitting a data form. In 
the Expert View, these steps are displayed as lines in a test script (VBScript). 
The Documentation column of the Keyword View also displays a description 
of each step in easy-to-understand sentences. For more information, see 
Chapter 14, “Working with the Keyword View.”



Chapter 12 • Creating Tests Using the Keyword-Driven Methodology

339

Stage 4: Enhancing Your Test

You can enhance the testing process by modifying your test with special 
testing options and/or with programming statements, such as:

➤ Insert checkpoints and output values into your test.

A checkpoint checks specific properties or other characteristics of an object 
and enables you to identify whether or not your application is functioning 
correctly. For more information, see Chapter 17, “Understanding 
Checkpoints.”

You can also use output values to extract data from your test. An output 
value is a value retrieved during the run session and entered into your Data 
Table or stored in a variable or a parameter. You can subsequently use this 
output value as input data in your test. This enables you to use data 
retrieved during a run session in other parts of the test. For more 
information, see Chapter 25, “Outputting Values.”

➤ Broaden the scope of your test by replacing fixed values with parameters.

When you test your application, you can parameterize your steps to check 
how your application performs the same operations with different data. You 
may supply data in the Data Table, define environment variables and values, 
define test or action parameters and values, or instruct QuickTest to generate 
random numbers for current user and test data.

When you parameterize your test, QuickTest substitutes the fixed values in 
your test with the values stored in the relevant parameters. When you use 
Data Table parameters, QuickTest uses the values from a different row in the 
Data Table for each iteration of the test or action. (Each run session that uses 
a different set of parameterized data is called an iteration.) For more 
information, see Chapter 24, “Parameterizing Values.”

➤ Add user-defined functions by creating function libraries and calling their 
functions from your test. For more information, see Chapter 31, “Working 
with User-Defined Functions and Function Libraries.”

➤ Use the many functional testing features included in QuickTest to enhance 
your test and/or add programming statements to achieve more complex 
testing goals. For more information, see Chapter 28, “Adding Steps 
Containing Programming Logic.”



Chapter 12 • Creating Tests Using the Keyword-Driven Methodology

340

Stage 5: Running and Debugging Your Test

After you create your test, you can perform different types of runs to achieve 
different goals.

➤ Run your test to debug it. You can control your run session to help you 
identify and eliminate defects in your test. You can use the Step Into, Step 
Over, and Step Out commands to run your test step by step. You can begin 
your run session from a specific step in your test, or run the test until a 
specific step is reached. You can also set breakpoints to pause your test at 
predetermined points. You can view or change the value of variables in your 
test each time it stops at a breakpoint in the Debug Viewer. You can also 
manually run VBScript commands in the Debug Viewer. For more 
information, see Chapter 35, “Debugging Tests and Function Libraries.”

➤ Run your test to check your application. The test starts running from the 
first line in your test and stops at the end of the test. While running, 
QuickTest connects to your application and performs each operation in your 
test, including any checkpoints, such as checking any text strings, objects, 
tables, and so forth. If you parameterized your test with Data Table 
parameters, QuickTest repeats the test (or specific actions in your test) for 
each set of data values in the Data Table. For more information, see 
Chapter 32, “Running Tests.”

➤ Run your test to update it. 

➤ You can run your test using Maintenance Run Mode when you know that 
your application has changed, and you therefore expect that QuickTest 
will not be able to identify the objects in your test. When you run a test 
in Maintenance Run Mode, a wizard opens for steps that fail because an 
object could not be found in the application. The wizard then guides you 
through the steps of resolving the issue, and, after you resolve the issue, 
the run continues. For more information, see Chapter 36, “Maintaining 
Tests.”

➤ You can run your test using Update Run Mode to update the property 
sets used for test object descriptions, the expected checkpoint values, the 
data available to retrieve in output values, and/or the Active Screen 
images and values. 



Chapter 12 • Creating Tests Using the Keyword-Driven Methodology

341

Stage 6: Analyzing Test Results and Reporting Defects

After you run your test, you can view the results of the run in the Test 
Results window. You can view a summary of your results as well as a detailed 
report. If you captured still images or movies of your application during the 
run, you can view these from the Screen Recorder tab of the Test Results 
window. For more information, see Chapter 33, “Viewing Run Session 
Results.” If you enabled local system monitoring for your test, you can view 
the results in the System Monitor tab of the Test Results window. For more 
information, see “Viewing System Monitor Results” on page 1063.

Finally, you can report defects detected during a run session. If you have 
access to Quality Center, the HP centralized quality solution, you can report 
the defects you discover to the project database. You can instruct QuickTest 
to automatically report each failed step in your test, or you can report them 
manually from the Test Results window. For more information, see 
Chapter 51, “Integrating with Quality Center.”

Using the Keyword-Driven Methodology

By creating your tests with a keyword-driven methodology in mind, your 
tests become more modular, focusing on the operations to test using both 
QuickTest built-in keywords and your own user-defined keywords. 
Additionally, because it is possible to add objects to the object repository 
before they exist in an application, it is possible to begin preparing your 
automated keyword-driven tests even before a software build containing the 
new objects is available.

One or a few automation experts usually develop the test automation 
infrastructure that all tests related to a certain application or functionality 
can use. The automation infrastructure usually includes one or more shared 
object repositories and one or more function libraries.

The information in the sections below provides guidance on the main tasks 
involved in creating these resources and describes where you can find 
detailed documentation for these tasks.



Chapter 12 • Creating Tests Using the Keyword-Driven Methodology

342

Analyzing Your Application
In this step, you analyze your application to determine your testing needs. 
This step is divided into multiple tasks: 

➤ Determine the development environments that QuickTest needs to support. 
From the perspective of QuickTest, your application comprises windows 
containing a hierarchy of objects that were created in one or more 
development environments. QuickTest provides support for these 
environments using add-ins. 

You load QuickTest add-ins when QuickTest opens by using the Add-in 
Manager dialog box. You can check which add-ins are loaded by choosing 
Help > About QuickTest Professional. For more information, see the 
HP QuickTest Professional Add-ins Guide.

➤ Prepare the information that QuickTest needs to identify objects in your 
application and to (optionally) open your application at the beginning of a 
run session. You need to know the URL, the executable file name and path, 
or other command-line information. Later, you will enter this in Record and 
Run Settings dialog box. For more information, see the sections describing 
the Record and Run options for your testing environment in the 
HP QuickTest Professional Add-ins Guide.

➤ Analyze the various business processes that customers perform while using 
your application to determine the actions you need to create. You create an 
action for each sub-process, or task, a customer might perform.

Navigate through your application from a customer’s perspective and 
perform the tasks that customers might perform. Each process you perform 
in your application will be represented as a test in QuickTest. You can create 
your tests now, or you can wait until you are ready to add steps to your tests

As you perform a process, try to compartmentalize or "chunk" it into 
modular units. 



Chapter 12 • Creating Tests Using the Keyword-Driven Methodology

343

Example

By creating separate reusable actions for each task, you can include calls to 
the same actions from multiple tests. For example, you may want to include 
a Login action in many of your tests.

You can create empty actions now to set up a skeleton infrastructure for 
your tests, or you can create them when you are ready to add steps to your 
actions. For more information, see “Working with Actions” on page 425.

You may also want to create a single test storing all actions relevant for an 
application. Then all other tests can call the actions stored in this central 
repository. This helps with test structure and maintenance. 

Tip: As you plan your tests and actions, keep in mind that short tests and 
actions that check specific functions of the application or complete a 
transaction are better than long ones that perform several tasks.

Setting Up Object Repositories
In this step, you build one or more object repositories and ensure that all 
objects have clear names that follow any predetermined naming 
conventions defined by your organization. 

You can create object repositories using QuickTest functionality to recognize 
and learn the objects in your application, or you can manually define 
objects. The object repository should contain all the objects that are relevant 
for the tests using this infrastructure.

An application that enables users to purchase items online might contain various 
business processes, including registering on the site and purchasing items. Each 
process may require one or more tasks—you create actions based on these tasks. For 
example, registering on the site may be a simple process requiring only one action, 
whereas purchasing items may be more complex, requiring several actions, such as a 
Login action, a Browse action, an AddToCart action, a PurchaseItems action, and a 
Logout action.



Chapter 12 • Creating Tests Using the Keyword-Driven Methodology

344

By creating and populating shared object repositories that can be associated 
with multiple actions, you can use the same object repository in multiple 
tests. By maintaining all objects that are relevant to an area of an 
application within one shared object repository, and by associating that 
object repository with all relevant actions, changes to the application can be 
reflected in the object repository without the need to update tests.

Before you create a new object repository, verify whether an object 
repository containing the objects you are testing already exists. If not, you 
can create a new object repository or add objects to an existing one. 

Creating shared object repositories for the test automation infrastructure 
can include the following tasks:

➤ Change the way that QuickTest identifies specific objects, if needed. This is 
particularly helpful when your application contains objects that change 
frequently or are created using dynamic content, for example, from a 
database. This task needs to be done before you create your object 
repository. For more information, see “Configuring Object Identification” 
on page 105.

➤ Decide how you want to organize your object repositories. For individual 
tests, you can work with the individual action’s object repositories, or you 
can work with a common (shared) object repository that can be used with 
multiple tests. If you are new to testing, you may want to keep the default 
object repository per-action setting for tests. As you feel more comfortable 
with the basics of test design, you may want to take advantage of the shared 
object repository option. 

If you decide to work with shared object repositories, you need to determine 
how many shared object repository files are required for your application. 
You also need to determine which shared object repository will be used for 
each area of your application. 



Chapter 12 • Creating Tests Using the Keyword-Driven Methodology

345

For more information, see “Managing Test Objects in Object Repositories” 
on page 135.

➤ Add (learn) objects from your application. You instruct QuickTest to learn 
the objects in your application according to filters that you define. For more 
information, see “Adding Test Objects to a Local or Shared Object 
Repository” on page 136.

➤ If necessary, create new objects to represent objects that do not yet exist in 
your application. Then update the properties and values of these objects as 
necessary after they exist in the application. For more information, see 
“Defining New Test Objects” on page 147.

➤ Ensure that objects in the object repository have names that are easy for 
application testers to recognize and that follow any established object 
naming guidelines. This helps make both test creation and maintenance 
easier over time.

➤ Copy or move objects from one repository to another, as needed. For more 
information, see Chapter 7, “Managing Object Repositories.”

➤ Merge objects added to local repositories by application testers into the 
shared object repositories of the automation infrastructure. You can also 
merge two or more existing repositories. For more information, see 
Chapter 8, “Merging Shared Object Repositories.”

Creating Function Libraries
Creating function libraries involves developing customized functions for the 
application you want to test. You may want to develop functions to test 
special application functionality that is not already supplied by the methods 
in the QuickTest object model. This enables you to create keywords that 
perform operations that are not normally available for use with a particular 
test object class. For example, you may need to add a worksheet to an Excel 
file, or to generate a text file during a run session. 

It may also be useful to wrap existing methods and functions together with 
additional programming to create application-specific functions for testing 
operations or sequences that are commonly performed in your application. 
The functions you create will be available either as extra keywords or as 
replacements for built-in QuickTest keywords during the test creation stage.



Chapter 12 • Creating Tests Using the Keyword-Driven Methodology

346

By encapsulating much of the complex programming into function 
libraries, and by making these functions flexible enough to use in many 
testing scenarios (through the use of function parameters that control the 
way the functions behave), one or a few automation experts can prepare the 
keywords that many application testers (who are less technical) can include 
in multiple tests. This also makes it possible to update testing functionality 
without having to update all the tests that use the keywords.

You may perform the following tasks when creating a function library for 
the test automation infrastructure:

➤ Determine whether you need to create any user-defined functions or 
whether you should associate any existing function libraries with your test. 

➤ Determine which keywords are needed. 

➤ Develop and document business-level keywords in function libraries using 
the QuickTest Function Library window. For more information, see 
“Working with User-Defined Functions and Function Libraries” on page 905 
and “Creating a Function Library” on page 909.

➤ Create the actual functions within the function libraries. You can do this 
manually, or you can use the Function Definition Generator to generate 
function definitions and header information. For more information, see 
“Using the Function Definition Generator” on page 923.

➤ Optionally define functions as new or replacement methods for test 
objects. For more information, see “Registering User-Defined Functions as 
Test Object Methods” on page 939. 

➤ Debug the function libraries. For more information, see “Debugging a 
Function Library” on page 916.



Chapter 12 • Creating Tests Using the Keyword-Driven Methodology

347

Configuring QuickTest According to Your Testing Needs
After you set up the test automation infrastructure, you need to configure 
QuickTest to use this infrastructure:

➤ Define your global testing preferences. You need to specify configuration 
settings that affect how you create and run tests in general—these settings 
are not test-specific. For example, you can instruct QuickTest to record a 
movie of the run session under certain conditions, and to enable other HP 
products to run QuickTest tests (for example, if you want to run your tests 
from Quality Center). 

You can set global testing options using the Options dialog box (Tools > 
Options) or by inserting statements in the Expert View. For more 
information, see “About Setting Global Testing Options” on page 1231.

➤ Determine whether you need to create any recovery scenarios, and create 
them, if needed. Although not directly associated with the keyword-driven 
methodology, the automation experts who maintain the object repositories 
and function libraries also often maintain a set of recovery scenarios that all 
application testers can associate with their tests. Recovery scenarios instruct 
QuickTest how to proceed when a step fails. For more information, see 
“Defining and Using Recovery Scenarios” on page 1329. 

➤ Configure the QuickTest IDE to suit your testing preferences. This enables 
you to easily access any needed panes, such as the Test Flow pane, the 
Resources pane, the Available Keywords pane, or the Data Table. For more 
information, see “QuickTest Window Layout” on page 1135.



Chapter 12 • Creating Tests Using the Keyword-Driven Methodology

348

Building Your Tests 
You can create tests that are as simple or complex as needed. In general, it is 
best to create tests and actions that check just one or a few simple functions 
or complete a transaction rather than creating long tests and actions that 
perform several complex tasks or that perform many tasks. 

You may perform the following tasks when creating tests and test steps:

➤ Create new tests, if needed. To do so, select File > New > Test. 

➤ Create the required actions. For more information, see “Analyzing Your 
Application” on page 342. 

➤ Insert calls to the relevant actions. For example, if the first task performed in 
a test logs in to the application, and you already created a Login action, 
insert a call to that action to include it in your test. For more information, 
see “Inserting Calls to Existing Actions” on page 464.

➤ Associate your object repositories with the relevant actions. This enables 
you to insert steps that perform operations on those objects. For more 
information, see “Associating Object Repositories with Actions” on 
page 446.

➤ Associate your function libraries with the relevant tests. This enables you to 
use your special keywords in any of the associated tests. For more 
information, see “Associating a Function Library with a Test” on page 921.

➤ Optionally associate recovery scenarios with your test. For more 
information, see “Associating Recovery Scenarios with Your Tests” on 
page 1372.



Chapter 12 • Creating Tests Using the Keyword-Driven Methodology

349

Adding Steps to Your Test Actions 
When your actions are ready, you can add steps to them.

➤ Add steps by selecting the keywords (operations) that represent the 
application functionality you want to test. For more information, see 
“Working with the Keyword View” on page 383.

You can insert steps in the Keyword View, the Expert View, or a combination 
of both. You can add steps by dragging test objects from the Available 
Keywords pane, using the New Step option, using the Step Generator, 
entering steps manually, and so on. Make sure to fill in any missing values, 
as needed. 

For more information, see “Adding a Standard Step to Your Test” on 
page 392, “Adding Other Types of Steps to Your Test” on page 407, and 
“Generating Statements in the Expert View or in a Function Library” on 
page 833.

➤ Consider enhancing your tests by inserting checkpoint and output value 
steps to verify that your application is behaving as expected during a run 
session.

You can insert checkpoints to check for differences in the text strings, 
objects, and tables in your application. For more information, see 
“Understanding Checkpoints” on page 495.

You can insert output value steps that retrieve values in your test and store 
them for use as input values at a different stage in the run session. For more 
information, see “Outputting Values” on page 669.

➤ Consider data-driving your test to check how your application behaves with 
different data input during subsequent run sessions. You can also data-drive 
your test to check how your application behaves during multiple iterations 
of the same action during a single run session. For more information, see 
“Working with Data Tables” on page 1197.

➤ Consider increasing the power and flexibility of your test by replacing fixed 
values with parameters, if applicable. When you parameterize your test, you 
can check how it performs the same operations with multiple sets of data, or 
from data stored or generated by an external source. For more information, 
see “Parameterizing Values” on page 625.



Chapter 12 • Creating Tests Using the Keyword-Driven Methodology

350

Note: If you have useful WinRunner assets, you may want to link to 
WinRunner tests and call WinRunner TSL functions from your QuickTest 
test. For more information, see “Working with WinRunner” on page 1517. 

Running and Troubleshooting Your Tests
When your tests are ready, you run them, view the run results, and 
troubleshoot your tests, as needed. 

➤ Before you run a test, ensure that all of the required settings are configured 
as needed and that the required QuickTest add-ins are loaded. Make sure 
that your application is open to the appropriate location for the beginning 
of the test, or that you instructed QuickTest to open it for you. Additionally, 
make sure that the Test Settings dialog box (File > Settings) and Record and 
Run Settings dialog box (Automation > Record and Run Settings) are 
configured for your test. For more information, see “Running Tests” on 
page 953.

➤ After your test runs, view the run results. Expand the nodes in the Test 
Results window to see where steps failed and to try to understand why. For 
more information, see “Viewing Run Session Results” on page 969.

➤ Troubleshoot your test so that it runs correctly. For example, you may need 
to add or modify test steps. For more information, see “Maintaining Tests” 
on page 1101.



Chapter 12 • Creating Tests Using the Keyword-Driven Methodology

351

Sample Implementation of the Keyword-Driven 
Methodology 

As you have seen above, the process of creating a test is actually comprised 
of several steps. 

This section walks you through the activities you might perform for each of 
these steps, if you were preparing a test suite for the Mercury Tours 
application, including:

➤ Define the Testing Environment for the Mercury Tours Application

➤ Analyze the Mercury Tours Application

➤ Plan and Create the Mercury Tours Test Action Repository

➤ Set Up the Object Repositories for the Mercury Tours Application

➤ Create the Function Libraries and Functions Required for Testing the 
Mercury Tours Application

➤ Create Tests and Test Steps for the Mercury Tours Business Processes

Mercury Tours is a Web-based demo application that simulates an online 
flight reservation application. You can view and experiment with this demo 
application at http://newtours.demoaut.com.

Define the Testing Environment for the Mercury Tours 
Application
Defining the testing environment includes determining which add-ins to 
load and the data required to activate the application.

Mercury Tours is a Web application that contains a few Java applets. 
Therefore, we need to ensure that the QuickTest Web and Java Add-ins are 
installed and loaded.

To activate the application, we need to run a URL in a Web browser. The 
URL is http://newtours.demoaut.com.

http://newtours.demoaut.com
http://newtours.demoaut.com


Chapter 12 • Creating Tests Using the Keyword-Driven Methodology

352

Analyze the Mercury Tours Application
When analyzing the application to determine which business processes we 
may want to test, we can consider both the existing business processes in 
the application as well as functionality that is planned for the upcoming 
release of the application.

The business processes that should be tested for the Mercury Tours 
application include:

➤ Registering on the site

➤ Reserving a flight

➤ Viewing the itinerary of a pending reservation

➤ Cancelling a reservation

➤ Updating user profile information

➤ Reserving hotel rooms

➤ Renting a car

Although the last two items above have not yet been implemented in the 
application we want to test, it is important to take them into account in the 
planning stage.

Now that we have determined the primary business processes, we should 
analyze each one to determine the break-down of these business processes 
into their reusable building-block elements (what will later become the test 
actions of our tests).

A logical breakdown of the above business processes could be:

➤ Registering on the site

➤ Open the application

➤ Go to the registration page

➤ Enter the required information in the form

➤ Submit the form

➤ Verify that the form information is valid



Chapter 12 • Creating Tests Using the Keyword-Driven Methodology

353

➤ If a mandatory field did not have a value, an error message is 
displayed.

➤ If the password and confirm password values are not the same, an error 
message is displayed.

➤ If the username entered in the form already exists in the database, an 
error message is displayed.

➤ Otherwise, the successful registration page is displayed.

➤ Reserving a flight

➤ Open the application

➤ Sign on

➤ Navigate to the Flight Finder page

➤ Enter the flight details

➤ Enter the service class and airline preferences 

➤ Click Next to navigate to the next page

➤ Select the departure and return flights

➤ Click Next to navigate to the next page

➤ Enter the passenger details

➤ Verify that the form information is valid

➤ If the return date is earlier than the departure date, an error message is 
displayed.

➤ If a mandatory field was not entered, an error message is displayed.

➤ Otherwise, the flight confirmation page is displayed.



Chapter 12 • Creating Tests Using the Keyword-Driven Methodology

354

➤ Viewing the itinerary of a pending reservation

➤ Open the application

➤ Sign on

➤ Navigate to the Itinerary page

➤ Cancelling a reservation

➤ Open the application

➤ Sign on

➤ Navigate to the Itinerary page

➤ Select the reservation to cancel

➤ Click the Cancel Checked Reservations button

➤ Verify 

➤ Successful cancellation

➤ Updating user profile information

➤ Open the application

➤ Sign on

➤ ...

And so on for each of the remaining processes.

Comparing the sub-items in each of the business-processes helps to identify 
the reusable elements of each business process.



Chapter 12 • Creating Tests Using the Keyword-Driven Methodology

355

Plan and Create the Mercury Tours Test Action Repository
By analyzing the breakdown performed in the previous step, we are able to 
identify some logical, and reusable sub-processes. Each of these is created as 
a reusable action.

The required actions for the set of business processes we defined could 
include:

➤ Register

➤ Sign On

➤ Flight Details and Preference

➤ Select a Flight

➤ Enter Passenger Details

➤ Verification and Confirmation 

➤ Navigate to Itinerary

➤ Cancel Flight

Although we are not yet ready to create the actual tests or steps yet, we can 
go ahead and create a single test. In the test, we can already define empty 
test actions for each of these. This test then acts as the action repository, and 
the tests that test each of our business processes all call actions from this 
action repository test.



Chapter 12 • Creating Tests Using the Keyword-Driven Methodology

356

Set Up the Object Repositories for the Mercury Tours 
Application
Now that we know which business processes and sub-processes we want to 
test, we can analyze the application in detail to determine which objects are 
important to test and how we want to organize the objects we will learn for 
these tests.

We know that it is best to create manageable-sized object repositories that 
are organized by areas of the application.

Most of the business processes we plan to test are in the central flight 
reservation area of the application and thus many of the same objects will 
be used in each of the relevant tests, but the sign on and registration 
processes are more standalone areas and it makes sense to store their objects 
separately. Thus it seems logical to create two object repository files:

➤ SignOn_Register

➤ Reservations

To create each of these repositories, we take advantage of the Navigate and 
Learn feature, which enables us to navigate to each page that is relevant for 
the object repository automatically learn all the objects in the page. By using 
the filter options in the Navigate and Learn feature, we can ensure that we 
learn only the types of objects we need. For example, we can avoid learning 
all the non-link image objects on every page, since these objects probably do 
not need to be tested and would otherwise result in a larger and less 
manageable object repository.

Afterwards, we should open the object repository for editing to delete 
specific objects that are not necessary and to rename objects that may 
otherwise be difficult to recognize when we later want to create steps with 
these objects.



Chapter 12 • Creating Tests Using the Keyword-Driven Methodology

357

Our SignOn_Register object repository may look something like this:

Note that each page contains only the relevant objects for the Sign on and 
Register business processes.

Create the Function Libraries and Functions Required for 
Testing the Mercury Tours Application
In some of our business processes, we want to test not only that the business 
processes can be performed to completion, but that certain features in the 
application behave as expected.

Because testing such functionality requires complex programming, and 
because we want to test the functionality in several different sub-processes, 
it makes sense to create these functionality checks in the form of functions, 
and to store them in function libraries, so that we can call the functions 
from more than one test action.

For example, we want to verify that the Mercury Tours application properly 
handles various invalid data in forms and we want to verify that the 
application properly calculates ticket prices for various types of itineraries. 



Chapter 12 • Creating Tests Using the Keyword-Driven Methodology

358

We also want to make sure that we have ways to recover from certain 
application problems so that if such a problem occurs while a step is 
running, it does not prevent the action or test from completing its run or 
prevent other tests from running afterwards. This recovery function can be 
used by recovery scenarios that we will associate with our tests at later 
stages.

At this stage, we can create a function library containing functions such as:

➤ VerifyForm

➤ VerifyTicketPrice

➤ DataBaseFailureRecoveryFunction

Create Tests and Test Steps for the Mercury Tours Business 
Processes
Now that we have planned and prepared all of the required resources for our 
tests, we are ready to use them to create tests and test steps that represent 
the steps a real user would perform on the Mercury Tours application as well 
as inserting functions that verify the expected functionality of various 
features.

We start by using the Resources pane to associate the relevant object 
repository with each action in the action repository test and to associate our 
function library with the test as well. 



Chapter 12 • Creating Tests Using the Keyword-Driven Methodology

359

Then we use the Available Keywords pane to drag objects and functions into 
our actions to create the individual steps of each action, and add checkpoint 
and output value steps to verify expected behavior. 

As we design our steps, we make sure to parameterize method arguments as 
necessary to maximize reusability of the actions in different business 
processes (tests).

Finally, we create new tests for each of the processes we defined in the 
Analyze the Mercury Tours Application step (see page 352). We use the 
Resources pane to associate our function library with each test and then we 
insert calls to the relevant actions. 



Chapter 12 • Creating Tests Using the Keyword-Driven Methodology

360



361

13
Creating Tests Using the Recording 
Mechanism

You can create a test by recording the operations you perform on your 
application. After you create your test, you can enhance it using checkpoints 
and other special testing options. 

Important: Before you begin recording, you need to ensure that your tests 
cover your testing requirements. For more information on planning your 
tests, see “Creating Tests — Overview” on page 309.

Tip: You can also create a test by using the keyword-driven methodology, 
which enables you to select keywords to indicate the operations you want to 
perform on your application, as described in “Creating Tests Using the 
Keyword-Driven Methodology” on page 335. 

This chapter includes:

 ➤  About Recording Tests on page 362

 ➤  Recording a Test on page 364

 ➤  Choosing the Recording Mode on page 368

 ➤  Working with the Active Screen on page 376



Chapter 13 • Creating Tests Using the Recording Mechanism

362

About Recording Tests

You record your tests while navigating through your application. As you 
navigate, QuickTest graphically displays each step you perform as a row in 
the Keyword View and a line in the Expert View. A step is anything a user 
does that changes the content of a page or object in your application, for 
example, clicking a link or typing data in an edit box. Your test steps 
represent the operations you perform on your application. During a run 
session, QuickTest uses the recorded steps to replicate the operations you 
performed while recording.

While you record your test steps, QuickTest creates test objects representing 
the objects in your application on which you perform operations. This 
enables QuickTest to identify the objects in your application both while 
creating a test and during a run session. 

Recording can be useful in the following circumstances:

➤ You are new to QuickTest and want to learn how QuickTest interprets the 
operations you perform on your application and how it converts them to 
QuickTest objects and built-in operations.

➤ You need to quickly create a test that tests the basic functionality of an 
application or feature, and the test does not require long-term maintenance.

➤ You are working with a new application or with major new features of an 
existing application, and you want to learn how QuickTest interacts with 
the application.

➤ You are developing functions that incorporate built-in QuickTest keywords.

After creating your initial test, you can further enhance it by adding and 
modifying steps in the Keyword View or Expert View. 



Chapter 13 • Creating Tests Using the Recording Mechanism

363

Guidelines for Recording Tests
Consider the following when recording tests:

➤ If you are recording steps on a Web-based application, evaluate the types of 
events you need to record. If you need to record more or fewer events than 
QuickTest generally records by default, you can configure the events you 
want to record. For more information, see the section on configuring Web 
event recording in the HP QuickTest Professional Add-ins Guide.

➤ Consider increasing the power and flexibility of your test by replacing fixed 
values with parameters. When you parameterize your test, you can check 
how it performs the same operations with multiple sets of data, or from data 
stored or generated by an external source. For more information, see 
“Parameterizing Values” on page 625.

➤ Consider using actions to streamline the testing process. For more 
information, see “Working with Actions” on page 425.

➤ If you have useful WinRunner assets, you can link to WinRunner tests and 
call WinRunner TSL functions from your QuickTest test. For more 
information, see “Working with WinRunner” on page 1517. 

➤ When you record tests, you may not notice that new objects are being 
added to the local object repository. This may result in many testers 
maintaining local object repositories with copies of the same objects. When 
using a keyword-driven methodology, you select the objects for your steps 
from the existing object repository. When you need a new object, you can 
add it to your local object repository temporarily, but you are also aware that 
you need to add it to the shared object repository for future use.

➤ When you record a test, QuickTest enters the correct objects, methods, and 
argument values for you. Therefore, it is possible to create a test with little 
preparation or planning.



Chapter 13 • Creating Tests Using the Recording Mechanism

364

Recording a Test 

You can create the main body of a test by recording the typical processes 
that users perform. QuickTest records the operations you perform, displays 
them as steps in the Keyword View, and generates them in a script (in the 
Expert View).

Note that by default, each test includes a single action, but can include 
multiple actions. This chapter describes how to record a test with a single 
action. For information on why and how to work with multiple actions, see 
Chapter 15, “Working with Actions.”

By default, QuickTest records in the normal recording mode. If you are 
unable to record on an object in a given environment in the standard 
recording mode, or if you want to record mouse clicks and keyboard input 
with the exact x- and y-coordinates, you may want to record on those 
objects using analog or low-level recording. For more information, see 
“Choosing the Recording Mode” on page 368.

Tip: If you have objects that behave like standard objects, but are not 
recognized by QuickTest, you can define your objects as virtual objects. For 
more information, see Chapter 47, “Learning Virtual Objects.”

Consider the following when recording a test:

➤ Before you start to record, close all applications not required for the 
recording session.

➤ If you are recording on a Web site, determine the security zone of the site. 
When you record on a Web browser, the browser may prompt you with 
security alert dialog boxes. You may choose to disable/enable these dialog 
boxes.

➤ Decide how you want to open the application when you record and run 
your test. You can choose to have QuickTest open one or more specified 
applications, or record and run on any application that is already open. The 
Record and Run Settings dialog box contains tabbed pages corresponding to 
the add-ins loaded. For more information, see the section on setting Record 
and Run options in the HP QuickTest Professional Add-ins Guide.



Chapter 13 • Creating Tests Using the Recording Mechanism

365

➤ Choose how you want QuickTest to record and run your test by setting 
global testing options in the Options dialog box and settings specific to your 
test in the Test Settings dialog box. For more information, see Chapter 44, 
“Setting Global Testing Options” and Chapter 45, “Setting Options for 
Individual Tests.”

➤ If you are recording on a Web object, you must make a change to the 
object’s value to make QuickTest record the step. For example, to record a 
selection in a WebList object, you must click on the list, scroll to an entry 
that was not originally showing, and select it. If you want to select the item 
in the list that is already displayed, you must first select another item in the 
list (click it), then return to the originally displayed item and select it (click 
it).

Note: If you are creating a test on Web objects, you can record your test on 
Microsoft Internet Explorer and run it on another supported browser 
(according to the guidelines specified in the HP QuickTest Professional 
Readme). QuickTest supports running tests on the following browsers—
Microsoft Internet Explorer, Netscape Browser, Mozilla Firefox, and 
applications with embedded Web browser controls. For more information, 
see the HP QuickTest Professional Add-ins Guide.

To record a test:

 1 Open QuickTest. For more information, see “Starting QuickTest” on page 20.

 2 Open a test:

➤ To create a new test, select File > New > Test, or click the down arrow 
next to the New button and select Test. Alternatively, click the New 
button down arrow and select Test. 

➤ To open an existing test, select File > Open > Test or click the down arrow 
next to the Open button and select Test. In the Open Test dialog box, 
browse to and select a test and click Open.

For more information, see “Managing Your Test” on page 321.



Chapter 13 • Creating Tests Using the Recording Mechanism

366

 3 Click the Record button or select Automation > Record. If you are recording 
a new test and have not yet set your record and run settings in the Record 
and Run Settings dialog box (from Automation > Record and Run Settings), 
the Record and Run Settings dialog box opens.

After you set the record and run settings for a test, the Record and Run 
Settings dialog box will not open the next time you start a session in the 
same test. However, you can select Automation > Record and Run Settings 
to open the Record and Run Settings dialog box. You can use this option to 
set or modify your record and run preferences in the following scenarios:

➤ You have already recorded one or more steps in the test and you want to 
modify the settings before you continue recording.

➤ You want to run the test on a different application than the one you 
previously used.



Chapter 13 • Creating Tests Using the Recording Mechanism

367

The tabs available in the Record and Run Settings dialog box depend on the 
loaded add-ins. 

 4 Set the required options. For information on the tab to use and the options 
available for the environment you are testing, see the relevant add-in 
chapter in the HP QuickTest Professional Add-ins Guide.

 5 To apply your changes and keep the Record and Run Settings dialog box 
open, click Apply.

 6 Click OK to close the Record and Run Settings dialog box and begin 
recording your test.

 7 Navigate through your application. QuickTest records each step you perform 
and displays it in the Keyword View and Expert View. 

 8 To determine if your application is functioning correctly, you can insert text 
checkpoints, object checkpoints, and bitmap checkpoints. For more 
information, see Chapter 17, “Understanding Checkpoints.”

 9 You can parameterize your test to check how it performs the same 
operations with multiple sets of data, or with data from an external source. 
For more information, see Chapter 24, “Parameterizing Values.”

 10 When you complete your recording session, click the Stop button, select 
Automation > Stop, or press the Stop command shortcut key. (To define a 
Stop command shortcut key, see “Setting Run Testing Options” on 
page 1253.)

 11 To save your test, click the Save button or select File > Save. In the Save 
QuickTest Test dialog box, assign a name to the test. QuickTest suggests a 
default folder called Tests. For more information, see “Saving a Test” on 
page 324. 



Chapter 13 • Creating Tests Using the Recording Mechanism

368

Choosing the Recording Mode

Normal recording mode records the objects in your application and the 
operations performed on them. This mode is the default and takes full 
advantage of the QuickTest test object model, recognizing the objects in 
your application regardless of their location on the screen.

When working with specific types of objects or operations, however, you 
may want to choose from the following, alternative recording modes:

➤ Analog Recording. Enables you to record the exact mouse and keyboard 
operations you perform in relation to either the screen or the application 
window. In this recording mode, QuickTest records and tracks every 
movement of the mouse as you drag the mouse around a screen or window.

This mode is useful for recording operations that cannot be recorded at the 
level of an object, for example, recording a signature produced by dragging 
the mouse.

Note: You cannot edit Analog Recording steps from within QuickTest. 

➤ Low Level Recording. Enables you to record on any object in your 
application, whether or not QuickTest recognizes the specific object or the 
specific operation. This mode records at the object level and records all 
run-time objects as Window or WinObject test objects. Use low-level 
recording for recording in an environment or on an object not recognized 
by QuickTest. You can also use low-level recording if the exact coordinates 
of the object are important for your test.

Note: Steps recorded using Low Level Recording mode may not run 
correctly on all objects.



Chapter 13 • Creating Tests Using the Recording Mechanism

369

Guidelines for Analog and Low Level Recording 
Consider the following guidelines when choosing Analog Recording or Low 
Level Recording:

➤ Use analog recording or low-level recording only when normal recording 
mode does not accurately record your operation. 

➤ Analog recording and low-level recording require more disk space than 
normal recording mode.

➤ You can switch to either Analog Recording or Low Level Recording in the 
middle of a recording session for specific steps. After you record the 
necessary steps using analog recording or low-level recording, you can 
return to normal recording mode for the remainder of your recording 
session.

Analog Recording

➤ Use analog recording for applications in which the actual movement of the 
mouse is what you want to record. These can include drawing a mouse 
signature or working with drawing applications that create images by 
dragging the mouse. 

➤ You can record in Analog Recording mode relative to the screen or relative 
to a specific window. 

➤ Record relative to a specified window if the operations you perform are 
on objects located within one window and that window does not move 
during the analog recording session. This ensures that during the run 
session, QuickTest will accurately identify the window location on which 
the analog steps were performed even if the window is in a different 
location when you run the analog steps. QuickTest does not record any 
click or mouse movement performed outside the specified window. 
When using this mode, QuickTest does not capture any Active Screen 
images.

➤ Record relative to the screen if the window on which you are recording 
your analog steps moves during recording or if the operations you 
perform are on objects located within more than one window. This can 
include dragging and dropping an object from one window to another. 
When using this mode, QuickTest captures only the Active Screen image 
of the final state of the window on which you are recording.



Chapter 13 • Creating Tests Using the Recording Mechanism

370

➤ The steps recorded using analog recording are saved in a separate data file. 
This file is stored with the action in which the analog steps are recorded.

➤ When you record in Analog Recording mode, QuickTest adds to your test a 
RunAnalog statement that calls the recorded analog file. The corresponding 
Active Screen displays the results of the last analog step that was performed 
during the analog recording session.

Low Level Recording

➤ Use low-level recording for recording on environments or objects not 
supported by QuickTest. 

➤ Use low-level recording for when you need to record the exact location of 
the operation on your application screen. While recording in normal mode, 
QuickTest performs the step on an object even if it has moved to a new 
location on the screen. If the location of the object is important to your test, 
switch to Low Level Recording to enable QuickTest to record the object in 
terms of its x- and y- coordinates on the screen. This way, the step will pass 
only if the object is in the correct position.

➤ While low-level recording, QuickTest records all parent level objects as 
Window test objects and all other objects as WinObject test objects. They 
are displayed in the Active Screen as standard Windows objects.

➤ Low-level recording supports the following methods for each test object:

➤ WinObject test objects: Click, DblClick, Drag, Drop, Type

➤ Window test objects: Click, DblClick, Drag, Drop, Type, Activate, Minimize, 
Restore, Maximize

➤ Each step recorded in Low Level Recording mode is shown in the Keyword 
View and Expert View. (Analog recording records only the one step that calls 
the external analog data file.)



Chapter 13 • Creating Tests Using the Recording Mechanism

371

Using Analog Recording
You can switch to Analog Recording mode only while recording. The option 
is not available while editing.

To record in Analog Recording mode:

 1 If you are not already recording, click the Record button to begin a 
recording session.

 2 Click the Analog Recording button or select Automation > Analog 
Recording. The Analog Recording Settings dialog box opens.

 3 Select from the following options: 

➤ Record relative to the screen. QuickTest records any mouse movement or 
keyboard input relative to the coordinates of your screen, regardless of 
which application(s) are open or which application(s) you specified in 
the Record and Run Settings dialog box. 

Select Record relative to the screen if you perform your analog 
operations on objects located within more than one window or if the 
window itself may move while you are recording your analog operations.



Chapter 13 • Creating Tests Using the Recording Mechanism

372

Note: When you record in Analog Recording mode relative to the screen, 
the run session will fail if your screen resolution or the screen location on 
which you recorded your analog steps has changed from the time you 
recorded.

The analog tracking continues to record the movement of the mouse 
until the mouse reaches the QuickTest screen to turn off Analog 
Recording or to stop recording. Clicking on the QuickTest icon in the 
Windows taskbar is also recorded. This should not affect your test. The 
mouse movements and clicks on the QuickTest screen itself are not 
recorded. 

➤ Record relative to the following window. QuickTest records any mouse 
movement or keyboard input relative to the coordinates of the specified 
window. 

Select Record relative to the following window if all your operations are 
performed on objects within the same window and that window does 
not move during analog recording. This guarantees that the test will run 
the analog steps in the correct position within the window even if the 
window’s screen location changes after recording. 

Note: If you have selected to record in Analog Recording mode relative 
to a window, any operation performed outside the specified window is 
not recorded while in Analog Recording mode. 

 4 If you choose to Record relative to the following window, click the pointing 
hand and click anywhere in the window on which you want to record in 
Analog Recording mode. The title of the window you clicked is displayed in 
the window title box.

For more information on using the pointing hand feature, see “Tips for 
Using the Pointing Hand” on page 374.

 5 Click Start Analog Record. 



Chapter 13 • Creating Tests Using the Recording Mechanism

373

 6 Perform the operations you want to record in Analog Recording mode. 

All of your keyboard input, mouse movements, and clicks are recorded and 
saved in an external file. When QuickTest runs the test, the external data file 
is called. It tracks every movement and click of the mouse to replicate 
exactly the operations you recorded.

 7 When you are finished and want to return to normal recording mode, click 
the Analog Recording button or select Automation > Analog Recording to 
turn off the option.

If you chose to Record relative to the screen, QuickTest inserts the 
RunAnalog step for a Desktop item. For example:

Desktop.RunAnalog "Track1"

If you chose to Record relative to the following window, QuickTest inserts 
the RunAnalog step for a Window item. For example:

Window("Microsoft Internet Explorer").RunAnalog "Track1"

The track file called by the RunAnalog method contains all your analog data 
and is stored with the current action.

You can use this track file in more than one action in your test, and also in 
other tests, by saving the action containing the RunAnalog step as a reusable 
action. A reusable action can be called by other tests or actions. For more 
information on using actions, see Chapter 15, “Working with Actions” and 
Chapter 16, “Working with Advanced Action Features.”

Note: When entering the RunAnalog method, you must use a valid and 
existing track file as the method argument. 



Chapter 13 • Creating Tests Using the Recording Mechanism

374

Tip: To stop an analog step in the middle of a run session, press CTRL + ESC, 
then click Stop in the Testing toolbar. 

Tips for Using the Pointing Hand

➤ You can hold the left CTRL key to change the pointing hand to a standard 
pointer. You can then change the window focus or perform operations in 
QuickTest or in your application, such as right-clicking, using the scroll bars, 
or moving the pointer over an object to display a context menu.

➤ If the window containing the object you want to select is partially hidden 
by another window, hold the pointing hand over the partially hidden 
window for a few seconds until it comes to the foreground. Then point to 
and click the required object. You can configure the length of time required 
to bring a window into the foreground using the General pane of the 
Options dialog box. 

➤ If the window containing the object you want to select is fully hidden by 
another window, or if a dialog box is hidden behind a window, press the left 
CTRL key and arrange the windows as needed.

➤ If the window containing the object you want to select is minimized, you 
can display it by holding the left CTRL key, right-clicking the application in 
the Windows task bar, and choosing Restore from the context menu.

➤ If the object you want to select can be displayed only by performing an 
event (such as right-clicking or moving the pointer over an object to display 
a context menu), hold the left CTRL key. The pointing hand temporarily 
turns into a standard pointer and you can perform the event. When the 
object you want to select is displayed, release the left CTRL key. The pointer 
becomes a pointing hand again.



Chapter 13 • Creating Tests Using the Recording Mechanism

375

Using Low Level Recording
You can switch to Low Level Recording mode only while recording a test. 
The option is not available while editing a test.

To record in Low Level Recording mode:

 1 If you are not already recording, click the Record button to begin a 
recording session.

 2 Click the Low Level Recording button or select Automation > Low Level 
Recording. 

The record mode changes to Low Level Recording and all of your keyboard 
input and mouse clicks are recorded based on mouse coordinates. When 
QuickTest runs the test, the cursor retraces the recorded clicks.

 3 When you are finished and want to return to normal recording mode, click 
the Low Level Recording button or select Automation > Low Level 
Recording to turn off the option.

The following examples illustrate the difference between the same 
operations recorded using normal mode and Low Level Recording mode. 

Suppose you type the word tutorial into a user name edit box and then press 
the TAB key while in normal recording mode. Your test is displayed as 
follows in the Keyword View and Expert View:

Browser("Welcome: Mercury Tours").Page("Welcome: Mercury Tours").
WebEdit("userName").Set "tutorial"



Chapter 13 • Creating Tests Using the Recording Mechanism

376

If you perform the same action while in Low Level Recording mode, 
QuickTest records the click in the user name box, followed by the keyboard 
input, including the TAB key. Your test is displayed as follows in the Keyword 
View and Expert View:

Window("Microsoft Internet Explorer").WinObject("Internet Explorer_Server").
Click 564,263

Window("Microsoft Internet Explorer").WinObject("Internet Explorer_Server").
Type "tutorial"

Window("Microsoft Internet Explorer").WinObject("Internet Explorer_Server").
Type micTab 

Working with the Active Screen

The Active Screen provides a snapshot of your application as it appeared 
when you performed the corresponding step during a recording session. An 
Active Screen can be captured for every step you record. Additionally, 
depending on the Active Screen capture options that you used while 
recording, the page displayed in the Active Screen can contain detailed 
property information on each object displayed on the page. To view the 
Active Screen pane, click the Active Screen button or select View > Active 
Screen. For information on setting Active Screen recording options, see 
“Enhancing Your Test” on page 315. 

The Active Screen enables you to parameterize object values and insert 
checkpoints, methods, and output values for almost any object in the page 
after you finish your recording session, even if your application is not 
available or you do not have a step in your test corresponding to the 
selected object.



Chapter 13 • Creating Tests Using the Recording Mechanism

377

You can specify the level at which QuickTest captures and stores 
information on objects while recording tests. For example, you can instruct 
QuickTest to capture all properties for all test objects on the captured screen, 
or only the properties of the recorded objects and their parents. For more 
information, see “Increasing or Decreasing the Active Screen Information 
Saved with a Test” on page 378. 

If QuickTest captured object information while recording your test, you can 
use the Active Screen to add these objects to the local object repository. For 
information on configuring the Active Screen capture settings, see “Setting 
Active Screen Options” on page 1240. For information on adding objects to 
the object repository from the Active Screen, see “Adding Test Objects to a 
Local or Shared Object Repository” on page 136.

When QuickTest creates an Active Screen page for a Web-based application, 
it stores the path to images and other resources on the page, rather than 
downloading and storing the images with your test. Therefore, you may 
need to provide login information to view password-protected resources. For 
information on accessing password-protected resources in the Active Screen 
of a Web-based application, see the section on accessing password-protected 
resources in the active screen in the HP QuickTest Professional Add-ins Guide.

When working with Web-based applications, you can specify Active Screen 
display criteria for captured Web pages. For example, you can specify 
whether QuickTest should load ActiveX controls or Java applets. For more 
information, see “Setting Active Screen Options” on page 1240.

Active Screen pages for non-Web-based applications are based on a single 
bitmap capture of the visible part of the application window (or other 
top-level object), with context-sensitive areas representing each object 
displayed in the Active Screen.

You can choose whether or not to save the content of the Active Screen with 
your test. Saving the content of the Active Screen with your test is especially 
useful if you want to be able to edit the saved test directly from the Active 
Screen. Later, if you need to conserve disk space after you finish editing the 
test, and you plan to use your test only for test runs, you can save the test 
without the content of the Active Screen. (Tests without Active Screen files 
use significantly less disk space.) For more information, see “Increasing or 
Decreasing the Active Screen Information Saved with a Test”, below.



Chapter 13 • Creating Tests Using the Recording Mechanism

378

Increasing or Decreasing the Active Screen Information 
Saved with a Test
You can decide if and how much information you want to capture and save 
in the Active Screen. The more information you capture, the easier it is to 
add steps to your test using the many Active Screen options. However, more 
captured information also leads to slower recording and editing times. 
Removing or decreasing Active Screen information can be especially useful 
for conserving disk space after you have finished designing the test and you 
are using the test only for test runs. 

If you find that the information saved in the Active Screen after recording is 
not sufficient for your test editing needs, or if you no longer need Active 
Screen information, and you want to decrease the size of your test, you can 
change the amount of Active Screen information saved with your test.

To increase or decrease the Active Screen information saved with your test:

 1 Confirm that the Active Screen capture preference in the Active Screen pane 
of the Options dialog box is set to capture the amount of information you 
need. For more information, see “Setting Active Screen Options” on 
page 1240.

 2 Perform one of the following:

➤ Perform an Update Run Mode operation to save the required amount of 
information in the Active Screen for all existing steps. For more 
information on the Update Run Mode options, see “Updating a Test 
Using the Update Run Mode Option” on page 1125.

➤ Re-record the step(s) containing the object(s) you want to add to the 
Active Screen by performing one of the following: 

➤ Select the step after which you want to record your step, position your 
application to match the selected location in your test, and then begin 
recording. 

➤ Place a breakpoint in your test at the step before which you want to 
add a step and run your test to the breakpoint. This brings your 
application to the point from which to record the step. For more 
information on setting breakpoints, see “Setting Breakpoints” on 
page 1079. 



Chapter 13 • Creating Tests Using the Recording Mechanism

379

To stop saving Active Screen information (and reduce the disk space used 
by your test):

 1 Open the relevant test in QuickTest. 

 2 Select File > Save As and clear the Save Active Screen files check box. 

Note: If you clear this check box, your Active Screen files will not be saved, 
and you will not be able to edit your test using the options that are normally 
available from the Active Screen. 

 3 Click Save to apply your changes. For more information, see “Saving a Test” 
on page 324.

Tip: If you need to recover Active Screen files after you save a test without 
Active Screen files, re-record the necessary steps or use the Update Run 
Mode option to recapture screens for all steps in your test. For more 
information, see “Updating a Test Using the Update Run Mode Option” on 
page 1125. 



Chapter 13 • Creating Tests Using the Recording Mechanism

380

Updating a Single Active Screen Capture
As the content of your application changes, you can continue to use the 
Active Screen from tests that you recorded previously. To do this, you update 
the selected Active Screen display so that you can use the Active Screen to 
add new steps to your test rather than re-recording steps on new or modified 
objects.

For example, suppose that one of the pages in your Web site now includes a 
new object and you want to add a checkpoint that checks this object. You 
can use the Change Active Screen command to replace the page in your 
Active Screen pane and then proceed to create a checkpoint for this object.

Note: It is also possible to update all Active Screen captures saved with a test 
using the Update Run Mode. For more information, see “Updating a Test 
Using the Update Run Mode Option” on page 1125.

To update a selected Active Screen capture:

 1 Make sure that your application is displaying the window or page that you 
want to use to replace what is currently displayed in the Active Screen pane.

 2 In the Keyword View, click a step that you want to change. The window or 
page is displayed in the Active Screen pane.

 3 Select Tools > Change Active Screen. The QuickTest window is hidden and 
the mouse pointer becomes a pointing hand. For information about using 
the pointing hand feature, see “Tips for Using the Pointing Hand” on 
page 381.

 4 Click the window or page displayed in your application. 

 5 When a message prompts you to change your current Active Screen display, 
click Yes.



Chapter 13 • Creating Tests Using the Recording Mechanism

381

Tips for Using the Pointing Hand

➤ You can hold the left CTRL key to change the pointing hand to a standard 
pointer. You can then change the window focus or perform operations in 
QuickTest or in your application, such as right-clicking, using the scroll bars, 
or moving the pointer over an object to display a context menu.

➤ If the window containing the object you want to select is partially hidden 
by another window, hold the pointing hand over the partially hidden 
window for a few seconds until it comes to the foreground. Then point to 
and click the required object. You can configure the length of time required 
to bring a window into the foreground using the General pane of the 
Options dialog box. 

➤ If the window containing the object you want to select is fully hidden by 
another window, or if a dialog box is hidden behind a window, press the left 
CTRL key and arrange the windows as needed.

➤ If the window containing the object you want to select is minimized, you 
can display it by holding the left CTRL key, right-clicking the application in 
the Windows task bar, and choosing Restore from the context menu.

➤ If the object you want to select can be displayed only by performing an 
event (such as right-clicking or moving the pointer over an object to display 
a context menu), hold the left CTRL key. The pointing hand temporarily 
turns into a standard pointer and you can perform the event. When the 
object you want to select is displayed, release the left CTRL key. The pointer 
becomes a pointing hand again.



Chapter 13 • Creating Tests Using the Recording Mechanism

382

Tips for Improving Active Screen Performance
You can choose from the following Active Screen options to improve 
performance: 

➤ If you are testing Windows-based applications, you can choose to save all 
Active Screen information in every step, save information only in certain 
steps, or to disable Active Screen captures entirely. You set this preference in 
the Active Screen pane of the Options dialog box. The less information 
saved, the faster your recording times will be. For more information, see 
“Setting Active Screen Options” on page 1240. 

➤ If you are testing Web-based applications, you can disable screen capture of 
all steps in the Active Screen. From the Active Screen pane, click Custom 
Level to open the Custom Active Screen Capture Settings dialog box. Select 
the Disable Active Screen Capture option. This will improve recording time. 
For more information on the Active Screen pane of the Options dialog box, 
see “Setting Active Screen Options” on page 1240. 

➤ If you are testing an application using a QuickTest add-in, see the 
HP QuickTest Professional Add-ins Guide to determine whether special Active 
Screen screen capture options exist for that environment. 

➤ When you save a new test, or when you save a test with a new name using 
Save As, you can choose not to save the captured Active Screen files with the 
test, as described in step 2 of the procedure describing how to stop saving 
Active Screen information on page 379. Tests without Active Screen files use 
significantly less disk space. 



383

14
Working with the Keyword View

The Keyword View provides an easy way to create, view, and modify tests in 
a graphical easy-to-use format.

This chapter includes:

 ➤  About Working with the Keyword View on page 384

 ➤  The Keyword View on page 385

 ➤  Understanding the QuickTest Object Hierarchy on page 391

 ➤  Adding a Standard Step to Your Test on page 392

 ➤  Adding Other Types of Steps to Your Test on page 407

 ➤  Modifying the Parts of a Step on page 410

 ➤  Working with Comments on page 410

 ➤  Managing Action Steps on page 412

 ➤  Using Keyboard Commands in the Keyword View on page 415

 ➤  Defining Keyword View Display Options on page 416

 ➤  Viewing Properties of Step Elements in the Keyword View on page 422

 ➤  Working with Breakpoints in the Keyword View on page 423



Chapter 14 • Working with the Keyword View

384

About Working with the Keyword View

The Keyword View enables you to create and view the steps of your test in a 
modular, table format. Each step is a row in the Keyword View that is 
comprised of individual, modifiable parts. You create and modify steps by 
selecting items and operations in the Keyword View and entering 
information as required. Each step is automatically documented as you 
complete it, enabling you to view a description of your test in 
understandable sentences. You can also use these descriptions as 
instructions for manual testing, if required.

You can use the Keyword View to add new steps to your test and to view and 
modify existing steps. When you add or modify a step, you select the test 
object or other step type you want for your step, select the method 
operation you want to perform, and define any necessary values for the 
selected operation or statement. Working in the Keyword View does not 
require any programming knowledge. The programming required to 
actually perform each test step is done automatically behind the scenes by 
QuickTest. 



Chapter 14 • Working with the Keyword View

385

The Keyword View

The Keyword View enables you to create and view the steps of your test in a 
keyword-driven, modular, table format. The Keyword View is comprised of a 
table-like view, in which each step is a separate row in the table, and each 
column represents the different parts of the steps. The columns displayed 
vary according to your selection. For more information, see “Defining 
Keyword View Display Options” on page 416.

Actions are the highest level of the test hierarchy. They contain all the steps 
that are part of that action, and can include calls to other reusable actions. 
In the Keyword View, you can use the Action toolbar to view either the flow 
of all the top-level action calls in the test, or the content of a specific action. 
You can also display an action by double-clicking it in the Test Flow pane.

You can insert a new action, a call to an action, or a copy of an action, to 
your test. For more information on inserting and using actions in the 
Keyword View, see Chapter 15, “Working with Actions.” 

Tip: You can copy and paste or drag and drop actions to move them to a 
different location within a test. For more information, see “Managing 
Action Steps” on page 412.

Action

Action toolbar

Step

Keyword View 
columns



Chapter 14 • Working with the Keyword View

386

Each action is comprised of steps. Each step is inserted as a row in the 
Keyword View. For example, the Keyword View could contain the following 
rows:

These rows show the following three steps that are all performed on the 
Welcome: Mercury Tours page of the Mercury Tours sample Web site:

➤ tutorial is entered in the userName edit box.

➤ An encrypted string is entered in the password edit box.

➤ The Sign-In image is clicked.

➤ The Documentation column translates each of the steps into 
understandable sentences.

For every step in the Keyword View, QuickTest displays a corresponding line 
of script in the Expert View. If you select a specific row in the Keyword View 
and switch to the Expert View, the cursor is located in the corresponding 
line of the script.

You can use the Keyword View to add steps at any point in your test. After 
you add steps, you can modify or delete them using standard editing 
commands and drag-and-drop functionality. You can print the contents of 
the Keyword View to your Windows default printer (and even preview the 
contents prior to printing). For more information, see “Printing a Test” on 
page 332.

In the Keyword View, you can also view properties for items such as 
checkpoints, output values, and actions, use conditional and loop 
statements, and insert breakpoints to assist you in debugging your test.

The Keyword View can contain any of the following columns: Item, 
Operation, Value, Assignment, Comment, and Documentation. A brief 
description of each column is provided below.  



Chapter 14 • Working with the Keyword View

387

Item Column
The item on which you want to perform the step (test object, utility object, 
function call, or statement). This column displays a hierarchical icon-based 
tree. The highest level of the tree are actions, and all steps are contained 
within the relevant branch of the tree. Steps performed within the same 
parent object are displayed under that same object. Function calls, utility 
objects, and statements are placed in the tree hierarchy at the same level as 
the item above them (as a sibling). 

You can collapse or expand an item in the item tree to change the level of 
detail that the tree displays.

➤ To collapse an item and its sub-items, click the arrow (  ) to the left of 
the item’s icon, press the minus key (-) on your keyboard number pad, 
press the left arrow key on your keyboard, or right-click the item and 
select Collapse Sub Tree. The item tree hides all its sub-items and the 
collapse arrow changes to expand.

➤ To collapse all the items in the tree, select View > Collapse All.

➤ To expand an item one level or to its previously expanded state, select it 
and click the arrow (  ) to the left of the item icon, press the plus key (+) 
on your keyboard number pad, press the right arrow key on your 
keyboard, or right-click the item and select Expand Sub Tree. The tree 
displays the details for the item and all its first-level sub-items and the 
expand arrows change to collapse.

➤ To expand an item and all its sub-items, select the item and press the 
asterisk (*) key on your keyboard number pad. The tree displays the 
details for the item and all its sub-items and the expand arrows change to 
collapse.

➤ To expand all the items in the tree, select View > Expand All.

Note: When you use the +, -, and * keys to expand and collapse the Item 
tree, make sure that the entire row is selected (by clicking to the left of the 
item's icon) and that a specific column is not selected, before pressing the 
required key. Otherwise, the keys will not work.



Chapter 14 • Working with the Keyword View

388

Operation Column
The operation to be performed on the item. This column contains a list of 
all available operations (methods, functions, or properties) that can be 
performed on the item selected in the Item column, for example, Click and 
Select. The default operation for the item selected in the Item column is 
displayed by default. 

Value Column
The argument values for the selected operation, or the content of the 
statement. The Value cell is partitioned according to the number of 
arguments of the selected operation.

If an argument has a predefined list of values, QuickTest provides a 
drop-down list of possible values. If a list of values is provided, you cannot 
manually type a value in this box.

 Assignment Column
The assignment of a value to or from a variable. For example, Store in cCols 
would store the return value of the current step in a variable called cCols, 
which you could then use later in the test.

You can select either Store in or Get from, depending on whether you want 
to retrieve the value from a variable or store the value in a variable. A Store 
in X value in the Assignment column is equivalent to an X = <step> line in 
the Expert View. A Get From X value in the Assignment column is 
equivalent to a <step> = X line in the Expert View. For more information on 
storing variables, see “Storing Return Values and Action Output Parameter 
Values” on page 794.



Chapter 14 • Working with the Keyword View

389

Comment Column
A free text edit box for any information you want to add regarding the step. 
These are also displayed as inline comments in the Expert View.

Note: You can also enter a comment on a new line below the currently 
selected step by choosing Insert > Comment. For more information, see 
“Adding Comments” on page 815.

Documentation Column
Read-only auto-documentation of what the step does in an 
easy-to-understand sentence, for example, Click the "Sign-in" image. or Select 
"San Francisco" in the "toPort" list. If you want to print or view only the steps, 
you can choose to display only this column. For example, you may want to 
print or view manual testing instructions.

Tips:

➤ You can display only the Documentation column of a test by right-
clicking the column header row and choosing Documentation Only from 
the displayed menu. 

➤ You can also copy the documentation by selecting Edit > Copy 
Documentation to Clipboard, or right-clicking the column header row 
and choosing Copy Documentation to Clipboard from the displayed 
menu, and then paste it into a different application, as required.

Note: If you do not see one or more of these columns in the Keyword View, 
you can use the Keyword View Options dialog box to display them. For 
more information, see “Defining Keyword View Display Options” on 
page 416.



Chapter 14 • Working with the Keyword View

390

Tips for Working with the Keyword View

➤ You can use the left and right arrow keys to move the focus one cell to the 
left or right, with the following exceptions:

➤ In the Item column, the left and right arrow keys collapse or expand the 
item (if possible). If not possible, the arrow keys behave as in any other 
column.

➤ When a cell is in edit mode, for example, when modifying a value or 
comment, the left and right arrow keys move within the edited cell.

➤ When a Value cell is selected, press CTRL+F11 to open the Value 
Configuration Options dialog box.

➤ When the entire step is selected (by clicking to its left), use the + key 
(expands a specific branch), - key (collapses a specific branch), and * key 
(expands all branches) to expand and collapse the Item tree.

➤ When a row is selected (not a specific cell), you can type a letter to jump to 
the next row that starts with that letter.

Note: In addition to the above commands, you can also use QuickTest menu 
shortcuts. For more information, see “Performing QuickTest Commands” on 
page 46.



Chapter 14 • Working with the Keyword View

391

Understanding the QuickTest Object Hierarchy

The QuickTest test object hierarchy comprises one or more levels of test 
objects. The top level object may represent a window, dialog box, or browser 
type object, depending on the environment. The actual object on which 
you perform an operation may be learned as a top level object, a second 
level object, for example, Window.WinToolbar, or a third level object, for 
example, Browser.Page.WebButton.

In some cases, even though the object in your application may be embedded 
in several levels of objects, the hierarchy does not include these objects. For 
example, if a WebButton object in your application is actually contained in 
several nested WebTable objects, which are all contained within a Browser 
and Page, the learned object hierarchy is only Browser.Page.WebButton.

An object that can potentially contain a lower-level object is called a 
container object. All top-level objects in the object hierarchy are container 
objects. If a second-level object contains third-level objects according to the 
QuickTest object hierarchy, then that object is also considered a container 
object. For example, in the step Browser.Page.Edit.Set "David", Browser and 
Page are both container objects.

For information on the QuickTest object hierarchy for specific 
environments, see the relevant section in the HP QuickTest Professional 
Add-ins Guide.



Chapter 14 • Working with the Keyword View

392

When you add a step to your test in the Keyword View, the step is added as a 
sibling step or sub-step of the currently selected step, according to the 
QuickTest object hierarchy, as follows:

➤ If the selected step is a container object, the new step is inserted as the 
first sub-step of the container object.

➤ If the selected step is at the lowest level of the object hierarchy, the new 
step is inserted as a sibling step immediately after the selected step.

Adding a Standard Step to Your Test

You can use the Keyword View to add a step at any point in your test. You 
can add a step below the currently selected step, at the end of a test, or at the 
beginning of a new test. You can also add a new step immediately after a 
conditional or loop block, as described in “Adding a Standard Step After a 
Conditional or Loop Block” on page 409. 

Tip: You can also add a step using the Step Generator. For more information, 
see “Inserting Steps Using the Step Generator” on page 777.

Originally 
selected step
New step as 
first child

Originally 
selected step
New step as 
sibling at child 
level



Chapter 14 • Working with the Keyword View

393

To add a standard step:

 1 Perform one of the following:

➤ Click anywhere in the Keyword View (below the existing steps, if any) to 
add a step at the end of the test. If no steps are defined yet, this adds the 
first step to the test.

➤ Select Insert > New Step to add a new step after the existing steps (if 
any). If the test does not contain any steps, this adds the first step to the 
test.

➤ Select an existing step and select Insert > New Step to add a new step 
between existing steps. (If you select the last step, QuickTest adds a step 
at the end of the test.)

➤ Right-click an existing step and select Insert New Step from the 
context-sensitive menu.

➤ Drag and drop a test object from the Available Keywords pane to the 
Keyword or Expert view.

A new step is added to the Keyword View, either as a sibling step or a 
sub-step, according to the QuickTest object hierarchy, as described in 
“Understanding the QuickTest Object Hierarchy” on page 391.

Note: The Select an item list is generally expanded to display all applicable 
test objects, as well as the Step Generator and Statement items.

 2 Define the step by clicking in the cell for the part of the step you want to 
modify and specifying its contents, as described below. Each cell in the step 
row represents a different part of the step. For each step, you can define the 
following:

➤ Item. A test object on which you perform a step. You must select an 
option from the Item column before you can add additional content to a 
step. For more information, see “Selecting an Item for Your Step” on 
page 395. 

➤ Operation. The operation to be performed on the item. For more 
information, see “Selecting the Operation for Your Step” on page 403.



Chapter 14 • Working with the Keyword View

394

➤ Value. (If relevant.) The argument values for the selected operation. For 
more information, see “Defining Values for Your Step Arguments” on 
page 404.

➤ Assignment. (If relevant) The variable value. Double-click in the left part 
of the Assignment cell if you want to create or edit an assignment to or 
from a variable. Click the arrow button to select either Get from or Store 
in, depending on whether you want to retrieve the value from a variable 
or store the value in a variable. Click in the right part of the Assignment 
cell to specify or modify the name of the variable.

Note: The Documentation cell is read-only. This cell displays an explanation 
of what the step does in an easy-to-understand sentence, for example, Click 
the "Sign-in" image. or Select "San Francisco" in the "toPort" list. In most cases, 
QuickTest can generate the description displayed in this cell. 

If you created a function library and associated it with the test, QuickTest 
can display documentation for it only if you defined the relevant text in the 
function library. For more information, see “Documenting the Function” on 
page 934 and “Working with User-Defined Functions and Function 
Libraries” on page 905. 

Tip: You can use the standard editing commands (Cut, Copy, Paste, and 
Delete) in the Edit menu or in the context menu to make it easier to define 
or modify your steps. You can also drag and drop steps to move them to a 
different location within your action. For more information, see “Managing 
Action Steps” on page 412 and “Using Keyboard Commands in the Keyword 
View” on page 415.

 3 After you make your changes, save the test. For more information, see 
“Saving a Test” on page 324.



Chapter 14 • Working with the Keyword View

395

Selecting an Item for Your Step 
An item can be any of the following: 

➤ A test object in the object repository. 

➤ You can either choose a test object from the list, or select Object from 
repository to open the Select Object for Step dialog box in which you can 
select a test object from the object repository or an object from your 
application. The test objects available in the list are the sibling and child 
test objects of the previous step’s test object. The Select Object for Step 
dialog box contains all test objects in the object repository. You can select 
whether you want the operation for the step to be a test object operation 
or a run-time object operation. If you select a run-time object, an Object 
statement is added to the Keyword View. 

➤ You can drag and drop an object from the Available Keywords pane to 
your test. For more information, see “Understanding the Available 
Keywords Pane” on page 1165.

➤ You can select an object directly from your application and add it to the 
object repository so that you can use it in the step.

➤ A statement, for example, a Dim statement.

➤ A step generated by the Step Generator. For more information, see “Inserting 
Steps Using the Step Generator” on page 777.

To select an item:

Click in the Item cell. Then click the down arrow and select the item on 
which you want to perform the step from the displayed list. When you 
insert a new step, the list is displayed automatically. 



Chapter 14 • Working with the Keyword View

396

Selecting a Test Object from the Item List

The test objects available in the Item list are the sibling and child test 
objects of the previous step’s test object, as defined in the shared object 
repository. The example below shows the objects available for the step 
following a userName test object.

To select a test object from the displayed Item list:

 1 Click in the Item cell, then click the arrow button to display the Item list. If 
you have just created a new step, the list is displayed automatically as soon 
as you create the new step.

 2 In the Item list, select the test object on which you want to perform the 
step. The item you select is displayed in the Item cell. You now need to 
specify an operation for the step. For more information, see “Selecting the 
Operation for Your Step” on page 403. 

Selecting a Test Object from the Shared Object Repository

You can select any object in the object repository tree for your new step, or 
you can select the Insert run-time object option to enter an Object 
statement for the selected test object in your test. If the object repository is 
very large, you can search for the object. For example, you may want to add 
a password object that you know is an Edit box. You can search all the Edit 
type objects for one called password, or even one containing the letter p. 

For more information on the object repository, see Chapter 5, “Managing 
Test Objects in Object Repositories.” For more information on Object 
statements, see “Accessing Native Properties and Operations” on page 887.



Chapter 14 • Working with the Keyword View

397

To select a test object from the shared object repository:

 1 Click in the Item cell, then click the arrow button to display the Item list. If 
you have just created a new step, the list is displayed automatically as soon 
as you create the new step.

 2 In the Item list, select Object from repository. The Select Object for Step 
dialog box opens.

 3 Select an object from the object repository tree. If the object repository is 
very large, you can search for the object, as described below. If a search is 
not required, proceed to step 8.



Chapter 14 • Working with the Keyword View

398

 4 In the Name box, enter the name of the object, or any part of the name. For 
example, you can enter p to search for all object names containing the 
letter p.

Note: If the Name box is left empty, all objects of the selected object type are 
considered matching criteria.

 5 In the Type box, select the type of object for which to search, or select <All> 
to search for the object in all the object types. 

Note: The object types in this list are a generic grouping of objects according 
to the general object characteristics. For example, the List type contains list 
and list view objects, as well as combo boxes; the Table type contains both 
tables and grids; and the Miscellaneous type contains a variety of other 
objects, such as WebElement and WinObject.

 6 Click the Find Next button. The search starts at the currently selected node, 
and the number of objects that match your criteria is displayed. The first 
object in the list that matches your criteria is highlighted.

 7 If required, click the Find Next button to navigate through all the objects 
that match your search criteria. The search continues to the end of the tree, 
then wraps to the beginning of the tree, and continues.

Tip: Press F3 to find the next object that matches your search criteria, or 
SHIFT+F3 to find the previous match.

 8 Click OK. The object is displayed in the Item column of the Keyword View. 
and is also added to the Item list. You can now specify the operation for the 
selected object. For more information, see “Selecting the Operation for Your 
Step” on page 403.



Chapter 14 • Working with the Keyword View

399

Selecting a Test Object from Your Application

If the shared object repository does not include the test object that you need 
for this step, you can select it directly from your application and add it to 
the shared object repository so that you can use it in this and other steps. 

To add a test object from your application:

 1 Click in the Item cell, then click the arrow button to display the Item list. If 
you have just created a new step, the list is displayed automatically as soon 
as you create the new step. 

 2 In the Item list, select Object from repository. The Select Object for Step 
dialog box opens. 



Chapter 14 • Working with the Keyword View

400

 3 Click the pointing hand button. QuickTest is hidden.

 4 Use the pointing hand to click on the required object in your application. 
For more information about using the pointing hand feature, see “Tips for 
Using the Pointing Hand” on page 402.

If the location you clicked is associated with more than one object, the 
Object Selection dialog box opens. 

 5 Select the object for the new step and click OK. The object is displayed in the 
shared object repository tree in the Select Object for Step dialog box.



Chapter 14 • Working with the Keyword View

401

 6 Click OK. The object is displayed in the Item column in the Keyword View. 
You can now specify the operation for the selected object. For more 
information, see “Selecting the Operation for Your Step” on page 403.

Tips: 

➤ If you select an object in your application that is not in the shared object 
repository, a test object is added to the local object repository when you 
insert the new step. After you add a new test object to the local object 
repository, it is recommended to rename it, if its name does not clearly 
indicate its use. For example, you may want to rename a test object 
named Edit (that is used for entering a username) to UserName. This will 
enable other users to select the appropriate test object when adding steps 
using test objects located in this shared object repository.

➤ After you add the required objects to the local object repository, you can 
use the Object Repository Merge Tool to update the shared object 
repository and make the new objects available to other tests. For more 
information, see “Updating a Shared Object Repository from Local 
Object Repositories” on page 269.

➤ If you are adding a container test object, it is also recommended to 
specify its context, for example, if you are adding a confirmation message 
box from a Login page, you may want to name it Login > Confirm. For 
more information, see “Renaming Test Objects” on page 169.



Chapter 14 • Working with the Keyword View

402

Tips for Using the Pointing Hand

➤ You can hold the left CTRL key to change the pointing hand to a standard 
pointer. You can then change the window focus or perform operations in 
QuickTest or in your application, such as right-clicking, using the scroll bars, 
or moving the pointer over an object to display a context menu.

➤ If the window containing the object you want to select is partially hidden 
by another window, hold the pointing hand over the partially hidden 
window for a few seconds until it comes to the foreground. Then point to 
and click the required object. You can configure the length of time required 
to bring a window into the foreground using the General pane of the 
Options dialog box. 

➤ If the window containing the object you want to select is fully hidden by 
another window, or if a dialog box is hidden behind a window, press the left 
CTRL key and arrange the windows as needed.

➤ If the window containing the object you want to select is minimized, you 
can display it by holding the left CTRL key, right-clicking the application in 
the Windows task bar, and choosing Restore from the context menu.

➤ If the object you want to select can be displayed only by performing an 
event (such as right-clicking or moving the pointer over an object to display 
a context menu), hold the left CTRL key. The pointing hand temporarily 
turns into a standard pointer and you can perform the event. When the 
object you want to select is displayed, release the left CTRL key. The pointer 
becomes a pointing hand again.



Chapter 14 • Working with the Keyword View

403

Selecting the Operation for Your Step
The Operation cell specifies the operation to be performed on the item listed 
in the Item column. The available operations vary according to the item 
selected in the Item column. When you select an item, all operations 
associated with that item are listed. 

For example, if you selected a browser test object, such as a WebButton 
object, the list contains all of the available methods, such as Click or Exist. 

To select an operation for the step:

Click in the Operation cell. Then click the down arrow button and select the 
operation to be performed on the item. The available operations vary 
according to the item selected in the Item column. For example, if you 
selected a browser test object, the list contains all of the methods and 
properties available for the browser object. If you selected a test object in the 
Item column, the default operation (most commonly-used operation) for 
the test object is automatically displayed in the Operation column. This cell 
is not applicable if you chose to insert a statement in the Item column. 

Note: Even if the Item column in the Keyword View is displayed to the right 
of the Operation column, you must still first select an item to view the list of 
available operations in the Operation column.



Chapter 14 • Working with the Keyword View

404

Defining Values for Your Step Arguments
The Value cell lists the values for each of the operation arguments. You can 
insert a constant value or a parameter for each argument. 

You can also encode password values. For more information, see “Inserting 
Encoded Passwords into Method Arguments and Data Table Cells” on 
page 406.

The Value cell is partitioned according to the number of possible arguments 
of the selected operation. Each partition contains different options, 
depending on the type of argument that can be entered in the partition, as 
follows:

Argument 
Partition

Argument Type Instructions

String Enables you to enter a string containing English 
letters and numbers, enclosed by quotes. If you 
do not enter the quotes, QuickTest adds them 
automatically. If you modify a cell that contains 
a string enclosed by quotes by removing the 
quotes, QuickTest will not restore the quotes 
and the value will be treated as a variable name.

Integer Enables you to enter any number, or use the up 
and down arrows to select a number.

Boolean Enables you to select a True or False value from 
the list.

Predefined 
Constant

Enables you to select a predefined value from 
the list. If a list of values is provided, you cannot 
manually type a value in this box.



Chapter 14 • Working with the Keyword View

405

To define or modify a value:

Click in each partition of the Value cell and enter the argument values for 
the selected operation. Note that when you click in the Value cell, a tooltip 
displays information for each argument. In the tooltip, the argument for the 
partition that is currently highlighted is displayed in bold, and any optional 
arguments are enclosed in square brackets.

Note: After you enter the initial value, you can edit the value at any time in 
the Keyword View for a test object, utility object, function call, conditional 
statement, or loop statement. You cannot edit the value of a regular 
statement, such as x=10, in the Keyword View after you define its initial 
value. You can edit the previously defined value of a regular statement only 
in the Expert View.

To add multi-line arguments: 

Press SHIFT+ENTER to add line breaks to your argument value. After you enter 
a multi-line argument value, QuickTest automatically converts it to a string, 
and displays only the first line of the argument, followed by an ellipsis (...). 
This format for multi-line argument values is also displayed in the 
Documentation column of the Keyword View. 

Tip: Select the cell to display the entire argument value to be used in the 
step. Note that the argument value is used during the run session exactly as 
it appears in the step. For example, if you enter quotation marks as part of 
the argument value, they are included in the argument value used during 
the run session. QuickTest automatically interprets a multi-line value as a 
string, so you do not need to add quotation marks for this purpose.



Chapter 14 • Working with the Keyword View

406

To parameterize the value for an argument:

Click the button in the required Value cell. For more information, see 
“Parameterizing Values” on page 625. 

Inserting Encoded Passwords into Method Arguments and Data 
Table Cells

You can encode passwords to use the resulting strings as method arguments 
or Data Table parameter values. For example, your Web site may include a 
form in which the user must supply a password. You may want to test how 
your site responds to different passwords, but you also want to ensure the 
integrity of the passwords. The Password Encoder enables you to encode 
your passwords and place secure values into the Data Table.

Tip: You can also encrypt strings in Data Table cells using the Encrypt option 
in the Data Table menu. For more information, see “Data Menu” on 
page 1209.

To encode a password:

 1 From the Windows menu, select Start > Programs > QuickTest Professional > 
Tools > Password Encoder. The Password Encoder dialog box opens.

 2 Enter the password in the Password box.

 3 Click Generate. The Password Encoder encrypts the password and displays it 
in the Encoded String box.



Chapter 14 • Working with the Keyword View

407

 4 Use the Copy button to copy and paste the encoded value into the Data 
Table. 

 5 Repeat the process for each password you want to encode.

 6 Click Close to close the Password Encoder. 

Adding Other Types of Steps to Your Test

In addition to adding standard statement steps to your test using the 
Keyword View, you can also insert the following special types of steps using 
the relevant options from the Insert menu. Each step is entered as a row in 
the Keyword View, and you can then modify it as described in “Modifying 
the Parts of a Step” on page 410.

➤ You can insert a checkpoint step. For more information, see “Understanding 
Checkpoints” on page 495.

➤ You can insert an output value step. For more information, see “Outputting 
Values” on page 669.

➤ You can insert comments in steps to separate parts of an action or a test and 
to add details about a specific part. For more information, see “Adding 
Comments” on page 815. 

➤ You can insert a step that sends information to the results, a step that puts a 
comment line in your test, a step that synchronizes your test with your 
application, or a step that measures a transaction in your test. For more 
information, see “Adding Steps Containing Programming Logic” on 
page 775.

➤ You can insert a step that calls a WinRunner test or function. For more 
information, see “Working with WinRunner” on page 1517.

➤ You can use conditional statements and loop statements in your test. For 
more information, see “Using Conditional and Loop Statements in the 
Keyword View” on page 408.

For information on adding a new step immediately after a conditional or 
loop block, see “Adding a Standard Step After a Conditional or Loop Block” 
on page 409.



Chapter 14 • Working with the Keyword View

408

Using Conditional and Loop Statements in the Keyword 
View
Using conditional statements, you can incorporate decision making into 
your tests. Using loop statements, you can run a group of steps repeatedly, 
either while or until a condition is true. You can also use loop statements to 
repeat a group of steps a specific number of times. Each statement type is 
indicated by one of the following icons in the Keyword View:

After you insert a conditional or loop statement in the Keyword View, you 
can insert or record steps after the statement to include them in the 
conditional or loop block.

For information on including conditional and loop statements in your test, 
see Chapter 28, “Adding Steps Containing Programming Logic.” 

Icon Type

If...Then statement

ElseIf...Then statement

Else statement

While...Wend statement

For...Next statement

Do...While statement

Do...Until statement



Chapter 14 • Working with the Keyword View

409

Adding a Standard Step After a Conditional or Loop Block
After you add a conditional or loop statement to your test, all steps that you 
add or record are automatically inserted within the conditional or loop 
statement block. After you have finished adding steps to the block, you can 
add a step outside of the block, at a sibling level to the conditional or loop 
statement step, as described below. For more information on conditional 
and loop statements, see Chapter 28, “Adding Steps Containing 
Programming Logic.”

To add a standard step after a conditional or loop block:

 1 Select the conditional or loop statement step after and outside of which you 
want to add the new step, and select Insert > New Step After Block or press 
SHIFT+F8. A new step is added to the Keyword View, at the end of the 
conditional or loop block, outside of the conditional or loop statement (as a 
sibling). 

 2 Specify the content of the step by modifying it, as described in “Adding a 
Standard Step to Your Test” on page 392.

Originally 
selected 
conditional or 
loop 
statement

New step as 
sibling



Chapter 14 • Working with the Keyword View

410

Modifying the Parts of a Step

You can modify any part of a step in the Keyword View. For example, you 
can change the test object on which the step is performed, change the 
operation to be performed in the step, or add information regarding a step 
in the Comment column.

When working in the Keyword View, you can use the standard editing 
commands (Cut, Copy, Paste and Delete) in the Edit menu or in the context 
menu to make it easier to modify your steps.

Tip: You can copy and paste, or drag and drop steps to move them to a 
different location in an action. For more information, see “Managing Action 
Steps” on page 412.

To modify a step, click in the cell containing the part of the step you want to 
modify and specify the content of the cell. Each cell in the step row 
represents a different part of the step. For more information, see “Adding a 
Standard Step to Your Test” on page 392.

Working with Comments

A Comment is free text entry. You can insert a comment in the Comment 
cell of a step, or you can add a comment in a separate step. Using comments 
can help improve readability and make a test easier to update. For example, 
you may want to add a comment step at the beginning of each action to 
specify what that section includes. 

After you add a comment, it is always visible as long as one or more 
columns are displayed. For information on selecting columns to display, see 
“Defining Keyword View Display Options” on page 416. QuickTest does not 
process comments when it runs a test.



Chapter 14 • Working with the Keyword View

411

To add a comment to an existing step:

Select the step and type your comment in the Comment column.

Note: You can also insert a comment step. For more information, see 
“Adding Comments” on page 815. 

To modify an existing comment:

Double-click the comment in the Comment column. The cell becomes a free 
text field.  



Chapter 14 • Working with the Keyword View

412

Managing Action Steps

You can move an action step before or after any other step in an action. You 
can also delete it if it is no longer required.

Note: You can also change the run order of actions in the test from the Test 
Flow pane. For more information, see “Using the Test Flow Pane” on 
page 431.

Moving an Action Step
You can move an action to a different location within a test, as needed, and 
you can move a step to a different location within an action.

To move an action or a step in the Keyword View:

➤ In the Item column, drag the step up or down and drop it at the required 
location within the action. When you drag a selected step, a line is 
displayed, enabling you to see the location to which the step will be moved. 
If you drag a step within its parent object, the step is displayed in the new 
position under its parent. If you move the step to a different parent object, 
the parent is duplicated, and the step is moved below it. 

To move a top-level action to a different location in the test, use the Action 
toolbar to display the Test Flow and then drag the action up or down to the 
required location.

➤ Copy or cut the step to the Clipboard and then paste it in the required 
location. You can use Edit > Copy or CTRL + C to copy the step, Edit > Cut or 
CTRL + X to cut the step, and Edit > Paste or CTRL + V to paste the step. 
When you move, copy, or cut an action or step, you also move, copy, or cut 
all of its sub-steps, if any. 



Chapter 14 • Working with the Keyword View

413

Notes:

➤ Conditional and loop blocks can only be copied or cut in their entirety. 
QuickTest does not enable you to copy or cut only the child nodes of 
conditional or loop blocks. After you copy or cut conditional or loop 
blocks to the Clipboard, QuickTest enables you to paste them only in 
valid locations. 

➤ You cannot copy or cut a parent object together with only some of its 
child objects. You must either select only the parent (which 
automatically includes all its child objects) or the parent object together 
with all of its children.

➤ If you copy an action (Insert > Call to Copy of Action, right-click an 
action icon and select Insert Call to Copy of Action, or right-click any 
step and select Action > Insert Call to Copy), the Select Action dialog 
opens, which enables you to insert a call to a copy of an action. For more 
information on inserting a call to a copy of an action, see “Inserting Calls 
to Copies of Actions” on page 466. 



Chapter 14 • Working with the Keyword View

414

Deleting an Action Step
You can delete an action step, if required. Before you delete a step, make sure 
that removing it will not prevent the action from running correctly. When 
an item has both an operation and sub-steps defined for it, as in the 
example below, you can choose whether to delete only the operation of the 
item, or to delete the item and all of its sub-steps.

Note: You cannot delete a step if one of its cells is in edit mode.

To delete a step:

 1 Select the row for the item you want to delete.

 2 Select Edit > Delete or press the DELETE key. One of the following messages is 
displayed, depending on the type of step you select:

➤ If you select an item with either an operation (or checkpoint or output 
value) or sub-steps (but not both), a message opens asking if you want to 
delete the selected item and all of its sub-steps (if any).

➤ If you select an item with both an operation (or checkpoint or output 
value) and sub-steps, a message opens asking whether you want to delete 
the selected item and all of its sub-steps, or delete only the item’s 
operation (and leave the item and sub-steps).

 3 Click Delete Item to delete the selected item (and any sub-steps), or click 
Delete Operation to delete only the operation for the selected item (and not 
delete the item).



Chapter 14 • Working with the Keyword View

415

Using Keyboard Commands in the Keyword View

If you prefer to use your keyboard, you can use the following keyboard 
commands to navigate within the Keyword View:

➤ Press F8 to add a new step below the currently selected step.

➤ Press SHIFT+F8 to add a new step after a conditional or loop block. 

➤ Press F7 to use the Step Generator to add a new step below the selected step.

➤ The TAB and SHIFT+TAB keys move the focus left or right within a single row, 
unless you are in a cell that is in edit mode. If so, press ENTER to exit edit 
mode, and then you can use the TAB keys.

➤ When a cell containing a list is selected:

➤ You can press SHIFT+F4 to open the list for that cell.

➤ You can change the selected item by using the up and down arrow keys. 
In the Item column, the list must be open before you can use the arrow 
keys.

➤ You can type a letter or sequence of letters to move to a value that starts 
with the typed letters. The typed sequence is highlighted in white.



Chapter 14 • Working with the Keyword View

416

Defining Keyword View Display Options

You can choose how you want to display the information in the Keyword 
View using the Keyword View Options dialog box. You can customize the 
display of the Keyword View columns, fonts, and colors. The options you set 
remain in effect for all tests in all subsequent sessions on your computer.

Displaying Keyword View Columns
You can use the Columns tab of the Keyword View Options dialog box to 
specify which columns you want to display in the Keyword View. You can 
also specify the order in which the columns are displayed.

Tip: You can display only the Documentation column by right-clicking the 
column header row and choosing Documentation Only from the displayed 
menu. You can then print the Keyword View for use as instructions for 
manual testing. For more information on printing from the Keyword View, 
see “Printing a Test” on page 332.



Chapter 14 • Working with the Keyword View

417

To specify the Keyword View columns to display:

 1 Select Tools > View Options. The Keyword View Options dialog box opens.

The Available columns list shows columns not currently displayed in the 
Keyword View. The Visible columns list shows columns currently displayed 
in the Keyword View.

 2 Double-click column names or choose column names and click the arrow 
buttons (> and <) to move them between the Available columns and Visible 
columns lists.

Tip: Click the double arrow buttons (>> and <<) to move all the column 
names from one list to the other. Select multiple column names (using the 
SHIFT and/or CONTROL keys) and click the arrow buttons (> and <) to move 
only the selected column names from one list to the other.



Chapter 14 • Working with the Keyword View

418

 3 In the Visible columns list, set the order in which columns appear in the 
Keyword View by selecting one or more columns and then using the up and 
down arrow buttons.

Note: The order of the columns in the Keyword View does not affect the 
order in which the cells need to be completed for each step. For example, if 
you choose to display the Operation column to the left of the Item column, 
you still need to select the item first, and only then is the Operation column 
list refreshed to match the selection you made in the Item column. 

 4 Click OK to close the dialog box and apply the new column display.

Setting Keyword View Fonts and Colors
You can use the Fonts and Colors tab of the Keyword View Options dialog 
box to specify different text and color display options for different elements 
in the Keyword View. 



Chapter 14 • Working with the Keyword View

419

The Fonts and Colors tab includes the following options:  

Option Description

Element You can specify different font and color options for 
each of these Keyword View elements. Select one of 
the following elements to see the current 
definitions and modify them:

➤ Alternate Rows. The background color of every 
other row. The font and text color for the 
alternate rows is the same as the font and text 
color defined for the Default element.

➤ Comment. The row and text of comment lines. 
Note that all of the available formatting options 
apply to entire comment rows, not to comments 
within a regular step row. For comments within 
a step row, only the specified Foreground color 
applies (all other settings are taken from the 
Alternate Rows, Default, or Selected Row 
settings, as appropriate).

➤ Default. All rows and text in the Keyword View 
(except for the elements listed below).

➤ Selected Row. The row and text currently 
selected (highlighted).

Font Name Enables you to modify the font used for text in the 
selected element. You cannot change the font for 
Alternate Rows or Selected Row elements. 

Note: When testing in a Unicode environment, 
you must select a Unicode-compatible font. 
Otherwise, elements in your test may not be 
correctly displayed in the Keyword View. However, 
the test will still run in the same way, regardless of 
the font you choose. 

Size Enables you to modify the font size used for text in 
the selected element. You cannot change the font 
size for Alternate Rows or Selected Row elements.



Chapter 14 • Working with the Keyword View

420

Style Enables you to modify the font style used for text 
in the selected element. You can select Regular, 
Bold, Italic, or Underline font styles. You cannot 
change the font style for Alternate Rows or 
Selected Row elements.

Foreground Enables you to modify the text color for the 
selected element. You cannot change the 
foreground color for Alternate Rows.

Background Enables you to modify the row color for the 
selected element.

Foreground for read-only Enables you to modify the text color for rows that 
are read-only. This option cannot be changed for 
Alternate Rows.

Reset all Resets all Fonts and Colors tab options to the 
default settings.

Option Description



Chapter 14 • Working with the Keyword View

421

Tips for Working with the Keyword View

➤ You can display or hide specific columns by right-clicking the column 
header row in the Keyword View and then selecting or deselecting the 
required column name from the displayed menu. 

For example, you can display only the Documentation column if you want 
to print the steps for use as instructions for manual testing, by selecting 
Documentation Only. 

➤ You can rearrange columns by dragging a column header to its new location 
in the Keyword View. Red arrows are displayed when the column header is 
dragged to an available location. 



Chapter 14 • Working with the Keyword View

422

Viewing Properties of Step Elements in the Keyword View

You can view properties for different parts of a step in the Keyword View. For 
example, you can view object properties, action properties, action call 
properties, checkpoint properties, and output value properties. Right-click 
the item whose properties you want to view, and select the relevant option 
from the displayed menu. 

The property options available in the Step menu or the context (right-click) 
menu change according to the currently selected step. For example, if you 
right-click a step that contains a checkpoint or output value on a test object, 
you can view object properties and checkpoint or output value properties 
for the current object and checkpoint or output value. If you right-click an 
action, you can choose to view action properties or action call properties for 
the current action.



Chapter 14 • Working with the Keyword View

423

Working with Breakpoints in the Keyword View

You can insert and remove breakpoints in the Keyword View. When you 
place a breakpoint in a step in the Keyword View, it is also displayed in the 
Expert View, and vice versa. 

To insert a breakpoint in the Keyword View:

➤ Click in the left margin at the point where you want to insert the 
breakpoint.

➤ Select a step and press F9.

➤ Select Debug > Insert/Remove Breakpoint. 

A red breakpoint icon  is displayed. 

To remove a breakpoint from the Keyword View:

➤ Click the breakpoint icon.

➤ Select a step and press F9.

➤ Select Debug > Insert/Remove Breakpoint. 

Note: QuickTest automatically places the breakpoint next to the appropriate 
item for the step. In the example shown above, even if you click next to the 
Welcome: Mercury browser or page item, the breakpoint is automatically 
inserted next to the userName edit item, on which the step is actually 
performed. When you collapse items, the breakpoint icons remain in the 
left margin next to the closest visible item, so you can see that the test 
contains breakpoints.



Chapter 14 • Working with the Keyword View

424

For more information on breakpoints, see “Using Breakpoints” on 
page 1078.



425

15
Working with Actions

You can divide your test into actions to streamline the process of testing 
your application. This chapter covers the basic use of actions in your test. 
Using advanced action-related features is described in Chapter 16, “Working 
with Advanced Action Features.”

This chapter includes:

 ➤  About Working with Actions on page 426

 ➤  Using Global and Action Data Sheets on page 429

 ➤  Using the Test Flow Pane on page 431

 ➤  Using the Action Toolbar in the Keyword View on page 435

 ➤  Creating New Actions on page 436

 ➤  Guidelines for Working with Actions on page 439

 ➤  Setting Action Properties on page 441

 ➤  Nesting Actions on page 453

 ➤  Splitting Actions on page 455

 ➤  Renaming Actions on page 457

 ➤  Removing Actions from a Test on page 460

 ➤  Creating an Action Template on page 462



Chapter 15 • Working with Actions

426

About Working with Actions

Actions help divide your test into logical units, such as the main sections of 
a Web site, or specific activities that you perform in your application. 

A test comprises calls to actions. When you create a new test, it contains a 
call to a single action. By creating tests that call multiple actions, you can 
design tests that are more modular and efficient.

An action consists of its own test script, including all of the steps in that 
action, and any objects in its local object repository. 

Each action is stored together with the test in which you created it. You can 
insert a call to an action that is stored with the test and, depending on the 
properties of the action, you may also be able to call an action stored with 
another test.

When you open a test, you can choose to view the test flow (calls to actions) 
or you can view and edit the individual actions stored with your test.

If you work with tests that include many steps or lines of script, it is 
recommended that you use actions to divide your test steps. Actions should 
ideally contain no more than a few dozen test steps.

For example, suppose you want to test several features of a flight reservation 
system. You plan several tests to test various business processes, but each 
one requires the same login and logout steps. You can create one action that 
contains the steps required for the login process, another for the logout 
steps, and other actions for the main steps in your test. After you create the 
login and logout actions, you can insert those actions into other tests.



Chapter 15 • Working with Actions

427

If you create a test in which you log into the system, book one flight, and 
then log out of the system, your test might be structured as shown—one test 
calling three separate actions: 

Actions enable you to parameterize and iterate over specific elements of a 
test. They can also make it easier to modify steps in one action when part of 
your application changes.

For every action called in your test, QuickTest creates a corresponding action 
sheet in the Data Table so that you can enter Data Table parameters that are 
specific to that action only. For more information on global and action data 
sheets, see “Using Global and Action Data Sheets” on page 429. For 
information on parameterizing tests, see Chapter 24, “Parameterizing 
Values,” and Chapter 25, “Outputting Values.”

Using Multiple Actions in a Test
When you create a test, it includes one action. All the steps you add and all 
the modifications you make while editing your test are part of a single 
action. 

You can divide your test into multiple actions by creating new actions and 
inserting calls to them, by inserting calls to existing actions, or by splitting 
existing actions. The actions used in the test, and the order in which they 
are run, are displayed in the Test Flow pane.

Actions stored with 
Test 1

Test 1

Call to Action 3

Call to Action 2

Call to Action 1

Action 3
(Logging Out)

Action 2
(Booking a Flight)

Action 1
(Logging In)



Chapter 15 • Working with Actions

428

There are three kinds of actions: 

➤ Reusable action. An action that can be called multiple times by the test with 
which it is stored (the local test), as well as by other tests.

➤ Non-reusable action. An action that can be called only in the test with 
which it is stored, and can be called only once.

➤ External action. A reusable action stored with another test. External actions 
are read-only in the calling test, but you can choose to use a local, editable 
copy of the Data Table information for the external action.

For more information on creating and calling new actions, see “Creating 
New Actions” on page 436. For more information on inserting calls to 
existing actions, see “Nesting Actions” on page 453.

By default, new actions are reusable. You can mark each action you create in 
a test as reusable or non-reusable. Only reusable actions can be called 
multiple times from the current test or from another test. You can store a 
copy of a non-reusable action with your test and then insert a call to the 
copy, but you cannot directly insert a call to a non-reusable action saved 
with another test. Inserting calls to reusable actions makes it easier to 
maintain your tests, because when an object or procedure in your 
application changes, it needs to be updated only one time, in the original 
action.

Two or more tests can call the same action and one action can call another 
action (this is known as nesting an action, described in “Nesting Actions” 
on page 453). Complex tests may have many actions and may share actions 
with other tests.

When you run a test with multiple actions, the test results are divided by 
actions within each test iteration so that you can see the outcome of each 
action, and you can view the detailed results for each action individually. 
For more information on the Test Results window, see Chapter 33, “Viewing 
Run Session Results.”



Chapter 15 • Working with Actions

429

Using Global and Action Data Sheets

When you output a value to the Data Table or add a Data Table parameter to 
your test, you can specify whether to store the data in the Global data sheet 
or in the action data sheet.

➤ Choosing Global sheet enables you to create a new column or select an 
existing column in the Global sheet in the Data Table. When you run your 
test, QuickTest inserts or outputs a value from or to the current row of the 
Global data sheet during each global iteration. You can use the columns in 
the Global data sheet for Data Table output values or Data Table parameters 
in any action. This enables you to pass information between actions.

➤ Each action also has its own sheet in the Data Table so that you can insert 
data that applies only to that action. Choosing Current action sheet (local) 
enables you to create a new column or select an existing column in the 
corresponding action sheet in the Data Table. Note that the name of the 
action sheet is the same as the name of the relevant action. When you run 
your test, QuickTest inserts or outputs a value from or to the current row of 
the current action (local) data sheet during each action iteration.

When there are parameters or output value steps in the current action’s 
sheet, you can set QuickTest to run one or more iterations on that action 
before continuing with the current global iteration of the test. When you set 
your action call properties to run iterations on all rows, QuickTest inserts the 
next value from or to the corresponding action parameter or output value 
during each action iteration, while the values of the global parameters stay 
constant. 

Note: If you create Data Table parameters or output value steps in your 
action and select to use the Current action sheet (local) option, be sure that 
the run settings for your action are set correctly in the Run tab of the Action 
Call Properties dialog box. You can set your action to run without iterations, 
to run iterations on all rows in the action’s data sheet, or to run iterations 
only on the rows you specify. For more information on setting action 
iteration preferences, see “Inserting a Call to an Existing Action” on 
page 468.



Chapter 15 • Working with Actions

430

For example, suppose you want to test how a flight reservation system 
handles multiple bookings. You may want to parameterize the test to check 
how your site responds to multiple sets of customer flight itineraries. When 
you plan your test, you plan the following procedures:

 1 The travel agent logs into the flight reservation system.

 2 The travel agent books five sets of customer flight itineraries.

 3 The travel agent logs out of the flight reservation site.

When you consider these procedures, you realize that it is necessary to 
parameterize only the second step—the travel agent logs into the flight 
reservation system only once, at the beginning, and logs out of the system 
only once, at the end. Therefore, it is not necessary to parameterize the 
login and logout procedures in your test. 

By creating three separate actions within your test—one for logging in, 
another for booking a flight, and a third for logging out—you can 
parameterize the second action in your test without parameterizing the 
others.

For more information on the Data Table, see Chapter 42, “Working with 
Data Tables.” For more information on parameterization, see Chapter 24, 
“Parameterizing Values.” For more information on output values, see 
Chapter 25, “Outputting Values.”



Chapter 15 • Working with Actions

431

Using the Test Flow Pane

The Test Flow pane enables you to view all the calls to actions in the current 
test and the order in which they are run. From the Test Flow pane, you can 
display test, action, and action call properties, manage actions and change 
their order in the test, work with the object repository, and run specific 
actions. 

For more information, see:

➤ “Understanding the Test Flow Pane” on page 432

➤ “Working with Actions in the Test Flow Pane” on page 433

Note: The Test Flow pane is displayed by default when you start 
QuickTest Professional. To hide or show the pane, select View > Test Flow or 
click the Test Flow Pane toolbar button. 

When you double-click an action in the Test Flow pane, the Keyword View 
and Expert View show only the selected action. In the Keyword View and 
Expert View, you can view and edit the individual steps of an action stored 
in this test, and view the steps for each selected external action.

➤ The Keyword View displays the steps of your test in a modular, table format. 
For more information on the Keyword View, see Chapter 14, “Working with 
the Keyword View.”

➤ The Expert View displays the script for the selected action. For more 
information on the Expert View, see Chapter 29, “Working in the Expert 
View and Function Library Windows.”



Chapter 15 • Working with Actions

432

Understanding the Test Flow Pane
The Test Flow pane uses the following icons to indicate the different types of 
item in the hierarchy:

Tips:

➤ You can right-click in the Test Flow pane title bar to view available 
display options and decide how to display the Test Flow pane. For 
example, you can auto hide the pane, dock it, or close it.

➤ You can click the Test Flow Pane toolbar button to hide or show the Test 
Flow pane view.

Icon Description

A test

A call to a non-reusable action

A call to an external action

A call to a conditional, external action

A call to a reusable action

A call to a conditional, reusable action

A call to a missing action (an action whose path is not 
saved with the test)

A call to a conditional, missing action

A call to a looped, reusable action

A call to a conditional, looped, reusable action

A call to an external, looped action

A call to a conditional, external, looped action



Chapter 15 • Working with Actions

433

Working with Actions in the Test Flow Pane
You can perform the following operations in the Test Flow pane:

➤ Display an action in the Keyword View and Expert View. Double-click an 
action in the Test Flow pane to show only that action in the Keyword 
View and Expert View. 

➤ View or hide the sub-nodes in the test. Right-click the Test node in the 
tree and select Expand All or Collapse All to view or hide the sub-nodes in 
the tree. You can also select the Test node and press + or * on the 
keyboard to expand all the nodes in the test, and - to collapse the nodes. 

➤ Display the test properties. Right-click the Test node in the tree and then 
select Settings to display the Test Settings dialog box. Details of the test 
and its path are displayed. For more information on the Test Settings 
dialog box, see “Using the Test Settings Dialog Box” on page 1262. 

➤ View or hide the sub-nodes of an action. Right-click an action in the tree 
and then select Expand Sub Tree or Collapse Sub Tree to view or hide the 
sub-nodes in the action. You can also select a sub-node and press + or * 
on the keyboard to expand the node and - to collapse the node.

➤ Display the action properties. Right-click an action in the tree and then 
select Action Properties to display the Action Properties dialog box. The 
name of the action and its path are displayed. For more information on 
the Action Properties dialog box, see “Setting Action Properties” on 
page 441.

➤ Display the action call properties. Right-click an action in the tree and 
then select Action Call Properties to display the Action Call Properties 
dialog box. For more information on the Action Call Properties dialog 
box, see “Setting Action Call Properties” on page 481.

➤ Work with the Object Repository. Right-click an action in the tree and 
then select Object Repository to open the Object Repository window, 
which displays a tree containing all objects in the current test. For more 
information, see Chapter 7, “Managing Object Repositories.” 



Chapter 15 • Working with Actions

434

➤ Manage Actions. Right-click an action in the tree and then select Copy or 
Delete. 

➤ Select Copy to open the Select Action dialog box and create a copy of 
the action in your test. For more information, see “Inserting Calls to 
Copies of Actions” on page 466. 

➤ Select Delete to remove the action from your test. For more 
information, see “Removing Actions from a Test” on page 460.

➤ Run the test. Right-click an action in the tree and then select Run from 
Action or Run to Action to start a run session from the beginning of the 
selected action, or to run the test until the beginning of the selected 
action and then pause the run session.

➤ Debug your test. Right-click an action in the tree and then select Debug 
from Action to begin (and pause) a debug session at the beginning of the 
selected action.

➤ Change the run order of actions. You can perform either of the following 
steps to move a top-level action (a direct child of the test) in the Test 
Flow Pane tree, and change the run order of the test accordingly. The 
action and any sub-actions are moved. 

➤ Right-click a top-level action in the tree and then select Move Up or 
Move Down. You can also press CTRL+UP arrow or CTRL+DOWN arrow 
to move an action and its sub-actions. 

➤ Drag a top-level action in the tree up or down to the required location. 
When you drag a selected action, a line is displayed, enabling you to 
see the location in the tree to which the action will be moved. You can 
only drag top-level actions. Selecting the parent action automatically 
includes all its sub-actions. You cannot drag a sub-action, nor can you 
drag a parent action together with only some of its sub-actions.

For more information on moving actions, see “Managing Action Steps” 
on page 412.

If a test contains a call to an action that does not exist or cannot be found, 
the action still appears in the tree in the Test Flow pane, and QuickTest lists 
the action in the Missing Resources pane. 



Chapter 15 • Working with Actions

435

Using the Action Toolbar in the Keyword View

The Action toolbar contains options that enable you to view the top-level 
actions in the test flow or to view any action stored with your test (whether 
or not the action is actually called in the test). The Action toolbar is 
automatically displayed above the Keyword View when a reusable or 
external action is included in test. 

Tip: You can display or hide the Action toolbar in the Keyword View by 
choosing View > Toolbars > Action. For more information, see Chapter 2, 
“QuickTest at a Glance.”

In the Expert View, the Action List is always visible and the Expert View 
always displays the steps for the selected action. For more information on 
the Expert View, see Chapter 29, “Working in the Expert View and Function 
Library Windows.”

The Action List enables you to view either the test flow (the calls to the top-
level actions in the test) or you can view the steps for a selected reusable or 
external action. Selecting Test Flow in the Action List displays the overall 
flow of your test with all the calls to the top-level actions in your test. The 
test flow also enables you to view and edit the individual steps of 
non-reusable actions. An action view displays all the details of the selected 
reusable or external action. 

In the test flow, reusable actions are not expandable. You can view the 
expanded steps of a reusable action by selecting the action from the Action 
List. For more information on reusable actions, see “Setting General Action 
Properties” on page 443.

Action 
List



Chapter 15 • Working with Actions

436

There are several ways to open the action view for a reusable or external 
action in the Keyword View:

➤ In the Test Flow pane, double-click the action you want to view.

➤ Use the Action toolbar to display the top-level Test Flow and then 
double-click the call to the action you want to view.

➤ Use the Action toolbar to display the top-level Test Flow and then highlight 
the call to the action you want to view and click the Show button.

➤ Select the name of the action from the Action List.

You may have actions that are stored with your test, but are not currently 
called from your test. (They may be called by other tests, and you can insert 
calls to these actions from within your test, if needed). 

Actions that are not called in your test are not displayed in the Test Flow 
pane, but they are displayed in the Action List. You can select these actions 
to view or edit their contents.

If an action is stored with your test but is not called by the test, and you are 
sure that you do not need the action for this test or any other test, you can 
delete the action from the test. For more information, see “Removing 
Actions from a Test” on page 460.

Creating New Actions

You can create new actions and add calls to them, as needed.

You can call the new action from your test flow as a top-level action, or you 
can call the new action from within another action in your test as a 
sub-action (or nested action). For more information, see “Nesting Actions” 
on page 453.

You can also split an existing action into two actions. For more information 
on splitting actions, see “Splitting Actions” on page 455.



Chapter 15 • Working with Actions

437

To create a new action in your test:

 1 If you want to insert a call to the new action from an existing action in your 
test, click the step after which you want to insert the new action. To insert a 
call to the new action from the test flow as a top-level action, click any step.

 2 Select Insert > Call to New Action or click the Insert Call to New Action 
button on the Insert toolbar. The Insert Call to New Action dialog box 
opens. 

 3 In the Name box, type a new action name or accept the default name. If you 
rename the action, make sure that the action name is unique (within the 
test), does not exceed 1023 characters, does not begin or end with a space, 
and does not contain the following characters:
\ / : * ? " < > | % ' ! { }

 4 In the Description box, add a description of the action. You can also add an 
action description at a later time using the Action Properties dialog box. 

Tip: Descriptions of actions are displayed in the Select Action dialog box. 
The description makes it easier for you to choose an existing action you 
want to call. For more information, see “Setting General Action Properties” 
on page 443.



Chapter 15 • Working with Actions

438

 5 Ensure Reusable Action is selected if you want to be able to call the action 
from other tests or multiple times from within this test. By default, this 
option is selected. You can also set or modify this setting at a later time 
using the Action Properties dialog box.

For more information on reusable actions, see “Using Multiple Actions in a 
Test” on page 427. For more information on the Action Properties dialog 
box, see “Setting Action Properties” on page 441.

 6 Decide where to insert the call to the action by selecting At the end of the 
test or After the current step. Choosing At the end of the test creates a call 
from the test flow to a top-level action. Choosing After the current step 
inserts the call to the action from within the current action (nests the 
action).

Note: If the currently selected step is a reusable action from another test, the 
new action is added automatically to the end of the test (the location 
options are disabled).

For more information on inserting action calls within actions, see “Nesting 
Actions” on page 453.

 7 Click OK. A new action is stored with your test and the call to it is displayed 
at the bottom of the test or after the current step. You can move your action 
call to another location at a parallel (sibling) level within your test by 
dragging it to the desired location. For more information on moving 
actions, see “Using the Test Flow Pane” on page 431 and “Managing Action 
Steps” on page 412.

 8 If you inserted the call to the new action while editing your test, make sure 
your new action is selected before adding steps to it.



Chapter 15 • Working with Actions

439

Guidelines for Working with Actions

Consider the following guidelines when working with actions: 

➤ If your action runs more than one iteration, the action must end at the same 
point in your application as it started, so that it can run another iteration 
without interruption. For example, suppose you are testing a sample flight 
reservation site. If the action starts with a blank flight reservation form, it 
should conclude with a blank flight reservation form.

➤ A single test may include both global Data Table parameters and action 
(local) Data Table parameters. For example, you can create a test in which a 
travel agent logs into the flight reservation system, books three flights, and 
logs out; the next travel agent logs into the flight reservation system, books 
three flights, logs out, and so forth. 

To parameterize the ’book a flight’ action, you select Current action sheet 
(local) in the parameterization dialog box and enter the three flights into 
the relevant Action tab in the Data Table. To parameterize the entire test, 
you select Global in the parameterization dialog box and enter the login 
names and passwords for the different agents into the Global tab in the Data 
Table.

Your entire test runs one time for each row in the Global data sheet. Within 
each test, each parameterized action is repeated according to the number of 
rows in its data sheet and the run settings selected in the Run tab of the 
Action Properties dialog box.

➤ You may want to rename the actions in your test with descriptive names to 
help you identify them. It is also a good idea to add detailed action 
descriptions. This facilitates inserting actions from one test to another. You 
can rename an action by choosing Edit > Action > Rename Action. (Make 
sure you follow the naming conventions for actions. For more information, 
see “Creating New Actions” on page 436.)



Chapter 15 • Working with Actions

440

➤ If you plan to use an identical or virtually identical procedure in more than 
one test, you should consider inserting a call to an action from another test. 

➤ If you want to make slight modifications to the action in only one test, 
you should use the Insert Call to Copy of Action option to create a copy 
of the action. 

➤ If you want modifications to affect all tests containing the action, you 
should use the Insert Call to Existing Action option to insert a link to the 
action from the original test.

➤ If you want modifications to the action to affect all tests containing the 
action, but you want to edit data in a specific test’s Data Table, use the 
Insert Call to Existing Action option and, in the External tab of the 
Action Properties dialog box, select Use a local, editable copy.

➤ Reusable actions help you to maintain your tests, but it is important to 
consider the effects of including reusable actions in tests. Be sure to consider 
how changes to an action could potentially affect other tests that call that 
action. 

➤ If you expect other users to open your tests and all actions in your tests are 
stored in the same drive, you should use relative paths for your reusable 
actions so that other users will be able to open your tests even if they have 
mapped their network drives differently. 

Note:  If you are working with the Resources and Dependencies model with 
Quality Center 10.00, specify an absolute Quality Center path. For more 
information, see “Considerations for Working with Relative Paths in 
Quality Center” on page 1450.

➤ If you expect certain elements of your application to change regularly, it is a 
good idea to divide the steps related to changeable elements into a separate 
action so that it will be easy to change the required steps, if necessary, after 
the application is modified.

➤ If you decide to remove an action, consider how that might affect your test 
or another test that contains a call to that action. For example, will it 
prevent a later action in the same test from running correctly? Will it cause 
the test containing a call to that action to fail? 



Chapter 15 • Working with Actions

441

➤ When you insert a call to an external action, the action is inserted in 
read-only format, and the Record button is disabled. If you want to record, 
you first need to insert a call to a reusable or non-reusable action into your 
test, or select a step from a reusable or non-reusable action that already 
exists in your test.

Setting Action Properties

The Action Properties dialog box enables you to define options for the 
stored action. These settings apply each time the action is called. You can 
modify an action name, add or modify an action description, and set an 
action as reusable or non-reusable. For an external action, you can set the 
Data Table definitions.

The Action Properties dialog box also enables you to define input and 
output parameters to be used by the action, and specify the object 
repositories that are associated with the action. For more information, see 
“Setting Action Parameters” on page 472 and “Associating Object 
Repositories with Actions” on page 446.

Note: The following sections describe how to define action properties using 
the Action Properties dialog box. You can also define actions and action 
parameters in the Expert View. For more information, see “Understanding 
Action Syntax in the Expert View” on page 488.

You can open the Action Properties dialog box while working with your test 
by:

➤ Right-clicking an action node in the Test Flow pane and selecting Action 
Properties.

➤ Choosing Edit > Action > Action Properties when an action node is 
highlighted in the Keyword View or displayed in the Expert View.

➤ Right-clicking an action node in the Keyword View and selecting Action 
Properties.



Chapter 15 • Working with Actions

442

The Action Properties dialog box always contains the General tab, the 
Parameters tab (described in “Setting Action Parameters” on page 472), the 
Associated Repositories tab, and the Used By tab: 

Note: In addition to the tabs shown above, the Action Properties dialog box 
for a called external action also contains an External Action tab, and the 
other tabs are read-only. For more information, see “Setting Properties for an 
External Action” on page 450.



Chapter 15 • Working with Actions

443

For more information, see:  

➤ “Setting General Action Properties” on page 443

➤ “Setting Action Parameters” on page 472

➤ “Associating Object Repositories with Actions” on page 446

➤ “Viewing a List of the Tests and Actions Using this Action” on page 452

➤ “Setting Properties for an External Action” on page 450

Setting General Action Properties
You can use the General tab of the Action Properties dialog box to modify 
the name of an action, add or edit an action’s description, or change the 
reusability status of the action.  



Chapter 15 • Working with Actions

444

Note: The name of the action and its path are displayed in the tab. If it was 
defined with a relative path in QuickTest, then the path is displayed as 
<test name>\<action name>. If the action is a reusable action or an external 
action, then Reusable action or External Action is displayed next to the 
action name. 

The General tab includes the following options:

Option Description

Name The name of the action. By default, the action name is 
the internal name provided by QuickTest, such as 
Action 1. This number is incremented by 1 for each 
new action that is added to the test.

You can rename the action, as needed. The action 
name must be unique (within the test), cannot begin 
or end with a space, cannot exceed 1023 characters, 
and cannot contain the following characters: 
\ / : * ? " < > | % ' ! { }

Location The folder or Quality Center path where the action is 
stored.

Description You can insert comments about the action. An action 
description helps you and other testers know what a 
specific action does without reviewing all the steps in 
the action. The description is also displayed in the 
description area of the Select Action dialog box. This 
enables you and other testers to determine which 
action you want to call or copy from another test 
without having to open it. For more information on 
inserting copies and calls to actions, see “Nesting 
Actions” on page 453.

Note: You can also add a description when inserting a 
call to a new action. For more information, see 
“Creating New Actions” on page 436.



Chapter 15 • Working with Actions

445

Notes:

➤ If the action is called more than once within the test flow or if the action 
is called by a reusable action, the Reusable action option is read-only. If 
you want to make the action non-reusable, remove the additional calls to 
the action from the test.

➤ You cannot expand reusable actions from the test flow view. You can 
view details of a reusable action by double-clicking the action in the 
Keyword View, or selecting the action from the Action List. For more 
information on the test flow and action views, see “Using the Action 
Toolbar in the Keyword View” on page 435.

Reusable action Indicates whether the action is a reusable action. By 
default, this check box is selected. A reusable action 
can be called multiple times within a test and can be 
called from other tests. Non-reusable actions can be 
copied and inserted as independent actions, but 
cannot be inserted as calls to the original action.

When you change this setting, the action icon changes 
to a non-reusable action icon  or reusable action 
icon  as appropriate. If the steps of the action were 
expanded, they collapse after changing a non-reusable 
action to a reusable action. You can view the steps of 
the reusable action by selecting the action name in the 
Test Flow pane.

Option Description



Chapter 15 • Working with Actions

446

Associating Object Repositories with Actions
You can associate object repositories with actions in several ways:

➤ You can associate a single action with an object repository by right-clicking 
the action in the Resources pane and choosing Associate repository with 
action from the context menu. This opens the Open Shared Object 
Repository dialog box, enabling you to associate an object repository with 
the selected action.

➤ You can use the Associated Repositories tab of the Action Properties dialog 
box to associate one or more object repositories with the current action. 
(Right-click an action in the Test Flow pane and select Action Properties, or 
select Edit > Action > Action Properties to open the Action Properties dialog 
box.)  



Chapter 15 • Working with Actions

447

Tip: You can associate shared object repositories with multiple actions 
simultaneously, using the Associate Repositories dialog box. For more 
information, see “Managing Shared Object Repository Associations” on 
page 199.

QuickTest searches these files to locate test object descriptions when 
identifying objects in your application. You can associate object repositories 
that are saved in your file system or in a Quality Center project.

Note: QuickTest uses associated object repositories from Quality Center 
project folders only when you are connected to the corresponding 
Quality Center project. If you are not connected to the relevant 
Quality Center project, all associated object repositories that are stored in 
your Quality Center project are listed as missing in the Missing Resources 
pane. (QuickTest always lists any associated object repository that cannot be 
found in the Missing Resources pane.)

In addition, if an object repository cannot be found, QuickTest displays a 
warning message when you click the Associated Repositories tab in the 
Action Properties dialog box. QuickTest also adds a question mark to the 
missing object repository icon  to the left of the missing object repository 
in the Associated object repositories list. 

For more information on missing resources, see Chapter 41, “Handling 
Missing Resources.”

You can associate as many object repositories as needed with an action, and 
the same object repository can be associated with different actions as 
needed. You can also set the default object repositories to be associated with 
all new actions in all tests.



Chapter 15 • Working with Actions

448

The order of the object repositories in the list determines the order in which 
QuickTest searches for a test object description. If there are test objects in 
different object repositories with the same name, object class, and parent 
hierarchy, QuickTest uses the first one it finds based on the priority order 
defined in the Associated Repositories tab. The local object repository is 
always listed first and cannot be moved down the priority list or deleted.

You can enter an associated object repository as a relative path. During the 
run session, QuickTest searches for the file in the folders listed in the Folders 
pane of the Options dialog box, in the order in which the folders are listed. 
For more information, see “Setting Folder Testing Options” on page 1237.

Note: If you want other users or HP products to be able to run an action on 
other computers, and the action’s associated object repositories are stored in 
the file system, you can set the file path as a relative path (click the path 
once to highlight it, and then click it again to enter edit mode). Any users 
who want to run this action should then specify the drive letter and folder 
in which QuickTest should search for the relative path in the Folders pane of 
the Options dialog box (Tools > Options> Folders node). For more 
information, see “Setting Folder Testing Options” on page 1237, and “Using 
Relative Paths in QuickTest” on page 316.

Important: If you are working with the Resources and Dependencies model 
with Quality Center 10.00, you should store the action’s associated object 
repositories in the Quality Center Test Resources module and specify an 
absolute Quality Center path in the Folders pane. For more information, see 
“Considerations for Working with Relative Paths in Quality Center” on 
page 1450.



Chapter 15 • Working with Actions

449

You can add, delete and prioritize the object repositories associated with the 
action using the following buttons:

Option Description

Associates an object repository with the action. You can enter the 
absolute or relative path and filename of the object repository, or use 
the browse button to locate the required file. You can associate object 
repositories that are saved in your file system or in a Quality Center 
project. 

Note: To use the Resources and Dependencies model with Quality 
Center 10.00, specify an absolute Quality Center path. For more 
information, see “Considerations for Working with Relative Paths in 
Quality Center” on page 1450.

Tips: 

➤ To add a Quality Center path when connected to Quality Center, 
click this button. QuickTest adds [Quality Center], and displays a 
browse button so that you can locate the Quality Center path.

➤ When not connected to Quality Center, hold the SHIFT key and 
click this button. QuickTest adds [Quality Center], and you enter the 
path. You can also type the entire Quality Center path manually. If 
you do, you must add a space after [Quality Center]. For example: 
[Quality Center] Subject\ObjectRepositories\flight.tsr.

Removes an associated object repository from the list.

Assigns a higher priority to the selected object repository.

Assigns a lower priority to the selected object repository.

Set as 
Default 

Sets the current list of object repositories as the default list to be 
associated with all new actions.

Note: The Set as Default option is enabled when the setting for this 
action is different from the default for all actions. 

Caution: If the default object repository is moved or renamed, 
QuickTest will not be able to locate it. The object repository will be 
displayed in the Missing Resources pane when new actions or tests are 
created. For information on resolving missing resources, see 
Chapter 41, “Handling Missing Resources.”



Chapter 15 • Working with Actions

450

Setting Properties for an External Action
When you insert a call to an external action, you can choose where you 
want QuickTest to store the Data Table data. You can specify this in the 
External Action tab of the Action Properties dialog box. 



Chapter 15 • Working with Actions

451

The External Action tab includes the following options:

For more information on calls to external actions, see “Inserting a Call to an 
Existing Action” on page 468.

Option Description

Data Table parameters Indicates where to store the action’s Data Table data:

➤ To use the original action’s data, select Use data 
stored with the original action (read-only). If you 
select this option, the data is read-only when 
viewed from the calling test, and all changes to the 
original action’s data sheet apply when the action 
runs in the calling test.

➤ To use an editable copy of the data in the test’s Data 
Table, select Use a local, editable copy. If you select 
this option, a copy of the called action’s data sheet 
is added to the calling test’s Data Table and is 
independent of the original action. 

Changes to the original action’s data sheet do not 
affect the calling test even if you insert another call 
to this action after the action’s data sheet is 
modified.

If the called action has parameterized steps that rely 
on new information in the original action’s data 
sheet, enter the relevant column names and 
required data to the action sheet in the calling test 
manually.

Note: When you call an external action, the global 
data sheet columns and data from the called action’s 
test are always imported as a local, editable copy in the 
calling test’s global data sheet. 

Changes to the original action’s global data sheet do 
not affect the calling test even if you insert another 
call to this action after the called action’s global data 
sheet is modified. 

If the called action has parameterized steps that rely 
on new information in the global data sheet, enter the 
relevant column names and required data to the 
calling test’s global data sheet manually.



Chapter 15 • Working with Actions

452

Viewing a List of the Tests and Actions Using this Action
If your tests are stored in Quality Center and are using the resources and 
dependencies model, the Action Properties dialog box displays the Used By 
tab. This enables you to view a list of the tests and actions that contain calls 
to this particular action. This is the same list that is displayed in the 
Dependencies tab of the Test Plan module in Quality Center. For more 
information, see “Using the Resources and Dependencies Model” on 
page 1447.   



Chapter 15 • Working with Actions

453

The Used By tab includes the following options:

Nesting Actions

Sometimes you may want to call an action from within an action. This is 
called nesting. By nesting actions, you can:

➤ Maintain the modularity of your test.

➤ Run one or more actions based on the results of a conditional statement.

For example, suppose you have parameterized a step where a user selects one 
of three membership types as part of a registration process. When the user 
selects a membership type, the page that opens depends on the membership 
type selected in the previous page. You can create one action for each type of 
membership. Then you can use If statements to determine which 
membership type was selected in a particular iteration of the test and run 
the appropriate action for that selection.

Option Description

Test Indicates the Quality Center path of the test containing a call to this 
action.

Action Indicates the internal name of the action containing a call to this 
action. The internal name is the name that QuickTest applies to an 
action by default when the action is created, for example, Action 1. 
The internal name of the action calling this action is displayed even 
if the calling action was renamed. 



Chapter 15 • Working with Actions

454

In the Keyword View, your test might look something like this: 

In the Expert View, your test might look something like this:

Browser("Membership Preference").Page("Membership Preference").
WebRadioGroup("MemType").Select DataTable("memtype", dtGlobalSheet)

Mem_Type=Browser("Membership Preference").
Page("Membership Preference").WebRadioGroup("MemType").

GetROProperty ("value")
If Mem_Type="paid" Then

RunAction "Paid_Mem", oneIteration
ElseIf  Mem_Type = "free"  Then

RunAction "Free_Mem", oneIteration
Else

RunAction "Preferred", oneIteration
End If

For more information on inserting conditional statements, see “Using 
Conditional Statements” on page 797.

To nest an action within an existing action:

 1 Highlight the step after which you would like to insert the call to the action.

 2 Follow the instructions for inserting a call to a new action as described in 
“Creating New Actions” on page 436, or for inserting a call to a copy of an 
action or a call to an existing action as described in “Inserting Calls to 
Existing Actions” on page 464.



Chapter 15 • Working with Actions

455

Splitting Actions

You can split an action that is stored with your test into two sibling actions 
or into parent-child nested actions. When you split an action, the second 
action starts with the step that is selected when you perform the split action 
operation.

You cannot split an action, and the option is disabled when:

➤ an external action is selected

➤ the first step of an action is selected

➤ you are working with a read-only test

➤ recording a test

➤ running a test

When you split an action in your test that uses a local object repository:

➤ QuickTest makes a copy of the local object repository. 

➤ The two actions have identical local object repositories containing all of 
the objects that were in the original local object repository. 

➤ If you add objects to one of the split actions, the new objects are added 
only to the corresponding local object repository. 



Chapter 15 • Working with Actions

456

To split an action:

 1 Select the step before which you want the new (second) action to begin.

 2 Select Edit > Action > Split Action, click the Split Action button, or right-click 
the step and select Action > Split. The Split Action dialog box opens.

 3 Select one of the following options:

➤ Independent of each other. Splits the selected action into two sibling 
actions. 

➤ Nested (the second action is called by the first). Splits the selected action 
into a parent action whose last step calls the second, child action. 

 4 If you want, modify the name and description of the two actions in the 
Name and Description boxes.



Chapter 15 • Working with Actions

457

Note: If a reusable action is called more than once in a test and you split the 
action into two independent actions, each call to the action within the test 
will be followed by a call to the new (reusable) action. If a reusable action is 
called from another test, however, splitting it may cause the calling test to 
fail.

Renaming Actions

You can rename an action from the Keyword View or Expert View using the 
Action Properties dialog box or the Rename Action dialog box. When you 
rename an action, consider how it will affect your test and any tests that call 
this action. For example, if you rename an action that is used by another 
test, future run sessions may fail because the test cannot locate the specified 
action.

Note: If you are working with the Resources and Dependencies model, and 
the test containing the action you are renaming is stored the Test Plan 
module in Quality Center, the internal (default) action name is always 
displayed in the Used By tab in the Action Properties dialog box. This is true 
even if you rename the action. For more information, see “Viewing a List of 
the Tests and Actions Using this Action” on page 452.

Important: You must use the Rename Action option in QuickTest if you 
want to save an action under another name. You cannot change the name 
of an action directly in the file system or in Quality Center.



Chapter 15 • Working with Actions

458

To rename an action in the Rename Action dialog box:

 1 In the Keyword View, select the call to the action you want to rename and 
select Edit > Action > Rename Action. In the Expert View, display the action 
that you want to rename and select Edit > Action > Rename Action. The 
Rename Action dialog box opens.

 2 Enter a new name for the action in the New name box. Make sure that 
action name is unique within the test, does not begin or end with a space, 
does not exceed 1023 characters, and does not contain the following 
characters:
\ / : * ? " < > | % ' ! { }

 3 Click OK to save the change.

Tip: You can also press SHIFT + F2 to open the Rename Action dialog box.



Chapter 15 • Working with Actions

459

To rename an action in the Action Properties dialog box:

 1 In the Test Flow pane or in the Keyword View, right-click the action and 
select Action Properties. Alternatively, in the Keyword View or in the Expert 
View, select an action and select Edit > Action > Action Properties. The 
Action Properties dialog box opens.

 2 Enter a new action name in the Name box of the General tab. Each action 
name within a test must be unique. Make sure that action name is unique 
within the test, does not begin or end with a space, does not exceed 1023 
characters, and does not contain the following characters:
\ / : * ? " < > | % ' ! { }

 3 Click OK to save the change.



Chapter 15 • Working with Actions

460

Removing Actions from a Test

If an action is no longer needed, you can remove it from your test. If the 
action is stored with your test (reusable or non-reusable action) and is called 
only once in the test, then removing the action deletes it entirely. 
Alternatively, if the action is stored in another test (external action), or is 
called more than once in this test (reusable action), removing the action 
deletes the selected call to the action, without affecting the source action.

The following table illustrates what happens when you delete an action:

Action Type How deleting the action affects the test:

Reusable action 
(action stored in the 
current test)

➤ If multiple action calls exist in the current test, 
QuickTest removes only the call to this action. 
Additional calls to the action in this test remain 
unchanged. The corresponding action sheet in 
the Data Table remains unchanged.

➤ If this is only call to this action in the current 
test, QuickTest deletes the action in its entirety, 
including its corresponding action sheet in the 
Data Table. 

Important: Be careful when deleting a local 
reusable action. If the action is called by other 
tests, deleting the action may cause the other 
tests to fail. 

Non-reusable action
(action stored in the 
current test)

Deletes the action in its entirety, including its 
corresponding action sheet in the Data Table.

External action
(action stored in a 
different test)

Removes the call to the action from the current test 
without affecting the action in the source test. The 
original action remains stored with the test in 
which it was created.



Chapter 15 • Working with Actions

461

Tips for Removing Action Calls and Deleting Actions

➤ QuickTest provides several locations from which you can remove calls to 
actions:

Resources pane. Use to simultaneously remove all calls to a specific action. 

➤ If you remove a reusable or non-reusable local action, QuickTest removes 
all calls to the action in this test and deletes the action in its entirety. 

➤ If you remove an external action, QuickTest removes all calls to the 
action from the test, but does not affect the source action in any way.

Test Flow pane or the Keyword View. Use to remove specific calls to an 
action. 

➤ If a test contains multiple calls to a single reusable action, and you 
remove some—but not all—of the calls, QuickTest removes the calls to 
the action in the specified locations, but does not delete the action itself. 
This means that the action can continue to be called by this test and by 
other tests, as needed. 

➤ If you remove all calls to an action, the result is the same as removing the 
action from the Resources pane. For reusable and non-reusable actions, 
QuickTest removes all calls to the action in this test and deletes the 
action in its entirety. For external actions, QuickTest removes all calls to 
the action from the test, but does not affect the source action in any way.

➤ When QuickTest deletes an action in its entirety, the corresponding action 
sheet is removed from the Data Table, but columns related to this action 
that are located in the Global sheet are not removed. 

➤ If you open a test containing a call to an action you removed, QuickTest 
informs you that the action is missing. For more information, see “Handling 
Missing Resources” on page 1179.



Chapter 15 • Working with Actions

462

To remove a call to an action or delete an entire action:

 1 In the Resources pane, the Test Flow pane, or the Keyword View:

➤ Right-click the action you want to remove and select Delete. 

➤ Select the action you want to remove and press the Delete key on your 
keyboard.

➤ Select the action you want to remove and select Edit > Delete. 

 2 Click Yes in the confirmation message box.

Note: If an action stored in this test is called by other tests, deleting the 
action in this test may cause other tests to fail.

Creating an Action Template

If you want to include one or more statements in every new action in your 
test, you can create an action template. For example, if you always enter 
your name as the author of an action, you can add this comment line to 
your action template. An action template applies only to actions created on 
your computer.

To create an action template:

 1 Create a text file containing the comments, function calls, and other 
statements that you want to include in your action template. The text file 
must be in the structure and format used in the Expert View.

 2 Save the text file as ActionTemplate.mst in your <QuickTest Installation 
Folder>\dat folder. All new actions you create contain the script lines from 
the action template.

Note: Only the file name ActionTemplate.mst is recognized as an action 
template.



463

16
Working with Advanced Action Features

You can divide your test into actions to streamline the process of testing 
your application. This chapter covers the advanced use of actions in your 
test. Using basic action-related features is described in Chapter 15, “Working 
with Actions.”

This chapter includes:

 ➤  About Working with Advanced Action Features on page 464

 ➤  Inserting Calls to Existing Actions on page 464

 ➤  Setting Action Parameters on page 472

 ➤  Using Action Parameters on page 476

 ➤  Setting Action Call Properties on page 481

 ➤  Sharing Action Information on page 486

 ➤  Understanding Action Syntax in the Expert View on page 488

 ➤  Exiting an Action on page 491



Chapter 16 • Working with Advanced Action Features

464

About Working with Advanced Action Features

Actions help divide your test into logical units, such as the main sections of 
a Web site, or specific activities that you perform in your application. 

A test is comprised of calls to actions. When you create a new test, it 
contains a call to a single action. By creating tests that call multiple actions, 
you can design tests that are more modular and efficient.

You can pass information between actions in several ways. You can also 
specify input parameters for actions, so that steps in an action can use 
values supplied from elsewhere in the test. You can also output values from 
actions to be used in steps later in the test, or to be passed back to the 
application that ran the test. For more information, see “Using Action 
Parameters” on page 476.

Inserting Calls to Existing Actions

When you plan a suite of tests, you may realize that each test requires some 
identical activities, such as logging in. Rather than inserting all of the login 
steps three times in three separate tests and enhancing this part of the script 
(with checkpoints, parameterization, and programming statements) 
separately for each test, you can create an action that logs into a flight 
reservation system and store it with one test. After you are satisfied with the 
action you created, you can insert calls to the existing action into other 
tests. 

You can insert calls to an existing action by inserting a call to a copy of the 
action, or by inserting a call to the original action. 

For example, suppose you want to create the following three tests for the 
Mercury Tours site—booking a flight, modifying a reservation, and deleting 
a reservation. While planning your tests, you realize that for each test, you 
need to log in and log out of the site, giving a total of five actions for all 
three tests.



Chapter 16 • Working with Advanced Action Features

465

You would initially create three tests with five actions. Test 1 would contain 
two reusable actions (Logging In and Logging Out). These actions can later 
be called by Test 2 and Test 3.

You would then finish creating Test 2 and Test 3 by inserting calls to the 
reusable actions you created in Test 1.

Test 1
contains reusable actions (*)

Call to
Logging Out *

Call to
Booking a Flight

Call to
Logging In *

Test 2

Call to
Modifying a 

Booking

Test 3

Call to
Canceling a 

Booking

Test 3

Call to Canceling
a Booking

Call to
Logging Out *

Call to
Logging In *

Test 2

Call to Modifying
a Booking

Call to
Logging Out *

Call to
Logging In *

Test 1
contains reusable actions (*)

Call to
Logging Out *

Call to
Booking a Flight

Call to
Logging In *



Chapter 16 • Working with Advanced Action Features

466

Inserting Calls to Copies of Actions
When you insert a call to a copy of an action into a test, the original action 
is copied in its entirety, including checkpoints, parameterization, the 
corresponding action tab in the Data Table, plus any defined action 
parameters. If the test you are copying has objects in the local object 
repository, the copied action’s local object repository is also copied together 
with the action.

The action is inserted into the test as an independent, non-reusable action 
(even if the original action was reusable). After the action is copied into your 
test, you can add to, delete from, or modify the action just as you would 
with any other non-reusable action. Any changes you make to this action 
after you insert it affect only this action, and changes you make to the 
original action do not affect the copied action.

To create a copy of an action and call the copy in your test:

 1 In your test, select Insert > Call to Copy of Action, right-click an action icon 
and select Insert Call to Copy of Action, or right-click any step and select 
Action > Insert Call to Copy. The Select Action dialog box opens. 



Chapter 16 • Working with Advanced Action Features

467

 2 Use the From test browse button to find the test containing the action you 
want to copy. The Action box displays all local actions (actions that are 
stored with the test you selected). 

Note: You can enter a Quality Center folder or a relative path in the From 
test box. 

➤ If you enter a relative path, QuickTest searches for the test in the folders 
listed in the Folders pane of the Options dialog box. For more 
information, see “Setting Folder Testing Options” on page 1237 and 
“Using Relative Paths in QuickTest” on page 316.

➤ If you are working with the Resources and Dependencies model with 
Quality Center 10.00, specify an absolute Quality Center path. For more 
information, see “Considerations for Working with Relative Paths in 
Quality Center” on page 1450.

 3 In the Action list, select the action you want to insert. When you select an 
action, its type (Non-reusable Action or Reusable Action) and description, if 
one exists, are displayed. This helps you identify the action you want to 
copy. For more information on action descriptions see “Setting General 
Action Properties” on page 443.

 4 If you want to modify the copied action’s properties, select the Edit new 
action properties check box. If you select this option, the Action Properties 
dialog box is displayed when you click OK. You can then modify the action 
properties as described in “Setting Action Call Properties” on page 481.

Note: If you do not select this option, you can modify the action’s 
properties later by right-clicking the action icon in the Keyword View and 
selecting Action Properties.



Chapter 16 • Working with Advanced Action Features

468

 5 Decide where to insert the call to the copy of the action and select At the 
end of the test or After the current step. 

For more information on inserting actions within actions, see “Using Action 
Parameters” on page 476.

Note: If the currently selected step is a reusable action from another test, the 
call to the copy of the action is added automatically to the end of the test 
(the After the current step option is disabled).

 6 Click OK. The action is inserted into the test as a call to an independent, 
non-reusable action. You can move your action call to another location in 
your test by dragging it to the desired location. For more information on 
moving actions, see “Managing Action Steps” on page 412.

Inserting a Call to an Existing Action
You can insert a call to a reusable action that is stored in your current test 
(local action), or in any other test (external action). Inserting a call to an 
existing action is similar to linking to it. You can view the steps of the action 
in the action view, but you cannot modify them. The called action’s local 
object repository (if it has one) is also read-only. 

If the called external action has data in the Data Table, however, you can 
choose whether you want the data from the action’s data sheet to be 
imported as a local, editable copy, or whether you want to use the (read-
only) data from the original action. (Columns and data from the called 
action’s global data sheet is always imported into the calling test as a local, 
editable copy.) For more information, see “Setting Properties for an External 
Action” on page 450.



Chapter 16 • Working with Advanced Action Features

469

To modify a called, external action, you must open the test with which the 
action is stored and make your modifications there. The modifications apply 
to all tests that call that action. If you chose to use the original action’s data 
when you call an external action, then changes to the original action’s data 
are applied as well.

Tip: You can view the location of the original action in the General tab of 
the Action Properties dialog box.

To insert a call to an existing action:

 1 Select Insert > Call to Existing Action, right-click an action icon and select 
Insert Call to Existing Action, or right-click any step and select Action > 
Insert Call to Existing. The Select Action dialog box opens. 



Chapter 16 • Working with Advanced Action Features

470

 2 Use the From test browse button to find the test that contains the action 
you want to call. The Action box displays all reusable actions in the test you 
selected. 

Note: You can enter a Quality Center folder or a relative path in the From 
test box. 

➤ If you enter a relative path, QuickTest searches for the test in the folders 
listed in the Folders pane of the Options dialog box. For more 
information, see “Setting Folder Testing Options” on page 1237 and 
“Using Relative Paths in QuickTest” on page 316.

➤ If you are working with the Resources and Dependencies model with 
Quality Center 10.00, specify an absolute Quality Center path. For more 
information, see “Considerations for Working with Relative Paths in 
Quality Center” on page 1450.

 3 In the Action list, select the action you want to call. When you select an 
action, its type (Reusable Action) and description, if one exists, are 
displayed. This helps you identify the action you want to call. For more 
information on action descriptions, see “Setting General Action Properties” 
on page 443.

Tip: External actions that the test calls are also displayed in the list. If the 
action you want to call is already called from within the selected test, you 
can select it from the list of actions. This creates another call to the original 
action.

Note: QuickTest disables the Action list if the selected test does not contain 
any reusable or external actions.



Chapter 16 • Working with Advanced Action Features

471

 4 Decide where to insert the call to the action and select At the end of the test 
or After the current step. 

Note: If the currently selected step is a reusable action from another test, the 
call to the action is added automatically to the end of the test (the After the 
current step is disabled).

For more information on inserting actions within actions, see “Using Action 
Parameters” on page 476.

 5 Click OK. A call to the action  is inserted into the test flow. You can move 
your action call to another location in your test by dragging it to the desired 
location. For more information on moving actions, see “Managing Action 
Steps” on page 412.

Tip: You can create an additional call to any reusable or external action in 
your test by pressing CTRL while you drag and drop the action to another 
location at a parallel (sibling) level within your test.



Chapter 16 • Working with Advanced Action Features

472

Setting Action Parameters

You can specify input parameters for an action so that steps in the action 
can use values supplied from elsewhere in the test. Input values for an 
action parameter can be retrieved from the test (for a top-level action) or 
from the parameters of the parent action that calls it (for a nested action), or 
from the output of a previous action call (for a sibling action). 

You can specify output parameters for an action, so that it can return values 
for use later in the test. For example, you can output a parameter value to a 
parent action so that a later nested action can use the value. 

For each input or output action parameter, you define a name (case 
sensitive), a type, and optionally, a description. You can also specify a 
default value for each action input parameter, or you can use the default 
value that QuickTest provides for the parameter value type that you choose. 
The default value is saved with the action and is used by the action if a value 
is not defined for a parameter in the action call. You can define, modify, and 
delete input and output parameters in the Parameters tab of the Action 
Properties dialog box (Edit > Action > Action Properties or right-click an 
action and select Action Properties).



Chapter 16 • Working with Advanced Action Features

473

For more information on using action parameters, see “Using Action 
Parameters” on page 476 and “Guidelines for Working with Action 
Parameters” on page 479. 

To add a new input or output action parameter:

 1 Click the Add button above the Input parameters or Output parameters 
lists to add a new parameter to the appropriate list. A row for the new 
parameter is added to the relevant list.

 2 Click in the Name box and enter a name for the parameter. (Action 
parameter names are case sensitive.)



Chapter 16 • Working with Advanced Action Features

474

 3 Select the value type for the parameter in the Type box. You can select one 
of the following types:

➤ String. A character string enclosed within a pair of quotation marks, for 
example, "New York". If you enter a value and do not include the 
quotation marks, QuickTest adds them automatically when the value is 
inserted in the script during the test run. The default value is an empty 
string. 

➤ Boolean. A true or false value. If you select a Boolean value type, you can 
click in the Default Value column and click the arrow to select a True or 
False value. The default value is True. 

➤ Date. A date string, for example, 3/2/2005. If you select a Date value type, 
you can click in the Default Value column and click the arrow to open a 
calendar from which you can select a date. The default value is today’s 
date.

➤ Number. Any number. The default value is 0.

➤ Password. An encrypted password value. If you select a Password value 
type, the password characters are masked when you enter the password 
in the Default Value field. In the action, however, the value appears 
encrypted. The default value is an empty string, which also appears as an 
encrypted value in the actual action.

➤ Any. A variant value type, which accepts any of the above value types. 
Note that if you select the Any value type, you must specify the value in 
the format that is required in the location where you intend to use the 
value. For example, if you intend to use the value later as a string, you 
must enclose it in quotation marks. When you specify a value of Any 
type, QuickTest checks whether it is a number. If the value is not a 
number, QuickTest automatically encloses it in quotation marks. If you 
are editing an existing value, QuickTest automatically encloses it in 
quotation marks if the previous value had quotation marks. The default 
value is an empty string.



Chapter 16 • Working with Advanced Action Features

475

 4 If you are defining an input action parameter, click in the Default Value box 
and enter a default value for the parameter. Alternatively, you can leave the 
default value provided by QuickTest for the parameter value type. The 
default value is required so that you can run the action without receiving 
parameter values from elsewhere in the test.

 5 (Optional) Click in the Description box and enter a description of the 
parameter, for example, the purpose of the parameter in the action. 
QuickTest displays this description together with the name of the parameter 
in any dialog box in which you can choose an action parameter, including 
the Output Options, Parameter Options, and Value Configuration Options 
dialog boxes.

To modify an existing action parameter:

 1 Select the parameter you want to modify from the Input parameters or 
Output parameters list.

 2 Modify the values as necessary in the edit boxes of the parameter row.

To delete an existing action parameter:

 1 Select the parameter you want to delete from the Input parameters or 
Output parameters list.

 2 Click the Delete button. The parameter is removed from the list.

Note: When you delete an action parameter, make sure that you also delete 
any steps that use the action parameter.



Chapter 16 • Working with Advanced Action Features

476

Using Action Parameters

Action parameters enable you to transfer input values from your test to a 
top-level action, from a parent action to a nested action, or from an action 
to a sibling action that occurs later in the test. Action parameters also enable 
you to transfer output values from a step in an action to its parent action, or 
from a top-level action back to the script or application that ran (called) 
your test. For example, you can output a value from a step in a nested action 
and store it in an output action parameter, and then use that value as input 
in a later step in the calling parent action.

You can use action parameters in any step in your action (including 
function calls). You define the parameters that an action can receive and the 
output values that it can return in the Parameters tab of the Action 
Properties dialog box (Edit > Action > Action Properties or right-click an 
action and select Action Properties). You specify the actual values that are 
provided to these parameters and the locations in which the output values 
are stored using the Parameter Values tab in the Action Call Properties 
dialog box (opened by right-clicking an action and choosing Action Call 
Properties).

You can specify input parameters for an action so it can receive input values 
from elsewhere in the test. Input values for an action parameter can be 
retrieved from the test (for a top-level action), from the parameters of the 
parent action that calls it (for a nested action), or from the output of a 
previous action call (for a sibling action). You can also specify output 
parameters for an action, so that it can output values for use later in the test, 
or pass values back to the application that ran (called) the test.



Chapter 16 • Working with Advanced Action Features

477

For example, suppose you want to take a value from the external application 
that runs (calls) your test and use it in an action within your test. In the test 
below, you would need to pass the input test parameter from the external 
application through Action2 and Action3 to the required step in Action4. 

You would do this as follows:

 1 Define the input test parameter (File > Settings > Parameters node) with the 
value that you want to use later in the test.

 2 Define an input action parameter for Action2 (Edit > Action > Action 
Properties > Parameters tab) with the same value type as the input test 
parameter.

 3 Parameterize the input action parameter value (Edit > Action > Action Call 
Properties > Parameter Values tab) using the input test parameter value you 
specified above.

 4 Define an input action parameter for Action3 (Edit > Action > Action 
Properties > Parameters tab) with the same value type as the input test 
parameter.

 5 Parameterize the input action parameter value. 

➤ Select Edit > Action > Action Call Properties > Parameter Values tab and 
select the input action parameter value you specified for Action2.

➤ Use the Parameter utility object to specify the action parameter as the 
Parameters argument for the RunAction statement in the Expert View. For 
more information, see “Calling Actions with Parameters” on page 489.

 6 Define an input action parameter for Action4 (Edit > Action > Action 
Properties > Parameters tab) with the same value type as the input test 
parameter.



Chapter 16 • Working with Advanced Action Features

478

 7 Parameterize the input action parameter value. 

➤ Select Edit > Action > Action Call Properties > Parameter Values tab and 
select the input action parameter value you specified for Action3.

➤ Use the Parameter utility object to specify the action parameter as the 
Parameters argument for the RunAction statement in the Expert View. For 
more information, see “Calling Actions with Parameters” on page 489.

 8 Parameterize the value in the required step in Action4. 

➤ Click the parameterization icon  and specify the parameter in the 
Value Configuration Options dialog box using the input action 
parameter you specified for Action 4.

➤ Use the Parameter utility object in the Expert View to specify the value to 
use for the step. For more information, see “Using Action Parameters in 
Steps in the Expert View” on page 638.

An action’s parameters are stored with the action and are the same for all 
calls to that action. If you modify an action parameter’s name, type, or 
description, and then view the action properties for a call to that same 
action in a different part of the test, you will see that the action parameter 
has changed. 

The actual value specified for an input action parameter and the location 
specified for action output parameter can be different for each call to the 
action. When you insert a call to a copy of an action, the copy of the action 
is inserted with the action parameters and action call parameter values that 
were defined for the action you copied. When you split an action, the action 
parameters are copied to both actions. The action call values for the second 
action are taken from the default values of that action’s parameters.

For information on defining action parameters and the values used in action 
calls, see “Setting Action Parameters” on page 472, and “Setting Action Call 
Parameter Values” on page 483.



Chapter 16 • Working with Advanced Action Features

479

Guidelines for Working with Action Parameters
Consider the following guidelines when working with action parameters: 

➤ Input action parameter values can be used only within the steps of the 
current action. You can use an action input value from another action (or 
from the test) only if you pass the value from action to action down the test 
hierarchy to the action in which you want to use it. For example:
Test -> Action1 -> Action2 -> Action3 -> (Action3) Step 1 

➤ Output action parameter values can be retrieved from a previous action at 
the same hierarchical level, from a parent action, or from the current action. 
You can use an action output value from one action within the step of 
another action if:

➤ You pass the value from action to action up the test hierarchy to the 
action in which you want to use it. For example:
(Action3) Step 1-> Action3 -> Action2 -> Action1 -> Test -> Action4 

Test Parameter
1

2

3

4

Test Parameter

1

2

3

4

5



Chapter 16 • Working with Advanced Action Features

480

In this example, any step in Action 1, Action 2, or Action 3 can 
potentially use the output value from (Action3) Step 1, even though the 
example shows that the output value is used by steps in Action4.

➤ You pass the value from a previous action to the sibling action in which 
you want to use it. For example:
(Action2) Step 1 -> Action2 -> Action3 -> (Action3) Step 1 

In this example, any step in Action 2 or Action 3 can potentially use the 
output value from (Action2) Step 1, even though the example shows that 
the output value is used by (Action3) Step 1.

➤ In subsequent steps of a calling action, you can use any type of action 
output value as a variable, if the value was retrieved from the called action. 
For example, if ActionA calls ActionB and specifies MyBVar as the variable in 
which to store ActionB’s output parameter, then steps in ActionA after the 
call to ActionB can use the MyBVar as a value (just as you would use any 
other variable).

1

3

2



Chapter 16 • Working with Advanced Action Features

481

Setting Action Call Properties

The Action Call Properties dialog box controls the way the action behaves in 
a specific call to the action. It enables you to specify how many times 
QuickTest should run the called action (according to the number of rows in 
the Data Table), and also to specify the initial value for any input action 
parameters and the location in which you want to store the values of any 
output action parameters.

Note: The following sections describe how to define action call properties 
using the Action Call Properties dialog box. You can also define action calls 
and action call parameters in the Expert View. For more information, see 
“Understanding Action Syntax in the Expert View” on page 488.

You can open the Action Call Properties dialog box by:

➤ Right-clicking an action node in the Test Flow pane and selecting Action Call 
Properties.

➤ Right-clicking an action node in the Keyword View and selecting Action Call 
Properties.

➤ Choosing Edit > Action > Action Call Properties from the Keyword View 
when an action node is highlighted.

The Action Call Properties dialog box enables you to set options that apply 
only to a specific action call. The dialog box contains both the Run tab and 
the Parameter Values tab.  



Chapter 16 • Working with Advanced Action Features

482

Setting the Run Properties for an Action
You can use the Run tab of the Action Call Properties dialog box to instruct 
QuickTest to run only one iteration on the called action, to run iterations on 
all rows in the Data Table, or to run iterations only for a certain row range in 
the Data Table. 

The Run tab includes the following options:

Option Description

Run one iteration only Runs the called action only once, using the first 
row in the action’s data sheet. 

Run on all rows Runs the called action with the number of 
iterations according to the number of rows in 
the action’s Data Table.

Run from row __ to row __ Runs the called action with the number of 
iterations according to the specified row range.



Chapter 16 • Working with Advanced Action Features

483

Notes:

➤ If you run multiple iterations on an action, the action must begin and 
end at the same point in the application, so that the application is in the 
proper location and state to run the next iteration of the action.

➤ The Run tab of the Action Call Properties dialog box applies to individual 
action calls and refers to the rows in the action’s data sheet. You can set 
the Run properties for an entire test (setting iterations for rows on the 
Global data sheet) from the Run pane in the Test Settings dialog box. For 
more information, see Chapter 45, “Setting Options for Individual Tests.”

Setting Action Call Parameter Values
You use the Parameter Values tab of the Action Call Properties dialog box to 
specify the values of input action parameters used by the called action and 
to specify the locations in which you want to store output action parameter 
values. You can also parameterize the value used for a particular input action 
parameter using any available parameter type.

Note: Specifying input and output parameter values in action calls is 
optional.

If you do not set a value for an input action parameter, the default value 
that is specified in the Action Properties dialog box is used.

If you do not define a storage location for an output parameter value, the 
calling action still has access to the output parameter data generated by the 
actions it calls. However, specifying a storage location can make your action 
call statements more readable.



Chapter 16 • Working with Advanced Action Features

484

The actual input and output action parameters that an action can receive or 
return, and their types, are defined in the Action Properties dialog box.

For more information on defining input and output action parameters, see 
“Setting Action Call Properties” on page 481. For general information on 
using action parameters, see “Using Action Parameters” on page 476.



Chapter 16 • Working with Advanced Action Features

485

To specify the value for an input action parameter:

 1 In the Input parameters area, click in the Value box for the parameter and 
enter a value. For a description of the different options available for each 
value type, see the definitions included in “Setting Action Parameters” on 
page 472.

Alternatively, you can click the parameterization button  in the Value 
box to open the Value Configuration Options dialog box in which you can 
parameterize the value. You can parameterize the value using a test or action 
parameter (test parameter for a top-level action, or action parameter for a 
nested or sibling action), Data Table parameter, environment parameter, or 
random number parameter. For more information, see Chapter 24, 
“Parameterizing Values.”

 2 Repeat this procedure for any additional input action parameter values you 
want to set.

To specify a location in which to store an output action parameter value:

 1 In the Output parameters area, click in the Store In box for the parameter 
and enter a variable name.

Alternatively, you can click the output storage button  in the Store In box 
to open the Storage Location Options dialog box in which you can specify a 
location for storing the output value. You can select to store the value in a 
test parameter, the calling action parameter, a Data Table parameter, or an 
environment parameter. For more information, see “Sharing Action 
Information” on page 486 and “Storing Return Values and Action Output 
Parameter Values” on page 794.

 2 Repeat this procedure for each output action parameter value in the list.



Chapter 16 • Working with Advanced Action Features

486

Sharing Action Information

There are several ways to share or pass values from one action to other 
actions:

➤ Store values in the output action parameters of a called action and use those 
values in steps that are performed after the action call within the calling 
action, or in steps within sibling actions. For more information, see “Storing 
Values in Test and Action Parameters” on page 673.

➤ Store values from one action in the global Data Table and use these values as 
Data Table parameters in other actions. For more information, see “Sharing 
Values via the Global Data Table” on page 486.

➤ Set a value from one action as a user-defined environment variable and then 
use the environment variable in other actions. For more information, see 
“Sharing Values Using Environment Variables” on page 487.

➤ Add values to a Dictionary object in one action and retrieve the values in 
other actions. For more information, see “Sharing Values Using the 
Dictionary Object” on page 487.

Sharing Values via the Global Data Table
You can share a value that is generated in one action with other actions in 
your test by storing the value in the global Data Table. Other actions can 
then use the value in the Data Table as an input parameter. You can store a 
value in the Data Table by outputting the value to the global Data Table or 
by using DataTable, Sheet and Parameter objects and methods in the Expert 
View to add or modify a value.

For example, suppose you are testing a flight reservation application. When 
a user logs into the application, his or her full name is displayed on the top 
of the page. Later, when the user chooses to purchase the tickets, the user 
must enter the name that is listed on his or her credit card. Suppose your 
test contains three actions—Login, SelectFlight, and PurchaseTickets and the 
test is set to run multiple iterations with a different login name for each 
iteration. In the Login action, you can create a text output value to store the 
displayed name of the user. In the PurchaseTickets action, you can 
parameterize the value that is set in the Credit Card Owner edit box using 
the Data Table column containing the user’s full name. 



Chapter 16 • Working with Advanced Action Features

487

For more information on output values, see Chapter 25, “Outputting 
Values.” For more information on parameterization, see Chapter 24, 
“Parameterizing Values.” For more information on DataTable objects and 
methods, see Chapter 42, “Working with Data Tables,” and the HP QuickTest 
Professional Object Model Reference.

Sharing Values Using Environment Variables
If you don’t need to run multiple iterations of your test or you want the 
value you are sharing to stay constant for all iterations, you can use an 
internal, user-defined environment variable that can be accessed by all local 
actions in your test. 

For example, suppose you want to test that your flight reservation 
application correctly checks the credit card expiration date that the user 
enters. The application should request a different credit card if the 
expiration date that was entered is earlier than the scheduled flight 
departure date. In the SelectFlight action, you can store the value entered in 
the departure date edit box in an environment variable. In the 
PurchaseTickets action, you can compare the value of the expiration date 
edit box with the value stored in your environment variable. 

For more information on environment variables, see Chapter 24, 
“Parameterizing Values.” For information on the Environment object, see the 
HP QuickTest Professional Object Model Reference.

Sharing Values Using the Dictionary Object
As an alternative to using environment variables to share values between 
actions as described above, you can use the Dictionary object. The 
Dictionary object enables you to assign values to variables that are accessible 
from all actions (local and external) called in the test in which the 
Dictionary object is created.

To use the Dictionary object, you must first add a reserved object to the 
registry (in HKEY_CURRENT_USER\Software\Mercury Interactive\QuickTest 
Professional\MicTest\ReservedObjects\) with 
ProgID = "Scripting.Dictionary". For example: 

HKEY_CURRENT_USER\Software\Mercury 
Interactive\QuickTest Professional\MicTest\ReservedObjects\GlobalDictionary



Chapter 16 • Working with Advanced Action Features

488

After you have added the reserved Dictionary object to the registry and 
restarted QuickTest, you can add and remove values to the Dictionary in one 
action and retrieve the values in another action from the same test.

For example, if you want to access the departure date set in the SelectFlight 
action from the PurchaseTickets action, you can add the value of the 
DepartDate WebEdit object to the dictionary in the SelectFlight action as 
follows:

GlobalDictionary.RemoveAll
GlobalDictionary.Add "DateCheck", DepartDate

Then you can retrieve the date from the PurchaseTickets action as follows:

Dim CompareDate
CompareDate=GlobalDictionary("DateCheck") 

For more information on the Dictionary object, see the VBScript Reference 
documentation (Help > QuickTest Professional Help > VBScript Reference > 
Script Runtime).

Understanding Action Syntax in the Expert View

An action call in the Expert View can define the action iterations, input 
parameter values, output parameter storage locations, and an action return 
values.

Calling Actions Using Basic Syntax
In the Expert View, a call to an action with no parameters is displayed 
within the calling action with the following basic syntax:

RunAction ActionName, IterationQuantity

For example, to call the Select Flight action and run it one iteration:

RunAction "Select Flight", oneIteration



Chapter 16 • Working with Advanced Action Features

489

For example, to call the Select Flight action and run it as many iterations as 
there are rows in the Data Table:

RunAction "Select Flight", allIterations

For example, to call the Select Flight action and run it four iterations (for 
the first four rows of the Data Table):

RunAction "Select Flight", "1 - 4"

Calling Actions with Parameters
If the action you are calling has input and/or output parameters defined, 
you can also supply the values for the input parameters and the storage 
location of the output parameters as arguments of the RunAction statement. 
Input parameters are listed before output parameters.

For an input parameter, you can specify either a fixed value or you can 
specify the name of another defined parameter (Data Table parameter, 
environment parameter, or an action input parameter of the calling action) 
from which the argument should take its value. 

For an output parameter, you can specify either a variable in which you 
want to store the value or the name of a defined parameter (Data Table 
parameter, environment parameter, or an action output parameter of the 
calling action).

An action call with parameters has the following syntax:

RunAction ActionName, IterationQuantity, Parameters

For example, suppose you call Action2 from Action1, and Action2 has one 
input and one output parameter defined. 

The following statement supplies a string value of MyValue for the input 
parameter and stores the resulting value of the output parameter in a 
variable called MyVariable.

RunAction "Action2", oneIteration, "MyValue", MyVariable



Chapter 16 • Working with Advanced Action Features

490

The following statement uses the value defined for Action1’s Axn1_In input 
action parameter as the value for the input parameter, and stores the 
resulting value of the output parameter in Action1’s Data Table sheet in a 
column called Column1_out.

RunAction "Action2", oneIteration, Parameter("Axn1_In"),
DataTable("Column1_out", dtLocalSheet)

In the following example, the first statement calls Action2 using its default 
input parameter value. The second statement uses the value defined for 
Action2’s Axn2_out output action parameter as the value for the call to 
Action 3’s input parameter, and stores the resulting value of the output 
parameter in Action1’s Axn1_out so that the output value is available at the 
parent action level.

RunAction "Action2", oneIteration
RunAction "Action3", oneIteration, Parameter("Action2","Axn2_out"),

 Parameter("Axn1_out")

Note that the Action2 output parameter is available for use in the call to 
Action3, even though no storage location is specified in the call to Action2.

Storing Action Return Values
If the action called by the RunAction statement includes an ExitAction 
statement, the RunAction statement can return the value of the ExitAction's 
RetVal argument. Note that this return value is a return value of the action 
call itself and is independent of any values returned by specific output 
parameters of the action call.

To store the return value of an action call, use the syntax:

MyRetVal=RunAction (ActionName, IterationQuantity, Parameters)

For more information on the Expert View, see Chapter 29, “Working in the 
Expert View and Function Library Windows.” For more information on the 
RunAction statement, see the HP QuickTest Professional Object Model Reference.



Chapter 16 • Working with Advanced Action Features

491

Exiting an Action

You can add a line in your script in the Expert View to exit an action before 
it runs in its entirety. You may want to use this option to return the current 
value of the action to the value at a specific point in the run or based on the 
result of a conditional statement. There are four types of exit action 
statements you can use:

➤ ExitAction. Exits the current action, regardless of its iteration attributes.

➤ ExitActionIteration. Exits the current iteration of the action.

➤ ExitRun. Exits the test, regardless of its iteration attributes.

➤ ExitGlobalIteration. Exits the current global iteration.

You can view the exit action node in the Test Results tree. If your exit action 
statement returns a value, the value is displayed in the action, iteration, or 
test summary, as applicable.

For more information on these functions, see the HP QuickTest Professional 
Object Model Reference. For more information on the Test Results, see 
Chapter 33, “Viewing Run Session Results.”



Chapter 16 • Working with Advanced Action Features

492



493

Part IV

Enhancing Tests



494



495

17
Understanding Checkpoints

You can check objects in your application to ensure that they function 
properly. 

This chapter includes:

 ➤  About Understanding Checkpoints on page 495

 ➤  Adding New Checkpoints to a Test on page 496

 ➤  Adding Existing Checkpoints to a Test on page 498

 ➤  Understanding Types of Checkpoints on page 501

About Understanding Checkpoints

QuickTest enables you to add checks to your test. A checkpoint is a 
verification point that compares the current value for specified properties 
with the expected value for those properties. This enables you to identify 
whether your application is functioning correctly. 

When you add a checkpoint, QuickTest inserts a checkpoint step to the 
current row in the Keyword View and adds a Check CheckPoint statement in 
the Expert View. By default, QuickTest names the checkpoint using the 
name of the test object on which the checkpoint was created. You can 
choose to specify a different name for the checkpoint or accept the default 
name. 



Chapter 17 • Understanding Checkpoints

496

When you run the test, QuickTest compares the expected results of the 
checkpoint to the current results. If the results do not match, the 
checkpoint fails. You can view the results of the checkpoint in the Test 
Results window.

Tip: You can also use the CheckProperty method and the 
CheckItemProperty method to check specific property or item property 
values. For more information, see the HP QuickTest Professional Object Model 
Reference.

Note: If you want to retrieve the return value of a checkpoint (a boolean 
value that indicates whether the checkpoint passed or failed), you must add 
parentheses around the checkpoint argument in the statement in the Expert 
View. For example:

a = Browser("MyBrowser").Page("MyPage").Check (CheckPoint("MyProperty"))

For more information on Expert View syntax, see “Understanding Basic 
VBScript Syntax” on page 853.

Adding New Checkpoints to a Test 

You can add checkpoints while creating or editing your test. It is generally 
more convenient to define checkpoints after creating the initial test.

Note: You can also add an existing checkpoint to your test. For more 
information, see “Adding Existing Checkpoints to a Test” on page 498.



Chapter 17 • Understanding Checkpoints

497

To add new checkpoints while editing or recording your test:

Use the commands in the Insert > Checkpoint menu, or click the Insert 
Checkpoint button in the toolbar. This displays a menu of checkpoint 
options that are relevant to the selected step.

To add new checkpoints while editing only:

➤ Right-click the step where you want to add the checkpoint and select the 
relevant checkpoint option.

➤ Select the step where you want to add the checkpoint, select Insert > 
Checkpoint, and then select the relevant checkpoint option.

➤ Right-click any object in the Active Screen and select the relevant 
checkpoint option. These options can be used to create checkpoints for any 
object in the Active Screen (even if the object is not part of any step in the 
Keyword View).

Notes: 

➤ If you use the Active Screen option, ensure that the Active Screen 
contains sufficient data for the object you want to check. For more 
information, see “Setting Active Screen Options” on page 1240. 

➤ Throughout this guide, procedures for creating checkpoints may be 
described using only one of the above methods. However, you can 
choose any of the methods described above.



Chapter 17 • Understanding Checkpoints

498

Adding Existing Checkpoints to a Test

QuickTest enables you to reuse the existing checkpoints in your test. When 
you insert checkpoints into your test, consider which checkpoints can be 
reused in multiple locations in your test. For example:

➤ Checkpoints that check generic content or the state of your application may 
be useful in multiple locations. 

➤ Checkpoints that check the content of a specific area of your application are 
generally useful in only one particular place in your test. 

The following examples illustrate situations in which inserting an existing 
checkpoint may be useful:

➤ If each page of your application contains your organization’s logo, you can 
reuse a bitmap checkpoint to verify each occurrence in the application.

➤ If your application contains multiple edit boxes, you can reuse a checkpoint 
to confirm the enabled status of these edit boxes throughout your test. 

Understanding the Add Existing Checkpoint Dialog Box
You open the Add Existing Checkpoint dialog box by selecting Insert > 
Checkpoint > Existing Checkpoint. This option is available only if at least 
one of the object repositories associated with the current action (including 
the local object repository) contains at least one checkpoint. 

If a test object step is highlighted in the Keyword View or the cursor is 
located in a step in the Expert View, the Add Existing Checkpoint dialog box 
opens with the TestObjects tree hidden. 

The test object displayed in the Test object box is the object from the 
highlighted step in the Keyword View or the specific object where the cursor 
is located in the Expert View.



Chapter 17 • Understanding Checkpoints

499

You can display or hide the TestObjects tree by clicking the Show/Hide Test 
Objects button. 



Chapter 17 • Understanding Checkpoints

500

The Add Existing Checkpoint dialog box contains the following items:

Item Description

Test object Specifies the test object for which you are 
adding a checkpoint.

TestObjects tree Displays every object in the current test.

Show/Hide Test Objects Shows or hides the TestObjects tree.

Display only checkpoints relevant 
to the selected test object

When selected, QuickTest determines which 
checkpoints from the current action’s object 
repositories are relevant for the selected 
object (based on the checkpoint type and 
the properties selected in the checkpoint) 
and displays only those checkpoints in the 
Checkpoints list. 

When using this option, it is recommended 
to open your application and display the 
selected object so that QuickTest can 
accurately determine all of the checkpoints 
that can apply to that object.

Checkpoints Lists the checkpoints available for insertion. 

If the Display only checkpoints relevant to 
the selected test object option is cleared, 
this list includes all checkpoints from all 
object repositories associated with the 
current action. 

If the Display only checkpoints relevant to 
the selected test object option is selected, 
this list displays only the relevant 
checkpoints as described above.

Properties Area Displays the checkpoint properties for the 
selected checkpoint in read-only format.



Chapter 17 • Understanding Checkpoints

501

To insert an existing checkpoint in your test:

 1 Display the action in which you want to insert the checkpoint and select the 
step after which you want to insert the checkpoint.

 2 Select Insert > Checkpoint > Existing Checkpoint. The Add Existing 
Checkpoint dialog box opens.

 3 If the TestObjects tree is displayed, select the object for which you want to 
insert a checkpoint. Otherwise proceed to step 4.

 4 From the Checkpoints list, select the checkpoint that you want to insert for 
the object displayed in the Test object box. 

 5 Click OK. The checkpoint is inserted after the current step.

Understanding Types of Checkpoints

You can insert the following checkpoint types to check various objects in an 
application. 

➤ Standard Checkpoint checks the property value of an object in your 
application. The standard checkpoint checks a variety of objects such as 
buttons, radio buttons, combo boxes, lists, and so forth. For example, you 
can check that a radio button is activated after it is selected or you can check 
the value of an edit box. 

Standard checkpoints are supported for all add-in environments (see 
“Supported Checkpoints” on page 504). 

For more information on standard checkpoints, see Chapter 18, “Checking 
Object Property Values Using Standard Checkpoints.”

➤ Image Checkpoint checks the value of an image in your application. For 
example, you can check that a selected image’s source file is correct. 

Note: You create an image checkpoint by inserting a standard checkpoint on 
an image object.



Chapter 17 • Understanding Checkpoints

502

Image checkpoints are supported for the Web add-in environment (see 
“Supported Checkpoints” on page 504). 

For more information on image checkpoints, see Chapter 18, “Checking 
Object Property Values Using Standard Checkpoints.”

➤ Bitmap Checkpoint checks an area of your application as a bitmap. For 
example, suppose you have a Web site that can display a map of a city the 
user specifies. The map has control keys for zooming. You can record the 
new map that is displayed after one click on the control key that zooms in 
the map. Using the bitmap checkpoint, you can check that the map zooms 
in correctly. 

You can create a bitmap checkpoint for any area in your application, 
including buttons, text boxes, and tables.

Bitmap checkpoints are supported for all add-in environments (see 
“Supported Checkpoints” on page 504). 

For more information on bitmap checkpoints, see Chapter 19, “Checking 
Bitmaps.”

➤ Table Checkpoint checks information within a table. For example, suppose 
your application contains a table listing all available flights from New York 
to San Francisco. You can add a table checkpoint to check that the time of 
the first flight in the table is correct. 

Note: You create a table checkpoint by inserting a standard checkpoint on a 
table object.

Table checkpoints are supported for Web, ActiveX, Java, Oracle, and .NET 
Windows Forms environments, as well as other add-in environments (see 
“Supported Checkpoints” on page 504). Table checkpoints are also 
supported for some list view objects, such as WinListView and VbListView, 
as well as other list view objects in add-in environments.

For more information on table checkpoints, see “Checking Tables” on 
page 529.



Chapter 17 • Understanding Checkpoints

503

➤ Text Checkpoint checks that a text string is displayed in the appropriate 
place on a Web page or application. For example, suppose a Web page 
displays the sentence Flight departing from New York to San Francisco. You 
can create a text checkpoint that checks that the words "New York" are 
displayed between "Flight departing from" and "to San Francisco".

Text checkpoints are supported for most add-in environments (see 
“Supported Checkpoints” on page 504).

For more information on text checkpoints, see Chapter 21, “Checking 
Text.”

➤ Text Area Checkpoint checks that a text string is displayed within a defined 
area in a Windows-based application, according to specified criteria. For 
example, suppose your Visual Basic application has a button that says View 
Doc <Num>, where <Num> is replaced by the four digit code entered in a 
form elsewhere in the application. You can create a text area checkpoint to 
confirm that the number displayed on the button is the same as the number 
entered in the form.

Text area checkpoints are supported for all Windows-based environments, 
such as Standard Windows, Visual Basic, and ActiveX add-in environments 
(see “Supported Checkpoints” on page 504). Text area checkpoints are also 
supported for some other add-in environments, such as Java.

For more information on text area checkpoints, see Chapter 21, “Checking 
Text.”

➤ Accessibility Checkpoint identifies areas of your Web site that may not 
conform to the World Wide Web Consortium (W3C) Web Content 
Accessibility Guidelines. For example, guideline 1.1 of the W3C Web 
Content Accessibility Guidelines requires you to provide a text equivalent 
for every non-text element. You can add an Alt property check to check 
whether objects that require the Alt property under this guideline, do in fact 
have this tag.

Accessibility checkpoints are supported for the Web add-in environment 
(see “Supported Checkpoints” on page 504). 

For more information on accessibility checkpoints, see the section on 
testing Web objects in the HP QuickTest Professional Add-ins Guide.



Chapter 17 • Understanding Checkpoints

504

➤ Page Checkpoint checks the characteristics of a Web page. For example, you 
can check how long a Web page takes to load or whether a Web page 
contains broken links. 

Note: You create a page checkpoint by inserting a standard checkpoint on a 
page object.

Page checkpoints are supported for the Web add-in environment (see 
“Supported Checkpoints” on page 504).

For more information on page checkpoints, see the section on testing Web 
objects in the HP QuickTest Professional Add-ins Guide.

➤ Database Checkpoint checks the contents of a database accessed by your 
application. For example, you can use a database checkpoint to check the 
contents of a database containing flight information for your Web site. 

Database checkpoints are supported for all add-in environments (see 
“Supported Checkpoints” on page 504). 

For more information on database checkpoints, see Chapter 22, “Checking 
Databases.”

➤ XML Checkpoint checks the data content of XML documents in XML files or 
XML documents in Web pages and frames. For more information on XML 
checkpoints, see Chapter 23, “Checking XML.”

The XML Checkpoint (Web Page/Frame) option is supported for the Web 
add-in environment. The XML Checkpoint option is supported for all add-in 
environments (see “Supported Checkpoints” on page 504). 

Supported Checkpoints

QuickTest add-ins help you to create and run tests and components on 
applications in a variety of development environments. For information 
about using checkpoints for each add-in environment installed with 
QuickTest Professional, see “Supported Checkpoints” on page 1546.



505

18
Checking Object Property Values Using 
Standard Checkpoints

By adding standard checkpoints to your tests, you can compare object 
property values in your application with the expected values.

This chapter includes:

 ➤  About Checking Object Property Values on page 505

 ➤  Creating Standard Checkpoints on page 506

 ➤  Understanding the Checkpoint Properties Dialog Box on page 508

 ➤  Understanding the Image Checkpoint Properties Dialog Box on page 512

 ➤  Modifying Checkpoints on page 514

About Checking Object Property Values

You can check the object property values in your application using standard 
checkpoints. Standard checkpoints compare the expected values of object 
properties to the object’s current values during a run session. You can create 
standard checkpoints for all supported testing environments (as long as the 
appropriate add-ins are loaded).

You use standard checkpoints to perform checks on images, tables, Web 
page properties, and other objects within your application.



Chapter 18 • Checking Object Property Values Using Standard Checkpoints

506

Creating Standard Checkpoints 

You can check that a specified object in your application has the property 
values you expect, by adding a standard checkpoint step to your test while 
recording or editing the test. To set the options for a standard checkpoint, 
you use the Checkpoint Properties dialog box.

To add a standard checkpoint while recording:

 1 While in a recording session, select Insert > Checkpoint > Standard 
Checkpoint, or click the Insert Checkpoint or Output Value toolbar button.

The QuickTest window is hidden, and the pointer changes into a pointing 
hand.

Tips:

➤ If the window on which you want to spy is partially hidden by another 
window, hold the pointing hand over the partially hidden window for a 
few seconds until it comes to the foreground. Then point to and click the 
required object. 

➤ You can hold the left CTRL key to change the pointing hand to a standard 
pointer, and then change the window focus or perform operations, such 
as right-clicking or moving the pointer over an object to display a 
context menu.

➤ If the window containing the object you want to select is minimized, you 
can display it by holding the left CTRL key, right-clicking the application 
in the Windows task bar, and choosing Restore from the context menu.

 2 Click the object you want to check. The Object Selection - Checkpoint 
Properties dialog box opens. 

 3 Select the item you want to check from the displayed object tree. The tree 
item name corresponds to the object’s class.

 4 Click OK. The Checkpoint Properties dialog box opens.



Chapter 18 • Checking Object Property Values Using Standard Checkpoints

507

 5 Specify the settings for the checkpoint. For more information, see 
“Understanding the Checkpoint Properties Dialog Box” on page 508.

 6 Click OK to close the dialog box. A checkpoint statement is added for the 
selected object in the Keyword View and Expert View.

To add a standard checkpoint while editing:

 1 Perform one of the following:

➤ Right-click the step on which you want to perform a checkpoint and 
select Insert Standard Checkpoint. 

➤ Select the step where you want to add the checkpoint and select Insert > 
Checkpoint > Standard Checkpoint.

➤ Right-click any object in the Active Screen and select Insert Standard 
Checkpoint.

The Checkpoint Properties dialog box opens.

Note: To add a standard checkpoint while editing, one of the following 
must be true:

➤ Active Screen information exists for the step. For more information, see 
“Working with the Active Screen” on page 376.

➤ The object for which you want to create a checkpoint is currently 
displayed in the application.

Depending on the object and environment, it may be necessary for both of 
these conditions to be true. For more information, see the chapter for your 
environment in the HP QuickTest Professional Add-ins Guide.

 2 Specify the settings for the checkpoint. For more information, see 
“Understanding the Checkpoint Properties Dialog Box” on page 508.

 3 Click OK to close the dialog box. A checkpoint statement is added for the 
selected object in the Keyword View and Expert View. 



Chapter 18 • Checking Object Property Values Using Standard Checkpoints

508

Understanding the Checkpoint Properties Dialog Box

In the Checkpoint Properties dialog box, you can specify which properties 
of the object to check, and edit the values of these properties. While the 
specific elements vary slightly depending on the type of object you are 
checking, the Checkpoint Properties dialog box generally includes the 
following basic elements: 

The ABC icon indicates 
that the value of the 
property to check is a 
constant.

This icon indicates that 
the value of the property 
to check is a Data Table 
parameter.

The selected check box 
indicates that this 
property
will be checked.



Chapter 18 • Checking Object Property Values Using Standard Checkpoints

509

The dialog box described above is used to configure most standard 
checkpoints. Certain standard checkpoint types, however, employ different 
dialog boxes, as follows:

Identifying the Checkpoint

The top part of the dialog box displays information on the checkpoint:

For information on the Dialog 
Box for:

See:

Image checkpoint properties “Understanding the Image Checkpoint 
Properties Dialog Box” on page 512

Page checkpoint properties The section on checking Web pages in the 
HP QuickTest Professional Add-ins Guide

Table checkpoint properties “Understanding the Table Checkpoint 
Properties Dialog Box” on page 535

Information Description

Name The name of the checkpoint. By default, the checkpoint name is 
the same as the name of the test object on which the checkpoint 
was created. You can specify a different name for the checkpoint or 
accept the default name.

If you rename the checkpoint, make sure that the name: 

➤ is unique

➤ does not begin or end with a space

➤ does not contain " (double quotation mark)

➤ does not contain the following character combinations: 
:=
@@

Class The type of object. In this example, the WebEdit class indicates 
that the object is an edit box.



Chapter 18 • Checking Object Property Values Using Standard Checkpoints

510

Selecting the Object Property to Check

The properties for the object are listed in the Properties pane of the dialog 
box. The pane includes the properties, their values, and their types:

Find in 
Repository 
button 

Displays the checkpoint in its object repository.

Note: This option is available only when editing an existing 
checkpoint. It is not available when creating a new checkpoint.

When available, it is located to the right of the Name box.

Pane Element Description

Check box For each object class, QuickTest recommends default 
property checks. You can accept the default checks or 
modify them accordingly.

To check a property, select the corresponding check box.

To exclude a property check, clear the corresponding 
check box.

Type The  icon indicates that the value of the property is 
currently a constant. 

The  icon indicates that the value of the property is 
currently a test or action parameter.

The  icon indicates that the value of the property is 
currently a Data Table parameter.

The  icon indicates that the value of the property is 
currently an environment variable parameter.

The  icon indicates that the value of the property is 
currently a random number parameter.

Property The name of the property.

Value The expected value of the property. For more information 
on modifying the value of a property, see “Setting Values 
in the Configure Value Area” on page 757.

Information Description



Chapter 18 • Checking Object Property Values Using Standard Checkpoints

511

Editing the Expected Value of an Object Property

In the Configure value area, you can define the expected value of the 
property to check as a Constant or Parameter. For information on 
modifying property values, see “Setting Values in the Configure Value Area” 
on page 757.

Setting the Checkpoint Timeout Option

Checkpoint timeout. Specifies the time interval (in seconds) during which 
QuickTest attempts to perform the checkpoint successfully. QuickTest 
continues to perform the checkpoint until it passes or until the timeout 
occurs. If the checkpoint does not pass before the timeout occurs, the 
checkpoint fails. 

For example, suppose it takes some time for an object to achieve an 
expected state. Increasing the checkpoint timeout value in this case can help 
ensure that the object has sufficient time to achieve that state, enabling the 
checkpoint to pass (if the data matches) before the maximum timeout is 
reached.

If you specify a checkpoint timeout other than 0, and the checkpoint fails, 
the Test Results window displays information on the checkpoint timeout.

Inserting the Checkpoint in Your Test 

The Insert statement option specifies when to perform the checkpoint in 
the test. 

➤ Select Before current step if you want to check the value of the object 
property before the highlighted step is performed. 

➤ Select After current step if you want to check the value of the property after 
the highlighted step is performed.

Note: The Insert statement option is not available when adding a 
checkpoint during recording or when modifying an existing object 
checkpoint. It is available only when adding a new checkpoint to an 
existing test while editing it.



Chapter 18 • Checking Object Property Values Using Standard Checkpoints

512

Understanding the Image Checkpoint Properties 
Dialog Box

Image checkpoints enable you to check the properties of a Web image. In 
the Image Checkpoint Properties dialog box, you can specify which 
properties of the image to check and edit the values of those properties. This 
dialog box is similar to the standard Checkpoint Properties dialog box, 
except that it contains the Compare image content option. This option 
enables you to compare the expected image source file with the actual image 
source file. 

This icon indicates that the 
value of the property to check is 
a Data Table parameter.

The ABC icon indicates that 
the value of the property to 
check is a constant.

The selected check box 
indicates that this property will 
be checked.

Instructs QuickTest to compare 
the expected image with the 
graphic of the actual image.



Chapter 18 • Checking Object Property Values Using Standard Checkpoints

513

Identifying the Checkpoint

The top part of the dialog box displays information on the checkpoint:

Selecting the Image Property to Check

The default properties for the image are listed in the Properties pane of the 
dialog box. This pane includes the properties, their values, and their types. It 
is identical to the Properties pane in the Checkpoint Properties dialog box 
for standard checkpoints. For more information, see “Selecting the Object 
Property to Check” on page 510.

Information Description

Name The name that QuickTest assigns to the checkpoint. By 
default, the checkpoint name is the name of the test 
object on which the checkpoint is being performed. You 
can specify a different name for the checkpoint or accept 
the default name.

If you rename the checkpoint, make sure that the name:

➤ is unique

➤ does not begin or end with a space

➤ does not contain " (double quotation mark)

➤ does not contain the following character 
combinations: 
:=
@@

Class The type of object. This is always Image.

Find in Repository 
button  

(Located to the right 
of the Name box)

Displays the checkpoint in its object repository.

Note: This option is available only when editing an 
existing checkpoint. It is not available when creating a 
new checkpoint.



Chapter 18 • Checking Object Property Values Using Standard Checkpoints

514

Editing the Expected Value of an Image Property

The middle part of the Image Checkpoint Properties dialog box contains the 
following:

➤ Configure value. Enables you to define the expected value of the property as 
a Constant or Parameter. For information on modifying property values, see 
“Setting Values in the Configure Value Area” on page 757.

➤ Compare image content. Compares the expected image source file with the 
graphic of the actual image source file. If the expected and actual images are 
different, QuickTest displays them both in the Test Results. If the images are 
identical, only one graphic is displayed.

Setting General Image Checkpoint Options

The bottom part of the Image Checkpoint Properties dialog box contains the 
Checkpoint timeout and Insert statement options. These options are 
identical to those in the Checkpoint Properties dialog box for standard 
checkpoints. For more information, see “Setting the Checkpoint Timeout 
Option” on page 511 and “Inserting the Checkpoint in Your Test” on 
page 511.

Modifying Checkpoints

You can modify the settings of existing checkpoints.

To modify a checkpoint:

 1 In the Keyword View or Expert View, right-click the checkpoint that you 
want to modify and select Checkpoint Properties. Alternatively, select the 
step containing the checkpoint and select 
Edit > Step Properties > Checkpoint Properties. The relevant checkpoint 
dialog box opens.

 2 Modify the properties and click OK. For more information, see 
“Understanding the Checkpoint Properties Dialog Box” on page 508.



515

19
Checking Bitmaps

QuickTest enables you to check that the visible parts of your application are 
displayed correctly by comparing bitmaps of objects in your application to 
bitmaps captured previously and stored with the test. 

This chapter includes:

 ➤  About Checking Bitmaps on page 515

 ➤  Fine-Tuning the Bitmap Comparison on page 516

 ➤  Creating and Modifying Bitmap Checkpoints on page 518

 ➤  The Bitmap Checkpoint Properties Dialog Box on page 522

About Checking Bitmaps

You can check an area of an application as a bitmap. You can check an entire 
object or any area within an object. For example, suppose you have a Web 
site that can display a map of a city the user specifies. The map has control 
keys for zooming. You can record the new map that is displayed after one 
click on the control key that zooms in the map. Using the bitmap 
checkpoint, you can check that the map zooms in correctly. 

You can create bitmap checkpoints for all supported testing environments 
(as long as the appropriate add-ins are loaded).

The results of bitmap checkpoints may be affected by factors such as 
operating system, screen resolution, and color settings.



Chapter 19 • Checking Bitmaps

516

When you create a bitmap checkpoint, QuickTest captures the visible part of 
the specified object as a bitmap (QuickTest does not capture any part that is 
scrolled off the screen, or hidden by another object, for example), and 
inserts a checkpoint in the test.

When you run the test, QuickTest captures a bitmap of the actual object in 
the application and compares this bitmap (or a selected area within it) with 
the bitmap stored in the checkpoint. 

If there are differences, QuickTest saves the bitmap of the actual object and 
displays it next to the expected bitmap in the details pane of the Test Results 
window. In the Test Results window you can also view a bitmap that reflects 
the difference between the two bitmaps, to assist you in identifying the 
nature of the discrepancy. You can configure QuickTest not to save the 
bitmaps in the test results, or to save them even if the checkpoint passes 
(Tools > Options > Run > Screen Capture pane). For more information on 
test results of a checkpoint, see “Viewing Checkpoint Results” on page 1028.  

Fine-Tuning the Bitmap Comparison

When running a bitmap checkpoint, QuickTest compares the area that you 
are checking in the application with the bitmap stored in the checkpoint, 
pixel by pixel. By default, if any pixels are different, the checkpoint fails. 
The Bitmap Checkpoint Properties dialog box (described on page 522) 
provides options for fine-tuning the bitmap comparison.

You can adjust the comparison to enable the checkpoint to pass even if the 
bitmaps are not identical by setting the RGB tolerance and Pixel tolerance 
options described below. 

In addition, QuickTest enables you to use custom comparers for bitmap 
checkpoints. A custom comparer is a COM object that you or a third party 
developed to run the bitmap comparison in the checkpoint according to a 
more specific algorithm. If one or more custom comparers are installed and 
registered on the QuickTest computer, the Bitmap Checkpoint Properties 
dialog box includes a Comparer option. 



Chapter 19 • Checking Bitmaps

517

This option enables you to select the QuickTest default comparer or a 
custom comparer that performs the bitmap comparison according to your 
testing requirements. For an example on when it can be useful to create a 
custom comparer, see “Use-Case Scenario: Handling Images Whose Location 
in the Application Changes” on page 1577. For more information on 
developing custom comparers, see Appendix D, “Bitmap Checkpoint 
Customization.”

If you select a custom comparer, some of the options in the Bitmap 
Checkpoint Properties dialog box are different. For more information, see 
“The Bitmap Checkpoint Properties Dialog Box” on page 522.

Bitmap Checkpoint Tolerance Options

➤ RGB tolerance. The RGB (Red, Green, Blue) tolerance determines the percent 
by which the RGB values of the pixels in the actual bitmap can differ from 
those of the expected bitmap and allow the checkpoint to pass. (The RGB 
tolerance option is limited to bitmaps with a color depth of 24 bits.)

For example, a bitmap checkpoint on identical bitmaps could fail if different 
display drivers are used when you create your checkpoint and when you run 
your test. Suppose one display driver displays the color white as RGB (255, 
255, 255) and another driver displays the color white as RGB (231, 231, 
231). The difference between these two values is about 9.4%. By setting the 
RGB tolerance to 10%, your checkpoint will pass when running your test 
with either of these drivers.

Note: QuickTest applies the RGB tolerance settings when comparing each 
pixel in the actual and expected bitmaps. The Red, Green, and Blue values 
for each pixel are compared separately. If any of the values differs more than 
the tolerance allows, the pixel fails the comparison.



Chapter 19 • Checking Bitmaps

518

➤ Pixel tolerance. The pixel tolerance determines the number or percentage of 
pixels in the actual bitmap that can differ from those in the expected 
bitmap and allow the checkpoint to pass.

For example, suppose the expected bitmap has 4000 pixels. If you define the 
pixel tolerance to be 50 and select the Pixels radio button, up to 50 pixels in 
the actual bitmap can be different from those in the expected bitmap and 
the checkpoint passes. If you define the pixel tolerance to be 5 and select the 
Percent radio button, up to 200 pixels (5 percent of 4000) in the actual 
bitmap can be different from those in the expected bitmap and the 
checkpoint passes.

Using both RGB and Pixel Tolerances

If you define both RGB and pixel tolerances, the RGB tolerance is calculated 
first. The pixel tolerance then defines the maximum number of pixels that 
can fail the RGB criteria and allow the checkpoint to pass.

For example, suppose you define an RGB tolerance of 10 percent and a pixel 
tolerance of 5 percent for a bitmap that has 4000 pixels. 

For the checkpoint to pass, each pixel in the actual bitmap must have RGB 
values that are no greater than or no less than 10 percent of the RGB values 
of the expected bitmap. If that criterion fails, QuickTest checks that the 
number of pixels that failed are less than 200. If that criterion passes, the 
checkpoint passes. 

Creating and Modifying Bitmap Checkpoints

You insert a bitmap checkpoint while recording or editing a test. You can 
also modify an existing bitmap checkpoint. 

Bitmap checkpoints can capture only the visible part of an object. Therefore, 
confirm that the object to capture is always fully visible on the screen before 
a bitmap checkpoint step is performed. One way to do this is to insert a 
MakeVisible statement (for relevant environments) prior to your bitmap 
checkpoint step. For more information on the MakeVisible method, see the 
QuickTest Object Model Reference.



Chapter 19 • Checking Bitmaps

519

To create a bitmap checkpoint while recording:

 1 Select Insert > Checkpoint > Bitmap Checkpoint, or click the Insert 
Checkpoint or Output Value button and select Bitmap Checkpoint. 

The QuickTest window is hidden, and the pointer turns into a pointing 
hand. For more information about using the pointing hand feature, see 
“Tips for Using the Pointing Hand” on page 521.

 2 Click an object to check in your application. If the location you click is 
associated with more than one object, the Object Selection - Bitmap 
Checkpoint Properties dialog box opens. 

 3 Select an object from the tree on which to create the bitmap checkpoint.  

Tip: If you want to create a bitmap checkpoint that contains multiple 
objects, you should select the highest level object that includes all the 
objects to include in the bitmap checkpoint.

 4 Click OK. The Bitmap Checkpoint Properties dialog box opens. Create the 
Bitmap checkpoint using the options in the dialog box. For more 
information, see “The Bitmap Checkpoint Properties Dialog Box” on 
page 522.



Chapter 19 • Checking Bitmaps

520

To create a bitmap checkpoint while editing:

 1 Make sure the Active Screen button is selected.

 2 Click the step in the Keyword View for which you want to add a checkpoint. 
The Active Screen displays the area of the application corresponding to the 
highlighted step.

 3 Right-click an object in the Active Screen and select Insert Bitmap 
Checkpoint. If the location you click is associated with more than one 
object, the Object Selection - Bitmap Checkpoint Properties dialog box 
opens. 

 4 Select an object from the tree on which to create a bitmap checkpoint. 

Tips: 

➤ Ensure that the object you select is completely visible. If another 
application is overlapping the object, it is also captured.

➤ To create a bitmap checkpoint that contains multiple objects, select the 
highest level object that includes all the objects to include in the bitmap 
checkpoint.



Chapter 19 • Checking Bitmaps

521

 5 Click OK. The Bitmap Checkpoint Properties dialog box opens. Create the 
Bitmap checkpoint using the options in the dialog box. For more 
information, see “The Bitmap Checkpoint Properties Dialog Box” on 
page 522.

To modify a bitmap checkpoint:

 1 Select the step containing the checkpoint and select 
Edit > Step Properties > Checkpoint Properties, or select the Value cell in 
the step and click the Checkpoint Properties button. Alternatively, in the 
Keyword View or Expert View, right-click the checkpoint that you want to 
modify and select Checkpoint Properties. 

 2 The Bitmap Checkpoint Properties dialog box opens and displays the object 
or area you saved with the checkpoint. Modify the Bitmap checkpoint using 
the options in the dialog box. For more information, see “The Bitmap 
Checkpoint Properties Dialog Box” on page 522.

Tips for Using the Pointing Hand

➤ You can hold the left CTRL key to change the pointing hand to a standard 
pointer. You can then change the window focus or perform operations in 
QuickTest or in your application, such as right-clicking, using the scroll bars, 
or moving the pointer over an object to display a context menu.

➤ If the window containing the object you want to select is partially hidden 
by another window, hold the pointing hand over the partially hidden 
window for a few seconds until it comes to the foreground. Then point to 
and click the required object. You can configure the length of time required 
to bring a window into the foreground using the General pane of the 
Options dialog box. 

➤ If the window containing the object you want to select is fully hidden by 
another window, or if a dialog box is hidden behind a window, press the left 
CTRL key and arrange the windows as needed.

➤ If the window containing the object you want to select is minimized, you 
can display it by holding the left CTRL key, right-clicking the application in 
the Windows task bar, and choosing Restore from the context menu.



Chapter 19 • Checking Bitmaps

522

➤ If the object you want to select can be displayed only by performing an 
event (such as right-clicking or moving the pointer over an object to display 
a context menu), hold the left CTRL key. The pointing hand temporarily 
turns into a standard pointer and you can perform the event. When the 
object you want to select is displayed, release the left CTRL key. The pointer 
becomes a pointing hand again.

The Bitmap Checkpoint Properties Dialog Box

Description Enables you to create or modify a bitmap 
checkpoint.

How to Access See: “Creating and Modifying Bitmap Checkpoints” 
on page 518

Learn More Conceptual overview: “About Checking Bitmaps” 
on page 515



Chapter 19 • Checking Bitmaps

523

The following image is an example. It shows the options that are available 
when selecting an area to check in the bitmap, in a new checkpoint being 
created while editing a test. 

Bitmap Checkpoint Properties Dialog Box Details

This dialog box includes several groups of options, described in the 
following sections:

➤ “Descriptive Information” on page 524

➤ “Options for Selecting the Area to Check” on page 525

➤ “Tolerance Options” on page 526

➤ “Checkpoint Timeout and Statement Location Options” on page 527

Bitmap display 
area
Bitmap display 
area

Selected 
area

Current pointer 
position

Selected area 
size



Chapter 19 • Checking Bitmaps

524

Descriptive Information

The descriptive information is displayed in the top part of the Checkpoint 
Properties dialog box.

➤ Name. By default, the checkpoint name is the same as the name of the test 
object on which the checkpoint was created. Accept the name that 
QuickTest assigns to the checkpoint or specify another name for it. 

If you rename the checkpoint, make sure that the name:

➤ is unique

➤ does not begin or end with a space

➤ does not contain " (double quotation mark) 

➤ does not contain the following character combinations:
:=
@@ 

➤ Class. The type of test object on which the checkpoint was created. 
(Read-only)

➤ Comparer. Enables you to select the comparer for QuickTest to use to run 
the checkpoint. You can select the QuickTest default comparer or a custom 
comparer. If you select a custom comparer, some of the options in this 
dialog box are different. For more information, see “Custom Comparer 
Options in the Bitmap Checkpoint Properties Dialog Box” on page 527.

This option is available only if any custom comparers are installed and 
registered on the QuickTest computer. Otherwise, the QuickTest default 
comparer is used. For more information, see “Fine-Tuning the Bitmap 
Comparison” on page 516.

➤ Bitmap display area. Displays a bitmap of the object you selected.

➤ Find in Repository. To view the checkpoint in its repository, click the Find in 
Repository button located to the right of the Name box. 

This option is not available when creating a new checkpoint. It is available 
only when editing an existing checkpoint.



Chapter 19 • Checking Bitmaps

525

Options for Selecting the Area to Check

The options for selecting the area to check are displayed beneath the bitmap 
display area.

➤ Check entire bitmap / Check only selected area. Enables you to specify 
whether the checkpoint compares the entire bitmap or only a specific area 
of the bitmap. If you select Check only selected area, the cursor turns into a 
crosshairs pointer when you hover over the bitmap display area. Use the 
crosshairs pointer to draw a rectangle specifying the area that you want to 
select. To remove the rectangle, click again. 

While the crosshairs pointer is visible, QuickTest displays the coordinates of 
the pointer’s current position beneath the bottom-right corner of the 
bitmap display area. As you draw the rectangle using the crosshairs, 
QuickTest displays a tooltip with the current selected area size near the 
crosshairs pointer.

If you define the checkpoint to compare only a specific area of the bitmap, 
the selected area is highlighted also in the actual and expected bitmaps 
displayed in the Test Results window. 

➤ Save only selected area. Enables you to save only the selected area of the 
object with your test (to save disk space). The bitmap stored in the 
checkpoint is cropped when you click OK. The Test Results window displays 
only the selected area of the bitmap. 

This option is available only after you select Check only selected area and 
draw the rectangle that specifies the area.

Note: If you select the Save only selected area check box, you can later 
modify the checkpoint by selecting a smaller area within the selected area, 
but you cannot return the bitmap to its former size. The Update Run Mode 
option (Automation > Update Run Mode) only updates the saved area of the 
bitmap. It does not update the original, full size object. To include more of 
the object in the checkpoint, create a new checkpoint.



Chapter 19 • Checking Bitmaps

526

Tolerance Options

The tolerance options are displayed beneath the options for selecting the 
area to check.

➤ RGB tolerance. Enables you to define the percent by which the RGB values 
of the pixels in the actual bitmap can differ from those of the expected 
bitmap and allow the checkpoint to pass. 

Select the check box and modify the percentage manually or by using the up 
and down arrows. For more information, see “Fine-Tuning the Bitmap 
Comparison” on page 516.

This option is limited to bitmaps with a color depth of 24 bits.

➤ Pixel tolerance. Enables you to define the number or percentage of pixels in 
the actual bitmap that can differ from those in the expected bitmap and 
allow the checkpoint to pass. 

Select the check box, select either the Percent or Pixels radio button, and 
modify the value manually or by using the up and down arrows. If you 
switch between the Percent and Pixels radio buttons after entering the 
tolerance value, the value is recalculated based on your selection. (100% is 
the total number of pixels in the expected bitmap or selected area.)

For more information, see “Fine-Tuning the Bitmap Comparison” on 
page 516.



Chapter 19 • Checking Bitmaps

527

Checkpoint Timeout and Statement Location Options

The checkpoint timeout and statement location options are displayed in the 
bottom part of the Checkpoint Properties dialog box.

➤ Checkpoint timeout. Enables you to define the time interval (in seconds) 
during which QuickTest attempts to perform the checkpoint successfully. 
QuickTest continues to perform the checkpoint until it passes or until the 
timeout occurs. If the checkpoint does not pass before the timeout occurs, 
the checkpoint fails. 

For example, suppose it takes some time for an object to achieve an 
expected state. Increasing the checkpoint timeout value in this case can help 
ensure that the object has sufficient time to achieve that state, enabling the 
checkpoint to pass (if the data matches) before the maximum timeout is 
reached.

If you specify a checkpoint timeout other than 0, and the checkpoint fails, 
the Test Results window displays information on the checkpoint timeout.

➤ Before current step / After current step. Enables you to insert the bitmap 
checkpoint before or after the highlighted step. 

This option is available only when creating a checkpoint while editing a 
test.

Custom Comparer Options in the Bitmap Checkpoint 
Properties Dialog Box

In the Bitmap Checkpoint Properties dialog box, if you select a custom 
comparer to run the bitmap comparison, the options for selecting an area of 
the bitmap and for setting tolerance levels are not available. 

Instead, the following options are available (as supported by the custom 
comparer):

➤ Configuration options. Enables you to provide input (in string format) to 
the custom comparer, for any configuration options it supports. For 
example, you might be able to specify tolerance levels, an acceptable 
deviation in size or location of the bitmap, and so on. 

By default, this box displays a configuration string provided by the custom 
comparer (if available).



Chapter 19 • Checking Bitmaps

528

➤ Details. Opens help information provided by the custom comparer (if 
available). This help can include instructions for providing configuration 
input to the comparer, information about the algorithm that the custom 
comparer uses to compare the bitmaps, an explanation about when to use 
this custom comparer, and so on.

Below is an image of the Bitmap Checkpoint Properties dialog box with a 
custom comparer selected:

 



529

20
Checking Tables

You can add table checkpoints to check the content of tables displayed in 
your application.

This chapter includes:

 ➤  About Checking Tables on page 529

 ➤  Creating a Table Checkpoint on page 530

 ➤  Understanding the Table Checkpoint Properties Dialog Box on page 535

 ➤  Checking Table Content on page 536

 ➤  Checking Table Properties on page 546

 ➤  Modifying a Table Checkpoint on page 548

About Checking Tables

By adding table checkpoints to your test, you can check the content of 
tables displayed in your application. For example, you can check that a 
specified value is displayed in a certain cell. For some environments, you 
can also check the properties of the table object. For example, you can check 
that a table has the expected number of rows and columns.



Chapter 20 • Checking Tables

530

When you run the test, the table checkpoint compares the actual data to the 
expected data, as defined in the checkpoint. If the results match, the 
checkpoint passes. You can view the results of the checkpoint in the Test 
Results window. For more information, see Chapter 33, “Viewing Run 
Session Results.”

Table checkpoints are supported for table objects in a variety of add-in 
environments, such as Web, ActiveX, and Java. Table checkpoints are also 
supported for some list view objects, such as WinListView and VbListView.

Creating a Table Checkpoint

You can add a table checkpoint while recording or editing your test. To add a 
table checkpoint, you use the Table Checkpoint Properties dialog box.

To add a table checkpoint while recording:

 1 Select Insert > Checkpoint > Standard Checkpoint or click the Insert 
Checkpoint or Output Value button. The QuickTest window is hidden, and 
the pointer changes to a pointing hand. For more information on using the 
pointing hand feature, see “Tips for Using the Pointing Hand” on page 532.

 2 Click the table you want to check. The Object Selection - Checkpoint 
Properties dialog box opens.  

 3 Select a table item from the displayed object tree and click OK. If the Table 
Checkpoint Properties dialog box opens, skip to step 4.

Otherwise, for certain objects in certain environments, the Define Row 
Range dialog box opens.



Chapter 20 • Checking Tables

531

Select the range of rows you want to include in your checkpoint. You can 
include:

➤ All rows. Includes all of the rows in the table. Note that capturing all of 
the data for large table or list view objects may take some time.

➤ Visible Rows (from row X to row Y). Includes only the rows visible on the 
screen. Note that this option may not be available for some 
environments or object types.

➤ Another range -- from row _ to row _. You can specify any row range in 
the table.

Click OK. The Define Row Range dialog box closes, and the Table 
Checkpoint Properties dialog box displays the rows you specified (above the 
grid area).

 4 In the Table Checkpoint Properties dialog box, specify the settings for the 
checkpoint. For more information, see “Understanding the Table 
Checkpoint Properties Dialog Box” on page 535.

Note: For some environments, the Table Checkpoint Properties dialog box 
contains two tabs: Table Content and Properties. For other environments, 
the Table Checkpoint Properties dialog box displays only the options 
available in the Table Content tab, but does not contain any tabs.

 5 Click OK to close the dialog box. A checkpoint statement is added for the 
selected object in the Keyword View and Expert View.



Chapter 20 • Checking Tables

532

Tips for Using the Pointing Hand

➤ You can hold the left CTRL key to change the pointing hand to a standard 
pointer. You can then change the window focus or perform operations in 
QuickTest or in your application, such as right-clicking, using the scroll bars, 
or moving the pointer over an object to display a context menu.

➤ If the window containing the object you want to select is partially hidden 
by another window, hold the pointing hand over the partially hidden 
window for a few seconds until it comes to the foreground. Then point to 
and click the required object. You can configure the length of time required 
to bring a window into the foreground using the General pane of the 
Options dialog box. 

➤ If the window containing the object you want to select is fully hidden by 
another window, or if a dialog box is hidden behind a window, press the left 
CTRL key and arrange the windows as needed.

➤ If the window containing the object you want to select is minimized, you 
can display it by holding the left CTRL key, right-clicking the application in 
the Windows task bar, and choosing Restore from the context menu.

➤ If the object you want to select can be displayed only by performing an 
event (such as right-clicking or moving the pointer over an object to display 
a context menu), hold the left CTRL key. The pointing hand temporarily 
turns into a standard pointer and you can perform the event. When the 
object you want to select is displayed, release the left CTRL key. The pointer 
becomes a pointing hand again.



Chapter 20 • Checking Tables

533

To add a table checkpoint while editing:

 1 Depending on whether the object on which you want to perform a check is 
already in a step, do one of the following:

➤ If you already recorded a step on the object you want to check, right-click 
the step and select Insert Standard Checkpoint. Alternatively, select the 
step and select Insert > Checkpoint > Standard Checkpoint.

➤ If you have not recorded a step on the object you want to check, make 
sure the Active Screen button is selected and the Active Screen is visible. 
Click a step in your test where you want to add a checkpoint. The Active 
Screen displays the Web page or application screen corresponding to the 
highlighted step. Right-click the table in the Active Screen and select 
Insert Standard Checkpoint. The Object Selection - Checkpoint 
Properties dialog box opens. Select a table item from the displayed object 
tree and click OK.

Note: In some environments, you must have the table open in your 
application to insert a checkpoint on it.

 2 If the Table Checkpoint Properties dialog box opens, skip to step 3.

Otherwise, for certain objects in certain environments, the Define Row 
Range dialog box opens.



Chapter 20 • Checking Tables

534

Select the range of rows you want to include in your checkpoint. You can 
include:

➤ All rows. Includes all of the rows in the table. Note that capturing all of 
the data for large table or list view objects may take some time.

➤ Visible Rows (from row X to row Y). Includes only the rows visible on the 
screen. Note that this option may not be available for some 
environments or object types.

➤ Another range -- from row X to row Y. You can specify any row range 
between 1 and the number of rows listed in the table.

Click OK. The Define Row Range dialog box closes, and the Table 
Checkpoint Properties dialog box displays the rows you specified (above the 
grid area).

 3 In the Table Checkpoint Properties dialog box, specify the settings for the 
checkpoint. For more information, see “Understanding the Table 
Checkpoint Properties Dialog Box” on page 535.

Note: For some environments, the Table Checkpoint Properties dialog box 
contains two tabs: Table Content and Properties. For other environments, 
the Table Checkpoint Properties dialog box displays only the options 
available in the Table Content tab, but does not contain any tabs.

 4 Click OK to close the dialog box. A checkpoint statement is added for the 
selected object.



Chapter 20 • Checking Tables

535

Understanding the Table Checkpoint Properties Dialog Box

The Table Checkpoint Properties dialog box enables you to specify which 
cell contents of your table to check and which verification method and type 
to use. You can also edit or parameterize the expected data for the cells 
included in the check.

For some environments, the Table Checkpoint Properties Dialog Box also 
enables you to check the properties of the object (using the Properties tab), 
in addition to checking the content (using the Table Content tab).   

Click to select
an entire row

Click to select 
the entire table

Row and 
column indicator

Click to select
an entire column

Add to check

Remove from
check



Chapter 20 • Checking Tables

536

Note: Some of the options shown in this example are available only in 
certain environments and only for certain objects.

For information on the options in the Table Content tab (or the entire 
dialog box if no tab is displayed), see the sections below. For information on 
the options in the Properties tab, see “Checking Table Properties” on 
page 546.

Checking Table Content

The Table Checkpoint Properties dialog box enables you to check table 
content. 

Note: If the Table Checkpoint Properties dialog box contains tabs, you use 
the Table Content tab to check table content.

You can:

➤ understand and set general table checkpoint options

➤ specify which cells to check

➤ specify the expected data (Expected Data tab)

➤ specify the value type criteria (Settings tab)

➤ specify how QuickTest should locate the cells to be checked (Cell 
Identification tab)



Chapter 20 • Checking Tables

537

Understanding and Setting General Table Checkpoint 
Options
This section describes the general settings and options displayed in the Table 
Checkpoint Properties dialog box. Most of the options described in this 
section are available regardless of whether the Table Checkpoint Properties 
dialog box contains tabs.

Descriptive Information

The top part of the Table Checkpoint Properties dialog box contains the 
following options:

Name The name that QuickTest assigns to the checkpoint. By default, 
the checkpoint name is the name of the test object on which the 
checkpoint is being performed. You can specify a different name 
for the checkpoint or accept the default name.

If you rename the checkpoint, make sure that the name:

➤ is unique

➤ does not begin or end with a space

➤ does not contain " (double quotation mark)

➤ does not contain the following character combinations: 
:=
@@

Class Specifies the type of object (read-only). This may be a table-type 
object or a list view-type object. 

Find in 
Repository 
button 

Displays the checkpoint in its object repository.

Note: This option is available only when editing an existing 
checkpoint. It is not available when creating a new checkpoint.



Chapter 20 • Checking Tables

538

Tabs (If Available)

If the Table Checkpoint Properties dialog box contains tabs, each tab 
displays a check box. You can select one or both of these check boxes to 
specify the type of data to check.  

 

Note: These check boxes are displayed only if the Table Checkpoint 
Properties dialog box contains tabs. If the Table Checkpoint Properties 
dialog box does not contain tabs, QuickTest automatically checks table 
content as defined in the dialog box.

Check Table 
Content 
check box

(Table Content tab) Selecting the Check Table Content check box 
instructs QuickTest to check the content of the table object. 
(Selected by default.) 

Check 
Properties
check box

(Properties tab) Selecting the Check Properties check box instructs 
QuickTest to check the properties of the table object. (Cleared by 
default.) 



Chapter 20 • Checking Tables

539

Timeout and Statement Location

The bottom part of the Table Checkpoint Properties dialog box contains the 
following options: 

Checkpoint 
timeout

Specifies the time interval (in seconds) during which QuickTest 
attempts to perform the checkpoint successfully. QuickTest 
continues to perform the checkpoint until the checkpoint passes 
or until the timeout occurs. If the checkpoint does not pass 
before the timeout occurs, the checkpoint fails.

For example, if it takes a long time for data to load in a table, 
increasing the checkpoint timeout value can help ensure that 
the data has sufficient time to load. This enables the checkpoint 
to pass (if the data matches) before the end of the timeout period 
is reached.

If you specify a checkpoint timeout other than 0, and the 
checkpoint fails, the Test Results window displays information 
on the checkpoint timeout.

Insert 
statement

Specifies when to perform the checkpoint in the test. Select 
Before current step if you want to check the table content before 
the highlighted step is performed. Select After current step if you 
want to check the table content after the highlighted step is 
performed.

Note: The Insert statement option is available only when adding 
a new checkpoint while editing an existing test. (This option is 
not available during recording.)



Chapter 20 • Checking Tables

540

Specifying Which Cells to Check
The grid area of the Table Checkpoint Properties dialog box represents the 
cells in the table. The column header names are captured from the table you 
selected for your checkpoint.

Tip: You can change the column widths and row heights of the grid by 
dragging the column and row header dividers.

Note: Some environments and objects support selecting a row range. This 
enables you to specify which rows are displayed in the grid area. If row range 
selection is supported, the row range you specify when creating the 
checkpoint is displayed above the grid:

Clicking the Change button enables you to modify the row range. For more 
information, see “Modifying a Table Checkpoint” on page 548.



Chapter 20 • Checking Tables

541

When you create a new table checkpoint, all cells contain a blue check 
mark, indicating they are all selected for verification. You can instruct 
QuickTest to check the entire table, specific rows, specific columns, or 
specific cells. QuickTest checks only cells containing a check mark.

Notes:

➤ Double-clicking on the grid toggles the settings for all selected cells. 
Therefore, if you double-click a row header, a column header, or the top 
left corner of the grid, any cells that were previously included in the 
check are removed from it, and any cells that were not previously 
included in the check are added to it.

➤ When more than one cell is selected, the options in the Expected Data 
tab are disabled.

To: Do this:

Add a single cell to or remove it from 
the check

Double-click the cell

Add an entire row to or remove it from 
the check

Double-click the row header 

Add an entire column to or remove it 
from the check

Double-click the column header

Add all cells to or remove all cells from 
the check

Double-click the top-left corner of the 
grid

Add a range of cells to the check Select the cells to add to the check and 
click the Add to Check button

Remove a range of cells from the check Select the cells to remove from the 
check and click the Remove from 
Check button



Chapter 20 • Checking Tables

542

Specifying the Expected Data
The Expected Data tab displays options for setting the expected value of the 
selected cell in the table.

You can modify the value of a cell or you can parameterize it to use a value 
from an external source, such as the Data Table or an environment variable. 
During the run session, QuickTest compares the value specified in this tab 
with the actual value that it finds during the run session. If the expected 
value and the actual value do not match, the checkpoint fails.

To modify or parameterize several cells in the table, select a cell and then set 
your preferences for that cell in the Expected Data tab. Repeat the process 
for each cell you want to modify.

The Expected Data tab includes the following:

Note: When more than one cell is selected, the options in the Expected Data 
tab are disabled.

Selected cell Indicates the table name and the row and column numbers of 
the selected cell. 

Configure 
value 

Enables you to set the expected value of the cell as a constant or 
parameter. For more information on modifying values, see 
“Setting Values in the Configure Value Area” on page 757.



Chapter 20 • Checking Tables

543

Specifying the Value Type Criteria
The Settings tab includes options that determine how the actual cell values 
are compared with the expected cell values. The settings in this tab apply to 
all selected cells. 

The default setting is to treat cell values as strings and to check for the exact 
text, while ignoring spaces.

The Settings tab includes the following options:

Option Description

Verification type Specifies how cell contents are compared:

➤ String Content. (Default) Evaluates the content of the 
cell as a string. For example, 2 and 2.00 are not 
recognized as the same string.

➤ Numeric Content. Evaluates the content of the cell 
according to numeric values. For example, 2 and 2.00 
are recognized as the same number.

➤ Numeric Range. Compares the content of the cell 
against a numeric range, where the minimum and 
maximum values are any real number that you specify. 
This comparison differs from string and numeric 
content verification in that the table data is compared 
against the range that you defined and not against a 
specific expected value.



Chapter 20 • Checking Tables

544

Specifying the Cell Identification Settings
The settings in the Cell Identification tab determine how QuickTest locates 
the cells to be checked. The settings in this tab apply to all selected cells.

Exact match (Default) Checks that the exact text, and no other text, is 
displayed in the cell. Clear this check box if you want to 
check that a value is displayed in a cell as part of the 
contents of the cell.

Note: QuickTest displays this option only when String 
Content is selected as the Verification type.

Ignore space (Default) Ignores spaces in the captured content when 
performing the check. The presence or absence of spaces 
does not affect the outcome of the check.

Note: QuickTest displays this option only when String 
Content is selected as the Verification type.

Match case Conducts a case sensitive search.

Note: QuickTest displays this option only when String 
Content is selected as the Verification type.

Min / Max Specifies the numeric range against which the content of 
the cell is compared. The range values can be any real 
number.

Note: QuickTest displays this option only when Numeric 
Range is selected as the Verification type.

Option Description



Chapter 20 • Checking Tables

545

The Cell Identification tab includes the following options:

Identify columns Specifies the location of the column (in your actual table) 
containing the cell(s) to which you want to compare the 
expected data.

➤ By position. (Default) Locates cells according to the 
column position. A shift in the position of the columns 
within the table results in a mismatch.

➤ By column name. Locates cells according to the column 
name. A shift in the position of the columns within the 
table does not result in a mismatch. (Enabled only 
when the table contains more than one column.)

Identify rows Specifies the location of the row (in your actual table) 
containing the cell(s) to which you want to compare the 
expected data.

➤ By row number. (Default) Locates cells according to the 
row position. A shift in the position of any of the rows 
within the table results in a mismatch.

➤ By selected key column(s). Locates the row(s) 
containing the cells to be checked by matching the 
value of the cell whose column was previously selected 
as a key column. A shift in the position of the row(s) 
does not result in a mismatch. If more than one row is 
identified, QuickTest checks the first matching row. 
You can use more than one key column to uniquely 
identify any row.

Note: A key symbol  is displayed in the header of 
selected key columns.

Use value match 
criteria to identify 
data in the key 
column

Instructs QuickTest to use the verification type settings 
from the Settings tab as the criteria for identifying data in 
the key column.

Enabled only when you select to identify rows By selected 
key column(s).



Chapter 20 • Checking Tables

546

Checking Table Properties

For certain environments, you can specify which table (or grid) properties 
you want to check. By default, when you create a table checkpoint on an 
object, QuickTest captures all the object’s properties, but does not select any 
properties to check. 

Note: For information on general table checkpoint options, such as Name 
and Checkpoint timeout, see “Understanding and Setting General Table 
Checkpoint Options” on page 537.



Chapter 20 • Checking Tables

547

Selecting Properties to Check
When you create a table checkpoint, the Properties pane displays the table 
object’s default properties, including the properties, their values, and their 
types.

You instruct QuickTest to perform a properties check by selecting the Check 
Properties check box. (This check box is cleared by default.)

The Properties pane for the object contains the following:

Check box For each object class, QuickTest recommends default property 
checks. You can accept the default checks or modify them 
accordingly.

➤ To check a property, select the corresponding check box.

➤ To remove a property from the check, clear the 
corresponding check box.

Type The  icon indicates that the value of the property is currently 
a constant.

The  icon indicates that the value of the property is currently 
a test or action parameter.

The  icon indicates that the value of the property is currently 
a Data Table parameter.

The  icon indicates that the value of the property is currently 
an environment variable parameter.

The  icon indicates that the value of the property is currently 
a random number parameter.



Chapter 20 • Checking Tables

548

Editing the Expected Value of a Table Property
The Configure value area enables you to define the expected value of the 
property as a Constant or a Parameter. 

For information on modifying property values, see “Setting Values in the 
Configure Value Area” on page 757.

Modifying a Table Checkpoint

You can change the expected data, settings and cell identification options 
for an existing table checkpoint.

To modify the settings of the table checkpoint:

 1 In the Keyword View or Expert View, right-click the table checkpoint that 
you want to modify and select Checkpoint Properties. Alternatively, select 
the step containing the checkpoint and select Edit > Step Properties > 
Checkpoint Properties. The Table Checkpoint Properties dialog box opens. 

 2 Modify the settings as described in “Understanding the Table Checkpoint 
Properties Dialog Box” on page 535.

Property The name of the property.

Value The expected value of the property. For more information on 
modifying the value of a property, see “Setting Values in the 
Configure Value Area” on page 757.



Chapter 20 • Checking Tables

549

To modify the number of rows in an existing table checkpoint:

 1 Open the application containing the table or list view object you want to 
check and display the object in the application.

 2 In the Keyword View or Expert View, right-click the table checkpoint that 
you want to modify and select Checkpoint Properties. Alternatively, select 
the step containing the checkpoint and select Edit > Step Properties > 
Checkpoint Properties. The Table Checkpoint Properties dialog box opens, 
displaying the currently selected row range. 

 3 In the Table Content tab, click the Change button at the top of the dialog 
box (above the grid area). The Modify Row Range dialog box opens.

 4 Select the range of rows you want to include in your checkpoint. You can 
include all the rows, only the visible rows, or another range that you specify.

Note: The Visible Rows option may not be available for some environments 
or object types.



Chapter 20 • Checking Tables

550

 5 Click OK. The Modify Row Range dialog box closes, and the Table 
Checkpoint Properties dialog box displays the rows you specified in the 
Modify Row Range dialog box. 

➤ If your modified row range includes new rows, QuickTest captures the 
current values of the new rows from the open application. 

➤ If your modified row range includes some or all of the rows that were 
already included in the checkpoint, the expected values of those cells are 
not changed. This enables you to modify the row range without losing 
parameterization, regular expressions, or other changes you may have 
made to the expected cell values in your checkpoint. 

Therefore, you cannot use the Modify Row Range dialog box to update 
the expected values of an existing table checkpoint. To update the 
expected values of your checkpoint, use the Update Run Mode option. 
For more information, see “Updating a Test Using the Update Run Mode 
Option” on page 1125.

➤ If your modified row range excludes some or all of the rows that were 
previously included in your checkpoint, those rows (and any 
modifications you made to the expected values) are deleted from the 
checkpoint.



551

21
Checking Text

QuickTest can check that a text string is displayed in the appropriate place 
in an application. 

This chapter includes:

 ➤  About Checking Text on page 551

 ➤  Creating a Text Checkpoint on page 552

 ➤  Creating a Text Area Checkpoint on page 554

 ➤  The Text / Text Area Checkpoint Properties Dialog Box on page 557

 ➤  Modifying a Text or Text Area Checkpoint on page 570

 ➤  Creating a Standard Checkpoint for Checking Text on page 570

About Checking Text

You can check that a specified text string is displayed by adding one of the 
following checkpoints to your test.

➤ Standard Checkpoint. Enables you to check the text property of an object. 
You can use standard checkpoints to check text in Windows-based and other 
types of applications (including Web-based applications). For more 
information on standard checkpoints, see “Creating Standard Checkpoints” 
on page 506.

➤ Text Area Checkpoint. Enables you to check that a text string appears within 
a defined area in a Windows application, according to specified criteria. It is 
supported for a variety of QuickTest add-in environments, such as Standard 
Windows, Java, Visual Basic, and ActiveX. For more information, see the 
HP QuickTest Professional Add-ins Guide.



Chapter 21 • Checking Text

552

➤ Text Checkpoint. Enables you to check that the text is displayed in a screen, 
window, or Web page, according to specified criteria. Text checkpoints are 
supported for many QuickTest add-in environments (as listed in “Supported 
Checkpoints” on page 504). For more information, see the HP QuickTest 
Professional Add-ins Guide.

When checking text, QuickTest tries to retrieve the text directly from the 
object. If QuickTest cannot retrieve the text in this manner (for example, 
because the text is part of a picture), it tries to retrieve the text using an OCR 
(optical character recognition) mechanism. The OCR mechanism translates 
images of handwritten or typewritten text into machine-editable text. 

Creating a Text Checkpoint

You can add a text checkpoint while recording or editing steps in a 
Windows- or Web-based application.

Note: Before you create a text checkpoint, make sure you configure the 
required capture settings in the General > Text Recognition pane (Tools > 
Options > Text Recognition node). For more information, see “The Options 
Dialog Box: General > Text Recognition Pane” on page 742 and “About 
Working with Text Recognition for Windows-Based Objects” on page 742.

To add a text checkpoint while recording:

 1 Display the page, window, or screen containing the text you want to check.

 2 Select Insert > Checkpoint > Text Checkpoint, or click the Insert Checkpoint 
or Output Value toolbar button and select Text Checkpoint.

The QuickTest window is hidden, and the pointer changes into a pointing 
hand. For more information about using the pointing hand feature, see 
“Tips for Using the Pointing Hand” on page 553.

 3 Click the text string for which you want to create the checkpoint. The Text 
Checkpoint Properties dialog box opens.



Chapter 21 • Checking Text

553

 4 Specify the checkpoint settings. For more information, see “The Text / Text 
Area Checkpoint Properties Dialog Box” on page 557.

 5 Click OK to close the dialog box. A checkpoint statement is added for the 
selected object.

Tips for Using the Pointing Hand

➤ You can hold the left CTRL key to change the pointing hand to a standard 
pointer. You can then change the window focus or perform operations in 
QuickTest or in your application, such as right-clicking, using the scroll bars, 
or moving the pointer over an object to display a context menu.

➤ If the window containing the object you want to select is partially hidden 
by another window, hold the pointing hand over the partially hidden 
window for a few seconds until it comes to the foreground. Then point to 
and click the required object. You can configure the length of time required 
to bring a window into the foreground using the General pane of the 
Options dialog box. 

➤ If the window containing the object you want to select is fully hidden by 
another window, or if a dialog box is hidden behind a window, press the left 
CTRL key and arrange the windows as needed.

➤ If the window containing the object you want to select is minimized, you 
can display it by holding the left CTRL key, right-clicking the application in 
the Windows task bar, and choosing Restore from the context menu.

➤ If the object you want to select can be displayed only by performing an 
event (such as right-clicking or moving the pointer over an object to display 
a context menu), hold the left CTRL key. The pointing hand temporarily 
turns into a standard pointer and you can perform the event. When the 
object you want to select is displayed, release the left CTRL key. The pointer 
becomes a pointing hand again.

To add a text checkpoint while editing a test:

 1 Make sure the Active Screen toolbar button is selected.

 2 Click the step where you want to add a checkpoint. The Active Screen 
displays the page or screen corresponding to the highlighted step. 



Chapter 21 • Checking Text

554

 3 Highlight a text string on the Active Screen.

 4 Right-click the text string and select Insert Text Checkpoint. The Text 
Checkpoint Properties dialog box opens.

 5 Specify the settings for the checkpoint. For more information, see “The Text 
/ Text Area Checkpoint Properties Dialog Box” on page 557.

 6 Click OK to close the dialog box. A checkpoint statement is added for the 
selected object.

Creating a Text Area Checkpoint

You can add a text area checkpoint only while recording a test on 
Windows-based applications, such as Standard Windows, Java, Visual Basic, 
and ActiveX. To determine whether text area checkpoints are supported for 
a specific QuickTest add-in environment, see the HP QuickTest Professional 
Add-ins Guide.

Note: Before you create a text area checkpoint, make sure you configure the 
required capture settings in the General > Text Recognition pane (Tools > 
Options > Text Recognition node). For more information, see “The Options 
Dialog Box: General > Text Recognition Pane” on page 742 and “About 
Working with Text Recognition for Windows-Based Objects” on page 742.



Chapter 21 • Checking Text

555

To add a text area checkpoint:

 1 Select Insert > Checkpoint > Text Area Checkpoint, or click the arrow next to 
the Insert Checkpoint toolbar button and select Text Area Checkpoint.

The QuickTest window is hidden, and the mouse pointer turns into a 
crosshairs pointer. 

 2 Define the area containing the text you want QuickTest to check by clicking 
and dragging the crosshairs pointer. (See “Considerations for Defining the 
Text Area” on page 556.)

Tip: Hold down the left mouse button and use the arrow keys to make 
precise adjustments to the defined area.

Release the mouse button after outlining the area required. 

If the area you defined is associated with more than one object, the Object 
Selection–Text Area Checkpoint Properties dialog box opens.

 3 Select the object for which you are creating the checkpoint. The Text Area 
Checkpoint Properties dialog box opens. 

 4 Specify the checkpoint settings. For more information, see “The Text / Text 
Area Checkpoint Properties Dialog Box” on page 557.

 5 Click OK to close the dialog box. A checkpoint statement is added for the 
selected object in the Keyword View and Expert View.



Chapter 21 • Checking Text

556

Considerations for Defining the Text Area
When checking text displayed in a Windows-based application, it is often 
advisable to define a text area larger than the actual text you want QuickTest 
to check. You then use the Text Area Checkpoint Properties dialog box to 
configure the relative position of the Checked Text within the captured 
string. When QuickTest runs the test, it checks for the selected text within 
the defined area, according to the settings you configured. 

Consider the following when defining the area for a text area checkpoint:

➤ If you parameterize a text string, the captured area must be large enough to 
accommodate any string that might replace the one selected during a run 
session. 

➤ The captured area must be large enough to include all parts of the required 
text (Checked Text / Text Before / Text After).

➤ Text may change its position during run sessions; therefore, make sure that 
the area you capture is large enough to allow for acceptable position shifts. 
If the defined area is too small, even a slight shift in the text’s position will 
cause the run to fail, although the changed position may be acceptable to 
you. If, on the other hand, the position of the text on the screen is critical, 
or if you do not want it to exceed certain boundaries, set the defined area 
accordingly.



Chapter 21 • Checking Text

557

The Text / Text Area Checkpoint Properties Dialog Box
 

Description Enables you to specify the text to be checked, as 
well as specify which text is displayed before and 
after the checked text. 

These configuration options are particularly helpful 
when the text string you want to check appears 
several times or when it could change in a 
predictable way during run sessions. 

For example, suppose you want to check the third 
occurrence of a particular text string in a page. To 
check for this string, you can specify which text 
precedes and/or follows it and to which occurrence 
of the specified text string you are referring.

How to Access ➤ “Creating a Text Checkpoint” on page 552

➤ “Creating a Text Area Checkpoint” on page 554

➤ “Modifying a Text or Text Area Checkpoint” on 
page 570

Important Information Before you create a text or text area checkpoint, 
make sure you set the required options, as described 
in “The Options Dialog Box: General > Text 
Recognition Pane” on page 742.

Learn More Conceptual overview: “About Checking Text” on 
page 551

Primary tasks: 

➤ “Creating a Text Checkpoint” on page 552

➤ “Creating a Text Area Checkpoint” on page 554

➤ “Modifying a Text or Text Area Checkpoint” on 
page 570

Additional related topics: “Use-Case Scenario: 
Checking Text in an Image” on page 750



Chapter 21 • Checking Text

558

Below is an image of the Text/Text Area Checkpoint Properties dialog box:

 

This image is an example of the Text Checkpoint Properties dialog box that 
opens when adding a text checkpoint to an existing test during an editing 
session. The Text Checkpoint Properties dialog box options differ slightly 
during a recording session or when editing an existing checkpoint. The Text 
Area Checkpoint Properties dialog box is similar to the Text Checkpoint 
Properties dialog box.



Chapter 21 • Checking Text

559

Text/Text Area Checkpoint Properties Dialog Box Options
 

Information Description

General 
checkpoint 
information 
area

Enables you to view and specify the name of the checkpoint and 
to view the type of object.

See: “Understanding and Setting General Text Checkpoint 
Information” on page 561.

Checkpoint 
Summary 
area

Summarizes the selected text for the checkpoint. It displays the 
text you selected when creating the checkpoint, plus the text 
before and after it. QuickTest automatically displays the checked 
text in red, and the text before and after the checked text in blue.

For text checkpoints in Web-based environments, it displays the 
text you selected when creating the checkpoint, plus some text 
before and after it. For text and text area checkpoints in 
Windows-based environments, it displays the text you selected 
when creating the checkpoint.

Note: In Windows-based environments, if there is more than one 
line of text selected, the Checkpoint Summary area displays 
[complex value] instead of the selected text string. You can then 
click Configure to view and manipulate the actual selected text 
for the checkpoint.

You can designate parts of the captured string as Checked Text 
and other parts as Text Before and Text After by clicking the 
Configure button. For more information, see “Configuring the 
Text Selection” on page 561. 



Chapter 21 • Checking Text

560

Options for 
checked text 
area

Set parameterization and other preferences for each of the string 
elements in your checkpoint by selecting the string element type 
(Checked Text / Text Before / Text After) from the list box and 
selecting your preferences. 

See: 

➤ “Setting Options for Checked Text” on page 564

➤ “Setting Options for Text Displayed Before the Checked Text” 
on page 566

➤ “Setting Options for Text Displayed After the Checked Text” 
on page 567

Checkpoint 
timeout and 
Insert 
Statement 
area

Specify when QuickTest should perform the checkpoint by 
specifying the timeout and location of the checkpoint. These 
options are available only when inserting a new checkpoint 

See “Setting Checkpoint Timeout and Statement Location 
Options” on page 569.

Information Description



Chapter 21 • Checking Text

561

Understanding and Setting General Text Checkpoint 
Information

The top part of the Text/Text Area Checkpoint Properties dialog box 
contains the following options:

Configuring the Text Selection

You can view and modify the text selection displayed in the Checkpoint 
Summary area.

Name The name that QuickTest assigns to the checkpoint. By default, 
the checkpoint name is the name of the test object on which the 
checkpoint is being performed. You can specify a different name 
for the checkpoint or accept the default name.

If you rename the checkpoint, make sure that the name:

➤ is unique

➤ does not begin or end with a space

➤ does not contain " (double quotation mark)

➤ does not contain the following character combinations: 
:=
@@

Class Specifies the type of object (read-only). 

Find in 
Repository 
button 

Displays the checkpoint in its object repository.

Note: This option is available only when editing an existing 
checkpoint. It is not available when creating a new checkpoint.



Chapter 21 • Checking Text

562

The Checkpoint Summary area contains the following options: 

To designate Checked Text, Text Before, and Text After, you use the 
Configure Text Selection dialog box (opened by clicking the Configure 
button). The Configure Text Selection dialog box displays the text you 
captured when creating the text checkpoint, as well as text before and after 
the selected text. QuickTest displays the checked text in red and the text 
before and after it in black (as indicated in the Legend displayed in the 
dialog box). 

Option Description

Configure Opens the Configure Text Selection dialog box, where you 
can specify the checked text, the text before (if any), and 
the text after (if any).

Reset Resets the text selection to the previous configuration.



Chapter 21 • Checking Text

563

To modify which text is checked and how that text is found, based on the 
text before and after it, highlight the text you want to set for one of these 
items and then click the appropriate button. 

Note: If no text is selected in the Configure Text Selection dialog box, then 
nothing happens when you click these buttons.

To remove text from the current text selection configuration, highlight only 
the text you want included as the before or after text and click the 
appropriate button. Any text that is not selected as Checked Text, Text 
Before, or Text After is displayed in gray. The gray text is not displayed the 
next time the Configure Text Selection dialog box is opened.

For example, in the sample image above, if you wanted to check only the 
word information, and you wanted QuickTest to look for this text between 
Find detailed and about your destination, then:

➤ Highlight the word information, and click Checked Text. The word 
information remains red, and the other text turns black.

➤ Highlight the words Find detailed and click Text Before. The words Find 
detailed remain black, and all text preceding it turns gray. This gray text will 
be removed from the text configuration when you click OK.

➤ The words about your destination are already marked in black as the text after, 
so there is no need to modify this configuration.

Option Description

Checked Text Sets the highlighted text as the checked text. QuickTest 
displays this text in red and the remainder in black.

Text Before Sets the highlighted text as the text before the checked 
text.

Text After Sets the highlighted text as the text after the checked text.



Chapter 21 • Checking Text

564

Note: If you want to configure more text than is displayed, you must cancel 
the text checkpoint and select a larger text area or selection in your 
application.

When you close the Configure Text Selection dialog box, the Checkpoint 
Summary area displays the new text selection configuration.

Setting Options for the Text to be Checked
The middle area of the Text/Text Area Checkpoint Properties dialog box 
enables you to set options for the checked text, text before, and text after, as 
described in the following sections.

Setting Options for Checked Text

You set options for the checked text by choosing Checked Text from the list 
box. In the Checked Text area, you can indicate whether you want the 
checked text to be a constant or a parameter, and you can set the criteria for 
a successful match. 



Chapter 21 • Checking Text

565

You can choose from the following options for the checked text:

➤ Constant. (Default) Sets the expected value of the checked text as a 
constant. For information on modifying values, see “Setting Values in the 
Configure Value Area” on page 757.

Tip: The Constant box displays the checked text. You can change the 
checked text by typing in the Constant box or by using the Configure Text 
Selection dialog box.

➤ Parameter. Sets the expected value of the checked text as a parameter. For 
information on modifying values, see “Setting Values in the Configure Value 
Area” on page 757.

➤ Match case. Conducts a case-sensitive check.

➤ Exact match. Checks for the exact expected text. For example, if you create a 
checkpoint with the following description, Check that New York is displayed 
between Flight departing from and to San Francisco, and select Exact match, if 
the actual text is New York City, the checkpoint fails. If you do not select 
Exact match, the checkpoint passes because the expected text is contained 
within the actual text.

➤ Ignore spaces. Ignores spaces in the captured text when performing the 
check. The presence or absence of spaces does not affect the outcome of the 
check.

➤ Text not displayed. Checks that the text string is not displayed. For example, 
if you create a checkpoint with the following description, Check that New 
York is displayed between Flight departing from and to San Francisco, and 
select Text not displayed, QuickTest checks that the text New York is not 
displayed.



Chapter 21 • Checking Text

566

Setting Options for Text Displayed Before the Checked Text

You set options for the text displayed before the checked text by choosing 
Text Before from the list box. In the Text Before area, you can set the text 
before the checked text as a constant or a parameter. 

You can choose from the following options when setting the text displayed 
before the checked text:

➤ Use the text before. Checks the text before the checked text. To ignore this 
text, clear this check box.

➤ Text to check is displayed after occurrence. Checks that the checked text is 
displayed after the specified text. 

If the identical text string you specify is displayed more than once on the 
page, you can specify the occurrence of the string to which you are referring.

If you accept the default text that QuickTest recommends, the number in 
the dialog box will be correct. If you modify the text, confirm that the 
occurrence number is accurate. 

If you choose a non-unique text string, change the occurrence number 
appropriately. For example, if you want to check that the words Mercury 
Tours are displayed after the fourth occurrence of the word the, enter 4 in 
the Text to check is displayed after occurrence box.

➤ Constant. (Default) Sets the expected value of the text before the checked 
text as a constant. For information on modifying values, see “Setting Values 
in the Configure Value Area” on page 757. 

If you modify the text, whenever possible, use a string that is unique within 
the object so that the occurrence number is 1.



Chapter 21 • Checking Text

567

Tip: The Constant box displays the text before the checked text. You can 
change the text by typing in the Constant box or by using the Configure 
Text Selection dialog box.

➤ Parameter. Sets the expected value of the text before the checked text as a 
parameter. For information on modifying values, see “Setting Values in the 
Configure Value Area” on page 757.

Setting Options for Text Displayed After the Checked Text

You set options for or the text displayed after the checked text by choosing 
Text After from the list box. In the Text After area, you can set the text after 
the checked text as a constant or a parameter. 

You can choose from the following options when setting the text displayed 
after the checked text:

➤ Use the text after. Checks the text after the checked text. To ignore this text, 
clear this check box. 

➤ Text to check is displayed before occurrence. Checks that the checked text is 
displayed before the specified text. If the identical text string you specify is 
displayed more than once on the page, you can specify to which occurrence 
of the string you are referring.

If you accept the default text that QuickTest recommends, the number in 
the dialog box will be correct. If you modify the text, confirm that the 
occurrence number is also accurate. 



Chapter 21 • Checking Text

568

If you choose a non-unique text string, change the occurrence number 
appropriately. For example, if you want to check that the words Mercury 
Tours are displayed before the fourth occurrence of the word the, enter 4 in 
the Text to check is displayed before occurrence box.

➤ Constant. (Default) Sets the expected value of the text after the checked text 
as a constant. For information on modifying values, see “Setting Values in 
the Configure Value Area” on page 757.

If you modify the text, whenever possible, use a string that is unique within 
the object so that the occurrence number is 1.

Tip: The Constant box displays the text after the checked text. You can 
change the text by typing in the Constant box or by using the Configure 
Text Selection dialog box.

➤ Parameter. Sets the expected value of the text after the checked text as a 
parameter. For information on modifying values, see “Setting Values in the 
Configure Value Area” on page 757.



Chapter 21 • Checking Text

569

Setting Checkpoint Timeout and Statement Location 
Options
You can specify the time interval during which QuickTest attempts to 
perform the checkpoint successfully by modifying the selections in the 
bottom part of the Text/Text Area Checkpoint Properties dialog box. You can 
also specify when to perform the checkpoint. 

➤ Checkpoint timeout. Specifies the time interval (in seconds) during which 
QuickTest attempts to perform the checkpoint successfully. QuickTest 
continues to perform the checkpoint until it passes or until the timeout 
occurs. If the checkpoint does not pass before the timeout occurs, the 
checkpoint fails. 

For example, suppose it takes some time for an object to achieve an 
expected state. Increasing the checkpoint timeout value in this case can help 
ensure that the object has sufficient time to achieve that state, enabling the 
checkpoint to pass (if the data matches) before the maximum timeout is 
reached.

If you specify a checkpoint timeout other than 0, and the checkpoint fails, 
the Test Results window displays information on the checkpoint timeout.

➤ Insert statement. Specifies when to perform the checkpoint. Select Before 
current step if you want to check the value of the text before the 
highlighted step is performed. Select After current step if you want to check 
the value of the text after the highlighted step is performed.

Note: The Insert statement option is not available when adding a new text 
checkpoint or a text area checkpoint during recording, or when modifying 
an existing checkpoint. It is available only when adding a new text 
checkpoint to an existing test while editing. 



Chapter 21 • Checking Text

570

Modifying a Text or Text Area Checkpoint

You can modify an existing text or text area checkpoint.

To modify a text or text area checkpoint:

 1 In the Keyword View or Expert View, right-click the checkpoint that you 
want to modify and select Checkpoint Properties. Alternatively, select the 
step containing the checkpoint and select 
Edit > Step Properties > Checkpoint Properties. The Text/Text Area 
Checkpoint Properties dialog box opens. 

 2 Modify the settings. For more information, see “The Text / Text Area 
Checkpoint Properties Dialog Box” on page 557.

Creating a Standard Checkpoint for Checking Text

You can check the text property of an object in Windows-based and other 
types of applications (including Web-based applications) by using a standard 
checkpoint.

To add a standard checkpoint for checking text while recording:

 1 Select Insert > Checkpoint > Standard Checkpoint or click the Insert 
Checkpoint or Output Value toolbar button and select Standard Checkpoint. 
The QuickTest window is hidden, and the pointer changes into a pointing 
hand. For more information about using the pointing hand feature, see 
“Tips for Using the Pointing Hand” on page 573.

 2 Click the object whose text you want to check. The Object Selection - 
Checkpoint Properties dialog box opens. 

 3 Select the item you want to check from the displayed object tree. 

 4 Click OK. The Checkpoint Properties dialog box opens.

 5 In the Name box, either accept the name that QuickTest assigns to the 
checkpoint or specify another name for it. By default, the checkpoint name 
is the name of the test object on which the checkpoint is being performed. 



Chapter 21 • Checking Text

571

If you rename the checkpoint, make sure that the name:

➤ is unique

➤ does not begin or end with a space

➤ does not contain " (double quotation mark) 

➤ does not contain the following character combinations:
:=
@@ 

Note: The Class area displays the type of test object on which the 
checkpoint is being performed.

 6 Select the text property.

 7 If necessary, edit the text value you want QuickTest to check. Note that you 
can parameterize this value.

 8 If you want to check only text, clear the other check boxes in the dialog box.

 9 Click OK to close the dialog box. A checkpoint statement is added for the 
selected object.



Chapter 21 • Checking Text

572

To add a standard checkpoint for checking text while editing:

 1 Right-click the step for the object whose text you want to check, and select 
Insert Standard Checkpoint. The Checkpoint Properties dialog box opens.

 2 In the Name box, either accept the name that QuickTest assigns to the 
checkpoint or specify another name for it. By default, the checkpoint name 
is the name of the test object on which the checkpoint is being performed. 

If you rename the checkpoint, make sure that the name:

➤ is unique

➤ does not begin or end with a space

➤ does not contain " (double quotation mark) 

➤ does not contain the following character combinations:
:=
@@ 

Note: The Class area displays the type of test object on which the 
checkpoint is being performed.

 3 Select the text property.

 4 If necessary, edit the text value you want QuickTest to check. Note that you 
can parameterize this value.

 5 If you want to check only text, clear the other check boxes in the dialog box.

 6 Click OK to close the dialog box. A checkpoint statement is added for the 
selected object.

For more information on creating standard checkpoints, see Chapter 18, 
“Checking Object Property Values Using Standard Checkpoints.”



Chapter 21 • Checking Text

573

Tips for Using the Pointing Hand

➤ You can hold the left CTRL key to change the pointing hand to a standard 
pointer. You can then change the window focus or perform operations in 
QuickTest or in your application, such as right-clicking, using the scroll bars, 
or moving the pointer over an object to display a context menu.

➤ If the window containing the object you want to select is partially hidden 
by another window, hold the pointing hand over the partially hidden 
window for a few seconds until it comes to the foreground. Then point to 
and click the required object. You can configure the length of time required 
to bring a window into the foreground using the General pane of the 
Options dialog box. 

➤ If the window containing the object you want to select is fully hidden by 
another window, or if a dialog box is hidden behind a window, press the left 
CTRL key and arrange the windows as needed.

➤ If the window containing the object you want to select is minimized, you 
can display it by holding the left CTRL key, right-clicking the application in 
the Windows task bar, and choosing Restore from the context menu.

➤ If the object you want to select can be displayed only by performing an 
event (such as right-clicking or moving the pointer over an object to display 
a context menu), hold the left CTRL key. The pointing hand temporarily 
turns into a standard pointer and you can perform the event. When the 
object you want to select is displayed, release the left CTRL key. The pointer 
becomes a pointing hand again.



Chapter 21 • Checking Text

574



575

22
Checking Databases

By adding database checkpoints, you can check the contents of databases 
accessed by your application. Database checkpoints are supported by all 
environments. 

This chapter includes:

 ➤  About Checking Databases on page 575

 ➤  Creating a Check on a Database on page 576

 ➤  Understanding the Database Checkpoint Properties Dialog Box on page 581

 ➤  Modifying a Database Checkpoint on page 590

About Checking Databases

You can use database checkpoints in your test to check databases accessed by 
your application, and to detect defects. To do this, you define a query on 
your database. Then you create a database checkpoint that checks the results 
of the query. 

You can define a database query in the following ways:

➤ Using Microsoft Query. You can install Microsoft Query from the custom 
installation of Microsoft Office. 

➤ By manually defining an SQL statement.



Chapter 22 • Checking Databases

576

Creating a Check on a Database

You create a database checkpoint based on the results of the query (result 
set) you defined on a database. You can create a check on a database to 
check the contents of the entire result set, or a part of it. QuickTest captures 
the current data from the database, saves this information as expected data, 
and inserts a database checkpoint into the test. This checkpoint is displayed 
in the Expert View as a DbTable.Check CheckPoint statement and as a step in 
the Keyword View, as follows:

When you run the test, the database checkpoint compares the current data 
in the database to the expected data defined in the Database Checkpoint 
Properties dialog box. If the expected data and the current results do not 
match, the database checkpoint fails. You can view the results of the 
checkpoint in the Test Results window. For more information, see 
Chapter 33, “Viewing Run Session Results.”

You can modify the expected data of a database checkpoint before you run 
your test. You can also make changes to the query in an existing database 
checkpoint. This can be useful if you move the database to a new location 
on the network.



Chapter 22 • Checking Databases

577

Creating a Database Checkpoint
You can define the query for your checkpoint using Microsoft Query or by 
manually entering a database connection and SQL statement.

To create a database checkpoint:

 1 Select Insert > Checkpoint > Database Checkpoint. The Database Query 
Wizard opens.

 2 Select your database selection preferences. You can choose from the 
following options:

➤ Create query using Microsoft Query. Opens Microsoft Query, enabling 
you to create a new query. After you finish defining your query, you 
return to QuickTest. This option is available only if you have Microsoft 
Query installed on your computer. 

➤ Specify SQL statement manually. Opens the Specify SQL statement 
screen in the wizard, which enables you to specify the connection string 
and an SQL statement. 



Chapter 22 • Checking Databases

578

➤ Maximum number of rows. Select this check box if you would like to 
limit the number of rows and enter the maximum number of database 
rows to check. You can specify a maximum of 32,000 rows. 

➤ Show me how to use Microsoft Query. Displays an instruction screen 
when you click Next before opening Microsoft Query. (Enabled only 
when Create query using Microsoft Query is selected).

 3 Click Next. The screen that opens depends on the option you selected in the 
previous step.

➤ If you chose Create query using Microsoft Query in the previous step, 
Microsoft Query opens. Choose a data source and define a query. For 
more information on creating a query, see “Creating a Query in Microsoft 
Query” on page 579. 

Note: If you chose Show me how to use Microsoft Query, the Instruction 
for Microsoft Query screen opens. When you click OK, Microsoft Query 
opens.

➤ If you chose Specify SQL statement manually in the previous step, the 
Specify SQL statement screen opens. Specify the connection string and 
the SQL statement, and click Finish. For more information on specifying 
SQL statements, see “Specifying SQL Statements” on page 580.

The Database Checkpoint Properties dialog box opens. 

 4 Select the checks to perform on the result set as described in “Understanding 
the Database Checkpoint Properties Dialog Box” on page 581. You can also 
modify the expected data in the result set.

 5 Click OK to close the dialog box. A checkpoint statement is added for the 
selected object in the Keyword View and Expert View.



Chapter 22 • Checking Databases

579

Creating a Query in Microsoft Query
You can use Microsoft Query to choose a data source and define a query 
within the data source.

To choose a data source and define a query in Microsoft Query:

 1 When Microsoft Query opens during the insert database checkpoint process, 
choose a new or an existing data source.

 2 Define a query.

 3 When you are done, in the Finish screen of the Query Wizard, select Exit 
and return to QuickTest Professional and click Finish to exit Microsoft 
Query. Alternatively, click View data or edit query in Microsoft Query and 
click Finish. After viewing or editing the data, select 
File > Exit and return to QuickTest Professional to close Microsoft Query and 
return to QuickTest.

 4 The Database Checkpoint Properties dialog box opens. Select the checks to 
perform on the result set as described in “Understanding the Database 
Checkpoint Properties Dialog Box” on page 581. You can also modify the 
expected data in the result set.

 5 Click OK to close the dialog box. A checkpoint statement is added for the 
selected object in the Keyword View and Expert View.

For more information on working with Microsoft Query, see your Microsoft 
Query documentation.



Chapter 22 • Checking Databases

580

Specifying SQL Statements
You can manually specify the database connection string and the SQL 
statement.

To specify SQL statements:

 1 Select Specify SQL statement in the Database Query Wizard. The following 
screen opens:

 2 Specify the connection string and the SQL statement, and click Finish.

➤ Connection string. Enter the connection string, or click Create to open 
the ODBC Select Data Source dialog box. You can select a .dsn file in the 
ODBC Select Data Source dialog box or create a new .dsn file to have the 
Database Query Wizard insert the connection string in the box for you.

➤ SQL statement. Enter the SQL statement.

QuickTest takes several seconds to capture the database query and restore 
the QuickTest window. 



Chapter 22 • Checking Databases

581

 3 Select the checks to perform on the result set as described in “Understanding 
the Database Checkpoint Properties Dialog Box” on page 581. You can also 
modify the expected data in the result set.

 4 Click OK to close the dialog box. A checkpoint statement is added for the 
selected object in the Keyword View and Expert View.

Understanding the Database Checkpoint Properties Dialog 
Box 

The Database Checkpoint Properties dialog box enables you to specify 
which cell contents of your database to check and which verification 
method and type to use. You can also edit or parameterize the expected data 
for the cells included in the check.  

Add selected 
cells to check

Remove selected 
cells from check

Click to select the 
entire result set

Click to select an 
entire row

Row and column 
indicator

Select a location for 
the  checkpoint 
(available 
only when adding a 
new checkpoint
to an existing test)

Click to select an 
entire column



Chapter 22 • Checking Databases

582

The Database Checkpoint Properties dialog box enables you to check 
database content.

➤ The information area at the top of the dialog box displays the name of the 
checkpoint and the class of the test object on which the checkpoint is being 
performed. You can rename the checkpoint, if required. When editing an 
existing checkpoint, you can also view it in the object repository. For more 
information, see “Identifying the Database Checkpoint” on page 583.

➤ The grid area displays the data that was captured for the checkpoint. This is 
the expected data. You use this area to specify which cells you want to 
check. For more information, see “Specifying Which Cells to Check” on 
page 583.

➤ Expected Data tab. Enables you to set each checked cell as a constant or 
parameterized value. For more information, see “Specifying the Expected 
Data” on page 585.

➤ Settings tab. Enables you to set the criteria for a successful match between 
the expected and actual values. For more information, see “Specifying the 
Value Type Criteria in the Settings Tab” on page 586.

➤ Cell Identification tab. Enables you to instruct QuickTest how to locate the 
cells to be checked. For more information, see “Specifying the Cell 
Identification Settings” on page 588.

Tip: The value matching settings and cell identification criteria apply to all 
selected cells in the checkpoint. If you want to use different value matching 
or cell identification criteria for different cells in the database, create 
separate checkpoints and specify the relevant cells for each.

➤ The Insert statement option enables you to specify the location of the 
checkpoint within the test. This option is available only when you add a 
new checkpoint while editing a test. For more information, see “Specifying 
The Statement Location” on page 589. 



Chapter 22 • Checking Databases

583

Identifying the Database Checkpoint
The top part of the Database Checkpoint Properties dialog box contains the 
following options:

Specifying Which Cells to Check
The grid area of the Database Checkpoint Properties dialog box represents 
the cells in the captured result set.

Tip: You can change the column widths and row heights of the grid by 
dragging the boundaries of the column and row headers.

Name The name that QuickTest assigns to the checkpoint. By default, 
the checkpoint name is the name of the test object on which the 
checkpoint is being performed. You can specify a different name 
for the checkpoint or accept the default name.

If you rename the checkpoint, make sure that the name:

➤ is unique

➤ does not begin or end with a space

➤ does not contain " (double quotation mark)

➤ does not contain the following character combinations: 
:=
@@

Class Specifies the type of object (read-only). 

Find in 
Repository 
button 

Displays the checkpoint in its object repository.

Note: This option is available only when editing an existing 
checkpoint. It is not available when creating a new checkpoint.



Chapter 22 • Checking Databases

584

When you create a new database checkpoint, all cells contain a blue check 
mark, indicating they are selected for verification. You can select to check 
the entire results set, specific rows, specific columns, or specific cells. 
QuickTest checks only cells containing a check mark.

Notes:

➤ Double-clicking on the grid toggles the settings for all selected cells. 
Therefore, if you double-click a row header, a column header, or the top 
left corner of the grid, any cells that were previously included in the 
check are removed from it, and any cells that were not previously 
included in the check are added to it.

➤ When more than one cell is selected, the options on the Expected Data 
tab are disabled.

To: Do this:

Add a single cell to or remove it 
from the check

Double-click the cell

Add an entire row to or remove it 
from the check

Double-click the row header

Add an entire column to or remove 
it from the check

Double-click the column header

Add the entire result set to or 
remove all cells from the check

Double-click the top-left corner of the grid

Add a range of cells to the check Select the cells to add to the check and 
click the Add to Check button

Remove a range of cells from the 
check

Select the cells to remove from the check 
and click the Remove from Check 
button



Chapter 22 • Checking Databases

585

Specifying the Expected Data
The Expected Data tab displays options for setting the expected value of the 
selected cell in the result set.

You can modify the value of a cell or you can parameterize it to use a value 
from an external source, such as the Data Table or an environment variable. 
During the run session, QuickTest compares the value specified in this tab 
with the actual value that it finds. If the expected value and the actual value 
do not match, the checkpoint fails. For example, you can instruct QuickTest 
to use a value from the Data Table as the expected value for a particular cell.

To modify or parameterize several cells in the result set, select a cell and 
then set your preferences for that cell in the Expected Data tab. Repeat the 
process for each cell you want to modify.

The Expected Data tab includes the following:

Note: When more than one cell is selected, the options on the Expected 
Data tab are disabled.

Selected cell Indicates the table name and the row and column numbers of 
the selected cell. 

Configure 
value area

Enables you to set the expected value of the cell as a constant or 
parameter. For more information on modifying values, see 
“Setting Values in the Configure Value Area” on page 757.



Chapter 22 • Checking Databases

586

Specifying the Value Type Criteria in the Settings Tab
The Settings tab includes options that determine how the actual cell values 
are compared with the expected cell values. For example, you can instruct 
QuickTest to treat the value as a number so that 45 or 45.00 are treated as 
the same value, or you can instruct QuickTest to ignore spaces when 
comparing the values. The settings in this tab apply to all selected cells. 

The default setting is to treat cell values as strings and to check for the exact 
text, while ignoring spaces.

The Settings tab includes the following options:

Option Description

Verification type Specifies how cell contents are compared:

➤ String Content. (Default) Evaluates the content of the 
cell as a string. For example, 2 and 2.00 are not 
recognized as the same string.

➤ Numeric Content. Evaluates the content of the cell 
according to numeric values. For example, 2 and 2.00 
are recognized as the same number.

➤ Numeric Range. Compares the content of the cell 
against a numeric range, where the minimum and 
maximum values are any real number that you specify. 
This comparison differs from string and numeric 
content verification in that the actual result set data is 
compared against the range that you defined and not 
against a specific expected value.



Chapter 22 • Checking Databases

587

Exact match (Default) Checks that the exact text, and no other text, is 
displayed in the cell. Clear this box if you want to check 
that a value is displayed in a cell as part of the contents of 
the cell.

Note: QuickTest displays this option only when String 
Content is selected as the Verification type.

Ignore space (Default) Ignores spaces in the captured content when 
performing the check. The presence or absence of spaces 
does not affect the outcome of the check.

Note: QuickTest displays this option only when String 
Content is selected as the Verification type.

Match case Conducts a case sensitive search.

Note: QuickTest displays this option only when String 
Content is selected as the Verification type.

Min / Max Specifies the numeric range against which the content of 
the cell is compared. The range values can be any real 
number.

Note: QuickTest displays this option only when Numeric 
Range is selected as the Verification type.

Option Description



Chapter 22 • Checking Databases

588

Specifying the Cell Identification Settings
The settings in the Cell Identification tab determine how QuickTest locates 
the cells to be checked. For example, suppose you want to check the data 
that is displayed in the first row and second column in the Database 
Checkpoint Properties dialog box. However, you know that each time you 
run your test, it is possible that the rows may be in a different order, 
depending on the sorting that was performed in a previous step. Therefore, 
rather than finding the data based on row and column numbers, you may 
want QuickTest to identify the cell based on the column name and the row 
containing a known value in a key column.

The settings in this tab apply to all selected cells.

The Cell Identification tab includes the following options:

Identify columns Specifies the location of the column (in your actual 
database) containing the cell(s) to which you want to 
compare the expected data.

➤ By position. Locates cells according to the column 
position. A shift in the position of the columns within 
the database results in a mismatch. 

➤ By column name. (Default) Locates cells according to 
the column name. A shift in the position of the 
columns within the database does not result in a 
mismatch.



Chapter 22 • Checking Databases

589

Specifying The Statement Location
The Insert statement option specifies when to perform the checkpoint in 
the test. 

➤ Select Before current step if you want to check the value of the object 
property before the highlighted step is performed. 

➤ Select After current step if you want to check the value of the property after 
the highlighted step is performed.

Identify rows Specifies the location of the row (in your actual database) 
containing the cell(s) to which you want to compare the 
expected data.

➤ By row number. (Default) Locates cells according to the 
row position. A shift in the position of any of the rows 
within the database results in a mismatch.

➤ By selected key column(s). Locates the row(s) 
containing the cells to be checked by matching the 
value of the cell whose column was previously selected 
as a key column. A shift in the position of the row(s) 
does not result in a mismatch. If more than one row is 
identified, QuickTest checks the first matching row. 
You can use more than one key column to uniquely 
identify any row.

Note: A key symbol  is displayed in the header of 
selected key columns.

Use value match 
criteria to identify 
data in the key 
column

Instructs QuickTest to use the verification type settings 
from the Settings tab as the criteria for identifying data in 
the key column.

Enabled only when you select to identify rows By selected 
key column(s). 



Chapter 22 • Checking Databases

590

Note: The Insert statement option is not available when adding a 
checkpoint during recording or when modifying an existing object 
checkpoint. It is available only when adding a new checkpoint to an 
existing test while editing it.

Modifying a Database Checkpoint

You can modify the SQL query definition and the expected data in an 
existing database checkpoint.

To modify the SQL query definition:

 1 In the Keyword View, right-click the database object that you want to 
modify.

 2 Select Object Properties.

 3 Modify the SQL and connection string properties as necessary and click OK.

To modify the expected data in a database checkpoint:

 1 In the Keyword View or Expert View, right-click the database checkpoint 
that you want to modify and select Checkpoint Properties. Alternatively, 
select the step containing the checkpoint and select Edit > Step Properties > 
Checkpoint Properties. The Database Checkpoint Properties dialog box 
opens.

 2 Modify the settings as described “Understanding the Database Checkpoint 
Properties Dialog Box” on page 581. 



591

23
Checking XML

By adding XML checkpoints to your test, you can check the contents of 
individual XML data files or documents that are part of your Web 
application. 

This chapter includes:

 ➤  About Checking XML on page 592

 ➤  Creating XML Checkpoints on page 594

 ➤  Updating the XML Hierarchy for XML Test Object Operation Checkpoints 
(for WebService Test Objects Only) on page 614

 ➤  Modifying XML Checkpoints on page 622

 ➤  Reviewing XML Checkpoint Results on page 622

 ➤  Using XML Objects and Methods to Enhance Your Test on page 623



Chapter 23 • Checking XML

592

About Checking XML

XML (Extensible Markup Language) is a meta-markup language for text 
documents that is endorsed as a standard by the World Wide Web 
Consortium (W3C). XML makes the complex data structures portable 
between different computer environments/operating systems and 
programming languages, facilitating the sharing of data.

XML files contain text with simple tags that describe the data within an 
XML document. These tags describe the data content, but not the 
presentation of the data. Applications that display an XML document or file 
use either Cascading Style Sheets (CSS) or XSL Formatting Objects (XSL-FO) 
to present the data.

You can verify the data content of XML files with XML checkpoints. A few 
common uses of XML checkpoints are described below: 

➤ An XML file can be a static data file that is accessed to retrieve commonly 
used data for which a quick response time is needed—for example, country 
names, zip codes, or area codes. Although this data can change over time, it 
is normally quite static. You can use an XML file checkpoint to validate that 
the data has not changed from one application release to another.

➤ An XML file can consist of elements with attributes and values (character 
data). There is a parent and child relationship between the elements, and 
elements can have attributes associated with them. If any part of this 
hierarchy (including data) changes, your application’s ability to process the 
XML file may be affected. Using an XML checkpoint, you can check the 
content of an element to make sure that its tags, attributes, and values have 
not changed.

➤ Web service operations often return XML values. If the Web Services Add-in 
is installed on your computer, you can send a Web service operation 
command to the service and use an XML checkpoint to verify that the 
service returns the XML in the expected structure and with the expected 
values.



Chapter 23 • Checking XML

593

➤ XML files are often an intermediary that retrieves dynamically changing 
data from one system. The data is then accessed by another system using 
Document Type Definitions (DTD), enabling the accessing system to read 
and display the information in the file. You can use an XML checkpoint and 
parameterize the captured data values if you want to check an XML 
document or file whose data changes in a predictable way.

➤ XML documents and files often need a well-defined structure to be portable 
across platforms and development systems. One way to accomplish this is 
by developing an XML schema, which describes the structure of the XML 
elements and data types. You can use schema validation to check that each 
item of content in an XML file adheres to the schema description of the 
element in which the content is to be placed.

Note: XML checkpoints are compatible with namespace standards. A 
change in namespace between expected and actual values results in a failed 
checkpoint. 

For more information on XML standards, see http://www.w3.org/XML/ 

For more information on namespace standards, see http://www.w3.org/TR/
1999/REC-xml-names-19990114/ 

http://www.w3.org/XML/
http://www.w3.org/TR/1999/REC-xml-names-19990114/
http://www.w3.org/TR/1999/REC-xml-names-19990114/


Chapter 23 • Checking XML

594

Creating XML Checkpoints

You can perform checkpoints on XML documents contained in Web pages 
or frames, on XML files, and on test objects that support XML. An XML 
checkpoint is a verification point that compares a current value for a 
specified XML element, attribute and/or value with its expected value. 
When you insert a checkpoint, QuickTest adds a checkpoint step in the 
Keyword View and adds a Check CheckPoint statement in the Expert View. 
When you run the test, QuickTest compares the expected results of the 
checkpoint to the current results. If the results do not match, the 
checkpoint fails.

After you run your test, you can view summary results of the XML 
checkpoint in the Test Results window. You can also view detailed results by 
opening the XML Checkpoint Results window. For more information, see 
Chapter 33, “Viewing Run Session Results.”

You can create three types of XML checkpoints: 

➤ XML Web Page/Frame Checkpoint. Checks an XML document within a Web 
page or frame.

➤ XML File Checkpoint. Checks a specified XML file.

➤ XML Test Object Checkpoint. Checks the XML data for an object or 
operation.



Chapter 23 • Checking XML

595

Creating XML Checkpoints for Web Pages and Frames 
You can create an XML checkpoint for any XML document contained in a 
Web page or frame using the XML Checkpoint (From Application) option. 
You can create an XML Checkpoint (From Application) only while recording.

To create an XML Checkpoint on XML contained in a Web page or frame: 

 1 Begin recording your test.

 2 Select Insert > Checkpoint > XML Checkpoint (From Application), or click 
the Insert Checkpoint or Output Value toolbar button and select XML 
Checkpoint (From Application).

Note: The XML Checkpoint (From Application) option is available only 
when the Web Add-in is installed and loaded. For more information on 
loading add-ins, see the section on working with QuickTest add-ins in the 
HP QuickTest Professional Add-ins Guide.

You can also insert a Web page or frame checkpoint using the XML (From 
Resource) option by selecting an existing WebXML test object as long as the 
actual XML object is currently available (open in the browser). For more 
information, see “Creating XML Test Object Checkpoints” on page 603.

The QuickTest window is hidden, and the pointer changes into a pointing 
hand. For more information about using the pointing hand feature, see 
“Tips for Using the Pointing Hand” on page 599.



Chapter 23 • Checking XML

596

 3 Click a Web page or frame that contains XML documents. 

If only one XML file is associated with the Web page or frame, the XML 
Checkpoint Properties dialog box opens. In this case, proceed to step 5.

If more than one XML document is associated with the selected location, 
the Object Selection - XML Checkpoint Properties dialog box opens. 

 4 Select the XML document you want to check, and click OK. 



Chapter 23 • Checking XML

597

The XML Checkpoint Properties dialog box opens and displays the root 
element of the selected XML document. You can expand the XML tree to 
view the element hierarchy and values (character data).  

Note: If the XML source on which you base your checkpoint is in a valid 
XML format, but not to W3 standards, an error message informs you that 
the XML tree in the dialog box will be displayed in read-only format and 
that you must fix the XML source using the Edit XML as Text dialog box. For 
more information on this dialog box, see “Understanding the Edit XML as 
Text Dialog Box” on page 613.



Chapter 23 • Checking XML

598

 5 In the Name box, either accept the name that QuickTest assigns to the 
checkpoint or specify another name for it. By default, the checkpoint name 
is the name of the test object on which the checkpoint is being performed. 

If you rename the checkpoint, make sure that the name:

➤ is unique

➤ does not begin or end with a space

➤ does not contain " (double quotation mark) 

➤ does not contain the following character combinations:
:=
@@ 

 6 Select the items to check for the checkpoint. For more information, see 
“Understanding the XML Checkpoint Properties Dialog Box” on page 607.

 7 When you finish setting your checkpoint preferences, click OK to add the 
XML checkpoint. A checkpoint similar to the following is added to the 
Keyword View. 

QuickTest records this step in the Expert View as:

Browser("Simple XML Example").Page("Simple XML Example").
Frame("contents").WebXML("AccessoriesXML").

Check CheckPoint("AccessoriesXML")



Chapter 23 • Checking XML

599

Tips for Using the Pointing Hand

➤ You can hold the left CTRL key to change the pointing hand to a standard 
pointer. You can then change the window focus or perform operations in 
QuickTest or in your application, such as right-clicking, using the scroll bars, 
or moving the pointer over an object to display a context menu.

➤ If the window containing the object you want to select is partially hidden 
by another window, hold the pointing hand over the partially hidden 
window for a few seconds until it comes to the foreground. Then point to 
and click the required object. You can configure the length of time required 
to bring a window into the foreground using the General pane of the 
Options dialog box. 

➤ If the window containing the object you want to select is fully hidden by 
another window, or if a dialog box is hidden behind a window, press the left 
CTRL key and arrange the windows as needed.

➤ If the window containing the object you want to select is minimized, you 
can display it by holding the left CTRL key, right-clicking the application in 
the Windows task bar, and choosing Restore from the context menu.

➤ If the object you want to select can be displayed only by performing an 
event (such as right-clicking or moving the pointer over an object to display 
a context menu), hold the left CTRL key. The pointing hand temporarily 
turns into a standard pointer and you can perform the event. When the 
object you want to select is displayed, release the left CTRL key. The pointer 
becomes a pointing hand again.



Chapter 23 • Checking XML

600

Creating XML File Checkpoints
You create XML file checkpoints to directly access and verify specific XML 
files in your system. You can create an XML file checkpoint while you are 
recording or editing your test.

To create an XML file checkpoint: 

 1 Select Insert > Checkpoint > XML Checkpoint (From Resource) or click the 
Insert Checkpoint or Output Value toolbar button, and select XML 
Checkpoint (From Resource). The XML Source Selection - Checkpoint 
Properties dialog box opens.

Tip: You can also insert an XML file checkpoint by selecting an existing 
XMLFile test object as long as the source file for the test object exists in the 
location stored with the test object. For more information, see “Creating 
XML Test Object Checkpoints” on page 603.



Chapter 23 • Checking XML

601

 2 Select Create new checkpoint from file. Enter the file path or Internet 
address of the XML file. 

Alternatively, click the browse button to open the Open XML File dialog 
box. In the sidebar, select the location of the XML file, and then navigate to 
the XML file for which you want to create a checkpoint. You can specify an 
XML file either from your file system or from Quality Center. Select the file 
and click Open. The file path and name are entered in the box.

Note: If you enter a relative path, QuickTest searches for the XML file in the 
folders listed in the Folders pane of the Options dialog box. After QuickTest 
locates the file, it saves it as an absolute path and uses the absolute path 
during the run session. For more information, see “Setting Folder Testing 
Options” on page 1237.

 3 Click OK in the XML Source Selection - Checkpoint Properties dialog box. 
The XML Checkpoint Properties dialog box opens and displays the root 
element of the selected XML file. You can expand the XML tree to view the 
element hierarchy and values (character data).  



Chapter 23 • Checking XML

602

Note: If the XML source on which you base your checkpoint is in a valid 
XML format, but not to W3 standards, an error message informs you that 
the XML tree in the dialog box will be displayed in read-only format and 
that you must fix the XML source manually using the Edit XML as Text 
dialog box. For more information on this dialog box, see “Understanding 
the Edit XML as Text Dialog Box” on page 613.

 4 In the Name box, either accept the name that QuickTest assigns to the 
checkpoint or specify another name for it. By default, the checkpoint name 
is the name of the test object on which the checkpoint is being performed. 

If you rename the checkpoint, make sure that the name:

➤ is unique

➤ does not begin or end with a space

➤ does not contain " (double quotation mark) 

➤ does not contain the following character combinations:
:=
@@ 

 5 Select the items to check for the checkpoint. For more information, see 
“Understanding the XML Checkpoint Properties Dialog Box” on page 607.

 6 When you finish setting your checkpoint preferences, click OK to add the 
XML checkpoint. A checkpoint similar to the following is added to the 
Keyword View. 

QuickTest inserts this step as follows in the Expert View:

XMLFile("availcities.xml").Check CheckPoint("availcities.xml")



Chapter 23 • Checking XML

603

Creating XML Test Object Checkpoints
You can create an XML test object checkpoint to check the elements, 
attributes and/or values of XML associated with the selected test object. For 
example, you can check the XML that is returned from an operation 
performed on a Web service. You can create an XML test object checkpoint 
while you are recording or editing your test.

Note: You cannot insert an XML checkpoint from the Active Screen. 

To create an XML test object checkpoint:

 1 Select Insert > Checkpoint > XML Checkpoint (From Resource), or click the 
Insert Checkpoint or Output Value toolbar button and select XML 
Checkpoint (From Resource). 

The XML Source Selection - Checkpoint Properties dialog box opens.

 2 Select Create new checkpoint for test object and select the test object you 
want to check. 

To select an object that is not displayed in the list, click Object from 
Repository. Then select an XML test object from the object repository on 
which to create a new checkpoint. The selected object must support XML. 
For information on selecting objects, see “Selecting an Object from the 
Repository or Application” on page 788.



Chapter 23 • Checking XML

604

You can select an existing WebXML or XMLFile test object type as long as 
the actual XML object is currently available (in an open browser or in the 
file system, as relevant) or, if you are working with the QuickTest Web 
Services Add-in you can select a WebService test object. 

Note: Selecting a WebXML or XMLFile test object is identical to using the 
XML Checkpoint (From Application) or Create new checkpoint from file 
options, but may be faster than browsing to these objects and can be 
inserted while recording or editing. However, to use this option, the XML 
source must be available when you select the test object (the Web page must 
be open or the file must exist in the same location as when the test object 
was defined).

 3 If you select a WebService test object, then the Method name box is enabled. 
Select the Web service operation whose return values you want to check. 

Notes:

➤ The Method name box is available only if the Web Services Add-in is 
installed and loaded. The Method name box is enabled only if you select 
a WebService test object.

➤ XML Checkpoints on Web service operations compare the expected 
values of the checkpoint to the actual values returned from the last 
native Web service operation performed on the test object. If a different 
Web service operation step is performed prior to the checkpoint, then the 
checkpoint fails.



Chapter 23 • Checking XML

605

 4 Click OK. The XML Checkpoint Properties dialog box opens and displays 
the root element of the selected XML test object. You can expand the XML 
tree to view the element hierarchy and values (character data).  

Note: When you create an XML checkpoint for a test object operation 
return value (for a WebService test object), only a generic XML tree is created 
and shown in the XML Checkpoint Properties dialog box. The data that is 
expected when each operation is called during the test is not included. You 
must update the XML hierarchy by populating the XML tree with the actual 
elements, attributes, and values you want to check. For more information, 
see “Updating the XML Hierarchy for XML Test Object Operation 
Checkpoints (for WebService Test Objects Only)” on page 614.



Chapter 23 • Checking XML

606

 5 In the Name box, either accept the name that QuickTest assigns to the 
checkpoint or specify another name for it. By default, the checkpoint name 
is the name of the test object on which the checkpoint is being performed. 

If you rename the checkpoint, make sure that the name:

➤ is unique

➤ does not begin or end with a space

➤ does not contain " (double quotation mark) 

➤ does not contain the following character combinations:
:=
@@ 

 6 Select the items to check for the checkpoint. For more information, see 
“Understanding the XML Checkpoint Properties Dialog Box” on page 607.

 7 When you finish setting your checkpoint preferences, click OK to add the 
XML checkpoint. A checkpoint similar to the following is added to the 
Keyword View. 

QuickTest records this step in the Expert View as:

WebService("FlightNetWebService").Check CheckPoint("Airlines")



Chapter 23 • Checking XML

607

Understanding the XML Checkpoint Properties Dialog Box
The XML Checkpoint Properties dialog box enables you to choose which 
elements, attributes, and/or values to check. You can also add, modify and 
delete elements, attributes, and values in the XML tree 

In the XML tree, select the check boxes of the elements, attributes, and/or 
values that you want to check. For each element you want to check, select 
the checks you want to perform. For each attribute or value you want to 
check, select the checks you want to perform, or the parameterization 
options you want to set. 



Chapter 23 • Checking XML

608

Identifying the Object

The top part of the dialog box displays test object information on the test 
object for which you are creating a checkpoint:

Option Description

Name The name that QuickTest assigns to the checkpoint. By default, 
the checkpoint name is the name of the test object on which 
the checkpoint is being performed. You can specify a different 
name for the checkpoint or accept the default name.

If you rename the checkpoint, make sure that the name:

➤ is unique

➤ does not begin or end with a space

➤ does not contain " (double quotation mark)

➤ does not contain the following character combinations: 
:=
@@

Class The test object class on which you are creating the checkpoint. 
This can be: XMLFile (for files), WebXML (for Web pages or 
frames), or WebService (for a Web service).

Find in 
Repository 
button 

Displays the checkpoint in its object repository.

Note: This option is available only when editing an existing 
checkpoint. It is not available when creating a new checkpoint.



Chapter 23 • Checking XML

609

Modifying the XML Tree

The following commands are available according to the node you select in 
the tree:

Command Icon Description

Add Child Adds a child node below the selected node in the 
tree. 

Insert Sibling Adds a sibling node at the same level as the selected 
node in the tree. 

Add Value Enables you to assign a constant or parameterized 
value to the selected element.

Delete Deletes the selected node. Note that you cannot 
delete the root node of the checkpoint.

Import XML Enables you to browse to an existing XML file and 
import it. The new file replaces the selected node  
and its current sub-tree.

Export XML Enables you to save the content of the checkpoint 
tree to an XML file. Enabled only when the root 
node of the tree is selected.

Paste Pastes a cut or copied node as a child node below the 
selected node in the XML tree.

Note: You cannot paste an XML element node as its 
own descendant.

Copy Makes a copy of the selected node, which you can 
then paste in another location in the XML tree.

Cut Prepares the selected node to be cut and copies it to 
the clipboard. When you paste the node in the new 
location, it is removed from the original location in 
the XML tree.

Edit XML as Text Opens the Edit XML as Text dialog box, enabling 
you to modify the XML text of the selected node 
and its subnodes in a test editor. For more 
information, see “Understanding the Edit XML as 
Text Dialog Box” on page 613.



Chapter 23 • Checking XML

610

XML Tree 

The XML tree displays the hierarchical relationship between each element 
and value in the XML tree, enabling you to select the specific elements, 
attributes and values you want to check. Each element is displayed with a 

 icon. Each value is displayed with a  icon.

Select the check box next to an element or value node to include that item 
in the checkpoint. Select an element node in the XML tree to display, edit, 
or parameterize its expected attributes and values on the right of the XML 
Checkpoint Properties dialog box. Select a value node in the XML tree to 
display, edit, or parameterize its expected value on the right of the XML 
Checkpoint Properties dialog box.

Tip: The XML tree pane and the Attribute and Value columns in the right 
pane are resizable.

Select All Selects all element and value nodes in the XML tree 
as well as all element attributes.

Clear All Clears all element and value nodes in the XML tree 
as well as all element attributes.

Duplicate Adds a new node, identical to the selected one, as a 
sibling node at the same level as the selected node in 
the XML tree. 

Note: This command is available only from the 
context menu (right-click menu).

Command Icon Description



Chapter 23 • Checking XML

611

Checkpoint Options

The checkpoint options area on the bottom right of the XML Checkpoint 
Properties dialog box enables you to select the types of checks you want to 
perform on selected elements.

When you select an element in the XML Tree, the checkpoint options area 
includes the name of the selected element and the available element checks.

Element Checks

The following element checks are available:

Check Description

Check number 
of attributes

Checks the number of attributes that are attached to the 
element.

Check number 
of child 
element 
occurrences in 
block 

Displays the number of child elements associated with the 
selected parent element. If you select this option, QuickTest 
verifies that the number of child elements in your XML tree 
(with the specified name, if applicable) corresponds to the 
number that appears in the Check number of child element 
occurrences in block field.

You can specify the child element name for the Number of 
child element occurrences check. If you select a child element 
name, QuickTest verifies that the number of child elements 
with that name corresponds to the number that you specify in 
the Number of child element occurrences in block field. 

Select Any Child (default) to check the total number of child 
elements associated with the selected parent element.



Chapter 23 • Checking XML

612

Schema Validation

You can use the Activate Schema Validation button to confirm that the XML 
in your application or file adheres to the structure defined in a specific XML 
schema or schemas. You can validate the structure of the XML you are 
checking using one or more external schema files or using schemas 
embedded within your XML document. For more information, see 
“Understanding the Schema Validation Dialog Box” on page 618.

Insert Statement Options

If you are inserting a checkpoint while editing your test, the bottom part of 
the XML Checkpoint Properties dialog box displays Insert statement 
options, enabling you to choose whether you want to insert the XML 
checkpoint before or after the step that you selected. Select Before current 
step if you want to check the value of the text before the highlighted step is 
performed. Select After current step (default) if you want to check the value 
of the text after the highlighted step is performed. 

Note: The Insert statement options are not available if you are adding an 
XML checkpoint while recording or if you are modifying an existing XML 
checkpoint. They are available only if you are adding a new XML 
checkpoint to an existing test. 



Chapter 23 • Checking XML

613

Understanding the Edit XML as Text Dialog Box
The Edit XML as Text dialog box enables you to edit XML content from the 
XML tree in a text editor. 

This dialog box is used mainly for constructing an entire XML segment from 
a string or for fixing syntax problems that prevent the dialog box from 
displaying the XML tree correctly. It is also useful when you want to use 
copy-paste functionality to edit the tree.

When you click OK in the Edit XML as Text dialog box, the sub-tree of the 
node you previously selected in the XML tree (or the entire tree if no node 
was selected or if the root node was selected) is completely replaced by the 
XML content from the Edit XML as Text dialog box. 

Note: You cannot modify the name of the root element displayed in the Edit 
XML as Text dialog box.   



Chapter 23 • Checking XML

614

Updating the XML Hierarchy for XML Test Object Operation 
Checkpoints (for WebService Test Objects Only)

This section is relevant only when working with XML Checkpoints on 
WebService test object operations (with the QuickTest Professional Web 
Services Add-in).

When you create an XML checkpoint for a test object operation (for a 
WebService test object), the expected operation return value data cannot be 
generated. Therefore, only a generic XML tree is created. To check the 
operation return values, you must first populate the XML tree with the 
actual elements, attributes, and values that the operation is expected to 
return.

You can use one of the three methods below to populate the XML tree:

➤ Updating the XML Tree Manually

➤ Importing an XML Tree from a File

➤ Updating the XML Tree Using Update Run Mode

Updating the XML Tree Manually
You can update the XML tree by adding elements, attributes, and values 
manually in the XML Checkpoint Properties dialog box.

To update the XML tree manually:

 1 In the Keyword View, select the checkpoint whose XML tree you want to 
update. Click in the Value cell.

 2 Click the Checkpoint Properties button or right-click and select Checkpoint 
Properties. The XML Checkpoint Properties dialog box opens.

 3 Select a node in the XML tree and then click a toolbar button or select an 
option from the context (right-click) menu to:

➤ Add an element at the same level as the selected node.

➤ Add an element below the selected node.

➤ Add a value to the selected node.

➤ Copy the selected node.



Chapter 23 • Checking XML

615

➤ Cut the selected node (the selected node is removed only after you paste 
it in another location).

➤ Paste a cut or copied node as a child node below the selected node.

➤ Edit the XML text of the selected node.

➤ Delete the selected node. 

➤ Duplicate the selected node, adding an identical node as a sibling node at 
the same level. (This command is available only from the right-click 
context menu.)

For more information on the available tools in the XML Checkpoint 
Properties dialog box, see “Understanding the XML Checkpoint Properties 
Dialog Box” on page 607.

Importing an XML Tree from a File
You can import an XML tree from an existing file for a specific element in 
the XML tree hierarchy or for the whole tree. 

To import an existing XML tree from a file:

 1 In the Keyword View, select the checkpoint whose XML tree you want to 
update. 

 2 Click in the Value cell and then click the Checkpoint Properties button. The 
XML Checkpoint Properties dialog box opens.

 3 If you want to import an XML hierarchy for the whole XML tree, select the 
root node. If you want to import an XML hierarchy for a specific element, 
select the element in the XML tree hierarchy. 

 4 Click the Import XML button. A message warns you that the imported 
hierarchy overwrites the selected node and its sub-tree. Click Yes to close the 
message.

 5 In the Import XML from File dialog box, browse to the required XML file 
and click Open. The XML hierarchy is imported from the file. 

 6 If required, configure a constant or parameterized value for each of the 
element and value nodes in the XML tree. For more information on 
parameterizing values, see Chapter 24, “Parameterizing Values.”



Chapter 23 • Checking XML

616

Updating the XML Tree Using Update Run Mode 
QuickTest cannot generate the expected return values of an operation when 
you insert an XML checkpoint on a Web service operation, but it can 
generate this information after it runs the operation. Therefore, you can run 
your Web service test in Update Run mode to automatically populate or 
update the elements, attributes and values in your XML tree.

To generate a new XML tree based on the current return values of the Web 
service operation, ensure that none of the node, attribute, or value check 
boxes are selected in the XML checkpoint.

To maintain the current hierarchy in the XML tree and update only the 
expected values, select one or more node, attribute, or value check boxes in 
the dialog box.

Note: XML Checkpoints on Web service operations check the actual values 
returned from the last native Web service operation performed on the test 
object. If a different Web service operation step is performed prior to the 
checkpoint, then the update run cannot update the XML tree for that 
operation.



Chapter 23 • Checking XML

617

To update an XML tree using Update Run mode:

 1 Open a test containing XML Test Object checkpoints for Web service 
operations.

 2 Click the down arrow next to the Run button in the toolbar and select 
Update Run Mode or select Automation > Update Run Mode. The Update 
Run dialog box opens.

 3 Select Update checkpoint properties and click OK. QuickTest runs the test 
and updates the XML hierarchy for each XML checkpoint.

 4 If you want to confirm that QuickTest successfully updated your checkpoint, 
expand the tree in the Test Results window and select the XML checkpoint. 
Then check that Update done is displayed in the right-hand pane. (If the Test 
Results window did not open automatically at the end of the run, click the 
Results button or select Automation > Results.)



Chapter 23 • Checking XML

618

Understanding the Schema Validation Dialog Box
The Schema Validation dialog box enables you to specify an XML schema 
against which you want to validate the hierarchy of the XML in your 
application or file.

The Schema Validation dialog box contains the following options:

➤ Validate against the schema defined in the XML document. Instructs 
QuickTest to use the schema or schemas defined within your XML 
document to validate the hierarchy of the XML in your Web page/frame, 
XML file, or XML test object.

➤ Validate against the schemas specified below. Instructs QuickTest to use one 
or more external XML schema files to validate the hierarchy of your XML. If 
you select this option, any schemas defined within your XML document are 
also checked. (The Validate against the schema defined in the XML 
document is automatically selected and is disabled.) 



Chapter 23 • Checking XML

619

When you select the Validate against the schemas specified below option, 
the Add Schema button is enabled. Clicking this button opens the Add 
Schema dialog box, in which you can specify the following:

➤ Schema path or URL. Enter the path or URL of your XML schema file. 
Alternatively, click the browse button to navigate to the XML schema 
you want to use to validate the XML in your Web page/frame, XML file, 
or XML test object. You can specify schema files either from your file 
system or from Quality Center. For each external file you add, you must 
specify its path or URL and namespace.

➤ Schema namespace. (If applicable.) If your schema file has a namespace, 
specify it. QuickTest checks that the namespace matches the schema file 
as part of the validation process. If the schema file has a namespace and 
you do not specify it, or if the namespace you specify is different to the 
one specified in the schema file, the validation fails.

Click OK in the Add Schema dialog box to add the selected schema to the 
list in the Schema Validation dialog box. Click the Add Schema button 
again if you want to add another schema.

If you select Use external schemas, the following toolbar buttons are 
enabled when appropriate:

Button Description

Enables you to add an external schema file to the list. For more 
information, see “Understanding the Add Schema Dialog Box” on 
page 621.

Enables you to modify the details of the selected external schema 
file in the list. For more information, see “Understanding the Edit 
Schema Dialog Box” on page 621.

Enables you to remove the selected external schema file from the 
list.



Chapter 23 • Checking XML

620

Guidelines for Schema Validation

Following are specific guidelines to consider when specifying a schema file 
to validate your XML.

➤ If you are validating an XML file using a schema defined in the XML file, the 
schema can be defined with an absolute or relative path. When you specify 
a relative path, QuickTest searches for the schema in the folders listed in the 
Folders pane of the Options dialog box. For more information, see “Setting 
Folder Testing Options” on page 1237.

➤ If you are validating an XML document located on the Web with a schema 
file located on your file system, you cannot use UNC format (for example, 
\\ComputerName\Path\To\Schema) to specify the schema file location. 
Instead, map the schema file location to a network drive.

➤ If there is a schema with a namespace defined in your XML document, the 
namespace of the external schema must be identical to the one defined in 
your document. Using an external XML schema file to validate an XML 
document may cause an unexpected result if the XML document has an 
XML schema declaration, and the namespace in the external schema file 
and the schema defined in the document are not identical.

➤ When you perform a schema validation, QuickTest validates all of the 
elements in the XML document, even if certain XML elements are not 
associated with a schema file. Any XML elements that are not associated 
with a schema file cause the schema validation to fail.



Chapter 23 • Checking XML

621

Understanding the Add Schema Dialog Box
The Add Schema dialog box enables you to specify the path or URL of an 
external schema file and its namespace. If there is a schema with a 
namespace defined in your XML document, the namespace of the external 
schema must be identical to the one defined in your document.

Understanding the Edit Schema Dialog Box
The Edit Schema dialog box displays the path and namespace of the schema 
file you selected in the list. You can modify the path or URL of the selected 
schema file, and its namespace. 



Chapter 23 • Checking XML

622

Modifying XML Checkpoints

You can change the expected data and settings of an existing XML 
checkpoint.

To modify an XML checkpoint: 

 1 In the Keyword View or the Expert View, right-click the XML checkpoint 
that you want to modify and select Checkpoint Properties. Alternatively, 
select the step containing the XML checkpoint and select Edit > Step 
Properties > Checkpoint Properties. The XML Checkpoint Properties dialog 
box opens. 

 2 Modify the settings as described in the previous sections. 

Reviewing XML Checkpoint Results

By adding XML checkpoints to your tests, you can verify that the data and 
structure in your XML documents, XML files, or XML test objects have not 
changed unexpectedly. When you run your test, QuickTest compares the 
expected results of the checkpoint to the actual results of the run session. If 
the results do not match, the checkpoint fails. 

You can view summary results of the XML checkpoint in the Test Results 
window. You can view detailed results by opening the XML Checkpoint 
Results window. For more information on XML checkpoint results, see 
“Analyzing XML Checkpoint Results” on page 1037.

Note: XML Checkpoints on Web service operations compare the expected 
values of the checkpoint to the actual values returned from the last native 
Web service operation performed on the test object. If a different Web 
service operation step is performed prior to the checkpoint, then the 
checkpoint fails.



Chapter 23 • Checking XML

623

Using XML Objects and Methods to Enhance Your Test

QuickTest provides several scripting methods that you can use with XML 
data. You can use these scripting methods to retrieve data and return new 
XML objects from existing XML data. You do this by using the XMLUtil, or 
WebXML objects to return XML data and then using the supported 
XMLData objects and methods to manipulate the returned data. 

Tip: All XMLData objects and methods are compatible with namespace and 
XPath standards. 

For more information on XML standards, see http://www.w3.org/XML/ 

For more information on namespace standards, see http://www.w3.org/TR/
1999/REC-xml-names-19990114/ 

For more information on XPath standards, see http://www.w3.org/TR/1999/
REC-xpath-19991116

For more information on programming in the Expert View, see Chapter 29, 
“Working in the Expert View and Function Library Windows.” For more 
information on XML objects and methods, see the Supplemental section of 
the HP QuickTest Professional Object Model Reference.

http://www.w3.org/TR/1999/REC-xml-names-19990114/
http://www.w3.org/TR/1999/REC-xml-names-19990114/
http://www.w3.org/TR/1999/REC-xpath-19991116
http://www.w3.org/TR/1999/REC-xpath-19991116
http://www.w3.org/XML/


Chapter 23 • Checking XML

624



625

24
Parameterizing Values

QuickTest enables you to expand the scope of a basic test by replacing fixed 
values with parameters. This process, known as parameterization, greatly 
increases the power and flexibility of your test. 

This chapter includes:

 ➤  About Parameterizing Values on page 626

 ➤  Parameterizing Values in Steps and Checkpoints on page 628

 ➤  Using Test and Action Input Parameters on page 635

 ➤  Using Data Table Parameters on page 639

 ➤  Using Environment Variable Parameters on page 645

 ➤  Using Random Number Parameters on page 655

 ➤  Example of a Parameterized Test on page 657

 ➤  Using the Data Driver to Parameterize Your Test on page 662



Chapter 24 • Parameterizing Values

626

About Parameterizing Values

You can use the parameter feature in QuickTest to enhance your test by 
parameterizing the values that it uses. A parameter is a variable that is 
assigned a value from an external data source or generator.

You can parameterize the values in steps or the values of action parameters 
using one of the following parameter types:

➤ Test/action parameters. Test parameters enable you to use values passed 
from your test. Action parameters enable you to pass values from other 
actions in your test. 

To use a value within a specific action, you must pass the value down 
through the action hierarchy of your test to the required action. You can 
then use that parameter value to parameterize a step in your test. For 
example, suppose that Action3 is a nested action of Action1 (a top-level 
action), and you want to parameterize a step in Action3 using a value that is 
passed into your test from the external application that runs (calls) the test. 
You can pass the value from the test level to Action1, then to Action3, and 
then parameterize the required step using this action input parameter value 
(that was passed through from the external application).

Alternatively, you can pass an output action parameter value from an action 
step to a later sibling action at the same hierarchical level. For example, 
suppose that Action2, Action3, and Action4 are sibling actions at the same 
hierarchical level, and that these are all nested actions of Action1. You can 
parameterize a call to Action4 based on an output value retrieved from 
Action2 or Action3. You can then use these parameters in your action step.

For more information, see “Guidelines for Working with Action Parameters” 
on page 479.



Chapter 24 • Parameterizing Values

627

➤ Data Table parameters. Enable you to create a data-driven test (or action) 
that runs several times using the data you supply. In each repetition, or 
iteration, QuickTest uses a different value from the Data Table.

For example, suppose your application includes a feature that enables users 
to search for contact information from a membership database. When the 
user enters a member’s name, the member’s contact information is 
displayed, together with a button labelled View <MemName>’s Picture, 
where <MemName> is the name of the member. You can parameterize the 
name property of the button using a list of values so that during each 
iteration of the run session, QuickTest can identify the different picture 
buttons.

➤ Environment variable parameters. Enable you to use variable values from 
other sources during the run session. These may be values you supply, or 
values that QuickTest generates for you based on conditions and options 
you choose.

For example, you can have QuickTest read all the values for filling in a Web 
form from an external file, or you can use one of QuickTest’s built-in 
environment variables to insert current information about the computer 
running the test.

➤ Random number parameters. Enable you to insert random numbers as 
values in your test. For example, to check how your application handles 
small and large ticket orders, you can have QuickTest generate a random 
number and insert it in a number of tickets edit box.

Tips: 

➤ If you want to parameterize the same value in several steps in your test, 
you may want to consider using the Data Driver rather than adding 
parameters manually. For more information see, “Using the Data Driver 
to Parameterize Your Test” on page 662.

➤ You can also parameterize identification property values of test objects in 
the object repository using repository parameters. For more information, 
see “Working with Repository Parameters” on page 228.



Chapter 24 • Parameterizing Values

628

Parameterizing Values in Steps and Checkpoints

You can parameterize values in steps and checkpoints while working with 
your test.

You can parameterize the values of object properties for a selected step. You 
can also parameterize the values of the operation arguments defined for the 
step.

For example, your application may include a form with an edit box into 
which the user types the user name. You may want to test whether your 
application reads this information and displays it correctly in a dialog box. 
You can insert a text checkpoint that uses the built-in environment variable 
for the logged-in user name, to check whether the displayed information is 
correct.

Note: When you parameterize the value of an object property for a local 
object, you are modifying the test object description in the local object 
repository. Therefore, all occurrences of the specified object within the 
action are parameterized. For more information on the local object 
repository, see Chapter 5, “Managing Test Objects in Object Repositories.”

Parameterizing the value of a checkpoint property enables you to check how 
an application performs the same operation based on different data.

For example, if you are testing the Mercury Tours sample Web site, you may 
create a checkpoint to check that once you book a ticket, it is booked 
correctly. Suppose that you want to check that flights are booked correctly 
for a variety of different destinations. Rather than create a separate test with 
a separate checkpoint for each destination, you can add a Data Table 
parameter for the destination information. This enables you to create a list 
of different destinations. QuickTest will then check the flight information 
for a different destination for each iteration of the test.

For more information on using checkpoints, see Chapter 17, 
“Understanding Checkpoints.”



Chapter 24 • Parameterizing Values

629

When you define a value as a parameter, you specify the parameter type and 
its settings.

For more information on using specific parameter types, see:

➤ “Using Test and Action Input Parameters” on page 635

➤ “Using Data Table Parameters” on page 639

➤ “Using Environment Variable Parameters” on page 645

➤ “Using Random Number Parameters” on page 655

For more information on parameterizing values:

➤ “Parameterizing Values for Operations” on page 629

➤ “Parameterizing Property Values for Objects and Checkpoints” on page 631

Tip: When you use the Step Generator to add new steps, you can 
parameterize the values for the operation you select. For more information, 
see “Inserting Steps Using the Step Generator” on page 777.

Parameterizing Values for Operations
If the method, property, or function used in the step has arguments, you can 
parameterize the argument values as required. For example, if the operation 
uses the Click method, you can parameterize the values for the x argument, 
the y argument, or both.

When you select a parameterized value in the Keyword View, the icon for 
the parameter type is displayed. For example, in the following segment, the 
value of the Set method has been defined as a random number parameter. 
QuickTest enters a random number value into the creditnumber edit box 
each time the test runs.



Chapter 24 • Parameterizing Values

630

You can parameterize operation values using the parameterization icon  
in the Value column of the Keyword View.

To parameterize a value for an operation using the parameterization icon:

 1 In the Keyword View, click in the Value column of the required step.

 2 Click the parameterization icon  for the value that you want to 
parameterize. The Value Configuration Options dialog box opens, showing 
the currently defined value. 

Note: The parameter options shown in this dialog box change according to 
the parameter type selected in the Parameter box.



Chapter 24 • Parameterizing Values

631

 3 Select Parameter. If the value is already parameterized, the Parameter 
section displays the current parameter definition for the value. If the value is 
not yet parameterized, the Parameter section displays the default parameter 
definition for the value. For more information, see “Understanding Default 
Parameter Values” on page 634.

 4 Accept or change the parameter definition:

➤ Click OK to accept the displayed parameter statement and close the 
dialog box.

➤ Modify the value settings for the selected parameter type and click OK.

➤ Change the parameter type. The options in the Parameter section 
change according to the parameter type you select.

For more information on configuring values for specific parameter types, 
see:

➤ “Defining the Settings for a Test or Action Parameter” on page 637

➤ “Defining the Settings for a Data Table Parameter” on page 642

➤ “Defining the Settings for an Environment Variable Parameter” on page 652

➤ “Defining Settings for a Random Number Parameter” on page 656

Parameterizing Property Values for Objects and 
Checkpoints
You can parameterize the values for one or more properties of an object 
stored in the local object repository in the Object Properties dialog box or 
Object Repository window. You can parameterize the values for one or more 
properties of a checkpoint in the Checkpoint Properties dialog box. 

Note: For information on parameterizing a property value for an object in a 
shared object repository, see Chapter 7, “Managing Object Repositories.”



Chapter 24 • Parameterizing Values

632

To parameterize local object values:

 1 Open the dialog box for the object properties in one of the following ways:

➤ Select a step and select Edit > Step Properties > Object Properties, or 
right-click a step and select Object Properties. The Object Properties 
dialog box opens.

➤ Open the Object Repository dialog box and select the object,

 2 Click in the Value cell for the property that you want to parameterize, and 
click the parameterization icon . The Value Configuration Options dialog 
box opens.

 3 Select Parameter. If the value is already parameterized, the Parameter box 
displays the current parameter definition for the value. If the value is not yet 
parameterized, the Parameter box displays the default parameter definition 
for the value. For more information, see “Configuring a Selected Value” on 
page 760.

 4 Click OK to accept the displayed parameter statement or change the 
displayed parameter definition, and then click OK.

 5 To accept the displayed parameter statement and parameterize another of 
the displayed values, select another property and follow the previous steps.

To parameterize checkpoint property values:

 1 Open the dialog box for the checkpoint properties in one of the following 
ways:

➤ Select Edit > Step Properties > Checkpoint Properties, or right-click the 
checkpoint and select Checkpoint Properties.

➤ Open the Object Repository dialog box and select the checkpoint.



Chapter 24 • Parameterizing Values

633

 2 In the Configure value area of the dialog box, select Parameter.

If the value is already parameterized, the Parameter box displays the current 
parameter definition for the value. If the value is not yet parameterized, the 
Parameter box displays the default parameter definition for the value. For 
more information, see “Understanding Default Parameter Values” on 
page 634.

 3 Accept or change the displayed parameter definition:

➤ To accept the displayed parameter statement and close the dialog box, 
click OK.

➤ To change the parameter type or modify the value settings for the 
selected property, click the Parameter Options button. The Parameter 
Options dialog box opens for the displayed parameter type.

 4 To accept the displayed parameter statement and parameterize another of 
the displayed values, select another property and follow the previous steps.

For more information on defining value settings for specific parameter 
types, see:

➤ “Setting Test and Action Parameter Options” on page 636

➤ “Setting Data Table Parameter Options” on page 641

➤ “Choosing Global or Action Data Table Parameters” on page 643

➤ “Using Random Number Parameters” on page 655



Chapter 24 • Parameterizing Values

634

Understanding Default Parameter Values
When you select a value that has not yet been parameterized, QuickTest 
generates a default parameter definition for the value. The following table 
describes how the default parameter settings are determined:

If the relevant condition described above is not true, the default parameter 
type is Data Table. If you accept the default parameter details, QuickTest 
creates a new Data Table parameter with a name based on the selected value. 
Data Table parameters are created in the Global sheet.

For more information on Data Table sheets, see Chapter 42, “Working with 
Data Tables.”

When 
parameterizing

Condition
Default 
parameter 
type

Default parameter 
name

A value for a step or 
a checkpoint in an 
action

At least one input 
action parameter is 
defined in the 
current action

Action 
parameter

The first input 
parameter displayed 
in the Parameters 
tab of the Action 
Properties dialog 
box

An input action 
parameter value for 
a nested action

At least one input 
action parameter is 
defined for the 
action calling the 
nested action

Action 
parameter

The first input 
parameter displayed 
in the Parameters 
tab of the Action 
Properties dialog 
box of the calling 
action

An input action 
parameter value for 
a top-level action 
call

At least one input 
parameter is 
defined for the test

Test 
parameter

The first input 
parameter displayed 
in the Parameters 
pane of the Test 
Settings dialog box



Chapter 24 • Parameterizing Values

635

Using Test and Action Input Parameters

You can parameterize a step using a test or action input parameter. This 
enables the step to use values that have been passed from the application 
that ran (called) your test. For example, you can use an input test parameter 
as the value for a method argument.

You can parameterize a value using a test or action parameter only if the 
parameter has been defined for the test or action. For more information on 
defining parameters, see “Defining Parameters for Your Test” on page 1280, 
“Setting Action Parameters” on page 472, and “Setting Action Call 
Parameter Values” on page 483.

You can parameterize steps by selecting input parameters in the Parameter 
Options or Value Configuration Options dialog box. The parameter options 
that are available in these dialog boxes depend on where you are currently 
located in your test, and whether test or action parameters are defined. For 
more information, see “Using Action Parameters” on page 476 and 
“Defining Parameters for Your Test” on page 1280.

Alternatively, you can enter the parameter name in the Expert View using 
the Parameter utility object, in the format: Parameter("ParameterName") for 
the current action, or Parameter("ActionName", "ParameterName") to use the 
output parameter from a previous action as an input parameter in the 
current action. For more information, see “Using Action Parameters in Steps 
in the Expert View” on page 638.

Tip: You can also create test or action parameter output values that retrieve 
values during the run session and store them for use at another point in the 
run session. You can then use these output values to parameterize a step in 
your test. For more information, see “Outputting a Value to an Action 
Parameter” on page 684.



Chapter 24 • Parameterizing Values

636

Setting Test and Action Parameter Options
When you choose to parameterize a value, the dialog box that opens enables 
you to select a parameter type and the parameter options to use. The image 
below shows the dialog box that opens when you select to parameterize a 
checkpoint expected value. The dialog boxes for parameterizing other value 
types such as argument values, object property values, and output storage 
locations provide similar options.

When Test/action parameter is selected as the parameter type, you can 
select the required parameter from a list of existing parameters.

Tip: When you open the dialog box to parameterize a value, the default 
parameter type may be set to Test/action parameter. For more information 
on default parameter type settings, see “Understanding Default Parameter 
Values” on page 634.



Chapter 24 • Parameterizing Values

637

Defining the Settings for a Test or Action Parameter

The following options are available for configuring test or action 
parameters:

➤ Test parameters or Parent action parameters. Parameter defined in the test 
or parent action. (If no output parameters are defined in the test or parent 
action, this area is disabled.) Test parameters are available only for top-level 
actions. They are defined in the Parameters pane of the Test Settings dialog 
box. Parent action parameters are available for subsequent steps and for 
nested actions. They are defined in the action containing the steps or in the 
action that calls the nested action. 

➤ Parameter. Specifies the name of the input parameter. The read-only list 
of available parameters contains the names and full descriptions of the 
currently defined input parameters for the action. You can resize the 
display, as needed, and, if the list of parameters is long, you can scroll 
through the list.

➤ Output from previous action call(s). Any previous action in the same 
hierarchical level for which output parameters are defined. (If no output 
parameters are defined in previous actions, this area is disabled.)

➤ Action. Specifies the previous action from which you can choose an 
output parameter. You can choose any action in the list.

➤ Parameter. Specifies the name of the output parameter. The read-only list 
of available parameters contains the names and full descriptions of the 
currently defined output parameters from the previous action(s). You can 
resize the display, as needed, and, if the list of parameters is long, you can 
scroll through the list. 

You can also use test or action parameter variables using parameterization 
objects and methods in the Expert View. For more information, see the 
HP QuickTest Professional Object Model Reference.



Chapter 24 • Parameterizing Values

638

Using Action Parameters in Steps in the Expert View

Instead of selecting input (or output) parameters from the appropriate 
dialog boxes while parameterizing steps or inserting output value steps, you 
can enter input and output parameters as values in the Expert View using 
the Parameter utility object in the format: Parameter("ParameterName").

Suppose you have test steps that enter information in a form to display a list 
of purchase orders in a table, and then return the total value of the orders 
displayed in the table. 

You can define input parameters, called SoldToCode and MaterialCode, for 
the codes entered in the Sold to and Materials edit boxes of the form so that 
the Orders table that is opened is controlled by the input parameter values 
passed when the test is called. 

You can define an output parameter, called TotalValue, to store the returned 
value. The output value (TotalValue) could then be returned to the 
application that called the test.

The example described above might look something like this (parameters 
are in bold font):

Browser("Mercury").Page("List Of Sales").WebEdit("Sold to").
Set Parameter("SoldToCode")

Browser("Mercury").Page("List Of Sales").WebEdit("Materials").
Set Parameter("MaterialCode")

Browser("Mercury").Page("List Of Sales").WebButton("Enter").Click
NumTableRows = Browser("Mercury").Page("List Of Sales").

WebTable("Orders").RowCount
Parameter("TotalValue") = Browser("Mercury").Page("List Of Sales").

WebTable("Orders").GetCellData(NumTableRows,"Total")



Chapter 24 • Parameterizing Values

639

Using Data Table Parameters

You can supply the list of possible values for a parameter by creating a Data 
Table parameter. Data Table parameters enable you to create a data-driven 
test, or action that runs several times using the data you supply. In each 
repetition, or iteration, QuickTest uses a different value from the Data Table 
(taken from the subsequent row in the Data Table).

For example, consider the Mercury Tours sample Web site, which enables 
you to book flight requests. To book a flight, you supply the flight itinerary 
and click the Continue button. The site returns the available flights for the 
requested itinerary.

You could conduct the test by accessing the Web site and submitting 
numerous queries. This is a slow, laborious, and inefficient solution. By 
using Data Table parameters, you can run the test for multiple queries in 
succession.

When you parameterize your test, you first create steps that access the Web 
site and check for the available flights for one requested itinerary.

You then substitute the existing itinerary with a Data Table parameter and 
add your own sets of data to the relevant sheet of the Data Table, one for 
each itinerary.

When you create a new Data Table parameter, a new column is added in the 
Data Table and the current value you parameterized is placed in the first 
row. If you parameterize a value and select an existing Data Table parameter, 
then the values in the column for the selected parameter are retained, and 
are not overwritten by the current value of the parameter.

Each column in the table represents the list of values for a single Data Table 
parameter. The column header is the parameter name.



Chapter 24 • Parameterizing Values

640

Each row in the table represents a set of values that QuickTest submits for all 
the parameters during a single iteration of the test. When you run your test, 
QuickTest runs one iteration of the test for each row of data in the table. For 
example, a test with ten rows in the Global sheet of the Data Table will run 
ten times.

For more information on entering values in the Data Table, see Chapter 42, 
“Working with Data Tables.”

Tip: You can also create Data Table output values, which retrieve values 
during the run session and insert them into a column in the Data Table. You 
can then use these columns as Data Table parameters in your test. For more 
information, see Chapter 25, “Outputting Values.”

In the previous example, QuickTest submits a separate query for each 
itinerary when you run the test.  



Chapter 24 • Parameterizing Values

641

Setting Data Table Parameter Options
When you choose to parameterize a value, the dialog box that opens enables 
you to select a parameter type and the parameter options to use. The image 
below shows the dialog box that opens when you select to parameterize a 
checkpoint expected value. The dialog boxes for parameterizing other value 
types such as argument values, object property values, and output storage 
locations provide similar options.

When Data Table is selected as the parameter type, you can configure your 
parameter to use values from the Data Table.

Tip: When you open the dialog box to parameterize a value, Data Table may 
be set as the default parameter type. For more information on default 
parameter type settings, see “Understanding Default Parameter Values” on 
page 634.



Chapter 24 • Parameterizing Values

642

Defining the Settings for a Data Table Parameter

The following options are available for configuring Data Table parameters:

Name. Specifies the name of the parameter in the Data Table. You can create 
a new parameter by using the default parameter name or entering a new, 
descriptive name. Alternatively, you can select an existing Data Table 
parameter from the list.

Note: The parameter name must be unique in the sheet. It can contain 
letters, numbers, periods, and underscores. The first character of the 
parameter name must be a letter or an underscore. If you specify an invalid 
name, QuickTest displays a warning message when you click OK. You can 
choose to edit the name manually or to instruct QuickTest to fix the name 
automatically (by adding an underscore at the beginning of the name). 

Location in Data Table. Specifies whether to store the parameter in the 
global or current action sheet in the Data Table. 

For more information on global and action Data Table parameters, see 
“Choosing Global or Action Data Table Parameters” on page 643. For more 
information on actions, see Chapter 15, “Working with Actions” and 
Chapter 16, “Working with Advanced Action Features.”

Advanced configuration (if applicable): 

➤ Regular expression. Sets the value of the parameter as a regular 
expression. For more information, see “Understanding and Using Regular 
Expressions” on page 762. Note that this option is available only when 
parameterizing checkpoint and object property values. 

➤ Use Data Table formula. (If applicable.) Inserts two columns in the Data 
Table. The first column contains a formula that checks the validity of 
output in the second column. QuickTest uses the data in the output 
column to compute the formula, and inserts a value of TRUE or FALSE in 
the table cell of the formula column. Note that this option is available 
only for checkpoints. For more information on using Data Table 
formulas, see “Using Formulas in the Data Table” on page 1216.



Chapter 24 • Parameterizing Values

643

Note: You can also define Data Table variables using parameterization 
objects and methods in the Expert View. For more information, see the 
HP QuickTest Professional Object Model Reference.

Choosing Global or Action Data Table Parameters
When you parameterize a step in a test using the Data Table, you must 
decide whether you want to make it a global Data Table parameter (per test) 
or a local Data Table parameter (per action). 

This decision should be based on whether you want the data to be used only 
for a single action (use local Data Table parameters), or available to other 
actions (use global Data Table parameters) and when you want subsequent 
iterations (different data) to be used for a particular parameter (each time 
the test repeats or each time the action repeats within the test). 

➤ Global Data Table parameters take data from the Global sheet in the Data 
Table. The Global sheet contains the data that replaces global parameters in 
each iteration of the test. By default, the test runs one iteration for each row 
in the Global sheet of the Data Table. Using the Run pane of the Test 
Settings dialog box, you can also set the test to run only one iteration, or to 
run iterations on specified rows within the Global sheet of the Data Table. 
You can use the parameters defined in the Global data sheet in any action. 

Tip: By outputting values to the global Data Table sheet from one action and 
using them as input parameters in another action, you can pass values from 
one action to another. For more information, see Chapter 25, “Outputting 
Values.”

For more information on setting global iteration preferences, see “Defining 
Run Settings for Your Test” on page 1270.



Chapter 24 • Parameterizing Values

644

➤ Local Data Table parameters take data from the action’s sheet in the Data 
Table. The data in the action’s sheet replaces the action’s Data Table 
parameters in each iteration of the action. By default, actions run only one 
iteration. 

Using the Run tab of the Action Call Properties dialog box, you can also set a 
particular call of the action to run iterations for all rows in the action’s sheet 
or to run iterations on specified rows within the action’s sheet. When you 
set your action properties to run iterations on all rows, QuickTest inserts the 
next value from the action’s data sheet into the corresponding action 
parameter during each action iteration, while the values of the global 
parameters stay constant.

For more information on setting action iteration preferences, see “Inserting 
a Call to an Existing Action” on page 468.

Note: After running a parameterized test, you can view the actual values 
taken from the Data Table in the Test Results Run-Time Data Table. For more 
information, see “Viewing the Run-Time Data Table” on page 1056.

If you have multiple rows in the Global data sheet, the entire test runs 
multiple times. If you have multiple rows in a local data sheet, the 
corresponding action runs multiple times before running the next action in 
the test. If you have multiple rows in both Global and local data sheets, each 
single test iteration runs all iterations of each action before running the next 
iteration of the test.



Chapter 24 • Parameterizing Values

645

Using Environment Variable Parameters

QuickTest can insert a value from the Environment variable list, which is a 
list of variables and corresponding values that can be accessed from your 
test. Throughout the test run, the value of an environment variable remains 
the same, regardless of the number of iterations, unless you change the 
value of the variable programmatically in your script.

Tip: Environment parameters are especially useful for localization testing, 
when you want to test an application where the user interface strings 
change, depending on the selected language. Environment parameters can 
be used for testing the same application on different browsers. You can also 
vary the input values for each language by selecting a different Data Table 
file each time you run the test. For more information, see Chapter 42, 
“Working with Data Tables.”

There are several types of environment variables:

➤ User-Defined Internal. Variables that you define within the test. These 
variables are saved with the test and are accessible only within the test in 
which they were defined.

You can create or modify internal, user-defined environment variables for 
your test in the Environment pane of the Test Settings dialog box or in the 
Parameter Options dialog box. 

For more information on creating or modifying environment variables in 
the Test Settings dialog box, see “Defining Environment Settings for Your 
Test” on page 1283. 

For information on creating or modifying environment variables in the 
Parameter Options dialog box, see “Setting Environment Variable Parameter 
Options” on page 652.



Chapter 24 • Parameterizing Values

646

Tip: You can also create environment output values, which retrieve values 
during the test run and output them to internal environment variable 
parameters for use in your test. For more information, see Chapter 25, 
“Outputting Values.”

➤ User-Defined External. Variables that you predefine in the active external 
environment variables file. You can create as many files as you want and 
select an appropriate file for each test, or change files for each test run. Note 
that external environment variable values are designated as read-only 
within the test. For more information, see “Using User-Defined External 
Environment Variables” on page 647.

➤ Built-in. Variables that represent information about the test and the 
computer on which the test is run, such as Test path and Operating system. 
These variables are accessible from all tests, and are designated as read-only. 
For more information, see “Using Built-in Environment Variables” on 
page 650.

Note: QuickTest also has a set of predefined environment variables that you 
can use to set the values of the Record and Run Settings dialog options. You 
should not use the names of these variables for any other purpose. For more 
information, see the section on using environment variables to specify the 
Record and Run details for your test in the HP QuickTest Professional User 
Guide.



Chapter 24 • Parameterizing Values

647

Using User-Defined External Environment Variables
You can create a list of variable-value pairs in an external file in .xml format. 
You can then select the file as the active external environment variable file 
for a test and use the variables from the file as parameters.

You can set up your environment variable files manually, or you can define 
the variables in the Environment pane of the Test Settings dialog box and 
use the Export button to create the file with the correct structure. For more 
information on exporting environment variables, see Chapter 45, “Setting 
Options for Individual Tests.”

Notes:

➤ You can also store environment variable files in Quality Center. For more 
information, see “Using Environment Variable Files with Quality Center” 
on page 649.

➤ You can create several external variable files with the same variable 
names and different values and then run the test several times, using a 
different file each time. This is especially useful for localization testing.

If you create your files manually, you must use the correct format, as defined 
below. You can use the QuickTest environment variable file schema in:
<QuickTest Professional installation folder>\help\QTEnvironment.xsd

To create an external environment variables file:

 1 Create an xml file using the editor of your choice.

 2 Type <Environment> on the first line.

 3 Type each variable name-value pair within <Variable> elements in the 
following format:

<Variable>
<Name>This is the first variable’s name</Name>
<Value>This is the first variable’s value</Value>
<Description> This text is optional and can be used to add comments. It is 

shown only in the XML not in QuickTest</Description>
</Variable>



Chapter 24 • Parameterizing Values

648

 4 Type </Environment> on the last line.

For example, your environment variables file may look like this:

<Environment>
<Variable>

<Name>Address1</Name>
<Value>25 Yellow Road</Value>

</Variable>
<Variable>

<Name>Address2</Name>
<Value>Greenville</Value>

</Variable>
<Variable>

<Name>Name</Name>
<Value>John Brown</Value>

</Variable>
<Variable>

<Name>Telephone</Name>
<Value>1-123-12345678</Value>

</Variable>
</Environment>

 5 Save the file in a location that is accessible from the QuickTest computer. 
The file must be in .xml format with an .xml file extension.

To select the active external environment variables file:

 1 Select File > Settings to open the Test Settings dialog box. For more 
information on the Test Settings dialog box, see Chapter 45, “Setting 
Options for Individual Tests.”

 2 Click the Environment node.

 3 Select User-defined from the Variables type list.

 4 Select the Load variables and values from external file (reloaded each run 
session) check box.

 5 Use the browse button or enter the full path of the external environment 
variables file you want to use with your test. The variables defined in the 
selected file are displayed in blue in the list of user-defined environment 
variables.



Chapter 24 • Parameterizing Values

649

You can now select the variables in the active file as external user-defined 
environment parameters in your test. For more information, see “Setting 
Environment Variable Parameter Options” on page 652.

Using Environment Variable Files with Quality Center
When working with Quality Center and environment variable files, you 
must save the environment variable file in the Test Resources module in 
your Quality Center project before you specify the file in the Environment 
pane of the Test Settings dialog box. 

You can add a new or an existing environment variable file to your 
Quality Center project. Note that adding an existing file from the file system 
to a Quality Center project creates a copy of the file in Quality Center. Thus, 
once you save the file to the project, changes made to the Quality Center 
environment variable file will not affect the file system file and vice versa.

To use an environment variable file with Quality Center:

 1 To add a new environment variable file, create a new .xml file in your file 
system, as described in “Using User-Defined External Environment 
Variables” on page 647.

 2 In Quality Center, create a new environment variable resource and then 
upload the .xml file you created in the previous step to the project’s Test 
Resources module. For more information, see the HP Quality Center User 
Guide.

 3 In QuickTest, connect to the Quality Center project. For more information, 
see “Connecting to and Disconnecting from Quality Center” on page 1418.

 4 In the Test Settings dialog box, click the Environment node.

 5 Select User-defined from the Variables type list.

 6 Select Load variables and values from external file (reload each run session). 

 7 In the File box, click the browse button to find the user-defined variable file 
in the Quality Center project. 

 8 Save your test. QuickTest saves the file to the Quality Center project.

For more information on working with Quality Center, see Chapter 51, 
“Integrating with Quality Center” and the HP Quality Center User Guide.



Chapter 24 • Parameterizing Values

650

Using Built-in Environment Variables
QuickTest provides a set of built-in variables that enable you to use current 
information about the test and the QuickTest computer running your test. 
These can include the test name, the test path, the operating system type 
and version, and the local host name.

For example, you may want to perform different checks in your test based 
on the operating system being used by the computer that is running the 
test. To do this, you could include the OSVersion built-in environment 
variable in an If statement.

You can also select built-in environment variables when parameterizing 
values. For more information, see “Setting Environment Variable Parameter 
Options” on page 652.

The following built-in environment variables are available:

Name Description

ActionIteration The action iteration currently running.

ControllerHostName The name of the controller’s computer. This variable 
is relevant only when running as a GUI Vuser from 
the LoadRunner controller.

GroupName The name of the group in the running scenario. 
This variable is relevant only when running as a 
GUI Vuser from the LoadRunner controller.

LocalHostName The local host name.

OS The operating system.

OSVersion The operating system version.

ProductDir The folder path where the product is installed.

ProductName The product name.

ProductVer The product version.



Chapter 24 • Parameterizing Values

651

ResultDir The path of the folder in which the current test 
results are located.

Note: You cannot use the ResultDir environment 
variable when running a test from Business 
Availability Center, LoadRunner, or the Silent Test 
Runner in QuickTest.

ScenarioId The identification number of the scenario. This 
variable is relevant only when running as a GUI 
Vuser from the LoadRunner controller.

SystemTempDir The system temporary directory.

TestDir The path of the folder in which the test is located.

TestIteration The test iteration currently running.

TestName The name of the test.

UpdatingActiveScreen Indicates whether the Active Screen images and 
values are being updated during the update run 
process. For more information, see “Updating a Test 
Using the Update Run Mode Option” on page 1125.

UpdatingCheckpoints Indicates whether checkpoints are being updated 
during the update run process. For more 
information, see “Updating a Test Using the Update 
Run Mode Option” on page 1125.

UpdatingTODescriptions Indicates whether the set of properties used to 
identify test objects are being updated during the 
update run process. For more information, see 
“Updating a Test Using the Update Run Mode 
Option” on page 1125.

UserName The Windows login user name.

VuserId The Vuser identification under load. This variable is 
relevant only when running as a GUI VUser from 
the LoadRunner controller.

Name Description



Chapter 24 • Parameterizing Values

652

Setting Environment Variable Parameter Options
When you choose to parameterize a value, the dialog box that opens enables 
you to select a parameter type and the parameter options to use. The image 
below shows the dialog box that opens when you select to parameterize a 
checkpoint expected value. The dialog boxes for parameterizing other value 
types such as argument values, object property values, and output storage 
locations provide similar options.

When you select Environment as the parameter type, you can configure 
your parameter to use values from the Environment variable list. 

Defining the Settings for an Environment Variable Parameter

The following options are available for configuring environment variable 
parameters:

➤ Name. Specifies the name of the parameter. For an internal user-defined 
environment variable parameter, you can create a new parameter by using 
the default parameter name or entering a new, descriptive name. 
Alternatively, you can select an existing internal user-defined environment 
variable parameter from the list.



Chapter 24 • Parameterizing Values

653

Notes:

➤ If you edit the name displayed in the Name box for an existing 
parameter, you create a new internal user-defined environment variable 
parameter. The original environment variable parameter is not modified.

➤ If you are parameterizing an argument that receives a predefined 
constant or number, only the environment variable parameters whose 
value is of type integer are shown in the Name list.

➤ Value. Specifies the value of the parameter. You can enter the value for a new 
user-defined internal parameter, or modify the value for an existing 
user-defined internal parameter. External and built-in environment variable 
parameter values cannot be modified in this dialog box.

If the entire value of a selected environment variable parameter cannot be 
displayed in the Value box, it is shown as [complex value]. For example, the 
value of a list’s all items property is a multi-line value, where each line 
contains the value of an item in the list.

You can view or edit a complex value by clicking the View/Edit Complex 
Value button. For more information, see “Viewing and Editing Complex 
Parameter Values” on page 654.

➤ Type. Specifies the type of environment variable parameter (read-only): 

➤ internal user-defined

➤ external user-defined

➤ built-in



Chapter 24 • Parameterizing Values

654

Tip: The value of an environment variable remains the same throughout the 
test run, regardless of the number of iterations, unless you change the value 
of the variable programmatically in your script.

➤ Regular expression. Sets the value of the parameter as a regular expression. 
This option is available only when parameterizing a checkpoint or object 
property text string value, and the selected environment variable parameter 
type is internal user-defined. For more information on regular expressions, 
see “Understanding and Using Regular Expressions” on page 762.

Note: You can also define environment variables using parameterization 
objects and methods in the Expert View. For more information, see the 
HP QuickTest Professional Object Model Reference.

Viewing and Editing Complex Parameter Values
When you click the View/Edit Complex Value button for a parameter with a 
value that cannot be displayed entirely in the Value box, the Edit Complex 
Value dialog box displays the full contents of the value.

You can edit the value for an internal user-defined environment variable 
parameter. 

For an external or built-in environment variable parameter, you can view 
the value but you cannot modify it in this dialog box.



Chapter 24 • Parameterizing Values

655

Using Random Number Parameters

When you choose to parameterize a value, the dialog box that opens enables 
you to select a parameter type and the parameter options to use. The image 
below shows the dialog box that opens when you select to parameterize a 
checkpoint expected value. The dialog boxes for parameterizing other value 
types such as argument values, object property values, and output storage 
locations provide similar options.

When you select Random Number as the parameter type, the Parameter 
Options dialog box enables you to configure your parameter to use random 
numbers. 



Chapter 24 • Parameterizing Values

656

Defining Settings for a Random Number Parameter

The following options are available for configuring random number 
parameters:

➤ Numeric range. Specifies the range from which the random number is 
generated. By default, the random number range is between 0 and 100. You 
can modify the range by entering different values in the From and To boxes. 
The range must be between 0 and 2147483647 (inclusive).

➤ Name. Assigns a name to your parameter. Assigning a name to a random 
parameter enables you to use the same parameter several times in your test. 
You can select an existing named parameter or create a new named 
parameter by entering a new, descriptive name.

➤ Generate new random number. Defines the generation timing for a named 
random parameter. This box is enabled when you select the Name check 
box. You can select one of the following options:

➤ For each action iteration. Generates a new number at the end of each 
action iteration.

➤ For each test iteration. Generates a new number at the end of each global 
iteration.

➤ Once per entire test run. Generates a new number the first time the 
parameter is used. The same number is used for the parameter 
throughout the test run.

Notes: 

➤ Random number parameters are not appropriate for non-numeric values, 
such as text or hypertext links.

➤ If you select an existing parameter, then changing the settings in the 
dialog box affects all instances of that parameter in the test. 

➤ You can also define random number variables using parameterization 
objects and methods in the Expert View. For more information, see the 
HP QuickTest Professional Object Model Reference.



Chapter 24 • Parameterizing Values

657

Example of a Parameterized Test

The following example shows how to parameterize a step method and a 
checkpoint using Data Table parameters. 

When you test your application, you may want to check how it performs 
the same operations with multiple sets of data. For example, if you are 
testing the Mercury Tours sample Web site, you may want to check that the 
correct departure and the arrival cities are selected before you book a 
particular flight. 

Suppose that you want to check that the flights are booked correctly for a 
variety of different locations. Rather than create a separate test with a 
separate checkpoint for each location, you can parameterize the location 
information. For each iteration of the test, QuickTest then checks the flight 
information for the different locations.

The following is a sample test of a flight booking procedure. The departure 
city is Frankfurt and the arrival city is Acapulco. 



Chapter 24 • Parameterizing Values

658

Step 1: Parameterize a Step
Parameterize the method argument of the fromPort step:  

In the Keyword View, click in the Value cell of the step and then click the 
parameterization icon . In the Value Configuration Options dialog box, 
select the Parameter radio button. In the Name box, rename p_item to 
Location. 

Click OK. The Location column is added to the Data Table.

For more information on parameterizing a step, see “Parameterizing Values 
in Steps and Checkpoints” on page 628.



Chapter 24 • Parameterizing Values

659

Step 2: Parameterize a Checkpoint
In the following example, you add a parameterized text checkpoint to check 
that the correct locations were selected before you book a flight. 

Select the Select a Flight step. In the Active Screen, highlight the text 
Frankfurt to Acapulco, right-click and insert a text checkpoint:

In the Text Checkpoint Properties dialog box, select Parameter to 
parameterize the selected text. Select the Parameter radio button and click 
the Parameter Options button.



Chapter 24 • Parameterizing Values

660

In the Parameter Options dialog box, rename the Data Table parameter to 
Check_Locations_Text. Click OK in the Parameter Options dialog box and in 
the Text Checkpoint Properties dialog box. A Check_Locations_Text column 
is added to the Data Table.

For more information on parameterizing a checkpoint, see “Parameterizing 
Values in Steps and Checkpoints” on page 628.



Chapter 24 • Parameterizing Values

661

Step 3: Enter Data in the Data Table 
Complete the Data Table. The Data Table may be displayed as follows:

For more information on Data Tables, see Chapter 42, “Working with Data 
Tables.”

Modified Test 
The following example shows the test after parameterizing the step and 
creating a parameterized text checkpoint. 

The parameterized value for the fromPort step is clearly shown as a Data 
Table parameter. To see the parameterization setting for the checkpoint, 
click in the Value column for the Select a Flight step.



Chapter 24 • Parameterizing Values

662

Using the Data Driver to Parameterize Your Test

The Data Driver enables you to quickly parameterize several (or all) property 
values for test objects, checkpoints, and/or method arguments containing 
the same constant value within a given action.

You can choose to replace all occurrences of a selected constant value with a 
parameter, in the same way that you can use a Find and Replace All 
operation instead of a step-by-step Find and Replace process. QuickTest can 
also show you each occurrence of the constant so that you can decide 
whether or not to parameterize the value.

Notes:

➤ When finding multiple occurrences of a selected value, QuickTest 
conducts a search that is case sensitive and searches only for exact 
matches. (It does not find values that include the selected value as part of 
a longer string.) 

➤ You cannot use the Data Driver to parameterize the values of arguments 
for user-defined methods or VBScript functions.



Chapter 24 • Parameterizing Values

663

To parameterize a value using the Data Driver:

 1 Display the action you want to parameterize.

 2 Select Tools > Data Driver. 

QuickTest scans the test for constants before the Data Driver opens (this 
may take a few moments).  

Note: If the action being scanned contains a large number of lines and 
constant values, QuickTest warns you that loading the constants may take 
some time. You can choose whether to wait for the constants to load, or to 
open the Data Driver wizard quickly without constants.

The Data Driver displays the Constants list for the action. For each constant 
value, it displays the number of times the constant value appears in the 
action. 

By default, the list displays the constants for one or more of the arguments 
of the following methods: Activate, Collapse, Deselect, Expand, 
ExtendSelect, Press, Select, SelectColumn, SelectRange, SelectRow, Set, 
SetCellData, SetSecure, SetText, Type, and WaitProperty.



Chapter 24 • Parameterizing Values

664

For more information on how to work with testing methods, see 
Chapter 29, “Working in the Expert View and Function Library Windows.” 
For syntax and method information, see the HP QuickTest Professional Object 
Model Reference.

Note: If you chose not to wait for the constants to load, the Data Driver 
opens with an empty Constants table. You can add the constant values that 
you want to parameterize to the Data Driver, as described below.

 3 If you want to parameterize a value that is not currently displayed in the list 
(such as an object property value), click Add Value. The Add Value dialog 
box opens. 

Enter a constant value in the dialog box and click Add. The constant is 
added to the list.

Note: You can add only constant values that currently exist in the test 
action.



Chapter 24 • Parameterizing Values

665

 4 Select the value you want to parameterize from the Constants list and click 
Parameterize. The Data Driver Wizard opens. 

 5 Select the type of parameterization you want to perform:

➤ Step-by-step parameterization. Enables you to view the current values of 
each step containing the selected value. For each step, you can choose 
whether or not to parameterize the value and if so, which 
parameterization options you want to use.

➤ Parameterize all. Enables you to parameterize all occurrences of the 
selected value throughout the action. You set your parameterization 
preferences one time and the same options are applied to all occurrences 
of the value.



Chapter 24 • Parameterizing Values

666

 6 If you selected Step-by-step parameterization, click Next. The Parameterize 
the Selected Step screen opens. 

If you selected Parameterize all, the Parameter option is enabled in the 
Configure value area. Select your parameterization preferences the same way 
that you would for an individual step. For more information, see 
“Parameterizing Values in Steps and Checkpoints” on page 628. Proceed to 
step 9.

 7 In the Step to parameterize area, the first step with an object property or 
checkpoint value containing the selected value is displayed in the test tree 
on the left. The parameterization options for the step are displayed on the 
right.

The default parameterization settings are displayed for the value. For more 
information on default parameterization settings, see “Understanding 
Default Parameter Values” on page 634.



Chapter 24 • Parameterizing Values

667

Accept the default parameterization settings or click the Parameter Options 
button to set the parameterization options you want to apply to this step. 
For more information, see “Parameterizing Values in Steps and 
Checkpoints” on page 628.

➤ Click Next to parameterize the selected step and view the next step 
containing the selected value.

➤ Click Skip if you do not want to parameterize the selected step.

➤ Click Finish to apply the parameterization settings of the current step to 
all remaining steps containing the selected value.

 8 If you clicked Next in the previous step, and steps remain that contain the 
selected value, the Parameterize the Selected Step screen opens displaying 
the next relevant step. Repeat step 7 for each relevant step.

If there are no remaining steps containing the selected value, the Finished 
screen opens.

 9 Click Finish. The Data Driver Wizard closes and the Data Driver main screen 
shows how many occurrences you selected to parameterize and how many 
remain as constants. 



Chapter 24 • Parameterizing Values

668

 10 If you want to parameterize another constant value, select the value and 
repeat steps 4 to 9.

 11 When you are finished parameterizing constants, click OK. The 
parameterization options you selected are applied to your action. 



669

25
Outputting Values

QuickTest enables you to retrieve values in your test and store them in 
output value objects. You can subsequently retrieve these values and use 
them as input at a different stage in the run session.

This chapter includes:

 ➤  About Outputting Values on page 669

 ➤  Creating Output Values on page 670

 ➤  Outputting Property Values on page 676

 ➤  Specifying the Output Type and Settings on page 683

 ➤  Outputting Text Values on page 688

 ➤  Outputting Table Values on page 698

 ➤  Outputting Database Values on page 713

 ➤  Outputting XML Values on page 718

 ➤  Updating the XML Hierarchy for XML Test Object Operation Output Value 
Steps (For WebService Test Objects Only) on page 732

 ➤  Adding Existing Output Values to a Test on page 736

About Outputting Values

An output value step is a step in which one or more values are captured at a 
specific point in your test and stored for the duration of the run session. The 
values can later be used as input at a different point in the run session. 

You can output the property values of any object. You can also output values 
from text strings, table cells, databases, and XML documents.



Chapter 25 • Outputting Values

670

When you create output value steps, you can determine where the values 
are stored during the run session and how they can be used. During the run 
session, QuickTest retrieves each value at the specified point and stores it in 
the specified location. When the value is needed later in the run session, 
QuickTest retrieves it from this location and uses it as required.

Output values are stored only for the duration of the run session. When the 
run session is repeated, the output values are reset.

Note: After the run session, you can view the output values retrieved during 
the session as part of the session results. For more information, see “Viewing 
Parameterized Values and Output Value Results” on page 1053.

Creating Output Values

When you add an output value step to your test, you first select the category 
of values to output, for example, property values, text values, or XML 
element values. For more information, see Output Value Categories.

You can then determine which values to output. For more information, see 
“Viewing and Editing Output Values” on page 675. 

You also determine the storage location for each value. For more 
information, see “Storing Output Values” on page 673.

Output Value Categories
You can create the following categories of output values:

➤ Standard output values

➤ Text and text area output values

➤ Table output values

➤ Database output values

➤ XML output values



Chapter 25 • Outputting Values

671

Standard Output Values

You can use standard output values to output the property values of most 
objects. For example, in a Web-based application, the number of links on a 
Web page may vary based on the selections a user makes on a form on the 
previous page. You could create an output value in your test to store the 
number of links on the page.

Note: You can also use standard output values to output the contents of 
table cells. For more information, see “Table Output Values” on page 672.

Tip: You can use standard output values to output text strings by specifying 
the text property of the object as an output value. 

For more information on standard output values, see “Outputting Property 
Values” on page 676.

Text and Text Area Output Values

You can use text output values to output text strings displayed in an 
application. When creating a text output value, you can output a part of the 
object’s text. You can also specify the text before and after the output text. 

You can use text area output values to output text strings displayed within a 
defined area of a screen in a Windows-based application.

For example, suppose that you want to store the text of any error message 
that appears after a specific step in the Web application you are testing. 
Inside the If statement, you check whether a window exists with a known 
title bar value, for example Error. If it exists, you output the text in this 
window (assuming that the window size is the same for all possible error 
messages).

For more information on text output values, see “Outputting Text Values” 
on page 688. For more information on text area output values, see “Creating 
Text Area Output Values” on page 690.



Chapter 25 • Outputting Values

672

Table Output Values

Table output values are a subset of standard output values, described above. 
You can use table output values to output the contents of table cells. For 
some types of tables, you can specify a row range from which to choose the 
table cells. During the run session, QuickTest retrieves the current data from 
the specified table cells according to the settings that you specified and 
outputs the values to the Data Table.

For more information, see “Outputting Table Values” on page 698.

Database Output Values

You can use database output values to output the value of the contents of 
database cells, based on the results of a query (result set) that you define on 
a database. You can create output values from the entire contents of the 
result set, or from a part of it. During the run session, QuickTest retrieves the 
current data from the database and outputs the values according to the 
settings that you specified.

For more information, see “Outputting Database Values” on page 713.

XML Output Values

You can use XML output values to output the values of XML elements and 
attributes in XML documents.

After the run session has finished, you can view summary results of the XML 
output values in the Test Results window. You can also view detailed results 
by opening the XML Output Value Results window. For more information, 
see Chapter 33, “Viewing Run Session Results.”

For example, suppose that an XML document in a Web page contains a price 
list for new cars. You can output the price of a particular car by selecting the 
appropriate XML element value to output.

For more information on XML output values, see “Outputting XML Values” 
on page 718.



Chapter 25 • Outputting Values

673

Output Value Categories and Environments

QuickTest add-ins help you to create and run tests and components on 
applications in a variety of development environments. For information 
about using output values for each add-in environment installed with 
QuickTest Professional, see “Supported Output Values” on page 1548.

Storing Output Values
When you define an output value, you can specify where and how each 
value is stored during the run session. 

You can output a value to:

➤ a test or action parameter 

➤ the run-time Data Table

➤ an environment variable

Note: Output values are stored only for the duration of the test, and are not 
saved with the test. If you select to output a value to an existing parameter, 
Data Table column, or environment variable, the existing value is 
overwritten when the output value step runs. When the run session ends, 
the original value is restored.

Storing Values in Test and Action Parameters

You can output a value to an action parameter, so that values from one part 
of a run session can be used later in the run session, or be passed back to the 
application that ran (called) the test.

For example, suppose you are testing a shopping application that calculates 
your purchases and automatically debits your account with the amount that 
you purchased. You want to test that the application correctly debits the 
purchase amount from the account each time that the action is run with a 
different list of items to purchase. You could output the total amount spent 
to an action parameter value, and then use that value later in your run 
session in the action that debits the account.



Chapter 25 • Outputting Values

674

For more information on action parameters in general, see “Using Action 
Parameters” on page 476.

Storing Values in the Run-time Data Table

The option to output a value to the run-time Data Table is especially useful 
with a data-driven test (or action) that runs several times. In each repetition, 
or iteration, QuickTest retrieves the current value and stores it in the 
appropriate row in the run-time Data Table. 

For example, suppose you are testing a flight reservation application and 
you design a test to create a new reservation and then view the reservation 
details. Every time you run the test, the application generates a unique order 
number for the new reservation. To view the reservation, the application 
requires the user to input the same order number. You do not know the 
order number before you run the test.

To solve this problem, you output a value to the Data Table for the unique 
order number generated when creating a new reservation. Then, in the View 
Reservation screen, you use the column containing the stored value to insert 
the output value into the order number input field.

When you run the test, QuickTest retrieves the unique order number 
generated by the site for the new reservation and enters this output value in 
the run-time Data Table. When the test reaches the order number input field 
required to view the reservation, QuickTest inserts the unique order number 
stored in the run-time Data Table into the order number field.

Storing Values in Environment Variables

When you output a value to an internal user-defined environment variable, 
you can use the environment variable input parameter at a later stage in the 
run session.

Note: You can output values only to internal user-defined environment 
variables and not to external or built-in environment variables, which are 
read-only.



Chapter 25 • Outputting Values

675

For example, suppose you are testing an application that prompts the user 
to input an account number on a Welcome page and then displays the user’s 
name. You can use a text output value to capture the value of the displayed 
name and store it in an environment variable. 

You can then retrieve the value in the environment variable to enter the 
user’s name in other places in the application. For example, in an Order 
Checkbook Web page, which for security reasons requires users to enter the 
name to appear on the checks, you could use the value to insert the user’s 
name into the Name edit box. 

Viewing and Editing Output Values
When you insert an output value step in your test, the Keyword View shows 
the step with Output displayed in the Operation column and CheckPoint 
displayed in the Value column, followed by the name assigned to the output 
value.

The output value statement is displayed in the Expert View with the 
following syntax:

Object.Output CheckPoint(Name)

You can view or edit the output value or its details in the relevant Output 
Value Properties dialog box, by right-clicking the step and choosing Output 
Value Properties. Alternatively, you can click the step in the Value column 
in the Keyword View and then click the Output Properties button.

For more information on the options available in the different Output Value 
Properties dialog boxes, see:

➤ “Defining Standard Output Values” on page 679

➤ “Defining Text and Text Area Output Values” on page 692

➤ “Outputting Table Content” on page 703

➤ “Outputting Table Properties” on page 709

➤ “Defining Database Output Values” on page 715

➤ “Understanding the XML Output Properties Dialog Box” on page 727



Chapter 25 • Outputting Values

676

Outputting Property Values

You can use standard output values to output the property values of most 
objects. You can also use standard output values to output the contents of 
table cells.

You can create standard output values while recording or editing your test.

To create standard output values while recording:

 1 Select Insert > Output Value > Standard Output Value. Alternatively, you can 
click the arrow beside the Insert Checkpoint or Output Value button in the 
toolbar and select Standard Output Value. The pointer changes into a 
pointing hand. For more information on using the pointing hand feature, 
see “Tips for Using the Pointing Hand” on page 677.

 2 In your application, click the object for which you want to specify an output 
value. If the location you clicked is associated with more than one object, 
the Object Selection – Output Value Properties dialog box opens.

 3 In the Object Selection dialog box, select the object for which you want to 
specify an output value, and click OK. The Output Value Properties dialog 
box opens for the selected object. If you select a Table item, the Table 
Output Value Properties dialog box opens.



Chapter 25 • Outputting Values

677

 4 Specify the property values to output and their settings. For more 
information, see “Defining Standard Output Values” on page 679. If you 
selected a Table item, see “Outputting Table Content” on page 703 and 
“Outputting Table Properties” on page 709.

 5 When you finish defining the output value details, click OK. QuickTest 
inserts an output value step in your test.

Tips for Using the Pointing Hand

➤ You can hold the left CTRL key to change the pointing hand to a standard 
pointer. You can then change the window focus or perform operations in 
QuickTest or in your application, such as right-clicking, using the scroll bars, 
or moving the pointer over an object to display a context menu.

➤ If the window containing the object you want to select is partially hidden 
by another window, hold the pointing hand over the partially hidden 
window for a few seconds until it comes to the foreground. Then point to 
and click the required object. You can configure the length of time required 
to bring a window into the foreground using the General pane of the 
Options dialog box. 

➤ If the window containing the object you want to select is fully hidden by 
another window, or if a dialog box is hidden behind a window, press the left 
CTRL key and arrange the windows as needed.

➤ If the window containing the object you want to select is minimized, you 
can display it by holding the left CTRL key, right-clicking the application in 
the Windows task bar, and choosing Restore from the context menu.

➤ If the object you want to select can be displayed only by performing an 
event (such as right-clicking or moving the pointer over an object to display 
a context menu), hold the left CTRL key. The pointing hand temporarily 
turns into a standard pointer and you can perform the event. When the 
object you want to select is displayed, release the left CTRL key. The pointer 
becomes a pointing hand again.



Chapter 25 • Outputting Values

678

To create standard output values while editing your test:

 1 Make sure the Active Screen button is selected.

 2 Click a step whose Active Screen contains the object for which you want to 
specify an output value. The Active Screen displays the captured bitmap or 
HTML source corresponding to the highlighted step.

For Windows-based applications, make sure that the Active Screen contains 
property data for the object for which you want to specify an output value. 
For more information, see “Setting Active Screen Options” on page 1240.

 3 In the Active Screen, right-click the object for which you want to specify an 
output value and select Insert Output Value. Alternatively, you can 
right-click the step in your test and select Insert Output Value.

 4 If the location you clicked is associated with more than one object, the 
Object Selection – Output Value Properties dialog box opens.

 5 Select the object for which you want to specify an output value, and click 
OK. The Output Value Properties dialog box opens for the selected object. If 
you select a Table item, the Table Output Value Properties dialog box opens.

 6 Specify the property values to output and their settings. For more 
information, see “Defining Standard Output Values” on page 679. If you 
selected a Table item, see “Outputting Table Content” on page 703 and 
“Outputting Table Properties” on page 709.

 7 When you finish defining the output value details, click OK. QuickTest 
inserts an output value step in your test.



Chapter 25 • Outputting Values

679

Defining Standard Output Values
The Output Value Properties dialog box enables you to choose which 
property values to output and to define the settings for each value that you 
select. 

 

Note: If you insert an output value on a Web page, the Page Output Value 
Properties dialog box opens. This dialog box is identical to the Output Value 
Properties dialog box, except that it contains two additional option areas, 
HTML verification and All objects in page. These options are relevant only 
for checkpoints and are disabled when defining output values.

You can select a number of properties to output for the same object and 
define the output settings for each property value before closing the dialog 
box. When the output value step is reached during the run session, 
QuickTest retrieves all of the specified property values.



Chapter 25 • Outputting Values

680

Identifying the Output Value

The top part of the dialog box displays information on the output value:

Item Description

Name The name that QuickTest assigns to the output value. By 
default, the output value name is the name of the test 
object for which you are performing the output value step. 
You can specify a different name for the output value or 
accept the default name.

If you rename the output value, make sure that the name:

➤ is unique

➤ does not begin or end with a space

➤ does not contain " (double quotation mark)

➤ does not contain the following character combinations: 
:=
@@

Class The type of test object. In this example, the WebList class 
indicates it is a list object in a Web application.

Find in Repository 
button 

(Located to the right 
of the Name box)

Displays the output value in its repository. 

Note: This option is not available when creating a new 
output value. It is available only when editing an existing 
output value.



Chapter 25 • Outputting Values

681

Selecting the Property Values to Output

The upper part of the dialog box contains a pane that lists the properties of 
the selected object, with their values and types. This pane contains the 
following items:

Pane Element Description

Check box To specify a property to output, select the corresponding 
check box. You can select more than one property for 
the object and specify the output options for each 
property value you select.

Type The  icon indicates that the value of the property is 
currently a constant.

The  icon indicates that the value of the property is 
currently stored in a test or action parameter.

The  icon indicates that the value of the property is 
currently stored in the run-time Data Table.

The  icon indicates that the value of the property is 
currently stored in an environment variable.

Property The name of the property.

Value The current value of the property. For more information, 
see “Specifying the Output Settings for a Property Value” 
on page 682.



Chapter 25 • Outputting Values

682

Specifying the Output Settings for a Property Value

When you select a check box for a property, the property details are 
highlighted and the current output definition for the selected property 
value is displayed in the Configure value area.

When a property value is first selected for output, the default output 
definition for the value is displayed in the Configure value area. For more 
information on default output definitions, see “Understanding Default 
Output Definitions” on page 683.

When you select a property value to output, you can:

➤ Change the output type and/or settings for the selected value by clicking the 
Modify button. The Output Options dialog box opens and displays the 
current output type and settings for the value. For more information, see 
“Specifying the Output Type and Settings” on page 683.

➤ Accept the displayed output definition by selecting another property value 
or by clicking OK.

Specifying the Location for the Output Value Step

If the Insert statement area is displayed at the bottom of the dialog box, you 
can specify where the new output value step should be inserted in your test. 
For more information, see “Selecting the Location for the Output Value 
Step” on page 687.



Chapter 25 • Outputting Values

683

Specifying the Output Type and Settings

The output type and settings that you define for each value determine 
where it is stored and how it can be used during the run session. When the 
output value step is reached, QuickTest retrieves each value selected for 
output and stores it in the specified location for use later in the run session.  

When you create a new output value step, QuickTest assigns a default 
definition to each value selected for output. For more information, see 
“Understanding Default Output Definitions” on page 683.

You can change the current output definition for the selected value by 
selecting a different output type and/or changing the output settings in the 
Output Value Properties dialog box. 

Understanding Default Output Definitions
When you initially select a value for output, QuickTest generates a default 
output definition for the value.

When you output a value for a step in a test action:

➤ If at least one output parameter is defined in the action, the default output 
type is Test/action parameter and the default output name is the first 
output parameter displayed in the Action Properties dialog box. 

➤ If no output parameters are defined in the action, the default output type is 
Data Table and QuickTest creates a new Data Table output name based on 
the selected value. 

The output value is created in the Global sheet of the Data Table. For more 
information on creating output parameters for actions, see “Removing 
Actions from a Test” on page 460.

For more information on Data Table sheets, see Chapter 42, “Working with 
Data Tables.”



Chapter 25 • Outputting Values

684

Outputting a Value to an Action Parameter
You can output a value to an action parameter, so that the values can be 
used later in the run session, or the values can be passed back to the external 
application that ran (called) the test. You can only output a value to an 
action parameter if the parameter has been defined as an output parameter 
for the calling action. You open the Output Options dialog box by clicking 
the Modify button in any Output Value Properties dialog box.

When Test/action parameter is selected as the output type, the Output 
Options dialog box enables you to select the parameter in which to store the 
selected value for the duration of the run session.

Tip: When you open the Output Options dialog box, QuickTest may display 
Test/action parameter as the default output type. This occurs if at least one 
output parameter is defined in the action.

The Parameter box specifies the name of the parameter in which to store 
the output value. The read-only list of available parameters contains the 
names and full descriptions of the currently defined output parameters for 
the action. You can resize the display, as needed, and, if the list of 
parameters is long, you can scroll through the list. 



Chapter 25 • Outputting Values

685

Outputting a Value to the Data Table
When Data Table is selected as the output type, the Output Options dialog 
box enables you to specify where to store the selected value within the 
run-time Data Table. You open the Output Options dialog box by clicking 
the Modify button in any Output Value Properties dialog box.

Tip: When you open the Output Options dialog box, QuickTest may display 
Data Table as the default output type. For more information, see 
“Understanding Default Output Definitions” on page 683.

The following options are available when outputting a value to the Data 
Table:

➤ Name. Specifies the name of the column in the Data Table in which to store 
the value. QuickTest suggests a default name for the output. You can select 
an existing output name from the list, or create a new output name by using 
the default output name or entering a valid descriptive name. 

You can define a new name containing letters, numbers, periods, and 
underscores. The first character of the output name must be a letter or an 
underscore. The output name must be unique in the Data Table sheet.



Chapter 25 • Outputting Values

686

➤ Location in Data Table. When outputting values for a test, specifies whether 
to add the Data Table column name in the global or current action sheet in 
the Data Table. For more information on the use of data in the global and 
current action sheets, see “Using Global and Action Data Sheets” on 
page 429. For more information on actions, see Chapter 15, “Working with 
Actions” and Chapter 16, “Working with Advanced Action Features.”

Outputting a Value to an Environment Variable
When you select Environment as the output type, the Output Options 
dialog box enables you to specify the internal user-defined environment 
variable in which to store the selected value for the duration of the run 
session. You open the Output Options dialog box by clicking the Modify 
button in any Output Value Properties dialog box.

The following options are available when outputting a value to an 
Environment variable:

➤ Name. Specifies the name of the internal user-defined environment variable 
in which to store the value. The list contains all currently defined internal 
user-defined environment variables with the corresponding type. You can 
select an existing variable from the list, or you can create a new internal 
environment variable by modifying the displayed name or by entering a 
new, descriptive name.



Chapter 25 • Outputting Values

687

Note: If you edit the name displayed in the Name box for an existing 
variable, you create a new internal user-defined environment variable. The 
original environment variable is not modified.

Alternatively, you can output the value to an existing environment variable. 
If you select an existing variable from the list, QuickTest prompts you to 
choose whether to overwrite its current value with the new value when the 
output value step runs. 

If you choose not to overwrite the current value of the selected variable, a 
new environment variable is created with the original variable name and an 
identifying suffix.

➤ Type. Displays the environment variable type. Since it is not possible to 
output values to external or built-in environment variables, the type is 
always User-defined - internal. 

For more information on environment variables, see “Using Environment 
Variable Parameters” on page 645.

Selecting the Location for the Output Value Step
When you create output values while editing a test, the Insert statement 
area is displayed at the bottom of the dialog box. 

By default, QuickTest inserts the new output value step before the current 
step (the step you selected when you chose the Output Value option). You 
can instruct QuickTest to insert the new output value step after the current 
step, by selecting the After current step option.

Note: This option is not available while recording. QuickTest automatically 
inserts the new output value step after the previously recorded step. It is also 
not available when modifying an existing output value step.



Chapter 25 • Outputting Values

688

Outputting Text Values

You can create a text output value from a text string displayed in an 
application. You can define the output value as part of the displayed text, 
and specify the text before and/or after the output text. 

You can also create a text output value from defined text areas. For more 
information, see “Creating Text Area Output Values” on page 690.

Note: Before you create a text / text area output value, make sure you 
configure the required capture settings in the General > Text Recognition 
pane (Tools > Options > Text Recognition node). For more information, see 
“The Options Dialog Box: General > Text Recognition Pane” on page 742 
and “About Working with Text Recognition for Windows-Based Objects” on 
page 742.

Creating Text Output Values
You can create a text output value while recording or editing your test.

Note: Before you create a text output value, make sure you configure the 
required capture settings in the General > Text Recognition pane (Tools > 
Options > Text Recognition node). For more information, see “The Options 
Dialog Box: General > Text Recognition Pane” on page 742 and “About 
Working with Text Recognition for Windows-Based Objects” on page 742.

To create a text output value while recording:

 1 Highlight or display the text string you want to use for an output value.

 2 Select Insert > Output Value > Text Output Value. The pointer changes into a 
pointing hand. For more information on using the pointing hand feature, 
see “Tips for Using the Pointing Hand” on page 689.

 3 In your application, click the text string for which you want to specify a text 
output value. The Text Output Value Properties dialog box opens.



Chapter 25 • Outputting Values

689

 4 Specify the settings for the output value. For more information, see 
“Defining Text and Text Area Output Values” on page 692.

 5 When you finish defining the text output value details, click OK. QuickTest 
inserts an output value step in your test.

To create a text output value when editing your test:

 1 Make sure the Active Screen is displayed.

 2 Click a step in your test where you want to create an output value. The 
Active Screen displays the screen corresponding to the highlighted step.

 3 In the Active Screen, highlight or display the text string you want to specify 
as an output value.

 4 Right-click and select Insert Text Output. The Text Output Value Properties 
dialog box opens.

 5 Specify the settings for the output value. For more information, see 
“Defining Text and Text Area Output Values” on page 692.

 6 When you finish defining the output value details, click OK. QuickTest 
inserts an output value step in your test.

Tips for Using the Pointing Hand

➤ You can hold the left CTRL key to change the pointing hand to a standard 
pointer. You can then change the window focus or perform operations in 
QuickTest or in your application, such as right-clicking, using the scroll bars, 
or moving the pointer over an object to display a context menu.

➤ If the window containing the object you want to select is partially hidden 
by another window, hold the pointing hand over the partially hidden 
window for a few seconds until it comes to the foreground. Then point to 
and click the required object. You can configure the length of time required 
to bring a window into the foreground using the General pane of the 
Options dialog box. 

➤ If the window containing the object you want to select is fully hidden by 
another window, or if a dialog box is hidden behind a window, press the left 
CTRL key and arrange the windows as needed.



Chapter 25 • Outputting Values

690

➤ If the window containing the object you want to select is minimized, you 
can display it by holding the left CTRL key, right-clicking the application in 
the Windows task bar, and choosing Restore from the context menu.

➤ If the object you want to select can be displayed only by performing an 
event (such as right-clicking or moving the pointer over an object to display 
a context menu), hold the left CTRL key. The pointing hand temporarily 
turns into a standard pointer and you can perform the event. When the 
object you want to select is displayed, release the left CTRL key. The pointer 
becomes a pointing hand again.

Creating Text Area Output Values
You can create a text area output value from a text string displayed in a 
defined area of a screen in a Windows-based application. You can define the 
output value as part of the displayed text, and you can specify the text 
before and/or after the output text. You can create a text area output value 
only while recording on Windows-based applications.

When you use text-area selection to capture text displayed in a Windows 
application, it is often advisable to define a text area larger than the actual 
text you want QuickTest to use as an output value. When QuickTest runs 
your test, it outputs the selected text, within the defined area, according to 
the settings you configured.

Because text may change its position during test runs, you must make sure 
that the area defined is large enough so that the output text is always within 
its boundaries. For more information, see “About Working with Text 
Recognition for Windows-Based Objects” on page 742.

Note: Before you create a text area output value, make sure you configure 
the required capture settings in the General > Text Recognition pane 
(Tools > Options > Text Recognition node). For more information, see “The 
Options Dialog Box: General > Text Recognition Pane” on page 742.



Chapter 25 • Outputting Values

691

To create a text area output value:

 1 While recording, select Insert > Output Value > Text Area Output Value. The 
QuickTest window is hidden, and the mouse pointer turns into a crosshairs 
pointer. 

 2 Define the area containing the text you want QuickTest to use as an output 
value by clicking and dragging the crosshairs pointer. Release the mouse 
button after outlining the required area. 

Tip: Hold down the left mouse button and use the arrow keys to make 
precise adjustments to the defined area.

If the area you defined is associated with more than one object, the Object 
Selection – Text Area Output Properties dialog box opens.

 3 Select the object for which you are creating the output value. The Text Area 
Output Value Properties dialog box opens.

 4 Specify the settings for the output value. For more information, see 
“Defining Text and Text Area Output Values” on page 692.

 5 When you have finished defining the output value details, click OK. 
QuickTest inserts an output value step in your test.



Chapter 25 • Outputting Values

692

Defining Text and Text Area Output Values
You can specify a text string as an output value. You can also specify the text 
that is displayed before and after the output value text string. This is helpful 
when the text string you want to specify as an output value is displayed 
several times in the defined screen area or when the text could change in a 
predictable way during a run session.

The Text Output Value Properties and Text Area Output Value Properties 
dialog boxes enables you to define the output value settings for the selected 
text string, and to define the options for the text displayed before and after 
the output value. 

The top of the Text Output Value Properties dialog box displays the name of 
the output value and the class of the test object on which the output value 
check is being performed. You can modify the output value name, if 
required. For more information, see “Identifying the Output Value” on 
page 680.

Text After value

Text Before 
value

Output text



Chapter 25 • Outputting Values

693

The Output Value Summary pane at the top of the dialog box describes the 
text string for the output value. The text string is the string displayed 
between the Text Before value and the Text After value. This pane also 
shows the output name assigned to the text string. QuickTest automatically 
displays the text output in red, and the text before and after the text output 
in blue. For example, in the dialog box displayed above, the output value is 
the text displayed between Economy class (the Text Before value) and First 
class (the Text After value). 

For a text area output value, the output value string contains all the text in 
the selected area. Although the Text Output Value Properties and Text Area 
Output Value Properties dialog boxes are identical, when you create a text 
area output value, the Text Before and Text After values are not captured.

When you create a text or text area output value, you can specify the 
captured text as an output value. You can also specify options for Text 
Before and Text After values. For example, you can define these values as 
parameters. If the specified text is displayed more than once in the selected 
object or area, you can specify the exact occurrence that relates to the 
output value. If you are editing your test, you can also specify the location 
for the output value step.



Chapter 25 • Outputting Values

694

Identifying the Output Value

The top part of the Table Output Value Properties dialog box contains the 
following options:

Specifying the Captured Text as an Output Value

By default, Output Text is selected in the list box in the middle of the dialog 
box. The area below the list box displays the current output value settings 
for the selected text.

When you create a new output value, the default output definition is 
displayed for the value. For more information, see “Understanding Default 
Output Definitions” on page 683. 

You can accept the displayed output definition, or you can click Modify to 
specify the output settings for the selected text. For more information, see 
“Specifying the Output Type and Settings” on page 683.

Name The name that QuickTest assigns to the output value. By default, 
the output value name is the name of the test object for which 
you are performing the output value step. You can specify a 
different name for the output value or accept the default name.

If you rename the output value, make sure that the name:

➤ is unique

➤ does not begin or end with a space

➤ does not contain " (double quotation mark)

➤ does not contain the following character combinations: 
:=
@@

Class Specifies the type of object (read-only). This may be a table-type 
object or a list view-type object. 

Find in 
Repository 
button 

Displays the output value in its repository. 

Note: This option is not available when creating a new output 
value. It is available only when editing an existing output value.



Chapter 25 • Outputting Values

695

Specifying Options for the Text Before/Text After Values

When you select Text Before or Text After from the list box, you can define 
the options for the text displayed before or after the output value string.  

Option Description

Use the text before / Use 
the text after

When selected, the current Text Before / Text After 
value is displayed in the Constant box.

When cleared, QuickTest retrieves the value of the 
first occurrence of the defined output string, 
regardless of the text displayed before it (if you 
chose Text Before) or after it (if you chose Text 
After). 

Note: When this check box is cleared, the options 
below it are not available. 



Chapter 25 • Outputting Values

696

Text to capture is 
displayed before 
occurrence / 

Text to capture is 
displayed after occurrence

Specifies the exact occurrence of the value specified 
in the Constant or Parameter box, if the value is 
displayed more than once in the object or area.

If you accept the default text that QuickTest 
recommends, the number in this box is correct. For 
example, if the selected output string is displayed 
before the first occurrence of the string First (as 
shown in the dialog box above). When Text After is 
selected, the number 1 is displayed in the Text to 
capture is displayed before occurrence box.

If you modify the recommended value, you must 
confirm that the occurrence number is accurate. If 
you choose text that is not unique in the defined 
object or area, change the occurrence number 
appropriately. For example, if you want to output 
the text displayed after the third occurrence of the 
string Mercury Tours, select Text Before and enter 3 
in the Text to capture is displayed after occurrence 
box.

Note: QuickTest starts counting occurrences of the 
specified Text After value from the beginning of the 
text string you selected to output, and includes any 
occurrences within the output value string itself.

Option Description



Chapter 25 • Outputting Values

697

Specifying the Location for the Output Value Step

If the Insert statement area is displayed at the bottom of the dialog box, you 
can specify where the new output value step should be inserted in your test. 
For more information, see “Selecting the Location for the Output Value 
Step” on page 687.

Constant Sets the Text Before or Text After value as a 
constant. A constant is a value that is defined 
directly within the test. It remains set for the 
duration of the test.

When you are creating a text output value with Text 
Before selected, the Constant box displays the 
captured Text Before value. When you are creating 
a text output value with Text After selected, the 
Constant box displays the captured Text After value. 
You can change the value by typing in the text box. 

When you are creating a text area output value, the 
Text Before and Text After values are not captured. 
You can enter the text by typing or copying it into 
the Constant box.

Tip: It is recommended to specify a text string that 
is unique within the object or area whenever 
possible, to ensure that the occurrence number is 1.

Parameter Sets the Text Before or Text After value as a 
parameter. For more information on specifying 
parameter values, see “Configuring a Parameter 
Value” on page 758.

Option Description



Chapter 25 • Outputting Values

698

Outputting Table Values

You can output the values of table cells and table properties while recording 
or editing your test. You specify the values to output using the Table Output 
Value Properties dialog box.

To output table values while recording:

 1 Select Insert > Output Value > Standard Output Value or select Standard 
Output Value from the Insert Checkpoint or Output Value button. The 
QuickTest window is hidden, and the pointer changes into a pointing hand. 
For more information on using the pointing hand feature, see “Tips for 
Using the Pointing Hand While Recording” on page 702.

 2 Click the table from which you want to output cell values. The Object 
Selection - Output Value Properties dialog box opens.

 3 Select a table item from the displayed object tree and click OK. If the Table 
Output Value Properties dialog box opens, skip to step 4.

Otherwise, for certain objects in certain environments, such as WinList View 
objects, the Define Row Range dialog box opens.



Chapter 25 • Outputting Values

699

Select the range of rows you want to include in your output value. You can 
include:

➤ All rows. Includes all of the rows in the table. Note that capturing all of 
the data for large table or list view objects may take some time.

➤ Visible Rows (from row X to row Y). Includes only the rows visible on the 
screen. Note that this option may not be available for some 
environments or object types.

➤ Another range -- from row _ to row _. You can specify any row range in 
the table.

Click OK. The Define Row Range dialog box closes, and the Table Output 
Value Properties dialog box displays the rows you specified (above the grid 
area).

 4 In the Table Output Value Properties dialog box, specify the settings for the 
output value. For information on specifying the table content to output, see 
“Outputting Table Content” on page 703. For information on specifying the 
object properties to output, see “Outputting Table Properties” on page 709.

Note: For some environments, the Table Output Value Properties dialog box 
contains two tabs: Table Content and Properties. For other environments, 
the Table Output Value Properties dialog box displays only the options 
available in the Table Content tab, but does not contain any tabs.

 5 Click OK to close the dialog box. An output value statement is added for the 
selected object in the Keyword View and Expert View.



Chapter 25 • Outputting Values

700

To add a table output value while editing:

 1 Depending on whether the object from which you want to output a value is 
already in a step, do one of the following:

➤ If you have already recorded a step on the object from which you want to 
output values, right-click the step and select Insert Output Value. 
Alternatively, select the step and select Insert > Output Value > Standard 
Output Value.

➤ If you have not recorded a step on the object from which you want to 
output values, make sure the Active Screen button is selected and the 
Active Screen is visible. Click a step in your test where you want to add 
an output value. The Active Screen displays the application screen 
corresponding to the highlighted step. Right-click the table in the Active 
Screen and select Insert Output Value. The Object Selection - Output 
Value Properties dialog box opens. Select a table item from the displayed 
object tree and click OK.

Note: In some environments, you must have the table open in your 
application to output a value from it.

 2 If the Table Output Value Properties dialog box opens, skip to step 3.

Otherwise, for certain objects in certain environments, the Define Row 
Range dialog box opens.



Chapter 25 • Outputting Values

701

Select the range of rows you want to include in your output value. You can 
include:

➤ All rows. Includes all of the rows in the table. Note that capturing all of 
the data for large table or list view objects may take some time.

➤ Visible Rows (from row X to row Y). Includes only the rows visible on the 
screen. Note that this option may not be available for some 
environments or object types.

➤ Another range -- from row X to row Y. You can specify any row range 
between 1 and the number of rows listed in the table.

Click OK. The Define Row Range dialog box closes, and the Table Output 
Value Properties dialog box displays the rows you specified (above the grid 
area).

 3 In the Table Output Value Properties dialog box, specify the settings for the 
output value. For information on specifying the table content to output, see 
“Outputting Table Content” on page 703. For information on specifying the 
object properties to output, see “Outputting Table Properties” on page 709.

Note: For some environments, the Table Output Value Properties dialog box 
contains two tabs: Table Content and Properties. For other environments, 
the Table Output Value Properties dialog box displays only the options 
available in the Table Content tab, but does not contain any tabs.

 4 Click OK to close the dialog box. An output value statement is added for the 
selected object.



Chapter 25 • Outputting Values

702

Tips for Using the Pointing Hand While Recording

➤ You can hold the left CTRL key to change the pointing hand to a standard 
pointer. You can then change the window focus or perform operations in 
QuickTest or in your application, such as right-clicking, using the scroll bars, 
or moving the pointer over an object to display a context menu.

➤ If the window containing the object you want to select is partially hidden 
by another window, hold the pointing hand over the partially hidden 
window for a few seconds until it comes to the foreground. Then point to 
and click the required object. You can configure the length of time required 
to bring a window into the foreground using the General pane of the 
Options dialog box. 

➤ If the window containing the object you want to select is fully hidden by 
another window, or if a dialog box is hidden behind a window, press the left 
CTRL key and arrange the windows as needed.

➤ If the window containing the object you want to select is minimized, you 
can display it by holding the left CTRL key, right-clicking the application in 
the Windows task bar, and choosing Restore from the context menu.

➤ If the object you want to select can be displayed only by performing an 
event (such as right-clicking or moving the pointer over an object to display 
a context menu), hold the left CTRL key. The pointing hand temporarily 
turns into a standard pointer and you can perform the event. When the 
object you want to select is displayed, release the left CTRL key. The pointer 
becomes a pointing hand again.



Chapter 25 • Outputting Values

703

Outputting Table Content
You can specify the table cells whose content you want to output. 
Depending on the environment, you do this either in the Table Content tab 
of the Table Output Value Properties dialog box—or directly in the Table 
Output Value Properties dialog box, if the dialog box does not contain any 
tabs.  



Chapter 25 • Outputting Values

704

Notes:

➤ Some of the options shown in this example are available only in certain 
environments and only for certain objects.

➤ For some environments, you can also specify object properties (using the 
Properties tab).

This section describes the general settings and options displayed in the Table 
Output Value Properties dialog box. Most of the options described in this 
section are available regardless of whether the Table Output Value Properties 
dialog box contains tabs.



Chapter 25 • Outputting Values

705

Identifying the Output Value

The top part of the Table Output Value Properties dialog box contains the 
following options:

Name The name that QuickTest assigns to the output value. By default, 
the output value name is the name of the test object for which 
you are performing the output value step. You can specify a 
different name for the output value or accept the default name.

If you rename the output value, make sure that the name:

➤ is unique

➤ does not begin or end with a space

➤ does not contain " (double quotation mark)

➤ does not contain the following character combinations: 
:=
@@

Class Specifies the type of object (read-only). This may be a table-type 
object or a list view-type object. 

Find in 
Repository 
button 

Displays the output value in its repository. 

Note: This option is not available when creating a new output 
value. It is available only when editing an existing output value.



Chapter 25 • Outputting Values

706

Tabs (If Available)

If the Table Output Value Properties dialog box contains tabs, each tab 
displays a check box. You can select one or both of these check boxes to 
specify the type of data to output. 

 

Note: These check boxes are displayed only if the Table Output Value 
Properties dialog box contains tabs. If the Table Output Value Properties 
dialog box does not contain tabs, QuickTest automatically outputs the 
values of the selected cells as defined in the dialog box.

Check Table 
Content 
check box

(Table Content tab) Selecting the Check Table Content check box 
instructs QuickTest to output the values of the selected cells in the 
table object. (Selected by default) 

Check 
Properties
check box

(Properties tab) Selecting the Check Properties check box instructs 
QuickTest to output the property values of the selected cells in the 
table object. (Cleared by default) 



Chapter 25 • Outputting Values

707

Choosing Cells for Output Values

The top part of the dialog box displays a grid representing the cells in the 
captured table. The column header names are captured from the table you 
selected for your output value step. You can output the values for one or 
more cells in the grid. 

Tip: You can change the column widths and row heights of the grid by 
dragging the column and row header dividers.

Some environments and objects support selecting a row range. This enables 
you to specify which rows are displayed in the grid area. If row range 
selection is supported, the row range you specify when creating the output 
value is displayed above the grid:

Clicking the Change button enables you to modify the row range. 
(Depending on the environment, your application may need to be open and 
the relevant table displayed to modify the row range.) For more 
information, see “Modifying a Table Output Value” on page 711.



Chapter 25 • Outputting Values

708

To choose a cell for a value to output:

Double-click the cell or select it and click the Add Output Value button 
(located above the grid, on the right). An output value icon is added to the 
cell. 

To remove a cell from an output value:

Double-click the cell again or select it and click the Remove Output Value 
button (located above the grid, on the right). The output value icon is 
removed from the cell. 

Specifying the Settings for the Output Value

When a value in a table cell is first selected for output, the default output 
definition for the value is displayed in the Configure value area. For more 
information on default output definitions, see “Understanding Default 
Output Definitions” on page 683. 

When you select a value in a table cell, you can:

➤ accept the displayed output definition by selecting another cell or by 
clicking OK.

➤ change the output type and/or settings for the selected value by clicking the 
Modify button. The Output Options dialog box opens and displays the 
current output type and settings for the value. For more information, see 
“Specifying the Output Type and Settings” on page 683.

Specifying the Location for the Output Value Step

If the Insert statement area is displayed at the bottom of the dialog box, you 
can specify where the new output value step should be inserted in your test. 
For more information, see “Selecting the Location for the Output Value 
Step” on page 687. 



Chapter 25 • Outputting Values

709

Outputting Table Properties
For certain environments, you can specify which object property values you 
want to output. By default, when you create a table output value on an 
object, QuickTest captures all the object’s properties, but does not select any 
properties to output. 

Note: For information on general table output value options, such as Name 
and Class, and on the options available in the Table Content tab, see 
“Outputting Table Content” on page 703.



Chapter 25 • Outputting Values

710

Selecting Properties to Output

When you create a table output value, the Properties pane displays the 
object’s default properties, including the properties, their values, and their 
types.

You instruct QuickTest to output specific properties by selecting the Check 
Properties check box. (This check box is cleared by default.)

The Properties pane for the object contains the following:

Check box To output a property, select the corresponding check box.

To remove a property from the output, clear the corresponding 
check box.

Type The  icon indicates that the value of the property is currently 
a constant.

The  icon indicates that the value of the property is currently 
a test or action parameter.

The  icon indicates that the value of the property is currently 
a Data Table parameter.

The  icon indicates that the value of the property is currently 
an environment variable parameter.

The  icon indicates that the value of the property is currently 
a random number parameter.

Property The name of the property.

Value The expected value of the property. For more information on 
modifying the value of a property, see “Setting Values in the 
Configure Value Area” on page 757.



Chapter 25 • Outputting Values

711

Modifying a Table Output Value
You can modify the table output value options, which specify where an 
output value is stored and how it can be used during the run session. You 
can also modify the number of rows for which QuickTest can output the 
values of specific table cells.

To modify the table output value options:

 1 In the Keyword View or Expert View, right-click the Output CheckPoint step 
for the table whose output options you want to modify and select Output 
Value Properties. Alternatively, select the step containing the Output 
CheckPoint and select Edit > Step Properties > Output Value Properties. The 
Table Output Value Properties dialog box opens.

 2 Perform one of the following:

➤ If the Table Output Value Properties dialog box does not contain tabs, 
click the Modify button. The Output Options dialog box opens.

➤ If the Table Output Value Properties dialog box contains tabs:

➤ To modify the output options for the table content, make sure the 
Table Content tab is displayed and click the Modify button. 

➤ To modify the output options for the object properties, select the 
Properties tab and click the Modify button.

The Output Options dialog box opens.  

 3 Modify the output value, as needed. For more information, see “Specifying 
the Output Type and Settings” on page 683.

 4 You can also rename the output value, if needed. For more information, see 
“Identifying the Output Value” on page 680.



Chapter 25 • Outputting Values

712

To modify the range or number of rows in an existing table output value:

 1 Open the application containing the table or list view object from which 
you want to output a value and display the object in the application.

 2 In the Keyword View or Expert View, right-click the Output CheckPoint step 
for the table whose row range you want to modify and select Output Value 
Properties. Alternatively, select the step containing the Output CheckPoint 
and select Edit > Step Properties > Output Value Properties. The Table 
Output Value Properties dialog box opens, displaying the currently selected 
row range. 

 3 In the Table Content tab, click the Change button at the top of the dialog 
box (above the grid area). The Modify Row Range dialog box opens.

 4 Select the range of rows you want to include in your output value step. You 
can include all the rows, only the visible rows, or another range that you 
specify.

Note: The Visible Rows option may not be available for some environments 
or object types.



Chapter 25 • Outputting Values

713

 5 Click OK. The Modify Row Range dialog box closes, and the Table Output 
Value Properties dialog box displays the rows you specified in the Modify 
Row Range dialog box. 

➤ If your modified row range includes new rows, you can select the cells 
from which you want to output values from the newly selected rows. The 
cells whose values you select will be outputted during the run session.

➤ If your modified row range includes some or all of the rows that you 
specified previously, the cells whose values you selected to output will be 
outputted during the run session. 

➤ If your modified row range excludes some or all of the rows that were 
selected previously, the values of any previously selected cells in those 
rows will not be outputted during the run session.

Note: You can output values only from cells that are included in the 
specified row range.

Outputting Database Values

You can create database output values by defining a query to retrieve data 
from the database and selecting the values you want to output from the 
query result set. You can then specify the output settings for the selected 
values. During the run session, QuickTest captures the current data from the 
database and outputs the values according to the specified settings.

You can create database output values while recording or editing your test. 



Chapter 25 • Outputting Values

714

To create database output values:

 1 Select Insert > Output Value > Database Output Value. The Database Query 
Wizard opens.

 2 Use the wizard to define a query to retrieve the data that you want to 
output. Follow the instructions for creating a database checkpoint in 
“Creating a Check on a Database” on page 576.

After you finish defining your query, the Database Output Value Properties 
dialog box opens.

 3 Specify the values to output and their settings. For more information, see 
“Defining Database Output Values” on page 715.

 4 When you finish defining the output value details, click OK. QuickTest 
inserts an output value step in your test.



Chapter 25 • Outputting Values

715

Defining Database Output Values
The Database Output Value Properties dialog box enables you to select the 
database cells for the values you want to output. You can define the output 
settings for each value that you select. 



Chapter 25 • Outputting Values

716

Identifying the Database Output Value

The top part of the Database Output Value Properties dialog box contains 
the following options:

Choosing Cells for Output Values

The top part of the dialog box displays a grid representing the cells in the 
captured database query results set. You can output the values for one or 
more cells in the grid.

Tip: You can change the width of the columns and the height of the rows in 
the grid by dragging the boundaries of the column and row headers.

Name The name that QuickTest assigns to the output value. By default, 
the output value name is the name of the test object for which 
you are performing the output value step. You can specify a 
different name for the output value or accept the default name.

If you rename the output value, make sure that the name:

➤ is unique

➤ does not begin or end with a space

➤ does not contain " (double quotation mark)

➤ does not contain the following character combinations: 
:=
@@

Class Specifies the type of test object (read-only) for which you are 
performing the output value step. 

Find in 
Repository 
button 

Displays the output value in its repository. 

Note: This option is not available when creating a new output 
value. It is available only when editing an existing output value.



Chapter 25 • Outputting Values

717

To choose a cell for a value to output:

Double-click the cell or select it and click the Add Output Value button 
(located above the grid, on the right). An output value icon is added to the 
cell. 

To remove a cell from an output value:

Double-click the cell again or select it and click the Remove Output Value 
button (located above the grid, on the right). The output value icon is 
removed from the cell. 

Specifying the Settings for the Output Value

When a value in a database cell is first selected for output, the default output 
definition for the value is displayed in the Configure value area. For more 
information on default output definitions, see “Understanding Default 
Output Definitions” on page 683. 

When you select a value in a database cell, you can:

➤ accept the displayed output definition by selecting another cell or by 
clicking OK.

➤ change the output type and/or settings for the selected value by clicking the 
Modify button. The Output Options dialog box opens and displays the 
current output type and settings for the value. For more information, see 
“Specifying the Output Type and Settings” on page 683.

Specifying the Location for the Output Value Step

If the Insert statement area is displayed at the bottom of the dialog box, you 
can specify where the new output value step should be inserted in your test. 
For more information, see “Selecting the Location for the Output Value 
Step” on page 687.



Chapter 25 • Outputting Values

718

Outputting XML Values

You can create XML output value steps from any XML document contained 
in an XML Web page or frame, directly from an XML file, or from test 
objects that support XML. You can output element and/or attribute values 
in an XML output value step. 

You can insert XML Web page or frame output value steps only while you 
are recording. You can create XML output value steps from an XML file or 
from a test object while recording or editing your test.

Note: XML Output Values are compatible with namespace standards and a 
change in namespace between nodes stored in the Output Properties dialog 
box XML tree and the actual values will result in a failed output value step. 

For more information on XML standards, see http://www.w3.org/XML/ 

For more information on namespace standards, see http://www.w3.org/TR/
1999/REC-xml-names-19990114/ 

To create XML output values from an XML Web page or frame:

 1 While recording, select Insert > Output Value > XML Output Value (From 
Application), or click the Insert Checkpoint or Output Value button and 
select XML Output Value (From Application). The pointer changes into a 
pointing hand. For more information on using the pointing hand, see “Tips 
for Using the Pointing Hand” on page 726.

http://www.w3.org/XML/
http://www.w3.org/TR/1999/REC-xml-names-19990114/
http://www.w3.org/TR/1999/REC-xml-names-19990114/


Chapter 25 • Outputting Values

719

Note: The XML Output Value (From Application) option is available only 
when the Web Add-in is installed and loaded. For more information on 
loading add-ins, see the section on working with QuickTest add-ins in the 
HP QuickTest Professional Add-ins Guide.

You can also insert a Web page or frame output value step using the XML 
(From Resource) option by selecting an existing WebXML test object. For 
more information, see creating XML output values from a test object that 
supports XML on page 723.

 2 Click the XML object for which you want to specify an output value. If the 
location you clicked is associated with more than one object, the Object 
Selection - XML Output Value Properties dialog box opens. 

 3 Select the XML item you want to specify for the output value step. 



Chapter 25 • Outputting Values

720

 4 Click OK. The XML Output Properties dialog box opens.  

The XML Output Properties dialog box displays the element hierarchy and 
values (character data) of the selected XML document.

In the Name box, either accept the name that QuickTest assigns to the 
output value step or specify another name for it. By default, the output 
value name is the name of the test object on which the output value step is 
being performed. 

If you rename it, make sure that the name:

➤ is unique

➤ does not begin or end with a space

➤ does not contain " (double quotation mark)

➤ does not contain the following character combinations:
:= 
@@ 

 5 Select the items to output. For more information, see “Understanding the 
XML Output Properties Dialog Box” on page 727.

 6 When you finish defining the output value details, click OK. QuickTest 
inserts an output value step in your test.



Chapter 25 • Outputting Values

721

To create an XML output value step from an XML file: 

 1 Select Insert > Output Value > XML Output Value (From Resource), or click 
the Insert Checkpoint or Output Value button and select XML Output Value 
(From Resource). The XML Source Selection - Output Value Properties dialog 
box opens. 

Tip: You can also insert an XML File output value step by selecting an 
existing XMLFile test object. For more information, see creating XML output 
values from a test object that supports XML on page 723.

 2 Select Create output value step from XML file. Enter the Internet address or 
file path of the XML file. 

Alternatively, click the browse button to open the Open XML File dialog 
box. In the sidebar, select the location of the XML file, and then navigate to 
the XML file for which you want to create an output value. You can specify 
an XML file either from your file system or from Quality Center. Select the 
file and click Open. The file path and name are entered in the box.



Chapter 25 • Outputting Values

722

Note: You can enter a relative path and QuickTest will search for the XML 
file in the folders listed in the Folders pane of the Options dialog box. Once 
QuickTest locates the file, it saves it as an absolute path and uses the 
absolute path during the test run. For more information, see “Setting Folder 
Testing Options” on page 1237.

 3 Click OK. The XML Output Properties dialog box opens. 

The XML Output Properties dialog box displays the element hierarchy and 
values (character data) of the selected XML document.



Chapter 25 • Outputting Values

723

In the Name box, either accept the name that QuickTest assigns to the 
output value step or specify another name for it. By default, the output 
value name is the name of the test object on which the output value step is 
being performed. 

If you rename it, make sure that the name:

➤ is unique

➤ does not begin or end with a space

➤ does not contain " (double quotation mark)

➤ does not contain the following character combinations:
:= 
@@ 

 4 Select the items to output and the location for the output value step. For 
more information, see “Understanding the XML Output Properties Dialog 
Box” on page 727.

 5 When you finish defining the output value details, click OK. QuickTest 
inserts an output value step in your test.

To create an XML output value step from a test object that supports XML:

 1 Select Insert > Output Value > XML Output Value (From Resource), or click 
the Insert Checkpoint or Output Value button and select XML Output Value 
(From Resource). The XML Source Selection - Output Value Properties dialog 
box opens. 



Chapter 25 • Outputting Values

724

 2 Select Create output value step for test object and select the test object from 
which you want to output values. 

To select an object that is not displayed in the list, click Object from 
Repository. Then select an XML test object from the object repository on 
which to create a new output value step. The selected object must support 
XML. 

You can select an existing WebXML or XMLFile test object type or you can 
select a WebService test object. 

Note: Selecting a WebXML or XMLFile test object is identical to using the 
XML Output Value (From Application) or XML Output Value (From 
Resource) options, but may be faster than browsing to these objects and can 
be inserted while recording or editing. However, to use this option, the XML 
source must be available when you select the test object (the Web page must 
be open or the file must exist in the same location as when the test object 
was defined).

 3 If you select a WebService test object, then the Method name box is enabled. 
Select the Web service operation whose return values you want to check. 

Notes:

➤ The Method name box is available only if the Web Services Add-in is 
installed and loaded. The Method name box is enabled only if you select 
a WebService test object.

➤ XML output value steps on Web service operations retrieve the values 
returned from the last Web service operation performed on the test 
object. If a different Web service operation step is performed prior to the 
output value step, then the output value step will fail.



Chapter 25 • Outputting Values

725

 4 Click OK. The XML Output Properties dialog box opens. 

The XML Output Properties dialog box displays the element hierarchy in an 
XML tree, and the attributes and values (if any) of the selected XML output. 

When you create an XML output value for an operation return value, only a 
generic XML tree is created and shown in the XML Output Properties dialog 
box. Before you can select which element or attribute values you want to 
output, you must populate the XML tree with the actual elements, 
attributes, and values. For more information, see “Updating the XML 
Hierarchy for XML Test Object Operation Output Value Steps (For 
WebService Test Objects Only)” on page 732.



Chapter 25 • Outputting Values

726

 5 In the Name box, either accept the name that QuickTest assigns to the 
output value step or specify another name for it. By default, the output 
value name is the name of the test object on which the output value step is 
being performed.

If you rename it, make sure that the name:

➤ is unique

➤ does not begin or end with a space

➤ does not contain " (double quotation mark)

➤ does not contain the following character combinations:
:= 
@@ 

Select the items to output and the location for the output value step. For 
more information, see “Understanding the XML Output Properties Dialog 
Box” on page 727.

 6 When you finish defining the output value details, click OK. QuickTest 
inserts an output value step in your test.

Tips for Using the Pointing Hand

➤ You can hold the left CTRL key to change the pointing hand to a standard 
pointer. You can then change the window focus or perform operations in 
QuickTest or in your application, such as right-clicking, using the scroll bars, 
or moving the pointer over an object to display a context menu.

➤ If the window containing the object you want to select is partially hidden 
by another window, hold the pointing hand over the partially hidden 
window for a few seconds until it comes to the foreground. Then point to 
and click the required object. You can configure the length of time required 
to bring a window into the foreground using the General pane of the 
Options dialog box. 

➤ If the window containing the object you want to select is fully hidden by 
another window, or if a dialog box is hidden behind a window, press the left 
CTRL key and arrange the windows as needed.

➤ If the window containing the object you want to select is minimized, you 
can display it by holding the left CTRL key, right-clicking the application in 
the Windows task bar, and choosing Restore from the context menu.



Chapter 25 • Outputting Values

727

➤ If the object you want to select can be displayed only by performing an 
event (such as right-clicking or moving the pointer over an object to display 
a context menu), hold the left CTRL key. The pointing hand temporarily 
turns into a standard pointer and you can perform the event. When the 
object you want to select is displayed, release the left CTRL key. The pointer 
becomes a pointing hand again.

Understanding the XML Output Properties Dialog Box
The XML Output Properties dialog box enables you to choose which 
element and/or attribute values to output and to define the output settings 
for each value that you select. 



Chapter 25 • Outputting Values

728

Identifying the Object

The top part of the XML Output Properties dialog box displays information 
on the test object for which you are creating an output value step:

Item Description

Name The name that QuickTest assigns to the output value step. 
By default, the output value name is the name of the test 
object for which you are performing the output value step. 
You can specify a different name for the output value or 
accept the default name.

If you rename it, make sure that the name:

➤ is unique

➤ does not begin or end with a space

➤ does not contain " (double quotation mark)

➤ does not contain the following character combinations: 
:=
@@ 

Class The test object class on which you are creating the output 
value step. This can be: XMLFile (for files), WebXML (for 
Web pages or frames) or WebService (for a Web service).

Find in Repository 
button 

Displays the output value in its repository. 

Note: This option is not available when creating a new 
output value. It is available only when editing an existing 
output value.



Chapter 25 • Outputting Values

729

Modifying the XML Tree

The following commands are available according to the node you select in 
the tree:

Command Icon Description

Add Child Adds a child node below the selected node in the tree. 

Insert Sibling Adds a sibling node at the same level as the selected 
node in the tree. 

Add Value Enables you to assign a constant or parameterized 
value to the selected element.

Delete Deletes the selected node. Note that you cannot 
delete the root node of the output value step.

Import XML Enables you to browse to and select a file structure 
from an existing XML file. The new file overrides the 
selected node’s current sub-tree.

Export XML Enables you to save the file structure of the selected 
node to an XML file.

Paste Pastes a cut or copied node as a child node below the 
selected node in the XML tree.

Note: You cannot paste an XML element node as its 
own descendant.

Copy Makes a copy of the selected node, which you can 
then paste in another location in the XML tree.

Cut Prepares the selected node to be cut and copies it to 
the clipboard. When you paste the node in the new 
location, it is removed from the original location in 
the XML tree.

Edit XML as Text Opens the Edit XML as Text dialog box, enabling you 
to modify the XML text of the selected node and it’s 
subnodes in a test editor. For more information, see 
“Understanding the Edit XML as Text Dialog Box” on 
page 613.



Chapter 25 • Outputting Values

730

XML Tree 

The XML tree displays the hierarchical relationship between each element 
and value in the XML tree, enabling you to select the element and/or 
attribute values that you want to output. Each element node is displayed 
with a  icon. Each value node is displayed with a  icon. 

Note: When you create an XML output value for an operation return value, 
only a generic XML tree is created and shown in the XML Output Properties 
dialog box. Before you can select which element or attribute values you 
want to output, you must populate the XML tree with the actual elements, 
attributes, and values. For more information, see “Updating the XML 
Hierarchy for XML Test Object Operation Output Value Steps (For 
WebService Test Objects Only)” on page 732.

Select an element node in the XML tree to display or set output options for 
its attributes and values on the right of the XML Output Properties dialog 
box. Select a value node in the XML tree to display or set output options for 
its value on the right of the XML Output Properties dialog box.

Tip: The XML tree pane and the Attribute and Value columns in the right 
pane are resizable.

Duplicate Adds a new node, identical to the selected one, as a 
sibling node at the same level as the selected node in 
the XML tree. 

Note: This command is available only from the 
context menu (right-click menu).

Command Icon Description



Chapter 25 • Outputting Values

731

To set output XML options:

 1 Select the check box for an element or value node in the XML tree to 
indicate that you want to output a value for that node. 

 2 Select the element or value node to display or set output options for its 
attributes and/or values.

 3 If you are outputting an element attribute, select the check box of the 
attributes for which you want output values.

 4 Click in the Value column of an attribute, or click in the cell of an element 
value, and then click the Output Options button  to display the Value 
Configuration Options dialog box, which enables you to select or define the 
parameter in which you want to store the retrieved value.

 5 In the Value Configuration Options dialog box, select the parameter type. 
Additional options are available for the output parameter type that you 
select. For more information on the options available for each parameter 
type, see:

➤ Data Table. “Using Data Table Parameters” on page 639.

➤ Environment. “Using Environment Variable Parameters” on page 645.

➤ Random Number. “Using Random Number Parameters” on page 655.

Insert Statement Options

If you are inserting an output value step while editing your test, the bottom 
part of the XML Output Properties dialog box displays Insert statement 
options, enabling you to choose whether you want to insert the output 
value step before or after the step that you selected. Select Before current 
step if you want to insert the step before the highlighted step is performed. 
Select After current step if you want to insert the step after the highlighted 
step is performed. 

Note: The Insert statement options are not available if you are adding a new 
output value step while recording or if you are modifying an existing output 
value step. They are available only if you are adding a new output value step 
while editing steps. 



Chapter 25 • Outputting Values

732

Updating the XML Hierarchy for XML Test Object Operation 
Output Value Steps (For WebService Test Objects Only)

This section is relevant only when working with XML output value steps on 
WebService test object operations (with the QuickTest Professional Web 
Services Add-in).

When you create an XML output value step for a test object operation (for a 
WebService test object), the XML tree of the operation return value data 
cannot be generated. Therefore, only a generic XML tree is created. To select 
the elements and attributes to output, you must first populate the XML tree 
with the actual elements, attributes, and values that the operation is 
expected to return.

You can use one of the three methods below to populate the XML tree:

➤ Updating the XML Tree Manually

➤ Importing an XML Tree from a File

➤ Updating the XML Tree Using Update Run Mode

Updating the XML Tree Manually
You can update the XML tree by adding elements, attributes, and values 
manually in the XML Output Properties dialog box.

To update the XML tree manually:

 1 In the Keyword View, select the output value step whose XML tree you want 
to update. Click in the Value cell.

 2 Click the Output Properties button or right-click and select Output Value 
Properties. The XML Output Properties dialog box opens.

 3 Select a node in the XML tree and then click a toolbar button or choose an 
option from the context (right-click) menu to:

➤ Add an element at the same level as the selected node

➤ Add an element below the selected node

➤ Add a value to the selected node

➤ Edit the XML text of the selected node



Chapter 25 • Outputting Values

733

➤ Copy the selected node

➤ Cut the selected node (the selected node is removed only after you paste 
it in another location)

➤ Paste a cut or copied node as a child node below the selected node

➤ Delete the selected node 

➤ Duplicate the selected node, adding an identical node as a sibling node at 
the same level (this command is available only from the right-click 
menu)

For more information on the available tools in the XML Output Properties 
dialog box, see “Understanding the XML Output Properties Dialog Box” on 
page 727.

Importing an XML Tree from a File
You can import an XML tree from an existing file for a specific element in 
the XML tree hierarchy or for the whole tree. 

To import an existing XML tree from a file:

 1 In the Keyword View, select the output value step whose XML tree you want 
to update. 

 2 Click in the Value cell and then click the Output Properties button. The 
XML Output Value Properties dialog box opens.

 3 If you want to import an XML hierarchy for the whole XML tree, select the 
root node. If you want to import an XML hierarchy for a specific element, 
select the element in the XML tree hierarchy. 

 4 Click the Import XML button. A message warns you that the imported 
hierarchy overwrites the selected node and its sub-tree. Click Yes to close the 
message.

 5 In the Import XML from File dialog box, browse to the required XML file 
and click Open. The XML hierarchy is imported from the file. 



Chapter 25 • Outputting Values

734

Updating the XML Tree Using Update Run Mode 
QuickTest cannot generate the return values of an operation when you 
insert an XML output value step on a Web service operation, but it can 
generate this information after it runs the operation. Therefore, you can run 
your Web service test in Update Run mode to automatically populate or 
update the elements, attributes and values in your XML tree.

To generate a new XML tree based on the current return values of the Web 
service operation, ensure that none of the node, attribute, or value check 
boxes are selected in the XML tree of the Output Value Properties dialog 
box.

Note: XML Output Value steps on Web service operations retrieve the values 
returned from the last Web service operation performed on the test object. If 
a different Web service operation step is performed prior to the output value 
step, then the output value step will fail.



Chapter 25 • Outputting Values

735

To update an XML tree using Update Run mode:

 1 Open a test containing an XML test object output value step for a Web 
service operation.

 2 Click the down arrow next to the Run button in the toolbar and select 
Update Run Mode, or select Automation > Update Run Mode. The Update 
Run dialog box opens.

 3 Select Update checkpoint properties and click OK. QuickTest runs the test 
and updates the XML hierarchy and values for each blank XML checkpoint 
and XML output value step in the test. It updates values only for XML 
checkpoints or output value steps that have one or more nodes selected.

 4 If you want to confirm that QuickTest successfully updated your output 
value step, expand the tree in the Test Results window and select the XML 
output value step. Then check that Update done is displayed in the pane on 
the right. (If the Test Results window did not open automatically at the end 
of the run, click the Results button or select Automation > Results.)



Chapter 25 • Outputting Values

736

Adding Existing Output Values to a Test

QuickTest enables you to insert existing output values into your test. 

When you insert an existing output value in your test, consider which 
output values should be used in multiple locations in your test. Each time 
an output value step is performed, the value contained in the output value is 
overwritten with the new output value. You should insert an existing output 
value into your test only if the stored value will no longer be needed by your 
test when the output value object is used again.



Chapter 25 • Outputting Values

737

Understanding the Add Existing Output Value Dialog Box
You open the Add Existing Output Value dialog box by selecting Insert > 
Output Value > Existing Output Value. This option is available only if at least 
one of the object repositories associated with the current action (including 
the local object repository) contains at least one Output object. 

If a step is highlighted in the Keyword View or the cursor is located in a step 
in the Expert View, the Add Existing Output Value dialog box opens with 
the TestObjects tree hidden. 

The test object displayed in the Test object box is the object from the 
highlighted step in the Keyword View or the specific object where the cursor 
is located in the Expert View.

You can display or hide the TestObjects tree by clicking the Show/Hide Test 
Objects button.



Chapter 25 • Outputting Values

738

The Add Existing Output Value dialog box contains the following options:

Option Description

Test object Specifies the test object for which you are 
adding an output value.

TestObjects tree Displays the objects stored in the object 
repositories associated with the current 
action.

Show/Hide Test Objects Shows or hides the TestObjects tree.

Display only output values 
relevant to the selected test 
object

When selected, QuickTest determines which 
output value objects from the current 
action’s object repositories are relevant for 
the selected object (based on the output 
value type and the properties selected to 
output in the output value object) and 
displays only those output value objects in 
the Output Values list. 

When using this option, it is recommended 
to open your application and display the 
selected object so that QuickTest can 
accurately determine all of the checkpoints 
that can apply to that object.

Output values Lists the checkpoints available for insertion. 

If the Display only output values relevant to 
the selected test object option is cleared, 
this list includes all output value objects 
from all object repositories associated with 
the current action. 

If the Display only output values relevant to 
the selected test object option is selected, 
this list displays only the relevant output 
value objects as described above.

Output Value Properties Area Displays the output value options for the 
selected output value object in read-only 
format.



Chapter 25 • Outputting Values

739

To insert an existing output value in your test:

 1 Select the step after which you want to insert the checkpoint.

 2 Select Insert > Output Value > Existing Output Value. The Add Existing 
Output Value dialog box opens.

 3 If the TestObjects tree is displayed, select the object for which you want to 
insert an Output Value. Otherwise proceed to step 4.

 4 From the Output values list, select the output value that you want to insert 
for the object displayed in the Test object box. 

 5 Click OK. The output value step is inserted after the current step.



Chapter 25 • Outputting Values

740



741

26
Working with Text Recognition for 
Windows-Based Objects

QuickTest uses various mechanisms to identify the text strings in your 
Windows-based objects. This chapter describes how to configure QuickTest 
to optimize the results of text recognition for your Window-based objects.

This chapter includes:

 ➤  About Working with Text Recognition for Windows-Based Objects 
on page 742

 ➤  The Options Dialog Box: General > Text Recognition Pane on page 742

 ➤  Guidelines for Text Recognition on page 746

 ➤  Text Recognition and Development Environments on page 748

 ➤  Use-Case Scenario: Checking Text in an Image on page 750



Chapter 26 • Working with Text Recognition for Windows-Based Objects

742

About Working with Text Recognition for Windows-Based 
Objects

QuickTest identifies text in your application using either a Windows 
API-based mechanism or an OCR (optical character recognition) 
mechanism. You can use the text and text area checkpoint or output value 
commands to verify or retrieve text in your Windows-based objects. 
Alternatively, you can use the testobject.GetText (for Terminal Emulator 
objects), testobject.GetVisibleText, or testobject.GetTextLocation test object 
methods, or the TextUtil.GetText or TextUtil.GetTextLocation reserved 
object methods to capture the text you need. 

By default, QuickTest tries to retrieve the text directly from the object using 
a Windows API-based mechanism. If QuickTest cannot capture the text this 
way (for example, because the text is part of a picture), it tries to capture the 
text using an OCR (optical character recognition) mechanism. You use the 
Text Recognition pane to specify the preferred text recognition mechanism 
and OCR-specific settings. 

Before you insert a text / text area checkpoint or output value, review the 
“Guidelines for Text Recognition” on page 746.

The Options Dialog Box: General > Text Recognition Pane
 

Description Enables you to configure how QuickTest identifies text 
in your application. You can use this pane to modify 
the default text capture mechanism, OCR (optical 
character recognition) mechanism mode, and the 
language dictionaries the OCR mechanism uses to 
identify text.

Accessed by Tools menu > Options item > General node > Text 
Recognition node



Chapter 26 • Working with Text Recognition for Windows-Based Objects

743

Below is an image of the General > Text Recognition pane of the Options 
dialog box: 

 

Important Information The General > Text Recognition options are relevant 
only for Windows-based objects, such as Standard 
Windows, .NET WinForms, WPF, SAP Gui for 
Windows, Visual Basic, and ActiveX. 

Learn More Conceptual Overview: “About Working with Text 
Recognition for Windows-Based Objects” on page 742

Additional related topics: “Additional References” on 
page 746



Chapter 26 • Working with Text Recognition for Windows-Based Objects

744

The General > Text Recognition pane options include:

Option Description

Use text 
recognition 
mechanisms 
in this order

Specifies the text recognition mechanism that QuickTest uses 
when capturing text.

Possible values:

First Windows API then OCR. (Default) Instructs QuickTest to 
first try to retrieve text directly from the object using the 
Windows API-based mechanism. If no text can be retrieved (for 
example, because the text is part of a picture), QuickTest tries to 
retrieve text using the OCR (optical character recognition) 
mechanism. (This setting is highly recommended when working 
with CJK (Chinese, Japanese, Korean) languages.) 

First OCR then Windows API. Instructs QuickTest to first try to 
retrieve text from the object using the OCR mechanism. If no 
text can be retrieved, then QuickTest uses its Windows API-based 
mechanism to retrieve text from the object.

Use Only Windows API. Instructs QuickTest to use only the 
Windows API-based mechanism (and not the OCR mechanism) 
to retrieve text from the object.

Use Only OCR. Instructs QuickTest to use only the OCR 
mechanism (and not the Windows API-based mechanism) to 
retrieve text from the object. (Required when working with 
Windows Vista.)

For more information on text recognition support in 
Windows-based environments, see the HP QuickTest Professional 
Readme.

Single text 
block mode

Select this radio button if the text on the object is uniform in 
font, size, color, and background. For example:

The single text block mode instructs the OCR mechanism to 
focus on the area and treat it as a single text block. This is 
especially useful when trying to capture text on small objects or 
in a small text area.



Chapter 26 • Working with Text Recognition for Windows-Based Objects

745

Multiple text 
block mode

Select this radio button only if the text on the object comprises 
different fonts, font sizes, colors, and/or backgrounds. For 
example:

The multiple text block mode instructs the OCR mechanism to 
handle each text area in the object that has a different 
background font and size. The OCR mechanism decides where to 
divide the text blocks according to an internal algorithm. 

Available 
languages

Lists all of the language dictionaries that the OCR mechanism 
can potentially use when retrieving text from the object. 

To specify the language dictionaries used by the OCR 
mechanism: Move a language to the Supported languages list 
box by selecting a language and clicking the right arrow 
button (>).

Supported 
languages

Lists the language dictionaries that the OCR mechanism uses 
when capturing text. The Supported languages list box can 
contain either:

➤ One CJK (Chinese, Japanese, Korean) language.
(Note: By default, English is also supported when capturing 
text in CJK languages.) 

➤ One or more non-CJK languages.

To remove a language dictionary from the Supported languages 
list: Select the language and click the left arrow button (<). 

Option Description



Chapter 26 • Working with Text Recognition for Windows-Based Objects

746

Additional References
 

Guidelines for Text Recognition

➤ When using the OCR mechanism, the larger the text, the better the text 
recognition. 

➤ Try to keep the dimensions of the selected text area as small as possible, as 
this helps prevent additional unwanted characters in recognized text.

At the same time, consider the potential movement (change of coordinates) 
of the object within the window. For example, the screen resolution is often 
different on different computers, and this can affect the coordinates of the 
object in the application. Also, during the design and development stages of 
an application, an object may be moved to make room for other objects or 
for aesthetic purposes. 

Consider that the operating system, installed service packs, installed 
toolkits, and so on, can all affect the size and location of an object in an 
application. Make sure that the dimensions of the selected text area are large 
enough for different system configurations. 

The dimensions of the selected text area need to be large enough to take 
these issues into account.

➤ If you are not sure which text block mode to use, first use the single text 
block mode, as text captures performed on single text blocks are generally 
more accurate than text captures on multiple text blocks. If the results are 
not what you expect, then try using the multiple text block mode. For an 
example of when to use different text block modes, see “Use-Case Scenario: 
Checking Text in an Image” on page 750.

Related Use Case Scenarios “Use-Case Scenario: Checking Text in an Image” on 
page 750

Related Tasks ➤ “Creating a Text Checkpoint” on page 552

➤ “Creating a Text Area Checkpoint” on page 554

➤ “Outputting Text Values” on page 688

Related Concepts ➤ “Guidelines for Text Recognition” on page 746 

➤ “Checking Text” on page 551



Chapter 26 • Working with Text Recognition for Windows-Based Objects

747

Tip: If you want to use the text recognition mechanism for a large area 
containing different fonts and backgrounds, it is recommended to create 
several steps to capture the text for each single text block instead of creating 
one step to capture a multiple text block.

➤ Windows provides various themes. When working with text recognition, try 
to apply themes in the following order:

➤ Windows Vista theme (for best results)

➤ Windows XP theme

➤ Windows Classic theme

➤ If the text recognition mechanism retrieves unwanted text information 
(such as hidden text and shadowed text that appears as multiple copies of 
the same string), when using the multiple text block mode, use the single 
text block mode option. 

➤ If your text recognition options are set to use the Windows API mechanism, 
then, when running a step that uses text recognition, the Windows API may 
cause a "blinking effect" in your application as it captures the text. If your 
test contains consecutive steps that utilize the text recognition mechanism, 
the "blinking effect" in one step may cause the subsequent text recognition 
step (or other step that relies on the appearance of the application, such as a 
bitmap checkpoint) to fail.

To address this, you can insert a Wait statement prior to each such step. This 
enables you to delay the performance of the next text recognition step until 
the Windows API capture of the previous step is complete. 

➤ It is highly recommended to check text from your application window by 
inserting a standard checkpoint for the object containing the desired text, 
using its text (or similar) property. 

Note: If you are creating text area checkpoints, see “Considerations for 
Defining the Text Area” on page 556 for additional guidelines.



Chapter 26 • Working with Text Recognition for Windows-Based Objects

748

Text Recognition and Development Environments

The following table lists the development environments supported by 
QuickTest (via its add-ins), and specifies what is supported for text 
recognition.

Development 
Environment

Text Recognition

Supported Not Supported

ActiveX Full text recognition support N/A

Delphi Full text recognition support N/A

Java ➤ Text checkpoints

➤ Text output values

➤ Text area checkpoints

➤ Text area output values

➤ GetTextLocation method

➤ GetVisibleText method

.NET WebForms ➤ Text checkpoints for Page 
object only

➤ Text output values for 
Page object only

➤ Text checkpoints for all 
other objects

➤ Text output values for all 
other objects

➤ Text area checkpoints for 
all other objects

➤ Text area output values for 
all other objects

➤ GetTextLocation method

➤ GetVisibleText method

.NET WinForms Full text recognition support N/A

Oracle N/A No text recognition support



Chapter 26 • Working with Text Recognition for Windows-Based Objects

749

PeopleSoft ➤ Text checkpoints for 
PSFrame object only

➤ Text output values for 
PSFrame object only

➤ Text checkpoints for all 
other objects

➤ Text output values for all 
other objects

➤ Text area checkpoints for 
all other objects

➤ Text area output values for 
all other objects

➤ GetTextLocation method

➤ GetVisibleText method

PowerBuilder Full text recognition support N/A

SAP Gui for 
Windows

N/A No text recognition support

SAP Web ➤ Text checkpoints

➤ Text output values

➤ Text area checkpoints

➤ Text area output values

➤ GetTextLocation method

➤ GetVisibleText method

Siebel N/A No text recognition support

Standard 
Windows

Full text recognition support N/A

Stingray Full text recognition support N/A

Terminal 
Emulators

Text output values for 
TeScreen and TeTextScreen 
objects only

➤ Other text checkpoints

➤ Other text output values 

➤ Text area checkpoints

➤ Text area output values

➤ GetTextLocation method

➤ GetVisibleText method

VisualAge Full text recognition support N/A

Visual Basic Full text recognition support N/A

Development 
Environment

Text Recognition

Supported Not Supported



Chapter 26 • Working with Text Recognition for Windows-Based Objects

750

Use-Case Scenario: Checking Text in an Image

Ben and George are quality assurance engineers who are experienced 
QuickTest users. George is also familiar with text recognition and has a basic 
understanding of how text recognition mechanisms work. 

Ben often uses bitmap checkpoints to test the appearance of different icons 
or pictures in the user interface he is testing. 

For one of his projects, Ben also needed to verify the text in the graphics, so 
he decided to use text checkpoints.

Ben decided to begin the verification process by inserting a text checkpoint 
to check that the text Welcome ! was displayed correctly in the following 
graphic. 

Web ➤ Text checkpoints for Page 
object only

➤ Text output values for 
Page object only

➤ Text checkpoints for all 
other objects

➤ Text output values for all 
other objects

➤ Text area checkpoints for 
all other objects

➤ Text area output values for 
all other objects

➤ GetTextLocation method

➤ GetVisibleText method

Web Services N/A No text recognition support

WPF Full text recognition support N/A

Development 
Environment

Text Recognition

Supported Not Supported



Chapter 26 • Working with Text Recognition for Windows-Based Objects

751

Before inserting the text checkpoint, Ben opened the Text Recognition pane 
and configured the text recognition settings. Ben set the text recognition 
mechanism to Use Only OCR because the text was part of a graphic. Ben also 
knew that single text block mode usually works best, so he selected the 
Single text block mode option.

Ben then inserted a text checkpoint on the entire area shown above and 
received the following results in the Text Checkpoint Properties dialog box:

Ben noticed that there were extra characters in the Checkpoint Summary 
area of the text checkpoint, but he did not know why. 

Ben asked his colleague, George, for help. George explained to him that the 
text recognition mechanism sometimes adds extra characters to the text 
checkpoint when it does not recognize the text correctly. 

George also pointed out that the area Ben defined for the text checkpoint 
consisted of multiple text blocks because the text was not uniform in font 
size, color, or background. The title area consisted of white characters on a 
blue-gray background, while the remaining text was smaller and consisted 
of blue text on a white background. 



Chapter 26 • Working with Text Recognition for Windows-Based Objects

752

Ben remembered that he had selected the Single text block mode option in 
the General > Text Recognition pane and understood that if he wanted to 
use single text block mode, he would have to create a text checkpoint only 
on the Welcome ! area of the graphic, and not on the entire graphic. Ben 
tried this, and the OCR mechanism correctly identified the text, as shown 
below:

Ben was pleased with the results, but he wanted to explore other 
possibilities, so he inserted another text checkpoint—this time on the entire 
graphic. He selected the Multiple text block mode option in the Text 
Recognition pane, which resulted in the following:



Chapter 26 • Working with Text Recognition for Windows-Based Objects

753

Ben was pleased that the OCR mechanism correctly recognized all of the 
text in the graphic. But he needed to test only the title, Welcome !, so he 
finalized this checkpoint by marking all of the text after Welcome ! as Text 
After.

Even though both checkpoints passed, Ben needed only one text 
checkpoint. He decided to keep the first checkpoint (that used Single text 
block mode), and he deleted the second one. He selected the Single text 
block mode option in the Text Recognition pane to help ensure that the 
checkpoint would pass in future test runs. 



Chapter 26 • Working with Text Recognition for Windows-Based Objects

754



755

27
Configuring Values

QuickTest enables you to configure the values for properties and other items 
by defining a value as a constant or a parameter. You can also use regular 
expressions in values to increase the flexibility and adaptability of your 
tests.

This chapter includes:

 ➤  About Configuring Values on page 755

 ➤  Configuring Constant and Parameter Values on page 756

 ➤  Understanding and Using Regular Expressions on page 762

 ➤  Defining Regular Expressions on page 765

About Configuring Values

Some dialog boxes, such as the Checkpoint Properties dialog boxes, include 
a Configure value area, in which you can define the value for a selected item 
as a constant or a parameter. In other contexts, such as the Keyword View, 
Step Generator, and Object Repository window, you can select a value 
directly and parameterize it or define it as a constant.

➤ Constant. A value that is defined directly in the step and remains 
unchanged for the duration of the test.

➤ Parameter. A value that is defined or generated separately from the step and 
is retrieved when the specific step runs. For example, a parameter value may 
be defined in an external file or generated by QuickTest.



Chapter 27 • Configuring Values

756

When you define a value as a parameter, you can also specify other settings 
according to the parameter type. For more information on using parameters 
in your tests, see Chapter 24, “Parameterizing Values.”

You can edit a constant value in the Configure value area. In certain 
contexts, you can define a constant value using a regular expression.

A regular expression is a string that specifies a complex search phrase. 
Regular expressions are used to identify objects and text strings with varying 
values. For example, if the name of a window’s title bar changes according 
to a file name, you can use a regular expression in a test object description to 
identify a window whose title bar has the specified product name, followed 
by a hyphen, and then any other text.

Configuring Constant and Parameter Values

You can define a value as a constant or a parameter in several ways:

➤ In the Value Configuration Options dialog box, you can click the 
parameterization button  for a selected value, for example, in the 
Keyword View, Step Generator, or Object Repository window. For more 
information, see “Configuring a Selected Value” on page 760.

➤ In the Configure value area of a dialog box, you can select a property or 
argument, for example, in the Checkpoint Properties dialog box. 



Chapter 27 • Configuring Values

757

Setting Values in the Configure Value Area
When you select an item in a dialog box containing a Configure value area, 
such as the Checkpoint Properties dialog box, you can select Constant or 
Parameter to set the value. The default is Constant.

If you select Constant, you can edit a single-line value directly in the 
Constant box. If it is a string value, you can also click the Constant Value 
Options button to define the value as a regular expression. For information 
on regular expressions, see “Understanding and Using Regular Expressions” 
on page 762.

If the entire value cannot be displayed in the Constant box, it is shown as 
[complex value]. For example, the value of a list’s all items property is a 
multi-line value, where each line contains the value of an item in the list.

You can view or edit a complex value by clicking the Constant Value 
Options button. You can also define a complex value as a regular expression. 
For more information on editing constant values, see “Setting Constant 
Value Options” on page 759.



Chapter 27 • Configuring Values

758

Configuring a Parameter Value

If you select Parameter for a value that is already parameterized, the 
Parameter box displays the current parameter definition for the value. If 
you select Parameter for a value that is not yet parameterized, the 
Parameter box displays the default parameter definition for the value.

For more information on default parameter definitions, see “Understanding 
Default Parameter Values” on page 634.

You can click the Parameter Options button to select a different parameter 
type or modify the parameter settings for the value.

The Parameter Options dialog box opens for the displayed parameter type. 
For more information on defining values for specific parameter types, see:

➤ “Setting Test and Action Parameter Options” on page 636

➤ “Setting Data Table Parameter Options” on page 641

➤ “Setting Environment Variable Parameter Options” on page 652

➤ “Using Random Number Parameters” on page 655

For more information on using parameters in your tests, see Chapter 24, 
“Parameterizing Values.”



Chapter 27 • Configuring Values

759

Setting Constant Value Options
When you click the Constant Value Options button in the Configure value 
area, the Constant Value Options dialog box opens.

For a complex value (a value that cannot be displayed entirely in the 
Constant box), the Constant Value Options dialog box expands to show the 
entire contents of the value.

You can update the following options to edit the value of the constant:

➤ Value. Specifies the value for the constant.

➤ Regular expression. Sets the defined value as a regular expression:

➤ For general information on regular expressions, see “Understanding and 
Using Regular Expressions” on page 762. 

➤ For information on defining a regular expression, see “Defining Regular 
Expressions” on page 765.



Chapter 27 • Configuring Values

760

Configuring a Selected Value
When you click the parameterization button  for a selected value, the 
Value Configuration Options dialog box opens. In some situations, you can 
also define the constant or parameter using a regular expression. (The 
following examples illustrate the Value Configuration Options dialog box 
with and without the Regular expression check box.) 

Note: The parameter options shown in this dialog box change according to 
the parameter type selected in the Parameter box.



Chapter 27 • Configuring Values

761

You can select one of the following options:

➤ Constant. Defines a value that remains unchanged for the duration of the 
test. You can edit the value directly in the Constant box. This box offers the 
same editing options as the Value cell in which you clicked the 
parameterization button  to open this dialog box. For more information 
on these options, see “Defining Values for Your Step Arguments” on 
page 404.

In some situations, for example, when parameterizing an object 
identification property value, you can also specify a constant value using a 
regular expression (by using a regular expression in the Constant box and 
selecting the Regular expression check box). For information on regular 
expressions, see “Understanding and Using Regular Expressions” on 
page 762.

➤ Parameter. Specifies a value that is defined or generated separately from the 
step and is retrieved when the specific step runs. 

If you select Parameter for a value that is already parameterized, the 
Parameter section displays the current parameter type and details for the 
value. If you select Parameter for a value that is not yet parameterized, the 
Parameter section displays the default parameter type and details for the 
value.

For more information on default parameter definitions, see “Understanding 
Default Parameter Values” on page 634.

You can change the default definition by selecting a different parameter 
type or modifying the parameter settings for the value. The options in the 
Parameter section change according to the parameter type you select.

Note: If you are using an environment variable to parameterize an argument 
that receives a predefined constant or number, only the environment 
variable parameters whose value is of type integer are shown in the Name 
list.



Chapter 27 • Configuring Values

762

The Parameter section of the Value Configuration Options dialog box is 
very similar to the Parameter Options dialog box. For more information on 
configuring values for specific parameter types, see:

➤ “Defining the Settings for a Test or Action Parameter” on page 637

➤ “Defining the Settings for a Data Table Parameter” on page 642

➤ “Defining the Settings for an Environment Variable Parameter” on 
page 652

➤ “Defining Settings for a Random Number Parameter” on page 656

For more information on using parameters in your tests, see Chapter 24, 
“Parameterizing Values.”

Understanding and Using Regular Expressions

Regular expressions enable QuickTest to identify objects and text strings 
with varying values. You can use regular expressions in the following 
situations:

➤ When defining the property values of an object in dialog boxes or in 
programmatic descriptions

➤ When parameterizing a step 

➤ When creating checkpoints with varying values 

For example, you can use a regular expression if the text property of an 
object is a date value, but the displayed date changes according to the 
current date. If you define the date as a regular expression, QuickTest can 
identify the object that contains text with the expected date format, rather 
than the exact date value.



Chapter 27 • Configuring Values

763

A regular expression is a string that specifies a complex search phrase. By 
using special characters, such as a period (.), asterisk (*), caret (^), and 
brackets ([ ]), you can define the conditions of a search.

Notes:

➤ You can use regular expressions only for values of type string.

➤ When any special character in a regular expression is preceded by a 
backslash (\), QuickTest searches for the literal character.

For more information and examples of the use of regular expressions, see:

➤ “Using Regular Expressions for Property Values” on page 763

➤ “Using Regular Expressions in Checkpoints” on page 764

For information on defining regular expressions, including regular 
expression syntax, see “Defining Regular Expressions” on page 765.

Using Regular Expressions for Property Values
If you expect the value of a property to change in a predictable way during 
each run session, you can use regular expressions when defining or 
parameterizing property values, for example, in the Object Repository 
window, or in programmatic descriptions. For more information on 
programmatic descriptions, see “Using Programmatic Descriptions” on 
page 863.

For example, your Web site may include a form in which the user inputs 
data and clicks the Send button to submit the form. When a required field is 
not completed, the form is displayed again for the user to complete. When 
resubmitting the form, the user clicks the Resend button. You can define the 
value of the button’s name property as a regular expression, so that 
QuickTest ignores variations in the button name when clicking the button.



Chapter 27 • Configuring Values

764

Using Regular Expressions in Checkpoints
When creating a standard checkpoint to verify the property values of an 
object, you can set the expected value of an object’s property as a regular 
expression so that an object with a varying value can be verified. 

For example, suppose you want to check that every window and dialog box 
in your application contains the name of your application followed by a 
hyphen (-) and a descriptive title. You can add a checkpoint to each dialog 
box object in your test to check that the first part of the title contains the 
name of your application followed by a hyphen. 

When creating a text checkpoint to check that a varying text string is 
displayed on your application, you can define the text string as a regular 
expression. 

For example, when booking a flight in the Mercury Tours sample Web site, 
the total cost charged to a credit card number should not be less than $300. 
You define the amount as a regular expression, so that QuickTest will ignore 
variations in the text string as long as the value is not less than $300.

You can apply the same principles to any checkpoint type whose dialog box 
contains a Configure Value area similar to that described in “Configuring 
Constant and Parameter Values” on page 756. 

For example, for table checkpoints you can set cell values as regular 
expressions, and for XML checkpoints you can set attribute or element 
values as regular expressions. For more information on specific checkpoint 
types, see the relevant chapter for the checkpoint type.



Chapter 27 • Configuring Values

765

Defining Regular Expressions

You can define a regular expression for a constant value, a Data Table 
parameter value, an Environment parameter value, or a property value in a 
programmatic description. For more information on defining property 
values, see “Configuring Constant and Parameter Values” on page 756.  

You can define a regular expression by entering the regular expression 
syntax for the string in the Value box in the Constant Value Options dialog 
box or the Parameter Options dialog box. You instruct QuickTest to treat the 
value as a regular expression by selecting the Regular Expression check box. 

All programmatic description property values are automatically treated as 
regular expressions. For more information on programmatic descriptions, 
see “Using Programmatic Descriptions” on page 863.

Note: You can use regular expressions only for values of type string.

By default, QuickTest treats all characters in a regular expression literally, 
except for the period (.), hyphen (-), asterisk (*), caret (^), brackets ([ ]), 
parentheses (()), dollar sign ($), vertical line (|), plus sign (+), question mark 
(?), and backslash (\). When one of these special characters is preceded by a 
backslash (\), QuickTest treats it as a literal character.

If you enter a special character in the Value box of the Constant Value 
Options or the Parameter Options dialog box, QuickTest asks you if you 
want to add a backslash (\) before each special character. If you click Yes, 
a backslash (\) is added before the special character to instruct QuickTest to 
treat the character literally. If you click No, QuickTest treats the special 
character as a regular expression character.



Chapter 27 • Configuring Values

766

This section describes some of the more common options that can be used 
to create regular expressions: 

➤ Using the Backslash Character ( \ )

➤ Matching Any Single Character ( . )

➤ Matching Any Single Character in a List ( [xy] )

➤ Matching Any Single Character Not in a List ( [^xy] )

➤ Matching Any Single Character within a Range ( [x-y] )

➤ Matching Zero or More Specific Characters ( * )

➤ Matching One or More Specific Characters ( + )

➤ Matching Zero or One Specific Character ( ? )

➤ Grouping Regular Expressions ( ( ) )

➤ Matching One of Several Regular Expressions ( | )

➤ Matching the Beginning of a Line ( ^ )

➤ Matching the End of a Line ( $ )

➤ Matching Any AlphaNumeric Character Including the Underscore ( \w )

➤ Matching Any Non-AlphaNumeric Character ( \W )

➤ Combining Regular Expression Operators

Note: For a complete list and explanation of supported regular expressions 
characters, see the Regular Expressions section in the Microsoft VBScript 
documentation (select Help > QuickTest Professional Help to open the 
QuickTest Professional Help. Then select VBScript Reference > VBScript > 
User’s Guide > Introduction to Regular Expressions).



Chapter 27 • Configuring Values

767

Using the Backslash Character
A backslash (\) can serve two purposes. It can be used in conjunction with a 
special character to indicate that the next character be treated as a literal 
character. For example, \. would be treated as period (.) instead of a wildcard. 
Alternatively, if the backslash (\) is used in conjunction with some 
characters that would otherwise be treated as literal characters, such as the 
letters n, t, w, or d, the combination indicates a special character. For 
example, \n stands for the newline character.

For example:

➤ w matches the character w

➤ \w is a special character that matches any word character including 
underscore

➤ \\ matches the literal character \

➤ \( matches the literal character (

For example, if you were looking for a Web site called:

newtours.demoaut.com

the period would be mistaken as an indication of a regular expression. To 
indicate that the period is not part of a regular expression, you would enter 
it as follows:

newtours\.demoaut\.com

Note: If a backslash character is used before a character that has no special 
meaning, the backslash is ignored. For example, \z matches z.



Chapter 27 • Configuring Values

768

Matching Any Single Character
A period (.) instructs QuickTest to search for any single character (except for 
\n). For example: 

welcome.

matches welcomes, welcomed, or welcome followed by a space or any other 
single character. A series of periods indicates the same number of 
unspecified characters.

To match any single character including \n, enter:

(.|\n)

For more information on the ( ) regular expression characters, see 
“Grouping Regular Expressions” on page 770. For more information on the | 
regular expression character, see “Matching One of Several Regular 
Expressions” on page 771. 

Matching Any Single Character in a List
Square brackets instruct QuickTest to search for any single character within 
a list of characters. For example, to search for the date 1967, 1968, or 1969, 
enter:

196[789]



Chapter 27 • Configuring Values

769

Matching Any Single Character Not in a List
When a caret (^) is the first character inside square brackets, it instructs 
QuickTest to match any character in the list except for the ones specified in 
the string. For example:

[^ab] 

matches any character except a or b. 

Note: The caret has this special meaning only when it is displayed first 
within the brackets.

Matching Any Single Character within a Range
To match a single character within a range, you can use square brackets ([ ]) 
with the hyphen (-) character. For instance, to match any year in the 1960s, 
enter:

196[0-9]

A hyphen does not signify a range if it is displayed as the first or last 
character within brackets, or after a caret (^).

For example, [-a-z] matches a hyphen or any lowercase letter.

Note: Within brackets, the characters ".", "*", "[" and "\" are literal. For 
example, [.*] matches . or *. If the right bracket is the first character in the 
range, it is also literal. 



Chapter 27 • Configuring Values

770

Matching Zero or More Specific Characters
An asterisk (*) instructs QuickTest to match zero or more occurrences of the 
preceding character. For example:

ca*r 

matches car,  caaaaaar, and cr.

Matching One or More Specific Characters
A plus sign (+) instructs QuickTest to match one or more occurrences of the 
preceding character. For example:

ca+r 

matches car and caaaaaar, but not cr.

Matching Zero or One Specific Character
A question mark (?) instructs QuickTest to match zero or one occurrences of 
the preceding character. For example:

ca?r 

matches car and cr, but nothing else.

Grouping Regular Expressions
Parentheses (()) instruct QuickTest to treat the contained sequence as a unit, 
just as in mathematics and programming languages.

Using groups is especially useful for delimiting the argument(s) to an 
alternation operator ( | ) or a repetition operator ( * , + , ? , { } ). 



Chapter 27 • Configuring Values

771

Matching One of Several Regular Expressions
A vertical line (|) instructs QuickTest to match one of a choice of 
expressions. For example:

foo|bar

causes QuickTest to match either foo or bar.

fo(o|b)ar

causes QuickTest to match either fooar or fobar.

Matching the Beginning of a Line
A caret (^) instructs QuickTest to match the expression only at the start of a 
line, or after a newline character. 

For example:

book

matches book within the lines—book, my book, and book list, while 

^book

matches book only in the lines—book and book list.

Matching the End of a Line
A dollar sign ($) instructs QuickTest to match the expression only at the end 
of a line, or before a newline character. For example:

book

matches book within the lines—my book, and book list, while a string that is 
followed by ($), matches only lines ending in that string. For example:

book$

matches book only in the line—my book.



Chapter 27 • Configuring Values

772

Matching Any AlphaNumeric Character Including the 
Underscore
\w instructs QuickTest to match any alphanumeric character and the 
underscore (A-Z, a-z, 0-9, _).

For example: 

\w* causes QuickTest to match zero or more occurrences of the alphanumeric 
characters—A-Z, a-z, 0-9, and the underscore (_). It matches Ab, r9Cj, or 
12_uYLgeu_435.

For example: 

\w{3} causes QuickTest to match 3 occurrences of the alphanumeric 
characters A-Z, a-z, 0-9, and the underscore (_). It matches Ab4, r9_, or z_M.

Matching Any Non-AlphaNumeric Character
\W instructs QuickTest to match any character other than alphanumeric 
characters and underscores.

For example:

\W matches &, *, ^, %, $, and # 

Combining Regular Expression Operators
You can combine regular expression operators in a single expression to 
achieve the exact search criteria you need. 

For example, you can combine the ‘.’ and ‘*’ characters to find zero or more 
occurrences of any character (except \n).

For example,

start.* 

matches start, started, starting, starter, and so forth.



Chapter 27 • Configuring Values

773

You can use a combination of brackets and an asterisk to limit the search to 
a combination of non-numeric characters. For example:

[a-zA-Z]*

To match any number between 0 and 1200, you need to match numbers 
with 1 digit, 2 digits, 3 digits, or 4 digits between 1000-1200. 

The regular expression below matches any number between 0 and 1200.

([0-9]?[0-9]?[0-9]|1[01][0-9][0-9]|1200)



Chapter 27 • Configuring Values

774



775

28
Adding Steps Containing Programming 
Logic

After creating a test, you can use special QuickTest tools to enhance it with 
programming statements, even if you choose not to program manually in 
the Expert View.

This chapter includes:

 ➤  About Adding Steps Containing Programming Logic on page 776

 ➤  Inserting Steps Using the Step Generator on page 777

 ➤  Using Conditional Statements on page 797

 ➤  Using Loop Statements on page 803

 ➤  Generating With Statements for Your Test on page 806

 ➤  Generating Messages on page 812

 ➤  Adding Comments on page 815

 ➤  Synchronizing Your Test on page 816



Chapter 28 • Adding Steps Containing Programming Logic

776

About Adding Steps Containing Programming Logic

When you design tests, you usually begin by adding steps that represent the 
operations an end-user would perform as part of the business process you 
want to test. Then, to increase the power and flexibility of your test, you can 
add steps that contain programming logic to the basic framework. 

Programming statements can contain:

➤ Test object operations. These are methods and properties defined by 
QuickTest. They can be operations that a user can perform on an object, 
operations that can retrieve or set information, or operations that perform 
operations triggered by an event.

➤ Native operations. These are methods and properties defined within the 
object you are testing, and therefore are retrieved from the run-time object 
in the application.

➤ VBScript programming commands that affect the way the test runs, such as 
conditions and loops. These are often used to control the logical flow of a 
test.

➤ Supplemental statements, such as comments, to make your test easier to 
read, and messages that appear in the test results, to alert you to a specified 
condition.

This chapter shows you how to insert different types of statements, mostly 
from the Keyword View, aided by the Step Generator and other dialog boxes. 

The Step Generator dialog box helps you add steps that use test object 
operations, Utility object operations, and function calls, so that you do not 
need to memorize syntax or to be proficient in high-level VBScript. You can 
use the Step Generator from the Keyword View and also from the Expert 
View.

For information on how to insert statements in the Expert View, see 
Chapter 29, “Working in the Expert View and Function Library Windows.”

You can incorporate decision-making into your test and define messages for 
the test results by using the appropriate dialog boxes. 



Chapter 28 • Adding Steps Containing Programming Logic

777

In addition, you can improve the readability of your test using With 
statements. You can instruct QuickTest to automatically generate With 
statements as you record. But even after your basic test is recorded, you can 
convert its statements, in the Expert View, to With statements—by selecting 
a menu command. 

You can handle synchronization issues between the run session and your 
application, using synchronization points.

When working with tests, you can also measure how long it takes certain 
parts of your test to run, using transaction statements.

Inserting Steps Using the Step Generator

The Step Generator enables you to add steps by selecting from a range of 
context-sensitive options and entering the required values. In the Step 
Generator dialog box you can define steps that use:

➤ test object operations (tests only)

➤ Utility object operations

➤ calls to library functions (tests only), VBScript functions, and internal script 
functions

For example, you can add a step that checks that an object exists, or that 
stores the returned value of a method as an output value or as part of a 
conditional statement. You can parameterize any of the values in your step.

Note: You can use the Step Generator to insert steps in tests and function 
libraries. However, in function libraries, you cannot use the Step Generator 
to access test object names or collections, or to access the list of library 
functions.

Before you open the Step Generator to define a new step, you first select 
where in your test the new step should be inserted. For more information on 
the hierarchy of steps and objects, see “Understanding the QuickTest Object 
Hierarchy” on page 391.



Chapter 28 • Adding Steps Containing Programming Logic

778

After you open the Step Generator, you first select the category for the step 
operation (test object, Utility object or function) and the required object or 
the function library source (for example, built-in or local script functions). 
You can then select the appropriate operation (method, property, or 
function) and define the arguments and return values, parameterizing them 
if required.

The Step Generator then inserts a step with the correct syntax into your test. 
You can continue to add further steps at the same location without closing 
the Step Generator.

You can open the Step Generator from the Keyword View, Expert View, or 
Active Screen.

To open the Step Generator from the Keyword View or Expert View:

 1 While recording or editing, click the step which you want the new step to 
follow. (When you finish defining the new step, QuickTest will insert it after 
this step.)

 2 Select Insert > Step Generator or right-click the step and select Insert Step > 
Step Generator. Alternatively, press F7.

The Step Generator dialog box opens and displays the object from the 
selected step in the Object box. For more information, see “Defining Steps 
in the Step Generator Dialog Box” on page 780.

To open the Step Generator from a function library:

 1 In the function library, click the location in which you want to insert the 
new step.

 2 Select Insert > Step Generator, or right-click and select Step Generator. 
Alternatively, press F7.

The Step Generator dialog box opens. For more information, see “Defining 
Steps in the Step Generator Dialog Box” on page 780.



Chapter 28 • Adding Steps Containing Programming Logic

779

To open the Step Generator from the Active Screen while editing:

 1 Confirm that the Active Screen is displayed. If it is not, select View > Active 
Screen or toggle the Active Screen toolbar button.

 2 In the Keyword View or Expert View, click the step which you want the new 
step to follow. (When you finish defining the new step, QuickTest will insert 
it after this step.) The Active Screen displays the captured bitmap or HTML 
source corresponding to the selected step.

 3 In the Active Screen, right-click the object for which you want to insert a 
step, and select Step Generator. 

If the location you clicked is associated with more than one object, the 
Object Selection - Step Generator dialog box opens.

 4 Select an object and click OK. The Step Generator dialog box opens and 
displays the object from the selected step in the Object box. For more 
information, see “Defining Steps in the Step Generator Dialog Box” on 
page 780.



Chapter 28 • Adding Steps Containing Programming Logic

780

Defining Steps in the Step Generator Dialog Box
The Step Generator dialog box enables you to add steps that perform 
operations, using test object methods (for tests only), Utility object 
methods, or function calls. 



Chapter 28 • Adding Steps Containing Programming Logic

781

Note: The Step Generator dialog box that opens from the Expert View and 
from a function library is similar to the dialog box that opens from the 
Keyword View (shown in the example above). 

In the Expert View, the Step Generator contains additional Utility objects 
and the box at the bottom of the dialog box shows a preview of the step that 
will be inserted in the Expert View. For more information, see “Viewing the 
Generated Step in the Expert View” on page 785.

In a function library, the Step Generator has a different title, contains only 
Utility objects and built-in and local script functions, and the box at the 
bottom of the dialog box shows a preview of the statement that will be 
inserted in the function library. For more information, see “Viewing the 
Generated Step in a Function Library” on page 785.

When the Step Generator dialog box opens, the object from the selected 
step is displayed in the Object box and the default method for the object is 
shown in the Operation box.



Chapter 28 • Adding Steps Containing Programming Logic

782

Defining a New Step

When you define a new step, you first select the type of step that you want 
to add to your test. You can then select the specific object and operation for 
the step, or the function that you want the step to use.

After you select the operation for the step, you can specify the relevant 
argument values and the location for the return value, if applicable. These 
values can be parameterized if required.

Finally, you can view the step documentation or statement syntax and add 
your new step or statement to your test or function library.

Note: Although the Step Generator shows information regarding the 
currently selected step, selections that you make in the Step Generator add a 
new step to your test; they do not modify the existing step.

Selecting the Type of Step to Add

In the Category list box, you can select one of the following options:

➤ Test Objects. Enables you to select a test object and operation for the step 
(for tests only). For more information, see “Specifying a Test Object and 
Operation for the Step” on page 786.

➤ Utility Objects. Enables you to select a Utility object and operation for the 
step. For more information, see “Specifying a Utility Object and Operation 
for the Step” on page 791.

➤ Functions. Enables you to select a function for the step from the available 
library functions (tests only), VBScript functions, and internal script 
functions. For more information, see “Specifying a Function for the Step” on 
page 793.



Chapter 28 • Adding Steps Containing Programming Logic

783

Specifying Argument Values

After you select the object and the operation (method, property, or 
function) for the step, you can specify the relevant argument values. These 
values can be parameterized if required.

If the selected operation has arguments, the Arguments area displays the 
name and type of each argument.

In the Value column, you can define the values for the arguments, as 
follows:

➤ Mandatory arguments. If the name of the argument is followed by a red 
asterisk (*), you must specify a value for the argument. You cannot insert the 
step or view the step documentation if the values have not been defined for 
all mandatory arguments.

➤ Optional arguments. If the name of the argument is not followed by a red 
asterisk (*), you can specify a value for the argument or leave the cell blank. 
If you do not specify a value, QuickTest uses the default value for the 
argument. (You can view the default value by moving the pointer over the 
cell).

➤ Required arguments. If you specify a value for an optional argument, then 
you must also specify the values for any optional arguments that are listed 
before this argument. If you do not specify these values, QuickTest uses the 
default values for all required arguments. You can see the default value for 
each argument in a tooltip, by moving the pointer over the Value column.

➤ Parameterized arguments. You can use a parameter for any argument value 
by clicking the parameterization button . For more information, see 
“Configuring a Selected Value” on page 760.

➤ Predefined constants. If an argument has a predefined list of values, 
QuickTest provides a drop-down list of possible values. If a list of values is 
provided, you cannot manually type a value in this box. 



Chapter 28 • Adding Steps Containing Programming Logic

784

Specifying the Location for the Return Value

If the selected operation returns a value, you can specify that you want to 
store the value by selecting the Return Value check box. When this check 
box is selected, a default variable is displayed as the return value location.

You can supply a different variable definition by editing the value. You can 
select a different storage location for the return value by clicking the 
displayed value and then the output storage button . For more 
information, see “Storing Return Values and Action Output Parameter 
Values” on page 794.

Viewing the Step Documentation in the Keyword View

If you open the Step Generator from the Keyword View, the Step 
documentation box at the bottom of the Step Generator dialog box can 
display summary information on the current step in an easy-to-read 
sentence.

If you select either the Test Object or Utility Object category and you define 
all the mandatory and required values for the current operation, the Step 
documentation box describes the operation performed by the step. When 
the step is inserted into your test, this description is displayed in the 
Documentation column in the Keyword View.

If all the mandatory and required argument values have not been defined 
for the operation, the Step documentation box displays a warning message.

Note: If you select the Functions category, step documentation is available 
for user-defined functions, if you provided this information when defining 
them. For more information, see “Documenting the Function” on page 934.



Chapter 28 • Adding Steps Containing Programming Logic

785

Viewing the Generated Step in the Expert View

If you open the Step Generator from the Expert View, the Generated step 
box displays the defined statement for the step.

If all the mandatory and required argument values have not been defined 
for the operation, the names of the undefined arguments are highlighted in 
bold text. If you attempt to insert the step, an error message is displayed.

Viewing the Generated Step in a Function Library

If you open the Step Generator from a function library, the Generated step 
box displays the defined statement for the step.

If all the mandatory and required argument values have not been defined 
for the statement, the names of the undefined arguments are highlighted in 
bold text. If you attempt to insert the step, an error message is displayed.

Inserting Steps

After you define all mandatory argument values for the current operation, 
the following options are available:

➤ To insert the current step and close the Step Generator, make sure the 
Insert another step check box is cleared. When you click OK, the step is 
added to your test and the Step Generator dialog box closes.

➤ To insert the current step and continue adding steps at the same location, 
select the Insert another step check box. The OK button changes to Insert. 
When you click Insert, the current step is added to your test and the Step 
Generator dialog box remains open, enabling you to define another step.

When you insert a new step using the Step Generator, it is added to your test 
after the selected step, and the new step is selected. For more information on 
the hierarchy of steps and objects and the positioning of new steps, see 
“Understanding the QuickTest Object Hierarchy” on page 391.



Chapter 28 • Adding Steps Containing Programming Logic

786

Specifying a Test Object and Operation for the Step
If you select Test Objects in the Category list in the Step Generator dialog 
box, you can select the object for the new step in the context of the 
currently selected step in your test. Alternatively, you can select any object 
from the object repository or from your application.

The list in the Object box contains all the objects in the object repository 
that are at the same hierarchical level and location as the currently selected 
step. You can select any of these objects for your new step.

For example, suppose that you selected the step for the userName object in 
the Welcome: Mercury Tours Web page, as shown below:

When you open the Step Generator, Test Objects is selected in the Category 
box, and the Object box lists the userName, password and Sign-in objects.



Chapter 28 • Adding Steps Containing Programming Logic

787

Note: The objects are listed by name in alphabetical order.

You can select an object from the object repository or from your application, 
by clicking the Select Object button. For more information, see “Selecting 
an Object from the Repository or Application” on page 788.

After you select the object for the step, you can select the required operation 
type (test object operation or, if available, native (run-time object) 
operation) and then you can select the operation for the step.

Selecting the Operation for a Test Object

If QuickTest can retrieve native (run-time object) operations for the selected 
test object, you can select the operation type—Test object operation or 
Native operation. (If QuickTest cannot retrieve native operations for the 
selected object, the Native operations option is not available.)

The Operation box displays the default operation for the selected object. 
You can select a different operation from the Operation box list, which 
contains all the operations that are available for the selected object.

For detailed information on a test object operation and its syntax, you can 
click the Operation Help button to open the HP QuickTest Professional Object 
Model Reference for the selected operation.

If you click the Operation Help button when a native operation is selected, 
the HP QuickTest Professional Object Model Reference opens for the selected test 
object. For more information on specific native operations, see the 
documentation for the environment or application you are testing.

Note: If you select a native operation, the Step Generator inserts a step using 
.Object syntax. For information on using the Object property, see 
“Accessing Native Properties and Operations” on page 887.



Chapter 28 • Adding Steps Containing Programming Logic

788

After you select the operation for your test object, you can define the 
relevant argument values. For more information, see “Specifying Argument 
Values” on page 783.

Selecting an Object from the Repository or Application
The Select Object for Step dialog box displays the object repository tree and 
enables you to select an object from the object repository or from your 
application.

You can select any object in the object repository tree for your new step. 
For more information on the object repository, see Chapter 5, “Managing 
Test Objects in Object Repositories.”

If the object that you want to use in the new step is not in the object 
repository, you can select an object in your application.

When you click OK, the selected object is displayed in the dialog box from 
which you opened the Select Object for Step dialog box. 



Chapter 28 • Adding Steps Containing Programming Logic

789

To select an object in your application for the new step:

 1 Click the pointing hand button. QuickTest is hidden, and the pointer 
changes to a pointing hand. 

 2 Use the pointing hand to click on the required object in your application. 
For more information about using the pointing hand feature, see “Tips for 
Using the Pointing Hand” on page 790.

If the location you clicked is associated with more than one object, the 
Object Selection dialog box opens. 

 3 Select the object for the new step and click OK. The object is displayed in the 
dialog box from which you opened the Select Object for Step dialog box. 

Tip: If you select an object in your application that is not in the object 
repository, a test object is added to the object repository when you insert the 
new step.



Chapter 28 • Adding Steps Containing Programming Logic

790

Tips for Using the Pointing Hand

➤ You can hold the left CTRL key to change the pointing hand to a standard 
pointer. You can then change the window focus or perform operations in 
QuickTest or in your application, such as right-clicking, using the scroll bars, 
or moving the pointer over an object to display a context menu.

➤ If the window containing the object you want to select is partially hidden 
by another window, hold the pointing hand over the partially hidden 
window for a few seconds until it comes to the foreground. Then point to 
and click the required object. You can configure the length of time required 
to bring a window into the foreground using the General pane of the 
Options dialog box. 

➤ If the window containing the object you want to select is fully hidden by 
another window, or if a dialog box is hidden behind a window, press the left 
CTRL key and arrange the windows as needed.

➤ If the window containing the object you want to select is minimized, you 
can display it by holding the left CTRL key, right-clicking the application in 
the Windows task bar, and choosing Restore from the context menu.

➤ If the object you want to select can be displayed only by performing an 
event (such as right-clicking or moving the pointer over an object to display 
a context menu), hold the left CTRL key. The pointing hand temporarily 
turns into a standard pointer and you can perform the event. When the 
object you want to select is displayed, release the left CTRL key. The pointer 
becomes a pointing hand again.



Chapter 28 • Adding Steps Containing Programming Logic

791

Specifying a Utility Object and Operation for the Step
If you select Utility Objects in the Category box list, you can select the 
required Utility (reserved) object from the Object box list. 

Tip: The above example shows the list of Utility objects that are available 
when you open the Step Generator from the Keyword View. When you open 
the Step Generator from the Expert View or a function library, the list 
includes a number of additional Utility objects. If you have one or more 
add-ins installed, the list may include additional Utility objects for those 
add-ins.



Chapter 28 • Adding Steps Containing Programming Logic

792

For more information on Utility objects, see the Utility Objects section of 
the HP QuickTest Professional Object Model Reference.

The Operation box displays the default operation for the selected Utility 
object. You can select a different operation from the Operation box list, 
which contains all the operations that are available for the selected object.

For detailed information on a Utility object operation and its syntax, you 
can click the Operation Help button to open the HP QuickTest Professional 
Object Model Reference for the selected operation.

After you select the operation for your Utility object, you can define the 
relevant argument values. For more information, see “Specifying Argument 
Values” on page 783.



Chapter 28 • Adding Steps Containing Programming Logic

793

Specifying a Function for the Step
If you select Functions in the Category box list, you can select one of the 
following options from the Library box list:

➤ All. Enables you to select a function from all the available functions and 
types.

➤ Library functions. Enables you to select a function from any function library 
associated with your test (for tests only). For more information on defining 
and using associated function libraries, see “Working with Associated 
Function Libraries” on page 919.

➤ Built-in functions. Enables you to select any standard VBScript function 
supported by QuickTest. For more information on working with VBScript, 
you can open the VBScript documentation from the QuickTest Help menu 
(Help > QuickTest Professional Help > VBScript Reference).

➤ Local script functions. Enables you to select any local function defined 
directly in the current action or function library.

You can select the required function from the Operation box list, which 
displays the functions available for the selected function type in 
alphabetical order.

For detailed information on a selected built-in VBScript function, you can 
click the Operation Help button to open Microsoft's VBScript Reference or 
the HP QuickTest Professional Object Model Reference. This option is not 
available for library and local script functions.

After you select the function for the operation, you can define the relevant 
argument values. For more information, see “Specifying Argument Values” 
on page 783.



Chapter 28 • Adding Steps Containing Programming Logic

794

Storing Return Values and Action Output Parameter 
Values
The Storage Location Options dialog box enables you to specify how and 
where to store a return value for an operation that you have selected in the 
Step Generator dialog box. When you click the displayed return value and 
then the output storage button , the Storage Location Options dialog box 
opens.

The Storage Location Options dialog box also enables you to specify how 
and where to store the value for an output parameter for an action. When 
you select an output parameter in the Parameter Values tab of the Action 
Call Properties dialog box and click the output storage button  in the 
Store in column, the Storage Location Options dialog box opens. 



Chapter 28 • Adding Steps Containing Programming Logic

795

You can select one of the following options to specify where to store the 
value:

➤ Variable. Stores the value in a run-time variable for the duration of the run 
session. You can accept the default name assigned to the variable (if any) or 
enter a different variable name.

➤ Output Type. Stores the value in an test or action output parameter, Data 
Table column or environment variable. You can specify the output type and 
settings as for any other output value.

When a return value or a test or action output parameter is first selected, the 
default output definition for the value is displayed. For more information 
on default output definitions for a return value, see “Understanding Default 
Output Definitions” on page 683. 

For more information on default output definitions for output action 
parameter values, see “Understanding Default Output Definitions for Action 
Parameter Values” on page 796.

You can accept the default output definition by clicking OK or you can 
change the output type and/or settings.

The options for changing the output type and settings are identical to those 
in the Output Options dialog box. For more information, see:

➤ “Outputting a Value to an Action Parameter” on page 684

➤ “Outputting a Value to the Data Table” on page 685

➤ “Outputting a Value to an Environment Variable” on page 686



Chapter 28 • Adding Steps Containing Programming Logic

796

Understanding Default Output Definitions for Action 
Parameter Values

When you select Output Type for an output action parameter value for a 
nested action:

➤ If at least one output action parameter is defined in the action calling the 
nested action, the default output type is Test/action parameter and the 
default output name is the first output parameter displayed in the Action 
Properties dialog box of the calling action.

➤ If no output action parameters are defined in the calling action, the default 
output type is Data Table and QuickTest creates a new Data Table output 
name based on the selected value. The value is created in the Global sheet of 
the Data Table.

When you select Output Type for an output action parameter value for a 
top-level action:

➤ If at least one output action parameter is defined in the test, the default 
output type is Test/action parameter and the default output name is the 
first output parameter displayed in the Test Properties dialog box.

➤ If no output action parameters are defined in the test, the default output 
type is Data Table and QuickTest creates a new Data Table output name 
based on the selected value. The value is created in the Global sheet of the 
Data Table.



Chapter 28 • Adding Steps Containing Programming Logic

797

Using Conditional Statements

You can control the flow of your test with conditional statements. Using 
conditional If...Then...Else statements, you can incorporate decision-making 
into your tests.

The If...Then...Else statement is used to evaluate whether a condition is true 
or false and, depending on the result, to specify one or more statements to 
run. Usually the condition is an expression that uses a comparison operator 
to compare one value or variable with another. The following comparison 
operators are available: less than <, less than or equal to <=, greater than >, 
greater than or equal to >=, not equal <>, and equal =. 

Your If...Then...Else statement can be nested to as many levels as you need. 
It has the following syntax:

If condition Then statements [Else elsestatements] End If

Or, you can use the block form syntax: 

If condition Then
[statements]

[ElseIf condition-n Then
[elseifstatements] . . .

[Else
[elsestatements]

End If



Chapter 28 • Adding Steps Containing Programming Logic

798

For example:

‘Set the focus on (activate) the Open Order dialog box
Window("Flight Reservation").Dialog("Open Order").Activate

‘Insert a check mark in the Order No. check box
Window("Flight Reservation").Dialog("Open Order").WinCheckBox("Order No.").

Set "ON"

Insert an order number in the displayed box and save the value as "OrderNo" for 
‘use later in the script. If the value is less than or equal to 0, generate a message
‘box. (If the value is illegal and a message box is generated, end the run session 
‘when the user clicks OK.)
OrderNo = InputBox("Enter Order Number")

If OrderNo <= 0 Then
Msgbox "You entered an invalid order number."
ExitAction

End If

‘Insert the saved order number value in the Order No. box
Window("Flight Reservation").Dialog("Open Order").WinEdit("OrderNumber

Edit").Set OrderNo

‘Click OK to close the Open Order dialog box
Window("Flight Reservation").Dialog("Open Order").WinButton("OK").Click

‘Check if an error message opens and send a report to the test results
If Window("Flight Reservation").Dialog("Open Order").Dialog("Flight

Reservations").Exist Then
Reporter.ReportEvent micFail, "Check that the value of the order 

number is legal", "The order number does not exist."
Window("Flight Reservation").Dialog("Open Order").Dialog("Flight

Reservations").WinButton("OK").Click
Else

Reporter.ReportEvent micPass, "Check that the value of the order 
number is legal", "The order number exists."

End If



Chapter 28 • Adding Steps Containing Programming Logic

799

The above example checks whether the application being tested will identify 
whether a valid order number is being entered in the Order No. box in the 
Open Order dialog box. 

To do this, QuickTest activates the Open Order dialog box (brings it into 
focus), selects the Order No. check box, and opens a box in which the user 
inserts a value—the relevant order number—and clicks OK. The first 
conditional statement instructs QuickTest to verify that the value entered by 
the user is greater than zero. If it is not greater than zero, QuickTest opens a 
message box stating that the value entered is invalid. When the user clicks 
OK to close the message box, QuickTest ends the run session. 

Otherwise, if the value entered is greater than zero, QuickTest inserts the 
above value in the Order No. box. 

The next If statement instructs QuickTest to check whether the order 
number exists in the application and to send a report to the Test Results 
indicating that the step passed or failed. If the step failed because the order 
number was invalid, the Flight Reservations error message opens, and 
QuickTest clicks OK to close this message box before ending the run session.

Note: You can insert conditional statements in the Expert View and in the 
Keyword View. You can also switch between the views, as needed. For 
information on working with conditional steps in the Expert View, see 
“Using Comments, Control-Flow, and Other VBScript Statements” on 
page 876, and the VBScript documentation (select Help > QuickTest 
Professional Help > VBScript Reference).



Chapter 28 • Adding Steps Containing Programming Logic

800

To insert a conditional statement in the Keyword View:

 1 In the Keyword View, select the step that you want the conditional 
statement to follow. 

The following example shows the userName row selected: 

 2 Select Insert > Conditional Statement and select If...Then. The new 
statement is added to the Keyword View below the selected step. For 
example:

Note: Each statement type is indicated by one of the following icons:

 (If...Then statement)

 (ElseIf...Then statement)

 (Else statement)

 3 Click in the Item cell for the If statement. Then click the down arrow and 
select the object on which you want to perform the conditional statement. 
For example:



Chapter 28 • Adding Steps Containing Programming Logic

801

 4 Click in the Operation cell and select the operation you want to perform. 
For example:

 5 If needed, click in the Value cell and enter the required condition. (In this 
example, because we are using the Exist property, it is not necessary to add a 
value to the Value cell.) 

 6 Insert a Then statement by selecting the If statement step and inserting a 
new statement (Insert > New Step) or by recording a new step. For example:

Make sure you set the values for the new step in the Operation and Value 
columns.

 7 Delete the row immediately above the If statement. For example:



Chapter 28 • Adding Steps Containing Programming Logic

802

 8 You can now complete the statement with an Else statement, or you can 
nest an additional level in your statement. To do this, select the If statement 
and select one of the following options:

For example, the statements below check that the User Name edit box exists 
in the Mercury Tours site. If the edit box exists, Then a user name is entered; 
Else a message is sent to the Test Results. 

The same example is displayed in the Expert View as follows:

If Browser("Welcome: Mercury").Page("Welcome: Mercury").
WebEdit("userName").Exist Then 

Browser("Welcome: Mercury").Page("Welcome: Mercury").
WebEdit("userName").Set DataTable ("p_UserName", dtGlobalSheet)

Else
Reporter.ReportEvent micFail, "UserName Check", "The User Name field 

does not exist."
End If

 9 After you have finished creating the conditional statement, use the Insert 
Step After Block option if you want to insert a step outside of the 
conditional statement block. For more information, see “Adding a Standard 
Step After a Conditional or Loop Block” on page 409.

To add: Select:

an If statement Insert > Conditional Statement > If...Then

an ElseIf statement Insert > Conditional Statement > ElseIf...Then

an Else statement Insert > Conditional Statement > Else 



Chapter 28 • Adding Steps Containing Programming Logic

803

Using Loop Statements 

You can control the flow of your test with loop statements. Using loop 
statements, you can run a group of steps repeatedly, either while or until a 
condition is True. You can also use loop statements to repeat a group of steps 
a specific number of times.

The following loop statements are available in the Keyword View: 

➤ While...Wend. Performs a series of statements as long as a specified 
condition is True.

➤ For...Next. Uses a counter to perform a group of statements a specified 
number of times.

➤ Do...While. Performs a series of statements indefinitely, as long as a specified 
condition is True.

➤ Do...Until. Performs a series of statements indefinitely, until a specified 
condition becomes True.

Note: For more information on loop statements, see the VBScript 
documentation (select Help > QuickTest Professional Help > VBScript 
Reference).



Chapter 28 • Adding Steps Containing Programming Logic

804

To insert a loop statement in the Keyword View:

 1 Select the step that you want the loop statement to follow.

 2 Select Insert > Loop Statement and select the statement type that you want 
to insert from the sub-menus. The new statement is added to the Keyword 
View below the selected step. 

Each statement type is indicated by one of the following icons:

 3 In the Value column, enter the required condition, for example:
For i = 0 to ItemsCount - 1 

 4 To complete the loop statement, you can:

➤ Select the loop statement step and record a new step to add it to your 
loop statement.

➤ Select the loop statement step and select Insert > New Step or press F8 to 
insert a new step into your loop statement.

Note: For more information on working in the Expert View, see Chapter 29, 
“Working in the Expert View and Function Library Windows.”

Icon Type

While...Wend statement

For...Next statement

Do...While statement

Do...Until statement



Chapter 28 • Adding Steps Containing Programming Logic

805

The following example counts the number of items in a list and then selects 
them one by one. After each of the items has been selected, the test 
continues.  

The same example is displayed in the Expert View as follows:

itemsCount = Browser("Welcome: Mercury").Page("Find a Flight:").
WebList("toDay").GetROProperty ("items count")

For i = 1 To ItemsCount-1
ItemName = Browser("Welcome: Mercury").Page("Find a Flight:").

WebList("toDay").GetItem (i)
Browser("Welcome: Mercury").Page("Find a Flight:").WebList("toDay").

Select ItemName
Next

 5 After you have finished creating the loop statement, use the Insert Step 
After Block option if you want to insert a step outside of the loop statement 
block. For more information, see “Adding a Standard Step After a 
Conditional or Loop Block” on page 409.



Chapter 28 • Adding Steps Containing Programming Logic

806

Generating With Statements for Your Test

You can instruct QuickTest to automatically generate With statements when 
you record a test or to generate With statements for any existing action. You 
can also remove With statements from an action.

Note: Using With statements in your test has no effect on the run session 
itself, only on the way your test appears in the Expert View. Generating With 
statements for your test does not affect the Keyword View in any way. 

Understanding With Statements
With statements make your script (in the Expert View) more concise and 
easier to read by grouping consecutive statements with the same parent 
hierarchy. 

The With statement has the following syntax.

With object
statement
statement
statement

End With 



Chapter 28 • Adding Steps Containing Programming Logic

807

For example, you could replace this script:

Window("Flight Reservation").WinComboBox("Fly From:").Select "London"
Window("Flight Reservation").WinComboBox("Fly To:").Select "Los Angeles"
Window("Flight Reservation").WinButton("FLIGHT").Click
Window("Flight Reservation").Dialog("Flights Table").WinList("From").Select 
"19097   LON "
Window("Flight Reservation").Dialog("Flights Table").WinButton("OK").Click

with the following:

With Window("Flight Reservation") 
.WinComboBox("Fly From:").Select "London" 
.WinComboBox("Fly To:").Select "Los Angeles" 
.WinButton("FLIGHT").Click 
With .Dialog("Flights Table") 

.WinList("From").Select "19097   LON " 

.WinButton("OK").Click 
End With 'Dialog("Flights Table") 

End With 'Window("Flight Reservation") 



Chapter 28 • Adding Steps Containing Programming Logic

808

Automatically Generating With Statements
You can instruct QuickTest to automatically generate With statements for 
the steps you record. When you select this option, statements are displayed 
in their normal format while recording. When you stop recording, the 
statements in all actions recorded during the current recording session are 
automatically converted to the With format.

To generate With statements automatically when you record:

 1 Select Tools > Options or click the Options toolbar button. The Options 
dialog box opens.

 2 In the General pane, select Automatically generate "With" statements after 
recording.



Chapter 28 • Adding Steps Containing Programming Logic

809

 3 Enter the minimum number of consecutive, identical objects for which you 
want to apply the With statement in the Generate "With" statements for __ 
or more objects box. The default is 2.

Note: This setting is used when you use the Apply "With" to Script option 
(see “Generating With Statements for Existing Actions” on page 809) as well 
as for the Automatically generate "With" statements after recording option. 

For example, if you only want to generate a With statement when you have 
three or more consecutive statements based on the same object, enter 3.

 4 Begin recording your test. While recording, statements are recorded 
normally. When you stop recording, the statements in all actions recorded 
during the current recording session are automatically converted to the 
With format.

Generating With Statements for Existing Actions
You can instruct QuickTest to generate With statements for any action 
displayed in the Expert View, and to enable IntelliSense within existing With 
statements.

To generate With statements for existing actions:

 1 Confirm that the proper number is set for the Generate "With" statements 
for __ or more objects in the General pane of the Options dialog box. (The 
default is 2.)

 2 Display the action for which you want to generate With statements.



Chapter 28 • Adding Steps Containing Programming Logic

810

 3 From the Expert View, select Edit > Advanced > Apply "With" to Script. The 
"With" Generation Results window opens. 

Each With statement contains only one object

 4 To confirm the generated results, click OK. The With statements are applied 
to the action.

Tips: 

➤ You can search for text strings in the Generation Results window by 
pressing CTRL+F. For more information on the Find dialog box, see 
“Finding Text Strings” on page 847.

➤ If you type a With statement (as opposed to creating it using the 
procedure described above), select Edit > Advanced > Apply "With" to 
Script to enable IntelliSense within the With statement.



Chapter 28 • Adding Steps Containing Programming Logic

811

Removing With Statements from an Action
You can remove all the With statements in an action displayed in the Expert 
View.

To remove With statements from an action:

 1 Display the action for which you want to remove With statements.

 2 From the Expert View, select Edit > Advanced > Remove "With" Statements. 
The Remove "With" Results window opens.

 3 To confirm the results, click OK. The With statements are replaced with the 
standard statement format.



Chapter 28 • Adding Steps Containing Programming Logic

812

Generating Messages

You can generate messages in your test that are displayed in the Test Results 
window. You can also choose to display messages on screen while running 
your test.

Sending Messages to the Test Results
You can define a message that QuickTest sends to your test results. For 
example, suppose you want to check that a password edit box exists in the 
Mercury Tours site. If the edit box exists, then a password is entered. 
Otherwise, QuickTest sends a message to the test results indicating that the 
object is absent.

To send a message to your test results:

 1 In the Keyword View, select a step and select Insert > Report or right-click a 
step and select Insert Step > Report. The Insert Report dialog box opens. 



Chapter 28 • Adding Steps Containing Programming Logic

813

 2 Select the status that will result from this step from the Status list.

 3 In the Name box, type a name for the step, for example, Password edit box.

 4 In the Details box, type a detailed description of this step to send to your 
test results, for example, Password edit box does not exist.

 5 Click OK. A report step is inserted into the Keyword View  and a 
Reporter.ReportEvent statement is inserted into your script in the Expert 
View. For example:

Reporter.ReportEvent micFail, "Password edit box", "Password edit box does 
not exist"

In this example, micFail indicates the status of the report (failed), Password 
edit box is the report name, and Password edit box does not exist is the report 
message.

For more information on test results, see Chapter 33, “Viewing Run Session 
Results.”

Note: After you add a report step, you can modify it in the Keyword View by 
right-clicking the step and choosing Report Properties, or by modifying any 
of the arguments in the Value column. (You can also modify the 
Reporter.ReportEvent statement directly in the Expert View.)

Status Description

Passed Causes this step to pass. Sends the specified message to the 
report.

Failed Causes this step (and therefore the test itself) to fail. Sends the 
specified message to the report.

Done Sends a message to the report without affecting the pass/fail 
status of the step.

Warning Sends a warning status for the step, but does not cause the test to 
stop running, and does not affect its pass/fail status.



Chapter 28 • Adding Steps Containing Programming Logic

814

Displaying Messages During the Run Session
In addition to sending messages to the Test Results, you can generate 
messages in the following ways:

➤ Use the MessageBox VBScript function in your test to display information 
during the run session. The run session pauses until the message box is 
closed. For more information, see the VBScript documentation from the 
QuickTest Help menu (Help > QuickTest Professional Help > VBScript 
Reference).

➤ Use the Print Utility statement in your test to display information in the 
QuickTest Print Log window while still continuing the run session. For 
example, the following example iterates all the items in the Flight Table 
dialog (in the sample Flight application) and uses the Print Utility statement 
to print the content of each item to the QuickTest Print Log window.

Set FlightsList = Window("Flight Reservation").Dialog("Flights Table").
WinList("From")

For i = 1 to FlightsList.GetItemsCount
Print FlightsList.GetItem(i - 1)

Next

The QuickTest Print Log window remains open throughout the run session, 
until you close it.



Chapter 28 • Adding Steps Containing Programming Logic

815

Adding Comments

While editing your test, you can add comments in the Keyword View or in 
the Expert View. You can also add comments to function libraries. A 
comment is an explanatory remark in a program. When you run a test, 
QuickTest does not process comments. You can use comments to explain 
sections of your tests to improve readability and to make them easier to 
update. You can add comments directly to the Keyword View or the Expert 
View, or you can use the Insert Comment dialog box. You can also modify 
comments at any time directly in the Keyword View or the Expert View, or 
using the Comment Properties dialog box. 

To add a comment in the Keyword View:

 1 If the Comment column is not visible, right-click any column header and 
select Comment.

 2 Add a comment in one of the following ways:

➤ To add a comment on the same line as a step, select the step and type 
your comment in the Comment column.

➤ To add a comment on a separate line, select a step and select Insert > 
Comment, or right-click a step and select Insert Step > Comment. The 
Insert Comment dialog box opens. Type a comment and click OK. A 
comment statement is added to your test.

In the Keyword View, the  icon indicates a comment. 

To add a comment in the Expert View or a function library:

Type an apostrophe (') and then type your comment. You can add a 
comment at the end of a line or at the beginning of a separate line.



Chapter 28 • Adding Steps Containing Programming Logic

816

To modify a comment:

➤ In the Keyword View, you can modify the comment text directly in the 
Comment column, or you can right-click any column in the step and select 
Comment Properties to open the Comment Properties dialog box (which is 
similar to the Insert Comment dialog box). 

➤ In the Expert View, you can overwrite any existing comment.

Tip: If you want to add the same comment to every action that you create, 
you can add the comment to an action template. For more information, see 
“Creating an Action Template” on page 462.

Synchronizing Your Test

When you run a test, your application may not always respond with the 
same speed. For example, it might take a few seconds:

➤ for a progress bar to reach 100%

➤ for a status message to appear

➤ for a button to become enabled

➤ for a window or pop-up message to open

You can handle these anticipated timing problems by synchronizing your 
test to ensure that QuickTest waits until your application is ready before 
performing a certain step. 

There are several options that you can use to synchronize your test: 

➤ You can insert a synchronization point, which instructs QuickTest to pause 
the test until an object property achieves the value you specify. When you 
insert a synchronization point into your test, QuickTest generates a 
WaitProperty statement in the Expert View. 



Chapter 28 • Adding Steps Containing Programming Logic

817

➤ You can insert Exist or Wait statements that instruct QuickTest to wait until 
an object exists or to wait a specified amount of time before continuing the 
test. 

➤ You can modify the default amount of time that QuickTest waits for a Web 
page to load. 

➤ When working with tests, you can increase the default timeout settings for a 
test to instruct QuickTest to allow more time for objects to appear. 

Creating Synchronization Points
If you do not want QuickTest to perform a step or checkpoint until an object 
in your application achieves a certain status, you should insert a 
synchronization point to instruct QuickTest to pause the test until the 
object property achieves the value you specify (or until a specified timeout is 
exceeded). 

For example, suppose you record a test on a flight reservation application. 
You insert an order, and then you want to modify the order. When you click 
the Insert Order button, a progress bar is displayed and all other buttons are 
disabled until the progress bar reaches 100%. Once the progress bar reaches 
100%, you record a click on the Update Order button. 

Without a synchronization point, QuickTest may try to click the Update 
Order button too soon during a test run (if the progress bar takes longer 
than the test’s object synchronization timeout), and the test will fail.

You can insert a synchronization point that instructs QuickTest to wait until 
the Update Order button’s enabled property equals 1.

Tip: QuickTest must be able to identify the specified object to perform a 
synchronization point. To instruct QuickTest to wait for an object to open or 
appear, use an Exist or Wait statement. For more information, see “Adding 
Exist and Wait Statements” on page 821.



Chapter 28 • Adding Steps Containing Programming Logic

818

To insert a synchronization point:

 1 Start a recording session.

 2 Display the screen or page in your application that contains the object for 
which you want to insert a synchronization point.

 3 In QuickTest, select Insert > Synchronization Point. The pointer changes to a 
pointing hand. For more information about using the pointing hand 
feature, see “Tips for Using the Pointing Hand” on page 820.

 4 Click the object in your application for which you want to insert a 
synchronization point. 

Note: It does not matter what property values the object has at the time that 
you insert the synchronization point.

If the location you click is associated with more than one object in your 
application, the Object Selection - Synchronization Point dialog box opens.

Select the object for which you want to insert a synchronization point, and 
click OK. 



Chapter 28 • Adding Steps Containing Programming Logic

819

The Add Synchronization Point dialog box opens. 

 5 The Property name list contains the identification properties associated 
with the object. Select the property name you want to use for the 
synchronization point.

 6 Enter the property value for which QuickTest should wait before continuing 
to the next step in the test.

 7 Enter the synchronization point timeout (in milliseconds) after which 
QuickTest should continue to the next step, even if the specified property 
value was not achieved.

 8 Click OK. A WaitProperty step is added to your test. 

Because the WaitProperty step is a method of the selected object, it is 
displayed in the Keyword View with the icon for the selected object. For 
example, if you insert a synchronization point for the Update Order button, 
it may look something like this:

In the Expert View, this appears as:

Browser("Welcome: Mercury Tours").Page("Flight Confirmation: Mercury").Sync
Browser("Welcome: Mercury Tours").Page("Flight Confirmation: Mercury").

WebElement("Flight Confirmation #").WaitProperty "visible", true, 10000

For more information on the WaitProperty method, see the HP QuickTest 
Professional Object Model Reference.



Chapter 28 • Adding Steps Containing Programming Logic

820

Tips for Using the Pointing Hand

➤ You can hold the left CTRL key to change the pointing hand to a standard 
pointer. You can then change the window focus or perform operations in 
QuickTest or in your application, such as right-clicking, using the scroll bars, 
or moving the pointer over an object to display a context menu.

➤ If the window containing the object you want to select is partially hidden 
by another window, hold the pointing hand over the partially hidden 
window for a few seconds until it comes to the foreground. Then point to 
and click the required object. You can configure the length of time required 
to bring a window into the foreground using the General pane of the 
Options dialog box. 

➤ If the window containing the object you want to select is fully hidden by 
another window, or if a dialog box is hidden behind a window, press the left 
CTRL key and arrange the windows as needed.

➤ If the window containing the object you want to select is minimized, you 
can display it by holding the left CTRL key, right-clicking the application in 
the Windows task bar, and choosing Restore from the context menu.

➤ If the object you want to select can be displayed only by performing an 
event (such as right-clicking or moving the pointer over an object to display 
a context menu), hold the left CTRL key. The pointing hand temporarily 
turns into a standard pointer and you can perform the event. When the 
object you want to select is displayed, release the left CTRL key. The pointer 
becomes a pointing hand again.



Chapter 28 • Adding Steps Containing Programming Logic

821

Adding Exist and Wait Statements
You can enter Exist and/or Wait statements to instruct QuickTest to wait for 
a window to open or an object to appear. Exist statements return a boolean 
value indicating whether or not an object currently exists. Wait statements 
instruct QuickTest to wait a specified amount of time before proceeding to 
the next step. You can combine these statements within a loop to instruct 
QuickTest to wait until the object exists before continuing with the test. 

For example, the following statements instruct QuickTest to wait up to 20 
seconds for the Flights Table dialog box to open.

blnDone=Window("Flight Reservation").Dialog("Flights Table").Exist
counter=1
While Not blnDone

Wait (2)
blnDone=Window("Flight Reservation").Dialog("Flights Table").Exist
counter=counter+1
If counter=10 then 

blnDone=True
End if

Wend

For more information on While, Exist, and Wait statements, see the 
HP QuickTest Professional Object Model Reference.



Chapter 28 • Adding Steps Containing Programming Logic

822

Modifying Timeout Values
If you find that, in general, the amount of time QuickTest waits for objects 
to appear or for a browser to navigate to a specified page is insufficient, you 
can increase the default object synchronization timeout values for your test 
and the browser navigation timeout values for your test.

Alternatively, if you insert synchronization points and Exist and/or Wait 
statements for the specific areas in your test where you want QuickTest to 
wait a longer time for an event to occur, you may want to decrease the 
default timeouts for the rest of your test.

➤ When working with tests, to modify the maximum amount of time that 
QuickTest waits for an object to appear, change the Object Synchronization 
Timeout in the File > Settings > Run pane. For more information, see 
“Defining Run Settings for Your Test” on page 1270.

➤ To modify the amount of time that QuickTest waits for a Web page to load, 
change the Browser Navigation Timeout in the File > Settings > Web pane. 
For more information, see the HP QuickTest Professional Add-ins Guide.



823

Part V

Defining Functions and Other
Programming Tasks



824



825

29
Working in the Expert View and Function 
Library Windows

In QuickTest, tests are composed of statements coded in the Microsoft 
VBScript programming language. The Expert View provides an alternative to 
the Keyword View for testers who are familiar with VBScript. You can also 
create function libraries in QuickTest using VBScript.

This chapter explains how to work in the Expert View, provides a brief 
introduction to VBScript, and shows you how to enhance your tests and 
function libraries using a few simple programming techniques.

This chapter includes:

 ➤  About Working in the Expert View and Function Library Windows 
on page 826

 ➤  Understanding and Using the Expert View on page 827

 ➤  Navigating in the Expert View and Function Libraries on page 843

 ➤  Understanding Basic VBScript Syntax on page 853

 ➤  Using Programmatic Descriptions on page 863

 ➤  Running and Closing Applications Programmatically on page 875

 ➤  Using Comments, Control-Flow, and Other VBScript Statements on page 876

 ➤  Retrieving and Setting Identification Property Values on page 886

 ➤  Accessing Native Properties and Operations on page 887

 ➤  Running DOS Commands on page 889

 ➤  Enhancing Your Tests and Function Libraries Using the Windows API 
on page 889

 ➤  Choosing Which Steps to Report During the Run Session on page 893



Chapter 29 • Working in the Expert View and Function Library Windows

826

About Working in the Expert View and Function Library 
Windows

In the Expert View, you can view an action in VBScript. If you are familiar 
with VBScript, you can add and update statements and enhance your tests 
and function libraries with programming. This enables you to increase a 
test’s power and flexibility. You can also create and work with function 
libraries using the Function Library window. 

To learn about working with VBScript, you can view the VBScript 
documentation directly from the QuickTest Help menu (Help > 
QuickTest Professional Help > VBScript Reference).

You can add statements that perform operations on objects or retrieve 
information from your application. For example, you can add a step that 
checks that an object exists, or you can retrieve the return value of an 
operation.

You can add steps to your test or function library either manually or using 
the Step Generator. For more information on using the Step Generator, see 
“Inserting Steps Using the Step Generator” on page 777. 

You can print the test displayed in the Expert View or a function library at 
any time. You can also include additional information in the printout. For 
more information on printing from the Expert View, see “Printing a Test” on 
page 332. For more information on printing a function library, see “Printing 
a Function Library” on page 917.



Chapter 29 • Working in the Expert View and Function Library Windows

827

Understanding and Using the Expert View

If you prefer to work with VBScript statements, you can choose to work with 
your tests in the Expert View, as an alternative to using the Keyword View. 
You can move between the two views as you wish, by selecting the Expert 
View or Keyword View tab at the bottom of the Test pane in the QuickTest 
window.

Working in the Expert View
The Expert View displays the same steps and objects as the Keyword View, 
but in a different format:

➤ In the Keyword View, QuickTest displays information about each step and 
shows the object hierarchy in an icon-based table. For more information, see 
Chapter 14, “Working with the Keyword View.”

➤ In the Expert View, QuickTest displays each step as a VBScript line or 
statement. In object-based steps, the VBScript statement defines the object 
hierarchy.

The following diagram shows how the same object hierarchy is displayed in 
the Expert View and in the Keyword View: 



Chapter 29 • Working in the Expert View and Function Library Windows

828

Each line of VBScript in the Expert View represents a step in the test. The 
example above represents a step in a test in which the user inserts the name 
mercury into an edit box. The hierarchy of the step enables you to see the 
name of the site, the name of the page, the type and name of the object in 
the page, and the name of the operation performed on the object. 

The table below explains how the different parts of the same step are 
represented in the Keyword View and the Expert View:

 

In the Expert View, an object’s description is displayed in parentheses 
following the object type. For all objects stored in the object repository, the 
object name is a sufficient object description. In the following example, the 
object type is Browser, and the object name is Welcome: Mercury Tours:

Browser ("Welcome: Mercury Tours")

Tip: Test object and operation names are not case sensitive.

Keyword View Expert View Explanation

Browser 
("Welcome: 
Mercury Tours")

The name of the browser 
test object is Welcome: 
Mercury Tours.

Page ("Welcome: 
Mercury Tours")

The name of the current 
page is Welcome: Mercury 
Tours.

WebEdit 
("userName")

The object type is WebEdit; 
the name of the edit box 
on which the operation is 
performed is userName.

Set The method performed on 
the edit box is Set. 

"mercury" The value inserted into the 
username edit box is 
mercury.



Chapter 29 • Working in the Expert View and Function Library Windows

829

The objects in the object hierarchy are separated by a dot. In the following 
example, Browser and Page are two separate objects in the same hierarchy:

Browser("Welcome: Mercury Tours").Page("Welcome: Mercury Tours")

The operation (method) performed on the object is always displayed at the 
end of the statement, followed by any values associated with the operation. 
In the following example, the word mercury is inserted in the userName 
edit box using the Set method:

Browser("Welcome: Mercury Tours").Page("Welcome: Mercury Tours").
WebEdit("userName").Set "mercury"

QuickTest relates to your application in terms of the objects in it. The steps 
you add to your test correspond to the operations performed on the objects 
in your application.

The objects in QuickTest are divided by environment. By default, QuickTest 
supports objects from the standard Windows environments. You can work 
with additional environments by loading the relevant QuickTest add-ins in 
the Add-in Manager when you open QuickTest.

Most objects have corresponding operations. For example, the Back method 
is associated with the Browser object.

For a complete list of objects and their associated operations and properties, 
select Help > QuickTest Professional Help, and open the QuickTest Object 
Model from the Contents tab.

For more information on adding steps that perform operations, see 
“Generating Statements in the Expert View or in a Function Library” on 
page 833.

For more information on using VBScript, see “Understanding Basic VBScript 
Syntax” on page 853.



Chapter 29 • Working in the Expert View and Function Library Windows

830

Understanding Checkpoint and Output Statements
In QuickTest, you can create checkpoints and output values on pages, text 
strings, tables, and other objects. When you create a checkpoint or output 
value in the Keyword View, QuickTest creates a corresponding line in 
VBScript in the Expert View. It uses the Check method to perform the 
checkpoint, and the Output method to perform the output value step. 

For example, in the following statement QuickTest performs a check on the 
words New York:

Browser("Mercury Tours").Page("Flight Confirmation").Check 
Checkpoint("New York")

The corresponding step in the Keyword View is displayed as follows: 

Notes:

➤ The details about a checkpoint are set in the relevant Checkpoint 
Properties dialog box and are stored with the object it checks. The details 
about an output value step are set in the relevant Output Value Properties 
dialog box and are stored with the object whose values it outputs. The 
statement displayed in the Expert View is a reference to the stored 
information. Therefore, you cannot insert a checkpoint or output value 
statement in the Expert View manually and you cannot copy a 
Checkpoint or Output statement from the Expert View to another test.

➤ For more information on inserting and modifying checkpoints, see 
Chapter 17, “Understanding Checkpoints.” For more information on 
inserting and modifying output values, see Chapter 25, “Outputting 
Values.”



Chapter 29 • Working in the Expert View and Function Library Windows

831

Understanding Parameter Indications
You can use QuickTest to enhance your tests by parameterizing values. A 
parameter is a variable that is assigned a value from an external data source 
or generator. 

When you create a parameter in the Keyword View, QuickTest creates a 
corresponding line in VBScript in the Expert View.

For example, if you define the value of a method argument as a Data Table 
parameter, QuickTest retrieves the value from the Data Table using the 
following syntax:

Object_Hierarchy.Method DataTable (parameterID, sheetID)
 

For example, suppose you are creating a test for the Mercury Tours site, and 
you select San Francisco as your destination. The following statement would 
be inserted into your test in the Expert View:

Browser("Welcome: Mercury").Page("Find a Flight:").WebList("toPort").
Select "San Francisco"

Item Description

Object_Hierarchy The hierarchical definition of the test object, consisting of 
one or more objects separated by a dot.

Method The name of the method that QuickTest executes on the 
parameterized object.

DataTable The reserved object representing the Data Table.

parameterID The name of the column in the Data Table from which to 
take the value.

sheetID The name of the sheet in which the value is stored. If the 
parameter is a global parameter, dtGlobalSheet is the sheet 
ID.



Chapter 29 • Working in the Expert View and Function Library Windows

832

Now suppose you parameterize the destination value, and you create a 
Destination column in the Data Table. The previous statement would be 
modified to the following:

Browser("Welcome: Mercury").Page("Find a Flight:").WebList("toPort").
Select DataTable("Destination",dtGlobalSheet) 

In this example, Select is the method name, DataTable is the object that 
represents the Data Table, Destination is the name of the column in the Data 
Table, and dtGlobalSheet indicates the Global sheet in the Data Table. 

In the Keyword View, this step is displayed as follows:  

For more information on using and defining parameter values, see 
Chapter 24, “Parameterizing Values.”



Chapter 29 • Working in the Expert View and Function Library Windows

833

Generating Statements in the Expert View or in a 
Function Library
You can generate statements in the following ways:

➤ You can use the Step Generator to add steps that use methods and functions. 
For more information, see “Inserting Steps Using the Step Generator” on 
page 777. 

➤ You can manually insert VBScript statements that perform operations. 
QuickTest includes features that help you adhere to the correct syntax and 
select the relevant items for your statements.

➤ Statement completion (IntelliSense). This option, when enabled, helps 
you select the variable, test object, operation, property, or collection for 
your statement and view the relevant syntax as you type in the Expert 
View or a function library. For more information, see “Using Statement 
Completion (IntelliSense)” on page 833.  

➤ Auto-expand VBScript syntax. When this option is enabled, QuickTest 
automatically adds the relevant syntax or blocks to your script, when you 
start to type a VBScript keyword in the Expert View or in a function 
library. For more information, see “Automatically Completing VBScript 
Syntax” on page 842. 

Using Statement Completion (IntelliSense)

When you type in the Expert View or a function library, IntelliSense (the 
statement completion feature included with QuickTest) enables you to select 
the variable, test object, operation, property, or collection for your 
statement from a drop-down list and view the relevant syntax. 

The Statement Completion option is enabled by default. You can disable or 
enable this option in the Editor Options dialog box. For more information, 
see Chapter 30, “Customizing the Expert View and Function Library 
Windows.”



Chapter 29 • Working in the Expert View and Function Library Windows

834

Tips: 

➤ In some cases, QuickTest needs to retrieve IntelliSense information from 
an actual object. In such cases, you may experience a delay while typing 
in the Expert View or a function library. To avoid this delay, you can 
disable the statement completion option.

➤ Although IntelliSense in function library documents is supported to help 
generate test object statements, as described below, it is generally not 
recommended to include a full object hierarchy statement in a function. 
It is preferable to make your functions generic so that they can be used 
with different objects.

➤ QuickTest might not display IntelliSense information if the statement is 
typed incorrectly and contains syntax errors or other VBScript errors.

➤ If you resize the frame in which the IntelliSense drop-down list is 
displayed, QuickTest subsequently uses the new size when it displays 
IntelliSense drop-down lists. 

➤ To close the IntelliSense drop-down list without selecting from it, press 
ESC.

When the Statement Completion option is enabled it provides the 
following types of information:

➤ Available test objects. If you type a test object class followed by an open 
parenthesis ( , QuickTest displays a list of all test objects of this class in the 
object repository. If there is only one object of this class in the object 
repository, QuickTest automatically enters its name in quotes after the open 
parenthesis. For example, if you type Page(, QuickTest displays a list of all 
the Page test objects in the object repository.

➤ Available operations and properties. If you type a period after an object or 
test object in a statement, QuickTest displays a list of the operations and 
properties that you can add after the object you typed. 

As you type the name of an operation or a property, QuickTest highlights 
the first operation or property (alphabetically) that matches the text you 
typed. Pressing ENTER or SPACE enters the highlighted word in the step.



Chapter 29 • Working in the Expert View and Function Library Windows

835

Tip: If you type the name of an operation or property when the list of 
available operations and properties is not displayed, pressing CTRL+SPACE 
automatically completes the word if there is only one option, or displays the 
list and highlights the first operation or property (alphabetically) that 
matches the text you typed. Pressing ENTER or SPACE enters the highlighted 
word in the step.

QuickTest provides this type of IntelliSense information, when available, for 
test objects, reserved objects, objects you create in your test or function, 
variables to which objects or test objects are assigned, and properties or 
operations which return objects.

For example: 

➤ If you type a period after a test object in a statement, QuickTest displays a 
list of the relevant test objects, operations, properties, collections, and 
registered functions that you can add after the object you typed.

➤ If you type a period after an object that you created in your script (using 
the CreateObject method, for example), QuickTest displays the 
operations and properties that you can use for that object.

➤ If you use the Object property in your statement and the object data is 
currently available in the Active screen or the open application, 
QuickTest displays the native operations and properties of the object. For 
more information on the Object property, see “Accessing Native 
Properties and Operations” on page 887.

➤ If you type a period within a With statement, QuickTest displays a list of 
the operations and properties available for the relevant object. 

Note: If you type a With statement (as opposed to using a menu 
command to create it), you must use the Edit > Advanced > Apply "With" 
to Script command (or press CTRL+W) to enable IntelliSense within the 
With statement.



Chapter 29 • Working in the Expert View and Function Library Windows

836

➤ If you assign an object to a variable, and then type the name of the 
variable followed by a period, QuickTest displays a list of the operations 
and properties available for the object.

In some cases, the value of a variable cannot be determined while editing 
the test (for example, if the value is set by a conditional assignment or 
returned by another function). In this case, QuickTest provides 
IntelliSense information according to the most recent line of code in 
which the value of the variable could be evaluated, if any.

The following examples illustrate this: 

Example 1:

While editing this test, QuickTest cannot determine which object will 
actually be assigned to x in line 6. However, because the value of x can be 
evaluated independently in line 4, QuickTest displays the IntelliSense 
information relevant to the object "Word.Application" for the variable x in 
line 6. 

Example 2:

While editing this test, QuickTest cannot determine the type of object 
that the MyGetObject function returns (line 2). Therefore, in line 3 in 
the example above, QuickTest displays the IntelliSense information 
relevant to the object "Excel.Application", because line 1 is the most recent 
line of code in which the value of x could be evaluated. However, if line 2 
were not preceded by a line in which the value could be evaluated, 
QuickTest would not display any IntelliSense information for x in line 3.

Line 1: Set x = CreateObject("Excel.Application")
Line 2: z = GetValueFromUser()
Line 3: If z = 2 Then
Line 4: Set x = CreateObject("Word.Application")
Line 5: End If
Line 6: x.

Line 1: Set x = CreateObject("Excel.Application")
Line 2: Set x = MyGetObject()
Line 3: x.



Chapter 29 • Working in the Expert View and Function Library Windows

837

➤ Operation or property syntax. If you type a space after the name of an 
operation or property, QuickTest displays the syntax for it, including its 
mandatory and optional arguments. When you add a step that uses an 
operation or property, you must define a value for each mandatory 
argument associated with the operation or property.

When you type a comma after an argument value (other than the last one in 
the step), QuickTest displays the operation syntax again, bolding the next 
argument for which you need to enter a value.

You can also place the cursor on any operation or function that contains 
arguments and press CTRL+SHIFT+SPACE or select Edit > Advanced > 
Argument Info to display the statement completion (argument syntax) 
tooltip for that item.

➤ Possible argument values. For certain operations, when you type the space 
or comma before an argument that has a predefined list of values, QuickTest 
displays the list of possible values. In the Expert View, when working with 
Java or ActiveX objects, QuickTest dynamically retrieves the list of possible 
values for certain arguments from the object in the application. For 
QuickTest to retrieve the possible values, the application must be open and 
the relevant object must be visible. For example, QuickTest can retrieve the 
list of items in a specific Java list object, and display them as the possible 
values for the Item argument of the Select method.  

Note: When you edit a test during a recording session, QuickTest does not 
retrieve the possible argument values from the application.

➤ Available constants and local variables. If you begin to type a constant or a 
local variable name, QuickTest displays a list of constants and local variables 
(relevant to the current programming scope) that begin with the letters you 
typed. If there is only one matching constant or variable defined, QuickTest 
automatically enters its name in the step.



Chapter 29 • Working in the Expert View and Function Library Windows

838

Tip: If you press CTRL+SPACE, QuickTest displays a list of the relevant test 
objects, operations, properties, collections, VBScript functions, user-defined 
functions, VBScript constants, and utility objects that you can add. This list 
is displayed even if you typed an object that has not yet been added to the 
object repository. If the test contains a function, or is associated with a 
function library, the functions are also displayed in the list. 

To generate a statement using statement completion in the Expert View or 
a function library:

 1 Confirm that the Statement completion option is selected (Tools > View 
Options > General tab).

 2 Perform one of the following:

➤ If you are working in a function library, skip to step 4 

➤ If you are working in the Expert View, type an object followed by an 
open parenthesis ( 

If there is only one object of this type in the object repository, QuickTest 
automatically enters its name in quotes after the open parenthesis. If 
more than one object of this type exists in the object repository, 
QuickTest displays them in a list. 

 3 Double-click an object in the list or use the arrow keys to choose an object 
and press ENTER. QuickTest inserts the object into the statement.



Chapter 29 • Working in the Expert View and Function Library Windows

839

 4 Perform one of the following:

➤ If you are working in the Expert View, type a period (.) after the object on 
which you want to perform the operation. 

➤ If you are working in a function library, type the full hierarchy of an 
object, for example:

Browser("Welcome: Mercury Tours").Page("Book a Flight: 
Mercury).WebEdit("username")

 5 Type a period (.) after the object description, for example ("username"). 
QuickTest displays a list of the available operations and properties for the 
object. 



Chapter 29 • Working in the Expert View and Function Library Windows

840

Tip: 

➤ As you type the name of an operation or property, QuickTest highlights 
the first operation or property (alphabetically) that matches the text you 
typed. Pressing ENTER or SPACE inserts the highlighted word in the step.

➤ If you type the name of an operation or property when the list of 
available operations and properties is not displayed, you can press 
CTRL+SPACE or select Edit > Advanced > Complete Word. If only one 
operation or property matches the text you typed, QuickTest 
automatically completes the operation or property name. Otherwise, 
QuickTest displays the list and highlights the first operation or property 
(alphabetically) that matches the text you typed. Pressing ENTER or SPACE 
inserts the highlighted word in the step.

 6 Double-click an operation or property in the list or use the arrow keys to 
choose an operation or property and press ENTER. QuickTest inserts the 
operation or property into the statement. If the operation or property 
contains arguments, QuickTest displays the syntax of the operation or 
property in a tooltip, as shown in this example from the Expert View.  

In the above example, the Set method has one argument, called Text. The 
argument name represents the text to insert in the box.

Tip: You can also place the cursor on any operation or function that 
contains arguments and press CTRL+SHIFT+SPACE or select Edit > Advanced > 
Argument Info to display the statement completion (argument syntax) 
tooltip for that item.

Statement completion tooltip



Chapter 29 • Working in the Expert View and Function Library Windows

841

 7 Enter the operation arguments after the operation according to the 
displayed syntax.  

Note: After you have added a step in the Expert View, you can view the new 
step in the Keyword View. If the statement that you added in the Expert 
View contains syntax errors, QuickTest displays the errors in the 
Information pane when you select the Keyword View. For more 
information, see “Handling VBScript Syntax Errors” on page 860.

For more details and examples of any QuickTest operation, see the 
HP QuickTest Professional Object Model Reference.

For more information on VBScript syntax, see “Understanding Basic 
VBScript Syntax” on page 853.



Chapter 29 • Working in the Expert View and Function Library Windows

842

Automatically Completing VBScript Syntax

When the Auto-expand VBScript syntax option is enabled and you start to 
type a VBScript keyword in the Expert View or a function library, QuickTest 
automatically recognizes the first two characters of the keyword and adds 
the relevant VBScript syntax or blocks to the script. For example, if you 
enter the letters if and then enter a space at the beginning of an empty line, 
QuickTest automatically enters:

If Then
End If

The Auto-expand VBScript syntax option is enabled by default. You can 
disable or enable this option in the Editor Options dialog box. For more 
information, see “Customizing Editor Behavior” on page 897.

If you enter two characters that are the initial characters of multiple 
keywords, the Select a Keyword dialog box is displayed and you can select 
the keyword you want. For example, if you enter the letters pr and then 
enter a space, the Select a Keyword dialog box opens containing the 
keywords private and property. 

You can then select a keyword from the list and click OK. QuickTest 
automatically enters the relevant VBScript syntax or block in the script. 

For more information on VBScript syntax, see “Understanding Basic 
VBScript Syntax” on page 853.



Chapter 29 • Working in the Expert View and Function Library Windows

843

Navigating in the Expert View and Function Libraries

You can use the Go To dialog box or bookmarks to jump to a specific line in 
the Expert View or a function library. You can also find specific text strings 
in the Expert View or a function library, and, if desired, replace them with 
different strings. These options make it easier to navigate through sections 
of a long action or function.

Note: When working with tests, the Expert View displays only one action. 
The navigation features described in this section are available only for the 
currently selected action and not for the entire test.

Using the Go To Dialog Box
You can use the Go To dialog box to navigate to a specific line in an action 
or in a function library.

Tip: By default, line numbers are displayed in the Expert View and in 
function libraries. If they are not displayed, you can select the Show line 
numbers option in the Tools > View Options > General tab. For more 
information on the Editor options, see Chapter 30, “Customizing the Expert 
View and Function Library Windows.”



Chapter 29 • Working in the Expert View and Function Library Windows

844

To navigate to a line in the Expert View or a function library using the Go To 
dialog box:

 1 Click the Expert View tab or activate a function library.

 2 Select Edit > Go To. The Go To dialog box opens.

 3 Enter the line to which you want to navigate in the Line number box and 
click OK. The cursor moves to the beginning of the line you specify.

Working with Bookmarks
You can use bookmarks to mark important sections in your action or 
function library so that you can navigate between the various parts more 
easily. In tests, bookmarks apply only within a specific action; they are not 
preserved when you navigate between actions and they are not saved with 
the test or function library.

When you assign a bookmark, an icon is added to the left of the selected 
line in the Expert View or function library. You can then use the Go To 
button in the Bookmarks dialog box to jump to the bookmarked rows.



Chapter 29 • Working in the Expert View and Function Library Windows

845

Bookmarks look the same in tests and in function libraries. In the following 
example, two bookmarks have been added to an action in a test.   

Bookmarked lines



Chapter 29 • Working in the Expert View and Function Library Windows

846

To set bookmarks:

 1 Click the Expert View tab or activate a function library.

 2 Click in the line to which you want to assign a bookmark.

 3 Select Edit > Bookmarks. The Bookmarks dialog box opens.

 4 In the Bookmark name field, enter a unique name for the bookmark and 
click Add. The bookmark is added to the Bookmarks dialog box, together 
with the line number at which it is located and the textual content of the 
line. In addition, a bookmark icon  is added to the left of the selected line 
in the Expert View or function library.

 5 To delete a bookmark, select it in the list and click Delete.

To navigate to a specific bookmark:

 1 Click the Expert View tab or activate a function library.

 2 Select Edit > Bookmarks. The Bookmarks dialog box opens.

 3 Select a bookmark from the list and click the Go To button. QuickTest jumps 
to the appropriate line in the current action or function library.



Chapter 29 • Working in the Expert View and Function Library Windows

847

Finding Text Strings
You can specify text strings to locate in the current action in the Expert View 
or in a function library. You can also search for strings in the Edit HTML 
Source and Edit HTML Tags dialog boxes of Page checkpoints, and in the 
"With" Generation Results dialog box. You can either search for literal text or 
use regular expressions for a more advanced search. You can also use other 
options to further fine-tune your search results.

For more information on the With Generation Results dialog box, see 
“Generating With Statements for Your Test” on page 806. For more 
information on Page checkpoints, see the section on Page checkpoints in 
the HP QuickTest Professional Add-ins Guide.

To find a text string:

 1 In the Expert View or function library, perform one of the following:

➤ Click the Find button. 

➤ Select Edit > Find.

Tip: In the Expert View, you can also perform one of the following:

Select Edit > Advanced > Apply "With" to Script, and then press CTRL+F.

In the Page Checkpoint Properties dialog box, click Edit HTML Source or 
Edit HTML Tags, and then right-click and select Find in the displayed dialog 
box.



Chapter 29 • Working in the Expert View and Function Library Windows

848

The Find dialog box opens.

 2 In the Find what box, enter the text string you want to locate. 

 3 If you want to use regular expressions in the string you specify, click the 
arrow button (  ) and select a regular expression. When you select a 
regular expression from the list, it is automatically inserted in the Find what 
box at the cursor location. For more information, see “Using Regular 
Expressions in the Find and Replace Dialog Boxes” on page 852.

 4 Select any of the following options to help fine-tune your search:

➤ Match case. Distinguishes between upper-case and lower-case characters 
in the search. When Match case is selected, QuickTest finds only those 
occurrences in which the capitalization matches the text you entered in 
the Find what box exactly.

➤ Match whole word. Searches for occurrences that are only whole words 
and not part of longer words.

➤ Regular expression. Treats the specified text string as a regular 
expression. This option is automatically selected when you select a 
regular expression from the list.

➤ Wrap at beginning/end. Continues the search from the beginning or end 
of the action, dialog box, or function library text when either the 
beginning or end is reached, depending on the selected search direction.

➤ Restrict to selection. Searches only within the selected part of the action, 
dialog box, or function library text.

➤ Place cursor at end. Places the cursor at the end of the highlighted 
occurrence when the search string is located.



Chapter 29 • Working in the Expert View and Function Library Windows

849

 5 Specify the direction in which you want to search, from the current cursor 
location in the action, dialog box, or function library: Up or Down

 6 Click Find Next to highlight the next occurrence of the specified string in 
the current action, dialog box, or in the active function library.

Replacing Text Strings
You can specify text strings to locate in the current action in the Expert View 
or function library, and specify the text strings you want to use to replace 
them. You can also search and replace strings in the Edit HTML Source and 
Edit HTML Tags dialog boxes. You can either find and replace literal text or 
use regular expressions for a more advanced process. You can also use other 
options to further fine-tune your find and replace process.

To replace a text string:

 1 In the Expert View or function library, perform one of the following:

➤ Click the Replace button. 

➤ Select Edit > Replace.

Tip: In the Page Checkpoint Properties dialog box, click Edit HTML Source or 
Edit HTML Tags, and then right-click and select Replace in the displayed 
dialog box.



Chapter 29 • Working in the Expert View and Function Library Windows

850

The Replace dialog box opens.

 2 In the Find what box, enter the text string you want to locate. 

 3 In the Replace with box, enter the text string you want to use to replace the 
found text. 

 4 If you want to use regular expressions in the Find what or Replace with 
string, click the arrow button (  ) and select a regular expression. When 
you select a regular expression from the list, it is automatically inserted in 
the Find what or Replace with box at the cursor location. For more 
information, see “Using Regular Expressions in the Find and Replace Dialog 
Boxes” on page 852.

 5 Select any of the following options to help fine-tune your search:

➤ Match case. Distinguishes between upper-case and lower-case characters 
in the search. When Match case is selected, QuickTest finds only those 
occurrences in which the capitalization exactly matches the text you 
entered in the Find what box.

➤ Preserve case. Checks each occurrence of the Find what string for all 
lowercase, all uppercase, sentence caps or mixed case. The Replace with 
string is converted to the same case as the occurrence found, except 
when the occurrence found is mixed case. In this case, the Replace with 
string is used without modification.

➤ Match whole word. Searches for occurrences that are whole words only 
and not part of longer words.



Chapter 29 • Working in the Expert View and Function Library Windows

851

➤ Regular expression. Treats the specified text string as a regular 
expression. This option is automatically selected when you select a 
regular expression from the list.

➤ Wrap at beginning/end. Continues the search from the beginning or end 
of the action, dialog box, or function library text when either the 
beginning or end is reached, depending on the selected search direction.

➤ Restrict to selection. Searches only within the selected part of the action, 
dialog box, or function library text.

➤ Place cursor at end. Places the cursor at the end of the highlighted 
occurrence when the search string is located.

➤ Direction. Specifies the search direction.

➤ Up. Searches only from the current text up to the beginning of the 
action, dialog box, or function library text.

➤ Down. Searches only from the current text down to the end of the 
action, dialog box, or function library text.

 6 Click Find Next to highlight the next occurrence of the specified text string 
in the current action or dialog box, or in the active function library.

 7 Click Replace to replace the highlighted text with the text in the Replace 
with box, or click Replace All to replace all occurrences specified in the Find 
what box with the text in the Replace with box in the current action or 
dialog box, or in the active function library.



Chapter 29 • Working in the Expert View and Function Library Windows

852

Using Regular Expressions in the Find and Replace Dialog Boxes

You can use regular expressions in the Find what and Replace with strings to 
enhance your search. For a general understanding of regular expressions, see 
“Understanding and Using Regular Expressions” on page 762. Note that 
there are differences in the expressions supported by the Find and Replace 
dialog boxes and the expressions supported in other parts of QuickTest.

You display the regular expressions available for selection by clicking the 
arrow button  in the Find or Replace dialog boxes.

You can select from a predefined list of regular expressions. You can also use 
tagged expressions. When you use regular expressions to search for a string, 
you may want the string to change depending on what was already found. 

For example, you can search for (save\:n)\1, which will find any occurrence 
of save followed by any number, immediately followed by save, as well as 
the same number that was already found (meaning that it will find 
save6save6 but not save6save7). 



Chapter 29 • Working in the Expert View and Function Library Windows

853

You can also use tagged expressions to insert parts of what is found into the 
replace string. For example, you can search for save(\:n) and replace it with 
open\1. This will find save followed by any number, and replace it with 
open and the number that was found.

Select Tag an Expression from the regular expressions list to insert 
parentheses "()" to indicate a tagged expression in the search string. 

Select Match Tagged Expression and then select the specific tag group 
number to specify the tagged expression you want to use, in the format '\' 
followed by a tag group number 1-9. (Count the left parentheses '(' in the 
search string to determine a tagged expression number. The first (left-most) 
tagged expression is "\1" and the last is "\9".)

Understanding Basic VBScript Syntax

VBScript is an easy-to-learn, yet powerful scripting language. You can use 
VBScript to develop scripts to perform both simple and complex 
object-based tasks, even if you have no previous programming experience.

This section provides some basic guidelines to help you use VBScript 
statements to enhance your QuickTest test or function library. For more 
detailed information on using VBScript, you can view the VBScript 
documentation from the QuickTest Help menu (Help > 
QuickTest Professional Help > VBScript Reference).

Each VBScript statement has its own specific syntax rules. If you do not 
follow these rules, errors will be generated when you run the problematic 
step. Additionally, if you try to move to the Keyword View from the Expert 
View, QuickTest lists any syntax errors found in the document in the 
Information pane. You cannot switch to the Keyword View without fixing 
or eliminating the syntax errors. For more information, see “Handling 
VBScript Syntax Errors” on page 860.



Chapter 29 • Working in the Expert View and Function Library Windows

854

Tip: You can check the syntax of the current document at any time by 
clicking the Check Syntax button, or by choosing Tools > Check Syntax. If a 
test is open, the syntax of all the actions is checked. If a function library is 
open, the syntax of the library script is checked. 

When working in the Expert View or in a function library, you should 
consider the following general VBScript syntax rules and guidelines:

➤ Case-sensitivity. By default, VBScript is not case sensitive and does not 
differentiate between upper-case and lower-case spelling of words, for 
example, in variables, object and operation names, or constants. 

For example, the two statements below are identical in VBScript:

Browser("Mercury").Page("Find a Flight:").WebList("toDay").Select "31"
browser("mercury").page("find a flight:").weblist("today").select "31"

➤ Text strings. When you enter a value as a text string, you must add 
quotation marks before and after the string. For example, in the above 
segment of script, the names of the Web site, Web page, and edit box are all 
text strings surrounded by quotation marks. 

Note that the value 31 is also surrounded by quotation marks, because it is a 
text string that represents a number and not a numeric value. 

In the following example, only the property name (first argument) is a text 
string and is in quotation marks. The second argument (the value of the 
property) is a variable and therefore does not have quotation marks. The 
third argument (specifying the timeout) is a numeric value, which also does 
not need quotation marks.

Browser("Mercury").Page("Find a Flight:").WaitProperty("items count", 
Total_Items, 2000)

➤ Variables. You can specify variables to store strings, integers, arrays and 
objects. Using variables helps to make your script more readable and 
flexible. For more information, see “Using Variables” on page 856.

➤ Parentheses. To achieve the desired result and to avoid errors, it is 
important that you use parentheses () correctly in your statements. For more 
information, see “Using Parentheses” on page 857.



Chapter 29 • Working in the Expert View and Function Library Windows

855

➤ Indentation. You can indent or outdent your script to reflect the logical 
structure and nesting of the statements. For more information, see 
“Formatting VB Script Text” on page 859.

➤ Comments. You can add comments to your statements using an apostrophe 
('), either at the beginning of a separate line, or at the end of a statement. It 
is recommended that you add comments wherever possible, to make your 
scripts easier to understand and maintain. For more information, see 
“Formatting VB Script Text” on page 859, and “Inserting Comments” on 
page 877.

➤ Spaces. You can add extra blank spaces to your script to improve clarity. 
These spaces are ignored by VBScript.

For more information on using specific VBScript statements to enhance 
your tests or function libraries, see “Using Comments, Control-Flow, and 
Other VBScript Statements” on page 876.



Chapter 29 • Working in the Expert View and Function Library Windows

856

Using Variables
You can specify variables to store test objects or simple values in your test or 
function library. When using a variable for a test object, you can use the 
variable instead of the entire object hierarchy in other statements. Using 
variables in this way makes your statements easier to read and to maintain.

To specify a variable to store an object, use the Set statement, with the 
following syntax:

Set ObjectVar = ObjectHierarchy

In the example below, the Set statement specifies the variable UserEditBox 
to store the full Browser > Page > WebEdit object hierarchy for the 
username edit box. The Set method then enters the value John into the 
username edit box, using the UserEditBox variable:

Set UserEditBox = Browser("Mercury Tours").Page("Mercury Tours").
WebEdit("username")

UserEditBox.Set "John"

Note: Do not use the Set statement to specify a variable containing a simple 
value (such as a string or a number). The example below shows how to 
define a variable for a simple value:

MyVar = Browser("Mercury Tours").Page("Mercury Tours").
WebEdit("username").GetTOProperty("type")

You can also use the Dim statement to declare variables of other types, 
including strings, integers, and arrays. This statement is not mandatory, but 
you can use it to improve the structure of your test or function library. In 
the following example, the Dim statement is used to declare the passengers 
variable, which can then be used in different statements within the current 
action or function library:

Dim passengers
passengers = Browser("Mercury Tours").Page("Find Flights").

WebEdit("numpassengers").GetROProperty("value")



Chapter 29 • Working in the Expert View and Function Library Windows

857

Using Parentheses 
When programming in VBScript, it is important that you follow the rules for 
using or not using parentheses () in your statements.

You must use parentheses around method arguments if you are calling a 
method that returns a value and you are using the return value. 

For example, use parentheses around method arguments if you are 
returning a value to a variable, if you are using the method in an If 
statement, or if you are using the Call keyword to call an action or function. 
You also need to add parentheses around the name of a checkpoint if you 
want to retrieve its return value. 

Tip: If you receive an Expected end of statement error message when 
running a step in your test or function library, it may indicate that you need 
to add parentheses around the arguments of the step's method.

Following are several examples showing when to use or not use parentheses.

The following example requires parentheses around the method arguments 
for the ChildItem method because it returns a value to a variable.

Set WebEditObj = Browser("Mercury Tours").Page("Method of Payment").
WebTable("FirstName").ChildItem (8, 2, "WebEdit", 0)

WebEditObj.Set "Example"

The following example requires parentheses around the method arguments 
because Call is being used.

Call RunAction("BookFlight", oneIteration)

or

Call MyFunction("Hello World")
...
...



Chapter 29 • Working in the Expert View and Function Library Windows

858

The following example requires parentheses around the WaitProperty 
method arguments because the method is used in an If statement.

If Browser("index").Page("index").Link("All kind of").
WaitProperty("attribute/readyState", "complete", 4) Then 
Browser("index").Page("index").Link("All kind of").Click

End If

The following example requires parentheses around the Check method 
arguments, since it returns the value of the checkpoint.

a = Browser("MyBrowser").Page("MyPage").Check (CheckPoint("MyProperty"))

The following example does not require parentheses around the Click 
method arguments because it does not return a value.

Browser("Mercury Tours").Page("Method of Payment").WebTable("FirstName").
Click 3,4



Chapter 29 • Working in the Expert View and Function Library Windows

859

Formatting VB Script Text
When working in the Expert View or in a function library, it is important to 
follow accepted VBScript practices for comments and indentation.

Use comments to explain sections of a script. This improves readability and 
make tests and function libraries easier to maintain and update. For more 
information, see “Inserting Comments” on page 877.

Use indentation to reflect the logical structure and nesting of your 
statements. 

➤ Adding Comments. You can add comments to your statements by adding an 
apostrophe ('), either at the beginning of a separate line, or at the end of a 
statement. 

Tips:

➤ You can comment a statement by clicking anywhere in the statement 
and clicking the Comment Block button.

➤ You can comment a selected block of text by clicking the Comment Block 
button, or by choosing Edit > Advanced > Comment Block. Each line in 
the block will be preceded by an apostrophe.

➤ Removing Comments. You can remove comments from your statements by 
deleting the apostrophe ('), either at the beginning of a separate line, or at 
the end of a statement. 

Tip: You can remove the comments from a selected block or line of text by 
clicking the Uncomment Block button, or by choosing Edit > Advanced > 
Uncomment Block.



Chapter 29 • Working in the Expert View and Function Library Windows

860

➤ Indenting Statements. You can indent your statements by selecting the text 
and choosing Edit > Advanced > Indent or by press the TAB key. The text is 
indented according to the tab spacing selected in the Editor Options dialog 
box, as described in “Customizing Editor Behavior” on page 897. 

Note: The Indent selected text when using the Tab key check box must be 
selected in the Editor Options dialog box, otherwise pressing the TAB key 
will delete the selected text. 

➤ Outdenting Statements. You can outdent your statements by selecting 
Edit > Advanced > Outdent or by deleting the space at the beginning of the 
statements.

For more detailed information on formatting in VBScript, you can view the 
VBScript documentation from the QuickTest Help menu (Help > 
QuickTest Professional Help > VBScript Reference).

Handling VBScript Syntax Errors
When you select the Keyword View tab from the Expert View, QuickTest 
attempts to display the updated information in the Keyword View. If a new 
or updated VBScript statement contains syntax errors, the text Error flashes 
in red at the right of the status bar, and an error message is displayed in the 
status bar informing you that you should view the Information pane for 
information about syntax errors in the script. QuickTest is unable to display 
the document in the Keyword View until you have fixed all the syntax 
errors.

You can view a description of each of the VBScript errors in the VBScript 
Reference. For more information, select Help > QuickTest Professional 
Help > VBScript Reference > VBScript > Reference > Errors > VBScript 
Syntax Errors.



Chapter 29 • Working in the Expert View and Function Library Windows

861

Tips:

➤ You can check the syntax of the current document at any time by 
clicking the Check Syntax button, or by choosing Tools > Check Syntax. 
If a test is open, the syntax of all the actions is checked. If a function 
library is open, the syntax of the library script is checked. 

➤ The Microsoft VBScript Language Reference defines VBScript syntax 
errors as: "errors that result when the structure of one of your VBScript 
statements violates one or more of the grammatical rules of the VBScript 
scripting language." To learn about working with VBScript, you can view 
the VBScript Reference from the QuickTest Help menu (Help > 
QuickTest Professional Help > VBScript Reference).

The Information pane lists the syntax errors found in your document, and 
enables you to locate each syntax error so that you can correct it. 



Chapter 29 • Working in the Expert View and Function Library Windows

862

The Information pane shows the following information for each syntax 
error:

Using the Information Pane

➤ Move the pointer over the description of a syntax error to display the 
currently incorrect syntax.

➤ To navigate to the line containing a specific syntax error, double-click the 
syntax error in the Information pane. 

➤ You can resize the columns in the Information pane to make the 
information more readable by dragging the column headers.

➤ You can sort the details in the Information pane in ascending or descending 
order by clicking the column header.

➤ You can press F1 on an error in the Information pane to display information 
about VBScript syntax errors.

Pane Element Description

Details The description of the syntax error. For example, if you opened a 
conditional block with an If statement but did not close it with 
an End If statement, the description is Expected 'End If'.

Note: In certain cases, QuickTest is unable to identify the exact 
error and displays a number of possible error conditions, for 
example: Expected 'End Sub', or 'End Function', or 'End Property’. 
Check the statement at the specified line to clarify which error is 
relevant in your case.

Item The name of the test or function library containing the 
problematic statement.

Action The name of the action containing the problematic statement. 
This column is not relevant for function libraries that are 
associated with business components (via application areas).

Line The line containing the syntax error. Lines are numbered from 
the beginning of each action or function library.



Chapter 29 • Working in the Expert View and Function Library Windows

863

Using Programmatic Descriptions

When QuickTest learns an object in your application, it adds the appropriate 
test object to the object repository. After the object exists in the object 
repository, you can add statements in the Expert View to perform additional 
operations on that object. To add these statements, you usually enter the 
name (not case sensitive) of each of the objects in the object’s hierarchy as 
the object description, and then add the appropriate operation. 

For example, in the statement below, username is the name of an edit box. 
The edit box is located on a page with the name Mercury Tours, and the page 
exists in a browser with the name Mercury Tours.

Browser("Mercury Tours").Page("Mercury Tours").WebEdit("username")

Because each object in the object repository has a unique name, the object 
name is all you need to specify. During the run session, QuickTest finds the 
object in the object repository based on its name and parent objects, and 
uses the stored test object description for that test object to identify the 
object in your application.

You can also instruct QuickTest to perform operations on objects without 
referring to the object repository or to the object’s name. To do this, you 
provide QuickTest with a list of properties and values that QuickTest can use 
to identify the object or objects on which you want to perform an 
operation. 

Such a programmatic description can be very useful if you want to perform 
an operation on an object that is not stored in the object repository. You can 
also use programmatic descriptions to perform the same operation on 
several objects with certain identical properties, or to perform an operation 
on an object whose properties match a description that you determine 
dynamically during the run session. 

In the Test Results, square brackets around a test object name indicate that 
the test object was created dynamically during the run session using a 
programmatic description or the ChildObjects method.



Chapter 29 • Working in the Expert View and Function Library Windows

864

For example, suppose you are testing a Web site that generates a list of 
potential employers based on biographical information you provide, and 
offers to send your resume to the employer names you select from the list. 
You want your test to select all the employers displayed in the list, but when 
you design your test, you do not know how many check boxes will be 
displayed on the page, and you cannot, of course, know the exact object 
description of each check box. In this situation, you can use a programmatic 
description to instruct QuickTest to perform a Set "ON" method for all 
objects that fit the description: HTML TAG = input, TYPE = check box.

There are two types of programmatic descriptions:

➤ Static. You list the set of properties and values that describe the object 
directly in a VBScript statement.

➤ Dynamic. You add a collection of properties and values to a Description 
object, and then enter the Description object name in the statement.

Using the Static type to enter programmatic descriptions directly into your 
statements may be easier for basic object description needs. However, in 
most cases, using the Dynamic type provides more power, efficiency, and 
flexibility.

Entering Programmatic Descriptions Directly into 
Statements
You can describe an object directly in a statement by specifying 
property:=value pairs describing the object instead of specifying an object’s 
name.

The general syntax is:

TestObject("PropertyName1:=PropertyValue1", "..." ,
 "PropertyNameX:=PropertyValueX") 

TestObject. The test object class. 

PropertyName:=PropertyValue. The identification property and its value. 
Each property:=value pair should be separated by commas and quotation 
marks. 



Chapter 29 • Working in the Expert View and Function Library Windows

865

Note that you can enter a variable name as the property value if you want to 
find an object based on property values you retrieve during a run session. 
For example:

MyVar="some text string" 
Browser("Hello").Page("Hello").Webtable("table").Webedit("name:=" & MyVar) 

Note: QuickTest evaluates all property values in programmatic descriptions 
as regular expressions. Therefore, if you want to enter a value that contains a 
special regular expression character (such as *, ?, or +), use the \ (backslash) 
character to instruct QuickTest to treat the special characters as literal 
characters. For more information on regular expressions, see 
“Understanding and Using Regular Expressions” on page 762. 



Chapter 29 • Working in the Expert View and Function Library Windows

866

The statement below specifies a WebEdit test object in the Mercury Tours 
page with the Name author and an index of 3. During the run session, 
QuickTest finds the WebEdit object with matching property values and 
enters the text Mark Twain.

Browser("Mercury Tours").Page("Mercury Tours").WebEdit("Name:=Author",
 "Index:=3").Set "Mark Twain"

Note: When using programmatic descriptions from a specific point within a 
test object hierarchy, you must continue to use programmatic descriptions 
from that point onward within the same statement. If you specify a test 
object by its object repository name after other objects in the hierarchy have 
been specified using programmatic descriptions, QuickTest cannot identify 
the object.

For example, you can use the following statement since it uses 
programmatic descriptions throughout the entire test object hierarchy:

Browser("Title:=Mercury Tours").Page("Title:=Mercury Tours").
WebEdit("Name:=Author", "Index:=3").Set "Mark Twain"

You can also use the statement below, since it uses programmatic 
descriptions from a certain point in the description (starting from the Page 
object description):

Browser("Mercury Tours").Page("Title:=Mercury Tours").
WebEdit("Name:=Author", "Index:=3").Set "Mark Twain" 

However, you cannot use the following statement, since it uses 
programmatic descriptions for the Browser and Page objects but then 
attempts to use an object repository name for the WebEdit test object: 

Browser("Title:=Mercury Tours").Page("Title:=Mercury Tours").
WebEdit("Author").Set "Mark Twain"

QuickTest tries to locate the WebEdit object based on its name, but cannot 
locate it in the repository because the parent objects were specified using 
programmatic descriptions.

For more information on working with test objects, see Chapter 5, 
“Managing Test Objects in Object Repositories.”



Chapter 29 • Working in the Expert View and Function Library Windows

867

If you want to use the same programmatic description several times in one 
test or function library, you may want to assign the object you create to a 
variable. 

For example, instead of entering:

Window("Text:=Myfile.txt - Notepad").Move 50, 50
Window("Text:=Myfile.txt - Notepad").WinEdit("AttachedText:=Find what:").

Set "hello"
Window("Text:=Myfile.txt - Notepad").WinButton("Caption:=Find next").Click

You can enter:

Set MyWin = Window("Text:=Myfile.txt - Notepad")
MyWin.Move 50, 50
MyWin.WinEdit("AttachedText:=Find what:").Set "hello"
MyWin.WinButton("Caption:=Find next").Click

Alternatively, you can use a With statement:

With Window("Text:=Myfile.txt - Notepad") 
.Move 50, 50 
.WinEdit("AttachedText:=Find what:").Set "hello" 
.WinButton("Caption:=Find next").Click 

End With

For more information on the With statement, see “With Statement” on 
page 884.



Chapter 29 • Working in the Expert View and Function Library Windows

868

Using Description Objects for Programmatic Descriptions
You can use the Description object to return a Properties collection object 
containing a set of Property objects. A Property object consists of a property 
name and value. You can then specify the returned Properties collection in 
place of an object name in a statement. (Each property object contains a 
property name and value pair.)

Note: By default, the value of all Property objects added to a Properties 
collection are treated as regular expressions. Therefore, if you want to enter 
a value that contains a special regular expression character (such as *, ?, +), 
use the \ (backslash) character to instruct QuickTest to treat the special 
characters as literal characters. For more information on regular expressions, 
see “Understanding and Using Regular Expressions” on page 762. 

You can set the RegularExpression property to False to specify a value as a 
literal value for a specific Property object in the collection. For more 
information, see the Utility section of the HP QuickTest Professional Object 
Model Reference.

To create the Properties collection, you enter a Description.Create 
statement using the following syntax:

Set MyDescription = Description.Create()

After you have created a Properties object (such as MyDescription in the 
example above), you can enter statements to add, edit, remove, and retrieve 
properties and values to or from the Properties object during the run 
session. This enables you to determine which, and how many properties to 
include in the object description in a dynamic way during the run session.



Chapter 29 • Working in the Expert View and Function Library Windows

869

After you fill the Properties collection with a set of Property objects 
(properties and values), you can specify the Properties object in place of an 
object name in a test statement.

For example, instead of entering:

Window("Error").WinButton("text:=OK", "width:=50").Click

you can enter:

Set MyDescription = Description.Create()
MyDescription("text").Value = "OK"
MyDescription("width").Value = 50
Window("Error").WinButton(MyDescription).Click

Note: When using programmatic descriptions from a specific point within a 
test object hierarchy, you must continue to use programmatic descriptions 
from that point onward within the same statement. If you specify a test 
object by its object repository name after other objects in the hierarchy have 
been described using programmatic descriptions, QuickTest cannot identify 
the object.

For example, you can use Browser(Desc1).Page(Desc1).Link(desc3), since it 
uses programmatic descriptions throughout the entire test object hierarchy. 

You can also use Browser("Index").Page(Desc1).Link(desc3), since it uses 
programmatic descriptions from a certain point in the description (starting 
from the Page object description). 

However, you cannot use Browser(Desc1).Page(Desc1).Link("Example1"), 
since it uses programmatic descriptions for the Browser and Page objects but 
then attempts to use an object repository name for the Link test object 
(QuickTest tries to locate the Link object based on its name, but cannot 
locate it in the repository because the parent objects were specified using 
programmatic descriptions).

When working with Properties objects, you can use variable names for the 
properties or values to generate the object description based on properties 
and values you retrieve during a run session. 



Chapter 29 • Working in the Expert View and Function Library Windows

870

You can create several Properties objects in your test if you want to use 
programmatic descriptions for several objects.

For more information on the Description and Properties objects and their 
associated methods, see the HP QuickTest Professional Object Model Reference.

Retrieving Child Objects
You can use the ChildObjects method to retrieve all objects located inside a 
specified parent object, or only those child objects that fit a certain 
programmatic description. To retrieve this subset of child objects, you first 
create a description object and add the set of properties and values that you 
want your child object collection to match using the Description object. 

Note: You must use the Description object to create the programmatic 
description for the ChildObjects description argument. You cannot enter the 
programmatic description directly into the argument using the 
property:=value syntax.

After you have "built" a description in your description object, use the 
following syntax to retrieve child objects that match the description:

Set MySubSet=TestObject.ChildObjects(MyDescription)

For example, the statements below instruct QuickTest to select all of the 
check boxes on the Itinerary Web page:

Set MyDescription = Description.Create()
MyDescription("html tag").Value = "INPUT" 
MyDescription("type").Value = "checkbox" 

Set Checkboxes = 
Browser("Itinerary").Page("Itinerary").ChildObjects(MyDescription)
NoOfChildObjs = Checkboxes.Count
For Counter=0 to NoOfChildObjs-1

Checkboxes(Counter).Set "ON" 
Next



Chapter 29 • Working in the Expert View and Function Library Windows

871

In the Test Results, square brackets around a test object name indicate that 
the test object was created dynamically during the run session using the 
ChildObjects method or a programmatic description.

For more information on the ChildObjects method, see the HP QuickTest 
Professional Object Model Reference.

Using the Index Property in Programmatic Descriptions

The index property can sometimes be a useful identification property for 
uniquely identifying an object. The index identification property identifies 
an object based on the order in which it appears within the source code, 
where the first occurrence is 0.

Index property values are object-specific. Thus, if you use an index value 
of 3 to describe a WebEdit test object, QuickTest searches for the fourth 
WebEdit object in the page.

If you use an index value of 3 to describe a WebElement object, however, 
QuickTest searches for the fourth Web object on the page regardless of the 
type, because the WebElement object applies to all Web objects.

For example, suppose you have a page with the following objects:

➤ An image with the name Apple

➤ An image with the name UserName

➤ A WebEdit object with the name UserName

➤ An image with the name Password

➤ A WebEdit object with the name Password



Chapter 29 • Working in the Expert View and Function Library Windows

872

The description below refers to the third item in the list above, as it is the 
first WebEdit object on the page with the name UserName:

WebEdit("Name:=UserName", "Index:=0") 

The following description, however, refers to the second item in the list 
above, as that is the first object of any type (WebElement) with the name 
UserName:

WebElement("Name:=UserName", "Index:=0") 

Note: If there is only one object, using index=0 will not retrieve it. You 
should not include the index property in the object description.

Performing Programmatic Description Checks
You can compare the run-time value of a specified object property with the 
expected value of that property using either programmatic descriptions or 
user-defined functions. 

Programmatic description checks are useful in cases in which you cannot 
apply a regular checkpoint, for example, if the object whose properties you 
want to check is not stored in an object repository. You can then write the 
results of the check to the Test Results report. 

For example, suppose you want to check the run-time value of a Web 
button. You can use the GetROProperty or Exist operations to retrieve the 
run-time value of an object or to verify whether the object exists at that 
point in the run session.

The following examples illustrate how to use programmatic descriptions to 
check whether the Continue Web button is disabled during a run session.



Chapter 29 • Working in the Expert View and Function Library Windows

873

Using the GetROProperty operation:

ActualDisabledVal = 
Browser(micClass:="Browser").Page(micClass:="Page").WebButton

(alt:="Continue").GetROProperty("disabled")

Using the Exist operation:

While Not Browser(micClass:="Browser").Page(micClass:="Page").WebButton
(alt:="Continue").Exist(30)

Wend

By adding Report.ReportEvent statements, you can instruct QuickTest to 
send the results of a check to the Test Results:

If ActualDisabledVal = True Then
Reporter.ReportEvent micPass, "CheckContinueButton = PASS", "The 
Continue

button is disabled, as expected."
Else
Reporter.ReportEvent micFail, "CheckContinueButton = FAIL", "The Continue

button is enabled, even though it should be disabled."



Chapter 29 • Working in the Expert View and Function Library Windows

874

You can also create and use user-defined functions to check whether your 
application is functioning as expected. The following example illustrates a 
function that checks whether an object is disabled and returns True if the 
object is disabled:

'@Description Checks whether the specified test object is disabled
'@Documentation Check whether the <Test object name> <test object type> is 
enabled.
Public Function VerifyDisabled (obj)

Dim enable_property
' Get the disabled property from the test object
enable_property = obj.GetROProperty("disabled")
If enable_property = 1 Then ' The value is True (1)—the object is disabled

Reporter.ReportEvent micPass, "VerifyDisabled Succeeded", "The test 
object is disabled, as expected."

VerifyDisabled = True
Else

Reporter.ReportEvent micFail, "VerifyDisabled Failed", "The test object is 
enabled, although it should be disabled."

VerifyDisabled = False
End If

End Function

Note: For information on using the GetROProperty operation, see 
“Retrieving Native Properties” on page 888. For information on using 
While...Wend statements, see “While...Wend Statement” on page 882. For 
information on specific test objects, operations, and properties, see the 
HP QuickTest Professional Object Model Reference.



Chapter 29 • Working in the Expert View and Function Library Windows

875

Running and Closing Applications Programmatically

In addition to using the Record and Run Settings dialog box to instruct 
QuickTest to open a new application when a test run begins, or manually 
opening the application you want to test, you can insert statements into 
your test that open and close the applications you want to test.

You can run any application from a specified location using a 
SystemUtil.Run statement. This is especially useful if your test includes more 
than one application, and you selected the Record and run test on any 
application check box in the Record and Run Settings dialog box. You can 
specify an application and pass any supported parameters, or you can 
specify a file name and the associated application starts with the specified 
file open. 

You can close most applications using the Close method. You can also use 
SystemUtil statements to close applications. For more information, see the 
HP QuickTest Professional Object Model Reference.

For example, you could use the following statements to open a file named 
type.txt in the default text application (Notepad), type happy days, save the 
file using shortcut keys, and then close the application:

SystemUtil.Run "C:\type.txt", "","",""
Window("Text:=type.txt - Notepad").Type "happy days" 
Window("Text:=type.txt - Notepad").Type micAltDwn & "F" & micAltUp
Window("Text:=type.txt - Notepad").Type micLShiftDwn & "S" & micLShiftUp
Window("Text:=type.txt - Notepad").Close 



Chapter 29 • Working in the Expert View and Function Library Windows

876

Notes:

➤ When you specify an application to open using the Record and Run 
Settings dialog box, QuickTest does not add a SystemUtil.Run statement 
to your test. 

➤ The InvokeApplication method can open only executable files and is used 
primarily for backward compatibility.

For more information, see the HP QuickTest Professional Object Model 
Reference.

Using Comments, Control-Flow, and Other VBScript 
Statements 

QuickTest enables you to incorporate decision-making into your test or 
function library by adding conditional statements that control the logical 
flow of your test or function library. In addition, you can define messages in 
your test that QuickTest sends to your test results. To improve the 
readability of your tests and function libraries, you can also add comments 
to them.

For information on how to use these programming concepts in the Keyword 
View, see Chapter 28, “Adding Steps Containing Programming Logic.” 

Note: The VBScript Reference (available from Help > QuickTest Professional 
Help) contains Microsoft VBScript documentation, including VBScript, 
Script Runtime, and Windows Script Host.



Chapter 29 • Working in the Expert View and Function Library Windows

877

Inserting Comments
A comment is a line or part of a line in a script that is preceded by an 
apostrophe ('). When you run a test or a function in a function library, 
QuickTest does not process the comments. Use comments to explain 
sections of a script to improve readability and to make tests and function 
libraries easier to update. 

The following example shows how a comment describes the purpose of the 
statement below it:

‘Sets the word "mercury" into the "username" edit box.
Browser("Mercury Tours").Page("Mercury Tours").WebEdit("username").

Set "mercury"

By default, comments are displayed in green in the Expert View and in 
function libraries. You can customize the appearance of comments in the 
Editor Options dialog box. For more information, see “Customizing Element 
Appearance” on page 900.

Tips:

➤ You can comment a block of text by choosing Edit > Advanced > 
Comment Block or by clicking the Comment Block button.

➤ To remove the comment, select Edit > Advanced > Uncomment Block or 
click the Uncomment Block button.

Note: You can also add a comment line using the VBScript Rem statement. 
For more information, see the Microsoft VBScript Language Reference (select 
Help > QuickTest Professional Help > VBScript Reference > VBScript).



Chapter 29 • Working in the Expert View and Function Library Windows

878

Performing Calculations 
You can write statements that perform simple calculations using 
mathematical operators. For example, you can use a multiplication operator 
to multiply the values displayed in two text boxes in your Web site. VBScript 
supports the following mathematical operators:

In the following example, the multiplication operator is used to calculate 
the maximum luggage weight of the passengers at 100 pounds each:

'Retrieves the number of passengers from the edit box using the GetROProperty 
method

passenger = Browser ("Mercury_Tours").Page ("Find_Flights").
WebEdit("numPassengers").GetROProperty("value")

'Multiplies the number of passengers by 100

weight = passenger * 100

'Inserts the maximum weight into a message box.

msgbox("The maximum weight for the party is "& weight &"pounds.")

Operator Description

+ addition

– subtraction

– negation (a negative number)

* multiplication

/ division

^ exponent



Chapter 29 • Working in the Expert View and Function Library Windows

879

For...Next Statement
A For...Next loop instructs QuickTest to perform one or more statements a 
specified number of times. It has the following syntax:

For counter = start to end [Step step]
statement

Next

In the following example, QuickTest calculates the factorial value of the 
number of passengers using the For statement: 

passengers = Browser("Mercury Tours").Page("Find Flights").
WebEdit("numPassengers").GetROProperty("value")

total = 1
For i=1 To passengers

total = total * i
Next
MsgBox "!" & passengers & "=" & total

Item Description

counter The variable used as a counter for the number of 
iterations.

start The start number of the counter.

end The last number of the counter.

step The number to increment at the end of each loop. 
Default = 1.
Optional.

statement  A statement, or series of statements, to be performed 
during the loop.



Chapter 29 • Working in the Expert View and Function Library Windows

880

For...Each Statement
A For...Each loop instructs QuickTest to perform one or more statements for 
each element in an array or an object collection. It has the following syntax:

For Each item In array
statement

Next

The following example uses a For...Each loop to display each of the values in 
an array:

MyArray = Array("one","two","three","four","five")
For Each element In MyArray

msgbox element
Next 

Item Description

item A variable representing the element in the array.

array The name of the array.

statement A statement, or series of statements, to be performed 
during the loop.



Chapter 29 • Working in the Expert View and Function Library Windows

881

Do...Loop Statement
The Do...Loop statement instructs QuickTest to perform a statement or series 
of statements while a condition is true or until a condition becomes true. It 
has the following syntax:

Do [{while} {until} condition]
statement

Loop

In the following example, QuickTest calculates the factorial value of the 
number of passengers using the Do...Loop:

passengers = Browser("Mercury Tours").Page("Find Flights").
WebEdit("numPassengers").GetROProperty("value")

total = 1
i = 1
Do while i <= passengers

 total = total * i
 i = i + 1

Loop
MsgBox "!" & passengers & "=" & total

Item Description

condition A condition to be fulfilled.

statement A statement or series of statements to be performed 
during the loop.



Chapter 29 • Working in the Expert View and Function Library Windows

882

While...Wend Statement
A While...Wend statement instructs QuickTest to perform a statement or 
series of statements while a condition is true. It has the following syntax:

While condition
statement

Wend

In the following example, QuickTest performs a loop using the While 
statement while the number of passengers is fewer than ten. Within each 
loop, QuickTest increments the number of passengers by one:

passengers = Browser("Mercury Tours").Page("Find Flights").
WebEdit("numpassengers").GetROProperty("value")

While passengers < 10
passengers = passengers + 1

Wend

msgbox("The number of passengers in the party is " & passengers)

Item Description

condition A condition to be fulfilled.

statement A statement or series of statements to be executed during 
the loop.



Chapter 29 • Working in the Expert View and Function Library Windows

883

If...Then...Else Statement
The If...Then...Else statement instructs QuickTest to perform a statement or a 
series of statements based on specified conditions. If a condition is not 
fulfilled, the next Elseif condition or Else statement is examined. It has the 
following syntax:

If condition Then
statement

ElseIf condition2 Then
statement

Else
statement

End If

In the following example, if the number of passengers is fewer than four, 
QuickTest closes the browser:

passengers = Browser("Mercury Tours").Page("Find Flights").
WebEdit("numpassengers").GetROProperty("value")

If (passengers < 4) Then
Browser("Mercury Tours").Close

Else
Browser("Mercury Tours").Page("Find Flights").Image("continue").Click 69,5

End If

Item Description

condition Condition to be fulfilled.

statement Statement to be perform.



Chapter 29 • Working in the Expert View and Function Library Windows

884

The following example uses If, ElseIf, and Else statements to check whether a 
value is equal to 1, 2, or a different value:

value = 2
If value = 1 Then
   msgbox "one"
ElseIf value = 2 Then
   msgbox "two"
Else
   msgbox "not one or two"
End If

With Statement
With statements make your script more concise and easier to read and write 
or edit by grouping consecutive statements with the same parent hierarchy. 

Note: When running a With statement, QuickTest identifies the object in 
the application before running the first statement, but does not re-identify it 
before running each statement. This can affect the running of your test if 
the object referenced by the With statement is refreshed, redrawn, or 
changed in some way in the application while running the With statement. 
To instruct QuickTest to re-identify the object in the application before 
running the next statement, add a statement that calls the RefreshObject 
test object operation. For more information on the RefreshObject operation, 
see the HP QuickTest Professional Object Model Reference.

The With statement has the following syntax:

With object
statements

End With 

Item Description

object An object or a function that returns an object.

statements One or more statements to be performed on an object.



Chapter 29 • Working in the Expert View and Function Library Windows

885

For example, you could replace this script:

Window("Flight Reservation").WinComboBox("Fly From:").Select "London"
Window("Flight Reservation").WinComboBox("Fly To:").Select "Los Angeles"
Window("Flight Reservation").WinButton("FLIGHT").Click
Window("Flight Reservation").Dialog("Flights Table").WinList("From").

Select "19097   LON "
Window("Flight Reservation").Dialog("Flights Table").WinButton("OK").Click

with the following:

With Window("Flight Reservation") 
.WinComboBox("Fly From:").Select "London" 
.WinComboBox("Fly To:").Select "Los Angeles" 
.WinButton("FLIGHT").Click 
With .Dialog("Flights Table") 

.WinList("From").Select "19097   LON " 

.WinButton("OK").Click 
End With 'Dialog("Flights Table") 

End With 'Window("Flight Reservation") 

Note that entering With statements in the Expert View does not affect the 
Keyword View in any way. 

Note: In addition to entering With statements manually, you can also 
instruct QuickTest to automatically generate With statements as you record 
or to generate With statements for an existing test. For more information, 
see “Generating With Statements for Your Test” on page 806.



Chapter 29 • Working in the Expert View and Function Library Windows

886

Retrieving and Setting Identification Property Values

Identification properties are the set of properties defined by QuickTest for 
each object. You can set and retrieve a test object’s identification property 
values, and you can retrieve the values of identification properties from a 
run-time object.

When you run your test or function, QuickTest creates a temporary version 
of the test object that is stored in the test object repository. You can use the 
GetTOProperty, GetTOProperties, and SetTOProperty methods in your test 
or function library to set and retrieve the identification property values of 
the test object. 

The GetTOProperty and GetTOProperties methods enable you to retrieve a 
specific property value or all the properties and values that QuickTest uses to 
identify an object.

The SetTOProperty method enables you to modify a property value that 
QuickTest uses to identify an object.

Note: Because QuickTest refers to the temporary version of the test object 
during the run session, any changes you make using the SetTOProperty 
method apply only during the course of the run session, and do not affect 
the values stored in the test object repository.

For example, the following statements would set the Submit button’s name 
value to my button, and then retrieve the value my button to the ButtonName 
variable:

Browser("QA Home Page").Page("QA Home Page").
WebButton("Submit").SetTOProperty "Name", "my button" 

ButtonName=Browser("QA Home Page").Page("QA Home Page").
WebButton("Submit").GetTOProperty("Name") 

You use the GetROProperty method to retrieve the current value of an 
identification property from a run-time object in your application.



Chapter 29 • Working in the Expert View and Function Library Windows

887

For example, you can retrieve the target value of a link during the run 
session as follows:

link_href = Browser("HP Technologies").Page("HP Technologies").
Link("Jobs").GetROProperty("href") 

Tip: If you do not know the identification properties of objects in your 
application, you can view them using the Object Spy. For information on 
the Object Spy, see Chapter 3, “Understanding the Test Object Model.”

For a list and description of identification properties supported by each 
object, and for more information on the GetROProperty, GetTOProperty, 
GetTOProperties, and SetTOProperty methods, see the HP QuickTest 
Professional Object Model Reference.

Accessing Native Properties and Operations

If the test object operations and identification properties available for a 
particular test object do not provide the functionality you need, you can 
access the native operations and properties of any run-time object in your 
application using the Object property. 

You can use the statement completion feature with object properties to view 
a list of the available native operations and properties of an object. For more 
information on the statement completion option, see “Generating 
Statements in the Expert View or in a Function Library” on page 833.

Tip: If the object is a Web object, you can also reference its native properties 
in programmatic descriptions using the attribute/property notation. For 
more information, see “Accessing User-Defined Properties of Web Objects” 
on page 888.



Chapter 29 • Working in the Expert View and Function Library Windows

888

Retrieving Native Properties
You can use the Object property to access the native properties of any 
run-time object. For example, you can retrieve the current value of the 
ActiveX calendar’s internal Day property as follows:

Dim MyDay
Set MyDay= 
Browser("index").Page("Untitled").ActiveX("MSCAL.Calendar.7").Object.Day 

For more information on the Object property, see the HP QuickTest 
Professional Object Model Reference.

Activating Native Operations 
You can use the Object property to activate the internal operations of any 
run-time object. For example, you can activate the native focus method of 
the edit box as follows:

Dim MyWebEdit 
Set MyWebEdit=Browser("Mercury Tours").Page("Mercury Tours").

WebEdit("username").Object 
MyWebEdit.focus 

For more information on the Object property, see the HP QuickTest 
Professional Object Model Reference.

Accessing User-Defined Properties of Web Objects
You can use the attribute/<property name> notation to access native 
properties of Web objects and use these properties to identify such objects 
with programmatic descriptions.

For example, suppose a Web page has the same company logo image in two 
places on the page:

<IMG src="logo.gif" LogoID="122">
<IMG src="logo.gif" LogoID="123">



Chapter 29 • Working in the Expert View and Function Library Windows

889

You could identify the image that you want to click using a programmatic 
description by including the user-defined property LogoID in the 
description as follows:

Browser("Mercury Tours").Page("Find Flights").Image("src:=logo.gif",
"attribute/LogoID:=123").Click 68, 12

For more information on programmatic descriptions, see “Using 
Programmatic Descriptions” on page 863.

Running DOS Commands

You can run standard DOS commands in your QuickTest test or function 
using the VBScript Windows Scripting Host Shell object (WSCript.shell). For 
example, you can open a DOS command window, change the path to C:\, 
and run the DIR command using the following statements:

Dim oShell
Set oShell = CreateObject ("WSCript.shell")
oShell.run "cmd /K CD C:\ & Dir"
Set oShell = Nothing

For more information, see the Microsoft VBScript Language Reference (select 
Help > QuickTest Professional Help > VBScript Reference > VBScript).

Enhancing Your Tests and Function Libraries Using the 
Windows API

Using the Windows API, you can extend testing abilities and add usability 
and flexibility to your tests and function libraries. The Windows operating 
system provides a large number of functions to help you control and 
manage Windows operations. You can use these functions to obtain 
additional functionality.

The Windows API is documented in the Microsoft MSDN Web site, which 
can be found at: http://msdn2.microsoft.com/en-us/library/Aa383750

http://msdn2.microsoft.com/en-us/library/Aa383750


Chapter 29 • Working in the Expert View and Function Library Windows

890

A reference to specific API functions can be found at: 
http://msdn2.microsoft.com/en-us/library/Aa383749

To use Windows API functions:

 1 In MSDN, locate the function you want to use in your test or function 
library.

 2 Read its documentation and understand all required parameters and return 
values.

 3 Note the location of the API function. API functions are located inside 
Windows DLLs. The name of the DLL in which the requested function is 
located is usually identical to the Import Library section in the function’s 
documentation. For example, if the documentation refers to User32.lib, the 
function is located in a DLL named User32.dll, typically located in your 
System32 library.

 4 Use the QuickTest Extern object to declare an external function. For more 
information, see the HP QuickTest Professional Object Model Reference.

The following example declares a call to a function called 
GetForegroundWindow, located in user32.dll:

extern.declare micHwnd, "GetForegroundWindow", "user32.dll", 
"GetForegroundWindow"

 5 Call the declared function, passing any required arguments, for example, 
hwnd = extern.GetForegroundWindow().

In this example, the foreground window’s handle is retrieved. You can 
enhance your test or function library if the foreground window is not in the 
object repository or cannot be determined beforehand (for example, a 
window with a dynamic title). You may want to use this handle as part of a 
programmatic description of the window, for example:

Window("HWND:="&hWnd).Close

http://msdn2.microsoft.com/en-us/library/Aa383749


Chapter 29 • Working in the Expert View and Function Library Windows

891

In some cases, you may have to use predefined constant values as function 
arguments. Since these constants are not defined in the context of your test 
or function, you need to find their numerical value to pass them to the 
called function. The numerical values of these constants are usually declared 
in the function’s header file. A reference to header files can also be found in 
each function’s documentation under the Header section. If you have 
Microsoft Visual Studio installed on your computer, you can typically find 
header files under X:\Program Files\Microsoft Visual Studio\VC98\Include.

For example, the GetWindow API function expects to receive a numerical 
value that represents the relationship between the specified window and the 
window whose handle is to be retrieved. In the MSDN documentation, you 
can find the constants: GW_CHILD, GW_ENABLEDPOPUP, 
GW_HWNDFIRST, GW_HWNDLAST, GW_HWNDNEXT, GW_HWNDPREV 
and GW_HWNDPREV. If you open the WINUSER.H file, mentioned in the 
GetWindow documentation, you will find the following flag values:

/*
 * GetWindow() Constants
 */
#define GW_HWNDFIRST0
#define GW_HWNDLAST 1
#define GW_HWNDNEXT2
#define GW_HWNDPREV 3
#define GW_OWNER 4
#define GW_CHILD 5
#define GW_ENABLEDPOPUP 6
#define GW_MAX 6



Chapter 29 • Working in the Expert View and Function Library Windows

892

Example

The following example retrieves a specific menu item's value in the Notepad 
application.

' Constant Values:
const MF_BYPOSITION = 1024
' API Functions Declarations
Extern.Declare micHwnd,"GetMenu","user32.dll","GetMenu",micHwnd
Extern.Declare 
micInteger,"GetMenuItemCount","user32.dll","GetMenuItemCount",micHwnd
Extern.Declare 
micHwnd,"GetSubMenu","user32.dll","GetSubMenu",micHwnd,micInteger
Extern.Declare 
micInteger,"GetMenuString","user32.dll","GetMenuString",micHwnd,micInteger,

micString+micByRef,micInteger,micInteger
' Notepad.exe
hwin = Window("Notepad").GetROProperty ("hwnd")' Get Window's handle
MsgBox hwin
' Use API Functions
men_hwnd = Extern.GetMenu(hwin)' Get window's main menu's handle
MsgBox men_hwnd
item_cnt = Extern.GetMenuItemCount(men_hwnd)
MsgBox item_cnt
hSubm = Extern.GetSubMenu(men_hwnd,0)
MsgBox hSubm
rc = Extern.GetMenuString(hSubm,0,value,64 ,MF_BYPOSITION)
MsgBox value



Chapter 29 • Working in the Expert View and Function Library Windows

893

Choosing Which Steps to Report During the Run Session

You can use the Report.Filter method to determine which steps or types of 
steps are included in the Test Results. You can completely disable or enable 
reporting of steps following the statement, or you can indicate that you 
only want subsequent failed or failed and warning steps to be included in 
the report. You can also use the Report.Filter method to retrieve the current 
report mode.

The following report modes are available:

➤ To disable reporting of subsequent steps, enter the following statement:

Reporter.Filter = rfDisableAll

➤ To re-enable reporting of subsequent steps, enter:

Reporter.Filter = rfEnableAll

➤ To instruct QuickTest to include only subsequent failed steps in the Test 
Results, enter:

Reporter.Filter = rfEnableErrorsOnly

Mode Description

0 or rfEnableAll All events are displayed in the Test Results.
Default.

1 or 
rfEnableErrorsAndWarning
s

Only events with a warning or fail status are 
displayed in the Test Results.

2 or rfEnableErrorsOnly Only events with a fail status are displayed in 
the Test Results.

3 or rfDisableAll No events are displayed in the Test Results.



Chapter 29 • Working in the Expert View and Function Library Windows

894

➤ To instruct QuickTest to include only subsequent failed or warning steps in 
the Test Results, enter:

Reporter.Filter = rfEnableErrorsAndWarnings

➤ To retrieve the current report mode, enter:

MyVar=Reporter.Filter

For more information, see the HP QuickTest Professional Object Model 
Reference.



895

30
Customizing the Expert View and 
Function Library Windows

You can customize the way your test is displayed when you work in the 
Expert View and the way functions are displayed in the function library 
windows. Any changes you make are applied globally to the Expert View 
and to all function library windows.

This chapter includes:

 ➤  About Customizing the Expert View and Function Library Windows 
on page 896

 ➤  Customizing Editor Behavior on page 897

 ➤  Customizing Element Appearance on page 900

 ➤  Personalizing Editing Commands on page 902



Chapter 30 • Customizing the Expert View and Function Library Windows

896

About Customizing the Expert View and Function Library 
Windows

QuickTest includes a powerful and customizable editor that enables you to 
modify many aspects of the Expert View and function library windows.

The Editor Options dialog box enables you to change the way scripts and 
function libraries are displayed in the Expert View and function library 
windows. You can also change the font style and size of text in your scripts 
and function libraries, and change the color of different elements, including 
comments, strings, QuickTest reserved words, operators, and numbers. For 
example, you can display all text strings in red.

QuickTest includes a list of default keyboard shortcuts that enable you to 
move the cursor, delete characters, and cut, copy, and paste information to 
and from the Clipboard. You can replace these shortcuts with shortcuts you 
prefer. For example, you could change the Line start command from the 
default HOME to ALT + HOME.

You can also modify the way your script or function library is printed using 
options in the Print dialog box. For more information, see “Printing a Test” 
on page 332 and “Printing a Function Library” on page 917.

For more information on using the Expert View, see Chapter 29, “Working 
in the Expert View and Function Library Windows.” For more information 
on working with function libraries, see Chapter 31, “Working with User-
Defined Functions and Function Libraries.”



Chapter 30 • Customizing the Expert View and Function Library Windows

897

Customizing Editor Behavior

You can customize how scripts and function libraries are displayed in the 
Expert View and function library windows. For example, you can show or 
hide character symbols, and choose to display line numbers. For more 
information on using the Expert View, see Chapter 29, “Working in the 
Expert View and Function Library Windows.” For more information on 
working with function libraries, see Chapter 31, “Working with User-
Defined Functions and Function Libraries.”

To customize editor behavior:

 1 When the Expert View or a function library window is active, select Tools > 
View Options. The Editor Options dialog box opens.

 2 Click the General tab.



Chapter 30 • Customizing the Expert View and Function Library Windows

898

 3 Select from the following options:

Options Description

Show line numbers Displays a line number to the left of each line in the 
script or function.

Auto-indent Causes lines following an indented line to 
automatically begin at the same point as the 
previous line. You can press the HOME key on your 
keyboard to move the cursor back to the left 
margin.

Indent selected text when 
pressing Tab key

Pressing the TAB key indents the selected text. 
When this option is not enabled, pressing the Tab 
key replaces the selected text with a single Tab 
character. 

Statement completion If this option is selected, when you type in the 
Expert View or a function library, IntelliSense (the 
statement completion feature included with 
QuickTest) enables you to select the variable, test 
object, method, property, or collection for your 
statement from a drop-down list and view the 
relevant syntax.

For more information on using the statement 
completion (IntelliSense) feature, see “Using 
Statement Completion (IntelliSense)” on page 833. 

Draw box around current 
line

Displays a box around the line of the test in which 
the cursor is currently located.

Dynamic surround Surrounds existing lines of code with a block 
structure, enabling you to dynamically expand (or 
collapse) block statements. For example, when you 
add a surrounding statement (such as if/while) 
before existing code, you can use the arrow keys to 
expand the block to include subsequent lines. These 
lines are then automatically indented to the correct 
levels.



Chapter 30 • Customizing the Expert View and Function Library Windows

899

 4 Click OK to apply the changes and close the dialog box.

Show all characters Displays all TAB, NEW LINE, and SPACE character 
symbols. You can also select to display only some of 
these characters by selecting or clearing the relevant 
check boxes.

Auto-expand VBScript 
syntax

Automatically recognizes the first two characters of 
keywords and adds the relevant VBScript syntax or 
blocks to the script, when you type the relevant 
keyword. 

For example, if you enter the letters if and then 
enter a space at the beginning of a line in the Expert 
View, QuickTest automatically enters:

If Then
End If

Use tab character/
Tab spacing

Inserts a TAB character when the TAB key on the 
keyboard is used. When this option is not enabled, 
the specified number of space characters is inserted 
when you press the TAB key. 

Options Description



Chapter 30 • Customizing the Expert View and Function Library Windows

900

Customizing Element Appearance

QuickTest tests and function libraries contain many different elements, such 
as comments, strings, QuickTest and VBScript reserved words, operators, and 
numbers. Each element of QuickTest tests and function libraries can be 
displayed in a different color. You can also specify the font style and size to 
use for all elements. You can create your own personalized color scheme for 
each element. For example, all comments could be displayed as blue letters 
on a yellow background.

To set font and color preferences for elements:

 1 When the Expert View or a function library window is active, select Tools > 
View Options. The Editor Options dialog box opens.

 2 Click the Fonts and Colors tab.



Chapter 30 • Customizing the Expert View and Function Library Windows

901

 3 In the Fonts area, select the Font name and Size that you want to use to 
display all elements. By default, the editor uses the Microsoft Sans Serif font, 
which is a Unicode font.

Note: When testing in a Unicode environment, you must select a 
Unicode-compatible font. Otherwise, elements in your test or function 
library may not be correctly displayed in the Expert View or function library 
windows. However, the test or function library will still run in the same way, 
regardless of the font you choose. If you are working in an environment that 
is not Unicode-compatible, you may prefer to choose a fixed-width font, 
such as Courier, to ensure better character alignment.

 4 Select an element from the Element list.

 5 Choose a foreground color and a background color.

 6 Choose a font style for the element (Normal, Bold, Italic, or Underline). An 
example of your change is displayed in the Preview pane at the bottom of 
the dialog box.

 7 Repeat steps 4 to 6 for each element you want to modify.

 8 Click OK to apply the changes and close the dialog box.



Chapter 30 • Customizing the Expert View and Function Library Windows

902

Personalizing Editing Commands

You can personalize the default keyboard shortcuts you use for editing. 
QuickTest includes keyboard shortcuts that let you move the cursor, delete 
characters, and cut, copy, or paste information to and from the Clipboard. 
You can replace these shortcuts with your preferred shortcuts. For example, 
you could change the Line end command from the default END to 
ALT + END.

Note: The default QuickTest menu shortcut keys override any key bindings 
that you may define. For example, if you define the Paste command key 
binding to be CTRL+P, it will be overridden by the default QuickTest shortcut 
key for opening the Print dialog box (corresponding to the File > Print 
option). For a complete list of QuickTest menu shortcut keys, see 
“Performing QuickTest Commands” on page 46.



Chapter 30 • Customizing the Expert View and Function Library Windows

903

To personalize editing commands:

 1 When the Expert View or a function library window is active, select Tools > 
View Options. The Editor Options dialog box opens.

 2 Click the Key Binding tab.

 3 Select a command from the Command list.

 4 Click in the Press new shortcut key box and then press the keys you want to 
use for the selected command. For example, press and hold the CTRL key 
while you press the number 4 key to enter CTRL+4.



Chapter 30 • Customizing the Expert View and Function Library Windows

904

 5 Click Add. 

Note: If the key combination you specify is not supported, or if it is already 
defined for another command, a message displays below the shortcut key 
box.

 6 Repeat steps 3 to 5 for any additional commands.

 7 If you want to delete a key sequence from the list, select the command in 
the Command list, then highlight the keys in the Uses keys list, and click 
Delete.

 8 Click OK to apply the changes and close the dialog box.



905

31
Working with User-Defined Functions 
and Function Libraries

In addition to the test objects, methods, and built-in functions supported by 
the QuickTest Test Object Model, you can define your own function libraries 
containing VBScript functions, subroutines, modules, and so forth, and 
then call their functions from your test.  

This chapter includes:

 ➤  About Working with User-Defined Functions and Function Libraries 
on page 906

 ➤  Managing Function Libraries on page 908

 ➤  Working with Associated Function Libraries on page 919

 ➤  Using the Function Definition Generator on page 923

 ➤  Registering User-Defined Functions as Test Object Methods on page 939

 ➤  Additional Tips for Working with User-Defined Functions on page 945

 ➤  Executing Externally-Defined Functions from Your Test on page 948



Chapter 31 • Working with User-Defined Functions and Function Libraries

906

About Working with User-Defined Functions and Function 
Libraries

If you have segments of code that you need to use several times in your 
tests, you may want to create a user-defined function. A user-defined 
function encapsulates an activity (or a group of steps that require 
programming) into a keyword (also called an operation). By using 
user-defined functions, your tests are shorter, and easier to design, read, and 
maintain. You can then call user-defined functions from an action by 
inserting the relevant keywords (or operations) into that action.

You can register a user-defined function as a method for a QuickTest test 
object. A registered method can either override the functionality of an 
existing test object method for the duration of a run session, or be registered 
as a new method for a test object class. For more information on registering 
user-defined functions, see “Using the Function Definition Generator” on 
page 923 and “Registering User-Defined Functions as Test Object Methods” 
on page 939.

Note: When you create a user-defined function, do not give it the same 
name as a built-in function (for example, GetLastError, MsgBox, or Print). 
Built-in functions take priority over user-defined functions, so if you call a 
user-defined function that has the same name as a built-in function, the 
built-in function is called instead. For a list of built-in functions, see the 
Built-in functions list in the Step Generator (Insert > Step Generator).

Using QuickTest, you can define and store your user-defined functions 
either in a function library (saved as a .qfl file, by default) or directly in an 
action within a test. A function library is a Visual Basic script containing 
VBscript functions, subroutines, modules, and so forth. You can also use 
QuickTest to modify and debug any existing function libraries (such as .vbs 
or .txt files). For information on using VBScript, see “Handling VBScript 
Syntax Errors” on page 860 and “Understanding Basic VBScript Syntax” on 
page 853. 



Chapter 31 • Working with User-Defined Functions and Function Libraries

907

When you store a function in a function library and associate the function 
library with a test, the test can call the public functions in that function 
library. For more information, see “Working with Associated Function 
Libraries” on page 919. Functions that are stored in an associated function 
library can be accessed from the Step Generator, and the Available Keywords 
pane, as well as being entered manually in the Expert View.

When you store a function in a test action, it can be called only from within 
that action—the function cannot be called from any other action or test. 
This is useful if you do not want the function to be available outside of a 
specific action.

You can also define private functions and store them in a function library. 
Private functions are functions that can be called only by other functions 
within the same function library. This is useful if you need to reuse 
segments of code in your public functions.

You can define functions manually or using the Function Definition 
Generator, which creates the basic function definition for you 
automatically. Even if you prefer to define functions manually, you may still 
want to use the Function Definition Generator to view the syntax required 
to add header information, register a function to a test object, or set the 
function as the default method for the test object. For more information, see 
“Using the Function Definition Generator” on page 923.



Chapter 31 • Working with User-Defined Functions and Function Libraries

908

Managing Function Libraries

You can create function libraries in QuickTest and call their functions from 
an action in your test. A function library is a separate QuickTest document 
containing VBscript functions, subroutines, modules, and so forth. Each 
function library opens in a separate window, enabling you to open and work 
on one or several function libraries at the same time. After you finish editing 
a function library, you can close it, leaving your QuickTest session open. You 
can also close all open function libraries simultaneously.

By implementing user-defined functions in function libraries and 
associating them with your test, you and other users can choose functions 
that perform complex operations, such as adding if/then statements and 
loops to test steps, or working with utility objects—without adding the code 
directly to the test. In addition, you save time and resources by 
implementing and using reusable functions.

QuickTest provides tools that enable you to edit and debug any function 
library, even if it was created using an external editor. For example, 
QuickTest can check the syntax of your functions, and the function library 
window provides the same editing features that are available in the Expert 
View. For more information on the options available in the Expert View, see 
Chapter 29, “Working in the Expert View and Function Library Windows.”

Note: In QuickTest, when you open a test, QuickTest creates a local copy of 
the external resources that are saved to your Quality Center project. 
Therefore, if another user modifies an external resource saved in your 
Quality Center project, such as a function library, or if you modify a 
resource using an external editor (not QuickTest)—the changes will not be 
implemented in the test until the test is closed and reopened.

In contrast with this, any changes you apply to external resources saved in 
the file system, such as function libraries, are implemented immediately, as 
these files are accessed directly and are not saved as local copies when you 
open your test.



Chapter 31 • Working with User-Defined Functions and Function Libraries

909

Creating a Function Library
You can create a new function library at any time.

To create a new function library in QuickTest:

Perform one of the following:

➤ Select File > New > Function Library 

➤ Click the New button down arrow and select Function Library 

A new function library opens.

You can now add content to your function library and/or save it. When you 
add content to your function library, QuickTest applies the same formatting 
it applies to content in the Expert View. You can modify the formatting, if 
needed. For more information, see “Customizing the Expert View and 
Function Library Windows” on page 895.

Opening a Function Library
In QuickTest, you can open any function library that is saved in the file 
system or your Quality Center project—even if another document is already 
open in QuickTest. You can only open a function library if you have read or 
read-write permissions for the file.

You can choose to open a function library in edit mode or read-only mode:

➤ Edit mode. Enables you to view and modify the function library. While the 
function library is open on your computer, other users can view the file in 
read-only mode, but they cannot modify it. 

➤ Read-only mode. Enables you to view the function library but not modify it. 
By default, when you open a function library that is currently open on 
another computer, it opens in read-only mode. You can also choose to open 
a function library in read-only mode if you want to review it, but you do not 
want to prevent another user from modifying it.



Chapter 31 • Working with User-Defined Functions and Function Libraries

910

Tip: You can also navigate directly from a function in your document to its 
function definition in another function library. For more information, see 
“Navigating to a Specific Function in a Function Library” on page 914.

To open an existing function library:

 1 Perform one of the following:

➤ Select File > Open > Function Library 

➤ Click the Open button down arrow and select Function Library 

The Open Function Library dialog box opens. 

Tip: To open the function library in read-only mode, select the Open in 
read-only mode check box in the Open Function Library dialog box.

 2 In the sidebar, select the location of the file, for example, File System or 
Quality Center Test Resources. Browse to and select a function library, and 
click Open.

QuickTest opens the specified function library in a new window. You can 
now view and modify its content. For more information, see “Editing a 
Function Library” on page 914 and “Debugging a Function Library” on 
page 916.



Chapter 31 • Working with User-Defined Functions and Function Libraries

911

Tips:

If the function library was recently created or opened, you can select it from 
the recent files list in the File menu.

If the function library is associated with the open test, you can also open it 
as follows:

➤ In the Resources pane, double-click the function library, or right-click the 
function library and select Open Function Library. 

➤ In the Available Keywords panes, double-click the function library, or 
right-click the function library and select Open Resource. 

➤ Select Resources > Associated Function Libraries. (If you select a function 
library that is stored in a Quality Center project, QuickTest must be 
connected to that project to open the associated function library.) 

Saving a Function Library
After you create or edit a function library in QuickTest, you can save it to 
your Quality Center project or to the file system. 

You can also save a function library as an attachment to a test for storage 
purposes only. To insert function calls from this function library into a test, 
you must first associate the function library with the test. 

By default, QuickTest saves a function library with a .qfl extension, unless 
you specify a different extension, such as .vbs or .txt, or remove the 
extension altogether. 



Chapter 31 • Working with User-Defined Functions and Function Libraries

912

Tips:

➤ When you modify a function library, an asterisk (*) is displayed in the 
title bar until the function library is saved.

➤ To save all open documents, select File > Save All. QuickTest prompts you 
to specify a location in which to save any new files that have not yet 
been saved.

➤ To save multiple documents, select Window > Windows. In the Window 
dialog box, select the documents you want to save and click the Save 
button. QuickTest prompts you for the save location for any new files 
that have not yet been saved.

➤ You can also select File > Save As to save the active function library under 
a different name or using a different path.

To save a function library to the file system or a Quality Center project:

 1 Make sure that the function library you want to save is the active document. 
(You can click the function library’s tab to bring it into focus.)

 2 Perform one of the following:

➤ Click the Save button.

➤ Select File > Save.

➤ Right-click the function library document’s tab and select Save.

If the function library was previously saved, QuickTest saves it with your 
changes. Otherwise, if this is the first time you are saving this function 
library, the Save Function Library dialog box opens. 

 3 Save the function library to your Quality Center project or to the file system. 



Chapter 31 • Working with User-Defined Functions and Function Libraries

913

To save a function library as an attachment to a test in a Quality Center 
project:

 1 Repeat steps 1 and 2 above, making sure that you are connected to a 
Quality Center project.

 2 In the sidebar of the Save Function Library dialog box, click Quality Center 
Test Plan. The the title bar of the dialog box changes to Save Function 
Library as Attachment.

 3 Browse to the test to which you want to attach the function library and 
double-click it. The test is listed as the last item in Look in path.

 4 Click Save. The function library is saved as an attachment to the test. 

Note: To insert calls to the attached function library, you need to associate it 
with a test. For more information, see “Associating a Function Library with a 
Test” on page 921.

Navigating Between Open QuickTest Documents 
You can open multiple function libraries while a test is open, and you can 
navigate between all of your open documents. 

To navigate between open QuickTest documents:

Perform one of the following:

➤ Click the tab for the required document in the Document pane.

Tip: If not all tabs are displayed due to lack of space, use the left and right 
scroll arrows in the Document pane to display the required document’s tab.

➤ Press CTRL+TAB on your keyboard to scroll between open documents.

➤ Select the required document from the Window menu.

➤ Select Window > Windows, select the required document in the Windows 
dialog box, and click the Activate button.



Chapter 31 • Working with User-Defined Functions and Function Libraries

914

Navigating to a Specific Function in a Function Library
After you insert a call to a function, you can navigate directly to its 
definition in the source document. The function definition can be located 
either in the same document (test or function library) or in another 
function library that is associated with your test. If the document 
containing the function definition is already open, QuickTest activates the 
window (brings the window into focus). If the document is closed, 
QuickTest opens it in read-only mode.

To navigate to a function's definition:

 1 In the Expert View or function library, click in the step containing the 
relevant function.

 2 Perform one of the following:

➤ Select Edit > Advanced > Go to Function Definition. 

➤ Right-click the step and select Go to Function Definition from the context 
menu. 

QuickTest activates the relevant document (if the function definition is 
located in another function library) and positions the cursor at the 
beginning of the function definition.

Editing a Function Library
You can edit a function library at any time using the QuickTest editing 
features that are available in the Expert View. 

You can drag and drop a function (or part of it) from one document to 
another. (To do so, you must first separate the tabbed documents into 
separate document panes by clicking the Restore Down button (located 
below the QuickTest window’s Restore Down / Maximize button).) 



Chapter 31 • Working with User-Defined Functions and Function Libraries

915

You can add steps to your function library manually or using the Step 
Generator. The Step Generator enables you to add steps that contain 
reserved objects (the objects that QuickTest supplies for enhancement 
purposes, such as utility objects), VBScript functions (such as MsgBox), 
utility statements (such as Wait), and user-defined functions that are defined 
in the same function library. IntelliSense is available for all functions 
defined in your action or for public functions defined in associated function 
libraries. 

Note: In function libraries, IntelliSense does not enable you to view test 
object names or collections because function libraries are not connected to 
object repositories.

You can instruct QuickTest to check syntax by clicking the Check Syntax 
button, or by choosing Tools > Check Syntax.

Tips:

➤ For information on using VBScript, see “Understanding Basic VBScript 
Syntax” on page 853.

➤ To check the syntax for all function libraries associated with your test, 
click the Check Syntax button in the Resources pane of the Test Settings 
dialog box (File > Settings > Resources node). For more information, see 
“Defining Resource Settings for Your Test” on page 1274. 



Chapter 31 • Working with User-Defined Functions and Function Libraries

916

Editing a Read-Only Function Library
If you open a function library in read-only mode and then decide to modify 
it, you can convert the function library to an editable file—as long as the 
function library is not locked by another user. For more information on the 
options available when opening a function library, see “Opening a Function 
Library” on page 909.

Note: During a debug session, all documents (such as tests and function 
libraries) are read-only. To edit a document during a debug session, you 
must first stop the debug session.  

To edit a read-only function library:

Select File > Enable Editing or click the Enable Editing button. You can now 
edit the function library.

Debugging a Function Library
Before you can debug a function library, you must first associate it with a 
test and then insert a call to at least one of its functions. You can then run 
the test, suspend the run session while in the context of your function 
library and debug the function library. For example, you can use the Debug 
Viewer to view, set, or modify the current value of objects or variables in 
your function library, or to manually run additional VBScript commands. 
You can step into functions (including user-defined functions), set 
breakpoints, stop at breakpoints, view expressions, and so forth. You can 
begin debugging from a specific step, or you can instruct QuickTest to pause 
at a specific step. For more information, see “Debugging Tests and Function 
Libraries” on page 1069.

Note: During a debug session, all documents are read-only and cannot be 
edited. To edit a document during a debug session, you must first stop the 
debug session.



Chapter 31 • Working with User-Defined Functions and Function Libraries

917

Printing a Function Library
You can print a function library at any time. You can also include additional 
information in the printout.

To print from the function library:

 1 Click the Print button or select File > Print. The Print dialog box opens.

 2 Specify the print options that you want to use:

➤ Printer. Displays the printer to which the print job will be sent. You can 
change the printer by clicking the Setup button.

➤ Selection only. Prints only the text that is currently selected (highlighted) 
in the function library.

➤ Insert document name in header. Includes the name of the function 
library at the top of the printout.

➤ Insert date in header. Includes today’s date at the top of the printout. 
The date format is taken from your Windows regional settings.

➤ Page numbers. Includes page numbers on the bottom of the printout (for 
example, page 1 of 3).

➤ Show line numbers every __ lines. Displays line numbers to the left of the 
script lines, as specified.

➤ Number of copies. Specifies the number of times to print the document.



Chapter 31 • Working with User-Defined Functions and Function Libraries

918

 3 If you want to print to a different printer or change your printer preferences, 
click Setup to display the Print Setup dialog box.

 4 Click Print to print according to your selections. 

Closing a Function Library
You can close an individual function library, or if you have several function 
libraries open, you can close some or all of them simultaneously. If any of 
the function libraries are not saved, QuickTest prompts you to save them.

To close an individual function library:

Perform one of the following:

➤ Make sure that the function library you want to save is the active 
document—you can click the function library’s tab to bring it into 
focus—and select File > Close. 

➤ Right-click the function library document’s tab and select Close.

➤ Click the Close button in the top right corner of the function library 
window.

➤ Select Window > Windows. In the Windows dialog box, select the 
function library to close if it is not already selected, and click the Close 
Window(s) button.

To close several function libraries:

Select Window > Windows. In the Windows dialog box, select the function 
libraries you want to close and click the Close Window(s) button.

To close all open function libraries:

Select File > Close All Function Libraries, or Window > Close All Function 
Libraries. 



Chapter 31 • Working with User-Defined Functions and Function Libraries

919

Working with Associated Function Libraries

In QuickTest, you can create function libraries containing functions, 
subroutines, modules, and so forth, and then associate the files with your 
test. This enables you to insert a call to a public function or subroutine in 
the associated function library from that test. (Public functions stored in 
function libraries can be called from any associated test, whereas private 
functions can be called only from within the same function library.)

Note: Any text file written in standard VBScript syntax can be used as a 
function library.

You can specify the default function libraries for all new tests in the Test 
Settings dialog box (File > Settings > Resources node). After a test is created, 
the list of default function libraries is integrated into the test. Therefore any 
changes to the default function libraries list in the Test Settings dialog box 
do not affect existing tests.

You can edit the list of associated function libraries for an existing test in the 
Resources pane or the Test Settings dialog box. For more information, see 
“The Resources Pane” on page 1161, and “Defining Resource Settings for 
Your Test” on page 1274. 



Chapter 31 • Working with User-Defined Functions and Function Libraries

920

Notes:

➤ In addition to the functions available in the associated function libraries, 
you can also call a function contained in any function library (or 
VBscript file) directly from any action using the ExecuteFile function. You 
can also insert ExecuteFile statements within an associated function 
library. For more information, see “Executing Externally-Defined 
Functions from Your Test” on page 948. 

➤ You cannot debug a file that is called using an ExecuteFile statement, or 
any of the functions contained in the file. In addition, when debugging a 
test that contains an ExecuteFile statement, the execution marker may 
not be correctly displayed.

Working with Associated Function Libraries in Quality Center

You can associate a function library with your test, regardless of whether the 
function library is stored in the file system or your Quality Center project. 
However, if you are planning on using the function library in a business 
process test, you must save it in your Quality Center project.

When working with Quality Center and associated function libraries, you 
must save the associated function library in the Test Resources module in 
your Quality Center project before you specify the associated file in the 
Resources pane of the Test Settings dialog box. You can add a new or existing 
function library to your Quality Center project. 

If you add an existing function library from the file system to a 
Quality Center project, you are actually adding a copy of that file to the 
project. Therefore, if you later make modifications to either of these 
function libraries (in the file system or in your Quality Center project), the 
other function library remains unaffected. 



Chapter 31 • Working with User-Defined Functions and Function Libraries

921

Associating a Function Library with a Test
You can associate a function library with an open test either from the 
Resources pane or from the currently active function library.

You can also associate function libraries with the currently open test using 
the associated function libraries list. For more information, see “Modifying 
Function Library Associations” on page 922.

To associate a function library with a test using the Resources pane:

 1 In the Resources pane, right-click the Associated Function Libraries node in 
the tree and select Associate Function Library. The Open Function Library 
dialog box opens.

 2 In the sidebar, select the location of the file, for example, File System or 
Quality Center Test Resources. Browse to and select a function library, and 
click Open.

The function library is associated with the test and is displayed as a node 
under the Associated Function Libraries node in the tree.

To associate an open function library with a test:

 1 Make sure that the test with which you want to associate the function 
library is open in QuickTest.

 2 Create or open a function library in QuickTest. (Before continuing to the 
next step, make sure that the function library you want to associate with the 
test is the active document—you can click the function library’s tab to bring 
it into focus.) For more information, see “Managing Function Libraries” on 
page 908. 

 3 Save the function library either in your Quality Center project or in the file 
system. For more information, see “Saving a Function Library” on page 911.

 4 In QuickTest, select File > Associate Library '<Function Library>' with 
'<Test>', or right-click in the in the function library and select Associate 
Library '<Function Library>' with '<Test>'. QuickTest associates the function 
library with the open test.



Chapter 31 • Working with User-Defined Functions and Function Libraries

922

Modifying Function Library Associations
You can modify the list of associated function libraries for a test in the 
Resources pane of the Test Settings dialog box, or in the Resources pane. You 
can add or remove function libraries from the list, and you can change their 
priorities.

To associate a function library with your test in the Resources pane of the 
Test Settings dialog box:

 1 In the Test Settings dialog box (File > Settings), click the Resources node in 
the navigation bar.

 2 In the Associated function libraries list, click the Add button. QuickTest 
displays a browse button enabling you to browse to a function library in the 
file system. If you are connected to a Quality Center project, QuickTest also 
adds [QualityCenter] to the file path, indicating that you can browse to a 
function library either in your Quality Center project or in the file system.

Tip: If you want to add a file from your Quality Center project but are not 
connected to Quality Center, press and hold the SHIFT key and click the Add 
button. QuickTest adds [QualityCenter], and you can enter the path 
manually. If you do, make sure there is a space after [QualityCenter]. For 
example: [QualityCenter] Subject\Tests

Note that QuickTest searches Quality Center project folders only when you 
are connected to the corresponding Quality Center project.

 3 Select the function library you want to associate with your test and click 
Open.

To modify the priority of an associated function library:

In the list of associated function libraries in the Resources pane of the Test 
Settings dialog box, select the function library you want to prioritize and use 
the Up and Down arrows. 

For more information, see “Defining Resource Settings for Your Test” on 
page 1274. 



Chapter 31 • Working with User-Defined Functions and Function Libraries

923

To remove an associated function library:

Perform one of the following:

➤ In the Resources pane, right-click the function library and select Remove 
Function Library, or select the function library and press the DELETE key.

➤ In the list of associated function libraries in the Resources pane of the Test 
Settings dialog box, select the function library you want to remove and click 
the Remove button. 

For more information, see “Defining Resource Settings for Your Test” on 
page 1274. 

Using the Function Definition Generator

QuickTest provides a Function Definition Generator, which enables you to 
generate definitions for new user-defined functions and add header 
information to them. You can then register these functions to a test object, 
if needed. You fill in the required information and the Function Definition 
Generator creates the basic function definition for you. After you define the 
function definition, you can insert the definition in your function library 
and associate it with your test, or you can insert the definition directly in a 
test script in the Expert View. Finally, you complete the function by adding 
its content (code). 

Note: If you insert the function directly in the Expert View, the test will be 
able to access the function anywhere within the specific action.

If you register the function to a test object, it can be called by that test 
object, and is displayed in the list of available operations for that test object.



Chapter 31 • Working with User-Defined Functions and Function Libraries

924

If you do not register the function to a test object, it becomes a global 
operation and is displayed in the list of operations in the Operation box in 
the Step Generator, and in the Operation column in the Keyword View, and 
when using IntelliSense. If you register a function, you can define it as the 
default operation that is displayed in the Step Generator or the Keyword 
View when the test object to which it is registered is selected.

Finally, you can document your user-defined function by defining the 
tooltip that displays when the cursor is positioned over the operation in the 
Step Generator, in the Keyword View, and when using IntelliSense. You can 
also add a sentence that describes what the step that includes the 
user-defined function actually does. This sentence is then displayed in the 
Keyword View in the Step documentation box of the Step Generator and in 
the Documentation column.

As you add information to the Function Definition Generator, the Preview 
area displays the emerging function definition. After you finish defining the 
function, you insert the definition in the active QuickTest document. If you 
insert it in a function library, the function will be accessible to any 
associated test. If you insert the function directly in a test in the Expert 
View, it can be called only from within the specific action. Finally, you add 
the content (code) of the function.

The following section provides an overview of the steps you perform when 
using the Function Definition Generator to create a function.

To use the Function Definition Generator:

 1 Open the Function Definition Generator, as described in “Opening the 
Function Definition Generator” on page 925.

 2 Define the function, as described in “Defining the Function Definition” on 
page 927.

 3 Register the function to a test object, if needed, as described in “Registering 
a Function Using the Function Generator” on page 928. 



Chapter 31 • Working with User-Defined Functions and Function Libraries

925

By default, functions that are not registered to a test object are automatically 
defined as global functions that can be called by selecting the Functions 
category in the Step Generator, the Operation item in the Keyword View, or 
when using IntelliSense. Note that if you register the function to a test 
object, you can also define the function (operation) as the default operation 
for that selected test object.

 4 Add arguments to the function, as described in “Specifying Arguments for 
the Function” on page 932.

 5 Document the function by adding header information to it, as described in 
“Documenting the Function” on page 934.

 6 Preview the function before finalizing it, as described in “Previewing the 
Function” on page 936. 

 7 Generate another function definition, if needed, as described in “Generating 
Another User-Defined Function” on page 936.

 8 Finalize each function by inserting it in your active document and adding 
content to it, as described in “Finalizing the User-Defined Function” on 
page 937. 

Note: Each of the steps listed in this section assumes that you have 
performed the previous steps.

Opening the Function Definition Generator
You open the Function Definition Generator from QuickTest.

To open the Function Definition Generator:

 1 Make sure that the function library or test in which you want to insert the 
function definition is the active document. (You can click the document’s 
tab to bring it into focus.) This is because the Function Definition Generator 
inserts the function in the currently active document after you finish 
defining it.



Chapter 31 • Working with User-Defined Functions and Function Libraries

926

 2 Select Insert > Function Definition Generator or click the Function 
Definition Generator button. The Function Definition Generator opens. 

After you open the Function Definition Generator, you can begin to define a 
new function. 



Chapter 31 • Working with User-Defined Functions and Function Libraries

927

Defining the Function Definition
After you open the Function Definition Generator, you can begin defining a 
function. 

For example, if you want to define a function that verifies the value of a 
specified property, you might name it VerifyProperty and define it as a public 
function so that it can be called from any associated test. (If you define it as 
private, the function can only be called from elsewhere in the same function 
library. Private functions cannot be registered to a test object.)

To define a function:

 1 In the Name box, enter a name for the new function. The name should 
clearly indicate what the operation does so that it can be easily selected 
from the Step Generator or the Keyword View. Function names cannot 
contain non-English letters or characters. In addition, function names must 
begin with a letter and cannot contain spaces or any of the following 
characters:
! @ # $ % ^ & * ( ) + = [ ] \ { } | ; ‘ : "" , / < > ?

Note: Do not give the user-defined function the same name as a built-in 
function (for example, GetLastError, MsgBox, or Print). Built-in functions take 
priority over user-defined functions, so if you call a user-defined function 
that has the same name as a built-in function, the built-in function is called 
instead. For a list of built-in functions, see the Built-in functions list in the 
Step Generator (Insert > Step Generator).



Chapter 31 • Working with User-Defined Functions and Function Libraries

928

 2 From the Type list, select Function or Sub, according to whether you want to 
define a function or a subroutine.

 3 From the Scope list, select the scope of the function—either Public (to 
enable the function to be called by any test that is associated with this 
function library), or Private (to enable the function to be called only from 
elsewhere in the same function library). By default, the scope is set to Public. 
(Only public functions can be registered to a test object.)

Note: If you create a user-defined function manually and do not define the 
scope as Public or Private, it will be treated as a public function, by default.

After you define a public function, you can register the function. 
Alternatively, if you defined a private function, or if you do not want to 
register the function, you can continue by specifying arguments for the 
function. For more information, see “Specifying Arguments for the 
Function” on page 932. 

Registering a Function Using the Function Generator
You can register a public function to a test object to enable the function 
(operation) to be performed on a test object. When you register a function 
to a test object, you can choose to override the functionality of an existing 
operation, or you can register the function as a new operation for the test 
object. 

After you register a function to a test object, it is displayed as an operation in 
the Step Generator when that test object is selected, and in the Keyword 
View Operation list when that test object is selected from the Item list, as 
well as in IntelliSense and in the general Operation list in the Step 
Generator. When you register a function to a test object, it can only be 
called by that test object.



Chapter 31 • Working with User-Defined Functions and Function Libraries

929

If you choose to register the function to a test object, the Function 
Definition Generator automatically adds the argument, test_object, as the 
first argument in the Arguments area in the top-right corner of the Function 
Definition Generator. The Function Definition Generator also automatically 
adds a RegisterUserFunc statement with the correct argument values 
immediately after your function definition.

When you register a function to a test object, you can optionally define it as 
the default operation for that test object. This instructs QuickTest to display 
the function in the Operation column, by default, when you or the Subject 
Matter Expert choose the associated test object in the Item list. It also 
enables you to select the function from IntelliSense. When you define a 
function as the default function for a test object, the value True is specified 
as the fourth argument of the RegisterUserFunc statement. 

If you do not register the function to a specific test object, the function is 
automatically defined as a global function. Global functions can be called 
by selecting the Functions category in the Step Generator, or the Operation 
item in the Keyword View. A list of global functions can be viewed 
alphabetically in the Operation box when the Functions category is selected 
in the Step Generator, in the Operation list when the Operation item is 
selected from the Item list in the Keyword View, and when using 
IntelliSense.

During run-time, QuickTest first searches the test for the specified function 
and then searches the function libraries in the order in which they are listed 
in the Resources pane. If QuickTest finds more than one function that 
matches the function name in a specific test or function library, it uses the 
last function it finds in that test or function library. If QuickTest finds two 
functions with the same name in two different function libraries, it uses the 
function from the function library that has the higher priority. To avoid 
confusion, it is recommended that you verify that within the resources 
associated with a test, each function has a unique name. 



Chapter 31 • Working with User-Defined Functions and Function Libraries

930

Tip: If you choose not to register your function at this time, you can 
manually register it later by adding a RegisterUserFunc statement after your 
function as shown in the following example: 
RegisterUserFunc "WebEdit", "MySet", "MySetFunc"

In this example, the MySet method (operation) is added to the WebEdit test 
object using the MySetFunc user-defined function. If you choose the 
WebEdit test object from the Item list in the Keyword View, the MySet 
operation will then be displayed in the Operation list (together with other 
registered and out of the box operations for the WebEdit test object).

You can also register your function to other test objects by duplicating 
(copying and pasting) the RegisterUserFunc statement and modifying the 
argument values as needed when you save the function code in a function 
library.

To define this function as the default function, you define the value of the 
fourth argument of the RegisterUserFunc statement as True. For example: 
RegisterUserFunc "WebEdit", "MySet", "MySetFunc", True

Note: A registered or global function can only be called from a test after it is 
added to the test script or a function library that is associated with the test.



Chapter 31 • Working with User-Defined Functions and Function Libraries

931

To register the function to a test object:

 1 Select the Register to a test object check box. The options in this area are 
enabled, and a new argument, test_object, is automatically added to the list 
of arguments in the Arguments area in the top-right corner of the Function 
Definition Generator. (The test_object argument receives the test object to 
which you want to register the function.)  

Note: If you clear the Register to a test object check box, the default 
test_object argument is automatically removed from the Arguments area 
(unless you renamed it).

 2 Select a Test object from the list of available objects. For example, for the 
sample VerifyProperty function, you might want to register it to the Link test 
object.

 3 Specify the Operation that you want to add or override for the test object.

➤ To define a new operation, enter a new operation name in the Operation 
box. For example, for the sample VerifyProperty function, you may want 
to define a new VerifyProperty operation.

➤ To override the standard functionality of an existing operation, select an 
operation from the list of available operations in the Operation box.



Chapter 31 • Working with User-Defined Functions and Function Libraries

932

 4 If you want the function to be displayed as the default operation in the 
Operation column when you or the Subject Matter Expert choose the 
associated item, select the Register as default operation check box.

For example, if you were to define the VerifyProperty operation as the default 
operation for the Link test object, the value True would be defined as the 
fourth argument of the RegisterUserFunc statement, and the syntax would 
appear as follows:

RegisterUserFunc "Link", "VerifyProperty", "VerifyProperty", True

After you specify the test object registration information, you specify 
additional arguments for the function. 

Specifying Arguments for the Function
After you define the basic function definition and specify the test object 
registration information, if any, you can specify the function’s arguments.  

For example, if you choose to register the function to a test object, as we did 
the example described in “Registering a Function Using the Function 
Generator” on page 928, you may want to assign the arguments prop_name 
(the name of the property to check) and expected_value (the expected value 
of the property), in addition to the first argument, test_object. You must 
define the required arguments for your function to run correctly.

You can list the arguments in any order. However, if you are registering the 
function to a test object, the first argument must always receive the test 
object.  



Chapter 31 • Working with User-Defined Functions and Function Libraries

933

To define the arguments for the function:

In the Arguments area, specify the arguments for the function. You can add 
as many arguments as needed. To ensure clarity, the name for each 
argument should indicate the value that needs to be entered.

➤ To add an argument, click  and enter a name for the argument. The 
argument name should clearly indicate the value that needs to be 
entered for the argument. Argument names may not contain 
non-English letters or characters. In addition, argument names must 
begin with a letter and cannot contain spaces or any of the following 
characters:
! @ # $ % ^ & * ( ) + = [ ] \ { } | ; ‘ : "" , / < > ?

For each argument, select the appropriate mode in the Pass Mode box to 
instruct QuickTest to pass the argument to the function By value or By 
reference.

➤ To remove an argument, select it and click . The argument is removed 
from the Function Definition Generator.

➤ To set the order of the arguments, use the  and  arrows. The order 
of the arguments only affects the readability of the function code (except 
if you want to register the public function—in this case, the first 
argument must receive the test object).



Chapter 31 • Working with User-Defined Functions and Function Libraries

934

Documenting the Function
The Function Definition Generator enables you to add header information 
to your user-defined function. You can add a description, which is displayed 
as a tooltip when the cursor is positioned over the operation. You can then 
use this tooltip to determine which operation to choose from the list of 
available operations. (It is advisable to keep the description text as brief and 
clear as possible.)

In addition, you can add documentation that specifies exactly what a step 
using your function does. You can include the test object name, test object 
type, and any argument values in the text. You can also add text manually, 
as needed. This text that you add here is displayed in the Keyword View in 
the Step documentation box of the Step Generator and in the 
Documentation column. Therefore, the sentence must be clear and 
understandable.

For example, if you were checking a link to "HP" from a search engine, you 
might define the following documentation using the Function Definition 
Generator:

‘@Documentation Check if the <Test object name> <Test object type> 
<prop_name> value matches the expected value: <expected_value>.



Chapter 31 • Working with User-Defined Functions and Function Libraries

935

After choosing values for the arguments in the Keyword View, the above 
documentation might appear as follows: Check if the "Management Software" 
link "text" value matches the expected value: "Business Technology Optimization 
(BTO) Software".

Tip: You can right-click on any column header in the Keyword View and 
select the Documentation only option to view or print a list of steps. This 
instructs QuickTest to display only the Documentation column. You can 
also select Edit > Copy Documentation to Clipboard and then paste the 
documentation in any application. Therefore, the sentence displayed for the 
step in this column must also be clear enough to use for manual testing 
instructions. 

To document the function:

 1 In the Description box, enter the text to be displayed as a tooltip when the 
cursor is positioned over the function name in the Operation list in the Step 
Generator, in the Operation column in the Keyword View, and in 
IntelliSense. 

For example, for the sample VerifyProperty function, you may want to enter: 
Checks whether a property value matches the actual value.

 2 In the Documentation box, enter the text to be displayed in the Step 
documentation box in the Step Generator in the Keyword View and in the 
Documentation column of the Keyword View. You can use arguments in the 
Documentation text by clicking  and selecting the relevant argument.

If you selected the Register to a test object check box, clicking  also 
enables you to add the Test object name and/or Test object type items to 
the Documentation column from the displayed list. If you use these test 
object and argument items in the Documentation text, they are replaced 
dynamically by the relevant test object names and types or argument values.



Chapter 31 • Working with User-Defined Functions and Function Libraries

936

Previewing the Function
The Preview area displays the function code as you define it, in read-only 
format. You can review your function and make any changes, as needed, in 
the various areas of the Function Definition Generator.

For example, for the sample VerifyProperty function, the Preview area 
displays the following code.

After you review the code (before you insert it in the active document), you 
can choose either to generate another function definition or to finalize the 
code for the function you defined.  

Generating Another User-Defined Function
After you preview the code—before you insert the function in the active 
document—you can decide whether you want to generate an additional 
function definition. 

Note: If you do not want to define an additional function, continue to the 
next section. 

To generate an additional user-defined function:

 1 Select the Insert another function definition check box and click Insert. 
QuickTest inserts the function definition in the active document and clears 
the data from the Function Definition Generator. The Function Definition 
Generator remains open.

 2 Define the new function beginning from “Defining the Function 
Definition” on page 927.



Chapter 31 • Working with User-Defined Functions and Function Libraries

937

Finalizing the User-Defined Function
After you preview the code, you insert it in the active document. If you 
insert it in a function library, any test associated with the function library 
can access the function. If you insert the function directly in a test (in the 
Expert View), the test can contain a call to the function from anywhere 
within the specific action.

After you insert the code in the required location, you can finalize the 
function. For example, for the VerifyProperty function, the following code 
would be inserted in your function library or test:

‘@Description Checks whether a property matches its expected value
‘@Documentation Check whether the <Test object name> <Test object type> 
<prop_name> value matches the expected value: <expected_value>.
Public Function VerifyProperty (test_object, prop_name, expected_value)

‘TODO: add function body here
End Function
RegisterUserFunc "Link", "VerifyProperty", "VerifyProperty"

Tip: The RegisterUserFunc statement (in the last line) registers the 
VerifyProperty function to the Link test object. If you want to register the 
function to more than one test object, you could copy this line and 
duplicate it for each test object, changing the argument values, as required.



Chapter 31 • Working with User-Defined Functions and Function Libraries

938

To finalize the function, you add its content (replacing the TODO 
comment). For example, if you want the function to verify whether the 
expected value of a property matches the actual property value of a specific 
test object, you might add the following to the body of the function:

Dim actual_value
' Get the actual property value
actual_value = obj.GetROProperty(prop_name)
' Compare the actual value to the expected value
If actual_value = expected_value Then

Reporter.ReportEvent micPass, "VerifyProperty Succeeded", "The " & 
prop_name & " expected value: " & expected_value & " matches the actual 
value"

VerifyProperty = True
Else

Reporter.ReportEvent micFail, "VerifyProperty Failed", "The " & 
prop_name & " expected value: " & expected_value & " does not match the 
actual value: " & actual_value 

VerifyProperty = False
End If

To finalize the user-defined function:

 1 Click OK. QuickTest inserts the function definition in the active document 
and closes the Function Definition Generator. 

Note: If you define a function directly in an action, the function can be 
called only in that action. 

 2 In your function library or test, add content to the function code, as 
required, by replacing the TODO line.



Chapter 31 • Working with User-Defined Functions and Function Libraries

939

Tip: To display the function in the test results tree (Test Results window) 
after a run session, add a Reporter.ReportEvent statement to the function 
code (as shown in the example above). 

Note that if your user-defined function uses a default test object method, 
this step will appear in the Test Results window after the run session. 
However, you can still add a Reporter.ReportEvent statement to the function 
code to provide additional information and to modify the test status, if 
required.

 3 If you inserted the code in a function library, you must associate the 
function library with a test to enable access to the user-defined functions. 
You also need to check its syntax to ensure that tests will have access to the 
functions, and that you will be able to see and use the functions. For more 
information, see “Working with Associated Function Libraries” on page 919.

Registering User-Defined Functions as Test Object Methods

In addition to using the QuickTest Function Definition Generator to register 
a function, as described in “Registering a Function Using the Function 
Generator” on page 928, you can also use the RegisterUserFunc statement to 
add new methods to test objects or to change the behavior of an existing 
test object method during a run session. 

When you register a function to a test object, you can define it as the default 
operation for that test object, if required. The default operation is displayed 
by default in the Step Generator or the Operation column in the Keyword 
View when the test object to which it is registered is selected.

You use the UnregisterUserFunc statement to disable new methods or to 
return existing methods to their original QuickTest behavior. 

If a you do not register a function to a test object, it becomes a global 
function. Global functions can be called by selecting the Functions category 
in the Step Generator, the Operation item in the Keyword View, or when 
using IntelliSense. 



Chapter 31 • Working with User-Defined Functions and Function Libraries

940

To register a method, you first define a function in your test or in an 
associated function library. You then enter a RegisterUserFunc statement at 
the end of the function that specifies the test object class, the function to 
use, and the method name that calls your function. You can register a new 
method for a test object class, or you can use an existing method name to 
(temporarily) override the existing functionality of the specified method. 

Your registered method applies only to the test or function library in which 
you register it. In addition, QuickTest clears all function registrations at the 
beginning of each run session.

Preparing the User-Defined Function
You can write your user-defined function directly into your test if you want 
to limit its use only to the local action, or you can store the function in an 
associated function library to make it available to many actions and tests 
(recommended). If the same function name exists locally within your action 
and within an associated function library, QuickTest uses the function 
defined in the action.

When you run a statement containing a registered method, it sends the test 
object as the first argument. For this reason, your user-defined function 
must have at least one argument. Your user-defined function can have any 
number of arguments, or it can have only the test object argument. Make 
sure that if the function overrides an existing method, it has the exact 
syntax of the method it is replacing. This means that its first argument is the 
test object and the rest of the arguments match all the original method 
arguments.

Tip: You can use the parent identification property to retrieve the parent of 
the object represented by the first argument in your function. For example:
ParentObj = obj.GetROProperty("parent")

When writing your function, you can use standard VBScript statements as 
well as any QuickTest reserved objects, methods, functions, and any method 
associated with the test object specified in the first argument of the 
function. 



Chapter 31 • Working with User-Defined Functions and Function Libraries

941

When a function calls the test object method that it is designed to override, 
the standard functionality of that method is used.

For example, suppose you want to report the current value of an edit box to 
the Test Results before you set a new value for it. You can override the 
standard QuickTest Set method with a function that retrieves the current 
value of an edit box, reports that value to the Test Results, and then sets the 
new value of the edit box. 

The function would look something like this:

Function MyFuncWithParam (obj, x)
dim y
y = obj.GetROProperty("value")
Reporter.ReportEvent micDone, "previous value", y
MyFuncWithParam=obj.Set (x)

End Function

Note: This function defines a return value, so that each time it is called from 
a test, the function returns the Set method argument value.

Registering User-Defined Test Object Methods
You can use the RegisterUserFunc statement to instruct QuickTest to use your 
user-defined function as a method of a specified test object class for the 
duration of a test run, or until you unregister the method. 

Note: If you call an external action that registers a method (and does not 
unregister it at the end of the action), the method registration remains in 
effect for the remainder of the test that called the action.



Chapter 31 • Working with User-Defined Functions and Function Libraries

942

To register a user-defined function as a test object method, use the 
following syntax:

RegisterUserFunc TOClass, MethodName, FunctionName, SetAsDefault

Tip: If the function you are registering is defined in a function library, it is 
recommended to include the RegisterUserFunc statement in the function 
library as well so that the method will be immediately available for use in 
any test using that function library.

Item Description

TOClass Any test object class.

Note: You cannot register a method for a QuickTest 
reserved object (such as DataTable, Environment, 
Reporter, and so forth).

MethodName The name of the method you want to register (and display 
in QuickTest, for example, in the Keyword View and 
IntelliSense). If you enter the name of a method already 
associated with the specified test object class, your 
user-defined function overrides the existing method. If 
you enter a new name, it is added to the list of methods 
that the object supports.

FunctionName The name of the user-defined function that you want to 
call from your test. The function can be located in your 
test or in any associated function library. 

SetAsDefault Indicates whether the registered function is used as the 
default method for the test object. 

When you select a test object in the Keyword View or Step 
Generator, the default method is automatically displayed 
in the Operation column (Keyword View) or Operation 
box (Step Generator). 



Chapter 31 • Working with User-Defined Functions and Function Libraries

943

For example, suppose that the Find Flights Web page contains a Country 
edit box, and by default, the box contains the value USA. The following 
example registers the Set method to use the MySet function to retrieve the 
default value of the edit box before the new value is entered.

Function MySet (obj, x) 
dim y
y = obj.GetROProperty("value") 
Reporter.ReportEvent micDone, "previous value", y 
MySet=obj.Set(x) 

End Function 

RegisterUserFunc "WebEdit", "Set", "MySet" 
Browser("MercuryTours").Page("FindFlights").WebEdit("Country").Set "Canada" 

For more information and examples, see the HP QuickTest Professional Object 
Model Reference.

Unregistering User-Defined Test Object Methods
When you register a method using a RegisterUserFunc statement, your 
method becomes a recognized method of the specified test object for the 
remainder of the test, or until you unregister the method. If your method 
overrides a QuickTest method, unregistering the method resets the method 
to its normal behavior. Unregistering other methods removes them from the 
list of methods supported by the test object.

Unregistering methods is especially important when a reusable action 
contains registered methods that override QuickTest methods. For example, 
if you do not unregister a method that uses a function defined directly 
within a called action, then the calling test will fail if the registered method 
is called again in a later action, because it will not be able to find the 
function definition. 

If the registered function was defined in a function library, then the calling 
test may succeed (assuming the function library is associated with the 
calling test). However, unexpected results may be produced as the author of 
the calling test may not realize that the called action contained a registered 
function, and therefore, may use the registered method in later actions, 
expecting normal QuickTest behavior.



Chapter 31 • Working with User-Defined Functions and Function Libraries

944

To unregister a user-defined method, use the following syntax:

UnRegisterUserFunc TOClass, MethodName

For example, suppose that the Find Flights Web page contains a Country 
edit box, and by default, the box contains the value USA. The following 
example registers the Set method to use the MySet function to retrieve the 
default value of the edit box before the new value is entered. After using the 
registered method in a WebEdit.Set statement for the Country edit box, the 
UnRegisterUserFunc statement is used to return the Set method to its 
standard functionality.

Function MySet (obj, x) 
dim y
y = obj.GetROProperty("value") 
Reporter.ReportEvent micDone, "previous value", y 
MySet=obj.Set(x) 

End Function 

RegisterUserFunc "WebEdit", "Set", "MySet" 
Browser("MercuryTours").Page("FindFlights").WebEdit("Country").Set "Canada" 
UnRegisterUserFunc "WebEdit", "Set" 

Item Description

TOClass The test object class for which your method is registered.

MethodName The method you want to unregister.



Chapter 31 • Working with User-Defined Functions and Function Libraries

945

Additional Tips for Working with User-Defined Functions

When working with user-defined functions, consider the following tips and 
guidelines:

➤ For an in-depth view of the required syntax, you can define a function using 
the Function Definition Generator and experiment with the various 
options. 

➤ When you register a function, it applies to an entire test object class. You 
cannot register a method for a specific test object. 

➤ If you want to call a function from additional test objects, you can copy the 
RegisterUserFunc line, paste it immediately after another function and 
replace any relevant argument values.  

➤ If the function you are registering is defined in a function library, it is 
recommended to include the RegisterUserFunc statement in the function 
library as well so that the method will be immediately available for use in 
any test using that function library.

➤ QuickTest clears all method registrations at the beginning of each run 
session. 

➤ If you use a partial run or debug option, such as Run from step or Debug 
from step, to begin running a test from a point after method registration 
was performed in a test step (and not in a function library), QuickTest does 
not recognize the method registration because it occurred prior to the 
beginning of the current run session.

➤ To use an Option Explicit statement in a function library associated with your 
test, you must include it in all the function libraries associated with the test. 
If you include an Option Explicit statement in only some of the associated 
function libraries, QuickTest ignores all the Option Explicit statements in all 
function libraries. You can use Option Explicit statements directly in your 
action scripts without any restrictions. 



Chapter 31 • Working with User-Defined Functions and Function Libraries

946

➤ Each function library must have unique variables in its global scope. If you 
have two associated function libraries that define the same variable in the 
global scope using a Dim statement or define two constants with the same 
name, the second definition causes a syntax error. If you need to use more 
than one variable with the same name in the global scope, include a Dim 
statement only in the last function library (since function libraries are 
loaded in the reverse order).

➤ By default, steps that use user-defined functions are not displayed in the test 
results tree of the Test Results window after a run session. If you want the 
function to appear in the test results tree, you must add a 
Reporter.ReportEvent statement to the function code. For example, you may 
want to provide additional information or to modify the test status, if 
required. 

➤ If you delete a function in use from an associated function library, the test 
step using the function will display the icon. In subsequent run sessions 
for the test, an error will occur when the step using the non-existent 
function is reached. 

➤ If another user modifies a function library that is referenced by a test, or if 
you modify the function library using an external editor (not QuickTest), 
the changes will take effect only after the test is reopened.

➤ When more than one function with the same name exists in the test script 
or function library, the last function will always be called. (QuickTest 
searches the test script for the function prior to searching the function 
libraries.) To avoid confusion, make sure that you verify that within the 
resources associated with a test, each function has a unique name. 

➤ If you register a method within a reusable action, it is strongly 
recommended to unregister the method at the end of the action (and then 
re-register it at the beginning of the next action if necessary), so that tests 
calling your action will not be affected by the method registration.



Chapter 31 • Working with User-Defined Functions and Function Libraries

947

➤ You can re-register the same method to use different user-defined functions 
without first unregistering the method. However, when you do unregister 
the method, it resets to its original QuickTest functionality (or is cleared 
completely if it was a new method), and not to the previous registration. 

For example, suppose you enter the following statements:

RegisterUserFunc "Link", "Click", "MyClick"
RegisterUserFunc "Link", "Click", "MyClick2"
UnRegisterUserFunc "Link", "Click" 

After running the UnRegisterUserFunc statement, the Click method stops 
using the functionality defined in the MyClick2 function, and returns to the 
original QuickTest Click functionality, and not to the functionality defined 
in the MyClick function.

➤ For more information on creating functions and subroutines using VBScript, 
you can view the VBScript documentation from the QuickTest Help menu 
(Help > QuickTest Professional Help > VBScript Reference).



Chapter 31 • Working with User-Defined Functions and Function Libraries

948

Executing Externally-Defined Functions from Your Test

If you decide not to associate a function library (any VBScript file) with a 
test, but do want to be able to call its functions, subroutines, and so forth 
from an action in your test or from another function library, you can do so 
by inserting an ExecuteFile statement in your action.

When you run your test, the ExecuteFile statement executes all global code 
in the function library making all definitions in the file available from the 
global scope of the action’s script.

Note: You cannot debug a file that is called using an ExecuteFile statement, 
or any of the functions contained in the file. In addition, when debugging a 
test that contains an ExecuteFile statement, the execution marker may not be 
correctly displayed.

Tip: If you want to include the same ExecuteFile statement in every action 
you create, you can add the statement to an action template. For more 
information, see “Creating an Action Template” on page 462.

To execute an externally-defined function:

 1 Create a VBScript file using standard VBScript syntax. For more information, 
see the Microsoft VBScript Language Reference (Help > QuickTest 
Professional Help > VBScript Reference > VBScript).

 2 Store the file in any folder that you can access from the computer running 
your test. 

 3 Add an ExecuteFile statement to an action in your test using the following 
syntax:

ExecuteFile FileName 

where FileName is the absolute or relative path of your VBScript file.



Chapter 31 • Working with User-Defined Functions and Function Libraries

949

 4 Use the functions, subroutines, and so forth, from the specified VBScript file 
as necessary in your action. 

Notes:

➤ The ExecuteFile statement utilizes the VBScript ExecuteGlobal statement. 
For more information, see the Microsoft VBScript Language Reference 
(select Help > QuickTest Professional Help > VBScript Reference > 
VBScript).

➤ When you run an ExecuteFile statement within an action, you can call 
the functions in the file only from the current action. To make the 
functions in a VBScript file available to your entire test, add the file name 
to the associated function libraries list in the Resources pane of the Test 
Settings dialog box. For more information, see “Working with Associated 
Function Libraries” on page 919.



Chapter 31 • Working with User-Defined Functions and Function Libraries

950



951

Part VI

Running and Analyzing Tests



952



953

32
Running Tests

After you create a test, you can run it to check the behavior of your 
application.

This chapter includes:

 ➤  About Running Tests on page 954

 ➤  Running Your Entire Test on page 955

 ➤  Running Part of Your Test on page 956

 ➤  The Run Dialog Box: Results Location Tab on page 960

 ➤  The Run Dialog Box: Input Parameters Tab on page 962

 ➤  Using Optional Steps on page 963

 ➤  Running a Test Batch on page 966



Chapter 32 • Running Tests

954

About Running Tests

When you run a test, QuickTest performs the steps it contains. If you have 
defined test parameters, QuickTest prompts you to enter values for them. 
When the run session is complete, QuickTest displays a report detailing the 
results. For more information on viewing the results, see Chapter 33, 
“Viewing Run Session Results.”

If your test contains a global Data Table parameter, QuickTest runs the test 
once for each row in the Data Table. If your test contains a Data Table 
parameter for the current action data sheet, QuickTest runs the action once 
for each row of data in that action data sheet. You can also specify whether 
to run the first iteration or all iterations, for the entire test or for a specific 
action in the test; or to run the iterations for a specified range of data sets. 
For more information on test iterations, see Chapter 45, “Setting Options 
for Individual Tests.” For more information on Data Table parameters see, 
Chapter 15, “Working with Actions.”

You can run the entire test from the beginning, or you can run part of it. 
You can designate certain steps as optional, to enable QuickTest to bypass 
them instead of aborting the run if these steps do not succeed. You can 
update your test to change the test object descriptions, expected checkpoint 
values, and/or the Active Screen images and values.

You can run tests on objects with dynamic descriptions. For more 
information, see Chapter 5, “Managing Test Objects in Object Repositories.”

You can set up a batch of tests and run them sequentially, using the 
QuickTest Test Batch Runner. For more information, see “Running a Test 
Batch” on page 966.

Note for WinRunner users: You can run WinRunner tests and call functions 
from WinRunner-compiled modules while running a QuickTest test. For 
information, see Chapter 57, “Working with WinRunner.”



Chapter 32 • Running Tests

955

Running Your Entire Test

QuickTest always runs a test from the first step, unless you specify otherwise. 
To run a test from or to a selected step or action, you can use the Run from 
Step or Run to Step options. These features are useful if you want to check a 
specific section of the test, without running the test from the beginning or 
to the end. For more information, see “Running Part of Your Test” on 
page 956.

When you start to run a test, the Run dialog box opens to enable you to 
specify the location for the results and to enter the values for any test 
parameters you have defined.

To run a test:

 1 If your test is not already open, select File > Open > Test.

Tip: If you recently opened your test, you can also choose it from the recent 
files list in the File menu.

 2 Click the Run button in the toolbar, or select Automation > Run. The Run 
dialog box opens.

 3 In the Run dialog box, specify the results location and the input parameter 
values (if applicable) for the run session. For more information, see “The 
Run Dialog Box: Results Location Tab” on page 960, and “The Run Dialog 
Box: Input Parameters Tab” on page 962.

 4 Click OK. The Run dialog box closes and the run session starts. By default, 
when the run session ends, the Test Results window opens. For more 
information on viewing the run session results, see Chapter 33, “Viewing 
Run Session Results.”



Chapter 32 • Running Tests

956

Note: If you cleared the View results when run session ends check box in 
the Run pane of the Options dialog box, the Test Results window does not 
open at the end of the run session. For more information on the Options 
dialog box, see Chapter 44, “Setting Global Testing Options.”

Tip: If you want to interrupt a run session, do either of the following:

➤ Click the Pause button in the Debug toolbar or select Debug > Pause. The 
run pauses. To resume running a paused run session, click the Run button 
or select Automation > Run.

➤ Click the Stop button, select Automation > Stop, or press the Stop 
command shortcut key. (To define a Stop command shortcut key, see 
“Setting Run Testing Options” on page 1253.) The run session stops and 
the Test Results window opens.

The run session is also interrupted if you perform a file operation (for 
example, open a different test or create a new test).

Running Part of Your Test

You can use the Run from Step option to run a selected part of your test. 
This enables you to check a specific section of your application or to 
confirm that a certain part of your test runs smoothly. 

Note: You can also use the Debug > Run to Step option if you want to run a 
test in debug mode from the start of the test to a selected step. For more 
information, see “Using the Run to Step and Debug from Step Commands” 
on page 1076.



Chapter 32 • Running Tests

957

In the Expert View, you can use the Run from Step option to run your test 
from the selected step until the end of the action. Using Run from Step in 
this mode ignores any iterations. However, if the action contains nested 
actions, QuickTest runs the nested actions for the defined number of 
iterations of the nested action.

In the Keyword View, you can use the Run from Step option to run your test 
from the selected step until the end of the test (if the selected step is not part 
of a reusable action, because a reusable action needs to be called from a test, 
in order for the test to know from where to continue). Using Run from Step 
in this mode includes all iterations. The first iteration will run from the step 
you selected until the end of the test; all other iterations will run from the 
beginning of the test. 

You can use the Run Current Action option to run a single action in your 
test. Using Run Current Action ignores any iterations. However, if the action 
contains nested actions, QuickTest runs the nested actions for the defined 
number of iterations.

Tips:

➤ If you only want to run one iteration of your test, select Run one 
iteration only from the Run pane in the Test Settings dialog box.

➤ If you want to run your test until a specific point within the test (and not 
to the end of the action or test), you can insert a breakpoint. The test will 
then run from the selected step or action until the breakpoint. For more 
information on breakpoints, see “Setting Breakpoints” on page 1079.

For more information on actions, see Chapter 15, “Working with Actions.”



Chapter 32 • Running Tests

958

To run an entire action, or run a test or action from a selected step:

 1 Make sure your application is in a state matching the action or step you 
want to run.

 2 Select the action or step where you want to start running the test:

➤ In the Test Flow pane, select the action.

➤ In the Keyword View, highlight a step or action row. 

➤ In the Expert View, place your cursor in a line of VBScript.

Make sure that the step or action you choose is not dependent on previous 
steps, such as a retrieved value or a parameter defined in a previous step.

 3 Select Automation > Run from Step or Run Current Action, or right-click and 
select Run from Step. The Run dialog box opens.

 4 In the Run dialog box, choose where to save the run session results, and 
define any input parameters you want to use, as described in “The Run 
Dialog Box: Results Location Tab” on page 960, and “The Run Dialog Box: 
Input Parameters Tab” on page 962.

Note: When running part of a test within the scope of an action, you need 
to specify the action’s parameters, not the test parameters, in the Input 
Parameters tab of the Run dialog box. For more information, see “Setting 
Action Parameters” on page 472.

 5 Click OK. The Run dialog box closes and the run session starts.

By default, when the run session ends, the Test Results window opens. For 
more information on viewing the run session results, see Chapter 33, 
“Viewing Run Session Results.”

The Test Results summary displays a note indicating that the test was run 
using the Run from Step or Run Current Action option.



Chapter 32 • Running Tests

959

Note: If you cleared the View results when run session ends check box in 
the Run pane of the Options dialog box, the Test Results window does not 
open at the end of the run session. For more information on the Options 
dialog box, see Chapter 44, “Setting Global Testing Options.”



Chapter 32 • Running Tests

960

The Run Dialog Box: Results Location Tab
 

Below is an image of the Results Location tab in the Run dialog box:

 

Description Enables you to specify the location in which you 
want to save the run session results.

How to Access The Run dialog box opens when you begin a run 
session in any run mode.

Learn More Conceptual overview: “Running Tests” on page 953

Primary tasks: 

➤ “Running Your Entire Test” on page 955 

➤ “Running Part of Your Test” on page 956

➤ “Running Tests with the Maintenance Run 
Wizard” on page 1104

➤ “Using the Run to Step and Debug from Step 
Commands” on page 1076



Chapter 32 • Running Tests

961

Note: If you are running a test from a Quality Center project, the Project 
name, Run name, Test set, and Instance options are displayed instead of the 
New run results folder option. For more information, see “Running a Test 
Stored in a Quality Center Project from QuickTest” on page 1437.

Results Location Tab Options

Select one of the following options:

➤ New run results folder. This option displays the default path and folder 
name in which the results are saved. A new folder is created for each run. By 
default, the results for a QuickTest test are stored in the test folder.

Accept the default settings, or enter a new path by typing it in the text box 
or clicking the browse button to locate a different folder. The folder must be 
new, empty, or contain only QuickTest test files.

➤ Temporary run results folder. Saves the run results in a temporary folder. 
This option overwrites any results previously saved in this folder.

Note: QuickTest stores temporary results for all tests in <System 
Drive>\Documents and Settings\<user name>\Local Settings\Temp\ 
TempResults. The path in the text box of the Temporary run results folder 
option cannot be changed. Additionally, if you save results to an existing 
results folder, the contents of the folder are deleted when the run session 
starts.



Chapter 32 • Running Tests

962

The Run Dialog Box: Input Parameters Tab

Below is an image of the Input Parameters tab in the Run dialog box:

The Input Parameters tab displays the input parameters that were defined 
for the test (using the File > Settings > Parameters node).

Description Enables you to specify the run-time values of input 
parameters to be used during the run session.

How to Access The Run dialog box opens when you begin a run 
session in any run mode.

Learn More Conceptual overview: “Running Tests” on page 953

Primary tasks: 

➤ “Running Your Entire Test” on page 955 

➤ “Running Part of Your Test” on page 956

➤ “Running Tests with the Maintenance Run 
Wizard” on page 1104

➤ “Using the Run to Step and Debug from Step 
Commands” on page 1076

Additional related topics: “Additional References” 
on page 963



Chapter 32 • Running Tests

963

To set the value of a parameter to be used during the run session, click in the 
Value field for the specific parameter and enter the value, or select a value 
from the list. If you do not enter a value, QuickTest uses the default value 
from the Test Settings dialog box during the run session.

Note: When running part of a test within the scope of an action (using the 
Automation > Run from Step or Automation > Run Current Action options), 
you need to specify the action’s parameters, not the test parameters, in the 
Input Parameters tab of the Run dialog box.

Additional References
 

Using Optional Steps

An optional step is a step that is not necessarily required to successfully 
complete a run session. For example, suppose that when creating a test, you 
add login steps because the application you are testing prompts you to enter 
a user name and password in a login window. Suppose, too, that this 
particular application remembers user login details, so that you do not need 
to log in every time you open the application. During a run session, the 
application does not prompt you to enter your user name and password 
because it retained the information that was previously entered. In this case, 
the steps that you added for entering the login information are not required 
and should, therefore, be marked optional. 

During a run session, if the object of an optional step does not exist in the 
application, QuickTest bypasses this step and continues to run the test. 
When the run session ends, a message is displayed for the step indicating 
that the step was not performed, but the step does not cause the run to fail. 

Related Concepts ➤ For more information on setting test parameters, 
see “Defining Parameters for Your Test” on 
page 1280. 

➤ For more information on using parameters, see 
Chapter 24, “Parameterizing Values”.



Chapter 32 • Running Tests

964

However, if, during a run session, QuickTest cannot find the object from the 
optional step in the object repository (for example, if the object name was 
modified in the test but not in the object repository, or if the object was 
removed from the object repository), an error message is displayed listing 
the required object, and the run fails.

During a recording session, QuickTest automatically marks steps that open 
certain dialog boxes as optional. (For a list of these dialog boxes, see 
“Default Optional Steps” on page 965.) 

You can also manually designate steps as optional. For example, you can add 
conditional statements or use recovery scenarios to automatically click a 
button, press ENTER, or enter login information in a step. For more 
information, see “Using Conditional Statements” on page 797 and 
“Defining and Using Recovery Scenarios” on page 1329

Setting Optional Steps
To set an optional step in the Keyword View, right-click the step and select 
Optional Step. The Optional Step icon  is added next to the selected 
step.

To add an optional step in the Expert View, add OptionalStep to the 
beginning of the VBScript statement. For example:

OptionalStep.Browser("Browser").Dialog("AutoComplete").WinButton("Yes").
Click 

For information on working in the Expert View, see Chapter 29, “Working 
in the Expert View and Function Library Windows.” 



Chapter 32 • Running Tests

965

Default Optional Steps
By default, QuickTest considers steps that open the following dialog boxes 
or message boxes as optional steps:

Dialog Box / Message Box Title Bar

AutoComplete

File Download

Internet Explorer

Netscape

Enter Network Password

Error

Security Alert

Security Information

Security Warning

Username and Password Required



Chapter 32 • Running Tests

966

Running a Test Batch

You can use Test Batch Runner to run several tests in succession. The results 
for each test are stored in their default location. 

Using Test Batch Runner, you can set up a list of tests and save the list as 
an .mtb file, so that you can easily run the same batch of tests again, at 
another time. You can also choose to include or exclude a test in your batch 
list from running during a batch run.

Notes:

➤ To enable Test Batch Runner to run tests, you must select Allow other HP 
products to run tests and components in the Run pane of the Options 
dialog box. For more information, see Chapter 44, “Setting Global 
Testing Options.”

➤ Test Batch Runner can be used only with tests located in the file system. 
If you want to include tests saved in Quality Center in the batch run, you 
must first save the tests in the file system.

➤ You can stop a test batch run at any time by clicking the Stop button.

To set up and run a test batch:

 1 From the Start menu, select Programs > QuickTest Professional > Tools > 
Test Batch Runner. The Test Batch Runner dialog box opens. 

 2 Click the Add button or select Batch > Add. The Open Test dialog box opens. 



Chapter 32 • Running Tests

967

 3 Select a test you want to include in the test batch list and click Open. The 
test is added to the list.

 4 Repeat step 3 for each test you want to include in the list. By default, each 
test selected is added to the bottom of the list. 

To insert a test at another point in the list, select the test that is to precede 
the test you would like to add. When you add the test, it is added above the 
selected test. 

To remove a test from the list, select it and click the Remove button, or 
select Batch > Remove.

If you want to include a test in the list, but you do not want the test to be 
run during the next batch run, clear the check box next to the test name.

 5 If you want to save the batch list, click the Save button, or select File > Save, 
and enter a name for the list. The file extension is .mtb.

 6 When you are ready to run your test batch, click the Run button or select 
Batch > Run. If QuickTest is not already open, it opens and the tests run 
sequence begins. After the batch run is complete, you can view the results 
for each test in its default test results folder (<test folder>\res#\report).

For more information on Test Results, see Chapter 33, “Viewing Run Session 
Results.” 



Chapter 32 • Running Tests

968



969

33
Viewing Run Session Results

After running a test, you can view a report of major events that occurred 
during the run session. 

This chapter includes:

 ➤  About Viewing Run Session Results on page 970

 ➤  The Test Results Window on page 971

 ➤  Viewing the Results of a Run Session on page 980

 ➤  Deleting Run Results on page 1004

 ➤  Submitting Defects Detected During a Run Session on page 1013

 ➤  Viewing WinRunner Test Steps in the Test Results on page 1017

 ➤  Customizing the Test Results Display on page 1019



Chapter 33 • Viewing Run Session Results

970

About Viewing Run Session Results

When a run session ends, you can view the run session results in the Test 
Results window. By default, the Test Results window opens automatically at 
the end of a run. If you want to change this behavior, clear the View results 
when run session ends check box in the Run pane of the Options dialog 
box. 

The Test Results window contains a description of the steps performed 
during the run session. For a test that does not contain Data Table 
parameters, the Test Results window shows a single test iteration.

If the test contains Data Table parameters, and the test settings are 
configured to run multiple iterations, the Test Results window displays 
details for each iteration of the test run. The results are grouped by the 
actions in the test.

Note: You set the test to run for one or all iterations in the Run pane of the 
Test Settings dialog box. For more information, see “Defining Run Settings 
for Your Test” on page 1270. 

After you run a test, the Test Results window displays all aspects of the run 
session and can include: 

➤ A high-level results overview report (pass/fail status)

➤ The data used in all runs

➤ An expandable tree of the steps, specifying exactly where application 
failures occurred

➤ The exact locations in the test where failures occurred

➤ A still image of the state of your application at a particular step



Chapter 33 • Viewing Run Session Results

971

➤ A movie clip of the state of your application at a particular step or of the 
entire test

➤ Detailed explanations of each step and checkpoint pass or failure, at each 
stage of the test

➤ Any system counters that were monitored for your test

➤ Quality Center information for your test (if the test was run from 
Quality Center or if a test that is stored in Quality Center is run from 
QuickTest and you choose to store the results in Quality Center) 

Note: The Test Results window can show results with up to 300 levels in the 
tree hierarchy. If you have results with more than 300 nested levels, you can 
view the entire report by manually opening the results.xml file.

The Test Results Window

After a run session, you view the results in the Test Results window. By 
default, the Test Results window opens when a run session is completed. For 
information on changing the default setting, see “Setting Run Testing 
Options” on page 1253.

The left pane in the Test Results window contains the run results tree. The 
right pane in the Test Results window contains the details for a selected step 
in the run results tree. The details for a selected step may include a test 
summary, step details, a still image of your application, a movie of your 
application, or results of system counters. 

You can open the Test Results window as a standalone application from the 
Start menu. To open the Test Results window, select Start > Programs > 
QuickTest Professional > Test Results Viewer.



Chapter 33 • Viewing Run Session Results

972

The following example shows the results of a test with three iterations:

The test shown in the example above includes three iterations, as shown in 
the run results tree. Notice that the results for a test are organized by the 
test’s actions.

Run results
tree

Run results 
details for 
selected step 
in test



Chapter 33 • Viewing Run Session Results

973

The Test Results window contains the following key elements:

➤ Test results title bar. Displays the name of the test.

➤ Menu bar. Displays menus of available commands.

➤ Run results toolbar. Contains buttons for viewing test results (select View > 
Test Results Toolbar to display the toolbar). For more information, see “Run 
Results Toolbar” on page 977.

➤ Run results tree. Contains a graphic representation of the test results in the 
run results tree. The run results tree is located in the left pane in the Test 
Results window. For more information, see “Run Results Tree” on page 974.

➤ Result Details tab. Contains details of the selected node in the run results 
tree. The Result Details tab is located in the right pane in the Test Results 
window. For more information, see “Run Result Details” on page 975.

➤ Screen Recorder tab. Contains the recorded movie associated with the test 
results. The screen recorder tab is located in the right pane in the Test 
Results window. For more information, see “Viewing Still Images and 
Movies of Your Application” on page 992.

➤ System Monitor tab. Contains a line graph of the results for the system 
counters that were enabled for the test. The System Monitor tab is located in 
the right pane in the Test Results window. For more information see, 
“Viewing System Monitor Results” on page 1063. 

➤ Status bar. Displays the status of the currently selected command (select 
View > Status Bar to view the status bar).

You can change the appearance of the Test Results window. For more 
information, see “Changing the Appearance of the Test Results Window” on 
page 979.



Chapter 33 • Viewing Run Session Results

974

Run Results Tree
The left pane in the Test Results window displays the run results tree—a 
graphical representation of the test results:

➤  indicates a step that succeeded. Note that if a test does not contain 
checkpoints, no icon is displayed. 

➤  indicates a step that failed. Note that this causes all parent steps (up to 
the root action or test) to fail as well.

➤  indicates a warning, meaning that the step did not succeed, but it did 
not cause the action or test to fail.

➤  indicates a step that failed unexpectedly, such as when an object is not 
found for a checkpoint.

➤  indicates an optional step that failed and therefore was ignored. Note 
that this does not cause the test to fail.

➤  indicates that the Smart Identification mechanism successfully found 
the object. 

➤  indicates that a recovery scenario was activated. 

➤  indicates that the run session was stopped before it ended. 

➤  square brackets around a test object name indicate 
that the test object was created dynamically during the run session. A 
dynamic test object is created either using programmatic descriptions or by 
using an object returned by a ChildObjects method, and is not saved in the 
object repository.

➤  displays the Run-Time Data Table, which is a table that shows the values 
used to run a test containing Data Table parameters or the Data Table output 
values retrieved from a test while it runs.

➤  displays the Maintenance Mode Update Result, which is a table that 
describes the Action taken by Maintenance Run Wizard on a failed step and 
its Details. Displayed only for tests run in Maintenance Run Mode. For more 
information on Maintenance Run Mode, see Chapter 36, “Maintaining 
Tests.” 

You can collapse or expand a branch in the run results tree to change the 
level of detail that the tree displays.



Chapter 33 • Viewing Run Session Results

975

Run Result Details
By default, when the Test Results window opens, a test summary is displayed 
in the Result Details tab in the right pane in the window. 

The right pane in the Test Results Window contains tabs labeled Result 
Details, Screen Recorder, and System Monitor. When you select the top 
node of the run results tree, the Result Details tab contains a summary of the 
results for your test. When you select a branch or step in the tree, the Result 
Details tab contains the details for that step. The Result Details tab may also 
include a still image of your application for the highlighted step.

When you select the top node of the run results Tree, the Result Details tab 
indicates the test name, results name, the start and end date and time of the 
run session, the number of iterations, and whether an iteration passed or 
failed.  



Chapter 33 • Viewing Run Session Results

976

The Result Details tab can also contain the following additional 
information:

➤ If an iteration contains checkpoints, the possible results are Passed or Failed. 
If an iteration does not contain checkpoints, the possible results are Done or 
Failed. 

➤ If the Web Services Add-in is installed and was loaded during the run 
session, the Web Services run toolkit is displayed in the Result Details tab. 
The run toolkit is displayed even if the test does not include any Web 
Services steps.

➤ If the test was run in Maintenance Run Mode, the Result Details tab 
contains a Maintenance Summary. The Maintenance Summary lists the 
number of objects that were updated and added in your test. It also lists the 
number of updated and commented steps in your test. The Object 
Repository Changes Report lists the specific changes that the Maintenance 
Run Wizard made to the object repository and contains the following 
sections:

➤ Added Objects. Lists the objects that were added to the object repository 
by the Maintenance Run Wizard.

➤ Object with Changed Descriptions. Describes the changes to object 
properties carried out by the Maintenance Run Wizard.

For more information on Maintenance Run Mode, see “Maintaining Tests” 
on page 1101. 

➤ If the test was run from Quality Center or if a test that is stored in 
Quality Center is run from QuickTest and you choose to store the results in 
Quality Center, the name of the server, project, test set, and test instance are 
also shown. 

Note: A test set is a group of tests selected to achieve specific testing goals. 
For example, you can create a test set that tests the user interface of the 
application or the application's performance under stress. You define test 
sets when working in Quality Center's test run mode. For more information, 
see your Quality Center documentation.



Chapter 33 • Viewing Run Session Results

977

Run Results Toolbar
The Run Results toolbar contains buttons for viewing run session results. 

Button Name
Shortcut 
Key

Description

Open CTRL+O Opens the Open Test Results dialog box, 
enabling you to open saved run results from 
the file system or from Quality Center. For 
more information, see “Opening Test 
Results to View a Selected Run” on 
page 981. 

Print CTRL+P Opens the Print dialog box, enabling you to 
print the results of the run session. For more 
information, see “Printing Test Results” on 
page 999. 

Filters CTRL+T Opens the Filters dialog box, enabling you 
to filter the information displayed. For more 
information, see “Filtering Test Results” on 
page 988.

Quality 
Center 
Connection

Opens the Quality Center Connection - 
Server Connection dialog box, enabling you 
to connect to a Quality Center project. For 
more information, see “Connecting to and 
Disconnecting from Quality Center” on 
page 1418.

Add Defect Enables you to add a defect to your 
Quality Center project. If you are not 
currently connected to Quality Center, 
opens the Quality Center Connection - 
Server Connection dialog box. For more 
information, see “Submitting Defects 
Detected During a Run Session” on 
page 1013. 

Find CTRL+F Opens the Find dialog box, enabling you to 
search for steps with specific results, such as 
errors or warnings. For more information, 
see “Finding Results Steps” on page 990.



Chapter 33 • Viewing Run Session Results

978

Find 
Previous

ALT+P Finds the next step that matches the 
defined search filter. You define the search 
filter in the Find dialog box (described in 
“Finding Results Steps” on page 990). 

Find Next ALT+N Finds the previous step that matches the 
defined search filter. You define the search 
filter in the Find dialog box (described in 
“Finding Results Steps” on page 990).

Go to 
Previous 
Node

BACKSPACE Moves the cursor to the previously selected 
node in the run results tree. For more 
information, see “Navigating the Run 
Results Tree” on page 985.

Go to Next 
Node

ALT+RIGHT 
ARROW

Moves the cursor to the node you selected 
in the run results tree prior to clicking the 
Go to Previous Node button. For more 
information, see “Navigating the Run 
Results Tree” on page 985.

Jump to 
Step in 
QuickTest

CTRL+J Activates the QuickTest window and 
highlights the step in the test 
corresponding to the selected node in the 
Test Results tree. This feature is disabled for 
the Action, Iteration, Run-Time Data Table, 
and Test Summary nodes. For more 
information, see “Jumping to a Step in 
QuickTest” on page 987.

Help Topics Opens the HP QuickTest Professional Test 
Results Help.

Button Name
Shortcut 
Key

Description



Chapter 33 • Viewing Run Session Results

979

Changing the Appearance of the Test Results Window
By default, the Test Results window has the same look and feel as the 
QuickTest window, using the Microsoft Office 2003 theme. You can change 
the look and feel of the Test Results window, as required.

To change the appearance of the Test Results window:

In the Tests Results window, select View > Window Theme, and then select 
the way the window should appear from the list of available themes. For 
example, you can apply a Microsoft Office 2000 or Microsoft Windows XP 
theme.

Note: You can apply the Microsoft Windows XP theme to the Tests Results 
window only if your computer is set to use a Windows XP theme.

Tip: You can also change the theme used for the main QuickTest window. 
For more information, see “Changing the Appearance of the QuickTest 
Window” on page 27.



Chapter 33 • Viewing Run Session Results

980

Viewing the Results of a Run Session

By default, the results of a run are displayed in the Test Results window at 
the end of the run session. (You can change the default setting in the 
Options dialog box. For more information on default settings for a run, see 
“Setting Run Testing Options” on page 1253.)

In addition, you can view the results of previous runs of the current test, 
and the results of other tests. You can preview test results on screen, print 
them or export them to an HTML file.

For more information, see:

➤ “Opening Test Results to View a Selected Run” on page 981

➤ “Navigating the Run Results Tree” on page 985

➤ “Viewing Result Details” on page 986

➤ “Jumping to a Step in QuickTest” on page 987

➤ “Filtering Test Results” on page 988

➤ “Finding Results Steps” on page 990

➤ “Viewing Results of Tests Run from Quality Center” on page 991

➤ “Viewing Still Images and Movies of Your Application” on page 992

➤ “Previewing Test Results” on page 997

➤ “Printing Test Results” on page 999

➤ “Exporting Test Results” on page 1001



Chapter 33 • Viewing Run Session Results

981

Opening Test Results to View a Selected Run
You can view the saved results of the current test, or you can view the saved 
results of other tests. You can search for results in the file system or in 
Quality Center. 

To view the saved results of the current test or other tests:

Click the Results button in the QuickTest window or select Automation > 
Results. 

If there is only one saved result for the run, the run session results are 
displayed. If there are several results, or no results, for the current test, the 
Open Test Results dialog box opens. 

To view the saved results of the current test or other tests from within the 
Test Results window:

Click the Open button or select File > Open. The Open Test Results dialog 
box opens.  

The results of run sessions for the current test are listed. To view one of the 
results, select it and click Open.



Chapter 33 • Viewing Run Session Results

982

Tips: 

➤ To update the results list after you change the specified test path, click 
Refresh.

➤ You can open the Test Results window as a standalone application from 
the Start menu. To open the Test Results window, select Start > Programs 
> QuickTest Professional > Test Results Viewer.

Searching for Results in the File System or in Quality Center

By default, the results of a QuickTest test that is saved in the file system are 
stored in the test folder. When you run your test, you can specify a different 
location to store the results, using the Results Location tab of the Run dialog 
box. Specifying your own location for the results file can make it easier for 
you to locate the results file in the file system. For more information, see 
“The Run Dialog Box: Results Location Tab” on page 960. 

If your QuickTest test is stored in Quality Center, the results are stored in the 
test folder in Quality Center. You cannot change the location of the run 
session results.

You can search for results by test or by result file.

To search for results by test:

 1 (Optional) If the test results are stored in Quality Center, in the Test Results 
window, select Tools > Quality Center Connection or click the 
Quality Center Connection button and connect to your Quality Center 
project.



Chapter 33 • Viewing Run Session Results

983

 2 Click the Open button or select File > Open. The Open Test Results dialog 
box opens.

 3 Do one of the following:

➤ In the Open Test Results dialog box, enter the path of the folder that 
contains the results file for your test.

➤ Click the browse button to open the Open Test dialog box. In the sidebar, 
select the location of the test whose results you want to view, for 
example, File System or Quality Center Test Plan. Browse to and select the 
test, and click Open.

 4 In the Open Test Results dialog box, highlight the test result you want to 
view, and click Open. The Test Results window displays the selected results.

For more information on working with Quality Center, see Chapter 51, 
“Integrating with Quality Center”. 



Chapter 33 • Viewing Run Session Results

984

To search for results in the file system by result file:

 1 In the Open Test Results dialog box, click the Open File button to open the 
Select Results File dialog box.

 2 Browse to the folder where the test results file is stored.

 3 Highlight the (.xml) results file you want to view, and click Open. The Test 
Results window displays the selected results.

Notes:

➤ By default, results files for tests are stored in 
<Test>\<ResultName>\Report.

➤ Results files for QuickTest Professional version 6.5 and earlier are saved 
with a .qtp file extension. By default, only results files with an .xml 
extension are shown in the Select Results File dialog box. To view results 
files with a .qtp extension in the Select Results File dialog box, select Test 
Results (*.qtp) in the Files of type box.



Chapter 33 • Viewing Run Session Results

985

Navigating the Run Results Tree
You can collapse or expand a branch in the run results tree to select the level 
of detail that the tree displays.

➤ To expand a branch, select it and click the expand (+) sign to the left of the 
branch icon, or press the plus key (+) on your keyboard number pad. The 
tree displays the details for the branch and the expand sign changes to 
collapse.

➤ When you open the Test Results window for the first time, the tree expands 
one level at a time. If the child branches under a parent branch were 
previously expanded, that state is maintained when you expand or collapse 
the parent branch.

➤ To expand a branch and all branches below it, select the branch and press 
the asterisk (*) key on your keyboard number pad.

➤ To expand all of the branches in the run results tree, select View > Expand 
All; right-click a branch and select Expand All; or select the top level of the 
tree and press the asterisk (*) key on your keyboard number pad.

➤ To collapse a branch, select it and click the collapse (–) sign to the left of the 
branch icon, or press the minus key (–) on your keyboard number pad. The 
details for the branch disappear in the results tree, and the collapse sign 
changes to expand (+).

➤ To collapse all of the branches in the run results tree, select View > Collapse 
All or right-click a branch and select Collapse All.

➤ To move between previously selected nodes within the run results tree, click 
the Go to Previous Node or Go to Next Node buttons.

➤ To find specific steps within the Test Results, click the Find button or select 
Tools > Find. For more information, see “Finding Results Steps” on page 990.



Chapter 33 • Viewing Run Session Results

986

Viewing Result Details
You can view the results of an individual iteration, an action, or a step. 
When you select a step in the run results tree, the right side of the Test 
Results window contains the details of the selected step. Depending on your 
settings in the Run pane of the Options dialog box, the right side of the Test 
Results window may be split into two panes, with the bottom pane 
containing a still image (or in selected cases, other data) of the selected step. 
The right pane also includes the Screen Recorder tab, which can contain a 
movie from your run session, and the System Monitor tab, which can 
contain the results of system counters that were monitored during the test 
run. For more information, see “Viewing Still Images and Movies of Your 
Application” on page 992, “Viewing System Monitor Results” on page 1063, 
and “Setting Run Testing Options” on page 1253.

The results can be one of the following:

➤ Iterations, actions, and steps that ran successfully, but do not contain 
checkpoints, are marked Done in the right part of the Test Results window. 

➤ Iterations, actions, and steps that contain checkpoints are marked Passed or 
Failed in the right part of the Test Results window and are identified by the 
icon  or  in the tree pane.

➤ Steps that were not successful, but did not cause the test to stop running, are 
marked Warning in the right part of the Test Results window and are 
identified by the icon  or .

Note: A test, iteration, or action containing a step marked Warning may still 
be labeled Passed or Done.



Chapter 33 • Viewing Run Session Results

987

Jumping to a Step in QuickTest
You can view the step in QuickTest that corresponds to a node in the run 
results tree. 

To view the step in the test that corresponds to a node:

 1 Select a node in the run results tree.

 2 Perform one of the following:

 a Click the Jump to Step in QuickTest button from the Run Results toolbar.

 b Right-click and select Jump to Step in QuickTest from the 
context-sensitive menu.

 c Select View > Jump to Step in QuickTest. 

 3 The QuickTest window is activated and the step is highlighted.

To jump to a step, the following conditions must be true:

➤ QuickTest must be running and open to the test whose results are displayed 
in the Test Results window.

➤ The test was run in a version of QuickTest that supports the Jump to Step in 
QuickTest functionality.

➤ The node has a corresponding step in QuickTest. This feature is disabled for 
the Action, Iteration, Run-Time Data Table, and Test Summary nodes.

➤ The step was not performed by a recovery scenario.

➤ The step was not run from the Watch or Command tabs of the Debug 
Viewer.

➤ The step is not part of an action that was run using the LoadAndRunAction 
statement. For more information, see the Utility section of the HP QuickTest 
Professional Object Model Reference.

➤ The test was saved before the run session.

➤ The test ran in Normal mode. For information on running QuickTest in 
Normal mode, see “Setting Run Testing Options” on page 1253.



Chapter 33 • Viewing Run Session Results

988

Filtering Test Results
The Filters dialog box enables you to filter which iterations are displayed in 
the run results tree of the Test Results window.

The following options are available:

Option Description

Iterations (This option is available only for tests.)

➤ All. Displays test results from all iterations.

➤ From iteration X to Y. Displays the test results from 
the specified range of test iterations.



Chapter 33 • Viewing Run Session Results

989

Note: You can use Reporter.Filter statements in the Expert View to disable or 
enable the saving of selected steps, or to save only steps with Failed or 
Warning status. For more information on saving run session information, 
see “Choosing Which Steps to Report During the Run Session” on page 893 
or the HP QuickTest Professional Object Model Reference. The Reporter.Filter 
statement differs from the Filters dialog box described above. The 
Reporter.Filter statement determines which steps are saved in the Test 
Results, while the Filter dialog box determines which steps are displayed at 
any time.

Status ➤ Fail. Displays the test results for the steps that failed.

➤ Warning. Displays the test results for the steps with 
the status Warning (steps that did not pass, but did 
not cause the test to fail).

➤ Pass. Displays the test results for the steps that passed.

➤ Done. Displays the test results for the steps with the 
status Done (steps that were performed successfully 
but did not receive a pass, fail, or warning status).

Content (This option is available only for tests.)

➤ All. Displays all steps from all nodes in the test.

➤ Show only actions. Displays the action nodes in the 
test (not the specific steps in the action nodes).

Option Description



Chapter 33 • Viewing Run Session Results

990

Finding Results Steps
The Find dialog box enables you to find specified steps, such as errors or 
warnings from within the Test Results. You can select a combination of 
statuses to find, for example, steps that are both Passed and Done. 

The following options are available:

Option Description

Failed Finds a failed step in the Test Results.

Warning Finds a step where a warning was issued.

Passed Finds a passed step in the Test Results.

Done Finds a step that finished its run.

Direction Indicates whether to search up or down in the Test 
Results steps.



Chapter 33 • Viewing Run Session Results

991

Viewing Results of Tests Run from Quality Center
When you run test sets containing QuickTest tests from Quality Center, the 
Quality Center server opens QuickTest on the host computer and runs the 
tests from that computer. All run results are then saved to the default 
location for those tests. 

You can view the results of QuickTest test runs from Quality Center. If your 
results include a movie of your application, the movie can be viewed in 
Quality Center. 

If the test was run from Quality Center or if a test that is stored in 
Quality Center is run from QuickTest and you choose to store the results in 
Quality Center, the run results contain the same information described in 
“The Test Results Window” on page 971, plus the following additional 
fields:

➤ Server name. Specifies the name of the Quality Center server from which 
the test was run.

➤ Project name. Specifies the Quality Center domain and project from which 
the test was run in the form <domain_name.project_name>.

➤ Test set. Specifies the location of the test set. 

➤ Test instance. Specifies the instance number of the test in the test set. For 
example, if the same test is included twice in the test set, you can view the 
results of Test instance 1 and Test instance 2. 



Chapter 33 • Viewing Run Session Results

992

If a test that is stored in Quality Center is run from QuickTest, but you 
choose to store the results in a temporary location, the Test set and Test 
instance fields are not displayed in the results.

Viewing Still Images and Movies of Your Application
QuickTest Professional can capture still images and movies of your 
application during a run session. These captured files can be viewed in the 
Test Results window. The Result Details and Screen Recorder tabs in the 
right pane enable you to view either still images and text details, or a movie 
of your application.

Tip: You can also programmatically add an image to the Result Details tab 
using the ReportEvent method of the Reporter utility object. For more 
information, see the Utility Objects section of the QuickTest Professional 
Object Model Reference.

You configure QuickTest to capture movies of your application in the Run > 
Screen Capture pane of the Options dialog box. For more information, see 
“Setting Run Testing Options” on page 1253.



Chapter 33 • Viewing Run Session Results

993

Viewing Still Images of Your Application

By default, QuickTest saves a still image of your application for failed steps. 
When you select a failed step in the run results tree and select the Result 
Details tab, the bottom right pane in the Test Results window displays a 
screen capture of your application corresponding to the highlighted step in 
the run results tree.

If the highlighted step does not contain an error, the right pane contains the 
result details with no screen capture.



Chapter 33 • Viewing Run Session Results

994

You can change the conditions for when still images are saved in the test 
results, using the Save still image captures to results option in the 
Run > Screen Capture pane of the Options dialog box. For more 
information, see “The Options Dialog Box: Run > Screen Capture Pane” on 
page 1255.

Viewing Movies of Your Run Session

QuickTest can save a movie of your application during a run session. This 
can be useful to help you see how your application behaved under test 
conditions or to debug your test. You can view the entire movie or select a 
particular segment to view. When you select a step in the run results tree 
and click the Screen Recorder tab, the right pane in the Test Results window 
displays the frame in the movie corresponding to the highlighted step in the 
run results tree.

You can customize the criteria QuickTest uses to save movies using the Save 
movies to results option in the Run > Screen Capture pane of the Options 
dialog box. For more information, see “Setting Run Testing Options” on 
page 1253.



Chapter 33 • Viewing Run Session Results

995

The top of the Screen Recorder tab contains controls that enable you to play, 
pause, stop, jump to the first frame of the movie, jump to the last frame of 
the movie, and control the volume. You can also drag the slider bar to scroll 
through the movie.

Tips: 

➤ You can double-click the right pane in the Test Results window to expand 
the Screen Recorder and hide the run results tree. Double-clicking again 
restores the Screen Recorder to its previous size and displays the run 
results tree. When the Screen Recorder is expanded, the playback 
controls at the top of the Screen Recorder automatically hide after 
approximately three seconds with no mouse activity, or when you click 
anywhere on the Screen Recorder. They reappear when you move the 
mouse again.

➤ The Screen Recorder saves a movie of your entire desktop. You can 
prevent the QuickTest window from partially obscuring your application 
while capturing the movie by minimizing QuickTest during the run 
session. For information on how to minimize QuickTest during run 
sessions, see “Customizing the QuickTest Window Layout” on page 1144.

Removing a Movie from the Test Results

You can remove a stored movie from the results of a test. This reduces the 
size of the test results file. To remove a movie from the test results, select File 
> Remove Movie from Results.



Chapter 33 • Viewing Run Session Results

996

Exporting Captured Movie Files

You can export a captured Screen Recorder movie to a file. The file is saved 
as an .fbr file. You can view .fbr files in the HP Micro Recorder (as described 
in “Viewing Screen Recorder Movie Files in the HP Micro Player” on 
page 996). You can also attach .fbr files to defects in Quality Center. 
Quality Center users who have the QuickTest Add-in for Quality Center 
installed can view the movies from Quality Center.

To export a Screen Recorder movie:

 1 Select File > Export Movie to File. The Save As dialog box opens, enabling 
you to change the default destination folder and rename the file, if required. 
By default, the file is named <test name> [<name of run results>], and is 
saved in the test results folder.

 2 Click Save to save the exported (.fbr) file and close the dialog box.

Viewing Screen Recorder Movie Files in the HP Micro Player

When you capture a movie of your run session using the Screen Recorder, 
the movie is saved as an .fbr file in your test results folder. You can export 
.fbr files to any location in your file system (as described in “Exporting 
Captured Movie Files” on page 996). You can also view these .fbr files 
without opening the QuickTest Test Results window, using the HP Micro 
Player. 

To play a Screen Recorder movie in the HP Micro Player:

 1 Perform one of the following:

➤ Double-click any .fbr file in Windows Explorer. 

➤ Select Start > Programs > QuickTest Professional > Tools > HP Micro 
Player and then select File > Open in the Micro Player to select any .fbr 
file.

The movie opens in the HP Micro Player and begins playing.

 2 Use the controls at the top of the window to access a particular location in 
the movie or to modify the volume settings.



Chapter 33 • Viewing Run Session Results

997

Previewing Test Results
You can preview test results on screen before you print them. You can select 
the type and quantity of information you want to view, and you can also 
display the information in a customized format. 

Note: The Print Preview option is available only for test results created with 
QuickTest version 8.0 and later.

To preview the test results:

 1 Select File > Print Preview. The Print Preview dialog box opens.

 2 Select a Print range option:

➤ All. Previews the test results for the entire test.

➤ Selection. Previews test results information for the selected branch in the 
run results tree.



Chapter 33 • Viewing Run Session Results

998

 3 Select a Print format option:

➤ Short. Previews a summary line (when available) for each item in the run 
results tree. This option is only available if you selected All in step 2.

➤ Detailed. Previews all available information for each item in the run 
results tree, or for the selected branch, according to your selection in 
step 2. The preview includes still images associated with the steps in your 
run results. If a bitmap checkpoint step displays expected, actual, and 
difference bitmaps, these are also included.

➤ User-defined XSL. Enables you to browse to and select a customized .xsl 
file. You can create a customized .xsl file that specifies the information to 
be included in the preview, and the way it should appear. For more 
information, see “Customizing the Test Results Display” on page 1019.

 4 Click Preview to preview the appearance of your test results on screen.

Tip: If some of the information is cut off in the preview, for example, if 
checkpoint names are too long to fit in the display, click the Page Setup 
button in the Print Preview window and change the page orientation from 
Portrait to Landscape.



Chapter 33 • Viewing Run Session Results

999

Printing Test Results
You can print test results from the Test Results window. You can select the 
type of report you want to print, and you can also create and print a 
customized report.

To print the test results:

 1 Click the Print button or select File > Print. The Print dialog box opens.

 2 Select a Print range option:

➤ All. Prints the results for the entire test.

➤ Selection. Prints the test results for the selected branch in the run results 
tree.

 3 Specify the Number of copies of the test results that you want to print.



Chapter 33 • Viewing Run Session Results

1000

 4 Select a Print format option:

➤ Short. Prints a summary line (when available) for each item in the run 
results tree. The short report does not include still images associated with 
the steps in your run results. This option is only available if you selected 
All in step 2.

➤ Detailed. Prints all available information for each item in the run results 
tree, or for the selected branch, according to your selection in step 2. The 
printed report includes still images associated with the steps in your run 
results. If a bitmap checkpoint step displays expected, actual, and 
difference bitmaps, these are also included in the printed report.

➤ User-defined XSL. Enables you to browse to and select a customized .xsl 
file. You can create a customized .xsl file that specifies the information to 
be included in the printed report, and the way it should appear. For more 
information, see “Customizing the Test Results Display” on page 1019.

Note: The Print format options are available only for test results created 
with QuickTest version 8.0 and later.

 5 Click Print to print the selected test results information to your default 
Windows printer.



Chapter 33 • Viewing Run Session Results

1001

Exporting Test Results 
You can export the test result details to an HTML, PDF, or DOC file. This 
enables you to view the test results even if the QuickTest environment is 
unavailable. For example, you can send the file containing the test results in 
an e-mail to a third-party who does not have QuickTest installed. You can 
select the format of report you want to export, and you can also create and 
export a customized report. When you export test results, the information 
in the Result Details tab is included in the report. To export Screen Recorder 
or System Monitor results, use the specific export option for those tabs. For 
more information, see “Viewing Movies of Your Run Session” on page 994 
and “Viewing System Monitor Results” on page 1063.

When selecting the file type, consider the length of time it will take to 
generate different document types, especially for a report with many 
images. HTML files generate the fastest, followed by PDF and DOC. When 
exporting a report with 100 or more images to a DOC file, a dialog box is 
displayed reminding you that it may take a long time to generate the file. 
The dialog box gives you the option to continue exporting with images, 
continue exporting without images, or to export to PDF.

When you export test results containing steps on a Web application, any 
screen capture images for those steps are not exported to the file. This is 
because for Web-based applications, the Test Results Viewer displays the 
HTML corresponding to the relevant Web page (with downloaded images) 
rather than a captured image and thus no image is saved with the report.



Chapter 33 • Viewing Run Session Results

1002

To export the test results:

 1 Select File > Export Report. The Export Report dialog box opens.

 2 Select an Export range option:

➤ All. Exports the results for the entire test.

➤ Selection. Exports test result information for the selected branch in the 
run results tree. 

 3 Select a File type from the Type list. 

Note: To use the DOC format, Microsoft Word 2000 or later must be 
installed.



Chapter 33 • Viewing Run Session Results

1003

 4 Select an Export format option:

➤ Short. Exports a summary line (when available) for each item in the run 
results tree. The short report does not include still images associated with 
the steps in your run results. This option is only available if you selected 
All in step 2.

➤ Detailed. Exports all available information for each item in the run 
results tree, or for the selected branch, according to your selection in 
step 2. The detailed report includes still images associated with the steps 
in your run results. If a bitmap checkpoint step displays expected, actual, 
and difference bitmaps, these are also included in the printed report. 

➤ User-defined XSL. Enables you to browse to and select a customized .xsl 
file. You can create a customized .xsl file that specifies the information to 
be included in the exported report, and the way it should appear. For 
more information, see “Customizing the Test Results Display” on 
page 1019.

Note: The Export format options are available only for test results created 
with QuickTest 8.0 and later.

 5 Click OK. The Save As dialog box opens. By default, the file is named <name 
of test> [<name of run results>], and is saved in the test results folder. You 
can change the default destination folder and rename the file, if required.

 6 Click Save to save the file and close the dialog box.



Chapter 33 • Viewing Run Session Results

1004

Deleting Run Results 

You can use the Test Results Deletion Tool to remove unwanted or obsolete 
test results from your system, according to specific criteria that you define. 
This enables you to free up valuable disk space.

You can use this tool with a Windows-style user interface, or you can use the 
Windows command line to run the tool in the background (silently) to 
directly delete results that meet criteria that you specify.

Deleting Results Using the Test Results Deletion Tool
You can use the Test Results Deletion Tool to view a list of all the test results 
in a specific location in your file system or in a Quality Center project. You 
can then delete any test results that you no longer require. 

The Test Results Deletion Tool enables you to sort the test results by name, 
date, size, and so forth, so that you can more easily identify the results you 
want to delete.



Chapter 33 • Viewing Run Session Results

1005

To delete test results using the Test Results Deletion Tool:

 1 Select Start > Programs > QuickTest Professional > Tools > Test Results 
Deletion Tool from the Start menu. The Tests Results Deletion Tool window 
opens. 

 2 In the Test or folder box, specify the path from which you want to delete 
test results. When working with the file system, you can specify a test or a 
folder. When working with Quality Center, you cannot specify folders. 

To browse to a test or folder, click the down arrow adjacent to the Browse 
button and select Tests or Folders. In the sidebar of the dialog box that 
opens, select the location of the test results you want to delete. Browse to 
and select the folder or specific test results that you want to delete, and click 
Open. 



Chapter 33 • Viewing Run Session Results

1006

Note: To delete test results from a Quality Center database, click Connect to 
connect to Quality Center before browsing or entering the path. Specify the 
Quality Center test path in the standard Quality Center format. For 
example: [Quality Center] Subject\<folder name>\<test name>. Make sure that 
you have Delete Run permission for this Quality Center project. 

For information on connecting to Quality Center, see “Connecting to and 
Disconnecting from Quality Center” on page 1418.

For information on Quality Center project permissions, contact your 
Quality Center administrator or see the section on permission settings in 
the HP Quality Center Administrator Guide.

 3 Select Include test results found in subfolders if you want to view all test 
results contained in subfolders of the specified folder. 

Note: The Include test results found in subfolders check box is available 
only for folders in the file system. It is not supported when working with 
tests in Quality Center. 

The test results in the specified test or folder are displayed in the Test Results 
box, together with descriptive information for each one. You can click a 
column's title in the Test Results box to sort test results based on the entries 
in that column. To reverse the order, click the column title again.

The Delete Test Results window status bar shows information regarding the 
displayed test results, including the number of results selected, the total 
number of results in the specified location and the size of the files.

 4 Select the test results you want to delete. You can select multiple test results 
for deletion using standard Windows selection techniques. 

 5 Click Delete. The selected test results are deleted from the system and the 
Quality Center database.



Chapter 33 • Viewing Run Session Results

1007

Tip: You can click Refresh at any time to update the list of test results 
displayed in the Test Results box.

Deleting Results Using the Windows Command Line
You can use the Windows command line to instruct the Test Results 
Deletion Tool to delete test results according to criteria you specify. For 
example, you may want to always delete test results older than a certain date 
or over a minimum file size.

To run the Test Results Deletion Tool from the command line:

Open a Windows command prompt and type <QuickTest installation 
path>\bin\TestResultsDeletionTool.exe, then type a space and type the 
command line options you want to use. 

Note: If you use the -Silent command line option to run the Test Results 
Deletion Tool, all test results that meet the specified criteria are deleted. 
Otherwise, the Delete Test Results window opens.

Command Line Options

You can use command line options to specify the criteria for the test results 
that you want to delete. Following is a description of each command line 
option.

Note: If you add command line options that contain spaces, you must 
specify the option within quotes, for example:
TestResultsDeletionTool.exe -Test "F:\Tests\Keep\web objects"



Chapter 33 • Viewing Run Session Results

1008

-Domain Quality_Center_domain_name

Specifies the name of the Quality Center domain to which you want to 
connect. This option should be used in conjunction with the -Server, 
-Project, -User, and -Password options.

-FromDate results_creation_date

Deletes test results created after the specified date. Results created on or 
before this date are not deleted. The format of the date is MM/DD/YYYY.

The following example deletes all results created after November 1, 2005:

TestResultsDeletionTool.exe  -Silent -Test "C:\tests\test1" -FromDate "11/1/2005"

-Log log_file_path

Creates a log file containing an entry for each test results file in the folder or 
test you specified. The log file indicates which results were deleted and the 
reasons why other results were not. For example, results may not be deleted 
if they are smaller than the minimum file size you specified.

You can specify a file path and name or use the default path and name. If 
you do not specify a file name, the default log file name is 
TestResultsDeletionTool.log in the folder where the Test Results Deletion 
Tool is located.

The following example creates a log file in C:\temp\Log.txt:

TestResultsDeletionTool.exe  -Silent -Log "C:\temp\Log.txt" -Test "C:\tests\test1"

The following example creates a log file named TestResultsDeletionTool.log 
in the folder where the Test Results Deletion Tool is located:

TestResultsDeletionTool.exe  -Silent -Log  -Test "C:\tests\test1"



Chapter 33 • Viewing Run Session Results

1009

-MinSize minimum_file_size

Deletes test results larger than or equal to the specified minimum file size. 
Specify the size in bytes.

Note: The -MinSize option is available only for test results in the file system. 
It is not supported when working with tests in Quality Center. 

The following example deletes all results larger than or equal to 10000 bytes. 
Results that are smaller than 10000 bytes are not deleted:

TestResultsDeletionTool.exe  -Silent -Test "C:\tests\test1" -MinSize "10000"

-Name result_file_name

Specifies the names of the result files to be deleted. Only results with the 
specified names are deleted.

You can use regular expressions to specify criteria for the result files you 
want to delete. For more information on regular expressions and regular 
expression syntax, see “Understanding and Using Regular Expressions” on 
page 762. 

The following example deletes results with the name Res1:

TestResultsDeletionTool.exe  -Silent -Test "C:\tests\test1" -Name "Res1"

The following example deletes all results whose name starts with Res plus 
one additional character: (For example, Res1 and ResD would be deleted. 
ResDD would not be deleted.)

TestResultsDeletionTool.exe  -Silent -Test "C:\tests\test1" -Name "Res."



Chapter 33 • Viewing Run Session Results

1010

-Password Quality_Center_password

Specifies the password for the Quality Center user name. This option should 
be used in conjunction with the -Domain, -Server, -Project, and -User options.

The following example connects to the Default Quality Center domain, 
using the server located at http://QCServer/qcbin, with the project named 
Quality Center_Demo, using the user name Admin and the password 
PassAdmin:

TestResultsDeletionTool.exe  -Domain "Default" -Server "http://QCServer/qcbin" 
-Project "Quality Center_Demo" -User "Admin" -Password "PassAdmin"

-Project Quality_Center_project_name

Specifies the name of the Quality Center project to which you want to 
connect. This option should be used in conjunction with the -Domain,
-Server, -User, and -Password options.

-Recursive

Deletes test results from all tests in a specified file system folder and its 
subfolders. When using the -Recursive option, the -Test option should 
contain the path of the folder that contains the tests results you want to 
delete (and not the path of a specific test).

The following example deletes all results in the F:\Tests folder and all of its 
subfolders:

TestResultsDeletionTool.exe  -Test "F:\Tests" -Recursive

Note: The -Recursive option is available only for folders in the file system. It 
is not supported when working with tests stored in Quality Center. 



Chapter 33 • Viewing Run Session Results

1011

-Server Quality_Center_server_path

Specifies the full path of the Quality Center server to which you want to 
connect. This option should be used in conjunction with the -Domain, 
-Project, -User, and -Password options.

-Silent 

Instructs the Test Results Deletion Tool to run in the background (silently), 
without the user interface.

The following example instructs the Test Results Deletion Tool to run 
silently and delete all results located in C:\tests\test1:

TestResultsDeletionTool.exe  -Silent -Test "C:\tests\test1"

-Test test_or_folder_path

Sets the test or test path from which the Test Results Deletion Tool deletes 
test results. You can specify a test name and path, file system path, or full 
Quality Center path.

This option is available only when used in conjunction with the -Silent 
option.

Note: The -Domain, -Server, -Project, -User, and -Password options must be 
used to connect to Quality Center.

The following example opens the Test Results Deletion Tool with a list of the 
results in the F:\Tests\Keep\webobjects folder:

TestResultsDeletionTool.exe -Test "F:\Tests\Keep\webobjects"



Chapter 33 • Viewing Run Session Results

1012

The following example deletes all results in the Quality Center 
Tests\webobjects test:

TestResultsDeletionTool.exe -Domain "Default" -Server "http://QCServer/qcbin"
-Project "Quality Center_Demo592" -User "Admin" -Password "PassAdmin"
-Test "Subject\Tests\webobjects"

Tip: The -Test option can be combined with the -Recursive option to delete 
all test results in the specified file system folder and all its subfolders.

-UntilDate results_creation_date

Deletes test results created before the specified date. Results created on or 
after this date are not deleted. The format of the date is MM/DD/YYYY.

This option is available only when used in conjunction with the -Silent 
option.

The following example deletes all results created before November 1, 2005:

TestResultsDeletionTool.exe  -Silent -Test "C:\tests\test1" -UntilDate "11/1/2005"

-User Quality_Center_user_name

Specifies the user name for the Quality Center project to which you want to 
connect. This option should be used in conjunction with the -Domain, 
-Server, -Project, and -Password options.

This option is available only when used in conjunction with the -Silent 
option.



Chapter 33 • Viewing Run Session Results

1013

Submitting Defects Detected During a Run Session

You can instruct QuickTest to automatically submit a defect to a 
Quality Center project for each failed step in your test. You can also 
manually submit a defect for a specific step to Quality Center directly from 
within your QuickTest Test Results window. These options are only available 
when you are connected to a Quality Center project.

For more information on working with Quality Center and QuickTest, see 
Chapter 51, “Integrating with Quality Center.” For more information on 
Quality Center, see the HP Quality Center User Guide.

Manually Submitting Defects to a Quality Center Project
When viewing the results of a run session, you can submit any defects 
detected to a Quality Center project directly from the Test Results window.

To manually submit a defect to Quality Center:

 1 Ensure that the Quality Center client is installed on your computer. (Enter 
the Quality Center Server URL in a browser and ensure that the Login screen 
is displayed.) 

 2 Select Tools > Quality Center Connection or click the Quality Center 
Connection button to connect to a Quality Center project. For more 
information on connecting to Quality Center, see Chapter 51, “Connecting 
to and Disconnecting from Quality Center”.

Note: If you do not connect to a Quality Center project before proceeding to 
the next step, QuickTest prompts you to connect before continuing.

 3 Select Tools > Add Defect or click the Add Defect button to open the New 
Defect dialog box in the specified Quality Center project. The New Defect 
dialog box opens.



Chapter 33 • Viewing Run Session Results

1014

 4 You can modify the defect information if required. Basic information on the 
test and any checkpoints (if applicable) is included in the description:   

 5 Click Submit to add the defect information to the Quality Center project.

 6 Click Close to close the Add Defect dialog box.



Chapter 33 • Viewing Run Session Results

1015

Automatically Submitting Defects to a Quality Center 
Project
You can instruct QuickTest to automatically submit a defect to the 
Quality Center project specified in the Quality Center Connection dialog 
box (File > Quality Center Connection) for each failed step in your test. You 
can automatically submit a defect to the Quality Center project only if the 
test results are stored in Quality Center.

To automatically submit defects to Quality Center:

 1 Select Tools > Options or click the Options button. The Options dialog box 
opens.

 2 Click the Run node. 

 3 Select the Submit a defect to Quality Center for each failed step check box.



Chapter 33 • Viewing Run Session Results

1016

 4 Click OK to close the Options dialog box.

A sample of the information that is submitted to Quality Center for each 
defect is shown below: 



Chapter 33 • Viewing Run Session Results

1017

Viewing WinRunner Test Steps in the Test Results

If your QuickTest test includes a call to a WinRunner test, you can view 
detailed results of the WinRunner steps within your QuickTest Test Results 
window. 

The left pane in the QuickTest test results include a node for each 
WinRunner event that would normally be included in the WinRunner 
results. When you select a node corresponding to a WinRunner test event or 
function call, the right pane displays a summary of the called WinRunner 
test or function and details about the selected event. 

The start and end of the WinRunner test are indicated in the results tree by 
test run  icons. WinRunner events are indicated by WinRunner  icons. 
Calls to WinRunner functions are indicated by  icons. 



Chapter 33 • Viewing Run Session Results

1018

When you select a step in a WinRunner test, the top right pane displays the 
results summary for the WinRunner test. The summary includes the start 
and end time of the test, total run time, operator name, and summary 
results of the checkpoints performed during the test. 

The bottom right pane displays the following information:

For more information on running WinRunner tests and functions from 
QuickTest, see Chapter 57, “Working with WinRunner.”

Option Description

Event name The name of the selected step.

Result The status (pass or fail) of the step.

Line number The line number of the step within the WinRunner 
test.

Event time The time when the event was performed.

Description Displays additional information on the selected step 
followed by a link to the WinRunner details for the 
step. 

For example, clicking the link for a GUI checkpoint 
that checks the enabled property of a push button 
displays a WinRunner dialog box similar to the 
following: 

Note: You must have WinRunner installed on your 
computer to view WinRunner details for a selected 
step.



Chapter 33 • Viewing Run Session Results

1019

Customizing the Test Results Display

The results of each QuickTest run session are saved in a single .xml file 
(called results.xml). This .xml file stores information on each of the test 
result nodes in the display. The information in these nodes is used to 
dynamically create .htm files that are shown in the top-right pane in the 
Test Results window. 

Each node in the run results tree is an element in the results.xml file. In 
addition, there are different elements that represent different types of 
information displayed in the test results. You can take test result 
information from the .xml file and use XSL to display the information you 
require in a customized format (either when printing from within the 
QuickTest Test Results window, when displaying test results in your own 
customized results viewer, or when exporting the test results to an HTML 
file).



Chapter 33 • Viewing Run Session Results

1020

The diagram below shows the correlation between some of the elements in 
the .xml file and the items they represent in the test results.    

Tip: You can change the appearance (look and feel) of the Test Results 
window. For more information, see “Changing the Appearance of the Test 
Results Window” on page 979.

XSL provides you with the tools to describe exactly which test result 
information to display and exactly where and how to display, print or 
export it. You can also modify the .css file referenced by the .xsl file, to 
change the appearance of the report (for example, fonts, colors, and so 
forth). 

Report element
DT element
Alter element
Action element

Tname element

Step element

Res element

sTime and
eTime attributes 
of Summary 
element

Test Summary 
attributes



Chapter 33 • Viewing Run Session Results

1021

For example, in the results.xml file, one element tag contains the name of 
an action, and another element tag contains information on the time at 
which the run session is performed. Using XSL, you could tell your 
customized test results viewer that the action name should be displayed in a 
specific place on the page and in a bold green font, and that the time 
information should not be displayed at all.

You may find it easier to modify the existing .xsl and .css files provided with 
QuickTest, instead of creating your own customized files from scratch. The 
files are located in <QuickTest Installation Folder>\dat, and are named as 
follows:

➤ PShort.xsl. Specifies the content of the test results report printed, or 
exported to an HTML file, when you select the Short option in the Print or 
Export to HTML File dialog boxes.

➤ PDetails.xsl. Specifies the content of the test results report printed, or 
exported to an HTML file, when you select the Detailed option in the Print 
or Export to HTML File dialog boxes.

➤ PResults.css. Specifies the appearance of the test results print preview. This 
file is referenced by all three .xsl files.

For more information on printing test results using a customized .xsl file, see 
“Printing Test Results” on page 999.

For more information on exporting the test results to a file using a 
customized .xsl file, see “Exporting Test Results” on page 1001.

For information on the structure of the XML schema, and a description of 
the elements and attributes you can use to customize the test results reports, 
see the XML Report Help (Help > QuickTest Professional Help > QuickTest 
Advanced References > QuickTest Test Results Schema).

XMLReport.chm::/XmlReport_xsd.html


Chapter 33 • Viewing Run Session Results

1022



1023

34
Analyzing Run Session Results

You can analyze the results of a run session using the report of major events 
that occurred during the run session. 

This chapter includes:

 ➤  Analyzing Smart Identification Information in the Test Results on page 1024

 ➤  Viewing Checkpoint Results on page 1028

 ➤  Viewing Parameterized Values and Output Value Results on page 1053

 ➤  Viewing System Monitor Results on page 1063



Chapter 34 • Analyzing Run Session Results

1024

Analyzing Smart Identification Information in the Test 
Results

If the learned description does not enable QuickTest to identify the specified 
object in a step, and a Smart Identification definition is defined (and 
enabled) for the object, then QuickTest tries to identify the object using the 
Smart Identification mechanism. The following examples illustrate two 
possible scenarios.

Smart Identification—No Object Matches the Learned 
Description

If QuickTest successfully uses Smart Identification to find an object after no 
object matches the learned description, the Test Results display a warning 
status and include the following information: 

For more information on the Smart Identification mechanism, see 
Chapter 4, “Configuring Object Identification.” 

In the results tree: In the result details:

A description mismatch icon for the 
missing object. For example:

An indication that the object (for example, 
the userName WebEdit object) was not 
found. 

A Smart Identification icon for the 
missing object. For example: 

An indication that the Smart Identification 
mechanism successfully found the object, 
and information on the properties used to 
find the object. You can use this 
information to modify the learned test 
object description, so that QuickTest can 
find the object using the description in 
future run sessions.

The actual step performed. For 
example:

Normal result details for the performed 
step. 



Chapter 34 • Analyzing Run Session Results

1025

The image below shows the results for a test in which Smart Identification 
was used to identify the userName WebEdit object after one of the learned 
description property values changed. 



Chapter 34 • Analyzing Run Session Results

1026

Smart Identification—Multiple Objects Match the Learned 
Description

If QuickTest successfully uses Smart Identification to find an object after 
multiple objects are found that match the learned description, QuickTest 
shows the Smart Identification information in the Test Results window. The 
step still receives a passed status, because in most cases, if Smart 
Identification was not used, the test object description plus the ordinal 
identifier could have potentially identified the object. 

In such a situation, the Test Results show the following information:

In the results tree: In the result details:

A Smart Identification icon for the 
missing object. For example: 

An indication that the Smart Identification 
mechanism successfully found the object, 
and information on the properties used to 
find the object. You can use this 
information to create a unique object 
description for the object, so that 
QuickTest can find the object using the 
description in future run sessions.

The actual step performed. For 
example:

Normal result details for the performed 
step.



Chapter 34 • Analyzing Run Session Results

1027

The image below shows the results for a test in which Smart Identification 
was used to uniquely identify the Home object after the learned description 
resulted in multiple matches. 

If the Smart Identification mechanism cannot successfully identify the 
object, the test fails and a normal failed step is displayed in the Test Results.



Chapter 34 • Analyzing Run Session Results

1028

Viewing Checkpoint Results

By adding checkpoints to your test, you can compare expected values in, for 
example, Web pages, text strings, object properties, and tables to the values 
of these elements in your application. This enables you to ensure that your 
application functions as desired. 

When you run the test, QuickTest compares the expected results of the 
checkpoint to the current results. If the results do not match, the 
checkpoint fails, which causes the test to fail. You can view the results of the 
checkpoint in the Test Results window.

To view the results of a checkpoint:

 1 Display the test results for your test in the Test Results window. For more 
information, see “Viewing the Results of a Run Session” on page 980.

 2 In the left pane in the Test Results window, expand the branches of the run 
results tree and click the branch for the checkpoint whose results you want 
to view. The checkpoint results are displayed in the Test Results window.

Note: By default, the bottom pane in the Result Details tab in the Test 
Results window displays information on the selected checkpoint only if it 
has the status Failed. You can change the conditions for when a step’s image 
is saved, in the Run > Screen Capture pane of the Options dialog box. For 
more information, see “The Options Dialog Box: Run > Screen Capture 
Pane” on page 1255.



Chapter 34 • Analyzing Run Session Results

1029

The information in the Test Results window and the available options are 
determined by the type of checkpoint you selected. For more information, 
see:

➤ “Analyzing Standard Checkpoint Results” on page 1029

➤ “Analyzing Table and Database Checkpoint Results” on page 1031

➤ “Analyzing Bitmap Checkpoint Results” on page 1033

➤ “Analyzing Text or Text Area Checkpoint Results” on page 1036

➤ “Analyzing XML Checkpoint Results” on page 1037

➤ “Analyzing Accessibility Checkpoint Results” on page 1048

 3 Select File > Exit to close the Test Results window.

For more information on checkpoints, see Chapter 17, “Understanding 
Checkpoints.” 

Analyzing Standard Checkpoint Results
By adding standard checkpoints to your tests, you can compare the expected 
values of object properties to the object’s current values during a run 
session. If the results do not match, the checkpoint fails. For more 
information on standard checkpoints, see “Checking Object Property Values 
Using Standard Checkpoints” on page 505.



Chapter 34 • Analyzing Run Session Results

1030

You can view detailed results of the standard checkpoint in the Test Results 
window. For information on displaying the results for a checkpoint, see 
“Viewing Checkpoint Results” on page 1028. 



Chapter 34 • Analyzing Run Session Results

1031

The top pane in the Result Details tab displays detailed results of the selected 
checkpoint, including its status (Passed or Failed), the date and time the 
checkpoint was run, and the portion of the checkpoint timeout interval that 
was used (if any). It also displays the values of the object properties that are 
checked, and any differences between the expected and actual property 
values. 

The bottom pane displays the image capture for the checkpoint step (if 
available).

In the above example, the details of the failed checkpoint indicate that the 
expected results and the current results do not match. The expected value of 
the flight departure is Paris, but the actual value is Frankfurt.

Analyzing Table and Database Checkpoint Results
By adding table checkpoints to your tests, you can check that a specified 
value is displayed in a cell in a table on your application. By adding database 
checkpoints to your tests, you can check the contents of databases accessed 
by your application.

The results displayed for table and database checkpoints are similar. When 
you run your test, QuickTest compares the expected results of the 
checkpoint to the actual results of the run session. If the results do not 
match, the checkpoint fails.

For more information on table and database checkpoints, see Chapter 20, 
“Checking Tables” and Chapter 22, “Checking Databases.”



Chapter 34 • Analyzing Run Session Results

1032

You can view detailed results of the table or database checkpoint in the Test 
Results window. For information on displaying the results for a checkpoint, 
see “Viewing Checkpoint Results” on page 1028. 

The top pane in the Result Details tab displays the checkpoint step results, 
including its status (Passed or Failed), the date and time the checkpoint was 
run, the verification settings you specified for the checkpoint, and the 
number of individual table cells or database records that passed and failed 
the checkpoint.

If the checkpoint failed, the bottom pane in the Result Details tab shows the 
table cells or database records that were checked by the checkpoint. Cell 
values or records that were checked are displayed in black; cell values or 
records that were not checked are displayed in gray. Cells or records that 
failed the checkpoint are marked with a failed  icon.



Chapter 34 • Analyzing Run Session Results

1033

You can click the Next Mismatch button in the bottom pane in the to 
highlight the next table cell or database record that failed the checkpoint.

You can click the Compare Values button in the bottom pane to display the 
expected and actual values of the selected table cell or database record.

Analyzing Bitmap Checkpoint Results
By adding bitmap checkpoints to your tests, you can check the appearance 
of elements in your application by matching captured bitmaps. When you 
run your test, QuickTest compares the expected bitmap saved in the 
checkpoint to the actual bitmap captured from the application during the 
run session. If the bitmaps do not match, the checkpoint fails. For more 
information on bitmap checkpoints, see Chapter 19, “Checking Bitmaps.” 

You can view detailed results of the bitmap checkpoint in the Test Results 
window. For information on displaying the results for a checkpoint, see 
“Viewing Checkpoint Results” on page 1028.

The top pane in the Result Details tab displays the checkpoint step results, 
including its status (Passed or Failed), the date and time the checkpoint was 
run and the portion of the checkpoint timeout interval that was used (if 
any).



Chapter 34 • Analyzing Run Session Results

1034

The bottom pane in the Result Details tab shows the expected and actual 
bitmaps that were compared during the run session, and a View Difference 
button. When you click the View Difference button, QuickTest opens the 
Bitmap Checkpoint Results window, displaying an image that represents the 
difference between the expected and actual bitmaps. This image is a 
black-and-white bitmap that contains a black pixel for every pixel that is 
different in the two images.   

Note: By default, the information in the bottom pane is available only if the 
bitmap checkpoint fails. You can change the conditions for when bitmaps 
are saved in the test results, using the Save still image captures to results 
option in the Run > Screen Capture pane of the Options dialog box. For 
more information, see “The Options Dialog Box: Run > Screen Capture 
Pane” on page 1255. 



Chapter 34 • Analyzing Run Session Results

1035

Considerations for Reviewing Bitmap Checkpoint Results

➤ If the checkpoint is defined to compare only a specific area of the bitmap, 
the test results display the actual and expected bitmaps with the selected 
area highlighted.

➤ When the dimensions of the actual and expected bitmaps are different, 
QuickTest fails the checkpoint without comparing the bitmaps. In this case 
the View Difference functionality is not available in the results.

➤ The View Difference functionality is not available when viewing results 
generated in a version of QuickTest earlier than 10.00.

➤ If the bitmap checkpoint is performed by a custom comparer:

➤ QuickTest passes the bitmaps to the custom comparer for comparison 
even if their dimensions are different.

➤ The top pane in the Result Details tab also displays the name of the 
custom comparer (as it appears in the Comparer box in the Bitmap 
Checkpoint Properties dialog box), and any additional information 
provided by the custom comparer.

➤ The difference bitmap is provided by the custom comparer.

For more information on using custom comparers for bitmap checkpoints, 
see “Fine-Tuning the Bitmap Comparison” on page 516.



Chapter 34 • Analyzing Run Session Results

1036

Analyzing Text or Text Area Checkpoint Results
By adding text or text area checkpoints to your tests, you can check that a 
text string is displayed in the appropriate place in your application. When 
you run your test, QuickTest compares the expected results of the 
checkpoint to the actual results of the run session. If the results do not 
match, the checkpoint fails. For more information on text and text area 
checkpoints, see Chapter 21, “Checking Text.”

You can view detailed results of the text or text area checkpoint in the Test 
Results window. For information on displaying the results for a checkpoint, 
see “Viewing Checkpoint Results” on page 1028.

The top pane in the Result Details tab displays the checkpoint step results, 
including its status (Passed or Failed), the date and time the checkpoint was 
run and the portion of the checkpoint timeout interval that was used (if 
any). It also shows the expected text and actual text that was checked, and 
the verification settings you specified for the checkpoint.



Chapter 34 • Analyzing Run Session Results

1037

Analyzing XML Checkpoint Results
By adding XML checkpoints to your tests, you can verify that the data and 
structure in your XML documents or files has not changed unexpectedly. 
When you run your test, QuickTest compares the expected results of the 
checkpoint to the actual results of the run session. If the results do not 
match, the checkpoint fails. For more information on XML checkpoints, see 
Chapter 23, “Checking XML.” 

You can view summary results of the XML checkpoint in the Test Results 
window. For information on displaying the results for a checkpoint, see 
“Viewing Checkpoint Results” on page 1028.

The top pane in the Result Details tab displays the checkpoint step results.

The bottom pane in the Result Details tab shows the details of the schema 
validation (if applicable) and a summary of the checkpoint results. If the 
schema validation failed, the reasons for the failure are also shown. 



Chapter 34 • Analyzing Run Session Results

1038

If the checkpoint failed, you can view details of each check performed in the 
checkpoint by clicking View XML Checkpoint Results in the bottom pane in 
the Result Details tab. The XML Checkpoint Results window opens, 
displaying details of the checkpoint’s failure.

Note: By default, if the checkpoint passes, the View XML Checkpoint Results 
button is not available. The availability of these detailed results is dependent 
on the Save still image captures to results setting in the Run > Screen 
Capture pane of the Options dialog box. For more information, see “The 
Options Dialog Box: Run > Screen Capture Pane” on page 1255.

Understanding the XML Checkpoint Results Window

When you click the View XML Checkpoint Results button from the Test 
Results window, the XML Checkpoint Results window displays the XML file 
hierarchy.

The Expected XML Tree pane displays the expected results—the elements, 
attributes, and values, as stored in your XML checkpoint.

The Actual XML Tree pane displays the actual results—what the XML 
document actually looked like during the run session.

The Checkpoint Summary pane displays results information for the check 
performed on the selected item in the expected results pane. 



Chapter 34 • Analyzing Run Session Results

1039

When you open the XML Checkpoint Results window, the Checkpoint 
Summary pane displays the summary results for the first checked item in 
the expected results pane.

Navigating the XML Checkpoint Results Window

The XML Checkpoint Results window provides a menu and toolbar that 
enables you to navigate the various parts of your XML checkpoint results.

You can use the commands or toolbar buttons described below to navigate 
your XML checkpoint results.



Chapter 34 • Analyzing Run Session Results

1040

➤ View Checkpoint Summary. Select an element in the XML Tree and click the 
View Checkpoint Summary button or select View > Checkpoint Summary. 
The Checkpoint Summary pane, which provides a detailed description of 
which parts of an element passed or failed, is displayed at the bottom of the 
XML Checkpoint Results window.

The following example displays the Checkpoint Summary for the cities 
element in an XML file. 



Chapter 34 • Analyzing Run Session Results

1041

➤ View Attribute Details. In the XML Tree, select an element whose attributes 
were checked. Click the View Attribute Details button or select View > 
Attribute Details. Both the Expected Attributes and Actual Attributes panes 
at the bottom of the XML Checkpoint Results window display the details of 
the attributes check. 

The following example shows the attribute details of the Action element in 
an XML Web page or frame. The Expected Attributes pane displays each 
attribute name, its expected value, and the result status of the attribute 
check. 

The Actual Attributes pane displays the attribute name and its actual value 
during the execution run. 



Chapter 34 • Analyzing Run Session Results

1042

➤ Find Next Check. Select View > Find Next Check or click the Find Next Check 
button to jump directly to the next checked item in the XML Tree.

➤ Find Previous Check. Select View > Find Previous Check or click the Find 
Previous Check button to jump directly to the previous checked item in the 
XML Tree.

➤ Find Next Error. Select View > Find Next Error or click the Find Next Error 
button to jump directly to the next error in the XML Tree.

➤ Find Previous Error. Select View > Find Previous Error or click the Find 
Previous Error button to jump directly to the previous error in the XML 
Tree.

➤ Scroll Trees Simultaneously. Select View > Scroll Trees Simultaneously, or 
click the Scroll Trees Simultaneously button to synchronize the scrolling of 
the Expected and Actual XML Trees. If this option is selected, the Expected 
and Actual XML Trees scroll simultaneously as you navigate through either 
of the tree structures. If this option is not selected, you can scroll only one 
tree at a time.

➤ View Multi-line Values. You can double-click any element value in the XML 
Checkpoint Results window to open the Element Value dialog box, which 
displays the value in a multi-line edit control. For more information, see 
“The Element Value Dialog Box” on page 1047.

➤ Help Topics. Select Help > Help Topics or click the Help Topics button to 
view help on the XML Checkpoint Results window.



Chapter 34 • Analyzing Run Session Results

1043

Examining Sample XML Checkpoint Results

Below are four sample XML checkpoint scenarios. Each example describes 
the changes that occurred in the actual XML document, explains how you 
locate the cause of the problem in the XML checkpoint results, and displays 
the corresponding XML Checkpoint Results window.

Scenario 1

In the following example, the airline element tag was changed to airlines and 
the XML checkpoint identified the change in the tag structure. The airline 
element’s child element check also failed because of the mismatch at the 
parent element level.

To view details of the failed element, select the airline tag from the Expected 
XML Tree and select View > Checkpoint Summary to view the Checkpoint 
Summary in the bottom pane in the XML Checkpoint Results window. 

The text "This element is missing" indicates that the airline element tag 
changed in your XML document. 



Chapter 34 • Analyzing Run Session Results

1044

Scenario 2

In the following example, an attribute that is associated with the orders 
element tag was changed from the original, expected value of orders1, to a 
new value of orders2. 

To view details of the failed attribute, select the failed element from the 
Expected XML Tree and select View > Attribute Details. The Expected 
Attributes and Actual Attributes panes are displayed at the bottom of the 
XML Checkpoint Results window. 

Using the Expected Attributes and Actual Attributes panes, you can identify 
which attribute caused the error and which values were mismatched. 



Chapter 34 • Analyzing Run Session Results

1045

Scenario 3

In the following example, the actual value of the total element was changed 
between execution runs, causing the checkpoint to fail.

To view details of the failed value, select the failed element from the 
Expected XML Tree and select View > Checkpoint Summary to view the 
Checkpoint Summary in the bottom pane in the XML Checkpoint Results 
window.

Using the Checkpoint Summary pane, you can compare the expected and 
actual values of the total element. 



Chapter 34 • Analyzing Run Session Results

1046

Scenario 4

In the following example, the value of the total element was parameterized 
and the value’s content caused the checkpoint to fail in this iteration.

Note that the value icon  is displayed with a pound symbol  to indicate 
that the value was parameterized. 

To view details of the failed value, select the failed element from the 
Expected XML Tree and select View > Checkpoint Summary to view the 
Checkpoint Summary in the bottom pane in the XML Checkpoint Results 
window. Note that the procedure for analyzing the checkpoint results does 
not change even though the value was parameterized.

Using the Checkpoint Summary pane, you can compare the expected and 
actual values of the total element. 



Chapter 34 • Analyzing Run Session Results

1047

The Element Value Dialog Box
 

Below is an image of the Element Value dialog box: 

 

Element Value Dialog Box Options
 

Description Enables you to view element values from the XML 
Checkpoint Results window in a multi-line edit 
window. It also enables you to navigate between the 
values in the Expected XML Tree or Actual XML 
Tree.

How to Access Double-click an element value in the XML 
Checkpoint Results window.

Learn More Conceptual overview: “Analyzing XML Checkpoint 
Results” on page 1037.

Option Description

Value x of y Indicates the ordinal position of the selected value within 
the Expected XML Tree or Actual XML Tree.

edit window Displays the full value of the element or attribute in a multi-
line window.



Chapter 34 • Analyzing Run Session Results

1048

Analyzing Accessibility Checkpoint Results
When you include accessibility checkpoints in your test, the Test Results 
window displays the results of each accessibility option that you checked.

The run results tree displays a separate step for each accessibility option that 
was checked in each checkpoint. For example, if you selected all accessibility 
options, the run results tree for an accessibility checkpoint may look 
something like this:

The test result details provide information that can help you pinpoint parts 
of your Web site that may not conform to the W3C Web Content 
Accessibility Guidelines. The information provided for each check is based 
on the W3C requirements.

Previous Value Enables you to navigate backward through the element 
values in the XML Checkpoint Results window. Clicking this 
button displays the next value in the Expected XML Tree or 
Actual XML Tree.

Next Value Enables you to navigate forward through the element values 
in the XML Checkpoint Results window. Clicking this 
button displays the next value in the Expected XML Tree or 
Actual XML Tree.

Option Description



Chapter 34 • Analyzing Run Session Results

1049

Note: Some of the W3C Web Content Accessibility Guidelines that are 
relevant to accessibility checkpoints are cited or summarized in the 
following sections. This information is not comprehensive. When checking 
whether your Web site satisfies the W3C Web Content Accessibility 
Guidelines, you should refer to the complete document at: http://
www.w3.org/TR/WAI-WEBCONTENT/.

For more information on accessibility checkpoints, see the section on 
testing Web objects in the HP QuickTest Professional Add-ins Guide.

ActiveX Check

Guideline 6 of the W3C Web Content Accessibility Guidelines requires you 
to ensure that pages are accessible even when newer technologies are not 
supported or are turned off. When you select the ActiveX check, QuickTest 
checks whether the selected page or frame contains any ActiveX objects. If it 
does not contain any ActiveX objects, the checkpoint passes. If the page or 
frame does contain ActiveX objects then the results display a warning and a 
list of the ActiveX objects so that you can check the accessibility of these 
pages on browsers without ActiveX support. For example: 

http://www.w3.org/TR/WAI-WEBCONTENT/
http://www.w3.org/TR/WAI-WEBCONTENT/


Chapter 34 • Analyzing Run Session Results

1050

Alt Property Check

Guideline 1.1 of the W3C Web Content Accessibility Guidelines requires 
you to provide a text equivalent for every non-text element. The Alt 
property check checks whether objects that require the Alt property under 
this guideline, do in fact have this attribute. If the selected frame or page 
does not contain any such objects, or if all such objects have the required 
attribute, the checkpoint passes. If one or more objects that require the 
property do not have it, the test fails and the test result details display a list 
that shows which objects are lacking the attribute. For example:

The bottom pane in the Result Details tab of the Test Results window 
displays the captured page or frame, so that you can see the objects listed in 
the Alt property check list.

Applet Check

The Applet Check also helps you ensure that pages are accessible, even when 
newer technologies are not supported or are turned off (Guideline 6 of the 
W3C Web Content Accessibility Guidelines), by finding any Java applets or 
applications in the checked page or frame. The checkpoint passes if the page 
or frame does not contain any Java applets or applications. Otherwise, the 
results display a warning and a list of the Java applets and applications. For 
example: 



Chapter 34 • Analyzing Run Session Results

1051

Frame Titles Check

Guideline 12.1 of the W3C Web Content Accessibility Guidelines requires 
you to title each frame to facilitate frame identification and navigation. 
When you select the Frame Titles check, QuickTest checks whether Frame 
and Page objects have the TITLE tag. If the selected page or frame and all 
frames within it have titles, the checkpoint passes. If the page, or one or 
more frames, do not have the tag, the test fails and the test result details 
display a list that shows which objects are lacking the tag. For example: 

The bottom pane in the Result Details tab of the Test Results window 
displays the captured page or frame, so that you can see the frames listed in 
the Frame Titles check list.

Multimedia Links Check

Guidelines 1.3 and 1.4 of the W3C Web Content Accessibility Guidelines 
require you to provide an auditory, synchronized description of the visual 
track of a multimedia presentation. Guideline 6 requires you to ensure that 
pages are accessible, even when newer technologies are not supported or are 
turned off. The Multimedia Links Check identifies links to multimedia 
objects so that you can confirm that alternate links are available where 
necessary. The checkpoint passes if the page or frame does not contain any 
multimedia links. Otherwise, the results display a warning and a list of the 
multimedia links.



Chapter 34 • Analyzing Run Session Results

1052

Server-Side Image Check

Guideline 1.2 of the W3C Web Content Accessibility Guidelines requires 
you to provide redundant text links for each active region of a server-side 
image map. Guideline 9.1 recommends that you provide client-side image 
maps instead of server-side image maps except where the regions cannot be 
defined with an available geometric shape. When you select the Server-side 
Image check, QuickTest checks whether the selected page or frame contains 
any server-side images. If it does not, the checkpoint passes. If the page or 
frame does contain server-side images, then the results display a warning 
and a list of the server-side images so that you can confirm that each one 
answers the guideline requirements. For example: 

Tables Check

Guideline 5 of the W3C Web Content Accessibility Guidelines requires you 
to ensure that tables have the necessary markup to be transformed by 
accessible browsers and other user agents. It emphasizes that you should use 
tables primarily to display truly tabular data and to avoid using tables for 
layout purposes unless the table still makes sense when linearized. The TH, 
TD, THEAD, TFOOT, TBODY, COL, and COLGROUP tags are recommended 
so that user agents can help users to navigate among table cells and access 
header and other table cell information through auditory means, speech 
output, or a Braille display. 

The Tables Check checks whether the selected page or frame contains any 
tables. If it does not, the checkpoint passes. If the page or frame does 
contain tables, the results display a warning and a visual representation of 
the tag structure of the table. For example:



Chapter 34 • Analyzing Run Session Results

1053

Viewing Parameterized Values and Output Value Results

You can view information on parameterized values and the results of output 
value steps in the Test Results window. You can also view the contents of the 
run-time Data Table.

Viewing Parameterized Values in the Test Results Window
A parameter is a variable that is assigned a value from an external data 
source or generator. You can view the values for the parameters defined in 
your test in the Test Results window.

To view parameterized values:

 1 Display the test results for your test in the Test Results window. For more 
information, see “Viewing the Results of a Run Session” on page 980.

 2 In the left pane in the Test Results window, expand the branches of the run 
results tree and click the branch for the test or action that contains 
parameterized values.



Chapter 34 • Analyzing Run Session Results

1054

The name and value of the input parameters are displayed at the bottom of 
the right pane.

The example above shows the input parameter UserName defined for the 
action with the value Mercury.

For more information on defining and using parameters in your tests, see 
Chapter 24, “Parameterizing Values.” 



Chapter 34 • Analyzing Run Session Results

1055

Viewing Output Value Results in the Test Results Window
An output value is a step in which one or more values are captured during 
the run session for use at another point in the run. When one of the values 
is needed later in the run as input, QuickTest retrieves it from the specified 
output location. 

To view the results of an output value step:

 1 Display the test results for your test in the Test Results window. For more 
information, see “Viewing the Results of a Run Session” on page 980.

 2 In the left pane of the Test Results window, expand the branches of the run 
results tree and click the branch for the output value step whose results you 
want to view. The output value results are displayed in the Test Results 
window. 

The right pane displays detailed results of the selected output value step, 
including its status, and the date and time the output value step was run. It 
also displays the details of the output value, including the value that was 
captured during the run session, its type, and its name.



Chapter 34 • Analyzing Run Session Results

1056

For more information on output values, see Chapter 25, “Outputting 
Values.” 

For information on viewing the results of XML output value steps, see 
“Analyzing XML Output Value Results” on page 1057.

Viewing the Run-Time Data Table
After running a test with Data Table parameters or Data Table output value 
steps, the Run-Time Data Table displays the parameterized values that were 
used, as well as any output values stored in the Data Table during the run. 
You can view the contents of the run-time Data Table in the Test Results 
window. 

To view the run-time Data Table:

 1 Display the test results for your test in the Test Results window. For more 
information, see “Viewing the Results of a Run Session” on page 980.

 2 Highlight Run-Time Data Table in the left pane in the Test Results window. 

In the above example, the Run-Time Data Table contains the parameterized 
flight departure values.

For more information on the run-time Data Table, see Chapter 42, “Working 
with Data Tables.” 



Chapter 34 • Analyzing Run Session Results

1057

Analyzing XML Output Value Results
You can output element or attribute values to your test from XML 
documents used in your application. For more information on XML output 
values, see “Outputting XML Values” on page 718. 

You can view summary results of the XML output value in the Test Results 
window. For information on displaying the results for a checkpoint, see 
“Viewing Checkpoint Results” on page 1028. 

The Result Details tab in the right pane displays a summary of the output 
value results. You can view detailed results by clicking View XML Output 
Value Results to open the XML Output Value Results window.



Chapter 34 • Analyzing Run Session Results

1058

Note: By default, the View XML Output Value Results button is available 
only when an error occurs. The availability of these detailed results is 
dependent on the Save still image captures to results setting in the Run > 
Screen Capture pane of the Options dialog box. For more information, see 
“The Options Dialog Box: Run > Screen Capture Pane” on page 1255. 

For more information on XML output value results, see “Understanding the 
XML Output Value Results Window” on page 1058.

Understanding the XML Output Value Results Window
When you click the View XML Output Value Results button from the Test 
Results window, the XML Output Value Results window displays the XML 
file hierarchy.

The Data Table Names pane displays the XML output value settings—the 
structure of the XML and the Data Table column names you selected to 
output for Data Table output values.

The Output Values pane displays the actual XML tree—what the XML 
document or file actually looked like and the actual values that were output 
during the run.



Chapter 34 • Analyzing Run Session Results

1059

The Additional Details pane displays results information for the selected 
item. 



Chapter 34 • Analyzing Run Session Results

1060

Navigating the XML Output Value Results Window

The XML Output Value Results window provides a menu and toolbar that 
enables you to navigate the various parts of your XML output value results. 

You can use the commands or toolbar buttons described below to navigate 
your XML output value results:

➤ View Output Value Summary. Select an element in the XML Tree and click 
the View Output Value Summary button or select View > Output Value 
Summary. The Additional Details pane, which provides information 
regarding the output value for the selected element, attribute, or value, is 
displayed at the bottom of the XML Output Value Results window. 



Chapter 34 • Analyzing Run Session Results

1061

➤ View Attribute Details. In the XML Tree, select an element whose attributes 
were output as values. Click the Attribute Details button or select View > 
Attribute Details. Both the Expected Attributes and Actual Attributes panes 
at the bottom of the XML Output Value Results window display the details 
of the attributes output value. 

The Expected Attributes pane displays each attribute name and its expected 
value or output value name. The Actual Attributes pane displays the 
attribute name and the actual value of each attribute during the run session. 



Chapter 34 • Analyzing Run Session Results

1062

➤ Find Next Output Value. Select View > Find Next Output Value or click the 
Find Next Output Value button to jump directly to the next output value in 
the XML Tree.

➤ Find Previous Output Value. Select View > Find Previous Output Value or 
click the Find Previous Output Value button to jump directly to the previous 
output value in the XML Tree.

➤ Find Next Error. Select View > Find Next Error or click the Find Next Error 
button to jump directly to the next error in the XML Tree.

➤ Find Previous Error. Select View > Find Previous Error or click the Find 
Previous Error button to jump directly to the previous error in the XML 
Tree.

➤ Scroll Trees Simultaneously. Select View > Scroll Trees Simultaneously, or 
click the Scroll Trees Simultaneously button to synchronize the scrolling of 
the Data Table Names and Output Values trees. 

If this option is selected, the Data Table Names and Output Values trees 
scroll simultaneously as you navigate through either of the tree structures. If 
this option is not selected, you can scroll only one tree at a time.

➤ Help Topics. Select Help > Help Topics or click the Help Topics button to 
view help on the XML Output Value Results window.



Chapter 34 • Analyzing Run Session Results

1063

Viewing System Monitor Results

You view the system counters that you monitored for your test in the 
System Monitor tab of the Test Results window. Local system monitoring 
can be enabled for tests only.

For information on enabling local system monitoring for your test, see 
“Enabling System Monitoring for Your Test” on page 1296.

The System Monitor tab displays the results of the system counters in a line 
graph.  

Counter 
Limit Line

Maximum 
Counter 
Value

System 
Counters 

List

Currently 
Displayed 
Counters

Counter 
Limit Value

Counter 
Limit Value

Counter 
Scale

Time 
Scale

Counter 
Line



Chapter 34 • Analyzing Run Session Results

1064

The System Monitor Tab 

The System Monitor tab displays the following information: 

➤ Application Name. The name of the application for which system counters 
were monitored.

➤ System Counters List. The list of system counters monitored for the 
application. 

➤ Currently Displayed Counters. The list of counters currently displayed in the 
line graph. The System Monitor tab displays a maximum of two counters at 
one time. To change the counters being displayed, clear the check box for 
one or both of the currently selected counters, and select the check box for 
the desired counters.

➤ Counter Scale. The scale of measurement for the performance of that 
counter. 

➤ Maximum Counter Value. The maximum value the counter achieved during 
the run session.

➤ Current Step. The point in the graph representing the step that is currently 
highlighted in the Run Results tree.

➤ Counter Limit Line. A visual representation of the limit, if set, for that 
counter, as defined in the Local System Monitor pane of the Test Settings 
dialog box. If set, a counter that exceeds this limit causes the step to fail. 
Only the first step that exceeds the counter limit fails. Subsequent steps that 
exceed the counter limit are not affected.

➤ Counter Limit Value. The numeric value of the limit, if set, for that counter, 
as defined in the Local System Monitor pane of the Test Settings dialog box. 
If set, a counter that exceeds this limit causes the step to fail. Only the first 
step that exceeds the counter limit fails. Subsequent steps that exceed the 
counter limit are not affected.

➤ Time Scale. The scale of time in seconds, for the run session.



Chapter 34 • Analyzing Run Session Results

1065

The System Monitor Tab Colors

Each counter is color coded in the graph. The color of the counter is 
displayed for:

➤ the name of the counter in the System Counters List

➤ the Counter Line

➤ the Counter Scale

➤ the Counter Limit Line 

➤ the Counter Limit Value

➤ the Maximum Counter Value

The System Monitor Tab Toolbar

The System Monitor tab toolbar contains the following buttons:

Button Usage

Click the Zoom In button and click anywhere on the graph to zoom in. 
You can also click and drag over an area of the graph to zoom in on that 
area.

Click the Zoom Out button and click anywhere on the graph to zoom 
out.

Click the View Full Graph button to zoom out and view the entire 
graph. This button is disabled when the graph is not zoomed in.

Click the Move button and then click and drag on the graph to scroll 
right and left. This button is disabled when the graph is not zoomed in.

Click the Arrow button and double-click anywhere on the graph to 
select that point as the current step. The Current Step indicator moves 
to the new location and the step is highlighted in the Run Results tree. 
You can also hover over any point on a Counter Line in the graph to see 
the value for the Counter Line at that point. 



Chapter 34 • Analyzing Run Session Results

1066

Exporting System Monitor Tab Results

You can export the data from the System Monitor tab to the following file 
types: text (.csv or .txt), Excel, XML, or HTML. 

To export the system monitor data:

Select File > Export System Monitor Data to File and select a file name and 
file type for the exported data.



1067

Part VII

Maintaining and Debugging Tests



1068



1069

35
Debugging Tests and Function Libraries

By controlling and debugging your run sessions, you can identify and 
handle problems in your tests, function libraries, and registered user 
functions. 

This chapter includes:

 ➤  About Debugging Tests and Function Libraries on page 1070

 ➤  Slowing a Debug Session on page 1072

 ➤  Using the Single Step Commands on page 1072

 ➤  Using the Run to Step and Debug from Step Commands on page 1076

 ➤  Pausing a Run Session on page 1078

 ➤  Using Breakpoints on page 1078

 ➤  The Debug Viewer Pane on page 1082

 ➤  Handling Run Errors on page 1094

 ➤  Practicing Debugging an Action or a Function on page 1096



Chapter 35 • Debugging Tests and Function Libraries

1070

About Debugging Tests and Function Libraries

After you create a test or function library (including registered user 
functions), you should check that they run smoothly, without errors in 
syntax or logic. To debug a function library, you must first associate it with a 
test and then debug it from that test. 

QuickTest provides different options that you can use to detect and isolate 
defects in a test or function library. For example:

➤ You can control the run session using the Pause command, breakpoints, and 
various step commands that enable you to step into, over, and out of a 
specific step. 

➤ If QuickTest displays a run error message during a run session, you can click 
the Debug button on the error message to suspend the run and debug the 
test or function library.

➤ When a run session is paused (suspended), you can use the Debug Viewer to 
check and modify the values of VBScript objects and variables and to 
manually run VBScript commands. 

➤ You can use the Debug from Step command to begin (and pause) your 
debug session at a specific point in your test. You can also use the Run to 
Step command to pause the run at a specific point in your test. You can set 
breakpoints, and then enable and disable them as you debug different parts 
of your test or function library. 

➤ You can also use the Run from Step command to run your test from a 
selected step. This enables you to check a specific section of your application 
or to confirm that a certain part of your test or function library runs 
smoothly. For more information, see “Running Part of Your Test” on 
page 956.

Tip: You can use the Screen Recorder to capture a movie of your application 
as it is being tested. For more information, see “Viewing Still Images and 
Movies of Your Application” on page 992.



Chapter 35 • Debugging Tests and Function Libraries

1071

Considerations for Debugging Tests and Function 
Libraries

➤ You must have the Microsoft Script Debugger installed to run tests in debug 
mode. If it is not installed, you can use the QuickTest Additional Installation 
Requirements Utility to install it. (Select Start > Programs > 
QuickTest Professional > Tools > Additional Installation Requirements.)

➤ While the test and function libraries are running in debug mode, they are 
read-only. You can modify the content after you stop the debug session (not 
when you pause it). If needed, you can enable the function library for 
editing (File > Enable Editing) after you stop the session. For more 
information, see “Editing a Read-Only Function Library” on page 916. After 
you implement your changes, you can continue debugging your test and 
function libraries.

➤ If you perform a file operation (for example, you open a different test or 
create a new test), the debug session stops.

➤ If a file is called using an ExecuteFile statement, you cannot debug the file or 
any of the functions contained in the file. In addition, when debugging a 
test that contains an ExecuteFile statement, the execution marker may not be 
displayed correctly.

➤ In QuickTest, when you open a test, QuickTest creates a local copy of the 
external resources that are saved to your Quality Center project. Therefore, 
any changes you apply to any external resource that is saved in your 
Quality Center project, such as a function library, will not be recognized in 
the test until the test is closed and reopened. (An external resource is any 
resource that can be saved separately from the test, such as a function 
library, a shared object repository, or a recovery scenario.) 

In contrast with this, any changes you apply to external resources saved in 
the file system, such as function libraries, are implemented immediately, as 
these files are accessed directly and are not saved as local copies when you 
open your test. 



Chapter 35 • Debugging Tests and Function Libraries

1072

Slowing a Debug Session

During a run session, QuickTest normally runs steps quickly. While you are 
debugging a test or function library, you may want QuickTest to run the 
steps more slowly so you can pause the run when needed or perform 
another task. You can specify the time (in milliseconds) QuickTest pauses 
between each step by modifying the Delay each step execution by option in 
the Run pane of the Options dialog box (Tools > Options > Run node). For 
more information on the Run pane options, see “Setting Run Testing 
Options” on page 1253.

Using the Single Step Commands

You can run a single step of a test or function library using the Step Into, 
Step Out, and Step Over commands. 

Tip: To display the Debug toolbar, select View > Toolbars > Debug. 

Step Into

Step Into runs only the current step in the active test or function library. If 
the current step calls another action or a function, the called action or 
function is displayed in the QuickTest window, and the test or function 
library pauses at the first line of the called action or function.

To use the Step Into command:

Select Debug > Step Into, click the Step Into button, or press F11. 

Step Out 

After using Step Into to enter an action or a function in a function library, 
you use the Step Out command. Step Out continues the run to the end of 
the called action or function, returns to the calling test or function library, 
and then pauses the run session at the next line (if one exists). 



Chapter 35 • Debugging Tests and Function Libraries

1073

To use the Step Out command:

Select Debug > Step Out, click the Step Out button, or press SHIFT+F11. 

Step Over 

Step Over runs only the current step in the active test or function library. If 
the current step calls another action or a user-defined function, the called 
action or function is executed in its entirety, but the called action or 
function script is not displayed in the QuickTest window. The run session 
then returns to the calling test or function library and pauses at the next 
line (if one exists).

To use the Step Over command:

Select Debug > Step Over, click the Step Over button, or press F10. 



Chapter 35 • Debugging Tests and Function Libraries

1074

Using the Single Step Commands - An Example
Follow the instructions below to create a sample function library and run it 
(from a test) using the Step Into, Step Out, and Step Over commands.

To create the 
sample function 
library and test:

1  Select File > New > Function Library to open a new function library.

2  In the function library, enter the following lines exactly:
public Function myfunc()
msgbox "one"
msgbox "two"
msgbox "three"
End Function 

3  Save the function library to the file system or your Quality Center project 
with the name SampleFL.qfl. (For more information, see “Saving a 
Function Library” on page 911.)

4  Select File > New > Test to open a new test.

5  Click the tab for the SampleFL.qfl function library to bring it into focus.

6  Select File > Associate Library ’SampleFL.qfl’ with ’Test’ to associate the 
function library with your test. 

7  Click the tab for the test you created to bring it into focus. Click the 
Expert View tab to display the Expert View and enter the following lines 
exactly:
myfunc
myfunc
myfunc 
endOfTest="true" 



Chapter 35 • Debugging Tests and Function Libraries

1075

To run the function 
library from your 
test and use the 
Step Into, Step 
Out, and Step Over 
commands:

8  Add a breakpoint on the first step of the test (the first call to the myfunc 
function) by pressing F9 (Insert/Remove Breakpoint). The breakpoint 
symbol is displayed in the left margin . For more information, see 
“Setting Breakpoints” on page 1079.

9  Run the test. The test pauses at the breakpoint.

10 Press F11 (Step Into). The execution arrow points to the first line (msgbox 
"one") of the function in the function library.

11 Press F11 (Step Into) again. A message box displays the text one. 

12 Click OK to close the message box. The execution arrow moves to the 
next line in the function.

13 Continue pressing F11 (Step Into) (and pressing OK on the message boxes 
that open) until the execution arrow leaves the function and is pointing 
to the second step in the test (the second call to the myfunc function).

14 Press F11 (Step Into) to enter the function again. The execution arrow 
points to the first msgbox line within the function.

15 Press SHIFT+F11 (Step Out). Close each of the message boxes that opens. 
Notice that the execution arrow continues to point to the first line in the 
function until you close the last of the three message boxes. After you 
close the third message box, the execution arrow points to the next line in 
the test (the third call to the myfunc function).

16 Press F10 (Step Over). The three message boxes open again—this time, in 
the Keyword View. The execution arrow remains on the same step in the 
test until you close the last of the three message boxes. After you close the 
third message box, the execution arrow points to the next step in the test. 



Chapter 35 • Debugging Tests and Function Libraries

1076

Using the Run to Step and Debug from Step Commands

In addition to stepping into, out of, and over a step while debugging, you 
can use the Run to Step and Debug from Step commands to instruct 
QuickTest to run a test or action (including any associated function library) 
until it reaches a particular step, or to begin debugging from a specific step.

Run to Step

You can instruct QuickTest to run from the beginning of the test or action 
(Expert View only)—or from the current location in the test or action—and 
to stop at a particular step. This is similar to adding a temporary breakpoint 
to a step. For example, if you want to begin debugging your test or action 
from a particular step, you may want to run your test or action to that step, 
as this opens your application to the relevant location.

You can use the Run to Step option to start a run session while editing your 
test or action or to resume a suspended run session.

Do one of the following to instruct QuickTest to run to a particular step:

➤ In the test, insert your cursor in the step in which you want QuickTest to 
stop the run and select Debug > Run to Step or press CTRL+F10.

➤ In the test, right-click in the step in which you want QuickTest to stop 
the run and select Run to Step from the context menu.

➤ In the Test Flow pane, right-click the action at which you want QuickTest 
to stop the run and select Run to Step from the context menu. This 
instructs QuickTest to stop the run at the first step in that action.

Note: If you use the Run to Step option to start a new run session, the Run 
dialog box opens, enabling you to specify the results location and the input 
parameter values for the debug run session. For more information, see 
steps 1 and 2 in the “Debug from Step” section, below.



Chapter 35 • Debugging Tests and Function Libraries

1077

Debug from Step

You can instruct QuickTest to begin your debug session from a particular 
step instead of beginning the run at the start of the test or action. Before you 
start debugging from a specific step, make sure that the application is open 
to the location where you want to start debugging. You can begin debugging 
from a specific step in your test or action when editing a test or action.

To instruct QuickTest to run from a particular step:

 1 Select the step from which you want to begin debugging:

➤ Insert your cursor in the step where you want QuickTest to start the run 
and select Debug > Debug from Step. 

➤ Right-click in the step where you want QuickTest to start the run and 
select Debug from Step from the context menu. 

➤ In the Test Flow pane, right-click the action where you want QuickTest to 
start the run and select Debug from Step from the context menu. This 
instructs QuickTest to begin the run at the first step in that action.

The Run dialog box opens. For more information on the tabs in the Run 
dialog box, see “The Run Dialog Box: Results Location Tab” on page 960, 
and “The Run Dialog Box: Input Parameters Tab” on page 962.

 2 If applicable, specify the results location and the input parameter values for 
the debug run session. By default, the Temporary run results folder option is 
selected. 

 3 Click OK. The Run dialog box closes and the debug run session starts. You 
can use any of the QuickTest debugging options, such as Step Into, Step 
Over, and Run to Step.

By default, when the run session ends, the Test Results window opens. For 
more information on viewing the run results, see Chapter 33, “Viewing Run 
Session Results.” If you cleared the View results when run session ends 
check box in the Run pane of the Options dialog box, the Test Results 
window does not open at the end of the run session. For more information 
on the Options dialog box, see Chapter 44, “Setting Global Testing 
Options.”



Chapter 35 • Debugging Tests and Function Libraries

1078

Pausing a Run Session

You can temporarily suspend a run session by choosing Debug > Pause or 
clicking the Pause button. A paused test or function library stops running 
when all previously interpreted steps have been run.

To resume running a paused run, click the Run button, select Automation > 
Run, or press F5. The run continues from the point it was suspended.

Tip: You can also stop a run session by clicking the Stop button, choosing 
Automation > Stop, or pressing the Stop command shortcut key (defined in 
the Tools > Options > Run node). After the run session stops, the Test Results 
window opens (unless you selected not to view results at the end of a run 
session (Tools > Options > Run node)).

Using Breakpoints

You can use breakpoints to instruct QuickTest to pause a run session at a 
predetermined place in a test or function library. QuickTest pauses the run 
when it reaches the breakpoint, before executing the step. You can then 
examine the effects of the run up to the breakpoint, make any necessary 
changes, and continue running the test or function library from the 
breakpoint. Breakpoints are applicable only to the current QuickTest session 
and are not saved with your test or function library.

You can use breakpoints to:

➤ suspend a run session and inspect the state of your application

➤ mark a point from which to begin stepping through a test or function 
library using the step commands

You can set breakpoints, and you can temporarily enable and disable them. 
After you finish using them, you can remove them from your test or 
function library.



Chapter 35 • Debugging Tests and Function Libraries

1079

Setting Breakpoints
By setting a breakpoint, you can pause a run session at a predetermined 
place in a test or function library. A breakpoint is indicated by a filled red 
circle icon in the left margin adjacent to the selected step. 

To set a breakpoint perform one of the following:

➤ Click in the left margin of a step in the test or function library where you 
want the run to stop.

➤ Click a step and then perform one of the following:

➤ Click the Insert/Remove Breakpoint button.

➤ Select Debug > Insert/Remove Breakpoint.

➤ Select Debug > Enable/Disable Breakpoint.

➤ Press F9.

The breakpoint symbol  is displayed in the left margin adjacent to the 
selected step. 



Chapter 35 • Debugging Tests and Function Libraries

1080

Enabling and Disabling Breakpoints
You can instruct QuickTest to ignore an existing breakpoint during a debug 
session by temporarily disabling the breakpoint. Then, when you run your 
test or function library, QuickTest runs the step containing the breakpoint, 
instead of stopping at it. When you enable the breakpoint again, QuickTest 
pauses there during the next run. This is particularly useful if your test or 
function library contains many steps, and you want to debug a specific part 
of it. 

You can enable or disable breakpoints individually or all at once. For 
example, suppose you add breakpoints to various steps throughout your test 
or function library, but for now, you want to debug only a specific part of 
your testing document. You could disable all breakpoints in your test or 
function library, and then enable breakpoints only for specific steps. After 
you finish debugging that section of your document, you could disable the 
enabled breakpoints, and then enable the next set of breakpoints (in the 
section you want to debug). Because the breakpoints are disabled and not 
removed, you can find and enable any breakpoint, as needed.

Enabled breakpoint. An enabled breakpoint is indicated by a filled red circle 
icon in the left margin  adjacent to the selected step.

Disabled breakpoint. A disabled breakpoint is indicated by an empty circle 
icon in the left margin  adjacent to the selected step.

To enable/disable a specific breakpoint:

 1 Click in the step containing the breakpoint you want to disable/enable.

 2 Select Debug > Enable/Disable Breakpoint or press CTRL+F9. The breakpoint 
is either disabled or enabled (depending on its previous state).

To enable/disable all breakpoints:

Select Debug > Enable/Disable All Breakpoints or click the Enable/Disable 
All Breakpoints button. If at least one breakpoint is enabled, QuickTest 
disables all breakpoints in the test or function library. Alternatively, if all 
breakpoints are disabled, QuickTest enables them.



Chapter 35 • Debugging Tests and Function Libraries

1081

Removing Breakpoints
You can remove a single breakpoint or all breakpoints defined for the 
current test or function library.

To remove a single breakpoint perform one of the following:

➤ Click the breakpoint icon in the left margin of the step.

➤ Click the step in your test or function library with the breakpoint symbol 
and:

➤ Click the Insert/Remove Breakpoint button.

➤ Select Debug > Insert/Remove Breakpoint.

➤ Press F9.

The breakpoint symbol is removed from the left margin of the testing 
document.

To remove all breakpoints:

Click the Clear All Breakpoints button, or select Debug > Clear All 
Breakpoints. All breakpoint symbols are removed from the left margin of the 
testing document.



Chapter 35 • Debugging Tests and Function Libraries

1082

The Debug Viewer Pane
 

Debug Viewer Pane Tabs

The Debug Viewer pane includes the following tabs:

➤ Watch tab. Displays the current values and types of variables and VBScript 
expressions that you add to the Watch tab, and enables you to modify the 
values of displayed variables and properties. For more information, see “The 
Debug Viewer Pane: Watch Tab” on page 1083.

➤ Variables tab. Displays the current values and types of all variables in the 
main script of the current action, or in a selected subroutine, and enables 
you to modify their values. For more information, see “The Debug Viewer 
Pane: Variables Tab” on page 1089. 

➤ Command tab. Enables you to run VBScript commands in your paused run 
session. For more information, see “The Debug Viewer Pane: Command 
Tab” on page 1092. 

Description Enables you to perform one of the following 
activities when a run session is suspended:

➤ View, set, or modify the current value of objects 
or variables in your test or function library.

➤ Run VBScript commands in your paused run 
session.

How to Access Select the View > Debug Viewer menu command.

Important Information A run session can be suspended in the following 
situations:

➤ The run session stops at a breakpoint.

➤ You use Debug menu commands or toolbar 
buttons (such as Pause or Run to Step) to 
suspend the run session. 

➤ A step fails and you select the Debug option.

Learn More Conceptual overview: “About Debugging Tests and 
Function Libraries” on page 1070

Primary task: “Practicing Debugging an Action or a 
Function” on page 1096



Chapter 35 • Debugging Tests and Function Libraries

1083

The Debug Viewer Pane: Watch Tab
 

Description When a run session is suspended, this tab enables 
you to view the current values and types of selected 
variables, properties, and VBScript expressions in 
your test or function library. 

You can also use this tab to manually change the 
value of a variable or property.

How to Access View menu > Debug Viewer item > Watch tab

Learn More Primary task: “Using the Watch Tab in the Debug 
Viewer Pane” on page 1087

Additional related topics:

➤ “The Debug Viewer Pane” on page 1082

➤ “Practicing Debugging an Action or a Function” 
on page 1096



Chapter 35 • Debugging Tests and Function Libraries

1084

Below is an image of the Watch tab in the Debug Viewer pane:

This image shows a run session that was suspended before running a test 
step. The Context box therefore contains the string VBScript global code and 
the values displayed in the Watch tab were evaluated within the context of 
the suspended action.

You can see some of the types of expressions that can be displayed in the 
Watch tab (for example, the HWND native property of the Find a Flight: 
Mercury Browser object). For additional types and contexts, see the image 
shown in “The Debug Viewer Pane: Variables Tab” on page 1089. 



Chapter 35 • Debugging Tests and Function Libraries

1085

Debug Viewer Watch Tab Details
 

Item Description

Context box Indicates the context in which the expressions 
displayed in the Watch tab are evaluated.

➤ If the run session was suspended before running 
a test step, the Context box contains the string 
VBScript global code and the expressions 
displayed in the Watch tab are evaluated within 
the context of the suspended action.

➤ If the run session was suspended within a 
function library, the Context box initially 
displays the name of the function in which the 
run paused and enables you to switch to the 
context of other functions and subroutines 
within the same function library.

The expressions displayed in the Watch tab are 
evaluated within the context of the selected 
function or subroutine. 

Name column The VBScript expression whose value you want to 
watch. For information on adding and removing 
expressions from the Watch tab, see “Using the 
Watch Tab in the Debug Viewer Pane” on 
page 1087.

Warning: QuickTest runs the expressions in the 
Watch tab to evaluate them. Therefore, do not 
enter a test object method or any expression whose 
evaluation could affect the state of the test object, as 
this can lead to unexpected behavior of your test or 
function library.



Chapter 35 • Debugging Tests and Function Libraries

1086

Value column The current value of the expression. The evaluated 
value is displayed only when a run session is 
suspended.

In this column, you can also set or modify the value 
of a variable or property that is being watched. 

For example, you can edit the value of a run-time 
object property displayed in the Watch tab, thereby 
changing the value of the property in the 
application you are testing before you resume the 
run session.

You cannot modify the run-time value of an object’s 
identification property from the Watch tab.

Type column The type of the expression’s value after it is 
evaluated (for example, Integer or String).

If an expression cannot be evaluated in the current 
context, the type displayed is Error (indicated also 
by an icon in the Name column).



Chapter 35 • Debugging Tests and Function Libraries

1087

Using the Watch Tab in the Debug Viewer Pane

You can add VBScript expressions to the Watch tab, to view the current 
value of different variables and properties of objects in a run session of your 
test or function library. When the run session is suspended (for example, if 
you use the Debug > Pause command, or when the test or function library 
stops at breakpoint), the Watch tab displays the current values and the types 
of the expressions that you added to the tab. 

As you continue stepping through the subsequent steps in your test or 
function library, QuickTest automatically updates the Watch tab with the 
current value for any expression whose value changes. 

You can also change the value of a variable or property manually in this tab. 
For example, you can edit the value of a run-time object property displayed 
in the Watch tab, thereby changing the value of the property in the 
application you are testing before you resume the run session. For more 
information, see “The Debug Viewer Pane: Watch Tab” on page 1083.  

Important: QuickTest runs the expressions in the Watch tab to evaluate 
them. Therefore, do not add a test object method or any expression whose 
evaluation could affect the state of the test object, as this can lead to 
unexpected behavior of your test or function library.

You can add any of the following types of expressions to the Watch tab:

➤ The name of a test object

➤ The name of a variable

➤ The name of a property

➤ Any other type of VBScript expression



Chapter 35 • Debugging Tests and Function Libraries

1088

Note: To add an identification property to the Watch tab, you must use an 
expression that calls GetROProperty. This enables you to watch the run-time 
value of the object’s identification property. For example, to watch the value 
currently displayed in the Calculator application, you can add the 
expression: Window("Calculator").WinEdit("Edit").GetROPRoperty("text")

You cannot modify the run-time value of an object’s identification property 
from the Watch tab.

To add an expression to the Watch tab:

Perform one of the following:

➤ Click the expression and select Debug > Add to Watch.

➤ Click the expression and press CTRL+T.

➤ Right-click the expression and select Add to Watch from the context 
menu. 

➤ In the Watch tab, select the empty row in the grid, click in the Name 
column, paste or type the expression, and press ENTER. 

Note: You can add an expression to the Watch tab from the Expert View or 
from a function library.

To remove an expression from the Watch tab:

In the Watch tab, select the row that you want to remove and press the 
Delete key on your keyboard.



Chapter 35 • Debugging Tests and Function Libraries

1089

The Debug Viewer Pane: Variables Tab
 

Description When a run session is suspended, the Variables tab 
displays the current values and types of all variables in 
the main script of the current action, or in a selected 
function in your test or function library, and enables 
you to modify their values.

How to Access View menu > Debug Viewer item > Variables tab

Important Information Only variables that were recognized up to the last step 
that was performed are displayed in the Variables tab. 
As you continue stepping through the subsequent 
steps in your test or function library, QuickTest adds 
any additional variables that it recognizes and updates 
the values displayed in the Variables tab.

Learn More Additional related topics: 

➤ “The Debug Viewer Pane” on page 1082

➤ “Practicing Debugging an Action or a Function” on 
page 1096



Chapter 35 • Debugging Tests and Function Libraries

1090

Below is an image of the Variables tab in the Debug Viewer pane:

This image shows a run session that was suspended within a function in a 
function library. The Variables tab therefore displays only the variables that 
are defined within the context of the suspended function.   



Chapter 35 • Debugging Tests and Function Libraries

1091

Debug Viewer Variables Tab Details
 

Item Description

Context box Indicates the context of the variables displayed in 
this tab.

➤ If the run session was suspended before running 
a test step, the Context box contains the string 
VBScript global code and this tab displays only 
variables that are defined within the context of 
the suspended action.

➤ If the run session was suspended within a 
function library, the Context box initially 
displays the name of the function in which the 
run paused and enables you to switch to the 
context of other functions and subroutines 
within the same function library.

Only variables that are defined within the 
context of the selected function or subroutine are 
displayed in the Variables tab. 

Name column The name of the variable. 

Value column The current value of the variable. You can edit this 
value to set or modify the value of the variable 
before you continue the run session.

Type column The type of the variable’s value (for example, 
Integer or String).



Chapter 35 • Debugging Tests and Function Libraries

1092

The Debug Viewer Pane: Command Tab
 

Description When a run session is suspended, this tab enables you 
to run lines of VBScript code in your test or function 
library.

For example, you can run VBScript code that performs 
any of the following activities before you resume the 
run session:

➤ Retrieves information from the application you are 
testing

➤ Runs a test object method and displays the return 
value, enabling you to learn more about how the 
method works

➤ Modifies the value of a native (run-time object) 
property in the application 

➤ Calls a native (run-time object) method in the 
application

How to Access View menu > Debug Viewer item > Command tab

Learn More Additional related topics:

➤ “The Debug Viewer Pane” on page 1082

➤ “Practicing Debugging an Action or a Function” on 
page 1096



Chapter 35 • Debugging Tests and Function Libraries

1093

Below is an image of the Command tab in the Debug Viewer pane:  

Debug Viewer Command Tab Details

➤ Context box. Indicates the context of the expressions and variables 
displayed in the Watch and Variable tabs.

➤ Command line prompt. Enables you to run a line of VBScript code in the 
context of your suspended run session. Type or paste the line of code at the 
prompt and press ENTER to run the code. 

➤ Command line history. Displays the lines of VBScript code that you ran. 

➤ You cannot make any changes to these lines, but you can select and copy 
text from them. 

➤ You can use the UP and DOWN arrow keys to browse through the 
command history. QuickTest copies the commands to the active 
command line, enabling you to repeat or reuse commands that you 
entered earlier. 



Chapter 35 • Debugging Tests and Function Libraries

1094

➤ Right-click context menu. Provides commands that you can use to edit the 
content of the Command tab.

➤ The Cut, Copy, and Paste commands enable you to use the clipboard to 
copy text from the command history and to edit the active command 
line.

➤ The Clear All command enables you to erase all of the command history.

Note: You can enter lines of code in the Command tab only when a run 
session is suspended. When no run session is suspended, you can view the 
command history, select and copy text from it, or use the Clear All context 
menu command.

Handling Run Errors

There are two types of Run Error message boxes that can be displayed during 
a run session. One is displayed if the problem is a pure VBScript syntax error. 
When a syntax run error message box is displayed, click OK in the message 
box and address the error in your step. 

The other message box can be displayed in a number of situations. It offers 
information about the error and a number of buttons for dealing with errors 
encountered:



Chapter 35 • Debugging Tests and Function Libraries

1095

➤ Stop. Stops the run session. The run results are displayed if QuickTest is 
configured to show run results after the run.

➤ Retry. QuickTest attempts to perform the step again. If the step succeeds, the 
run continues.

➤ Skip. QuickTest skips the step that caused the error, and continues the run 
from the next step.

➤ Debug. QuickTest suspends the run, enabling you to debug the test and any 
associated function library that contains a function called by the test.

You can perform any of the debugging operations described in this chapter. 
After debugging, you can continue the run session from the step where the 
test or function library stopped, or you can use the step commands to 
control the remainder of the run session.

➤ Help. Opens the QuickTest troubleshooting Help for the displayed error 
message. After you review the Help topic, you can select another button in 
the error message box.

The message box also recommends that you consider using Maintenance 
Mode if you think the error is due to intentional changes in your 
application and requires that you update multiple steps in your test or 
objects in your repository. For more information, see “Running Tests with 
the Maintenance Run Wizard” on page 1104.



Chapter 35 • Debugging Tests and Function Libraries

1096

Practicing Debugging an Action or a Function

Suppose you create an action or a function that defines variables that will be 
used in other parts of your test or function library. You can add breakpoints 
to the action or function to see how the value of the variables changes as the 
test or function library runs. To see how the test or function library handles 
the new value, you can also change the value of one of the variables during 
a breakpoint.  

Step 1: Create a New Action or Function

Open a test and insert a new action, or open a new function library and 
create a new function called SetVariables. For more information on 
inserting actions, see Chapter 15, “Working with Actions.” For more 
information on working with functions, see Chapter 31, “Working with 
User-Defined Functions and Function Libraries.”

In the Expert View or function library, enter the VBScript code, as follows: 

For more information on the Expert View, see Chapter 29, “Working in the 
Expert View and Function Library Windows.”

Note: If you are working in the Expert View, skip to Step 4. If you are 
working in a function library, continue with Step 2 and Step 3.



Chapter 35 • Debugging Tests and Function Libraries

1097

Step 2: (For Function Libraries Only) Associate the Function 
Library with a Test

 1 Make sure the function library is in focus. 

 2 Select File > Associate Library '<Function Library Name>' with '<Test Name>'. 
QuickTest associates the function library with your test.

Step 3: (For Function Libraries Only) Add a Call to the Function 
in Your Test

Add a call to the function by inserting a new step and typing the following 
in the Expert View:

SetVariables 

Step 4: Add Breakpoints

Add breakpoints at the lines containing the text b="me" and MsgBox a. For 
more information on adding breakpoints, see “Setting Breakpoints” on 
page 1079.

Step 5: Begin Running the Test

Run the test. The test or function library stops at the first breakpoint, before 
executing that step (line of script).

Step 6: Check the Value of the Variables in the Debug Viewer 
Pane

 1 Select View > Debug Viewer to open the Debug Viewer pane, if it is not 
already open. Then click the Watch tab on the Debug Viewer pane. 

 2 In the document pane, select the variable a and select Debug > Add to 
Watch. QuickTest adds the variable a to the Watch tab. The Value column 
indicates that the value of a is currently "hello", because the breakpoint 
stopped after the value of variable a was initiated. The Type column 
indicates that a is a String variable.

 3 In the document pane, select the variable b and select Debug > Add to 
Watch. QuickTest adds the variable b to the Watch tab. The Value column 
indicates <Variable is undefined: 'b'> (and the Type column displays Error), 
because the test stopped before variable b was declared.



Chapter 35 • Debugging Tests and Function Libraries

1098

 4 Click the Variables tab in the Debug Viewer pane. If you are working with a 
test, only variable a is displayed (with the value "hello"), because a is the 
only variable that was initiated up to this point. If you are working with a 
function library, both SetVariables (with the value Empty) and variable a 
(with the value "hello") are displayed. Variable b is not displayed because the 
test stopped before variable b was declared. 

Step 7: Check the Value of the Variables at the Next Breakpoint

Click the Run button to continue running the test. The test stops at the next 
breakpoint. Note that the values of variables a and b were both updated in 
the Watch and Variables tabs.

Step 8: Modify the Value of a Variable Using the Variables Tab

 1 Click the Variables tab in the Debug Viewer pane. 

 2 In the Value column, select the string "me", replace it with the string "you", 
and press ENTER on the keyboard.

 3 Click the Watch tab. You can see that the value of variable b was also 
updated in the Watch tab.

Step 9: Modify the Value of a Variable Using the Command Tab

 1 Click the Command tab in the Debug Viewer pane. 

 2 At the command prompt, type:
if b="me" then a="b is me" else a="b is you" end if 
Then press ENTER on the keyboard. 

 3 Click the Variables tab to verify that the value of variable a was updated 
according to the command you entered and now displays the value: "b is 
you" 

 4 Click the Run button to continue running the test. The message box that 
opens displays "b is you" (which is the modified value of a). This indicates 
that you successfully modified the values of both a and b using the Debug 
Viewer pane. 

 5 Click OK to close the message box.



Chapter 35 • Debugging Tests and Function Libraries

1099

Step 10: Repeat a Command from the Command History

 1 Remove the first breakpoint and run the test again. When the test stops at 
the breakpoint (before displaying the message box), modify the value of 
variable b in the Variables tab to "not me". 

 2 Select the Command tab and press the UP arrow key on your keyboard. 
QuickTest copies the command that you typed in the previous test run (if 
b="me" then a="b is me" else a="b is you" end if) to the active command line. 
Press ENTER to run the command, and then click the Run button to complete 
the test run. 



Chapter 35 • Debugging Tests and Function Libraries

1100



1101

36
Maintaining Tests

QuickTest provides tools that enable you to maintain your tests as the 
application you are testing changes. For example, your application’s objects 
may change their properties or descriptions, or they may no longer exist. 
The expected values of your test’s checkpoints may also need updating 
based on changes in your application. This chapter describes how you can 
use QuickTest’s tools to update and maintain your tests.

This chapter includes:

 ➤  Why Tests Fail on page 1102

 ➤  Running Tests with the Maintenance Run Wizard on page 1104

 ➤  Updating a Test Using the Update Run Mode Option on page 1125



Chapter 36 • Maintaining Tests

1102

Why Tests Fail

Tests fail when QuickTest encounters a step it cannot perform or the results 
of a step indicate failure. In many cases this is due to the application being 
tested not functioning properly. QuickTest then provides you with test 
results that assist you in understanding how to fix your application. 

Sometimes a test fails because the application being tested has changed from 
when the test was created and the QuickTest test needs to be updated to 
reflect those changes. Your object repository may also be missing some of 
the objects it needs to run the test. QuickTest provides tools that help 
identify and resolve some of these issues.

Object Changes
When QuickTest runs a step in a test, it looks for the object referred to by 
that step, in the object repositories associated with that test. Using the 
description of the object in the repository, QuickTest attempts to identify 
that object in the application.

QuickTest may not be able to identify the object in the application for a 
number of reasons.

The Object Does Not Exist in the Application

QuickTest cannot find an object in the application that matches the 
description of the object in the object repository. The Maintenance Run 
wizard enables you to identify the object that you want your test to use.

The Parent Object Changed

QuickTest cannot find an object in the application that matches and has the 
same hierarchy as the object in the object repository. The Maintenance Run 
wizard enables you to identify the object that you want your test to use.

The Object Description Property Values Changed

QuickTest cannot find an object in the application that is similar to, and has 
the same description property values as the object in the object repository. 
The Maintenance Run wizard enables you to identify the object that you 
want your test to use.



Chapter 36 • Maintaining Tests

1103

The Object Does Not Exist in the Object Repository

QuickTest looks for the object to which the test refers, in the associated 
object repositories before attempting to identify that object in the 
application. If the object in your test cannot be found in any associated 
object repository, The Maintenance Run wizard enables you to identify the 
object in your application that you want to add to your repository and use 
in your test.

The Description Set of the Object Needs to Change

QuickTest uses a set of properties to identify objects in the application. If the 
set of identification properties for the object in the object repository does 
not provide a unique description matching an object in the application, 
QuickTest will be unable to find the object. Update Run Mode enables you 
to update the set of identification properties for the objects in your test to 
match those defined in the Object Repository dialog box.

Checkpoint Changes
Checkpoints fail when they encounter conditions in the application being 
tested that are unexpected. In many cases this is due to the application not 
functioning properly. QuickTest provides you with test results that assist you 
in understanding how to fix your application. 

Sometimes checkpoints fail because the application has changed since the 
test was created and the QuickTest checkpoints need to be updated to reflect 
those changes. Update Run Mode enables you to update the checkpoints in 
your test to reflect changes in the application.

For example, suppose your application has an edit box whose default value 
used to be <Enter value> and you have checkpoint that checks this value 
before a new value is entered in the edit box. If the default value in the 
application changes to be <Enter name> then your checkpoint will fail. 
Update Run Mode enables you to update the expected values of your 
checkpoint to reflect the change in the application.



Chapter 36 • Maintaining Tests

1104

Running Tests with the Maintenance Run Wizard

The Maintenance Run Wizard helps you to maintain your test when it 
encounters the following problems and provides the following solutions:

a

When you run a test in Maintenance Run Mode, QuickTest runs your test, 
and then guides you through the process of updating your steps and object 
repository. The Maintenance Run wizard opens for each of the situations 
described above. Depending on the problem and user selections, the 
Maintenance Run wizard will display several screens.

Problem Solution

The step failed because the 
object in your test cannot 
be identified in the 
application.

The Maintenance Run Wizard helps you identify 
the object in the application that you want your test 
to use.

If you point to an object in the application being 
tested, the Maintenance Run wizard will compare 
that object to the objects in the associated object 
repositories. 

Depending on how the property values of the object 
to which you point compare to the property values 
of the objects in the associated repositories, the 
Maintenance Run wizard will suggest one of a 
several options for updating your test to reflect the 
changes in the application.

You can also choose to add a comment to your test 
before the failed step.

The step failed because the 
object in your test is 
missing from your 
associated object 
repositories.

The Maintenance Run Wizard helps you add the 
missing object to the repository.

You can also choose to add a comment to your test 
before the failed step.

The object in your step 
exists in the application, 
but can be identified only 
through Smart 
Identification.

Identifying objects using Smart Identification may 
cause tests to run slower. (For more information see, 
“Configuring Smart Identification” on page 121.) 
The Maintenance Run Wizard helps you modify the 
description of the object, so that Smart 
Identification is not needed. 



Chapter 36 • Maintaining Tests

1105

The following flow chart explains the logic of how the wizard and the user 
determine which screens to display in each situation:

 

Object Not Found 
Screen

How to Handle
Use similar solution 
from a prior step to 

fix this step

Add Comment 
Screen

Add a TODO 
comment before the 
step and continue 
running the test

Add 
Comment

Is the object you 
selected of the same 
class as the object in 

your step, but with 
different properties?

Yes No

Does the object you 
selected exist in an 
associated object 

repository?

Change Object 
Property Values 

Screen

Keep the original 
object properties, 
add a comment 

and continue

Open Add Comment 
Screen, continue to 

next step

Change property 
values of object in 

repository and rerun  
the step

Add the object as a new 
object to the repository, 
update and rerun the 

step Yes

No

Yes No

Update the object 
properties (with a 

regular expression) and 
rerun the step

Does the object you 
selected exist in an 
associated object 

repository?

Does the object 
in your step exist 
in an associated 

repository?

Yes

No

Point to the object in the 
application

Point to the object in the application 
and compare to the repositories

Use 
Suggestion

Add the object to the 
repository, update 
and rerun the step 
with the new object

Add the object and 
then update and 
rerun the step

Keep the original object 
and step and continue 

to the next step

Keep the original 
object and step and 
continue running the 

test

Add Object to 
Repository Screen

Update Step with 
Existing Object 

Screen

Keep the original 
step and continue 
to the next step

Keep the original 
object and step and 
continue running the 

test

Update the 
step and 
rerun it

Update and rerun 
the step with the 
existing object



Chapter 36 • Maintaining Tests

1106

Note: The Object Not Found Screen will not open when QuickTest uses 
Smart Identification to identify an object in your test. In that case, the 
Maintenance Run wizard will suggest updating the object properties 
according to the properties currently defined in the Object Identification 
dialog box. 

When the Maintenance Run Mode ends, the Maintenance Run wizard 
provides a summary of the changes it made to your test. The main Test 
Results window also contains a Maintenance Summary which displays 
details of the changes made to your test, including updated and added 
objects, updated and commented steps, and a summary of changes to the 
object repository. 

Considerations for Working with the Maintenance Run Wizard

➤ You must have the Microsoft Script Debugger installed to run the tests in 
Maintenance Run Mode. If it is not installed, you can use the QuickTest 
Additional Installation Requirements Utility to install it. (Select Start > 
Programs > QuickTest Professional > Tools > Additional Installation 
Requirements.)

➤ You can run in Maintenance Run Mode only when QuickTest is set to use 
the Normal (displays execution marker) run mode. It cannot run in Fast 
mode. For more information, see “Setting Run Testing Options” on 
page 1253.

➤ You cannot run tests in Maintenance Run Mode on applications that do not 
have a user interface, such as Web services. 

➤ The Maintenance Run Wizard opens often when your application has 
changed and QuickTest will be unable to identify objects. You may want to 
decrease the amount of time QuickTest waits for an object to be displayed 
before determining that the object cannot be found. You can change the 
object synchronization timeout in the Run pane of the Test Settings dialog 
box. Ensure that the timeout specified is sufficient for the objects in your 
application to load. For more information, see “Defining Run Settings for 
Your Test” on page 1270.



Chapter 36 • Maintaining Tests

1107

After Maintenance Run Mode finishes you may want to return this setting 
to its previous value for regular test runs. (The default QuickTest setting is 20 
seconds.) 

➤ As an alternative to using the Maintenance Run wizard, you can update 
individual test object descriptions from the object in your application using 
the Update from Application option in the Object Repository window or 
Object Repository Manager. For more information, see “Updating 
Identification Properties from an Object in Your Application” on page 165.

➤ After using the Maintenance Run wizard to update the test, you may want to 
use the Update from Local Repository option in the Object Repository 
Manager to merge the objects from the local repository back to a shared 
object repository. For more information, see Chapter 7, “Managing Object 
Repositories.”

To run a test in Maintenance Run Mode:

 1 Open the test and select Automation > Maintenance Run Mode or click the 
down arrow next to the Run button in the toolbar and select Maintenance 
Run Mode. The Run dialog box opens. 

 2 Specify the results location and the input parameter values (if applicable) for 
the Maintenance Run Mode session. For more information, see “The Run 
Dialog Box: Results Location Tab” on page 960, and “The Run Dialog Box: 
Input Parameters Tab” on page 962.

 3 Click OK. The Run dialog box closes and the Maintenance Run Mode session 
starts. 

By default, when the run session ends, the Test Results window opens. For 
more information on viewing the run session results, see Chapter 33, 
“Viewing Run Session Results.” If you cleared the View results when run 
session ends check box in the Run pane of the Options dialog box, the Test 
Results window does not open at the end of the run session. For more 
information on the Options dialog box, see Chapter 44, “Setting Global 
Testing Options.”



Chapter 36 • Maintaining Tests

1108

Maintenance Run Wizard - Object Not Found Screen
If an object in your test cannot be found in the application you are testing 
or in the associated object repositories, the Object Not Found screen opens. 
The Object Not Found screen identifies the Object that could not be found 
and the Step QuickTest was trying to perform.



Chapter 36 • Maintaining Tests

1109

Notes:

The Suggestion pane is displayed only if the Maintenance Run wizard 
cannot find an object in the application that was not found earlier in the 
run session as well. 

The Point to the Object and Add a Comment options are disabled in the 
Maintenance Run wizard for objects that were not found when:

➤ The test is open in read-only mode.

➤ The object is used within a function library function. 

➤ The object's method is defined as a registered user function. 

The Object Not Found screen assists you in resolving the problem by 
providing the following options:

➤ Point to the Object. Click the Point button and point to the object in the 
application that should be used in the step. Use this option if you know the 
application has changed and identifying a new object for use in the step will 
resolve the issue, or if the object does not exist in the associated object 
repositories.

If the location to which you point is associated with several objects, the 
Object Selection dialog box opens. Select the correct object from the tree 
and click OK. 

One of the following screens opens depending on the object to which you 
pointed:

➤ “Maintenance Run Wizard - Update Step with Existing Object Screen” on 
page 1116

➤ “Maintenance Run Wizard - Add Object to Repository Screen” on 
page 1118

➤ “Maintenance Run Wizard - Change Object Property Values Screen” on 
page 1112

➤ Add a Comment. Use this option if you want to add a comment to your test 
as a reminder to fix the failed step. The Add Comment screen opens. 



Chapter 36 • Maintaining Tests

1110

➤ Suggestion. Displayed only if the Maintenance Run wizard cannot find an 
object in the application that was not found earlier in the Maintenance Run 
wizard run as well. If, when the object was first not found, you chose to 
replace it with a different object, the Maintenance Run wizard will suggest 
replacing it with the same object now. 

➤ Use as default. If, in subsequent steps the same object cannot be found, 
the Maintenance Run wizard will automatically replace the object not 
found with the object you added to the object repository. The 
Maintenance Run wizard will not open on these subsequent steps.

If you do not use these options, you can use the following buttons to 
continue:

➤ Skip. Skips the current step in the test and continues to run the 
Maintenance Run wizard on the remainder of the test. This can be used 
when the problem is in the application being tested and not the QuickTest 
test. 

Note: Before clicking Skip, ensure that the application is ready for the next 
step in the test.

➤ Retry. Retries the current step.

➤ Stop. Stops the Maintenance Run and opens the Maintenance Mode 
Summary screen.  

➤ Help. Opens this Help topic.



Chapter 36 • Maintaining Tests

1111

Maintenance Run Wizard - Add Comment Screen
The Add Comment screen enables you to add a comment to your test before 
the current step. This can be used when you believe there is a problem in 
your test, but identifying the object in the application will not solve the 
problem, or you want to fix the test manually. 

The Add Comment screen creates a comment in your test beginning with 
the word TODO along with text you add, as a reminder to fix the step at a 
later time.



Chapter 36 • Maintaining Tests

1112

Maintenance Run Wizard - Change Object Property Values 
Screen
The Change Object Property Values screen opens when the object to which 
you pointed is of the same class as the object in your step, but it has 
different description property values.

The Change Object Property Values screen suggests updating the property 
values of the object in the associated object repository to match the 
property values of the object to which you pointed in the application. 



Chapter 36 • Maintaining Tests

1113

Note: If the Maintenance Run wizard does not determine that a regular 
expression is relevant for the new property value, the Change Object 
Property Value screen does not display the suggested regular expression 
below the properties table. The Update the <property name> property to 
use the regular expression and rerun the step radio button is also not 
displayed. 

The central area of the Change Object Property Values screen contains the 
following sections:

Section Description

Object The object in an associated object repository that 
is of the same class as the object to which you 
pointed in the application. 

Object Properties A table displaying the changes that will be made 
to the property values of the object in the object 
repository.

Property The name of the property whose value will be 
changed.

Original Value The original property value of the object in the 
object repository.



Chapter 36 • Maintaining Tests

1114

The Change Object Property Values screen provides the following options:

➤ Update the object property and rerun the step. Updates the property values 
of the object in the object repository to match those of the object to which 
you pointed in the application, and reruns the step. The new property 
values are shown under New Value.

➤ Update the <property name> property to use the regular expression and 
rerun the step. Displayed only if the property value can be updated to use a 
regular expression. Updates the property value of the object in the object 
repository with the regular expression as shown in the edit box, and reruns 
the step. 

New Value The new property value for the object in the 
object repository, based on the object to which 
you pointed in the application.

Recommended regular 
expression

Depending on the object to which you pointed, 
the Change Object Property Value screen may 
include a message that a regular expression can 
be used to update the property value of the 
object in the associated object repository. You 
can modify the suggested regular expression in 
the edit box. For more information on regular 
expressions, see “Understanding and Using 
Regular Expressions” on page 762. 

Note: In a situation where more than one 
property can use a regular expression, the 
Maintenance Run wizard will only suggest a 
regular expression for the first property value.

Section Description



Chapter 36 • Maintaining Tests

1115

➤ Add the object as a new object in the local object repository, and then 
update and rerun the step. This option adds the object to which you 
pointed, with its current properties, as a new object in the local object 
repository. This new object may already exist in an associated object 
repository. One of the following screens opens:

➤ The Update Step with Existing Object screen. This screen opens if the 
object you want to add already exists in an associated object repository.

➤ The Add Object to Repository screen. This screen opens if the object you 
want to add does not already exist in an associated object repository.

➤ Keep the original object properties, add a comment, and continue to the 
next step. Keeps the original object properties of the object in the object 
repository. Opens the Add Comment screen, enabling you to add a 
comment before the step, and then continues to the next step.

The bottom of the screen contains the Reset button which enables you to 
return to the Object Not Found screen, where you can point to a different 
object in the application or choose a different course of action for this step.

Notes: 

➤ If the object to which you point has a different parent object than the 
one in the object repository and has different property values, the 
Change Object Property Values screen opens twice. The first time it 
enables you to update the parent object of the object in the object 
repository to match the parent object of the object to which you pointed. 
The second time it enables you to update the object in the object 
repository to match the object to which you pointed.

➤ The Maintenance Run wizard makes changes to the local object 
repository only. If you want the new object to appear in a shared object 
repository, use the Object Repository Manager. For more information, see 
“Performing Merge Operations” on page 240.



Chapter 36 • Maintaining Tests

1116

Maintenance Run Wizard - Update Step with Existing 
Object Screen
The Update Step with Existing Object screen opens if the object to which 
you pointed in the Object Not Found screen exists in an associated object 
repository and:

➤ The object to which you pointed is not of the same class as the object in 
your step, but with different description property values. 

Or

➤ In the Change Object Property Values screen you chose Add the object as a 
new object in the local object repository, and then update and rerun the 
step. 

The Update Step with Existing Object screen suggests updating the step in 
your test to use an object that already exists in an associated object 
repository.



Chapter 36 • Maintaining Tests

1117

The central area of the Update Step with Existing Object screen contains the 
following sections:

The Update Step with Existing Object screen provides the following options:

➤ Update the step and rerun it. Updates the failed step as shown under New 
Step and reruns the step.

Note: The Maintenance Run wizard does not remove the original step from 
your test. The original step is converted into a comment and the updated 
step is added below it.

➤ Keep the original step and continue to the next step. Keeps the original step 
and continues to run the Maintenance Run wizard on the remainder of the 
test.

The bottom of the screen contains the Reset button which enables you to 
return to the Object Not Found screen, where you can point to a different 
object in the application or choose a different course of action for this step.

Section Description

Object The object in an associated object repository that 
is the same as the object to which you pointed in 
the application. 

Object Properties The properties and property values of the object 
to which you pointed in the test application.

Original Step The failed original step, with the object that 
could not be found.

New Step The new step as it would appear updated to refer 
to the object which already exists in an 
associated object repository.



Chapter 36 • Maintaining Tests

1118

Maintenance Run Wizard - Add Object to Repository 
Screen
The Add Object to Repository screen opens in the following cases:

➤ The object in your step does not exist in any associated repository.

➤ The object to which you pointed does not exist in any associated object 
repository and:

➤ The object to which you pointed is not of the same class as the object in 
your step, but with different description property values. 

Or

➤ In the Change Object Property Values screen you chose Add the object as 
a new object in the local object repository, and then update and rerun 
the step. 

The Add Object to Repository screen suggests adding the object to which 
you pointed to the object repository.



Chapter 36 • Maintaining Tests

1119

The central area of the Add Object to Repository screen contains the 
following sections:

The Add Object to Repository screen provides the following options:

➤ Add the object and then update and rerun the step. Adds the new object to 
the object repository, updates the failed step as shown under New Step and 
reruns the step.

➤ Keep the original object and step, and continue to the next step. Keeps the 
original step containing the original object and continues to run the 
Maintenance Run wizard on the remainder of the test.

The bottom of the screen contains the Reset button which enables you to 
return to the Object Not Found screen, where you can point to a different 
object in the application or choose a different course of action for this step.

Section Description

Object The object to which you pointed in the test 
application. 

Object Properties The properties and property values of the object 
to which you pointed in the test application.

Original Step The failed original step, with the object that 
could not be found.

New Step The new step as it would appear updated to refer 
to the object being added to the object 
repository.



Chapter 36 • Maintaining Tests

1120

Notes: 

➤ The Maintenance Run wizard makes changes to the local object 
repository only. If you want the new object to appear in a shared object 
repository use the Object Repository Manager. For more information, see 
“Performing Merge Operations” on page 240.

➤ The Maintenance Run wizard does not remove the original step from 
your test. The original step is converted into a comment and the updated 
step is added below it.

Maintenance Run Wizard - Smart Identification Screen
The Smart Identification screen opens if QuickTest used the Smart 
Identification mechanism to identify the object in your test. For 
information on the Smart Identification mechanism, see “Configuring 
Smart Identification” on page 121.

Smart Identification may slow down test execution, as it is only activated 
after the object synchronization timeout has been reached. 



Chapter 36 • Maintaining Tests

1121

The Smart Identification screen suggests updating the object description 
according to the properties currently defined in the Object Identification 
dialog box.



Chapter 36 • Maintaining Tests

1122

The central area of the Smart Identification screen contains the following 
sections:

The Smart Identification screen provides the following options:

➤ Update the object description. Updates the object description to use the set 
of properties currently defined in the Object Identification dialog box for 
the object in your test. Make sure that the set of properties defined in the 
Object Identification dialog box for the object is sufficient to uniquely 
identify the object.

➤ Keep the original description and continue to the next step. Keeps the 
original step containing the original object and continues to run the 
Maintenance Run wizard on the remainder of the test. The Smart 
Identification screen will not open for this object again during the run.

➤ Apply this selection to all objects using Smart Identification in this run. Uses 
your radio button selection above for all objects in the test that need the 
Smart Identification mechanism to be identified.

Section Description

Object The object in your application that required the 

Smart Identification mechanism to be identified.

Step The step in your test in which the object is 
referenced.

Object Properties Property. The list of properties in the old and 
new object description.

Original Property Value. The original value of 
the property in the Property column. Properties 
that have no value were not part of the original 
object description.

New Property Value. The new value of the 
property in the Property column.



Chapter 36 • Maintaining Tests

1123

Maintenance Run Wizard - Maintenance Mode Summary 
Screen
When the Maintenance Run wizard is finished, the Maintenance Mode 
Summary screen opens. 

The Maintenance Mode Summary Screen displays the number of objects 
that were added to the local object repository, the number of object 
properties that were updated, the number of steps that were modified, and 
the number of comments that were added to the test.



Chapter 36 • Maintaining Tests

1124

Click Finish to end the Maintenance Run wizard. By default, when the run 
session ends, the Test Results window opens and includes details about the 
steps and objects that were updated during the run. For more information 
on viewing the run session results, see “The Test Results Window” on 
page 971.

Note: If you cleared the View results when run session ends check box in 
the Run pane of the Options dialog box, the Test Results window does not 
open at the end of the run session. For more information on the Options 
dialog box, see Chapter 44, “Setting Global Testing Options.”



Chapter 36 • Maintaining Tests

1125

Updating a Test Using the Update Run Mode Option

When you run a test in Update Run Mode, QuickTest runs the test to update 
the test object descriptions, the Active Screen images and values, and/or the 
expected checkpoint values. After you save the test, the updated data is used 
for subsequent runs.

When QuickTest updates tests, it runs through only one iteration of the test 
and one iteration of each action in the test, according to the run option 
selected. For information on actions, see Chapter 15, “Working with 
Actions.”

Notes: 

➤ When a test runs in Update Run Mode, it does not update parameterized 
values, such as Data Table data and environment variables. For 
information on parameterized values and environment variables, see 
Chapter 24, “Parameterizing Values.” Update Run Mode does not modify 
the property values of existing object descriptions in the object 
repository. To fix the object property values to match your application, 
use Maintenance Run Mode. For more information, see “Running Tests 
with the Maintenance Run Wizard” on page 1104.

➤ When QuickTest updates tests, it always saves the updated objects in the 
local object repository, even if the objects being updated were originally 
from a shared object repository. The next time you run the test, 
QuickTest uses the objects from the local object repository, as the local 
object repository has a higher priority than any shared object 
repositories.

Tip: After using Update Run Mode to update the test, you may want to use 
the Update from Local Repository option in the Object Repository Manager 
to merge the objects from the local repository back to a shared object 
repository. For more information, see Chapter 7, “Managing Object 
Repositories.”



Chapter 36 • Maintaining Tests

1126

 1 Open the test, and select Select Automation > Update Run Mode, or click 
the down arrow next to the Run button in the toolbar and select Update 
Run Mode.  

The Update Run dialog box opens. 

 2 Specify the settings for the update run process. For more information, see 
“Understanding the Update Options Tab” on page 1128, and “The Run 
Dialog Box: Input Parameters Tab” on page 962.

Note: The run results for an update run session are always saved in a 
temporary location.

 3 Click OK. The Update Run dialog box closes and QuickTest begins running 
in Update Run Mode. The text Update Run flashes in the status bar while 
the test is being updated.



Chapter 36 • Maintaining Tests

1127

QuickTest runs the test and updates the test object descriptions, the Active 
Screen information, and/or the expected checkpoint values, depending on 
your selections. When the run session ends, the Test Results window opens.

For information on viewing the results, see Chapter 33, “Viewing Run 
Session Results.”

Note: If you cleared the View results when run session ends check box in 
the Run pane of the Options dialog box, the Test Results window does not 
open at the end of the update run session. For more information on the 
Options dialog box, see Chapter 44, “Setting Global Testing Options.”

When the update run ends, the Test Results window can show:

➤ Updated values for checkpoints.

➤ Updated test object descriptions. 

For example:



Chapter 36 • Maintaining Tests

1128

Understanding the Update Options Tab
The Update Options tab enables you to specify which aspects of your test 
you want to update, such as test object descriptions, expected checkpoint 
values, and/or Active Screen images and values. After you save the test, the 
results of the updated test are used for subsequent runs.

You can specify one or more of the following information types to update:

➤ Update test object descriptions. QuickTest updates the set of properties for 
each object class in your associated object repositories according to the 
properties currently defined in the Object Identification dialog box. You can 
use this option to modify the set of properties used to identify an object of a 
certain type. 

Note: If the property set you select in the Object Identification dialog box 
for an object class is not ideal for a particular object, the new object 
description may cause future runs to fail. Therefore, it is recommended that 
you save a copy of your object repositories (or check them into a 
Quality Center project with version control support, if applicable) before 
updating them, so that you can return to the previously saved version, if 
necessary.



Chapter 36 • Maintaining Tests

1129

This option can be especially useful when you want to create or debug your 
test steps using object property values that are easy to recognize in your 
application (such as object labels), but may be language- or operating 
system-dependent. After you debug your test, you can use the Update Run 
Mode option to change the object descriptions to use more universal 
property values.

For example, suppose you design a test for the English version of your 
application. The test objects are recognized according to the identification 
property values in the English version, some of which may be language-
dependent. You now want to use the same test for the French version of 
your application. 

To do this, you define properties that are non-language-dependent, so that 
QuickTest can use these properties for object identification. For example, 
you can identify a link object by its target property value instead of its text 
property value. You can then perform an update run on the English version 
of your application using these new properties. This modifies the test object 
descriptions so that you can later run the test successfully on the French 
version of your application.

Tip: If you have a test that runs successfully, but in which certain objects are 
identified using Smart Identification, you can change the set of properties 
used for object identification and then use the Update test object 
descriptions option to update the test object description to use the set of 
properties that Smart Identification used to identify the object.



Chapter 36 • Maintaining Tests

1130

When you run the test with Update test object descriptions selected, 
QuickTest finds the test object specified in each step based on its current test 
object description. If QuickTest cannot find the test object based on its 
description, it uses the Smart Identification properties to identify the test 
object (if Smart Identification is enabled). After QuickTest finds the test 
object, it then updates its description based on the mandatory and assistive 
properties that you define in the Object Identification dialog box. 

Note: Test objects that cannot be identified during the update process are 
not updated. As in any run session, if an object cannot be found during the 
update run, the run session fails, and information on the failure is included 
in the Test Results. In these situations, you may want to use Maintenance 
Run Mode to resolve these problems.

Any properties that were used in the previous test object description and are 
no longer part of the description for that test object class, as defined in the 
Object Identification dialog box, are removed from the new description, 
even if the values were parameterized or defined as regular expressions.

If the same property appears both in the test object’s new and previous 
descriptions, one of the following occurs:

➤ If the property value in the previous description is parameterized or 
specified as a regular expression and matches the new property value, 
QuickTest keeps the property’s previous parameterized or regular 
expression value. For example, if the previous property value was defined 
as the regular expression button.*, and the new value is button1, the 
property value remains button.*.

➤ If the property value in the previous description does not match the new 
property value, but the object is found using Smart Identification, 
QuickTest updates the property value to the new, constant property 
value. For example, if the previous property value was button.*, and the 
new value is My button, if a Smart Identification definition enabled 
QuickTest to find the object, My button becomes the new property value. 
In this case, any parameterization or use of regular expressions is 
removed from the test object description.



Chapter 36 • Maintaining Tests

1131

➤ Update checkpoint properties and output property values. QuickTest 
updates the expected values of your checkpoints to reflect any changes that 
may have occurred in your application since you created the test and 
updates the list of items that can be retrieved in your output value steps. 

For example, suppose you defined a text checkpoint as part of your test, and 
the text in your application has changed since you created your test. You 
can update the test to update the checkpoint properties to reflect the new 
text.

The output value option is mainly relevant for XML output value steps used 
with Web services test. For more information, see the section describing 
Web services in the HP QuickTest Professional Add-ins Guide.

Notes: 

➤ If checkpoint property values are parameterized or include regular 
expressions, they are not updated when using this option.

➤ If your test includes calls to a WinRunner test and you have write 
permissions for both the test and the expected results folder, then 
selecting Update checkpoint properties also updates the expected values 
of the checkpoints in your WinRunner test. If you do not want to update 
the WinRunner test, you may want to comment out the line that calls 
the WinRunner test. For more information on calling WinRunner tests, 
see “Calling WinRunner Tests” on page 1518. For more information on 
comment lines, see “Adding Comments” on page 815.

➤ If you selected the Save only selected area check box when creating a 
bitmap checkpoint, the Update Run Mode option updates only the saved 
area of the bitmap; it does not update the original, full size object. To 
include more of the object in the checkpoint, create a new checkpoint. 
For more information, see “Checking Bitmaps” on page 515.



Chapter 36 • Maintaining Tests

1132

➤ Update Active Screen images and values. QuickTest updates images and 
property values in the Active Screen to reflect any changes that may have 
occurred in your application since you recorded the test or if the Active 
Screen does not appear as it should. For example, suppose a dialog box in 
your application has changed since you recorded your test. You can update 
the test to update the dialog box appearance and its properties in the Active 
Screen.

You can also use this option to increase or decrease the amount of 
information saved and displayed in your Active Screen. Change the Capture 
Level slider (Tools > Options > Active Screen node), and run the test in 
Update Run Mode with the Update Active Screen images and values check 
box selected. QuickTest updates the amount of information it saves and 
displays in the Active Screen, based on the new setting. For more 
information, see “Setting Active Screen Options” on page 1240.



1133

Part VIII

Working with the QuickTest IDE



1134



1135

37
QuickTest Window Layout

This chapter describes how to customize the QuickTest window and work 
with QuickTest documents. 

This chapter includes:

 ➤  Modifying the QuickTest Window Layout on page 1135

 ➤  Customizing Toolbars and Menus on page 1146

 ➤  Working with Multiple Documents on page 1159

Modifying the QuickTest Window Layout

You can modify the layout of the QuickTest window. For example, you can 
move and resize panes, select to show or auto-hide panes, create tabbed 
panes, and select which toolbars to display. If needed, you can also restore 
the default layout.

You can also resize the QuickTest window to suit your needs for each type of 
QuickTest session (view/edit, record, and run sessions). For example, you 
can display QuickTest in full view when creating or editing a test, and 
minimize the QuickTest window during a run session. For more 
information, see “Customizing the QuickTest Window Layout” on 
page 1144. 

When you customize or restore the QuickTest window layout, QuickTest 
applies the changes to all document types and session types. 



Chapter 37 • QuickTest Window Layout

1136

For more information, see:

➤ “Moving Panes” on page 1136

➤ “Showing and Hiding Panes” on page 1141

➤ “Floating and Docking Toolbars” on page 1144

➤ “Restoring the Default Layout of the QuickTest Window” on page 1144

➤ “Customizing the QuickTest Window Layout” on page 1144

Moving Panes
You can move the QuickTest window panes to suit your own personal 
preferences. You can rearrange the panes, and you can also change a pane to 
a tabbed pane, and vice versa. 

While dragging a pane, markers are displayed on the QuickTest window. If 
you hold the cursor over one of these markers, the area represented by the 
marker is shaded, enabling you to preview the window layout if the pane is 
moved to the selected position.

Tip: To move a dockable pane without snapping it into place, press CTRL 
while dragging it to the required location.



Chapter 37 • QuickTest Window Layout

1137

To move panes:

 1 In the QuickTest window, drag the title bar or tab of the pane you want to 
move. (If the required pane is not displayed in the QuickTest window, you 
can select it from the View menu.) 

For example, you can move the Data Table tabbed pane located at the 
bottom left to be a new pane at the top right of the window. As you drag the 
pane, markers are displayed in the active pane and on each edge of the 
QuickTest window.   

Drag an active 
tabbed pane 
title bar to 
move all the 
tabbed panes

Drag a tab 
label to move 
a tabbed pane

Drag a 
document tab 
right or left to 
change its 
location

Drag a pane 
title bar or 
tab label to 
move the 
pane to left 
side of the 
QuickTest 
window

Drag a pane 
title bar or tab 
label to move 
the pane to the 
the left side of 
this pane

Drag a pane title 
bar to move the 
pane

Window  pane markerCurrent pane marker



Chapter 37 • QuickTest Window Layout

1138

Tips:

➤ To move a single tabbed pane, drag the tab label. After you start dragging 
the tabbed pane, the tab is removed, and its title bar is displayed.

➤ To move all the tabbed panes, drag the title bar of the active tabbed pane.

The following markers are displayed:

Type Marker Description

Current pane 
markers

Enables you to:

➤ position the pane as a new pane in the top, 
bottom, left or right half, or middle of the 
active pane, according to the arrow marker 
selected when you release the mouse button.

➤ position the pane as a new tabbed pane in the 
active window, by releasing the mouse button 
while selecting the center marker.

Note: The center marker is displayed only if you 
are dragging a pane onto an existing pane (other 
than the document pane). 

Window pane 
markers

Enables you to position the pane across the top of 
the QuickTest window.

Enables you to position the pane across the right 
side of the QuickTest window.

Enables you to position the pane across the 
bottom of the QuickTest window.

Enables you to position the pane across the left 
side of the QuickTest window.



Chapter 37 • QuickTest Window Layout

1139

 2 Drag the Data Table and hold the cursor over the active pane right-arrow 
marker, as shown below. A shaded area is displayed, indicating the new 
location of the pane, as shown below.  



Chapter 37 • QuickTest Window Layout

1140

 3 Release the mouse button. The Data Table snaps into place and is displayed 
as a new pane in the shaded area. 

Tip: You can also leave the pane as a floating pane anywhere on the 
QuickTest window, or on your screen. For more information on floating 
panes, see “Showing and Hiding Panes” on page 1141.

 4 Repeat this procedure for each pane you want to move. 



Chapter 37 • QuickTest Window Layout

1141

Showing and Hiding Panes
After you move the panes to their default positions, you can decide whether 
these panes should be displayed at all times, or whether you want to 
auto-hide them, and only display them as required. 

Panes can have one of the following states—docked or floating:

➤ Docked panes. Docked panes are fixed in a set position relative to the rest of 
the application. For example, when you move a pane to a position indicated 
by a marker, the pane is docked in that position.

You can decide whether to continuously display the docked panes in the 
QuickTest window, or to auto-hide them. Auto-hiding means that the pane 
is displayed as a side-tab on the edge of the QuickTest window, and is 
displayed only when you hold the cursor over the tab. After you select a 
different pane or side-tab, the auto-hidden pane closes and is displayed as a 
side-tab. 

Note: If you auto-hide the Information pane, it is automatically displayed 
when syntax errors are detected in a test script.

By default, auto-hidden panes open across the QuickTest window, according 
to their position in the QuickTest window. For example, if the docked pane 
was positioned on the right side of the QuickTest window, it is displayed as a 
side tab on the right edge of the QuickTest window, and is displayed across 
the right side of the QuickTest window when selected.

Tip: To auto-hide all the tabbed panes, select the title bar of the active 
tabbed pane, right-click and select Auto Hide. The tabbed panes are 
displayed as a group of side-tabs on the edge of the QuickTest window, and 
each pane is displayed only when you hold the cursor over that side-tab. 



Chapter 37 • QuickTest Window Layout

1142

➤ Floating panes. Floating panes are displayed on top of all other windows. 
They can be dragged to any position on your screen, even outside the 
QuickTest window. Floating panes have their own title bars.

Note: You cannot auto-hide floating panes or individual tabbed panes.

To show or hide panes:

In the QuickTest window, select the pane you want to auto-hide, and display 
as a side-tab on one of the edges of the QuickTest window. The following 
buttons may be displayed on the title bar:

Button Description

The Menu button enables you to select any of the following: 

➤ Floating. Opens the pane on top of all the other windows and panes, 
with its own title bar

➤ Docking. Docks the pane to the QuickTest window.

➤ Auto-hide. Displays the pane as a side-tab either at the top or bottom 
of the QuickTest window, or on one of the edges, according to its 
position in the QuickTest window.

➤ Hide. Closes the pane.

The Auto Hide button hides the pane. 

The pane is displayed as a side-tab either at the top or bottom of the 
QuickTest window, or on one of the edges, according to its position in 
the QuickTest window. 

To display the pane, hold the cursor over the side-tab. The button 
toggles to the Dock button, shown below.



Chapter 37 • QuickTest Window Layout

1143

Tips:

➤ To auto-hide all the tabbed panes, select the title bar of the active tabbed 
pane, right-click and select Auto Hide. The tabbed panes are displayed as 
a group of side-tabs on the edge of the QuickTest window, and each pane 
is displayed only when you hold the cursor over that side-tab. 

➤ You can float a pane by right-clicking the title bar, and choosing Floating 
from the context menu. The pane opens on top of all the other windows 
and panes, with its own title bar. To dock the pane, double-click the title 
bar, or right-click the title bar and select Docking. The pane returns to its 
previous position in the QuickTest window.

The Dock button docks the pane to the QuickTest window. 

The pane returns the position it was in before it was hidden, and the 
button toggles to the Auto Hide button, shown above.

The Close button closes the pane. 

The pane is removed from the QuickTest window. To reopen the pane, 
select it from the View menu.

Tip: You can also close a pane by right-clicking and choosing Hide from 
the context menu.

Button Description



Chapter 37 • QuickTest Window Layout

1144

Floating and Docking Toolbars
You can float a toolbar by moving your cursor over the toolbar handle on 
the left of the toolbar and then dragging the toolbar to the required 
position. The toolbar is displayed with a title bar.

You can double-click the title bar of the menu to dock the menu and return 
it to its previous position in the QuickTest window, or you can close it by 
clicking the Close button.

Restoring the Default Layout of the QuickTest Window
You can restore the default QuickTest window layout for all document types 
at any time. 

To restore the default layout: 

 1 Select Tools > Options > General node. The Options dialog box is displayed. 

 2 In the General pane, click the Restore Layout button. The panes and 
toolbars of all document types are restored to their default size and location. 

For more information on the Options dialog box, see Chapter 44, “Setting 
Global Testing Options.” 

Customizing the QuickTest Window Layout
QuickTest works in several different modes: view/edit, record, and run. You 
may want to modify the QuickTest layout to match the functionality of a 
mode. For example, when recording, it is often convenient to have 
QuickTest partially visible. This enables you to watch steps being added as 
you record your test without viewing the Active Screen. When running a 
test, it is often convenient to minimize QuickTest so that you can view your 
application during the test run. When viewing or editing a test, it may be 
convenient to maximize the QuickTest window, with all panes showing.

QuickTest remembers the size and location of its main window and all of its 
panes for each mode. When QuickTest enters a mode, the layout reverts to 
the most recently used layout for that mode. This means that the main 
QuickTest window and each of its panes are maximized, minimized, or 
resized, based on the previous layout of the current mode.



Chapter 37 • QuickTest Window Layout

1145

To set the QuickTest layout for each mode:

 1 Set the record mode:

 a Open a new or existing test.

 b Start a recording session.

 c Record one step.

 d Set all of your layout preferences for the recording mode.

 e Stop the recording session.

 2 Set the run mode:

 a Enter a breakpoint before the first step in the test. This enables you to 
arrange the layout during the run session. For information on how to set 
a breakpoint, see “Setting Breakpoints” on page 1079.

 b Run your test.

 c When QuickTest reaches the breakpoint, set all of your layout preferences 
for the run mode.

 d Stop the run session.

 3 Set all of your layout preferences for the view/edit mode.

The layouts for all of these modes are now set. QuickTest applies the 
relevant layout each time it enters one of these modes.



Chapter 37 • QuickTest Window Layout

1146

Customizing Toolbars and Menus

You can use the Customize dialog box to create user-defined menus and to 
customize the appearance of existing menus and toolbars.

This section includes:

➤ “Customization Mode Options” on page 1146

➤ “The Button Appearance Dialog Box” on page 1148

➤ “The Customize Dialog box - Commands Tab” on page 1149

➤ “The Customize Dialog box - Toolbars Tab” on page 1152

➤ “The Customize Dialog box - Tools Tab” on page 1155

➤ “The Customize Dialog box - Options Tab” on page 1157

➤ “Considerations for Customizing Toolbars and Menus” on page 1158

Customization Mode Options
While the Customize dialog box is open, QuickTest is in customization 
mode. The following options are available in the context-sensitive menu 
when you right-click the menu bar or toolbar buttons in customization 
mode:

Option Description

Restore Default Restores the default setting for the button. This 
selection is disabled for menus.

Copy Button Image Copies the button image to the clipboard. This 
selection is disabled for items that have no default 
image.



Chapter 37 • QuickTest Window Layout

1147

Delete Deletes the menu or button. 

To restore a button:
1  Click the customize toolbar button  while in 

normal mode.

2  Select Add or Remove Buttons.

3  Select the menu whose button you want to 
restore and select Restore Toolbar.

To restore a menu from the menu bar:
Select the Menu Bar in the Toolbars tab and click 
the Restore Selected button. 

Note: Any customizations of the Menu bar will be 
lost.

For more information, see “The Customize Dialog 
box - Toolbars Tab” on page 1152.

Button Appearance Opens the Button Appearance dialog box. For more 
information, see “The Button Appearance Dialog 
Box” on page 1148.

Image Displays the image for the button in the toolbar or 
menu. This selection is disabled for items that have 
no default image.

Text Displays the text label for the button in the toolbar 
or menu. This selection is disabled for menus.

Image and Text Displays the image and text label for the button or 
menu in the toolbar or menu. This selection is 
disabled for items that have no default image. 

Start Group Places a divider in the toolbar or menu before the 
current button to indicate a new group of buttons.

Option Description



Chapter 37 • QuickTest Window Layout

1148

The Button Appearance Dialog Box
 

Below is an image of the Button Appearance dialog box:

 

Button Appearance Dialog Box Options
 

Description Enables you to modify the appearance of a button or menu.

How to Access Do one of the following:

➤ Select the Tools > Customize menu command, right-click a 
button or menu, and select Button Appearance.

➤ Click the customize toolbar button , select Add or 
Remove Buttons > Customize, then right-click a button or 
menu, and select Button Appearance.

➤ Right-click on the menu bar or any toolbar and select 
Customize, then right-click a button or menu, and select 
Button Appearance.

Option Description

Image only Displays the image for the button in the toolbar or 
menu. This radio button is disabled for items that have 
no default image.

Text only Displays the text label for the button in the toolbar or 
menu.

Image and text Displays the image and text label for the button or menu 
in the toolbar or menu. This radio button is disabled for 
items that have no default image.



Chapter 37 • QuickTest Window Layout

1149

The Customize Dialog box - Commands Tab
 

Description The description of the button.

Button text The text label for the button or menu. The text label for 
the button can be modified when either the Text only or 
Image and text radio buttons are selected.

You can create a mnemonic (an underlined character for 
keyboard navigation) for any button text. Add the & 
character to the text label for the button before the letter 
you want to define as the mnemonic. Each button text 
can have only one mnemonic.

Description Enables you to customize toolbars and menus, and 
create new menus.

How to Access Do one of the following:

➤ Select the Tools > Customize menu command and 
then click the Commands tab.

➤ Click the customize toolbar button , select Add or 
Remove Buttons > Customize, and then click the 
Commands tab.

➤ Right-click on the menu bar or any toolbar and select 
Customize and then click the Commands tab.

Option Description



Chapter 37 • QuickTest Window Layout

1150

Below is an image of the Customize Dialog box - Commands Tab: 

 

Important Information ➤ See:

➤ “Customization Mode Options” on page 1146.

➤ “Considerations for Customizing Toolbars and 
Menus” on page 1158.

To add or remove default buttons from existing 
toolbars you can also:
1  Right-click the customize toolbar button .

2  Select Add or Remove Buttons. 

3  Select the menu whose buttons you want to modify.

4  Select or deselect the specific button.

Toolbars are listed in the Add or Remove Buttons 
selection per row.

Learn More Primary task: “To add a command to a toolbar or 
menu:” on page 1151.



Chapter 37 • QuickTest Window Layout

1151

Customize Dialog box - Commands Tab Dialog Box Options
 

To add a command to a toolbar or menu:

 1 Select Tools > Customize Toolbars and Menus and click the Commands tab. 

 2 In the Categories list, find and select the menu name that contains the 
command you want to add to the toolbar. To view all the available 
commands in alphabetical order select All Commands.

 3 In the Commands list, select the command you want to add and drag it to a 
toolbar or the menu bar.

 4 When you place the command over the menu bar or one of the toolbars, a 
marker is displayed indicating the location where the command will be 
placed. Drag the marker to the location where you want to add the 
command, and release the mouse button.

 5 If you want to create a new menu select New Menu in the Categories list 
and drag the New Menu item to the menu bar or a toolbar. To create a name 
for the new menu see “The Button Appearance Dialog Box” on page 1148.

 6 If you want to add a command to an existing menu, drag the command over 
the menu item. The menu item expands. Drag the marker to the location in 
the menu where you want to add the command, and release the mouse 
button.

Section Description

Categories A list of all of the menu items in the menu bar, with the addition 
of New Menu and All Commands.

Commands A list of all the commands available in the menu item selected in 
the Categories list. Commands that appear in drop-down lists or 
sub-menus are listed as individual commands in the Commands 
section. For example, Test in the New drop-down list in the 
Standard toolbar is listed as the individual command New : Test 
in the File category. 

Description A description of the selected command in the Command list.



Chapter 37 • QuickTest Window Layout

1152

The Customize Dialog box - Toolbars Tab
 

Description Enables you to: 

➤ show or hide toolbars or the menu bar. 

➤ restore the default setting for one or all toolbars or 
the menu bar.

➤ display text labels for toolbar buttons.

How to Access Do one of the following:

➤ Select the Tools > Customize menu command and 
then click the Toolbars tab.

➤ Click the customize toolbar button , select Add or 
Remove Buttons > Customize, and then click the 
Toolbars tab.

➤ Right-click on the menu bar or any toolbar and select 
Customize and then click the Toolbars tab.

Important Information ➤ You can also show or hide toolbars using the View > 
Toolbars menu option or by right-clicking the 
toolbars area and selecting or deselecting a toolbar 
from the context menu. 

➤ See:

➤ “Customization Mode Options” on page 1146.

➤ “Considerations for Customizing Toolbars and 
Menus” on page 1158.



Chapter 37 • QuickTest Window Layout

1153

Below is an image of the Customize Dialog box - Toolbars Tab:

 



Chapter 37 • QuickTest Window Layout

1154

Customize Dialog box - Toolbars Tab Options
 

Option Description

Toolbars A list of the toolbars in the QuickTest window, with 
the addition of Menu Bar. Select or deselect a check 
box to show or hide a toolbar.

Restore Selected Restores the default layout for the selected toolbar 
or the menu bar. 

To restore the default layout for a toolbar you can 
also:
1  Right-click the customize toolbar button . This 

is not available for the menu bar.

2  Select Add or Remove Buttons.

3  Select the toolbar whose layout you want to 
restore.

4  Select Restore Toolbar.

Toolbars are listed in the Add or Remove 
Buttons selection per row of toolbars.

Restore All Restores the default layout for all toolbars.

Show text labels Displays text labels for the buttons in the currently 
highlighted toolbar. For buttons that have a text 
label by default (for example, the Run button), 
clearing this check box restores the default display, 
and the text labels are still displayed. 

To turn off text labels for a toolbar, highlight the 
toolbar in the Toolbars area and deselect the check 
box.

This check box is disabled for the menu bar toolbar.



Chapter 37 • QuickTest Window Layout

1155

The Customize Dialog box - Tools Tab
 

Below is an image of the Customize Dialog box - Tools Tab:

 

Description Enables you to add an item to the Tools menu so 
you can launch an application from the QuickTest 
menu. 

How to Access Do one of the following:

➤ Select the Tools > Customize menu command 
and then click the Tools tab.

➤ Click the customize toolbar button , select Add 
or Remove Buttons > Customize, and then click 
the Tools tab.

➤ Right-click on the menu bar or any toolbar and 
select Customize and then click the Tools tab.

Important Information See:

➤ “Customization Mode Options” on page 1146.

➤ “Considerations for Customizing Toolbars and 
Menus” on page 1158.



Chapter 37 • QuickTest Window Layout

1156

Customize Dialog box - Tools Tab Options
 

Option Description

Menu 
Contents:

A list of the items added to the tools menu.

New. Enables you to add a new item to the Tools menu. A blank 
line is added to the Menu Contents area. Enter a name for the new 
item.

Delete. Enables you to delete the item selected in the Menu 
Contents list from the Tools menu. 

Move Item Up. Enables you to move the selected item up in the 
Tools menu.

Move Item Down. Enables you to move the selected item down in 
the Tools menu.

Command: The application for which you want to add an item to the Tools 
menu. Click the browse button  and navigate to the 
application you want to add.

Note: The Command box should contain only the file name and 
path for the application. If you want to add command line 
arguments, use the Arguments box.

Tip: You can specify a document or other file associated with an 
application in the file system, for example, c:\tmp\a.txt. In this case, 
QuickTest automatically opens the specified file in the associated 
application (Notepad in this example). If you use this option, 
QuickTest ignores any defined program arguments.

Arguments: Optional. Instructs QuickTest to open the application using the 
specified command line arguments.

Initial 
directory:

Optional. Specifies the current working folder for the application. 
The initial directory is used by the application to search for related 
files. If an initial directory is not specified, the executable folder is 
used as the initial directory.



Chapter 37 • QuickTest Window Layout

1157

The Customize Dialog box - Options Tab
 

Below is an image of the Customize Dialog box - Options Tab:

 

Description Enables you to display ScreenTips (tooltips), 
shortcut keys and large or small icons in the 
QuickTest display.

How to Access Do one of the following:

➤ Select the Tools > Customize menu command 
and then click the Options tab.

➤ Click the customize toolbar button , select Add 
or Remove Buttons > Customize, and then click 
the Options tab.

➤ Right-click on the menu bar or any toolbar and 
select Customize and then click the Options tab.

Important Information See:

➤ “Customization Mode Options” on page 1146.

➤ “Considerations for Customizing Toolbars and 
Menus” on page 1158.



Chapter 37 • QuickTest Window Layout

1158

Customize Dialog box - Options Tab Options
 

Considerations for Customizing Toolbars and Menus

➤ Toolbar and menu customization settings are created and saved for each 
Windows user.

➤ You can delete any button or command while the Customize Dialog box is 
open. Drag the toolbar button you want to remove from the toolbar to any 
location outside the toolbars area. The toolbar button is removed. 

➤ You can restore the default buttons and layout for a selected toolbar or for 
all toolbars using the Restore or Restore All buttons in the Toolbars tab. You 
can also restore the default buttons and layout for a toolbar by right-clicking 
the customize toolbar button , selecting Add or Remove Buttons, selecting 
the toolbar whose settings you want to restore, and then selecting Restore 
Toolbar.

➤ While the Customize Dialog box is open you can drag toolbar buttons from 
one toolbar to another toolbar and drag and drop to change the order of 
items in a menu.

➤ Some QuickTest add-ins add commands or menus to the QuickTest window. 
If you are working with add-ins and customize the toolbars, consider the 
following:

➤ QuickTest will remember your customizations as long as you continue 
working with those add-ins, even if you close and reopen QuickTest. 

➤ When QuickTest is run without those add-ins, all commands and menus 
added by the add-ins are removed from the QuickTest window. 

Option Description

Show ScreenTips 
on toolbars 

Turns ScreenTips (tooltips) on or off. Select this check box to 
display ScreenTips in the QuickTest display. 

➤ Show shortcut keys in ScreenTips. Select this check box 
to display shortcut keys in the ScreenTips.

Large Icons Turns large icons on or off. Select this check box to display 
large icons in the QuickTest display.



Chapter 37 • QuickTest Window Layout

1159

➤ If you customize the toolbars first and then run QuickTest with add-ins, 
the additional commands and menus will be placed as close as possible 
to their intended locations, based on adjacent items. 

Working with Multiple Documents

QuickTest enables you to open and work on one test at a time. In addition, 
you can open and work on multiple function libraries simultaneously. You 
can open any function library, regardless of whether it is associated with the 
currently open test.

The Windows menu options enable you to locate and activate (bring into 
focus) an open document window, select how the open document windows 
are arranged in the QuickTest window, or close all the open function library 
windows. 

You can also use the Windows dialog box to manage your open QuickTest 
document windows. 

To work with multiple documents using the Windows dialog box:

 1 Select Window > Windows. The Windows dialog box opens.   



Chapter 37 • QuickTest Window Layout

1160

The Windows dialog box displays a list of the open document windows, 
including the open test, as well as all the currently open function library 
windows.

 2 The Windows dialog box contains the following buttons, enabling you to 
manage your open documents:

 3 Click OK to close the Windows dialog box.

Button Description

Activate Brings the selected document into focus in the QuickTest 
window.

OK Closes the Windows dialog box.

Save Saves the selected documents.

Close Window(s) Closes the selected function libraries.

Cascade Arranges the selected documents in a cascading order that 
overlaps.

Tile Horizontally Arranges the selected documents side-by-side 
horizontally, without overlapping.

Tile Vertically Arranges the selected documents side-by-side vertically, 
without overlapping.

Minimize Minimizes the selected documents.

Help Displays the QuickTest Professional Help topic for this 
dialog box.



1161

38
Managing Resources

QuickTest enables you to manage the resources associated with your test in 
one pane. Using the Resources pane, you can associate, remove, open, 
change the priority, and otherwise manage the function libraries, recovery 
scenarios, and object repositories in your test. 

This chapter includes:

 ➤  The Resources Pane on page 1161

The Resources Pane
 

Description Enables you to add, remove, and manage, view, and open most 
associated resources for your test.

How to Access Do one of the following:

➤ Select the View > Resources menu option.

➤ Click the Resources Pane toolbar button .

Important 
Information

Tests and actions are associated with resources, such as function 
libraries, recovery scenarios, and object repositories. 

The resources in the Resources pane are displayed for the current 
test. Function libraries and recovery scenarios are grouped by 
resource type. Object repositories are grouped by action.

The resources in the Resources pane are displayed in a tree 
hierarchy. Right-clicking a node in the tree opens the context 
menu for that resource. Some options are accessible through the 
context menu of the root node for a resource and some options 
are accessible through the context menu of the specific resource.



Chapter 38 • Managing Resources

1162

Below is an image of the Resources pane:

 

Resources Pane Tree Node Types
 

Node Type Description

Associated 
Function 
Library

Lists all of the function libraries currently associated with your test. 

Root node context menu option:
Associate Function Library. Opens the Open Function Library dialog box, 
enabling you to associate a function library with your test. 

Function library node context menu options:
➤ Open Function Library. Opens the selected function library in the QuickTest 

Function Library window. You can also double-click to open a function library. 

➤ Remove Function Library from List. Removes the selected function library from 
your test. 

➤ Move Up or Move Down. Moves the selected function library up or down the 
priority list of associated function libraries. 

See also: “Working with User-Defined Functions and Function Libraries” on 
page 905



Chapter 38 • Managing Resources

1163

Associated 
Recovery 
Scenarios

Lists all of the recovery scenarios currently associated with your test. 

Root node context menu option:
Associate Recovery Scenario. Opens the Add Recovery Scenario dialog box. For 
information, see “Adding Recovery Scenarios to Your Test” on page 1373. 

Recovery scenario node context menu options:
➤ Recovery Scenario Properties. Opens the Recovery Scenario Properties dialog 

box. This enables you to view properties for the recovery scenario in read-only, 
such as trigger events and recovery operations. You can also double-click a 
recovery scenario to open the Recovery Scenario Properties dialog box. For 
information, see “Viewing Recovery Scenario Properties” on page 1368.  

➤ Remove Recovery Scenario from List. Removes the selected recovery scenario 
from your test.

➤ Move Up or Move Down. Moves the selected recovery scenario up or down the 
priority list of associated recovery scenarios.

➤ Disable Recovery Scenario / Enable Recovery Scenario. Disables or enables the 
selected recovery scenario.

See also: “Defining and Using Recovery Scenarios” on page 1329

Node Type Description



Chapter 38 • Managing Resources

1164

Associated 
Repositories 
per Action

Lists all of the object repositories currently associated with all of the actions in your 
test. 

The nodes in this part of the Resources pane are organized according to the 
following hierarchy:

Associated Repositories per Action node 

Internal Actions and External Actions nodes

individual actions

local and shared object repositories associated
with the individual action (if any)

The individual actions include all of the actions stored with your test, even when 
they are not called by your test. 

Action node context menu options:
➤ Associate Repository with Action. Opens the Open Shared Object Repository 

dialog box, enabling you to associate an object repository with the selected 
action. This option is disabled for external actions. 

➤ Action Properties. Opens the Action Properties dialog box, enabling you to 
define options for the stored action. You can modify an action name, add or 
modify an action description, and set an action as reusable or non-reusable. For 
an external action, you can set the Data Table definitions. For more information, 
see “Setting Action Properties” on page 441.

➤ Delete Action. Removes the action from the test.

Repository node context menu options:
➤ Open Repository. Opens the Object Repository Window-Local Object Repository 

for local object repositories and the Object Repository Manager for shared object 
repositories. Double-clicking an object repository also opens the relevant 
repository window. 

➤ Remove Repository from List. Removes the selected object repository from the 
action. 

➤ Move Up or Move Down. Modifies the priority of the selected object repository 
when you move it up or down in the list of associated repositories. 

See also: “Managing Test Objects in Object Repositories” on page 135

Node Type Description



1165

39
Adding Keywords to Your Test

QuickTest enables you to view and add the available keywords to your test 
in one pane. 

This chapter includes:

 ➤  Understanding the Available Keywords Pane on page 1165

Understanding the Available Keywords Pane 

The Available Keywords pane displays the keywords available to your test. It 
enables you to view the available objects and calls to functions, and also 
enables you to drag and drop them into your test. When you drag and drop 
an object into your action, QuickTest inserts a step with the default 
operation for that object. When you drag and drop a function into your test, 
QuickTest inserts a call to that function. 

For example, if you drag and drop a button object into your action, a step is 
added using the button with a Click operation (the default operation for a 
button object). 

If you drag and drop a function into your test, a comment and call to that 
function is added. The comment indicates that a call to the function was 
added to your test and indicates any necessary arguments. You need to 
provide the arguments for that function to your test. In the Keyword view, a 
tooltip displays the required arguments for the function. In the Expert view, 
IntelliSense displays the required arguments for the function. 



Chapter 39 • Adding Keywords to Your Test

1166

You can also drag and drop test objects from other locations. For more 
information, see:

➤ “The Object Repository Window” on page 183

➤ “Adding Test Objects to Your Test Using the Object Repository Manager” on 
page 225

The Available Keywords pane can display the keywords available to your test 
sorted by resource or sorted by keyword.

To view the Available Keywords pane: 

Click the Available Keywords Pane button or select View > Available 
Keywords.

Keywords Sorted by Resource
You can display the keywords sorted by resource by clicking the Sort by 
Resource button. Keywords are grouped by their type (library functions, 
local functions, objects) and then by the specific resource for that type. 

➤ Functions in each function library are sorted alphabetically.

➤ Objects in each object repository are grouped by the page or window in 
which they appear in the application, then by the object type. They are then 
sorted alphabetically.

➤ Right-clicking a keyword enables you to open the keyword’s resource or 
copy the selected keyword to the clipboard.

➤ Double-clicking a keyword opens the keyword’s resource and points to the 
selected keyword.



Chapter 39 • Adding Keywords to Your Test

1167

Keywords Sorted by Keyword
You can display the keywords sorted by keyword by clicking the Sort by 
Keyword button. Keywords are grouped by their type (library functions, 
local functions, objects) regardless of their resource. 

➤ All available functions are sorted alphabetically.

➤ All available objects are grouped by the page or window in which they 
appear in the application, then by the object type. They are then sorted 
alphabetically.

Note: If two keywords have the same name, they are displayed according to 
the priority of their resources.

➤ Right-clicking a keyword enables you to open the keyword’s resource or 
copy the selected keyword to the clipboard.

➤ Double-clicking a keyword opens the keyword’s resource and points to the 
selected keyword.



Chapter 39 • Adding Keywords to Your Test

1168



1169

40
Managing QuickTest Tasks and 
Comments

QuickTest enables you to create and manage tasks in your tests, and to create 
and manage TODO comments in your actions and function libraries. 

This chapter includes:

 ➤  Working with Tasks and TODO Comments on page 1169

 ➤  The To Do Pane on page 1170

 ➤  The Task Editor Dialog Box on page 1177

Working with Tasks and TODO Comments

QuickTest enables you to create and manage tasks and TODO comments 
about issues that need to be handled in your tests and function libraries. For 
example, you can provide instructions to someone else during a handover, 
or remind yourself to do something.

Tasks are test-related reminders that are linked to the currently open test. 
You create and manage tasks using the To Do pane and the Task Editor 
dialog box. 

TODO comments are reminders that are inserted as comment steps adjacent 
to the relevant steps in an action or function library. You can access TODO 
comments from the To Do pane or directly from the testing document.

If needed, you can export your tasks and TODO comments to Microsoft 
Excel or an XML file.



Chapter 40 • Managing QuickTest Tasks and Comments

1170

The To Do Pane
 

Description Enables you to view and manage your test-related 
tasks and TODO comments.

The To Do pane contains the following tabs:

➤ Tasks tab. Enables you to create and manage your 
test-related tasks. For more information, see “The 
To Do Pane: Tasks Tab” on page 1171. 

➤ Comments tab. Enables you to view and access 
TODO comments in an action or currently open 
function library. For more information, see “The 
To Do Pane: Comments Tab” on page 1174. 

How to Access ➤ Select the View > To Do menu item.

➤ Click the To Do Pane toolbar button .
Note: The To Do pane opens automatically when 
you open a test that contains tasks.

Learn More Conceptual overview: “Working with Tasks and 
TODO Comments” on page 1169

Additional related topics: “The Task Editor Dialog 
Box” on page 1177



Chapter 40 • Managing QuickTest Tasks and Comments

1171

The To Do Pane: Tasks Tab 
 

Below is an image of the Tasks tab in the To Do pane: 

Tasks Tab Details

The Tasks tab displays all tasks that were created for this test using the Task 
Editor dialog box.

Description The tasks tab displays all of the tasks defined for the currently 
open test. You define tasks using the Task Editor dialog box. 
Tasks are saved with the test.

How to Access View menu > To Do item > Tasks tab

Learn More Conceptual overview: “Working with Tasks and TODO 
Comments” on page 1169

Additional related topics:

➤ “The To Do Pane: Comments Tab” on page 1174

➤ “The Task Editor Dialog Box” on page 1177



Chapter 40 • Managing QuickTest Tasks and Comments

1172

Tasks Tab Toolbar
 

Toolbar Option Shortcut Key Description

Add Task INSERT Opens the Task Editor dialog box 
(described on page 1177), enabling you 
to add a new task to the Tasks tab in the 
To Do pane.

Edit Task ENTER Opens the Task Editor dialog box 
(described on page 1177), enabling you 
to modify the selected task or mark it as 
complete.

Delete Task DELETE Removes the selected task from the To 
Do pane.

Export TODO 
List

N/A Saves the tasks to an external file, such 
as a text file. 

You can save the tasks in the list in any 
of the following formats:

➤ XML (Extensible Markup Language) 

➤ XLS (Microsoft Excel file)

➤ CSV (Comma-Separated Values file)

Show/Hide 
Task Details

N/A Opens or closes the Task Details pane on 
the right side of the To Do pane, 
displaying more information about a 
selected task.



Chapter 40 • Managing QuickTest Tasks and Comments

1173

Tasks Tab Columns

You can click on a column header to sort by that column.

 

Column Description

Completed Indicates whether the task was fully implemented. 
When you mark a task as complete, a strike-through 
format is applied to the task in the pane, indicating that 
the task is completed.

Possible values:

 Task completed

 Task not completed

Tip: You can also mark a task as complete by selecting 
the Task completed check box in the Task Editor dialog 
box.

Priority Indicates the importance of the task.

Possible values:

➤ High Priority

➤ Normal Priority

➤ Low Priority

Subject Indicates the topic of the task.

Creation Date Indicates the date and time that the Task Editor was 
opened to create the current task.

Author Indicates the name of the user who created the task.

Assigned To Indicates the name of the user who is responsible for 
handling the task.

Task Details When enabled, displays a textual description of the task.



Chapter 40 • Managing QuickTest Tasks and Comments

1174

Tasks Tab Context Menu Options

The To Do Pane: Comments Tab 
 

Context Menu Option Description

Sort By Enables you to choose a column by which to sort the 
tasks in the tab. 

Duplicate Creates a copy of the selected task and inserts it in the 
Tasks tab. This is useful if you want to create a new task 
that is similar to an existing one.

Delete Task Permanently removes the task from the Tasks tab in the 
To Do pane. 

Description The Comments tab can display any comment step that begins 
with any of the following permutations of the words to do: 
To Do, todo, to-do, or TODO (not case-sensitive)

Example: ’to DO need to ask Sarah to add design steps

Note: The text displayed in the Comments tab is limited to 260 
characters. If the text exceeds this limit, and you want to view 
the entire comment, you can jump to the comment in the 
testing document by double-clicking the comment line in the 
Comments tab. 

You can show TODO comments in:

➤ The current test’s local actions. 

➤ Any external actions associated with the test.

➤ Any open function library. 

How to Access View menu > To Do item > Comments tab

Learn More Conceptual overview: “Working with Tasks and TODO 
Comments” on page 1169

Additional related topics: 

➤ “The To Do Pane: Tasks Tab” on page 1171

➤ “The Task Editor Dialog Box” on page 1177



Chapter 40 • Managing QuickTest Tasks and Comments

1175

Below is an image of the Comments tab in the To Do pane:

 

Comments Tab Details

By default, the Comments tab displays all TODO comment steps in the test’s 
local actions. You can also choose to view TODO comment steps that are 
located in external actions called by the test and in currently open function 
libraries.

Comments Tab Toolbar
 

Toolbar Option Description

Comments in 
External Actions

Toggle button that enables you to display or hide 
any TODO comments from external actions. 

Comments in Open 
Function Libraries

Toggle button that enables you to display or hide 
any TODO comments from currently open 
function libraries (in addition to the TODO 
comments from the local actions).

Export TODO List Saves the TODO comments to an external file, such 
as a text file.

You can save the list of TODO comments in any of 
the following formats:

➤ XML (Extensible Markup Language) 

➤ XLS (Microsoft Excel file)

➤ CSV (Comma-Separated Values file)



Chapter 40 • Managing QuickTest Tasks and Comments

1176

Comments Tab Columns
 

Comments Tab Context Menu Options

Column Description

Description Displays the text of the TODO comment.

Location Specifies the name of the action or the path of the 
function library containing the TODO comment.

Line Specifies the line number of the TODO comment in the 
action or function library.

Context Menu Option Description

Sort By Enables you to choose a column by which to sort the 
TODO comments in the tab. 

Go To Comment Line Moves the cursor to the comment line in the action or 
function library. 

Tip: You can also double-click a comment in the 
Comments tab or press ENTER to move the cursor to the 
comment line in the action or function library.



Chapter 40 • Managing QuickTest Tasks and Comments

1177

The Task Editor Dialog Box
 

Below is an image of the Task Editor dialog box:

 

Description Enables you to add a task to the To Do pane, edit an 
existing task, or to mark a task as complete. 

How to Access (Accessed from the Tasks tab in the To Do pane: 
View menu > To Do item > Tasks tab) 

In the Tasks tab, do one of the following:

➤ Click the Add Task button  or press INSERT.

➤ Select a task and click the Edit Task button  or 
press ENTER.

Learn More Conceptual overview: “Working with Tasks and TODO 
Comments” on page 1169

Additional related topics: “The To Do Pane” on 
page 1170



Chapter 40 • Managing QuickTest Tasks and Comments

1178

Task Editor Dialog Box Options

You create and edit tasks using the Task Editor dialog box. Fields marked 
with a red asterisk (*) are mandatory.

 

Option Description

Subject A descriptive topic name for the task. You can enter up to 260 
characters. (Mandatory field)

Creation Date The date and time that the Task Editor was opened to create 
the current task. (Read-only)

Author The automatically generated name of the user who created 
the task. You can modify the Author field when creating a task 
but not when modifying it. (Mandatory field upon creation)

Assigned To The name of the user who is responsible for handling the task. 

Priority The importance of the task.

Possible values:

➤ High Priority 

➤ Normal Priority 

➤ Low Priority 

Completed Indicates whether the task was fully implemented.

Possible values:

 Task completed

 Task not completed

Task Details A textual description of the task. You can modify the font 
style (bold, italic, and underline) and color to highlight 
various parts of the task details.



1179

41
Handling Missing Resources

If a test has resources that cannot be found, such as missing shared object 
repositories or calls to missing actions, or if it uses a repository parameter 
that does not have a defined value, QuickTest indicates this in the Missing 
Resources pane. If one of the resources listed in this pane is unavailable 
during a run session, the test may fail. You can map a missing resource, or 
you can remove it from the test, as required.

This chapter includes:

 ➤  About Handling Missing Resources on page 1180

 ➤  Handling Missing Actions on page 1183

 ➤  Handling Missing Environment Variables Files on page 1188

 ➤  Handling Missing Function Libraries on page 1189

 ➤  Handling Missing Shared Object Repositories on page 1191

 ➤  Handling Missing Recovery Scenarios on page 1192

 ➤  Handling Unmapped Shared Object Repository Parameter Values 
on page 1194



Chapter 41 • Handling Missing Resources

1180

About Handling Missing Resources

Each time you open a test, QuickTest verifies that the resources specified for 
the test are available. 

If one or more resources cannot be found, QuickTest opens the Missing 
Resources pane, if the pane is not already open. The Missing Resources pane 
provides a list of all resources that are currently unavailable, along with the 
location where QuickTest expected to find the resource, when available. The 
Missing Resources pane then enables you to locate or remove them from 
your test. 

After you successfully handle a missing resource, QuickTest removes it from 
the pane.  

The Missing Resources pane may list any of the following types of missing 
resources:

➤ Missing action. If a test contains an action that cannot be found, QuickTest 
specifies the path it uses to search for the test containing the missing action. 
For more information, see “Handling Missing Actions” on page 1183.

➤ Missing environment variable file. If a test loads user-defined environment 
variables from an external file that cannot be found, QuickTest specifies the 
path it uses to search for the missing XML file. For more information see, 
“Handling Missing Environment Variables Files” on page 1188.

➤ Missing function library. If a test is associated with a function library that 
cannot be found, QuickTest specifies the path it uses to search for the 
missing function library. For more information see, “Handling Missing 
Function Libraries” on page 1189.



Chapter 41 • Handling Missing Resources

1181

➤ Missing object repository. If a test is associated with a shared object 
repository that cannot be found, QuickTest specifies the path it uses to 
search for the missing object repository. For more information, see 
“Handling Missing Shared Object Repositories” on page 1191.

➤ Missing recovery scenario. If a test is associated with a recovery scenario 
that cannot be found, QuickTest specifies the path it uses to search for the 
missing recovery scenario. For more information see, “Handling Missing 
Recovery Scenarios” on page 1192.

➤ Repository parameters. If a test has at least one test object with a property 
value that is parameterized using a repository parameter that does not have 
a default value, QuickTest adds this generic item to the Missing Resources 
pane. For more information, see “Handling Unmapped Shared Object 
Repository Parameter Values” on page 1194.

Note: In the various screens where a missing resource is used (for example, 
the Keyword View and test settings) QuickTest indicates that a resource is 
missing with a special icon or text.

Filtering the Missing Resources Pane
You can choose to display all missing resources in the Missing Resources 
pane, or only one type of missing resource.

To filter the list of displayed missing resources:

Right-click in the Missing Resources pane and select one of the following:

➤ All. Displays a list of all missing resources in your test.

➤ Actions. Displays a row for each missing action, specifying the path 
QuickTest uses to search for each test that contains a missing action. 

➤ Environment Variable File. Displays the external XML file QuickTest uses 
to store user-defined environment variables.

➤ Function Libraries. Displays a row for each function library that cannot 
be found, specifying the path QuickTest uses to search for the function 
library.



Chapter 41 • Handling Missing Resources

1182

➤ Object Repositories. Displays a row for each shared object repository that 
cannot be found, specifying the path QuickTest uses to search for the 
shared object repository.

➤ Recovery Scenarios. Displays a row for each recovery scenario that 
cannot be found, specifying the path QuickTest uses to search for the 
recovery scenario.

➤ Repository Parameters. Displays a generic row indicating that at least 
one test object in the repository has at least one property value that uses 
a repository parameter that does not have a default value.

The Missing Resources pane is filtered according to the selected resource 
type and the following indication of the applied filter is shown at the 
bottom of the pane:

You can cancel the filter and show all missing resources again by clicking 
the  icon on the left of the filter indication.



Chapter 41 • Handling Missing Resources

1183

Handling Missing Actions

If your test contains a call to one or more actions that cannot be found, 
QuickTest lists these actions in the Missing Resources pane. 

In addition, if the Test Flow contains a call to a particular action that is 
contained in the test, but the action cannot be found, QuickTest lists the 
action in the Missing Resources pane. For example, suppose that when you 
created a test, you inserted a call to a new, reusable action. Later, you deleted 
the call to that action by choosing the Delete the selected call to the action 
in the Delete Action dialog box (described on page 460). The action is still 
referenced by the test even though you deleted the call to it, and QuickTest 
will list it in the Missing Resources pane if it cannot be found.

The Missing Resources pane enables you to resolve a missing action by:

➤ Locating Missing Actions

➤ Removing Missing Actions

Note: If a test is opened in read-only format, you cannot view or map its 
missing actions.



Chapter 41 • Handling Missing Resources

1184

Locating Missing Actions
The Missing Resources pane enables you to locate missing actions in your 
test. 

If your test contains calls to more than one missing action, when you locate 
the missing action in another test, QuickTest may identify additional 
missing actions that are found in the same test, as shown in the following 
example:

This can occur, for example, if the source test, which contains the actions 
that are being called was renamed or was moved to another folder. 

You can instruct QuickTest to locate these actions simultaneously, or you 
can handle each call to a missing action individually. 

To locate a missing action:

 1 In the Missing Resources pane, right-click the action you want to locate and 
select Locate from the context-sensitive menu or double-click the action 
you want to locate.



Chapter 41 • Handling Missing Resources

1185

The Select Action dialog box opens.

When the Select Action dialog box opens, the Test box displays either the 
name of the test containing the missing action (if QuickTest can identify the 
source test), or <Current Test>. 

Note: If the missing action is a nested action that is called from another test, 
you cannot use the Locate button to browse to that action. Instead, you 
must resolve the missing action from within the external test. For example, 
if ActionAA (in TestA) calls ActionBB (from TestB), and ActionBB calls 
ActionCC (from TestC), if you open TestA and the call to ActionCC is missing, 
then you can only resolve the missing action by opening TestB and locating 
ActionCC. (You cannot resolve it from within TestA.)



Chapter 41 • Handling Missing Resources

1186

 2 Click the browse button to find the test that contains the action you want to 
locate. The Action box displays all reusable actions in the test you select. 

Notes:

➤ When you select a test, the Test box is renamed to From test. If the test 
you select contains reusable actions, these are listed in the Action box.

➤ You can enter a Quality Center folder or a relative path in the Test/From 
test box. If you enter a relative path, QuickTest searches for the test in the 
folders listed in the Folders pane of the Options dialog box. For more 
information, see “Setting Folder Testing Options” on page 1237 and 
“Using Relative Paths in QuickTest” on page 316.
If you are working with the Resources and Dependencies model with 
Quality Center 10.00, specify an absolute Quality Center path. For more 
information, see “Considerations for Working with Relative Paths in 
Quality Center” on page 1450.

 3 In the Action list, select the action you want to call. When you select an 
action, its type (Reusable Action) and description, if one exists, are 
displayed. This helps you identify the action you want to call. For more 
information on action descriptions, see “Setting General Action Properties” 
on page 443.

 4 Click OK. QuickTest updates the test with your changes and removes the 
action from the Missing Resources pane.

Note: If your test contains additional missing actions that can be located in 
the same test, QuickTest opens a message box asking you if you want to map 
these actions as well. Click Yes to map all relevant actions, or click No to 
map only the action you specified. 



Chapter 41 • Handling Missing Resources

1187

Removing Missing Actions
You can remove a missing action from a test if it is not needed. 

To remove a missing action:

In the Missing Resources pane, right-click the action you want to remove 
and select Remove from the context-sensitive menu.

A confirmation message is displayed. Click OK to remove the missing 
action. QuickTest removes the action from your test and removes the action 
from the Missing Resources pane.

Note: If your test contains additional missing actions in the same test, 
QuickTest opens a message box asking whether you want to remove all the 
actions with the same path. Click Yes to remove all the missing actions in 
the same path, or click No to remove only the action you specified.



Chapter 41 • Handling Missing Resources

1188

Handling Missing Environment Variables Files

When you open a test that uses an external environment variables file, 
QuickTest verifies that the file is accessible. If an external environment 
variables file cannot be found, QuickTest displays its name and path in the 
Missing Resources pane when you open your test.

The Missing Resources pane enables you to resolve a missing external 
environment variables file by locating or removing it. 

To locate a missing external environment variables file:

 1 Right-click the missing environment variable file you want to locate and 
select Locate from the context-sensitive menu or double-click the missing 
environment variable file you want to locate. 

The Locate Environment Variable File dialog box opens.

 2 Browse to the environment variable file you want to use with your test and 
click Open. The selected environment variable file is used with your test and 
the missing environment variable file is removed from the Missing 
Resources pane.



Chapter 41 • Handling Missing Resources

1189

To remove a missing environment variable file:

Right-click the missing environment variable file you want to remove and 
select Remove from the context-sensitive menu. A confirmation message is 
displayed. Click OK to remove the missing environment variable. The 
missing environment variable file is removed from your test and from the 
Missing Resources pane. 

Handling Missing Function Libraries

When you open a test that has associated function libraries, QuickTest 
verifies that the libraries you specified are accessible. If a function library 
cannot be found, QuickTest displays its name and path in the Missing 
Resources pane when you open your test.

The Missing Resources pane enables you to resolve a missing function 
library by locating or removing it.



Chapter 41 • Handling Missing Resources

1190

To locate a missing function library:

 1 Right-click the missing function library you want to locate and select Locate 
from the context-sensitive menu or double-click the missing function 
library you want to locate. 

The Locate Function Library dialog box opens.

 2 Browse to the function library you want to associate with your test and click 
Open. QuickTest associates the selected function library with your test and 
removes the missing function library from the Missing Resources pane.

To remove a missing function library:

Right-click the missing function library you want to remove and select 
Remove from the context-sensitive menu. A confirmation message is 
displayed. Click OK to remove the function library. QuickTest removes the 
missing function library from your test and from the Missing Resources 
pane. 

Note: Make sure that you handle any calls to functions in removed function 
libraries. When a function library is removed from your test, calls to those 
functions are not removed from your test.



Chapter 41 • Handling Missing Resources

1191

Handling Missing Shared Object Repositories

When you associate a shared object repository with an action, QuickTest 
verifies that the repository you specified is accessible. In addition, QuickTest 
checks that all associated shared object repositories are accessible each time 
you open a test. If a shared object repository cannot be found, QuickTest 
displays its name and path in the Missing Resources pane when you open 
your test.  

For example, if you modify the name of the shared object repository or the 
folder in which it is stored, you will need to map the shared object 
repository to the test. 

You can right-click the line displaying the missing object repository and 
select Resolve or double-click the line displaying the missing object 
repository and the Associate Repositories dialog box opens. The Associate 
Repositories dialog box enables you to associate one or more shared object 
repositories with one or more actions in your test. You can also remove 
object repository associations from selected actions, or from all actions in 
your test. 

Note: You use the Associate Repositories dialog box to resolve a missing 
object repository by associating a new object repository with your test. The 
missing object repository will still be associated with your test and will still 
appear in the Missing Resources pane. To remove the missing object 
repository from the Missing Resources pane and your test, you must use the 
Remove Repository feature of the Associate Repository dialog box.

For more information, see “Managing Shared Object Repository 
Associations” on page 199.



Chapter 41 • Handling Missing Resources

1192

Handling Missing Recovery Scenarios

When you open a test that has associated recovery scenarios, QuickTest 
verifies that the scenarios you specified are accessible. If a recovery scenario 
cannot be found, QuickTest displays its name and path in the Missing 
Resources pane when you open your test. 

The Missing Resources pane enables you to resolve missing recovery 
scenarios by:

➤ Locating Missing Recovery Scenarios

➤ Removing Missing Recovery Scenarios

Locating Missing Recovery Scenarios
The Missing Resources pane enables you to locate missing recovery scenarios 
in your test. If your test contains more than one missing recovery scenario, 
when you locate the missing scenario in a recovery file, QuickTest may 
identify additional missing scenarios in that file. You can instruct QuickTest 
to locate these missing recovery scenarios simultaneously, or you can handle 
each missing scenario individually. 

To locate a missing recovery scenario:

 1 In the Missing Resources pane, right-click the recovery scenario you want to 
locate and select Locate from the context-sensitive menu or double-click the 
recovery scenario you want to locate.



Chapter 41 • Handling Missing Resources

1193

The Locate Recovery Scenario dialog box opens.

 2 Click the Browse button to select the recovery file. The Scenarios area 
displays all the scenarios contained in the selected recovery file. 

 3 Select the missing recovery scenario from the list of recovery scenarios. Click 
OK. The selected recovery scenario is associated with your test and the 
missing recovery scenario is removed from the Missing Resources pane.

Note: If your test contains additional missing recovery scenarios that can be 
located in the same recovery file, QuickTest opens a message box asking you 
if you want to map these recovery scenarios as well. Click Yes to map all 
missing recovery scenarios, or click No to map only the scenario you 
specified.



Chapter 41 • Handling Missing Resources

1194

Removing Missing Recovery Scenarios
You can remove a missing recovery scenario from a test if it is not needed. 

To remove a missing recovery scenario, in the Missing Resources pane, 
right-click the recovery scenario you want to remove and select Remove 
from the context-sensitive menu. A confirmation dialog is displayed. Click 
OK to remove the recovery scenario. The missing recovery scenario is 
removed from your test and from the Missing Resources pane.

Handling Unmapped Shared Object Repository Parameter 
Values

Every repository parameter used in your test must have a specified value. 
This can be a either a default value that was specified when the parameter 
was created, or it can be a value that you specify in your test. (For more 
information on repository parameters, see “Working with Repository 
Parameters” on page 228.)

When you open a test that uses an object repository with a repository 
parameter without a value, QuickTest indicates this by displaying Repository 
Parameters in the Missing Resources pane.  



Chapter 41 • Handling Missing Resources

1195

For example, suppose your application contains an edit box whose name 
property changes depending on a selection made in a previous screen. If you 
parameterized the value of the name property in the object repository using 
a repository parameter, but a default value was not defined for the 
repository parameter, you need to define a value for it. You can map it to a 
DataTable, an environment variable, a random number, or a test or action 
parameter. You can also define a constant value for it, and so forth.

If you right-click the line displaying Repository Parameters and select 
Resolve or double-click the line displaying Repository Parameters, the Map 
Object Repository Parameters dialog box opens, enabling you to specify 
values for any unmapped object repository parameter. You can filter the 
dialog box to display only unmapped parameters or all of the parameters in 
your test or the specific action (with mapped and unmapped values). For 
more information, see “Mapping Repository Parameter Values” on page 202.



Chapter 41 • Handling Missing Resources

1196



1197

42
Working with Data Tables

QuickTest enables you to insert and run steps that are driven by data stored 
in the Data Table.

This chapter includes:

 ➤  About Working with Data Tables on page 1197

 ➤  Working with Global and Action Sheets on page 1199

 ➤  Saving the Data Table on page 1201

 ➤  Editing the Data Table on page 1202

 ➤  Using Data Table Files with Quality Center on page 1212

 ➤  Importing Data from a Database on page 1213

 ➤  Using Formulas in the Data Table on page 1216

 ➤  Using Data Table Scripting Methods on page 1220

About Working with Data Tables

The data your test uses is stored in the design-time Data Table, which is 
displayed in the Data Table pane while you insert and edit steps.

To view or hide the Data Table pane, select View > Data Table or click the 
Data Table toolbar button.

The Data Table has the characteristics of a Microsoft Excel spreadsheet, 
meaning that you can store and use data in its cells and you can also 
perform mathematical formulas within the cells. 



Chapter 42 • Working with Data Tables

1198

You can use the Data Table provided with QuickTest, or you can use any 
Microsoft Excel (.xls) file. You configure the location of the Data Table in 
Resources pane of the Test Settings dialog box (File > Settings > Resources 
node).

You can use the DataTable, DTSheet and DTParameter utility objects to 
manipulate the data in any cell in the Data Table. For more information on 
these objects, see the Utility section of the HP QuickTest Professional Object 
Model Reference.

Note: The use of complex and/or nested formulas in the Data Table is not 
supported.

You can insert Data Table parameters and output values into your test. Using 
Data Table parameters and/or output values in a test enables you to create a 
data-driven test or action that runs several times using the data you supply. 
In each repetition, or iteration, QuickTest uses a different value from the 
Data Table.

During the run session, QuickTest creates a run-time Data Table—a live 
version of the Data Table associated with your test. During the run session, 
QuickTest displays the run-time data in the Data Table pane so that you can 
see any changes to the Data Table as they occur.



Chapter 42 • Working with Data Tables

1199

When the run session ends, the run-time Data Table closes, and the Data 
Table pane again displays the stored design-time Data Table. Data entered in 
the run-time Data Table during the run session is not saved with the test. 
The final data from the run-time Data Table is displayed in the Run-Time 
Data Table in the Test Results window. For more information on the 
run-time Data Table, see “Viewing the Run-Time Data Table” on page 1056.

Tip: If it is important for you to save the resulting data from the run-time 
Data Table, you can insert a DataTable.Export statement to the end of your 
test to export the run-time Data Table to a file. You can then import the data 
to the design-time Data Table using the Data Table File > Import From File 
menu. Alternatively you can add a DataTable.Import statement to the 
beginning of your test to import the run-time Data Table that was exported 
at the end of the previous run session. For more information on these 
methods, see the HP QuickTest Professional Object Model Reference.

Working with Global and Action Sheets

When working with tests, the Data Table has two types of data sheets—
Global and Action. You can access the different sheets by clicking the 
appropriate tabs below the Data Table.

➤ You store data in the Global tab when you want it to be available to all 
actions in your test and you want the data to control the number of test 
iterations.

➤ You store data in the action’s tab when you want to use the data in Data 
Table parameters for that action only and you want the data to control the 
number of action iterations.

For example, suppose you are creating a test on the sample Mercury Tours 
Web site. You might create one action for logging in, another for booking 
flights, and a third for logging out. You may want to create a test in which 
the user logs onto the site once, and then books flights for five passengers. 
The data about the passengers is relevant only to the second action, so it 
should be stored in the action tab corresponding to that action.



Chapter 42 • Working with Data Tables

1200

Global Sheet
The Global sheet contains the data that replaces parameters in each 
iteration of the test. If you create a Global parameter called Arrivals, the 
Global sheet might look like this:

Action Sheets
Each time you add a new action to the test, a new action sheet is added to 
the Data Table. Action sheets are automatically labeled with the exact name 
of the corresponding action. The data contained in an action sheet is 
relevant for Data Table parameters in the corresponding action only. For 
example, if a test had the Data Table below, QuickTest would use the data 
contained in the Purchase sheet when running iterations on action 
parameter steps within the Purchase action.

For more information on creating global and action parameters, see 
Chapter 24, “Parameterizing Values.”



Chapter 42 • Working with Data Tables

1201

Saving the Data Table

The Data Table contains the values that QuickTest substitutes for Data Table 
parameters when you run a test, as well as any other values or formulas you 
enter. Whenever you save your test, QuickTest automatically saves its Data 
Table as an .xls file. 

When working with tests, the Data Table is saved with your test by default. 
You can save the Data Table in another location and instruct the test to use 
this Data Table when running a test. You specify a name and location for the 
Data Table in the Resources pane of the Test Settings dialog box. 

For more information on the Test Settings dialog box, see Chapter 45, 
“Setting Options for Individual Tests.”

Saving the Data Table in a specified location can be useful in the following 
circumstances: 

➤ You want to run the same test with different sets of input values. For 
example, you can test the localization capabilities of your application by 
running your test with a different Data Table file for each language you want 
to test. You can also vary the user interface strings that you check in each 
language by using a different environment parameter file each time you run 
the test. For more information, see Chapter 24, “Parameterizing Values.”

➤ You need the same input information for different tests. For example, you 
can test a Web version and a standard Windows version of the same 
application using different tests, but the same Data Table file.

Note: If you select an external file as your Data Table, you must make sure 
that the column names in the external Data Table match the parameter 
names in the test and that the sheets in the external Data Table match the 
action names in the test.



Chapter 42 • Working with Data Tables

1202

Editing the Data Table

You can edit information in the Data Table by typing directly into the table 
cells. You use the Data Table in the same way as an Microsoft Excel 
spreadsheet, including inserting formulas into cells. You can also import 
data saved in Microsoft Excel, tabbed text file (.txt), or ASCII format. 

For information on supported versions of Microsoft Excel, see the 
HP QuickTest Professional Readme.

To view or hide the Data Table pane, select View > Data Table or click the 
Data Table toolbar button.

Each row in the table represents the set of values that QuickTest submits for 
the parameterized arguments during a single iteration of the test or action. 
You define the number of iterations that an action runs in the Run tab of 
the Action Call Properties dialog box (Edit > Action > Action Call Properties 
> Run tab). You define the number of iterations that a test runs in the Run 
pane of the Settings dialog box (File > Settings > Run pane).

Each column in the table represents the list of values for a single 
parameterized argument. The column header is the parameter name.

You can also enter data and formulas in cells in the columns that are not 
intended for use with Data Table parameters (the columns that do not have 
a parameter name in the column header).



Chapter 42 • Working with Data Tables

1203

Guidelines for Working with the Data Table

➤ When you add data to the Data Table, you must enter the data in rows from 
top to bottom and left to right—you cannot leave a gap of an entire row or 
column. For example, if there is data in row 1, you cannot enter data in a 
cell in row 3 until you have entered data in row 2. Similarly, if there is data 
in column A, you cannot enter data in column C until you have entered 
data in column B.

➤ The value returned from the Data Table is always converted to a string. If 
you want the value to be converted to something other than a string, you 
can use VBScript conversion functions, such as CInt, CLng, CDbl, and so 
forth. For example:

Window("Flight Reservation").WinComboBox("Fly From:").Select 
CInt(DataTable("ItemNumber", dtGlobalSheet))

➤ When you add content to a Data Table cell, QuickTest changes the color of 
the row’s bottom grid line from gray to black. When you run your test using 
the Run on all rows option (defined in File > Settings > Run pane, or Edit > 
Action > Action Call Properties > Run tab), QuickTest runs one iteration for 
each row whose bottom grid line is black. 

If you want to prevent QuickTest from running an iteration on a row when 
the Run on all rows option is selected, you must delete the entire row from 
the Data Table. To do this, select the row, right-click in the table, and select 
Edit > Delete from the data table’s context menu (or use CTRL+K). (This 
restores the bottom grid line from black to gray.) Otherwise, if you use the 
Clear option from the table’s Edit menu (or CTRL+X), or select a cell and 
press Delete on the keyboard, the data is deleted from the cells, but the row 
is not deleted and the black line remains. This means that QuickTest will run 
an iteration for this row even though there is no data in it. 



Chapter 42 • Working with Data Tables

1204

Data Table Specifications
The main limitations for working with the Data Table are listed below:

➤ Maximum worksheet size. 65,536 rows by 256 columns

➤ Column width. 0 to 255 characters

➤ Text length. 16,383 characters

➤ Formula length. 1024 characters

➤ Number precision. 15 digits

➤ Largest positive number. 9.99999999999999E307

➤ Smallest positive number. 1E-307

➤ Largest negative number. -1E-307

➤ Smallest negative number. -9.99999999999999E307

➤ Maximum number of names per workbook. Limited by available memory

➤ Maximum length of name. 255

➤ Maximum length of format string. 255

➤ Maximum number of tables (workbooks). Limited by system resources 
(windows and memory)

➤ The use of colors and formatting in the Data Table is not supported.

➤ Complex and/or nested formulas are not supported in the Data Table.

➤ Combo box and list cells, conditional formatting, and other special cell 
formats are not supported in the Data Table.



Chapter 42 • Working with Data Tables

1205

Changing a Column Name
You can change the name of a column for a parameter by double-clicking 
the column heading cell. In the Change Parameter Name dialog box, you 
can type a new parameter name. This parameter name must be unique in 
the test. It can contain letters, numbers, commas, and underscores. The first 
character of the parameter name must be a letter or an underscore. 

Note: If you change the name in the table, you must also change the name 
defined for the corresponding parameter in the test.

Using the Data Table Menu Commands
You can use the Data Table menu commands described below to edit the 
data in the Data Table. To open the Data Table menu, right-click a cell, a row 
heading or a column heading. 

The following menus are available:

➤ File (described on page 1206)

➤ Sheet (described on page 1207)

➤ Edit (described on page 1207)

➤ Data (described on page 1209)

➤ Format (described on page 1209)



Chapter 42 • Working with Data Tables

1206

File Menu

The following commands are available in the File menu:

File Command Description

Import From File Imports an existing Microsoft Excel or tabbed text file into 
the Data Table. This command will import all the sheets in 
the selected Microsoft Excel file. If you want to import only 
one sheet from an existing Microsoft Excel file, use the 
Sheet > Import > From File command described below.

Notes: 

➤ The table file you import replaces all data in all sheets of 
the table. The first row in each Microsoft Excel sheet also 
replaces the column headers in the corresponding Data 
Table sheet. It is therefore essential that the first row of 
your Microsoft Excel sheet exactly matches the parameter 
names in your test, and that the file contains at least the 
same number of sheets as the current Data Table.

➤ If you import a Microsoft Excel table containing combo 
box or list cells, conditional formatting, or other special 
cell formats, the formats are not imported and the cells are 
displayed in the Data Table with a fixed value.

Export Exports the table to a specified Microsoft Excel (.xls) file.

Print Prints the entire table or the selected sheet. 



Chapter 42 • Working with Data Tables

1207

Sheet Menu

The following commands are available in the Sheet menu:

Edit Menu

The following commands are available in the Edit menu:

Sheet Command Description

Import >
From File

Imports a tabbed text file or a single sheet from an existing 
Microsoft Excel file into the table. 

Note: The sheet you import replaces all data in the currently 
selected sheet of the table, and the first row in the Excel sheet 
replaces the column headers in the corresponding Data Table 
sheet. It is therefore essential that the first row of your 
Microsoft Excel sheet exactly matches the parameter names 
in your test.

Import >
From Database

Imports data from the specified database to the current sheet.

Export Exports the current sheet of the Data Table to a specified 
Microsoft Excel (.xls) file. 

Edit Command Description

Cut Cuts the table selection and places it on the Clipboard.

Copy Copies the table selection and places it on the Clipboard.

Paste Pastes the contents of the Clipboard to the current table 
selection.

Paste Values Pastes values from the Clipboard to the current table 
selection. Any formatting applied to the values is ignored. In 
addition, only formula results are pasted; formulas are 
ignored.

Clear Clears formats or contents from the current selection. You 
can clear formats only, contents only (including formulas), or 
both formats and contents.



Chapter 42 • Working with Data Tables

1208

Insert Inserts empty cells at the location of the current selection. 
Cells adjacent to the insertion are shifted to make room for 
the new cells. Note that this option is available only when a 
row or column heading is selected.

Delete Deletes the entire current row or column selection. Cells 
adjacent to the deleted cells are shifted to fill the space left by 
the vacated cells. Note that this option is available only when 
a row or column heading is selected.

Fill Right Copies data in the left-most cell of a selected range to all the 
cells to the right of that left-most cell within the selected 
range.

Fill Down Copies data in the top cell of a selected range to all cells 
below that top cell within the selected range.

Find Finds a cell containing specified text. You can search by row 
or column in the table and specify to match case and/or find 
entire cells only. You can also search for formulas or values.

Replace Finds a cell containing specified text and replaces it with 
different text. You can search by row or column in the table 
and specify to match case and/or to find entire cells only. You 
can also search for formulas or values. You can also replace all 
instances of the found text.

Go To Goes to a specified cell. This cell becomes the active cell. You 
must enter the column and row number of the cell.

Edit Command Description



Chapter 42 • Working with Data Tables

1209

Data Menu

The following commands are available in the Data menu:

Format Menu 

The following commands are available in the Format menu:

Data Command Description

Recalc Recalculates any formula cells in the table. 

Sort Sorts a selection of cells by row or column and keys in 
ascending or descending order.

AutoFill List Opens the AutoFill Lists dialog box (described on page 1211).

Encrypt Encodes the text in the selected cells. Note that you cannot 
decrypt data that has been encrypted. 

You can also use the Password Encoder to encrypt any text 
string. This can be useful for entering encrypted strings as 
method arguments in the Expert View. For more information, 
see “Inserting Encoded Passwords into Method Arguments 
and Data Table Cells” on page 406.

Format 
Command

Description

General Sets format to General. The General format displays numbers 
with as many decimal places as necessary and no commas.

Currency(0) Sets format to currency with commas and no decimal places. 
Note that QuickTest uses the currency symbol defined in your 
Windows Regional Settings dialog box.

Currency(2) Sets format to currency with commas and two decimal places. 
Note that QuickTest uses the currency symbol defined in your 
Windows Regional Settings dialog box.

Fixed Sets format to fixed precision with commas and no decimal 
places.

Percent Sets format to percent with no decimal places. Numbers are 
displayed as percentages with a trailing percent sign (%).



Chapter 42 • Working with Data Tables

1210

You can also perform Data Table menu commands using shortcut keys. For 
more information, see “Performing QuickTest Commands” on page 46.

Fraction Sets format to fraction in numerator denominator form, e.g. 
1/2.

Scientific Sets format to scientific notation with two decimal places.

date (dynamic) Sets format to Date with the M/D/YY format.

Time: h:mm AM/
PM

Sets format to Time with the h:mm AM/PM format.

Custom Number Sets format to a custom number format that you specify. This 
option enables you to set special and customized formats for 
percentages, currencies, dates, times, and so forth.

Format 
Command

Description



Chapter 42 • Working with Data Tables

1211

The AutoFill Lists Dialog Box
 

Below is an image of the AutoFill Lists dialog box: 

Description Enables you to create, edit, or delete an autofill list. 
An autofill list contains frequently-used series of 
text such as months and days of the week. 

To use an autofill list: 
1  Enter the first item into a cell in the table. 

2  Drag the cursor, from the bottom right corner of 
the cell. QuickTest automatically fills in the cells 
in the range according to the autofill list.

How to Access In the Data Table, right-click and select AutoFill List.

Learn More Primary task: “About Working with Data Tables” on 
page 1197 

Additional related topics: “AutoFill Lists Dialog Box 
Options” on page 1212



Chapter 42 • Working with Data Tables

1212

AutoFill Lists Dialog Box Options
 

Using Data Table Files with Quality Center

When working with Quality Center and Data Tables, you must save the Data 
Table file in the Test Resources module in your Quality Center project before 
you specify the Data Table file in the Resources pane of the Test Settings 
dialog box. 

You can add a new or existing Data Table file to your Quality Center project. 
Note that adding an existing Data Table file from the file system to a 
Quality Center project creates a copy of the file. Thus, once you save the file 
to the project, changes made to the Quality Center Data Table file will not 
affect the Data Table file in the file system and vice versa.

To use a Data Table file with Quality Center:

 1 If you want to add a new Data Table file, create a new Microsoft Excel file in 
your file system with an .xls extension.

 2 In Quality Center, create a new Data Table resource and then upload the .xls 
file you created in the previous step to the project’s Test Resources module. 
For more information, see the HP Quality Center User Guide.

Option Description

Lists The lists that are available in your project. Four 
default lists are included.

Current List The selected list. This pane can be used to create a 
new list. Separate the items in a new list with a 
semi-colon.

Add Adds a new list to the Lists box.

Delete Deletes a list from the Lists box.

Open Opens the Open dialog box, in which you can 
browse to a previously created list.

Save Opens the Save As dialog box, in which you can 
save a new list.



Chapter 42 • Working with Data Tables

1213

 3 In the Test Settings dialog box, click the Resources node.

 4 Select Other location and click the browse button to locate the Data Table 
file.

 5 Create your test. When you save the test, QuickTest saves the Data Table file 
to the Quality Center project.

Importing Data from a Database

You can import data from a database by selecting a query from Microsoft 
Query or by manually specifying an SQL statement.

You can install Microsoft Query from the custom installation option of 
Microsoft Office.

Note: Contrary to importing an Excel file (File > Import From File), existing 
data in the Data Table is not replaced when you import data from a 
database. If the database you import contains a column with the same name 
as an existing column, the database column is added as a new column with 
the column name followed by a sequential number. For example, if your 
Data Table already contains a column called departures, a database column 
by the same name would be inserted into the Data Table as departures1. 



Chapter 42 • Working with Data Tables

1214

To import data from a database:

 1 Right-click on the Data Table sheet to which you want to import the data 
and select Sheet > Import > From Database. The Database Query Wizard 
opens.  

 2 Select your database selection preferences and click Next. You can choose 
from the following options:

➤ Create query using Microsoft Query. Opens Microsoft Query, enabling 
you to create a new query. After you finish defining your query, you exit 
back to QuickTest. This option is only available if you have Microsoft 
Query installed on your computer.

➤ Specify SQL statement manually. Opens the Specify SQL statement 
screen in the wizard, which enables you to specify the connection string 
and an SQL statement. For more information, see step 3.

➤ Maximum number of rows. Select this check box and enter the 
maximum number of database rows to import. You can specify a 
maximum of 32,000 rows. 

➤ Show me how to use Microsoft Query. Displays an instruction screen 
before opening Microsoft Query when you click Next. (Enabled only 
when Create query using Microsoft Query is selected).



Chapter 42 • Working with Data Tables

1215

 3 If you chose Create query using Microsoft Query in the previous step, 
Microsoft Query opens. Choose a data source and define a query. For more 
information on creating a query, see “Creating a Query in Microsoft Query” 
on page 1216.

If you chose Specify SQL statement manually in the previous step, the 
following screen opens:  

Specify the connection string and the SQL statement and click Finish.

➤ Connection string. Enter the connection string or click Create to open 
the ODBC Select Data Source dialog box. You can select a .dsn file in the 
ODBC Select Data Source dialog box or create a new .dsn file to have it 
insert the connection string in the box for you.

➤ SQL statement. Enter the SQL statement.

 4 QuickTest takes several seconds to capture the database query and restore 
the QuickTest window. The resulting data from the database query is 
displayed in the Data Table.



Chapter 42 • Working with Data Tables

1216

Creating a Query in Microsoft Query
You can use Microsoft Query to choose a data source and define a query 
within the data source. For information on supported versions of Microsoft 
Query, see the HP QuickTest Professional Readme.

To choose a data source and define a query in Microsoft Query:

 1 When Microsoft Query opens during the Import data from database 
process, choose a new or an existing data source.

 2 Define a query.

 3 In the Finish screen of the Query Wizard, select Exit and return to QuickTest 
and click Finish to exit Microsoft Query. 

Alternatively, click View data or edit query in Microsoft Query and click 
Finish. After viewing or editing the data, select File > Exit and return to 
QuickTest to close Microsoft Query and return to QuickTest. 

For more information on working with Microsoft Query, see the Microsoft 
Query documentation.

Using Formulas in the Data Table

You can use Microsoft Excel formulas in your Data Table. This enables you 
to create contextually relevant data during the run session. You can also use 
formulas as part of a checkpoint to check that objects created on-the-fly 
(dynamically generated) or other variable objects in your Web page or 
application have the values you expect for a given context.

When you use formulas in a Data Table to compare values (generally in a 
checkpoint), the values you compare must be of the same type, for example 
integers, strings, and so forth. When you extract values from different places 
in your applications using different functions, the values may not be of the 
same type. Although these values may look identical on the screen, a 
comparison of them will fail, since, for example, 8.2 is not equal to "8.2". 



Chapter 42 • Working with Data Tables

1217

Note: The use of complex and/or nested formulas in the Data Table is not 
supported.

You can use the TEXT and VALUE functions to convert values from one type 
to another as follows:

➤ TEXT(value, format) returns the textual equivalent of a numeric value in the 
specified format, so that, for example the formula =TEXT(8.2, "0.00") is 
"8.20". 

➤ VALUE(string) returns the numeric value of a string, so that, for example, 
=VALUE("$8.20") is 8.20. 

For more information on using worksheet functions, see the Microsoft Excel 
documentation.

Using Formulas to Create Parameterization Data
You can enter formulas rather than fixed values in the cells of a parameter 
column.

For example, suppose you want to parameterize the value for a WebEdit 
object that requires a date value no earlier than today’s date. You can set the 
cells in the Date column to the date format, and enter the =NOW() Excel 
formula into the first row to set the value to today’s date for the first 
iteration. 

Then you can use another formula in the remaining rows to enter the above 
date plus one day, as shown below. By using this formula you can run the 
test on any day and the dates will always be valid. 



Chapter 42 • Working with Data Tables

1218

For more information on using parameters, see Chapter 24, “Parameterizing 
Values.”

Using Formulas in Checkpoints
You can use a formula in a checkpoint to confirm that an object created 
on-the-fly (dynamically generated) or another variable object in your Web 
page or application contains the value it should for a given context. For 
example, suppose a shopping cart Web site displays a price total. You can 
create a text checkpoint on the displayed total value and use a Data Table 
formula to check whether the site properly computes the total, based on the 
individual prices of the products selected for purchase in each iteration.

When you use the Data Table formula option with a checkpoint, QuickTest 
creates two columns in the Data Table. The first column contains a default 
checkpoint formula. The second column contains the value to be checked in 
the form of an output parameter. The result of the formula is Boolean—
TRUE or FALSE. 

A FALSE result in the checkpoint column during a test run causes the test to 
fail.

After you finish adding the checkpoint, you can modify the default formula 
in the first column to perform the check you need.

To use a formula in a checkpoint:

 1 Select the object or text for which you want to create a checkpoint and open 
the Insert Checkpoint dialog box as described in Chapter 17, 
“Understanding Checkpoints.”

 2 In the Configure value area, click Parameter.



Chapter 42 • Working with Data Tables

1219

 3 Click the Parameter Options button. The Parameter Options dialog box 
opens. 

 4 Select Data Table as the parameter type and choose a parameter from the 
Parameter name box list or enter a new name.

➤ To use an existing parameter, select it from the list.

➤ To create a new parameter, either use the default parameter name or 
enter a descriptive name for the parameter.

 5 Select the Use Data Table formula check box and click OK to close the 
Parameter Options dialog box.

Note: You cannot select Use Data Table formula if Regular expression is 
selected.

 6 Specify your other checkpoint setting preferences as described in 
Chapter 17, “Understanding Checkpoints.”



Chapter 42 • Working with Data Tables

1220

 7 Click OK. The two columns are added to the table, and the checkpoint step 
is inserted into your test. 

 8 Highlight the value in the first (formula) column to view the formula and 
modify the formula to fit your needs.

 9 If you want to run several iterations, add the appropriate formula in 
subsequent rows of the formula column for each iteration in the test or 
action.

Tip: You can encode passwords to use the resulting strings as method 
arguments or Data Table parameter values. For more information, see 
“Inserting Encoded Passwords into Method Arguments and Data Table 
Cells” on page 406.

You can also encrypt strings in Data Table cells using the Encrypt option in 
the Data Table menu. For more information, see “Data Menu” on page 1209. 

Using Data Table Scripting Methods

QuickTest provides several Data Table methods that enable you to retrieve 
information on the run-time Data Table and to set the value of cells in the 
run-time Data Table. You enter these statements manually in the Expert 
View. For more information on working in the Expert View, see Chapter 29, 
“Working in the Expert View and Function Library Windows.”

From a programming perspective, the Data Table is made up of three types 
of objects—DataTable, DTSheet (sheet), and DTParameter (column). Each 
object has several methods and properties that you can use to retrieve or set 
values.

For more details on the Data Table methods, see the HP QuickTest 
Professional Object Model Reference.



1221

43
Working with Process Guidance

Process guidance is a tool that provides procedures and descriptions on how 
to best perform specific processes. You use process guidance to learn about 
new processes and to learn the preferred methodology for performing 
processes with which you are already familiar. For this reason, process 
guidance is applicable to both new and experienced users.

A process is a collection of activities, or sub-processes. Each process walks 
you step-by-step through the activities that are required for that process. As 
you navigate through the activities for each process and perform the tasks 
described in each activity, you become acquainted with the way in which a 
particular process should be performed. 

QuickTest provides a built-in package that comprises several processes. 
These processes provide introductory information and tips on how to 
perform the most common QuickTest tasks, such as planning and creating a 
test. 

Your organization can also create its own custom processes to guide users 
through specific requirements and best practices relevant to your 
organization. For more information, see “Creating Custom Process 
Guidance Packages” on page 1569.

This chapter includes:

 ➤  Process Guidance Panes on page 1222

 ➤  Opening Process Guidance on page 1224

 ➤  Managing the List of Available Processes on page 1225

 ➤  The Process Guidance Management Dialog Box on page 1226



Chapter 43 • Working with Process Guidance

1222

Process Guidance Panes

In QuickTest, process guidance is displayed in two panes: the Process 
Guidance Activities pane and the Process Guidance Description pane. 

You display or hide these panes by choosing View > Process Guidance or 
clicking the Process Guidance panes toggle button.  

Process Guidance Activities Pane

The Process Guidance Activities pane (shown on the left) lists the activities 
that are part of the selected process. Activities are often grouped, enabling 
you to navigate directly to the sub-process that interests you. The example 
above illustrates some of the groups and activities in the Keyword-Driven 
Testing process. For example, the Determine Testing Needs group contains 
three activities: Define Testing Environment, Analyze Your Application, and 
Plan Your Actions. 



Chapter 43 • Working with Process Guidance

1223

In the Process Guidance Activities pane, you can:

➤ Click an activity to open the relevant topic in the Process Guidance 
Description pane.

➤ Check which activity is displayed in the Process Guidance Description pane. 
(An arrow points to the currently selected activity.)

➤ Use the Back and Next buttons to navigate up and down between activities 
and to display the topic for the previous or next activity in the Process 
Guidance Description pane.

➤ Position the cursor over the Up and Down arrows to scroll through the list 
of activities. (The up arrow is located directly below the Process Guidance 
Activities title bar; the down arrow is located directly above the Back and 
Next buttons.)

Process Guidance Description Pane

The Process Guidance Description pane (shown on the right in the example 
above) displays the topic description, for the selected activity. 

Each description introduces you to a specific activity and provides links to 
locations in which you can find more information about how to perform 
that activity. Additionally, many of the descriptions include interactive links 
that open dialog boxes or other relevant features, enabling you to directly 
access the features that are being described.



Chapter 43 • Working with Process Guidance

1224

Opening Process Guidance

You can open a process from the Start Page, from the Automation menu, or 
from the Process Guidance Activities pane.

Start Page

The Process Guidance List on the Start Page displays all available processes. 
Some processes may be available only under certain conditions. For 
example, the Business Components process guidance is available only if you 
are connected to a Quality Center project that supports business process 
testing. Additionally, some processes may be visible only if you have a 
specific add-in loaded. For example, the Testing SAP GUI for Windows 
built-in process is visible only if the SAP add-in is loaded. 

When you select a QuickTest process from the list, the relevant document 
type opens. For example, if a test document is open and you select the 
Application Areas process, a new application area opens, enabling you to 
navigate through the application area as you navigate through the selected 
process (provided that you are connected to a Quality Center project with 
business process testing support). 

To open a specific process from the Start Page:

 1 In QuickTest, click the Start Page tab to display the Start Page. (If the Start 
Page tab is not visible, select View > Start Page to open the Start Page.)

 2 In the Process Guidance List, click the link for the process you want to open. 
The list of activities is displayed in the Process Guidance Activities pane, and 
a description of the first activity in the list is displayed in the Process 
Guidance Description pane.

Tip: If the Process Guidance List is empty, select File > Process Guidance 
Management and select at least one process in the Process Guidance 
Management dialog box. For more information, see “The Process Guidance 
Management Dialog Box” on page 1226.



Chapter 43 • Working with Process Guidance

1225

Automation Menu Command

You can open any process that is available for a currently open document 
type or for a loaded QuickTest add-in by choosing Automation > Process 
Guidance List and then choosing a process from the list. 

If the Process Guidance List is empty, select File > Process Guidance 
Management and select at least one process in the Process Guidance 
Management dialog box. Then reopen the current document or open a new 
document to refresh the list of available processes in the Process Guidance 
List menu.

If you want to open a process that is not relevant for the current testing 
document or loaded QuickTest add-in, you need to open the process from 
Process Guidance List in the Start Page.

If the currently open testing document has more than one process available, 
you can navigate between these process by selecting the required process 
from the drop-down list in the process title.

Managing the List of Available Processes

Processes are stored in process guidance packages. QuickTest provides a 
built-in package containing several processes. This package is listed by 
default in the Process Guidance Management dialog box. 

Your organization may provide additional packages that include processes 
that are specific to your organization, your team, your role in your 
organization, and so on. For more information, see “Creating Custom 
Process Guidance Packages” on page 1569.



Chapter 43 • Working with Process Guidance

1226

The Process Guidance Management Dialog Box
 

Below is an image of the Process Guidance Management dialog box:

 

Description Enables you to manage the list of processes that are 
available in QuickTest.

How to Access File menu > Process Guidance Management

Important Information ➤ You cannot remove the built-in QuickTest 
package.

➤ You cannot include or exclude individual 
processes from within a package.

Learn More Conceptual overview: “Working with Process 
Guidance” on page 1221

Primary tasks: 

➤ “Including and Excluding Packages” on 
page 1227

➤ “Adding Process Guidance Packages” on 
page 1228

Additional related topics: see “Additional 
References” on page 1227



Chapter 43 • Working with Process Guidance

1227

Process Guidance Management Dialog Box Options
 

Additional References
 

Including and Excluding Packages

You can select to include or exclude a package in the set of packages 
available in QuickTest. 

When you select to include a package, QuickTest adds all of the processes in 
that package to the Process Guidance List on the Start Page (excluding 
processes for QuickTest add-ins that are not currently loaded). The processes 
that are available for the currently open document type and for the 
currently loaded QuickTest add-ins are also added to the Process Guidance 
List in the Automation menu, and can be opened after you refresh the list by 
closing and reopening the current document or by opening a new 
document of the same type.

You cannot include or exclude individual processes from within a package.

Option Description

Add Enables you to add processes specific to your 
organization to the Process Guidance List on the 
Start Page.

Remove Enables you to remove processes from the Process 
Guidance List on the Start Page.

Related User Interface 
Topics

“Process Guidance Panes” on page 1222

Related Tasks “Opening Process Guidance” on page 1224



Chapter 43 • Working with Process Guidance

1228

To include or exclude a package in the set of packages available in 
QuickTest:

 1 Select File > Process Guidance Management. The Process Guidance 
Management dialog box opens.

 2 Select the check box adjacent to the package whose processes you want to 
include, or clear the check box adjacent to the package whose processes you 
want to exclude.

 3 Click Close. QuickTest adds or removes the relevant processes in the Process 
Guidance List.

Adding Process Guidance Packages

If your organization has its own processes, you can add them to the Process 
Guidance List on the Start Page. You do this by adding the relevant package 
to the Process Guidance Management dialog box and selecting to show it.

To add a package to the list:

 1 Select File > Process Guidance Management. The Process Guidance 
Management dialog box opens. 

 2 In the Process Guidance Management dialog box, click Add. The Open 
dialog box opens.

 3 Browse to the process guidance package file and click Open. The package is 
added to the list of available packages.



1229

Part IX

Configuring QuickTest Settings



1230



1231

44
Setting Global Testing Options

You can control how QuickTest works with tests by setting global testing 
options.

This chapter includes:

 ➤  About Setting Global Testing Options on page 1231

 ➤  Using the Options Dialog Box on page 1232

 ➤  Setting General Testing Options on page 1234

 ➤  Setting Folder Testing Options on page 1237

 ➤  Setting Active Screen Options on page 1240

 ➤  Setting Run Testing Options on page 1253

About Setting Global Testing Options

Global testing options affect both how you work with tests and the general 
appearance of QuickTest. For example, you can choose not to display the 
Start Page when QuickTest starts, or you can set the timing-related settings 
used by QuickTest when running a test. The values you set remain in effect 
for all tests and for subsequent testing sessions. You can set global testing 
options using the Options dialog box (described on page 1232) or by 
inserting statements in the Expert View. 

You can also set testing options that affect only the test currently open in 
QuickTest. For more information, see Chapter 45, “Setting Options for 
Individual Tests.”



Chapter 44 • Setting Global Testing Options

1232

Using the Options Dialog Box

You can use the Options dialog box to modify your global testing options. 
The values you set remain in effect for all subsequent QuickTest sessions.

To set global testing options:

 1 Select Tools > Options or click the Options toolbar button. The Options 
dialog box opens. It is divided into two parts: a navigation pane on the left 
and an options display pane on the right. 

 2 Select the required node from the navigation tree and set the options in the 
options display pane as necessary. For information on the available options 
in each node, see the table below.

 3 Click Apply to apply your changes and keep the dialog box open, or click OK 
to save your changes and close the dialog box.



Chapter 44 • Setting Global Testing Options

1233

The navigation tree contains the following nodes:

Node Options

General Options for general test settings. For more 
information, see “Setting General Testing Options” 
on page 1234.

The General node also contains the Text 
Recognition sub-node. For more information, see 
“Setting Text Recognition Options” on page 1236.

Folders Options for entering the folders (search paths) in 
which QuickTest searches for tests, actions, or files 
that are specified as relative paths in dialog boxes 
and statements. For more information, see “Setting 
Folder Testing Options” on page 1237. 

Note: If you are working with the Resources and 
Dependencies model with Quality Center 10.00, 
specify an absolute Quality Center path. For more 
information, see “Considerations for Working with 
Relative Paths in Quality Center” on page 1450. 

Active Screen Options for configuring which information 
QuickTest saves and displays in the Active Screen 
while recording. For more information, see “Setting 
Active Screen Options” on page 1240.

Run Options for running tests. For more information, 
see “Setting Run Testing Options” on page 1253.

The Run node also contains the Screen Capture 
node. For more information, see “The Options 
Dialog Box: Run > Screen Capture Pane” on 
page 1255.

Windows Applications Options for configuring how QuickTest tests 
interface with Windows applications. The Windows 
Applications node also includes the Advanced 
node. For more information, see the section on 
testing Windows-based applications in the 
HP QuickTest Professional Add-ins Guide.

AddinOverview.chm::/Options_Windows_Apps.htm


Chapter 44 • Setting Global Testing Options

1234

The navigation tree may contain additional nodes, depending on the 
add-ins that are currently loaded. For more information, see the relevant 
section in the HP QuickTest Professional Add-ins Guide.

Setting General Testing Options

The General pane options affect the general appearance of QuickTest and 
other general testing options. 

The General node also contains the Text Recognition sub-node. For more 
information, see “The Options Dialog Box: General > Text Recognition 
Pane” on page 742.



Chapter 44 • Setting Global Testing Options

1235

The General pane includes the following options:

Option Description

Display Add-in Manager on 
startup

Determines whether the Add-in Manager is 
displayed when starting QuickTest. For information 
on working with the Add-in Manager, see the 
section on loading QuickTest add-ins in the 
HP QuickTest Professional Add-ins Guide.

Display Start Page on 
startup

Determines whether the Start Page is displayed 
when starting QuickTest.

Check for software updates 
Automatically

Instructs QuickTest to automatically check for 
software updates. For more information, see 
“Updating QuickTest Software” on page 18.

Disable recognition of 
virtual objects while 
recording

Determines whether the defined virtual objects 
stored in the Virtual Object Manager are recognized 
while recording. For more information, see 
Chapter 47, “Learning Virtual Objects.”

Automatically update test 
and component steps 
when you rename test 
objects

Determines whether to automatically update test 
and component steps when you rename test 
objects in the local or shared object repository. For 
more information, see “Renaming Test Objects” on 
page 169.

Automatically generate 
"With" statements after 
recording

Instructs QuickTest to automatically generate With 
statements when you record. For more 
information, see “Generating With Statements for 
Your Test” on page 806.

Generate "With" 
statements for __ or more 
objects

Indicates the minimum number of identical, 
consecutive objects for which you want to apply 
the With statement. This setting is used when 
QuickTest automatically generates With statements 
after recording and when you select to generate 
With statements for an existing action. 
Default = 2
For more information, see “Generating With 
Statements for Your Test” on page 806.



Chapter 44 • Setting Global Testing Options

1236

Setting Text Recognition Options
The Text Recognition node of the navigation tree displays the General > 
Text Recognition pane, which enables you to configure how QuickTest 
identifies text in your application. For more information, see “The Options 
Dialog Box: General > Text Recognition Pane” on page 742.

When pointing at a 
window, activate it after __ 
tenths of a second

Specifies the time (in tenths of a second) that 
QuickTest waits before it sets the focus on an 
application window when using the pointing hand 
to point to an object in the application (for Object 
Spy, checkpoints, Step Generator, Recovery 
Scenario Wizard, and so forth). 
Default = 5

Restore Layout Restores the layout of the QuickTest window so 
that it displays the panes and toolbars in their 
default sizes and positions.

Note: QuickTest recalls your most recent window 
layout for each of its operating modes: view/edit, 
record, and run. For more information, see 
“Customizing the QuickTest Window Layout” on 
page 1144.

Generate Script Generates an automation script containing the 
current global testing options. For more 
information, see “Automating QuickTest 
Operations” on page 1403 or the 
QuickTest Professional Automation Object Model 
Reference (Help > QuickTest Professional Help > 
HP QuickTest Professional Advanced References > 
HP QuickTest Professional Automation Object 
Model).

Option Description



Chapter 44 • Setting Global Testing Options

1237

Setting Folder Testing Options

The Folders pane enables you to enter the folders (search paths) in which 
QuickTest searches for tests, actions, or resource files that are specified as 
relative paths in dialog boxes and steps. For example, suppose you add the 
folder in which all of your tests are stored to the folders list. If you later 
insert a copy of an action to a test, you only have to enter the name of the 
test containing the action you want to insert in the Insert Copy of Action 
dialog box. QuickTest searches for the test’s path in the folders you specified 
in the Folders pane. 

Notes: 

➤ The current test is listed in the Search list by default. It cannot be deleted.

➤ If you are working with the Resources and Dependencies model with 
Quality Center 10.00, specify an absolute Quality Center path. For more 
information, see “Considerations for Working with Relative Paths in 
Quality Center” on page 1450.

➤ For more information on relative or absolute paths, see “Using Relative 
Paths in QuickTest” on page 316.



Chapter 44 • Setting Global Testing Options

1238

QuickTest searches for the specified test, action, or file in the order in which 
the folders are displayed in the search list. If the same file name exists in 
more than one folder, QuickTest uses the first instance it finds.  



Chapter 44 • Setting Global Testing Options

1239

The Folders pane includes the following options:

Option Description

Search list Indicates the folders in which QuickTest searches for tests, 
actions, or files. If you define folders here, you do not 
need to designate the full path of a test, action, or file in 
other dialog boxes or call statements. The order of the 
search paths in the list determines the order in which 
QuickTest searches for a specified action or file.

Adds a new folder to the search list.

Tips: 

➤ To add a Quality Center path when connected to 
Quality Center, click this button. QuickTest adds 
[QualityCenter], and displays a browse button so that 
you can locate the Quality Center path.

➤ When not connected to Quality Center, hold the SHIFT 
key and click this button. QuickTest adds 
[QualityCenter], and you enter the path. You can also 
type the entire Quality Center path manually. If you 
do, you must add a space after [QualityCenter]. For 
example: [QualityCenter] Subject\Tests.

➤ Note that QuickTest searches Quality Center project 
folders only when you are connected to the 
corresponding Quality Center project.

Deletes the selected folder from the search list.

Moves the selected folder up in the list.

Moves the selected folder down in the list.

Remind me to use 
relative paths when 
specifying a path to 
a resource

When saving a resource, you can choose to be prompted 
to use a relative path. For more information, see “Using 
Relative Paths in QuickTest” on page 316. 

Note: When QuickTest is connected to a 
Quality Center 10.00 project, a reminder is displayed only 
if you select a path in the file system or in a 
Quality Center 9.x project. 



Chapter 44 • Setting Global Testing Options

1240

Tip: You can use a PathFinder.Locate statement in your test to retrieve the 
complete path that QuickTest will use for a specified relative path based on 
the folders specified in the Folders pane. For more information, see the 
HP QuickTest Professional Object Model Reference. 

Setting Active Screen Options
 

Description Enables you to specify which information QuickTest 
saves and displays in the Active Screen while 
recording and running tests.

The more information saved in the Active Screen, 
the easier it is to edit the test after it is recorded. 
However, more information saved in the Active 
Screen adds to the recording time and disk space 
required. This is especially critical with 
Windows-based add-ins, as they require more disk 
space to save Active Screen data.

How to Access Tools menu > Options item > Active Screen node.

Important Information When you are recording on an MDI (Multiple 
Document Interface) application, the Active Screen 
does not capture information for non-active child 
frames.

Learn More Conceptual overview: “Working with the Active 
Screen” on page 376

Primary task: “Increasing or Decreasing the Active 
Screen Information Saved with a Test” on page 378

Additional related topics: “Additional References” 
on page 1244



Chapter 44 • Setting Global Testing Options

1241

Below is an image of the Active Screen pane in the Options dialog box:

 



Chapter 44 • Setting Global Testing Options

1242

Options Dialog Box: Active Screen Pane Options

Option Description

Capture 
level

Specifies the objects for which QuickTest stores data in the Active Screen.

Use the slider to select one of the following options:

➤ Complete. Captures all properties of all objects in the application’s active 
window/dialog box/Web page in the Active Screen of each step. This level saves 
Web pages after any dynamic changes and saves Active Screen files in a 
compressed format.

➤ Partial. (Default.) Captures all properties of all objects in the application’s active 
window/dialog box/Web page in the Active Screen of the first step performed in 
an application’s window, plus all properties of the recorded object in subsequent 
steps in the same window. This level saves Web pages after any dynamic changes 
and saves Active Screen files in a compressed format.

➤ Minimum. Captures properties only for the recorded object and its parent in the 
Active Screen of each step. This level saves the original source HTML of all Web 
pages (prior to dynamic changes) and saves Active Screen files in a compressed 
format.

➤ None. Disables capturing of Active Screen files for all applications and Web 
pages.

Custom 
Level

Enables you to specify custom Active Screen options. For more information, see 
“The Custom Active Screen Capture Settings Dialog Box” on page 1244.

Default 
Level

Returns the capture level settings to the predefined default level (Partial).



Chapter 44 • Setting Global Testing Options

1243

Appearance 
(Web)

Enables you to modify how QuickTest displays captured Web pages in the Active 
Screen.

➤ Run scripts. Specifies whether QuickTest runs scripts when a page is loaded in the 
Active Screen, according to one of the following options:

➤ Enabled. Runs scripts whenever loading a page in the Active Screen.

➤ Automatic. Runs scripts as needed, according to the page that is displayed.

➤ Disabled. Prevents scripts from running when loading a page in the Active 
Screen.

Note: This option refers only to scripts that run automatically when the page 
loaded. It does not enable you to activate scripts in the Active Screen by performing 
an operation on the screen.

➤ Load ActiveX controls. Instructs QuickTest to load ActiveX controls from your 
browser page to the Active Screen, so that for each step you can preview how the 
page is actually displayed in the application. If this option is cleared, a default 
ActiveX image is displayed in the Active Screen for all ActiveX control objects.

➤ Load images. Instructs QuickTest to load images from your browser page to the 
Active Screen.

➤ Load Java applets. Instructs QuickTest to load Java applets from your browser 
page to the Active Screen, so that for each step you can preview how the page is 
actually displayed in the application. If this option is cleared, a default Java 
image is displayed in the Active Screen for all Java applet objects.

Notes: 

➤ QuickTest loads ActiveX controls or Java applets to the Active Screen in view-only 
mode. You cannot perform operations or retrieve additional information on the 
loaded ActiveX or Java objects. To perform operations on these items from the 
Active Screen, you must load the relevant add-in and then record directly on the 
ActiveX or Java object.

➤ ActiveX controls or Java applets that are loaded to the Active Screen may not 
work exactly as they do in the application. In some cases, this may cause 
unexpected behavior, depending on the implementation of the specific controls 
or applets that are loaded.

Option Description



Chapter 44 • Setting Global Testing Options

1244

Additional References
 

The Custom Active Screen Capture Settings Dialog Box
 

Related User Interface 
Topics

“The Custom Active Screen Capture Settings Dialog 
Box” on page 1244

Related Tasks ➤ “Updating a Single Active Screen Capture” on 
page 380

➤ "Updating all Active Screen Captures in a Test 
Using Update Run Mode" on page 1125

Other Related Information “Tips for Improving Active Screen Performance” on 
page 382

Description Enables you to customize how QuickTest captures 
and saves Active Screen information.

When you apply custom Active Screen settings, you 
override the capture-level setting in the Active 
Screen pane with all of the settings in the Custom 
Active Screen Capture Settings dialog box.

Accessed by Tools menu> Options dialog box > Active Screen 
node > Custom Level button

MainUsersGuide.chm::/Updating_a_test.htm
MainUsersGuide.chm::/Updating_a_test.htm


Chapter 44 • Setting Global Testing Options

1245

Below is an image of the Custom Active Screen Capture Settings dialog box:

 

Important Information The default settings in the Custom Active Screen 
Capture Settings dialog box do not reflect the 
selected capture-level setting in the Active Screen 
pane of the Options dialog box. If you want to 
customize only specific settings, use the Reset to 
option to ensure that all other settings are using the 
capture-level setting you prefer and then modify the 
specific settings you need.

Related Tasks ➤ You can specify whether to save screen captures 
of the Active Screen using the Save Active Screen 
files option in the Save dialog box. See “Saving a 
Test” on page 324.

➤ You can use the Update Run Mode option to 
modify the amount of information saved in the 
Active Screen after you modify the Active Screen 
capture settings. See “Updating a Test Using the 
Update Run Mode Option” on page 1125.



Chapter 44 • Setting Global Testing Options

1246

Note: The Custom Active Screen Capture Settings dialog box may also 
contain options applicable to any QuickTest add-ins installed on your 
computer.

Custom Active Screen Capture Settings Dialog Box Options
 

Option Description

Settings box Enables you to select the specific setting options 
that determine how QuickTest captures and saves 
Active Screen information. The Settings box may 
also contain options applicable to QuickTest 
add-ins installed on your computer. 

See:

➤ “General Options” on page 1247

➤ “Capture Level Options” on page 1247

➤ “Web Options” on page 1252

Description Provides a description of the option selected in the 
Settings box.

Reset custom settings Enables you to reset the custom settings to one of 
the predefined levels provided with QuickTest 
(Complete, Partial, Minimum, or None) by 
choosing a level from the Reset to list and clicking 
the Reset button. For more information on the 
available capture levels, see “Capture Level 
Options” on page 1247.



Chapter 44 • Setting Global Testing Options

1247

General Options

By selecting a Captured files storage option, you can specify the type of 
compression QuickTest uses for storing captured Active Screen information.

➤ Simple. Instructs QuickTest to save Active Screen captures in standard 
uncompressed file formats (for example, .html and .png). 

➤ Compressed. Instructs QuickTest to save Active Screen captures in a 
compressed (zipped) file format. Using this option saves disk space, but it 
may affect the time it takes to load images in the Active Screen. This is the 
default option. 

Capture Level Options

The Custom Active Screen Capture Settings dialog box enables you to 
customize how QuickTest captures and saves Active Screen information.

Capture level options are available for Java applets or applications, SAP GUI 
for Windows applications, Oracle applications, Windows-based 
applications, and Terminal Emulator applications. The options available in 
the Custom Active Screen Capture Settings dialog box depend on the 
add-ins that are installed.

By selecting a Capture level option, you can specify which properties are 
captured for each object in an application when it is captured for the Active 
Screen. 

Depending on your testing requirements, you can choose between different 
levels of Active Screen capture. However, you should take into consideration 
that the less information captured for the Active Screen, the better the 
performance.

For example, if you select the Complete capture level option, you can add 
checkpoints on every test object displayed in any Active Screen capture after 
recording, but it will take more time and use more disk space to record a 
single operation. Selecting Partial enables QuickTest to record faster and use 
less disk space, but there may be limitations on the operations you can 
perform from the Active Screen after recording.

The following sections describe the capture level options available for 
different environments.



Chapter 44 • Setting Global Testing Options

1248

Java Applications or Applets

The following Capture level options are available for Java applications or 
Java applets:

➤ Complete. Instructs QuickTest to save all identification properties of all 
objects in the application or applet’s open window/dialog box in the 
Active Screen of each step.

➤ Partial. (Default) Instructs QuickTest to save all identification properties 
of all objects in the application or applet’s open window/dialog box in 
the Active Screen of the first step performed in that window, plus all 
properties of the recorded object only, in subsequent steps in the same 
window.

➤ Minimum. Instructs QuickTest to save all identification properties for the 
recorded object plus all identification properties for the parent objects in 
the recording hierarchy.

➤ None. Disables capture of Active Screen files for Java applications or Java 
applets.

When the Complete or Minimum capture level is selected, the following 
setting in the Custom Active Screen Capture Settings dialog box is also 
relevant for Java applications or Java applets:

Disable capture of the following objects. Prevents QuickTest from capturing 
the data of steps performed on other objects for the selected test object types 
in the Active Screen. These objects will be visible in the Active Screen as 
images only.

By default, JavaObject and JavaMenu are selected (meaning that 
identification properties are not captured for these objects).

Note: If you record on a specific test object, its identification properties will 
be captured even if the Disable capture of the following objects option is 
selected.



Chapter 44 • Setting Global Testing Options

1249

SAP GUI for Windows Applications

The following Capture level options are available for SAP GUI for Windows 
applications:

➤ Complete. Instructs QuickTest to save the property values of all objects in 
the application's open window/dialog box in the Active Screen of each 
step. 

This option makes it possible for you to insert checkpoints and perform 
other operations on any object in the window/dialog box from the Active 
Screen of any step. However, it may result in longer recording times and 
require more disk space.

Note: The properties for inner objects of some container objects (such as 
table cells or tree nodes) are not captured in the Active Screen. Use the 
appropriate SAPGuiTable or SAPGuiTree methods to access information 
for these objects. For more information, see the SAP GUI for Windows 
section of the HP QuickTest Professional Object Model Reference.

➤ Partial. (Default) Instructs QuickTest to save properties of the recorded 
object and of its parent in the Active Screen of each step. 

This option enables speedy recording and requires relatively little disk 
space. However, you can insert checkpoints and perform other 
operations only on the recorded object and on the window/dialog box 
itself. You cannot perform operations on the other objects displayed in 
the Active Screen. 

➤ None. Disables the capture of Active Screen files for SAP GUI for 
Windows applications. 

This option allows extremely fast recording and requires only minimum 
disk space. However, you cannot perform post-recording test editing 
(such as inserting checkpoints, output values, and so forth) from the 
Active Screen. 



Chapter 44 • Setting Global Testing Options

1250

Notes:

➤ The property values of the objects in the Active Screen reflect the values 
at the time that the steps are added to your test (when information is 
sent to the SAP server). These values may potentially be different from 
the property values at the time that a particular step is performed.

➤ The Active Screen captures only the visible part of the SAP GUI for 
Windows applications window at the time that the step is added to the 
test.

Oracle Applications

The following Capture level options are available for Oracle applications:

➤ Complete. Instructs QuickTest to save all identification properties of all 
objects in the application’s open window/dialog box in the Active Screen 
of each step.

➤ Partial. (Default) Instructs QuickTest to save all identification properties 
of all objects in the application’s open window/dialog box in the Active 
Screen of the first step performed in that window, plus all identification 
properties of the recorded object only, in subsequent steps in the same 
window.

➤ Minimum. Instructs QuickTest to save all identification properties for the 
recorded object plus all identification properties for the parent objects in 
the recording hierarchy.

➤ None. Disables capture of Active Screen files for Oracle applications.



Chapter 44 • Setting Global Testing Options

1251

Windows Applications 

The following Capture level options are available for Windows applications. 

➤ Complete. Instructs QuickTest to save all properties of all objects in the 
application’s open window/dialog box in the Active Screen of each step.

This option makes it possible for you to insert checkpoints and perform 
other operations on any object in the window/dialog box, from the 
Active Screen for any step.

➤ Partial (Default). Instructs QuickTest to save all properties of all objects in 
the application’s open window/dialog box in the Active Screen of the 
first step performed in an application’s window, plus all properties of the 
recorded object in subsequent steps in the same window.

This option makes it possible for you to insert checkpoints and perform 
other operations on any object displayed in the Active Screen, while 
conserving recording time and disk space. Note that with this option the 
Active Screen information may not be fully updated for subsequent steps.

➤ Minimum. Instructs QuickTest to save properties only for the recorded 
object and its parent in the Active Screen of each step. 

This option enables speedy recording and requires relatively little disk 
space. However, you can insert checkpoints and perform other 
operations only on the recorded object and on the window/dialog box 
itself. You cannot perform operations on the other objects displayed in 
the Active Screen.

➤ None. Disables capture of Active Screen files for Windows applications.

This option allows extremely fast recording and requires only a 
minimum of disk space. However, you cannot perform post-recording 
test editing from the Active Screen. 



Chapter 44 • Setting Global Testing Options

1252

Terminal Emulator Applications

The following Capture level options are available for applications run on 
terminal emulators:

➤ Complete. Instructs QuickTest to save all properties of all objects in the 
application’s open window/dialog box in the Active Screen of each step.

This option makes it possible for you to insert checkpoints and perform 
other operations on any object in the window/dialog box, from the 
Active Screen for any step.

➤ None. Disables capture of Active Screen files for Terminal Emulator 
applications.

Web Options

You can specify whether QuickTest captures Web pages for the Active Screen.

➤ Disable Active Screen capture. Disables the screen capture of all steps in the 
Active Screen.

If you do not select this option, you can also delete Active Screen 
information after you have finished editing your test by selecting Save As, 
and clearing the Save Active Screen files check box. For more information, 
see “Saving a Test” on page 324.

➤ Capture original HTML source. Captures the HTML source of Web pages as 
they appear originally, before any scripts are run. Deselecting this option 
instructs QuickTest to capture the HTML source of Web pages after any 
dynamic changes have been made to the HTML source (for example, by 
scripts running automatically when the page is loaded).



Chapter 44 • Setting Global Testing Options

1253

Setting Run Testing Options

The Run pane options affect how QuickTest runs tests. 

The Run node also contains the Screen Capture node. For more information, 
see “The Options Dialog Box: Run > Screen Capture Pane” on page 1255.



Chapter 44 • Setting Global Testing Options

1254

The Run pane includes the following options:

 

Option Description

Run mode Instructs QuickTest how to run your test:

➤ Normal (displays execution marker). Runs your test with 
the execution arrow to the left of the Keyword View or 
Expert View, marking each step or statement as it is 
performed. If the test contains multiple actions, the tree 
in the Keyword View Item column expands to display the 
steps, and the Expert View displays the script, of the 
currently running action. 

Delay each step execution by. You can specify the time in 
milliseconds that QuickTest should wait before running 
each consecutive step (up to a maximum of 10000 ms.)

The Normal run mode option requires more system 
resources than the Fast option, described below.

Note: You must have Microsoft Script Debugger installed 
to enable this mode. For more information, see the 
HP QuickTest Professional Installation Guide.

➤ Fast. Runs your test without the execution arrow to the 
left of the Keyword View or Expert View and does not 
expand the item tree or display the script of each action 
as it runs. This option requires fewer system resources.

Note: When running a test set from Quality Center, tests 
are automatically run in Fast mode, even if Normal mode 
is selected.

Submit a defect to 
Quality Center for 
each failed step

Instructs QuickTest to automatically submit a defect to 
Quality Center for each failed step in your test. This option 
is available only when you are connected to a 
Quality Center project. For more information, see 
“Automatically Submitting Defects to a Quality Center 
Project” on page 1015.

View results when 
run session ends

Instructs QuickTest to display the results automatically 
following the run session.



Chapter 44 • Setting Global Testing Options

1255

The Options Dialog Box: Run > Screen Capture Pane
 

Allow other HP 
products to run 
tests and 
components

Enables other HP products such as Quality Center and Test 
Batch Runner to run QuickTest tests on this computer. 

Note: This option is not required to enable WinRunner to 
run QuickTest tests.

Stop command 
shortcut key

Enables you to define a shortcut key or key combination 
that stops the current QuickTest record or run operation, 
even if QuickTest is not in focus or is in hidden mode.

Click in the field and then press the required key or key 
combination on the keyboard. 

The default key combination is Ctrl+Alt+F5.

Note: It is important to define a shortcut that is not already 
defined for some other operation by the application being 
tested. If this is the case and:

➤ you open the application manually before you click 
Record or Run, the shortcut defined in the application 
will apply for its original purpose.

➤ you start a record or run session and QuickTest opens the 
application for you, the shortcut you define in the Run 
pane will stop the session. 

Description Enables you to control when and how QuickTest 
captures screens of the application being tested. 

How to Access ➤ Select the Tools > Options menu command and 
select the Run > Screen Capture node.

➤ Click the Options toolbar button  and select 
the Run > Screen Capture node.

Option Description



Chapter 44 • Setting Global Testing Options

1256

Below is an image of the Run > Screen Capture pane in the Options dialog 
box:

 

Important Information Note for Vista users: In addition to the options 
described below, if your Vista Windows color 
scheme is set to Aero, QuickTest automatically sets 
it to Vista Basic while capturing movies of a run 
session to maximize performance. The color scheme 
is returned to its previous settings when the run 
session ends.

Learn More Additional related topics: “Additional References” 
on page 1259



Chapter 44 • Setting Global Testing Options

1257

Options Dialog Box: Run > Screen Capture Pane Options
 

Option Description

Save still image captures to 
results

Instructs QuickTest when to capture still images of 
the application during the run session and save 
them in the test results. When images are available 
in the test results, QuickTest displays them in the 
bottom pane of the Result Details tab in the Test 
Results window.

Clear the check box to disable this option, or select 
an option from the list:

➤ Always. Captures images for all steps in the run.

➤ For errors. Captures images only for failed steps. 
This is the default setting.

➤ For errors and warnings. Captures images only 
for steps that return a failed or warning status.

For more information, see “Viewing Still Images 
and Movies of Your Application” on page 992.

Note: This setting also affects the availability of 
other information displayed in the bottom pane of 
the test result details, such as:

➤ XML checkpoint and output value result details

➤ Bitmap checkpoint images (expected, actual, 
and difference)



Chapter 44 • Setting Global Testing Options

1258

Save movie to results Instructs QuickTest when to capture a movie of the 
application during the run session and save it in 
the run results. When movies are available in the 
run results, QuickTest displays them in the Screen 
Recorder tab in the Test Results window.
This option is disabled by default.

Select the check box to enable this option and then 
select an option from the list:

➤ Always. Captures a movie of all steps in the run.

➤ For errors. Captures movies only for failed steps. 

➤ For errors and warnings. Captures movies only 
for steps that return a failed or warning status.

For more information, see “Viewing Still Images 
and Movies of Your Application” on page 992.

The following options are enabled only when the Save movie to results check box 
is selected.

Save movie segment up 
to __  KB prior to each 
error and warning

(Enabled only when For 
errors or For errors and 
warnings is selected in the 
Save movie to results 
option.)

When selected, QuickTest saves movie segments for 
each error (or warning). Each segment contains the 
specified number of kilobytes of the movie prior to 
the failed (or warning) step. You can enter any 
value from 400 (0.4 MB) to 2097152 (2 GB). If more 
than one segment is captured for a run session, 
QuickTest stores a single movie with that is 
comprised of all the relevant movie segments.

Save movie of entire run

(Enabled only when For 
errors or For errors and 
warnings is selected in the 
Save movie to results 
option.)

When selected, QuickTest saves a movie of the 
entire run if at least one error (or warning) occurs. 

Record sound Instructs QuickTest to save sound with the movie 
of your application.

Set plain wallpaper Sets the wallpaper of your desktop to a solid blue 
color for the duration of the run session.

Option Description



Chapter 44 • Setting Global Testing Options

1259

Additional References
 

Do not show window 
contents when dragging 
windows

Instructs Windows to display only the outline of a 
window, without its contents, whenever the 
window is dragged during the run session.

Capture Driver area

Install/Uninstall button Installs or uninstalls the Screen Recorder Capture 
Driver. The Screen Recorder Capture Driver 
improves the performance of the Screen Recorder 
during movie recording.

Note: The Screen Recorder Capture Driver cannot 
be installed or uninstalled when running QuickTest 
via a remote connection.

Related User Interface 
Topics

“Viewing Still Images and Movies of Your 
Application” on page 992

Option Description



Chapter 44 • Setting Global Testing Options

1260



1261

45 
Setting Options for Individual Tests

You can control how QuickTest works with different tests by setting specific 
testing options for any individual test.

This chapter includes:

 ➤  Using the Test Settings Dialog Box on page 1262

 ➤  Defining Properties for Your Test on page 1265

 ➤  Defining Run Settings for Your Test on page 1270

 ➤  Defining Resource Settings for Your Test on page 1274

 ➤  Defining Parameters for Your Test on page 1280

 ➤  Defining Environment Settings for Your Test on page 1283

 ➤  Defining Recovery Scenario Settings for Your Test on page 1291

 ➤  Enabling System Monitoring for Your Test on page 1296



Chapter 45 • Setting Options for Individual Tests

1262

Using the Test Settings Dialog Box

You can use the Test Settings dialog box to set testing options that affect 
how QuickTest works with a specific test. For example, you can instruct 
QuickTest to run a parameterized test for only certain lines in the Data 
Table. The individual testing options that you specify are saved when you 
save the test.

Note: You can also set testing options that affect all tests. For more 
information, see Chapter 44, “Setting Global Testing Options.”



Chapter 45 • Setting Options for Individual Tests

1263

To set testing options for an individual test:

 1 Select File > Settings or click the Settings toolbar button. The Test Settings 
dialog box opens. It is divided into two parts: a navigation pane on the left 
and a settings display pane on the right.  

 2 Select the required node from the navigation tree and set the options in the 
settings display pane as necessary. See the table below for more information 
on the available options in each node.

 3 Click Apply to apply your changes and keep the dialog box open, or click OK 
to save your changes and close the dialog box.



Chapter 45 • Setting Options for Individual Tests

1264

The navigation tree contains the following nodes:

In addition to these nodes, the Test Settings dialog box may contain other 
nodes corresponding to any QuickTest add-ins that are installed or loaded. 
For more information on add-ins, see the relevant section in the 
HP QuickTest Professional Add-ins Guide.

Node Options

Properties Options for setting the properties of the test, for 
example, its description and associated add-ins. For more 
information, see “Defining Properties for Your Test” on 
page 1265.

Run Options for setting the run session preferences. For more 
information, see “Defining Run Settings for Your Test” 
on page 1270.

Resources Options for specifying resources you want to associate 
with your test, such as function libraries stored in 
VBScript function libraries. For more information, see 
“Defining Resource Settings for Your Test” on page 1274.

Parameters Options for specifying input and output parameters for 
your test. For more information, see “Defining 
Parameters for Your Test” on page 1280.

Environment Options for viewing existing built-in and user-defined 
environment variables, adding, modifying and saving 
user-defined environment variables, and selecting the 
active external environment variables file. For more 
information, see “Defining Environment Settings for 
Your Test” on page 1283.

Recovery Options for setting how QuickTest recovers from 
unexpected events and errors that occur in your testing 
environment during a run session. For more 
information, see “Defining Recovery Scenario Settings 
for Your Test” on page 1291.

Local System Monitor Options for activating and setting preferences for 
tracking system counters during a run session. For more 
information, see “Enabling System Monitoring for Your 
Test” on page 1296.



Chapter 45 • Setting Options for Individual Tests

1265

Defining Properties for Your Test

You can use the Properties pane of the Test Settings dialog box (File > 
Settings > Properties node) to view and define general information about 
your test, including the add-ins associated with it. You can also choose to 
generate an automation script for the test settings. 



Chapter 45 • Setting Options for Individual Tests

1266

The Properties pane of the Test Settings dialog box includes the following 
options:

Option Description

Name Indicates the name of the test. If the test is saved in a 
version-controlled project in Quality Center, the version 
number is also shown.

Author Indicates the Windows user name of the person who 
created the test.

Created in version Indicates the version of QuickTest used to create the test.

Modified in version Indicates the version of QuickTest last used to modify the 
test. 

Created on date Indicates the date and time that the test was created.

Modified on date Indicates the date and time that the test was last 
modified.

Location Indicates the path and filename of the test.

Description Enables you to specify a description for your test.

Associated add-ins Displays the add-ins associated with the test. For more 
information, see “Associating Add-ins with Your Test” on 
page 1267.

Modify Enables you to select the add-ins to associate with your 
test. For more information, see “Modifying Associated 
Add-Ins” on page 1268.

Generate Script Generates an automation script containing the current 
test settings. For more information, see “Automating 
QuickTest Operations” on page 1403 or the QuickTest 
Professional Automation Object Model Reference (Help > 
QuickTest Professional Help > HP QuickTest Professional 
Advanced References > HP QuickTest Professional 
Automation Object Model).



Chapter 45 • Setting Options for Individual Tests

1267

Associating Add-ins with Your Test
When you open QuickTest, you select the add-ins to load from the Add-in 
Manager dialog box. You can create and edit tests that work with any 
environment for which the necessary add-in is loaded. 

When you create a new test, the add-ins that are currently loaded are 
automatically associated with your test.

Choosing to associate an add-in with your test instructs QuickTest to check 
that the associated add-in is loaded each time you open that test.

When you open a test, QuickTest notifies you if an associated add-in is not 
currently loaded, or if you have loaded add-ins that are not currently 
associated with your test. This process ensures that your run session will not 
fail due to unloaded add-ins and reminds you to add required add-ins to the 
associated add-ins list if you plan to use them with the currently open test. 
For more information on loading and working with add-ins, see the 
HP QuickTest Professional Add-ins Guide. 

Quality Center uses the associated add-ins list to determine which add-ins 
to load when it opens QuickTest to run or view a test. For more information 
on working with Quality Center, see Chapter 51, “Integrating with 
Quality Center.”



Chapter 45 • Setting Options for Individual Tests

1268

Modifying Associated Add-Ins
You can associate or disassociate add-ins with your test in the Modify 
Associated Add-ins dialog box.

This dialog box lists all the add-ins currently associated with your test, as 
well as any other add-ins that are currently loaded in QuickTest. Add-ins 
that are associated with your test but not currently loaded are shown 
dimmed. 

Note: This list might also include child nodes representing add-ins that you 
or a third party developed to support additional environments or controls 
using add-in extensibility. For more information, see the relevant Add-in 
Extensibility Developer's Guide (available with the extensibility setup). 



Chapter 45 • Setting Options for Individual Tests

1269

You can select the check boxes for add-ins that you want to associate with 
your test, or clear the check boxes for add-ins that you do not want to 
associate with your test. If the Modify Associated Add-ins dialog box 
contains a child add-in, and you select it, the parent add-in is selected 
automatically. If you clear the check box for a parent add-in, the check 
boxes for its children are also cleared.

In the above example:

➤ Web is loaded and associated with the test.

➤ ActiveX is loaded, but not associated with the test.

➤ Visual Basic is associated with the test, but is not loaded.

Note: If a specific add-in is not currently loaded, but you want to associate it 
with your test, reopen QuickTest and load the add-in from the Add-in 
Manager. If the Add-in Manager dialog box is not displayed when you open 
QuickTest, you can choose to display it the next time you open QuickTest. 
To do so, select Display Add-in Manager on startup from the General pane 
of the Options dialog box.

For more information on the Options dialog box, see Chapter 44, “Setting 
Global Testing Options.”

For more information on the Add-in Manager, see the section on working 
with QuickTest add-ins in the HP QuickTest Professional Add-ins Guide.

You can also retrieve this list and load add-ins accordingly using an 
automation script. For more information on working with automation 
scripts, see the QuickTest Professional Automation Object Model Reference 
(Help > QuickTest Professional Help > HP QuickTest Professional Advanced 
References > HP QuickTest Professional Automation Object Model). 



Chapter 45 • Setting Options for Individual Tests

1270

Defining Run Settings for Your Test

When you run a test, QuickTest performs the test steps on your application.

You can use the Run pane in the Test Settings dialog box (File > Settings > 
Run node) to choose what to do when an error occurs during the run 
session, set the object synchronization timeout and choose whether or not 
to disable the Smart Identification mechanism for the test.  

By default, when you run a test with global Data Table parameters, 
QuickTest runs the test for each row in the Data Table, using the parameters 
you specified. For more information, see “Choosing Global or Action Data 
Table Parameters” on page 643. 



Chapter 45 • Setting Options for Individual Tests

1271

You can use the Run pane to instruct QuickTest to run iterations on a test 
only for certain lines in the Global tab in the Data Table.

Note: The Run pane of the Test Settings dialog box applies to the entire test. 
You can set the run properties for an individual action in a test from the Run 
tab in the Action Call Properties dialog box of a selected action. For more 
information on action run properties, see “Setting the Run Properties for an 
Action” on page 482. 

The Run pane includes the following options:

 

Option Description

Data Table iterations Specifies the iterations for the test. Select an option:

➤ Run one iteration only. Runs the test only once, using 
only the first row in the global Data Table.

➤ Run on all rows. Runs the test with iterations using all 
rows in the global Data Table.

➤ Run from row __ to row __. Runs the test with 
iterations using the values in the global Data Table for 
the specified row range.

When error occurs 
during run session

Specifies how QuickTest responds to an error during the 
run session. For more information, see “Specifying the 
Response to an Error” on page 1272.

Object 
synchronization 
timeout 

Sets the maximum time (in seconds) that QuickTest waits 
for an object to load before running a step in the test. 

Note: When working with Web objects, QuickTest waits 
up to the amount of time set for the Browser navigation 
timeout option, plus the time set for the object 
synchronization timeout. For more information on the 
Browser navigation timeout option, see the HP QuickTest 
Professional Add-ins Guide.



Chapter 45 • Setting Options for Individual Tests

1272

Specifying the Response to an Error

By default, if an error occurs during the run session, QuickTest displays a 
popup message box describing the error. You must click a button on this 
message box to continue or end the run session.

You can accept the popup message box option or you can specify a different 
response by choosing one of the alternative options in the list in the When 
error occurs during run session box:

➤ proceed to next action iteration. QuickTest proceeds to the next action 
iteration when an error occurs.

➤ stop run. QuickTest stops the run session when an error occurs.

➤ proceed to next step. QuickTest proceeds to the next step in the test when 
an error occurs.

Disable Smart 
Identification during 
the run session

Instructs QuickTest not to use the Smart Identification 
mechanism during the run session. 

Note: When you select this option, the Enable Smart 
Identification check boxes in the Object Properties and 
Object Repository dialog boxes are disabled, although the 
settings are saved. When you clear this option, the Enable 
Smart Identification check boxes return to their previous 
on or off setting.

Save image of 
desktop when error 
occurs (if test is run 
by the HP Business 
Process Monitor) 

This option is applicable only to tests that are run by the 
Business Process Monitor component of HP Business 
Availability Center.

Selecting this option instructs QuickTest to capture a 
snapshot of the desktop if an error occurs during a run 
session of a test initiated by the Business Process Monitor. 
The image is saved in Business Availability Center. The 
Business Process Monitor forwards the run results to the 
Business Availability Center servers.

Option Description



Chapter 45 • Setting Options for Individual Tests

1273

QuickTest first performs any recovery scenarios associated with the test, and 
performs the option selected above only if the associated recovery scenarios 
do not resolve the error. For more information, see “Defining Recovery 
Scenario Settings for Your Test” on page 1291.

Note: If you are working with many tests, you may want to use a QuickTest 
automation script to set a different value for each test. To access the 
automation script line that controls this option, you can use the Generate 
Script button in the Properties pane of the Test Settings dialog box. 

For more information, see “Automating QuickTest Operations” on 
page 1403 or the QuickTest Professional Automation Object Model Reference 
(Help > QuickTest Professional Help > HP QuickTest Professional Advanced 
References > HP QuickTest Professional Automation Object Model).



Chapter 45 • Setting Options for Individual Tests

1274

Defining Resource Settings for Your Test

You can use the Resources pane of the Test Settings dialog box (File > 
Settings > Resources node) to associate specific files with your test, such as 
VBScript function libraries and Data Table files. You can also set the 
currently associated function library settings as the default settings for all 
new tests. 

Note: Object repositories are associated with individual action(s) in your 
test. You can associate an object repository with an action using the Action 
Properties dialog box (Edit > Action > Action Properties) and the Associate 
Repositories dialog box (Resources > Associate Repositories).



Chapter 45 • Setting Options for Individual Tests

1275

The Resources pane in the Test Settings dialog box includes the following 
option areas:

Option Area Description

Libraries Displays the list of function libraries associated with your test. 
You can add, delete, and prioritize the files. You can also set the 
default function libraries for new tests. For more information, 
see “Specifying Associated Function Libraries” on page 1276. 

Set as Default Sets the current list of function libraries as the default list to be 
associated with new tests.

Note: The Set as Default option is available for tests only. It is 
enabled when the setting for this test is different from the 
default for all tests.

Caution: If the default function library is moved or renamed, 
QuickTest will not be able to locate it. The function library will 
be displayed in the Missing Resources pane when new actions 
or tests are created. For information on resolving missing 
resources, see Chapter 41, “Handling Missing Resources.”

Check Syntax Verifies whether any of the associated function libraries contain 
syntax errors that will prevent the test from running properly. 
Click the Check Syntax button to check the files for syntax 
errors before finalizing the test. If any syntax errors are found, 
the Information pane opens listing the files containing syntax 
errors. Otherwise, an information box opens confirming that 
the syntax in all of the function libraries is valid.

Note: QuickTest checks only the associated function libraries 
that can be accessed. For example, if an associated function 
library is stored in a Quality Center project to which you are 
not currently connected, its syntax will not be checked.



Chapter 45 • Setting Options for Individual Tests

1276

Specifying Associated Function Libraries
The Associated function libraries area of the Resources pane indicates the list 
of function libraries associated with your test. QuickTest searches these files 
for the VBScript functions, subroutines, and so forth that are specified in the 
test. 

The order of the function libraries in the list determines the order in which 
QuickTest searches for a function or subroutine that is called from a step in 
your test. If there are two functions or subroutines with the same name, 
QuickTest uses the first one it finds. For more information, see “Working 
with Associated Function Libraries” on page 919.

You can enter an associated function library using an absolute or relative 
path. If you enter it as a relative path, then during a run session, QuickTest 
searches for the file in the directory for the current test, and then in the 
folders listed in the Folders pane of the Options dialog box. For more 
information, see “Setting Folder Testing Options” on page 1237 and “Using 
Relative Paths in QuickTest” on page 316. 

Data Table Specifies the location of the Data Table to be used in your test: 

➤ Default location (under test directory). Instructs QuickTest 
to use data stored in the default Data Table location under 
the test folder.

➤ Other location. Instructs QuickTest to use data stored in the 
specified Data Table location. The Data Table can be any 
Microsoft Excel (.xls) file.

For more information on Data Tables, see “About Working with 
Data Tables” on page 1197.

Note: You can specify Microsoft Excel files stored in 
Quality Center as Data Tables. For more information, “Using 
Data Table Files with Quality Center” on page 1212.

Option Area Description



Chapter 45 • Setting Options for Individual Tests

1277

Notes: 

➤ When working with tests, if your function libraries are stored in the file 
system and you want other users or HP products to be able to run this 
test on other computers, you can set the file path as a relative path (click 
the path once to highlight it, and then click it again to enter edit mode). 
Any users who want to run this test should then specify the drive letter 
and folder in which QuickTest should search for the relative path in the 
Folders pane of the Options dialog box (Tools > Options > Folders node). 
For more information, see “Setting Folder Testing Options” on 
page 1237, and “Using Relative Paths in QuickTest” on page 316.

Important: If you are working with the Resources and Dependencies 
model with Quality Center 10.00, you should store your function 
libraries in the Quality Center Test Resources module and specify an 
absolute Quality Center path in the Folders pane. For more information, 
see “Considerations for Working with Relative Paths in Quality Center” 
on page 1450.

➤ You can also add, delete and prioritize the function libraries associated 
with your test using the Resources pane. For more information, see “The 
Resources Pane” on page 1161.



Chapter 45 • Setting Options for Individual Tests

1278

You can add, delete and prioritize the function libraries associated with your 
test using the function library control buttons:

Option Description

Associates a function library with the test. You can enter the absolute 
or relative path and filename of the function library, or use the browse 
button to locate the required file. If the function library contains 
syntax errors, a message opens stating that your test will fail because of 
these syntax errors.

The function library can be located in the file system or in a 
Quality Center project folder. For more information on associating a 
function library stored in Quality Center, see “Associating Function 
Libraries in Quality Center Project Folders” on page 1279, below.

Note: If you are working with the Resources and Dependencies model 
with Quality Center 10.00, specify an absolute Quality Center path. 
For more information, see “Considerations for Working with Relative 
Paths in Quality Center” on page 1450.

Removes an associated function library from the list.

Assigns a higher priority to the selected function library.

Assigns a lower priority to the selected function library.



Chapter 45 • Setting Options for Individual Tests

1279

Associating Function Libraries in Quality Center Project Folders

When you are connected to Quality Center and you click the  button, 
QuickTest adds [QualityCenter], and displays a browse button so that you can 
locate the Quality Center path.

When not connected to Quality Center, you can add a file located in a 
Quality Center project folder by holding the SHIFT key and clicking the 

button. QuickTest adds [QualityCenter], and you can enter the path. You 
can also type the entire Quality Center path manually. If you do, you must 
add a space after [QualityCenter]. For example: [QualityCenter] Subject\Tests.

Note: When running a test, QuickTest uses associated function libraries 
from Quality Center project folders only when you are connected to the 
corresponding Quality Center project.

For more information on working with Quality Center projects, see 
Chapter 51, “Integrating with Quality Center.”



Chapter 45 • Setting Options for Individual Tests

1280

Defining Parameters for Your Test

You use the Parameters pane of the Test Settings dialog box (File > Settings > 
Parameters node) to define input parameters that pass values into your test 
and output parameters that pass values from your test to external sources. 
You can also use the Parameters pane to modify or delete existing test 
parameters.

Test parameters are similar to Action parameters. For information on Action 
parameters, see “Setting Action Parameters” on page 472.



Chapter 45 • Setting Options for Individual Tests

1281

The Parameters pane contains the following parameter lists:

➤ Input parameters. Specifies the parameters that the test can receive values 
from the source that runs or calls it.

➤ Output parameters. Specifies the parameters that the test can pass to the 
source that runs or calls it.

You can edit an existing parameter by selecting it in the appropriate list and 
modifying its details.

You can add and remove input and output parameters for your test using 
the parameter control buttons:

Option Description

Adds a parameter to the appropriate parameter list. Enter a name for 
the new parameter (case sensitive) and select the parameter type. You 
can enter a description for the parameter, for example, the purpose of 
the parameter in the test. 

If you are defining an input parameter, a default value for the specified 
parameter type is automatically entered. You can modify a default 
value for the parameter in the Default Value column. For more 
information, see “Defining Default Values for Input Parameters” on 
page 1282, below.

You define test parameters in the same way you define action 
parameters. For information on defining parameters and parameter 
types, see “Setting Action Parameters” on page 472.

Removes the selected parameter from the test.



Chapter 45 • Setting Options for Individual Tests

1282

Defining Default Values for Input Parameters

When a test runs, the actual values used for parameters are generally those 
sent by the application calling the test (either QuickTest or Quality Center) 
as described in the table below:

If, when a test runs, a value is not supplied by QuickTest or Quality Center 
for one or more input parameters, QuickTest uses the default value for the 
parameter.

When you define a new parameter in the Parameters pane of the Test 
Settings dialog box, you can specify the default value for the parameter or 
you can keep the default value that QuickTest assigns for the specified 
parameter type as follows:

Document Type: Called From: Parameter Values Specified In:

Test QuickTest Input Parameters tab of the Run dialog 
box. For more information, see 
“Running Your Entire Test” on 
page 955.

Test Quality Center Test Run Properties dialog box (Test 
Lab module). For more information, 
see the HP Quality Center User Guide.

Value Type QuickTest Default Value

String Empty string

Boolean True

Date The current date

Number 0

Password Empty string

Any Empty string



Chapter 45 • Setting Options for Individual Tests

1283

Using Test Parameters in Steps

You can directly access test parameters only when parameterizing the value 
of a top-level action input parameter or when specifying the storage 
location for a top-level output parameter. To use values supplied for test 
parameters in steps within an action, you must pass the test parameter to 
the action containing the step. For more information, see “Setting Action 
Parameters” on page 472.

Defining Environment Settings for Your Test

The Environment pane of the Test Settings dialog box (File > Settings > 
Environment node) displays existing built-in and user-defined environment 
variables. It also enables you to add, modify, or delete internal user-defined 
environment variables, save the defined variables to an external .XML file, 
and retrieve them from a file.

If you export your user-defined variables to an external .XML file, you can 
then use the exported environment variable file with any other test.

For more information on environment variables and environment 
parameters, see “Using Environment Variable Parameters” on page 645.

The Environment pane includes the following options for the Variable type:

➤ Built-in. Displays the built-in environment variables defined by 
QuickTest Professional and their current values.

➤ User-defined. Displays both internal and external user-defined environment 
variables and their current values.



Chapter 45 • Setting Options for Individual Tests

1284

Built-in Environment Variables

When Built-in is selected, the Environment pane lists the built-in 
environment variables defined by QuickTest Professional.

The following information is displayed for built-in environment variables:

➤ Name. The name of each built-in environment variable

➤ Description. A short description of each built-in environment variable

➤ Current value. The current value of the selected environment variable



Chapter 45 • Setting Options for Individual Tests

1285

User-Defined Environment Variables

When User-defined is selected, the Environment pane lists the user-defined 
environment variables available for the test.

Note: Variables from an external environment variables file are displayed in 
blue. Internal environment variables are displayed in black.



Chapter 45 • Setting Options for Individual Tests

1286

The Environment pane provides the following information for user-defined 
environment variables:

➤ Name. The name of each user-defined variable

➤ Value. The value assigned to each user-defined variable

➤ Type. The type of each user-defined variable: Internal or External. Internal 
environment variables are available only to the test in which they are 
defined.

The Environment pane provides the following options for user-defined 
environment variables:

Option Description

Enables you to define a new internal environment variable 
and add it to the list. For more information, see “Adding 
User-Defined Environment Variables”, below. 

Deletes a selected internal environment variable from the 
list.

Note: After you confirm the deletion of the environment 
variable, you cannot retrieve it, even if you click Cancel in 
the Test Settings dialog box.

Enables you to edit the value of a selected internal 
environment variable or to view the properties of a 
selected external environment variable. For more 
information, see “Viewing and Modifying User-Defined 
Environment Variables” on page 1287.

Export Exports your user-defined environment variables to an 
external .XML file for use with other tests. You can then 
use the exported environment variable file with any test. 
For more information, see “Exporting and Loading User-
Defined Environment Variables” on page 1289.

Load variables and 
values from external 
file

Loads the variables saved in the .XML file that you specify 
for use with your test. For more information, see 
“Exporting and Loading User-Defined Environment 
Variables” on page 1289.



Chapter 45 • Setting Options for Individual Tests

1287

Adding User-Defined Environment Variables
You can add internal user-defined environment variables in the 
Environment pane of the Test Settings dialog box. Internal environment 
variables are available only to the test in which they are defined. 

To add internal user-defined environment variables:

 1 In the Variable type box of the Environment pane, select User-defined.

 2 Click the New button. The Add New Environment Parameter dialog box 
opens.

 3 Enter a definition for the variable as follows:

➤ Name. Enter the name of the variable.

➤ Value. Enter the value of the variable.

 4 Click OK to save your changes and close the Add New Environment 
Parameter dialog box. The variable is added to the list (displayed in black) in 
the Environment pane of the Test Settings dialog box. 

Viewing and Modifying User-Defined Environment 
Variables
You can edit the values of internal user-defined environment variables in 
the Environment pane of the Test Settings dialog box. You can also view the 
properties of external user-defined variables.

You can copy the values of internal and external variables for use in other 
areas of QuickTest, for example, in the Data Table.



Chapter 45 • Setting Options for Individual Tests

1288

To modify or copy an internal user-defined environment variable:

 1 In the Environment pane of the Test Settings dialog box, double-click the 
internal variable, or select it and click the View/Edit Environment Variable 
button. The Edit Environment Parameter dialog box opens.

 2 To modify the value of the variable, enter a different value in the Value box.

 3 To copy the value of the variable to the Clipboard, select the value text, 
right-click, and select Copy.

 4 Click OK to save your changes and close the Edit Environment Parameter 
dialog box. The value of the variable is updated in the Environment pane of 
the Test Settings dialog box.

To view an external user-defined environment variable:

 1 In the Environment pane of the Test Settings dialog box, double-click the 
external variable you want to view, or select it and click the View/Edit 
Environment Variable button. The View Environment Parameter dialog box 
displays the details of the selected variable.



Chapter 45 • Setting Options for Individual Tests

1289

If the variable has a complex value (a value that cannot be displayed entirely 
in the Value box), you can click the View/Edit Complex Value button to 
view the contents of the value.

 2 To copy the value of the variable to the Clipboard, select the value text, 
right-click and select Copy.

 3 Click Close to close the View Environment Parameter dialog box.

Exporting and Loading User-Defined Environment 
Variables
You can export your user-defined environment variables to an external 
.XML file for use with other tests. You can then use the exported 
environment variables with any test, by loading them from the file as 
external user-defined environment variables. 

If the file is saved to the file system, its values are loaded each time the test 
runs. If the file is saved to a Quality Center project, its values are loaded 
when the test is first loaded. If the values are changed after the test is loaded, 
the new values will not be used by QuickTest, until the next time the test is 
loaded.

To export user-defined environment variables:

 1 In the Environment pane of the Test Settings dialog box, click the Export 
button. The Save Environment Variable File dialog box opens, enabling you 
to export the current list of user-defined variables and values to an .XML file.

 2 In the sidebar, select the location in which you want to save the file, for 
example, File System or Quality Center Test Resources. 

 3 Browse to and select the folder in which you want to save the file.

 4 In the File name box, enter a name for the file and click Save.

Tip: If you want to save the file as an attachment to a test in the Test Plan 
module in Quality Center, select Quality Center Test Plan in the sidebar, 
browse to and double-click the test, and then click Save. 



Chapter 45 • Setting Options for Individual Tests

1290

Note: When you specify a path to a resource in the file system or in 
Quality Center 9.x, QuickTest checks if the path, or a part of the path, exists 
in the Folders pane of the Options dialog box (Tools > Options > Folders 
node). If the path exists, you are prompted to define the path using only the 
relative part of the path you entered. If the path does not exist, you are 
prompted to add the resource's location path to the Folders pane and define 
the path relatively. For more information, see “Using Relative Paths in 
QuickTest” on page 316.

If you are working with the Resources and Dependencies model with 
Quality Center 10.00, you should specify an absolute Quality Center path. 
For more information, see “Considerations for Working with Relative Paths 
in Quality Center” on page 1450.

To load variables from an external user-defined environment variable file:

 1 In the Test Settings dialog box navigation pane, click the Environment node. 

 2 In the Environment pane, select User-defined from the Variable type box. 
The options for user-defined variables are displayed.

 3 Select the Load variables and values from external file check box. 



Chapter 45 • Setting Options for Individual Tests

1291

 4 In the File box, enter the file name or click the browse button to find the 
external user-defined variable file.

The environment variables loaded from the selected file are displayed in 
blue in the Environment pane of the Test Settings dialog box.

Note: If you enter a relative path for the environment variable file, 
QuickTest searches for the file in the folders listed in the Folders pane of the 
Options dialog box. For more information, see “Setting Folder Testing 
Options” on page 1237 and “Using Relative Paths in QuickTest” on 
page 316.

If you are working with the Resources and Dependencies model with 
Quality Center 10.00, you should specify an absolute Quality Center path. 
For more information, see “Considerations for Working with Relative Paths 
in Quality Center” on page 1450.

For more information on built-in and user-defined variables, and for 
information on how to create an external user-defined environment 
variable file, see “Using Environment Variable Parameters” on page 645.

Defining Recovery Scenario Settings for Your Test

The Recovery pane of the Test Settings dialog box (File > Settings > Recovery 
node) displays a list of all recovery scenarios associated with the current test. 
It also enables you to associate additional recovery scenarios with the test, 
remove scenarios from the test, change the order in which they are applied 
to the run session, and view a read-only summary of each scenario. 

You can enable or disable specific scenarios or the entire recovery 
mechanism for the test. 

If you are working with tests, you can specify that the current list of 
scenarios be used as the default for all new tests.



Chapter 45 • Setting Options for Individual Tests

1292

You can also associate, remove, enable, disable, prioritize, and view the 
properties of the recovery scenarios associated with your test in the 
Resources pane. For more information, see “The Resources Pane” on 
page 1161.

For more information on recovery scenarios, see Chapter 48, “Defining and 
Using Recovery Scenarios.”



Chapter 45 • Setting Options for Individual Tests

1293

The Recovery pane includes the following option areas:

Option Area Description

Scenarios Displays the name and recovery file path for each recovery 
scenario associated with your test. You can add, delete, and 
prioritize the scenarios in the list, and you can edit the file path 
for a selected file. For more information, see Chapter 45, 
“Specifying Associated Recovery Scenarios”, below.

Scenario 
description

Displays the textual description of the scenario selected in the 
Scenarios box.

Activate 
recovery 
scenarios

Instructs QuickTest to check whether to run the associated 
scenarios as follows:

➤ On every step. The recovery mechanism is activated after 
every step. 

➤ On error. The recovery mechanism is activated only after 
steps that return an error return value.

➤ Never. The recovery mechanism is disabled.

Note: Choosing On every step may result in slower 
performance during the run session.

Set as Default Sets the current list of recovery scenario files as the default list 
to be associated with new tests.

Note: The Set as Default option is available for tests only. It is 
enabled when the setting for this test is different from the 
default for all tests.

Caution: If the file containing the recovery scenarios is moved 
or renamed, QuickTest will not be able to locate it. The recovery 
scenario file will be displayed in the Missing Resources pane 
when new actions or tests are created. For information on 
resolving missing resources, see Chapter 41, “Handling Missing 
Resources.”



Chapter 45 • Setting Options for Individual Tests

1294

Note: When working with tests, if your recovery files are stored in the file 
system and you want other users or HP products to be able to run this test 
on other computers, you should set the recovery file path as a relative path 
(click the path once to highlight it, and then click it again to enter edit 
mode). Any users who want to run this test should then specify the drive 
letter and folder in which QuickTest should search for the relative path in 
the Folders pane of the Options dialog box (Tools > Options > Folders node). 
For more information, see “Setting Folder Testing Options” on page 1237 
and “Using Relative Paths in QuickTest” on page 316.

If you are working with the Resources and Dependencies model with 
Quality Center 10.00, you should store your recovery files in the 
Quality Center Test Resources module and specify an absolute 
Quality Center path in the Folders pane. For more information, see 
“Considerations for Working with Relative Paths in Quality Center” on 
page 1450.

Specifying Associated Recovery Scenarios
You can select or clear the check box next to each scenario to enable or 
disable it for the current test. 

You can also edit the recovery scenario file path by clicking the path once to 
highlight it, and then clicking it again to enter edit mode. For example, you 
may want to modify an absolute file path to be a relative file path. If you 
modify a recovery scenario file path, ensure that the recovery scenario exists 
in the new path location before running your test.



Chapter 45 • Setting Options for Individual Tests

1295

Scenarios are indicated by the following icons:

Note: The default recovery scenarios provided with QuickTest are installed 
in your QuickTest installation folder. The paths specifying the default 
recovery scenarios in the Recovery pane use an environment variable 
(%ProductDir%) in the file path. This enables QuickTest to locate these 
recovery scenarios when tests associated with them are run on different 
computers or by different HP products. Do not modify the file paths of these 
default recovery scenarios or attempt to use the environment variable for 
any other purpose.

Icon Description

Indicates that the recovery scenario is triggered by a specific pop-up 
window in an open application during the run session.

Indicates that the recovery scenario is triggered when the property values 
of an object in an application match specified values.

Indicates that the recovery scenario is triggered when a step in the test 
does not run successfully.

Indicates that the recovery scenario is triggered when a specified 
application fails during the run session.

Indicates that the recovery scenario is no longer available for the test—
possibly because the recovery file has been renamed or moved, or can no 
longer be accessed by QuickTest. When an associated recovery file is not 
available during a run session, a message is displayed in the test results.



Chapter 45 • Setting Options for Individual Tests

1296

You can add, delete, and prioritize the recovery scenario files associated with 
your test using the recovery scenario file control buttons:

Enabling System Monitoring for Your Test

You can use the Local System Monitor pane of the Test Settings dialog box 
(File > Settings > Local System Monitor node) to activate and set preferences 
for tracking system counters during a run session.

The local system monitor tracking options enable you to track application 
performance counters during a run session. These counters enable you to 
monitor the resources used by your application. 

The system counters that can be monitored are the process counters 
accessible through the Performance Console (Select Start > Run > and then 
enter Perfmon). For information on the process counters accessible through 
the Performance Console, see the Performance Console Help.

You can also define limits for the counters. If the specified counters exceed 
these limits, the test run will fail. The results of the system counters are 
viewed in the Test Results window. For more information, see “Viewing 
System Monitor Results” on page 1063.

Option Description

Opens the Add Recovery Scenario dialog box, which enables you to 
associate one or more recovery scenarios with the test. For more 
information, see “Adding Recovery Scenarios to Your Test” on 
page 1373.

Removes the selected recovery scenario from the test.

Moves the selected scenario up in the list, giving it a higher priority.

Moves the selected scenario down in the list, giving it a lower priority.

Displays summary properties for the selected recovery scenario in 
read-only format. For more information, see “Viewing Recovery 
Scenario Properties” on page 1376.



Chapter 45 • Setting Options for Individual Tests

1297

The Test Settings Dialog Box: Local System Monitor Pane
 

Description Enables you to activate system monitoring, and 
define the system counters you want to track during 
a run session.

How to Access File menu> Settings item > Local System Monitor 
node

Important Information ➤ The Local System Monitor data that is captured 
during a test run is displayed in the Test Results 
window. For more information, see “Viewing 
System Monitor Results” on page 1063.

➤ If there is more than one process with the same 
name running during a test, and you monitor a 
counter for that process (for example, you select 
to monitor a counter for the iexplorer.exe 
process, and more than one Internet Explorer 
browser is open on your desktop during the run 
session), the counter will be sampled from the 
application that contains at least one test object 
from the test. If more than one application meets 
this criterion, only one application will be 
monitored. 

Learn More Conceptual overview: “Enabling System Monitoring 
for Your Test” on page 1296.



Chapter 45 • Setting Options for Individual Tests

1298

Below is an image of the Local System Monitor pane in the Test Settings 
dialog box:

 



Chapter 45 • Setting Options for Individual Tests

1299

The Test Settings Dialog Box: Local System Monitor Pane 
Options
 

Option Description

Enable local system 
monitoring every: __ 
seconds

Defines the frequency in seconds, by which the 
system counters for this application will be 
checked. Use the up and down arrows or enter a 
value in the edit box to change the number of 
seconds. The minimum value is one second.

Application to monitor Defines the application whose system counters you 
want to monitor. You can define the application in 
one of the following ways:

➤ Enter the name of the application’s executable 
file (without file extension) in the edit box.

➤ Click the down arrow in the edit box for a list of 
applications previously run in QuickTest, 
currently running applications, and applications 
currently specified in the Windows Applications 
tab of the Record and Run Settings dialog.

➤ Click the browse button  and browse to the 
application’s executable file.

➤ Make sure that your application is currently 
running and then click the pointing hand  
and point to the application on your desktop.

Note: Sometimes a process is used only as a 
launcher that creates another process that actually 
provides the application functionality. Make sure 
that the executable file you provide is the one that 
actually provides the application functionality.

Remove button  Click the Remove button to remove the system 
counter definition from your test.



Chapter 45 • Setting Options for Individual Tests

1300

System Counter column Defines the system counter you want to track for 
the selected application. Click inside the cell and 
then click the down arrow. Select the counter from 
the list. Click the expand button  when 
displayed to show more counters.

The system counters that can be monitored are the 
process counters accessible through the 
Performance Console (Select Start > Run > and 
then enter Perfmon). For information on the 
process counters accessible through the 
Performance Console, see the Performance Console 
Help.

Limit column Defines the upper limit of the counter selected in 
the System Counter column. If the selected counter 
exceeds this value during the run session, the test 
fails. The limit value is optional. If you do not 
supply a value, the counter is tracked and the 
results are displayed in the Test Results window.

Description Displays the description of the counter selected in 
the System Counter column, as provided by the 
Performance Console application.

Option Description



1301

46
Using the Setting Object to Set Testing 
Options During the Run Session

You can use the Setting object to control how QuickTest run tests by setting 
and retrieving testing options during a run session. 

This chapter includes:

 ➤  About Setting Testing Options During the Run Session on page 1301

 ➤  Setting Testing Options on page 1302

 ➤  Retrieving Testing Options on page 1304

 ➤  Controlling the Test Run on page 1305

 ➤  Adding and Removing Run-Time Settings on page 1305

About Setting Testing Options During the Run Session

QuickTest testing options affect how you work with tests. For example, you 
can set the maximum time that QuickTest allows when loading a Web page, 
before determining that the URL address cannot be found. 

You can set and retrieve the values of testing options during a run session 
using the Setting object in the Expert View. For more information on 
working in the Expert View, see Chapter 29, “Working in the Expert View 
and Function Library Windows.”

By retrieving and setting testing options using the Setting object, you can 
control how QuickTest runs a test. 



Chapter 46 • Using the Setting Object to Set Testing Options During the Run Session

1302

You can also set many testing options using the Options dialog box (global 
testing options) and the Test Settings dialog box (test-specific settings). For 
more information, see Chapter 44, “Setting Global Testing Options” and 
Chapter 45, “Setting Options for Individual Tests.” 

This chapter describes some of the QuickTest testing options that can be 
used with the Setting object from within a test script. For detailed 
information on all the available methods and properties for the Setting 
object, see the Utility section of the HP QuickTest Professional Object Model 
Reference.

Note: You can also control QuickTest options as well as most other 
QuickTest operations using automation scripts. For more information, see 
“Automating QuickTest Operations” on page 1403 or the QuickTest 
Professional Automation Object Model Reference (Help > QuickTest Professional 
Help > HP QuickTest Professional Advanced References > 
HP QuickTest Professional Automation Object Model).

Setting Testing Options 

You can use the Setting object to set the value of a testing option from 
within the test script. To set the option, use the following syntax:

Setting (testing_option) = new_value

Some options are global and others affect only the current test. After you use 
a Setting object to set a testing option, the setting remains in effect until it is 
changed again or until the end of your current QuickTest session. You can 
also use the Setting object to change a setting for a specific part of a specific 
test. For more information see “Controlling the Test Run” on page 1305.



Chapter 46 • Using the Setting Object to Set Testing Options During the Run Session

1303

Some of the testing options that you can set using the Setting object are also 
available in the Options dialog box (global options) or the Test Settings 
dialog box (test specific settings). When you use the Setting object to set 
these options, the change is reflected in the relevant dialog box. Other test 
settings can be accessed using only one method, either the relevant dialog 
box or the Setting object.

Example: Using the Setting Object to Set an Option Reflected in 
the Options Dialog Box

If you run the following statement with the Web Add-in loaded:

Setting("AutomaticLinkRun")=1

QuickTest disables automatically created checkpoints in the test. The setting 
remains in effect during your current QuickTest session until it is changed 
again, either with another Setting statement, or by clearing the Ignore 
automatic checkpoints while running tests or components check box in the 
Web Advanced pane (Select Tools > Options > Web > Advanced node).

Example: Using the Setting Object to Set an Option Reflected in 
the Test Settings Dialog Box

If you run the following statement:

Setting("WebTimeOut")=50000

QuickTest automatically changes the amount of time it waits for a Web page 
to load before running a test step to 50000 milliseconds. The setting remains 
in effect during your current QuickTest session until it is changed again, 
either with another Setting statement, or by setting the Browser Navigation 
Timeout option in the Web pane of the Test Settings dialog box.



Chapter 46 • Using the Setting Object to Set Testing Options During the Run Session

1304

Note: Although the changes you make using the Setting object are reflected 
in the Options and Test Settings dialog boxes, these changes are not saved 
when you close QuickTest, unless you make other changes in the same 
dialog box manually and click Apply or OK (which saves all current settings 
in that dialog box).

Retrieving Testing Options

You can also use the Setting object to retrieve the current value of a testing 
option. 

To store the value in a variable, use the syntax:

new_var = Setting ( testing_option )

To display the value in a message box, use the syntax:

MsgBox (Setting (testing_option) ) 

For example:

LinkCheckSet = Setting("AutomaticLinkRun")

assigns the current value of the AutomaticLinkRun setting to the user-defined 
variable LinkCheckSet.

Other examples of testing options that you can use to retrieve a setting are 
shown in “Setting Testing Options” on page 1302.



Chapter 46 • Using the Setting Object to Set Testing Options During the Run Session

1305

Controlling the Test Run

You can use the retrieve and set capabilities of the Setting object together to 
control a run session without changing global settings. For example, if you 
want to change the DefaultTimeOut testing option to 5 seconds for objects 
on one Web page only, insert the following statement after the Web page 
opens in your test script:

‘Keep the original value of the DefaultTimeOut testing option
old_delay = Setting ("DefaultTimeOut") 

‘Set temporary value for the DefaultTimeOut testing option
Setting("DefaultTimeOut")= 5000

To return the DefaultTimeOut testing option to its original value at the end 
of the Web page, insert the following statement immediately before linking 
to the next page in the script:

‘Change the DefaultTimeOut testing option back to its original value.
Setting("DefaultTimeOut")=old_delay

Adding and Removing Run-Time Settings

In addition to the global and specific settings, you can also add, modify, and 
remove custom run-time settings. These settings are applicable during the 
run session only.

To add a new run-time setting, use the syntax:

Setting.Add "testing_option", "value"

For example, you could create a setting that indicates the name of the 
current tester and displays the name in a message box.

Setting.Add "Tester Name", "Mark Train"
MsgBox Setting("Tester Name")



Chapter 46 • Using the Setting Object to Set Testing Options During the Run Session

1306

Tip: When using a Setting.Add statement, an error occurs if you try to add an 
existing setting option. To avoid this error you should use a Setting.Exists 
statement first. For more details about all the Setting methods, see the 
HP QuickTest Professional Object Model Reference.

To modify a run-time setting that has already been initialized, use the same 
syntax you use for setting any standard setting option:

Setting ( testing_option ) = new_value

For example:

Setting("Tester Name")="Alice Wonderlin"

To delete a custom run-time setting, use the following syntax:

Setting.Remove ( testing_option )

For example:

Setting.Remove ("Tester Name")

Tip: When using a Setting.Remove statement, an error occurs if you try to 
remove a setting option that does not exist. To avoid this error you should 
use a Setting.Exists statement first. For more details about all the Setting 
methods, see the HP QuickTest Professional Object Model Reference.



1307

Part X

Working with Advanced Testing Features



1308



1309

47
Learning Virtual Objects

You can teach QuickTest to recognize any area of your application as an 
object by defining it as a virtual object. Virtual objects enable you to create 
and run tests on objects that are not normally recognized by QuickTest.

You can manage the virtual objects defined on your computer using the 
Virtual Object Manager.

This chapter includes:

 ➤  About Learning Virtual Objects on page 1310

 ➤  Understanding Virtual Objects on page 1311

 ➤  Understanding the Virtual Object Manager on page 1312

 ➤  Defining a Virtual Object on page 1314

 ➤  Removing or Disabling Virtual Object Definitions on page 1327



Chapter 47 • Learning Virtual Objects

1310

About Learning Virtual Objects

Your application may contain objects that behave like standard objects but 
are not recognized by QuickTest. You can define these objects as virtual 
objects and map them to standard classes, such as a button or a check box. 
QuickTest emulates the user’s action on the virtual object during the run 
session. In the test results, the virtual object is displayed as though it is a 
standard class object.

For example, suppose you want to test a Web page containing a bitmap that 
the user clicks. The bitmap contains several different hyperlink areas, and 
each area opens a different destination page. When you create the test, the 
Web site matches the coordinates of the click on the bitmap and opens the 
destination page. 

To enable QuickTest to click at the required coordinates during a run 
session, you can define a virtual object for an area of the bitmap, which 
includes those coordinates, and map it to the button class. When you run 
the test, QuickTest clicks the bitmap in the area defined as a virtual object so 
that the Web site opens the correct destination page. 

You define a virtual object using the Virtual Object Wizard (Tools > Virtual 
Objects > New Virtual Object). The wizard prompts you to select the 
standard object class to which you want to map the virtual object. You then 
mark the boundaries of the virtual object using a crosshairs pointer. Next, 
you select a test object as the parent of the virtual object. Finally, you specify 
a name and a collection for the virtual object. For more information, see 
“Defining a Virtual Object” on page 1314.

Virtual object collections are groups of virtual objects that are stored in the 
Virtual Object Manager under a descriptive name. For more information, see 
“Understanding the Virtual Object Manager” on page 1312.



Chapter 47 • Learning Virtual Objects

1311

The virtual object collections displayed in the Virtual Object Manager are 
stored on your computer and not with the tests that contain virtual object 
steps. This means that if you use a virtual object in a test step, the object will 
be recognized during the run session only if it is run on a computer 
containing the appropriate virtual object definition. To copy your virtual 
object collection definitions to another computer, copy the contents of your 
<QuickTest installation folder>\dat\VoTemplate folder (or individual .vot 
collection files within this folder) to the same folder on the destination 
computer.

Note: QuickTest does not support virtual objects for analog or low-level 
recording. For more information on low-level recording, see “Creating 
Tests” on page 1552.

Understanding Virtual Objects

QuickTest identifies a virtual object according to its boundaries. Marking an 
object’s boundaries specifies its size and position on a Web page or 
application window. When you assign a test object as the parent of your 
virtual object, you specify that the coordinates of the virtual object 
boundaries are relative to that parent object. When you record a test, 
QuickTest recognizes the virtual object within the parent object and adds it 
as a test object in the object repository so that QuickTest can identify the 
object during the run session. QuickTest also recognizes the virtual object as 
a test object when you add it manually to the object repository.

You can disable recognition of virtual objects without deleting them from 
the Virtual Object Manager. For more information, see “Removing or 
Disabling Virtual Object Definitions” on page 1327. 



Chapter 47 • Learning Virtual Objects

1312

Notes:

➤ During a run session, make sure that the application window is the same 
size and in the same location as it was during recording, otherwise the 
coordinates of the virtual object relative to its parent object may be 
different, and this may affect the success of the run session.

➤ You can use virtual objects only when recording and running a test. You 
cannot insert any type of checkpoint on a virtual object, or use the 
Object Spy to view its properties.

➤ To perform an operation in the Active Screen on a marked virtual object, 
you must first record it, so that its properties are saved in the test object 
description in the object repository. If you perform an operation in the 
Active Screen on a virtual object that has not yet been recorded, 
QuickTest treats it as a standard object.

Understanding the Virtual Object Manager

The Virtual Object Manager enables you to view and manage the virtual 
object collections defined on your computer. From the Virtual Object 
Manager, you can define and delete virtual objects and collections.

For more information on using the Virtual Object Manager, see The Virtual 
Object Manager Dialog Box.



Chapter 47 • Learning Virtual Objects

1313

The Virtual Object Manager Dialog Box
 

Below is an image of the Virtual Object Manager dialog box: 

Description Enables you to define and delete virtual objects and 
collections.

How to Access Select Tools > Virtual Objects > Virtual Object 
Manager.

Learn More Conceptual overview: “About Learning Virtual 
Objects” on page 1310

Additional related topics: “Understanding Virtual 
Objects” on page 1311



Chapter 47 • Learning Virtual Objects

1314

Virtual Object Manager Dialog Box Options
 

Defining a Virtual Object

Using the Virtual Object Wizard, you can map a virtual object to a standard 
object class, specify the boundaries and the parent of the virtual object, and 
assign it a name. You can also group your virtual objects logically by 
assigning them to collections.

Note: You can define virtual objects only for objects on which QuickTest 
records Click or DblClick methods. Otherwise, the virtual object is ignored. 
For example, if you define a virtual object over the WinList object, the Select 
operation is recorded, and the virtual object is ignored. QuickTest does not 
support virtual objects for analog or low-level recording. For more 
information on low-level recording, see “Frequently Asked Questions” on 
page 1551.

Option Description

Available virtual object 
collections list

Displays the virtual object collections defined on 
your computer and the virtual objects contained in 
each collection. Click the + and - signs next to a 
collection to view or hide the virtual objects 
defined in that collection.

New button Opens the Virtual Object Wizard, which guides you 
through the process of defining a new virtual 
object for a new or existing collection. For more 
information, see “Defining a Virtual Object” on 
page 1314.

Delete button Deletes the selected virtual object or virtual object 
collection. For more information, see “Removing or 
Disabling Virtual Object Definitions” on 
page 1327.



Chapter 47 • Learning Virtual Objects

1315

For information on the Virtual Object Wizard screens, see:

➤ “The Virtual Object Wizard: Welcome Screen” on page 1317

➤ “The Virtual Object Wizard: Map to a Standard Class Screen” on page 1319

➤ “The Virtual Object Wizard: Mark Virtual Object Screen” on page 1321

➤ “The Virtual Object Wizard: Object Configuration Screen” on page 1323

➤ “The Virtual Object Wizard: Save Virtual Object Screen” on page 1325

To define a virtual object:

 1 With QuickTest open (but not in record mode), open your application and 
display the object containing the area you want to define as a virtual object.

 2 In QuickTest:

 a Open the Virtual Object Wizard in one of the following ways:

➤ Select Tools > Virtual Objects > New Virtual Object. 

➤ From the Virtual Object Manager, click New. 

 b Click Next.

 3 In the Map to a Standard Class screen:

 a Select a standard class to which you want to map your virtual object. For 
the list class, specify the number of rows in the virtual object. For the 
table class, select the number of rows and columns. 

For more information, see “The Virtual Object Wizard: Map to a Standard 
Class Screen” on page 1319.

 b Click Next.

 4 In the Mark Virtual Object screen:

 a Click Mark Object. The QuickTest window and the Virtual Object Wizard 
are minimized. 

 b Use the crosshairs pointer to mark the area of the virtual object. You can 
use the arrow keys while holding down the left mouse button to make 
precise adjustments to the area you define with the crosshairs. 



Chapter 47 • Learning Virtual Objects

1316

For more information, see “The Virtual Object Wizard: Mark Virtual 
Object Screen” on page 1321.

 c Click Next. 

Note: The virtual object should not overlap other virtual objects in your 
application. If the virtual object overlaps another virtual object, 
QuickTest may not record or run tests correctly on the virtual objects.

 5 In the Object Configuration screen:

 a Select an object in the object tree to assign it as the parent of the virtual 
object. 

 b In the Identify object using box, select how you want QuickTest to 
identify and map the virtual object. 

For more information, see “The Virtual Object Wizard: Object 
Configuration Screen” on page 1323. 

 c Click Next.

 6 In the Save Virtual Object screen:

 a Specify a name and a collection for the virtual object. For more 
information, see “The Virtual Object Wizard: Save Virtual Object Screen” 
on page 1325.

 b Perform one of the following:

➤ To add the virtual object to the Virtual Object Manager and close the 
wizard, select No and then click Finish.

➤ To add the virtual object to the Virtual Object Manager and define 
another virtual object, select Yes and then click Next. The wizard 
returns to the Map to a Standard Class screen, where you can define 
the next virtual object.



Chapter 47 • Learning Virtual Objects

1317

The Virtual Object Wizard: Welcome Screen
 

Below is an image of the Virtual Object Wizard Welcome Screen: 

Description Describes how you can use the wizard to define a 
virtual object by:

➤ Mapping it to a standard class

➤ Marking its boundaries

➤ Assigning a parent object

➤ Specifying a name and collection

How to Access ➤ Select Tools > Virtual Objects > New Virtual 
Object. 

➤ Select Tools > Virtual Objects > Virtual Object 
Manager. From the Virtual Object Manager, click 
New.

Previous Screen This is the first screen in the wizard.

Next Screen “The Virtual Object Wizard: Map to a Standard 
Class Screen” on page 1319



Chapter 47 • Learning Virtual Objects

1318

Welcome Screen Options

Additional References
| 

Option Description

Next Click Next to go to the Map to a Standard Class 
screen.

Related Tasks ➤ “Defining a Virtual Object” on page 1314

➤ “Removing or Disabling Virtual Object 
Definitions” on page 1327

Related Concepts ➤ “Understanding Virtual Objects” on page 1311

➤ “The Virtual Object Manager Dialog Box” on 
page 1313



Chapter 47 • Learning Virtual Objects

1319

The Virtual Object Wizard: Map to a Standard Class 
Screen
 

Below is an image of the Map to a Standard Class Screen: 

Description Enables you to configure a standard class for the 
virtual object.

Previous Screen “The Virtual Object Wizard: Welcome Screen” on 
page 1317

Next Screen “The Virtual Object Wizard: Save Virtual Object 
Screen” on page 1325



Chapter 47 • Learning Virtual Objects

1320

Map to a Standard Class Screen Options

Additional References
| 

Option Description

Class Specify a standard object class from the list.

➤ For the list class, specify the number of rows in 
the virtual object. 

➤ For the table class, select the number of rows 
and columns.

Back Click Back to go to the Welcome screen. 

Next Click Next to go to the Mark Virtual Object screen.

Related Tasks ➤ “Defining a Virtual Object” on page 1314

➤ “Removing or Disabling Virtual Object 
Definitions” on page 1327

Related Concepts ➤ “Understanding Virtual Objects” on page 1311

➤ “The Virtual Object Manager Dialog Box” on 
page 1313



Chapter 47 • Learning Virtual Objects

1321

The Virtual Object Wizard: Mark Virtual Object Screen
 

Below is an image of the Mark Virtual Object Screen: 

Description Enables you to configure the size and location of 
the virtual object. 

Previous Screen “The Virtual Object Wizard: Map to a Standard 
Class Screen” on page 1319

Next Screen “The Virtual Object Wizard: Object Configuration 
Screen” on page 1323



Chapter 47 • Learning Virtual Objects

1322

Mark Virtual Object Screen Options

Additional References
| 

Option Description

Mark Object Enables you to mark the outline for the virtual 
object. Using the crosshairs pointer, mark the 
outline for the virtual object in the application.

Make sure that the virtual object does not overlap 
any other virtual object, as this may prevent 
QuickTest from identifying the virtual object 
during a run session.

Note: To record and run tests properly, you must 
ensure that the application window is the same size 
and in the same position as it was when you 
defined the virtual object.

Width Indicates the width of the outline in pixels.

Height Indicates the height of the outline in pixels.

Back Click Back to go to the Map to a Standard Class 
screen. 

Next Click Next to go to the Object Configuration 
screen.

Related Tasks ➤ “Defining a Virtual Object” on page 1314

➤ “Removing or Disabling Virtual Object 
Definitions” on page 1327

Related Concepts ➤ “Understanding Virtual Objects” on page 1311

➤ “The Virtual Object Manager Dialog Box” on 
page 1313



Chapter 47 • Learning Virtual Objects

1323

The Virtual Object Wizard: Object Configuration Screen
 

Below is an image of the Object Configuration Screen: 

Object Configuration Screen Options

Description Enables you to configure an object as a parent of the 
virtual object.

Previous Screen “The Virtual Object Wizard: Mark Virtual Object 
Screen” on page 1321

Next Screen “The Virtual Object Wizard: Save Virtual Object 
Screen” on page 1325

Option Description

Select the parent of the 
virtual object area

Enables you to select an object in the tree as the 
parent object. The coordinates of the virtual object 
outline are relative to the parent object.

Selected parent box
(read-only)

Indicates the name of the object selected as the 
parent object.



Chapter 47 • Learning Virtual Objects

1324

Additional References
| 

Identify object using area Indicates how you want QuickTest to identify and 
map the virtual object, as described below. The 
coordinates of the virtual object outline are relative 
to the parent object you select. 

Entire parent hierarchy 
radio button

Select this option to identify the virtual object in 
one occurrence only. QuickTest identifies the 
virtual object only if it has the exact parent 
hierarchy. 

For example, if the virtual object is defined using 
Browser("A").Page("B").Image("C"), QuickTest does 
not recognize it if the hierarchy changes to 
Browser("X").Page("B").Image("C").

Parent only radio button Select this option to identify all occurrences of the 
virtual object. QuickTest identifies the virtual 
object using its direct parent only, regardless of the 
entire parent hierarchy. 

For example, if the virtual object was defined using 
Browser("A").Page("B").Image("C"), QuickTest will 
recognize the virtual object even if the hierarchy 
changes to Browser("X").Page("Y").Image("C"). 

Back button Click Back to go to the Mark Virtual Object screen. 

Next button Click Next to go to the Save Virtual Object screen.

Related Tasks ➤ “Defining a Virtual Object” on page 1314

➤ “Removing or Disabling Virtual Object 
Definitions” on page 1327

Related Concepts ➤ “Understanding Virtual Objects” on page 1311

➤ “The Virtual Object Manager Dialog Box” on 
page 1313

Option Description



Chapter 47 • Learning Virtual Objects

1325

The Virtual Object Wizard: Save Virtual Object Screen
 

Below is an image of the Save Virtual Object Screen: 

Save Virtual Object Screen Options

Description Enables you to configure a name and a collection 
for the virtual object. Also enables you to begin 
defining another virtual object.

Previous Screen “The Virtual Object Wizard: Object Configuration 
Screen” on page 1323

Next Screen This is the final screen in the wizard.

Option Description

Name box Specify the name of the virtual object. Choose from 
the list of collections or create a new one by 
entering a new name in the Collection name box.

Collection name box Specify the name of the collection. You can choose 
an existing name or enter a new name. 



Chapter 47 • Learning Virtual Objects

1326

Additional References
| 

Do you want to define 
another virtual object? area

➤ Select Yes and then click Next to use the wizard 
to define another virtual object.

➤ Select No and then click Finish to close the 
wizard. 

Back button Click Back to go to the Object Configuration 
screen. 

Next button If you selected the Yes radio button for the Do you 
want to define another virtual object? option, 
QuickTest displays the Next button.

Click Next to save the virtual object and go to the 
Map to a Standard Class screen to begin defining 
another virtual object.

Finish button If you selected the No radio button for the Do you 
want to define another virtual object? option, 
QuickTest displays the Finish button.

Click Finish to save the virtual object and close the 
wizard.

Related Tasks ➤ “Defining a Virtual Object” on page 1314

➤ “Removing or Disabling Virtual Object 
Definitions” on page 1327

Related Concepts ➤ “Understanding Virtual Objects” on page 1311

➤ “The Virtual Object Manager Dialog Box” on 
page 1313

Option Description



Chapter 47 • Learning Virtual Objects

1327

Removing or Disabling Virtual Object Definitions

You can remove virtual objects from your test by deleting them or by 
disabling recognition of these objects while recording.

To delete a virtual object:

 1 Select Tools > Virtual Objects > Virtual Object Manager. The Virtual Object 
Manager opens. For more information, see “The Virtual Object Manager 
Dialog Box” on page 1313.

 2 In the list of available virtual object collections, click the plus sign (+) next 
to the collection to display the virtual object you want to delete. Select the 
virtual object, and click Delete.

To delete an entire collection, select it and click Delete.

 3 Click Close.

Tip: Click New in the Virtual Object Manager to open the Virtual Object 
Wizard, where you can define a new virtual object.

To disable recognition of virtual objects while recording:

 1 Select Tools > Options or click the Options toolbar button. The Options 
dialog box opens. 

 2 In the General pane, select the Disable recognition of virtual objects while 
recording check box.

 3 Click OK.

Note: When you want QuickTest to recognize virtual objects during 
recording, ensure that the Disable recognition of virtual objects while 
recording check box in the General pane of the Options dialog box is 
cleared. For more information, see “Setting General Testing Options” on 
page 1234.



Chapter 47 • Learning Virtual Objects

1328



1329

48
Defining and Using Recovery Scenarios

You can instruct QuickTest to recover from unexpected events and errors 
that occur in your testing environment during a run session.

This chapter includes:

 ➤  About Defining and Using Recovery Scenarios on page 1330

 ➤  Deciding When to Use Recovery Scenarios on page 1332

 ➤  Defining Recovery Scenarios on page 1333

 ➤  Understanding the Recovery Scenario Wizard on page 1338

 ➤  Managing Recovery Scenarios on page 1367

 ➤  Associating Recovery Scenarios with Your Tests on page 1372

 ➤  Programmatically Controlling the Recovery Mechanism on page 1379



Chapter 48 • Defining and Using Recovery Scenarios

1330

About Defining and Using Recovery Scenarios

Unexpected events, errors, and application crashes during a run session can 
disrupt your run session and distort results. This is a problem particularly 
when tests run unattended—the test pauses until you perform the operation 
needed to recover. To handle situations such as these, QuickTest enables you 
to create recovery scenarios and associate them with specific tests. Recovery 
scenarios activate specific recovery operations when trigger events occur. For 
information on when to use recovery scenarios, see “Deciding When to Use 
Recovery Scenarios” on page 1332.

The Recovery Scenario Manager provides a wizard that guides you through 
the process of defining a recovery scenario, which includes a definition of 
an unexpected event and the operations necessary to recover the run 
session. For example, you can instruct QuickTest to detect a Printer out of 
paper message and recover the run session by clicking the OK button to 
close the message and continue the test.

A recovery scenario consists of the following:

➤ Trigger Event. The event that interrupts your run session. For example, a 
window that may pop up on screen, or a QuickTest run error.

➤ Recovery Operations. The operations to perform to enable QuickTest to 
continue running the test after the trigger event interrupts the run session. 
For example, clicking an OK button in a pop-up window, or restarting 
Microsoft Windows. 

➤ Post-Recovery Test Run Option. The instructions on how QuickTest should 
proceed after the recovery operations have been performed, and from which 
point in the test QuickTest should continue, if at all. For example, you may 
want to restart a test from the beginning, or skip a step entirely and 
continue with the next step in the test.

Recovery scenarios are saved in recovery scenario files. A recovery scenario 
file is a logical collection of recovery scenarios, grouped according to your 
own specific requirements.



Chapter 48 • Defining and Using Recovery Scenarios

1331

To instruct QuickTest to perform a recovery scenario during a run session, 
you must first associate the recovery scenario with that test. A test can have 
any number of recovery scenarios associated with it. You can prioritize the 
scenarios associated with your test to ensure that trigger events are 
recognized and handled in the required order. For more information, see 
“Adding Recovery Scenarios to Your Test” on page 1373.

When you run a test for which you have defined recovery scenarios and an 
error occurs, QuickTest looks for the defined trigger events that caused the 
error. If a trigger event has occurred, QuickTest performs the corresponding 
recovery and post-recovery operations. 

You can also control and activate your recovery scenarios during the run 
session by inserting Recovery statements into your test. For more 
information, see “Programmatically Controlling the Recovery Mechanism” 
on page 1379.

Note: If you select On error in the Activate recovery scenarios box in the 
Recovery pane of the Test Settings dialog box, the recovery mechanism does 
not handle triggers that occur in the last step of a test. If you chose this 
option and need to recover from an unexpected event or error that may 
occur in the last step of a test, you can do this by adding an extra step to the 
end of your test.



Chapter 48 • Defining and Using Recovery Scenarios

1332

Deciding When to Use Recovery Scenarios

Recovery scenarios are intended for use only with events that you cannot 
predict in advance, or for events that you cannot otherwise synchronize 
with a specific step in your test. For example, you could define a recovery 
scenario to handle printer errors. Then if a printer error occurs during a run 
session, the recovery scenario could instruct QuickTest to click the default 
button in the Printer Error message box. 

You would use a recovery scenario in this example because you cannot 
handle this type of error directly in your test. This is because you cannot 
know at what point the network will return the printer error. Even if you try 
to handle this event by adding an If statement in your test immediately after 
a step that sends a file to the printer, your test may progress several steps 
before the network returns the actual printer error. 

If you can predict that a certain event may happen at a specific point in 
your test, it is highly recommended to handle that event directly within 
your test by adding steps such as If statements or optional steps, rather than 
depending on a recovery scenario. For example, if you know that an 
Overwrite File message box may open when a Save button is clicked during 
a run session, you can handle this event with an If statement that clicks OK 
if the message box opens or by adding an optional step that clicks OK in the 
message box. 

Handling an event directly within your test enables you to handle errors 
more specifically than recovery scenarios, which by nature are designed to 
handle a more generic set of unpredictable events. It also enables you to 
control the timing of the corrective operation with minimal resource usage 
and maximum performance. By default, recovery scenario operations are 
activated only after a step returns an error. This can potentially occur several 
steps after the step that originally caused the error. The alternative, checking 
for trigger events after every step, may slow performance. For this reason, it 
is best to handle predictable errors directly in your test.

For more information on optional steps, see “Using Optional Steps” on 
page 963. For more information on inserting programming statements such 
as If statements, see Chapter 28, “Adding Steps Containing Programming 
Logic.”



Chapter 48 • Defining and Using Recovery Scenarios

1333

Defining Recovery Scenarios

You create recovery scenarios using the Recovery Scenario Wizard (accessed 
from the Recovery Scenario Manager dialog box). The Recovery Scenario 
Wizard leads you through the process of defining each of the stages of a 
recovery scenario. As you create your recovery scenarios, you save them in a 
recovery file. A recovery file is a convenient way to organize and store 
multiple recovery scenarios together.

Using the Recovery Scenario Manager dialog box, you can then select any 
recovery file to manage all of the recovery scenarios stored in that file. This 
enables you to edit a selected recovery scenario, associate specific recovery 
scenarios with specific tests to instruct QuickTest to implement the recovery 
scenarios when specified trigger events occur, and so forth.



Chapter 48 • Defining and Using Recovery Scenarios

1334

Creating a Recovery File
You create recovery files to store your recovery scenarios. You can create a 
new recovery file or edit an existing one.

To create a recovery file:

 1 Select Resources > Recovery Scenario Manager. The Recovery Scenario 
Manager dialog box opens.



Chapter 48 • Defining and Using Recovery Scenarios

1335

 2 By default, the Recovery Scenario Manager dialog box opens with a new 
recovery file. You can use this new file, or you can open an existing recovery 
file, in one of the following ways:

➤ Click the arrow next to the Open button to select a recently-used 
recovery file from the list.

➤ Do the following:

 a Click the Open button to choose an existing recovery file. 

 b In the sidebar of the Open Recovery Scenario dialog box, select the 
location where the file is stored, for example, File System or 
Quality Center Test Resources. 

 c Browse to and select the recovery scenario file you want to open and 
click Open. If the recovery file is stored in a version-control-enabled 
project in Quality Center, you can click the Open down arrow and select 
Open and Check out to check out the file.

You can now create recovery scenarios using the Recovery Scenario Wizard 
and save them in your recovery file, as described in the following sections.



Chapter 48 • Defining and Using Recovery Scenarios

1336

Understanding the Recovery Scenario Manager Dialog 
Box
The Recovery Scenario Manager dialog box enables you to create and edit 
recovery files, and create and manage the recovery scenarios stored in those 
files.

The Recovery Scenario Manager dialog box displays the name of the 
currently open recovery file, a list of the scenarios saved in the recovery file, 
and a description of each scenario.



Chapter 48 • Defining and Using Recovery Scenarios

1337

The Recovery Scenario Manager dialog box contains the following toolbar 
buttons: 

Option Description

Creates a new recovery file. For more information, see 
“Creating a Recovery File” on page 1334.

Opens an existing recovery file. You can also click the arrow to 
select a recovery file from the list of recently-used recovery 
files.

Saves the current recovery file. For more information, see 
“Saving the Recovery Scenario in a Recovery File” on 
page 1365.

Enables you to manage version control for your recovery 
scenarios. (Options are available only if QuickTest is connected 
to a version control-enabled Quality Center project.) 

For more information, see “Managing Versions of Assets in 
Quality Center” on page 1480 and “Viewing and Comparing 
Versions of QuickTest Assets” on page 1461.

Opens the Recovery Scenario Wizard, in which you define a 
new recovery scenario. For more information, see 
“Understanding the Recovery Scenario Wizard” on page 1338.

Opens the Recovery Scenario Wizard for the selected recovery 
scenario, in which you can modify the recovery scenario 
settings. For more information, see “Modifying Recovery 
Scenarios” on page 1370.

Displays summary properties for the selected recovery scenario 
in read-only format. For more information, see “Viewing 
Recovery Scenario Properties” on page 1368.

Copies a recovery scenario from the open recovery file to the 
Clipboard. This enables you to paste a recovery scenario into 
another recovery file. For more information, see “Copying 
Recovery Scenarios between Recovery Scenario Files” on 
page 1371.



Chapter 48 • Defining and Using Recovery Scenarios

1338

Note: Each recovery scenario is represented by an icon that indicates its 
type. For more information, see “Managing Recovery Scenarios” on 
page 1367.

Understanding the Recovery Scenario Wizard

The Recovery Scenario Wizard leads you, step-by-step, through the process 
of creating a recovery scenario. The Recovery Scenario Wizard contains the 
following main steps:

➤ Defining the trigger event that interrupts the run session

➤ Specifying the recovery operations required to continue

➤ Choosing a post-recovery test run operation

➤ Specifying a name and description for the recovery scenario

➤ Specifying whether to associate the recovery scenario to the current test 
and/or to all new tests

You open the Recovery Scenario Wizard by clicking the New Scenario 
button in the Recovery Scenario Manager dialog box (Resources > Recovery 
Scenario Manager).

Pastes a recovery scenario from the Clipboard into the open 
recovery file. For more information, see “Copying Recovery 
Scenarios between Recovery Scenario Files” on page 1371.

Deletes a recovery scenario. For more information, see 
“Deleting Recovery Scenarios” on page 1370.

Option Description



Chapter 48 • Defining and Using Recovery Scenarios

1339

Welcome to the Recovery Scenario Wizard Screen
The Welcome to the Recovery Scenario Wizard screen provides general 
information on the different options in the Recovery Scenario Wizard, and 
provides an overview of the stages involved in defining a recovery scenario.

Click Next to continue to the Select Trigger Event Screen (described on 
page 1340).



Chapter 48 • Defining and Using Recovery Scenarios

1340

Select Trigger Event Screen
The Select Trigger Event screen enables you to define the event type that 
triggers the recovery scenario, and the way in which QuickTest recognizes 
the event. 

Select a type of trigger and click Next. The next screen displayed in the 
wizard depends on which of the following trigger types you select:

➤ Pop-up window. QuickTest detects a pop-up window and identifies it 
according to the window title and textual content. For example, a message 
box may open during a run session, indicating that the printer is out of 
paper. QuickTest can detect this window and activate a defined recovery 
scenario to continue the run session.

Select this option and click Next to continue to the Specify Pop-up Window 
Conditions Screen (described on page 1342).



Chapter 48 • Defining and Using Recovery Scenarios

1341

➤ Object state. QuickTest detects a specific test object state and identifies it 
according to its property values and the property values of all its ancestors. 
Note that an object is identified only by its property values, and not by its 
class. 

For example, a specific button in a dialog box may be disabled when a 
specific process is open. QuickTest can detect the object property state of the 
button that occurs when this problematic process is open and activate a 
defined recovery scenario to close the process and continue the run session.

Select this option and click Next to continue to the Select Object Screen 
(described on page 1345).

➤ Test run error. QuickTest detects a run error and identifies it by a failed 
return value from a method. For example, QuickTest may not be able to 
identify a menu item specified in the method argument, due to the fact that 
the menu item is not available at a specific point during the run session. 
QuickTest can detect this run error and activate a defined recovery scenario 
to continue the run session.

Select this option and click Next to continue to the Select Test Run Error 
Screen (described on page 1349).

➤ Application crash. QuickTest detects an application crash and identifies it 
according to a predefined list of applications. For example, a secondary 
application may crash when a certain step is performed in the run session. 
You want to be sure that the run session does not fail because of this crash, 
which may indicate a different problem with your application. QuickTest 
can detect this application crash and activate a defined recovery scenario to 
continue the run session.

Select this option and click Next to continue to the Recovery Operations 
Screen (described on page 1352).



Chapter 48 • Defining and Using Recovery Scenarios

1342

Notes: 

➤ The set of recovery operations is performed for each occurrence of the 
trigger event criteria. For example, suppose you define a specific object 
state, and two objects match this state, the set of recovery operations is 
performed two times, once for each object that matches the specified 
state.

➤ The recovery mechanism does not handle triggers that occur in the last 
step of a test. If you need to recover from an unexpected event or error 
that may occur in the last step of a test, you can do this by adding an 
extra step to the end of your test.

Specify Pop-up Window Conditions Screen
If you chose a Pop-up window trigger in the Select Trigger Event Screen 
(described on page 1340), the Specify Pop-up Window Conditions screen 
opens.



Chapter 48 • Defining and Using Recovery Scenarios

1343

Perform one of the following to specify how the pop-up window should be 
identified:

➤ Choose whether you want to identify the pop-up window according to 
its Window title and/or Window text and then enter the text used to 
identify the pop-up window. You can use regular expressions in the 
window title or textual content by selecting the relevant Regular 
expression check box and then entering the regular expression in the 
relevant location. For information on regular expressions, see 
“Understanding and Using Regular Expressions” on page 762.

➤ Click the pointing hand. Then click the pop-up window to capture the 
window title and textual content of the window. For more information 
on using the pointing hand, see “Tips for Using the Pointing Hand” on 
page 1344.

Note: Using the first option (Window title and/or Window text) instructs 
QuickTest to identify any pop-up window that contains the relevant title 
and/or text. Using the second option (pointing hand) instructs QuickTest to 
identify only pop-up windows that match the object property values of the 
window you select.

Click Next to continue to the Recovery Operations Screen (described on 
page 1352). 



Chapter 48 • Defining and Using Recovery Scenarios

1344

Tips for Using the Pointing Hand

➤ You can hold the left CTRL key to change the pointing hand to a standard 
pointer. You can then change the window focus or perform operations in 
QuickTest or in your application, such as right-clicking, using the scroll bars, 
or moving the pointer over an object to display a context menu.

➤ If the window containing the object you want to select is partially hidden 
by another window, hold the pointing hand over the partially hidden 
window for a few seconds until it comes to the foreground. Then point to 
and click the required object. You can configure the length of time required 
to bring a window into the foreground using the General pane of the 
Options dialog box. 

➤ If the window containing the object you want to select is fully hidden by 
another window, or if a dialog box is hidden behind a window, press the left 
CTRL key and arrange the windows as needed.

➤ If the window containing the object you want to select is minimized, you 
can display it by holding the left CTRL key, right-clicking the application in 
the Windows task bar, and choosing Restore from the context menu.

➤ If the object you want to select can be displayed only by performing an 
event (such as right-clicking or moving the pointer over an object to display 
a context menu), hold the left CTRL key. The pointing hand temporarily 
turns into a standard pointer and you can perform the event. When the 
object you want to select is displayed, release the left CTRL key. The pointer 
becomes a pointing hand again.



Chapter 48 • Defining and Using Recovery Scenarios

1345

Select Object Screen
If you chose an Object state trigger in the Select Trigger Event Screen 
(described on page 1340), the Select Object screen opens.

Click the pointing hand and then click the object whose properties you 
want to specify. For more information on using the pointing hand, see “Tips 
for Using the Pointing Hand” on page 1347.



Chapter 48 • Defining and Using Recovery Scenarios

1346

If the location you click is associated with more than one object, the Object 
Selection–Object State Trigger dialog box opens.

Select the object whose properties you want to specify and click OK. The 
selected object and its parents are displayed in the Select Object screen.

Note: The hierarchical object selection tree also enables you to select an 
object that QuickTest would not ordinarily learn (a non-parent object), such 
as a Web table.

Click Next to continue to the Set Object Properties and Values Screen 
(described on page 1348).



Chapter 48 • Defining and Using Recovery Scenarios

1347

Tips for Using the Pointing Hand

➤ You can hold the left CTRL key to change the pointing hand to a standard 
pointer. You can then change the window focus or perform operations in 
QuickTest or in your application, such as right-clicking, using the scroll bars, 
or moving the pointer over an object to display a context menu.

➤ If the window containing the object you want to select is partially hidden 
by another window, hold the pointing hand over the partially hidden 
window for a few seconds until it comes to the foreground. Then point to 
and click the required object. You can configure the length of time required 
to bring a window into the foreground using the General pane of the 
Options dialog box. 

➤ If the window containing the object you want to select is fully hidden by 
another window, or if a dialog box is hidden behind a window, press the left 
CTRL key and arrange the windows as needed.

➤ If the window containing the object you want to select is minimized, you 
can display it by holding the left CTRL key, right-clicking the application in 
the Windows task bar, and choosing Restore from the context menu.

➤ If the object you want to select can be displayed only by performing an 
event (such as right-clicking or moving the pointer over an object to display 
a context menu), hold the left CTRL key. The pointing hand temporarily 
turns into a standard pointer and you can perform the event. When the 
object you want to select is displayed, release the left CTRL key. The pointer 
becomes a pointing hand again.



Chapter 48 • Defining and Using Recovery Scenarios

1348

Set Object Properties and Values Screen
After you select the object whose properties you want to specify in the Select 
Object Screen (described on page 1345), the Set Object Properties and Values 
screen opens.

For each object in the hierarchy, in the Edit property value box, you can 
modify the property values used to identify the object. You can also click the 
Add/Remove button to add or remove object properties from the list of 
property values to check. Note that an object is identified only by its 
property values, and not by its class.

Select the Regular expression check box if you want to use regular 
expressions in the property value. For information on regular expressions, 
see “Understanding and Using Regular Expressions” on page 762.

Click Next to continue to the Recovery Operations Screen (described on 
page 1352).



Chapter 48 • Defining and Using Recovery Scenarios

1349

Select Test Run Error Screen
If you chose a Test run error trigger in the Select Trigger Event Screen 
(described on page 1340), the Select Test Run Error screen opens.

In the Error list, select the run error that you want to use as the trigger 
event:

➤ Any error. Any error code that is returned by a test object method.

➤ Item in list or menu is not unique. Occurs when more than one item in the 
list, menu, or tree has the name specified in the method argument.

➤ Item in list or menu not found. Occurs when QuickTest cannot identify the 
list, menu, or tree item specified in the method argument. This may be due 
to the fact that the item is not currently available or that its name has 
changed.

➤ More than one object responds to the physical description. Occurs when 
more than one object in your application has the same property values as 
those specified in the test object description for the object specified in the 
step. 



Chapter 48 • Defining and Using Recovery Scenarios

1350

➤ Object is disabled. Occurs when QuickTest cannot perform the step because 
the object specified in the step is currently disabled.

➤ Object not found. Occurs when no object within the specified parent object 
matches the test object description for the object.

➤ Object not visible. Occurs when QuickTest cannot perform the step because 
the object specified in the step is not currently visible on the screen.

Click Next to continue to the “Recovery Operations Screen” on page 1352.

Select Processes Screen
If you chose an Application crash trigger in the Select Trigger Event Screen 
(described on page 1340), the Select Processes screen opens.

The Running processes list displays all application processes that are 
currently running. The Processes list displays the application processes that 
will trigger the recovery scenario if they crash.



Chapter 48 • Defining and Using Recovery Scenarios

1351

You can add application processes to the Processes list by typing them in 
the Processes list or by selecting them from the Running processes list.

➤ To add a process from the Running processes list, double-click a process 
in the Running processes list or select it and click the Add button. You 
can select multiple processes using standard Windows multiple selection 
techniques (CTRL and SHIFT keys).

➤ To add a process directly to the Processes list, click the Add New Process 
button to enter the name of any process you want to add to the list. 

➤ To remove a process from the Processes list, select it and click the 
Remove Process button.

Tip: You can modify the name of a process by selecting it in the Processes 
list and clicking the process name to edit it.

Click Next to continue to the Recovery Operations Screen (described on 
page 1352).



Chapter 48 • Defining and Using Recovery Scenarios

1352

Recovery Operations Screen
The Recovery Operations screen enables you to manage the collection of 
recovery operations in the recovery scenario. Recovery operations are 
operations that QuickTest performs sequentially when it recognizes the 
trigger event.

You must define at least one recovery operation. To define a recovery 
operation and add it to the Recovery operations list, click Next to continue 
to the Recovery Operation Screen (described on page 1353).

If you define two or more recovery operations, you can select a recovery 
operation and use the Move Up or Move Down buttons to change the order 
in which QuickTest performs the recovery operations. You can also select a 
recovery operation and click the Remove button to delete a recovery 
operation from the recovery scenario.



Chapter 48 • Defining and Using Recovery Scenarios

1353

Note: If you define a Restart Microsoft Windows recovery operation, it is 
always inserted as the last recovery operation, and you cannot change its 
position in the list.

After you have defined at least one recovery operation, the Add another 
recovery operation check box is displayed. 

➤ Select the check box and click Next to define another recovery operation.

➤ Clear the check box and click Next to continue to the Post-Recovery Test 
Run Options Screen (described on page 1361).

Recovery Operation Screen
The Recovery Operation screen enables you to specify the operations 
QuickTest performs after it detects the trigger event.

Select a type of recovery operation and click Next. The next screen displayed 
in the wizard depends on which recovery operation type you select.



Chapter 48 • Defining and Using Recovery Scenarios

1354

You can define the following types of recovery operations:

➤ Keyboard or mouse operation. QuickTest simulates a click on a button in a 
window or a press of a keyboard key. Select this option and click Next to 
continue to the Recovery Operation - Click Button or Press Key Screen 
(described on page 1355).

➤ Close application process. QuickTest closes specified processes. Select this 
option and click Next to continue to the Recovery Operation - Close 
Processes Screen (described on page 1357).

➤ Function call. QuickTest calls a VBScript function. Select this option and 
click Next to continue to the Recovery Operation - Function Call Screen 
(described on page 1358).

➤ Restart Microsoft Windows. QuickTest restarts Microsoft Windows. Select 
this option and click Next to continue to the Recovery Operations Screen 
(described on page 1352).

Note: If you use the Restart Microsoft Windows recovery operation, you 
must ensure that any test associated with this recovery scenario is saved 
before you run it. You must also configure the computer on which the test is 
run to automatically log in on restart.



Chapter 48 • Defining and Using Recovery Scenarios

1355

Recovery Operation - Click Button or Press Key Screen
If you chose a Keyboard or mouse operation recovery operation in the 
Recovery Operation Screen (described on page 1353), the Recovery 
Operation – Click Button or Press Key screen opens.

Specify the keyboard or mouse operation that you want QuickTest to 
perform when it detects the trigger event:

➤ Click Default button / Press the ENTER key. Instructs QuickTest to click the 
default button or press the ENTER key in the displayed window when the 
trigger occurs.

➤ Click Cancel button / Press the ESCAPE key. Instructs QuickTest to click the 
Cancel button or press the ESCAPE key in the displayed window when the 
trigger occurs.



Chapter 48 • Defining and Using Recovery Scenarios

1356

➤ Click button with label. Instructs QuickTest to click the button with the 
specified label in the displayed window when the trigger occurs. If you select 
this option, click the pointing hand and then click anywhere in the trigger 
window. For more information on using the pointing hand, see “Tips for 
Using the Pointing Hand” on page 1356.

All button labels in the selected window are displayed in the list box. Select 
the required button from the list.

➤ Press key or key combination. Instructs QuickTest to press the specified 
keyboard key or key combination in the displayed window when the trigger 
occurs. If you select this option, click in the edit box and then press the key 
or key combination on your keyboard that you want to specify. 

Click Next. The Recovery Operations Screen reopens, showing the keyboard 
or mouse recovery operation that you defined. 

Tips for Using the Pointing Hand

➤ You can hold the left CTRL key to change the pointing hand to a standard 
pointer. You can then change the window focus or perform operations in 
QuickTest or in your application, such as right-clicking, using the scroll bars, 
or moving the pointer over an object to display a context menu.

➤ If the window containing the object you want to select is partially hidden 
by another window, hold the pointing hand over the partially hidden 
window for a few seconds until it comes to the foreground. Then point to 
and click the required object. You can configure the length of time required 
to bring a window into the foreground using the General pane of the 
Options dialog box. 

➤ If the window containing the object you want to select is fully hidden by 
another window, or if a dialog box is hidden behind a window, press the left 
CTRL key and arrange the windows as needed.

➤ If the window containing the object you want to select is minimized, you 
can display it by holding the left CTRL key, right-clicking the application in 
the Windows task bar, and choosing Restore from the context menu.



Chapter 48 • Defining and Using Recovery Scenarios

1357

➤ If the object you want to select can be displayed only by performing an 
event (such as right-clicking or moving the pointer over an object to display 
a context menu), hold the left CTRL key. The pointing hand temporarily 
turns into a standard pointer and you can perform the event. When the 
object you want to select is displayed, release the left CTRL key. The pointer 
becomes a pointing hand again.

Recovery Operation - Close Processes Screen
If you chose a Close application process recovery operation in the Recovery 
Operation Screen (described on page 1353), the Recovery Operation – Close 
Processes screen opens.

The Running processes list displays all application processes that are 
currently running. The Processes to close list displays the application 
processes that will be closed when the trigger is activated.

➤ To add a process from the Running processes list, double-click a process 
in the Running processes list or select it and click the Add button. You 
can select multiple processes using standard Windows multiple selection 
techniques (CTRL and SHIFT keys).



Chapter 48 • Defining and Using Recovery Scenarios

1358

➤ To add a process directly to the Processes to close list, click the Add New 
Process button to enter the name of any process you want to add to the 
list. 

➤ To remove a process from the Processes to close list, select it and click the 
Remove Process button.

Tip: You can modify the name of a process by selecting it in the Processes to 
close list and clicking the process name to edit it.

Click Next. The Recovery Operations Screen reopens, showing the close 
processes recovery operation that you defined.

Recovery Operation - Function Call Screen
If you chose a Function call recovery operation in the Recovery Operation 
Screen (described on page 1353), the Recovery Operation – Function Call 
screen opens.



Chapter 48 • Defining and Using Recovery Scenarios

1359

Select a recently specified function library in the Function Library box. 
Alternatively, click the browse button to navigate to an existing function 
library. 

Note: QuickTest automatically associates the function library you select 
with your test. Therefore, you do not need to associate the function library 
with your test in the Resources pane of the Test Settings dialog box. 

After you select a function library, choose one of the following options:

➤ Select function. Choose an existing function from the function library you 
selected. 

Only functions that match the prototype syntax for the trigger type selected 
in the “Select Trigger Event Screen” on page 1340 are displayed. 

Following is the prototype for each trigger type:

Test run error trigger
OnRunStep
(
[in]  Object as Object: The object of the current step.
[in]  Method as String: The method of the current step.
[in]   Arguments as Array: The actual method's arguments.
[in]   Result as Integer: The actual method's result.
)

Pop-up window and Object state triggers
OnObject
(
[in]  Object as Object: The detected object.
)

Application crash trigger
OnProcess
(
[in]  ProcessName as String: The detected process's Name.
[in]  ProcessId as Integer: The detected process' ID.
)



Chapter 48 • Defining and Using Recovery Scenarios

1360

➤ Define new function. Create a new function by specifying a unique name for 
it, and defining the function in the Function Name box according to the 
displayed function prototype. The new function is added to the function 
library you selected.

Note: If more than one scenario uses a function with the same name from 
different function libraries, the recovery process may fail. In this case, 
information regarding the recovery failure is displayed during the run 
session.

Click Next. The Recovery Operations Screen (described on page 1352) 
reopens, showing the function operation that you defined. 



Chapter 48 • Defining and Using Recovery Scenarios

1361

Post-Recovery Test Run Options Screen
When you clear the Add another recovery operation check box in the 
Recovery Operations Screen (described on page 1352) and click Next, the 
Post-Recovery Test Run Options screen opens. Post-recovery test run options 
specify how to continue the run session after QuickTest has identified the 
event and performed all of the specified recovery operations. 

QuickTest can perform one of the following run session options after it 
performs the recovery operations you defined:

➤ Repeat current step and continue

The current step is the step that QuickTest was running when the recovery 
scenario was triggered. If you are using the On error activation option for 
recovery scenarios, the step that returns the error is often one or more steps 
later than the step that caused the trigger event to occur. 

Thus, in most cases, repeating the current step does not repeat the trigger 
event. For more information, see “Enabling and Disabling Recovery 
Scenarios” on page 1377.



Chapter 48 • Defining and Using Recovery Scenarios

1362

➤ Proceed to next step

Skips the step that QuickTest was running when the recovery scenario was 
triggered. Keep in mind that skipping a step that performs operations on 
your application may cause subsequent steps to fail.

➤ Proceed to next action or component iteration

Stops performing steps in the current action or component iteration and 
begins the next iteration from the beginning (or from the next action or 
component if no additional iterations of the current action or component 
are required).

➤ Proceed to next test iteration

Stops performing steps in the current action and begins the next QuickTest 
test iteration from the beginning (or stops running the test if no additional 
iterations of the test are required). 

➤ Restart current test run

Stops performing steps and re-runs the test from the beginning.

➤ Stop the test run

Stops running the test.

Note: If you chose Restart Microsoft Windows as a recovery operation, you 
can choose from only the last two test run options listed above.

Select a test run option and click Next to continue to the Name and 
Description Screen (described on page 1363).



Chapter 48 • Defining and Using Recovery Scenarios

1363

Name and Description Screen
After you specify a test run option in the Post-Recovery Test Run Options 
Screen (described on page 1361), and click Next, the Name and Description 
screen opens. 

In the Name and Description screen, you specify a name by which to 
identify your recovery scenario. You can also add descriptive information 
regarding the scenario. 

Enter a name and a textual description for your recovery scenario, and click 
Next to continue to the Completing the Recovery Scenario Wizard Screen 
(described on page 1364).



Chapter 48 • Defining and Using Recovery Scenarios

1364

Completing the Recovery Scenario Wizard Screen
After you specify a recovery scenario name and description in the Name and 
Description Screen (described on page 1363) and click Next, the Completing 
the Recovery Scenario Wizard screen opens. 

In the Completing the Recovery Scenario Wizard screen, you can review a 
summary of the scenario settings you defined. You can also specify whether 
to automatically associate the recovery scenario with the current test and/or 
to add it to the default settings for all new tests.

You can select the Add scenario to current test check box to associate this 
recovery scenario with the current test. When you click Finish, QuickTest 
adds the recovery scenario to the Scenarios list in the Recovery pane of the 
Test Settings dialog box.

You can select the Add scenario to default test settings check box to make 
this recovery scenario a default scenario for all new tests. The next time you 
create a test, this scenario will be listed in the Scenarios list in the Recovery 
pane of the Test Settings dialog box.



Chapter 48 • Defining and Using Recovery Scenarios

1365

Note: You can remove scenarios from the default scenarios list. For more 
information, see “Defining Recovery Scenario Settings for Your Test” on 
page 1291.

Click Finish to complete the recovery scenario definition.

Saving the Recovery Scenario in a Recovery File
After you create or modify a recovery scenario in a recovery file using the 
Recovery Scenario Wizard, you need to save the recovery file.

Tip: If you have not yet saved the recovery file, and you click the Close 
button in the Recovery Scenario Manager dialog box, QuickTest prompts 
you to save the recovery file. Click Yes, and proceed with step 2 below. If 
you added or modified scenarios in an existing recovery file, and you click 
Yes to the message prompt, the recovery file and its scenarios are saved.

To save a new or modified recovery file:

 1 In the Recovery Scenario Manager dialog box, click the Save button. If you 
added or modified scenarios in an existing recovery file, the recovery file 
and its scenarios are saved. If you are using a new recovery file, the Save 
Recovery Scenario dialog box opens.

Tip: You can also click the arrow to the right of the Save button and select 
Save As to save the recovery file under a different name.

 2 In the sidebar, select the location in which you want to save the file, for 
example, File System or Quality Center Test Resources. 

 3 Browse to and select the folder in which you want to save the file.



Chapter 48 • Defining and Using Recovery Scenarios

1366

 4 In the File name box, enter a name for the file and click Save.

Tip: If you want to save the file as an attachment to a test in the Test Plan 
module in Quality Center, select Quality Center Test Plan in the sidebar, 
browse to and double-click the test, and then click Save. 

Note: When you specify a path to a resource in the file system or in 
Quality Center 9.x, QuickTest checks if the path, or a part of the path, exists 
in the Folders pane of the Options dialog box (Tools > Options > Folders 
node). If the path exists, you are prompted to define the path using only the 
relative part of the path you entered. If the path does not exist, you are 
prompted to add the resource's location path to the Folders pane and define 
the path relatively. For more information, see “Using Relative Paths in 
QuickTest” on page 316.

If you are working with the Resources and Dependencies model with 
Quality Center 10.00, you should specify an absolute Quality Center path. 
For more information, see “Considerations for Working with Relative Paths 
in Quality Center” on page 1450.

The recovery file is saved in the specified location with the .qrs file 
extension.



Chapter 48 • Defining and Using Recovery Scenarios

1367

Managing Recovery Scenarios

After you create recovery scenarios, you can use the Recovery Scenario 
Manager to manage them. 



Chapter 48 • Defining and Using Recovery Scenarios

1368

The Recovery Scenario Manager contains the following recovery scenario 
icons:

The Recovery Scenario Manager enables you to manage existing scenarios 
by:

➤ Viewing Recovery Scenario Properties

➤ Modifying Recovery Scenarios

➤ Deleting Recovery Scenarios

➤ Copying Recovery Scenarios between Recovery Scenario Files

Viewing Recovery Scenario Properties
You can view properties for any defined recovery scenario.

To view recovery scenario properties:

 1 In the Scenarios box, select the recovery scenario whose properties you want 
to view.

Icon Description

Indicates that the recovery scenario is triggered when a window pops 
up in an open application during the run session.

Indicates that the recovery scenario is triggered when the property 
values of an object in an application match specified values.

Indicates that the recovery scenario is triggered when a step in the test 
does not run successfully.

Indicates that the recovery scenario is triggered when an open 
application fails during the run session.



Chapter 48 • Defining and Using Recovery Scenarios

1369

 2 Click the Properties button. Alternatively, you can double-click a scenario in 
the Scenarios box. The Recovery Scenario Properties dialog box opens.

The Recovery Scenario Properties dialog box displays the following 
read-only information about the selected scenario:

➤ General tab. Displays the name and description defined for the recovery 
scenario, plus the name and path of the recovery file in which the scenario 
is saved.

➤ Trigger Event tab. Displays the settings for the trigger event defined for the 
recovery scenario.

➤ Recovery Operation tab. Displays the recovery operations defined for the 
recovery scenario.

➤ Post-Recovery Operation tab. Displays the post-recovery operation defined 
for the recovery scenario.



Chapter 48 • Defining and Using Recovery Scenarios

1370

Modifying Recovery Scenarios
You can modify the settings for an existing recovery scenario.

To modify a recovery scenario:

 1 In the Scenarios box, select the scenario that you want to modify.

 2 Click the Edit button. The Recovery Scenario Wizard opens, with the 
settings you defined for the selected recovery scenario.

 3 Navigate through the Recovery Scenario Wizard and modify the details as 
needed. For information on the Recovery Scenario Wizard options, see 
“Defining Recovery Scenarios” on page 1333.

Note: Modifications you make are not saved until you click Save in the 
Recovery Scenario Manager dialog box. If you have not yet saved your 
modifications, and you click the Close button in the Recovery Scenario 
Manager dialog box, QuickTest prompts you to save the recovery file. Click 
Yes to save your changes.

Deleting Recovery Scenarios
You can delete an existing recovery scenario if you no longer need it. When 
you delete a recovery scenario from the Recovery Scenario Manager, the 
corresponding information is deleted from the recovery scenario file. 

Note: If a deleted recovery scenario is associated with a test, QuickTest 
ignores it during the run session.



Chapter 48 • Defining and Using Recovery Scenarios

1371

To delete a recovery scenario:

 1 In the Scenarios box, select the scenario that you want to delete.

 2 Click the Delete button. The recovery scenario is deleted from the Recovery 
Scenario Manager dialog box.

Note: The scenario is not actually deleted until you click Save in the 
Recovery Scenario Manager dialog box. If you have not yet saved the 
deletion, and you click the Close button in the Recovery Scenario Manager 
dialog box, QuickTest prompts you to save the recovery file. Click Yes to 
save the recovery scenario file and delete the scenarios.

Copying Recovery Scenarios between Recovery Scenario 
Files
You can copy recovery scenarios from one recovery scenario file to another.

To copy a recovery scenario from one recovery scenario file to another:

 1 In the Scenarios box, select the recovery scenario that you want to copy.

 2 Click the Copy button. The scenario is copied to the Clipboard.

 3 Click the Open button and select the recovery scenario file to which you 
want to copy the scenario, or click the New button to create a new recovery 
scenario file in which to copy the scenario. 

 4 Click the Paste button. The scenario is copied to the new recovery scenario 
file.



Chapter 48 • Defining and Using Recovery Scenarios

1372

Notes: 

➤ If a scenario with the same name already exists in the recovery scenario 
file, you can choose whether you want to replace it with the new 
scenario you have just copied. 

➤ Modifications you make are not saved until you click Save in the 
Recovery Scenario Manager dialog box. If you have not yet saved your 
modifications, and you click the Close button in the Recovery Scenario 
Manager dialog box, QuickTest prompts you to save the recovery file. 
Click Yes to save your changes.

Associating Recovery Scenarios with Your Tests

After you create recovery scenarios, you associate them with selected tests so 
that QuickTest will perform the appropriate scenarios during the run 
sessions if a trigger event occurs. You can prioritize the scenarios and set the 
order in which QuickTest applies the scenarios during the run session. You 
can also choose to disable specific scenarios, or all scenarios, that are 
associated with a test. You can also define which recovery scenarios will be 
used as the default scenarios for all new tests.

Note: You can associate, remove, enable, disable, prioritize, and view the 
properties of the recovery scenarios associated with your test in the 
Resources pane. For more information, see “The Resources Pane” on 
page 1161.



Chapter 48 • Defining and Using Recovery Scenarios

1373

Adding Recovery Scenarios to Your Test
After you have created recovery scenarios, you can associate one or more 
scenarios with a test to instruct QuickTest to perform the recovery scenarios 
during the run session if a trigger event occurs. The Recovery pane of the 
Test Settings dialog box lists all the recovery scenarios associated with the 
current test.

Tip: When a trigger event occurs, QuickTest checks for applicable recovery 
scenarios in the order in which they are displayed in the Recovery pane. You 
can change this order as described in “Setting Recovery Scenario Priorities” 
on page 1376.



Chapter 48 • Defining and Using Recovery Scenarios

1374

To add a recovery scenario to a test:

 1 Select File > Settings. The Test Settings dialog box opens. Select the Recovery 
node.



Chapter 48 • Defining and Using Recovery Scenarios

1375

 2 Click the Add button. The Add Recovery Scenario dialog box opens.

 3 In the Recovery file box, select the recovery file containing the recovery 
scenarios you want to associate with the test. Alternatively, click the browse 
button to navigate to the recovery file you want to select. The Scenarios box 
displays the names of the scenarios saved in the selected file.

 4 In the Scenarios box, select the scenarios that you want to associate with the 
test and click Add Scenario. The Add Recovery Scenario dialog box closes 
and the selected scenarios are added to the Scenarios list in the Recovery 
pane.

Tip: You can edit a recovery scenario file path by clicking the path once to 
highlight it, and then clicking it again to enter edit mode. For example, you 
may want to modify an absolute file path to be a relative file path. If you 
modify a recovery scenario file path, you must ensure that the recovery 
scenario is defined in the new path location before running your test.



Chapter 48 • Defining and Using Recovery Scenarios

1376

Viewing Recovery Scenario Properties
You can view properties for any recovery scenario associated with your test. 

Note: You modify recovery scenario settings from the Recovery Scenario 
Manager dialog box. For more information, see “Modifying Recovery 
Scenarios” on page 1370.

To view recovery scenario properties:

 1 In the Scenarios box, select the recovery scenario whose properties you want 
to view.

 2 Click the Properties button. Alternatively, you can double-click a scenario in 
the Scenarios box. The Recovery Scenario Properties dialog box opens, 
displaying read-only information regarding the settings for the selected 
scenario. For more information, see “Viewing Recovery Scenario Properties” 
on page 1368.

Setting Recovery Scenario Priorities
You can specify the order in which QuickTest performs associated scenarios 
during a run session. When a trigger event occurs, QuickTest checks for 
applicable recovery scenarios in the order in which they are displayed in the 
Recovery pane of the Test Settings dialog box.

To set recovery scenario priorities:

 1 In the Scenarios box, select the scenario whose priority you want to change.

 2 Click the Up or Down button. The selected scenario’s priority changes 
according to your selection.

Removing Recovery Scenarios from Your Test
You can remove the association between a specific scenario and a test using 
the Recovery pane of the Test Settings dialog box. After you remove a 
scenario from a test, the scenario itself still exists, but QuickTest will no 
longer perform the scenario during a run session.



Chapter 48 • Defining and Using Recovery Scenarios

1377

To remove a recovery scenario from your test:

 1 In the Scenarios box, select the scenario you want to remove.

 2 Click the Remove button. The selected scenario is no longer associated with 
the test.

Enabling and Disabling Recovery Scenarios 
You can enable or disable specific scenarios and determine when QuickTest 
activates the recovery scenario mechanism in the Recovery pane of the Test 
Settings dialog box. When you disable a specific scenario, it remains 
associated with the test, but is not performed by QuickTest during the run 
session. You can enable the scenario at a later time. 

You can also specify the conditions for which the recovery scenario is to be 
activated.

To enable/disable specific recovery scenarios:

➤ Select the check box to the left of one or more individual scenarios to enable 
them. 

➤ Clear the check box to the left of one or more individual scenarios to disable 
them. 

To define when the recovery mechanism is activated:

Select one of the following options in the Activate recovery scenarios box:

➤ On every step. The recovery mechanism is activated after every step. 
Note that choosing On every step may result in slower performance 
during the run session.

➤ On error. The recovery mechanism is activated only after steps that 
return an error return value. 

Note that the step that returns an error is often not the same as the step 
that causes the exception event to occur. 



Chapter 48 • Defining and Using Recovery Scenarios

1378

For example, a step that selects a check box may cause a pop-up dialog 
box to open. Although the pop-up dialog box is defined as a trigger 
event, QuickTest moves to the next step because it successfully 
performed the check box selection step. The next several steps could 
potentially perform checkpoints, functions or other conditional or 
looping statements that do not require performing operations on your 
application. It may only be ten statements later that a step instructs 
QuickTest to perform an operation on the application that it cannot 
perform due to the pop-up dialog box. In this case, it is this tenth step 
that returns an error and triggers the recovery mechanism to close the 
dialog box. After the recovery operation is completed, the current step is 
this tenth step, and not the step that caused the trigger event.

➤ Never. The recovery mechanism is disabled.

Tip: You can also enable or disable specific scenarios or all scenarios 
associated with a test programmatically during the run session. For more 
information, see “Programmatically Controlling the Recovery Mechanism” 
on page 1379.

Setting Default Recovery Scenario Settings for All New 
Tests
You can click the Set as Default button in the Recovery pane of the Test 
Settings dialog box to set the current list of recovery scenarios to be the 
default scenarios for all new tests. Any future changes you make to the 
current recovery scenario list only affect the current test, and do not change 
the default list that you defined. 



Chapter 48 • Defining and Using Recovery Scenarios

1379

Programmatically Controlling the Recovery Mechanism

You can use the Recovery object to control the recovery mechanism 
programmatically during the run session. For example, you can enable or 
disable the entire recovery mechanism or specific recovery scenarios for 
certain parts of a run session, retrieve status information about specific 
recovery scenarios, and explicitly activate the recovery mechanism at a 
certain point in the run session.

By default, QuickTest checks for recovery triggers when an error is returned 
during the run session. You can use the Recovery object’s Activate method to 
force QuickTest to check for triggers after a specific step in the run session. 
For example, suppose you know that an object property checkpoint will fail 
if certain processes are open when the checkpoint is performed. You want to 
be sure that the pass or fail of the checkpoint is not affected by these open 
processes, which may indicate a different problem with your application. 

However, a failed checkpoint does not result in a run error. So by default, the 
recovery mechanism would not be activated by the object state. You can 
define a recovery scenario that looks for and closes specified open processes 
when an object’s properties have a certain state. This state shows the object’s 
property values as they would be if the problematic processes were open. 
You can instruct QuickTest to activate the recovery mechanism if the 
checkpoint fails so that QuickTest will check for and close any problematic 
open processes and then try to perform the checkpoint again. This ensures 
that when the checkpoint is performed the second time it is not affected by 
the open processes.

For more information on the Recovery object and its methods, see the 
HP QuickTest Professional Object Model Reference.



Chapter 48 • Defining and Using Recovery Scenarios

1380



1381

49
Working with the QuickTest Script Editor

The QuickTest Script Editor is a tool that enables you to open and edit 
multiple test scripts and function libraries simultaneously.

This chapter includes:

 ➤  About the QuickTest Script Editor on page 1382

 ➤  Understanding the QuickTest Script Editor Window on page 1383

 ➤  Customizing the QuickTest Script Editor Window on page 1384

 ➤  Understanding the Flow Pane on page 1386

 ➤  Understanding the Resources Pane on page 1388

 ➤  Understanding the Display Area on page 1391

 ➤  Working with Tests on page 1393

 ➤  Working with Function Libraries on page 1397



Chapter 49 • Working with the QuickTest Script Editor

1382

About the QuickTest Script Editor

The QuickTest Script Editor enables you to open and modify the scripts of 
multiple tests and function libraries, simultaneously. You can also create 
new function libraries. You can modify the script of a test, but you cannot 
create new tests, associate or remove associated function libraries, or change 
information such as existing test names, test settings, parameterization, or 
Data Table values. 

For more information, see:

➤ “Working with Tests” on page 1393

➤ “Working with Function Libraries” on page 1397

Important Considerations

➤ The QuickTest Script Editor enables you to work with QuickTest tests and 
function libraries only. To work with components or scripted components, 
see Chapter 56, “Working with Business Process Testing.”

➤ You cannot use the Script Editor to modify version control-enabled files 
stored in Quality Center, although you can open and view these files in 
read-only mode. If your tests and function libraries are part of a version 
control-enabled project in Quality Center, you must use QuickTest to 
modify these files.

➤ Tests created in earlier versions of QuickTest open in read-only mode. 

➤ If a test is stored in the file system or in Quality Center 9.x, you can 
update it to the current version by opening and saving it in QuickTest. 
After you save the test, you will not be able to open it in an earlier 
version of QuickTest or the Script Editor.

➤ If a test is stored in Quality Center 10.00, the administrator must update 
it to the current version using the QuickTest Professional Asset Upgrade 
Tool for Quality Center, which upgrades all tests in the project 
simultaneously. After a test is upgraded, you cannot open it in an earlier 
version of QuickTest or the Script Editor. If the test is saved in a version-
control-enabled project, the test opens only in read-only mode. To 
modify it, you must open it in QuickTest.



Chapter 49 • Working with the QuickTest Script Editor

1383

➤ The QuickTest Script Editor automatically adds a UTF-16 identifier to the 
start of each function library file that you save (either new or existing). 

Understanding the QuickTest Script Editor Window

You open the QuickTest Script Editor by choosing Start > Programs > 
QuickTest Professional > Tools > QuickTest Script Editor. 

An example of the QuickTest Script Editor window is shown below: 

The QuickTest Script Editor window contains the following key elements:

➤ Flow Pane. Displays the flow of the action calls for each of the open tests.

➤ Resources Pane. Displays the open tests, its local actions and any function 
libraries associated with each test, as well as a list of all currently open 
function libraries.

➤ Display area. Displays a window for each of the open tests and function 
libraries. 

Resources 
pane

Flow pane

Display area



Chapter 49 • Working with the QuickTest Script Editor

1384

For more information, see:

➤ “Customizing the QuickTest Script Editor Window” on page 1384

➤ “Understanding the Flow Pane” on page 1386

➤ “Understanding the Resources Pane” on page 1388

➤ “Understanding the Display Area” on page 1391

Customizing the QuickTest Script Editor Window

In the Customize dialog box, you can customize Script Editor toolbars, 
menus, and other display options in a similar way to many other Windows 
applications. 

To open the Customize dialog box:

Right-click in the toolbar or menu bar and select Customize. 

Click a tab and customize the Script Editor according to your requirements.



Chapter 49 • Working with the QuickTest Script Editor

1385

Commands Tab
You can add and move buttons and commands in the Script Editor toolbars 
and menus. You can also remove buttons and commands from the displayed 
toolbars and menus. 

Toolbars Tab
You can select which of the available toolbars to display in the Script Editor 
window. You can choose whether to display text labels for the toolbar 
buttons. You can also reset the toolbar display to the default.

Keyboard Tab
You can assign new keyboard shortcuts for toolbar and menu commands, or 
modify and remove existing shortcuts. You can also reset all of the keyboard 
shortcuts to the default. 

Menu Tab
You can select which of the available menus to display in the Script Editor 
window, and the commands that appear in the context menus. You can 
choose how the menus are animated, and whether they are displayed with a 
shadow. You can also reset the displayed menus to the default.

Options Tab
You can select whether to show tooltips for toolbar buttons, whether to 
show shortcut keys in the tooltips, and whether to display toolbar buttons 
as large or small icons.



Chapter 49 • Working with the QuickTest Script Editor

1386

Understanding the Flow Pane

The Flow pane displays the test flow (action call flow) for each currently 
open test. Each open test is displayed as a node in a tree, and each node 
contains the hierarchy of all the actions that were called in the test, 
including calls to local, reusable, and external actions. You can also see each 
test’s action calls in the Flow pane of the relevant test window in the display 
area.

The Flow pane displays the following icons:

Option Description

A test

A call to a local action

A call to an external action

A call to a reusable action

A call to an action whose path is not saved with the test

A looped action call, meaning a call to an action that was 
already called earlier in the test flow hierarchy



Chapter 49 • Working with the QuickTest Script Editor

1387

You can perform the following operations in the Flow pane:

➤ Display the script of an action. Double-click the action, or right-click the 
action and select Show. Each shown action is displayed as a tab in its test 
window. If you show an external action, the test containing the called 
action is added to the tree in the Flow pane and Resources pane, and the 
selected action is displayed in a new test window in the display area.

➤ Display the line in a test script that calls a selected action. Right-click the 
action and select Go to Action Call. The action call script line is 
highlighted in the relevant action tab of the test window.

➤ Display the test or action properties. Right-click the test or action and 
then select Properties. The name of the test or action and its path are 
displayed. If it was defined with a relative path in QuickTest, then the 
path is displayed as .\<name of action or function library>. If the action is an 
external action, the External check box is selected.

➤ Close a test. Right-click the test and then select Close. If you have any 
unsaved changes, you are prompted to save them.

If a test contains a call to an action that does not exist, or cannot be found, 
the action still appears in the tree in the Flow pane. An error message stating 
that the action cannot be found is displayed when you try to show the 
action.

Tips:

➤ You can right-click in the Flow pane title bar to view available display 
options and decide how to display the Flow pane. For example, you can 
auto hide the pane, dock it, or close it.

➤ You can click the Toggle Flow View toolbar button to hide or show the 
Flow pane view.

For more information, see “Working with Tests” on page 1393.



Chapter 49 • Working with the QuickTest Script Editor

1388

Understanding the Resources Pane

The Resources pane displays all the currently open tests and their resources 
(actions and associated function libraries). Each test is displayed as a node in 
the tree, and each node contains the actions and function libraries 
associated with the test. All currently open function libraries, and their 
functions, are also displayed in a separate node at the top of the pane. 



Chapter 49 • Working with the QuickTest Script Editor

1389

The Resources pane displays the following icons:

You can perform the following operations in the Resources pane:

➤ Display the script of a local action or the code of a function library. 
Double-click the action or function library, or right-click and select Show. 
Each shown action is displayed as a tab in its test window, and each 
function library is displayed in a separate window. 

➤ Display the properties of local actions or function libraries. Right-click 
the action or function library and select Properties. The name of the 
action or function library, and its path are displayed. If it was defined 
with a relative path in QuickTest, then the path is displayed as .\<name of 
action or function library>. If the action is a reusable action, the Reusable 
check box is selected.

➤ Display the location of a function in a function library. Right-click the 
function in the Opened Function Libraries folder, and select Go to 
Function Definition. The first line of the function definition is 
highlighted in the function library window.

➤ Close a function library. Right-click the function library in the Opened 
Function Libraries folder and select Close. If you have any unsaved 
changes, you are prompted to save them.

➤ Close a test. Right-click the test and select Close. If you have any unsaved 
changes, you are prompted to save them.

Option Description

An open function library

A public function defined in a function library

A private function defined in a function library

A test

A local action

A reusable action

A link to a function library that is associated with a test



Chapter 49 • Working with the QuickTest Script Editor

1390

Tips:

➤ You can right-click in the Resources pane title bar to view available 
display options and decide how to display the Resources pane. For 
example, you can auto hide the pane, dock it, or close it.

➤ You can click the Toggle Resources View toolbar button to hide or show 
the Resources pane view.

For more information, see “Working with Tests” on page 1393, and 
“Working with Function Libraries” on page 1397.



Chapter 49 • Working with the QuickTest Script Editor

1391

Understanding the Display Area

The display area contains a separate window for each open test or function 
library, and each test window contains a tab for each local action open in 
the test. 

Tip: You can use the options in the Windows menu to decide how these 
windows are arranged in the display area.

Test window

Test script

Test Flow tab

Click to hide 
active action tab

Click to scroll 
through tabs

Action tabs



Chapter 49 • Working with the QuickTest Script Editor

1392

To display an action or function library in the display area, either 
double-click the action or function library in the Flow or Resources pane, or 
right-click and then select Show. In the test windows, a tab is displayed for 
each open local action. If you double-click a call to an external action in the 
Flow or Resources pane, the test containing the called action is displayed in 
the tree in the Flow pane and Resources pane, and the test is displayed as a 
new window in the display area, with a tab for the called action. (If the test 
containing the action is already open, the tab for the called action is added 
to the test window if it is not already shown.) 

If an action does not exist, or cannot be found, a message is displayed when 
you try to open it.

Not all the available tabs for open local actions may be visible at the bottom 
of the test window. You can navigate between the available tabs by clicking 
the arrows at the bottom of the window to scroll through the tabs.

You can select an action tab and then click the Hide Action button at the 
bottom right of the window to remove the action’s tab from the window. 
Note that the action is not closed, only hidden, and therefore you will not 
be prompted to save any changes made.

To display the line of a test script that calls a selected action, right-click the 
action in the tree in the Flow pane, and then select Go to Action Call. The 
action call script line is highlighted in the relevant action tab of the test 
window. 

To display the location of a function in a function library, right-click the 
function in the Opened Function Libraries folder at the top of the tree in the 
Resources pane, and then select Go to Function Definition. The first line of 
the function definition is highlighted in the function library window.

You can use the Editor Options dialog box (Tools > View Options) to 
customize how test scripts and function libraries are displayed in the 
QuickTest Script Editor. For example, you can choose whether to display 
line numbers, or change the font and color used to display the scripts. For 
more information on using the Editor Options dialog box, see Chapter 30, 
“Customizing the Expert View and Function Library Windows.”

For more information, see “Working with Tests” on page 1393, and 
“Working with Function Libraries” on page 1397.



Chapter 49 • Working with the QuickTest Script Editor

1393

Working with Tests

You can open multiple existing tests, edit them and then save them. 

You can also customize the way the test scripts are displayed, find and 
replace text strings within each test, and print the tests. For more 
information, see:

➤ “Customizing the Expert View and Function Library Windows” on page 895

➤ “Finding Text Strings” on page 847

➤ “Replacing Text Strings” on page 849

➤ “Printing a Test” on page 332

Opening Tests
You can open tests from the file system and tests that are saved in a 
Quality Center project. You can open as many tests as you want. When you 
open a test, it is displayed in the tree, and the Flow pane of the test window 
lists the calls to all of the top-level actions in the test.

Tip: You can open an existing test by dragging it from the file system 
(Windows Explorer) to the Script Editor window. You can open a recently 
used test by selecting it from the Recent Files list in the File menu.



Chapter 49 • Working with the QuickTest Script Editor

1394

To open a test:

 1 (Optional) Click the Quality Center Connection button and connect to 
Quality Center, if required. For more information on connecting to 
Quality Center, see “Connecting to and Disconnecting from 
Quality Center” on page 1418. 

 2 Open the test in one of the following ways:

➤ Click the Open Test toolbar button, or select File > Open > Test. The 
Open Test dialog box opens. In the sidebar, select the location of the test, 
for example, File System or Quality Center Test Plan. Browse to and select 
the test and click Open. 

➤ In the Flow pane, double-click the test to open it, or right-click the test, 
and select Show. 

If you only want to view the test script and not modify it, you can select 
the Open in read-only mode check box at the bottom of the dialog box. 

Note: The Open button toggles between Open Test and Open Function 
Library, according to the active window in the display area. To change 
the Open Function Library button to Open Test, click the drop-down 
arrow next to the button and then select Test, or click a test window in 
the display area.

The <path of test> window opens in the display area, listing the action calls 
in the test. 

The test and all its actions are displayed in the tree in the Flow pane, and the 
local actions and function libraries are displayed in the tree in the Resources 
pane.



Chapter 49 • Working with the QuickTest Script Editor

1395

Note: The test opens in read-only mode if:

➤ The test you select is currently open by another user. In this case, you are 
notified that the test is already open, and by whom. 

➤ The test was created in an earlier version of QuickTest. For more 
information, see “Important Considerations” on page 1382.

➤ The test is open in QuickTest, and you try to open the same test in the 
QuickTest Script Editor on the same computer, or vice versa. 

In addition, if you open a test in the QuickTest Script Editor, it is locked, and 
no other users can modify it until you close it.

Editing Tests
You can use QuickTest Script Editor to edit multiple test scripts 
simultaneously. You edit the tests by adding or modifying information, 
copying and pasting, or dragging and dropping information from other tests 
and function libraries.

When working with tests in the QuickTest Script Editor, you cannot create 
new tests, or save existing tests with a new name. You can modify only the 
test script. This means that you cannot change information such as test 
settings, parameterization, Data Table values, and so on.

When you modify a test script or function library, make sure that you make 
all changes in the test script using the correct syntax, format, and spelling 
because the QuickTest Script Editor does not do this for you.

To edit a test:

 1 (Optional) Click the Quality Center Connection button and connect to 
Quality Center, if required. For more information on connecting to 
Quality Center, see “Connecting to and Disconnecting from 
Quality Center” on page 1418. 

 2 Open the tests to be edited, as well as those from which you want to copy 
information, if required. You can also open any function libraries that you 
may need.



Chapter 49 • Working with the QuickTest Script Editor

1396

 3 Edit the tests as required. An asterisk (*) is displayed in the title bar of the 
edited test windows until you save your changes.

Tips: 

➤ You can change selected commented text to uncommented text, or vice 
versa, by using the Comment Block or Uncomment Block toolbar buttons 
or by using the Edit menu options.

➤ You can indent or outdent selected text by using the Indent or Outdent 
toolbar buttons or by using the Edit menu options.

Saving Tests 
You can save the active test, or all the open tests and function libraries.

To save a test:

➤ Click the Save toolbar button or select File > Save to save the active test. 
(The active test is the test window that is currently in focus in the display 
area.)

➤ Click the Save All toolbar button or select File > Save All to save all the open 
tests and function libraries. If any open function library was not previously 
saved, the Save Function Library dialog box opens. For more information, 
see “Saving Function Libraries” on page 1401.



Chapter 49 • Working with the QuickTest Script Editor

1397

Closing Tests
You can close a test from the Flow pane, the Resources pane, or from the 
display area.

To close a test:

In the Flow pane or Resources pane, right-click the test you want to close 
and select Close, or in the display area, click the Close button at the top of 
the test window you want to close. The test window is closed, and the test is 
removed from the Flow and Resource panes.

Note: If you have unsaved changes, you are prompted to save these changes 
before closing the test.

Working with Function Libraries

Function library files can contain VBScript functions, subroutines, classes, 
modules, and so forth, which you can associate with your test to provide 
additional functionality. Using the QuickTest Script Editor, you can open 
and edit multiple function libraries, and create new function libraries. 

You can customize the way the function library code is displayed, find and 
replace text strings within each function library, and print the function 
libraries. For more information, see:

➤ “Customizing the Expert View and Function Library Windows” on page 895

➤ “Finding Text Strings” on page 847

➤ “Replacing Text Strings” on page 849

➤ “Printing a Function Library” on page 917



Chapter 49 • Working with the QuickTest Script Editor

1398

Opening Function Libraries
You can open function libraries from the file system and function libraries 
that are part of a Quality Center project. You can open as many function 
libraries as you want. The QuickTest Script Editor works with .qfl, .vbs, and 
.txt function library files.

After you open a function library, it is displayed in a function library 
window in the display area, and the function library and its functions are 
displayed in the Opened Function Libraries folder at the top of the tree in 
the Resources pane. If the function library is associated with an open test, it 
is also displayed under the test as a function library link in the Associated 
Function Libraries folder in the tree in the Resources pane.

Tip: You can open an existing function library by dragging it from the file 
system (Windows Explorer) to the Script Editor window. You can open a 
recently used function library by selecting it from the Recent Files list in the 
File menu. 

To open a function library:

 1 (Optional) Click the Quality Center Connection button and connect to 
Quality Center, if required. For more information on connecting to 
Quality Center, see “Connecting to and Disconnecting from 
Quality Center” on page 1418.

 2 Open the function library in one of the following ways:

➤ In the Resources pane, double-click the function library to open, or 
right-click the function library, and select Open Function Library. 

➤ Click the Open Function Library toolbar button, select File > Open > 
Function Library. The Open Function Library dialog box opens. In the 
sidebar, select the location of the function library, for example, File 
System or Quality Center Test Plan, and browse to and select a function 
library. Click Open.



Chapter 49 • Working with the QuickTest Script Editor

1399

Note: The Open button toggles between Open Test and Open Function 
Library, according to the active window in the display area. To change 
the Open Test button to Open Function Library, click the arrow next to 
the button and then select Function Library, or click a function library 
window in the display area.

The <function library path> window opens, and the function library is 
displayed in the Opened Function Libraries folder at the top of the tree in 
the Resources pane.

If you open a function library from the file system that is opened by another 
user, you are notified if changes are made by the other user, and given the 
option to accept or reject the changes made.

If you open a function library saved in Quality Center, the file is locked by 
you. No other user can modify it until you close it. 

Note: The function library opens in read-only mode if:

➤ The function library you select is currently open by another user. In this 
case, you are notified that the function library is already open, and by 
whom. 

➤ The function library was created in an earlier version of QuickTest. For 
more information, see “Important Considerations” on page 1382.

➤ The function library is open in QuickTest, and you try to open the same 
test in the QuickTest Script Editor on the same computer, or vice versa. 



Chapter 49 • Working with the QuickTest Script Editor

1400

Creating Function Libraries
The Script Editor enables you to create new function libraries. These can be 
associated with tests using QuickTest. 

To create a function library:

 1 Click the New Function Library toolbar button, or select File > New Function 
Library. A function library window opens in the display area. By default, the 
name of the function library is Library<number>. 

 2 Enter the required code for the function library.

 3 Save the function library as described in “Saving Function Libraries” on 
page 1401.

Editing Function Libraries
You can edit the function code of multiple function libraries. You edit the 
function libraries by adding or modifying information, copying and pasting, 
or dragging and dropping information from other function libraries and 
tests. Function libraries that open in read-only mode cannot be edited.

To edit a function library:

 1 Open the function libraries to be edited, as well as those from which you 
want to copy information, if required. You can also open any tests you may 
need.

 2 Edit the function libraries as required. An asterisk (*) is displayed in the title 
bar of the edited function library windows until you save your changes.

Tips:

➤ You can change selected commented text to uncommented text, or vice 
versa, by using the Comment Block or Uncomment Block toolbar buttons 
or by using the Edit menu options.

➤ You can indent or outdent selected text by using the Indent or Outdent 
toolbar buttons or by using the Edit menu options.



Chapter 49 • Working with the QuickTest Script Editor

1401

Saving Function Libraries
You can save the active function library, rename and save the function 
library to a different location, or save all open function libraries and tests. 
You can save the function library in the file system or in Quality Center.

To save a function library:

 1 (Optional) Connect to a non-version-control-enabled project on a 
Quality Center server. For more information, see “Connecting to and 
Disconnecting from Quality Center” on page 1418.

 2 Click the Save toolbar button or select File > Save to save the active function 
library. Note that the active function library is the function library window 
that is currently in focus in the display area.

➤ Select File > Save As to rename the active function library or to save it to 
a new location. 

➤ Click the Save All toolbar button or select File > Save All to save all the 
open function libraries and tests. 

The Save Function Library dialog box opens.

 3 In the sidebar, select the location to save the test, for example, File System 
or Quality Center Test Resources.

Note: If you are connected to a Quality Center project with version control 
enabled, you cannot save the function library to Quality Center. Therefore, 
only the File System button is displayed in the sidebar.

 4 In the File name box, enter a name and file extension for the function 
library. The QuickTest Script Editor works with .qfl, .vbs, and .txt function 
library files.

The file name must not begin with a space or contain any of the following 
characters: \ / : * ? " < > | % '

If you save the function library to Quality Center, the file path must not 
contain two consecutive semicolons (;;).

 5 Click Save. The function library is saved to the specified location.



Chapter 49 • Working with the QuickTest Script Editor

1402

Closing Function Libraries
You can close a function library from the Resources pane, or from the 
display area.

To close a function library:

In the Resources pane, right-click the function library (in the Opened 
Function Libraries folder) you want to close and select Close, or in the 
display area, click the Close button at the top of the function library 
window you want to close. The function library window is closed, and the 
function library is removed from the Opened Function Libraries folder in 
the Resources pane.

Note: If you have unsaved changes, you are prompted to save these changes 
before closing the function library.



1403

50 
Automating QuickTest Operations

Just as you use QuickTest to automate the testing of your applications, you 
can use the QuickTest Professional automation object model to automate 
your QuickTest operations. Using the objects, methods, and properties 
exposed by the QuickTest automation object model, you can write scripts 
that configure QuickTest options and run tests instead of performing these 
operations manually using the QuickTest interface.

Automation scripts are especially useful for performing the same tasks 
multiple times or on multiple tests, or quickly configuring QuickTest 
according to your needs for a particular environment or application.

This chapter includes:

 ➤  About Automating QuickTest Operations on page 1404

 ➤  Deciding When to Use QuickTest Automation Scripts on page 1405

 ➤  Choosing a Language and Development Environment for Designing and 
Running Automation Scripts on page 1407

 ➤  Learning the Basic Elements of a QuickTest Automation Script on page 1409

 ➤  Generating Automation Scripts on page 1410

 ➤  Using the QuickTest Automation Reference on page 1411



Chapter 50 • Automating QuickTest Operations

1404

About Automating QuickTest Operations

You can use the QuickTest Professional automation object model to write 
scripts that automate your QuickTest operations. The QuickTest automation 
object model provides objects, methods, and properties that enable you to 
control QuickTest from another application.

What is Automation?
Automation is a Microsoft technology that makes it possible to access 
software objects inside one application from other applications. These 
objects can be created and manipulated using a scripting or programming 
language such as VBScript or VC++. Automation enables you to control the 
functionality of an application programmatically.

An object model is a structural representation of software objects (classes) 
that comprise the implementation of a system or application. An object 
model defines a set of classes and interfaces, together with their properties, 
methods and events, and their relationships.

What is the QuickTest Automation Object Model?
Essentially all configuration and run functionality provided via the 
QuickTest interface is in some way represented in the QuickTest automation 
object model via objects, methods, and properties. Although a one-on-one 
comparison cannot always be made, most dialog boxes in QuickTest have a 
corresponding automation object, most options in dialog boxes can be set 
and/or retrieved using the corresponding object property, and most menu 
commands and other operations have corresponding automation methods. 

You can use the objects, methods, and properties exposed by the QuickTest 
automation object model, along with standard programming elements such 
as loops and conditional statements to design your script.

Automation scripts are especially useful for performing the same tasks 
multiple times or on multiple tests, or quickly configuring QuickTest 
according to your needs for a particular environment or application.



Chapter 50 • Automating QuickTest Operations

1405

For example, you can create and run an automation script from Microsoft 
Visual Basic that loads the required add-ins for a test, starts QuickTest in 
visible mode, opens the test, configures settings that correspond to those in 
the Options, Test Settings, and Record and Run Settings dialog boxes, runs 
the test, and saves the test.

You can then add a simple loop to your script so that your single script can 
perform the operations described above for multiple tests.

You can also create an initialization script that opens QuickTest with specific 
configuration settings. You can then instruct all of your testers to open 
QuickTest using this automation script to ensure that all of your testers are 
always working with the same configuration.

Deciding When to Use QuickTest Automation Scripts

Creating a useful QuickTest automation script requires planning, design 
time, and testing. You must always weigh the initial investment with the 
time and human-resource savings you gain from automating potentially 
long or tedious tasks.

Any QuickTest operation that you must perform many times in a row or 
must perform on a regular basis is a good candidate for a QuickTest 
automation script.



Chapter 50 • Automating QuickTest Operations

1406

The following are just a few examples of useful QuickTest automation 
scripts:

➤ Initialization scripts. You can write a script that automatically starts 
QuickTest and configures the options and the settings required for testing a 
specific environment.

➤ Maintaining your tests. You can write a script that iterates over your 
collection of tests to accomplish a certain goal. For example:

➤ Updating values. You can write a script that opens each test with the 
proper add-ins, runs it in update run mode against an updated 
application, and saves it when you want to update the values in all of 
your tests to match the updated values in your application.

➤ Applying new options to existing tests. When you upgrade to a new 
version of QuickTest, you may find that the new version offers certain 
options that you want to apply to your existing tests. You can write a 
script that opens each existing test, sets values for the new options, then 
saves and closes it.

➤ Modifying Actions and Action Parameters. You can retrieve the entire 
contents of an action script, and add a required step, such as a call to a 
new action. You can also retrieve the set of action parameters for an 
action and add, remove, or modify the values of action parameters.

➤ Calling QuickTest from other applications. You can design your own 
applications with options or controls that run QuickTest automation scripts. 
For example, you could create a Web form or simple Windows interface 
from which a product manager could schedule QuickTest runs, even if the 
manager is not familiar with QuickTest.



Chapter 50 • Automating QuickTest Operations

1407

Choosing a Language and Development Environment for
Designing and Running Automation Scripts

You can choose from a number of object-oriented programming languages 
for your automation scripts. For each language, there are a number of 
development environments available for designing and running your 
automation scripts.

Writing Your Automation Script

You can write your QuickTest automation scripts in any language and 
development environment that supports automation. For example, you can 
use: VBScript, JavaScript, Visual Basic, Visual C++, or Visual Studio .NET.

Some development environments support referencing a type library. A type 
library is a binary file containing the description of the objects, interfaces, 
and other definitions of an object model. 

If you choose a development environment that supports referencing a type 
library, you can take advantage of features like Microsoft IntelliSense, 
automatic statement completion, and status bar help tips while writing your 
script. The QuickTest automation object model supplies a type library file 
named QTObjectModel.dll. This file is stored in <QuickTest installation 
folder>\bin. 



Chapter 50 • Automating QuickTest Operations

1408

If you choose an environment that supports it, be sure to reference the 
QuickTest type library before you begin writing or running your automation 
script. For example, if you are working in Microsoft Visual Basic, select 
Project > References to open the References dialog box for your project. 
Then select QuickTest Professional <Version> Object Library (where 
<Version> is the current installed version of the QuickTest automation type 
library). 

Running Your Automation Script

There are several applications available for running automation scripts. You 
can also run automation scripts from the command line using Microsoft's 
Windows Script Host. 

For example, you could use the following command line to run your 
automation script: 

WScript.exe /E:VBSCRIPT myScript.vbs



Chapter 50 • Automating QuickTest Operations

1409

Learning the Basic Elements of a QuickTest Automation 
Script

Like most automation object models, the root object of the QuickTest 
automation object model is the Application object. The Application object 
represents the application level of QuickTest. You can use this object to 
return other elements of QuickTest such as the Test object (which represents 
a test document), Options object (which represents the Options dialog box), 
or Addins collection (which represents a set of add-ins from the Add-in 
Manager dialog box), and to perform operations like loading add-ins, 
starting QuickTest, opening and saving tests, and closing QuickTest. 

Each object returned by the Application object can return other objects, 
perform operations related to the object and retrieve and/or set properties 
associated with that object.

Every automation script begins with the creation of the QuickTest 
Application object. Creating this object does not start QuickTest. It simply 
provides an object from which you can access all other objects, methods 
and properties of the QuickTest automation object model. 

Note: You can also optionally specify a remote QuickTest computer on 
which to create the object (the computer on which to run the script). For 
more information, see Running Automation Programs on a Remote 
Computer in the Introduction section of the QuickTest Automation Object 
Model Reference in the QuickTest Professional Help.

The structure for the rest of your script depends on the goals of the script. 
You may perform a few operations before you start QuickTest such as 
retrieving the associated add-ins for a test, loading add-ins, and instructing 
QuickTest to open in visible mode.

After you perform these preparatory steps, if QuickTest is not already open 
on the computer, you can open QuickTest using the Application.Launch 
method. Most operations in your automation script are performed after the 
Launch method. 

AutomationObjectModel.chm::/QuickTest~Application~Launch.html


Chapter 50 • Automating QuickTest Operations

1410

For information on the operations you can perform in an automation 
program, see the online HP QuickTest Professional Object Model Reference. For 
more information on this Help file, see “Using the QuickTest Automation 
Reference” on page 1411.

When you finish performing the necessary operations, or you want to 
perform operations that require closing and restarting QuickTest, such as 
changing the set of loaded add-ins, use the Application.Quit method.

Generating Automation Scripts

The Properties pane of the Test Settings dialog box, the General pane of the 
Options dialog box, and the Object Identification dialog box each contain a 
Generate Script button. Clicking this button generates an automation script 
file (.vbs) containing the current settings from the corresponding dialog 
box.

You can run the generated script as is to open QuickTest with the exact 
configuration of the QuickTest application that generated the script, or you 
can copy and paste selected lines from the generated files into your own 
automation script.

For example, the generated script for the Options dialog box may look 
something like this:

Dim App 'As Application
Set App = CreateObject("QuickTest.Application")
App.Launch
App.Visible = True
App.Options.DisableVORecognition = False
App.Options.AutoGenerateWith = False
App.Options.WithGenerationLevel = 2
App.Options.TimeToActivateWinAfterPoint = 500
...
...
App.Options.WindowsApps.NonUniqueListItemRecordMode = "ByName"
App.Options.WindowsApps.RecordOwnerDrawnButtonAs = "PushButtons"
App.Folders.RemoveAll



Chapter 50 • Automating QuickTest Operations

1411

For more information on the Generate Script button and for information 
on the options available in the Options, Object Identification, and Test 
Settings dialog boxes, see Chapter 4, “Configuring Object Identification”, 
Chapter 44, “Setting Global Testing Options”, and Chapter 45, “Setting 
Options for Individual Tests.” 

Using the QuickTest Automation Reference

The QuickTest Automation Object Model Reference is a Help file that 
provides detailed descriptions, syntax information, and examples for the 
objects, methods, and properties in the QuickTest automation object model.

You can open the HP QuickTest Professional Automation Object Model Reference 
from: 

➤ QuickTest program folder (Start > Programs > QuickTest Professional > 
Documentation > QuickTest Automation Reference) 

➤ Main QuickTest Help (Help > QuickTest Professional Help > 
HP QuickTest Professional Advanced References > HP QuickTest Professional 
Automation Object Model)



Chapter 50 • Automating QuickTest Operations

1412



1413

Part XI

Working with Quality Center



1414



1415

51
Integrating with Quality Center

To ensure comprehensive testing of your application or applications, you 
typically must create and run many tests. HP Quality Center, the centralized 
quality solution, can help you organize and control the testing process. 

Note: References to Quality Center features and options in this chapter 
apply to all currently supported versions of Quality Center, unless otherwise 
noted. However, they may not be supported in the Quality Center edition 
you are using.

For a list of the supported versions of Quality Center, see the HP QuickTest 
Professional Readme.

For more information on Quality Center editions, see the HP Quality Center 
User Guide. 

This chapter includes:

 ➤  About Working with Quality Center on page 1416

 ➤  Connecting to and Disconnecting from Quality Center on page 1418

 ➤  Integrating QuickTest with Quality Center on page 1424

 ➤  Saving Tests to a Quality Center Project on page 1425

 ➤  Opening Tests from a Quality Center Project on page 1426

 ➤  Working with Template Tests on page 1430

 ➤  Running a Test Stored in a Quality Center Project from QuickTest 
on page 1437

 ➤  Setting Preferences for Quality Center Test Runs on page 1439



Chapter 51 • Integrating with Quality Center

1416

About Working with Quality Center

QuickTest integrates with Quality Center, the HP centralized quality 
solution. Quality Center helps you maintain a project of all kinds of tests 
(such as QuickTest tests, business process tests, manual tests, tests created 
using other HP products, and so on) that cover all aspects of your 
application’s functionality. Each test in your project is designed to fulfill a 
specified testing requirement of your application. To meet the goals of a 
project, you organize the tests in your project into unique groups.

Quality Center provides an intuitive and efficient method for scheduling 
and running tests, collecting results, analyzing the results, and managing 
test versions. It also features a system for tracking defects, enabling you to 
monitor defects closely from initial detection until resolution.

A Quality Center project is a database for collecting and storing data 
relevant to a testing process. For QuickTest to access a Quality Center 
project, you must connect to the local or remote Web server where 
Quality Center is installed. When QuickTest is connected to Quality Center, 
you can create tests and save them in your Quality Center project. After you 
run your tests, you can view the results in Quality Center.

You must have the following access permissions to use QuickTest with 
Quality Center:

➤ Full read and write permissions to the Quality Center cache folder 
(located on the Quality Center client side)

➤ Full read and write permissions to the QuickTest Add-in for Quality 
Center installation folder

Tip: For information about the various QuickTest add-ins, see the 
HP QuickTest Professional Add-ins Guide.



Chapter 51 • Integrating with Quality Center

1417

When working with Quality Center, you can associate tests with external 
files stored in the Test Resources module of a Quality Center project. You 
can associate external files for all tests or for a single test. For example, 
suppose you set the shared object repository mode as the default mode for 
new tests. You can instruct QuickTest to use a specific object repository 
stored in Quality Center. 

For more information on specifying external files for all tests, see 
Chapter 44, “Setting Global Testing Options.” For more information on 
specifying external files for a single test, see Chapter 45, “Setting Options for 
Individual Tests.”

You can report defects to a Quality Center project either automatically as 
they occur, or manually directly from the QuickTest Test Results window. 
For information on manually or automatically reporting defects to a 
Quality Center project, see “Submitting Defects Detected During a Run 
Session” on page 1013. 

For more information on working with Quality Center, see the HP Quality 
Center User Guide. For the latest information and tips regarding QuickTest 
and Quality Center integration, see the HP QuickTest Professional Readme 
(available from Start > Programs > QuickTest Professional > Readme).



Chapter 51 • Integrating with Quality Center

1418

Connecting to and Disconnecting from Quality Center

If you are working with both QuickTest and Quality Center, QuickTest can 
communicate with your Quality Center project.

You can connect or disconnect QuickTest to or from a Quality Center 
project at any time during the testing process. However, do not disconnect 
QuickTest from Quality Center while a QuickTest test is opened from 
Quality Center or while QuickTest is using a shared resource from 
Quality Center (such as a shared object repository or Data Table file).

Note: You can connect to any currently supported version of Quality Center. 
See the HP QuickTest Professional Readme for a list of the supported versions 
of Quality Center. For more information, see “Quality Center Connectivity 
Add-in” on page 1424.

Connecting QuickTest to Quality Center 
The connection process has two stages. First, you connect QuickTest to a 
local or remote Quality Center server. This server handles the connections 
between QuickTest and the Quality Center project. 

Next, you log in and choose the project you want QuickTest to access. The 
project stores tests and run session information for the application you are 
testing. Note that Quality Center projects are password protected, so you 
must provide a user name and a password. 



Chapter 51 • Integrating with Quality Center

1419

To connect QuickTest to a Quality Center server:

 1 Select File > Quality Center Connection or click the Quality Center 
Connection toolbar button. The Quality Center Connection - Server 
Connection dialog box opens. 

 2 In the Server URL box, type the URL address of the Web server where 
Quality Center is installed.

Note: You can choose a Quality Center server accessible via a Local Area 
Network (LAN) or a Wide Area Network (WAN).

 3 To automatically reconnect to the Quality Center server the next time you 
open QuickTest, select the Reconnect to server on startup check box.



Chapter 51 • Integrating with Quality Center

1420

 4 Click Connect. The Quality Center Connection dialog box opens.

The Quality Center server name is displayed in read-only format in the 
Server URL box.

 5 In the User name box, type your Quality Center user name.

 6 In the Password box, type your Quality Center password.



Chapter 51 • Integrating with Quality Center

1421

 7 Click Authenticate to authenticate your user information against the 
Quality Center server.

After your user information has been authenticated, the edit boxes in the 
Authenticate user information area are displayed in read-only format. The 
Authenticate button changes to a Change User button.

Tip: You can log in to the same Quality Center server using a different user 
name by clicking Change User, and then entering a new user name and 
password and clicking Authenticate again.

 8 In the Domain box, select the domain that contains the Quality Center 
project. Only those domains that you have permission to connect to are 
displayed.

 9 In the Project box, select the project with which you want to work. Only 
those projects for which you are a defined user are displayed.

 10 Click Login.

 11 To automatically reconnect to the Quality Center server the next time you 
open QuickTest, select the Reconnect to server on startup check box.

 12 If the Reconnect to server on startup check box is selected, then the 
Authenticate on startup check box is enabled. To automatically authenticate 
your user information the next time you open QuickTest, select the 
Authenticate on startup check box.

 13 If the Authenticate on startup check box is selected, the Login to project on 
startup check box is enabled. To log in to the selected project on startup, 
select the Login to project on startup check box.

 14 Click Close to close the Quality Center Connection dialog box. The 
Quality Center icon is displayed on the status bar to indicate that QuickTest 
is currently connected to a Quality Center project.



Chapter 51 • Integrating with Quality Center

1422

Tip: To view the current Quality Center connection, point to the 
Quality Center icon on the status bar. A tooltip displays the Quality Center 
server name and project to which QuickTest is connected. To open the 
Quality Center Connection dialog box, double-click the Quality Center 
icon.

Disconnecting QuickTest from Quality Center
You can disconnect QuickTest from a Quality Center project or from a 
Quality Center server at any time. Note that if you disconnect QuickTest 
from a Quality Center server without first disconnecting from a project, the 
QuickTest connection to that project database is automatically 
disconnected.

Note: If a Quality Center test, or shared file (such as a shared object 
repository or Data Table file) is open when you disconnect from 
Quality Center, then QuickTest closes it. 



Chapter 51 • Integrating with Quality Center

1423

To disconnect QuickTest from a Quality Center server:

 1 Select File > Quality Center Connection or click the Quality Center 
Connection toolbar button. The Quality Center Connection dialog box 
opens. 

 2 To disconnect QuickTest from the selected project, in the Step 3: Login to 
project area, click Logout.

 3 To disconnect QuickTest from the selected Quality Center server, in the 
Step 1: Connect to server area, click Disconnect.

Tip: You can log in to the same Quality Center server using a different user 
name by clicking Change User and then entering a new user name and 
password and clicking Authenticate again.

 4 Click Close to close the Quality Center Connection dialog box. 



Chapter 51 • Integrating with Quality Center

1424

Integrating QuickTest with Quality Center

Integrating QuickTest with Quality Center enables you to store and access 
files in a Quality Center project, as well as use the QCUtil object to access the 
wide range of functionality provided in the Quality Center Open Test 
Architecture API.

Quality Center Connectivity Add-in
You integrate QuickTest with Quality Center using the Quality Center 
Connectivity Add-in. This add-in is installed on your QuickTest computer 
automatically when you connect QuickTest to Quality Center using the 
Quality Center Connection dialog box. You can also install it manually from 
the Quality Center Add-ins page by choosing Help > Add-ins Page > HP 
Quality Center Connectivity in Quality Center.

To view the version of the Quality Center Connectivity Add-in that is 
currently installed on your computer, select Help > About and then click the 
Product Information button. For more information, see “Viewing Product 
Information” on page 73.

Integrating with Quality Center
At its most basic level, integrating QuickTest with Quality Center enables 
you to store and access QuickTest tests and resource files in a Quality Center 
project, when QuickTest is connected to Quality Center. 

You can take advantage of all of the features provided with the Resources 
and Dependencies model. For information, see “Using the Resources and 
Dependencies Model” on page 1447.

In addition, your tests and function libraries can use the QCUtil object to 
access and use the full functionality of the Quality Center OTA (Open Test 
Architecture). This enables you to automate integration operations during a 
run session, such as reporting a defect directly to a Quality Center database. 
For more information, see the Utility section of the HP QuickTest Professional 
Object Model Reference and the Quality Center Open Test Architecture 
documentation.



Chapter 51 • Integrating with Quality Center

1425

You can also use the TDOTA object in your QuickTest automation scripts to 
access the Quality Center OTA. For more information, see the QuickTest 
Professional Automation Object Model Reference (Help > QuickTest Professional 
Help > HP QuickTest Professional Advanced References > 
HP QuickTest Professional Automation Object Model).

Saving Tests to a Quality Center Project

When QuickTest is connected to a Quality Center project, you can create 
new tests in QuickTest and save them directly to your project. To save a test, 
you give it a descriptive name and associate it with the relevant subject in 
the test plan tree. This helps you to keep track of the tests created for each 
subject and to quickly view the progress of test planning and creation.

Tip: If you later need to save standalone, portable copies of tests stored in a 
Quality Center project, you can do so. For example, you may need to open 
or run a test while travelling because you do not have access to Quality 
Center. For more information, see “Creating Portable Copies of Your Tests” 
on page 326.

To save a test to a Quality Center 10.00 project:

 1 Connect to a Quality Center server and project. For more information, see 
“Connecting QuickTest to Quality Center” on page 1418.

 2 In QuickTest, click Save or select File > Save to save the test. The Save Test 
dialog box opens.

 3 Click Quality Center Tests in the sidebar and browse to and select the 
relevant subject folder. 



Chapter 51 • Integrating with Quality Center

1426

 4 In the File Name box, enter a name for the test. Use a descriptive name that 
will help you easily identify the test. A test name:

➤ Cannot exceed 220 characters (including the path)

➤ Cannot begin or end with spaces

➤ Cannot include the following characters:
\ / : * ? " < > | % ' 

➤ Cannot contain two consecutive semicolons (;;)

 5 Confirm that the Save Active Screen files is selected if you want to save the 
Active Screen files with your test. If you clear this box, your Active Screen 
files will be deleted, and you will not be able to edit your test using Active 
Screen options. For more information, see “Saving a Test” on page 324.

 6 Click Save to save the test and close the dialog box. Note that the text in the 
status bar changes while QuickTest saves the test.

The next time you start Quality Center 10.00, the new test will be included 
in the Quality Center test plan tree. For more information, see the 
HP Quality Center User Guide.

Opening Tests from a Quality Center Project

When QuickTest is connected to a Quality Center project, you can open 
QuickTest tests that are a part of your Quality Center project. You locate 
tests according to their position in the test plan tree, rather than by their 
actual location in the file system. You can also open tests from the recent 
tests list in the File menu.

Note: If a test is stored in Quality Center and was created using an earlier 
version, it opens in read-only mode. To edit the test, it must be upgraded to 
the current version using the QuickTest Professional Asset Upgrade Tool for 
Quality Center. 



Chapter 51 • Integrating with Quality Center

1427

To open a test from a Quality Center 10.00 project:

 1 Connect to a Quality Center server and project. For more information, see 
“Connecting QuickTest to Quality Center” on page 1418.

 2 In QuickTest, click Open or select File > Open > Test to open the test. The 
Open Test dialog box opens.  

 3 Click the Quality Center Test Plan button in the sidebar, and then browse to 
and select the required test. The test is displayed in the File name box.



Chapter 51 • Integrating with Quality Center

1428

Note: If the test is stored in a Quality Center project with version control 
support, you can view version control information for the test by clicking 
the Views down arrow and selecting Details.

➤ The Name column lists the names of the tests that belong to the selected 
subject.

➤ The Modified By column indicates the Quality Center user that created 
or last modified the test.

➤ The Checked Out To column indicates the Quality Center user to whom 
the test is currently checked out. If the test is checked in, this is blank.

 4 If you want to open the test in read-only mode, select the Open in read-only 
mode check box.

 5 Click Open to open the test, or click the Open down arrow and select Open 
and Check out if the test is checked into a version-control-enabled project 
and you want to modify it after it opens.

As QuickTest downloads and opens the test, the operations it performs are 
displayed in the status bar. 

When the test opens, the QuickTest title bar displays [Quality Center], the full 
subject path and the test name. For example:

[Quality Center] Subject\System\qa_test1

The test opens in read-only mode if:

➤ You selected Open in read-only mode

➤ You opened a test that is currently checked in to the Quality Center 
version control database (for projects that support version control)

➤ You opened a test that is currently checked out to another user (for 
projects that support version control)

➤ You opened a test from an earlier version of Quality Center, and the test 
has not yet been updated to the current format.



Chapter 51 • Integrating with Quality Center

1429

For more information, see “Opening Tests from a Quality Center Project 
with Version Control Support” on page 1429.

Opening Tests from the Recent Files List
You can open Quality Center tests from the recent files list in the File menu. 
If you select a test located in a Quality Center project, but QuickTest is 
currently not connected to Quality Center or to the correct project for the 
test, the Connect to Quality Center Project dialog box opens and displays 
the correct server, project, and the name of the user who most recently 
opened the test on this computer.

The Connect to Quality Center Project dialog box also opens if you choose 
to open a test that was last edited on your computer using a different 
Quality Center user name. You can either log in using the displayed name or 
you can click Cancel to stay logged in with your current user name.

Opening Tests from a Quality Center Project with Version 
Control Support
When you click the Open toolbar button or select File > Open > Test to open 
a test from a Quality Center project with version control support, and you 
display the Details view (by clicking the Views down arrow and selecting 
Details in the Open Test dialog box), the Checked Out To column specifies 
the user name of the Quality Center user to whom the test is checked out, if 
it is checked out.  

When you open a test from a Quality Center project with version control 
support, the test opens in read-write or read-only mode depending on the 
current version control status of the test.



Chapter 51 • Integrating with Quality Center

1430

The table below summarizes the version control statuses and the open mode 
for each status:

For more information on working with tests stored in a Quality Center 
project with version control, see “Managing Versions of Assets in 
Quality Center” on page 1480.

Working with Template Tests

Template tests serve as the basis for all QuickTest tests created in 
Quality Center. A template test is a QuickTest test that contains default test 
settings. For example, a template test might specify the QuickTest add-ins, 
associated function libraries, and recovery scenarios that are associated with 
a test. You can modify these test settings in the Test Settings dialog box (File 
> Settings) in QuickTest. 

In addition to default test settings, a template test can also contain any 
comments or steps you want to include with all new QuickTest tests created 
in Quality Center. For example, you may want to add a comment notifying 
users which add-ins are associated with the template test, or you may want 
to add a step that opens a specific Web page or application at the beginning 
of every test. Any steps or comments you add to a template test are included 
in all new tests created in Quality Center that are based on that template 
test.

A default template test is installed on each Quality Center client when the 
QuickTest Professional Add-in for Quality Center is installed. You can 
modify this default template test, or you can create customized template 
tests with various test settings. 

Description Open Mode

Checked in. If the test is currently checked in to the version 
control database, there is no indication in the dialog box.

Read-only

Checked out to you. If the test is currently checked out to you, 
your user name is displayed is the dialog box.

Read-write

Checked out to another user. If the test is currently checked out 
to another user, that user’s name is displayed is the dialog box.

Read-only



Chapter 51 • Integrating with Quality Center

1431

All template tests are saved in your Quality Center project (except for the 
default template test, which is located on the Quality Center client) and do 
not need to be copied to each user’s local computer. This enables users to 
customize their local default template tests, if needed, and still have access 
to globally maintained template tests. For more information, see “Working 
with New Template Tests” on page 1432.

When tests based on a specific template test are run from Quality Center, 
QuickTest automatically loads the associated add-ins and applies the 
required settings, as defined in the test. 

Working with the Default Template Test
When you install the QuickTest Add-in for Quality Center, default template 
tests for all supported QuickTest versions are installed in the <QuickTest 
Add-in for Quality Center folder>\bin\Templates folder on your computer 
(for example: C:\Program Files\HP\QuickTest Add-in for Quality 
Center\bin\Templates\Template10). 

When a Quality Center user creates a new QuickTest test in Quality Center, 
the default template test for the installed QuickTest version is automatically 
associated with the test unless the users selects another template test, as 
described in “Creating a QuickTest Test in Quality Center” on page 1434.

You can modify the template test that is installed by default with the 
QuickTest Add-in for Quality Center. Because the default template test is 
installed locally, any changes you make to the template test are applied only 
to tests created on your computer (using the Quality Center client). 

Alternatively, you can create a new template test, as described in the 
following sections.

For more information on applying the default template test to a new test in 
Quality Center, see “Creating a QuickTest Test in Quality Center” on 
page 1434.



Chapter 51 • Integrating with Quality Center

1432

Working with New Template Tests
When you create new template tests, they are stored in your Quality Center 
project, making them available to all Quality Center users as the basis for 
new QuickTest tests created in that Quality Center project. 

You can create multiple template tests, each for a specific testing purpose. 
For example, you may want to create one template test for QuickTest tests 
that test Web applications with ActiveX controls, and another for QuickTest 
tests that test standard Windows applications. You would associate the 
ActiveX and Web Add-ins with the first template test. For the second 
template test, you would not associate any QuickTest add-ins at all, but you 
might specify the Windows application that you want to test. You could also 
make other modifications to the test settings for each of the template tests, 
as needed. 

As you create each template test, you can save it with a descriptive name 
that clearly indicates its purpose, such as, ActiveX_Web_Addins_Template or 
Std_Windows_Template_Test. Users can then choose the appropriate 
template test when creating QuickTest tests in Quality Center. 

Note: When you define a template test that associates specific QuickTest 
add-ins, make sure that the add-ins are actually installed on the QuickTest 
computer on which the which the test will eventually run. Otherwise, when 
the test is run, QuickTest will not be able to load the required add-ins and 
the test may fail. For more information on running QuickTest tests from 
Quality Center, see the Quality Center documentation.

Creating a New Template Test
You create a template test by first creating a blank test in QuickTest with the 
required test settings. Then, in the Test Plan module of your Quality Center 
project, you browse to your QuickTest test and mark it as a Template Test. 

When you save the test in QuickTest, you should apply a descriptive name 
that clearly indicates its purpose. For example, if the template test is to used 
to associate the ActiveX and Web Add-ins with a new test, you could call it 
ActiveX_Web_Addins_Template. 



Chapter 51 • Integrating with Quality Center

1433

Tip: In the Quality Center test plan tree (Test Plan module), you may want 
to create a special folder for your template tests. This will enable other users 
to quickly locate the relevant template test when they create new QuickTest 
tests in Quality Center.

To create a template test:

 1 In QuickTest:

 a Open QuickTest with the required add-ins loaded. For more information 
on loading QuickTest add-ins, see the section on loading QuickTest 
add-ins in the HP QuickTest Professional Add-ins Guide.

 b Define the required settings in the Test Settings dialog box (File > 
Settings). For more information, see “Using the Test Settings Dialog Box” 
on page 1262. 

 c If you want to include comments or steps in all tests based on this 
template test, add them.

 d Click the Save button or select File > Save to save the test. The Save Test 
to Quality Center dialog box opens. Save the test to your Quality Center 
project using a descriptive name that clearly indicates its purpose. For 
more information, see “Saving Tests to a Quality Center Project” on 
page 1425. 

 2 In Quality Center:

 a Open the project in Quality Center, click the Test Plan button on the 
sidebar to open the Test Plan module, and browse to the test you saved in 
step d. 

 b Right-click the test and select Mark as Template Test. The test is 
converted to a template test.

 3 Repeat steps 1 and 2 to create additional template tests, as needed.



Chapter 51 • Integrating with Quality Center

1434

Creating a QuickTest Test in Quality Center
In Quality Center, you create QuickTest tests in the Test Plan module. When 
you create a QuickTest test, you apply a template test to it. The template test 
applies pre-defined test settings to your new QuickTest test. For example, a 
template test can specify the QuickTest add-ins, function libraries, and 
recovery scenarios to be associated with your test. It can also include 
comments and steps (statements), as needed. You can choose either the 
default template test stored on your QuickTest client, or a template test that 
is saved in your Quality Center project. 

If you do not have any template tests saved in your Quality Center project, 
or if you select <None> in the Template box (in the Create New Test dialog 
box shown on page 1426), Quality Center uses the settings defined in the 
template test that was installed with the QuickTest Add-in for Quality Center 
on your Quality Center client. For more information, see “Working with the 
Default Template Test” on page 1431. Otherwise, if you have at least one 
template test saved in your Quality Center project, you can select it when 
creating a new QuickTest test. For more information, see “Working with 
New Template Tests” on page 1432.

Note: When you create a QuickTest test in Quality Center, you must choose 
a template test that specifies the QuickTest add-ins to be associated with the 
test. Otherwise the required QuickTest add-ins will not be loaded during the 
run session.

Your new QuickTest test will use all of the settings defined in the template 
test you choose. When the test runs from Quality Center, QuickTest uses the 
settings specified in the Test Settings dialog box, and automatically loads the 
required QuickTest add-ins.



Chapter 51 • Integrating with Quality Center

1435

Note: The following procedure describes how to create a test in 
Quality Center using a template test. This procedure may be different 
depending on your version of Quality Center. For the most updated 
instructions on creating a new test in Quality Center, see the HP Quality 
Center User Guide.

To create a test in Quality Center using a template test:

 1 In Quality Center, click the Test Plan button on the sidebar to open the Test 
Plan module. 

 2 In the test plan tree, select a folder.

 3 Click the New Test button, or select Test > New Test. The Create New Test 
dialog box opens.

Note: The Template box is displayed only if the QuickTest Professional 
Add-in for Quality Center is installed on your computer. If the Template box 
is not displayed, you must install the QuickTest Professional Add-in for 
Quality Center from the QuickTest Professional DVD or from the More 
Quality Center Add-ins page (opened from the Quality Center Options 
window, or from Help > Add-ins Page).

 4 From the Test Type list, select QUICKTEST_TEST. 



Chapter 51 • Integrating with Quality Center

1436

 5 In the Test Name box, type a name for the test start using English (Roman) 
letters, numbers, and underscores (if needed). Note that a test name cannot 
exceed 220 characters (including the path), cannot contain two consecutive 
semicolons (;;), cannot begin or end with spaces, and cannot include any of 
the following characters: \ / : * ? " < > | % ' 

 6 Click the Template box browse button. The Select Tests dialog box opens.

 7 Expand the folder containing your template test. 

 8 Select the template test on which to base your new test and click the Add 
button . The Select Tests dialog box closes and the template test you selected 
is displayed in the Template box (in the Create New Test dialog box). 

 9 In the Create New Test dialog box, click OK. The new test is created with the 
test settings defined in the template test.

 10 The new test is displayed in the Test Plan tree under the subject folder you 
selected.



Chapter 51 • Integrating with Quality Center

1437

Note: If the Required Fields dialog box opens, set the required values and 
click OK. For more information, see the HP Quality Center Administrator 
Guide.

 11 Continue creating the test. For more information on creating tests in 
Quality Center, see the HP Quality Center User Guide.

Running a Test Stored in a Quality Center Project from 
QuickTest

QuickTest can run a test from a Quality Center project and save the run 
results in the project. To save the run results, you specify a name for the run 
session and a test set in which to store the results. 

To save run results to a Quality Center project:

 1 In QuickTest, click the Run button or select Automation > Run. The Run 
dialog box opens.



Chapter 51 • Integrating with Quality Center

1438

 2 The Project name box displays the Quality Center project to which you are 
currently connected. 

To save the run results in the Quality Center project, accept the default Run 
name, or type a different one in the box. 

 3 Accept the default Test set or select a different one. 

 4 If there is more than one instance of the test in the test set, specify the 
instance of the test for which you want to save the results in the Instance 
box.

Note: A test set is a group of tests selected to achieve specific testing goals. 
For example, you can create a test set that tests the user interface of the 
application or the application’s performance under stress. You define test 
sets when working in the Quality Center test run mode. For more 
information, see your Quality Center documentation.

To run the test, overwriting the previous test run results, select the 
Temporary run results folder (not saved in the project) option.

Note: QuickTest stores temporary test run results for all tests in 
%TMP%\TempResults. The path in the text box of the Temporary run 
results folder (not saved in the project) option is read-only and cannot be 
changed.

 5 Click OK. The Run dialog box closes and QuickTest begins running the test. 
As QuickTest runs the test, it highlights each step in the Keyword View. 

When the test stops running, the Test Results window opens unless you 
have cleared the View results when test run ends check box in the Run pane 
of the Options dialog box. For more information on the Options dialog box, 
see Chapter 44, “Setting Global Testing Options.”



Chapter 51 • Integrating with Quality Center

1439

When the test stops running, Uploading is displayed in the status bar. The 
Test Results window opens when the uploading process is completed.

Note: You can report defects to a Quality Center project either automatically 
as they occur, or manually directly from the QuickTest Test Results window. 
For more information, see “Submitting Defects Detected During a Run 
Session” on page 1013.

Setting Preferences for Quality Center Test Runs

You can run QuickTest tests that are stored in a Quality Center database via 
QuickTest, via a Quality Center client that is installed on your computer, or 
via a remote Quality Center client. When Quality Center runs your 
QuickTest test, it uses the associated add-ins list to load the proper add-ins 
for your test on the QuickTest computer. For more information, see 
“Modifying Associated Add-Ins” on page 1268 and “Working with Template 
Tests” on page 1430.

Notes:

➤ You cannot run QuickTest tests from Quality Center if the QuickTest 
computer is logged off or locked.

➤ By default, QuickTest opens and runs in hidden mode when 
Quality Center activates it to run a test in a test set. This helps to improve 
performance. You can change this setting in the QuickTest Remote 
Agent. You can also instruct the Remote Agent to display a tooltip 
window indicating that QuickTest is running a Quality Center test in 
hidden mode. For more information, see “Setting QuickTest Remote 
Agent Preferences” on page 1441.



Chapter 51 • Integrating with Quality Center

1440

You can instruct QuickTest to report a defect for each failed step when 
Quality Center test runs on your QuickTest computer. You can also submit 
defects to Quality Center manually from the QuickTest Test Results window. 
For more information, see “Submitting Defects Detected During a Run 
Session” on page 1013.

Before you instruct a remote Quality Center client to run QuickTest tests on 
your computer, you must give Quality Center permission to use your 
QuickTest application. You can also view or modify the QuickTest Remote 
Agent settings.

Enabling Quality Center to Run Tests on a QuickTest 
Computer
For security reasons, remote access to your QuickTest application is not 
enabled. If you want to allow Quality Center (or other remote access clients) 
to open and run QuickTest tests, you must select the Allow other HP 
products to run tests and components option in the Options dialog box.

Note: If you want to run QuickTest tests remotely from Quality Center, and 
QuickTest is installed on Windows XP Service Pack 2, Windows 2003 Server, 
or Windows Vista, you must first change DCOM permissions and open 
firewall ports. For more information, see the HP QuickTest Professional 
Installation Guide.

In addition, if you want to run QuickTest tests remotely from 
Quality Center, and QuickTest is installed on Windows Vista, you must 
disable User Account Control (UAC) in Windows Control Panel > User 
Accounts before you first connect to Quality Center. For more information, 
see the HP QuickTest Professional Installation Guide.



Chapter 51 • Integrating with Quality Center

1441

To enable remote Quality Center clients to run tests on your QuickTest 
computer:

 1 Open QuickTest.

 2 Select Tools > Options or click the Options toolbar button . The Options 
dialog box opens.

 3 Click the Run node.

 4 Select the Allow other HP products to run tests and components check box.

For more information on this option, see “Setting Run Testing Options” on 
page 1253.

Tip: For full access to QuickTest tests from Quality Center, you must also 
have the QuickTest Add-in for Quality Center installed on your 
Quality Center client computer. This enables you to view the test and view 
the run results in the Test Results viewer. For more information on this add-
in, go to the QuickTest Professional Add-in screen (accessible from the main 
Quality Center screen).

Setting QuickTest Remote Agent Preferences
When you run a QuickTest test or business process test from Quality Center, 
the QuickTest Remote Agent opens on the QuickTest computer. The 
QuickTest Remote Agent determines how QuickTest behaves when a test is 
run by a remote application such as Quality Center. 

You can open the Remote Agent Settings dialog box at any time to view or 
modify the settings that your QuickTest application uses when 
Quality Center runs a test on your computer.



Chapter 51 • Integrating with Quality Center

1442

To open the Remote Agent Settings dialog box:

 1 Select Start > Programs > QuickTest Professional > Tools > Remote Agent. 
The Remote Agent opens and the Remote Agent icon is displayed in the task 
bar tray.

 2 Right-click the Remote Agent icon and select Settings. The Remote Agent 
Settings dialog box opens.  

 3 View or modify the settings in the dialog box. For more information, see 
“Understanding the Remote Agent Settings Dialog Box” on page 1443.

 4 Click OK to save your settings and close the dialog box.

 5 Right-click the Remote Agent icon and select Exit to end the Remote Agent 
session.



Chapter 51 • Integrating with Quality Center

1443

Understanding the Remote Agent Settings Dialog Box
The Remote Agent Settings dialog box enables you to view or modify the 
settings that QuickTest uses when Quality Center runs a QuickTest test or 
business process test on your computer.  

The Remote Agent Settings dialog box contains the following options:

Option Description

Level The level of detail to include in the log that is created 
when Quality Center runs a QuickTest test or business 
process test. 

None. (Default) No log is created.

Low. The log lists any Quality Center-QuickTest 
communication errors.

Medium. The log includes Quality Center-QuickTest 
communication errors and information on other 
major operations that result in Quality Center-
QuickTest communication.

High. The log includes all available information 
related to Quality Center-QuickTest communications.

Log folder The folder path for storing the log file. Required if a 
log type is specified in the Level option.

Restart testing tool after 
__ runs

For QuickTest tests, restarts QuickTest after 
Quality Center completes the specified number of test 
runs. When QuickTest restarts, it continues with the 
next test in the test set. 

You may want to use this option to maximize 
available memory.

If you do not want QuickTest to restart during a test 
set run, enter 0 (default).



Chapter 51 • Integrating with Quality Center

1444

Save the open, modified 
test before the test run

If an existing (named) test or is open in QuickTest 
when the Remote Agent begins running a test, this 
option instructs QuickTest to save any unsaved 
changes to the open test or. 

Note: If an existing (named) function library is open 
in QuickTest when the Remote Agent begins running 
a test, the function library is not saved.

Save the open, new test 
before the test run

If a new (untitled) test is open in QuickTest when the 
Remote Agent begins running a test, the test is saved 
in:
<QuickTest installation folder>\Tests\Quality Center 
with a sequential test name.

Open a new test after 
the test run

By default, the last test run by the Remote Agent stays 
open in QuickTest when it finishes running all tests. 
However, if any shared resources (such as a shared 
object repository or Data Table file) are associated with 
the open test, those resources are locked to other users 
until the test is closed. You can select this option to 
ensure that the last test that Quality Center runs is 
closed, and a blank test is open instead.

Option Description



Chapter 51 • Integrating with Quality Center

1445

Run QuickTest in hidden 
mode

Specifies whether to run QuickTest in hidden (silent) 
mode when you run a test set from the Test Lab 
module in Quality Center. By default, this option is 
selected.

Display hidden-mode notification tooltip: If this check 
box is selected, the Remote Agent displays a tooltip 
window when QuickTest runs a Quality Center test in 
hidden mode. You can click the tooltip to display 
QuickTest during the test set run. By default, this 
option is selected.

Notes: 

➤ Clicking the notification tooltip clears the Run 
QuickTest in hidden mode check box and QuickTest 
will run in normal mode. You can run QuickTest in 
hidden mode again by reselecting Run QuickTest in 
hidden mode before the next test set run.

➤ When running in hidden mode, QuickTest can be 
optionally redisplayed at the end of each test or at 
the end of the test set. This behavior is configured 
in Quality Center Site Administration using the 
SUPPORT_TESTSET_END parameter. For more 
information, see the section on setting Quality 
Center configuration parameters in the HP Quality 
Center Administrator Guide.

Option Description



Chapter 51 • Integrating with Quality Center

1446

Restart testing tool after Restarts QuickTest if there is no response after the 
specified number of seconds for:

Operations. QuickTest operations such as Open or 
Run.

Queries. Standard status queries that remote 
applications perform to confirm that the application 
is responding (such as the Quality Center get_status 
query). 

The default value for both options is 2700 seconds (45 
minutes). However, while QuickTest operations may 
take a long time between responses, queries usually 
take only several seconds. Therefore, you may want to 
set different values for each of these options.

Note: If a function library with unsaved changes is 
open in QuickTest, QuickTest prompts you to save it. 
If the function library is not saved within 10 seconds, 
QuickTest restarts and any unsaved changes are lost.

Option Description



1447

52
Using the Resources and Dependencies 
Model

QuickTest enables you to use the Resources and Dependencies model to fully 
integrate your QuickTest tests into Quality Center projects. 

Note: The references to Quality Center features and options in this chapter 
apply to Quality Center 10.00. However, they may not be supported in the 
Quality Center edition you are using. For information on Quality Center 
editions, see the HP Quality Center User Guide. 

This chapter includes:

 ➤  Resources and Dependencies Model Terminology on page 1448

 ➤  About the Resources and Dependencies Model on page 1449

 ➤  Advantages of Working with Asset Dependencies on page 1451

 ➤  Working With the Resources and Dependencies Model in Quality Center 
on page 1452



Chapter 52 • Using the Resources and Dependencies Model

1448

Resources and Dependencies Model Terminology 

Term Description

Assets Any QuickTest testing document or resource file, including:

➤ tests

➤ actions

➤ function libraries

➤ shared object repositories

➤ recovery scenarios

➤ data table files

➤ environment variable files

Note: In Quality Center, QuickTest assets are referred to by the 
more general term entities.

Resources Any asset used by a test. For example, a test may contain calls to 
functions in associated function libraries, and it may reference 
test objects stored in shared object repositories that are 
associated with the test. Resources include:

➤ function libraries

➤ shared object repositories

➤ recovery scenarios

➤ data table files

➤ environment variable files

Dependencies The linked relationships between resources or external actions 
and a particular test. Associated resource files and actions are 
linked to each test that uses these resources or calls these 
actions. 

Assets are considered dependencies if they are associated using 
absolute paths, and they are stored in the following modules:

➤ Test Plan module: tests

➤ Test Resources module: function libraries, shared object 
repositories, recovery scenarios, data table files, environment 
variable files 

Note: Tests stored in the Unattached folder in the Test Plan 
module are not considered dependencies because they are not 
associated with any test.



Chapter 52 • Using the Resources and Dependencies Model

1449

About the Resources and Dependencies Model

The Resources and Dependencies model provides powerful integration 
between QuickTest and Quality Center.

➤ Replaces the use of attachments with linked QuickTest assets. You store your 
tests in the Test Plan module, and you store your resource files in the Test 
Resources module. When you associate a resource file to a test, these assets 
become linked. Linking assets improves runtime performance by decreasing 
download time. It also helps to ensure that the relationships between 
dependent assets are maintained (using attachments increases download 
time from Quality Center 10.00).

➤ Supports versioning and baselines for tests and resource files. You can create 
versions of these assets in QuickTest or in Quality Center. You manage asset 
versions and baselines in Quality Center. For more information, see 
“Managing Assets Using Version Control” on page 1479.

➤ Enables you to view and compare your QuickTest assets in both 
Quality Center and QuickTest. You can use the Asset Comparison Tool to 
compare versions of individual QuickTest assets and the Asset Viewer for 
viewing an earlier version of a QuickTest asset. Both of these viewers are 
available in Quality Center and in QuickTest. For more information, see 
“Viewing and Comparing Versions of QuickTest Assets” on page 1461.

➤ Enables you to import and share assets across Quality Center projects. For 
more information, see the HP Quality Center User Guide.

For more information about the advantages of working with this model, see 
“Advantages of Working with Asset Dependencies” on page 1451.



Chapter 52 • Using the Resources and Dependencies Model

1450

Considerations for Working with Relative Paths in 
Quality Center
Resource files and actions that are associated with tests using a relative path 
are not considered dependencies. To ensure that your resource files are 
recognized as dependencies, they must be saved in the Test Resources 
module in Quality Center, and they must be associated using the full 
Quality Center path. This enables you to benefit from the features provided 
by the Resources and Dependencies Model, as described in “Advantages of 
Working with Asset Dependencies” on page 1451. 

Despite this, there may be cases in which you may want to use a relative 
path. For example, if your application is released in different languages, you 
may want to use a relative path when associating shared object repositories 
with your tests, as this enables you to use the same test with localized shared 
object repositories. Similarly, you may want to use the same tests to test 
different versions of your application using version-specific shared object 
repositories. 

When assets are associated via relative paths, consider the following:

➤ Run-time performance times are slower.

➤ Dependency information for these assets is not displayed in:

➤ The Using and Used By grids in the Dependencies tab in Quality Center. 
See: “The Dependencies Tab” on page 1454

➤ The Used By tab of the Action Properties dialog box in QuickTest. 
See: “Viewing a List of the Tests and Actions Using this Action” on 
page 452

➤ The message box that opens when you delete an asset that is associated 
with other assets.
See: “Advantages of Working with Asset Dependencies” on page 1451

➤ Quality Center does not verify that these assets are included during the 
baseline verification process.
See: “Viewing Baseline History” on page 1490



Chapter 52 • Using the Resources and Dependencies Model

1451

➤ When opening or running tests from a baseline, any associated external 
action or resource file that is associated via a relative path but is not 
included in the baseline is considered a missing resource. This may cause a 
test run may to fail. (Note that the baseline version of an associated asset is 
used if the asset associated via a relative path is included in the baseline.)
See: “Viewing Baseline History” on page 1490

➤ When using the Asset Comparison Tool to view a test, you cannot drill 
down to view assets that are associated via a relative path.
See: “Working with the Asset Comparison Tool and Asset Viewer” on 
page 1462

Advantages of Working with Asset Dependencies

When you associate a dependent resource file with a test, the assets become 
integrally linked, and these links can be viewed in Quality Center (in the 
Dependencies tab of various modules) and in QuickTest (in the Action 
Properties dialog box). 

➤ Assets stay linked. When you move a test, or rename a test or action, 
dependent assets are automatically updated to reflect the change. This helps 
ensure that there are no missing resources during a run session. 

➤ Resource files are all stored in one Quality Center module. Resource files are 
stored in the Test Resources module, enabling you to manage your resources 
in one central location, and to view at a glance which tests are using each 
resource file. For more information on the Test Resources module, see the 
HP Quality Center User Guide.

➤ Using resources stored in the Test Resources module improves runtime 
performance. Tests open and run faster when the associated resource files 
are stored in the Test Resources module (instead of being stored as 
attachments to tests in the Test Plan module).

➤ Version control can also be applied to resource files. When version control 
is enabled for a project, all of the assets can be checked into the version 
control database, and baselines can be created that capture the 
developmental stage for each asset. For more information, see “Managing 
Assets Using Version Control” on page 1479.



Chapter 52 • Using the Resources and Dependencies Model

1452

➤ You can share assets with other projects and synchronize them as needed. 
You can copy assets from other projects. This enables you to reuse your 
existing assets instead of creating new assets whenever you create a new 
project. For example, you can create a "template" set of assets to use as a 
basis for new projects. 

You can synchronize these assets in both projects when changes are made, 
or you can customize your assets to suit the unique needs of each 
development project. For more information, see the sections on importing 
and synchronizing libraries in the HP Quality Center User Guide.

➤ Deleting assets is easier. When you delete an asset (a reusable action or 
associated resource file), a warning message informs you if the asset is used 
by other tests (or more than once in the current test). This message contains 
a Details section that lists the tests that are associated with this asset or 
contain calls to this action so you can modify the tests as needed. This helps 
you manage your tests and action calls so that tests do not inadvertently 
fail.

➤ You can verify which tests contain calls to an action. You can view a list of 
the tests that contain calls to a particular action by focusing on the action 
and opening the Used By tab in the Action Properties dialog box. 
(Right-click an action in the Test Flow pane and select Action Properties.) 
For more information, see “Viewing a List of the Tests and Actions Using 
this Action” on page 452.

Working With the Resources and Dependencies Model in 
Quality Center

When you create a Quality Center project in your Quality Center server, the 
QuickTest tests that you create in this project are saved to the Test Plan 
module. The resource files associated with your tests are saved to the Test 
Resources module as linked dependencies. 

This section provides a general overview of the tabs that are relevant for 
QuickTest tests. For information on using any of these tabs, see the relevant 
section in the HP Quality Center User Guide.



Chapter 52 • Using the Resources and Dependencies Model

1453

The Libraries Tab
In the Libraries tab, you can:

➤ Create, view, and compare baselines. For more information, see “Viewing 
Baseline History” on page 1490 and the sections describing baselines in the 
HP Quality Center User Guide.

➤ Import assets from other Quality Center projects. This enables you to create 
a complete copy of the assets that are included in a baseline in another 
project in any accessible domain. For more information, see the HP Quality 
Center User Guide.

The Libraries tab is located to the right of the Releases tab in the 
Management module.

The History Tab
The History tab lists version and baseline information for a selected file. You 
can view and compare file versions, and you can see the baseline in which a 
version is stored (if applicable). You can also check out an earlier version if 
you want to roll back to that version. When you check the file back into the 
version control database, that version becomes the current version.

The History tab is available from the following modules:

➤ Test Plan module

➤ Test Resources module



Chapter 52 • Using the Resources and Dependencies Model

1454

The History tab is located in the pane on the right side of the window. You 
may need to scroll to the right to display it.

For more information on the History tab, see the HP Quality Center User 
Guide.

Tip: You can also view version history and baseline history in QuickTest by 
selecting File > Quality Center Version Control > Version History or File > 
Quality Center Version Control > Baseline History. For more information, see 
“Viewing Version History for an Asset” on page 1488 and “Viewing Baseline 
History” on page 1490.

The Dependencies Tab
The Dependencies tab displays the relationship between a selected asset, 
such as a test, and the assets with which it is associated. You use the 
Dependencies tab to see at a glance which resources are used by a particular 
asset, and which asset is using a particular resource. 

For example, suppose you want to modify the objects in a shared object 
repository. You can navigate to the shared object repository in the Test 
Resources module to view a list of the tests with which it is associated. This 
enables you to determine which assets this resource file is used by and helps 
you to analyze the impact that a proposed change may make to the 
dependent assets.

In Quality Center, you can view this Using and Used By information in the 
Dependencies tab in the Test Plan and Test Resources modules. 



Chapter 52 • Using the Resources and Dependencies Model

1455

The Dependencies tab is available from the following modules:

➤ Test Plan module

➤ Test Resources module

Below is an example of a Dependencies tab in Quality Center:

 

The Dependencies tab contains the Used By grid and the Using grid. The 
Used By grid displays assets that depend on a selected asset. The Using grid 
displays the assets that a selected asset depends on.

Used By Grid

The Used By grid lists the assets that depend on the selected asset because 
they are using that asset. For example, suppose you are looking at the Used 
By grid for a shared object repository. The Used By grid lists all of the tests 
that are associated with this dependency. 



Chapter 52 • Using the Resources and Dependencies Model

1456

The Used By grid contains the following columns:

Column Description

Owner ID A unique numeric ID assigned automatically by Quality Center. 
If the Owner ID is a link, you can click it to jump to that asset in 
Quality Center.

Example: Suppose you are looking at the Used By grid for a 
specific function library in the Test Resources module. You can 
click the Owner ID link to jump to the test with which it is 
associated. (The link takes you to the Test Plan module.)

Owner Type The type of asset that is using the selected asset. QuickTest-related 
owner types include:

➤ Resource. A resource listed in the Test Resources module.

➤ Test. A QuickTest test in the Test Plan module.

➤ QTP Action. An action that is part of a test in the Test Plan 
module.



Chapter 52 • Using the Resources and Dependencies Model

1457

Tip: In QuickTest, you can view Used By information for actions in the 
Action Properties dialog box. For more information, see “Viewing a List of 
the Tests and Actions Using this Action” on page 452.

QuickTest also displays Used By information when you try to delete a 
dependent asset, so that you can determine how the change might affect 
associated assets before you delete the asset.

Owner Name The name of the asset that is using the selected asset. If the 
Owner Name is a link, you can click it to jump to this asset 
Quality Center.

QuickTest-related owner names include:

➤ Main Test Flow. Indicates the test container called by the 
top-level action in the currently selected test in the Test Plan 
module. When Main Test Flow is displayed, the Owner Type is 
Test

➤ Action<#>. Indicates the internal name of the action that is 
called by an action in the currently selected test in the Test 
Plan module. Action<#> refers to the sequential number of the 
action when it was created. Action<#> is displayed when the 
Owner Type is QTP Action. 
Note: Action<#> is displayed even if an action was renamed in 
the test.

➤ The actual name of the asset if the asset is not a test.

Owner 
Description

The description of the associated asset that uses the selected asset.

➤ If the Owner Type is QTP Action, displays the name of the 
action as shown in QuickTest and displays its description, if 
any.

➤ If the Owner Type is Test, this cell is empty.

Column Description



Chapter 52 • Using the Resources and Dependencies Model

1458

Using Grid

The Using grid lists all of the dependencies that the selected asset is using. 
For example, suppose you are looking at a test. You can see all of the 
external actions called by the test, all of the shared object repositories 
containing test objects used by the test, function libraries containing 
functions called by the test, and so on. 

The Using grid contains the following columns:

Column Description

Related ID A unique numeric ID assigned automatically by 
Quality Center. 

Related Type The type of associated asset that the selected asset uses. 
QuickTest-related types include:

➤ Resource. A resource listed in the Test Resources 
module.

➤ Test. A QuickTest test in the Test Plan module.

➤ QTP Action. An action that is part of a test in the 
Test Plan module.



Chapter 52 • Using the Resources and Dependencies Model

1459

Related Name The name of the associated asset that the selected asset 
uses.

QuickTest-related names include:

➤ Action<#>. Indicates the internal name of the 
action that is called by an action in a test in the Test 
Plan module. Action<#> refers to the sequential 
number of the action when it was created. 
Action<#> is displayed when the Related Type is 
QTP Action. 
Note: Action<#> is displayed even if an action was 
renamed in the test.

➤ The actual name of the asset if the asset is not a test.

Related Description The description of the associated asset that the 
selected asset uses.

If the Related Type is QTP Action, displays the name of 
the action as shown in QuickTest and displays its 
description, if any.

Column Description



Chapter 52 • Using the Resources and Dependencies Model

1460



1461

53
Viewing and Comparing Versions of 
QuickTest Assets

This chapter describes how to use the Asset Comparison Tool to compare 
versions of QuickTest assets that are stored in Quality Center. An asset can 
be a QuickTest testing document or any resource file that is used by a 
QuickTest testing document. 

Note: The references to Quality Center features and options in this chapter 
apply to Quality Center 10.00. However, they may not be supported in the 
Quality Center edition you are using. For information on Quality Center 
editions, see the HP Quality Center User Guide. 

This chapter includes:

 ➤  Working with the Asset Comparison Tool and Asset Viewer on page 1462

 ➤  The QuickTest Asset Comparison Tool on page 1465

 ➤  The QuickTest Asset Viewer on page 1474

Tip: To compare two different object repositories, use the Object Repository 
Comparison Tool, described on page 287.  



Chapter 53 • Viewing and Comparing Versions of QuickTest Assets

1462

Working with the Asset Comparison Tool and Asset Viewer

This section describes the tasks most often performed using the Asset 
Comparison Tool and the Asset Viewer.

View a comparison of two asset versions (Asset Comparison 
Tool)

You can view comparison of two versions of an asset either side-by-side, or 
one above the other. 

Drill down to compare or view a specific element

Compare versions of an integral element. You can view a drilldown 
comparison of a specific element in the currently open version comparison. 
Elements include any resource that is an integral part of the test (not saved 
as an external resource), such as the Data Table or local object repository. 
When you check in a test, these elements are checked in, too. This enables 
you to view a version comparison of these elements directly from the test. 

View the latest content of an associated resource file. An associated resource 
file is any resource file used by an asset. For example, a function library and 
a shared object repository are examples of resource files that can be used by 
a test. When you drill down in a test, you can view the last saved version of 
a resource file. This enables you to view the latest content. (If you want to 
compare different versions of the drilled-down resource, you can open the 
resource and perform a new comparison.) 

To drill down, do one of the following:

➤ Click the blue drilldown arrow  adjacent to any asset that can be 
compared. (The pointer changes into a pointing hand in the proximity of 
the drilldown arrow.)

➤ Double-click the element.

➤ Right-click the element and select View Drilldown of Selected Asset. 
For more information, see “QuickTest Asset Comparison Tool - Context 
Menu Commands” on page 1472.



Chapter 53 • Viewing and Comparing Versions of QuickTest Assets

1463

View the QuickTest location of an element

You can view a screen capture depicting the QuickTest location of an 
element by right-clicking the relevant node and selecting View Sample 
Snapshot. The screen capture displays an example of the relevant dialog 
box. The option (or area) for the node you right-clicked is highlighted in the 
screen capture. 

For example, suppose you are viewing a comparison of a test, and you notice 
that the Disable Smart Identification during the run session node is 
highlighted, indicating that it was changed. If you are not sure where this 
option is located in QuickTest, you can right-click the node in the 
comparison tree and select View Sample Snapshot. QuickTest then opens a 
dialog box showing you that this area is located in the Run pane of the Test 
Settings dialog box. The title bar of the dialog box lists the selected element, 
and a purple rectangle outlines the option. 



Chapter 53 • Viewing and Comparing Versions of QuickTest Assets

1464

For more information, see “QuickTest Asset Comparison Tool - Context 
Menu Commands” on page 1472. 

Modify text and background colors

You can modify the text and background colors for the filter types (changed, 
added, removed, and so on) in the Asset Comparison Tool window using the 
Color Settings dialog box.

When you modify the background color of a filter type, the color of the 
filter type in the legend at the top of the window changes accordingly. These 
changes remain in effect unless you change them again or restore the 
default settings. 

For more information, see “The Color Settings Dialog Box” on page 1473.

View the number of differences for a specific element

If the sub-elements of an element are different between versions, and you 
collapse the node representing that element, a legend is displayed adjacent 
to the node. This legend indicates the number of differences that exist under 
the collapsed element. In the following example, three sub-elements were 
changed, one was removed, and seven were added: 

For more information, see “The QuickTest Asset Comparison Tool” on 
page 1465 and “The QuickTest Asset Viewer” on page 1474.



Chapter 53 • Viewing and Comparing Versions of QuickTest Assets

1465

The QuickTest Asset Comparison Tool

The QuickTest Asset Comparison Tool enables you to compare two versions 
of a particular QuickTest asset, such as a test, a function library, a shared 
object repository, or a recovery scenario. It also enables you to drill down in 
an asset to view a comparison of entities that are associated with the asset, 
for example, an associated Data Table or shared object repository.

Note: The QuickTest Asset Comparison Tool does not enable you to drill 
down to view assets that are associated via a relative path. For more 
information, see “Considerations for Working with Relative Paths in 
Quality Center” on page 1450.

Opening the QuickTest Asset Comparison Tool
You can open the QuickTest Asset Comparison Tool from QuickTest or from 
Quality Center when version control is enabled, or from a command line 
interpreter. 

You can open the Asset Comparison Tool from:

The main QuickTest window:

 1 Open the test or function library whose versions you want to compare.

 2 Select File > Quality Center Version Control > Version History or Baseline 
History. The Version History or Baseline History dialog box opens.

 3 Select two versions and click Compare. The Asset Comparison Tool opens.

The Object Repository Manager

 1 Open the Object Repository Manager (Resources > Object Repository 
Manager).

 2 Browse to and open the shared object repository whose versions you want to 
compare. For more information, see “Opening Object Repositories” on 
page 217.



Chapter 53 • Viewing and Comparing Versions of QuickTest Assets

1466

 3 Select File > Quality Center Version Control > Version History or Baseline 
History. The Version History or Baseline History dialog box opens.

 4 Select two versions and click Compare. The Asset Comparison Tool opens.

The Recovery Scenario Manager:

 1 Open the Recovery Scenario Manager (Resources > Recovery Scenario 
Manager).

 2 Open the recovery scenario file whose versions you want to compare. For 
more information, see “Understanding the Recovery Scenario Manager 
Dialog Box” on page 1336. 

 3 Click the Version Control down arrow and select Version History or Baseline 
History.

 4 Select two versions and click Compare. The Asset Comparison Tool opens.

Quality Center:

 1 In Quality Center, connect to the project containing the asset you want to 
compare.

 2 Do one of the following:

➤ Click the Test Plan button in the sidebar to open the Test Plan module. 

➤ Click the Test Resources button in the sidebar to open the Test Resources 
module. This module contains the resource files associated with your 
test, such as function libraries, shared object repositories, Data Tables, 
and recovery scenarios.

 3 In the tree, select the file whose versions you want to compare. 

 4 Click the History tab, and then click the Versions and Baselines tab.

 5 In the View by box, select either Versions or Baselines.

 6 In the grid, select two versions to compare, and then click the Compare 
button. 

 7 In the sidebar of the window that opens, click the QTP Comparison button. 
The Asset Comparison Tool opens. 



Chapter 53 • Viewing and Comparing Versions of QuickTest Assets

1467

Tip: You can also compare baselines from the Management module. Click 
the Management button in the side bar to open the Management module. 
Select a baseline in the tree and click the Compare To button. For more 
information, see the HP Quality Center User Guide. For more information on 
baselines, see “Managing Versions of Assets in Quality Center” on 
page 1480.

The Command Line Interpreter (cmd.exe):

 1 Open the Command Line Interpreter.

 2 Enter the command using the following syntax:

"<Asset Comparison Tool executable path>" P1: "<file path 1>" P2: "<file path 2>"

where P1 = the file system path to the first asset, and P2 = the file system 
path to the second asset.

Note: Make sure you insert a blank space after each argument. The options 
are not case-sensitive and can be entered in any order.

Example:

Understanding the Asset Comparison Tool Commands and 
Options
This section describes the commands and options available in the Asset 
Comparison Tool and the Asset Viewer. For an overview of these tools, see 
“Working with the Asset Comparison Tool and Asset Viewer” on page 1462.

The Asset Comparison Tool enables you to compare two versions of an asset. 
For more information, see “The QuickTest Asset Comparison Tool” on 
page 1465. 

"C:\Program Files\HP\QuickTest Professional\Bin\QTPDiffApplication.exe" P1: "C:\Program Files\HP\
QuickTest Professional\Tests\Test1" P2: "C:\Program Files\HP\QuickTest Professional\Tests\Test2"



Chapter 53 • Viewing and Comparing Versions of QuickTest Assets

1468

The Asset Viewer enables you to view a particular of an asset. For more 
information, see “The QuickTest Asset Viewer” on page 1474. 

Below is an image of the QuickTest Asset Comparison Tool.

 

Legend 

Click arrow 
to open a 
new window 
displaying a 
drilldown 
version 
comparison 
of this 
element Tab for window displaying drilldown version 

comparison of a specific element in the 
main window

Legend for 
collapsed 
element 
indicates 
number of 
differences



Chapter 53 • Viewing and Comparing Versions of QuickTest Assets

1469

QuickTest Asset Comparison Tool - Menu, Toolbar, and Button 
Options
 

Commands Shortcut Key Description

File > Exit ALT+F4 Closes the Asset Comparison Tool 
window.

View > Next 
Difference

CTRL+
DOWN ARROW

Finds the next difference between the 
elements in the compared versions.

View > 
Previous 
Difference

CTRL+UP 
ARROW

Finds the previous difference between 
the elements in the compared versions.

View > 
Refresh 

Performs a new comparison of the 
selected asset versions. 

Note: This is useful if you are 
comparing the current version of an 
asset. If you modify and save the asset, 
you can use the Refresh command to 
view an updated comparison.

Tools > Color 
Settings

Opens the Color Settings dialog box, 
enabling you to define the text and 
background color for each filter type. 

See: “The Color Settings Dialog Box” on 
page 1473



Chapter 53 • Viewing and Comparing Versions of QuickTest Assets

1470

Tool > Filter Enables you to show or hide the 
following types of filter elements in the 
comparison window:

➤ Changed 

➤ Removed 

➤ Added 

➤ Identical

Select or clear a filter command. The 
comparison window displays only those 
elements that match the defined filter.

Tip: The legend in the top-right corner 
of the window indicates how many 
elements match each filter type. The 
legend adjacent to a collapsed node 
indicates how many sub-nodes match 
each filter type.

Window > 
Close 
Window

Closes the currently active comparison 
window if it was opened from the main 
comparison window. Enabled only if 
more than one comparison window is 
open. 

Note: You can open another window to 
view a comparison of an asset that is 
associated with the currently compared 
asset, such as a shared object repository 
or Data Table. You do this by clicking 
the blue drilldown arrow  adjacent to 
any asset that can be compared.

Tip: You can also close the comparison 
window by clicking the X in the tab at 
the bottom of the window.

Window > 
View 
Horizontal or 
View Vertical

View Horizontal. Displays the open 
documents one above the other.

View Vertical. Displays the open 
documents side-by-side.

Commands Shortcut Key Description



Chapter 53 • Viewing and Comparing Versions of QuickTest Assets

1471

QuickTest Asset Comparison Tool - Legend

The following is an example of the filter legend displayed in the top-right 
corner of the Asset Comparison Tool window: 

 

Window > 
<Compared 
Asset Path>

Enables you to navigate between the 
open comparison windows.

Help > Asset 
Comparison 
Tool Help

F1 Opens the Asset Comparison Tool Help.

Previous 
2000 Lines 
button

If the testing document has more than 
2000 lines, this button is displayed at 
the top of the comparison pane. Click 
to hide the current 2000 lines and 
display the previous 2000 lines of the 
testing document.

Next 2000 
Lines button

If the testing document has more than 
2000 lines, this button is displayed at 
the bottom of the comparison pane. 
Click to hide the current 2000 lines and 
display the next 2000 lines of the 
testing document.

Symbol Description Number

Changed Indicates the number of modified elements in the 
comparison.

Removed Indicates the total number of elements that were 
removed from either of the versions being compared.

Added Indicates the total number of elements that were added 
to either of the versions being compared.

Commands Shortcut Key Description



Chapter 53 • Viewing and Comparing Versions of QuickTest Assets

1472

Notes: 

➤ If you modify the background color of a filter type (using the Color 
Settings dialog box), the color of the filter type in the legend changes 
accordingly.

➤ If you collapse an asset in the comparison window, the tool displays a 
legend for that asset, as shown in the following example: 

QuickTest Asset Comparison Tool - Context Menu Commands
 

Command
Shortcut 
Key

Description

View Drilldown of 
Selected Asset

ENTER Opens a drilldown version comparison of the 
selected asset in a new window. (Relevant 
only for assets that can be compared.)

Tip: You can also click the blue drilldown 
arrow  adjacent to the node to open a 
drilldown version comparison in a new 
window.

Note: You cannot drill down to view assets 
that are associated via a relative path. 
See: “Considerations for Working with 
Relative Paths in Quality Center” on 
page 1450

View Sample 
Snapshot 

CTRL+Q Opens a window containing a sample image 
of the selected element in QuickTest, for 
example, the Resources pane in the Test 
Settings dialog box. The element itself is 
highlighted in the snapshot.



Chapter 53 • Viewing and Comparing Versions of QuickTest Assets

1473

The Color Settings Dialog Box
 

Below is an image of the Color Settings dialog box:

 

Color Settings Dialog Box Options
 

Description Enables you to modify the text and background colors for the 
various filter elements in the Asset Comparison Tool window. 
The changes remain in effect for all subsequent sessions.

Note: If you change the background color for a filter type, the 
legend in the top-right corner of the Asset Comparison Tool 
window changes accordingly.

How to Access In the Asset Comparison Tool window:

➤ Select the Tools > Color Settings menu command.

➤ Click the Color Settings toolbar button .

Option Description

Added

Removed

Changed

Identical

Choose a text color and background color for the relevant filter 
elements. You can:

➤ Click a down arrow  to select a color from the list of 
colors in the from the Custom, Web, or System tabs. 

➤ Enter an RGB value directly in the edit box.

Restore Click to restore the default color values for each of the filter 
elements.



Chapter 53 • Viewing and Comparing Versions of QuickTest Assets

1474

The QuickTest Asset Viewer

The QuickTest Asset Viewer enables you to view an earlier version of a 
particular QuickTest asset, such as a test, a function library, a shared object 
repository, or a recovery scenario. You can also drill down in the Asset 
Viewer window to view associated entities, such as an associated Data Table 
or shared object repository.

Opening the QuickTest Asset Viewer
You can open the QuickTest Asset Viewer from QuickTest or from 
Quality Center when version control is enabled. 

You can open the Asset Viewer from:

The main QuickTest window:

 1 Open the test or function library for which you want to view an earlier 
version.

 2 Select File > Quality Center Version Control > Version History. The Version 
History dialog box opens.

 3 Select a version and click View. The Asset Viewer opens.

The Object Repository Manager:

 1 Open the Object Repository Manager (Resources > Object Repository 
Manager).

 2 Browse to and open the shared object repository for which you want to view 
an earlier version. For more information, see “Opening Object Repositories” 
on page 217.

 3 Select File > Quality Center Version Control > Version History. The Version 
History dialog box opens.

 4 Select a version and click View. The Asset Viewer opens.



Chapter 53 • Viewing and Comparing Versions of QuickTest Assets

1475

The Recovery Scenario Manager:

 1 Open the Recovery Scenario Manager (Resources > Recovery Scenario 
Manager).

 2 Open the recovery scenario file for which you want to view an earlier 
version. For more information, see “Understanding the Recovery Scenario 
Manager Dialog Box” on page 1336. 

 3 Click the Version Control down arrow and select Version History.

 4 Select a version and click View. The Asset Viewer opens.

Quality Center:

 1 In Quality Center, connect to the project containing the asset you want to 
view.

 2 Do one of the following:

➤ Click the Test Plan button in the sidebar to open the Test Plan module. 

➤ Click the Test Resources button to open the Test Resources module. This 
module contains the resource files associated with your test, such as 
function libraries, shared object repositories, Data Tables, and recovery 
scenarios.

 3 In the tree, select the file for which you want to view an earlier version. 

 4 Click the History tab, and then click the Versions and Baselines tab.

 5 In the View by box, select Versions.

 6 In the grid, select a version, and then click the View button. (You cannot 
view a version that is currently checked out.) A window opens with buttons 
in the sidebar enabling you to access version-specific information for the 
selected asset. (These buttons are identical to the tabs displayed in the right 
pane of the main window for the latest version of the selected asset.) For 
more information, see the HP Quality Center User Guide.



Chapter 53 • Viewing and Comparing Versions of QuickTest Assets

1476

The Command Line Interpreter (cmd.exe):

Note: You use the Asset Comparison Tool executable path to open the Asset 
Viewer.

 1 Open the Command Line Interpreter.

 2 Enter the command using the following syntax:

"<Asset Comparison Tool executable path>" P1: "<file path 1>" 

where P1 = the file system path to the first asset.

Note: Make sure you insert a blank space after each argument. The options 
are not case-sensitive and can be entered in any order.

Example:

"C:\Program Files\HP\QuickTest Professional\Bin\QTPDiffApplication.exe" P1: "C:\Program 
Files\HP\QuickTest Professional\Tests\Test1" 



Chapter 53 • Viewing and Comparing Versions of QuickTest Assets

1477

Using the QuickTest Asset Viewer
The Asset Viewer provides a functional overview of an asset, enabling to 
view its configurations and settings in a viewer format. The tree view 
enables you to drill down to view or verify a particular setting without 
needing to open different dialog boxes or even QuickTest. 

Below is an image of the QuickTest Asset Viewer:

 

 

Click arrow 
to open a 
new window 
displaying a 
drilldown 
version of 
this element

Tab for window displaying drilldown 
version of a specific element in the main 

window

Expand a 
node to view 
its content



Chapter 53 • Viewing and Comparing Versions of QuickTest Assets

1478

QuickTest Asset Viewer - Button Options
 

QuickTest Asset Viewer - Context Menu Commands
 

Commands
Shortcut 
Key

Description

Previous 2000 Lines If the testing document has more than 2000 
lines, this button is displayed at the top of 
the pane. Click to hide the current 2000 
lines and display the previous 2000 lines of 
the testing document.

Next 2000 Lines If the testing document has more than 2000 
lines, this button is displayed at the bottom 
of the pane. Click to hide the current 2000 
lines and display the next 2000 lines of the 
testing document.

Command
Shortcut 
Key

Description

View Drilldown of 
Selected Asset

ENTER Opens a drilldown version comparison of the 
selected asset in a new window. (Relevant 
only for assets that can be compared.)

Tip: You can also click the blue drilldown 
arrow  adjacent to the node to open a 
drilldown version comparison in a new 
window.

Note: You cannot drill down to view assets 
that are associated via a relative path. 
See: “Considerations for Working with 
Relative Paths in Quality Center” on 
page 1450

View Sample 
Snapshot 

CTRL+Q Opens a window containing a sample image 
of the selected element in QuickTest, for 
example, the Resources pane in the Test 
Settings dialog box. The element itself is 
highlighted in the snapshot.



1479

54
Managing Assets Using Version Control

This chapter describes how to use version control to manage and work with 
your QuickTest assets that are stored in Quality Center. 

Note: The references to Quality Center features and options in this chapter 
apply to Quality Center 10.00. However, they may not be supported in the 
Quality Center edition you are using. For information on Quality Center 
editions, see the HP Quality Center User Guide. 

This chapter includes:

 ➤  Managing Versions of Assets in Quality Center on page 1480

 ➤  Viewing Version History for an Asset on page 1488

 ➤  Viewing Baseline History on page 1490

 ➤  Version History Versus Baseline History on page 1494



Chapter 54 • Managing Assets Using Version Control

1480

Managing Versions of Assets in Quality Center 

When QuickTest is connected to a Quality Center project with version 
control support, you can update and revise your QuickTest assets while 
maintaining earlier versions of each asset. This helps you keep track of the 
changes made to each asset and see what was modified from one version to 
another. Assets can include tests, function libraries, shared object 
repositories, recovery scenarios, and external Data Tables. 

You manage asset versions by checking assets in and out of the version 
control database. You add an asset to the version control database by saving 
it in a Quality Center project with version control support. When you save 
an asset for the first time, QuickTest automatically checks the asset into the 
Quality Center version control database, assigns it version number 1, and 
automatically checks the asset out for you so that you can continue working 
on it. When you check the asset in, the asset retains version number 1, since 
this is the first version that can contain content. Then, each time the asset is 
checked out and in again, the version number increases by 1.

Note: If you create an asset directly in Quality Center, the asset is assigned 
version number 1 and is immediately checked out to you. In Quality Center, 
version number 1 represents the created asset without content. When you 
next check the asset in, Quality Center assigns it version number 2.



Chapter 54 • Managing Assets Using Version Control

1481

You can check in the asset at any time. For example, you may want to check 
the asset in every day or when you complete a task. While the asset is 
checked out to you, other users can view the last checked in version of that 
asset in read-only mode, but they cannot modify the asset or view your 
changes until you check in the asset. 

In QuickTest, you can check out only the latest version of an asset, although 
you can view and compare earlier versions. This is because assets that are 
stored in Quality Center are often linked to or dependent on one another.

For example, if you try to run an earlier version of a test with a later version 
of a shared object repository, your test might fail because the objects in the 
object repository would not necessarily match the objects in the test. 

If you need to check out an earlier version of an asset, for example, to roll 
back to an earlier version, contact your Quality Center project 
administrator. Your administrator needs to ensure that the correct versions 
of all relevant assets become the latest versions. 

You can view and compare the versions of an asset using the Asset 
Comparison Tool. For more information, see “Viewing and Comparing 
Versions of QuickTest Assets” on page 1461.

If the asset is... You can...

checked in ➤ Open the asset in read-only mode using the Open 
option. You cannot modify the asset.

➤ Open the asset and check it out immediately using the 
Open and Check out option. You can modify the asset 
as needed.

checked out to your 
Quality Center user 
name

Open the asset using the Open option and modify the 
asset as needed.

checked out to 
another 
Quality Center user

Open the asset in read-only mode using the Open 
option. QuickTest displays a message indicating that the 
asset is checked out to another Quality Center user. You 
view the last checked in version of the asset now, and 
you can check out the asset later after the other user 
checks in the asset.



Chapter 54 • Managing Assets Using Version Control

1482

If your project administrator creates project baseline versions when a 
milestone is reached during product development, you can view and 
compare the asset versions stored in these baselines. For more information, 
see “Viewing Baseline History” on page 1490.

Note: With the exception of the Baseline History option, the Quality Center 
Version Control options in the File menu are available only when you are 
connected to a Quality Center project with version control support, and an 
asset stored in Quality Center is open in the QuickTest window.

Version Management Commands
The following version control commands are available in QuickTest:

➤ Check Out. Enables you to check a version-controlled asset out of the 
version control database. For more information, see “Checking Assets Out of 
the Version Control Database” on page 1483.

➤ Undo Check Out. Enables you to cancel the check out of a version-
controlled asset from the version control database. For more information, 
see “Canceling a Check-Out Operation” on page 1487.

➤ Check In. Enables you to check an asset in to the version control database. 
For more information, see “Checking Assets Out of the Version Control 
Database” on page 1483.

➤ Version History. Enables you to view or compare the versions of a particular 
asset. For more information, see “Managing Versions of Assets in 
Quality Center” on page 1480.

➤ Baseline History. Enables you to view or compare the versions of a particular 
asset as it was saved in a project’s baselines. For more information, see 
“Viewing Baseline History” on page 1490.



Chapter 54 • Managing Assets Using Version Control

1483

Adding Assets to the Version Control Database 
When you use Save As to save a new asset in a Quality Center project with 
version control support, QuickTest automatically saves the asset in the 
project, checks the asset into the version control database with version 
number 1, and then checks it out so that you can continue working. This is 
an administrative version of the asset, similar to a placeholder. The version 
number indicates that the asset exists in the database. When you later check 
in the asset, the version number remains version number 1—the first 
version that you are checking in. Subsequent checkins increase the version 
number by 1.

Saving your changes to an existing asset does not check them in. Even if you 
save and close the asset, the asset remains checked out until you choose to 
check it in. For more information, see “Checking Assets into the Version 
Control Database” on page 1486.

Checking Assets Out of the Version Control Database
When you open an asset that is currently checked in to the version control 
database, it is opened in read-only mode. You can review the checked-in 
asset. You can also run the asset and view the results. 

To modify the asset, you must check it out. When you check out an asset, 
Quality Center copies the asset to your unique check-out directory 
(automatically created the first time you check out an asset), and locks the 
asset in the project database. This prevents other users of the Quality Center 
project from overwriting any changes you make to the asset. However, other 
users can still run the version that was last checked in to the database. 

You can save and close the asset, but it remains locked until you return the 
asset to the Quality Center database. To release the asset, either check the 
asset in, or undo the check out operation. For more information on 
checking assets in, see “Checking Assets into the Version Control Database” 
on page 1486. For more information on undoing the check-out, see 
“Canceling a Check-Out Operation” on page 1487.

In QuickTest, the check out option accesses the latest version of the asset. In 
Quality Center, you can also check out earlier versions of the asset. For more 
information, see “The Version History Dialog Box” on page 1488 and 
HP Quality Center User Guide.



Chapter 54 • Managing Assets Using Version Control

1484

Before you check out an asset, make sure the asset you want to check out is 
currently checked in. If you open an asset that is checked out to you, the 
Check Out option is disabled. If you open an asset that is checked out to 
another user, all Quality Center version control options, except the Version 
History option, are disabled.

Note about version numbers: Prior to Quality Center 10.00, version 
numbers consisted of three segments separated by periods, for 
example 1.7.4. From Quality Center 10.00, version numbers consist of a 
single segment, for example 12.

To check out the latest version of an asset using the Open dialog box:

 1 Do one of the following:

The Open <Asset type> dialog box opens.

 2 Browse to and select the asset. 

 3 Click the Open down arrow and select Open and Check out. The asset 
opens, checked out to you.

If the asset is a: Do this:

Test or Function 
Library

In the main QuickTest window, select File > Open > Test 
or Function Library, or click the Open down arrow and 
select the asset type from the list.

Shared Object 
Repository

In the Object Repository Manager, select File > Open or 
click the Open button.

Recovery Scenario In the Recovery Scenario Manager, click the Open 
button.



Chapter 54 • Managing Assets Using Version Control

1485

To check out the latest version of an asset using the File menu:

 1 Open the asset you want to check out. 

 2 Select File > Quality Center Version Control > Check Out. The Check Out 
dialog box opens and displays the asset version to be checked out. 

 3 You can enter a description of the changes you plan to make in the 
Comments box.

 4 Click OK. The read-only asset closes and automatically reopens as a writable 
asset.

 5 View or edit your asset as necessary. 

Note: You can save changes and close the asset without checking the asset 
in, but your changes will not be available to other Quality Center users until 
you check it in. If you do not want to check your changes in, you can undo 
the check-out. For more information on checking assets in, see “Checking 
Assets into the Version Control Database” on page 1486. For more 
information on undoing the check-out, see “Canceling a Check-Out 
Operation” on page 1487.



Chapter 54 • Managing Assets Using Version Control

1486

Checking Assets into the Version Control Database
While an asset is checked out, Quality Center users can run the previously 
checked-in version of your asset. For example, suppose you check out 
version 3 of an asset and make a number of changes to it and save the asset. 
Until you check the asset back into the version control database as 
version 4, Quality Center users can continue to run version 3. 

When you have finished making changes to an asset and you are ready for 
Quality Center users to use your new version, you check it in to the version 
control database.

Note: If you do not want to check your changes into the Quality Center 
database, you can undo the check-out operation. For more information, see 
“Canceling a Check-Out Operation” on page 1487.

When you check an asset back into the version control database, 
Quality Center deletes the asset copy from your checkout directory and 
unlocks the asset in the database so that the asset version will be available to 
other users of the Quality Center project.

To check in the currently open asset:

 1 Confirm that the currently open asset is checked out to you. For more 
information, see “Viewing Version History for an Asset” on page 1488.

Note: If the open asset is currently checked in, the Check In option is 
disabled. If you open an asset that is checked out to another user, all 
Quality Center Version Control options, except the Version History option, 
are disabled.



Chapter 54 • Managing Assets Using Version Control

1487

 2 Select File > Quality Center Version Control > Check In. The Check In dialog 
box opens. 

If you entered a description of your change when you checked out the asset, 
the description is displayed in the Comments box. You can enter or modify 
the comments in the box.

 3 Click OK to check in the asset. The asset closes and automatically reopens as 
a read-only test.

Canceling a Check-Out Operation
If you check out an asset and then decide that you do not want to upload 
the modified asset to Quality Center, you should cancel the check out 
operation so that the asset will be available for check out by other 
Quality Center users.

To cancel a check out operation:

 1 If it is not already open, open the checked out asset.

 2 Select File > Quality Center Version Control > Undo Check out.

 3 Click Yes to confirm the cancellation of your check out operation. The 
check out operation is cancelled. The checked out asset closes, and the 
previously checked in version reopens in read-only mode.



Chapter 54 • Managing Assets Using Version Control

1488

Viewing Version History for an Asset

You view the version history for an asset using the Version History dialog 
box. This enables you to view and compare different versions of an asset at 
various stages in its development.

The Version History Dialog Box
 

Description Enables you to view the version history for an asset, 
view the content of a previous asset version, and 
compare two asset versions.

To view a version for an asset: Select a version and 
click View.

To compare two versions of an asset: Select two 
versions and click Compare.

How to Access ➤ Most assets: Open the asset and select the File > 
Quality Center Version Control > Version History 
menu command.

➤ Recovery scenario: In the Recovery Scenario 
Manager, open the recovery scenario, click the 
Version Control down arrow, and select Version 
History.

Learn More Conceptual overview: “Managing Versions of Assets 
in Quality Center” on page 1480

Related User Interface Topics: “The Baseline History 
Dialog Box” on page 1491



Chapter 54 • Managing Assets Using Version Control

1489

Below is an image of the Version History dialog box:

 

Version History Dialog Box Options

Option Description

Document Name The name of the currently open asset.

Refresh button Reloads the versions in the Version History dialog 
box with the latest changes.

Version column A list of all versions of the asset.

Last Modified 
column

The date that each version was checked in.

Modified By column The user who checked in each listed version.

Comments column The comments that were entered when the 
selected asset version was checked in.



Chapter 54 • Managing Assets Using Version Control

1490

Viewing Baseline History

In Quality Center, a project administrator can create baselines that provide 
"snapshots" of an entire project (or part of a project) at different stages of 
development. A baseline represents a version of a project at a specific point 
in a project’s life cycle. For example, baselines are often created for each 
milestone or when specific phases in a project are completed. Baselines can 
be created for Quality Center projects that are enabled for version control, 
and for projects for which version control is not enabled.

The project administrator creates the baseline in the Libraries tab of the 
Management module in Quality Center. Creating a baseline is a two-fold 
process. The administrator first creates a library, which specifies the root 
folders from which to import the data. The administrator makes sure to 
include all of the associated resource files, such as shared object repositories 
and function libraries. The administrator then creates the actual baseline, 
which comprises the latest versions of every asset included in the library. If 
the project is version control-enabled, then these are the latest checked in 
versions of every asset. 

Compare button Enables you to compare two versions of the 
currently open asset. 

To compare two versions: Select the versions you 
want to compare and click Compare. QuickTest 
opens the two asset versions in the Asset 
Comparison Tool. For more information, see “The 
QuickTest Asset Comparison Tool” on page 1465. 

View button Enables you to view the selected version of the 
current asset. 

To view a version of an asset: Select an asset 
version and click View. QuickTest opens the 
checked in version of the asset in the Asset Viewer. 
For more information on the Asset Viewer, see 
“The QuickTest Asset Viewer” on page 1474.

Option Description



Chapter 54 • Managing Assets Using Version Control

1491

During the creation process, Quality Center verifies that all of these assets 
(such as associated resource files) are included in the baseline. If any assets 
are not included, Quality Center informs the administrator so that the 
library and baseline can be modified accordingly. For more information, see 
the HP Quality Center User Guide.

In Quality Center, these baselines can be viewed and compared in their 
entirety. 

In QuickTest, you can view and compare the assets saved in these baselines. 
This enables you to review the content of an asset at a specific phase in the 
project time line. 

You can also run a test from a baseline.

The Baseline History Dialog Box
 

Description Enables you to view and compare read-only baseline 
"snapshots" of the asset.

How to Access ➤ Most assets: Open the asset and select the File > 
Quality Center Version Control > Baseline History 
menu command.

➤ Recovery scenario: In the Recovery Scenario 
Manager, open the recovery scenario, click the 
Version Control down arrow, and select Baseline 
History.

Important Information In the Quality Center Test Lab module, you can use 
the Pin to Baseline option to run a baseline version 
of an asset. For more information, see the 
HP Quality Center User Guide.

Learn More Conceptual overview: “Viewing Baseline History” 
on page 1490 

Related User Interface Topics: “The Version History 
Dialog Box” on page 1488



Chapter 54 • Managing Assets Using Version Control

1492

Below is an image of the Baseline History dialog box:

 

Baseline History Dialog Box Options
 

Option Description

Document Name Specifies the name of the currently open asset.

Refresh button Reloads the baselines in the Baseline History 
dialog box with the latest changes. For example, if 
a baseline is added while this dialog box is open, 
clicking Refresh updates the list of baselines.

Baseline column Lists all of the baselines that include this asset. 
Baselines are defined in the Quality Center 
project (Management module > Libraries tab).

Library column Lists the libraries from which each baseline was 
created.

Date column Lists the date that each baseline was created.

Captured By column Lists the Quality Center user who created each 
listed baseline.

Description column Displays any comments that were added when 
the baseline was created.



Chapter 54 • Managing Assets Using Version Control

1493

Compare button Enables you to view a comparison of the currently 
open asset in two baselines. 

To compare two baselines: Select the baselines 
you want to compare and click Compare. 
QuickTest opens the two baseline versions of the 
asset in the Asset Comparison Tool. For more 
information, see “The QuickTest Asset 
Comparison Tool” on page 1465. 

Get button Enables you to open the current asset from the 
selected baseline. 

To view the asset as it was stored in a baseline: 
Select a baseline from the list and click View.

When you click Get, QuickTest:

➤ Closes the currently open asset.

➤ Opens the same asset from the baseline you 
selected.

➤ Loads the baseline version of the external 
actions and resource files that are associated 
with the asset, if any, when they are called. 
Note: If an external action or resource file is 
associated via a relative path, loads the latest 
version of the action or resource file instead of 
the version from the baseline.

Option Description



Chapter 54 • Managing Assets Using Version Control

1494

Version History Versus Baseline History

This section focuses on the differences between version history and baseline 
history and describes when to use each.

➤ You use version control to check in and check out assets as needed. For 
example, you may want to check in an asset on a daily basis or only when 
significant results are achieved. This enables you to monitor the asset’s 
development. 

If you want to view the content of an asset on a particular date or after a 
particular user checked in the asset, use the Version History option to view 
or compare the asset. 

➤ The Quality Center project administrator creates baselines that represent 
"snapshots" of a project’s assets at various milestones in a project’s life cycle. 
Each baseline links to the assets specified by the administrator when the 
baseline was created. The asset version represented in the baseline is always 
the version that was checked in when the baseline was created.

If you want to view an asset as it was saved for a particular milestone, use 
the Baseline History option.



1495

55
Working with Version Control in 
Quality Center 9.x

This chapter describes how HP Quality Center, the centralized quality 
solution, can help you organize and control the testing process. 

Note: References to Quality Center features and options in this chapter 
apply to Quality Center 9.x. However, they may not be supported in the 
Quality Center 9.x version you are using. For more information on 
Quality Center editions, see the HP Quality Center User Guide.

This chapter includes:

 ➤  Opening Tests from a Quality Center 9.x Project with Version Control 
Support on page 1496

 ➤  Managing Test Versions in QuickTest on page 1496



Chapter 55 • Working with Version Control in Quality Center 9.x

1496

Opening Tests from a Quality Center 9.x Project with 
Version Control Support

When you click the Open toolbar button or choose File > Open > Test to 
open a test from a Quality Center project with version control support, the 
Open Test dialog box displays icons that indicate the version control status 
of each test in the selected subject.

When you open a test from a Quality Center project with version control 
support, the test opens in read-write or read-only mode depending on the 
current version control status of the test:

➤ If the test is currently checked into the version control database or is 
checked out to another user, the test opens in read-only mode.

➤ If the test is checked out to you, the test opens in read-write mode.

Managing Test Versions in QuickTest

When QuickTest is connected to a Quality Center 9.x project with version 
control support, you can update and revise your automated test scripts 
while maintaining earlier versions of each test. This helps you keep track of 
the changes made to each test, see what was modified from one version of a 
test to another, or return to a previous version of the test. 

You add a test to the version control database by saving it in a project with 
version control support. You manage test versions by checking tests in and 
out of the version control database. 

The test with the latest version is the test that is located in the 
Quality Center test repository and is used by Quality Center for all test runs.



Chapter 55 • Working with Version Control in Quality Center 9.x

1497

Notes:

➤ A Quality Center server with version control support requires the 
installation of version control software as well as the Quality Center 
Version Control Add-in. For more information, see your Quality Center 
documentation.

➤ The Quality Center Version Control options in the File menu are available 
only when you are connected to a Quality Center project database with 
version control support and you have a Quality Center test open.

Adding Tests to the Version Control Database 
When you use Save As to save a new test in a Quality Center project with 
version control support, QuickTest automatically saves the test in the 
project, checks the test into the version control database with version 
number 1.1.1 and then checks it out so that you can continue working. 

The QuickTest status bar indicates each of these operations as they occur. 
Note, however, that saving your changes to an existing test does not check 
them in. Even if you save and close the test, the test remains checked out 
until you choose to check it in. For more information, see “Checking Tests 
into the Version Control Database” on page 1499.

Checking Tests Out of the Version Control Database
When you choose File > Open > Test to open a test that is currently checked 
in to the version control database or is checked out to another user, it is 
opened in read-only mode. 

You can review the checked-in test. You can also run the test and view the 
results. 



Chapter 55 • Working with Version Control in Quality Center 9.x

1498

To modify the test, you must check it out. When you check out a test, 
Quality Center copies the test to your unique check-out directory 
(automatically created the first time you check out a test), and locks the test 
in the project database. This prevents other users of the Quality Center 
project from overwriting any changes you make to the test. However, other 
users can still run the version that was last checked in to the database. 

You can save and close the test, but it remains locked until you return the 
test to the Quality Center database. To release the test either check the test 
in, or undo the check out operation. For more information on checking tests 
in, see “Checking Tests into the Version Control Database” on page 1499. 
For more information on undoing the check-out, see “Canceling a Check-
Out Operation” on page 1504.

By default, the check out option accesses the latest version of the test. You 
can also check out earlier versions of the test. For more information, see 
“Using the Version History Dialog Box” on page 1501.

To check out the latest version of a test:

 1 Open the test you want to check out. For more information, see “Opening 
Tests from a Quality Center 9.x Project with Version Control Support” on 
page 1496.

Note: Make sure the test you open is currently checked in. If you open a test 
that is checked out to you, the Check Out option is disabled. If you open a 
test that is checked out to another user, all Quality Center Version Control 
options, except the Version History option, are disabled.



Chapter 55 • Working with Version Control in Quality Center 9.x

1499

 2 Choose File > Quality Center Version Control > Check Out. The Check Out 
dialog box opens and displays the test version to be checked out. 

 3 You can enter a description of the changes you plan to make in the 
Comments box.

 4 Click OK. The read-only test closes and automatically reopens as a writable 
test.

 5 View or edit your test as necessary. 

Note: You can save changes and close the test without checking the test in, 
but your changes will not be available to other Quality Center users until 
you check it in. If you do not want to check your changes in, you can undo 
the check-out. For more information on checking tests in, see “Checking 
Tests into the Version Control Database” on page 1499. For more 
information on undoing the check-out, see “Canceling a Check-Out 
Operation” on page 1504.

Checking Tests into the Version Control Database
While a test is checked out, Quality Center users can run the previously 
checked-in version of your test. For example, suppose you check out 
version 1.2.3 of a test and make a number of changes to it and save the test. 
Until you check the test back in to the version control database as 
version 1.2.4 (or another number that you assign), Quality Center users can 
continue to run version 1.2.3. 



Chapter 55 • Working with Version Control in Quality Center 9.x

1500

When you have finished making changes to a test and you are ready for 
Quality Center users to use your new version, you check it in to the version 
control database.

Note: If you do not want to check your changes into the Quality Center 
database, you can undo the check-out operation. For more information, see 
“Canceling a Check-Out Operation” on page 1504.

When you check a test back into the version control database, 
Quality Center deletes the test copy from your checkout directory and 
unlocks the test in the database so that the test version will be available to 
other users of the Quality Center project.

To check in the currently open test:

 1 Confirm that the currently open test is checked out to you. For more 
information, see “Viewing Version Information For a Test” on page 1501.

Note: If the open test is currently checked in, the Check In option is 
disabled. If you open a test that is checked out to another user, all 
Quality Center Version Control options, except the Version History option, 
are disabled.

 2 Choose File > Quality Center Version Control > Check In. The Check In 
dialog box opens. 



Chapter 55 • Working with Version Control in Quality Center 9.x

1501

If you entered a description of your change when you checked out the test, 
the description is displayed in the Comments box. You can enter or modify 
the comments in the box.

 3 Click OK to check in the test. The test closes and automatically reopens as a 
read-only test.

Using the Version History Dialog Box
You can use the Version History dialog box to view version information 
about the currently open test and to view or retrieve an earlier version of the 
test.

Viewing Version Information For a Test

You can view version information for any open test that has been stored in 
the Quality Center version control database, regardless of its current status.

To open the Version History dialog box for a test, open the test and choose 
File > Quality Center Version Control > Version History. 



Chapter 55 • Working with Version Control in Quality Center 9.x

1502

The Version History dialog box provides the following information:

Test name. The name of the currently open test.

Test status. The status of the test. The test can be: 

➤ Checked-in. The test is currently checked in to the version control 
database. It is currently open in read-only format. You can check out the 
test to edit it.

➤ Checked-out. The test is checked out by you. It is currently open in 
read-write format.

➤ Checked-out by <another user>. The test is currently checked out by 
another user. It is currently open in read-only format. You cannot check 
out or edit the test until the specified user checks in the test.

My open version. The test version that is currently open on your QuickTest 
computer.

Version details. The version details for the test.

➤ Version. A list of all versions of the test.

➤ User. The user who checked in each listed version.

➤ Date and Time. The date and time that each version was checked in.

Version comments. The comments that were entered when the selected test 
version was checked in.

Working with Previous Test Versions

You can view an earlier version of a test in read-only mode, or you can check 
out an earlier version and then check it in as the latest version of the test.

To view an earlier version of a test:

 1 Open the Quality Center test. The latest version of the test opens. For more 
information, see “Opening Tests from a Quality Center 9.x Project with 
Version Control Support” on page 1496. 

 2 Choose File > Quality Center Version Control > Version History. The Version 
History dialog box opens.



Chapter 55 • Working with Version Control in Quality Center 9.x

1503

 3 Select the test version you want to view in the Version details list.

 4 Click the Get Version button. QuickTest reminds you that the test will open 
in read-only mode because it is not checked out. 

 5 Click OK to close the QuickTest message. The selected version opens in 
read-only mode. 

Tips:

➤ To confirm the version number that you now have open in QuickTest, 
look at the My open version value in the Version History dialog box.

➤ After using the Get Version option to open an earlier version in read-only 
mode, you can check out the open test by choosing File > Quality Center 
Version Control > Check Out. This is the same as using the Check Out 
button in the Version History dialog box.

To check out an earlier version of a test:

 1 Open the Quality Center test. The latest version of the test opens. For more 
information, see “Opening Tests from a Quality Center 9.x Project with 
Version Control Support” on page 1496. 

 2 Choose File > Quality Center Version Control > Version History. The Version 
History dialog box opens.

 3 Select the test version you want to view in the Version details list.

 4 Click the Check Out button. A confirmation message opens.

 5 Confirm that you want to check out an earlier version of the test. The Check 
Out dialog box opens and displays the test version to be checked out. 



Chapter 55 • Working with Version Control in Quality Center 9.x

1504

 6 You can enter a description of the changes you plan to make in the 
Comments box.

 7 Click OK. The open test closes and the selected version opens as a writable 
test.

 8 View or edit the test as necessary. 

 9 If you want to check in your test as the latest version in the Quality Center 
database, choose File > Quality Center Version Control > Check In. If you do 
not want to upload the modified test to Quality Center, choose File > 
Quality Center Version Control > Undo Check out.

For more information on checking tests in, see “Checking Tests into the 
Version Control Database” on page 1499. For more information on undoing 
the check-out, see “Canceling a Check-Out Operation” on page 1504.

Canceling a Check-Out Operation
If you check out a test and then decide that you do not want to upload the 
modified test to Quality Center, you should cancel the check out operation 
so that the test will be available for check out by other Quality Center users.

To cancel a check out operation:

 1 If it is not already open, open the checked out test.

 2 Choose File > Quality Center Version Control > Undo Check out.

 3 Click Yes to confirm the cancellation of your check out operation. The 
check out operation is cancelled. The checked out test closes, and the 
previously checked in version reopens in read-only mode.



1505

Part XII

Working with Other HP Products



1506



1507

56
Working with Business Process Testing

When you are connected to a Quality Center project with Business Process 
Testing support, QuickTest enables you to create and/or implement the steps 
for the components that are used in Quality Center business process tests.

This chapter includes:

 ➤  About Working with Business Process Testing on page 1507

 ➤  Understanding Business Process Testing Roles on page 1508

 ➤  Understanding Business Process Testing Methodology on page 1512

About Working with Business Process Testing

Business Process Testing enables Subject Matter Experts to create tests using 
a keyword-driven methodology for testing as well as an improved 
automated testing environment.

Business Process Testing integrates QuickTest with Quality Center and can 
be enabled by purchasing a specific Business Process Testing license. To work 
with Business Process Testing from within QuickTest, you must connect to a 
Quality Center project with Business Process Testing support.

This section provides an overview of the Business Process Testing model. For 
more information, see the HP Business Process Testing User Guide and the 
HP QuickTest Professional for Business Process Testing User Guide.



Chapter 56 • Working with Business Process Testing

1508

Understanding Business Process Testing Roles

The Business Process Testing model is role-based, allowing non-technical 
Subject Matter Experts (working in Quality Center) to collaborate effectively 
with Automation Engineers (working in QuickTest Professional). Subject 
Matter Experts define and document business processes, business 
components, and business process tests, while Automation Engineers define 
the required resources and settings, such as shared object repositories, 
function libraries, and recovery scenarios. Together, they can build, 
data-drive, document, and run business process tests, without requiring 
programming knowledge on the part of the Subject Matter Expert.

Note: The role structure and the tasks performed by various roles in your 
organization may differ from those described here according to the 
methodology adopted by your organization. These roles are flexible and 
depend on the abilities and time resources of the personnel using Business 
Process Testing. For example, the tasks of the Subject Matter Expert and the 
Automation Engineer may be performed by the same person. There are no 
product-specific rules or limitations controlling which roles must be defined 
in a particular organization, or which types of users can do which Business 
Process Testing tasks (provided that the users have the correct permissions).

The following user roles are identified in the Business Process Testing model:

Subject Matter Expert. The Subject Matter Expert has specific knowledge of 
the application logic, a high-level understanding of the entire system, and a 
detailed understanding of the individual elements and tasks that are 
fundamental to the application being tested. This enables the Subject Matter 
Expert to determine the operating scenarios or business processes that must 
be tested and identify the key business activities that are common to 
multiple business processes.



Chapter 56 • Working with Business Process Testing

1509

Using the Business Components module in Quality Center, the Subject 
Matter Expert creates business components that describe the specific tasks 
that can be performed in the application, and the condition or state of the 
application before and after those tasks. The Subject Matter Expert then 
defines the individual steps for each business component comprising the 
business process in the form of manual, or non-automated steps. 

During the design phase, the Subject Matter Expert works with the 
Automation Engineer to identify the resources and settings needed to 
automate the components, enabling the Automation Engineer to prepare 
them. When the resources and settings are ready, the Subject Matter Expert 
automates the manual steps by converting them to keyword-driven 
components. Part of this process entails choosing an application area for 
each component. The application area contains all of the required resource 
files and settings that are specific to a particular area of the application 
being tested. Associating each component with an application area enables 
the component to access these resources and settings.

Using the Quality Center Test Plan module, the Subject Matter Expert 
combines the business components into business process tests, composed of 
a serial flow of the components. For example, most applications require 
users to log in before they can access any of the application functionality. 
The Subject Matter Expert could create one business component that 
represents this login procedure. This component procedure can be used in 
many business process tests, resulting in easier and more cost-efficient 
maintenance, updating, and test management.

The Subject Matter Expert configures the values used for business process 
tests, runs them in test sets, and reviews the results. The Subject Matter 
Expert is also responsible for maintaining the testing steps for each of the 
individual business components.

While defining components, Subject Matter Experts continue collaborating 
with the Automation Engineer. For example, they may request new 
operations (functions) for a component or discuss future changes planned 
for the component.

Automation Engineer. The Automation Engineer is an expert in using an 
automated testing tool, such as QuickTest Professional. The Automation 
Engineer works with the Subject Matter Expert to identify the resources that 
are needed for the various business process tests. 



Chapter 56 • Working with Business Process Testing

1510

The Automation Engineer then prepares the resources and settings required 
for testing the features associated with each specific component, and stores 
them in an application area within the same Quality Center project used by 
the Subject Matter Experts who create and run the business process tests for 
the specific application. 

Each application area serves as a single entity in which to store all of the 
resources and settings required for a component, providing a single point of 
maintenance for all elements associated with the testing of a specific part of 
an application. Application areas generally include one or more shared 
object repositories, a list of keywords that are available for use with a 
component, function libraries containing automated functions (operations), 
recovery scenarios for failed steps, and other resources and settings that are 
needed for a component to run correctly. Components are linked to the 
resources and settings in the application area. Therefore, when changes are 
made in the application area, all associated components are automatically 
updated. 

The Automation Engineer uses QuickTest features and functionality to 
create these resources from within QuickTest. For example, in QuickTest, the 
Automation Engineer can create and populate various object repositories 
with test objects that represent the different objects in the application being 
tested, even before the application is fully developed. The Automation 
Engineer can then add repository parameters, and so forth, as needed. The 
Automation Engineer can manage the various object repositories using the 
Object Repository Manager, and merge repositories using the Object 
Repository Merge Tool. Automation Engineers can also use QuickTest to 
create and debug function libraries containing functions that use 
programming logic to encapsulate the steps needed to perform a particular 
task. 

Using the resources created by the Automation Engineer, the Subject Matter 
Experts can automate component steps, and create and maintain 
components and business process tests.

Automation Engineers can also create, debug, and modify components in 
QuickTest, if required.



Chapter 56 • Working with Business Process Testing

1511

Understanding the Business Process Testing Workflow
The following is an example of a common Business Process Testing 
workflow using QuickTest. The actual workflow in an organization may 
differ for different projects, or at different stages of the product development 
life cycle:

The following steps can be performed simultaneously
and in any order, as required

Create manual components in Quality Center
with Business Process Testing

Add manual steps to components and convert to 
automated QuickTest components

Configure application area and build
object repositories

Add programmatic testing functionality in
function libraries and compiled modules

Drag components to build business process tests or 
flows

Insert steps in the Keyword View based on
defined manual steps

Debug components in QuickTest

Debug business process tests or flows by running 
them from Quality Center

Add business process tests or flows to Quality 
Center test sets and run tests (manual and 

automatic runs) 

Subject Matter
Expert

Subject Matter
Expert or 

Automation Engineer

Automation
Engineer

Subject Matter
Expert

Subject Matter
Expert

Automation
Engineer

Automation
Engineer

Subject Matter
Expert

Subject Matter
Expert



Chapter 56 • Working with Business Process Testing

1512

Understanding Business Process Testing Methodology

Each scenario that the Subject Matter Expert creates is a business process 
test. A business process test is composed of a serial flow of components. 
Each component performs a specific task. A component can pass data to a 
subsequent component. 

Understanding Components
Components are easily-maintained reusable scripts that perform a specific 
task, and are the building blocks from which an effective business process 
testing structure can be produced. Components are parts of a business 
process that has been broken down into smaller parts. For example, in most 
applications users need to log in before they can do anything else. A Subject 
Matter Expert can create one component that represents the login procedure 
for an application. Each component can then be reused in different business 
process tests, resulting in easier maintenance, updating, and test 
management.

Components are comprised of steps. For example, the login component’s 
first step may be to open the application. Its second step could be entering a 
user name. Its third step could be entering a password, and its fourth step 
could be clicking the Enter button. 

You can also add checkpoint steps and output values to your component.

➤ A checkpoint is a verification point that compares a current value for a 
specified property with the expected value for that property. This enables 
you to identify whether your application is functioning correctly. You can 
perform standard checkpoints and bitmap checkpoints on component steps. 
For more information, see “Understanding Checkpoints” on page 495.

➤ An output value is a step in which one or more values are captured at a 
specific point in your component and stored for the duration of the run 
session. The values can later be used as input at a different point in the run 
session. For more information, see “Outputting Values” on page 669.



Chapter 56 • Working with Business Process Testing

1513

You can create and edit components in QuickTest by adding steps on any 
supported environment, parameterizing selected items, and enhancing the 
component by incorporating functions (operations) that encapsulate the 
steps needed to perform a particular task. In Quality Center, a Subject 
Matter Expert creates components and combines them into business process 
tests, which are used to check that the application behaves as expected.

Creating Components in the Quality Center Business 
Components Module
The Subject Matter Expert can create a new component and define it in the 
Quality Center Business Components module. 

The Business Components module includes the following tabs: 

➤ Details. Provides a general summary of the component’s purpose or goals, 
and the condition of the application before and after a component is run 
(its pre-conditions and post-conditions). You can specify details and 
implementation requirements for the currently selected business 
component.

Q uality Center 
com m on toolbar

Com ponents
tree

 
M odule
m enu 
bar

Q uality Center
s idebar

 
Toolbar

Business Com ponents 
m odule tabs



Chapter 56 • Working with Business Process Testing

1514

➤ Snapshot. Displays an image that provides a visual cue or description of the 
component’s purpose or operations. You can capture a snapshot image from 
the application and attach it to the currently selected business component. 

➤ Parameters. Specifies the input and output component parameters and 
parameter values for the business component. Implementing and using 
parameters enables a component to receive data from an external source 
and to pass data to other components in the business process test flow.

➤ Design Steps. Enables you to create or view the manual steps of your 
business component, and to automate it if required.

➤ Automation. Displays or provides access to automated components. For 
keyword-driven components, enables you to create and modify the steps of 
your automated business component in a keyword-driven, table format, and 
provides a plain-language textual description of each step of the 
implemented component. 

➤ Dependencies tab. Displays a list of assets that are linked to the currently 
selected business component. 

➤ History tab. Displays a log of changes made to the component. 

Implementing Components in QuickTest Professional
Generally, components are created by Subject Matter Experts in 
Quality Center, although they can also be created and debugged in 
QuickTest. 

In QuickTest, you create components by adding steps manually—if the 
object repository is populated and the required operations are available. You 
can also create components by recording steps on any supported 
environment. You can parameterize selected items. You can also view and 
set options specific to components.

QuickTest enables you to create and modify two types of components: 
business components and scripted components. A business component is 
an easily-maintained, reusable unit comprising one or more steps that 
perform a specific task. A scripted component is an automated component 
that can contain programming logic. Scripted components share 
functionality with both test actions and business components. 



Chapter 56 • Working with Business Process Testing

1515

For example, you can use the Keyword View, the Expert View, and other 
QuickTest tools and options to create, view, modify, and debug scripted 
components in QuickTest. Due to their complexity, scripted components 
can be edited only in QuickTest.  

In Quality Center, the Subject Matter Expert can open components created 
in QuickTest. The Subject Matter Expert can then view and edit business 
components, but can only view the details for scripted components.

Creating Business Process Tests and Flows in the 
Quality Center Test Plan Module
The Subject Matter Expert first creates a business process test or flow in the 
Test Plan module. To populate the business process test or flow, the Subject 
Matter Expert then selects (drags and drops) the relevant components and 
configures their run settings. 

Each component can be used differently by different business process tests 
or flows. For example, in each test the component can be configured to use 
different input parameter values or run a different number of iterations.

If, while creating a business process test or flow, the Subject Matter Expert 
realizes that a component has not been defined for an element that is 
necessary for the business process test or flow, the Subject Matter Expert can 
submit a component request from the Test Plan module. 

Running Business Process Tests and Analyzing the Results
You can use the run and debug options in QuickTest to run and debug an 
individual component.

You can debug a business process test by running the test from the Test Plan 
module in Quality Center. When you choose to run from this module, you 
can choose which components to run in debug mode. (This pauses the run 
at the beginning of a component.)

When the business process test has been debugged and is ready for regular 
test runs, the Subject Matter Expert runs it from the Test Lab module similar 
to the way any other test is run in Quality Center. Before running the test, 
the Subject Matter Expert can define run-time parameter values and 
iterations using the Iterations column in the Test Lab module grid.



Chapter 56 • Working with Business Process Testing

1516

Note: When you run a business process test from Quality Center, the test 
run may also be influenced by settings in the QuickTest Remote Agent. For 
more information on the QuickTest Remote Agent, see “Setting QuickTest 
Remote Agent Preferences” on page 1441.

From the Test Lab module, you can view the results of the entire business 
process test run. The results include the value of each parameter, and the 
results of individual steps reported by QuickTest.

You can click the Open Report link to open the complete QuickTest report. 
The hierarchical report contains all the different iterations and components 
within the business process test run.

Understanding the Differences Between Components and 
Tests
If you are already familiar with using QuickTest to create action-based tests, 
you will find that the procedures for creating and editing components are 
quite similar. However, due to the design and purpose of the component 
model, there are certain differences in the way you create, edit, and run 
components. The guidelines below provide an overview of these differences.

➤ A component is a single entity. It cannot contain multiple actions or have 
calls to other actions or to other components.

➤ When working with components, all external resource files are stored in the 
Test Resources module of the Quality Center project to which you are 
currently connected.

➤ The name of the component node in the Keyword View is the same as the 
saved component. You cannot rename the node.

➤ Business components are created in the Keyword View, not the Expert View.

➤ You add resources via the component’s application area, and not directly to 
the component.



1517

57
Working with WinRunner

When you work with QuickTest, you can also run WinRunner tests and call 
TSL or user-defined functions in compiled modules.

This chapter includes:

 ➤  About Working with WinRunner on page 1517

 ➤  Calling WinRunner Tests on page 1518

 ➤  Calling WinRunner Functions on page 1522

About Working with WinRunner

If you have WinRunner installed on your computer, you can include calls to 
WinRunner tests and functions in your QuickTest test.

After you create a call to a WinRunner test or function, you can modify the 
argument values in call statements by editing them in the Expert View or 
Keyword View. 

When QuickTest is connected to a Quality Center project that contains 
WinRunner tests or compiled modules, you can call a WinRunner test or 
function that is stored in that Quality Center project.



Chapter 57 • Working with WinRunner

1518

Calling WinRunner Tests

When QuickTest links to WinRunner to run a test, it starts WinRunner, 
opens the test, and runs it. Information about the WinRunner test run is 
displayed in the QuickTest Test Results window. 

You can insert a call to a WinRunner test using the Call to WinRunner Test 
dialog box or by entering a TSLTest.RunTestEx statement in the Expert View.

Note: You cannot call a WinRunner test that includes calls to QuickTest 
tests.

To insert a call to a WinRunner test using the Call to WinRunner Test dialog 
box: 

 1 Select Insert > Call to WinRunner > Test. The Call to WinRunner Test dialog 
box opens.



Chapter 57 • Working with WinRunner

1519

 2 In the Test path box, enter the path of the WinRunner test or browse to it. 

 3 The Parameters box lists any test parameters required for the WinRunner 
test. To enter values for the parameters:

➤ Highlight the parameter in the Test Parameters list. The selected 
parameter is displayed in the Name box below the list

➤ Enter the new value in the Value box.

Note: You can also use the parameter values from a QuickTest random 
number parameter, environment variable parameter, or from the QuickTest 
Data Table as the parameters for your WinRunner test. You do this by 
entering the parameter information manually in the TSLTest.RunTestEx 
statement. For more information, see “Passing QuickTest Parameterized 
Values to a WinRunner Test” on page 1520.

 4 Select Run WinRunner minimized if you do not want to view the WinRunner 
window while the test runs. 

 5 Select Close WinRunner after running the test if you want the WinRunner 
application to close when the step calling the WinRunner test is complete. 

 6 Click OK to close the dialog box.

For information on WinRunner test parameters, see the HP WinRunner User’s 
Guide.

In QuickTest, the call to the WinRunner test is displayed as:

➤ a WinRunner RunTestEx step in the Keyword View. For example: 

➤ a TSLTest.RunTestEx statement in VBScript in the Expert View. For example:

TSLTest.RunTestEx "C:\WinRunner\Tests\basic_flight",TRUE, 0, "MyValue"



Chapter 57 • Working with WinRunner

1520

The RunTestEx method has the following syntax:

TSLTest.RunTestEx TestPath , RunMinimized, CloseApp [ , Parameters ] 

Note: Tests created in QuickTest 6.0 may contain calls to WinRunner tests 
using the RunTest method, which has slightly different syntax. Your tests 
will continue to run successfully with this method. However, it is 
recommended to update your tests to the RunTestEx method (and 
corresponding argument syntax). For more information on these methods, 
see the HP QuickTest Professional Object Model Reference.

After running the test, you can view the results. For more information, see 
“Viewing the Results” on page 1521.

For more information on the RunTestEx method and an example of usage, 
see the HP QuickTest Professional Object Model Reference.

Passing QuickTest Parameterized Values to a WinRunner 
Test
Rather than setting fixed values for the parameters required for a 
WinRunner test, you can pass WinRunner parameter values defined in a 
QuickTest Data Table, random or environment parameter. You specify these 
parameterized values by entering the appropriate statement as the 
Parameters argument in the TSLTest.RunTestEx statement.

For example, suppose you want to run a WinRunner test on a Windows-
based Flight Reservation application, and that the test includes 
parameterized statements for the number of passengers on the flight and the 
seat class. You can pass the WinRunner test the value for its first parameter 
from a QuickTest random parameter (that generates a random number 
between 1 and 100), and pass it the value for the seat class from a QuickTest 
Data Table column labeled Class. Your TSLTest.RunTestEx statement in 
QuickTest might look something like this:

TSLTest.RunTestEx "D:\test1", TRUE, FALSE, RandomNumber(1, 100) , 
DataTable("Class", dtGlobalSheet)



Chapter 57 • Working with WinRunner

1521

For more information on the syntax and usage of the RandomNumber, 
Environment, and DataTable methods, see the Utility section of the 
HP QuickTest Professional Object Model Reference.

Viewing the Results
When you run a call to a WinRunner test, your QuickTest results include a 
node for each event that would normally be included in the WinRunner 
results. When you select a node corresponding to a WinRunner step, the 
right pane displays a summary of the WinRunner test and details about the 
selected step. 

Note: You can also view the results of the called WinRunner test from the 
results folder of the WinRunner test. For WinRunner tests stored in 
Quality Center, you can also view the WinRunner test results from 
Quality Center.

For more information, see “Viewing WinRunner Test Steps in the Test 
Results” on page 1017.

For more information on designing and running WinRunner tests, see your 
WinRunner documentation.



Chapter 57 • Working with WinRunner

1522

Calling WinRunner Functions

When QuickTest links to WinRunner to call a function, it starts WinRunner, 
loads the compiled module, and calls the function. This is useful when you 
want to use a user-defined function from WinRunner in QuickTest.

You call a WinRunner function from QuickTest by specifying the function 
and the compiled module containing the function.

Note: You cannot retrieve the values returned by the WinRunner function 
in your QuickTest test. However, you can view the returned value in the 
results.

To call a user-defined function from a WinRunner compiled module: 

 1 Select Insert > Call to WinRunner > Function. The Call to WinRunner 
Function dialog box opens.



Chapter 57 • Working with WinRunner

1523

 2 In the Module box, enter the path of the compiled module containing the 
function or browse to it. 

To call a WinRunner TSL function, enter the path of any compiled module.

 3 In the Function name box, enter the name of a function defined in the 
specified compiled module, or enter any WinRunner TSL function.

 4 Click inside the Arguments box. If WinRunner is currently open on your 
computer, the Arguments box displays the argument names as defined for 
the selected function. If WinRunner is not open, the Arguments box lists 
p1-p15, representing a maximum of fifteen (15) possible arguments for the 
function. 

 5 Enter values for in or inout arguments as follows:

➤ Highlight the argument in the Arguments box. The argument name is 
displayed in the Name box.

➤ If the argument type is "in" or "inout," enter the value in the Value box.

➤ In the Type box, select the correct argument type (in/out/inout). 

Note: You can also use the parameter values from a QuickTest random or 
environment parameter or from the QuickTest Data Table as the in or inout 
arguments for your function. You do this by entering the argument 
information manually in the TSLTest.CallFuncEx statement. For more 
information, see “Passing QuickTest Parameters to a WinRunner Function” 
on page 1525.

For more information on function parameters, see the HP WinRunner User’s 
Guide.

 6 Select Run WinRunner minimized if you do not want to view the WinRunner 
window while the function runs. 

 7 Select Close WinRunner after running the test if you want the WinRunner 
application to close when the step calling the WinRunner function is 
complete. 

 8 Click OK to close the dialog box.



Chapter 57 • Working with WinRunner

1524

In QuickTest, the call to the TSL function is displayed as:

➤ a WinRunner CallFuncEx step in the Keyword View. For example: 

➤ a TSLTest.CallFuncEx statement in VBScript in the Expert View. For example:

CallFuncEx "C:\WinRunner\Tests\TlStep","TlStep1",TRUE, 0, "MyArg1"

The CallFuncEx function has the following syntax:

TSLTest.CallFuncEx ModulePath, Function, RunMinimized, CloseApp [ , 
Arguments ] 

Note: Tests created in QuickTest 6.0 may contain calls to WinRunner tests 
using the CallFunc method, which has slightly different syntax. Your tests 
will continue to run successfully with this method. However, it is 
recommended to update your tests to the CallFuncEx method (and 
corresponding argument syntax). For more information on these methods, 
see the HP QuickTest Professional Object Model Reference.

After running the test, you can view the results. For more information, see 
“Viewing the Results” on page 1525.

For information on WinRunner functions, function arguments, and 
WinRunner compiled modules, see the HP WinRunner User’s Guide and the 
HP WinRunner TSL Reference Guide.



Chapter 57 • Working with WinRunner

1525

Passing QuickTest Parameters to a WinRunner Function
Rather than setting fixed values for the in and inout arguments in a 
WinRunner function, you can instruct QuickTest to have WinRunner use 
the parameter values defined in a QuickTest random or environment 
parameter, or in a QuickTest Data Table. You specify these parameters by 
entering the appropriate statement as the Parameters argument in the 
TSLTest.CallFuncEx statement.

For example, suppose you created a user-defined function in WinRunner 
that runs an application and enters the user name and password for the 
application.

You can instruct QuickTest to have WinRunner take the value for the user 
name and password from QuickTest Data Table columns labeled 
FlightUserName and FlightPwd. Your TSLTest.CallFuncEx statement in 
QuickTest might look something like this:

TSLTest.CallFuncEx "D:\flightfuncs", "run_flight", TRUE, FALSE, 
DataTable("FlightUserName", dtGlobalSheet), DataTable("FlightPwd", 
dtGlobalSheet)

For more information on the syntax and usage of the RandomNumber, 
Environment and DataTable methods, see the Utility section of the 
HP QuickTest Professional Object Model Reference.

Viewing the Results
After you run a WinRunner function from QuickTest, you can view the 
results of your function call. The QuickTest Test Results window shows the 
start of the WinRunner function and the WinRunner function results. If the 
called function included events such as report_msg or tl_step, information 
about the results of these events are also included. 



Chapter 57 • Working with WinRunner

1526

Highlight the WinRunner Function Results item in the results tree to display 
the function return value and additional information about the call to the 
function. 

For more information on working with WinRunner functions and compiled 
modules, see your WinRunner documentation.



1527

58
Working with HP Performance Testing 
and Business Availability Center Products

After you use QuickTest to create and run a suite of tests that test the 
functional capabilities of your application, you may want to test how much 
load your application can handle or to monitor your application as it runs. 

HP performance testing products (LoadRunner and Performance Center) 
tests the performance of applications under controlled and peak load 
conditions. To generate load, These performance testing products run 
hundreds or thousands of virtual users. These virtual users provide 
consistent, repeatable, and measurable load to exercise your application just 
as real users would. 

HP Business Availability Center enables real-time monitoring of the end user 
experience. Business Process Monitor runs virtual users to perform typical 
activities on the monitored application.

If you have already created and perfected a test in QuickTest that is a good 
representation of your users’ actions, you may be able to use your QuickTest 
test as the basis for performance testing and application management 
activities. You can use Silent Test Runner to check in advance that a 
QuickTest test will run correctly from LoadRunner, Performance Center, and 
Business Process Monitor.

This chapter includes:

 ➤  About Working with HP Performance Testing and Business Availability 
Center Products on page 1528

 ➤  Using QuickTest Performance Testing and Business Availability Center 
Features on page 1529



Chapter 58 • Working with HP Performance Testing and Business Availability Center Products

1528

 ➤  Designing QuickTest Tests for Use with Performance Testing Products or 
Business Process Monitor on page 1530

 ➤  Inserting and Running Tests in a Performance Test or in Business Process 
Monitor on page 1531

 ➤  Measuring Transactions on page 1534

 ➤  Using Silent Test Runner on page 1538

About Working with HP Performance Testing and Business 
Availability Center Products

QuickTest enables you to create complex tests that examine the full 
spectrum of your application’s functionality to confirm that every element 
of your application works as expected in all situations. 

The run mechanisms used in all HP Performance Testing and HP Business 
Availability Center products are the same. This means that you can create 
tests that are compatible with LoadRunner, Performance Center, and 
Business Process Monitor, enabling you to take advantage of tests or test 
segments that have already been designed and debugged in QuickTest.

For example, you can add QuickTest tests to specific points in a performance 
test to confirm that the application’s functionality is not affected by the 
extra load at those sensitive points. You can also run QuickTest tests on 
Business Process Monitor to simulate end user experience and ensure that 
your application is running correctly and in a timely manner.

QuickTest also offers several features that are designed specifically for 
integration with LoadRunner, Performance Center, and Business Process 
Monitor. However, since these products are designed to run tests using 
virtual users representing many users simultaneously performing standard 
user operations, some QuickTest features may not be available when 
integrating these products with QuickTest.



Chapter 58 • Working with HP Performance Testing and Business Availability Center Products

1529

If you do plan to use a single test in both QuickTest and LoadRunner, 
Performance Center, and/or Business Process Monitor, you should take into 
account the different options supported in each product as you design your 
test. For more information, see “Designing QuickTest Tests for Use with 
Performance Testing Products or Business Process Monitor” on page 1530 
and “Inserting and Running Tests in a Performance Test or in Business 
Process Monitor” on page 1531.

Using QuickTest Performance Testing and Business 
Availability Center Features

You can use the Services object and its associated methods to insert 
statements that are specifically relevant to Performance Testing and Business 
Availability Center. These include AddWastedTime, 
EndDistributedTransaction, EndTransaction, GetEnvironmentAttribute, 
LogMessage, Rendezvous, SetTransaction, SetTransactionStatus, 
StartDistributedTransaction, StartTransaction, ThinkTime, and UserDataPoint. 
For more information on these methods, see the Services section of the 
HP QuickTest Professional Object Model Reference and your HP performance 
testing or Business Availability Center documentation.

You can also insert StartTransaction and EndTransaction statements using the 
Insert > Start Transaction and Insert > End Transaction menu options or 
toolbar buttons to insert the statement. For more information on these 
options, see “Measuring Transactions” on page 1534.

Note: LoadRunner, Performance Center, and Business Process Monitor use 
only the data that is included within a transaction, and ignore any data in a 
test outside of a transaction.



Chapter 58 • Working with HP Performance Testing and Business Availability Center Products

1530

Designing QuickTest Tests for Use with Performance 
Testing Products or Business Process Monitor

The QuickTest tests you use with LoadRunner, Performance Center, or 
Business Process Monitor should be simple, designed to pinpoint specific 
operations, and should avoid using external actions and references to other 
external files (including resources stored in Quality Center). Also, when 
working with action iterations, corresponding StartTransaction and 
EndTransaction statements must be contained within the same action.

Designing Tests for Performance Testing
Consider the following guidelines when designing tests for use with 
performance testing products:

➤ Do not include references to external actions or other external resources 
(including resources stored in Quality Center), such as an external Data 
Table file, environment variable file, shared object repositories, function 
libraries, and so forth. This is because LoadRunner or Performance Center 
may not have access to the external action or resource. (However, if the 
resource can be found on the network, QuickTest will use it.)

➤ Every QuickTest test must contain at least one transaction to provide useful 
information in the performance test. 

➤ Make sure that the last step(s) in the test closes the application being tested, 
as well as any child processes that are running. This enables the next 
iteration of the test to open the application again.

Designing Tests for Business Process Monitor
Consider the following guidelines when designing tests for use with 
Business Process Monitor:

➤ Every QuickTest test must contain at least one transaction to provide useful 
information in Business Process Monitor.

➤ When measuring a distributed transaction over two different Business 
Process Monitor profiles, the profile with the StartDistributedTransaction 
statement must be run before the profile with the associated 
EndDistributedTransaction.



Chapter 58 • Working with HP Performance Testing and Business Availability Center Products

1531

➤ When measuring distributed transactions, make sure that you relate the 
tests to a single Business Process Monitor instance. Business Process Monitor 
searches for the end transaction name in all instances, and may close the 
wrong distributed transaction if it is included in more than one instance.

➤ When measuring a distributed transaction over two Business Process 
Monitor profiles, make sure that the timeout value you specify is large 
enough so that the profile that contains the StartDistributedTransaction step 
and all the profiles that run before the profile that contains the 
EndDistributedTransaction step, will finish running in a time that is less than 
the value of the specified timeout.

➤ Business Process Monitor does not support running QuickTest Professional 
tests that require access to external resources, including resources stored in 
Quality Center (such as a shared object repository, function library, external 
Data Table, external actions, and so forth). Tests that require external 
resources may fail to run on Business Process Monitor. (However, if the 
resource can be found on the network, QuickTest will use it.)

➤ Make sure that the last steps in the test close the application being tested, as 
well as any child processes that are running. This cleanup step enables the 
next test run to open the application again.

Inserting and Running Tests in a Performance Test or in 
Business Process Monitor

Before you insert and run your QuickTest test in a performance test or in 
Business Process Monitor, you should consider the guidelines below.

Note: You can simulate how the test will run from a performance test or 
from Business Process Monitor by using Silent Test Runner. For more 
information, see “Using Silent Test Runner” on page 1538.



Chapter 58 • Working with HP Performance Testing and Business Availability Center Products

1532

Inserting and Running Tests in Performance Center and 
LoadRunner

➤ You can run only one GUI Vuser concurrently per computer. (A GUI Vuser is 
a Vuser that runs a QuickTest test.) 

To run multiple GUI Vusers on the same application you can open a 
terminal server session for each GUI Vuser. For more details refer to the HP 
performance testing documentation.

➤ To insert a QuickTest test in a LoadRunner scenario, in the Controller Open 
Test dialog box, browse to the test folder and select QuickTest Tests in the 
Files of type box (or select Astra Tests in LoadRunner versions older 
than 9.0). This enables you to view QuickTest tests in the folder. 

➤ To use a QuickTest test in Performance Center, create a zipped version of the 
QuickTest test, and upload it to the Performance Center User Site Vuser 
Scripts Page.

➤ Ensure that QuickTest is closed on the QuickTest computer before running a 
QuickTest test in Performance Center or LoadRunner. 

➤ Transaction breakdown is not supported for tests (scripts) created with 
QuickTest. 

➤ QuickTest cannot run on a computer that is:

➤ logged off or locked. In these cases, consider running QuickTest on a 
terminal server. 

➤ already running a QuickTest test. Make sure that the test is finished 
before starting to run another QuickTest test.

➤ The settings in the LoadRunner or Performance Center Run-time Settings 
dialog box are not relevant for QuickTest tests.

➤ You cannot use the ResultDir QuickTest environment variable when running 
a performance test.

For more information on working with LoadRunner or Performance Center, 
see your HP performance testing documentation.



Chapter 58 • Working with HP Performance Testing and Business Availability Center Products

1533

Inserting and Running Tests from Business Process 
Monitor

➤ Before you try to run a QuickTest test in Business Process Monitor, check 
which versions of QuickTest are supported by your version of Business 
Process Monitor. For more information, see the Business Process Monitor 
documentation.

➤ To run a QuickTest test in Business Process Monitor, QuickTest must be 
installed and closed on the Business Process Monitor computer 

➤ Business Process Monitor can run only one QuickTest test at a time. Make 
sure that the previous QuickTest run session is finished before starting to 
run another QuickTest test.

➤ Transaction breakdown is not supported for tests created with QuickTest. 

➤ QuickTest tests must be zipped before uploading them to Business Process 
Monitor.

If you make changes to your local copy of a QuickTest test after uploading it 
to Business Availability Center, upload the zipped test again to enable 
Business Process Monitor to run the test with your changes.

➤ QuickTest cannot run tests on a computer that is logged off, locked, or 
running QuickTest as a non-interactive service.

➤ You cannot use the ResultDir QuickTest environment variable when running 
a test in Business Process Monitor.

For more information on working with Business Availability Center, see 
your Business Availability Center documentation.



Chapter 58 • Working with HP Performance Testing and Business Availability Center Products

1534

Measuring Transactions

You can measure how long it takes to run a section of your test by defining 
transactions. A transaction represents the process in your application that 
you are interested in measuring. Your test must include transactions to be 
used by LoadRunner, Performance Center, or the Business Process Monitor. 
These products use only the data that is included within a transaction, and 
ignore any data in a test outside of a transaction.

You define transactions within your test by enclosing the appropriate 
sections of the test with start and end transaction statements. For example, 
you can define a transaction that measures how long it takes to reserve a 
seat on a flight and for the confirmation to be displayed on the client’s 
terminal.

During the test run, the StartTransaction step signals the beginning of the 
time measurement. The time measurement continues until the 
EndTransaction step is reached. The test report displays the time it took to 
perform the transaction.

Note: If you start a transaction while there is already open transaction with 
the same name, the previous transaction is ended with Fail status and then 
the new transaction is started.

For information on the statements you can use in transactions, see the 
HP QuickTest Professional Object Model Reference.

There is no limit to the number of transactions that can be added to a test. 
You can also insert a transaction within a transaction.



Chapter 58 • Working with HP Performance Testing and Business Availability Center Products

1535

Part of a sample test with a transaction is shown below, as it is displayed in 
the Keyword View: 

The same part of the test is displayed in the Expert View as follows:

Services.StartTransaction "ReserveSeat"
Browser("Welcome: Mercury Tours").Page("Find a Flight: Mercury").

WebList("fromPort").Select "London"
Browser("Welcome: Mercury Tours").Page("Find a Flight: Mercury").

WebList("toPort").Select "Frankfurt"
Browser("Welcome: Mercury Tours").Page("Find a Flight: Mercury").

WebList("toDay").Select "12"
Browser("Welcome: Mercury Tours").Page("Find a Flight: Mercury").

WebRadioGroup("servClass").Select "Business"
Browser("Welcome: Mercury Tours").Page("Find a Flight: Mercury").

WebList("airline").Select "Blue Skies Airlines"
Browser("Welcome: Mercury Tours").Page("Find a Flight: Mercury").

Image("findFlights").Click 65,12
Browser("Welcome: Mercury Tours").Page("Select a Flight: Mercury").

WebRadioGroup("outFlight").Select "Blue Skies Airlines"
Browser("Welcome: Mercury Tours").Page("Select a Flight: Mercury").

WebRadioGroup("inFlight").Select "Blue Skies Airlines"
Browser("Welcome: Mercury Tours").Page("Select a Flight: Mercury").

Image("reserveFlights").Click 46,8
Services.EndTransaction "ReserveSeat"

Start
transaction

End
transaction



Chapter 58 • Working with HP Performance Testing and Business Availability Center Products

1536

You can insert a variety of transaction-related statements using the Step 
Generator or Expert View. For more information, see the Services section of 
the HP QuickTest Professional Object Model Reference. You can also enter Start 
Transaction and End Transaction steps using options in the QuickTest 
window. 

The Start Transaction Dialog Box
 

Below is an image of the Start Transaction dialog box: 

Start Transaction Dialog Box Options
 

Description Enables you to insert a step that signals the beginning 
of the time measurement for a transaction. 

How to Access ➤ Select the Insert > Start Transaction menu 
command.

➤ Click the Start Transaction toolbar button .

Learn More Conceptual overview: “Measuring Transactions” on 
page 1534

Additional related topics: “The End Transaction Dialog 
Box” on page 1537

Option Description

Name The name of the transaction you want to measure.

Note: You cannot include spaces in a transaction name.

Insert Statement Indicates where the StartTransaction step will be inserted 
in relation to the selected step. 
Select Before current step or After current step.



Chapter 58 • Working with HP Performance Testing and Business Availability Center Products

1537

The End Transaction Dialog Box
 

Below is an image of the End Transaction dialog box: 

Description Enables you to insert a step that signals the end of 
the time measurement for a transaction. 

How to Access ➤ Select the Insert > End Transaction menu 
command.

➤ Click the End Transaction toolbar button .

Important Information There may be cases in which you want to instruct 
QuickTest to perform all the steps in a transaction, 
even though an error occurs during the run session. 
In the Run pane of the Test Settings dialog box (File 
> Settings > Run node), select proceed to next step 
from the When error occurs during run session list. 
You can also create recovery scenarios or other error 
handling steps to address these cases. For more 
information, see Chapter 48, “Defining and Using 
Recovery Scenarios.”

Learn More Conceptual overview: “Measuring Transactions” on 
page 1534

Additional related topics: “The Start Transaction 
Dialog Box” on page 1536



Chapter 58 • Working with HP Performance Testing and Business Availability Center Products

1538

End Transaction Dialog Box Options
 

Using Silent Test Runner 

Silent Test Runner enables you to simulate the way a QuickTest test runs 
from LoadRunner, Performance Center, and Business Availability Center. 
When you run a test using Silent Test Runner, it runs without opening the 
QuickTest user interface, and the test runs at the same speed as when it is 
run from LoadRunner, Performance Center, or Business Availability Center 
At the end of the test run, you can view information about the test run and 
transaction times. For more information, see “Viewing Test Run Information 
for Silent Runs” on page 1541.

You can also use Silent Test Runner to verify that your QuickTest test is 
compatible with LoadRunner, Performance Center, and Business Availability 
Center. A test will fail when run using Silent Test Runner if it uses a feature 
that is not supported by these products. For more information on features 
that are not supported, see “Designing QuickTest Tests for Use with 
Performance Testing Products or Business Process Monitor” on page 1530, 
and “Inserting and Running Tests in a Performance Test or in Business 
Process Monitor” on page 1531.

Option Description

Name The name of the transaction you want to end. 

The list contains the name of all transactions that start 
prior to the selected step in the current action.

Insert Statement Indicates where the EndTransaction step will be inserted in 
relation to the selected step. 
Select Before current step or After current step.



Chapter 58 • Working with HP Performance Testing and Business Availability Center Products

1539

The Silent Test Runner Dialog Box
 

Below is an image of the Silent Test Runner dialog box: 

Description Enables you to simulate the way a QuickTest test 
runs from LoadRunner and Business Availability 
Center and to verify that your QuickTest test is 
compatible with LoadRunner and Business 
Availability Center.

How to Access Select the Start > Programs > QuickTest Professional 
> Tools > Silent Test Runner menu command.

Important Information ➤ You cannot run Silent Test Runner if QuickTest is 
already open or another test is currently running. 
You must close QuickTest and wait for its process 
to end before running your test using Silent Test 
Runner.

➤ You can invoke only one instance of Silent Test 
Runner and you can specify only one test to run. 

➤ You cannot use the ResultDir QuickTest 
environment variable when running a test from 
Silent Test Runner.

Learn More Conceptual overview: “Using Silent Test Runner” 
on page 1538

Additional related topics: “Viewing Test Run 
Information for Silent Runs” on page 1541



Chapter 58 • Working with HP Performance Testing and Business Availability Center Products

1540

Silent Test Runner Dialog Box Options
 

Option Description

Test The full file system path of the test you want to run.  

Note: To specify a network path, you must map the network 
drive.

Run Test Enables you to run the test. 

(Enabled only when a test path is specified in the Test box).

When you click this button, the test runs without opening 
the QuickTest user interface. The text Running test... is 
displayed next to the Run Test button while the test is 
running.

When the test run finishes, the text Running test... is replaced 
with the text Test run completed. If Silent Test Runner was 
unable to run your test, the text Test could not be run is 
displayed.

Note: After you start a test run, you cannot stop the test run 
from Silent Test Runner. Even if you close Silent Test Runner, 
the test continues to run. To end the run, end the mdrv.exe 
process manually.

Test Run Log Enables you to view the most recent run log for the selected 
test. Each time you run a test with Silent Test Runner, the 
previous log file is overwritten with the current run results.

(Enabled only when the selected test has run with the Silent 
Test Runner at least once.)

For more information, see “Viewing the Test Run Log” on 
page 1541.

Transaction 
Summary

Enables you to view the summary of the transactions in the 
test.

(Enabled only when the selected test contains at least one 
transaction and the test has run with the Silent Test Runner at 
least once.)

For more information, see “Viewing the Transaction 
Summary” on page 1541.



Chapter 58 • Working with HP Performance Testing and Business Availability Center Products

1541

Viewing Test Run Information for Silent Runs
Silent Test Runner provides test run information in log files. Each test 
generates a test run log, and any test with transactions generates an 
additional transaction summary.

Viewing the Test Run Log

The test run log is saved as output.txt in the <QuickTest 
Professional>\Tests\<test name> folder. A log file is saved for each test run 
with Silent Test Runner and is overwritten when you rerun the test. To open 
the log file, click Test Run Log.

The log file displays information about the test run. For example, 
information is shown about each iteration, action call, step transaction, 
failed step, and so forth. Each line displays a message or error ID. For more 
information on message and error codes in the log file, see your 
Performance Center or Business Availability Center documentation.

Viewing the Transaction Summary 

The transaction summary is saved as transactions.txt in the <QuickTest 
Professional>\Tests\<test name> folder. A transaction summary is saved for 
each test that includes transactions and is overwritten when you rerun the 
test. To open the log file, click Transaction Summary. The transaction 
summary displays a line for each transaction in the test. For each 
transaction, the status is displayed together with the total duration time and 
any wasted time (in seconds). The transaction measurements in Silent Test 
Runner are exactly the same as if the test was run from LoadRunner, 
Performance Center, or Business Availability Center.



Chapter 58 • Working with HP Performance Testing and Business Availability Center Products

1542

Notes:

➤ A transaction summary is available only for a test that contains 
transactions ending with an EndTransaction statement. If a transaction 
started but did not end because of test failure, it is not included in the 
transaction summary.

➤ Distributed transactions (transactions that start in one test and end in 
another) are not reported in the transaction summary but are included in 
the test run log.

➤ Any transaction information included in the transaction summary is also 
included in the test run log.



1543

Part XIII

Appendixes



1544



1545

A
Supported Checkpoints and Output 
Values Per Add-In

The tables in this chapter show the categories of checkpoints and output 
values that are supported by QuickTest Professional for each add-in.

For more information about using checkpoints and output values in a 
specific add-in, see the relevant add-in section.

This chapter includes:

 ➤  Supported Checkpoints on page 1546

 ➤  Supported Output Values on page 1548



Appendix A • Supported Checkpoints and Output Values Per Add-In

1546

Supported Checkpoints

Table Legend

➤ S: Supported

➤ NS: Not Supported

➤ NA: Not Applicable

For additional information, see “Footnotes” on page 1547. 

 

A
cc

es
si

b
ili

ty
 

B
it

m
ap

D
at

ab
as

e

Im
ag

e

Pa
g

e

St
an

d
ar

d

Ta
b

le

Te
xt

Te
xt

 A
re

a

X
M

L 
(F

ro
m

 A
p

p
lic

at
io

n
)

X
M

L 
(F

ro
m

 R
es

o
ur

ce
)

ActiveX NS S NA NS NA S S S S NA NS

Delphi NS S NA NS NA S S S S NA S

Java NA S NA NA NA S S S6 S NA NS

.NET Web Forms5 S S NA NA NA S S S NS S S

.NET Windows Forms NA S NA NA NA S S N S N N

Oracle NA S NA NA NA S S NS NS NA NA

PeopleSoft S S NA S S S S S3 NS S S

PowerBuilder4 NS S NA NS NA S S S S NA NS

SAP Web S S NA S S S S S NS S S

SAP Windows S7 S NA S7 S7 S S S7 NS S7 NA

Siebel S S NA S S S S S NS S S

Standard Windows NS S NA NS NA S S S S NA NS

Stingray NA S NA NA NA S S S S NA NS

Terminal Emulator NA S NA NA NA S NA NA NA NA NA



Appendix A • Supported Checkpoints and Output Values Per Add-In

1547

Footnotes
1 Only standard and bitmap checkpoints are supported for business 
components.

2 When creating checkpoints for Web objects in components, only bitmap 
checkpoints and standard checkpoints are available.

3 Checkpoints are supported only for Page, Frame, and ViewLink objects.

4 When you insert a checkpoint on a PowerBuilder DataWindow control, 
QuickTest treats it as a table and opens the Table Checkpoint Properties 
dialog box (not supported for components). 

5 For NET Web Forms, text checkpoints for WbfTreeView, WbfToolbar, and 
WbfTabStrip objects are not supported. 

6 The text checkpoint mechanism for Java objects is disabled by default. You 
can enable it (for tests only) in the Advanced Java Options dialog box.

7 This is supported only when QuickTest records HTML elements using the 
Web infrastructure, but not when it records using the SAPGui Scripting 
Interface (as selected in the SAP pane of the Options dialog box).

Visual Age NA S NA NA NA S S S S NA NS

Visual Basic NS S NA NS NA S S S S NA NS

Web2 S S NA S S S S S3 NS S NS

Web Services NA NA NA NA NA S NA NA NA S NS

WPF NA S NA NA NA S NA S S NA NA

 

A
cc

es
si

b
ili

ty
 

B
it

m
ap

D
at

ab
as

e

Im
ag

e

Pa
g

e

St
an

d
ar

d

Ta
b

le

Te
xt

Te
xt

 A
re

a

X
M

L 
(F

ro
m

 A
p

p
lic

at
io

n
)

X
M

L 
(F

ro
m

 R
es

o
ur

ce
)



Appendix A • Supported Checkpoints and Output Values Per Add-In

1548

Supported Output Values

Table Legend

➤ S: Supported

➤ NS: Not Supported

➤ NA: Not Applicable

For additional information, see “Footnotes” on page 1549. 
A

cc
es

si
b

ili
ty

B
it

m
ap

D
at

ab
as

e

Pa
g

e

St
an

d
ar

d

Ta
b

le

Te
xt

Te
xt

 A
re

a

X
M

L 
(F

ro
m

 A
p

p
lic

at
io

n
)

X
M

L 
(F

ro
m

 R
es

o
ur

ce
)

ActiveX NS NA NA NA S S S S NA S

Delphi NS NA NA NA S NA S S NA S

Java NA NA NA NA S NA S6 NA NA NA

NET Web Forms NA NA NA S S S S NA NA NA

NET Windows Forms NA NA NA NA S S NA NA NA NA

Oracle NA NA NA NA NA NA NA NA NA NA

PeopleSoft NA NA NA S S S S3 NS S S

PowerBuilder4 NA NA NA NA S NA S S NA S

SAP Web NA NA NA S S S S NS S S

SAP Windows NA NA NA S6 S S S6 NS S6 S

Siebel NA NA NA S S S S NS S S

Standard Windows NA NA NA NA S NA S S NA S

Stingray NA NA NA NA S NA S S NA S

Terminal Emulator NA NA NA NA NA NA NA NA NA NA



Appendix A • Supported Checkpoints and Output Values Per Add-In

1549

Footnotes
1 Only standard and bitmap output values are supported for business 
components.

2 When creating output values for Web objects in components, only 
standard output values are available.

3 Output values are supported only for Page, Frame, and ViewLink objects.

4 When you insert an output value step on a PowerBuilder DataWindow 
control, QuickTest treats it as a table and opens the Table Output Value 
Properties dialog box (not supported for components). 

5 The text output mechanism for Java objects is disabled by default. You can 
enable it (for tests only) in the Advanced Java Options dialog box.

6 This is supported only when QuickTest records HTML elements using the 
Web infrastructure, but not when it records using the SAPGui Scripting 
Interface (as selected in the SAP pane of the Options dialog box).

Visual Age NA NA NA NA NA S S S NA NA

Visual Basic NA NA NA NA S NA S S NA S

Web2 NA NA NA S S S S3 NS S NA

Web Services NA NA NA NA NA NA NA NA NA S

WPF NA NA NA NA S NA S S NA NA

A
cc

es
si

b
ili

ty

B
it

m
ap

D
at

ab
as

e

Pa
g

e

St
an

d
ar

d

Ta
b

le

Te
xt

Te
xt

 A
re

a

X
M

L 
(F

ro
m

 A
p

p
lic

at
io

n
)

X
M

L 
(F

ro
m

 R
es

o
ur

ce
)



Appendix A • Supported Checkpoints and Output Values Per Add-In

1550



1551

B
Frequently Asked Questions

This chapter answers some of the questions that are asked most frequently 
by advanced users of QuickTest. The questions and answers are divided into 
the following sections: 

This chapter includes:

 ➤  Creating Tests on page 1552

 ➤  Programming in the Expert View on page 1553

 ➤  Working with Dynamic Content on page 1555

 ➤  Advanced Web Issues on page 1557

 ➤  Standard Windows Environment on page 1560

 ➤  Test Maintenance on page 1561

 ➤  Testing Localized Applications on page 1563

 ➤  Improving QuickTest Performance on page 1564



Appendix B • Frequently Asked Questions

1552

Creating Tests

➤ How can I record on objects or environments not supported by QuickTest?

You can do this in a number of ways:

➤ Install and load any of the add-ins that are available for 
QuickTest Professional. QuickTest supports many developmental 
environments including Java, Oracle, .NET, SAP Solutions, Siebel, 
PeopleSoft, terminal emulators, and Web services. 

➤ You can map objects of an unidentified or custom class to standard 
Windows classes. For more information on object mapping, see 
“Mapping User-Defined Test Object Classes” on page 131.

➤ QuickTest provides add-in extensibility that you can use to extend 
QuickTest built-in support for various objects. This enables you to direct 
QuickTest to recognize an object as belonging to a specific test object 
class, and to specify the behavior of the test object. You can also extend 
the list of available test object classes that QuickTest recognizes. This 
enables you to create tests that fully support the specific behavior of your 
custom objects. 

➤ You can define virtual objects for objects that behave like test objects, 
and then record in the normal recording mode. For more information on 
defining virtual objects, see Chapter 47, “Learning Virtual Objects.” 

➤ You can record your clicks and keyboard input based on coordinates in 
the low-level recording or analog modes. For more information on low-
level and analog recording, see “Choosing the Recording Mode” on 
page 368. 

➤ How can I launch an application from a test?

An application can be launched from within a test by adding a SystemUtil 
step to your test, such as:

SystemUtil.Run "D:\My Music\Breathe.mp3","","D:\My Music\Details","open"

For Windows-based applications, you should also ensure that in the 
Windows Applications tab of the Record and Run Settings dialog box, you 
configure QuickTest to record and run on applications opened by QuickTest.

AddinOverview.chm::/Ch_Working_with_Add-Ins.htm


Appendix B • Frequently Asked Questions

1553

➤ How does QuickTest capture user processes in Web pages?

QuickTest hooks the Microsoft Internet Explorer browser. As the user 
navigates the Web-based application, QuickTest records the user operations. 
(For information on modifying which user operations are recorded, see the 
section on configuring Web event recording in the HP QuickTest Professional 
Add-ins Guide.) QuickTest can then run the test by running the steps as they 
originally occurred.

Programming in the Expert View

➤ Can I store functions and subroutines in a function library?

You can define functions within an individual action, or you can create one 
or more VBScript function libraries containing your functions, and then call 
them from any test. You can use the QuickTest function library editor to 
create and debug your function libraries.

You can also register your functions as methods for QuickTest test objects. 
Your registered methods can override the functionality of an existing test 
object method for the duration of a run session, or you can register a new 
method for a test object class. 

For more information, see Chapter 31, “Working with User-Defined 
Functions and Function Libraries”.

You can help improve QuickTest performance by storing your functions in 
function libraries instead of as reusable actions.

➤ How can I enter information during a run session?

The VBScript InputBox function enables you to display a dialog box that 
prompts the user for input and then continues running the test. You can use 
the value that was entered by the user later in the run session. For more 
information on the InputBox function, see the VBScript Reference.



Appendix B • Frequently Asked Questions

1554

The following example shows the InputBox function used to prompt the user 
for a password:

Browser("Mercury Tours").Page("Mercury Tours").WebEdit("username").Set 
"administrator"
Passwd = InputBox ("Enter password", "User Input")
Browser("Mercury Tours").Page("Mercury Tours").WebEdit("password").Set 
Passwd

➤ I have a Microsoft Access database that contains data I would like to use in 
my test. How do I do this?

The Expert View enables you to access databases using ADO and ODBC. 
Below is a sample test that searches for books written by an author in the 
"Authors" table of the database. 

Dim MyDB
Dim MyEng
Set MyEng = CreateObject("DAO.DBEngine.35")
Dim Td
Dim rs

' Specify the database to use.
Set MyDB = MyEng.OpenDatabase("BIBLIO.MDB")

' Read and use the name of the first 10 authors.
Set Td = MyDB.TableDefs("Authors")
Set rs = Td.OpenRecordset
rs.MoveFirst
For i = 1 To 10

Browser("Book Club").Page("Search Books").WebEdit("Author Name").Set 
rs("Author")

Browser("Book Club").Page("Search Books").WebButton("Search").Click
Next



Appendix B • Frequently Asked Questions

1555

➤ How do I customize the Test Results?

You can add information to the test results report by using the ReportEvent 
method, for example: 

Reporter.ReportEvent 1, "Custom Step", "The user-defined step failed" 

For more information, see the HP QuickTest Professional Object Model 
Reference.

The results of each QuickTest run session are saved in a single .xml file 
(called results.xml). You can modify this file, as needed. You can use the 
QuickTest Test Results Schema (available from the QuickTest Professional 
Help) to help you customize your test results.

Working with Dynamic Content

➤ How can I create and run tests on objects that change dynamically from 
viewing to viewing?

Sometimes the content of objects in an application changes due to dynamic 
content. You can create dynamic descriptions of these objects so that 
QuickTest will recognize them when it runs the test using regular 
expressions, the Description object, repository parameters, or 
SetTOProperty steps. 

➤ How can I check that a child window exists (or does not exist)?

Sometimes a link in one window creates another window. 

You can use the Exist property to check whether or not a window exists. For 
example:

If Window("Main").ActiveX("Slider").Exist Then
. .  .

You can also use the ChildObjects method to retrieve all child objects (or the 
subset of child objects that match a certain description) on the Desktop or 
within any other parent object.

XMLReport.chm::/XmlReport_xsd.html


Appendix B • Frequently Asked Questions

1556

Example:

Set oDesc = Description.Create
oDesc("Class Name").Value = "Window"

Set coll = Desktop.ChildObjects(oDesc)
For i = 0 to coll.count -1

msgbox coll(i).GetROProperty("text")
Next

For more information on the Exist property and ChildObjects method, see 
the HP QuickTest Professional Object Model Reference.

➤ How does QuickTest record on dynamically generated URLs and Web 
pages?

QuickTest actually clicks links as they are displayed on the page. Therefore, 
QuickTest records how to find a particular object, such as a link on the page, 
rather than the object itself. For example, if the link to a dynamically 
generated URL is an image, then QuickTest records the "IMG" HTML tag, 
and the name of the image. This enables QuickTest to find this image in the 
future and click on it.

➤ How does QuickTest handle tabs in browsers?

QuickTest provides several methods that you can use with the Browser test 
object to manage tabs in your Web browser. 

OpenNewTab opens a new tab in the current Web browser.

IsSiblingTab indicates whether a specified tab is a sibling of the current tab 
object in the same browser window.

Close closes the current tab if more than one tab exists, and closes the 
browser window if the browser contains only one tab.

CloseAllTabs closes all tabs in a browser and closes the browser window.

For more information on these Browser-related methods, see the Web 
section of the HP QuickTest Professional Object Model Reference.



Appendix B • Frequently Asked Questions

1557

Advanced Web Issues

➤ How does QuickTest handle cookies? 

Server side connections, such as CGI scripts, can use cookies both to store 
and retrieve information on the client side of the connection. 

QuickTest stores cookies in the memory for each user, and the browser 
handles them as it normally would.

➤ Where can I find a Web page's cookie?

The cookie used by the Internet Explorer browser can be accessed through 
the browser's Document Object Model (DOM) using the .Object property. In 
the following example the cookie collection is returned the from the 
browser: 

Browser("Flight reservations").Page("Flight reservations").Object.Cookie

➤ How does QuickTest handle session IDs? 

The server, not the browser, handles session IDs, usually by a cookie or by 
embedding the session ID in all links. This does not affect QuickTest. 

➤ How does QuickTest handle server redirections? 

When the server redirects the client, the client generally does not notice the 
redirection, and misdirections generally do not occur. In most cases, the 
client is redirected to another script on the server. This additional script 
produces the HTML code for the subsequent page to be viewed. This has no 
effect on QuickTest or the browser.

➤ How does QuickTest handle meta tags? 

Meta tags do not affect how the page is displayed. Generally, they contain 
information only about who created the page, how often it is updated, what 
the page is about, and which keywords represent the page's content. 
Therefore, QuickTest has no problem handling meta tags. 



Appendix B • Frequently Asked Questions

1558

➤ Does QuickTest work with .asp and .jsp?

Dynamically created Web pages utilizing Active Server Page technology have 
an .asp extension. Dynamically created Web pages utilizing Java Server Page 
technology have a .jsp extension. These technologies are completely 
server-side and have no bearing on QuickTest. 

➤ How does QTP support AJAX?

You can use QuickTest Professional Web Add-in Extensibility to add your 
own support for custom Web controls. The Web Add-in Extensibility SDK 
installs a sample toolkit support set that provides partial support for some 
ASP .NET AJAX controls. You can use this sample to learn how to create your 
own support for your AJAX controls. For more information, see the 
HP QuickTest Professional Web Add-in Extensibility Developer Guide.

➤ Does QuickTest work with COM?

QuickTest complies with the COM standard. 

QuickTest supports COM objects embedded in Web pages (which are 
currently accessible only using Microsoft Internet Explorer), and you can 
drive COM objects in VBScript.

➤ Does QuickTest work with XML?

XML is eXtensible Markup Language, a pared-down version of SGML for 
Web documents, that enables Web designers to create their own customized 
tags. QuickTest supports XML and recognizes XML tags as objects. 

You can also create XML checkpoints to check the content of XML 
documents in Web pages, frames or files. QuickTest also supports XML 
output and schema validation. 

For more information, see Chapter 23, “Checking XML,” and the XMLUtil 
object in the Utility section of the HP QuickTest Professional Object Model 
Reference. 

➤ How can I access HTML tags directly?

QuickTest provides direct access to the Internet Explorer’s Document Object 
Model (DOM) through which you can access the HTML tags directly. Access 
to the DOM is performed using the .Object notation.



Appendix B • Frequently Asked Questions

1559

The test below demonstrates how to iterate over all the tags in an Internet 
Explorer page. The test then outputs the inner-text of the tags (the text 
contained between the tags) to the Test Results using the Reporter object.

' Use the on error option because not all the elements have inner-text.
On Error Resume Next
Set Doc = Browser("CNN Interactive").Page("CNN Interactive").Object

' Loop through all the objects in the page.
For Each Element In Doc.all

TagName = Element.TagName ' Get the tag name.
InnerText = Element.innerText ' Get the inner text.

' Write the information to the test results.
Reporter.ReportEvent 0, TagName, InnerText

Next

➤ Where can I find information on the Internet Explorer Document Object 
Model?

For information on the Internet Explorer DOM, browse to the following 
Web sites:

Document object: 
http://msdn2.microsoft.com/en-us/library/ms531073.aspx

Other DHTML objects:
http://msdn2.microsoft.com/en-us/library/ms533054.aspx

General DHTML reference:
http://msdn2.microsoft.com/en-us/library/ms533050.aspx

➤ How can I send keyboard key commands (such as shortcut commands) to 
objects that do not support the Type method?

For objects that do not support the Type method, use the Windows 
Scripting SendKeys method. For more information, see the Microsoft 
VBScript Language Reference (choose Help > QuickTest Professional Help > 
VBScript Reference > Windows Script Host).

http://msdn2.microsoft.com/en-us/library/ms533050.aspx
http://msdn2.microsoft.com/en-us/library/ms531073.aspx
http://msdn2.microsoft.com/en-us/library/ms533054.aspx


Appendix B • Frequently Asked Questions

1560

Standard Windows Environment

➤ How can I record on nonstandard menus?

You can modify how QuickTest behaves when it records menus. The options 
that control this behavior are located in the Windows Applications > 
Advanced Options pane. 
(Tools > Options > Windows Applications node> Advanced node).

For more information, see the HP QuickTest Professional Add-ins Guide.

➤ How can I terminate an application that is not responding?

You can terminate any standard application while running a test in 
QuickTest by adding one of the following steps to the test:

➤ SystemUtil.CloseProcessByName "app.exe"

➤ SystemUtil.CloseProcessByWndTitle "Some Title"

➤ Can I copy and paste to and from the Clipboard during a run session?

You can use the Clipboard object to copy, cut, and paste text during a 
QuickTest run session.

The Clipboard object supports the same methods as the Clipboard object 
available in Visual Basic, such as:

➤ Clear

➤ GetData

➤ GetText

➤ SetData

➤ SetText 

For more information on these methods, see http://msdn.microsoft.com/en-us/
library/ms172962.aspx.

Below is an example of Clipboard object usage:

Set MyClipboard = CreateObject("Mercury.Clipboard")
MyClipboard.Clear
MyClipboard.SetText "TEST"
MsgBox MyClipboard.GetText

http://msdn.microsoft.com/en-us/library/ms172962.aspx
http://msdn.microsoft.com/en-us/library/ms172962.aspx


Appendix B • Frequently Asked Questions

1561

Test Maintenance

➤ How do I maintain my test when my application changes?

The way to maintain a test when your application changes depends on how 
much your application changes. This is one of the main reasons you should 
create a small group of tests rather than one large test for your entire 
application.

You can also use QuickTest actions to design more modular and efficient 
tests. Divide your test into several actions, based on functionality. When 
your application changes, you can modify a specific action, without 
changing the rest of the test. Whenever possible, insert calls to reusable 
actions rather than creating identical pieces of script in several tests. This 
way, changes to your original reusable action are automatically applied to all 
tests calling that action. For more information, see Chapter 16, “Working 
with Advanced Action Features.” 

If you have many tests and actions that contain the same test objects, it is 
recommended to work with shared object repositories so that you can 
update object information in a centralized location. 

You can use the Update Run Mode option to update changed information 
for checkpoints or the Active Screen, or to change the set of identification 
properties used to identify the objects in your application. For more 
information, see “Updating a Test Using the Update Run Mode Option” on 
page 1125.

If there is a discrepancy between the identification property values saved in 
the object repository and the object property values in the application, you 
can use the Maintenance Run Mode to help correct this. When you run a 
test in Maintenance Run Mode, QuickTest runs your test, and then guides 
you through the process of updating your steps and object repository each 
time it encounters a step it cannot perform due to an object repository 
discrepancy. For more information, see “Running Tests with the 
Maintenance Run Wizard” on page 1104.



Appendix B • Frequently Asked Questions

1562

➤ Can I increase or decrease Active Screen information after I finish recording 
a test?

If you find that the information saved in the Active Screen after recording is 
not sufficient for your test editing needs, or if you no longer need Active 
Screen information, and you want to decrease the size of your test, there are 
several methods of changing the amount of Active Screen information saved 
with your test.

➤ To decrease the disk space used by your test, you can delete Active Screen 
information by selecting Save As, and clearing the Save Active Screen 
files check box. For more information, see “Saving a Test” on page 324.

➤ If you chose not to save all information in the Active Screen when testing 
a Windows application, you can use one of several methods to increase 
the information stored in the Active Screen.

Confirm that the Active Screen capture preference in the Active Screen 
pane of the Options dialog box is set to capture the amount of 
information you need and then:

➤ Perform an Update Run Mode operation to save the required amount 
of information in the Active Screen for all existing steps. For more 
information on the Update Run Mode options, see “Updating a Test 
Using the Update Run Mode Option” on page 1125.

➤ Re-record the steps containing the objects you want to add to the 
Active Screen.

To re-record the step, select the step after which you want to record 
your step, position your application to match the selected location in 
your test, and then begin recording. Alternatively, place a breakpoint 
in your test at the step before which you want to add a step and run 
your test to the breakpoint. This brings your application to the point 
from which to record the step. For more information on setting 
breakpoints, see “Setting Breakpoints” on page 1079. 

For more information on changing the amount of information saved in the 
Active Screen for Windows applications, see “Setting Active Screen Options” 
on page 1240. 



Appendix B • Frequently Asked Questions

1563

➤ How can I remove test result files from old tests?

You can use the Test Results Deletion Tool to view a list of all of the test 
results in a specific location in your file system or in your Quality Center 
project. You can then delete any test results that you no longer require.

The Test Results Deletion Tool enables you to sort the test results by name, 
date, size, and so forth, so that you can more easily identify the results you 
want to delete.

To open this utility, choose Start > Programs > QuickTest Professional > 
Tools > Test Results Deletion Tool.

Testing Localized Applications

➤ I am testing localized versions of a single application, each with localized 
user interface strings. How do I create efficient tests in QuickTest?

You can parameterize these user interface strings using parameters from the 
global Environment variable list. This is a list of variables and corresponding 
values that can be accessed from any test. For more information, see 
Chapter 24, “Parameterizing Values.”

➤ I am testing localized versions of a single application. How can I efficiently 
input different data in my tests, depending on the language of the 
application?

If you are running a single iteration of your test, or if you want values to 
remain constant for all iterations of an action or test, use environment 
variables, and then change the active environment variable file for each test 
run.

If you are running multiple iterations of your test or action, and you want 
the input data to change in each iteration, you can create an external Data 
Table for each localized version of your application. When you change the 
localized version of the application you are testing, you simply switch the 
Data Table file for your test in the Resources pane of the Test Settings dialog 
box. For more information on working with Data Tables, see Chapter 42, 
“Working with Data Tables.” For more information on selecting the Data 
Table file for your test, see “Defining Resource Settings for Your Test” on 
page 1274. 



Appendix B • Frequently Asked Questions

1564

Improving QuickTest Performance

How can I improve the working speed of QuickTest?

You can improve the working speed of QuickTest by doing any of the 
following:

➤ In the Add-in Manager, load only the add-ins you need for a specific 
QuickTest session when QuickTest starts. This will improve performance 
while learning objects and during run sessions. For more information on 
loading add-ins, see the HP QuickTest Professional Add-ins Guide.

➤ Minimize the number of actions in a test. Ideally, a test should not 
contain more than a few dozen actions.

➤ Store your functions in function libraries instead of as reusable actions.

➤ Run your tests in "fast mode." From the Run pane in the Options dialog 
box, select the Fast option. This instructs QuickTest to run your test 
without displaying the execution arrow for each step, enabling the test to 
run faster. For more information on the Run pane of the Options dialog 
box, see “Setting Run Testing Options” on page 1253.

➤ If you are not using the Active Screen while editing your test, hide the 
Active Screen while editing your test to improve editing response time. 
Choose View > Active Screen, or toggle the Active Screen toolbar button 
to hide the Active Screen. For more information, see Chapter 2, 
“QuickTest at a Glance.” 



Appendix B • Frequently Asked Questions

1565

➤ Decide if and how much information you want to capture and save in 
the Active Screen. The more information you capture, the easier it is to 
add steps to your test using the many Active Screen options, but more 
captured information also leads to slower recording and editing times. 
You can choose from the following Active Screen options to improve 
performance:

➤ If you are testing Windows applications, you can choose to save all 
Active Screen information in every step, save information only in 
certain steps, or to disable Active Screen captures entirely. You set this 
preference in the Active Screen pane of the Options dialog box. For 
more information, see “Setting Active Screen Options” on page 1240.

➤ If you are testing Web applications, you can disable screen capture of 
all steps in the Active Screen. From the Active Screen pane of the 
Options dialog box, click Custom Level to open the Custom Active 
Screen Capture Settings dialog box. 

Select the Disable Active Screen Capture option. This will improve 
recording time. For more information on the Active Screen pane of 
the Options dialog box, see “Setting Active Screen Options” on 
page 1240.

➤ When you save a new test, or when you save a test with a new name 
using Save As, you can choose not to save the captured Active Screen 
files with the test by clearing the Save Active Screen files option in the 
Save or Save As dialog box. This is especially useful when you have 
finished designing your test and you plan to use your test only for test 
runs. Tests without Active Screen files open more quickly and use 
significantly less disk space.

For more information on the Active Screen pane of the Options dialog 
box, see “Setting Active Screen Options” on page 1240.



Appendix B • Frequently Asked Questions

1566

Tip: If you need to recover Active Screen files after you save a test without 
Active Screen files, re-record the necessary steps or use the Update Run 
Mode option to recapture screens for all steps in your test. For more 
information, see “Updating a Test Using the Update Run Mode Option” on 
page 1125. 

➤ Decide if and when you want to capture and save images and/or movies 
of the application for the test results. You can reduce disk space and 
improve test run time by saving screen captures and movie segments 
only in certain situations, such as when errors occur, or by not saving 
them at all. To do this, use the Save still image captures to results and 
Save movie to results options in the Run > Screen Capture pane in the 
Options dialog box. For more information, see “The Options Dialog Box: 
Run > Screen Capture Pane” on page 1255. 

➤ Save the test results report to a temporary folder to overwrite the results 
from the previous run session every time you run a test. For more 
information, see “Running Your Entire Test” on page 955.

➤ Use the Results Deletion Tool to remove unwanted or obsolete test results 
from your system, according to specific criteria that you define. This 
enables you to free up valuable disk space. For more information, see 
“Deleting Results Using the Test Results Deletion Tool” on page 1004. 

How can I decrease the disk space used by QuickTest? 

You can decrease the disk space used by QuickTest by doing any of the 
following: 

➤ Decide if and when you want to capture and save images and/or movies 
of the application for the test results. You can reduce disk space and 
improve test run time by saving screen captures and movie segments 
only in certain situations, such as when errors occur, or by not saving 
them at all. To do this, use the Save still image captures to results and 
Save movie to results options in the Run > Screen Capture pane in the 
Options dialog box. For more information, see “The Options Dialog Box: 
Run > Screen Capture Pane” on page 1255. 



Appendix B • Frequently Asked Questions

1567

➤ Decide if and how much information you want to capture and save in 
the Active Screen. The more information you capture, the easier it is to 
add steps to your test using the many Active Screen options, but more 
captured information also leads to slower recording and editing times. 
You can choose from the following Active Screen options to improve 
performance: 

➤ If you are testing Windows applications, you can choose to Save all 
Active Screen information in every step, save information only in 
certain steps, or to disable Active Screen captures entirely. You set this 
preference in the Active Screen pane of the Options dialog box. For 
more information, see “Setting Active Screen Options” on page 1240. 

➤ If you are testing Web applications, you can disable screen capture of 
all steps in the Active Screen. From the Active Screen pane, click 
Custom Level to open the Custom Active Screen Capture Settings 
dialog box. Select the Disable Active Screen Capture option. This will 
improve recording time. For more information on the Active Screen 
pane of the Options dialog box, see “Setting Active Screen Options” on 
page 1240. 

➤ When you save a new test, or when you save a test with a new name 
using Save As, you can choose not to save the captured Active Screen 
files with the test by clearing the Save Active Screen files option in the 
Save or Save As dialog box. This is especially useful when you have 
finished designing your test and you plan to use your test only for test 
runs. Tests without Active Screen files use significantly less disk space. 

Tip: If you need to recover Active Screen files after you save a test without 
Active Screen files, re-record the necessary steps or use the Update Run 
Mode option to recapture screens for all steps in your test. For more 
information, see “Updating a Test Using the Update Run Mode Option” on 
page 1125. 



Appendix B • Frequently Asked Questions

1568

Is there a recommended length for tests?

Although there is no formal limit regarding test length, it is recommended 
that you divide your tests into actions and that you use reusable actions in 
tests, whenever possible. An action should contain no more than a few 
hundreds steps and, ideally, no more than a few dozen. For more 
information, see Chapter 15, “Working with Actions.” 



1569

C
Creating Custom Process Guidance 
Packages

This chapter guides you through the process of creating custom process 
guidance packages. You can distribute your custom packages to the 
QuickTest users in your organization. QuickTest users can then display the 
processes from your package in QuickTest while they work, to assist them in 
following your organization’s processes and standards.

This chapter includes:

 ➤  About Process Guidance Packages on page 1569

 ➤  Understanding the Package Configuration File on page 1570

 ➤  Creating Data Files on page 1573

 ➤  Installing Custom Process Guidance Packages in QuickTest on page 1574

About Process Guidance Packages

A Process Guidance Package is comprised of two entities: the package 
configuration file and the data files.

➤ Package Configuration file. This XML file defines the Processes included in 
the package and the structure of the Groups and Activities in each process. 

➤ Data Files. A set of HTML files. Each HTML file contains the content for a 
single activity. 

For an overview of process guidance and how it is used in QuickTest, see 
Chapter 43, “Working with Process Guidance.”



Appendix C • Creating Custom Process Guidance Packages

1570

Understanding the Package Configuration File

To create a new package, you first create an XML file that describes the 
processes included in the package and sets the structure of the groups and 
activities in each process. This structure is displayed as a table of contents 
for a selected process in the QuickTest Process Guidance Activities pane.

Important: Save the configuration file with the name: Configuration.xml

The following is an example of a package configuration file that contains 
two processes:

<?xml version="1.0" encoding="UTF-8"?>
<ProcessGuidance Name="MyCustomPackage">

<Process Name="My Process" ID="Process1" DocType="test" Addin="web" 
SortLevel="4" >

<Group Name="New User Overview">
<Activity Name="Step 1" Address="Step1.html"  />
<Activity Name="Step 2" Address="Step2.html"  />

</Group>
</Process>
<Process Name="Important Processes" ID="Process2" DocType="test|AA" 

SortLevel="3">
<Group Name="Getting Started">

<Activity Name="Open" Address="F:\ProcessData\open.html"  />
<Activity Name="Create" Address="F:\ProcessData\create.html"  />
<Activity Name="Test" Address="F:\ProcessData\test.html"  />
<Activity Name="Debug" Address="F:\ProcessData\debug.html"  />

</Group>
<Group Name="Finish">

<Activity Name="Save" Address="F:\ProcessData\save.html"  />
<Activity Name="Close" Address="F:\ProcessData\close.html"  />
<Activity Name="Exit" Address="F:\ProcessData\exit.html"  />

</Group>
</Process>

</ProcessGuidance>



Appendix C • Creating Custom Process Guidance Packages

1571

XML Details
The elements and attributes you can use in your package configuration file 
are described in this section.

➤ <Process> Element. Defines a new process. This element supports the 
following attributes:

➤ Name. The name of the process as you want it to appear in the QuickTest 
Process Guidance pane.

➤ ID. A unique identification name. This name is used to distinguish 
between two processes with the same name.

➤ DocType. Indicates the QuickTest document types for which this process 
is applicable. If specified, the process is available only when the relevant 
document type is open. 

In the example above, if a QuickTest user opens a test document, both 
processes will be available, but if an application area document is 
opened, only the second process will be available. 

Possible values: 

➤ test. A test document.

➤ AA. An application area document.

➤ BC. A business component document.

➤ SBC. A scripted component document.

➤ Addin. Indicates the QuickTest add-ins for which this process is 
applicable. If specified, the process is available only when the relevant 
add-in is loaded. 

In the example above, the first process will be available only if the Web 
Add-in is loaded. The second process will always be visible.

Specify the add-in value using the add-in name as displayed in the 
Add-in Manager.

➤ SortLevel. Determines the location of the process within the process list. 
This list is displayed in the Process Guidance Management dialog box 
and in the QuickTest Automation > Process Guidance List menu.



Appendix C • Creating Custom Process Guidance Packages

1572

➤ <Group> Element. Defines a new group in the process. This element 
supports the following attributes:

➤ Name. Same as the Name attribute for the <Process> element, as 
described above. 

➤ ID. Same as the ID attribute for the <Process> element, as described 
above.

➤ Addin. Same as the Addin attribute for the <Process> element, as 
described above.

➤ <Activity> Element. Defines an activity within the group.

➤ Name. Same as the Name attribute for the <Process> element, as 
described above. 

➤ ID. Same as the ID attribute for the <Process> element, as described 
above.

➤ Addin. Same as the Addin attribute for the <Process> element, as 
described above.

➤ Address. The path where the relevant HTML data file is located. This can 
be a local or network path on the file system or an HTTP address. If you 
specify a relative path, the location is resolved relative to the 
configuration file location. 



Appendix C • Creating Custom Process Guidance Packages

1573

Creating Data Files

Each data file contains the HTML content for a single process guidance 
activity. When an activity link is clicked in the Process Guidance Activities 
pane, the HTML content is displayed in a browser control in the QuickTest 
Process Guidance Description pane.

The package data files can include reference to a .css file to display content 
in your organization’s standard style, and can contain any content that can 
be displayed by a browser. 

You can also add special code to your HTML pages to activate QuickTest 
dialog boxes or jump to other process guidance processes or activities using 
the QuickTest UI automation object. For more information, see the 
Automation Object Model Reference (Help > QuickTest Professional Help > 
HP QuickTest Professional Advanced References > HP QuickTest Professional 
Automation Object Model Reference).

The HTML files, and any folders or files that the HTML files reference can be 
stored on the user’s local hard drive in a network location on the file system 
or on a Web server. The package configuration file (the Address attribute of 
each Activity element) provides HTML links for each activity.

You should write the HTML file for each activity such that there will be 
minimum scrolling when the content is displayed in the Process Guidance 
Description pane at its default size. 

If you find that your HTML files are too long, you may want to break them 
up into multiple process guidance activities to make it easier for your 
QuickTest users to reference while they work.



Appendix C • Creating Custom Process Guidance Packages

1574

Installing Custom Process Guidance Packages in QuickTest 

There are two ways to distribute and install custom process guidance 
packages:

➤ Install the process guidance package from a zip file

➤ Install the process guidance package via registry key

Install the process guidance package from a zip file

 1 Create a folder that contains the Configuration.xml file and all the HTML 
data files (as well as any files or folders referenced from the HTML files). 

 2 Zip the folder and then send the .zip file to all relevant QuickTest users or 
store it in a location that they can access.

 3 In QuickTest, select File > Process Guidance Management. The Process 
Guidance Management dialog box opens. 

 4 Click the Add button and browse to the .zip file. The package is added and 
its processes are displayed in the dialog box.

Install the process guidance package via registry key

 1 Prepare the Configuration.xml file and the data files.

 2 Place the data files in a local or shared network folder or on a Web server. 
Ensure that the Address attribute of the Activity elements in the 
Configuration.xml file point to this location.

 3 Copy the Configuration.xml to a local drive on the QuickTest computer.

 4 Open the Registry Editor and find the key: 

HKEY_LOCAL_MACHINE\SOFTWARE\Mercury Interactive\QuickTest 
Professional\MicTest\ProcessGuidance\ConfFiles

 5 Add a value to this key with the path to the Configuration.xml file. The next 
time QuickTest is opened, it will include the new package.



1575

D
Bitmap Checkpoint Customization

Important: This appendix is intended for COM programmers who want to 
customize the algorithm used to compare bitmaps in bitmap checkpoints.

By default, a bitmap checkpoint compares the actual and expected bitmaps 
pixel by pixel and fails if there are any differences. QuickTest enables its 
users to define tolerance levels for bitmap checkpoints to refine the bitmap 
comparison and make it more flexible. For more information, see 
“Fine-Tuning the Bitmap Comparison” on page 516. 

If you need to further customize the way bitmaps are compared in 
checkpoints, you can develop custom comparers that compare bitmaps 
according to your requirements. You develop a custom comparer as a COM 
object and install and register it on the QuickTest computer. A QuickTest 
user can then choose to use a custom comparer to perform the comparison 
in a bitmap checkpoint (on a per checkpoint basis).

This chapter includes:

 ➤  About Bitmap Checkpoint Customization on page 1576

 ➤  Developing a Custom Bitmap Comparer on page 1579

 ➤  Tutorial: Creating a Custom Comparer on page 1589

 ➤  Using the Bitmap Checkpoint Customization Samples on page 1600



Appendix D • Bitmap Checkpoint Customization

1576

About Bitmap Checkpoint Customization

You implement bitmap checkpoint customization by developing custom 
comparers. A custom comparer is a COM object that you develop to run the 
bitmap comparison in a bitmap checkpoint according to a specific 
algorithm. The COM object that you develop must implement interfaces 
that QuickTest provides in a type library, and register to the component 
category that QuickTest defines for bitmap comparers. The type library 
(BitmapComparer.tlb) and the category ID (defined in 
ComponentCategory.h) are available in <QuickTest installation 
folder>\dat\BitmapCPCustomization.

When a QuickTest user creates or edits a bitmap checkpoint, QuickTest 
displays any registered custom comparers in the Bitmap Checkpoint 
Properties dialog box (in addition to the QuickTest default comparer). The 
user can then select a comparer according to the testing requirements of the 
specific application or bitmap being tested. For more information about 
using custom comparers in QuickTest, see “Custom Comparer Options in 
the Bitmap Checkpoint Properties Dialog Box” on page 527.

Before you begin to develop a custom comparer, carefully consider the 
information in “Considerations for Developing Custom Comparers” below.

You can find an example of a situation where bitmap checkpoint 
customization enhanced the use of bitmap checkpoints, in “Use-Case 
Scenario: Handling Images Whose Location in the Application Changes” on 
page 1577.

Considerations for Developing Custom Comparers

➤ To develop a custom comparer you must understand image processing and 
know how to develop COM objects. 

➤ You can implement a custom comparer using any language and 
development environment that supports creating COM objects.

➤ Custom comparers run within the QuickTest context. You must therefore 
exercise care when developing your custom comparer, as its behavior and 
performance will affect the behavior and performance of QuickTest.

➤ The custom comparer must be installed and registered on any computer that 
runs a test with a bitmap checkpoint using the custom comparer. 



Appendix D • Bitmap Checkpoint Customization

1577

➤ Before installing and registering a new version of a custom comparer, 
unregister the existing comparer.

➤ More than one custom comparer can be installed and registered on the same 
QuickTest computer. In the Bitmap Checkpoint Properties dialog box, 
QuickTest displays all of the available custom comparers, and the QuickTest 
default comparer. The QuickTest user can select the appropriate comparer to 
use for each bitmap checkpoint.

➤ The computer that runs the custom comparer must have installed the 
runtime environment associated with the configuration in which the 
custom comparer DLL was built.

➤ You create the custom comparer DLL using a specific development 
environment version; the computer on which this DLL runs must have the 
corresponding runtime environment installed.

Use-Case Scenario: Handling Images Whose Location in 
the Application Changes
Ben is a quality assurance engineer who is experienced in using QuickTest, 
and often uses bitmap checkpoints to test the appearance of different icons 
or pictures in the user interface he is testing. He does not have a 
programming background.

Joanne is a software engineer who is experienced in image processing and is 
familiar with COM programming.

When Ben began testing the user interface of a furniture purchasing 
application, he created a bitmap checkpoint to test that the pictures of the 
items on sale were displayed properly. In the checkpoint, he captured an 
image of the pane in the application that contained the pictures he wanted 
to test. Ben found that the bitmap checkpoint often failed, even though the 
graphic images displayed in the application during the run seemed identical 
to the ones he had captured when creating the checkpoint. 



Appendix D • Bitmap Checkpoint Customization

1578

Ben reviewed the actual, expected, and difference bitmaps displayed in the 
test results. He also took a closer look at the application’s user interface. The 
application contained three panes. The left pane displayed general 
information, the middle pane displayed the pictures of the items on sale, 
and the right pane displayed the corresponding list of items and relevant 
details. Ben found that depending on the information displayed in the left 
pane, the images in the middle pane sometimes shifted slightly one way or 
the other within the pane. While the images themselves were still identical, 
their changed location was causing the bitmap checkpoint to fail. 

Ben did not want to use pixel tolerance to address this issue because he 
wanted the checkpoint to fail when the pixels within the images themselves 
were not identical.

When Ben mentioned his problem to a co-worker, she suggested that 
bitmap checkpoint customization could solve the problem, and referred 
him to Joanne. Joanne developed a custom comparer that would accept as 
input the number of pixels that the images should be allowed to shift 
without failing the checkpoint. The bitmap comparison that Joanne 
designed would pass the checkpoint only if the images were identical and 
they had all shifted by the same number of pixels. This way, Ben knew that 
his checkpoint would still catch incorrect images and cases where the 
application’s interface looked bad because the images were no longer 
aligned.

Ben installed and registered the custom comparer on his QuickTest 
computer, and then selected the new custom comparer for his bitmap 
checkpoint. After some experimenting, he found the optimal number of 
pixels to enter in the configuration string, so that significant changes in the 
application’s interface were detected, but insignificant shifting of the images 
did not cause the checkpoint to fail.

After Ben successfully used this custom comparer for a while, his company 
decided to install and register it on all of the QuickTest computers. The 
custom comparer would now be available to everyone in the quality 
assurance team to use for similar situations.



Appendix D • Bitmap Checkpoint Customization

1579

Developing a Custom Bitmap Comparer

To develop a custom comparer, you create a COM object that implements 
the QuickTest bitmap checkpoint comparer interfaces (described on 
page 1585) to perform the following tasks:

➤ Accept input from QuickTest and perform the bitmap comparison.

➤ Provide comparison results to QuickTest. 

➤ (Optionally) Provide information that QuickTest can display in the Bitmap 
Checkpoint Properties dialog box when a user creates or edits a bitmap 
checkpoint. 

For more information, see “How to Develop a Custom Comparer” on 
page 1580.

For QuickTest to recognize the custom comparer, it must be registered to the 
component category that QuickTest defines for bitmap comparers. 
Depending on how you implement your custom comparer, you can design 
the comparer to register itself when it is installed, or you can provide an 
additional program that needs to be run at the time of installation. For more 
information, see “Installing Your Custom Comparer and Registering it to 
QuickTest” on page 1582. 

Perform the tutorial in “Tutorial: Creating a Custom Comparer” on 
page 1589 to learn how to create and use a custom comparer. You can then 
create your own custom comparers in much the same way.

QuickTest provides sample custom comparers that you can use as a reference 
or template when developing custom comparers. For more information, see 
“Using the Bitmap Checkpoint Customization Samples” on page 1600.



Appendix D • Bitmap Checkpoint Customization

1580

How to Develop a Custom Comparer
In the COM object that you develop, reference the type library that 
QuickTest provides (located in <QuickTest installation 
folder>\dat\BitmapCPCustomization\BitmapComparer.tlb) and implement 
the interfaces to perform the tasks described in the following sections:

➤ “Accepting Input and Comparing the Bitmaps” on page 1580

➤ “Providing Comparison Results to QuickTest” on page 1581

➤ “Providing Information for the Bitmap Checkpoint Properties Dialog Box” 
on page 1581

Accepting Input and Comparing the Bitmaps

QuickTest calls the CompareBitmaps method in the IVerifyBitmap interface 
(described on page 1585) to pass the expected and actual bitmaps to the 
custom comparer for comparison. Implement the CompareBitmaps method 
to perform the following:

➤ Accept and compare two bitmaps according to a predefined algorithm that 
you define based on the testing requirements.

➤ Accept a text string that can contain configuration information provided by 
the QuickTest user (in the Bitmap Checkpoint Properties dialog box), and 
use it in the comparison. For example, the string could contain tolerance 
specifications, acceptable deviations in size or location of the image, or any 
other information that you want to affect the comparison.

The string can have any format you choose (XML, comma separated, INI file 
style, and so on). Make sure that the documentation you provide for the 
custom comparer describes the format. The configuration input that the 
QuickTest user enters in the Bitmap Checkpoint Properties dialog box must 
conform to this format.



Appendix D • Bitmap Checkpoint Customization

1581

Providing Comparison Results to QuickTest

QuickTest displays the results of bitmap checkpoints in the Test Results 
window. When you implement the IVerifyBitmap interface (described on 
page 1585) to compare the bitmaps, you must also return the following 
information:

➤ Whether the bitmaps match and the checkpoint should pass.

➤ A text string that QuickTest displays in the test results. 

The purpose of this string is to provide information about the comparison 
to the QuickTest user, but while you develop and test your comparer, you 
can use this string for debugging purposes as well. 

➤ A bitmap that visually represents the difference between the actual and 
expected bitmaps. 

The purpose of this bitmap is to help the QuickTest user understand why the 
checkpoint failed. The custom comparer can create this bitmap using any 
visualization approach you choose. For example, the default QuickTest 
comparer creates a black-and-white bitmap containing a black pixel for 
every pixel that is different in the two images.

Providing Information for the Bitmap Checkpoint Properties 
Dialog Box

When a QuickTest user selects a custom comparer in the Bitmap Checkpoint 
Properties dialog box, QuickTest displays a Configuration options text box, 
and, optionally, a link to documentation provided for the custom comparer. 
For more information, see “Custom Comparer Options in the Bitmap 
Checkpoint Properties Dialog Box” on page 527. To support these options, 
you can implement the IBitmapCompareConfiguration interface (described 
on page 1587) to provide the following:

➤ A default configuration string that QuickTest displays in the Configuration 
options box in the Bitmap Checkpoint Properties dialog box. 

The format of this string must be the same as the format of the 
configuration string that the comparer expects as input.



Appendix D • Bitmap Checkpoint Customization

1582

➤ Documentation about the comparer that the QuickTest user can access from 
the Bitmap Checkpoint Properties dialog box. 

The documentation can be in any format that you choose. QuickTest opens 
the documentation using the program associated with the provided file type 
on the user’s computer. Therefore, you should provide the documentation 
in a format for which you expect the QuickTest user to have the necessary 
program.

The documentation should provide the QuickTest user with the following 
information:

➤ The type of comparison the custom comparer performs (to enable the 
user to determine when to use it to run a bitmap checkpoint).

➤ The required format for the configuration string and the possible values 
it can contain.

➤ An explanation of the comparison result information that is displayed in 
the test results (text string and difference bitmap).

Installing Your Custom Comparer and Registering it to 
QuickTest
The custom comparer that you develop needs to be installed on any 
computer that runs a test that includes a bitmap checkpoint that uses the 
custom comparer. 

Make sure that when the custom comparer is installed, the documentation 
that you provide for the QuickTest user is placed in the location that you 
specified in the GetHelpFilename method. (For more information see, “The 
GetHelpFilename Method” on page 1588.)

In addition, for QuickTest to recognize the COM object that you create as a 
custom comparer, you must register it to the component category for 
QuickTest bitmap comparers. 

You register a COM object to a component category by listing the relevant 
component category ID as a registry key under the COM object’s 
HKEY_CLASSES_ROOT\CLSID\<Object’s CLSID>\Implemented Categories 
key. 



Appendix D • Bitmap Checkpoint Customization

1583

The component category ID must be registered under the 
HKEY_CLASSES_ROOT\Component Categories key. When QuickTest is 
installed, it adds the component category ID for QuickTest bitmap 
comparers as a registry key in this location.

The component category ID for QuickTest bitmap comparers, 
CATID_QTPBitmapComparers, is defined in <QuickTest installation 
folder>\dat\BitmapCPCustomization\ComponentCategory.h. 

When you design your custom comparer, you must ensure that when it is 
installed on the QuickTest computer, it is also registered to the component 
category for QuickTest bitmap comparers. This can be achieved in different 
ways. 

For example: 

➤ If you develop your custom comparer in C++ using Microsoft Visual Studio, 
you can modify the DllRegisterServer and DllUnregisterServer methods to 
handle this registration. These methods are called when you run a DLL 
using the regsvr32.exe program. You can see an example of this type of 
implementation in step 6 of “Tutorial: Creating a Custom Comparer”, on 
page 1597.

➤ If you develop your custom comparer in an environment that does not 
enable you to modify the registration methods, you can add an additional 
program that handles this registration and instruct users who install the 
custom comparer to run this program as well. You can see an example of 
this type of implementation in the Visual Basic sample custom comparer 
that QuickTest provides. For more information, see “Sample Custom 
Comparer Registration” on page 1600.



Appendix D • Bitmap Checkpoint Customization

1584

Setting the Custom Comparer Name

QuickTest displays the name of the custom comparer in the Bitmap 
Checkpoint Properties dialog box and in the Test Results window. The name 
that QuickTest uses is the value (in the registry) of the default property of 
the custom comparer ProgID key under the HKEY_CLASSES_ROOT key. For 
example, in the image below, the name of the custom comparer is Sample 
Custom Comparer.

➤ If you develop your custom comparer in C++ using Microsoft Visual Studio, 
you can specify this name in the Type box in the ATL Simple Object Wizard.

➤ If you develop the custom comparer in Visual Basic, this value is 
automatically set to the COM object’s ProgID. If you want to modify the 
custom comparer name, you can edit it manually in the registry after the 
comparer is installed, or design the program that performs the installation 
and registration to edit this value as well.



Appendix D • Bitmap Checkpoint Customization

1585

The Bitmap Checkpoint Comparer Interfaces
Your custom comparer must implement the interfaces described in this 
section. QuickTest calls these interfaces’ methods when creating or running 
a bitmap checkpoint that uses your custom comparer.

The IVerifyBitmap Interface

Implement the CompareBitmaps method to perform the bitmap 
comparison for the checkpoint.

The CompareBitmaps Method

The CompareBitmaps method receives the actual and expected bitmaps that 
need to be compared for the bitmap checkpoint, and a string that can 
contain configuration input for the custom comparer. 

The method must compare the bitmaps according to the comparison 
algorithm for which this custom comparer is designed, and return the 
results to QuickTest. 

The results include:

➤ An indication whether the bitmaps match and the checkpoint should pass.

➤ A text string that contains information about the results of the bitmap 
comparison.

➤ A bitmap that reflects the differences between the actual and expected 
bitmaps. 

QuickTest displays the results that this method returns in the Test Results 
window. For more information, see “Analyzing Bitmap Checkpoint Results” 
on page 1033. 

Method syntax: 

HRESULT CompareBitmaps ([in] IPictureDisp* pExpected, 
[in] IPictureDisp* pActual, 
[in] BSTR bstrConfiguration, 
[out] BSTR* pbstrLog, 
[out] IPictureDisp** ppDiff, 
[out, retval] VARIANT_BOOL* pbMatch);



Appendix D • Bitmap Checkpoint Customization

1586

Method Parameters:

➤ pExpected. A picture object (input). 

The expected bitmap stored in the checkpoint.

➤ pActual. A picture object (input). 

The actual bitmap captured from the application being tested. 

➤ bstrConfiguration. A text string (input). 

A string that contains configuration input for the custom comparer. This is 
the string displayed in the Configuration options box in the Bitmap 
Checkpoint Properties dialog box.

The string can be the default configuration string that the custom comparer 
provides to QuickTest in the GetDefaultConfigurationString method 
described below, or an input string entered by the QuickTest user. 

The bstrConfiguration string can have any format you choose (XML, 
comma separated, ini file style, and so on). Make sure that the default 
configuration string returned by the GetDefaultConfigurationString 
method matches the format expected in the CompareBitmaps method. 
Additionally, make sure that the documentation you provide for your 
custom comparer explains the format that the QuickTest user must use 
when editing this string in the Configuration options box.

➤ pbstrLog. A text string (output). 

A string that contains information about the results of the bitmap 
comparison. QuickTest displays this string in the Test Results window.

➤ ppDiff. A picture object (output). 

A bitmap (created by the custom comparer) that reflects the difference 
between the actual and expected bitmaps. QuickTest displays this bitmap in 
the Test Results window along with the actual and expected bitmaps.



Appendix D • Bitmap Checkpoint Customization

1587

➤ pbMatch. A boolean value (output). 

A value that indicates whether the bitmaps match and the checkpoint 
should pass. 

Possible values: 

VARIANT_TRUE. Actual and expected bitmaps match, checkpoint passes.

VARIANT_FALSE. Actual and expected bitmaps do not match, checkpoint 
fails.

Return Value

The HRESULT that this method returns indicates whether the comparison 
ran successfully (and not whether the bitmaps match).

The IBitmapCompareConfiguration Interface

Implement the methods in this interface to support the custom comparer 
options that QuickTest displays in the Bitmap Checkpoint Properties dialog 
box. For more information, see “The Bitmap Checkpoint Properties Dialog 
Box” on page 522. 

The GetDefaultConfigurationString Method

The GetDefaultConfigurationString method must return the default 
configuration string for your custom comparer. For more information on 
configuration strings, see “Accepting Input and Comparing the Bitmaps” on 
page 1580.

QuickTest displays this string in the Configuration options box in the 
Bitmap Checkpoint Properties dialog box when a user creating a new bitmap 
checkpoint selects your custom comparer. 

If the QuickTest user does not modify the configuration string in the dialog 
box, the string provided by GetDefaultConfigurationString is passed to the 
custom comparer’s CompareBitmaps method. You must therefore make sure 
that the default configuration string matches the format that your custom 
comparer expects to receive in the CompareBitmaps method.



Appendix D • Bitmap Checkpoint Customization

1588

Method syntax:

The GetHelpFilename Method

The GetHelpFilename method must return a path to the documentation 
that contains information about your custom comparer for QuickTest users. 

QuickTest displays the documentation when a user selects your custom 
comparer in the Bitmap Checkpoint Properties dialog box and clicks Details. 
Make sure that when your custom comparer is installed, the documentation 
that you provide is installed in the location specified by the 
GetHelpFilename method.

The path can be one of the following:

➤ A full path to a file.

➤ A relative path to a file (QuickTest searches for this path relative to 
<QuickTest installation folder>\bin). 

➤ A URL.

If you do not provide documentation for your custom comparer, this 
method should return the HRESULT E_NOTIMPL. For more information on 
the type of information you should provide, see “Providing Information for 
the Bitmap Checkpoint Properties Dialog Box” on page 1581. 

Method syntax:

HRESULT GetDefaultConfigurationString ([out, retval] BSTR* pbstrConfiguration);

HRESULT GetHelpFilename ([out, retval] BSTR* pbstrFilename);



Appendix D • Bitmap Checkpoint Customization

1589

Tutorial: Creating a Custom Comparer

This tutorial walks you step-by-step through the process of creating a 
custom comparer in C++ using Microsoft Visual Studio. The custom 
comparer you create is similar to the sample custom comparer provided 
with QuickTest. You can create your own custom comparers in a similar way. 
For more information about the sample custom comparer, see “Using the 
Bitmap Checkpoint Customization Samples” on page 1600.

By following the instructions in this section, you create a COM object that:

➤ Implements the CompareBitmaps method to receive two bitmaps to 
compare and a configuration string, compare the (size of) the two bitmaps, 
and return the necessary results.

➤ Implements the GetDefaultConfigurationString method and the 
GetHelpFilename method, to return the information that QuickTest displays 
in the Bitmap Checkpoint Properties dialog box.

➤ Registers to the component category for QuickTest bitmap comparers.

When the design of your custom comparer is complete, you can install and 
register it and use it in QuickTest to run a bitmap checkpoint.

Note: Depending on the version of Microsoft Visual Studio that you use to 
perform the tutorial, the command names may be different. 

To practice creating a custom comparer for bitmap checkpoints:

 1 Create a new ATL project—SampleCPPCustomComparer.

 a In Microsoft Visual Studio, select New > Project. The New Project dialog 
box opens.

 b Select the ATL Project template, enter SampleCPPCustomComparer in the 
Name box for the project, and click OK. The New ATL Project wizard 
opens.

 c In Application Settings, make sure that the Attributed option is not 
selected, and click Finish.



Appendix D • Bitmap Checkpoint Customization

1590

 2 Create a new class—CBitmapComparer.

 a In the class view, select the SampleCPPCustomComparer project, 
right-click, and select Add > Class. The Add Class dialog box opens. 

 b Select ATL Simple Object and click Add. The ATL Simple Object Wizard 
opens. 

 c In the Short name box, enter BitmapComparer. The wizard uses this name 
to create the names of the class, the interface, and the files that it creates.

 d In the Type box, enter Sample Custom Comparer. This is the custom 
comparer name that QuickTest will display in the Bitmap Checkpoint 
Properties dialog box and in the test results. For more information, see 
“Setting the Custom Comparer Name” on page 1584.

 e Click Finish. The wizard creates the necessary files for the class that you 
added, including .cpp and .h files with implementation of 
CBitmapComparer class. 

 3 Define that the CBitmapComparer class implements the bitmap checkpoint 
comparer interfaces.

 a In the class view, select CBitmapComparer, right-click, and select Add > 
Implement Interface. The Implement Interface wizard opens.

 b In the Implement interface from option, select File. Browse to or enter 
the location of the QuickTest bitmap checkpoint comparer type library. 
The type library is located in: <QuickTest installation 
folder>\dat\BitmapCPCustomization\BitmapComparer.tlb. 

The wizard displays the interfaces available in the selected type library, 
IBitmapCompareConfiguration and IVerifyBitmap. 

 c Add both interfaces to the list of interfaces to implement, and click 
Finish. 

In the BitmapComparer.h file, the wizard adds the declarations, classes, 
and method stubs that are necessary to implement the interfaces. In 
subsequent steps you will need to add implementation to these method 
stubs. 



Appendix D • Bitmap Checkpoint Customization

1591

Note: In Microsoft Visual Studio 2005, the wizard generates the signature 
for the CompareBitmaps method in the IVerifyBitmap interface 
incorrectly. To enable your project to compile correctly, manually change 
the type of the last argument (pbMatch) from BOOL* to VARIANT_BOOL*.

 4 Move the function bodies for the bitmap checkpoint comparer interface 
methods from BitmapComparer.h to BitmapComparer.cpp.

 a Open the BitmapComparer.h and BitmapComparer.cpp files. 

 b In BitmapComparer.h, create declarations for the bitmap checkpoint 
comparer interface methods (based on the function bodies that the 
wizard created): CompareBitmaps, GetDefaultConfigurationString, and 
GetHelpFilename. 

 c Move the function bodies that the wizard created for the bitmap 
checkpoint comparer interface methods from the BitmapComparer.h file 
to the BitmapComparer.cpp file. 



Appendix D • Bitmap Checkpoint Customization

1592

At the end of this step, BitmapComparer.cpp and BitmapComparer.h should 
contain the following code:

// BitmapComparer.cpp : Implementation of CBitmapComparer
#include "stdafx.h"
#include "BitmapComparer.h"

// CBitmapComparer
// IBitmapCompareConfiguration Methods
STDMETHODIMP CBitmapComparer::GetDefaultConfigurationString

(BSTR * pbstrConfiguration)
{
              return E_NOTIMPL;
}
STDMETHODIMP CBitmapComparer::GetHelpFilename(BSTR * pbstrFilename)
{
              return E_NOTIMPL;
}

// IVerifyBitmap Methods
STDMETHODIMP CBitmapComparer::CompareBitmaps

(IPictureDisp * pExpected, IPictureDisp * pActual, 
BSTR bstrConfiguration, BSTR * pbstrLog, 
IPictureDisp * * ppDiff, VARIANT_BOOL * pbMatch)

{
              return E_NOTIMPL;
}



Appendix D • Bitmap Checkpoint Customization

1593

// BitmapComparer.h : Declaration of the CBitmapComparer
#pragma once
#include "resource.h"       // main symbols
#include "SampleCPPCustomComparer.h"
// CBitmapComparer
class ATL_NO_VTABLE CBitmapComparer :

public CComObjectRootEx<CComSingleThreadModel>,
public CComCoClass<CBitmapComparer, &CLSID_BitmapComparer>,
public IDispatchImpl<IBitmapComparer, &IID_IBitmapComparer, 

&LIBID_SampleCustomComparerLib, /*wMajor =*/ 1, /*wMinor =*/ 0>,
public IDispatchImpl<IBitmapCompareConfiguration, 

&__uuidof(IBitmapCompareConfiguration),
&LIBID_BitmapComparerLib, /* wMajor = */ 1, /*wMinor =*/ 0>,

public IDispatchImpl<IVerifyBitmap, &__uuidof(IVerifyBitmap), 
&LIBID_BitmapComparerLib, /* wMajor = */ 1, /*wMinor =*/ 0>

{
public:

CBitmapComparer()
{
}
DECLARE_REGISTRY_RESOURCEID(IDR_BITMAPCOMPARER)
BEGIN_COM_MAP(CBitmapComparer)

COM_INTERFACE_ENTRY(IBitmapComparer)
COM_INTERFACE_ENTRY2(IDispatch, IBitmapCompareConfiguration)
COM_INTERFACE_ENTRY(IBitmapCompareConfiguration)
COM_INTERFACE_ENTRY(IVerifyBitmap)

END_COM_MAP()
DECLARE_PROTECT_FINAL_CONSTRUCT()
HRESULT FinalConstruct()
{

return S_OK;
}
void FinalRelease()
{}
// IBitmapCompareConfiguration Methods

public:
STDMETHOD(GetDefaultConfigurationString)(BSTR * pbstrConfiguration);
STDMETHOD(GetHelpFilename)(BSTR * pbstrFilename);
// IVerifyBitmap Methods

public:
STDMETHOD(CompareBitmaps)(IPictureDisp * pExpected,

 IPictureDisp * pActual, BSTR bstrConfiguration, BSTR * pbstrLog,
IPictureDisp * * ppDiff, VARIANT_BOOL * pbMatch);

};
OBJECT_ENTRY_AUTO(__uuidof(BitmapComparer), CBitmapComparer)



Appendix D • Bitmap Checkpoint Customization

1594

 5 Implement the bitmap checkpoint comparer interface methods to 
customize the bitmap checkpoint as required.

In this tutorial, you implement a custom comparer similar to the sample 
custom comparer provided with QuickTest. For more information about the 
sample custom comparer, see “Using the Bitmap Checkpoint Customization 
Samples” on page 1600. 

When you create your own custom comparers, this is the step during which 
you design the custom comparer logic. You define the configuration input 
that it can receive, the algorithm that it uses to compare the bitmaps, and 
the output that it provides.

In the BitmapComparer.cpp file, add #include <atlstr.h>, and implement the 
bitmap checkpoint comparer interface methods as follows:

➤ The GetDefaultConfigurationString method: 

➤ The GetHelpFilename method: (If you copy and paste the code from this 
PDF, make sure to remove the line break and tabs from the filename string.)

STDMETHODIMP CBitmapComparer::GetDefaultConfigurationString
(BSTR * pbstrConfiguration)

{
CComBSTR bsConfig("MaxSurfAreaDiff=140000");
*pbstrConfiguration = bsConfig.Detach();
return S_OK;

}

STDMETHODIMP CBitmapComparer::GetHelpFilename(BSTR * pbstrFilename)
{

CComBSTR bsFilename ("..\\samples\\BitmapCPSample\\CPPCustomComparer\\
SampleComparerDetails.txt");

*pbstrFilename = bsFilename.Detach();
return S_OK;

}



Appendix D • Bitmap Checkpoint Customization

1595

Note: When the GetHelpFilename method returns a relative path, QuickTest 
searches for this path relative to <QuickTest installation folder>\bin. The 
implementation above instructs QuickTest to use the documentation file 
provided with the CPP sample custom comparer.



Appendix D • Bitmap Checkpoint Customization

1596

➤ The CompareBitmaps method: 

STDMETHODIMP CBitmapComparer::CompareBitmaps
(IPictureDisp * pExpected, IPictureDisp * pActual, 
BSTR bstrConfiguration, BSTR * pbstrLog,
IPictureDisp * * ppDiff, VARIANT_BOOL * pbMatch)

{
HRESULT hr = S_OK;
if (!pExpected || !pActual)

return S_FALSE;
CComQIPtr<IPicture> picExp(pExpected);
CComQIPtr<IPicture> picAct(pActual);

// Try to get HBITMAP from IPicture
HBITMAP HbmpExp, HbmpAct;
hr = picExp->get_Handle((OLE_HANDLE*)&HbmpExp);
if (FAILED(hr))

return hr;
hr = picAct->get_Handle((OLE_HANDLE*)&HbmpAct);
if (FAILED(hr))

return hr;
BITMAP ExpBmp = {0};
if( !GetObject(HbmpExp, sizeof(ExpBmp), &ExpBmp) )

return E_FAIL;
BITMAP ActBmp = {0};
if( !GetObject(HbmpAct, sizeof(ActBmp), &ActBmp) )

return E_FAIL;

CString s, tol;
tol = bstrConfiguration;
int EPos = tol.ReverseFind('=');
tol = tol.Right(tol.GetLength() - EPos - 1);
int maxSurfaceAreaDiff = _ttoi(tol);
// Set output parameters
CComPtr<IPictureDisp> Diff(pActual);
*ppDiff = Diff;
int DiffPixelsNumber = abs (ExpBmp.bmHeight * ExpBmp.bmWidth -

ActBmp.bmHeight * ActBmp.bmWidth);
*pbMatch = DiffPixelsNumber <= maxSurfaceAreaDiff;
s.Format(_T("The number of different pixels is: %d."), DiffPixelsNumber);
CComBSTR bs (s);
*pbstrLog = bs.Detach();
return hr;

}



Appendix D • Bitmap Checkpoint Customization

1597

 6 Design your custom comparer to register to the component category for 
QuickTest bitmap comparers. 

For QuickTest to recognize the COM object that you create as a custom 
comparer, you must register it to the component category for QuickTest 
bitmap comparers. The component category ID is defined in <QuickTest 
installation folder>\dat\BitmapCPCustomization\ComponentCategory.h.

You can implement this registration in the DllRegisterServer and 
DllUnregisterServer methods in the SampleCPPCustomComparer.cpp file 
that the wizard created as part of your project. These methods are called 
when you run a DLL using the regsvr32.exe program. 

 a Add the <QuickTest installation folder>\dat\BitmapCPCustomization 
folder to your project’s include path.

 b Open the SampleCPPCustomComparer.cpp file and add the following 
line: #include "ComponentCategory.h" 

 c In the SampleCPPCustomComparer.cpp file, modify the 
DllRegisterServer and DllUnregisterServer methods created by the 
wizard, to contain the following code:

STDAPI DllRegisterServer(void)
{

 // registers object, typelib and all interfaces in typelib
 HRESULT hr = _AtlModule.DllRegisterServer();

CComPtr<ICatRegister> spReg;
hr = spReg.CoCreateInstance

(CLSID_StdComponentCategoriesMgr, 0, CLSCTX_INPROC);
if (FAILED(hr))

return hr;

// register comparer to the QuickTest bitmap comparers category 
CATID catid = CATID_QTPBitmapComparers;
hr = spReg->RegisterClassImplCategories(CLSID_BitmapComparer, 1, &catid);

return hr;
}



Appendix D • Bitmap Checkpoint Customization

1598

Note the second section in these methods, that handles registration to the 
component category for QuickTest bitmap comparers—
CATID_QTPBitmapComparers.

 7 Compile your DLL and run it using the regsvr32.exe program.

Your custom comparer can now be used in QuickTest for bitmap 
checkpoints. 

 8 Use your custom comparer for bitmap checkpoints in QuickTest. 

For more information on how to work with bitmap checkpoints, see 
Chapter 19, “Checking Bitmaps.”

 a Open QuickTest and create a bitmap checkpoint on the Windows 
Calculator application (Standard view).

The Bitmap Checkpoint Properties dialog box includes the Comparer 
option, in which you can select the QuickTest default comparer or your 
sample custom comparer.

 b Change the Calculator view to Scientific. The size of the calculator object 
is now larger. Run the checkpoint using the default QuickTest comparer. 
The checkpoint fails.

STDAPI DllUnregisterServer(void)
{

HRESULT hr = _AtlModule.DllUnregisterServer();
CComPtr<ICatRegister> spReg;
hr = spReg.CoCreateInstance

(CLSID_StdComponentCategoriesMgr, 0, CLSCTX_INPROC);
if (FAILED(hr))

return hr;

// unregister comparer from the QuickTest bitmap comparers category
CATID catid = CATID_QTPBitmapComparers;
hr = spReg->UnRegisterClassImplCategories(CLSID_BitmapComparer, 1, &catid);

return hr;
}



Appendix D • Bitmap Checkpoint Customization

1599

 c Edit the checkpoint and select Sample Custom Comparer in the 
Comparer box. 

In the Bitmap Checkpoint Properties dialog box, in the Configuration 
options box, you can see the default configuration string returned by the 
GetHelpFilename method: MaxSurfAreaDiff=140000

If you click Details, the text file containing documentation for the 
sample custom comparer opens.

The comparer you designed in this exercise checks how different the 
expected and actual bitmaps are in size, and fails the checkpoint if the 
difference is greater than the number of pixels defined in the 
configuration string. If you run the checkpoint using default 
MaxSurfAreaDiff value, the checkpoint passes, because the difference in the 
total size of the calculator object when it is set to different views is less 
than 140000 pixels (the difference is approximately 80000 pixels). If you 
set MaxSurfAreaDiff to 70000, the checkpoint fails.



Appendix D • Bitmap Checkpoint Customization

1600

View the test results to see the text string and difference bitmap that your 
custom comparer provides to QuickTest after the comparison.

Using the Bitmap Checkpoint Customization Samples

QuickTest provides source files that implement a sample custom comparer 
in different languages. You can study these examples to help you learn 
about QuickTest bitmap checkpoint customization, or use them as a 
reference or template when you develop your own custom comparers. The 
source files are provided in C++ and in Visual Basic. Both projects generate a 
similar custom comparer. 

The samples are located under <QuickTest installation folder>\samples\
BitmapCPSample. To open the C++ project, use Microsoft Visual 
Studio 2003 or later. To open the Visual Basic project, use Microsoft Visual 
Studio 6.0. You can compile the custom comparer and install it on the 
QuickTest computer to see how this custom comparer works.

Sample Custom Comparer Registration

After you build the DLL for the custom comparer, run it with the 
regsvr32.exe program to install it on the computer. 

The C++ sample sources implement registering the custom comparer to 
QuickTest in the DllRegisterServer and DllUnregisterServer methods. 
Therefore, if you used the C++ project to create the DLL, running the DLL 
will also register the custom comparer to the component category for 
QuickTest bitmap comparers.

Registering the custom comparer to the component category for QuickTest 
bitmap comparers is not implemented in the Visual Basic sample project. 
Therefore, the Visual Basic sample also includes an additional tool that you 
must run after installing the custom comparer, to register the custom 
comparer to the component category for QuickTest bitmap comparers. For 
more information, see “Installing Your Custom Comparer and Registering it 
to QuickTest” on page 1582.



Appendix D • Bitmap Checkpoint Customization

1601

You can run the Visual Basic Comparer Registration Tool from 
<QuickTest installation folder>\samples\BitmapCPSample\
VBCustomComparer\RegisterCategory.exe (if you copy and paste this path 
from the PDF, make sure to remove the line break).

In the dialog box that opens, enter the ProgID of the custom comparer and 
click Register. 

Sample Custom Comparer Name

The name under which the custom comparer appears in QuickTest is 
different, depending on whether you generate if from the C++ project or the 
Visual Basic project:

➤ If generated from the C++ project, the name displayed for the comparer in 
QuickTest is Custom QTP Bitmap Comparer.

➤ If generated from the Visual Basic project, the comparer name is its ProgId—
VBCustomComparer.BitmapComparer. 

For more information, see “Setting the Custom Comparer Name” on 
page 1584.



Appendix D • Bitmap Checkpoint Customization

1602

Sample Custom Comparer Functionality

After you install and register the sample custom comparer, you can select it 
in the Bitmap Checkpoint Properties dialog box in QuickTest, and use it to 
perform bitmap checkpoints.

➤ The default configuration string that the sample comparer returns (and 
QuickTest displays in the Bitmap Checkpoint Properties dialog box) is 
MaxSurfAreaDiff=140000.

➤ The sample custom comparer does not compare the content of the actual 
and expected bitmaps. It compares the total number of pixels they contain. 
For configuration input, this comparer expects a string that defines the 
MaxSurfAreaDiff parameter. The comparer fails the checkpoint if the difference 
in total number of pixels is greater than the number defined for 
MaxSurfAreaDiff.

Tip: You can run bitmap checkpoints on the Windows Calculator 
application to test the behavior of the sample comparer. Set the Calculator 
view alternately to Standard or Scientific, to obtain different size bitmaps for 
the same object.

➤ The documentation provided with this sample comparer (and opened from 
the Bitmap Checkpoint Properties dialog box) is the 
SampleComparerDetails.txt text file located in <QuickTest installation 
folder>\samples\BitmapCPSample\CPPCustomComparer.

➤ For the test results, this sample bitmap custom comparer returns the actual 
bitmap as the difference bitmap. In addition, it provides a text string that 
specifies the difference in total number of pixels. QuickTest displays this 
string in the test results.



I-1

A

About QuickTest Professional window 73
absolute path 316
access permissions

required for Quality Center 16
required to run QuickTest 16

action calls
iterations 482
missing 1179
parameter values 483
properties 481
run properties 482

action data sheets 429, 1200
Action List 435
action parameters 460, 476, 626, 635

guidelines 479
setting options 636
storing output values 673, 684

Action tab, Data Table 429
Action toolbar, Keyword View 46, 435
action values, sharing

using Dictionary objects 487
using environment variables 487
via the global Data Table 486

ActionIteration, environment variable 650
actions 425, 463

adding to Keyword View 392
calling using basic syntax 488
creating 436
deleting 460
diagram 426, 464, 465
external 428
guidelines for working with 439
inserting

call to 468
copy of 466
existing 464

mapping calls to missing 1184
missing calls to 1183
multiple, in tests 427
nesting 453, 476
non-reusable 428
overview 426, 464
parameterization data, location 451
parameters. See action parameters
properties 433
removing 460
removing calls to missing 1187
renaming 457
reusable 428
running from a step 956
setting parameters 445
setting properties 441
sharing values 486

using Dictionary objects 487
using environment variables 487
via the global Data Table 486

splitting 455
syntax 488
syntax for parameters 489
syntax for storing return values 490
template 462
test flow 435
Test Flow pane 431
values. See action values, sharing

Active Screen 376
defining capture settings 1244
increasing/decreasing saved 

information 1562
saving and deleting files 324, 326
updating 380

Active Screen capture settings 1244
Active Server Page technology 1558
Add Existing Checkpoint dialog box 498

Index



Index

I-2

Add Existing Output Value dialog box 737
Add Object to Object Repository dialog box 

139
Add Repository Parameter dialog box 230
Add Schema dialog box, XML checkpoint 

621
Add Synchronization Point dialog box 818
Add/Remove dialog box, object 

identification 109, 126
Add/Remove Properties dialog box 171
add-ins

associating with a QuickTest test in 
Quality Center 1430

associating with a test 1267
QuickTest 5

Agent, Remote 1441
Allow other HP products to run tests and 

components option 1440
analog recording 368, 371
analyzing run results. See run results
API, using Windows 889
API-based text recognition 742
application

launch from QuickTest 1155
application areas

recovery scenarios, removing 1376
Application crash trigger 1340
Application Management, integrating with 

QuickTest 1527
application, sample 17
applications

closing 875
running 875
testing localized versions 1563

arguments, defining 927
ASCII 1202
ASP files 1558
Asset Comparison Tool 1465

Color Settings dialog box 1473
context menu commands 1472
legend 1471
opening 1465
options 1467

asset versions in QuickTest 1480

Asset Viewer 1474
long documents 1478
opening 1474

assets
adding to version control 1483
checking into in to version control 

1486
checking out of version control 1483
definition of 1448

Assignment column, Keyword View 388
assistive properties, configuring 108
Associate Repositories dialog box 199
associating

add-ins with a test 1267
add-ins with test created in Quality 

Center 1432
function libraries 919, 921, 922
object repositories with actions 446
shared object repositories 199

attribute/<property name> notation 888
authentication

connecting to Quality Center 1418
auto-expand VBScript syntax 842, 899
AutoFill Lists dialog box 1211
automation

Application object 1409
definition 1404
development environment 1407
generating scripts for a test 1266
language 1407
object model 1403
object repository 244
type library 1407

Automation Engineer, role in Business 
Process Testing 1509

Automation toolbar, QuickTest window 44
Available Keywords pane 34, 1165

B

backslash (\) 767
baseline history

comparison to version history 1494
Baseline History dialog box 1491
baselines 1490



Index

I-3

bitmap checkpoint customization 1575
API 1585
sample 1600
tutorial 1589

Bitmap Checkpoint Properties dialog box 
522

bitmap checkpoints 515
analyzing results for 1033
creating 518
customizing 516, 1575
modifying 518
pixel tolerance 516
RGB tolerance 516

bitmap comparer. See custom comparer
bookmarks 844
breakpoints

about 1078
deleting 1081
disabling/enabling 1080
setting 1079
using in Keyword View 423

built-in environment variables 650, 1283
business analyst

role in Business Process Testing 1508
business components, overview 15
Business Process Monitor, integrating with 

QuickTest 1527
Business Process Testing 1507

roles 1508
workflow 1511

business process tests 1512
overview 15
running 1515

button
add to toolbar or menu 1149

Button Appearance dialog box 1148

C

calculations
in function libraries 878
in the Expert View 878

Call to WinRunner Function dialog box 1522
Call to WinRunner Test dialog box 1518

capture level options 1247
Java applications 1248
Oracle applications 1250
SAP Gui for Windows applications 

1249
Terminal Emulator applications 1252
Windows applications 1251

Cell Identification tab, Database Checkpoint 
Properties dialog box 588

CGI scripts 1557
character set support, Unicode 4
check for updates 1234
Check In command 1483, 1486
Check In command, Quality Center 9.x 

1497, 1499
Check Out command 1483
Check Out command, Quality Center 9.x 

1497
Checkpoint Properties dialog box

for checking databases 535
for checking objects 508

checkpoints
about 495
adding existing 498
adding new 496
bitmaps 515
databases 575
definition 315, 495
fail 1101
images 512
in Expert View 830
modifying 512, 514
objects 506
parameterizing 659
standard, for checking text 570
supported by QuickTest 1546
tables 529, 530, 535
text 551, 552
text area 554
types 501
using formulas 1218
XML 591

Close method 875
closing application process 875, 1353, 1357



Index

I-4

collection, properties. See programmatic 
descriptions

collections, of virtual objects 1310
Color Settings dialog box, Asset Comparison 

Tool 1473
colors

setting in Keyword View 418
setting in Object Repository 

Comparison Tool 298
setting in Object Repository Merge 

Tool 265
columns, displaying in Keyword View 416
COM 1558
command

add to toolbar or menu 1149
command line options

deleting test results using 1007
Domain 1008
FromDate 1008
Log 1008
MinSize 1009
Name 1009
Password 1010
Project 1010
Recursive 1010
Server 1011
Silent 1011
Test 1011
UntilDate 1012
User 1012

commands
Object Repository Comparison Tool 

294
Object Repository Merge Tool 258

Comment column, Keyword View 389
comments

function libraries 877
the Expert View 877
the Keyword View 815

Comments tab, To Do pane 1174
CompareBitmaps method 1585
comparing

shared object repositories 287
comparing versions 1465
Completing the Recovery Scenario Wizard 

screen 1364

complex value 759
components

run results. See run results
steps

adding 392
deleting 414
managing 412
moving 412

conditional statements 797
using in Keyword View 423

Configure Text Selection dialog box 561
Configure value area 757
configuring values 755
conflict resolution

in merged object repository 280
settings, Object Repository Merge 

Tool 263
connecting QuickTest to Quality Center 

1418
connection string, specifying for database 

checkpoints 580
Constant Value Options button 759
Constant Value Options dialog box 759
constant value, defining 755
content property check, on databases 576
ControllerHostName, environment variable 

650
cookies 1557
creation time identifier. See ordinal 

identifiers
CreationTime property, using to identify an 

object 117
currencies, setting custom format 1209
Custom Active Screen Capture Settings 

dialog box 1244
Capture Level options 1247
General options 1247
Web options 1252

custom comparer
 See also bitmap checkpoint 

customization
creating 1579
documenting 1581
installing 1582
registering 1582

custom number format, setting 1209



Index

I-5

custom objects, mapping 131
custom settings

resetting 1246
customize

toolbars and menus 1146
Customize dialog box 1146

Commands tab 1149
Options tab 1157
Toolbars tab 1152
Tools tab 1155

customizing bitmap checkpoints. See bitmap 
checkpoints, customizing

D

Data Driver 662
Data menu commands, Data Table 1209
data sheets

action 1200
Global 1200
global/action, choosing 429
local 1200

Data Table 25, 35, 1197
action data sheets 1200
Action tab 429
AutoFill Lists 1211
comparing versions 1465
Data menu commands 1209
data sheets 1200
design-time 1197
Edit menu commands 1207
editing tables 1202
File menu commands 1206
Format menu commands 1209
Global tab 429
importing data, in various formats 

1202
iteration options for individual tests 

1271
local data sheets 1200
location 1201
menu commands, using 1205
parameters, setting options for 641
run-time 1198
saving 1201

scripting functions, using 1220
Sheet menu commands 1207
specifications 1204
storing output values 674, 685
table columns 639
table rows 640
using formulas 1216
using with Quality Center 1212
viewing results 1056
worksheet functions 1216

Database Checkpoint Properties dialog box 
581

Cell Identification tab 588
Expected Data tab 585
Settings tab 586

database checkpoints 575
about 575
analyzing results 1031
general information 583
modifying 590
specifying cell identification settings 

588
specifying cells 583
specifying expected data 585
specifying value type 586

Database Output Value Properties dialog box 
715

database output values 672, 713, 715
Database Query wizard 577
databases

connection string 580
creating a query in ODBC / Microsoft 

Query 1216
creating a query with Microsoft Query 

/ SQL statement 579
creating checkpoints for 576
manually defining an SQL statement 

577
result set 576
Specify SQL statement screen 580

data-driven test 627, 674
dates, setting custom format 1209
Debug from Action 434
Debug from Step 1076
Debug toolbar, QuickTest window 23, 45



Index

I-6

Debug Viewer 36
Debug Viewer pane 36, 1082

Command tab 1092
Variables tab 1089
Watch tab 1083

debugging
accessing variables 1089
breakpoints

deleting 1081
disabling/enabling 1080
setting 1079

Debug from Action 434
Debug from Step 1076
function libraries 916, 1069
pausing runs 1078
Run to Action 434
Run to Step 1076
running commands 1092
tests 1069
tests, an example 1096
watching expressions 1083

default object identification settings 119
default optional steps 965
default parameter definition 758, 761
default properties, modifying 79, 162
defects, reporting 1013

automatically during test 1015
from Test Results 1013

Define Object Filter dialog box 144
delay, editing a step 833
deleting

actions 460
breakpoints 1081
objects from the object repository 153
repository parameters 233
test results 1004

dependencies
definition of 1448
Used By grid 1455
Using grid 1455

Dependencies tab, Quality Center 1454
Used By grid 1455
Using grid 1458

description, test objects 83
See also test objects

descriptive programming. See programmatic 
descriptions

design-time Data Table 1197
development environment 1407
Dictionary object 487
difference types

Object Repository Comparison Tool 
297

Dim statement
in the Expert View and function 

libraries 856
disconnecting from Quality Center 1422
disk space, saving 1564
display area

Script Editor 1391
Do...Loop statement

in the Expert View and function 
libraries 881

docked panes 1141
Documentation Only option 421
documenting a function 934
Domain command line option 1008
DOS commands, run within tests 889
dynamic list of values, for method argument 

837
dynamic Web content 1555
dynamically generated URLs and Web pages 

1556

E

Edit menu commands, Data Table 1207
Edit Schema dialog box, XML checkpoint 

621
Edit toolbar, QuickTest window 45
Edit XML dialog box, XML checkpoint 613
Editor Options dialog box 897
Element Value dialog box

XML checkpoint results 1047
encoding passwords 406
End Transaction button 45
End Transaction dialog box 1537
environment variables 645, 1283

built-in 650, 1283
files, with Quality Center 649



Index

I-7

storing output values 674, 686
types 645

environment variables, user-defined 1287
exporting 1289
external 647
internal 645
modifying 1287
viewing 1287

environment, testing 5
error behavior options for tests 1271
errors in VBScript syntax 860
Excel formulas

for parameterizing values 1217
in checkpoints 1218
in the Data Table 1216

Excel. See Microsoft Excel
ExecuteFile function 948
ExecuteFile statement 920
Exist property 1555
Exist statement 821
existing actions, inserting 464
Expert View 825, 1553

about 827
basic action syntax 488
checkpoints 830
closing applications 875
customizing appearance of 895
finding text 847
general customization options 897
highlighting elements 900
replacing text 849
running applications 875
syntax for action parameters 489
syntax for action return values 490
understanding parameters 831

export and replace local objects 193
Export Report dialog box 1001
exporting

local objects to shared object 
repository 193

object repository to XML file 243
Screen Recorder movies 996
tests to zip files 331

expressions
using in the Expert View and function 

libraries 852

extensibility, bitmap checkpoints. See 
bitmap checkpoint customization

eXtensible Markup Language (XML) 1558
external action

data location 451
definition 428

external functions, executing from script 948
external resources

saving to tests in Quality Center 326
external user-defined environment variables 

647

F

FAQs 1551
File menu commands, Data Table 1206
File toolbar, QuickTest window 25
filter

defining for objects 144
Filter dialog box

Object Repository Comparison Tool 
302

Object Repository Merge Tool 283
filter properties (Smart Identification) 121
filtering

repositories in Object Repository 
Comparison Tool 302

target repository 282
Find & Replace dialog box, object 

repositories 154
Find dialog box

Expert View 847
Object Repository Comparison Tool 

304
Object Repository Merge Tool 284
Test Results 990

Find in Repository button 510, 513, 524, 
537, 561, 583, 608, 680, 694, 705, 
716, 728

floating panes 1142
Flow pane

Script Editor 1386
fonts, setting in Keyword View 418
For...Each statement

in the Expert View and function 
libraries 880



Index

I-8

For...Next statement
in the Expert View and function 

libraries 879
Format menu commands, Data Table 1209
formulas

for parameterizing values 1217
in checkpoints 1218
in the Data Table 1216

FromDate command line option 1008
function arguments, passing parameters 

from QuickTest to WinRunner 1525
function calls

dragging and dropping 34, 1165
Function Definition Generator 927

about 923
defining a function 927
documenting a function 934
opening 925
previewing function code 936
registering a function 928

function libraries 905
about 14
associating current 921
closing in the Script Editor 1402
comparing versions 1465
creating 909
creating in the Script Editor 1400
customizing appearance of 895
customizing general options 897
debugging 916, 1069
description 30
editing 914
editing in the Script Editor 1400
finding text 847
general options 897
highlighting elements 900
in Script Editor 1397
managing 908
modifying associated 922
navigating 913
opening 909, 918
opening in the Script Editor 1398
pausing runs 1078
properties 1389
read-only, editing 916
replacing text 849

saving 911
saving in the Script Editor 1401
specifying for a test 1274
working with 1397
working with associated 919

functions
code

finalizing 937
inserting 937

user-defined 905

G

General > Text Recognition pane 742
general options 897
General Text Recognition pane 742
Generate Script option 1410
GetDefaultConfigurationString method 

1585
GetHelpFilename method 1585
GetROProperty method 886
Global data sheet 429, 1200
global Data Table parameter 643
global testing options 1231
global/action data sheets, choosing 429
Go To dialog box 843
GroupName, environment variable 650
guidelines

user-defined functions 945

H

hidden mode 1443
History tab, Quality Center 1453
HP Application Management, integrating 

with QuickTest 1527
HP Micro Player 996
HP Quality Center. See Quality Center
HP Software Support Web site xxv
HP Software Web site xxv

I

IBitmapCompareConfiguration interface 
1585

icons
display large or small 1157



Index

I-9

identification properties 79, 83
viewing 97

If...Then...Else statement
in Expert View and function libraries 

883
Image Checkpoint Properties dialog box 512
image checkpoints

comparing image contents 514
editing the property value 514

importing
object repository from XML file 242
tests from zip files 331

index identifier. See ordinal identifiers
Index property

programmatic descriptions 871
using to identify an object 115

Information pane 37
initialization scripts 1405
Input Parameters tab, Run dialog box 962
Insert New Action dialog box 437
Insert Report dialog box 812
Insert toolbar, QuickTest window 45
IntelliSense 833, 898
internal user-defined environment variables 

645
Item cell 395
Item column, Keyword View 387
Item list 396
item, selecting

from Item list 396
from shared object repository 396
from your application 399

iterations 482, 639
options for individual tests 1271

IVerifyBitmap interface 1585

J

Java applications
capture level options 1248

JavaScript 1407
Jump to Step in QuickTest, from Test Results 

window 987

K

key assignments
in Expert View 902
in function libraries 902

key column 545, 589
keyboard commands, sending to Web 

objects 1559
keyboard shortcuts

in Expert View 902
in function libraries 902
in Keyword View 415

Keyword View 28, 383, 385
columns, description of 386
columns, displaying 416
display options 416
fonts and colors 418
keyboard keys 415
steps, adding 392
steps, adding after block 409
steps, deleting 414
steps, modifying 410

Keyword View tab 28
keyword-driven testing

analyzing your application 342
automation infrastructure 341
configuring QuickTest 347
creating function libraries 345
creating test steps 348
creating tests 348
methodology 341
overview 336
running tests 350
setting up object repositories 343
troubleshooting tests 350

Knowledge Base xxv

L

language 1407
language support, Unicode 4
layout

customizing QuickTest window 1135
moving panes 1136
moving tabs 1136
restoring default 1144



Index

I-10

learning objects 225
Libraries tab, Quality Center 1453
license information 17

modifying 17
list of values, for method argument 388, 783, 

837
LoadRunner, integrating with QuickTest 

1527
local data sheet. See action data sheets
local Data Table parameters 644
local object repositories 89, 92

copying objects to 195
exporting and replacing 193
merging 269

local objects, exporting to shared object 
repository 193

local parameter 404
Local System Monitor pane 1296
local test 428
LocalHostName, environment variable 650
localization 645, 1201
localized applications, testing 1563
Locate Missing Actions dialog box 1184, 

1187
location identifier. See ordinal identifiers
Location property, using to identify an 

object 115
Log command line option 1008
loop statements 803

using in Keyword View 423
low-level recording 368, 375, 1552

M

maintaining tests 1101
Maintenance Run Mode 1104
Maintenance Run Wizard

Smart Identification screen 1120
Manage Repository Parameters dialog box 

229
Managing 1479
mandatory properties, configuring 108
manual steps 410
manual tests 421
Map Shared Object Repository Parameters 

dialog box 202

mapping
calls to missing actions 1184
custom objects 131
missing actions 1183
repository parameters 202
unmapped object repositories 1191
unmapped repository parameters 

1194
mathematical formulas, in the Data Table 

1216
menu

create new 1149
menu bar, QuickTest window 23
Mercury Tours, sample application 17
merging

local object repositories 269
shared object repositories 247

messages
displaying during the run session 814
generating 812
sending to test results 812

meta tags 1557
methods

adding new or changing behavior of 
939

native 887
run-time object 887
user-defined 939
See also operations

Microsoft Excel 1202, 1216
Microsoft Query

choosing a database for a database 
checkpoint 579, 1216

Microsoft Visual Basic scripting language 13
MinSize command line option 1009
missing resources 1179
Missing Resources pane 38

about 1180
filtering 1181
unmapped repository parameters 

1194
unmapped shared object repositories 

1191
Modify Row Range dialog box 711
modifying

your license 17



Index

I-11

movies of your run session
capturing 1255
capturing and viewing 994
exporting 996
removing from the test results 995
setting options to capture 1255
viewing results in Quality Center 991

moving a step 412
multiple actions in tests 427
multiple documents, working with 1159
multiple text block mode, text recognition 

745

N

Name and Description screen 1363
Name command line option 1009
names

modifying for test objects 169
native methods See native operations
native operations 87

viewing 97
native properties 87

viewing 97
Navigate and Learn option 225
nesting actions 453, 476
New Merge dialog box 267
node, Options dialog box 1232
node, Test Settings dialog box 1262
non-reusable action 428

O

Object Configuration Screen 1323
object identification

generating automation scripts 120
restoring defaults 119

Object Identification dialog box 107
Object Mapping dialog box 131
object model

automation 1403
definition 1404

object property values
restoring default 165, 168
specifying or modifying 163
viewing 197

Object property, native methods 888
Object property, run-time object methods 

888
object repositories

adding objects 136
associating with actions 446
choosing 92
closing 221
converting from earlier version 217
copying, pasting, and moving objects 

150
creating 217
deleting objects 153
exporting local and replacing 193
exporting local objects 193
exporting to XML 243
importing from XML 242
local 92
locating objects 159
managing 208
managing associations 199
managing using automation 244
missing 1179
modifying 224
opening 217
saving 219
setting for tests 1274
shared 94
unmapped 1191

Object Repository Comparison Tool 287
color settings 298
difference types 297
filtering the repositories 302
repository panes 290
statistics 301
synchronizing repositories 303
window 289

Object Repository Manager 210
Object Repository Merge Tool 247

changing the view 252
color settings 265
conflict resolution settings 263
conflicts 277
filtering the target repository 282
primary repository pane 254
resolution options pane 254



Index

I-12

resolving conflicts 280
secondary repository pane 254
target repository pane 252
window 250

object repository types 89
Object Repository window 183

buttons 185
Edit toolbar 185
Filter toolbar 187
Object details area 190
options 188
test object details 162
understanding 182

Object Selection dialog box 399
Object Spy 97, 100
Object state trigger 1340
objects

adding using navigate and learn 225
deleting from object repository 153
dragging and dropping 34, 1165
identification 105
identifying 79
methods, run-time 887
properties, run-time 887
viewing operations 79
See also test objects

OCR 742
ODBC, choosing a database for a database 

checkpoint 1216
online documentation xxii
online resources xxiv
Open QuickTest Test dialog box 322
Open Test dialog box 1429
Open Test from Quality Center dialog box 

1496
Open Test from Quality Center Project dialog 

box 1427
operation

arguments 404
selecting for step 403
selecting from Item list 395, 396

Operation cell 403
Operation column, Keyword View 388

operations
native 87
run-time object 87
test object 87

Option Explicit statement 945
optional steps 963

default 965
setting 964

Options dialog box 1232
Active Screen pane 1240
Folders pane 1237
General > Text Recognition pane 742
General pane 1234
Generate Script option 1234, 1410
node 1232
Run > Screen Capture pane 1255
Run pane 1253

Oracle applications
capture level options 1250

ordinal identifiers 113
specifying for test objects 177

OS, environment variable 650
OSVersion, environment variable 650
output types 683

action parameters 684
Data Table 685
environment variables 686
test parameters 684

output value
adding existing 736

output value categories
database output values 672
standard output values 671
text area output values 671
text output values 671
XML output values 672

Output Value Properties dialog box 679
output values

creating for text 690
database 713, 715, 717
definition 669
editing 675
object properties 679
standard 676



Index

I-13

storing in action or test parameters 
673

storing in Data Table 674
storing in environment variables 674
supported by QuickTest 1548
tables 698, 703, 708
text 688, 692
text area 690
viewing 675
viewing results 1055
XML 718, 727

output.txt log file 1541
outputting

database values 713
property values 676
text values 688, 690
values 669
XML values 718

Owner Description, Used By grid 1457
Owner ID, Used By grid 1456
Owner Name, Used By grid 1457
Owner Type, Used By grid 1456

P

panes
auto-hiding 1141
Available Keywords 34
customizing layout 1136
Debug Viewer 36
docked 1141
floating 1142
Information 37
Missing Resources 38
moving 1136
Process Guidance 39
Resources 40
Test Flow 41
To Do 42

parameter definition, default 758, 761
Parameter Options button 758
Parameter Options dialog box 636
Parameter reserved object 1283
parameter types

action parameters 626
Data Table parameters 639

environment variable parameters 645
random number parameters 655
test parameters 626

parameter values
action calls 483
defining 755

parameterization example 657
parameterization icon 630, 632, 760
parameterized values, viewing in test results 

1053
parameterizing

methods 628
property values using repository 

parameters 235
tests, example 657
using the Data Driver 662
values 625

parameters
action 460, 476, 637
action guidelines 479
environment variables, user-defined 

1285, 1287
handling unmapped object repository 

1194
in the Expert View 831
output from previous action call 637
parent action 637
passing to a WinRunner function 

1525
passing to a WinRunner test 1520
repository 228

adding 230
deleting 233
managing 229
mapping 202
missing in 1179
modifying 232

setting for actions 445
specifying for tests 1280
syntax for calling action 489
test 637

passing data between actions 429
Password command line option 1010
Password Encoder dialog box 406
passwords, encoding 406
PathFinder.Locate, statement 1240



Index

I-14

paths, absolute and relative 316
pausing run sessions 1078
percentages, setting custom format 1209
performance testing products, integrating 

with QuickTest 1527
performance, improving 1564
permissions

required for Quality Center 16
required to run QuickTest 16

pixel tolerance, in bitmap checkpoints 516
Pointing Hand

tips for working with 99
Pop-up window trigger 1340
possible values, for method argument 837
post-recovery test run options 1330
Post-Recovery Test Run Options screen 1361
previewing function code 936
primary repository 248
primary repository pane 254
Print dialog box

Test Results window 999
Print Preview dialog box 997
Print, utility statement 814
printing

function libraries 917
tests 332

priority
setting for recovery scenarios 1376

Process Guidance 1225
panes 1222
starting 1224

Process Guidance panes 39
Product Information button 73
Product Information window 73
ProductDir, environment variable 650
ProductName, environment variable 650
ProductVer, environment variable 650
programmatic descriptions 206, 863

description objects 868
Index property 871
performing checks on objects 872
statement 864
variables 864
With statement 867

programming 1553
comments 815
conditional statements 797
displaying messages during the run 

session 814
Expert View and function libraries 

825
function libraries 825
generating messages 812
loop statements 803
sending messages to test results 812
Step Generator 776, 777
VBScript 853

project (Quality Center)
connecting to 1418
disconnecting from 1422
opening tests in 1426
saving tests to 1425

Project command line option 1010
properties 433, 1387, 1389

adding for test object descriptions 171
CreationTime 117
default 79, 162
defining new for test object 174
deleting from a test object description 

177
Index 115
Location 115
native 87, 887
run-time object 887
setting for action calls 481
setting for actions 441
test object 87
viewing for recovery scenarios 1368, 

1376
viewing for steps in Keyword View 

422
See also identification properties

Properties tab
Table Checkpoint Properties dialog 

box 546
Table Output Value Properties dialog 

box 709
property collection. See programmatic 

descriptions



Index

I-15

property values
specifying in the test object 

description 235
synchronization points 817

Q

QA engineer. See Automation Engineer
QCUtil object 1424
Quality Center 1415

associated function libraries 919
connecting QuickTest to 1418
Connectivity Add-in 1424
Data Table 1212
Dependencies tab 1454
disconnecting from 1422
environment variable files 649
History tab 1453
integrating with QuickTest 1424, 

1461
Libraries tab 1453
managing the testing process 14
opening tests in 1426
relative paths 1450
reporting defects

automatically 1015
manually 1013

running QuickTest tests remotely 
1440

saving tests to 326
saving tests to a project 1425
using QuickTest with 14
version control 1479
version control management 1480

Quality Center 9.x 1495
version control for 1496

Quality Center Connection - Server 
Connection dialog box 1418

Quality Center OTA 1424
query file, for a database checkpoint

creating 579, 1216
working with ODBC / Microsoft 

Query 1216
QuickTest

about 3
access permissions, required 16

automation object model 1403
getting started 19
integrating with HP application 

management and performance 
testing products 1527

layout 1135
customizing 1135

product information 73
starting 20
updating software 18
window. See QuickTest window

QuickTest Asset Viewer 1474
QuickTest Automation Reference 1411
QuickTest Print Log window 814
QuickTest Professional Asset Upgrade Tool 

for Quality Center 323, 330, 1382, 
1426

QuickTest window
Action toolbar 23, 46
auto-hiding panes 1141
Automation toolbar 44
Available Keywords pane 34
customizing layout 1135
Data Table 25
Debug toolbar 23
Debug Viewer pane 36
Edit toolbar 45
File toolbar 25
Information pane 37
Insert toolbar 45
look and feel 27
menu bar 23
Missing Resources pane 38
moving panes 1136
moving tabs 1136
multiple documents 1159
Process Guidance panes 39
Resources pane 40
restoring default layout 1144
Standard toolbar 44
status bar 25
Test Flow pane 41
theme 27
title bar 25
To Do pane 42
Tools toolbar 45



Index

I-16

View toolbar 46

R

random number parameters 655
Readme xxii
recording

analog 368
low-level 368, 1552
tests 364
time, improving 1564

recovery operations 1330
Close application process 1353
Function call 1353
Keyboard or mouse operation 1353
Restart Microsoft Windows 1353

Recovery Scenario Manager Dialog Box 1334
Recovery Scenario Wizard 1338

Click Button or Press Key screen 1355
Close Processes screen 1357
Completing the Recovery Scenario 

Wizard screen 1364
Function screen 1358
Name and Description screen 1363
Post-Recovery Test Run Options 

screen 1361
Recovery Operation - Click Button or 

Press Key screen 1355
Recovery Operation - Close Processes 

screen 1357
Recovery Operation - Function Call 

screen 1358
Recovery Operation screen 1353
Recovery Operations screen 1352
Select Object screen 1345
Select Processes screen 1350
Select Test Run Error screen 1349
Select Trigger Event screen 1340
Set Object Properties and Values 

screen 1348
Specify Pop-up Window Conditions 

screen 1342
recovery scenarios 1329

associating with tests 1373
comparing versions 1465
copying 1371

deleting 1370
disabling 1377
files 1334
locating missing 1192
modifying 1370
removing from tests 1376
removing missing 1194
saving 1365
setting priority 1376
viewing properties 1368, 1376

Recursive command line option 1010
redirection of server 1557
registering functions 928
registering methods 939
RegisterUserFunc statement 928, 939, 941
regular expressions 762

backslash (\) 767
defining 765
for constants 757
for property values 763
in checkpoints 764
using in function libraries 852
using in the Expert View and function 

libraries 852
Related Description, Using grid 1459
Related ID, Using grid 1458
Related Name, Using grid 1459
Related Type, Using grid 1458
relative path 316
relative paths

Quality Center 1450
remote access to QuickTest 1440
Remote Agent 1441
Remote Agent Settings dialog box 1443
Replace dialog box

Expert View 849
function libraries 849

report. See Test Results window
reporting defects

automatically 1013
manually 1013

reports, filter 893
repositories. See object repositories
Repository Parameter dialog box 235
repository parameters 228

adding 230



Index

I-17

deleting 233
managing 229
mapping 202
modifying 232
parameterizing values 235

repository types 89
reserved objects 919
Resolution Options pane, Object Repository 

Merge Tool 254
resolving conflicts, Object Repository Merge 

Tool 280
resources

adding to version control 1483
checking into version control 1486
checking out of version control 1483
definition of 1448
managing 40, 1161
missing in test 1179

Resources and Dependencies model
glossary 1448
overview 1449

Resources pane 40, 1161, 1388
restoring QuickTest default layout 1234
Result Details tab, Test Results window 975
result set 576
ResultDir, environment variable 651
Results Location tab, Run dialog box 960
results. See run results
reusable actions 428
RGB tolerance, in bitmap checkpoints 516
roles in Business Process Testing 1508
Run > Screen Capture pane 1255
Run dialog box 955
Run from Action 434
Run from Step 956
run options, in the Options dialog box 1253
run properties, setting for action calls 482
run results 969

checkpoints 1028
customizing display 1019
deleting with command line options 

1007
deleting with Test Results Deletion 

Tool 1004

enabling and filtering 893
exporting to a file 1001
finding 985, 990
output values 1055
parameterized values 1053
previewing before printing 997
printing 999
reporting defects automatically 1015
reporting defects manually 1013
Run-Time Data Table 1056
schema 1019
sending messages to 812
Test Results window 971
viewing for a selected run 981
viewing WinRunner steps 1017

run sessions
creating test objects programmatically 

206
disabling recovery scenarios 1377
modifying identification properties 

206
pausing 1078
working with test objects 206

Run to Action 434
Run to Step 1076
running tests 953

advanced issues 1552
from a Quality Center project 1437
from a step 956
from an action 434
Run dialog box 955
running WinRunner tests 1518
to update expected results 1125
Update Run dialog box 1128
using optional steps 963
viewing results 980

run-time
Data Table 1198
objects 887
settings, adding and removing 1305

Run-Time Data Table 1056
run-time object methods. See native 

operations
run-time object properties. See native 

properties



Index

I-18

run-time objects 79, 83
viewing properties and operations 97

S

sample application, Mercury Tours 17
SAP Gui for Windows applications

capture level options 1249
Save QuickTest Test dialog box 324
Save Shared Object Repository dialog box 

285
Save Test dialog box 1425
Save Test with Resources dialog box 328
ScenarioId, environment variable 651
scenarios. See recovery scenarios
Schema Validation dialog box, XML 

checkpoint 618
schema, for run results 1019
Screen Recorder tab, Test Results window 994
ScreenTips

display 1157
Script Editor 1381

customizing the window 1384
display area 1391
Flow pane 1386
function libraries 1397
main window 1383
Resources pane 1388
tests 1393

scripts, test. See tests
secondary object repository 248
secondary repository pane 254
Section 508, Web Content Accessibility 

Guidelines 6
Select Action dialog box 466, 469
Select Object for Step dialog box 396
Select Object screen 1345
Select Processes screen 1350
Select Test Run Error screen 1349
Select Trigger Event screen 1340
selecting a test object

from Item list 396
from shared object repository 396
from your application 399

server
Quality Center, disconnecting from 

1422
redirections 1557
server-side connections 1557

Server command line option 1011
session IDs 1557
Set Object Properties and Values screen 1348
Set statement

in the Expert View and function 
libraries 856

Setting object 1302
settings 433
Settings tab, Database Checkpoint Properties 

dialog box 586
SetTOProperty method 206
SGML 1558
shared object repositories 89, 94

associating with actions 446
comparing 287
comparing versions 1465
managing associations 199
merging 247
unmapped 1191
Update from Local Repository 269

shared object repository window 215
Sheet menu commands, Data Table 1207
shortcut keys

display 1157
in Keyword View 415
in QuickTest 46

shortcuts
for menu items 46
in Expert View 902
in function libraries 902
in QuickTest 46
Object Repository Comparison Tool 

294
Object Repository Merge Tool 258

Silent command line option 1011
Silent Test Runner 1538

dialog box 1539
single text block mode, text recognition 744



Index

I-19

Smart Identification
analyzing information 1024
configuring 121
disabling during test runs 1272
enabling from the Object 

Identification dialog box 118, 120
Smart Identification Properties dialog box 

126
software updates 18
specifications for Data Table 1204
Specify Pop-up Window Conditions screen 

1342
Specify SQL statement screen, for creating 

database checkpoints 580
Split Action dialog box 456
splitting actions 455
Spy. See Object Spy
standard checkpoints

analyzing results 1029
specifying timeout 511

standard output values 671
creating 676
specifying 679

Standard toolbar, QuickTest window 44
Start Page 31
Start Transaction dialog box 1536
starting QuickTest 20
statement completion 833, 898
statements, using in Keyword View 410
Statistics dialog box 276

Comparison Tool 301
status bar

Object Repository Comparison Tool 
292

Object Repository Merge Tool 255
QuickTest window 25

Step commands 1072
Step Generator 776, 777
Step Generator dialog box 780
steps

adding 392
adding after block 409
adding to Keyword View 392
deleting 414
deleting from Keyword View 414
inserting 777

manual 410
modifying in Keyword View 410
moving 412
optional 963
viewing properties in Keyword View 

422
still images of your application, capturing 

and viewing 993
Stop command shortcut key 1255
Subject Matter Expert, role in Business 

Process Testing 1508
Summary column, Keyword View 389
synchronization points

creating 817
inserting 818

synchronization timeout
setting 1271

synchronizing repositories
Object Repository Comparison Tool 

303
synchronizing tests 816

modifying timeout values 822
synchronization point 817
waiting for objects to appear 821
waiting for specified property values 

817
syntax

actions 488
for action parameters 489
for action return values 490

syntax errors, VBScript 860
System Counters

enabling 1296
setting 1296

system counters, results 1063
System Monitor tab 1063

exporting results 1063
SystemTempDir, environment variable 651
SystemUtil.Run method 875

T

Table Checkpoint Properties dialog box 535
Expected Data tab 542
Properties tab 546
Table Content tab 536



Index

I-20

table checkpoints
about 529
analyzing results 1031
creating 530
general options 537
modifying 548
specifying cell identification settings 

544
specifying cells 540
specifying expected data 542
specifying value type 543
Table Content tab 538
Table Properties tab 538

Table Content tab
Table Checkpoint Properties dialog 

box 536
Table Output Value Properties dialog 

box 703
Table Output Value Properties dialog box 

703
Properties tab 709
Table Content tab 703

table output values 703
modifying output options 711
modifying row range 711
Table Content tab 706
Table Properties tab 706

table properties
specifying which to check 547
specifying which to output 710

target repository 248
saving 285

target repository pane 252
Task Editor dialog box 1177
Tasks tab, To Do pane 1171
tasks, managing 42
template tests 1430, 1432
templates, actions 462
Terminal Emulator applications

capture level options 1252
test batches, running 966
Test command line option 1011
test database, maintaining 1405
test flow (actions) 435

Test Flow pane 41
actions 41, 431

test object methods 87
test object operations 87
test object properties 87

See also identification properties
test object properties. See identification 

properties
test objects 79, 83

adding
description properties 171
to object repository 136

copying to local repository 195
copying, pasting, and moving in 

object repository 150
creating in run sessions 206
creating using programmatic 

descriptions 206
defining new 147
defining new properties 174
deleting description properties 177
dragging and dropping 182, 225
finding 154
highlighting in an application 157
identifying 79
in run sessions 206
locating in object repository 154, 159
managing 135
modifying

in run sessions 206
names 169
properties 162
properties during run sessions 206

property values, replacing 154
property values, retrieving and setting 

886
renaming 169
selecting

from application 399
from Item list 396
from shared object repository 396

specifying ordinal identifiers 177
viewing properties 197
viewing properties and operations 97



Index

I-21

test parameters 626, 635
setting options 636
storing output values 673, 684
using in steps 1283

test resources, missing 1179
Test Results Deletion Tool 1004

running from the command line 1007
Test Results toolbar, Test Results window 977
Test Results tree 974
Test Results window 971

customize appearance 979
Jump to Step in QuickTest 987
Result Details tab 975
run results toolbar 977
run results tree 974
Screen Recorder tab 994
System Monitor tab 1063
theme 979

test results. See run results
Test run error trigger 1340
Test Run Log 1541
test run time, improving 1564
test set 1438
Test Settings dialog box 1262

Environment pane 1283
Generate Script option 1410
Local System Monitor pane 1296
node 1262
Parameters pane 1280
Properties pane 1265
Recovery pane 1291
Resources pane 1274
Run pane 1270

test versions in QuickTest 1480
TestDir, environment variable 651
TestDirector. See Quality Center
testing options

during a test run 1301
restoring 1305
retrieving 1304
run-time 1305
setting 1302
setting for all tests 1231
setting for an individual test 1261

testing process 7
analyzing test results 13, 341

creating tests 8, 11, 336, 339
reporting defects 13, 341
running tests 12, 340

TestIteration, environment variable 651
TestName, environment variable 651
tests

about test steps 313
adding to version control 1483
and components, a comparison 1516
associating recovery scenarios with 

1373
checking into version control 1486
checking out of version control 1483
checkpoints. See checkpoints
closing in the Script Editor 1397
comparing versions 1465
creating 309, 321, 335
creating in Quality Center using a 

template test 1434
debugging 1069
diagram 426, 464, 465
disabling recovery scenarios 1377
editing in the Script Editor 1395
enhancing 315
local 428
maintaining 1101
managing 321
managing in Quality Center 14, 1415
opening in a Quality Center project 

1426
opening in QuickTest 322
opening in the Script Editor 1393
opening tests from older versions 323
parameterizing, example 657
pausing runs 1078
printing 332
properties 1387, 1389
recording 361, 364
removing recovery scenarios from 

1376
running 953
running from a step 956
running from an action 434
running using optional steps 963
save as 326
saving 324



Index

I-22

saving in the Script Editor 1396
saving to a Quality Center project 

1425
saving to Quality Center 326
saving with external resources 326
settings 433
unzipping 331
updating 1125
viewing and comparing versions 1461
working with 1393
zipping 331
See also run results

Text Area Checkpoint Properties dialog box 
557

Text Area Output Value Properties dialog box 
692

text area output values 671
creating 690

Text Checkpoint Properties dialog box 557
text checkpoints 551, 552

analyzing results 1036
configuring the text selection 561
modifying 570
setting options 561
specifying the checked text 564
specifying the text after 567
specifying the text before 566
specifying timeout 569
standard checkpoints 570
types 551

TEXT function in Data Table worksheet 1216
Text Output Value Properties dialog box 692
text output values 671

creating 688
specifying 692

text recognition 742
guidelines 746
multiple text block mode 745
single text block mode 744
supported environments 748
use-case scenario 750

Text Recognition pane, Options dialog box 
742

text values, outputting 688, 690
text, checking

using text area checkpoints 554

timeout
setting 1271
specifying for standard checkpoint 

511
specifying for text checkpoints 569

times, setting custom format 1209
title bar, QuickTest window 25
To Do pane 42, 1170

Comments tab 1174
Tasks tab 1171

toolbar buttons
display text labels 1152

toolbars
default settings 1152
Object Repository Comparison Tool 

293
Object Repository Merge Tool 257
QuickTest window

Action 46
Automation 44
Debug 23, 45
Edit 45
File 25
Insert 45
Standard 44
Tools 45
View 46

show and hide 1152
toolbars and menus

customize 1146
Tools toolbar, QuickTest window 45
ToolTips

display 1157
transactions 1534

defining 1534
ending 1537
inserting 1536
measuring 1534

Tree View. See Keyword View
trigger

Application crash 1340
events 1330
Object state 1340
Pop-up window 1340
test run error 1340

Troubleshooting and Knowledge Base xxv



Index

I-23

TSL functions, calling from QuickTest 1522
type library 1407
typing delay, when editing a step 833

U

Unicode 4
unregistering methods, using the 

UnregisterUserFunc statement 943
UnregisterUserFunc statement 939
UntilDate command line option 1012
unzipping tests 331
Update Run dialog box 1128
UpdatingActiveScreen, environment 

variable 651
UpdatingCheckpoints, environment variable 

651
upgrading assets 323, 330, 1382, 1426
Used By grid 1455
User command line option 1012
user-defined

functions. See user-defined functions
methods 939
properties, accessing 888
test objects, mapping 131

user-defined functions 905
adding a tooltip to 934
documenting 934
finalizing 937
Function Definition Generator 923
generating additional 936
guidelines for 945
previewing code in Function 

Definition Generator 936
registering 928

UserName, environment variable 651
Using grid 1455

V

Value cell 404
Value column, Keyword View 388
Value Configuration Options dialog box 

630, 760
VALUE function in Data Table worksheet 

1216

values
configuring 755
input 404
outputting 669
parameterizing 625
restoring default for object properties 

165, 168
specifying for object properties 163
viewing for object properties 197

variables
environment 1283
unique in global scope 946
See also environment variables, 

user-defined
VBScript 1407

associated function libraries
with Quality Center 919

auto-expand syntax 842, 899
documentation 876
formatting text 859
syntax 853
syntax errors 860

version control 1479, 1480
adding assets to 1483
baseline history 1491
cancelling check out 1487
checking assets out of 1483
checking tests in to 1486
commands 1482
Quality Center 9.x 1496
version history 1488

version history
comparison to baseline history 1494

Version History dialog box 1488
version manager 1480
version manager, Quality Center 9.x 1496
versions

comparing 1465
 1465

viewing and comparing 1461
View toolbar 46
Virtual Object Manager 1327
Virtual Object Manager Dialog Box 1313
Virtual Object wizard 1315



Index

I-24

virtual objects 1309
defining 1314
removing 1327

Visual Basic 1407
Visual C++ 1407
Visual Studio.NET 1407
VuserId, environment variable 651

W

W3C Web Content Accessibility Guidelines 
6

Wait statement 821
WaitProperty statement 817
Web

advanced issues, FAQ 1557
sending keyboard commands to Web 

objects 1559
Web content accessibility checkpoints

in test results 1048
Web content, dynamic 1555
While statement, in the Expert View and 

function libraries 882
Windows API 889
Windows applications

capture level options 1251
Windows command line options 1007
Windows dialog box 1159
WinRunner

calling tests from QuickTest 1518
calling TSL functions from QuickTest 

1522
function arguments, passing 

parameters from QuickTest 1525
tests, passing parameters from 

QuickTest 1520
viewing WinRunner steps in test 

results 1017
working with 1517

With statements
entering manually 884
generating automatically, while 

recording 808
generating for existing actions 809

in the Expert View 806
removing 811
With Generation Results window 810

workflow in Business Process Testing 1511
worksheet functions in the Data Table 1216
wscript.exe 1408

X

XML
checkpoint results

attribute details 1041
checkpoint summary 1039

checkpoints 591
Add Schema dialog box 621
analyzing results 622, 1037
Edit Schema dialog box 621
for files 600
for test objects 603
for web page/frame 595
modifying 622
namespace 593, 623, 718
Schema Validation dialog box 618
XPath 623

Edit XML dialog box 613
exporting from object repository 243
importing as object repository 242
objects and methods 623
output value results

analyzing 1057
attribute details 1061

XML Checkpoint from File dialog box 600
XML Checkpoint Properties dialog box 607
XML checkpoint results

Element Value dialog box 1047
XML Checkpoint Results window 1038
XML Output Properties dialog box 727
XML Output Value Results window 1058
XML output values 672
XML structure

importing 614, 732
updating 614, 732
updating using Update Run mode 

614, 732
XML values, outputting 718



Index

I-25

Z

zip files
exporting tests to 331
importing tests from 331

zipping tests 331



Index

I-26


	HP QuickTest Professional User Guide
	Table of Contents
	Welcome to This Guide
	How This Guide Is Organized
	Who Should Read This Guide
	QuickTest Professional Online Documentation
	Additional Online Resources

	Introducing QuickTest Professional
	Introduction
	Testing with QuickTest
	Understanding the Testing Process
	Programming in the Expert View
	Understanding Functions and Function Libraries
	Managing the Testing Process Using Quality Center
	Understanding Business Process Testing
	Setting Required Access Permissions
	Using the Sample Site
	Modifying License Information
	Updating QuickTest Software

	QuickTest at a Glance
	Starting QuickTest
	The QuickTest Window
	Changing the Appearance of the QuickTest Window

	Keyword View
	Expert View
	Function Library
	Start Page
	Active Screen
	Available Keywords Pane
	Data Table
	Debug Viewer Pane
	Information Pane
	Missing Resources Pane
	Process Guidance Panes
	Resources Pane
	Test Flow Pane
	To Do Pane
	Using QuickTest Commands
	QuickTest Toolbars
	File Menu Commands
	Edit Menu Commands
	View Menu Commands
	Insert Menu Commands
	Automation Menu Commands
	Resources Menu Commands
	Debug Menu Commands
	Tools Menu Commands
	Window Menu Commands
	Help Menu Commands
	Data Table Menu Commands
	Other QuickTest Commands

	Browsing the QuickTest Professional Program Folder
	Viewing Product Information


	Working with Test Objects
	Understanding the Test Object Model
	About Understanding the Test Object Model
	Understanding How QuickTest Learns Objects
	Understanding How QuickTest Identifies Objects During the Run Session

	Applying the Test Object Model Concept
	Understanding Test Object Descriptions
	Understanding Test Object and Native Properties and Operations

	Understanding Object Repository Types
	Deciding Whether to Use Local or Shared Object Repositories

	Viewing Object Properties and Operations Using the Object Spy
	The Object Spy Dialog Box

	Configuring Object Identification
	About Configuring Object Identification
	Understanding the Object Identification Dialog Box
	Configuring Mandatory and Assistive Properties
	Selecting an Ordinal Identifier
	Enabling and Disabling Smart Identification
	Restoring Default Object Identification Settings for Test Objects
	Generating Automation Scripts for Your Object Identification Settings

	Configuring Smart Identification
	Mapping User-Defined Test Object Classes

	Managing Test Objects in Object Repositories
	Adding Test Objects to a Local or Shared Object Repository
	Adding a Test Object Using the Add Objects to Local or Add Objects Option
	Adding Test Objects to the Local Object Repository from the Active Screen
	Understanding the Define Object Filter Dialog Box
	Understanding the Select Object Types Dialog Box
	Defining New Test Objects

	Copying, Pasting, and Moving Objects in the Object Repository
	Guidelines for Copying, Pasting, and Moving Objects

	Deleting Objects from the Object Repository
	Locating Objects
	Finding Objects in an Object Repository
	Highlighting an Object in Your Application
	Locating a Test Object in the Object Repository

	Maintaining Identification Properties
	Specifying or Modifying Property Values
	Updating Identification Properties from an Object in Your Application
	Restoring Default Mandatory Properties for a Test Object
	Renaming Test Objects
	Adding Properties to a Test Object Description
	Defining New Identification Properties
	Removing Properties from a Test Object Description
	Specifying Ordinal Identifiers


	Using Object Repositories in Your Test
	Understanding the Object Repository Window
	The Object Repository Window
	Understanding the Object Details Area
	Exporting Local Objects to a Shared Object Repository
	Copying an Object to the Local Object Repository

	The Object Properties Dialog Box
	Managing Shared Object Repository Associations
	Mapping Repository Parameter Values
	Working with Test Objects During a Run Session
	Creating Test Objects During a Run Session
	Modifying Identification Properties During a Run Session


	Managing Object Repositories
	About Managing Object Repositories
	The Object Repository Manager
	Using the Object Repository Manager Toolbar
	Understanding the Shared Object Repository Windows

	Working with Object Repositories
	Creating New Object Repositories
	Opening Object Repositories
	Saving Object Repositories
	Closing Object Repositories

	Managing Objects in Shared Object Repositories
	Editing Object Repositories
	Adding Test Objects to Your Test Using the Object Repository Manager
	Adding Test Objects Using the Navigate and Learn Option

	Working with Repository Parameters
	Managing Repository Parameters
	Adding Repository Parameters
	Modifying Repository Parameters
	Deleting Repository Parameters

	Modifying Object Details
	Specifying a Property Value

	Locating Test Objects
	Performing Merge Operations
	Performing Import and Export Operations
	Importing from XML
	Exporting to XML
	Understanding the XML File Structure

	Managing Object Repositories Using Automation
	Using the QuickTest Professional Object Repository Automation Reference


	Merging Shared Object Repositories
	About Merging Shared Object Repositories
	Understanding the Object Repository Merge Tool
	Changing the View
	Target Repository Pane
	Primary and Secondary Repository Panes
	Resolution Options Pane
	Status Bar

	Using Object Repository Merge Tool Commands
	Using Toolbar Commands
	Performing Object Repository Merge Tool Commands

	Defining Default Settings
	Specifying Default Resolution Settings
	Specifying Color Settings

	Merging Two Object Repositories
	Updating a Shared Object Repository from Local Object Repositories
	Viewing Merge Statistics
	Understanding Object Conflicts
	Resolving Object Conflicts
	Filtering the Target Repository Pane
	Finding Specific Objects
	Saving the Target Object Repository
	Saving the Object Repository


	Comparing Shared Object Repositories
	About Comparing Shared Object Repositories
	Understanding the Object Repository Comparison Tool
	Understanding the Repository Panes
	Understanding the Status Bar

	Using Object Repository Comparison Tool Commands
	Object Repository Comparison Tool Toolbar Commands
	Object Repository Comparison Tool Menu Commands and Shortcut Keys

	Understanding Object Differences
	Changing Color Settings
	Comparing Object Repositories
	Viewing Comparison Statistics
	Filtering the Repository Panes
	Synchronizing Object Repository Views
	Finding Specific Objects


	Designing Tests
	Creating Tests - Overview
	About Creating Tests
	Deciding Which Methodology to Use - Keyword-Driven or Recording
	Understanding Your Test
	Enhancing Your Test
	Using Relative Paths in QuickTest
	Understanding Absolute and Relative Paths


	Managing Your Test
	Creating a New Test
	Opening an Existing Test
	Saving a Test
	Creating Portable Copies of Your Tests
	The Save Test with Resources Dialog Box
	Guidelines for Working with Tests Created Using an Earlier Version of QuickTest

	Zipping a Test
	Unzipping a Test
	Printing a Test

	Creating Tests Using the Keyword-Driven Methodology
	Understanding the Keyword-Driven Methodology
	Using the Keyword-Driven Methodology
	Analyzing Your Application
	Setting Up Object Repositories
	Creating Function Libraries
	Configuring QuickTest According to Your Testing Needs
	Building Your Tests
	Adding Steps to Your Test Actions
	Running and Troubleshooting Your Tests

	Sample Implementation of the Keyword-Driven Methodology
	Define the Testing Environment for the Mercury Tours Application
	Analyze the Mercury Tours Application
	Plan and Create the Mercury Tours Test Action Repository
	Set Up the Object Repositories for the Mercury Tours Application
	Create the Function Libraries and Functions Required for Testing the Mercury Tours Application
	Create Tests and Test Steps for the Mercury Tours Business Processes


	Creating Tests Using the Recording Mechanism
	About Recording Tests
	Guidelines for Recording Tests

	Recording a Test
	Choosing the Recording Mode
	Guidelines for Analog and Low Level Recording
	Using Analog Recording
	Using Low Level Recording

	Working with the Active Screen
	Increasing or Decreasing the Active Screen Information Saved with a Test
	Updating a Single Active Screen Capture
	Tips for Improving Active Screen Performance


	Working with the Keyword View
	About Working with the Keyword View
	The Keyword View
	Item Column
	Operation Column
	Value Column
	Assignment Column
	Comment Column
	Documentation Column
	Tips for Working with the Keyword View

	Understanding the QuickTest Object Hierarchy
	Adding a Standard Step to Your Test
	Selecting an Item for Your Step
	Selecting the Operation for Your Step
	Defining Values for Your Step Arguments

	Adding Other Types of Steps to Your Test
	Using Conditional and Loop Statements in the Keyword View
	Adding a Standard Step After a Conditional or Loop Block

	Modifying the Parts of a Step
	Working with Comments
	Managing Action Steps
	Moving an Action Step
	Deleting an Action Step

	Using Keyboard Commands in the Keyword View
	Defining Keyword View Display Options
	Displaying Keyword View Columns
	Setting Keyword View Fonts and Colors
	Tips for Working with the Keyword View

	Viewing Properties of Step Elements in the Keyword View
	Working with Breakpoints in the Keyword View

	Working with Actions
	About Working with Actions
	Using Multiple Actions in a Test

	Using Global and Action Data Sheets
	Using the Test Flow Pane
	Understanding the Test Flow Pane
	Working with Actions in the Test Flow Pane

	Using the Action Toolbar in the Keyword View
	Creating New Actions
	Guidelines for Working with Actions
	Setting Action Properties
	Setting General Action Properties
	Associating Object Repositories with Actions
	Setting Properties for an External Action
	Viewing a List of the Tests and Actions Using this Action

	Nesting Actions
	Splitting Actions
	Renaming Actions
	Removing Actions from a Test
	Creating an Action Template

	Working with Advanced Action Features
	About Working with Advanced Action Features
	Inserting Calls to Existing Actions
	Inserting Calls to Copies of Actions
	Inserting a Call to an Existing Action

	Setting Action Parameters
	Using Action Parameters
	Guidelines for Working with Action Parameters

	Setting Action Call Properties
	Setting the Run Properties for an Action
	Setting Action Call Parameter Values

	Sharing Action Information
	Sharing Values via the Global Data Table
	Sharing Values Using Environment Variables
	Sharing Values Using the Dictionary Object

	Understanding Action Syntax in the Expert View
	Calling Actions Using Basic Syntax
	Calling Actions with Parameters
	Storing Action Return Values

	Exiting an Action


	Enhancing Tests
	Understanding Checkpoints
	About Understanding Checkpoints
	Adding New Checkpoints to a Test
	Adding Existing Checkpoints to a Test
	Understanding the Add Existing Checkpoint Dialog Box

	Understanding Types of Checkpoints

	Checking Object Property Values Using Standard Checkpoints
	About Checking Object Property Values
	Creating Standard Checkpoints
	Understanding the Checkpoint Properties Dialog Box
	Understanding the Image Checkpoint Properties Dialog Box
	Modifying Checkpoints

	Checking Bitmaps
	About Checking Bitmaps
	Fine-Tuning the Bitmap Comparison
	Creating and Modifying Bitmap Checkpoints
	The Bitmap Checkpoint Properties Dialog Box

	Checking Tables
	About Checking Tables
	Creating a Table Checkpoint
	Understanding the Table Checkpoint Properties Dialog Box
	Checking Table Content
	Understanding and Setting General Table Checkpoint Options
	Specifying Which Cells to Check
	Specifying the Expected Data
	Specifying the Value Type Criteria
	Specifying the Cell Identification Settings

	Checking Table Properties
	Selecting Properties to Check
	Editing the Expected Value of a Table Property

	Modifying a Table Checkpoint

	Checking Text
	About Checking Text
	Creating a Text Checkpoint
	Creating a Text Area Checkpoint
	Considerations for Defining the Text Area

	The Text / Text Area Checkpoint Properties Dialog Box
	Setting Options for the Text to be Checked
	Setting Checkpoint Timeout and Statement Location Options

	Modifying a Text or Text Area Checkpoint
	Creating a Standard Checkpoint for Checking Text

	Checking Databases
	About Checking Databases
	Creating a Check on a Database
	Creating a Database Checkpoint
	Creating a Query in Microsoft Query
	Specifying SQL Statements

	Understanding the Database Checkpoint Properties Dialog Box
	Identifying the Database Checkpoint
	Specifying Which Cells to Check
	Specifying the Expected Data
	Specifying the Value Type Criteria in the Settings Tab
	Specifying the Cell Identification Settings
	Specifying The Statement Location

	Modifying a Database Checkpoint

	Checking XML
	About Checking XML
	Creating XML Checkpoints
	Creating XML Checkpoints for Web Pages and Frames
	Creating XML File Checkpoints
	Creating XML Test Object Checkpoints
	Understanding the XML Checkpoint Properties Dialog Box
	Understanding the Edit XML as Text Dialog Box

	Updating the XML Hierarchy for XML Test Object Operation Checkpoints (for WebService Test Objects Only)
	Updating the XML Tree Manually
	Importing an XML Tree from a File
	Updating the XML Tree Using Update Run Mode
	Understanding the Schema Validation Dialog Box
	Understanding the Add Schema Dialog Box
	Understanding the Edit Schema Dialog Box

	Modifying XML Checkpoints
	Reviewing XML Checkpoint Results
	Using XML Objects and Methods to Enhance Your Test

	Parameterizing Values
	About Parameterizing Values
	Parameterizing Values in Steps and Checkpoints
	Parameterizing Values for Operations
	Parameterizing Property Values for Objects and Checkpoints
	Understanding Default Parameter Values

	Using Test and Action Input Parameters
	Setting Test and Action Parameter Options

	Using Data Table Parameters
	Setting Data Table Parameter Options
	Choosing Global or Action Data Table Parameters

	Using Environment Variable Parameters
	Using User-Defined External Environment Variables
	Using Environment Variable Files with Quality Center
	Using Built-in Environment Variables
	Setting Environment Variable Parameter Options
	Viewing and Editing Complex Parameter Values

	Using Random Number Parameters
	Example of a Parameterized Test
	Step 1: Parameterize a Step
	Step 2: Parameterize a Checkpoint
	Step 3: Enter Data in the Data Table
	Modified Test

	Using the Data Driver to Parameterize Your Test

	Outputting Values
	About Outputting Values
	Creating Output Values
	Output Value Categories
	Storing Output Values
	Viewing and Editing Output Values

	Outputting Property Values
	Defining Standard Output Values

	Specifying the Output Type and Settings
	Understanding Default Output Definitions
	Outputting a Value to an Action Parameter
	Outputting a Value to the Data Table
	Outputting a Value to an Environment Variable
	Selecting the Location for the Output Value Step

	Outputting Text Values
	Creating Text Output Values
	Creating Text Area Output Values
	Defining Text and Text Area Output Values

	Outputting Table Values
	Outputting Table Content
	Outputting Table Properties
	Modifying a Table Output Value

	Outputting Database Values
	Defining Database Output Values

	Outputting XML Values
	Understanding the XML Output Properties Dialog Box

	Updating the XML Hierarchy for XML Test Object Operation Output Value Steps (For WebService Test Objects Only)
	Updating the XML Tree Manually
	Importing an XML Tree from a File
	Updating the XML Tree Using Update Run Mode

	Adding Existing Output Values to a Test
	Understanding the Add Existing Output Value Dialog Box


	Working with Text Recognition for Windows-Based Objects
	About Working with Text Recognition for Windows-Based Objects
	The Options Dialog Box: General > Text Recognition Pane
	Guidelines for Text Recognition
	Text Recognition and Development Environments
	Use-Case Scenario: Checking Text in an Image

	Configuring Values
	About Configuring Values
	Configuring Constant and Parameter Values
	Setting Values in the Configure Value Area
	Setting Constant Value Options
	Configuring a Selected Value

	Understanding and Using Regular Expressions
	Using Regular Expressions for Property Values
	Using Regular Expressions in Checkpoints

	Defining Regular Expressions
	Using the Backslash Character
	Matching Any Single Character
	Matching Any Single Character in a List
	Matching Any Single Character Not in a List
	Matching Any Single Character within a Range
	Matching Zero or More Specific Characters
	Matching One or More Specific Characters
	Matching Zero or One Specific Character
	Grouping Regular Expressions
	Matching One of Several Regular Expressions
	Matching the Beginning of a Line
	Matching the End of a Line
	Matching Any AlphaNumeric Character Including the Underscore
	Matching Any Non-AlphaNumeric Character
	Combining Regular Expression Operators


	Adding Steps Containing Programming Logic
	About Adding Steps Containing Programming Logic
	Inserting Steps Using the Step Generator
	Defining Steps in the Step Generator Dialog Box
	Specifying a Test Object and Operation for the Step
	Selecting an Object from the Repository or Application
	Specifying a Utility Object and Operation for the Step
	Specifying a Function for the Step
	Storing Return Values and Action Output Parameter Values

	Using Conditional Statements
	Using Loop Statements
	Generating With Statements for Your Test
	Understanding With Statements
	Automatically Generating With Statements
	Generating With Statements for Existing Actions
	Removing With Statements from an Action

	Generating Messages
	Sending Messages to the Test Results
	Displaying Messages During the Run Session

	Adding Comments
	Synchronizing Your Test
	Creating Synchronization Points
	Adding Exist and Wait Statements
	Modifying Timeout Values



	Defining Functions and Other Programming Tasks
	Working in the Expert View and Function Library Windows
	About Working in the Expert View and Function Library Windows
	Understanding and Using the Expert View
	Working in the Expert View
	Understanding Checkpoint and Output Statements
	Understanding Parameter Indications
	Generating Statements in the Expert View or in a Function Library

	Navigating in the Expert View and Function Libraries
	Using the Go To Dialog Box
	Working with Bookmarks
	Finding Text Strings
	Replacing Text Strings

	Understanding Basic VBScript Syntax
	Using Variables
	Using Parentheses
	Formatting VB Script Text
	Handling VBScript Syntax Errors

	Using Programmatic Descriptions
	Entering Programmatic Descriptions Directly into Statements
	Using Description Objects for Programmatic Descriptions
	Retrieving Child Objects
	Performing Programmatic Description Checks

	Running and Closing Applications Programmatically
	Using Comments, Control-Flow, and Other VBScript Statements
	Inserting Comments
	Performing Calculations
	For...Next Statement
	For...Each Statement
	Do...Loop Statement
	While...Wend Statement
	If...Then...Else Statement
	With Statement

	Retrieving and Setting Identification Property Values
	Accessing Native Properties and Operations
	Retrieving Native Properties
	Activating Native Operations
	Accessing User-Defined Properties of Web Objects

	Running DOS Commands
	Enhancing Your Tests and Function Libraries Using the Windows API
	Choosing Which Steps to Report During the Run Session

	Customizing the Expert View and Function Library Windows
	About Customizing the Expert View and Function Library Windows
	Customizing Editor Behavior
	Customizing Element Appearance
	Personalizing Editing Commands

	Working with User-Defined Functions and Function Libraries
	About Working with User-Defined Functions and Function Libraries
	Managing Function Libraries
	Creating a Function Library
	Opening a Function Library
	Saving a Function Library
	Navigating Between Open QuickTest Documents
	Navigating to a Specific Function in a Function Library
	Editing a Function Library
	Editing a Read-Only Function Library
	Debugging a Function Library
	Printing a Function Library
	Closing a Function Library

	Working with Associated Function Libraries
	Associating a Function Library with a Test
	Modifying Function Library Associations

	Using the Function Definition Generator
	Opening the Function Definition Generator
	Defining the Function Definition
	Registering a Function Using the Function Generator
	Specifying Arguments for the Function
	Documenting the Function
	Previewing the Function
	Generating Another User-Defined Function
	Finalizing the User-Defined Function

	Registering User-Defined Functions as Test Object Methods
	Preparing the User-Defined Function
	Registering User-Defined Test Object Methods
	Unregistering User-Defined Test Object Methods

	Additional Tips for Working with User-Defined Functions
	Executing Externally-Defined Functions from Your Test


	Running and Analyzing Tests
	Running Tests
	About Running Tests
	Running Your Entire Test
	Running Part of Your Test
	The Run Dialog Box: Results Location Tab
	The Run Dialog Box: Input Parameters Tab
	Using Optional Steps
	Setting Optional Steps
	Default Optional Steps

	Running a Test Batch

	Viewing Run Session Results
	About Viewing Run Session Results
	The Test Results Window
	Run Results Tree
	Run Result Details
	Run Results Toolbar
	Changing the Appearance of the Test Results Window

	Viewing the Results of a Run Session
	Opening Test Results to View a Selected Run
	Navigating the Run Results Tree
	Viewing Result Details
	Jumping to a Step in QuickTest
	Filtering Test Results
	Finding Results Steps
	Viewing Results of Tests Run from Quality Center
	Viewing Still Images and Movies of Your Application
	Previewing Test Results
	Printing Test Results
	Exporting Test Results

	Deleting Run Results
	Deleting Results Using the Test Results Deletion Tool
	Deleting Results Using the Windows Command Line

	Submitting Defects Detected During a Run Session
	Manually Submitting Defects to a Quality Center Project
	Automatically Submitting Defects to a Quality Center Project

	Viewing WinRunner Test Steps in the Test Results
	Customizing the Test Results Display

	Analyzing Run Session Results
	Analyzing Smart Identification Information in the Test Results
	Viewing Checkpoint Results
	Analyzing Standard Checkpoint Results
	Analyzing Table and Database Checkpoint Results
	Analyzing Bitmap Checkpoint Results
	Analyzing Text or Text Area Checkpoint Results
	Analyzing XML Checkpoint Results
	The Element Value Dialog Box
	Analyzing Accessibility Checkpoint Results

	Viewing Parameterized Values and Output Value Results
	Viewing Parameterized Values in the Test Results Window
	Viewing Output Value Results in the Test Results Window
	Viewing the Run-Time Data Table
	Analyzing XML Output Value Results
	Understanding the XML Output Value Results Window

	Viewing System Monitor Results


	Maintaining and Debugging Tests
	Debugging Tests and Function Libraries
	About Debugging Tests and Function Libraries
	Considerations for Debugging Tests and Function Libraries

	Slowing a Debug Session
	Using the Single Step Commands
	Using the Single Step Commands - An Example

	Using the Run to Step and Debug from Step Commands
	Pausing a Run Session
	Using Breakpoints
	Setting Breakpoints
	Enabling and Disabling Breakpoints
	Removing Breakpoints

	The Debug Viewer Pane
	The Debug Viewer Pane: Watch Tab
	The Debug Viewer Pane: Variables Tab
	The Debug Viewer Pane: Command Tab

	Handling Run Errors
	Practicing Debugging an Action or a Function

	Maintaining Tests
	Why Tests Fail
	Object Changes
	Checkpoint Changes

	Running Tests with the Maintenance Run Wizard
	Maintenance Run Wizard - Object Not Found Screen
	Maintenance Run Wizard - Add Comment Screen
	Maintenance Run Wizard - Change Object Property Values Screen
	Maintenance Run Wizard - Update Step with Existing Object Screen
	Maintenance Run Wizard - Add Object to Repository Screen
	Maintenance Run Wizard - Smart Identification Screen
	Maintenance Run Wizard - Maintenance Mode Summary Screen

	Updating a Test Using the Update Run Mode Option
	Understanding the Update Options Tab



	Working with the QuickTest IDE
	QuickTest Window Layout
	Modifying the QuickTest Window Layout
	Moving Panes
	Showing and Hiding Panes
	Floating and Docking Toolbars
	Restoring the Default Layout of the QuickTest Window
	Customizing the QuickTest Window Layout

	Customizing Toolbars and Menus
	Customization Mode Options
	The Button Appearance Dialog Box
	The Customize Dialog box - Commands Tab
	The Customize Dialog box - Toolbars Tab
	The Customize Dialog box - Tools Tab
	The Customize Dialog box - Options Tab
	Considerations for Customizing Toolbars and Menus

	Working with Multiple Documents

	Managing Resources
	The Resources Pane

	Adding Keywords to Your Test
	Understanding the Available Keywords Pane
	Keywords Sorted by Resource
	Keywords Sorted by Keyword


	Managing QuickTest Tasks and Comments
	Working with Tasks and TODO Comments
	The To Do Pane
	The To Do Pane: Tasks Tab
	The To Do Pane: Comments Tab

	The Task Editor Dialog Box

	Handling Missing Resources
	About Handling Missing Resources
	Filtering the Missing Resources Pane

	Handling Missing Actions
	Locating Missing Actions
	Removing Missing Actions

	Handling Missing Environment Variables Files
	Handling Missing Function Libraries
	Handling Missing Shared Object Repositories
	Handling Missing Recovery Scenarios
	Locating Missing Recovery Scenarios
	Removing Missing Recovery Scenarios

	Handling Unmapped Shared Object Repository Parameter Values

	Working with Data Tables
	About Working with Data Tables
	Working with Global and Action Sheets
	Global Sheet
	Action Sheets

	Saving the Data Table
	Editing the Data Table
	Guidelines for Working with the Data Table
	Data Table Specifications
	Changing a Column Name
	Using the Data Table Menu Commands
	The AutoFill Lists Dialog Box

	Using Data Table Files with Quality Center
	Importing Data from a Database
	Creating a Query in Microsoft Query

	Using Formulas in the Data Table
	Using Formulas to Create Parameterization Data
	Using Formulas in Checkpoints

	Using Data Table Scripting Methods

	Working with Process Guidance
	Process Guidance Panes
	Opening Process Guidance
	Managing the List of Available Processes
	The Process Guidance Management Dialog Box


	Configuring QuickTest Settings
	Setting Global Testing Options
	About Setting Global Testing Options
	Using the Options Dialog Box
	Setting General Testing Options
	Setting Text Recognition Options

	Setting Folder Testing Options
	Setting Active Screen Options
	The Custom Active Screen Capture Settings Dialog Box

	Setting Run Testing Options
	The Options Dialog Box: Run > Screen Capture Pane


	Setting Options for Individual Tests
	Using the Test Settings Dialog Box
	Defining Properties for Your Test
	Associating Add-ins with Your Test
	Modifying Associated Add-Ins

	Defining Run Settings for Your Test
	Defining Resource Settings for Your Test
	Specifying Associated Function Libraries

	Defining Parameters for Your Test
	Defining Environment Settings for Your Test
	Adding User-Defined Environment Variables
	Viewing and Modifying User-Defined Environment Variables
	Exporting and Loading User-Defined Environment Variables

	Defining Recovery Scenario Settings for Your Test
	Specifying Associated Recovery Scenarios

	Enabling System Monitoring for Your Test
	The Test Settings Dialog Box: Local System Monitor Pane


	Using the Setting Object to Set Testing Options During the Run Session
	About Setting Testing Options During the Run Session
	Setting Testing Options
	Retrieving Testing Options
	Controlling the Test Run
	Adding and Removing Run-Time Settings


	Working with Advanced Testing Features
	Learning Virtual Objects
	About Learning Virtual Objects
	Understanding Virtual Objects
	Understanding the Virtual Object Manager
	The Virtual Object Manager Dialog Box

	Defining a Virtual Object
	The Virtual Object Wizard: Welcome Screen
	The Virtual Object Wizard: Map to a Standard Class Screen
	The Virtual Object Wizard: Mark Virtual Object Screen
	The Virtual Object Wizard: Object Configuration Screen
	The Virtual Object Wizard: Save Virtual Object Screen

	Removing or Disabling Virtual Object Definitions

	Defining and Using Recovery Scenarios
	About Defining and Using Recovery Scenarios
	Deciding When to Use Recovery Scenarios
	Defining Recovery Scenarios
	Creating a Recovery File
	Understanding the Recovery Scenario Manager Dialog Box

	Understanding the Recovery Scenario Wizard
	Welcome to the Recovery Scenario Wizard Screen
	Select Trigger Event Screen
	Specify Pop-up Window Conditions Screen
	Select Object Screen
	Set Object Properties and Values Screen
	Select Test Run Error Screen
	Select Processes Screen
	Recovery Operations Screen
	Recovery Operation Screen
	Recovery Operation - Click Button or Press Key Screen
	Recovery Operation - Close Processes Screen
	Recovery Operation - Function Call Screen
	Post-Recovery Test Run Options Screen
	Name and Description Screen
	Completing the Recovery Scenario Wizard Screen
	Saving the Recovery Scenario in a Recovery File

	Managing Recovery Scenarios
	Viewing Recovery Scenario Properties
	Modifying Recovery Scenarios
	Deleting Recovery Scenarios
	Copying Recovery Scenarios between Recovery Scenario Files

	Associating Recovery Scenarios with Your Tests
	Adding Recovery Scenarios to Your Test
	Viewing Recovery Scenario Properties
	Setting Recovery Scenario Priorities
	Removing Recovery Scenarios from Your Test
	Enabling and Disabling Recovery Scenarios
	Setting Default Recovery Scenario Settings for All New Tests

	Programmatically Controlling the Recovery Mechanism

	Working with the QuickTest Script Editor
	About the QuickTest Script Editor
	Important Considerations

	Understanding the QuickTest Script Editor Window
	Customizing the QuickTest Script Editor Window
	Commands Tab
	Toolbars Tab
	Keyboard Tab
	Menu Tab
	Options Tab

	Understanding the Flow Pane
	Understanding the Resources Pane
	Understanding the Display Area
	Working with Tests
	Opening Tests
	Editing Tests
	Saving Tests
	Closing Tests

	Working with Function Libraries
	Opening Function Libraries
	Creating Function Libraries
	Editing Function Libraries
	Saving Function Libraries
	Closing Function Libraries


	Automating QuickTest Operations
	About Automating QuickTest Operations
	What is Automation?
	What is the QuickTest Automation Object Model?

	Deciding When to Use QuickTest Automation Scripts
	Choosing a Language and Development Environment for Designing and Running Automation Scripts
	Learning the Basic Elements of a QuickTest Automation Script
	Generating Automation Scripts
	Using the QuickTest Automation Reference


	Working with Quality Center
	Integrating with Quality Center
	About Working with Quality Center
	Connecting to and Disconnecting from Quality Center
	Connecting QuickTest to Quality Center
	Disconnecting QuickTest from Quality Center

	Integrating QuickTest with Quality Center
	Quality Center Connectivity Add-in
	Integrating with Quality Center

	Saving Tests to a Quality Center Project
	Opening Tests from a Quality Center Project
	Opening Tests from the Recent Files List
	Opening Tests from a Quality Center Project with Version Control Support

	Working with Template Tests
	Working with the Default Template Test
	Working with New Template Tests
	Creating a New Template Test
	Creating a QuickTest Test in Quality Center

	Running a Test Stored in a Quality Center Project from QuickTest
	Setting Preferences for Quality Center Test Runs
	Enabling Quality Center to Run Tests on a QuickTest Computer
	Setting QuickTest Remote Agent Preferences
	Understanding the Remote Agent Settings Dialog Box


	Using the Resources and Dependencies Model
	Resources and Dependencies Model Terminology
	About the Resources and Dependencies Model
	Considerations for Working with Relative Paths in Quality Center

	Advantages of Working with Asset Dependencies
	Working With the Resources and Dependencies Model in Quality Center
	The Libraries Tab
	The History Tab
	The Dependencies Tab


	Viewing and Comparing Versions of QuickTest Assets
	Working with the Asset Comparison Tool and Asset Viewer
	The QuickTest Asset Comparison Tool
	Opening the QuickTest Asset Comparison Tool
	Understanding the Asset Comparison Tool Commands and Options
	The Color Settings Dialog Box

	The QuickTest Asset Viewer
	Opening the QuickTest Asset Viewer
	Using the QuickTest Asset Viewer


	Managing Assets Using Version Control
	Managing Versions of Assets in Quality Center
	Version Management Commands
	Adding Assets to the Version Control Database
	Checking Assets Out of the Version Control Database
	Checking Assets into the Version Control Database
	Canceling a Check-Out Operation

	Viewing Version History for an Asset
	The Version History Dialog Box

	Viewing Baseline History
	The Baseline History Dialog Box

	Version History Versus Baseline History

	Working with Version Control in Quality Center 9.x
	Opening Tests from a Quality Center 9.x Project with Version Control Support
	Managing Test Versions in QuickTest
	Adding Tests to the Version Control Database
	Checking Tests Out of the Version Control Database
	Checking Tests into the Version Control Database
	Using the Version History Dialog Box
	Canceling a Check-Out Operation



	Working with Other HP Products
	Working with Business Process Testing
	About Working with Business Process Testing
	Understanding Business Process Testing Roles
	Understanding the Business Process Testing Workflow

	Understanding Business Process Testing Methodology
	Understanding Components
	Creating Components in the Quality Center Business Components Module
	Implementing Components in QuickTest Professional
	Creating Business Process Tests and Flows in the Quality Center Test Plan Module
	Running Business Process Tests and Analyzing the Results
	Understanding the Differences Between Components and Tests


	Working with WinRunner
	About Working with WinRunner
	Calling WinRunner Tests
	Passing QuickTest Parameterized Values to a WinRunner Test
	Viewing the Results

	Calling WinRunner Functions
	Passing QuickTest Parameters to a WinRunner Function
	Viewing the Results


	Working with HP Performance Testing and Business Availability Center Products
	About Working with HP Performance Testing and Business Availability Center Products
	Using QuickTest Performance Testing and Business Availability Center Features
	Designing QuickTest Tests for Use with Performance Testing Products or Business Process Monitor
	Designing Tests for Performance Testing
	Designing Tests for Business Process Monitor

	Inserting and Running Tests in a Performance Test or in Business Process Monitor
	Inserting and Running Tests in Performance Center and LoadRunner
	Inserting and Running Tests from Business Process Monitor

	Measuring Transactions
	The Start Transaction Dialog Box
	The End Transaction Dialog Box

	Using Silent Test Runner
	The Silent Test Runner Dialog Box
	Viewing Test Run Information for Silent Runs



	Appendixes
	Supported Checkpoints and Output Values Per Add-In
	Supported Checkpoints
	Supported Output Values

	Frequently Asked Questions
	Creating Tests
	Programming in the Expert View
	Working with Dynamic Content
	Advanced Web Issues
	Standard Windows Environment
	Test Maintenance
	Testing Localized Applications
	Improving QuickTest Performance

	Creating Custom Process Guidance Packages
	About Process Guidance Packages
	Understanding the Package Configuration File
	XML Details

	Creating Data Files
	Installing Custom Process Guidance Packages in QuickTest

	Bitmap Checkpoint Customization
	About Bitmap Checkpoint Customization
	Considerations for Developing Custom Comparers
	Use-Case Scenario: Handling Images Whose Location in the Application Changes

	Developing a Custom Bitmap Comparer
	How to Develop a Custom Comparer
	Installing Your Custom Comparer and Registering it to QuickTest
	The Bitmap Checkpoint Comparer Interfaces

	Tutorial: Creating a Custom Comparer
	Using the Bitmap Checkpoint Customization Samples


	Index


