
Peregrine

PART NO: SCT-5.1-ENG-0103
ServiceCenter
System Tailoring, Volume 3
Release 5.1
6-00233

Copyright © 2003 Peregrine Systems, Inc. or its subsidiaries. All rights reserved.

Information contained in this document is proprietary to Peregrine Systems, Incorporated, and may be
used or disclosed only with written permission from Peregrine Systems, Inc. This book, or any part thereof,
may not be reproduced without the prior written permission of Peregrine Systems, Inc. This document
refers to numerous products by their trade names. In most, if not all, cases these designations are claimed
as Trademarks or Registered Trademarks by their respective companies.

Peregrine Systems® and ServiceCenter® are registered trademarks of Peregrine Systems, Inc. or its
subsidiaries.

This document and the related software described in this manual are supplied under license or
nondisclosure agreement and may be used or copied only in accordance with the terms of the agreement.
The information in this document is subject to change without notice and does not represent a
commitment on the part of Peregrine Systems, Inc. Contact Peregrine Systems, Inc., Customer Support to
verify the date of the latest version of this document.

The names of companies and individuals used in the sample database and in examples in the manuals are
fictitious and are intended to illustrate the use of the software. Any resemblance to actual companies or
individuals, whether past or present, is purely coincidental.

If you need technical support for this product, or would like to request documentation for a product for
which you are licensed, contact Peregrine Systems, Inc. Customer Support by email at
support@peregrine.com.

If you have comments or suggestions about this documentation, contact Peregrine Systems, Inc. Technical
Publications by email at doc_comments@peregrine.com.

This edition applies to version 5.1 of the licensed program.
Peregrine Systems, Inc.
Worldwide Corporate Headquarters
3611 Valley Centre Drive San Diego, CA 92130
Tel 800.638.5231 or 858.481.5000
Fax 858.481.1751
www.peregrine.com

mailto:support@peregrine.com
mailto:doc_comments@peregrine.com

Contents
Getting Started . 11

Tailoring ServiceCenter . 11

Using the System Tailoring Guides . 12

Knowledge Requirements . 13

Examples . 13

Contacting Customer Support . 13

Peregrine’s CenterPoint Web Site 14

Corporate Headquarters . 14

North America and South America 14

Europe, Asia/Pacific, Africa. . 14

Contacting Education Services . 15

Chapter 1 Incident Management Structure . 17

Problem and Probsummary Records 17

Before an update . 18

After an update . 18

Linking the problem and probsummary files 18

Searching the probsummary file. 21

Categories and Forms . 23

Formats . 24

Workflow . 26

Form naming conventions . 27

Assignment Groups . 27

Example . 28

Security Model . 29
Contents 3

ServiceCenter
Users . 29

Profiles . 30

Profile groups . 30

Capability words . 30

How the system selects a profile . 31

Alerts . 31

Alerts & calendars. . 33

Alert expressions . 33

Alert notifications. . 34

Chapter 2 Stored Queries . 35
Accessing Stored Queries. . 35

Stored Query Maintenance Form . 36

Fields . 36

Creating Stored Queries . 39

Running Stored Queries . 40

Display objects . 41

Scripts . 44

Menu option searches . 45

Capability Words . 47

query.window . 47

query.stored . 50

query.stored.mod . 51

QueryAdmin . 54

Chapter 3 Sequential Number Setup . 55

Accessing the Sequential Number File 56

Sequential Number Fields . 57

Creating a Sequential Number Record 58

Setup a simple number counter . 58

Using decrement in sequential numbers 59

Using Prefix and Suffix in sequential numbers. 60

Updating a Sequential Number Record 61

Deleting a Sequential Number Record 61
4 Contents

System Tailoring, Volume 3
Chapter 4 Scripting . 63

Script Flow . 65

Accessing Scripting . 67

Menu button . 67

Database Manager . 67

Processing Flow. . 71

Creating a Script . 71

Diagraming the script flow . 71

Creating the forms . 74

Defining the scripts . 77

Executing the script . 80

Deleting a Script . 89

Script Reports . 90

Script flow . 93

Script detail . 94

Script tree . 95

Chapter 5 Plug-ins . 97
Plug-In Platform Support . 98

Plug-In Functions. . 98

Installing a Plug-In . 99

Calling a Plug-In from RAD . 99

Operands . 100

Creating a Plug-In . 101

Macro Definitions . 103

Chapter 6 The Wizard Creation Tool . 109

Accessing the Wizard Creation Tool 109

Creating a Wizard. 109

Calling a Wizard . 111

Field Definitions . 112

Sample Wizard: Add New Device 122

Chapter 7 Macro Editor . 129
Macro conditions . 129

Accessing Macro Records. 130

Creating a Macros . 134
Contents 5

ServiceCenter
Definitions for Macro Forms . 136

Macro list form . 136

Macro editor . 137

Macros Provided with ServiceCenter 138

Chapter 8 Development Audit Utility . 141

Development Auditor Menu and Functions 142

Turn Auditing On/Off . 142

View Audit History . 142

Unload an Audit Delta. 145

Purge Audit Records . 146

Chapter 9 Revision Control . 149

Creating Revisions . 150

Create a baseline revision . 151

Create a single revision . 152

The Revisions panel . 153

Fields on the Revisions Panel . 153

Options Menu . 154

Reverting to a Previous Revision 154

Searching for revisions. 154

Purging Revisions . 156

Chapter 10 DDE Support . 157

DDE Server . 158

Implementation—System Events 158

Events in the Standard System . 159

Hardcoded events . 159

Editable events . 160

Example . 163

Usage notes . 163

Requests and pokes . 165

Executes . 165

Example . 166

The DDE Script panel . 167

DDE Client . 169
6 Contents

System Tailoring, Volume 3
The Process panel . 170

The DDE RAD panel . 171

Frame Restore option . 172

PassFocus Option . 173

Structure support option . 174

SystemEvents File . 175

Accessing records . 175

Architecture . 176

Chapter 11 Data Policy . 181
Accessing Data Policy . 181

Data Policy Expressions . 181

Data Policy and the Object record 182

Data Policy and Revisions . 183

Fields on the Data Policy Form
. 185

Engine Specifications Tab . 190

IR Specifications tab. 190

SC Manage tab . 191

Chapter 12 Clocks . 195
What is a Clock? . 195

Starting and stopping clocks . 198

Chapter 13 System Language . 205

Data Types Available in ServiceCenter 206

Primitive Data Types . 206

Compound Data Types . 208

File/Record. 211

Reserved Words. 213

Rules for Forming Literals . 213

Character Strings . 214

Numbers . 215

Times . 215

Booleans . 216

Rules for Forming Variables . 216

Using Variables . 216
Contents 7

ServiceCenter
Variable Pools . 217

Using Operators . 218

Arithmetic Operators . 218

String Operators . 219

Logical Operators . 219

Relational Operators . 221

Special Operators . 222

Using Expressions and Statements 223

Assignment Statements . 223

FOR Statements . 224

IF Statements . 224

WHILE Statements . 224

RAD Functions . 225

Processing Statements . 225

Locating Functions . 225

Quick Reference List . 227

Function Definitions . 235

Pseudo Fields . 324

Month . 324

Name . 325

Debugging RAD Flows . 325

RAD Debugger . 325

Command Line Parameters . 330

Chapter 14 Default Variables in ServiceCenter 333

Chapter 15 Link Maintenance . 337

Data Relationships and the Link File 337

Multiple line links. 341

Find, Fill and Virtual Join . 341

Find Functionality. 344

Fill Functionality . 345

Virtual Joining Functionality . 347

Us.link . 350

Changes to find, fill, and fill.recurse 350

us.link . 350
8 Contents

System Tailoring, Volume 3
Calling us.link . 351

Access to $File / Dates . 352

Find from / fill to a $ variable . 352

Find from / fill to a structured array 352

Variables used by us.link . 354

Changes to $fill.display, $fill.display.add 355

Chapter 16 Understanding Links . 357

Accessing Links . 358

Fields on the Link File Format 358

Adding a New Link File . 359

Testing a link. 359

Modify an Existing Link . 360

Options pull-down menu . 360

Delete a Link . 360

Advanced Link Editing Features . 361

Fields on the Link Structure Format 364

Link Structure Options Menu. 365

Specifying a Link Query . 366

Copying Fields by Name During Fill Operations 367

Scalar/NonScalar field links. 369

Keeping Changes . 371

Link Dependencies within the Help Desk 372

Document Engine Master Link Record 372

Chapter 17 Virtual Joins . 373

Creating Virtual Joins . 373

Understanding Subformats . 374

How to Create a Subformat. 374

Building the sales Form . 376

Creating the sales File . 378

Creating the Sales QBE . 379

Adding Data to the sales File . 380

Creating the sales1 Subformat 381

Creating the Orders form . 382

Building The Virtual Join Into The Form 384
Contents 9

ServiceCenter
Building the Link . 388

Link Record Field Definitions. 389

Using the Virtual Join . 389

Index . 391
10 Contents

Getting Started
The ServiceCenter System Tailoring Guides have supplemental information
for system administrators who install and configure ServiceCenter. Tailoring
is any change to standard functionality without changing actual code. For
example, you can:

Change the look and operation of forms.

Change default values for objects on forms that ServiceCenter uses for
field validation.

Create macros, scripts, and stored queries.

Changes to record definitions.

Use these guides to make further changes to support site-specific
requirements, including special field validation, new or modified forms
design, expanded or varied workflow, and automatic notifications.

Tailoring ServiceCenter

Most tailoring can be done using high-level ServiceCenter tools, without
directly changing the RAD code that is the actual ServiceCenter development
medium. There are several tailoring tools, including the Database Manager,
Format Control Editor, Link Editor, and Revision Control that enable you to
manipulate the common RAD code sets and algorithms in the document
Getting Started 11

ServiceCenter
engine. Because these tools enable extensive changes to ServiceCenter,
Peregrine recommends that you analyze your requirements carefully before
you begin tailoring implementation. Balance the gains of tailoring against
simplifying future upgrades to new releases.

Using the System Tailoring Guides

System tailoring information appears in three separate guides. The following
table shows the focus of each guide and where you should look for more
information.

System Tailoring Guide,
Volume 1

System Tailoring Guide,
Volume 2

System Tailoring Guide,
Volume 3

Forms Designer Document engine overview Incident management

Format Control Validity table processing Stored queries

Array maintenance The notification engine Sequential numbers

Special processing
considerations

Global lists and Global initer Scripting

Sequential numbering for
Format Control

Using and creating online help Plug-in support

Format Control processes The Cascade Update utility Creating wizards

Format Control posting The display application Creating and editing macros

Format Control error messages Advanced operations Development audit utility

Format Control common
applications

Adding and modifying fields Revision control

Publishing ServiceCenter
information

Calendar management DDE support

Static messages Data Policy

System management Clocks

ServiceInfo forms System language: data types,
variables, operators,
expressions

ServiceCenter default variables

Link management

Virtual joins
12 Getting Started

System Tailoring, Volume 3
You can use the Acrobat Search feature to locate more specific topics on the
ServiceCenter 5.1 documentation CD-ROM.

Knowledge Requirements

The instructions in this guide assume a working knowledge of Peregrine
Systems ServiceCenter and the installation platform. You can find more
information in the following guides.

For information about a particular platform, see the appropriate platform
documentation.

For information about customizing your environment using parameters,
see the ServiceCenter Technical Reference guide.

Before you run the ServiceCenter server, see the ServiceCenter User’s
Guide.

For administration and configuration information, see the ServiceCenter
System Administrator’s Guide or the ServiceCenter Application
Administration Guide.

For database configuration information, see the ServiceCenter Database
Management and Administration Guide.

For copies of the guides, download PDF versions from the CenterPoint
web site using the Adobe Acrobat Reader, which is also available on the
CenterPoint Web Site. For more information, see Peregrine’s CenterPoint
Web Site on page 14. You can also order printed copies of the
documentation through your Peregrine Systems sales representative.

Examples

The sample windows and the examples included in this guide are for
illustration only, and may differ from those at your site.

Contacting Customer Support

For more information and help with this new release or with ServiceCenter
in general, contact Peregrine Systems’ Customer Support.
Knowledge Requirements 13

ServiceCenter
Peregrine’s CenterPoint Web Site
You can also find information about version compatibility, hardware and
software requirements, and other configuration issues at Peregrine’s
Centerpoint web site: http://support.peregrine.com

1 Log in with your login ID and password.

2 Select Go for CenterPoint.

3 Select ServiceCenter from My Products at the top of the page for
configuration and compatibility information.

Note: For information about local support offices, select Whom Do I Call?
from Contents on the left side of the page to display the Peregrine
Worldwide Contact Information.

Corporate Headquarters

North America and South America

Europe, Asia/Pacific, Africa
For information about local offices, see Peregrine’s CenterPoint Web Site. You
can also contact Corporate Headquarters.

Address: Peregrine Systems, Inc.
Attn: Customer Support
3611 Valley Centre Drive
San Diego, CA 92130

Telephone: +(1) (858) 794-7428

Fax: +(1) (858) 480-3928

Telephone: +(1) (858) 794-7428 (Mexico, Central America, and
 South America)

Fax: +(1) (858) 480-3928

E-mail: support@peregrine.com
14 Getting Started

http://support.peregrine.com

System Tailoring, Volume 3
Contacting Education Services

Training services are available for the full spectrum of Peregrine Products
including ServiceCenter.

Current details of our training services are available through the following
main contacts or at:

http://www.peregrine.com/education

Address: Peregrine Systems, Inc.
Attn: Education Services
3611 Valley Centre Drive
San Diego, CA 92130

Telephone: +1 (858) 794-5009

Fax: +1 (858) 480-3928
Contacting Education Services 15

http://www.peregrine.com/education

ServiceCenter
16 Getting Started

CHAPTER

1
 Incident Management Structure
Problem and Probsummary Records

The Incident Management system stores information about incidents in two
separate files: problem and probsummary. Each incident has only one
probsummary record. Every time an incident is updated, however, the
system automatically adds a new record to the problem file. This assumes
that paging is on. If it is not, then there will be only one problem page.
Incident Management Structure 17

ServiceCenter
Before an update

After an update

Note: Italics indicate a new record.

Linking the problem and probsummary files
The system uses a link record called build.problem.summary to determine
which fields are copied from the problem file into the probsummary file. The
link relation is based on the number field in the problem and probsummary
files.

To display the problem and probsummary link definitions:

1 Select the Services tab of System Administrator’s Home Menu.

2 Click Incident Management. The Incident Management menu is displayed.

3 Click Security Files. The Incident Management Security Administration
Utility is displayed.

problem probsummary

incident 43, Page 3, Last page=true incident 43

incident 43, Page 2, Last page=false

incident 43, Page 1, Last page=false

problem probsummary

incident 43, Page 4, Last page=true incident 43

incident 43, Page 3, Last page=false

incident 43, Page 2, Last page=false

incident 43, Page 1, Last page=false
18 Chapter 1—Incident Management Structure

System Tailoring, Volume 3
4 Click Summary Link. The build.problem.summary link file is displayed.

5 Place the cursor in any field of the Link record, for example, number.

6 Select Select Line from the Options menu.

Figure 1-1: Summary Link File for Incident Management
Problem and Probsummary Records 19

ServiceCenter
The Link Line Definition form displays the links between the individual fields
in the problem file and the fields available in the probsummary file.

Incident Management’s built in search routines search against the
probsummary file rather than the problem file. They then display a list of
matching values from the probsummary file in either a table (GUI mode), or
a QBE list (Text mode). Whenever a user selects an incident ticket, the system
displays the last page of the incident record from the problem file.

Figure 1-2: Incident Link Line Definition
20 Chapter 1—Incident Management Structure

System Tailoring, Volume 3
Searching the probsummary file
To search the probsummary file:

1 Click the Search button in the Incident Management menu. The
probsummary search form is displayed.

Important: There are two places to select ticket Status in this form: the Status
combo box and the Open, Closed and Either radio buttons. If a
query fails to produce existing records, make sure the Status field
and the Status flag reflect the same ticket status.

Figure 1-3: Probsummary Search Form
Problem and Probsummary Records 21

ServiceCenter
2 Enter a search query (for example, IM1012) to display matching
probsummary records or leave the Number field blank and click the Search
button to display a list of all records.

3 Select a specific record from the list.

The system retrieves the selected record from the S file.

Figure 1-4: Probsummary Record List
22 Chapter 1—Incident Management Structure

System Tailoring, Volume 3
Categories and Forms

Each incident ticket in the system can have only one category. This category
determines what type of information is stored with an incident ticket. For
example, a PC hardware incident will track different information than one
dealing with a network outage.

All incident records, regardless of category, store their data in the problem
file. Categories merely provide different views of the problem file, despite the
fact that records for all categories are kept in the same file.

To access a Category record:

1 Select the Services tab of System Administrator’s Home Menu.

2 Click Incident Management. The Incident Management menu is displayed.

3 Click Security Files. The Incident Management Security Administration
Utility is displayed.

4 Click Edit in the Category structure. A dialog box is displayed asking you to
select the category you want to edit.
Categories and Forms 23

ServiceCenter
5 Select a category from the drop-down list. The requested record is displayed.

Formats
Each category defines five different forms in its Category record.

To view the Forms in a Category record, click the Formats tab.

Figure 1-5: Category Record— Category Tab

Figure 1-6: Category Record — Formats Tab
24 Chapter 1—Incident Management Structure

System Tailoring, Volume 3
These forms are described below:

Typically, forms used in this fashion are named
problem.<category>.<action>. For example, problem.template.open.

The following are the default forms:

Form
Type Usage

Open When users open a new incident ticket in this category, they enter data
in this form.

Update When users update an existing incident ticket in this category, they
enter data in this form.

Close When users close an existing incident ticket, this form is displayed.

Browse When text mode users first select an incident ticket from a Record list,
they are shown this format. When they press update, the update format
is displayed.

QBE When users search for a form, they are shown this format.

Format Type Format Name

Open problem.template.open

Update problem.template.update

Close problem.template.close

Browse problem.template.browse (or problem.browse)

Qbe problem.template.qbe
Categories and Forms 25

ServiceCenter
Workflow
There are several possible workflows for Incident Tickets. A common one is
described by the following diagram.

Select
Open
New

Incident

Select
Category

problem.template.open
Form Displayed

Select
Save

Select
Close

Update
Record

problem.template.update
Form Displayed

problem.template.close
Form Displayed

Complete
Necessary

Fields

Select
Save

Figure 1-7: Life of an Incident ticket opened in Service Management.
26 Chapter 1—Incident Management Structure

System Tailoring, Volume 3
Form naming conventions
ServiceCenter uses separate forms for Text mode, GUI mode, and Web mode
and tracks them by assigning different one-letter extensions to the base form
name.

problem.template.close is the base form name and is used in Text mode.

problem.template.close.g is the GUI/Java form and is used instead of
problem.template.close in GUI and Java modes

problem.template.close.w is the HTML form and is used instead of
problem.template.close in the Web mode.

There are two important considerations regarding ServiceCenter naming
conventions:

Always use the base form name when entering a form into the system. The
ServiceCenter binaries will automatically look for a form with the
appropriate extension if running in Web or GUI mode.

You do not need to define all three forms. If the system cannot locate a
GUI specific, or Web specific form, it will use the Text mode format
instead.

The following table describes the system display logic for a form named
hardware:

Assignment Groups

Incident Tickets are assigned to various assignment groups to be resolved.
Each incident ticket can have only one primary assignment group, but may
have as many secondary assignment groups as necessary.

Assignment groups are defined in two places:

In the Category record

On individual tickets

Text GUI/Java Web/HTML

uses hardware if hardware.g exists, uses
hardware.g else uses
hardware

if hardware.w exists, uses
hardware.w else uses
hardware
Assignment Groups 27

ServiceCenter
Note: Assignment group designations on individual incident tickets
supersede those defined in the Category record.

Assignment groups have two main functions:

Determine ticket visibility in user inboxes.

Help determine what happens to incident tickets when their alert levels are
escalated.

When a user opens a default inbox in Incident Management, a list of tickets
is displayed for the assignment group(s) of which that user is a member. For
example, if a user is a member of the systems and engineering assignment
groups, all open tickets listing systems or engineering as the primary or
secondary assignment groups will appear in that user’s inbox.

Example
The table below shows the Assignment Group associations for seven sample
incident tickets:

The members of the two Assignment Groups—systems and engineering —
are defined as shown below:

Incident # Primary Assign. Secondary Assign. Secondary Assign.

1 systems

2 management engineering

3 development pc hardware

4 systems

5 engineering

6 pc hardware systems

7 pc software engineering systems

systems engineering

Alan Bob

Bob Sam
28 Chapter 1—Incident Management Structure

System Tailoring, Volume 3
The table below shows which tickets will be visible to each member of the two
Assignment Groups:

Security Model

The Incident Management system has only one environment record. This
record contains options that affect all users of Incident Management. Typical
options stored here are:

The default category for new incident tickets.

Whether or not to use paging with Incident Management.

Whether or not to enable distributed ticketing.

Users
Each person who logs onto ServiceCenter is a user. Each user must have a
personal information record stored in the operator table. Information
associated with a user includes personal data such as name, address, phone
number(s), login name, and password for ServiceCenter. Operator records
also store capability words for a given user. Without an operator record, no
user can log onto ServiceCenter.

Ed Terry

Jim

Rita

User Name Visible Tickets

Alan 1,4,6,7

Bob 1,2,4,5,6,7

Ed 1,4,6,7

Jim 1,4,6,7

Rita 1,4,6,7

Sam 2,5,7

Terry 2,5,7
Security Model 29

ServiceCenter
Profiles
Each user of Incident Management must have an Incident Management
profile record or use the default profile. User profiles are stored in the pmenv
table. They can be defined in one of two ways:

A personal profile record which defines rights for a single user.

A profile record defining members of a profile group.

Profiles store Incident Management rights and privilege information, such as
whether or not a user can close incident tickets. Profiles also store
information that may affect the way Incident Management looks and
behaves. For example, a profile may list a personal search form for a specific
user.

Profile groups
Profile groups store lists of users who share a common Incident Management
profile. Each group has a distinct record in the group table as well as one
profile record stored in the pmenv table. A member of a group will use the
group’s profile record unless that user also has a personal profile record.

Capability words
The following capability words are used to grant privileges in Incident
Management:

SysAdmin — grants the user System Administrator authority with the
right to run administrative utilities for all ServiceCenter applications.

ProbAdmin — grants the user administrative status within Incident
Management only. For example, a user with ProbAdmin capabilities
cannot alter Change Management profiles.

problem management — grants the user access to Incident Management
from the menu screens.

For a complete of ServiceCenter capability words, see the System
Administrator’s guide.
30 Chapter 1—Incident Management Structure

System Tailoring, Volume 3
How the system selects a profile
When a user tries to launch Incident Management, the system follows these
steps to determine which profile to use:

1 The system looks for a profile record in the pmenv table whose name matches
the user’s login name. For example, if John Doe logs into ServiceCenter as
jdoe, Incident Management will look for a profile record named jdoe. If such
a profile is found, the system defines the user’s Incident Management rights
based on this personal profile.

2 If the system cannot locate a personal profile record for a user, it next looks
for a profile group which has the user as a member. If the user is a member
of a group, the system locates the profile record for that group. The profile
record carries the same name as the group itself. Once the system finds the
group profile record, the user is granted the rights defined by that record.
Therefore, if jdoe is a member of the Engineering group, the system will
locate a profile record named Engineering, and use that profile record to
determine John Doe’s rights.

3 If the system finds neither an individual profile nor a group profile, it looks
in the Incident Management Environment record to see if the Allow Access
Without Operator Record? check box is selected. This option allows access
through the system’s DEFAULT profile record. For more information on
Profiles, refer to the ServiceCenter System Administrator’s Guide.

Alerts

Incident Tickets are automatically escalated to different alert levels as a
function of the category of the incident ticket in question and its primary
assignment group. The category record determines when alerts and
escalations occur. The assignment record determines what happens when an
alert occurs.

Two different clocks manage alerts and escalations:

The deadline alert clock starts the moment the incident ticket is opened.
When a specified amount of time has passed on this clock, the incident
ticket is escalated to DEADLINE ALERT, regardless of any recent update
activity.
Alerts 31

ServiceCenter
The second escalation clock also begins ticking when an incident ticket is
opened. When it reaches certain thresholds, the incident ticket is escalated
to a higher alert stage — alert stage 1, alert stage 2, or alert stage 3. Unlike
the deadline alert clock, this clock resets whenever the incident ticket is
updated by a user.

To view the alerts for a Category:

1 Open the Category record as described Categories and Forms on page 23.

2 Click the Alerts tab to view the alerts.

The numbers in the Interval fields dictate the amount of time that each of the
clocks will run. The deadline interval of 5 00:00:00 indicates that the deadline
alert clock will run for 5 days before it moves the ticket into DEADLINE
ALERT. The stage 1 alert interval of 01:00:00 indicates that the incident ticket
will move into alert stage 1 one hour after its last user update.

The alert clocks are processed as follows:

Figure 1-8: Category Record— Alerts Tab

Time Activity Incident Alert Status

08/19/01 12:30:00 User Opens Incident Opened

08/19/01 13:30:00 Incident Automatically
Escalated to Alert Stage 1

Alert stage 1

08/19/01 14:30:00 Incident Automatically
Escalated to Alert Stage 2

Alert stage 2
32 Chapter 1—Incident Management Structure

System Tailoring, Volume 3
Alerts & calendars
The clocks that manage alerts do not need to run on a 24 hour schedule. For
example, if your employees work from 9 am to 5 pm, set the alert clocks to
run only during these hours. By default, all alert clocks run on a twenty-four
hour, seven-days-a-week schedule; however, if an availability calendar is
selected for a particular incident ticket’s primary assignment group, that
ticket’s alert clocks will run only during the duty hours defined by that
calendar.

Alert expressions
You are not limited to driving alerts from category information only. You
can also set escalation times based on any field or combination of fields in the
incident ticket by using expressions.

The alert expressions should achieve the objective of establishing a value for
the alert.time field (alert stages 1, 2 and 3), or the deadline.alert field
(deadline alert). The resulting value calculated for this field will be used to
determine a time interval between an existing reference point in time, and
this value. ServiceCenter uses specific reference points in time depending on
the action being taken against the ticket. When a ticket is open, the reference
point is the open time of the ticket. When updating a ticket, the reference
point becomes the update time of the ticket.

08/19/01 15:00:00 User Updates Incident Updated

08/19/01 16:00:00 Incident Automatically
Escalated to Alert Stage 1

Alert Stage 1

08/19/01 17:00:00 Incident Automatically
Escalated to Alert Stage 2

Alert stage 2

08/19/01 19:00:00 Incident Automatically
Escalated to Alert Stage 3

Alert stage 3

08/24/01 12:30:00 Incident Automatically
Escalated to Deadline Alert

DEADLINE ALERT

08/24/01 12:45:00 User Updates Ticket DEADLINE ALERT

08/24/01 12:45:00 User Updates Ticket DEADLINE ALERT
Alerts 33

ServiceCenter
If the assignment group indicated on the ticket has an associated calendar,
ServiceCenter will use the interval of time calculated above to determine the
final alert time for the ticket. Because of this, it is important that the alert
expressions are not built around reference points in time other than what
ServiceCenter is designed to use (open time or update time). The most basic
alert expressions will be of the following form:

Alert stages 1, 2, and 3:

alert.time in $file = tod() + <time interval>

Deadline alert:

deadline.alert in $file = tod() + <time interval>

Any valid field or combination of fields in the incident ticket can be used to
establish the alert times. For example:

if priority.code in $file=”1” then alert.time in $file = tod() + ’01:00:00’

The following expression would yield undesirable results since it attempts to
set the alert time based on a reference point outside of what ServiceCenter is
designed to use (open or update time):

alert.time in $file = <custom.date.field> in $file + <time interval>

Alert notifications
Alert notifications are handled by macros. Incident Tickets are escalated
according to the values in the Interval field. For further information on alerts,
priorities, and escalation, refer to the ServiceCenter System Administrator’s
Guide.
34 Chapter 1—Incident Management Structure

CHAPTER

2
 Stored Queries
The purpose of a stored query is to retrieve and display current information
efficiently by using predefined search parameters. The Stored Query
Maintenance utility allows designated users to define and store queries that
can display lists of specific records or populate dynamic display objects such
as charts and marquees. For example, stored queries can be created to search
for incident tickets that have reached a certain status, to populate a chart that
displays open tickets by category, or to display a list of change requests
assigned to a particular approval group. Stored queries are commonly run
from the following features in ServiceCenter:

Advanced/Expert Search menu option

Display objects

Buttons

Scripts

Accessing Stored Queries
To open the Stored Queries maintenance form

1 From the System administrator’s home menu, click the Utilities tab.

2 Click the Tools tab.

3 Click Stored Queries.
Stored Queries 35

ServiceCenter
Stored Query Maintenance Form

Fields
Name—unique name of the query. This name can be anything, but should
reflect the query’s purpose and be easily recognizable. For example, queries
concerning change requests might begin with cm3r and those searching for
problem tickets might begin with pm.

Description—plain text description of the query’s function. This is not
required and is not used anywhere else in ServiceCenter.

File—name of the ServiceCenter file that this query should search.

Figure 2-1: The change.ALL Stored Query Maintenance form
36 Chapter 2—Stored Queries

System Tailoring, Volume 3
Format Name—name of the form used to display the records retrieved by the
stored query. This is a required field unless the following conditions exist:

The File field contains certain values, including problem, probsummary,
cm3r, cm3t, device, or incidents.

An application is specified.

A format exists with the same name as the File field.

QBE Format—name of a custom QBE form you have created for displaying
the data returned from your search. This is an optional field. If you do not
specify a form, the system displays the data you have requested in a default
QBE form.

Script—name of a script to execute when this stored query is selected. This is
an optional field. You can use scripting to retrieve data you want to
incorporate into the stored query.

Query Tab
Query—query to be executed when this stored query is selected by the user.
To ensure an efficient search with a stored query, all query syntax should be
fully keyed. The following is an example of a query against the cm3r file that
returns all of a user’s open change requests:

header,requested.by=$lo.ufname & header,last=t & header,open=t

Queries can refer to $ variables which can then be defined by the user at run
time with the execution of a script, as in the following example:

header,category=$category and header,last=true and
header,status^#“closed”

A script is executed that displays a form containing an input field for the
variable $category. If the user enters software in the field, the following query
is executed:

header,category=“software” and header,last=true and
header,status^#“closed”

The $ variable is replaced with the value of the variable.
Stored Query Maintenance Form 37

ServiceCenter
Important: If $ variables are used in a query, they must be initialized to
match the data type of the field referenced in the query. Initialize
variables by defining a Display condition in Format Control for
the script form. Character data types do not need to be
initialized.

Sort Fields—controls the key used for the query if more than one Database
Dictionary key starts with the same field. This is an optional field.

Access List—defines users who can see this particular query. Only those
operators listed by login name or those users who are members of a Query
Group (from the operator record) named in the list can access this query. If
the list is blank, this query is available to all users. This is an optional field.
Use the Access List to:

Build stored queries that are only available to certain users.

Keep the number of stored queries a user sees at a manageable level. Define
a Query Group in the operator record of each member of a user class
(Tech Level 1, Tech Level 2, etc.) and give them access rights only to the
queries they require to do their job.

Application Tab
Application—name of the application to call from this query. This is an
optional field.

Parameter Names—name of the parameters to pass to the application called
by the query. This is an optional field.

Parameter Values—values of the parameters to pass to the application called
by the query. This is an optional field.
38 Chapter 2—Stored Queries

System Tailoring, Volume 3
Creating Stored Queries

To create a stored query:

1 Select the Utilities tab in the system administrator’s home menu.

2 Click Tools.

The Tools menu is displayed.

3 Click Stored Queries.

A blank Stored Query Maintenance form is displayed.

4 Click Search to display a list of existing queries to copy or create your own
query from scratch.

5 Click Add.
The following message is displayed in the status bar: Record added to
querystored file.
Creating Stored Queries 39

ServiceCenter
Running Stored Queries

You can use several ServiceCenter features to run stored queries. Access to
the querystored file and the ability to edit existing stored queries or add new
stored queries is granted through capability words in a user’s operator file.
Users with these capabilities can directly select or manipulate stored queries
with the Advanced or Expert Search menu options. All other features use
stored queries to present records only.

Figure 2-2: Stored query for category tickets

The shown query displays all open incident tickets for
the software support assignment group. This query is
only available to users who are members of the query
groups called software support and management.

For this query to be accessible to users who must use it,
software support or management must be entered in the
Query Groups array in the Startup tab of each designated
user’s operator record.
40 Chapter 2—Stored Queries

System Tailoring, Volume 3
Display objects
Stored queries can be used by the system administrator to retrieve and
display dynamic data in charts or marquees or to write a script that employs
a stored query to locate specific records. Stored queries applied in this
manner are not accessible to the user and operate in the background to
retrieve records from the database. For example, you may want to place a
dynamic chart on a supervisor’s startup menu showing all open tickets by
category. By placing buttons that run individual stored queries on the
bottom of the chart, the supervisor can display lists of tickets by category.

Menu buttons
Buttons that are configured to run stored queries from a menu must have a
button ID defined in a menu record. Use the following values to run a stored
query from a menu:

Application: query.stored

Parameter Name: text

Parameter Value: <stored query name>

Condition: true (or a condition statement that checks for a particular
query group)

The following menu record is from MAX.MANAGER (IM STATUS NEW),
whose startup menu contains two charts, one of which displays incident
tickets by priority. The button bar at the bottom of this chart runs the queries
that display tickets for each priority. The query in this example returns a list
of priority 1 tickets.

Note: The number on the button in the chart has no relationship to the
Button ID in the menu record.
Running Stored Queries 41

ServiceCenter
Figure 2-3: Stored query defined in a menu record
42 Chapter 2—Stored Queries

System Tailoring, Volume 3
Charts and marquees
Stored queries can produce dynamic information that is gathered by the
system and displayed in a bar chart. These queries are defined in agent
records which are referenced by each display object in Forms Designer.

A marquee runs one stored query at a time and cannot provide access to
actual records. Queries run from marquees are used to display messages
about records. For example, the marquee in MAX.MANAGER’s startup
menu can be set to display a message describing the number of tickets of a
particular priority that currently exist in the system.
Running Stored Queries 43

ServiceCenter
Scripts
Stored queries called from a script can populate forms with useful data. Use
this capability to grant limited database access to certain users. An example
of this might be to allow Level 1 technicians access to a user information form
through which they can update selected elements of a caller’s contact record.

Figure 2-4: Relationship of stored queries to an agent record
44 Chapter 2—Stored Queries

System Tailoring, Volume 3
The stored query called by the script retrieves data from the contacts file,
which is then displayed by the script. Once any updates are saved, the script
continues walking the Level 1 technician through the normal call-taking
workflow.

You may also execute a script from a stored query. For more information
about scripting, refer to Scripting in this volume.

Menu option searches
Stored queries can be run from the Expert Search menu option in search
forms for the principal ServiceCenter applications (Incident Management,
Change Management, Inventory/Configuration Management, etc.) or from
the Advanced Search menu option in the Database Manager. The appearance
of these options and the features they control are dependent upon the
capabilities defined for each user in the operator record. Refer to page 47 for
a discussion of capability words associated with stored queries.

To run stored queries from a ServiceCenter application:

1 Open an application from the startup menu.

For this example, we are using MAX.MANAGER’s menu with the capability
word query.stored entered in his operator record.

2 Click Change Management.

The Change Management menu is displayed.

3 Click Search Changes.

The Change Management search form is displayed.

4 Select Options > Expert Search.
Running Stored Queries 45

ServiceCenter
A QBE list of stored queries associated with Change Management and
available to max.manager is displayed.

5 Double-click on the query you want to run or select it and press Enter.

Records matching the query are displayed in a QBE list. If only one record
matches your search criteria, that record is displayed. If no change records
match, the following message is displayed in the status bar: No Changes found
to satisfy search argument.

6 Double-click on the record you want to view or select it and press Enter.

Figure 2-5: Change Management search form
46 Chapter 2—Stored Queries

System Tailoring, Volume 3
Capability Words

Access to certain stored query functions is controlled by capability words
which appear in a user’s operator record. The following capability words
provide a full range of querying capabilities in the standard system:

query.window

query.stored

query.stored.mod

QueryAdmin

query.window
This capability allows a user to access the query window. Users with this
capability cannot view stored queries, but may create their own query using
the tools provided in the query window.

To perform an Expert Search using the query window:

1 Select Options > Expert Search in a search form (Incident Management,
Change Management, or Inventory/Configuration Management).

The query window is displayed, showing a condition in the Query field that
reflects the last search performed. For example, if you have searched for
priority 1 tickets, either from the search form or with Expert Search, the
following query appears in the window:

priority.code#"1" and flag#true

Note: The Select and Store buttons are not available to users with
query.window as their only querying capability.
Capability Words 47

ServiceCenter
2 Click Keys to display the key structure as it appears in the Database
Dictionary record for the host file.

For example, from the Incident Management search form, the key structure
for the probsummary file is displayed.

3 Select a key to use in your search by entering the fields of the key in the Sort
Fields array. Refer to page 38 for a definition of the Sort Fields array.
48 Chapter 2—Stored Queries

System Tailoring, Volume 3
4 Click Fields to display a list of fields in the host file to use in constructing your
query.

5 Use the symbol buttons in the window to add operators such as &, >, =, or #
to your query.

6 If you want to delete your work, click Clear to clear the Query field.

7 Click the Search button to search the database using your query.

Records matching the query are displayed in a QBE list. If only one record
matches your search criteria, that record is displayed. If no records match, a
prompt is displayed stating, No records found.
Capability Words 49

ServiceCenter
query.stored
This capability word allows a user to execute, but not modify, stored queries.
Users with this capability word in their operator records see only a QBE list
of appropriate stored queries when executing an Expert Search. Double-click
on the query you want to run, or select it and press Enter.

Figure 2-6: QBE list of stored queries for the probsummary file
50 Chapter 2—Stored Queries

System Tailoring, Volume 3
query.stored.mod
Users with this capability word can view and select stored queries for a search
or modify a stored query using the tools provided in the query window. Users
cannot edit or delete existing stored queries, but can add new stored queries
to the database.

To modify a stored query:

1 Select Option > Expert Search in a search form (IM, CM, or ICM).

The query window is displayed.

2 Click Select to display a list of stored queries appropriate for this file.

3 Double-click the query you want or select it and press Enter.

The selected query is displayed in a read-only window with help text. Notice
that the buttons have changed in the system tray.
Capability Words 51

ServiceCenter
4 Press Enter to move the query as it appears to the query window.

5 Click Select to display the list of stored queries again.

6 Select another query from the list.

Your second selection appears by itself in the read-only window.

7 Click one of the option buttons in the system tray to create a new query using
both elements you have selected.

Click Append using & to append the stored query to the end of a query
you are creating using an and (&) operator.

Click Append using | to append the stored query to the end of a query
you are creating using an or operator.

Figure 2-7: Query-building options
52 Chapter 2—Stored Queries

System Tailoring, Volume 3
Click Insert using & to insert the stored query at the beginning of a
query you are creating using an and (&) operator.

Click Insert using | to insert the stored query at the beginning of a query
you are creating using an or operator.

8 Click the Search button to run the query without saving it.

— or —

9 Click Store to add your modified query to the querystored file.

The value in the Name field of the Stored Query Maintenance form is that of
the stored query last appended or inserted. The value in the Query field is the
new query you have created.

10 Rename the query with a unique name descriptive of your new query, add a
description, and any other controls you want.

11 Click Add.

You are returned to the search form. The following message is displayed
in the status bar: Query added to querystored file.

Figure 2-8: New stored query record.
Capability Words 53

ServiceCenter
QueryAdmin
This capability gives this user access to all query capabilities listed above and
also add/update access to the stored query database. A possible use of this
capability word would be in a condition statement in a menu record granting
database access for stored queries to specific users. To accomplish this, you
would need to create an access point (button or menu option) in Forms
Designer and an entry in the appropriate menu record. For example, you
might use the following condition to establish user rights:

index("QueryAdmin", $lo.ucapex)>0

Note: Users with SysAdmin capabilities have access to all stored query
functions. For more information on capability words, refer to the
System Administrator’s Guide.
54 Chapter 2—Stored Queries

CHAPTER

3
 Sequential Number Setup
This chapter shows you:

How to create a sequential number record.

How to update a sequential number record.

How to delete a sequential number record.

The Sequential Number file is used in conjunction with Format Control to
generate sequence numbers for records in a database. The sequence number
is automatically incremented or decremented when a new record is added.
For instructions on creating a Format Control record with sequential
numbering, refer to the Format Control documentation.
Sequential Number Setup 55

ServiceCenter
Accessing the Sequential Number File

The sequential number records are accessed from the Tools menu under the
Utility tab of the administrator’s home menu.

To access the Sequential Number file:

1 Click the Utilities tab.

2 Click the Tools button.

3 Click Sequential Numbers.

Figure 3-1: Blank Sequential Number Record
56 Chapter 3—Sequential Number Setup

System Tailoring, Volume 3
Sequential Number Fields

Note: The number must be stored as a character type to use either the prefix
or suffix.

Important: If you already have records in your database with employee
number fields, be sure that your last number used contains a
value greater than your existing employee number.

Class A unique identifier for the sequential number record.

Last Number The value from which the sequential numbering starts.
For example, to start the numbering at one, this value is
set to zero.

Decrement? A boolean value controlling whether the sequential
number increments or decrements. A value of FALSE
or NULL (blank) means increment. A value of TRUE
means decrement.

Description A short explanation of the use of this sequential
number.

Reset Point The value at which the sequential number resets to its
original starting value. If left blank, the sequential
number never resets.

Increment/Decrement
By

The value by which each number will increase or
decrease.

Length The total length of the number string for character type
sequential numbers. Numbers are left-padded with
zeros to reach this length. The length of the sequential
number varies if this value is zero or blank.

Prefix This string precedes the actual number for
character-type sequential numbers. For example, if the
desired format of a sequential number is EMP99999 to
number employee records, enter EMP in the prefix field.

Suffix This string follows the actual number for
character-type sequential numbers. For example, if the
desired format of a sequential number is 99999EMP,
enter EMP in the suffix field.
Accessing the Sequential Number File 57

ServiceCenter
Creating a Sequential Number Record

Sequential numbers can be set up to work in several different ways. The
examples that follow show you how to use each setup. The first example
shows how to set up a normal number counter.

Setup a simple number counter
The following examples illustrates how to create a record called employee in
the Sequential Number File to automatically increment employee numbers
starting with 1.

1 Access the Sequential number file.

2 Create a new file. Enter employee in the Class field for this example.

3 Enter 0 in the Last Number field to begin incrementing from zero.

4 Enter a short description for the number class.

For example: Employee ID number counter.

5 Enter 1000 in the Reset Point field.

6 Enter 1 for the Increment/Decrement field value.

Since the Decrement field was left blank, each number will increase by
one.

7 Click the Add button.
58 Chapter 3—Sequential Number Setup

System Tailoring, Volume 3
The new sequential number record is added to the sequential number file
(Figure 3-2 on page 59).

Using decrement in sequential numbers
You can use sequential numbers to decrement a starting value. For example,
you can decrement a quantity field when deleting stock from inventory.
This example shows you how to decrement a value starting at 1000.

1 For this example, enter active.devices in the Class field.

2 Enter 1000 in the Last Number field.

3 Enter a short description for the number class.

For example, enter Number of devices available.

4 Enter true in the Decrement field.

5 Enter 0 in the Reset Point field.

6 Enter 1 for the Increment/Decrement field value.

Figure 3-2: New incrementing sequential number record.
Creating a Sequential Number Record 59

ServiceCenter
Since the Decrement field was set to true, each number will decrease by one.

7 Click Add.

The new sequential number record is added to the sequential number file.

Using Prefix and Suffix in sequential numbers
This example uses prefixes and suffixes to assign character type ID numbers
to workstation devices. The format of the ID is: DEV<number>T
where DEV is a fixed character prefix, <number> is a sequential number
starting with 1, and T is a fixed character suffix.

1 For this example, enter devices in the Class field.

2 Enter 0 in the Last Number field.

3 Enter a short description for the number class.

For example, enter Workstation device ID counter.

4 Leave the Decrement field blank.

5 Enter 1000 in the Reset Point field.

6 Enter 1 for the Increment/Decrement field value.

7 Enter 5 in the Length field.

8 Enter DEV in the Prefix field.

9 Enter T in the Suffix field.

10 Click Add.

The new sequential number record is added to the sequential number file. The
first sequential number for the devices class will be DEV00001T.
60 Chapter 3—Sequential Number Setup

System Tailoring, Volume 3
Updating a Sequential Number Record

To update an existing sequential number record:

1 Access the sequential number record. Use the search function or select the
record from a record list.

2 Enter any changes to the fields you want to update.

3 Click Save.

Deleting a Sequential Number Record

To delete an existing sequential number record:

1 Access the sequential number record that you want to delete. Use the search
function or select the record from a record list.

For example, use the employee record created earlier in this chapter.

2 Click Delete.

You are prompted to confirm that you want to delete the record.

3 Click Yes.

The previous form is displayed with the message: Record deleted from the
number file.
Updating a Sequential Number Record 61

ServiceCenter
62 Chapter 3—Sequential Number Setup

CHAPTER

4
 Scripting
Under normal circumstances, the screen flow within ServiceCenter
applications is controlled by the Rapid Application Development (RAD)
code. Scripting allows you to interrupt the normal screen flow to display a
series of forms, or execute decision-tree processing without modifying the
original RAD code. Scripting does not affect the RAD screen flow.

Scripting is useful for any process that requires an operator to supply
prerequisite information. For example, during the incident determination
cycle, you can create a script flow for operator-entered data. Based on how a
caller replies to questions regarding the incident, your script determines
which screen the operator sees next. While the script is executing, the
operator-entered data is accumulated in a file variable which is returned to
the calling application when the script is complete.

During execution, when a script displays a form, it has the look and feel of a
customized RAD application and can be used in place of most RAD routines
that are designed to gather data from a caller. Each script can display a
standard ServiceCenter form and execute its Format Control record. The
Format Control display processing is executed before the script form is
displayed, and the add processing is executed after the operator selects the
OK option. If a Format Control definition fails (an error condition is
detected), the user is returned to the last script form displayed.
Scripting 63

ServiceCenter
Scripting is also beneficial when multiple complex decisions must be made in
order to reach a conclusion. For example, Change Management approval
requirement conditions are normally based on the data contents of one field
in the change record. Such a condition might be expressed as
header,risk.assessment in $cm3r>4. However, there may be circumstances
where the approval requirement condition is based on the values of several
different fields. For instance, there may be three fields that affect the approval
requirements: division, area, and department. Hard coding all the possible
combinations of these field values into condition statements in RAD would
involve a great amount of work and would be nearly impossible to maintain.
You can define these conditions in scripting records which do not display
forms, but which allow you to call a RAD subroutine or execute standard
ServiceCenter processing statements (similar to Format Control calculation
statements). These options allow for the manipulation of record data. At run
time, the script becomes a decision-tree which results in significant
processing reductions over the original method of RAD coding.
64 Chapter 4—Scripting

System Tailoring, Volume 3
Script Flow

The script flow defines the order in which the script panels are executed.
Scripts can move in a straight line from start to finish or branch into several
possible processing flows. A simple flow is shown below:

Script A
script.form.1

Script B
script.form.2

Script C
script.form.3

Calling Application

Calling Application
Script Flow 65

ServiceCenter
A more complex script flow is controlled by condition statements that must
evaluate to true before certain scripts can be executed. If none of the specified
conditions evaluates to true, the script flow is considered complete, and
control is passed back to the calling application.

Script A

Calling Application

Calling Application

Script B Script C

Script B2 Script C2Script C1Script B1

Condition 1 Condition 2

Condition 7

Condition 4 Condition 5 Condition 6Condition 3

Figure 4-1: Complex Script Flow
66 Chapter 4—Scripting

System Tailoring, Volume 3
Accessing Scripting

You can access the scripts file using any of three methods:

Menu button

Database Manager

Menu button
To access a script record from a menu:

1 Select the Utilities tab in the system administrator’s home menu.

2 Click Tools.

3 Click Scripts.

4 Click Search.

5 Double-click a record, or select it and press Enter.

Database Manager
Accessing scripting from the Database Manager gives you additional options
for manipulating the data. For example, you can perform a mass update to
change the cluster name for each panel in your script flow or you can unload
selected records to an external file.

To access a script record from the Database Manager:

1 Select the Toolkit tab in the system administrator’s home menu.

2 Click Database Manager.

3 Enter scripts in the Form field.

4 Click the search button or press Enter.

5 Select scripts from the QBE list.

6 Click Search.

A QBE list of existing script records is displayed.

7 Double-click a record, or select it and press Enter.

The selected record is displayed.
Accessing Scripting 67

ServiceCenter
Script definition fields
Name-unique name of the script. This is a required field. Select a name that
is descriptive of the script’s function. A possible naming standard is:

<file name>.<function>.<sequence>

In this form, <file name> is the name of the ServiceCenter file, such as
problem or cm3r, in which the script will be executed; <function> is a brief
description of the purpose of the script, such as priority, category, or
resolution; and <sequence> is a number within a cluster or within a certain
branch of a script flow.

Start-optional logical field that indicates if this script is the first one displayed
in a script flow. The value in this field has no effect on processing, but
indicates which scripts are used as starting points when querying.

Figure 4-2: Script record form
68 Chapter 4—Scripting

System Tailoring, Volume 3
Note: Script Flow execution does not have to start with a script defined as a
starting point.

Format-name of a standard ServiceCenter form displayed to the user when
this script is executed. This is an optional field. Forms used by a script may
be used elsewhere within ServiceCenter. The input fields displayed on all
forms within a script flow are related to one dbdict (problem, cm3r, device,
etc.). You can use $ variables in any script form; however, if you wish to
retain their values in the $script file variable, you must create the necessary
Format Control statements to copy the variables to input fields.

Cluster-optional field used to identify related scripts by grouping them
under one common name. The value in this field has no effect on processing
but is useful when querying.

Display Screen-optional field naming the unique screen ID of a
displayscreen file record from the Display application. The options defined
in this record named are available when the script form is displayed. If this
field is blank, the system uses the default Database Manager options.

Skip Display-optional logical field that controls whether or not to skip
displaying the script’s form. When this condition evaluates to true, the form
is not displayed, and processing determines which script should be executed
next. The default is false.

Bypass Cond-optional logical field that specifies the condition that must
exist for a user to bypass the script. If this condition evaluates to true, a Skip
button is displayed in the system tray. The default is false. When Skip is
selected, the script flow currently executing is terminated, and processing
control returns to the calling application. The system administrator always
has the authority to bypass the script.

Enter=Continue?-optional logical field that specifies the condition that must
exist for the Enter key to have the same function as the OK button. If this
condition evaluates to true, users can press either the Enter key or click OK
to continue script processing. If the condition evaluates to false and the user
presses Enter, the current script is re-displayed. The default is false.

Application-optional field naming a RAD application to call when this script
is executed.
Accessing Scripting 69

ServiceCenter
Names-parameter names for the RAD application named in the Application
field.

Values-parameter values for the RAD application named in the Application
field.

Statements-optional arrayed statements field that defines the processing
statements to be executed when the script is processed. For example, specific
values can be assigned to fields when this script is executed.

Next Script-name of the next script to be executed when the associated
condition in the Condition field evaluates to true.

Condition-logical field that specifies the condition that must exist for the
next script to be executed. At processing time, these conditions are evaluated
from the top down. The script associated with the first condition to evaluate
to true is the next script that is executed. If no exits are specified, or if all
conditions evaluate to false, the script flow is considered complete and
processing control returns to the calling application. Blanks in the condition
field are treated the same as an evaluation of false. To base an exit condition
on the value of an input field, use the $script file variable. For example, if the
input field name is to be tested for a value of joe, the condition statement
would be written as follows as:

name in $script=“joe”

Due to processing considerations, the Next Script and Condition fields are
independent arrays. You must scroll each array separately to keep the script
names synchronized with their corresponding conditions.

Note: The Script maintenance applications check for Format Control add,
and display options on the scripts form. You can define Format
Control statements, if desired.
70 Chapter 4—Scripting

System Tailoring, Volume 3
Processing Flow

Each script can execute a ServiceCenter form, displayoptions, a RAD
subroutine, and condition statements. Note that each script can use all of
these options. The sequence of this processing is:

1 Execute any display Format Control processing associated with the script’s
form.

2 Display the script form.

3 Execute any add Format Control processing associated with the script’s form.

4 Execute statements defined in the script.

5 Execute the RAD application defined in the script.

Creating a Script

There are four steps to building a script:

1 Design and diagram the script flow, showing the names of all script panels
and forms.

2 Design and create the script forms using Forms Designer. Create any support
links and Format Control that might be necessary for your forms.

3 Create the script definition records.

4 Add your script to the ServiceCenter application, Format Control record, or
stored query record from which it will be executed.

Diagraming the script flow
Develop a map of the entire flow, showing the name of the form (if any)
displayed by each panel, and the conditions controlling the flow from panel
to panel. Follow the map throughout the scripting process to avoid simple
errors that will prevent your script from executing properly. Figure 4-3 on
page 73 shows part of a conditional flow designed to gather the necessary
information to open an incident ticket directly from a script. For the
purposes of this example, only two of the conditional exits for
category-specific information have been diagramed.

The first panel of this script provides an incident ticket number for your
incident. The second panel displays a form requesting category and asset
information. Depending upon the category selected, the third panel displays
a category-specific form before exiting back into the common flow.
Processing Flow 71

ServiceCenter
Successive forms gather the remainder of the information needed to open the
ticket: assignments, details, service agreements, and contacts. When the
script exits, the new ticket, containing all the data you have accumulated, is
displayed and can be added to the database.

Notice that the two conditional script panels for the hw.desktop and
hw.mainframe categories display the same form. You may write a single
condition statement to include all the categories using that form.
72 Chapter 4—Scripting

System Tailoring, Volume 3
s c r ip t: p m .o p e n .1
fo rm : p m .s e le c t.c a te g o ry

s c r ip t: p m .o p e n .2
fo rm : p m .a s s ig n

s c r ip t: p m .o p e n .3
fo rm : p m .d e ta ils

s c r ip t: p m .o p e n .4
fo rm : p m .a g re e m e n ts

In c id e n t M a n a g e m e n t

s c r ip t: p m .o p e n .5
fo rm : p m .c o n ta c t

a p p lic a tio n : a p m .e d it .p ro b le m

In c id e n t M a n a g e m e n t

s c rip t: p m .h w 1
fo rm : p m .h w 1

s c rip t: p m .h w 2
fo rm : p m .h w 2

c a te g o ry in $ s c rip t= "h w .d e s k to p " o r c a te g o ry in
$ s c r ip t= "h w .m a in fra m e "

c a te g o ry in
$ s c rip t= "h w .n e tw o rk :"

s c r ip t: p m .n u m b e r
a p p lic a t io n : g e tn u m b .fc

Figure 4-3: Scripting Flow Chart
Creating a Script 73

ServiceCenter
Creating the forms
If your script requires special forms, create them now using the Forms
Designer utility. Be sure to follow the naming conventions defined in your
map. The examples in Figure 4-5 on page 76 show the script forms used to
gather information about incidents. In this example, the second script panel
(pm.open.1) displays the pm.select.category form, allowing the technician
taking the call to select category and asset information. The category-specific
forms required can be created by copying all the related fields directly from
the incident ticket update form (e.g., problem.hw.desktop.update.g) for that
category. The next panel in the common flow (pm.open.2) displays the
pm.assign form for assignment group information and so on, until all the
necessary data has been recorded about the incident. The final script panel,
pm.open.5, creates a new incident record using all the accumulated data.

Using Fill boxes in script forms
For a Fill box to function properly on a script form, you must create the
following additional records:

Link record: Select Options > Link from Forms Designer and establish a
link between the field in your script form and the field in the source file.

Format Control record: Select Options > Format Control from Forms
Designer and add a Format Control record granting Fill privileges.

– or –

Displayscreen record: The displayscreen controls the options that are
displayed with a form. Create a displayscreen record in which you define
displayoptions for your script forms, including a Fill button. Enter the
Screen ID of your new record in the Display Screen field of each script
definition that displays a form in which a Fill box appears. You may create
unique displayscreen records for each form in the script flow if necessary,
or associate a single record with all the forms.

Note: You can use a combination of displayscreen records and Format
Control to activate Fill buttons in your script.

If you create a displayscreen record and wish to bind its options to more
than one script form, you must enter the local variable $L.script.format in
the Format field of the displayscreen record. This variable is hardcoded
into the script.execute application.
74 Chapter 4—Scripting

System Tailoring, Volume 3
When defining displayoptions for your script forms, refer to the following
list of possible actions that are hardcoded into the script.execute
application. Your choice of options in the Action field is limited to the
values in this list:

Note: Use the ok action when defining a Continue option.

Figure 4-4: Displayscreen record using the scripting local variable

Fill option

Local variable

Action

ok back cancel skip views

extend find fill validatefield useroptions

redraw re draw closeapplication
Creating a Script 75

ServiceCenter
pm.agreements

pm.details

pm.assign

pm.select.category

pm.contact

pm.hw1
76 Chapter 4—Scripting

System Tailoring, Volume 3
Defining the scripts
After diagramming the flow, the next step is to create each panel in the script
flow. Make sure to follow the naming conventions for scripts and forms you
have established in your script map.

To create a script definition:

1 Access a blank script definition record. Use one of the procedures described
in the Accessing Scripting section beginning on page 67.

2 Complete the definition for the first script in your flow.

For example purposes, enter the following values:

Note: The value for Start is true, indicating that this is the first panel in the
script flow.

Field Value Parameter Values/Conditions

Name pm.number

Start true

Application getnumb.fc

Name record

prompt

text

name

string1

$script

number

string

Incident Management

PM

Next Script pm.open.1 true
Creating a Script 77

ServiceCenter
This panel associates a properly incremented incident ticket number with the
data you are going to accumulate from the caller. This panel calls a RAD
application only and does not display a form.

3 Click New to add your panel to the scripts database.

Script record added appears in the message bar.

4 Click Back to return to a blank script definition form.

5 Complete the definition for the second script in your flow.

In this example, we would enter the following values:

Figure 4-6: Sample script definition

Field Value Condition

Name pm.open.1

Format pm.select.category

Skip Display false
78 Chapter 4—Scripting

System Tailoring, Volume 3
Note: This script lists conditional exits for only three categories. An actual
script would require enough panels and conditions to handle all the
categories in your system.

6 Click New to add your panel to the scripts database.

7 Create the remainder of the script definitions in your flow.

In this example, we must create specific definitions for each category
(pm.hw1 and pm.hw2), as well as the remainder of the scripts in the common
flow (pm.open.2 through pm.open.5). Make sure that each panel except the
last panel in the flow has the name of the next panel to execute in the Next
Script field.

In this example, panel pm.open.5 displays a form and calls the RAD
application apm.edit.problem. This application displays any information
you have gathered in an incident ticket and allows you to abandon the
incident or add it to the database.

Bypass Cond false

Next Script pm.hw1

pm.hw2

category in $script=“hw.desktop” or
category in $script=“hw.mainframe”

category in $script=“hw.network”

Field Value Condition
Creating a Script 79

ServiceCenter
Leave the Next Script field blank in pm.open.5. This is the last panel in the
script flow and must exit back to the calling application (Incident
Management).

Executing the script
Now that you have created your forms and the script definitions to display
them, you must decide how you want to execute the script. You have several
choices:

Incident Management (using profile records)

Display option (from within an application)

Format Control

Stored query

Figure 4-7: Last script panel in the flow
80 Chapter 4—Scripting

System Tailoring, Volume 3
Incident Management
Profile records within Incident Management allow you to specify the script
to execute when a user opens a new incident ticket. You can design a script
that displays forms containing only those fields necessary for recording the
particulars of an incident. For example, if the technician taking the call selects
hw.network as the incident category, a condition statement in the script exits
to a panel that displays a network hardware related form. When the script has
finished, the record carrying all the necessary information is created, and the
technician is ready to work on another issue.

To define an initial script in a Incident Management profile record:

1 Click Incident Management in the system administrator’s home menu.

2 Click Security Files.

3 Click Search/Add in the incident Profiles structure of the Security Files tab.

4 Enter a profile in the Profile field and press Enter.

5 Select the Views tab in the profile record.

6 Check the Initial Script check box and enter the name of the first panel of
your script in the adjacent field.

In this example, pm.number has been entered.
Creating a Script 81

ServiceCenter
7 Click Update to save your changes.

The following message appears in the status bar: The record has been updated.

Displayoption
Use a displayoption to create a button or an Options menu selection on a
ServiceCenter form from which to execute your script. For information on
the Display application, refer to Display Application in this volume.

To execute a script from a displayoption:

1 Determine the screen ID of the form for which you want to define the option.

You may use the RAD debugger for this purpose or look up the ID in the
appendix of Display Application.

2 Open a blank displayoption record using one of these methods:

Enter do in the command line and press Enter.

Figure 4-8:

6

82 Chapter 4—Scripting

System Tailoring, Volume 3
Enter displayoption in the Form field of the Database Manager dialog
box and click Search or press Enter.

Click Display Options in the Tools menu (accessed from the Utilities
tab in the system administrator’s home menu).

3 Enter the screen ID for the form you want in the Screen ID field.

4 Click Search or press Enter.

The displayoption records for that form are listed.

5 Scan the list of options to determine an available number for your new
option.

Remember: option numbers < 200 appear as buttons in the system tray, and
option numbers > 200 appear as Options menu items.

6 Create the record from scratch or modify an existing record.

7 Enter script.execute in the RAD Application field and pass in the following
parameters:

8 Click Add.

Format Control
Scripting can be called from the Subroutines process of Format Control.
When executing a script from Format Control, it is important to place the
script call as the last item on the Subroutine call list. Scripting, itself, calls
Format Control, and it is conceivable that the Format Control records
associated with the forms displayed by the script flow could manipulate data
associated with the initial Format Control.

To execute a script with Format Control:

1 Select the Utilities tab in the system administrator’s home menu.

2 Click Tools.

3 Click Format Control.

Name Value

file $L.filed

name Name of the first script panel in the flow
Creating a Script 83

ServiceCenter
4 Enter the name of the Format Control record you want to edit in the Name
field.

For the previous example, enter apm.quick.

5 Click Search or press Enter.

6 Click Subroutines or select Options > Subroutines.

7 Enter script.execute in the Application Name field and pass in the following
parameters:

8 Set the Before field to true, or to a condition that evaluates to true, to execute
the script before any other processing takes place.

9 Set the Display field to true, or to a condition that evaluates to true, to
execute the script before apm.quick is displayed.

10 Click Back twice.

11 A prompt is displayed asking if you want to save the changes you have made
to the record.

12 Click the OK button.

Stored query
A script executed from a stored query can facilitate a search for records by
allowing the user to select precise search parameters. The ServiceCenter
standard system contains an inactive script that can be executed from a
stored query to display a list of key words relating to previous incidents. The
stored query then uses the key word selected to search for incidents of a
similar nature.

Name Value

file $file

name Name of the first script panel in the flow
84 Chapter 4—Scripting

System Tailoring, Volume 3
This stored query can be run from an open incident ticket using either
Format Control or a displayoption (Screen ID: apm.edit.problem). In this
example, a displayoption has been created that adds an option called
Probable Cause to the Options menu of an open incident ticket. This option
runs the stored query called probcause.user. For instructions on using stored
queries, refer to Stored Queries in this volume.

Figure 4-9: Displayoption record that calls a stored query
Creating a Script 85

ServiceCenter
The stored query, probcause.user, executes the script called probcause.user.1.

The script, probcause.user.1, has a single panel which displays the
probcause.user.1 form. The condition for exit (null($key.words)) requires the
user to choose a key word before allowing the script to exit.

Figure 4-10: Stored query maintenance record that executes a script
86 Chapter 4—Scripting

System Tailoring, Volume 3
Important: Scripts executed from stored queries typically set values into the
same fields used by the query to retrieve records. In this example,
the common field is key.words.

Figure 4-11: Script definition executed from a stored query.
Creating a Script 87

ServiceCenter
The script is executed before the form from the query (probable.cause.user) is
displayed. The form displayed by the script is called probcause.user.1 and
supplies the query form with a key word for searching.

When the user selects a key word and clicks OK, the script exits. The stored
query then uses the key word to search the probcause file for matching
entries. If more than one match is found, the system displays a QBE list of
possible causes for your incident.

Double-click a selection to view the details with the probable.cause.user form.
When you have finished viewing all the choices, click Cancel to return to the
incident ticket.

Figure 4-12: Probable cause key word script form
88 Chapter 4—Scripting

System Tailoring, Volume 3
Deleting a Script

You can delete script panels and their related forms manually or allow the
system to delete all the elements of a script flow automatically.

To delete a script flow automatically:

1 Select the first script in the flow using the procedures described in Accessing
Scripting on page 67.

Note: If you select any other script panel in the flow, you may be given a
partial listing only. Partial lists are stopped at any script panel in the
flow whose display is controlled by a conditional statement. This
feature allows you to isolate a single conditional branch of a script flow
for deletion.

2 Click Delete.

Figure 4-13: Probable cause record accessed from a stored query
Deleting a Script 89

ServiceCenter
A confirmation prompt is displayed, asking if you want to delete the related
forms as well.

3 Select the Delete associated forms checkbox if you want to have the system
delete all related forms automatically.

4 Click the Delete button.

All the script panels in the flow and all the associated forms are listed. Scripts
or forms used elsewhere in the system are not displayed.

5 Click the Delete button to delete all the items listed in the form.

If the deletion procedure has been successful, the following message is
displayed in the status bar: The Script/Format delete process is complete. Check
for error messages.

6 Click the Cancel button to exit the delete routine and return to the last form
displayed.

Script Reports

Script reports allow you to display your entire flow with different views. You
may view the entire flow or just a part of it. You can display and print the
details of each panel for comparison or troubleshooting. You have three
choices of script reports you can print:

Script Flow—generates a summary report of all possible script flow paths
based on the assumption that the currently displayed script panel is the
starting point of the flow. This report allows you to isolate each separate
branch within your script.

Script Detail—lists all the fields in the script definition record and the
values you have entered for the currently displayed script panel.

Script Tree—generates a summary report showing the logical flow of the
script panels in an outline form. The currently displayed script panel is
used as the starting point. This report allows you to see the relationships
of panels to one another at a glance.
90 Chapter 4—Scripting

System Tailoring, Volume 3
Each report has the same header, printed in the default font for your printer.
The following is a sample header:

To print a report on a script:

1 Access a script definition record, using one of the procedures described in
Accessing Scripting on page 67.

You may report on any script panel in the flow. If you want to view the entire
flow, run the report from the first panel.

2 Select Options > Print.

ServiceCenter

Date:Print of spool record

07/31/2000 11:51

Operator: falcon Selection:

Sequence:

Name: Script Path PrintNumber:843Page: 1
Script Reports 91

ServiceCenter
You are prompted to select a report type.

3 Select one of the radio buttons.

4 Click the Print button.

Figure 4-14: Print option for script reports
92 Chapter 4—Scripting

System Tailoring, Volume 3
Script flow
Script flow reports may have more than one page depending upon the
complexity of the script, particularly if conditional exits are defined. The
following is an example of the first page of a script flow report, without the
header:

NameFormat

ClusterBypass

 Next Panel Condition

..

Script Path Summary List

pm.number

pm.open.1

pm.hw2

pm.open.2

pm.open.3

pm.open.4

pm.open.5

pm.number
Script Reports 93

ServiceCenter
Script detail
 The following is an example of a script detail report for the first panel in a
flow, without the header. You may print a detail report on any panel in the
flow.

NameContents

Name: pm.number

 Format:

 Start: true

 Cluster:

 Skip Display:

 Bypass Cond:

 Enter=Continue?
94 Chapter 4—Scripting

System Tailoring, Volume 3
Script tree
In the example below, the report shows the hierarchy of each panel in the
flow and the conditional statements that control the exits. This report can
span several pages, depending upon the complexity of the conditional
branches.

Script Flow

 pm.number.cond:

 applic: getnumb.fc

 pm.open.1 cond: true

 pm.hw2 cond: category in $script=“hw.network”

 pm.open.2 cond: true

 pm.open.3 cond: true

 pm.open.4 cond: true
Script Reports 95

ServiceCenter
96 Chapter 4—Scripting

CHAPTER

5
 Plug-ins
ServiceCenter plug-ins permit tight data and process integration between
ServiceCenter applications and external automation or data sources. While
the ServiceCenter system has a number of outstanding integration and
workflow capabilities, there are times when a low level extension of the
ServiceCenter platform is required. Plug-ins are designed expressly for this
purpose.

There are a number of technologies that can be integrated directly into
ServiceCenter, for example:

User authentication can occur using a third-party scheme

ServiceCenter data records can be populated from external sources

External data sinks can be populated from ServiceCenter data records

Client integration can be created directly with services on or connected to
the client machine

CORBA services can be invoked to provide inbound or create outbound
data

Entirely new scripting languages, such as ECMA script or PERL can be
invoked

Java classes can be instantiated and invoked

The plug-in model follows that used by many popular technologies,
including Web browsers, the Java Virtual Machine (through JNI), scripting
engines such as Java script or PERL.
Plug-ins 97

ServiceCenter
Plug-ins can be called from anywhere in ServiceCenter where RAD is
executed. Some examples of points where plug-ins can be called:

Through a trigger

Through Format Control

Through a link record

Through a script

Through Display Options

Through the Document Engine

Plug-ins are supplied by Peregrine, its partners, or written by customers.

Plug-In Platform Support
ServiceCenter plug-ins are supported on the following platforms:

AIX

HP-UX

Solaris

Windows NT 4+

Linux

Plug-In Functions
There are only three functions that are called by the ServiceCenter
executables. The functions are called to initiate and terminate a plug-in, and
to execute a function called from the RAD program

SCPluginInitialize
SC_EXPORT int SCPluginInitialize(PSCPLUGIN_ENV penv)

SCPluginTerminate
SC_EXPORT int SCPluginTerminate(PSCPLUGIN_ENV penv)

SCPluginExecute
SC_EXPORT int SCPluginExecute(PSCPLUGIN_ENV penv, int iArgCount,
PDATUMARRAY pdArray);
98 Chapter 5—Plug-ins

System Tailoring, Volume 3
Installing a Plug-In
The Windows DLL or UNIX library that contains the plug-in code, and the
plug-in’s dependent libraries (if any) must be available in the path of the
ServiceCenter executable that calls the plug-in.

If your plug-in is called only from RAD and is used in an express client
environment (recommended), then the plug-in can reside only on the server.

Plug-ins are configured in the sc.ini file, which must reside in the current
working directory of the ServiceCenter server or client executable.

The format of the plugin-related entries in sc.ini is:

pluginN:<libraryname>

where N is the sequence number assigned to the plugin starting with “0” for
the first plugin, and <libraryname> is the name of the DLL or shared library.

For example, a sc.ini file might contain:

plugin0:sample.dll

plugin1:anotherPlugin.dll

plugin2:yetAnotherPlugin.dll

You can have any number of plugin definitions in your sc.ini file, but the
sequential numbering must start with 0 and continue without interruption.
Any gaps in the numbering will cause higher-numbered plugins not to be
loaded.

For example, the following sc.ini file is badly formed. Plugin1 will not be
loaded because it is the first one and it is not assigned the number zero:

plugin1:neverLoaded.dll

Calling a Plug-In from RAD
RAD is the expression language of ServiceCenter and is used throughout the
system for tailoring. Calling the plug-in from RAD involves a simple
expression:

$return = plugin(name, [var1, … varN])
 99

ServiceCenter
Each operand, including the return value, is a RAD variable. The variable can
be either a part of a ServiceCenter record (name in $file for example) or a
simple variable such as $user. The variables are passed to the plug-in by
reference, meaning that any changes made to a variable by the plug-in are
reflected to the RAD calling routine.

Operands

$return
Specifies a RAD variable that will indicate the success or failure of the plug-in
function call. By convention, a zero return indicates success; a non-zero
return indicates some sort of failure. If the return value is negative, it
indicates an error locating or calling the plug-in. If the return value is
positive, the plug-in has indicated some sort of condition. It is up to the
plug-in author to create and document the various return codes.

name
Indicates the name of the plug-in. As each plug-in is loaded, it identifies itself
with a character name “java”, or “perl” for example. Consult the plug-in
documentation for the proper name.

var1, … varN
Zero or more variables that are passed to the plug-in. The variables are
passed by reference, meaning that they may be input or output variables as
determined by the plug-in code. The proper number of arguments should be
passed to the plug-in.

Supported Types
The following types of RAD variables are currently supported for use in
plug-ins:

NUMBER

CHARACTER

DATETIME

BOOLEAN

FILE

ARRAY

STRUCTURE
100 Chapter 5—Plug-ins

System Tailoring, Volume 3
The NUMBER type is implemented as a the C/C++ type double and can be
changed to int or long by casting.

Creating a Plug-In
Creating a plug-in requires that you write a DLL for use on Windows systems
or a shared library for use on UNIX systems. The library requires methods
to initialize and terminate the plug-in environment and to execute a plug-in
function when called from the RAD language.

Peregrine provides a sample plug-in that simply dumps the input variables to
the ServiceCenter log file. Peregrine also provides a template to help start
writing a plug-in.

Include file
The include file is located in the “include” directory of the ServiceCenter
“plugins” distribution directory.

scplugin.h

Defines the plug-in interface, which consists of:

1 A set of C/C++ functions to be implemented by your DLL or shared library

SCPluginInitialize

SCPluginExecute

SCPluginTerminate

2 A set of API macros for manipulating DATUM types

3 A structure called SCPLUGIN_ENV which is used as a communication area
between ServiceCenter and your plug-in

DATUMs
Like most loosely typed environments (JavaScript, Visual Basic, ActiveX,
etc.), ServiceCenter provides variables to the scripting language through a
coercible data type. In ServiceCenter, the type is called a DATUM. DATUMs
are similar to other scripting language “variants” both in structure and
function. Inspecting and changing DATUMS is simplified through a number
of macros which are described below.
 101

ServiceCenter
To give you some idea of how ServiceCenter implements DATUMs, a very
simplified view of a DATUM is given below. However, plug-ins do not map
DATUMs directly using a structure such as the one given below. Instead, the
macros defined in scplugin.h describe the DATUM as a void pointer, and
provide a set of macros which call functions to manipulate DATUMs.

This is done to ensure that plug-ins do not have to be recompiled to work
with future versions of ServiceCenter, and to make sure that if the internal
form of the DATUM changes within ServiceCenter in the future, an older
plug-in will not inadvertently corrupt data.

typedef struct datum
{
 union
 { /* fixed-length value of datum */
 FLOAT da_float; /* NUMBER */
 SCALAR_TIME da_time; /* TIME */
 INT16 da_int16; /* BOOLEAN,LOCAL,OPERATOR */
 struct rel_blk * da_rel; /* RELATION */
 } da_fixed;
 STRING da_varying; /* STRING */
 char da_type; /* type of datum */
 char da_state; /* state of datum */
} DATUM;
typedef DATUM * PDATUM;

Note that the DATUM contains a structure called a STRING. In
ServiceCenter, the STRING is not zero or null-terminated. Internally,
ServiceCenter maintains the current and maximum length of the STRING
for efficiency sake, similar to a Java StringBuffer.

Note: All string values exchanged between ServiceCenter and the plug-in are
null-terminated C strings. This is done for the convenience of the
plug-in programmer.

Macros
Macros provide a simple way for the plug-in developer to manipulate
ServiceCenter DATUMS and their contained STRINGs. To use the macros,
the pointer to the environment variable must be named “penv”.

Note: Macros are all upper case.
102 Chapter 5—Plug-ins

System Tailoring, Volume 3
Macro Definitions

int DA_TYPE(PDATUM pd)

Returns the integer value of the type code for the DATUM pointed to by pd.
To convert this value to a string, call DA_TYPENAME using the type code.

char * DA_GETTYPENAME(int nTypeCode)
Returns a pointer to a null-terminated string containing the name of the type
of DATUM indicated by nTypeCode.

Note: You must free any pointer returned by this macro by calling
DA_FREESTRING. All character pointers returned by routines
beginning with “DA_GET” (DA_GETTYPENAME,
DA_GETSTRING, DA_GETTIMESTRING, etc.) must be freed using
DA_FREESTRING.

int DA_ISNULL(PDATUM pd)
Returns an integer truth value indicating whether the DATUM pointed to by
pd is null or not. The C++ version of the DA_ISNULL macro returns bool.

int DA_ISAGGREGATE(PDATUM pd)
Returns an integer truth value indicating whether the DATUM pointed to by
pd represents an aggregate type, i.e. a STRUCTURE or an ARRAY. The C++
version of the DA_ISAGGREGATE macro returns bool.

int DA_LENGTH(PDATUM pdAggregate)
Returns an integer indicating how many entries there are in the aggregate
DATUM pointed to by pd. Only a STRUCTURE or ARRAY DATUM can be
passed to DA_LENGTH.

PDATUM DA_FIRST(PDATUM pdAggregate)
Returns a pointer to the first contained DATUM of an aggregate DATUM, or
NULL if pdAggregate is not an aggregate DATUM, or if the aggregate
DATUM is NULL, i.e. the DA_ISNULL macro would return true for each
contained DATUM.
 103

ServiceCenter
PDATUM DA_NEXT(PDATUM pdAggregate, PDATUM pdPrev)
Returns a pointer to the next contained DATUM of aggregate DATUM
pdAggregate after the previously retrieved DATUM pdPrev, or NULL if
there is no next DATUM following pdPrev. NULL is also returned if
pdAggregate is not an aggregate DATUM, or if pdPrev is not contained
within pdAggregate.

PDATUM DA_LAST(PDATUM pdAggregate)
Returns a pointer to the first contained DATUM of an aggregate DATUM, or
NULL if pdAggregate is not an aggregate DATUM, or if the aggregate
DATUM is NULL, i.e. the DA_ISNULL macro would return true for each
contained DATUM.

PDATUM DA_ITEM(PDATUM pdAggregate, int index)
Returns a pointer to the contained DATUM within aggregate DATUM
pdAggregate represented by the integer value index.

double DA_GETNUMBER(PDATUM pd)

Returns the double value of the DATUM pointed to by pd. Your program
can cast this value to a different numeric data type such as int or long.

DA_SETNUMBER(PDATUM pd, double lValue)

Sets a DATUM pointed to by pd to the type “NUMBER” and gives it the
value lValue. Any numeric type (such as int or long) may be passed to the
DA_SETNUMBER macro. The value is coerced to a double by the macro.

int DA_GETBOOLEAN(PDATUM pd)

Returns the integer truth value of the BOOLEAN DATUM pointed to by pd.
Returns an integer truth value indicating whether the DATUM pointed to by
pd is null or not. The C++ version of the DA_GETBOOLEAN macro returns
bool.

DA_SETBOOLEAN(PDATUM pd, int bTrue)

Sets a DATUM pointed to by pd to the type “BOOLEAN” and gives it the
value bTrue. A bool value should be passed to the C++ version of
DA_SETBOOLEAN.
104 Chapter 5—Plug-ins

System Tailoring, Volume 3
char * DA_GETSTRING(PDATUM pd)
Returns a pointer to a null-terminated character string containing the string
value of the DATUM pointed to by pd. Your program is responsible for
passing this pointer to DA_FREESTRING when the character string is no
longer needed. Failure to do this will cause a memory leak in the
ServiceCenter server.

Warning: Do not call “free” or “delete” in your plugin code with pointer
values returned by DA_GET routines such as DA_GETSTRING.
Doing so will cause the ServiceCenter processes executing your
plugin code to crash. You must call DA_FREESTRING instead.
Also, do not call DA_FREESTRING with pointer values allocated
by your plugin code using “malloc”, “new”, or other storage
allocation routines. Doing so will cause heap corruption and an
eventual crash of all ServiceCenter processes running your plugin
code.

DA_FREESTRING(char* pszString)
Frees the storage pointed to by pszString. Must only be called with values
returned by one of the DA_GET routines, such as DA_GETTYPENAME,
DA_GETSTRING, DA_GETTIMESTRING, DA_GETFILENAME, or
DA_GETFIELDNAME

DA_SETSTRING(PDATUM pd, char * pszValue)

Sets a DATUM pointed to by pd to the type “STRING” and gives it the value
contained in the null-terminated string pszValue. The
null-terminatednull-terminated string pszValue is allocated by your plug-in
and is not modified or freed by ServiceCenter. You are responsible for
managing any storage represented by pszValue.

char * DA_GETTIMESTRING(PDATUM pd)
Returns a pointer to a null-terminated character string containing the
date/time value for the DATUM pointed to by pd, as a GMT time. For
absolute date/time values, the returned string is formatted as
“YYYY/MM/DD hh:mm:ss”, for example: “2002/04/22 14:00:00”.
 105

ServiceCenter
For elapsed time values a string formatted as “ddd hh:mm:ss:” where “ddd”
represents the number of days and is subject to zero suppression. Only as
many digits as needed to represent the number of days will appear. The
“ddd” part will not appear if the elapsed time is less than one day. Your
program is responsible for freeing the storage represented by the returned
pointer by calling DA_FREESTRING. For example, “60 13:00:00”.

Note: The string format used by this function will change in a future release
of ServiceCenter to be ISO-8601 compliant.

DA_SETTIMESTRING(PDATUM pd, char * pszTimeString)

Sets a DATUM pointed to by pd to the type “TIME” and gives it the value
represented by pszTimeString. The string pointed to by pszTimeString must
be formatted exactly the way that DA_GETTIMESTRING formats them, and
must be expressed in GMT time. The null-terminated string pszTimeString
is allocated by your plug-in and is not modified or freed by ServiceCenter.
You are responsible for managing any storage represented by pszTimeString.

Note: The string format used by this function will change in a future release
of ServiceCenter to be ISO-8601 compliant.

DA_SETCURRENTTIME(PDATUM pdFile)

Sets a DATUM pointed to by pd to the type “TIME” and gives it the current
date and time at the ServiceCenter server.

char * DA_GETFILENAME(PDATUM pd)
Returns a pointer to a null-terminated character string containing the string
value of the filename for the FILE DATUM pointed to by pdFile. Your
program is responsible for passing this pointer to DA_FREESTRING when the
character string is no longer needed. Failure to do this will cause a memory
leak in the ServiceCenter server. See additional cautions described above
under DA_GETSTRING.

char * DA_GETFIELDNAME(PDATUM pd, char* pszFieldRef)
Returns a pointer to a null-terminated character string containing the
fieldname for the field pszFieldRef in the FILE represented by the FILE
DATUM pointed to by pdFile. A field reference is a null-terminated string.
The null-terminated string pszFieldRef is allocated by your plug-in and is
not modified or freed by ServiceCenter. You are responsible for managing
any storage represented by pszFieldRef.
106 Chapter 5—Plug-ins

System Tailoring, Volume 3
Field references are traditional ServiceCenter symbolic and/or relative field
names such as “header,number” or “header,1” or simply “1”. For files not
containing structures or arrays, column names can be retrieved using either
the simple column name, such as “number”, “description”, etc. or the
relative field number in string form, such as “1”, “2”, “3”. Expressions such
as "header,1" are only needed when the file contains arrays or structures such
as "header" or "trailer" like the ServiceCenter problem file.

Your program is responsible for passing the returned pointer value
containing the field name to DA_FREESTRING when the string is no longer
needed. Failure to do this will cause a memory leak in the ServiceCenter
server. See additional cautions described above under DA_GETSTRING.

PDATUM DA_GETFIELD(PDATUM pd, char* pszFieldRef)

Returns a pointer to the DATUM for the field represented by pszFieldRef in
the FILE represented by the FILE DATUM pdFile. A field reference is a
null-terminated string formatted as described above under
DA_GETFIELDNAME. The null-terminated string pszFieldRef is allocated by
your plug-in and is not modified or freed by ServiceCenter. You are
responsible for managing any storage represented by pszFieldRef.

SC_LOGPRINT((printf style arguments))
Prints a line to the ServiceCenter log file. You use SC_LOGPRINT exactly as
you would “printf”, except that you must supply an extra set of parentheses
around everything passed to SC_LOGPRINT. This is necessary so that you
can pass an arbitrary number of arguments to the macro. Macros do not
support a variable number of arguments very well in C/C++. Also, a newline
is automatically supplied.

Example of the use of SC_LOGPRINT:

SC_LOGPRINT(("Successful initialization for plugin %s",
pszPluginName));
 107

ServiceCenter
108 Chapter 5—Plug-ins

CHAPTER

6
 The Wizard Creation Tool
The Wizard Creation Tool lets implementers and administrators add wizards
to modules within ServiceCenter that assist users with certain tasks. For
example, using the Wizards Creation Tool you can define a wizard that assists
users in adding contacts to a database. The Wizard Creation Tool was used
to create several wizards that ship with this release of ServiceCenter.

Accessing the Wizard Creation Tool

The Wizard Creation Tool is found under the Toolkit tab on the system
administrator’s main menu.

Creating a Wizard
To create a wizard, open the Wizard Creation Tool and fill in the fields that
will define the wizard. Once you have finished defining the wizard, you can
call the wizard from any existing format using display options or format
control. For more information on the fields, see Field Definitions on
page 112.
The Wizard Creation Tool 109

ServiceCenter
Each record within a wizard file represents a whole wizard. Define a series of
wizards and string them together to present the user with a fully realized,
end-to-end wizard.

Change Device Type
Step 1

Change Device Type
Step 2

Change Device Type
Step 3

The Change device type wizard consists of three
separate wizard definitions. End users see only
one wizard that walks them through changing a
device type.
110 Chapter 6—The Wizard Creation Tool

System Tailoring, Volume 3
Calling a Wizard
The Wizard RAD application is wizard. run, and can be called from:

Menus

Display Options

Format Control

States

Process Records

Wizards themselves can call Format Control records, Processes or other
wizards, as shown below. Wizards do not allow direct calls to RAD
applications.

Note: It is possible to send a Wizard into an infinite loop by calling a Process
that calls a Wizard that calls the original Process, for example.

ServiceCenter Wizards can call any of the
applications shown
Accessing the Wizard Creation Tool 111

ServiceCenter
Field Definitions

Define wizards using the tabs on the Wizards panel. Each tab controls a
different aspect of a Wizard. Not all fields on each tab are required.

Wizard Info Tab

Wizard Name - Enter a brief, descriptive name for the wizard. This field
forms the unique key for the wizard in the wizard’s dbdict.

Start Node? - Select this check box if the wizard is the first in a series of
wizards.

Brief Description- Enter a brief, meaningful description.

Window Title - Enter text that will display in the title bar of the wizard. This
field will also take a message number from the message database. For
example, scmsg(1,”am”).

Note: If the wizard you are creating will be localized (translated to another
language or languages) then using the scmsg database is the preferred
method.

Figure 6-1: The Wizard Info Tab
112 Chapter 6—The Wizard Creation Tool

System Tailoring, Volume 3
Title - Enter the title of the wizard in this field. This field will also take a
message number from the message database. For example, scmsg(1,”am”).
The Title appears on the upper left of the first page of the wizard, in bold.

Prompt - The Prompt field provides instructions for the user and appears in
the center of the panel in large type. This field will also take a message
number from the message database. For example, scmsg(1,”am”).

Bitmap - Add a bitmap to the left panel of the wizard. The file wizard1.bmp
(located in the BITMAPS folder) defaults.

Global Lists - The lists you need to have loaded into memory when the
wizard starts.

File Selection Tab

Initial expressions - Enter expressions that will run before the wizard starts.

No $L.file (use typecheck) - If selected, this field initializes a typecheck file
which acts as a holding file.

Figure 6-2: The File Selection Tab
Field Definitions 113

ServiceCenter
$L.file passed in - Selecting this option indicates the $L.file variable will be
passed to the wizard from a previous wizard. You must initialize the variable
in the Variables tab of the first wizard in the series.

Create a record - Selecting this option indicates the wizard will create a
record. You must enter or select the record type in the of type field. This
becomes $L.file.

of type - Enter the type of record to be created. Click the fill button to
select a record from a QBE list. Click the View button to display the
dbdict for the record you have selected.

Select records - Select this option to have the user select a record from a list.

of type - This field determines the record type for a query, for example
Location. Enter the type of record or click the fill button to select a
record from a QBE list of all records.

using query - Enter a query, using RAD syntax, to search for records.

Resolve variables - Selecting this box ensures that any variables entered in the
Select Records field are evaluated before running the query.

No Records Message - Enter the text to display to the user if no records are
returned. This field will also take a message number from the message
database. For example, scmsg(42,”am”).
114 Chapter 6—The Wizard Creation Tool

System Tailoring, Volume 3
Usage Tab

Select one record from list - Selecting this option makes the Selection
Criteria options available.

Files under Selection Criteria

Use $L.file as $L.selection - Selecting this options uses the $L.file variable as
the selection criteria for a search. The $L.file variable must be initialized on
the File Selection tab.

Query for Records - The Query for Records fields can be used in conjunction
with one another.

of types - This field determines the record type for a query, for example
Location. Enter the type of record or click the fill button to select a
record from a QBE list of all records.

using query - Enter a query, using RAD syntax, to search for records.

sort by - Use this field to determine what fields to sort returns by.

If No Records - What to display to the user if no records are available. Select
an option from the list.

Figure 6-3: The Usage Tab
Field Definitions 115

ServiceCenter
No Records Message - Enter the text to display to the user if no records
are returned. This field will also take a message number from the
message database. For example, scmsg(42,”am”).

If One Record - Determines what will happen when only one record is
returned. Select the desired behavior from the list.

Allow “Skip” option? - Select this option to allow users to skip a panel.

Request user input - This field indicates that the user will be prompted for
information.

Skip Display - Wizard runs without GUI component. This is used when the
wizard simply does file manipulation or chaining wizards together.

Sub Format to Display - Enter a subformat name. wizard.subformat
defaults.

Display Screen - Enter a display screen, if you want to customize the display
options. The default display screen is wizard.display.

Activate “Finish” option? - Selecting this checkbox makes a Finish button
appear on the wizard panel. Use this on the final wizard in the series.
116 Chapter 6—The Wizard Creation Tool

System Tailoring, Volume 3
Actions Tab

Actions define what will happen when a user clicks Next, Cancel or Previous
within a wizard, and are defined on the wizard.display Display Options file.
Fields on this tab are executed in order.

Initial Process - The Initial Process is the first process to run when a user
performs an action, such as clicking Next.

Perform actions On - The actions defined in the Actions to Perform block
will apply to the file or files you select here. Choose either,

Current File ($L.file) - performs the defined action on the current file
only.

Selections ($L. selection) - performs the defined actions on a selected
group of records.

Actions to Perform:

Expressions - Enter an action using ServiceCenter RAD syntax. The
action defined here is applied to the files selected in the Perform
Actions On fields.

Figure 6-4: The Actions Tab
Field Definitions 117

ServiceCenter
Format Control - Enter a format control record or click either the Fill or
View button to select a record from a QBE list

of type - Select an action from the list that will trigger the format
control record.

on bad validation - Prompt for an action on bad validation. Return
sends the user back to the panel, Continue lets the user continue.

Process name - The wizard you create can run a process after completing.
Enter the process name here, click the fill button to select from a QBE list of
available processes.

Replace Current File with Selections? - Checking this replaces the current
$L.file variable with the selection list used by the wizard.

Restart Panel if: - Define the $L.return.action: yes/no/cancel. The parameter
chosen indicates whether the user should go on or restart. For example,
$L.return.action="no"

Display Records when complete? - If the user will be creating a record,
entering True or an expression that evaluates to True will display the record
to the user when the wizard completes.

Mode - This field determines how a record will display to the user if the
Display Records when complete? field is selected. Browse defaults.
118 Chapter 6—The Wizard Creation Tool

System Tailoring, Volume 3
Messaging Tab

Message - Enter a message or message number from the scmsg database that
will display when the wizard exits.

Condition - Enter a condition for the message, if desired. For example,
not nullsub($L.finish, false)

Type - Select from the list how the message will display to users. The default
is On Screen.

Level - Select from the list the level of activity that will be presented to users.
The default level is Info.

Figure 6-5: The Messaging Tab
Field Definitions 119

ServiceCenter
Variables Tab

Wizard Variables - Use this tab to define variables for use within the wizard.
Variables can be passed to applications or formats being created by the
wizard, but must be assigned. For example, a variable such as $L.return.action
must be defined here if it will be used within the wizard.

Next Wizard Tab

Figure 6-6: The Variables Tab

Figure 6-7: The Next Wizard Tab
120 Chapter 6—The Wizard Creation Tool

System Tailoring, Volume 3
Wizard Name - Enter the name of the next wizard in the sequence.

Condition - Enter a condition that determines what happens next based on
user input. For example, you could enter the next wizard in sequence and an
expression that evaluates to true. Alternately, you could specify different
wizards based on user actions or selections.

Comments Tab

Enter any developer comments concerning the wizard here.

Figure 6-8: The Comments Tab
Field Definitions 121

ServiceCenter
Cancel Expressions Tab

Enter any expressions that will execute on cancel here. This provides the
wizard creator an opportunity to clean up variables initialized in the wizard,
if desired.

Sample Wizard: Add New Device

The Add New Device wizard is an out-of-box wizard. This is a simple
one-panel wizard, which will be used as a sample to explain how a wizard is
created.

To view the Add New Device Wizard:

1 From the home menu, select Inventory Management > Assets.

Figure 6-9: The Cancel Expressions Tab
122 Chapter 6—The Wizard Creation Tool

System Tailoring, Volume 3
2 Click New.

To view the Add New Wizard information file:

1 From the home menu, select the Toolkit tab > Wizards.

2 In the Wizard Name field, type Add Device.

3 Click Search.

Figure 6-10: The Add New Device wizard
Sample Wizard: Add New Device 123

ServiceCenter
4 Select Add Device from the record list.

The Wizard Info tab details the wizard name, titles, prompts, and the bitmap
to be displayed.

This wizard is defined as the “Start Node” since it is the only panel in the
wizard. If this wizard had more than one panel, the “Start Node” check box
would only be checked on the first panel.

Figure 6-11: The Add Device Wizard Information file
124 Chapter 6—The Wizard Creation Tool

System Tailoring, Volume 3
5 Select the File Selection tab.

If the current panel is the first panel, or the Start Node, $L.file is
passed in from the user’s original location; in this sample, device.
However, if it's a wizard panel that is called from another wizard
panel then the $L.file variable will be passed to the wizard from a
previous wizard.

Figure 6-12: Sample wizard File Selection tab
Sample Wizard: Add New Device 125

ServiceCenter
1 Select the Usage tab.

The radio button selected in the Wizard Usage area of the Usage tab indicates
that user input is required.

The Sub Format to display is wizard.add.device. This indicates what format
will be displayed for the user.

Note: Use Forms Designer to create a form, or use an existing form. Once
you have created a form, enter the name of the form in the Sub Format
to Display field. For more information on Forms Designer, see System
Tailoring, vol.1.

Figure 6-13: Sample wizard Usage tab
126 Chapter 6—The Wizard Creation Tool

System Tailoring, Volume 3
2 Select the Actions tab.

When the user presses the Next button, the am.add.device format control is
called, and the check.devtype.restrictions process is called.

The “Return” in the on bad validation field indicates that the user will be
returned to the wizard if any validations fail.

If the “type in $L.file” is NULL or $L.restricted=true, the user will be
returned to the wizard and will not be allowed to continue.

Note: You can use existing Process or Format Control records, or you can
create new Process and/or Format Control records. For more
information on Format Control, see System Tailoring, vol. 1. For more
information on Process records, see System Tailoring, vol. 2.

Figure 6-14: Sample wizard Actions tab
Sample Wizard: Add New Device 127

ServiceCenter
3 Select the Variables tab.

All local variables ($L.variables) that are referenced anywhere besides the
wizard itself must be defined on the Variables tab. Local variables must be
defined if they are referenced anywhere in the Process, Sub Format, or Next
Wizard forms.

Figure 6-15: Sample wizard Variables tab
128 Chapter 6—The Wizard Creation Tool

CHAPTER

7
 Macro Editor
ServiceCenter macros are discrete units of work a system administrator can
invoke to do things like send email to a specific address, or page a specific
phone number. ServiceCenter macros are more similar to Microsoft Access
macros than to Microsoft Word macros, which simply record and play back
keystrokes.

Macros are distinct actions, driven by predefined conditions, that are
executed when a record is saved in the database. Macro actions are associated
with files and reflect certain states in the records of those files. If a macro’s
condition evaluates to true when a record is saved, the macro’s action is
executed. A typical condition might be priority.code in $L.new= “1”, causing
that macro’s action to be executed when an incident ticket being saved has a
priority code of 1.

As a ServiceCenter administrator, you can create macros to run processes
automatically when specified events occur. For example, you can create a
macro to page a manager when an incident ticket hits a DEADLINE ALERT.

Macro conditions
Macro conditions are expressions, written in ServiceCenter RAD syntax,
which are evaluated at run time. If the expression evaluates to true, the macro
is executed. If the expression does not evaluate to true, the macro cannot
proceed.
Macro Editor 129

ServiceCenter
A macro’s condition can be very simple, e.g., true or tod() <= ‘17:00:00’.
Often, macro conditions include a check against the record being saved. For
example, a macro condition can be expressed for an action or group of
actions when a specific set of incident tickets is saved. Another set of tickets
may require different actions altogether, requiring new macro conditions.

The record currently being saved is identified to macro conditions as $L.new.
This variable can be used as $file is used in Format Control expressions.
Macro expressions, however, also have $L.old available to them. This
represents the state in which the record existed before it was altered. All the
following expressions are valid:

priority.code in $L.new=“1”

Fires whenever a priority 1 ticket is saved.

assignment in $L.new~=assignment in $L.old

Fires whenever the assignment group changes.

tod() <= ‘17:00:00’

Fires whenever a ticket is saved before 5:00 PM.

The variable $L.message can be used to create evaluating expressions that
gather certain information about incident tickets. This data is then sent as a
message to specific users or groups defined in the Macro Parameters form
(Figure 7-3 on page 135). $L.message is expressed as an array, using the
following syntax:

$L.message={“Incident#” +number in $L.new, brief.description in $L.new}

The result is an array of the Incident ID and Incident Title in the record being
saved ($L.new). The message might look like this:

Incident # IM1012

Phone is going dead intermittently.

Accessing Macro Records

You may access macros from either of the following locations:

Tools menu in the Utility tab of the system administrator’s home menu.

Incident Management Security Files.
130 Chapter 7—Macro Editor

System Tailoring, Volume 3
Accessing macros through the Utilities tab is discussed in this section. Either
method is equally effective and displays the same search form (macro.lister.g)

Warning: Do not edit macros through the Database Manager. Certain
processing does not occur, and your edits may not be saved.

You may select individual macro records from a list or search for groups of
related macros (e.g., those associated with the problem file).

Note: You need SysAdmin privileges to run the macro editor.

To access a macro record:

1 Select the Utilities tab in the system administrator’s home menu.

2 Click Tools.

The Tools menu is displayed.

3 Click Macros.
Accessing Macro Records 131

ServiceCenter
The Macro List form is displayed (Figure 7-1 on page 132). All available
macros in your system appear in the initial list.

The macro list form is the access point for all your macro activities. You must
go through this form to add, edit, or delete macro records. The results of
macro queries are displayed in the macro list form. page 136 for column
header and option button definitions. Option buttons in this form provide
controls for viewing and processing macros.

4 To open an individual record (Figure 7-2 on page 133):

a Select an item in the list.

b Click Edit.

5 To display a list of related records:

a Click Search.

The macro search form is displayed.

b Enter search information in any field.

Figure 7-1: ServiceCenter Macro List Form
132 Chapter 7—Macro Editor

System Tailoring, Volume 3
ID—the number identifying the macro. This number is assigned by the
system.

Filename—the ServiceCenter file associated with the macros.

Name—the unique name of the macro.

Type—the macro type for the macro(s) for which you are searching.

c Click OK.

The system displays the macro list form showing all the macros
matching your search criteria.

d Select an entry to display.

e Click Edit

The selected record is displayed in the macro editor (Figure 7-2 on page 133).

Edit existing macros and create new ones in the macro editor. Select macro
types and set conditions for their execution. The values selected in this form
determine which fields are displayed in the parameter form.

Figure 7-2: Macro Editor
Accessing Macro Records 133

ServiceCenter
Creating a Macros

When creating a macro, you must name and define the conditions of the
macro before setting the parameters for its execution.

To create a macro:

1 Select the Utilities tab of the system administrator’s home menu.

2 Click Tools.

3 Click Macros.

4 Click Add.

5 .Enter a name for the new macro in the Macro Name field.

For the example, enter test.

6 In the Applies When field, select an event option from the drop-down list
indicating when you want the macro to be executed.

For the example, select Incidents are Saved.

7 In the Macro Type field, select an action you want the macro to execute.
Options include faxing, paging, mailing, starting and stopping clocks,
executing a RAD function or evaluating an expression.

For this example, select Page 1 Person.

8 Enter a Macro Condition that will trigger the macro to execute. When this
condition evaluates to true, ServiceCenter executes what is defined in the
Macro Type field.

For example, you could have a specific person paged when a new incident
ticket is set to priority 1. For the example, enter priority in $L.new="1".
134 Chapter 7—Macro Editor

System Tailoring, Volume 3
9 Click Set Parameters to establish the parameters for this macro.

Note: The available fields in this form vary depending on the value in the
Macro Type field in the edit form for your new macro. The example
in Figure 7-3 on page 135 displays a parameter form to Page 1 Person.

10 Provide additional information where needed, e.g., Send Page to—Specific
Phone, Specific Contact, Specific Operator; Construct Message By.

11 Click Save or press F2.

You are returned to the macro edit form.

12 Click OK.

The macro record is saved and you are returned to the macro list form.

Updating a macro record uses the same edit forms as the creating process.

13 To refresh the list of macros, click Search from the macro list form, then click
OK in the search dialog.

Figure 7-3: Parameter Edit Form
Creating a Macros 135

ServiceCenter
Definitions for Macro Forms

The following definitions can be found in the tables below:

Macro list form

Column headers

Option buttons

Macro editor

Fields

Macro list form

Column Label Database Field Name Description

Id id A unique number assigned to the macro to identify it.

Filename filename The ServiceCenter file to which the macro is attached, e.g.,
problem, device, etc.

Name name The name you give the macro.

Type type The type of action the macro takes when activated.

Button Label Description

Add Opens a blank macro editor form for adding a new macro.

Edit Accesses the macro editor to change the selected macro record.

Delete Deletes the selected macro record.

Warning! When deleting a record, no warning is displayed; the record is simply deleted.

Search Accesses a query form.

Clear Filter Removes the current filter used for querying the macros and returns the list to its
previous state.

Back Returns to the previous process.
136 Chapter 7—Macro Editor

System Tailoring, Volume 3
Macro editor

Field Label Database Field Name Description

Macro Name name Unique name for this macro provided by the system
administrator who created it.

Applies When filename Predefined event option for execution of this macro.
Select an event from the drop-down list (e.g., when a
change request is saved).

Macro Type type Predefined macro type for this macro. The names and
definitions of predefined macro types in ServiceCenter
can be found in the table on page 138.

Macro
Condition

condition Define a condition under which this macro should
execute. For example, when a priority 1 incident ticket is
opened, the members of an assignment group are paged.
Definitions for Macro Forms 137

ServiceCenter
Macros Provided with ServiceCenter

Macro Action Description

Call A RAD Routine * Executes a user-specified RAD routine and passes it parameters
every time it executes.

Warning: Macros do not work properly when calling a RAD
application involving user interaction (e.g.,
fill.recurse or validate.fields). Continue to use
Format Control to call these types of applications.

Evaluate Expressions Executes a number of user-defined expressions whenever it fires.

Fax 1 Person Sends a fax to one person only. This person can be defined as an
operator, a contact, or a simple “raw” phone number.

Fax 1 Assignment Group Sends a fax to an entire assignment group.

Fax Many People Sends a fax to an arbitrarily defined list of people. These people can
be defined as operators, contacts, or “raw” phone numbers.

Fax A Incident Ticket to 1
Person

Sends a fax of an incident ticket to one person only. This person can
be defined as an operator, a contact, or a simple “raw” phone
number.

Fax a Incident Ticket to A CM
Message Group

Sends a fax of an incident ticket to all the members of a Change
Management Message Group.

Fax A Incident Ticket to An
Assignment Group

Sends a fax of an incident ticket to an entire assignment group.

Fax An Incident Ticket to Many
People

Sends a fax of an incident ticket to an arbitrarily defined list of people.
These people can be defined as operators, contacts, or “raw” phone
numbers.

Get a Sequential Number Fetches the next available sequential number of a specific class and
stores it in a field in a file.

Mail 1 Person Sends e-mail to one person only. This person can be defined as an
operator, a contact, or a simple “raw” email address.

Mail A Change Request to 1
Person

Sends e-mail of a change request to one person only. This person
can be defined as an operator, a contact, or a simple “raw” email
address.

Mail A Change Request to A
Message Group

Sends e-mail of a change request to all the members of a Change
Management Message Group.
138 Chapter 7—Macro Editor

System Tailoring, Volume 3
Mail A Change Request to Many
People

Sends an e-mail of a change request to an arbitrarily defined list of
people. These people can be defined as operators, contacts, or “raw”
phone numbers.

Mail a Change Task to 1 Person Sends e-mail of a change task to one person only. This person can be
defined as an operator, a contact, or a simple “raw” email address.

Mail a Change Task to Many
People.

Sends an e-mail of a change task to an arbitrarily defined list of
people. These people can be defined as operators, contacts, or “raw”
phone numbers.

Mail 1 Assignment Group Sends e-mail to an entire assignment group.

Mail Many People Sends e-mail to an arbitrarily defined list of people. These people
can be defined as operators, contacts, or “raw” email addresses.

Mail An Incident Ticket to 1
Person

Mails an incident ticket to one person. This person can be defined
as an operator, a contact, or a simple “raw” email address.

Mail An Incident Ticket to An
Assignment Group

Mails an incident ticket to all the members of an assignment group.

Mail An Incident Ticket to Many
People

Mails an incident ticket to an arbitrarily defined list of people. These
people can be defined as operators, contacts, or “raw” email
addresses.

Mail An Incident Ticket to a CM
Message Group

Mails an incident ticket to all the members of a Change
Management Message Group.

Mail A Task to A Message Group Mails a change task to all the members of a Change Management
Message Group.

Page 1 Person Sends a page to one person only. This person can be defined as an
operator, a contact, or a simple “raw” phone number.

Page a CM Message Group Sends a page to all the members of a Change Management Message
Group

Page an Assignment Group Sends a page to all the members of an assignment group.

Page Many People Sends a page to an arbitrarily defined list of people. These people can
be defined as operators, contacts, or “raw” phone numbers.

SC Mail 1 Person Sends ServiceCenter mail to one person only. This person can be
defined as an operator, a contact, or a simple “raw” phone number

SC Mail An Incident Ticket to
Many People

Sends an incident ticket to an arbitrarily defined list of people with
ServiceCenter mail. These people can be defined as operators,
contacts, or “raw” email addresses.

SC Mail An Incident Ticket to a
CM Message Group

Sends an incident ticket to all the members of a Change
Management Message Group with ServiceCenter mail.

Macro Action Description
Macros Provided with ServiceCenter 139

ServiceCenter
SC Mail Many People Sends ServiceCenter mail to an arbitrarily defined list of people.
These people can be defined as operators, contacts, or “raw” phone
numbers.

Start A Clock Starts a specified clock.

Stop A Clock Stops a specified clock

Macro Action Description
140 Chapter 7—Macro Editor

CHAPTER

8
 Development Audit Utility
The development audit utility tracks changes made to ServiceCenter records

during the development phase of ServiceCenter implementation. Whether you
are making a few changes or extensively customizing your system, it is critical
you have a record of the changes (deltas) to ensure loading of the correct
version when you move to production.

The Dev Audit utility tracks changes to the following files:

application format

formatctrl link

scripts Object

Process States

trigger code

eventregister eventmap

eventfilter datadict

dbdict displayscreen

displayoption
Development Audit Utility 141

ServiceCenter
Development Auditor Menu and Functions

To access the Development Auditor Menu:

1 Select the Utilities tab of the system administrator’s home menu.

2 Click Development Auditing. The Development Auditor Menu is displayed.

3 Select a function from the Audit menu.

Turn Auditing On/Off
This function allows you to enable or disable file auditing. With auditing
turned on, a separate audit file is created each time you make a change to a
file and save that changed file to the database.

ServiceCenter is delivered with a default set of audited files in place to enable
you to track development changes.

To access the Audit Control form:

1 Click Turn Auditing On/Off in the Development Auditor Menu.

The Audit Control record is displayed.

2 Update one or both of the following functions:

Do you want to audit development changes?—enable/disable auditing of
development changes.

Do you want to keep backups of Changes?—enable/disable backups of
development changes.

3 Click Save to save your changes.

The following message is displayed in the status bar: Record updated in the
devauditcontrol file.

4 Click OK to return to the Development Auditor Menu.

View Audit History
From the Audit History form, you can search for a particular audit record by
entering specific data about that audit, or you can view a record/QBE list of
all audits stored in the database. It is important to look at this file before
purging audit records or unloading a development change to production.

To access the Audit History form:

1 Click View Audit History.
142 Chapter 8—Development Audit Utility

System Tailoring, Volume 3
A blank Audit History record is displayed.

2 Open an existing Audit record using one of the following procedures:

Enter any information you have from the record and click Search or
press Enter.

—or—

Click Search or press Enter.

If more than one record matches the search criteria, the returned screen
is split with a record list at the top and the first record in the list
displayed below.

Note: There will be an entry for each time that a form or file was added or
updated.

In the example above, the problem form is listed with Audit ID 1082514
(when the form was created) and again with Audit ID 1082516 (when it was
updated). These entries were added automatically to the record/QBE list each
time the form was added or saved.

Figure 8-1: Audit History Record
Development Auditor Menu and Functions 143

ServiceCenter
3 Click the entry you want to view.

Information for this record is entered into the Audit History form.

4 Click Delete to remove the current record from the audit list.

Audit History fields
Audit ID—an identification number added automatically when an audit
record is created.

Filename—file type, e.g. format, formatctrl, or link.

Keys—name of a key that can be used to search for an audit record, e.g., the
form name.

Event Type—type of action performed on a file when the audit record was
created, e.g., add (when a new file is created) or update (when a file is
modified).

Date—time and date when the audit record was created. The format is
mm/dd/yy hh:mm:ss.

Operator—login name used when the audit record was created.
144 Chapter 8—Development Audit Utility

System Tailoring, Volume 3
Unload an Audit Delta
If you wish to specify what the system will be unload, you must first view the
audit history. You can remove records from the development audit list by
selecting them and then deleting them. See View Audit History on page 142.

Important: Before unloading a change you have made during the
development phase, it is critical that you check the audit files for
the correct date of this delta. See View Audit History on page 142.
You will need the date shown in the Audit History form to enter
into the Unload form.

To move a change to production with the Unload function:

1 Click Unload an Audit Delta on the Development Auditor Menu.

The Audit Unload form is displayed.

The current date and time are automatically entered in the Unload delta
since what date? field.

Figure 8-2: Audit Unload Form
Development Auditor Menu and Functions 145

ServiceCenter
2 Enter the beginning date for the unload (found in the View Audit History
record/QBE list.

3 Enter the path and name of the file to which you want to send the unloaded
data in the Send Data to Which File? field.

4 Click Proceed.

The Development Auditor Menu is displayed, with a message in the status
bar indicating how many records were unloaded.

Purge Audit Records
To remove audit records that you no longer need:

1 Click on the Purge Audit Records button in the Development Auditor menu.

The Audit Purge form is displayed with the current date and time filled in.

2 Replace the date displayed with the beginning date for the range of records
you wish to delete.

Figure 8-3: Audit Purge Form
146 Chapter 8—Development Audit Utility

System Tailoring, Volume 3
Warning: Make sure that you carefully review the audit records in the Audit
History record/QBE list before filling in this date. Purged files
cannot be restored.

3 Click Proceed.

A confirmation prompt appears, telling you how many records have been
purged.

4 Click OK to complete the process and return to the Development Auditor
Menu.
Development Auditor Menu and Functions 147

ServiceCenter
148 Chapter 8—Development Audit Utility

CHAPTER

9
 Revision Control
Revision Control provides developers and administrators a means of
reverting to a previous version of a file or format. If during the process of
creating or modifying forms you should find an error, Revision Control can
be used to return to a working version of your file or form.

Revision Tracking allows a developer to:

create a snapshot of a record

add SCR information and comments to the snapshot

replace the current version of the record at any time.

Note: Every revision made takes up as much disk space as the original record
(plus a few bytes for comments).

Revision Control does not replace the Development Audit Utility, but is used
in conjunction with that module to track, record and save changes to your
system. The Development Audit utility provides a record of the changes
(deltas) to ensure loading of the correct version when you move to
production. See Development Audit Utility on page 141 for more
information.

In ServiceCenter, revisions are handled as part of the Document Engine. As
such they are available in all utilities that use the Document Engine as base
code. This includes Database Manager, Format Control Editor, Link Editor,
and others. In addition, special code has been added to make Revisions work
for Forms Designer and the RAD Editor.
Revision Control 149

ServiceCenter
Revisions are stored in a separate file. The name of this file is specified in the
Object record for the file, if one exists, or in the dbdict record otherwise. This
file is generated by the system from an option on the data dictionary or the
Object screen. Administrators can specify the maximum number of revisions
to store for each record in a file. If no number is specified then an unlimited
number is stored.

Purge scripts are included to help administrators with revision maintenance.
The sc.revision.purge.hanging script purges all revisions that no longer have
a parent record because the parent record was deleted or renamed. The
sc.revision.purge script purges all revisions from the system. These scripts
are accessed from Utilities - Maintenance area. See Purging Revisions on
page 156.

Administrators should determine ahead of time the files for which they want
to track revisions and then do minor setup to establish them. Administrators
should also remember to purge revisions prior to migrating to a production
system.

Creating Revisions

You can either create revisions for an entire set of records or for a single
format or record. To create baseline revisions for an entire set of records, you
must be at the start panel of the module you are working with. For instance,
you create a baseline revision of all the forms in the Forms Designer from the
Forms Designer main menu.

Note: When you create a revision, you create a copy of the record only, not
the associated dbdict. As a result, any time a field is added to a dbdict,
it will have to be added to the revision file dbdict also.
150 Chapter 9—Revision Control

System Tailoring, Volume 3
Create a baseline revision

To create a baseline revision for all records in a module:

1 Open a search screen for a format or file that supports revisions. For example,
the Forms Designer module.

2 Click Options from the options menu.

3 Select Revision.

4 Select Create Revision.
A dialog box appears, allowing you to enter SCR information to associate
with the revision. This step is optional. Enter the SCR information or just
click the proceed button (green checkmark) to begin.
The system will create a copy of all the records in the module, in this case
every format in the Forms Design module. This operation could take some
time.

Figure 9-1: Creating a baseline revision
Creating Revisions 151

ServiceCenter
Create a single revision

To create a revision of a single record or format:

1 Open a format or file that supports revisions. For example, a RAD
application in the RAD editor. The abend application is used in Figure 9-2 on
page 152.

2 Click Options from the options menu.

3 Select Create Revision.
The revision tracking panel appears.

4 Fill in information relating to the revision. Making detailed comments will
help others understand the reason for the revision, and will assist anyone
needing to revert to this revision.

5 Click Save.
A copy of the revision is saved, and you are returned to the panel you started
from, in this case the abend application in the RAD editor.

Figure 9-2: Create a single revision
152 Chapter 9—Revision Control

System Tailoring, Volume 3
The Revisions panel

Fields on the Revisions Panel

SCR Number
Enter the SCR (Software Change Request) number to associate with this
change, if applicable. This field is optional.

Comments
Enter any comments regarding the change here. Good developers make
detailed comments.

Figure 9-3: The Revisions Panel
The Revisions panel 153

ServiceCenter
Options Menu

Revert to this Revision
Select this option to make the revision currently displayed the record the
system will use. You are prompted to save the current record as a revision
before the revision is committed. This is a recommend step, though not
required.

Print
Select this option to launch the print dialog.

Reverting to a Previous Revision
You can revert to a previous record, if one is available.

To revert to a previously saved copy of a record:

1 Click Options

2 Select Revisions>Find Revisions

If there is no revision for the file, the following message will appear on the
lower left of the GUI:

If there is one revision available, it will display.

If there is more than one revision available, a QBE list will appear. Select a
revision from the list.

3 Select Options>Revert to this Revision

4 When you have selected the revision you want to restore, go to the Options
menu and select Revert to this Revision. You are prompted as to whether you
want to save the current version of the record as a revision. Peregrine
recommends you do.

Searching for revisions
To search for revisions:

1 Open a module that supports revisions. For example, the RAD editor or the
Forms Designer.

2 Click Options from the options menu.
154 Chapter 9—Revision Control

System Tailoring, Volume 3
3 Select Find Revision.

You can search for revisions using one or more of up to five search criteria:

syslanguage - Search for revisions by language indicator. For example, en for
English.

name - Search for revisions by name. Use the name of the form you are
searching for. For example cc.incquick.

Revision Date - Search for revisions by date in the format month/day/year.

Operator - Search for revision by Operator name. Enter the name of the
Operator who created the revision. For example, FALCON.

SCR# - Search for revisions by SCR number. Enter the SCR number of the
revision you are seeking. For example, 42.

Figure 9-4: Revision Search screen (Forms Design)

Revision search panels
vary slightly by module.
For instance, the RAD
search panel does not
include the
syslanguage field
shown in the example
but otherwise performs
in exactly the same
manner.
The Revisions panel 155

ServiceCenter
Purging Revisions
You can purge revisions from your system, which is useful when moving to
a production system. There are two options available when purging
revisions: Purge all and Purge hanging.

Purge all will remove all revisions from your system.

Purge hanging will remove only hanging revisions from your system. A
hanging revision is a revision with no associated file or form. For example,
if you create a format, create a revision of the format, then delete the
original format, the revision would be left on the system, but with no
associated file or format.

Note: You can restore a deleted format from its revision file.

To Purge revisions from your system:

1 Login as a System Administrator

2 Click the Utilities tab

3 Click the Maintenance button

4 To remove Hanging revision from your system, click the Purge Hanging
Revisions button.

5 To remove ALL revisions from your system, click the Purge All Revision
Records button.
156 Chapter 9—Revision Control

CHAPTER

10
 DDE Support
ServiceCenter Dynamic Data Exchange (DDE) support is available in both
Windows 16-bit (Windows 3.11) and 32-bit environments (Windows 95,
NT, 98, etc.). DDE client support is created in a ServiceCenter RAD (Rapid
Application Development) application.

DDE support in ServiceCenter is two way: you can create a DDE script to call
against ServiceCenter from a Windows application or you can create a script
using the DDE Script panel to make a DDE call within ServiceCenter. The
difference being which application originates the call. For example, a
ServiceCenter client in a Windows environment can push information to
Microsoft® Excel, or Excel can pull from ServiceCenter. Basic DDE functions
like exporting a file to Word or Excel are discussed in the ServiceCenter
User’s Guide. An example Visual Basic for Applications (VBA) DDE script for
a call against ServiceCenter is included in this chapter on page 163. The DDE
Script panel for creating DDE calls within ServiceCenter is covered on
page 167.

Note: Some ServiceCenter records also can be exported to a text file. This
option is not part of the DDE support and can be run from clients
other than those operating in Windows.

ServiceCenter DDE server support provides an interface to applications
outside ServiceCenter, allowing the use of DDE functions like poke and
execute.
DDE Support 157

ServiceCenter
DDE Server

Integration of the ServiceCenter Work and Incident Management
applications is achieved using the DDE server functionality of the
ServiceCenter 32-bit Windows client.

Applications that implement the Microsoft Windows DDE server permit
external applications to get and set data (called DDE Request and DDE Poke
respectively), and execute commands. Typical use of get and set is to inspect
and change data that is part of a document. For example, Excel allows the
contents of spreadsheet cells to be read and written. Commands such as File
/ Save can be issued using DDE execute facility. There is little standardization
between DDE server applications either in capabilities offered or the
formatting of the commands sent over the DDE link.

DDE clients contact DDE servers using an application and topic name. The
application name must be unique on the machine and the topic is typically
the name of a document or the "Actions" topic typically used for command
execution dealing with the entire application, rather than a specific
document.

Implementation—System Events
ServiceCenter system events were created to permit ServiceCenter to react to
events on client platforms external to the ServiceCenter system. System
events are an arbitrary set of events that can be sent to and from either RAD
or the RTE. They are generally used to start new RAD applications.

ServiceCenter DDE server implementation provides the DDE execute
facility. ServiceCenter’s DDE service name is "ServiceCenter" and the topic
name is "Actions". The DDE Execute facility can be used to initiate
ServiceCenter System Events. ServiceCenter System Events were created to
permit ServiceCenter to react to events on the client platform external to the
ServiceCenter system.
158 Chapter 10—DDE Support

System Tailoring, Volume 3
For example, the TAPI implementation creates a System Event to start a RAD
application when the phone rings to handle the call. RAD programs written
to extract the System Event parameters and act upon them handle
ServiceCenter System Events. With the advent of the DDE server
functionality, an external application, such as Excel, Access, or Delphi, can
hook up to ServiceCenter using application ServiceCenter and topic Actions
to trigger ServiceCenter system events.

Events in the Standard System

The standard ServiceCenter system provides a number of predefined system
events. These events are of two types:

Hardcoded

Editable

Hardcoded events
There are currently 12 system events whose parameters are hardcoded into
the system and are not user definable. These events can be used to exchange
data with applications external to ServiceCenter through the use of Dynamic
Data Exchange (DDE) conversations.

The following system events are hardcoded to pass predetermined field
values to external applications:

Event Name Application Called Parameter

EditCM3Request dde.editcm3request Number

EditCM3Task dde.editcm3task Number

EditIncident dde.editincident Number

EditOCMLineItem dde.edit.ocm.lineitem Number

EditOCMQ dde.editocmq Number

EditOCMRequest dde.edit.ocm.request Number

EditProblem dde.editproblem Number

ListCM3R dde.listcm3r Query

ListProblems dde.listproblems Query
Events in the Standard System 159

ServiceCenter
Editable events
Editable system events are accessed through the pmtapi file and can be
configured to pass any user-defined field value to an external application.

To edit an event using pmtapi:

1 Select the Toolkit tab in the system administrator’s home menu.

2 Click Database Manager.

3 Enter pmtapi in the File field.

4 Click Search or press Enter.

5 Enter the name of a pmtapi record from the table on the previous page in the
Name field.

For example, enter ReceiveCall.

6 Click Search or press Enter.

ShowChangePages dde.show.change.pages Number

ShowPages dde.showpages Number

ShowTaskPages dde.show.task.pages Number

Event Name Application Called Parameter

Event Name pmtapi Record Routing Application Application Called

ReceiveCall incident us.router cc.first

ReceiveCallList incident list us.route.list cc.list.incident

ReceiveProblem problem us.router apm.first

ReceiveProblemList problem list us.route.list apm.list.problems

ReceiveRequest ocmq us.route ocmq.access

ReceiveRequestList ocmq.list us.route.list ocmq.access
160 Chapter 10—DDE Support

System Tailoring, Volume 3
The requested record is displayed.

7 Add or delete field names.

These names must match fields listed in the Database Dictionary record of
the file for which the event is used.

8 Select the data type of the field from the drop-down list in the right column.

This data type must match the data type of the field as it appears in the
Database Dictionary record.

9 Create the parameter for the field that will be passed to the external
application by the event.

10 Click Save.

Figure 10-1: pmtapi record for an editable system event
Events in the Standard System 161

ServiceCenter
Field values

Note: Fields that do not appear in this table are not currently in use.

Field Description

Name Name of the pmtapi record

File Name

Link Name Name of the link record used

App Name Name of the RAD application. For example cc.incquick

App Param

App Mode Param

Fill Recurse Determines whether or not to use recursive fill based on the
link record and parameters.

Parameter Parameter name passed to an external application

Field Name of the field defined by the parameter

[Data Type] Data type of the field
162 Chapter 10—DDE Support

System Tailoring, Volume 3
Example
This example uses Visual Basic for Applications.

Note: The ServiceCenter server must be running in order for the following
example to work.

The format of the ServiceCenter execute command string for system events
is:

SystemEvent(event name, parameter name, parameter value, …)

The event name corresponds to the event name in the ServiceCenter
SystemEvents table. See Events in the Standard System on page 159 for a list
of system events.

The parameter name / value pairs are known to the RAD program. See
Editable events on page 160 for instructions on how to access, edit, and
define parameters for events.

Sub ReceiveCall()
channel = DDEInitiate("ServiceCenter", "Actions")
DDEExecute channel, "[SystemEvent(""ReceiveCall"", ""Caller Name"", ""KENTNER""
)]"
DDETerminate channel
End Sub

The example above:

Initiates a conversation with the ServiceCenter system

Executes a DDE command starting the System Event Receive Call, passing
the parameter name Caller Name with the parameter value of Kentner.

Terminates the conversation.

Usage notes
To use the DDE Server functionality, the ServiceCenter Windows client must
be started and a user should be logged in. DDE does not automatically start
the server (as OLE does). The user must be logged in so that the environment
is set up for the ServiceCenter user.

Additional DDE Server Capabilities
Events in the Standard System 163

ServiceCenter
The DDE server can also handle DDE client transactions that perform:

Requests: Get the value of a named item and return it as a string

Pokes: Set the value of a named item

Executes: Ask the ServiceCenter GUI to execute a transaction or set the
focus to a named item

This functionality can be used to script user interaction for common
operations such as closing a ticket, which may require several fields to be
filled in and several transactions to be made.
164 Chapter 10—DDE Support

System Tailoring, Volume 3
Requests and pokes
Requests and Pokes are the DDE mechanisms for obtaining a copy of or
setting the value of named items. ServiceCenter uses the widget's input
property to name the item. For example, to set the user name on the
ServiceCenter login screen, the following DDE command could be used (this
example is in Visual Basic for Applications):

DDEPoke nChannel, "$user.id", "falcon"
Requests and pokes take and return string type data.

Executes
Executes are the DDE mechanisms for requesting that an application process
data or perform an action. ServiceCenter provides two execute capabilities:

Transact

SetFocus.

Transact
The Transact execute function directs ServiceCenter to execute a transaction
as though a user has pressed a function key, or pressed a button. The Transact
execute function requires one operand that designates the number of the
function key or button ID of the button that was pressed. This example in
Visual Basic for Applications shows how to tell ServiceCenter that the "fill"
key was depressed:

SetFocus
The SetFocus execute function directs ServiceCenter to place the focus in a
named widget (using the field's input property as the name). This example in
Visual Basic for Applications shows the focus being set to the file name input
field in the data base manager format:

DDEExecute nChannel, "[SetFocus(""file.name"")]" '

DDEExecute nChannel, "[Transact(""9"")]"' issue a fill command
Events in the Standard System 165

ServiceCenter
Example
The following example, written in VBA, illustrates a DDE script that takes a
user directly to the Database Manager from the login screen. Before
executing this script, you must be on a ServiceCenter login screen
(login.prompt.g format)

.

Sub SC()
Dim nChannel As Long
Dim strReturned As String
nChannel = DDEInitiate("ServiceCenter", "ActiveForm")
DDEPoke nChannel, "$user.id", "falcon"
DDEExecute nChannel, "[Transact(""0"")]"' login
DDEExecute nChannel, "[Transact(""1"")]"' go to the command interface
DDEPoke nChannel, "$command", "db"' go to the database manager
DDEExecute nChannel, "[Transact(""0"")]"
DDEExecute nChannel, "[SetFocus(""file.name"")]" ' set the focus in the file name box
DDETerminate nChannel
End Sub
166 Chapter 10—DDE Support

System Tailoring, Volume 3
The DDE Script panel
The DDE script panel, dde.script.g, assists in creating ServiceCenter DDE
scripts for DDE calls inside ServiceCenter against an outside application,
such as Excel.

Accessing the Script Panel
To access the DDE script panel from the system administrator’s home
menu:

1 Click the Utilities tab.

2 Click the Tools button.

3 Click the DDE Script button. The DDE script panel appears.

Figure 10-2: The DDE script panel
Events in the Standard System 167

ServiceCenter
Fields on the DDE script panel
Script Name - Enter a name for the new script.

Initializations - Inititializations call or start certain ServiceCenter services
using RAD programming calls. See the RAD programming Guide for usage
and syntax. This field is optional.

Pre-Step Expressions - Pre-Step expressions start certain ServiceCenter
services using RAD programming calls. This field is optional.

Command - Select a command from the drop-down menu list. Your choices
are:

Initiate - start a session

Terminate - end the session

Poke - set the value of the named item.

Request - get the value of a named item and return it as a string.

Execute - ask ServiceCenter to execute a transaction or set the focus to
a named item.

Call RAD sub-routine - call an already defined RAD subroutine.

DDE Inputs - If you selected one of the first five options from the Command
drop-down menu list, then you must enter a value in this field.

Return Value - Enter a value, such as $L.channel. The value you enter here
will be based on what you are calling. If you selected a DDE command from
the Command drop-down menu list, then enter parameters for the DDE
application. If you selected “Call RAD sub-routine” from the Command
drop-down menu list, then enter the name of the RAD application you are
calling in this field.

Names (RAD Only) - Enter the name of the RAD application you are calling,
if you selected “Call RAD sub-routine” in the Command drop-down menu
list.

Values (RAD Only) - Enter value to be passed to the RAD application you
are calling, if you selected “Call RAD sub-routine” in the Command
drop-down menu list.
168 Chapter 10—DDE Support

System Tailoring, Volume 3
DDE Client

This section provides an example of a DDE client conversation executed as a
RAD application. Refer to the RAD guide for specifics on programming a
RAD application.

There are six different actions associated with a DDE client conversation that
can be initiated from a DDE RAD panel. The actions are the standard DDE
actions:

Initiate

Advise

Request

Poke

Execute

Terminate

The section below outlines the initiate action, and uses an IBM product
named CallPath as an example. Any of the above listed DDE actions can be
performed with the DDE RAD panel.

Note: Constructing a DDE RAD application requires you follow RAD
conventions. For a complete description of programming in RAD,
along with requirements for any RAD application to function, please
refer to the RAD guide.
DDE Client 169

ServiceCenter
The Process panel
A process panel is a type of RAD panel that is used to initialize or set variables
used later in your RAD application. Process panels can also process
expressions. The Process panel shown is labeled start as it is the first panel in
the example DDE RAD application.

Figure 10-3: RAD start panel
170 Chapter 10—DDE Support

System Tailoring, Volume 3
The DDE RAD panel
The dde RAD panel is used to perform one of the five DDE commands. The
RAD start panel is used to set variables referenced on this panel and later in
the RAD application.

Field Value Description

DDE action Initiate, Poke,
Request, Advise,
or Terminate.

The DDE action to perform.

Return value $L.channel The channel used throughout to identify the conversation. This
value is set on the RAD start panel. A ServiceCenter client can carry
on multiple conversations.

Input values $L.application

$L.topic

These values are set on the start panel of the RAD application. In this
case they are set to describe CALLPATH and CALLCONTROL
respectively

Figure 10-4: The DDE Panel.

This panel is initiating a DDE call.
DDE Client 171

ServiceCenter
Frame Restore option
The FrameRestore option directs ServiceCenter to take the focus when a DDE
advise hot link is updated. For example, if the FrameRestore parameter is
added to an advise dde RAD panel, a software telephone being used by an
agent to receive a call takes the focus. This allows the agent to answer the call
without searching for the softphone application.

To activate the FrameRestore option in RAD, enter FrameRestore as the fifth
input value parameter in the appropriate DDE advise panel.

Figure 10-5: DDE RAD panel activating FrameRestore option
172 Chapter 10—DDE Support

System Tailoring, Volume 3
PassFocus Option
The PassFocus option directs ServiceCenter to pass the focus when a DDE
terminate command is issued. For example, if the PassFocus parameter is
added to a terminate dde RAD panel, the focus stays on the receiving
application and focus does not return to ServiceCenter. Without the
Passfocus command, ServiceCenter will gain the focus.

To activate the PassFocus option in RAD, enter PassFocus as the second
argument of a DDE terminate panel.

For example when the ServiceCenter client is used to export information to
Excel, if passfocus is the second argument of the DDE terminate panel, the
focus will go to Excel instead of ServiceCenter.

Figure 10-6: DDE terminate panel with Passfocus option
DDE Client 173

ServiceCenter
Structure support option
The structure support option allows a DDE advise action to use a user-defined
data format. An example might be DF,129, UL, I, SZ33. All values are comma
delimited.

Sample values

Figure 10-7: DDE RAD panel expressing a user defined data format

Value Description

DF Identifies the string as a data format

129 Integer value for the clipboard data format value required for the advise action.

UL Unsigned long integers

I Integers

SZ33 Null terminated string 33 characters long
174 Chapter 10—DDE Support

System Tailoring, Volume 3
SystemEvents File

System Events are defined in the SystemEvents file in ServiceCenter. This file
contains records that have an Event Name and a RAD Application name.
When an event is received, the corresponding RAD application is invoked in
a new RAD thread. The SystemEvents file contains all the events that are used
to invoke a RAD application. The events used to invoke a RTE function
register themselves upon start-up of the client. If you edit a system event
record, you must re-login before the system recognizes the changes. See
Events in the Standard System on page 159 for a list of Hardcoded and
editable events.

Note: You can have multiple records for one event; each application will be
invoked in a separate RAD thread.

Accessing records
To access system events records:

1 Select the Toolkit tab in the system administrator’s home menu.

2 Click Database Manager.

The Database Manager dialog box is displayed.

3 Enter SystemEvents in the File field.

4 Click Search or press Enter.

A blank system events record is displayed.

5 Enter the name of the record you want to view, or click Search to display a
record list of all events in the system.
SystemEvents File 175

ServiceCenter
Architecture

In the case of ServiceCenter Telephony (standard system), when a phone call
comes in:

the RTE generates a ReceiveCall event

that event gets passed to the System Event Handler (SEH)

the SEH starts the us.router RAD application in a new RAD thread

Figure 10-8: System events record
176 Chapter 10—DDE Support

System Tailoring, Volume 3
When you make a phone call the RAD application sends a MakeCall event to
the SEH which invokes the RTE function to make a phone call.

While System Events are normally used to communicate between the
application layer and the RTE, they can also be used to pass events between
RAD applications and between RTE functions.

Run Time Environment

System Event Handler

RAD Application Layer

ServiceCenter Client
Architecture 177

ServiceCenter
To send a System Event from RAD, use the event.send RAD Command
panel. You must use -2 as the Thread ID. Fill in the Event Name with the
name of the event and pass any Parameters in the Names and Values arrays.
Since each event is arbitrary, so are the parameters it requires. The event
name and parameters are listed on page 159. For instructions on accessing
and editing RAD command panels, refer to the ServiceCenter RAD Guide.

Figure 10-9: event.send RAD panel
178 Chapter 10—DDE Support

System Tailoring, Volume 3
When receiving a System Event in a RAD application you can use the
event.name() and event.value() functions to get the event name and parameters
for that event. See the appropriate table for the event parameters you need.

Figure 10-10: process RAD panel
Architecture 179

ServiceCenter
180 Chapter 10—DDE Support

CHAPTER

11
 Data Policy
Many common data tailoring tasks in ServiceCenter are performed by
Format Control. Format Control is an often complex procedure applied at
the form level and, if overused, can affect system performance. The data
policy feature operates at the table level and can achieve many of the same
results as Format Control without the complexity and without taxing system
resources.

The data policy feature provides a simple interface where system
administrators can apply default values, mandatory fields, or lookup
validations, to a specific table. These policies, once set, will be enforced across
the entire system, regardless of what form is being used to display the data.

Accessing Data Policy
To use this feature, select Data Policy from the Options menu of a table in
the Database Dictionary.

Data Policy Expressions
Data Policy rules apply to the GUI presentation of data. For example, in the
Invisible or Read Only fields, you can specify an expression. If this expression
evaluates to true at the time the record is being displayed, any controls
referencing the field in question are set to read-only or visible as appropriate.
Data Policy 181

ServiceCenter
This allows you to place some degree of data hiding or control into your
system without the need to construct numerous different forms and views.
For example, if you want only system administrators to be able to modify the
contact.name field in the contacts file, use this expression:

index("SysAdmin", $lo.ucapex)>0

The fields on a file’s Data Policy record are defined on the record’s dbdict.
You cannot add new fields directly to a Data Policy record.

Changes require that you cycle the client by logging out of the system and
logging in again.

Data Policy and the Object record
Data Policy control for a table can be associated and expanded with an Object
record. If there is an associated Object, then the Object offers control over
revisions, IR searches, and displaying records through SC Manage. If a record
in Data Policy has an Object associated with it, then the fields on the Engine
Specifications tab will be greyed out and unavailable. A button will appear
that, when clicked, will take you to the Object record, allowing you to make
changes there.

If a Data Policy record does not have an associated Object, then the Engine
specifications and the SC Manage tabs will contain editable fields that control
revisions and display.

Figure 11-1: Engine Specifications tab with Object Associated
182 Chapter 11—Data Policy

System Tailoring, Volume 3
Data Policy and Revisions
The revisions option for Data Policy creates a revision dbdict, with the name
specified on the Engine Specifications tab. See Revision Control on page 149
for details on working with revisions.

To create a revision dbdict:

1 Enter a revision file name in the Revision File Name field on the Engine
Specifications tab. You can limit the number of revisions allowed by filling in
the Max # of Revisions field.

2 Click Options.

3 Select Create Revision File.

4 The system creates a new dbdict with the name you chose in step 1.

Example: Creating and Managing Revisions
The following example steps through the process of creating and controlling
a revision. The example uses the location file.

1 Open the location record in Data Policy.

2 Enter a revision name on the Engine Specifications tab, for instance
LocationRevision.

3 Enter the maximum number of revisions allowed on the system for files
controlled by this record. For example, enter 2.

4 Save the location Data Policy record.

Figure 11-2: Engine Specifications tab, no Object Associated
 183

ServiceCenter
5 Go to the Database Manager and enter location in the Form field. A QBE list
appears.
Every file in the QBE list shown is controlled by the Data Policy record,
Locations.

6 Select a record, for example ACME HQ, based in Chicago.

7 With the record open, select Options > Revision > Create Revision. Enter
any relevant text to help you understand the revision and its purpose. Label
this revision one.

8 Make a change to the ACME HQ record and save.

9 Select Options > Revision > Create Revision. Label this revision two.

The maximum number of revisions has now been reached, at least for the
files controlled by the Locations Data Policy record. The next revision you
make will eliminate the revision you labeled one.
184 Chapter 11—Data Policy

System Tailoring, Volume 3
Fields on the Data Policy Form

Name - The name of this record.

SQL Base Name - The name used for SQL mapping. The maximum number
of characters you can enter in this field varies depending on the database you
are mapping to. To be safe, Peregrine recommends you enter no more than
12 characters in this field.

Figure 11-3: Data Policy Form
Fields on the Data Policy Form 185

ServiceCenter
Unique Key - Enter a Unique key, which should match the associated
dbdict’s Unique Key.

Description - Enter a brief description of the data policy record and its
objective.

Field Name - This column shows the fields on the associated dbdict. The
fields in this column are read only.

Available - This column determines whether the field is available to a user on
a form. True or an expression that evaluates to True indicates it is available,
while False indicates the field is not. The default is True.

Caption - The Caption field can be used as an alternate heading for columns
on a QBE list.

To make a column heading visible on a QBE list, you must be on the QBE list
in question. From there, select Options >Modify Columns and add columns
to the QBE list. If View Record list is enabled, then the Modify Columns
option can be found under List Options.

Mandatory field - The Mandatory field allows you to specify whether or not
a field is required. If a required field is left blank in a record, the record
cannot be saved. The ServiceCenter GUI automatically marks required fields
by placing a small red triangle in the upper left corner of the edit field. Text
clients cannot see a red triangle; however, mandatory fields are still enforced.

Mandatory fields are only enforced when entering records through the user
interface. Records being added via events or via batch loads are not checked
for mandatory fields.

Default Value - The Default Value field allows you to specify a default value
for a particular field. This default value can either be a literal (e.g., Bob), or
an expression (e.g., operator()). The system differentiates between
expressions and literals by looking for a caret (^) at the beginning of
expressions.

Example:

Bob—field value will be set to Bob.

^operator()—field value set to the current operator.
186 Chapter 11—Data Policy

System Tailoring, Volume 3
^lng(contact.name in $file)—field value set to the length of the contact.name
field

Note: Default value processing occurs before mandatory field testing.

Default values are applied to all fields, whether or not they are on screen.

Validation Rule - Validation rules are analogous to Format Control
validations, except that they apply globally to an entire table, rather than
being applied only to a particular form. Use the Validation Rule field to
define a conditional expression which must be true in order for a record to
be saved.

Example:

lng(contact.name in $file)>4

This rule would force all contact.name entries to have at least 4 characters.

Note: Validation rules are enforced both at the database level, -such as
records added via events or batch loads, and at the GUI level,- when
records are added through the user interface.

Not null is a valid validation and can be used to insure that a field isn’t null;
however, it is usually easier to set the Mandatory field value to true.

Match Fields - Use Match fields to define and enforce foreign key
relationships. For example, we can dictate that the contact.name field in the
problem file must match a valid contact.name from the contacts file.
Matched fields are defined in two successive fields: Match Field and Match
File.

Example:

Field Name Match Field Match File

Reported.by contact.name contacts

The above example shows that the reported.by field must match a valid
contact.name from the contacts file.

Note: Matched fields are only enforced when entering records through the
user interface. Records being added through events or batch loads are
not checked for matched fields.
Fields on the Data Policy Form 187

ServiceCenter
Invisible - Determines whether the field is invisible to a user on a form. True
or an expression that evaluates to True indicates it is invisible, while False
indicates the field is visible. The default is False.

Read-Only - Determines whether the field is read-only to a user on a form.
True or an expression that evaluates to True indicates it is read-only, while
False indicates the field is not. The default is False.

Encrypted - Set this field to True to encrypt data at the field level within the
database. Data is encrypted on a field by field basis. Setting the field to False
will revert the data back to its un-encrypted state in the database.

Important: If you have encrypted any field in your database, make sure that
you store the KEY value defined in the sc.ini file in a safe place.
Without the correct KEY value, you will not be able to decrypt.

When the Data Policy for a table is changed, the system checks to see if the
encryption status has changed. If the status has changed from False to True
then each record in the file is read, the field is encrypted, and the data written
back to the file. If the status has changed from True to False then each record
in the file is read, the field is decrypted, and the data written back to the file.
The entire process takes as long as it takes to read and update each record in
the file, and a performance loss may result.

Note: You can set the KEY value used to encrypt data on your system with
the encryptionkey parameter in the sc.ini file. This field must be
exactly 8 bytes in length.
If you change the KEY value, then every field in every file must be
checked and re-encrypted, if necessary. Changing the KEY value will
result in a significant performance hit to the system while
re-encryption is taking place, which should be considered before
changing the encryption key.

Changing the encryption key value
Changing the key value involves shutting down ServiceCenter:

1 Shut down ServiceCenter.

2 Restart ServiceCenter from the command line using the changeencrkey
parameter. For example, scenter -changeencrkey:XXXX where XXXX is the
new 8-byte key.
188 Chapter 11—Data Policy

System Tailoring, Volume 3
Starting ServiceCenter in this way will decrypt all encrypted fields using the
key defined in the sc.ini file and then re-encrypt those fields using the key
specified in the command line parameter changeencrkey. The length of time
the conversion takes depends on the size of the database and the number of
encrypted tables. You will need to update your sc.ini file to the new key
immediately after performing this action.

Warning: Encrypting SQL data that is already mapped will increase the size
of the data. Therefore, the existing SQL mapping and column
definition may not provide enough space to store the whole
encrypted value. If the encrypted value gets truncated, then the
value can no longer be decrypted. Use this formula to calculate the
new field length:
encrypted_length = (unencrypted_length + 12) * 2

If you convert a file which includes encrypted fields from P4 to SQL, the SQL
mapping process will automatically take the increase of length into account.
Fields on the Data Policy Form 189

ServiceCenter
Engine Specifications Tab
Common Name - Enter a name for the Data Policy record, or, if associating
with an Object, use the Object’s name. Entering the name of an Object in this
field automatically associates the object to the Data Policy record.

Use Locking - With this field enabled, only one operator will be able to
modify a record at a time. All users will still be able to open and view the
record.

Revision File name - Enter the revision file name. When you first create a
revision, a dbdict with the name you enter here will be stored on the system.

Max # of Revisions - How many revisions allowed on the system. The oldest
revision stored will be the first overwritten when new revisions are saved and
the Max # of Revisions limit has been reached.

IR Specifications tab
Condition - This field determines if a table should be searchable using IR.
Enter True or an expression that evaluates to True to enable this feature. See
the Data Administration guide for more information on IR searches.

Return Field - Enter the field to be populated back to the Data source. This
is passed when “Use resolution” is chosen in the IR search.

Record Format - Enter the name of the form to use when showing a record.
You can create different forms for different users and establish a default for
each group.

QBE Format - Enter the name of the QBE form to use when showing record
lists, i.e., lists of records selected as a result of a query. You can create different
QBE forms for different users and establish a default for each group.

Search Format - Enter the name of the search form to use when searching
record lists. You can create different search forms for different users and
establish a default for each group.

MVS Allocation Type - MVS only. Choose between block, trk or cyl. You are
allocating system resources for the IR query, with cyl or cylinder taking the
most resources and Block taking the least.
190 Chapter 11—Data Policy

System Tailoring, Volume 3
Primary Allocation Space Size - Enter a number for the initial allocation
space in terms of either Blocks, Tracks or Cylinders as selected in the MVS
Allocation Type field.

Secondary Allocation Space Size - Enter a number that defines the overflow
buffer, in Blocks, Tracks, or Cylinders as selected in the MVS Allocation
Type field.

SC Manage tab

The fields on the SC Manage tab control Queues and how they are displayed
as well as threading and who can create inboxes. The SC manage tab can be
used to control any file in the system. There are two versions of the SC
Manage tab that will display, depending whether there is an Object associated
with the Data Policy record. See the example figures shown.

Figure 11-4: SC Mange tab, no associated Object record.

Figure 11-5: SC Mange tab, with associated Object record.
Fields on the Data Policy Form 191

ServiceCenter
Modifying columns
The Modify Columns functionality has been added to the SC Manage
queues.

To use the modify columns functionality:

1 Search for a list of records controlled by SC Manage, for example caldaily.

2 When the QBE list appears, select Options > Modify Columns. Or, if View >
Record list is enabled, select List Options> Modify Columns.

3 Select which columns to appear in the QBE list and click Proceed.

Alternate column names for QBE lists
Alternate column names are specified in the Data Policy record for a file. The
following example will modify a column heading on the Service Management
QBE list:

To Modify a Column Heading:

1 From the ServiceCenter main menu, go to the Toolkit tab and select Data
Policy.

2 Open the record you want to modify. In the name field, enter the name of the
record and press Enter.

For example, Service Management is controlled by the incidents Data Policy
record. Type incidents in the name field and press Enter. The Data Policy
record for the Incident file displays.

3 Within Data Policy, fields under the Caption column are used to display
alternate headings for columns on QBE lists. Enter a new name in the
Caption field and save the changes. For example, enter My Test in the first
field name. (affected.item)

4 Log out of ServiceCenter and log back in.

5 Open the Service Management QBE list by performing a True search in
Service Management.

6 Modify columns. If View > Record List is selected, then use List Options >
Modify Columns to access the modify columns dialog. If View > Record List
is not selected, then use Options > Modify Columns.

7 Add the new column name in the first slot. Using the pull-down menu
available, change the current column name to My Test and click Proceed.
192 Chapter 11—Data Policy

System Tailoring, Volume 3
8 The new column name will appear the next time you view the QBE list. To
check our example, perform a true search in Service Management. The
column My Test will be the first column in the QBE list.

Fields on the SC Manage tab
SC Manage Display Format - This field determines how to display queues for
data on a file by file basis. ServiceCenter ships with a default display format:
sc.manage.generic. Peregrine recommends you do not modify the
sc.manage.generic file.

SC Manage Default Inbox - State the default inbox for this queue. By
specifying a user inbox record for a particular user, a specific list of inboxes
can be set up for the SC Manage queues. If a user does not have a record, the
DEFAULT user inbox record is used.

SC Manage Default Query - Enter a default query to run. Enter a query if you
do not have an inbox defined in the Default Inbox field.

Default Query Description - Enter a description of the above field. You can
associate a message with this field. For example, scmsg(492, "us").

SC Manage Condition - Enter a condition that allows only certain users to
add queues as inboxes. For example, index("SysAdmin", $lo.ucapex)>0

Thread Inbox ->Search? - Check this box to open a new thread when moving
from a List screen to a Search screen.

Thread Search -> List? - Check this box to open a new thread when moving
from a Search screen to a List screen.

Search Format - Enter a default search format. The system will try to use the
search State, if the this record is associated with an Object.

Thread List ->Edit? - Check this box to open a new thread in a new window
when moving from a list screen to an Edit screen.

Thread Inbox ->Edit? - Check this box to open a new thread in a new
window moving from an Inbox to an Edit screen.
Fields on the Data Policy Form 193

ServiceCenter
194 Chapter 11—Data Policy

CHAPTER

12
 Clocks
Clocks allow you to track time in specific areas of ServiceCenter. This section
uses incident tickets as an example. Incident tickets can be associated with
multiple clocks, one clock or no clocks. Clocks allow you to track the
following:

The time an incident ticket spends in an incident state or different states.

The time an operator spends editing a ticket.

The time a ticket spends in an assignment group or multiple groups.

What is a Clock?
Clocks are based on records in the clocks Database Dictionary. Each record
has the following fields:

Field Name Data Type Description

type character The type of clock, e.g., problem or downtime. All clocks
associated with problem tickets have a clock type of problem.

name character The name of this clock, e.g., Time spent in alert 3.

key.char character An arbitrary character key used to associate a clock with a
particular external record. All clocks associated with problem
tickets store the problem number in this field.
Clocks 195

ServiceCenter
Clocks Example on page 197 provides an example of how clocks work with
incident tickets. The following example uses three states: Open, Pending and
Closed.

Whenever an incident enters the Open state, a clock named total.time is
started.

Whenever an incident enters the Pending state, the total.time clock is
stopped, and a clock named pending.time is started.

Whenever an incident ticket leaves the Pending state, the total.time clock
is started again, and the pending.time clock is stopped.

Whenever an incident enters the Closed state, the total.time clock and the
pending.time clock are both stopped.

1 Applying this model to the example in Figure 12-1 on page 197:

2 At 1:00 PM on July 1, incident ticket 104 is created and saved in the Open
state. A clock named total.time is created and started.

3 At 4:00 PM on July 2, the problem ticket is moved to the Pending state.

The total.time clock is stopped, after running for 27 hours.

key.numeric number An arbitrary numeric key used to associate a clock with a
particular external record. All clocks associated with problem
tickets have NULL in this field. (In Incident Management, the
problem number is a character field.)

total date/time The total time that this clock has been running.
Note that this value may not always be accurate for clocks
which are currently running.

events array Array of events.

events structure Event structure.

start date/time Date and time when this clock was started.

stop date/time Date and time when this clock was stopped. A clock may start
and stop multiple times over its lifetime.

Field Name Data Type Description
196 Chapter 12—Clocks

System Tailoring, Volume 3
The pending.time is created and starts running.

4 At 2:00 PM on July 4th, the ticket is returned to the Open state.

As the ticket leaves the Pending state, the pending.time clock is
stopped, after running for 46 hours.

As the ticket leaves the Pending state, the total.time clock is restarted.

Open state, ServiceCenter instructs the total.time clock to start. Since
the clock is already running, nothing happens.

5 At 2:30 PM on July 4th, the ticket is Closed.

Incident
Ticket 104
Open

July 1
1:00 p.m.

total.timepending.time
starts—00:00 not started

stops—27:00starts—00:00

restarts—27:00stops—46:00

stops—27:30stopped—46:00

Incident
Ticket 104
Pending

July 2
4:00 p.m.

Incident
Ticket 104
Open

July 4
2:00 p.m.

Incident
Ticket 104
Closed

July 4
2:30 p.m.

1

2

3

4

Figure 12-1: Clocks Example
 197

ServiceCenter
As the ticket enters the Closed state, ServiceCenter attempts to stop the
pending.time clock, which is already stopped.

As the ticket enters the Closed state, the system stops the total.time
clock. This clock has been running for 30 minutes since being restarted.

6 The clock totals are:

total.time—ran from 1:00 p.m. July 1st until 4:00 p.m July 2nd:
27 hours; and also ran from 2:00 PM July 4th until 2:30 PM July 4th for 0.5
hours. The total running time: 27 + 0.5 = 27.5 hours.

pending.time—ran from 4:00 PM on July 2 until 2:00 PM on July 4, for a
complete running time of 46 hours.

Starting and stopping clocks
ServiceCenter provides four methods for starting and stopping clocks. You
can start and stop clocks by:

Status changes.

Editor tracking.

Format Control.

RAD changes.

Note: When a clock is started, a record is automatically created in the clocks
file.

Starting and stopping clocks by status changes
In Incident Management, you can define an incident status. These status
definitions are stored in the pmstatus file. Each time an incident ticket
changes status, ServiceCenter checks for any clocks that need to be started or
stopped. For example, if an incident ticket changes from Pending to Open,
ServiceCenter checks for any clocks associated with the problem ticket that
need stopping or starting.

To access a pmstatus record:

1 Select the Toolkit tab in the system administrator’s home menu.

2 Click Database Manager.

3 Type pmstatus in the File field.

4 Click Search.

5 Select apm.status.g from the QBE list displayed.
198 Chapter 12—Clocks

System Tailoring, Volume 3
6 Click Search.

7 Select the name of the status from the record list for which you want to set a
clock.

For example, select Pending customer.

8 Modify the record as needed.

Click Save or press F2 to save the changes made to the record.

A message appears in the status bar stating: Record updated in the
pmstatus file.

Rename the record and click Add or press F5 to create a new pmstatus
record.

Figure 12-2: PMStatus Record
 199

ServiceCenter
PMStatus fields
Name—the name of the Incident Management status that will trigger the
clock.

Sort Value—the order in which statuses are displayed in a combo box.

On Entering This Status

The clocks listed in this structure are affected when an incident ticket enters
the status listed in the Name field.

Start These Clocks—clocks that you want Incident Management to start
when a ticket enters the status indicated in the Name field.

In the example shown, each time an incident ticket enters the Pending
customer status, a clock named pending.customer is started. This clock keeps
track of how long the ticket remains in the Pending customer state.

Stop These Clocks—clocks you want Incident Management to stop when a
ticket enters the status indicated in the Name field.

In the example shown, each time an incident ticket enters the Pending
customer status, a clock named total.time is stopped. This clock keeps track of
how long the ticket has been in states other than the Pending customer state.

On Exiting This Status

The clocks listed in this structure are affected when an incident ticket enters
a status other than the status listed in the Name field.

Start These Clocks—clocks that you want Incident Management to start
when a ticket enters this status.

In the example shown, each time an incident ticket exits the Pending customer
status, a clock named total.time is started. This clock keeps track of how long
the ticket has been in states other than the Pending customer state.

Stop These Clocks—clocks that you want Incident Management to stop
when a ticket enters this status.

In the example shown, each time an incident ticket exits the Pending customer
status, a clocked named pending.time is stopped. This clock keeps track of
how long the ticket remains in the Pending customer state.
200 Chapter 12—Clocks

System Tailoring, Volume 3
Stopping and starting clocks via editor tracking
ServiceCenter includes an option available in the Incident Management
Environment record called Track Operator Times?. When this option
evaluates to true, the system automatically starts a clock whenever an
operator begins editing a record. The clock is stopped when the operator
stops editing the record. The name of this clock is Time viewed by:
<operator>, where <operator> is the user editing the record. For example if
falcon is editing a record, the clock is named Time viewed by: falcon.

Stopping and starting clocks with Format Control
Clocks can be started and stopped through ServiceCenter’s Format Control
utility. Two RAD routines are used:

apm.start.clock – Starts a clock

apm.stop.clock – Stops a clock

To start or stop a clock from Format Control,

1 Invoke the appropriate subroutine.

2 Pass it the appropriate parameters.

Refer to the ServiceCenter Format Control guide for details on using this
utility.

The following table describes the parameters that are entered in the Names
and Value arrays for apm.start.clock:

Note: The apm.start.clock and apm.stop.clock records do not exist in the
system. Create these Format Control records using the parameters
shown in the table.

Names Type Description/Values

name character The type of clock to start all problem clocks are of type problem.

prompt character The name of this clock, e.g. elvis. The value you put in here needs to
be unique within a given problem ticket. You cannot have two clocks
named boris associated with the same problem ticket. The system
would restart the existing boris clock when you try to open a second
clock named boris. No requirement exists that clock names be
unique between problem tickets. You could have several thousand
problem tickets, each with a clock called Total Time.
 201

ServiceCenter
query character The unique character key for this clock. Pass in the problem number
of the problem ticket with which you want this clock to be associated,
e.g., header,number in $file.

time1 date/time The time at which this clock is to start (defaults to current date and
time).

Note that putting in a time prior to the present rolls back all clock
events since that time. Usually, you should leave this blank and allow
it to default to tod().

Names Type Description/Values

Figure 12-3: Setting Clocks in Format Control
202 Chapter 12—Clocks

System Tailoring, Volume 3
The following table describes the parameters that are entered in the Names
and Value arrays for apm.stop.clock:

Starting and stopping clocks via RAD
You can start and stop clocks via ServiceCenter’s RAD programming.

Clocks can be started by calling apm.start.clock.

Clocks can be stopped by calling apm.stop.clock.

Note: Clocks can be in various applications in Service Center other than
Incident Management. If you choose to use a clock for an application
other than Incident Management, ensure that you select a clock type
that is not already in use.

Accessing a clock
To view all the clocks associated with an incident ticket:

1 Click Clocks when editing an incident ticket.

A pop-up window is displayed listing all the clocks currently associated with
this ticket and the time that each clock has been running.

2 Click Clocks again to update the display.

Names Type Description/Values

name character The type of clock to stop all problem clocks are of type problem.

prompt character The name of this clock, e.g. elvis. The value you put in here needs to be
unique within a given problem ticket. You cannot have two clocks named
boris associated with the same problem ticket. The system would stop the
existing boris clock when you try to stop a second clock named boris. No
requirement exists that clock names be unique between problem tickets.
You could have several thousand problem tickets, each with a clock called
total.time.

query character The unique character key for this clock. Pass in the problem number of the
problem ticket with which you want this clock to be associated, e.g.,
header,number in $file.

string1 character Either stop or strobe. If you want to stop a clock, set this value to stop.
Strobing a clock simply forces it to recalculate its current running time.

time1 date/time The time at which this clock is to stop (defaults to current date and time).
 203

ServiceCenter
Figure 12-4: Clocks
204 Chapter 12—Clocks

CHAPTER

13
 System Language
System language is the vocabulary ServiceCenter uses to communicate
internally with its various routines and processes and interact externally with
its users. Administrators and managers use this language daily to apply
ServiceCenter to a specific purpose or enterprise. User access to various
ServiceCenter operations is controlled with this syntax, as is the workflow
itself. The key to ServiceCenter’s remarkable flexibility can be found in the
proper use of the system language.

Included in this chapter are:

Reserved Words on page 213. – This section lists words with special
meaning. These are words which cannot be used for any other purpose
except that defined in RAD.

Rules for Forming Literals on page 213. – This section lists all the explicit
values (literals) accepted in RAD programming.

Rules for Forming Variables on page 216. – This section defines variables as
they are used in RAD programming.

Using Operators on page 218. – This section defines and lists the operators
used by ServiceCenter. Included are arithmetic, string, logical, relational,
and special operators.

Using Expressions and Statements on page 223. – This section defines
expressions and statements and explains how they are formed.

RAD Functions on page 225. – This section lists and defines all current
RAD functions
System Language 205

ServiceCenter
Data Types Available in ServiceCenter

A data type characterizes a set of values and a set of operations applicable to
those values. The values are denoted either by literals (page 213) or by
variables (page 216) of the appropriate type; they also can be obtained as a
result of operations. Data types can be either primitive or compound.
Compound data types consist of several elements, each of a specific data type.

RAD has seven primitive data types and four compound data types.

Primitive Data Types
ServiceCenter internally represents each data type by its numeric
representation. Certain functions (i.e., val() and type()) allow the user to
determine or modify the numeric representation of a data type, thus
changing the data type.

Name Numeric
Representation

Number 1

Character 2

Time (date/time) 3

Boolean (logical) 4

Label 5

Operator 10

Expression 11
206 Chapter 13—System Language

RAD Guide
Number
A number indicates an amount and can be either a whole number, a positive
or negative number, or a floating point number. The following number
formats display valid numbers accepted by RAD:

1 = 1.0 = 1E0 = 1.0E0

-1 = -1.0 = -1E0 = -1.0E0

32.1 = 32.10 = 3.21E1

-32.1 = -32.10 = -3.21E1

1.257E05 = 125700 = 1.25700E5

Character
A character type is a string of zero or more letters, digits, or special characters,
and is delimited by double quotes (“ ”). The following character formats
show valid strings accepted by RAD:

“function”“12379”

“Vendor473”“#$$^%+@”

“$VEN471”“#73264”

“vendor”

In addition, non-characters can be included in strings using their
hexadecimal code preceded by a backslash.

Alternatively, any special or reserved character can be treated as a literal
character by preceding it with a backslash. Use a double backslash to
represent a literal backslash. For example:

$L.instruction="Enter the value \"securepassword\" in your
c:\\servicecenter\\run\\sc.ini file”

Date/Time
The date/time data type is delimited with single quotes (‘ ’). Time is
represented in either absolute format (‘MM/DD/YY HH:MM:SS’) or relative
format (‘DDD HH:MM:SS’).

‘10/12/90 12:12:46’

‘1 00:00:00’ (meaning 1 day)

The order of month-day-year is determined by the set.timezone() function.
(See this function for possible values.)
Data Types Available in ServiceCenter 207

ServiceCenter
Boolean
A boolean data type is true, false, or unknown (of undetermined truth value).
The following formats are accepted:

t = T= true = TRUE = y = Y = yes = YES

f = F = false = FALSE = n = N = no = NO

u = U = unknown = UNKNOWN

Label
Labels are used to define exits. For example:

$exit

$normal

<panel name>

Operator
Arithmetic operators:

+, -, *, /, indicating addition, subtraction, multiplication and division

Expression
Expressions are sequences of operators and operands used to compute a value:

$X * 25

$Y > 32

Compound Data Types
You may combine primitive data types to form compound data types. Any
compound data type can have elements of any other valid data types. The
compound data types most commonly defined in the RAD language are as
follows:

Data Type Numeric
Representation

offset 7

array 8

structure 9

file/record 6
208 Chapter 13—System Language

RAD Guide
Array
An array is a list of elements of the same data type accessed by an index
(element) number. The term array is synonymous with the terms list, vector,
and sequence. Elements in arrays can be of any data types (including arrays or
structures). A fully qualified array name (e.g., array field in $file) can be used
in place of an array variable. The number of items in an array can vary and
does not have to be allocated in advance. Arrays are delimited by curly braces
({ }).

For example:

{1, 2, 3}

{5, 12, 28}

{“a”, “c”, “e”, “f”}

{‘12/7/42 00:00,’ ‘1/3/62 00:00’}

{true, true, unknown}

{{[1,“a”,true]},{[2,“b”,false]},{[3,“c”,unknown]}}

{ } denotes an empty array (an array containing no elements).

You can use either of the following equivalent syntaxes to access an element
in an array:

$array[element_number]

~ or ~

element_number in $array

pseudo field 12

global variable 13

local variable 14

Data Type Numeric
Representation
Data Types Available in ServiceCenter 209

ServiceCenter
For example, to extract the value of the first customer number (2753) in the
array $customer with value {2753, 2842, 2963}, use any of the following
equivalent syntaxes:

1 in $customer

~ or ~

$customer[1]

If the accessed array element does not exist, the element is created and set to
NULL. This effectively extends the array.

To insert a value into an array, see the insert function. To delete an element
from an array, see the delete function. Arrays should be denulled before they
are assigned to a record or added to the database.

Structure
A structure is a group of named elements of (possibly) differing data types
accessed by an index (element) number. Structures are delimited with both
curly braces and square brackets ({[]}). Note the following examples:

{[1,“a”,true]}

{[true,‘10/16/90 00:00’,false]}

{[1,1,“b“,0]}

You can use either of the following syntaxes to extract an element from a
structure:

$structure[index of field]

 ~ or ~

index of field in $structure

For example, to extract the value of the part number (672) in the part.no field
within the structure $order.line1 with the value of [{672,10,“ball.bearings”]}
with the field names part.no, quantity and description, use the following
syntax:

$order.line1[1]

~ or ~

1 in $order.line1
210 Chapter 13—System Language

RAD Guide
In addition, elements of structures may be extracted using their element
number. For example, the 1 in $order.line1 is the same as part.no in $order.line1.

Note: Field names are contained in the database dictionary and can only be
used when associated with a file variable.

For example, you can use this command:

$x=part, part.no in $file

…while these commands,

$y=part in $file

$x=part.no Sin $y

…do not work because the second statement is not associated with a file
variable.

File/Record

A file is a set of related records that is treated as a single unit and is stored on
disk. (A file is a particular kind of structure, although a structure is not a kind
of file.) The term file is synonymous with the terms relation, table, or dataset.
Every file must have a file name and other descriptive data in the database
dictionary, dbdict. The file name should be a single word without spaces or
periods. Using the rinit command panel creates a file variable into which all or
any portion of a file’s records can be selected. The records then reside in
memory for display or modification.

Note: File variables should be created on the rinit command panel.

A file variable has four parts:

File name: The file name in the file variable is the name of the file in the
database dictionary. If you want to use the RAD Database Manager, the
file must be a single word without spaces or periods. The file variable is
bound to the file with a given name using the rinit command panel. The
file name of a file variable can be accessed using the Name pseudo-field
(see Chapter 6), or using the filename() function.
File/Record 211

ServiceCenter
List of records selected from the file: This part of the file variable is a list
of the records selected from the file. Execution of a select command panel
retrieves the file’s records from the database and sets up the list. Execution
of a fdisp (File Display) command panel displays summary information
from records in the list.

Current record: This part of the file variable is the current record. You can
move to the next record in the list by using the next (Read Next Record)
command panel. You can move to the previous record in the list by using
the previous (Read Previous Record) command panel. The select
command panel always sets the current record to the first record that
satisfies the selection query. The fdisp (File Display) Command Panel sets
the current record to the record selected by the cursor when <enter> is
pressed.

Descriptor: This part of the file variable allows fields to be extracted by
name.

Each record is a structure and has the structure delimiter {[]}. The field names
in the structure are listed in the database dictionary and descriptor.

For example:

$file is a file variable

lastname is a field name listed in the database dictionary for the file that
$file has been bound to using the rinit command panel,

lastname in $file is a valid expression whose value is the lastname field in
the current record in $file, or the nth field, based on the index of the
lastname field in the descriptor.

Note: ServiceCenter is case sensitive. The case for field names, file names,
etc. must match. For example, STATUS.CUST is not the same as
status.cust.

See also the functions: contents, descriptor, filename, file.position, and
modtime.
212 Chapter 13—System Language

RAD Guide
Reserved Words

Reserved Words are words recognized by RAD as having a specific meaning.
You cannot use a reserved word for any other purpose or give it any other
meaning. Reserved Words can be entered in either upper or lower case, but
the cases cannot be mixed. The following is a list of RAD language Reserved
Words:

Rules for Forming Literals

A literal is an explicit value. You can use a literal wherever you can use a
variable, except on the left-hand side of an assignment statement.

AND ELSE FOR NOT STEP

WHILE BEGIN END IF NULL

THEN UNKNOWN DO IN OR

TRUE FALSE ISIN

Literal Category Example

Character Alphabetic “abcde”

Numeric “12379”

Alphanumeric “a1276b45”

Special “$%=+*#@/”

Mixed “$vendor”

Mixed “$12379@6:54”

Mixed “A1276%#B”

Hexadecimal “\01\ff\c2”

Containing backslash “\\”

Containing double quote “\””

Number Integer 1

Negative Integer -1

Fixed Point 32.1
Reserved Words 213

ServiceCenter
Character Strings
A string is a sequence of zero or more numeric, alphabetic or special
characters enclosed with double quotation marks. Rules for forming strings
are as follows:

A string can be any combination of letters, digits or special characters.

All strings must be enclosed in double quotation marks.

A string can be any length.

A string may include any special characters including those used as
operators.

Floating Point 1.257E05

Date/Time Relative Time ‘197 05:00’

Absolute Time ‘07/16/83 04:30:00’

Boolean True TRUE/true/T/t/YES

/yes/Y/y

False FALSE/false/F/f/NO

/no/N/n

Unknown UNKNOWN/unknown

/U/u

Array Numeric {1,2,3}

Character {“a”,“b”,“c”}

Nested {{1,2},{3,4}}

Structures {{[1,"a"]}{[2,"b"]}}

Structure {[1,“a”,true]}

{[true,‘10/12/87 00:00’]}

Literal Category Example
214 Chapter 13—System Language

RAD Guide
A double quotation mark may occur in a string, but it must be preceded
by a backslash (\) to enable the system to distinguish between double
quotation marks as part of the string and a double quote at the beginning
or end of the string. For example, “Vendor=\“473\”” denotes the string:
Vendor=“437”

Non-characters may appear in strings as two hexadecimal digits preceded
by a backslash. For example, “\c1”.

NULL (or anything that evaluates to NULL), appended to or inserted in a
string converts the entire string to NULL.

An empty string is not the same as NULL

Numbers
Enter numbers as an optional sign followed by digits which are optionally
followed by a decimal point, then more digits which are optionally followed
by the letter E and an exponent.

Times
Time can be either relative or absolute. The following rules govern the use of
time:

Time must be enclosed in single quotation marks.

Enter absolute time in the following format:
‘MM/DD/YY HH:MM:SS’
(See the set.timezone() function for month-day-year order.)

Enter relative time in the following format: ‘DDD HH:MM:SS’

The use of seconds (:SS) is optional in either relative or absolute time. If
you do not use seconds, the default is :00.

The use of time (HH:MM:SS) is optional in absolute time. If you omit this
syntax, time defaults to 00:00:00 (i.e. ‘MM/DD/YY 00:00’). Time is recorded
on a 24-hour clock, i.e., ‘00:00:00’ is midnight, ‘12:00:00’ is noon, ‘18:00:00’ is
6 p.m.

The use of DDD is optional in relative time. If you omit it, DDD defaults
to 0 (i.e. ‘HH:MM’).

Use the following to set a time variable to a 0 (zero) value:
$time = ‘00:00’
Rules for Forming Literals 215

ServiceCenter
Booleans
A boolean indicates true, false or unknown (of undetermined truth value).
The rules for forming booleans are as follows:

Enter the boolean directly as true, false, unknown (t, f or u).

Enter the boolean in either upper or lower case characters.

yes or y is a synonym for true; no or n for false

Rules for Forming Variables

A variable is a named entity that refers to data to which you can assign values.
The data type and value of a variable can be different at different times and
can have a primitive or compound data type as its value. The rules for
forming variables are as follows:

A variable must begin with a dollar sign ($) and an alphabetic character
followed by zero or more alphanumeric characters that may include
periods, but may not include blanks.

A variable name may be any length.

The value of any variable is initialized to a null string.

The data type of a variable is determined by the system as the type
associated with the value of the data assigned to it.

Any variable may be set to a null value by assigning the value NULL into
it (i.e., $variable=NULL).

Note: Unless designated by an initial identifier, all variables, with the
exception of parameter variables, are treated as global variables among
all applications executed within the process or task.

Using Variables
The rules for using variables are as follows:

You may use any number of variables in an application.

You can use a variable in any field in an application (RAD) panel except
in the application field and the label field.
216 Chapter 13—System Language

RAD Guide
Variable Pools
Variable pools are functional groupings of variables within ServiceCenter.
There are currently five variable pools:

Global

Thread

Local

Parent

Parameter

Global
Global variables are visible to the entire system. ServiceCenter uses four
global variables:

$G.

$lo.

$SYSPUB.

$MARQUEE.

Thread
Thread variables are only visible to the thread in which they were defined.
The same variable in different threads will have a different value, even if the
threads were spawned by the same parent. Examples of Thread variables
would be:

$file

$array

$post

Local
A local variable ($L.) is only visible to the RAD application in which it was
defined. There is only one local variable—$L.

Parent
A parent variable ($P.) defines the value of a variable for multiple threads of
a single parent.

For example, a variable in thread0, called $source.file, has the same value in
thread1 or thread2 when defined as $P.source.file in those threads.
Rules for Forming Variables 217

ServiceCenter
Parameter
A parameter variable is defined on a parameter panel and may contain a
value passed in from another application. By convention, parameter
variables are written in uppercase letters, such as $PHASE or $GROUP.LIST.
Parameter variables are invisible to the debugger.

Using Operators

ServiceCenter uses several different kinds of plenary operators:

Arithmetic Operators

String Operators

Logical Operators

Relational Operators

Special Operators

Arithmetic Operators
An arithmetic operator indicates actions to be performed under the terms of
an arithmetic expression. Arithmetic operators have the following
precedence: exponentiation, followed by multiplication, division and
modulus (all equal); then addition and subtraction (both equal). Operators
with higher precedence are evaluated first. When the operators have equal
precedence, they execute from left to right.

Operator Description

Addition (+) Indicates that two numbers are to be added together
Example: 49 + 51 = 100

Subtraction (–) Indicates that one number is to be subtracted from another
number
Example: 40 − 20 = 20

Note: To distinguish subtraction from unary minus, the
subtraction operator must be followed by a blank.

Multiplication (*) Indicates that one number is to be multiplied by another
number
Example: 5 * 5 = 25
218 Chapter 13—System Language

RAD Guide
String Operators
String operators allow you to combine two strings into a single string
(concatenate). One string operator is available: Concatenation Operator.

Concatenation (+)

This operator combines two strings together to make one string.

Example

“a” + “b” = “ab”

Concatenation is also available for arrays.

Example

{"a", "b", "c",} + {"d", "e"} = {"a", "b", "c", "d", "e"}

Logical Operators
A logical operator evaluates one or two boolean expressions and determines
whether the expression is true or false. The unknown truth value is treated
according to the Substitution Principle, which dictates:

If UNKNOWN occurs as a logical operand, then the result of the
operation is TRUE if substituting TRUE or FALSE for UNKNOWN
always yields TRUE.

Division (/) Indicates that one number is to be divided by another
number
Example: 300 / 10 = 30

Exponentiation (**
)

Indicates that the exponential value of a number is to be
calculated
Example: 2 **5 = 32

Modulus (mod) or
(%)

The modulus is the remainder of a division operation. You
may specifically want the remainder for a division operation,
or you may want to generate a circular number sequence
within a given range.
Example: 5 mod 2 = 1 or 5 % 2 = 1

Operator Description
Using Operators 219

ServiceCenter
The result is FALSE if substituting TRUE or FALSE for UNKNOWN
always yields FALSE.

The result is UNKNOWN if substituting TRUE or FALSE for
UNKNOWN sometimes yields TRUE and sometimes yields FALSE.

The Logical Operators are as follows (executed in the order shown):

not

and

or

The highest precedence is executed first. When they are equal, the operators
are executed from left to right.

Logical Operator Description

not: ¬ (in EBCDIC) or ~
(in ASCII)

Inverts the boolean value of the boolean expression. If
the expression is true, the system returns FALSE. If the
expression is false, the system returns TRUE.

For example:

not TRUE = FALSE
¬ FALSE = TRUE (MVS)

~ FALSE = TRUE (Unix)
 UNKNOWN = UNKNOWN

~ UNKNOWN = UNKNOWN

and: (AND and &) Evaluates two expressions and returns a value of TRUE
if both expressions are true. If one or both of the
expressions is false, the system returns FALSE.

For example:

TRUE and TRUE = TRUE

TRUE and FALSE = FALSE

TRUE and UNKNOWN = UNKNOWN

FALSE and UNKNOWN = FALSE

or: (OR or |) Evaluates two expressions and returns a TRUE if either
or both of the expressions is true. If both expressions are
false, it returns a FALSE.

For example:

TRUE or FALSE = TRUE

FALSE | FALSE = FALSE

FALSE OR UNKNOWN = UNKNOWN

TRUE OR UNKNOWN = TRUE
220 Chapter 13—System Language

RAD Guide
Relational Operators
A relational operator makes a comparison, then generates logical results on
whether the comparison is true or false.

Relational operators treat null operands according to the NULL substitution
principle:

If the relation is true regardless of the value of the null operand, the result
is true.

If the relation is false, the result is false.

Otherwise, the result is unknown.

An operand can be checked for null using the special value NULL; $x=NULL
is true if $x is null.

Rational Operator Description

Less Than: (<) Indicates that the value of one item is less than the value
of another item.

For example:

400 < 500 is TRUE

Less Than or Equal To:
(< = or = <)

Indicates that the value of one item is less than or equal
to the value of another item.

For example:

400 < = 500 is TRUE

400 = < 500 is TRUE

Equal To: (=) Indicates that the value of one item is equal to the value
of another item.

For example:

1 = 1 is TRUE

Greater Than: (>) Indicates that the value of one item is greater than the
value of another item.

For example:

‘08/01/83 00:00’ > ‘07/20/83 00:00’ is TRUE

Greater Than or Equal
To: (> = or = >)

Indicates that the value of one item is greater than or
equal to the value of another item.

For example:

600> =300 is TRUE

600= >300 is TRUE
Using Operators 221

ServiceCenter
Special Operators
ServiceCenter supports the use of two special operators. These are as follows:

Statement Separation

Parentheses

Not Equal To: (¬ =) or
(~=) or (< >) or (> <)

Indicates that the value of one item is not equal to the
value of another item.

For example:

1 ¬ =2 is TRUE (MVS) or

1 ~=2 is TRUE (Unix)

Starts With (Truncated
Equals): (#)

Indicates that the value of the first string starts with the
value of the second string.

For example:

“abc“#“ab” is TRUE

Note: The order of the operands affects this operations.

Does Not Start With
(Truncated Not Equal
To): (¬#) or (~#)

Indicates that the value of the first string does not start
with the value of the second string.

For example:

“ab” ¬ #“abc” is TRUE (MVS)

“ab” ~ #“abc” is TRUE (Unix)

Note: The order of the operands affects this operation.

Rational Operator Description

Special Operator Description

Statement Separation: (;) This operator separates two or more statements on the
same line.

For example:

$A=$B+$C;$B=$C+$D

Parentheses: () This operator groups together expressions or statements.

For example:

3*($x + $y)

IF ($x=1) THEN ($y=“z”) ELSE ($y=3)

IF ($x=1) THEN ($x=2;$z=1) ELSE ($y=3)

ServiceCenter follows the standard order of operations:
operators inside the parentheses are evaluated first. and
parentheses themselves are evaluated from left to right.
222 Chapter 13—System Language

RAD Guide
Using Expressions and Statements

An expression is a combination of one or more operations used in
combination with functions. An expression may be a literal or a variable. An
expression can also be used in combination with operators or used with a
function call.

A statement does not have a value. A statement is comprised of expressions
combined with key words. ServiceCenter uses three statements from the
BASIC language: IF, WHILE and FOR. These statements perform
conditional processing and looping. In addition, ServiceCenter uses three
assignment statements: assign, increment, and decrement.

Assignment Statements

Assignment Statement Description

Equals: (=) Assigns the value of the right hand operand to the left
hand operand.

For example:

$x=1 assigns 1 to $x

Increment: (+ =) Increment the left hand operand by the right hand
operand.

For example:

$x=$x+1 or the shortcut version is: $x += 1 increments
$x by 1

Decrement: (- =) Decrement the left hand operand by the right hand
operand.

For example:

$x=$x-1 or the shortcut version is: $x -= 1 decrements
$x by 1

Note: For increment and decrement, $x (the 1 value)
must be initialized to a number.
Using Expressions and Statements 223

ServiceCenter
FOR Statements
Allows you to perform a loop. You can set a variable, perform a statement,
and increment the variable until the variable is greater than a maximum
value. Format this statement as follows:

FOR variable name = initial value TO maximum value [DO] statement

Example:

FOR $I=1 TO 10 DO $J=$I * $I+$J

Note: The brackets ([]) indicate that the DO keyword is optional.

IF Statements
Specifies a condition to be tested and a statement to be executed if the
condition is satisfied and a statement to be executed if the condition is not
satisfied. Format these statements as follows:

IF boolean condition THEN statements [ELSE statements]

Example

IF $location = “Seattle” THEN $x = $x + 1 ELSE $x = $x - 1

Note: If boolean condition evaluates to UNKNOWN, then neither
statement is executed.

The brackets ([]) indicate that the ELSE clause is optional.

WHILE Statements
Specifies a condition to be tested and a statement to be executed when the
condition is TRUE. Format these statements as follows:

WHILE (expression) [DO] statement

Example:

WHILE ($x>6) DO ($x=$x-1; $y=$y-1)

Note: The brackets ([]) indicate that the DO keyword is optional.

FOR, IF and WHILE statements can be nested (e.g.,
for…to…if…then…else…if…then…)
224 Chapter 13—System Language

RAD Guide
RAD Functions

A RAD function is an operand used in any expression on the right hand side
of an equals sign. Functions provide a method of performing certain
commands that will return a value when executed. For example:

operator()—returns the logged-on operator ID.

tod()—returns the current date and time.

option()—returns the value of the last option selected.

RAD supports a complete set of business data processing functions. This
section provides a list of the supported functions, a brief definition of each,
and a detailed description of their use.

Processing Statements
Processing statements can be used in conjunction with RAD functions to
further define selection criteria and/or execute commands, initialize values,
and perform calculations. ServiceCenter syntax rules must be followed.

Locating Functions
To locate a RAD function in ServiceCenter

1 Open the Database Manager.

2 Type =application in the Form field of the Database Manager dialog box.

3 Click Search or press Enter.

A blank application file record is displayed.

4 Select Options > Advanced Search.

A query window is displayed.

5 Type one of the following queries in the Query field:

index(“<function name>”, str(contents(currec())))>0

Use this syntax to search for any non-rtecall function.

index(“rtecall(\"<function name>\"”, str(contents(currec())))>0

Use this syntax to search for all instances of a particular rtecall function.
For this query to run properly, a backslash must precede each double
quotation mark within the rtecall parentheses.
RAD Functions 225

ServiceCenter
index(“rtecall(\"<first letter>”, str(contents(currec())))>0

Use this syntax to search for all instances of all rtecall functions beginning
with a particular letter (for example, the letter r). For this query to run
properly, a backslash must precede the first set of double quotation marks.
The closed parenthesis is not necessary in this syntax.

6 Click Search.

A QBE list of RAD panels in which the function you have named is displayed.
226 Chapter 13—System Language

RAD Guide
7 Double-click on a panel to display that instance of the function.

Quick Reference List

Function Description

axis Returns a string with the boundaries for a bar or point
plot graph (page 235)

cleanup Frees the storage associated with a variable (page 236)

contents Returns a structure containing the current record in a
file variable (page 236

copyright Returns a string with the Peregrine Systems, Inc.,
copyright notice (page 237)

currec Represents the current file handle in queries (page 237)
RAD Functions 227

ServiceCenter
current.device Returns a string with the name of the device associated
with the current task (page 237)

current.format Returns a string containing the name of the current
format (page 238)

current.screen Returns an array of strings containing the current
screen image (page 238)

current.scroll Returns and sets the current scroll state (page 238)

current.window Returns a string containing the name of the currently
selected window. (page 239)

cursor.column Returns the number of the column in which the cursor
was positioned when the last interrupt key was pressed
(page 240)

cursor.field.contents Returns a string containing the contents of the input
field in which the cursor was positioned when the last
interrupt key was pressed (page 240)

cursor.field.name Returns a string containing the name of the field in
which the cursor was positioned when the last interrupt
key was pressed (page 241)

cursor.field.name.set Moves the cursor to a field (page 242)

cursor.field.readonly Returns true if the selected field is read-only and false if
the field is not read-only (page 242)

cursor.filename Returns a string containing the name of the file that is
associated with the format where the cursor is
positioned (page 243)

cursor.line Returns the number of the line, relative to the screen, in
which the cursor was positioned when the last interrupt
key was pressed (page 243)

cursor.window Returns a string containing the name of the window in
which the cursor was positioned when the last interrupt
key was pressed (page 243)

date Returns the date portion of a date/time variable and
defaults time portion to ‘00:00’ (page 244)

day Returns the day of the month for a date regardless of the
date format (page 244)

dayofweek Returns a number from 1 to 7 representing the day of
the week for a specific date (page 245)

Function Description
228 Chapter 13—System Language

RAD Guide
dayofyear Returns the day of the year for a date regardless of the
date format (page 245)

delete Returns an array with specific elements deleted
(page 245)

denull Returns an array with all trailing NULL entries deleted
(page 246)

descriptor Returns the database dictionary descriptor record for a
file variable (page 246

evaluate Executes a specific string as though it were a processing
statement (page 247)

exists Checks for the existence of a field in a file (page 247)

fduplicate Copies an entire file variable from one record to another
(page 248)

filename Returns a string containing the name of the file for a
specified file variable (page 248)

file.position Returns an index into the record list for various records
(page 249)

filesize Returns the size (in bytes) of a specified system file of
your ServiceCenter implementation (page 250)

filesizes Returns an array of numbers representing the bytes for
each of the files that make up a Service Center database
(page 250)

fillchar Assigns/retrieves a field input character other than
underscore (page 251)

fixed.key Returns and sets fixed key function (page 251)

frestore Restores all fields in a file variable to their original
database values (page 252)

genout Generates a string containing the contents of a format
used to export ServiceCenter database information. It
produces either fixed or variable length output
(page 252)

get.base.form.name Returns the base name of a form, stripping off the form
extension for GUI or Web forms (page 253)

get.dateformat Returns the date format of the current operator ID
(page 254)

Function Description
RAD Functions 229

ServiceCenter
get.timezoneoffest Returns the absolute time difference between GMT and
the time zone of the operator (page 254)

gui Determines whether or not ServiceCenter is running in
GUI mode (page 256)

index Returns the element number of an array or the position
in a string that matches a specified string (page 256)

insert Returns a NULL element into an array (page 257)

iscurrent Determines if the record with which you are working is
the most current version in the database (page 259)

lng Returns the number of elements in an array or
characters in a string (page 259)

locks Returns array of current outstanding locks (page 259)

logoff Logs a user off (page 260)

logon Logs a user on (page 261)

mandant Allows an application to create a subset of the current
Mandanten values (page 261)

max Returns the largest value in a list of values or in an array
(page 262)

messages Provides logging functions for use in the memory
message log. The log is implemented as a wrap-around
cache of the x most recent messages (error,
informational, and action) as displayed at the bottom of
the screen in the message field (page 262)

min Returns the smallest value in a list of values or in an
array (page 264)

modtime Returns the time a record was last modified (page 265)

month Returns the month of year for a date regardless of the
date format (page 265)

null Returns true if the value of a variable is NULL. Returns
false if the value of a variable is not NULL (page 266)

nullsub Substitutes a null field with the value given (page 266)

operator Returns the string of the name of the currently logged
on operator (page 267)

option Returns the number of the last option key pressed
(page 267)

Function Description
230 Chapter 13—System Language

RAD Guide
parse Returns an evaluative expression from a given string
value (page 268)

pfdesc Returns a string containing the description of the
option key number provided (page 269)

pfmap Returns array of remapped option keys (page 269)

printer Returns a string of the name of the current printer
(page 270)

priority Lowers or raises the priority of a task (page 270)

processes Returns array of current logged on processes (page 271)

prof Returns the value requested on various system
performance profiles (page 272)

recordcopy Copies a set of fields from one record to another record
(page 273)

recordtostring Takes the value of a field from an array and appends the
value to a string (page 273)

replicate Replicates a named file from a remote site to the current
site (page 274)

round Returns a number rounded to a specified number of
digits (page 275)

rtecall(“alalnum”) Checks to make sure a string contains only
alphanumeric characters, or only alphanumeric
characters and the provided non-alphanumeric
characters (page 276)

rtecall(“alnum”) Checks to make sure a string contains only numeric
characters, or only numeric characters and the provided
non-numeric characters (page 276)

rtecall(“alpha”) Checks to make sure a string contains only alphabetic
characters, or only alphabetic characters and the
provided non-alphabetic characters (page 278)

rtecall(“counter”) Turns counters on or off for the current session. Other
SC users are unaffected (page 279)

rtecall(“datemake”) Returns a date, in the proper form, based upon a series
of numbers passed to it (page 279)

rtecall(“escstr”) Precedes special characters in a string with an escape
character (page 281)

Function Description
RAD Functions 231

ServiceCenter
rtecall(“FILLDATE”) Places the current date and time in a field in the current
record (page 282)

rtecall(“filecopy”) Copies all of the data in a collection to another file
variable (page 283)

rtecall(“fileinit”) Initializes a new file (rinit) in $targetfile (page 284)

rtecall(“getnumber”) Replaces the getnumb RAD application (page 284)

rtecall(“getrecord”) Retrieves the record identified by unique key values in
$L.array (page 286)

rtecall(“getunique”) Returns into $L.array the values for the unique key from
the current record in $L.file (page 286)

rtecall(“log”) Sends a message to the external sc.log file (page 287)

rtecall(“notypecheck”) Turns type checking off or on (page 289)

rtecall(“passchange”) Changes this user’s password (page 290)

rtecall(“policycheck”) Imposes data policy as defined in the datadict table
(page 291)

rtecall(“qbeform”) Returns a QBE form, which can be passed into an rio or
fdisp panel (page 291)

rtecall(“radhistory”) Keeps track of the RAD panels a user has executed when
running ServiceCenter applications (page 292)

rtecall(“recdupl”) Copies the contents of the current record into the
contents of another record (page 293)

rtecall(“rfirst”) Places the pointer at the first record in a record
collection (a QBE list) (page 295)

rtecall(“rgoto”) Places the pointer at the indicated record.id in a record
collection (a QBE list) (page 295)

rtecall(“rid”) Returns the record number of the current record
(represented by $L.file) (page 296)

rtecall(“sort”) Sorts a list or a list of lists in ascending or descending
order (page 297)

rtecall(“transtart”) Measures the amount of data transferred, elapsed time
and CPU usage of any transaction (page 298

rtecall(“transtop”) Measures the amount of data transferred, elapsed time
and CPU usage of any transaction. It is commonly
invoked from the GUI debugger and is used in
conjunction with transtart (page 299)

Function Description
232 Chapter 13—System Language

RAD Guide
rtecall(“trigger”) Turns triggers on or off for the current session
(page 300)

same Compares two compound or null values. Returns true if
two values are identical, otherwise returns false
(page 301)

scmsg Returns a message of a particular type and number from
the scmessage file and substitutes text for the variables
in that message (page 303)

set.timezone Sets time zone and other system parameters (page 304)

setsort Sorts the fields of an array in a file (page 304)

share Shares the data in the current record with the same file
at several remote sites (page 304)

shutdown Shuts down ServiceCenter from inside the system. This
function does not return any values (page 305)

str Returns a string of a string or non-string data variable
(page 305)

stradj Makes a string a specific length by either clipping or
adding trailing blanks (page 305)

strchrcp Replaces part of a string with copies of another string
(page 306)

strchrin Inserts copies of a string into another string (page 307)

strclpl Clips a number of characters from the beginning of a
string (page 307)

strclpr Clips a number of characters from the ending of a string
(page 308)

strcpy Replaces part of a string with a substring (page 308)

strdel Deletes a number of characters from a specific spot in a
string (page 309)

strins Inserts a substring into another string (page 310)

strpadl Pads a string with leading blanks until the string is a
certain size (page 310)

strpadr Pads a string with trailing blanks until the string is a
certain size (page 311)

strrep Returns a string, replacing a specified character
sequence with another string (page 312)

Function Description
RAD Functions 233

ServiceCenter
strtrml Removes all leading blanks from a string (page 312)

strtrmr Removes all trailing blanks from a string (page 313)

substr Returns a string from a portion of a string (page 313)

sysinfo.get Returns various information about the session the user
is running (page 314)

time Returns the time portion of a date/time variable
(page 317)

tod Returns the current date and time (page 318)

tolower Returns a string, replacing upper-case letters with
lower-case letters (page 318)

toupper Returns a string, replacing lower-case letters with
upper-case letters (page 319)

translate Returns a string translated from one character set to
another (page 319)

trunc Truncates the decimal digit number to a specified
number of digits (page 320)

type Returns the numeric type of its argument (page 320)

val Returns a non-string data type converted from a string
(page 321)

variable.send Sets the value of a RAD variable on the server when
using a full client (page 323)

version Returns a list of version information (page 323)

year Returns the full year for a date regardless of the date
format (page 324)

Function Description
234 Chapter 13—System Language

RAD Guide
Function Definitions

axis
Returns a string with the boundaries for a bar or point plot graph (i.e., the
lowest, mid, and highest point in the array to be plotted).

Format
axis(array variable,n)

Where array variable is the variable name for the array that contains the data
to be graphed, and n is the length of the display field on the format where the
graph appears.

Factors
The array variable may contain all numeric or all time values. The system
ignores all other values.

Mixing numeric and time values produces incorrect results because
numeric and time values cannot be compared.

The array variable must contain at least 2 values, insert ý if the length is
only 1.

Example
$graph = axis($balance,61)

Where $balance contains numeric values to be graphed in a format field of 61
characters, and $graph contains the minimum, middle, and maximum value
in the array, $balance. To illustrate the $graph values:

$balance = {2, 4, 6, 8, 10}

$graph = axis($balance, 10)

$graph would then = "2 6 10"

Note: The display engine no longer supports display of histograms or point
plots.

Where 2 represents the minimum value in $balance, 6 represents the middle
value in $balance, and 10 represents the maximum value in $balance. The
extra blanks between the 2 and 6, and 6 and 10 are placed there to make the
whole string equal to 10. If the string were to be made equal to 12, there
would be four blanks between the numbers. The numbers represented in the
character string $graph can be used for plotting purposes.
RAD Functions 235

ServiceCenter
Note: If the length (n) specified is not large enough to return the three values
with at least one blank between each value, the result will be a
character string of n length of asterisks.

Example

$balance = {2, 4, 6, 8, 10}
$graph = axis($balance, 4)
$graph would then = "****"

cleanup
Frees the storage associated with a variable.

Format
cleanup()

Where the variable is the variable name to be freed.

Factors
This function does not return a value, but simply executes the cleanup of
the variable name.

Should not be run on local variables.

This is the preferred way to clean up both variables and fields in records
(as opposed to $x=NULL or field in $file=NULL.

Example
cleanup($system)

contents
Returns a structure containing the contents of the current record in a file
variable.

Format
contents(file variable)

Where file variable is the file variable whose contents you wish to obtain.

Factors
If you use the contents() function to compare two records (e.g., before and
after versions), always do a denull of both. If one record was displayed and
the other was not, one record may have extra null values in any arrays.
236 Chapter 13—System Language

RAD Guide
Using denull on an empty array of structures converts the array of structures
to a simple array. Always test for null first as in the following example:

denull(contents($save.rec))=denull(contents($rec))

Example

contents($file.variable)

copyright
Returns the Peregrine Systems, Inc., copyright notice in a string.

Format
copyright()

Example

copyright() returns Copyright(c) Peregrine Systems, Inc. 2002-2003

currec
Represents the current file handle on queries.

Format
currec()

Example

modtime(currec())>’1/1/97’

Used as a select statement, selects all records modified since 1/1/97 from the
current file.

current.device
Returns a string containing the name of the device (terminal) associated with
the logged-on user.

Format
current.device()

Example

current.device() returns /dev/tty00 (on Unix)

current.device() returns LU0101A (on MVS)
RAD Functions 237

ServiceCenter
Note: $lo.device is set to the value of current.device upon login.

current.format
Returns a string containing the name of the most recently displayed format.

Format
current.format()

Example

current.format() returns problem.open

current.screen
Returns an array of strings containing the screen image of the current screen,
including all windows.

Format
current.screen()

current.scroll
Sets and returns a structure that describes the current scroll state of the
screen, or sets the cursor into a field with a given name.

To maintain transparency, current.scroll can be used to set the cursor into a
field with a given name. However, the cursor.field.name.set function should
be used instead of current.scroll to set the cursor into a field with a given
name.

Format
current.scroll(s)

Factors
If the programmer wishes to remember the current cursor position of the
screen and restore it later, use:

$x=current.scroll()
<other screen processing>
current.scroll()=$x
238 Chapter 13—System Language

RAD Guide
If the programmer wishes to set the cursor to the field named header,
number use:

current.scroll()=current.scroll("header,number")

current.window
Returns the name of the currently selected window (the rio, fdisp, or wselect
command panel that is active—the one whose system tray is active) without
regard to cursor position.

Format
$cwindow=current.window()

Examples

Assume two windows are displayed: MainWindow and field.window (as in
the dbdict utility). The function tray displays functions of the field.window.
The cursor is in MainWindow.

$cwindow=current.window()

After execution, value of $cwindow is field.window

Note: The current window is always MainWindow until another window is
opened (using wopen) and/or selected (using wselect). The
opened/selected window is then the current window until the current
window is closed.

See also: See the wopen and wclose command panels in Chapter 4 for more
information on how windows are used.
RAD Functions 239

ServiceCenter
cursor.column
Returns the number of the column on the displayed format where the cursor
was positioned when the last interrupt key (e.g., <enter>, option key) was
pressed.

Format
cursor.column(n)

Example

cursor.field.contents
Returns a string with the contents of the field in the displayed format where
the cursor was located when the last interrupt key (e.g., enter, option key)
was pressed.

Format
cursor.field.contents()

Example

cursor.field.contents() returns a101a01

If the field is an array, the content of the current element is returned.

Syntax Returns

cursor.column() The numeric value of the column
designated by the cursor.

cursor.column(1) The numeric value of the relative column
of the cursor position in the array or
structure within the format (considers
horizontal scrolling as well). The value can
be greater than the terminal’s screen width.
240 Chapter 13—System Language

RAD Guide
cursor.field.name
Returns a string containing the name of the input field (defined in
ServiceCenter Format Manager) in the displayed format where the cursor
was located when the last interrupt key (e.g., enter, option keys) was pressed.

Format
cursor.field.name(n)

Factors
If the function is called with an argument, the fully-qualified field name is
returned.

cursor.field.name() returns number

cursor.field.name(1) returns header,number

Note: To position the cursor in a specific field, use the cursor.field.name.set
function.

See also: current.scroll function.
RAD Functions 241

ServiceCenter
cursor.field.name.set
Sets the cursor to a specific field on a form.

Format
cursor.field.name.set($field.name, $row.number)

Example
cursor.field.name.set("address", 2)

After execution, the cursor will appear in the second row of the address input
field on the next form that is displayed.

Factors
This function returns no value. It is not necessary to use it in an
assignment statement.

If the field is an array, you can position the cursor on a specific row by
specifying $row.number .

In GUI mode, if the cursor is set to a field that is off-screen, the cursor will
be correctly positioned off-screen, i.e., the cursor will not be visible until
the field is scrolled into view.

In text mode, the cursor is never positioned off-screen. In text mode, if the
cursor is set to a field that is off-screen, the cursor will be positioned in the
first input field whose ctrl setting is 16.

cursor.field.readonly
Returns true if the cursor is in a read-only field and false if the cursor is in a
field that is not read-only.

Format
cursor.field.readonly()

Parameter Description

$field.name Name of the field.

$row.number For arrays, the row number (optional)
242 Chapter 13—System Language

RAD Guide
cursor.filename
Returns the file name associated with the format in which the cursor is located.

Format
cursor.filename()

cursor.line
Returns the line number where the cursor was positioned when the last
interrupt key (e.g., enter, option keys) was pressed.

Format
cursor.line(n)

Factors
$l=cursor.line()= the numeric value of the line where the cursor was
positioned.

$l=cursor.line(1)= the numeric value of the index of the array or structure
where the cursor was last located (taking vertical scrolling into
consideration). If the cursor was in an array input field, $l contains the
numeric value of the index of the array in which the cursor was positioned.
If the cursor was not in an array input field, $l contains the numeric value,
relative to the format in which the cursor was positioned (accounts for
vertical scrolling, and may be greater than the screen length).

cursor.line(n) is not supported in multi-line text boxes in GUI mode.

cursor.window
Returns the name of the window in which the cursor was last set.

Format

$cwindow=cursor.window()

Example

Assume two windows are displayed: MainWindow and field.window (as in
the dbdict utility). The function tray displays functions of the field.window.
The cursor is in MainWindow.

$cwindow=cursor.window()

After execution, value of $cwindow is MainWindow.
RAD Functions 243

ServiceCenter
See also: wopen and wclose Command Panels and current.window function.

date
Returns the date portion of a date/time variable.

Format
date($date.time.variable)

Factors
The date portion of a date/time value is midnight of that day (i.e., the time
is 00:00:00). Note that the date of a given date/time may be different in
different time zones.

The argument can be any absolute date/time value, an absolute time,
including tod.

Example

$date.opened=date($date.time.variable)

Where $date.time.variable contains the current date and time or some other
valid date/time value. If $date.time.variable = '08/01/90 10:10:10,' then
$date.opened would equal '08/01/90 00:00:00'.

See also: time, tod, dayofweek, and set.timezone functions.

day
Returns the day of month for a date regardless of the date format.

Format
$day=day($dao1te)

Where $date is a date/time value.

Example

$mday=day(‘2/15/96’)

After execution, value of $mday is 15

Note: The set.timezone function affects the way a date is presented;
however, the day function always extracts the proper day value.
244 Chapter 13—System Language

RAD Guide
dayofweek
Returns the number of the day of the week for a specific date as follows:

Format
dayofweek($date.time.variable)

Where $date.time.variable is the date whose day you want to know.

Factors

The dayofweek of a given date/time may be different in different time zones.

Example

dayofweek('1/4/90 00:00')—returns 4

See also: set.timezone function

dayofyear
Returns the day of year for a date regardless of the date format.

Format
$yday=dayofyear($date)

Where $date is a date/time value.

Example

$yday=dayofyear('2/15/96')
After execution, value of $yday is 46

delete
Deletes one or more elements in an array and returns a new array without the
deleted elements.

Format
delete(array, element number, [number of elements])

Where array is the array, element number is the index number of the first
element to delete, and number of elements is the number of elements to delete.
The number of elements is optional, and the default number of elements to
delete is 1.

1 = Monday 2 = Tuesday 3 = Wednesday 4 = Thursday

5 = Friday 6 = Saturday 7 = Sunday
RAD Functions 245

ServiceCenter
Example

delete({1,2,3},2) returns {1,3}

delete({1,2,3},2,2) returns {1}

See also: insert, lng, denull functions.

denull
Compresses an array by removing all trailing NULL entries and returns the
compressed array.

Format

denull(array)

Factors

If the array contains a NULL entry in an index position before the last
non-NULL entry, that entry will NOT be removed.

Using denull on an empty array of structures converts the array of
structures to a simple array. (Always test for NULL first!)

Displaying arrays extends the length of the array to accommodate window
size. It is good practice to denull arrays before records are added/updated.
Using denull (contents()) will accomplish this, but be sure there are no
empty arrays of structures.

Example

denull({1,2,3,,})—returns {1,2,3}

denull({1,,2,,})—returns {1,,2}

See also: delete and null functions

descriptor
Returns the database dictionary descriptor structure for the specified file.

Format
descriptor($filename)

Where $filename is the file variable for the file.

See also: structure discussion in Chapter 5.
246 Chapter 13—System Language

RAD Guide
evaluate
Evaluates an operator and may return a value.

Format
$e = evaluate($x)

Factors
An operator is created using the parse() function.

The evaluate function is also valuable when the statement that needs to be
evaluated is contained in a ServiceCenter field which is not qualified when
the application is compiled.

The parse flag is used to parse data in a form. This converts the data to an
operator (type 10).

Although an lvalue is always required, a value is not always assigned to the
lvalue.

Example

$x=parse("1+1",1) returns 2.

$x=evaluate($x)

See also: parse function

exists
Checks for the existence of a field in a file.

Format
exists(<field name>, $file)

Factors
Returns true or false.

Replaces index(<field.name>, descriptor($file))>0 expression

$file must be a file variable (type 6); any other type will return false

The first parameter can be either a character type variable or a quoted
string

Example

$L.return=exists(“schedule.id”, $L.schedule)

$L.return is true if $L.schedule is a file variable containing a schedule record
RAD Functions 247

ServiceCenter
fduplicate
Copies an entire file variable from one record to another.

Format
fduplicate($target, $source)

Factors
The system will not recognize fduplicate alone.

Returns a Boolean value: true if it is successful, and false if it fails.

Used primarily in RAD process panels and in Format Control.

Example

$L.void=fduplicate($file0, $file)

Creates $file0, an independent copy of $file.

filename
Returns the name of the file for a specified file variable.

Format
filename($filename)

Factors
$filename is the variable that has been bound to some database file with the
rinit Command Panel.

This function is useful when executing a common subroutine that has
been passed a file variable. Since the local variable contains data from an
unknown file, this function allows you to determine the file name.

Example

filename($file)—returns problem.

See also: rinit command panel.
248 Chapter 13—System Language

RAD Guide
file.position
This function returns information about the current record and record list
specified by a file variable.

Format
file.position(n)

The value of n determines what is returned:

Note: The default value of n is 0 (zero).

Example

file.position(0)=file.position()=4

Factors
This function is only used on the fdisp command panel on partial queries and
only returns true or false based on the last record in the file.

n Returns index into record list of

0 current record

 1 last record on qbe list on screen

 2 last record on last qbe list so far seen

 3 last record seen in file

 4 next record after last record seen in file

-1 first record on qbe list on screen

-2 first record on first qbe list so far seen

-3 first record seen in file

-4 record before first record seen in file.
RAD Functions 249

ServiceCenter
filesize
Returns the size in bytes of a specified system file of your ServiceCenter
implementation.

Format
$size=filesize($file.number)

$file.number0 returns the size of scdb.fre

Examples

$file.number=0
$size=filesize($file.number)

After execution, value of $size is 512

filesizes
Returns an array of numbers representing the size in bytes of each of the files
that make up a ServiceCenter database.

Format
$file.size=filesizes()

Examples

$file.size=filesizes()

After execution, the value of $file.size is {512, 1081344, 65536, 32000000}.

Number Returns

1 The size of scdb.asc

2 The size of scdb.lfd

3 The size of scdb.db1 (this is the default if $file.number is omitted)

4 The size of scdb.db2 (if present)

5 The size of scdb.db3 (if present)
250 Chapter 13—System Language

RAD Guide
Factors
The numeric elements in the returned array correspond to the physical
files in this order: scdb.fre, scdb.asc, scdb.lfd, scdb.db1, scdb.db2, ...,
scdb.dbn.

Use this function to determine programmatically how many data files
ServiceCenter is using and their size.

fillchar
This function assigns/retrieves a field input character other than underscore.

Format

$f=fillchar()

Examples

$f=fillchar()

$f will contain a ‘_’ (underscore) character

fillchar()= ' '

All screens now displayed will not show the usual underlined input fields.
Instead, input fields will be blank.

Factors

This function is only active in the text mode.

fixed.key
Returns and sets the name of the RAD application that a fixed option key will
execute.

Format

fixed.key(20)="calc.window"
$a=fixed.key($key.number)

Factors
The function can be any compiled RAD application. This application must
open a window if it wishes to communicate with the user.

See also: See the wopen and wclose command panels.
RAD Functions 251

ServiceCenter
frestore
Restores all the fields in a file to their original (from the database) values.

Format
frestore($file)

Where $file is the file variable.

Example

frestore($file)

Assume $file is initialized and a record is selected. Changes are made to the
contents of $file in memory, but the updates have not yet been written to the
database.

After execution, $file is restored to its original value (its state as selected.)

Factors
Use only with a full client against a P4 database.

This function returns no value. It is not necessary to use it in an
assignment statement.

genout
Generates a string containing the contents of a record using a specified form.
It produces either fixed or variable length output.

Format
genout($file.variable, $format.name)
252 Chapter 13—System Language

RAD Guide
Parameters

Factors
Spaces are substituted for NULL in fixed length output.

All normal format processing, including input and output routines,
occurs. Therefore, data can be automatically reformatted or manipulated
as part of the function (e.g., converting a date from 02/28/96 00:00:00 to
February 28, 1996).

Example

$output=genout($operator, "operator.view")

$output={“Name:joes Full Name:Joe Smith”, “Printer:sysprint
Email:joes@peregrine.com”}

get.base.form.name
Returns the base name of a form, stripping off the form extension for GUI or
Web forms. This will strip off either the .g or the .w from a form name.

Format
$base.form.name=get.base.form.name ($form.name)

Example 1

$form.name="operator.g"

$base.form.name=get.base.form.name($form.name)

After execution, $base.form.name will be "operator".

Example 2

$form.name="operator.w"

$base.form.name=get.base.form.name($form.name)

After execution, $base.form.name will be "operator".

Example 3

$form.name="operator"

$base.form.name=get.base.form.name($form.name)

Parameter Definition

$file.variable File variable containing record(s) to process.

$format.name Name of format to be used.
RAD Functions 253

ServiceCenter
After execution, $base.form.name will be "operator".

Example 4

$form.name="operator.a"

$base.form.name=get.base.form.name($form.name)

After execution, $base.form.name will be "operator.a".

get.dateformat
Returns the date format your operator ID is using.

Format
$date.fmt=get.dateformat()

Example

$date.fmt=get.dateformat()

After execution for a US user, value of $date.fmt is 1

Factors

get.dateformat returns the following values:

get.timezoneoffset
Returns the absolute time difference between GMT and the time zone of the
operator.

Format
$tzoffset=get.timezoneoffset()

Example

$tzoffset=get.timezoneoffset()

Return Value Format

1 mm/dd/yy

2 dd/mm/yy

3 yy/mm/dd

4 mm/dd/yyyy

5 dd/mm/yyyy

6 yyyy/mm/dd
254 Chapter 13—System Language

RAD Guide
After execution for a Pacific Time time zone user, the value of $tzoffset is
‘-08:00:00’.
RAD Functions 255

ServiceCenter
gui
Determines whether or not the process is running in GUI mode.

Format
$bool=gui()

Example

$bool=gui()

After execution in GUI mode, value of $bool is true. After execution in text
mode, value of $bool is false

index
Returns the index or position number for a specific element value in an array
or character in a string. If the target value is not in the array or string, it
returns NULL.

Format
index(target value, $variable, starting position #)

Where target value is the value for which you are searching in the array or
string, $variable is the name of the variable that will be searched, and starting
position # is the index in the array or position in the string where the search
will start. The default is 1(one).

Factors
The index function operates identically for arrays, regardless of the data
type in the array.

If the array is of structures or arrays, the target variable must exactly match
the structure or array, i.e., the function does not allow selecting a field
from a structure.

Use index to search for any value by converting both the value and the
search variable to the same type. For example, to search for the variable
$problem.number on all forms beginning with "problem", the query
passed to the select panel would be
256 Chapter 13—System Language

RAD Guide
Example

index(1,{1,2,3}) returns 1

index(2,{1,2,3}) returns 2

index(1,{1,2,3,},2) returns 0

index(2,{1,2,3},2) returns 2

index("$problem.number", str(field)) searches for the variable
$problem.number on all forms beginning with "problem."

insert
Returns an array with one or more inserted elements.

Format
insert($array[, $position[, $number[, $value[, $denull]]]])

Parameter Description

$array Array into which an element is inserted

$position The position of the first inserted element. If this is zero, it will
insert the element at the end of the array. This is an optional
parameter and defaults to zero (0).

$number Number of elements to insert. This is an optional parameter
and defaults to 1. If the value is zero (0), this function will
return without changing the array.

$value A value to insert into the new elements. This is an optional
parameter and defaults to NULL.

$denull Logical value determining whether or not the array should be
denulled before inserting any elements. This is an optional
parameter and defaults to true.
RAD Functions 257

ServiceCenter
Example 1

To insert an element at the beginning of an array:

 $a={"a", "b", "c", "d"}

 $a=insert($a, 1, 1, "z")

The value of $a is {"z", "a", "b", "c", "d"}

Example 2

To insert an element in the middle of an array:

 $a={"a", "b", "c", "d"}

 $a=insert($a, 3, 1, "z")

The value of $a is {"a", "b", "z", "c", "d"}

Example 3

To insert an element at the end of an array:

$a={"a", "b", "c", "d"}

 $a=insert($a, 0, 1, "z")

The value of $a is {"a", "b", "c", "d", "z"}

Important: If your source array has null elements at the end, this function
will automatically denull your array before inserting any new
elements (in any position). To avoid this set the $denull
parameter to false.

$a={"a", "b", , , "e", "f", , , , }

 $a=insert($a, 0, 1, "z")

The value of $a is {"a", "b", , , "e", "f", "z"}

$a={"a", "b", , , "e", "f", , , , }

 $a=insert($a, 2, 1, "z")

The value of $a is {"a", "z", "b", , , "e", "f"}

To avoid denulling the array:

 $a={"a", "b", , , "e", "f", , , , }

 $a=insert($a, 0, 1, "z", 0)

The value of $a is {"a", "b", , , "e", "f", , , , ,"z"}

See also: delete function
258 Chapter 13—System Language

RAD Guide
iscurrent
Determines if the record with which you are working is the most current
version in the database.

Format
$boolean=iscurrent($file.variable)

lng
Returns the number of elements in an array or structure and the number of
characters in a string.

Format
lng($variable)

Where $variable is the array, structure, or string.

Factors
The $variable must be an array, structure or a character (string).

Arrays return the number of elements (NULL or otherwise); strings return
the number of characters; and structures return the number of fields.

Example

lng("1234567890") returns 10

lng({1,2,3}) returns 3

lng({1,2,3,,,,}) returns 7

lng(denull({1,2,3,,,,})) returns 3

Note: Remember to denull arrays to get the correct number of elements, but
be careful of denulling arrays of structures.

locks
Returns an array of structures containing information about locks used to
lock a database for an update or those set by RAD applications using a locked
Command Panel.

Format
locks()
RAD Functions 259

ServiceCenter
Factors
Each element of the array contains:

lock time

process id

terminal id

operator name

resource name (name of the lock)

number

exclusive

locked

breakable

Example

locks() returns

{{[’12/26/96 16:01:07’, 20212, "SYSTEM", "marquee", "agent:marquee",
0, false, true, false]}

{[’’01/02/97 11:26:08’, 22699, "Windows 32", "falcon", "AG/pm.main", 0, true, true,
false]}}

logoff
Logs off the current user and terminates the session.

Format

logoff()

Factors
This function does not return any value; it simply executes a function.

Example

logoff()
260 Chapter 13—System Language

RAD Guide
logon
Logs the user on.

Format
logon()

Factors

This function does not return any value; it simply executes a function.

Example

logon()

mandant
Allows an application to create a SUBSET of the current Mandanten values.
For example, if a new ticket is being entered, and the client (customer) for the
ticket is known, then a SUBSET of the Mandanten values could be created to
show only the assignments that are valid for that client.

Format
mandant(n,string)

Where n is either 0 (request for a SUBSET of the current mandant values) or
1 (request for original mandant values to be restored), and string is the
Mandanten value.

Example

mandant(0,“MEGACORP”)

In this example, the Mandanten values become a SUBSET of the single value
provided. This fails if the string value does not match the values currently
established.

Example

mandant(1,””)

In this example, the application restores the original Mandanten values.
RAD Functions 261

ServiceCenter
max
Returns the largest value in a list of values or arrays.

Format
max(element1, element2, element3, ...)

~or~

max($variable)

Where $variable is an array or a list of values.

Factors
The max function returns the maximum value of either times or numbers.

If you include an array in the list of elements, the system evaluates all the
elements in the array as if they were individual values.

An attempt to use an array of strings as a parameter results in a
segmentation fault, which will cause the application to take the error exit.

Example

max(17,24,35,73,10) returns 73

max(1,{2,3,4},3) returns 4

messages
Provides logging functions for use in the memory message log. The log is
implemented as a wrap-around cache of the x most recent messages (error,
informational and action) as displayed at the bottom of the screen in the
message field.

Each user task (scenter) can have one private message log at a time. Message
logs cannot directly be accessed by other tasks.

Format
messages($function_number, $function_parameter)

Function # Parameters Action

0 0 to 500 Open message log with 0 to 500 entries.

1 none Start or resume logging.

2 none Stop logging.

3 none Clear the log.
262 Chapter 13—System Language

RAD Guide
Factors

A maximum of 500 logged messages is supported.

Reading the message log (function 5) does not clear the log.

Retrieving the log (# 5) always returns an array in last displayed order.

Using the clear log function (function 3) stops logging, just as if a function
2 was executed.

The proper order for using the logging functions is:

open log (function 0)

start logging (function 1)

...run application

stop logging (function 2)

retrieve log (function 5)

clear log (function 3)

start logging (function 1)

...run application

...etc.

...

...

stop logging (function 2)

retrieve log (function 5)

close log (function 4)

4 none Close the log and recover memory.

5 0 Retrieve array of all log entries in most recently
displayed order.

5 1 Retrieve array of logged informational messages;
excludes error and action messages

5 2 Retrieve array of logged action messages; excludes
error and informational messages.

5 3 Retrieves array of error messages; excludes
informational and action messages

Function # Parameters Action
RAD Functions 263

ServiceCenter
Examples

min
Returns the smallest element in a list of values or arrays.

Format

min(element1, element2, element3, ...)

~or~

min($variable)

Where $variable is an array or a list of values.

Factors

The min function returns the maximum value of either times or numbers.

If you include an array in the list of elements, the ServiceCenter evaluates
all the elements in the array as if they were individual values.

An attempt to use an array of strings as a parameter results in a
segmentation fault, which will cause the application to take the error exit.

Example

min(17,24,35,73,10) returns 10

min(4,{1,2,3,},2) returns 1

Action Syntax

Opening a log for 200 messages $throwaway=messages(0,200)

Start logging $throwaway=messages(1)

Stop logging $throwaway=messages(2)

Clear log $throwaway=messages(3)

Close log $throwaway=messages(4)

Retrieve all logged messages $array=messages(5,0)

Retrieve all logged informational
messages

$array=messages(5,1)

Retrieve all logged action messages $array=messages(5,2)

Retrieve all logged error messages $array=messages(5,3)
264 Chapter 13—System Language

RAD Guide
modtime
Returns the last modified date/time of a record.

Format

modtime($file)

Factors

Use this function to determine if a record has been modified before or
after a given time.

Use modtime(currec()) to return the last modified date/time for any record.
Use this variation in queries to retrieve all records modified after a given
point in time.

Example

modtime($file) returns 1/10/96 12:15:17

A query of modtime(currec)>tod()- '08:00:00' selects all records in a file that
were added or updated in the last eight hours.

Factors

The modtime function is not updated on clients when records are updated
on the server until those records are reselected.

month
Returns the month of year for a date regardless of the date format.

Format

$ymonth=month($date)

$dateDate/time value.

Example

$ymonth=month(‘2/15/96’)

After execution, value of $ymonth is 2
RAD Functions 265

ServiceCenter
null
Returns true if its parameter is NULL or is a compound data type which
consists entirely of NULL values.

Note: Use of the null function should not be confused with the use of the
reserved word NULL. The null function handles compound data
types, and the reserved word NULL is for primitive data types only.

Format
null(value)

Factors
An array or structure is null if it contains all null elements. This function
applies itself recursively to nested elements.

An empty string (" "), 0 (zero), and 00:00 are not null.

A value of unknown in a boolean field is not null.

Use the null function to check a field or variable to see if it is null.

Example

null(1) returns false

null(NULL) returns true

null({}) returns true

null({1,}) returns false

null({{},}) returns true

nullsub
Substitutes a null value with the second value given.

Format
nullsub(value1,value2)

Where value2 is the value to return if value1 is null.

Example

nullsub(1,2) returns 1

nullsub(NULL,2) returns 2
266 Chapter 13—System Language

RAD Guide
operator
Sets and returns the name of the current operator ID.

Format
operator()

Factors
The operator function can also be used to set the operator name.

The operator() value is set upon login to the login name in the operator
record.

Example

$a = operator()

operator() = $a

option
Returns the number of the last interrupt key. For example, 0 = enter,
1 = first option key, etc.

Format
option()

Factors
The return (or <enter>) key returns 0.

Use caution when option() is a criteria on a decision or process panel which
can be accessed from several paths. You should set a variable to option()
when the first panel is accessed.

You should not attempt to account for Fkey remapping. The system will
connect the remapped key to its native definition when the function is
processed. For example, if a user had F1 remapped to F19, and the user
selected F19, the option() function would return 1, not 19.

Clicking on a button returns the number defined in the Button ID
property.

Clicking on an item in the Options menu returns the option number
associated with the option on the rio command panel used to display the
Options menu.
RAD Functions 267

ServiceCenter
Example

option() returns 10

parse
Parses a string into an operator.

Format
parse(string,type)

Factors
An operator can be either an expression (e.g., type<11) or a statement
(e.g., type=11).

The parse property, when enabled on forms, automatically parses the data
entered.

Example

$x=parse("1+1",1)

evaluate($x) returns 2

$x=parse("$x=1",11)

evaluate($x) causes $x to be set to 1

See also: evaluate function

perf
Evaluates system performance and writes the information to disk. Returns
either a 0 (success) or a -1 (error).

Format
perf(n)

Where n is the number of the option you want.

Option Result

1 Delete records in the systemtotals and systemperform files
where capture=false before writing new information to disk.

2 Add records and do not delete. Nothing is removed before new
records are written to systemtotals and systemperform files.
Maintenance of these files is the responsibility of the RAD
programmer.
268 Chapter 13—System Language

RAD Guide
Example

perf(1) returns 0

See also: prof function

pfdesc
Returns a string containing the description of the specified option key from
the terminal configuration data.

Format
pfdesc(n)

Where n is the number of the option you want.

Example

pfdesc(1) returns F1=

Factors
Pf key descriptions are defined in ServiceCenter’s termtype record.

pfmap
Returns or sets the option key remapping array.

Format
pfmap()

Factors
The nth entry in the array is the number to which the nth option key has been
remapped. This value must be from 1 to 24. There are 24 entries in this array.

Example

pfmap() returns {1,2,3,4,5,6,13,14,9,15,16,12,7,8,10,11,17,18,19,20,21,22,23,24}

3 Delete records in the systemtotals and systemperform files
where capture=false and do not write information to disk.

4 Delete all records in the systemtotals and systemperform files,
regardless of capture status.

Option Result
RAD Functions 269

ServiceCenter
printer
Sets and returns the value of the logged-on printer.

Format
printer()

Factors
This function can be assigned to set the current printer. When an operator
logs on, the login application is executed, assigning printer() to be either the
printer specified by the user at login or the default printer specified in the
user’s operator record.

Example

$a = printer()

printer() = $a

priority
Changes the priority of a task.

Format
priority(n)

Where n is the amount you wish to change the priority for a particular task.

Factors
Priorities are always relative to the current task priority and may range
from 1 to 255. A task starts out at a priority of 255 and may not be
increased past that number. The priority may be decreased using the
syntax: priority (-10) which then sets the priority to 245. To increase the
priority back to 255, use the syntax: priority (10). (Unix and MVS.)

Priority has no functionality in Windows NT.

Example

priority(3)
270 Chapter 13—System Language

RAD Guide
processes
Returns an array describing all processes.

Format
processes(s)

Factors
Each element of the array contains:

process start time

process id

terminal

process name

idle time

The argument of s determines the types of processes that will be returned:

Example

processes("SYSTEM") returns
 {{[‘4/20/92 10:25’, 10936,“SYSTEM”, “alert”, ‘00:00:42’]}}

S Type of process

null All

ALL All

SYSTEM System (terminal=“SYSTEM”)

USER User (not System)

ACTIVE Active

INACTIVE Inactive (not active)
RAD Functions 271

ServiceCenter
prof
Returns various system performance statistics as it checks system resources
used by an application.

Format
prof(n)

Where n is the value of the option you wish returned. Other parameters are
as follows:

Example

prof(7) returns 10

Parameter Description

1 Returns user CPU time (unsupported on MVS)

2 Returns system CPU time (unsupported on MVS)

3 Returns memory allocated (unsupported on MVS)

4 Returns system total memory size.

5 Returns the number of statements evaluated.

6 Returns the number of low level read calls.

7 Returns the number of low level write calls.

8 Returns the number of bytes read.

9 Returns the number of bytes written.

10 Returns the number of screen I/O’s

11 Returns the number of calls to stcopy

12 Returns the user executing priority

13 Returns tbe total records retrieved

20 Returns the symbol table size

21 Returns the stack size
272 Chapter 13—System Language

RAD Guide
recordcopy
Copies a set of fields from one record to another record.

Syntax
$junk=recordcopy($source.file, $source.fields, $target.file, $target.fields)

Example

Assume $source.file is an operator record; $target.file is a contacts record.

name in $source.file="falcon"
phone in $source.file="858-481-5000"

$source.fields={"name", "phone"}

$target.fields={"contact.name", "contact.phone"}

$junk=recordcopy($source.file, $source.fields, $target.file, $target.fields)

After execution, the value of contact.name in$target.file is "falcon” and
contact.phone in $target.file is "858-481-5000"

Warning: The recordcopy function does not type check data, so you can
inadvertently copy a number field to a string, or a structure to a
number.

recordtostring
The recordtostring function takes the value of a field from an array and
appends the value to a string.

Format
recordtostring($string, $file, $arrayofnames, $sep)

Parameter Description

$junk= Syntax requirement only (has no bearing on the outcome
of the function).

$source.file The source record from which fields are copied.

$source.fields Array of field names in $source.file.

$target.file The target record to which fields are copied.

$target.fields Array of field names in $target.file.
RAD Functions 273

ServiceCenter
Parameters

Example

recordtostring(““, $file, {“location”, ”location.name”}, “^”)

Where $file is a location record in which location=Acme HQ, and
location.name=downtown. After execution, $string will contain Acme
HQ^downtown.

Factor

Event Services uses ^ as a default separator. You can use the recordtostring
function to build an eventout string.

replicate
The replicate function replicates a named file from a remote site to the
current site.

Format
replicate($filename, $sitename)

Where $filename is the name of the file to replicate, and $sitename is the
name of the remote site.

Example

$l.void=replicate($L.file, $L.site)

Factors
Data added at the current site is deleted and replaced by a replicated copy
of the data from the remote site.

All changes to the file made at either site is applied to the other site.

Parameter Description

$string String to which the field value is appended

$file Current file

$arrayofnames The array from which the field is taken

$sep A separator character
274 Chapter 13—System Language

RAD Guide
round
Rounds up (positive direction) to the nearest specified number of decimal
places.

Format
round(number,n)

Where number is the number to round and n is the number of decimal digits
to be used in the rounding.

Note: This number can be anything that equates to a numeric value. For
example, expressions, variables, numbers, etc.

Example

$a = round(3.47,1)
$a = 3.5

$a = round(3.53,1)
$a = 3.5

$a = round(3.45,1)
$a = 3.5

$a = round(-3.45,1)
$a = -3.4

$a = round(100/30,2)
$a = 3.33

$a = round(‘1/19/96 06:19:34‘,0)
$a = ‘1/19/96 06:20‘

rtecall()
The ServiceCenter rtecall() functions are in-line statements that are
especially useful in the ServiceCenter RAD Debugger. They are also available
anywhere in ServiceCenter that supports expressions, statements, or
calculations, such as in Format Control calculations, scripts, and
displayoptions. The rtecall() function is extensible. New capabilities appear
in every release of ServiceCenter. All options documented here are available
in ServiceCenter release 5.0, but some may not be available in earlier releases.
RAD Functions 275

ServiceCenter
rtecall(“alalnum”)
This function checks to make sure a string contains only alphanumeric
characters. The first character must be alphabetic. The remaining characters
must be alphabetic, numeric, or the provided non-alphabetic characters.

Format
$L.success.flag= rtecall ($L.fnc.name, $L.return.code, $L.str, $L.chars)

Parameters

Factors
If the $L.9b

If the $L.success.flg is false, the function failed. If it is true, the function
succeeded.

Example

$L.success.flag=true

$L.return.code=0

$L.str=name in $L.file

$L.chars="., _"

$L.success.flag=rtecall("alalnum", $L.return.code, $L.str, $L.chars)

Result:

When name in $L.file=”my.name” $L.success.flag will be true.

When name in $L.file=”my_name” $L.success.flag will be true.

When name in $L.file=”my name” $L.success.flag will be false.

Parameter Date Types Description

$L.success.flg Logical Indicates if the function was successful

$L.fnc.name String Name of the sub-function to call, in this case
“alalnum”

$L.return.code Number Provides a more detailed return code

$L.str String The string to be checked

$L.chars String An optional comma delimited string of
non-alphanumeric characters to allow
276 Chapter 13—System Language

RAD Guide
rtecall(“alnum”)
This function checks to make sure a string contains only alphabetic, numeric,
or the provided non-alphabetic characters.

Format
$L.success.flag= rtecall ($L.fnc.name, $L.return.code, $L.str, $L.chars)

Parameters

Factors
If the $L.success.flg is false, the function failed. If it is true, the function
succeeded.

Example

$L.success.flag=true

$L.return.code=0

$L.str=phone in $L.file

$L.chars=" , (,), -"

$L.success.flag=rtecall("alnum", $L.return.code, $L.str, $L.chars)

Result:

When phone in $L.file=”(508) 362.2701” $L.success.flag will be false.

When phone in $L.file=”(508) 362-2701” $L.success.flag will be true.

Parameter Data Type Description

$L.success.flg Logical Indicates if the function was successful

$L.fnc.name String Name of the sub-function to call, in this case
“alnum”

$L.return.code Number Provides a more detailed return code

$L.str String The string to be checked

$L.chars String An optional comma delimited string of
non-numeric characters to allow
RAD Functions 277

ServiceCenter
rtecall(“alpha”)
This function will check to make sure a string contains only alphabetic
characters, or only alphabetic characters and the provided non-alphabetic
characters.

Format
$L.success.flag= rtecall ($L.fnc.name, $L.return.code, $L.str, $L.chars)

Parameters

Factors

If the $L.success.flg is false, the function failed. If it is true, the function
succeeded.

Example

$L.success.flag=true

$L.return.code=0

$L.str=name in $L.file

$L.chars=" "

$L.success.flag=rtecall("alpha", $L.return.code, $L.str, $L.chars)

Result:

When name in $L.file=”my name” $L.success.flag will be true.

When name in $L.file=”my first name” $L.success.flag will be true.

When name in $L.file=”my 1st name” $L.success.flag will be false.

Parameter Data Type Description

$L.success.flg Logical Indicates if the function was successful.

$L.fnc.name String Name of the sub-function to call, in this case
“alpha.”

$L.return.code Number Provides a more detailed return code.

$L.str String The string to be checked.

$L.chars String An optional comma delimited string of
non-alphabetic characters to allow.
278 Chapter 13—System Language

RAD Guide
rtecall(“counter”)
This function turns counters on or off for the current session. Other SC users
are unaffected.

Format
$L.success.flag= rtecall($L.fnc.name, $L.return.code, $L.switch)

Parameters

Factors
If the $L.success.flg is false, the function failed. If it is true, the function
succeeded.

Example

$L.success.flg=rtecall("counter", $L.return.code, 1) to turn on counters

$L.success.flg=rtecall("counter", $L.return.code, 0) to turn off counters

rtecall(“datemake”)
This function returns a date, in the proper form, based upon a series of
numbers passed to it.

Format
$L.success.flg=rtecall($L.fnc.name, $L.return.code, $L.date, $L.yr, $L.mo, $L.da,
$L.hr, $L.mn, $L.se)

Parameter Data Type Description

$L.success.flg Logical Indicates if the function was successful

$L.fnc.name String Name of the sub-function to call, in this case
“counter”

$L.return.code Number Provides a more detailed return code

$L.switch Number Either 1 (counters on) or 0 (counters off)
RAD Functions 279

ServiceCenter
Parameter

Factors

In this version, $L.success.flag and $L.return.code always return true, even
when the function is unsuccessful.

Example 1

$L.cal.date=’01/01/00 00:00:00’

$L.success.flg=rtecall(“datemake”,$L.return.code, $L.cal.date, 0, 5, 31, 17, 15, 22)

Returns:

$L.success.flag=true

$L.cal.date=’05/31/2000 17:15:22’

Example 2

$L.cal.date=’01/01/00 00:00:00’

$L.success.flag= rtecall(“datemake”,$L.return.code, $L.cal.date, 0, 2, 31, 17, 15,
22)

Note that 2/31/00 is an invalid date.

Returns:

$L.success.flag=true

Parameter Data Type Description

$L.success.flg Logical Indicates if the function was successful

$L.fnc.name String Name of the sub-function to call, in this case
“datemake”

$L.return.code Number Provides a more detailed return code

$L.date Date/Time The variable in which the date will be returned

$L.yr Number The year (2 digit year uses prefix 20 for years
up to 50, 19 for years after; e.g., 48 returns
2048, 99 returns 1999)

$L.mo Number The month

$L.da Number The day (1 through 31)

$L.hr Number The hour

$L.mn Number The minutes

$L.se Number The seconds
280 Chapter 13—System Language

RAD Guide
$L.cal.date=’01/01/2000 00:00:00’

The result is invalid so the date variable is unchanged. Nonetheless,
$L.success.flag returns true.

rtecall(“escstr”)
This function precedes special characters in a string with an escape character.

Format
rtecall($L.fnc.name, $L.rc, $L.str)

Parameters

Example

If $L.str contains the value c:\dir\sub

$L.rc=0

$L.ret=rtecall(“escstr”, $L.rc, $L.str)

Before the call to “escstr”, $L.str contained the following string:

c:\dir\sub

After the rtecall, $L.str contains the following string:

c:\\dir\\sub.

The backslash escape character was inserted in front of the existing backslash.

Note: This function is rarely needed. The only time a string needs the escape
characters added is when that string will be fed back into
ServiceCenter. ServiceCenter treats any data between quotes as a
string. If the data itself contains a quote then that quote must be
escaped (with a backslash) so that the quote will be treated as data
rather than the end of the string. Since the backslash is used as the
escape character, any occurrence of a backslash in the data must also
be escaped. An example of when this function might be needed is

Parameter Description

$L.func.name Name of the sub-function to call, in this case “escstr”

$L.rc ReturnCode (standard ServiceCenter return code values).

$L.str string to be modified.
RAD Functions 281

ServiceCenter
when a RAD program is constructing a query to retrieve a record
based on data from some other record. In this case, the contact name
in a problem ticket is used to retrieve the contact information from the
contacts file. The RAD program might construct a query as follows:

$L.query = “name=”+contact.name in $file

This query will not work if the contact.name from $file contains a quote
or a backslash because these characters will not be properly escaped and
will cause the parse of the query to end prematurely. The correct code
would be:

$L.temp = contact.name in $file

$L.ret = rtecall(“escstr”,$L.rc,$L.temp)

$L.query=”name=”+$L.temp

rtecall(“FILLDATE”)
This function places the current date and time in a field in the current record.

Format

$L.success.flg= rtecall($L.fnc.name, $L.return.code, $L.file, $L.field.name)

Parameters

Factors
If the $L.success.flg is false, the function failed. If it is true, the function
succeeded.

Example

$L.file={[, , {}, , , {}, , , {}, , , {}, , , {}, {}, {}, {{[, , ,]}}, , ,]} where the first field is
named “date”

$L.field.name=“date”

Parameter Data Type Description

$L.success.flg Logical Indicates if the function was successful

$L.fnc.name String Name of the sub-function to call, in this case
“FILLDATE”

$L.return.code Number Provides a more detailed return code

$L.file File The file handle

$L.field String The name of the field to be updated
282 Chapter 13—System Language

RAD Guide
$L.success.flg= rtecall("FILLDATE", $L.return.code, $L.file, $L.field.name)

$L.file returns ={[‘04/14/2000 08:27:19’, , {}, , , {}, , , {}, , , {}, , , {}, {}, {}, {{[, , ,]}}, , ,
]}

rtecall(“filecopy”)
This function copies all of the data in a collection to another file variable. The
dbdict for both the source and target files must exist. Records are added only.

Format
$L.success.flg=rtecall($L.fnc.name, $L.return.code, $L.dbdict.source.name,
$L.dbdict.target.name, $L.count, $L.bad)

Parameters

Factors

If the $L.success.flg is false, the function failed. If it is true, the function
succeeded.

Example

$L.dbdict.source.name=”location”

$L.dbdict.target.name=”locationbak”

$L.success.flg=rtecall("filecopy", $L.return.code, $L.dbdict.source.name,
$L.dbdict.target.name, $L.count, $L.bad)

Returns the “locationbak” file as an exact copy of the “location” file.

Parameter Data Type Description

$L.success.flg Logical Indicates if the function was successful

$L.fnc.name String Name of the sub-function to call, in this case
“filecopy”

$L.return.code Number Provides a more detailed return code

$L.dbdict.sourc
e.name

String The name of the source dbdict

$L.dbdict.target.
name

String The name of the target dbdict

$L.count Number A count of the number of records successfully
moved

$L.bad Number A count of the number of errors encountered
RAD Functions 283

ServiceCenter
rtecall(“fileinit”)
This function initializes a file variable in $targetfile from $sourcefile.

Format
rtecall($L.fnc.name, $errcode, $targetfile, $sourcefile)

Example

$L.void=rtecall(“fileinit”, $L.errcode, $file.old, $file)

Factors
The file initialized is identified by the $sourcefile variable.

The current record for $targetfile is the same as the current record in
$sourcefile.

Update and delete operations can not be done against $targetfile.

rtecall(“getnumber”)
Replaces the getnumb RAD application.

Format
$L.flg=rtecall($L.fnc.name, $L.return.code, $L.number, $L.class, $L.field)
284 Chapter 13—System Language

RAD Guide
Parameters

Factors
Establishes a lock called "getnumb"+$L.class+$L.field and waits until the
lock is established.

If the number class was not found, or if there are duplicates, it will return
an error ($L.flg=false)

Reads the current number.

Increments/decrements by the step value (step defaults to 1)

If incrementing and the number is greater than the reset value, it will use
the start number (start defaults to 0)

If decrementing and the number is less than the reset value, it will use the
start number (start defaults to 0)

New field called string.flg

If string.flg is false, it will remain a numeric type

If string.flg is true, it will convert the number to a string

If string.flg is unknown, or the field isn't in the Database Dictionary (not
added during an upgrade), the function checks for a prefix, a suffix or
length. If any one of these exists, the function converts the value to a string.
If none of these exist the function leaves the value as a number

To convert the value to a string, the function uses the prefix, corrects the
length of the number (padded with zeros on the left), and adds the suffix.

Parameter Description

$L.flg True for success, false if there was an error

$L.fnc.name Name of the sub-function to call, in this case
“getnumber”

$l.return.code Zero (0) if everything is correct, -1 if an error occurs
(this is related directly to $L.flg).

$L.number The number/string returned

$L.class Class of number for which you are searching (from the
number file).

$L.field Reserved for future use
RAD Functions 285

ServiceCenter
The function eventually saves the new number to the file and returns it
(converted to a string if necessary) to the user.

Finally, it unlocks and returns.

rtecall(“getrecord”)
This function retrieves the record identified by unique key values in $L.array.

Format
$L.void=rtecall($L.fnc.name, $L.errcode, $L.array, $L.file)

Example

$L.void=rtecall(“getrecord”, $L.errcode, {“IM1001”}, $L.file)

Where $L.file has been initialized for the probsummary file.

Factors
$L.array is an INPUT variable, typically the key values returned by $L.array
in rtecall(“getunique”).

rtecall(“getunique”)
Returns an array that contains the unique key values for a current record.
These keys can be used later to retrieve the record using the
rtecall("getrecord") function.

Format
$L.void=rtecall($L.fnc.name, $L.errcode, $L.array, $L.file)

Example

$L.worked = rtecall("getunique", $L.errcode, $L.keyvalues, $L.file)

Variable/Value Description

$L.worked = true If the keys values are returned in
$L.keyvalues

$L.worked = false If no key values were returned. For example,
if $L.file does not represent a current
database record.

$L.errcode = 0 Function worked

$L.errcode = 1 $L.file does not represent a file variable
286 Chapter 13—System Language

RAD Guide
Factors
$L.keyvalues is an OUTPUT variable. It will be an array that contains the
unique key values for the record in $L.file. For example if $L.file was for the
problem file, an example of the key values returned in $L.keyvalues would be
{"IM1001",1}.

rtecall(“log”)
This function sends a message to the external sc.log file.

Format
$L.success.flg=rtecall($L.fnc.name, $L.return.code, $L.message)

Parameters

Factors
If the $L.success.flg is false, the function failed. If it is true, the function
succeeded.

Example

$L.success.flg=rtecall(“log”, $L.return.code, “This is a new message”)

Generates a line in the sc.log file:

 137 04/12/2000 07:03:44 System background scheduler: event started at:
04/11/2000 23:02:48.

$L.errocde = 2 The file identified by $L.file does not have a
unique key defined.

$L.file File variable that has been initialized
(RINIT) and contains a current record.

Variable/Value Description

Parameter Data Type Description

$L.success.flg Logical Indicates if the function was successful

$L.fnc.name String Name of the sub-function to call, in this case
“log”

$L.return.code Number Provides a more detailed return code

$L.message String The message to be sent
RAD Functions 287

ServiceCenter
 137 04/12/2000 07:03:45 System background scheduler: availability started at:
04/11/2000 23:02:49.

 137 04/12/2000 07:03:45 System background scheduler: contract started at:
04/11/2000 23:02:50.

 137 04/12/2000 07:03:45 System background scheduler: ocm started at:
04/11/2000 23:02:51.

 137 04/12/2000 07:03:45 System startup completed successfully, elapsed time:
00:00:18.

 137 04/12/2000 07:32:48 24 records from location unloaded to: locations.save,
00:00:01 elapsed.

 306 04/12/2000 09:05:09 This is a new message
288 Chapter 13—System Language

RAD Guide
rtecall(“notypecheck”)
This function turns typechecking off or on. It is useful when, for example,
numbers and strings of numbers are mixed in a field in error.

Format
$L.success.flg=rtecall($L.fnc.name, $L.return.code, $L.switch)

Parameters

Factors
If the $L.success.flg is false, the function failed. If it is true, the function
succeeded.

Example

Parameter Data Type Description

$L.success.flg Logical Indicates if the function was successful

$L.fnc.name String Name of the sub-function to call, in this case
“notypecheck”

$L.return.code Number Provides a more detailed return code

$L.switch Number Either 0 (to disable) or 1 (to enable) type
checking

Function Result

$L.success.flg=rtecall(“notypecheck”,
$L.return.code, 0)

Type checking is not performed

$L.success.flg=rtecall(“notypecheck”,
$L.return.code, 1) –

Type checking is performed
RAD Functions 289

ServiceCenter
rtecall(“passchange”)
This function changes this user’s password.

Format
$L.success.flag=rtecall($L.fnc.name, $L.return.code, $L.old.pass, $L.new.pass,
$L.confirm.pass)

Parameters

Factors
If the $L.success.flg is false, the function failed. If it is true, the function
succeeded.

Example

$L.success.flg= rtecall("passchange", $L.return.code, “oldpassword”,
“newpassword”, “newpassword”)

Parameter Data Type Description

$L.success.flg Logical Indicates if the function was successful

$L.fnc.name String Name of the sub-function to call, in this case
“passchange”

$L.return.code Number Provides a more detailed return code

$L.old.pass String The old password

$L.new.pass String The new password

$L.confirm.pass String A confirmation of the new password
290 Chapter 13—System Language

RAD Guide
rtecall(“policycheck”)
This function imposes data policy as defined in the datadict table. If the
policy check fails, $L.success.flg is set to false.

Format
$L.success.flag= rtecall($L.fnc.name, $L.return.code, $L.file)

Parameters

Factors
If the $L.success.flg is false, the function failed. If it is true, the function
succeeded.

Example

$L.rc=rtecall("policycheck", $L.errcode, $L.filed)

rtecall(“qbeform”)
This function returns a QBE form, which can be passed into an rio or fdisp
panel. You can insert this function into a format file handle using the
contents() function (contents($L.format) = $L.qbe.form).

Format
$L.success.flg= rtecall($L.fnc.name,$L.return.code,$L.file,$L.qbe.form)

Parameter Data Type Description

$L.success.flg Logical Indicates if the function was successful

$L.fnc.name String Name of the sub-function to call, in this case
“policycheck”

$L.return.code Number Provides a more detailed return code

$L.file File The file handle
RAD Functions 291

ServiceCenter
Parameters

Factors

If the $L.success.flg is false, the function failed. If it is true, the function
succeeded.

Example

$L.success.flg= rtecall("qbeform",$L.return.code,$L.file,$L.qbe.form)

rtecall(“radhistory”)
This function keeps track of what RAD panels a user has executed when
running ServiceCenter applications.

Format
$L.flg=rtecall($L.fnc.name, $L.return.code, $L.history, $L.log.flg)

Parameter Data Type Description

$L.success.flg Logical Indicates if the function was successful

$L.fnc.name String Name of the sub-function to call, in this case
“qbeform”

$L.return.code Number Provides a more detailed return code; for this
function, it will always be 0

$L.file File File handle used to generate the qbe e.g. the
"rinit"ed contacts file

$L.qbe.form Structure The resulting QBE form, returned as a
structure.
292 Chapter 13—System Language

RAD Guide
Parameters

Factors
The number of panels kept in history is configurable between 10 and 100
when the radhistory parameter is used in the sc.ini file or on a command
line. The default is 20.

$L.log.flg defaults to false if it is not included.

Example

$L.flg=rtecall(“radhistory”, $L.rc, $L.history, true)

This example prints the entire RAD history to the log.

rtecall(“recdupl”)
This function copies the contents of the current record into the contents of
another record.

Format
rtecall($L.fnc.name, ercode, $targetfile, $sourcefile)

Factors
Both $targetfile and $sourcefile must have identical descriptors. Data is
copied by position and not field name.

Both $targetfile and $sourcefile must be initialized file variables.

Update and delete operations cannot be performed against $targetfile.

Parameter Data Type Description

$L.fnc.name String Name of the sub-function to call, in this case
“radhistory”

$L.rc Number Standard ServiceCenter return code (always
equal to zero (0).

$L.history Array A structured array containing the RAD thread
ID, application name, panel name, panel type,
pre-formatted string containing all the above
information

$L.log.flg Logical Quick return flag from all rtecall functions,
indicating success or failure.
RAD Functions 293

ServiceCenter
Example

$L.flg=rtecall("recdupl", $L.return.code, $L.temp, $L.file)
294 Chapter 13—System Language

RAD Guide
rtecall(“rfirst”)
This function places the pointer at the first record in a record collection (a
QBE list).

Format
$L.success.flg=rtecall($L.fnc.name, $L.return.code, $L.file)

Parameters

Factors
If the $L.success.flg is false, the function failed. If it is true, the function
succeeded.

Example

$L.success.flg=rtecall(“rfirst”,$L.return.code, $L.file)

rtecall(“rgoto”)
This function places the pointer at the indicated record.id in a record
collection (a QBE list).

Format
$L.success.flg=rtecall($L.fnc.name, $L.return.code, $L.file, $L.record.id)

Parameter Data Type Description

$L.success.flg Logical Indicates if the function was successful

$L.fnc.name String Name of the sub-function to call, in this case
“rfirst”

$L.return.code Number Provides a more detailed return code

$L.file File File handle that represents the collection
RAD Functions 295

ServiceCenter
Parameters

Factors
If the $L.success.flg is false, the function failed. If it is true, the function
succeeded.

Example

$L.success.flg=rtecall(“rgoto”,$L.return.code, $L.file, $L.record.id)

rtecall(“rid”)
This function returns the record number of the current record (represented
by $L.file).

Format
$L.success.flg=rtecall($L.fnc.name, $L.return.code, $L.file, $L.record.id)

Parameter Data Type Description

$L.success.flg Logical Indicates if the function was successful

$L.fnc.name String Name of the sub-function to call, in this case
“rgoto”

$L.return.code Number Provides a more detailed return code

$L.file File File handle that represents the collection

$L.record.id Number A record number
296 Chapter 13—System Language

RAD Guide
Parameters

Factors
If the $L.success.flg is false, the function failed. If it is true, the function
succeeded.

Example

$L.success.flg=rtecall(“rid”,$L.return.code, $L.file, $L.record.id)

rtecall(“sort”)
This sorts a list or a list of lists in ascending or descending order.

Format
$L.success.flg=rtecall($L.fnc.name, $L.return.code, $L.grid, $L.index, 0)

Parameter Data Type Description

$L.success.flg Logical Indicates if the function was successful

$L.fnc.name String Name of the sub-function to call, in this case
“rid”

$L.return.code Number Provides a more detailed return code

$L.file File File handle that represents the record

$L.record.id Number The record number
RAD Functions 297

ServiceCenter
Parameters

Factors
If the $L.success.flg is false, the function failed. If it is true, the function
succeeded.

Example

$L.list={{“a”, ”b” ,”d”, ”c”},{1, 3, 4, 2}}

$L.success.flg=rtecall("sort", $L.return.code, $list, 1, 0)

Returns: $L.list= {{"a", "c", "b", "d"}, {1, 2, 3, 4}}

$L.success.flg=rtecall("sort", $L.return.code, $list, 1, 1)

Returns: $L.list={{"a", "c", "b", "d"}, {1, 2, 3, 4}}

$L.success.flg=rtecall("sort", $L.return.code, $list, 0, 0)

Returns: $L.list={{“a”, “b”, “c”, “d”}, {1, 3, 2, 4}}

$L.success.flg=rtecall("sort", $L.return.code, $list, 0, 1)

Returns: $L.list={{"d", "c", "b", "a"}, {4, 2, 3, 1}}

rtecall(“transtart”)
This function measures the amount of data transferred, elapsed time and
CPU usage of any transaction. It is commonly invoked from the GUI
debugger and is used in conjunction with transtop.

Parameter Data Type Description

$L.success.flg Logical Indicates if the function was successful

$L.fnc.name String Name of the sub-function to call, in this case
“sort”

$L.return.code Number Provides a more detailed return code

$L.grid Array The list (or list of lists) to be sorted

$L.index Number The index of the array in the grid that should
be used as the sort field

Note: Note: 0 is the first element of the array.

$L.type Number Ascending (1) or descending (0)
298 Chapter 13—System Language

RAD Guide
Format
$L.success.flag= rtecall($L.fnc.name, $L.return.code, $L.transaction)

Parameters

Factors
If the $L.success.flg is false, the function failed.

If $L.success.flg is true, the function succeeded.

Example

$L.success.flg= rtecall("transtart", $L.return, "problemopen")

rtecall(“transtop”)
This function measures the amount of data transferred, elapsed time and
CPU usage of any transaction. It is commonly invoked from the GUI
debugger and is used in conjunction with transtart.

This is supported on both full and express clients.

The information is from the perspective of where the RAD is running.
Therefore, in express mode the CPU time and data transmission number
are from the server machine, while in a full client the CPU time and data
transmission numbers are from the client machine.

String copies are a rough indication of the amount of RAD processing.

You can have multiple transaction timings active at the same time.

Format
$L.success.flag= rtecall($L.fnc.name, $L.return.code, $L.transaction, $results)

Parameter Data Type Description

$L.success.flg Logical Indicates if the function was successful

$L.fnc.name String Name of the sub-function to call, in this case
“transtart”

$L.return.code Number Provides a more detailed return code

$L.transaction String Any user-selected name for the transaction to
be measured
RAD Functions 299

ServiceCenter
Parameters

Factors
If the $L.success.flg is false, the function failed. If it is true, the function
succeeded.

Example

$L.success.flg=rtecall("transtop", $L.return.code, “problemopen”, $results)

$results={58.164, 0.961, 46840, 26712, 2477}

This shows that the “problemopen” transaction took 58.164 seconds of wall
clock time and 0.961 CPU seconds, and performed 46,840 string copies. The
transaction sent 26,712 bytes to the client and the client returned 2,477 bytes
to the server.

rtecall(“trigger”)
This function turns triggers on or off for the current session. Other
ServiceCenter users are unaffected.

Format
$L.success.flag= rtecall($L.fnc.name, $L.return.code, $L.switch)

Parameter Data Type Description

$L.success.flg Logical Indicates if the function was successful

$L.fnc.name String Name of the sub-function to call, in this case
“transtop”

$L.return.code Number Provides a more detailed return code

$L.transaction String Any user-selected name for the transaction to
be measured

$results Array The results gathered, in the form of an array:
{elapsed seconds, cpu seconds, #string copies,
bytes sent to client, bytes received from client}
300 Chapter 13—System Language

RAD Guide
Parameters

Factors
If the $L.success.flg is false, the function failed. If it is true, the function
succeeded.

Example

$L.success.flg=rtecall("trigger", $L.return.code, 1) to turn triggers on

$L.success.flg=rtecall("trigger", $L.return.code, 0) to turn triggers off

same
Compares two values; if the values are found to be equal or both null, the
result is TRUE, if not, the result is FALSE.

Format
same(value1,value2)

Factors
This function should be used whenever comparing arrays and structures,
nulls or empty strings.

When using same to compare arrays or structures, preface the variable
names with denull. e.g., not same(denull($filea),
denull($fileb))

Example

same(1,NULL) returns false

same(NULL,NULL) returns true

same({},{,}) returns true

Parameter Data Type Description

$L.success.flg Logical Indicates if the function was successful

$L.fnc.name String Name of the sub-function to call, in this case
“trigger”

$L.return.code Number Provides a more detailed return code

$L.switch Number Either 1 or 0, to turn triggers on or off
respectively
RAD Functions 301

ServiceCenter
same({1},{1,}) returns true

same("",NULL) returns false
302 Chapter 13—System Language

RAD Guide
scmsg
Returns a message of a particular type and number from the scmessage file and
substitutes text for the variables in that message.

Format
scmsg($class, $id, $arrayof values)

Parameters

Example

scmsg(“cib”, “21”, {“mail”, “middle,caller.id”, “open”})

The text of this message from the scmessage file is the following: Built macro
to %S to %S on %S. When the %S array values from the scmsg function in
this example are applied, the message is displayed as: Built macro to mail to
middle,caller.id on open.

Factors
All the substitution text must be %S, which indicates that a STRING is
being used to provide the data. Each entry in the array of substitution text
is examined for its type, and if it is not a STRING type, it is converted to a
STRING.

You must create a separate record in the scmessage file for the message in
each language you want to display.

The $arrayofvalues defined in the scmsg function are applied to the
message in the scmessage file that corresponds to the language of the
client login.

Parameter Description

$class Message class (from the scmessage file)

$id ID number of the message (message.id)
from the scmessage file.

$arrayofvalues An array of substitution text for the %S
variables in the message text (from the
scmessage file)
RAD Functions 303

ServiceCenter
set.timezone
Sets the time zone, the translation from local to internal characters, and the
date format. Timezone is established at either user login or process startup
time. (Not all started processes are User Processes) At login, the timezone is
determined using first the Company record and then the Operator record.

Format
set.timezone($tzfile,1)

Factors

$tzfile represents a record in the ServiceCenter file.

See also: System Administrator’s Guide for more information on time zones
and date formats.

setsort
The setsort function sorts the fields of an array in a file.

Format
setsort($file, $arrayof names, 0): ascending sort

setsort($file, $arrayof names, 1): descending sort

Example

$L.void=setsort($L.ocml, $L.sort, 0)

share
The share function shares the data in the current record with the same file in
several remote sites.

Format
share($filename, $arrayof sites)

Where $filename is the name of file whose data is to be shared, and
$arrayofsites are the names of the remote sites to receive the data.

Example

if (not null($L.sites)) then ($L.void=share($L.file, $L.sites))
304 Chapter 13—System Language

RAD Guide
shutdown
Shuts down ServiceCenter from inside the system and does not return any
values; it simply performs an operation.

Format
shutdown()

Factors
This function should be placed on the last panel that is to be executed in a
shutdown application. Once the function is executed, the operator will see
the operating system prompt from which ServiceCenter was started.

str
Converts a non-string data type into a string.

Format
str(any valid expression)

Where any valid expression is the value to be converted to a string.

Examples

str(1+1) returns ‘‘2‘‘
"report run at "+ str(tod()) returns ‘‘report run at 12/10/90 10:10:00‘‘

See also: val function

stradj
Makes a string a specific length by clipping or adding trailing blanks.

Format
$junk=stradj($string, $size)

Variable Description

$junk= Syntax requirement only (has no bearing on the
outcome of the function).

$string String being modified.

$size Desired size of $string.
RAD Functions 305

ServiceCenter
Example

$string="Peregrine Systems"
$size=20
$junk=stradj($string, $size)

After execution, value of $string is "Peregrine Systems "

$string="Peregrine Systems"
$size=15
$junk=stradj($string, $size)

After execution, value of $string is "Peregrine Syste"

strchrcp
Replaces part of a string with copies of another string.

Format
$junk=strchrcp($target, $index, $source, $copies)

Example

$target="Peregrine Systems"
$index=4
$source="falcon"
$copies=2
$junk=strchrcp($target, $index, $source, $copies)

After execution, value of $target is "Perfalconfalconms"

Factors
This function never extends the length of $target.

Variable Description

$junk= Syntax requirement only (has no bearing on the
outcome of the function).

$target String being modified.

$index Position in $target to begin copying $source.

$source String to be copied into $target.

$copies Number of copies of $source to replicate within $target.
306 Chapter 13—System Language

RAD Guide
strchrin

Inserts copies of a string into another string.

Format
$junk=strchrin($target, $index, $source, $copies)

Example

$target="Peregrine Systems"
$index=4
$source="falcon"
$copies=2
$junk=strchrcp($target, $index, $source, $copies)

After execution, value of $target is "Perfalconfalconegrine Systems"

strclpl

Clips a number of characters from the beginning of a string.

Format
$junk=strclpl($string, $number)

Variable Description

$junk= Syntax requirement only (has no bearing on the
outcome of the function).

$target The string being modified.

$index The position in $target to begin inserting copies of
$source.

$source The string to be inserted into $target.

$copies The number of copies of $source to insert into $target.

Variable Description

$junk= Syntax requirement only (has no bearing on the
outcome of the function).

$string The string being modified.

$number The number of characters to clip.
RAD Functions 307

ServiceCenter
Example

$string="Peregrine Systems"
$number=6
$junk=strclpl($string, $number)

After execution, value of $string is "ine Systems"

strclpr

Clips a number of characters from the end of a string.

Format
$junk=strclpr($string, $number)

Example

$string="Peregrine Systems"
$index=6
$junk=strclpr($string, $number)

After execution, value of $string is "Peregrine S"

strcpy
Replaces part of a string with a substring.

Format
$junk=strcpy($target, $tindex, $source, $sindex, $number)

Variable Description

$junk= Syntax requirement only (has no bearing on the
outcome of the function).

$string The string being modified.

$number The number of characters to clip.

Variable Description

$junk= Syntax requirement only (has no bearing on the
outcome of the function).

$target The string being modified.

$tindex The position in $target to begin copying a substring
from $source.
308 Chapter 13—System Language

RAD Guide
Example

$target="Peregrine Systems"
$tindex=4
$source="falcon"
$sindex=2
$number=3
$junk=strcpy($target, $tindex, $source, $sindex, $number

After execution, value of $target is "Peralcine Systems"

strdel
Deletes a number of characters from a specific location in a string.

Format
$junk=strdel($string, $index, $number)

Example

$string="Peregrine Systems"
$index=6
$number=8
$junk=strdel($string, $index, $number)

After execution, value of $string is "Peregtems"

$source The string supplying a substring.

$sindex The beginning position of the substring within $source.

$number The number of characters to copy from $source.

Variable Description

Variable Description

$junk= Syntax requirement only (has no bearing on the
outcome of the function).

$string The string being modified.

$index The location in $string from which characters are to be
deleted.

$number The number of characters to delete.
RAD Functions 309

ServiceCenter
strins
Inserts a substring into another string.

Format
$junk=strins($target, $tindex, $source, $sindex, $number)

Example

$target="Peregrine Systems"

$tindex=4

$source="falcon"

$sindex=2

$number=3

$junk=strins($target, $tindex, $source, $sindex, $number)

After execution, value of $target is "Peralcegrine Systems"

strpadl
Pads a string with leading blanks until the string is a certain size.

Format
$junk=strpadl($string, $size)

Variable Description

$junk= Syntax requirement only (has no bearing on the
outcome of the function).

$target The string being modified.

$tindex The position in $target to begin inserting a substring
from $source.

$source The string supplying a substring.

$sindex The beginning position of the substring within $source.

$number The number of characters to insert from $source.

Variable Description

$junk= Syntax requirement only (has no bearing on the
outcome of the function).
310 Chapter 13—System Language

RAD Guide
Example

$string="Peregrine Systems"

$size=20

$junk=strpadl($string, $size)

After execution, value of $string is " Peregrine Systems".

strpadr
Pads a string with trailing blanks until the string is a certain size. If the string
is longer than the desired size, it is truncated.

Format
$junk=strpadr($string, $size)

Example

$string="Peregrine Systems"

$size=20

$junk=strpadr($string, $size)A

After execution, value of $string is "Peregrine Systems "

$string="Peregrine Systems"

$size=10

$junk=strpadr($string, $size)

After execution, value of $string is "Peregrine "

$string The string being modified.

$size The desired size of $string.

Variable Description

Variable Description

$junk= Syntax requirement only (has no bearing on the
outcome of the function).

$string The string being modified.

$size The desired size of $string.
RAD Functions 311

ServiceCenter
strrep
This function returns a string, replacing a specified character sequence with
another string.

Format
strrep($target,$string1,$string2)

Example

$s=strrep("Peregrine","egrine","formance")

Value of $s is "Performance"

strtrml
Removes all leading blanks from a string.

Format
$junk=strtrml($string)

Example

$string=" Peregrine Systems"

$junk=strtrml($string)

After execution, value of $string is "Peregrine Systems"

Variable Description

$target The original string containing characters that will be
replaced.

$string1 The string within $target that needs to be replaced.

$string2 The string that is replacing $string1.

Variable Description

$junk= Syntax requirement only (has no bearing on the
outcome of the function).

$string The string being modified.
312 Chapter 13—System Language

RAD Guide
strtrmr
Removes all trailing blanks from a string.

Format
$junk=strtrmr($string)

Example

$string="Peregrine Systems "

$junk=strtrmr($string)

After execution, value of $string is "Peregrine Systems"

substr
Extracts a substring from a string.

Format
substr(string, beginning position, length)

Where string is the variable name of the string from which the sub-string is to
be extracted, beginning position is the position in the string where the substring
is to begin, and length is the number of characters in the substring (default is
1). You must provide a starting position (no default), but if the length is
omitted, the substring selects from the starting position to the end of the string.

Example

$a=substr("IBM Corporation", 1, 3) returns IBM.

Factors
You must use a space after each comma for the substring expression to work
properly.

Variable Description

$junk= Syntax requirement only (has no bearing on the
outcome of the function).

$string The string being modified.
RAD Functions 313

ServiceCenter
sysinfo.get
Returns various information about the session the user is running.

Format
$info=sysinfo.get($parm)
314 Chapter 13—System Language

RAD Guide
Parameters ($parm)

Parameter Returns

“ActiveFloatUsers” Returns the total number of floating users currently active

“ActiveLicenses” Returns the total number of licenses currently active

“ActiveNamedUsers” Returns the total number of named users currently active

"ClientNetAddress" Returns a character string representation of the
ServiceCenter client network address (IP address or APPC
LU name)

Example:

$x.clientNetAddress=sysinfo.get("ClientNetAddress")

ClientOSName Returns the operating system ServiceCenter is running on.
For example Windows 2000, Windows NT, Mac OS.

"ClientVersion" Returns the version number of the client software as a
string in the form of release.version.level. For example: 4.0.5

"ClientPID" Returns the PID for RAD. For express, scenter PID will be
the same as the server PID.

Example:

$x.clientPid=sysinfo.get("ClientPID")

"Display" Returns gui if the user is running a GUI client.

Returns text if the user is running a TEXT client.
Examples:

1 $display=sysinfo.get("display")
After execution, $type will be "gui" if the user is running
a Windows session.

2 If sysinfo.get("display")="gui" then (…)
3 If index(sysinfo.get("display"), {"gui","web"})>0 then

(…)
4 If sysinfo.get("display")~="text" then (…)

"Environment" Environment option that returns:

scclient if RAD is running on a text client
scserver if RAD is running on the server
scenter if RAD is running on a scenter process
scguiw32 if RAD is running on an express or full GUI
client

“MaxFloatUsers” Returns the total number of floating users logged on since
startup
RAD Functions 315

ServiceCenter
“MaxLicenses” Returns the maximum number of licenses used since
startup

“Mode” Returns server if RAD is running in server mode.

Returns scenter if RAD is running on a scenter process.

Returns client if the RAD is running on the client (full
client mode)

Returns express if the RAD is running in express mode.

Examples:

1 $mode=sysinfo.get("mode")
If the user is running from a Windows client, $mode will
be "client."

2 If sysinfo.get("mode")="client" then (…)
3 If (index(sysinfo.get("mode"),{"scenter","server",

"express"})>0 then (…)

“PrevLabel” Used for error determination. A RAD program might
require the label of the last RAD panel that was executed. The
sysinfo.get(“prevlabel”) RTE call returns that label name.

Example:

$L.lastlabel = sysinfo.get(“prevlabel”)

The panel name is the last panel that was executed in the
called RAD program.

At the start panel for any application, the name is the
calling panel name from the parent application

"PrintOption" Returns printing option information—server or client
depending on how the system is set.

“Quiesce” Returns true if system is quiesced and false if quiesce is off

"RecList" Returns true if record list is enabled and false if record list is
disabled

"ServerNetAddress" Returns a character string representation of the
ServiceCenter client network address (IP address)

"ServerPID" Returns the numeric process ID (PID) of the server.

“SystemEvents” Returns System Events information:. For example:

Parameter Returns

Event Name Application Name Returns

Take Call dde.take.call “RAD”

Show List mycfunction “c”
316 Chapter 13—System Language

RAD Guide
time
Returns the time portion of a date/time value.

Format
time($date.time.variable)

Where $date.time.variable is the date/time variable name.

Factors
Note that the time of a given date/time may be different in different time
zones.

Example

time($date.time) returns 12:10:15

See also: set.timezone function

"Telephony" Returns true if telephony is enabled and false if telephony
is disabled.

"ThreadID" Returns the number of the current RAD thread.

Example:

$x = sysinfo.get ("ThreadID")

$x will be set to the number ID of the current thread.

“TotalFloatUsers” Returns the total number of floating users allowed

“TotalLicenses” Returns the total number licenses allowed

“TotalNamedUsers” Returns the total number of named users allowed

"TotalProcs" Returns the total number of executing tasks

“TotalSystemProcs” Returns the total number of system tasks

“TotalUserProcs” Returns the total user tasks

Parameter Returns
RAD Functions 317

ServiceCenter
tod
Returns the current system date and time.

Format
tod()

Factors
The tod function returns mm/dd/yy hh:mm:ss.

Examples

tod()=‘4/20/96 12:15:16’

$curr.time=tod()

tolower
This function returns a string, converting all upper-case characters in the
string variable to lower-case. Characters with no lower-case equivalent
remain unchanged.

Programming Considerations: Character conversions are based on the value
of the language parameter.

Format
tolower($string)

Where $string is the string variable containing upper-case characters.

Example
$s=tolower("Copyright 1995")

The value of $s is "copyright 1995"
318 Chapter 13—System Language

RAD Guide
toupper
This function returns a string, converting all lower-case characters in the
string variable to upper-case. Characters with no upper-case equivalent
remain unchanged.

Programming Considerations: Character conversions are based on the value
of the language parameter.

Format
toupper($string)

Where $string is the string variable containing lower-case characters.

Example

$s=toupper("Copyright 1995")

The value of $s is "COPYRIGHT 1995"

translate
Translates from one character set to another, such as from lower to upper
case, encoding data, etc.

Format
translate(source, old character set, new character set)

Where source is the string to translate, old character set is the character set that
already exists, and new character set is the character set that has been
translated.

Factors
Both old and new character sets must be strings of the same length.

Both old and new character sets may be literals, variables or fields.

A one for one correlation must exist between the old and new character
sets (i.e., the third character in the new set replaces the third character in
the old set).

Example

translate(“123abcdef”,“abc”,“ABC”) returns 123ABCdef.

See also: toupper. tolower functions.
RAD Functions 319

ServiceCenter
trunc
Truncates the decimal digits of a number to a specified number of digits.

Format
trunc(number,n)

Where number is the number to truncate and n is the number of decimal
digits desired. The default value of n is 0 (zero).

Factors
The second parameter is not required. By default, the number passed is
truncated to a whole number.

Negative and positive numbers are treated identically.

Examples

See also: round function

type
Returns the numeric type of a datum.

Format
$ttype=type($any.value)

Where $any.value is any literal or variable.

Example

$ttype=type(’2/15/96’)

After execution, value of $ttype is 3.

Function Returns

trunc(3.45,1) 3.4

trunc(3.44) 3

trunc(‘13:19:34‘) ‘13:19:00‘
320 Chapter 13—System Language

RAD Guide
Factors
Type returns the following numeric values:

val
Converts a datum to a different data type.

Format
$new.data=val($data, $new.type)

Data Type Return Value

Number 1

Character String 2

Date/Time 3

Logical 4

Label (of a RAD application) 5

File 6

Array 8

Structure 9

Operator 10

Expression 11

Variable Description

$data Datum to be converted.

$new.type Datatype to which the data will be converted:

1 = number (default)

2 = string

3 = date/time

4 = logical
RAD Functions 321

ServiceCenter
Examples

Variable Value of $x after execution

$x=val(100) 100

$x=val(100, 2) "100"

$x=val(100, 3) ’00:01:40’

$x=val(0, 4) false

$x=val(1, 4) true

$x=val(2, 4) unknown

$x=val(3, 4) NULL

$x=val("Peregrine", 1) NULL

$x=val("100.3", 1) 100.3

$x=val("Peregrine", 2) "Peregrine"

$x=val("Peregrine", 3) NULL

$x=val("2/15/96", 3) ’02/15/96 00:00:00’

$x=val("true", 4) true

$x=val("0", 4) NULL

$x=val(’01:00:23’, 1) 3623

$x=val(’02/16/96 08:00:00’) 62992915200

$x=val(’01/01/96’, 2) "01/01/96 00:00:00"

$x=val(’02/09/96 08:00:00’, 3) ’02/09/96 08:00:00’

$x=val(’01/01/96’, 4) NULL

$x=val(’12:34:56’, 4) NULL

$x=val(false) 0

$x=val(true, 1) 1

$x=val(unknown, 1) 2

$x=val(false, 2) "false"

$x=val(true, 3) NULL

$x=val(unknown, 4) unknown
322 Chapter 13—System Language

RAD Guide
Factors

The following type conversions are supported:

Number can be converted to date/time, string, or logical.

String can be converted to number, date/time, or logical.

Date/time can be converted to number or string.

Logical can be converted to number or string.

variable.send
Sets the value of a RAD variable on the server when using a full client. In a
non-client mode this function does not perform any operation.

Format
variable.send()

Example

$L.name = "Bob Jones"

variable.send("$L.name")

This example sets the value of the variable $L.name to "Bob Jones" on the
server. If the variable does not exist on the server it will be created. Note the
importance of the double quotes around the variable name. Without the
double quotes the function attempts to set the variable "Bob Jones" which is
invalid.

You can use a variable to represent the variable name as follows:

$L.name = "Bob Jones"

$L.varname = "$L.name"

variable.send($L.varname)

This variation is identical in execution to the first example.

Factors
Use this function to set variables that may be required for database triggers.

version
Returns an array containing the release number of the ServiceCenter executable.
RAD Functions 323

ServiceCenter
Format
version()

Example

$a=version()

Where the value of $a is {"unix",7.0,"4.0.3"}

The first element is a string naming the platform:

unix
mvs

mswin
winnt

The second element is 7.0, the RAD release level.

The third element is a string containing the ServiceCenter version number
and the Service Pack number (e.g., 4.0.3 indicates ServiceCenter version
4.0 and Service Pack 3).

year
Returns the full year for a date regardless of the date format.

Format
$fyear=year($date)

Where $date is the date/time value.

Example

$fyear=year(’2/15/96’)

After execution, value of $fyear is 1996.

Pseudo Fields

A pseudo-field converts input data into output data and can sometimes be
assigned. That is, it can be placed on the left hand side of an equals (=) sign.
ServiceCenter has pre-defined pseudo-fields.

Note: Pseudo fields are not supported in non-P4, SQL tables.

Month
Accesses the number of months from the beginning of the time base in a date.
This function can be used to increment a date by a period of months.
324 Chapter 13—System Language

RAD Guide
Example

Month in $time +=1

This increments the current month by one.

Factors
The month function is most useful for scheduling monthly reports, since the
number of days to add to each month is calculated automatically.

Name
Accesses the file name in a specific file variable.

Example

$filename=Name in $file

This sets $filename to the name of the file bound to $file.

Factors
The name function is analogous to the filename function.

Debugging RAD Flows

Two methods for debugging a RAD flow exist within ServiceCenter:

RAD Debugger

Command line parameters

RAD Debugger
The RAD Debugger allows ServiceCenter users to view and isolate RAD
processes for the purpose of troubleshooting an application. Information
about the RAD flow is displayed in a separate window containing a scrollable
text field.

To use the RAD Debugger:

1 Press Ctrl-Shift+D+E.

The RAD Debugger command window is displayed.
Debugging RAD Flows 325

ServiceCenter
2 Enter the desired command followed by a parameter.

Figure 13-1: RAD Debugger

3 Press Enter.
326 Chapter 13—System Language

RAD Guide
The requested information is displayed.

Figure 13-2: RAD Debugger—adding a breakpoint for a named panel

Commands

Command Function

d (display) Displays the contents of a variable. A common use of this
command is to display the name of the Display application
Screen ID attached to the current form.

d $L.screen

t (trace) Turns tracing on or off. Tracing allows you to see every panel
that the RAD flow encounters. Use the command by itself to
display the status of the trace function.

t on

t off

t

Debugging RAD Flows 327

ServiceCenter
ta Turns panel tracing on or off for a specific RAD application. To
turn application tracing on, include the name of a RAD
application. To turn application tracing off, repeat the same
command combination a second time. You may have multiple
traces engaged at one time. Use the command by itself to display
a list of the RAD applications being traced.

ta script.execute

ta

tar Removes all RAD specific panel traces. If you are tracing
multiple applications, you can save time by using tar rather than
using ta to turn off each trace individually.

tt Turns panel tracing on or off for RAD applications called by a
trigger only. Trigger tracing only works with an express client.
Use the command by itself to display the status of the panel trace
function.

tt on

tt off

tt

b (breakpoint) Sets a panel breakpoint. When the RAD flow encounters a panel
with this label, it halts before executing the named panel and
gives you an opportunity to perform debugging procedures such
as displaying variables or executing statements. Repeat the
command combination a second time to turn off the
breakpoint. Execute the command by itself to display a list of all
current breakpoints.

b init.operator

b

ba Sets a breakpoint on a specific RAD application. A breakpoint is
applied each time the RAD flow enters the named application,
whether it has run for the first time or when the flow returns to
it from a subroutine.

ba menu.manager

Command Function
328 Chapter 13—System Language

RAD Guide
bv Sets a breakpoint when a variable changes value. The following
variables are affected:

Global variables—those beginning with $G., $lo., $CHART.,
$SYSPUB., $MARQUEE. The RAD flow stops whenever these
variables change value.
Normal variables—those not beginning with anything special
or a parent ($P.) variable. The RAD flow stops if the variable
has changed within the same RAD thread. If the RAD flow is
in a different thread, the variable being tracked probably has a
different purpose and a breakpoint is not desirable.
Local variables—those beginning with $L. The RAD flow
stops only if the value of the variable changes for the RAD
thread and application in which the variable was set. For
example, if you are tracking a certain application that uses the
local variable $L.qry, you do not want a breakpoint occurring
in another application that happens to use the same variable
name for another purpose.

bt Sets a breakpoint on a specific type of RAD panel. When the
RAD flow encounters a RAD command panel with this name,
the application stops running and returns you to the RAD
Debugger. Enter the command combined with the name of a
RAD panel to set the breakpoint. Re-enter the same command
combination to turn off the breakpoint.

bt rinit

rb Removes all breakpoints of any type

c (continue) Resumes the execution of the RAD flow after a breakpoint
occurs

s (step) Steps through the RAD flow one panel at a time

gl (globals) Displays all the global variables—those beginning with $G., $lo.,
$CHART., $SYSPUB., $MARQUEE.

v (variables) Displays all the thread variables: those not beginning with a
special code

l (locals) Displays all the local RAD variables: those beginning with $L.

sta (stack) Displays the current RAD stack

re (relations) Displays only the variables which are file relations (file handles
initialized by the rinit command panel).

Command Function
Debugging RAD Flows 329

ServiceCenter
Command Line Parameters
You can use the command line of a client shortcut to pass debugging
parameters from an express client to the server. This features allows a user to
obtain debugging information on a per-process basis without modifying the
server sc.ini file. In addition, the express client can specify the name of a
separate log file in which all the resulting information for the task is placed.

Parameters

m (memory Displays all the variables in memory. This is equivalent to issuing
the globals (g), variables (v), and locals (l) commands.

h (help) Displays a brief summary of the RAD Debugger commands

Command Function

Parameter Function

debugstartup Messages issued as the startup code is executed

debugprocesses Messages issued as the startup code is executed
Termination messages

debugtransport Messages dealing with the exchange of information between
the client (full and express) and the server

debugrpc Performance statistics for full client rpc calls or the latest
data exchange in express mode

debugrs Information about resource locks

debugdbquery Query information

debugfileio Messages regarding input/output to external files (NOT
database input/output)

Example: import/export, VSAM/QSAM/JES

debuglog Names a special log to contain the debugging information.
Specify a file name only and not a path. The debuglog will be
placed in the same directory as the current sc.log file.

-debuglog:<logfile name>

rtm:n

RTM:n

Starts a RAD trace. For a detailed description of the RTM
trace function, refer to Special Parameters in the
ServiceCenter Technical Reference.
330 Chapter 13—System Language

RAD Guide
Example
A user is having an undetermined incident at startup. You want to execute an
RTM trace in addition to obtaining the normal debugging information
provided by debugprocesses, debugstartup and debugtransport. To simplify the
job of deciphering the results, you want to place all the debugging
information in a separate log file called support.log. The following command
line syntax obtains the desired results:

scguiw32.exe -express:myhost.12680 -rtm:3 -debugprocesses
-debugstartup -debugtransport -debuglog:support.log
Debugging RAD Flows 331

ServiceCenter
332 Chapter 13—System Language

CHAPTER

14
 Default Variables in ServiceCenter
The following global and local variables are used in the default ServiceCenter
system.

Variable Definition

$G.profiles List of personal profiles

$G.pm.global.environment Incident Management’s global environment record

$G.category List of category forms (category file)

$G.assignment List of Incident Management assignment groups

$G.categories List of categories

$G.problem.inbox List of Incident Management inboxes

$G.open.lists List of all global lists built at login

$G.icm.status List of Inventory Management statuses

$G.assignment.groups List of Incident Management assignment groups

$G.prompt.for.save Global flag (boolean) determining whether or not you are
prompted for save when OK or Cancel are pressed after record
is updated.

$G.operators List of ServiceCenter operators

$G.availability.maps List of availability maps

$G.pm.environment The current user's Incident Management personal profile
record
Default Variables in ServiceCenter 333

ServiceCenter
$G.pm.status List of Incident Management statuses

$G.groups List of all PM profile groups in the system

$G.technicians List of technicians (operator file)

$G.inbox.types List of inbox types (incident, call)

$G.incident.inboxes List of Service Management inboxes

$L.filed This is the current file being displayed by the display
application

$L.new The current file being updated when evaluating macro
conditions

$L.old The pre-updated state of a file undergoing an update while
evaluating macro conditions

$lo.appl.name Application name passed to menu.manager

$lo.appl.names Application parameter names passed

$lo.appl.values Application parameter values passed

$lo.cm.limit Partial-key time threshold for Change Management

$lo.company.name Company name as defined in the Client record (company
file)

$lo.copyright Peregrine copyright (copyright())

$lo.date.order Number representing date order (mdy, dmy, ymd)

$lo.db.limit Partial-key time threshold for Database Manager

$lo.device Device ID (current.device())

$lo.es Vars not used

$lo.groups List of query group names in operator record

$lo.home Name of Home menu for GUI

$lo.i Temporary variable (should be cleaned up in app)

$lo.main Name of main menu for text

$lo.month.abv List of abbreviated months ("Jan", "Feb", "Mar", etc.)

$lo.month.ext List of months ("January", "February", "March", etc.)

$lo.msglog.lvl Level of messages to be logged

$lo.pm.limit Partial-key time threshold for Incident Management

Variable Definition
334 Chapter 14—Default Variables in ServiceCenter

System Tailoring
$lo.printer Default printer name

$lo.system.startup Set at login to value of the field called system.startup.time in
Company Information record.

$lo.time.zone User's time zone

$lo.uallow.syslog Determines whether syslog table should be updated when
processes start and end in ServiceCenter.

$lo.uallow.timezone Allows user to modify timezone based on capability

$lo.uapprovals List of change approval groups

$lo.ucal not used

$lo.ucalz not used

$lo.ucapex List of user's Capability words

$lo.uchgmgr

$lo.uchgrps List of change groups

$lo.ucm.print Flag to indicate Change Management print default

$lo.ufname User's full name

$lo.ulogin.time User login time stamp

$lo.ulogoff.parm * Obsolete *

$lo.upm.print Flag to indicate Incident Management print default

$lo.user.name operator()

Variable Definition
 335

ServiceCenter
336 Chapter 14—Default Variables in ServiceCenter

CHAPTER

15
 Link Maintenance
One of the advantages of a relational database is the elimination of redundant
information. This is accomplished by storing information about a particular
subject in one place, or file, with links to other subjects. Links are a
combination of data and link definitions, sets of conditions containing the
relationships for linked information. Links are used within ServiceCenter
Incident Management (IM) and Inventory and Configuration Management
(ICM) environments to relate information in one file to information in
another.

Data Relationships and the Link File

Link maintenance involves establishing the relationships between
ServiceCenter data so that information residing in one file can form the link
query that selects and displays or copies information from another file.

A separate link definition can occur for each form (format).

Consider the three records in Figure 15-1 on page 338. The incident
document (in this example problem.network.update) requires information
regarding the serial number, location, and vendor, as well as a description of
the incident.
Link Maintenance 337

ServiceCenter
The information required when documenting an incident is often already in
the database. To find and display the information with the incident
document, you must tell the system:

What value it should use as a search argument, and

Where it should look for the matching information.

Incident
record

Figure 15-1: Database Records

device
record

vendor record
338 Chapter 15—Link Maintenance

System Tailoring, Volume 3
This data is stored in the inventory system, referenced according to several
categories of information. The device record (device type pc in Figure 15-1 on
page 338) contains the logical name, contact and location names. The vendor
record contains the vendor ID, location and vendor phone number.

The information required for the incident document is stored in at least two
separate records, so at least two relationships are defined in the link record:
one to device, one to vendor, and one to any other applicable file.

Within each link, there is also an implied order to how these relationships are
defined. The device record may contain the vendor’s name, but not the
vendor’s phone number, and the contact name is stored in the location
record but maybe not in the device record.

By defining the first relationship between the incident document and the
device record, you can retrieve the data necessary to form the queries which
will retrieve data through the second and third relationships.

A link record defines the relationship between the incident document and
information in the device, vendor and other records. Although you may have
different link records for each format (form) used in Incident Management,
a record named problem and one named probsummary always exist. These
records provide a basis and example for other Incident Management link
records.

Note: If you are using IR Expert, consider building links from one of the IR
fields (like action) to itself. This allows a simple Find command to
locate relevant incidents before a ticket is opened.

To reach the link record for the problem file:

1 Select Tools from the Utilities tab in the administrator’s home menu.

2 Select the Links button; this brings up Link Manager.

3 Enter problem in the Form field.

4 Press Enter.

5 Select problem from the record list.
Data Relationships and the Link File 339

ServiceCenter
(For the problem.network link record, click on problem.network in the QBE.)

The column labeled Field Name (SOURCE) contains the names of fields in
the current record (in this case problem). The columns under the label Link
To And/Or Fill From (TARGET) contain the file names and corresponding
field names that define the relationship. For example, the first entry links the
logical.name field to the logical.name field in the device record file. When
the link is exercised, the contents of the logical.name field in the problem
record will be used to search the device file for other information to populate
the form. Using the examples on the previous page, the link query
logical.name#“pc010” is exercised against the device file in search of that
device’s logical name and other applicable data.

Figure 15-2: Link Maintenance record
340 Chapter 15—Link Maintenance

System Tailoring, Volume 3
The inventory items are linked to the incident document (problem.network in
this example) by the field labeled Asset ID (logical.name) field. The first link
to the device record retrieves the serial number and location names.
Subsequent links use that information to form their own relationships, e.g.,
the value of the field labeled Contact Name (vendor field) is retrieved from
the vendor record, based on the value of the logical name passed to
Inventory.

A link to the vendor record from the field labeled Service Provider (on any
linked Incident Management form) provides the Vendor Phone number for
the incident document.

Inventory data stored on device, vendor and other records can be linked to
several forms in Incident Management, and in the same way multiple
relationships for the same field can exist. These link relationships are
specified in the link record. Within the link record, links between data and
forms are established in the order in which they appear in the list. A query for
a specific field may be linked to more than one inventory record in the
process of searching for the necessary data. See Figure 15-3 on page 342.

Multiple line links
In Figure 15-3 on page 342, the resolution.code field is linked to both the
probable.cause file and the resolution file. The order in which the entries
appear in the link record determines the order in which they are searched by
ServiceCenter applications. For example, the probable.cause file is searched
first. If no records are found to satisfy the link query, the resolution file is
searched before the search stops. Searching stops when a query is satisfied.

Find, Fill and Virtual Join
Links form the basis for the most powerful features of ServiceCenter Incident
Management applications, those of Find, Fill and Virtual Join.

The Find function uses the value of the field in which the cursor is placed to
query for information based on data stored in existing records. Security
parameters may restrict a user’s access to the requested data, but under most
conditions if information is found, a record list of matching inventory
records is displayed. If no information is found, a negative message is issued.
Data Relationships and the Link File 341

ServiceCenter
The Fill function works in a similar fashion, selected information is copied
into the current record from existing records. For example, incident
documents are populated with device information when a logical name
(logical.name) is specified.

Another feature which relies on link definitions is Virtual Join. This tool
combines information from many files and presents the results on a single
form. At the Help Desk, a vendor’s telephone number can be displayed in a
incident document without occupying any space in the actual record.
Information presented through virtual joins does not reside in long-term
memory and is simply another way of looking at current inventory data.

Linking in this method enables data to be current and consistent across all
incident documents. A change to the original inventory record automatically
updates the incident document whenever it is opened. Each time a incident
document is opened or updated, the applicable fields displaying linked data
pick up the most recent inventory information.

Figure 15-3: Link Record - problem
342 Chapter 15—Link Maintenance

System Tailoring, Volume 3
Important: Queries for Find, Fill and Virtual Joins only perform
appropriately when run on fields which have been set up as
unique keys in the Database Dictionary record for the target
files. These unique key definitions allow data to be stored using
certain markers. Link queries need to locate these markers in
order to retrieve the appropriate data.

See the Forms Designer chapters for more information on setting up unique
keys and other definitions in the Database Dictionary record.
Data Relationships and the Link File 343

ServiceCenter
Find Functionality

Using information in the link record, Find locates and displays information
in another record (or records) based on the contents of the current record.
(The find application has been replaced by the us.link application in release
A9802 and later releases. See the section Us.link for more information.)

In the following Incident Management example, the source record contains
pc in the field labeled Asset ID (logical.name field). The link record shown in
Figure 15-4 on page 344 relates the logical.name field in the SOURCE record
to the logical.name field in the vendor (TARGET) file.

All device records containing logical.name fields beginning with pc will be
selected and displayed in a QBE list for the user to select.

Then, the user selects the specific device sought and opens the applicable
device record.

Figure 15-4: Link Record/File - problem.summary
344 Chapter 15—Link Maintenance

System Tailoring, Volume 3
Find uses the field name of the textbox where the cursor currently is in order
to determine what relationship to establish. To select the device records
whose names begin with pc, the cursor must be resting in the Asset ID field,
which must contain pc.

It builds the following query:

logical.name field in device file begins with “pc”

which translates in ServiceCenter to the following link query which is
executed against the vendor file:

device#”pc”

Note: Using advanced features in Link Maintenance, you can apply rules to
use a more complex link query for data selection. Refer to the section
entitled Using Advanced Link Editing Features for more information.

The Find option is available throughout ServiceCenter, subject to security
restrictions within the application in use. For example, the Database
Manager controls the Find option through the use of format control. In
Incident Management applications, the profile determines whether Find is
available for the current user and how it behaves.

When Find is used, the selected data records can be manipulated in
accordance with security restrictions. Changes made to these records DO
NOT modify the source record unless the user selects from an available list of
options which allow updated information to be posted to the specific
inventory record. For more information on posting, see the Posting chapter
in the Format Control topic and Display Options in the Display application
section.

Important: Remember, Find uses normal ServiceCenter data selection rules.
Therefore, links to key fields will perform much more efficiently
than links to non-keyed fields.

Fill Functionality

Using information in the link file, Fill locates information in another record
and copies it into the current record.
Fill Functionality 345

ServiceCenter
The link record for the incident file is used in Incident Management.

Figure 15-5: Find Feature

Find performed on incident
record opens record list of
devices beginning with pc

Select appropriate device by
logical.name, and open device
record for viewing or updating.
346 Chapter 15—Link Maintenance

System Tailoring, Volume 3
In the following example, Fill is used to populate fields in an incident
document based on the value of the field labeled Asset ID.

Rather than selecting the device record for display, fields in the device
(TARGET) file that have the same name as the fields in the problem
(SOURCE) file are projected into the source record.

In this way, fields on the source form are populated automatically with data
directly from the applicable device record, e.g., Asset ID (logical.name) on the
incident record is filled with the value of Asset (logical.name) from the device
record, the field labeled Type on the incident form is filled with the value of
Type from the device record, and the value for the field labeled Category is
copied from the device record to the incident record.

Through this transfer, the TARGET record is unchanged, but the SOURCE
record is modified to reflect the values of fields in the TARGET record.

The resulting modified SOURCE record is not written to the database until
the system is instructed to do so with some action (e.g., open or update the
problem).

The Fill option uses the value in the field where the cursor is positioned to
determine which link relationship to use. This example assumes that the
cursor was in the Asset ID (logical.name) input field when the Fill option was
selected.

Fill should be used when it is necessary to store information in the source
record so that it can be changed or used as a link to other information. If you
simply need to display the information in a format, use Virtual Join,
introduced in the following section and described in detail in Creating
Virtual Joins on page 373.

Virtual Joining Functionality

The Virtual Join function allows information from many files to be displayed
on a single form. Virtually joined information cannot be modified, but it can
be used to link with other files using Find and Fill. (The find and fill
applications have been replaced by the us.link application in release A9802
and later releases. See the section Us.link for more information.)
Virtual Joining Functionality 347

ServiceCenter
When specifying link information, there are special requirements for virtual
joins:

The TARGET Format/File Name value in the link record must contain a
file name, not a format name.

The target field must be a non-concatenated key in the target file.

Figure 15-6: Linked Source and Target Records
348 Chapter 15—Link Maintenance

System Tailoring, Volume 3
The target field must be the first instance of the key in the database
dictionary’s key array.

Source
Record

Target Record

Figure 15-7: Filled (Populated) Source Record
Virtual Joining Functionality 349

ServiceCenter
The target field must be a scalar field (non-array).

Only simple links can be executed using Virtual Join.

While the appearance of virtually joined information is the same as if it
existed in the record being displayed, the information is stored in one place
and simply displayed on demand to another. It also allows information from
many files to be displayed on a single screen.

Note: Virtual join can be used in any format except QBE list formats.
Virtually displayed information can be used as a source field to other
information using Find or Fill, but nested virtual joins are not
supported.

Us.link

This section describes the Universal Services- Link (us.link) application.

The us.link application replaces find, fill and fill.recurse for several reasons:

To take advantage of the current ServiceCenter environment in order to
speed up transactions.

To have a common rule base behind each of these applications.

To make the find/fill process easier to debug.

Changes to find, fill, and fill.recurse
The find, fill, and fill.recurse applications are now single panels calling the
us.link routine. No changes are necessary to existing code that calls one of
these routines.

us.link
The us.link application is responsible for selecting the correct records from
the correct file and then passing control to either us.find or us.fill.
350 Chapter 15—Link Maintenance

System Tailoring, Volume 3
Application hierarchy

Calling us.link
The us.link application can be called using the following parameters.

Note: An effort was made to keep the parameter names as familiar as
possible, but this was not always feasible since fill and fill.recurse use
different parameter names for the same fields.

The only required parameter for the use of us.link is the source record.

us.find.display

us.findus.fill

us.link

Parameter Name Description Default

record Source Record (required) None

name Field name to find from/link to Current field

string1 Format Name Current format

second.record Link Record (optional) None

prompt Action (“find” or “fill”) “find”

boolean1 Background flag False
Us.link 351

ServiceCenter
Access to $File / Dates
The $File variable can now be modified directly using the link expressions,
and changes will be saved back into the source record. Additionally, when
performing a fill on a date field, the system will first check to see if that date
field is in the link record. If it is, the link expressions will be performed rather
than just filling the current date and time. In this way it is possible to fill with
something other than tod() (such as date(tod()) or tod() + ‘7 00:00:00’).

Find from / fill to a $ variable
The us.link application makes it possible to perform a find from a field which
has a $ variable as an input, and to use fill to move information into a $
variable field. Using a variable as a source field is accomplished simply by
placing the variable name in the Source Field column of a link record as you
would place a standard field name. To fill to a specific variable, that variable
is placed on the source field(fill to/post from) column on the specific link
line.

Note: No changes to the posting routine have been made, therefore posting
does not allow use of $ variables at this time.

Find from / fill to a structured array
The us.link application makes it possible to perform a find from a field which
is part of a structured array, and to use fill to move information into that
specific element of the structured array. This can only be performed under
the following circumstances, however:

The field name to fill from/post to is part of the structured array.

The field name to fill from/post to is not used in any other structure of the
dbdict.

The name of the structure must be the same as the name of the array of
which it is a part.

To use find/fill on a structured array, it is necessary to set up the variable
$fill.structure in the expressions of the specific link line. $fill.structure is an
array of two elements. The first is the index of the field (that is used as the
source field) in the structure, and is of type number. The second is the name
of the structure, and is of type character.
352 Chapter 15—Link Maintenance

System Tailoring, Volume 3
When using the fill function on a structured array, only the specific line of
the structure being accessed can be modified. Also, the index number of the
field within the structure must be used instead of the actual field name. This
includes the source field.

Below is an example of filling the availability structured array of an SLA
record using the logical name column as the source. This link will fill the
logical.name field (index 1) with the logical name of a device, and the
calendar field (index 3) with the table.name of the device.

Figure 15-8: Link Record for Service Level Agreement Edit form (sla.edit)
Us.link 353

ServiceCenter
Variables used by us.link
The special variables used by us.link are the same as those used by the prior
applications unless noted.

logical.name
(index 1)

table.name
(index 3)

Figure 15-9: Link Line Structure (logical.name) Record

Variable Use

$fill.replace Governs whether or not a field that contains data should be
overwritten with new data (including NULL). Only used for the
project portion of a fill, not fields specified on the fill to/fill from
section of the link line.

$project.first Governs whether or not a project should be done before moving any
of the fields defined in the list of fill to/fill from fields.

$fill.exact Feature of the project panel that forces it to adhere strictly to data
types and index levels during the project.

$fill.recurse Determines whether you should move to the next entry in the link
record (perform a recursive fill).
354 Chapter 15—Link Maintenance

System Tailoring, Volume 3
Changes to $fill.display, $fill.display.add
In the us.link applications, the $fill.display functionality has been modified,
while new functionality has been added through $fill.display.add.

When using $fill.display, a user can modify the data being presented using
the standard rules applying to that database (these rules are defined in the
format control). Once the data is modified,

Press OK to save the record and use the new version of the record to
perform the fill function based on the associated link line.

Press Cancel to keep any updates performed by using the Save key, but
will not fill information back into the source record.

When $fill.display.add is set to true and the standard link query performed
by us.link returns no records, the user will be presented with the format
defined in the link line and may add a record (if the associated format
control allows it). Any information defined in the fill to/fill from fields will
be copied into this record.

Press the Add button to add the record while leaving the user on this
format. At this point the rules for $fill.display will be followed.

Press OK to add the record and perform the fill function back to the
source record using the newly added record.

$fill.skip Tells the application to skip the current entry and continue based
upon the value of $fill.recurse for that entry.

$fill.option.skip Enables the skip option to skip the current link entry and move on
when displaying the results of a recursive fill.

$fill.option.copy This option is no longer necessary when using us.link.

$fill.display Determines whether or not the record you are filling from should be
displayed before you copy data from it into your source record.

$fill.display.add Determines whether or not you may add a record if the current link
query returns no records.

$fill.search.format Specify a search screen when using fill by setting $fill.search.format
in a link expression. If this variable is set, and the field which you are
filling is NULL, the search screen will be displayed to the user. The
search created here continues the standard fill process.
Us.link 355

ServiceCenter
356 Chapter 15—Link Maintenance

CHAPTER

16
 Understanding Links
This chapter covers linking within ServiceCenter. The following material
demonstrates how to:

Access Link Definitions

Add a new link

Modify an existing link

Use advanced Link Editing features

Link dependencies within the Help Desk environment
Understanding Links 357

ServiceCenter
Accessing Links

1 From the administrator’s home menu, click the Utilities tab.

2 Click the Tools button.

3 Click the Link button. The Link file panel appears.

Fields on the Link File Format

Field Value

Name The name of the link record. If you got to
link format from Forms Design, then
ServiceCenter automatically defaults the
source filename to the one you specified
on the Forms Design screen.

System The System field is used to categorize link
records by ServiceCenter application. For
example, the link records beginning with
device are classified as PHD/ICM
(Inventory and Configuration
Management) links.

Description Enter a brief description of the link
(optional).

Source Field Name Enter the field name in the source file that
relates to a field in the target file.

 Format/File Name Enter the Target File name. The target file
contains the information the Source file
will access.

Target Field Name Enter the field name in the Target file that
relates to a field in the Source file.

Add Query If you enter a query or conditional
statement in this field, you are overriding
the standard link query. See Advanced
Link Editing Features on page 361.

Comments This field is optional. Peregrine
recommends entering comments for
future reference.
358 Chapter 16—Understanding Links

System Tailoring, Volume 3
Adding a New Link File
1 From the administrator’s home menu, click the Utilities tab.

2 Click the Tools button.

3 Click the Link button. The Link file panel appears.

4 Enter the name of the form or file and, if desired, a descriptive name or
phrase in the System field at the Link Manager prompt.

5 After entering the Form Name and System fields, select the New button from
the system tray, or the button displaying the blank page, to create the new link
record.

The record is displayed for editing. The link record appears without any
relationship definitions.

6 Enter the relationships in the appropriate columns

7 Click Save to add/update the new link record.

Testing a link
The locations format is used for this example:

1 From the System Administrators home menu, click the Toolkit tab.

2 Click the Database Manager button.

3 Enter location in the form field and Press Enter or click Search.
The location file appears.

4 In the Parent Location field, enter the letter P.

Click Find. A list of records appears. The system returns this particular list of
records because of the link definition for this file. The Location Full Name
for each these records starts with PRGN, which is why a capitol P returns the
list you see.

If we look at the Link file for location, we can see that the Parent field is linked
to the Location Full Name field.
Accessing Links 359

ServiceCenter
Note: Link records are case-sensitive, which means the case of the values
used to search must be the same as the values saved in the TARGET file
in order for the appropriate data to be retrieved, i.e. PRGN does not
equal prgn.

Modify an Existing Link

1 From the administrator’s home menu, click the Utilities tab.

2 Click the Tools button.

3 Click the Link button. The Link file panel appears.

4 Enter the name of a link record and click Search or press Enter.

If you press Enter without entering a value, select a link record from the
standard QBE.

When the link record appears, a number of options are available.

Options pull-down menu

Delete a Link

1 From the administrator’s home menu, click the Utilities tab.

2 Click the Tools button.

Option Value

Insert Line Opens a window to prompt for the number of lines to insert,
then inserts them above the cursor position.

Delete Line Opens a window to prompt for the number of lines to delete,
then deletes them beginning with the line the cursor is on.

Select Line Allows advanced link processing. See Advanced Link Editing
Features on page 361.

Check Field When the cursor is positioned on a Source Field Name or
Target Field Name, prompts for a file name and then checks
the database dictionary of the file to determine whether a field
of that name exists; if invalid, allows selection of a valid field.
360 Chapter 16—Understanding Links

System Tailoring, Volume 3
3 Click the Link button. The Link file panel appears.

4 Enter a link name, or press Enter at the Link Maintenance prompt to return
a list of all link records on your system.

5 After selecting the appropriate link record, use the Delete key in the system
tray.

Delete always prompts for confirmation.

6 Select OK on the confirmation prompt to complete the delete operation.

You are returned to the link record prompt screen, link.prompt.

Advanced Link Editing Features

Simple links define the relationship between a specific field in a source record
and a specific field in a target record. The Find and Fill options perform in a
straightforward manner: a link query is built based upon a search argument
which contains the value of a field in the source file and the name of a field in
the target file. These fields need to be unique key fields for simple linking.

ServiceCenter provides extended flexibility to define complex link
expressions. For example, you can:

Define a specific query that uses more than one field to form the link
query.

Specify the QBE format that should be used when the link query finds
more than one record.

Define a variable, rather than a specific name, to be used as the target file.

Manipulate the value of fields by using link expressions.

Specify that particular fields are copied from the target file to specific fields
in the source file during the Fill operation without a requirement for
identical field names.

Include multiple non-keyed fields on the link line structure of a keyed
field, enabling those fields to be copied to the source form along with the
data retrieved from the keyed field query.

Note: Advanced link features are not available when using Virtual Join.

Use the following steps to access Advanced Link Maintenance:

1 From the administrator’s home menu, click the Utilities tab.

2 Click the Tools button.
Advanced Link Editing Features 361

ServiceCenter
3 Click the Link button. The Link file panel appears.

4 Enter a link name, or press Enter at the Link Maintenance prompt to return
a list of all link records on your system.

5 Select the link to edit.

For example, select the locations link record.

6 Position the cursor on the line to be edited

7 Select Options -> Select Line from the menu bar.

Figure 16-1: locations Link Record
362 Chapter 16—Understanding Links

System Tailoring, Volume 3
The Source Field and Target Format/File Names are copied to the link
structure form.

New fields are available, and new option keys are enabled

Figure 16-2: Location Link Structure
Advanced Link Editing Features 363

ServiceCenter
Fields on the Link Structure Format

Field Value

Comment This field contains optional fields;
describes use of advanced link features.

Query This field contains a specific link query
that overrides the standard link query.

The general rule for specific link queries
is:

target field=source field in $File

For example: vendor=vendor in $File and
city=city in $File
The file variable $File (with a mandatory
capital F) is used for all references to the
source file in Fill and Find operations.

QBE Format Specify the name of the QBE format to use
if more than one record is selected in Find
or Fill. This field is optional. If you do not
specify a QBE format, the system will use
the default.

Expressions For example, you may want to modify the
target file name depending on a value in
the source record. In such a case, an
expression would set the value of the file
variable:

if type in $File=“terminal” then
$tfile=“workstation”
364 Chapter 16—Understanding Links

System Tailoring, Volume 3
Note: In Find and Fill operations, expressions are evaluated first, then the
link query is built and executed, and data is copied last (in the case of
Fill). The link records used in data conversions for PM and ICM, and
in building the probsummary record in PM, are controlled by a
different function.

Link Structure Options Menu
The Option pull-down menu keys are similar to those available in the
primary Link Maintenance screen.

Source Field (Fill To/Post From) This list of field names is used by the Fill
function as an alternate to project (which
copies only identically named fields). If
this list contains field names, then Fill will
copy the values contained in fields in the
corresponding Target Field (Fill From)
entries without respect to field name.
Although field names do not have to
match, there must be a one-to-one
correspondence between entries in the
Source Field array and the Target Field
array.

Target Field (Fill From/Post To) This list of field names is used by the Fill
function as an alternate to project (which
copies only identically named fields). If
this list contains field names, then Fill will
copy the values in these fields to fields in
the corresponding Source Field (Fill To)
entries without respect to field name.
Although field names do not have to
match, there must be a one-to-one
correspondence between entries in the
Target Field array and the Source Field
array.

Field Value
Advanced Link Editing Features 365

ServiceCenter
Note: Confirmation of changes to a line entry does not modify the link
record in the database; exiting from the link record will prompt for
confirmation, and it is this confirmation that updates the record in the
database.

Specifying a Link Query
If you want to control the search criteria used by Find and Fill, you can define
a specific link query.

There can be instances when the link is dependent on more than the simple
value of fields in the records. For example, links from an incident document
could be dependent on the device type. Link Maintenance allows
specification of expressions, which are evaluated by the Fill and Find
operations before the link query is built.

Option Value

Insert Line Opens a window to prompt for the
number of lines to insert, then inserts
them above the cursor position.

Delete Line Opens a window to prompt for the
number of lines to delete, then deletes
them beginning with the line the cursor is
on.

Check Field Name When the cursor is positioned on a Source
Field (Fill To) or Target Field (Fill From),
prompts for a file name and then checks
the database dictionary of the file to
determine whether a field of that name
exists; if invalid, allows selection of a valid
field.

Check Field Name When the cursor is positioned on a Source
Field (Fill To) or Target Field (Fill From),
prompts for a file name and then checks
the database dictionary of the file to
determine whether a field of that name
exists; if invalid, allows selection of a valid
field.
366 Chapter 16—Understanding Links

System Tailoring, Volume 3
Whenever the link relationship varies according to data in the source record,
using expressions and a variable for the target file is the most efficient method
for establishing a link.

Figure 16-3 on page 367 shows the expression that defines $query for this link
record. The first query in the figure states that if there is something in the
primary contact field, then the system will search for contact names that start
with what is in the field. If the field is blank, then the system will return a QBE
list of all names. Expressions are processed in the order they are placed on the
format.

Copying Fields by Name During Fill Operations

Normally, the Fill operation copies fields of the same name from the target
file to the source file using a ServiceCenter function called project.

Figure 16-3: Link Structure - primary contact field of the location link record
Copying Fields by Name During Fill Operations 367

ServiceCenter
For example, if you were to open an incident document and place the cursor
on the logical.name input field and then choose the Fill option, the system
would search the device file for a record with the same logical.name.The
system would then copy fields with the same name from the device file into
the incident document.

The incident document would contain information about the device that was
copied from like-named fields in the device record.

As long as the field names are the same, and the information being copied is
from an equal or higher level, the project function will perform normally.
When the field names are dissimilar, or if the information to be copied is
from structure fields to scalar fields, a different method must be used.

To copy information from structure fields to scalar fields:

1 Open the link record you want to work with

2 Place your cursor on the line containing the link

3 Click Options>Select line

4 Switch the fields by entering the structure field in Source Field (Fill To) and
the scalar field in Target Field (Fill From) copies the contents of.
368 Chapter 16—Understanding Links

System Tailoring, Volume 3
Scalar/NonScalar field links
A simple link cannot copy information from a non-scalar field (composed of
more than one data element of the same type, i.e. an array) to a scalar field
(composed of a single data element). For example, information from a
record in the incident file cannot be projected into a probsummary record.
Even though the field names are the same, the fields in the incident record are
not scalar fields, but rather exist in one of the three structures that make up
the problem database descriptor. In fact, the fully-qualified name of the
assignment field in the incident record is really header,assignment.

Figure 16-4: Link query setup for assignment field
Copying Fields by Name During Fill Operations 369

ServiceCenter
ServiceCenter can project the logical.name value in the incident file into the
incident record’s logical.name field. ServiceCenter cannot project the
incident file’s non-scalar middle,logical.name field into the scalar
logical.name field in the incident file. To copy non-scalar information to a
scalar field, the Fill operation copies each field using instructions in the link
record.

Using the link record for the problem.summary format, (Figure 16-5 on
page 370), we can see how Fill copies data on a field by field basis:

1 Place your cursor in the line that links number in the incident file to
header,number.

2 Click Options -> Select Line

Figure 16-5: Problem.summary Link Record
370 Chapter 16—Understanding Links

System Tailoring, Volume 3
Figure 16-6 on page 371 shows the fields listed in the Target Field (Fill From)
column will be copied from the incident record to the corresponding fields
in the probsummary record.

This method of copying information is also especially useful when you need
to copy only a few of the commonly named fields from one record to another.

Keeping Changes
There is no Update option when editing a link line entry. Rather, a copy of
the link line entry is made when it is selected, and that copy is compared to
the current line entry when you exit using Back, Close Application, Next
Entry or Previous Entry.

Figure 16-6: Link query setup for number field
Copying Fields by Name During Fill Operations 371

ServiceCenter
Remember that when a link line entry is modified, the change is not written
to the database until you exit from the link record and confirm the update
action.

Link Dependencies within the Help Desk

Two special link records are used within the Help Desk applications. They
perform the conversion of problem records to probsummary records and the
conversion of ServiceCenter inventory files to the entity and attribute files.

The build.inventory.files link record converts information in the various
ServiceCenter inventory files to the Inventory and Configuration
Management device file and their associated attribute files. It cannot be used
for any other purpose since the $file variable has special meaning in the
conversion application.

A second special link record, build.problem.summary, is used to copy
information from the problem record to the probsummary record whenever
the problem is updated. The $pfile variable is used in place of the normal $File
variable when building expressions, and the expressions are processed after
the fields are copied rather than before as in normal link processing.

Document Engine Master Link Record

For each object accessed through the document engine, a master link record
is combined with the form-dependent link record. The master link record is
valid for the entire file, and always has the same name as the Object/filename.
For example, if the filename is contacts, the master link record is the contacts
link record.
372 Chapter 16—Understanding Links

CHAPTER

17
 Virtual Joins
Virtual Joins allow you to display data fields from several different database
files on a single form. Virtual Joins do not allow data entry into the joined
fields; they only display information from other files into a format for
reference purposes.

A Virtual Join can be used on any format. Virtual Joins are established when
data from a record is displayed without the need to use the Find and Fill
function keys of the Link Utility. You can also use Virtual Joins in Report
Writer instead of secondary file queries through Format Control. (See the
Report Writer Guide for more information.)

Creating Virtual Joins

The following illustrates the steps involved in retrieving data from a file
called sales and displaying data in a form called orders.

The following sections will walk through building the forms and subformats
needed for the examples.

The formats and subformats will be built are:

sales

sales1 subformat

orders
Virtual Joins 373

ServiceCenter
The first form needed is the sales form with at least one record. The file in the
database associated with this format is the target file from which data will be
retrieved to display in the order file.

Subformats allow the creation of multi-part forms, where sections of the
form can be reproduced in other forms. These modular forms enable the
simultaneous display of data from numerous database records via Virtual
Joins. Subformats are also useful in constructing multiple views of the same
subformat data (e.g., Incident Management Views).

Note: code must be a single unique key (not concatenated) in the target file.
Also, the source and target fields must be scalar (non-array).

Understanding Subformats
Subformats are constructed in the same way as standard formats, with the
exception that they are created to appear within another, larger, format.
Subformats can be micro versions of larger forms, containing specific key
information that is valuable for display on other formats (e.g., inventory data
subformats which appear on incident ticket formats).

A subformat can be used on any format as long as it is properly placed using
Forms Designer. Data from a record can be displayed in a subformat
automatically or through the use of the Find and Fill function keys of the
Link Utility.

How to Create a Subformat
The following screens illustrate the steps involved in creating a format called
sales to enter data into a file called sales, and a subformat called sales1, which
can also be used to enter and retrieve data from the sales file. The field names
within the two forms will be the same, because they are referencing the same
data (file), but may be organized to look different. The subformat will be
used to create a virtual join on another form.

The following steps will lead you through the construction of the form and
file called sales, the subformat sales1, and the orders format.
374 Chapter 17—Virtual Joins

System Tailoring, Volume 3
The first format, sales, will be used to input sales personnel data, which will
be retrieved and displayed by the subformat, sales1, wherever it appears or is
virtually joined on other formats.

Figure 17-1: Sales format

Figure 17-2: Sales1 subformat
Creating Virtual Joins 375

ServiceCenter
Building the sales Form
1 Access Forms Designer.

2 Enter sales in the Form field.

3 Click New.

4 Click Design to open the designer tool.

Decline the Wizard tool when prompted.

5 Start constructing the main format by adding a title across the top, e.g., Sales
Personnel Information, using the Label tool.

6 Create two tabs by selecting the Notebook button.

7 Name the front tab Name/Code and the back tab Manager/Commission.

8 Add a textbox and label to the Name/Code tab.

a Place a label called Sales Code.

b Place a textbox next to the label with the input value code.

9 Add a textbox and label to the Name/Code tab.

a Place a label called Seller Name

b Place a textbox next to the label with the input value name.

10 Add a Combo Box and label to the Name/Code tab.

a Place a label called Location.

b Place a Combo Box next to the label with the input value location.

c In the Properties box, add a list of at least four city names in both the
Displaylist and Valuelist fields.

11 Click on the Manager/Commission tab.

12 Add a textbox and label to the Manager/Commission tab.

a Place a label called Manager.

b Place a textbox next to the label with the input value manager.

13 Add a textbox and label to the Manager/Commission tab.

a Place a label called Sales Commission %.

b Place a textbox next to the label with the input value commission.
376 Chapter 17—Virtual Joins

System Tailoring, Volume 3
14 Click OK to confirm the new form and OK again to exit the Forms Designer
and save your new form.

The main form sales is now complete and should appear as in Figure 17-1 on
page 375.

Now you must create a Database Dictionary file so data can be entered
through the form and recorded to the database.

Figure 17-3: field settings on the Sales form
Creating Virtual Joins 377

ServiceCenter
Creating the sales File
Return to Forms Designer for the following procedures.

1 Pull down the Options menu and select Create File.

2 Select OK at the prompt to accept the default name for the file, sales.

This will create a Database Dictionary record and file, which will become the
target file for your subformat when it appears on other forms.

3 The Database Dictionary file is generated automatically, with the exception
of the no nulls key for the location field.

4 To add the location key, click the next empty slot on the Keys tab. (See
Figure 17-5 on page 379.)

5 Click New.

Figure 17-4: Creating the sales Database Dictionary
378 Chapter 17—Virtual Joins

System Tailoring, Volume 3
6 Enter location and select no nulls for the key type.

7 Click Add.

8 Click OK, to confirm the addition and save the Database Dictionary entry.

9 Click OK to regenerate the file.

The main sales data form and file are now complete.

Creating the Sales QBE
Now create a QBE list for the Sales format.

To create a QBE list:

1 Open the Forms Design utility

2 Enter sales.qbe in the Form field, and click New. Select No at the Forms
Wizard prompt.

Figure 17-5: Database Dictionary Record
Creating Virtual Joins 379

ServiceCenter
3 Draw a table on the design space

4 Enter Code and Location in the Columns field of the Table properties
window. These are the two dbdict keys for the sales file.

5 Select the Code column and enter code in the input field.

6 Select the Location column and enter location in the input field.

7 Click OK to finish.

Adding Data to the sales File
Now you need to add a few sample records to test the form and provide
information for the subformat, which you create in the next section, to
retrieve.

To add data to the sales file:

1 Open the Forms Designer.

Figure 17-6: Creating the sales.qbe form
380 Chapter 17—Virtual Joins

System Tailoring, Volume 3
2 Enter sales in the Form field and press Enter.

3 Click the Options menu and select Database Manager.

4 Enter at least two new sales personnel records. Make sure to fill in the fields
on both tabs.

5 Click OK to return to Forms Designer after you finish adding the data
records.

Creating the sales1 Subformat
1 Return to Forms Designer and the sales form.

2 Click the Options menu and select Copy/Rename.

3 Make a copy of the sales form, named sales1.

4 Click OK to confirm the creation of the duplicate form.

5 Cut both the Seller Name label and field and the Sales Commission % label
and field from the notebook tabs and paste them somewhere on the form.

6 Remove everything else from the form. (title, and the tabs structure and all
fields (except Seller Name and Sales Commission %)

7 You should be left with two fields and two labels, Seller name and Seller
Commission.

8 Click OK to confirm changes to sales1.

Figure 17-7: Sample sales data record
Creating Virtual Joins 381

ServiceCenter
The subformat is now completed and, since it is a copied and modified
version of the original form (sales), it is already associated with the sales
dbdict file.

To verify that the sales1 form can bring up sales personnel records:

1 Open Database Manager.

2 Open the Sales1 form.

3 Press Search and select a record from the QBE list. (If a list does not appear,
return to the previous steps and check to make sure you have satisfied each
step.)

The first format, sales, will be used to input sales personnel data, which will
be retrieved through the subformat, sales1, virtually joined in the orders form.

Creating the Orders form
Design the form to look similar to Figure 17-8 on page 383.

To create the format and file called orders:

1 Open Forms Designer.

2 Enter the format name orders.

3 Press Enter or the New button.

4 If you have another form named orders, return to the Forms Designer
prompt and rename this new form. Select No at the Forms Wizard prompt.
382 Chapter 17—Virtual Joins

System Tailoring, Volume 3
5 Select the Frame tool and draw a frame on the screen for the Customer Order
fields. Add fields and label the form in a manner similar to the example in
Figure 17-8 on page 383. The inputs for the text box fields are:

customer.name

contact

phone.number

order.amount.

Figure 17-8: Designing the Order Form
Creating Virtual Joins 383

ServiceCenter
Building The Virtual Join Into The Form
1 Open the orders form (created in the previous section) in the Forms

Designer utility.

2 Select the Frame tool and create a frame on the screen where you want the
seller data to appear. Give it the caption/title Seller Data.

3 Select the Label tool and create a label reading Seller Code.

4 Select the Fill box tool and create a fill-able input field. This will allow you to
choose from a list of seller codes.

In the Properties box, enter code in the input value and 9 (fill) in the
ButtonID field, then click Y to confirm the addition.

5 Press the OK button to save changes to the form.

Subformat Placement
1 Select the Subformat tool.

2 Position the cursor on the screen where you want to begin your virtual join.

3 Create a square where you want the virtually joined subformat to appear.
384 Chapter 17—Virtual Joins

System Tailoring, Volume 3
4 In the Properties box for the subformat, enter code in the Input field.

The input field value (code) is the same as the previous input field value
because a link needs to be established with the target file. The Virtual Join
tool uses the link with the code key on the sales file to pull in the information
requested by the sales1 form, namely values for the name and commission
fields.

5 Enter sales1 in the Format field to indicate which form should appear in the
subformat area.

6 Select Yes in the Virtual Join field of the Properties box to activate the virtual
join functions on the subformat.

7 Click the OK button to save changes to the orders form.

Note: The completed form will appear as in Figure 17-10 on page 386 while
you are still in Forms Designer. You cannot see the subformat at this
point. The subformat data fields will not appear until you have entered
data through the Database Manager.

Figure 17-9: Adding the Subformat
Creating Virtual Joins 385

ServiceCenter
8 From the orders format, pull down the Options menu.

9 Select Create File. The Database Dictionary Utility opens.

10 Select OK to create the orders file.

Figure 17-10: Order form with Subformat included

Note you cannot see the
Virtual Join until you
add data.
386 Chapter 17—Virtual Joins

System Tailoring, Volume 3
11 In the orders file, make sure there is a line for the code field at the bottom of

the list.

If there is not, click on the New button and create a new character field called
code in the main structure.

Change the phone.number Type to character, if necessary.

12 Click OK to save the changes.

13 Click OK to leave the Database Dictionary file and return to Forms Designer.

Figure 17-11: orders file with code field included

Note the phone.number
field is a character type
field.
Creating Virtual Joins 387

ServiceCenter
Building the Link
1 Return to the Forms Designer Utility.

2 Type orders in the Form field and click Search or press Enter.
The orders form appears.

3 Click Options and select Link. The link record for the orders file appears.

4 Create a link for the code field. Link the (Seller Code) code field on the order
file to the (Seller Code) code field on the sales file.

5 Click Save.

6 Click Back to exit the link record, returning you to the Forms Designer.

7 Once back in the Forms Design Utility, click Options.

8 Select Database Manager.

9 You could also just open the orders format in the Database Manager.

Figure 17-12: Orders file link record
388 Chapter 17—Virtual Joins

System Tailoring, Volume 3
Link Record Field Definitions
The fields for this format are:

Important: Virtual Join ignores the query line of a link, returning all
information that matches the field value indicated for the query.
For instance, with a virtual join you cannot display only open
incidents and those closed in the past seven days for a given
location, where that location matches the location of the current
caller. Rather, all records are displayed for the location.

Using the Virtual Join
1 Create a new orders record using the orders form.

Enter the name of a customer in the Customer Name field.

Enter a contact for that customer in the Contact field.

Enter a number for the Phone field.

Enter any number for the Order Amount value.

2 In the Seller Code field, select the ellipsis (...) button to bring up a QBE list
of seller codes.

3 From this list select a valid seller code by clicking on it.

4 Press the Enter key.

5 Click the Add button to save the record.

The new orders record will appear with the sales file data virtually joined in
the subformat at the bottom.

Name ServiceCenter automatically defaults the source filename to
the one you specified on the previous screen.

Description This field is optional. Enter a description of the link, if desired.

Source Field Name Enter the field name in the source file that relates to a field in
the target file.

Format/File Name Enter the target file name.

Target Field Name Enter the field name in the target file that relates to a field in
the source file.
Creating Virtual Joins 389

ServiceCenter
The Seller name and commission fields are not stored with the record in the
order file, but are only referenced, and are non-editable. To make changes or
updates to the seller data, use the sales form.

Note: If you delete this record, Seller name and (Seller) commission will not
be deleted because they are stored in the sales file.

Once the record is saved, you will see virtual join information whenever the
record is selected, added, or updated.

Figure 17-13: Orders form with Virtual Join data
390 Chapter 17—Virtual Joins

Index
Symbols
$File 352, 372
$file 372
$pfile 372

A
agent records

stored queries 43
alerts 31–34

calendars 33
clocks 32
expressions 33
notifications 34

applications
fill function 345
fill.recurse 350
find function 344
us.link 344, 347–355

assignment groups 27–29, ??–29
audit utility, See Development Audit Utility

B
breakpoints 328–329

C
CallPath 169
capability words 30

stored queries 45, 47–54
query.stored 50
query.stored.mod 51–53
query.window 47–49

QueryAdmin 54
categories 23–27

accessing records 23–24
workflow 26

CenterPoint Web site 14
Change Management

confirming updates 371
scripting 64

charts
running stored queries 41, 43

client
debugging parameters 330

clocks 195–203
accessing 203
alert 32
defined 195
starting and stopping

by editor tracking 201
by Format Control 201
by RAD 203
by status changes 198–200

command line parameters 330
copying

fields 367
counter

sequential number setup 58
customer support 13

D
Data Policy 181–182

revisions 183–184
Index 391

ServiceCenter
data types
compound 208

array 209
structure 210

primitive 206
boolean 208
character 207
date/time 207
number 207

Database Dictionary
Data Policy 181–182

DDE 173
DDE (Dynamic Data Exchange) 157

client 169–??, 174
advise

FrameRestore option 172

structure support option 174
initiate 171

server 158–166
executes 165
pokes 165
requests 165
SetFocus 165
system events 158–163
transact 165

system events listed 159
DDE Script panel 167
deadline alert

clock 31
debugging

command line parameters 330
RAD debugger 325–330

accessing 325
commands 327–330

decrement
sequential number 59

Development Audit Utility
accessing 142
audit history 142–144

fields 144
enabling/disabling auditing 142
introduction 141
purging records 146
unloading a change 145

display application
displayoption record

executing scripts with 82–83
displayoptions

scripting 75
displayscreen record

scripting 74
screen ID

scripting 83
display objects

running stored queries 41–43
displayscreen record 69
document enginer

and master link records 372

E
education services 15
Excel

exporting to 157
expert search 45
expressions 223

F
fdisp command panel

use of 212
fields

Field Name (From/Source) 358
Field Name (To/Target)) 358
Format/File Name (To/Target) 358
link file 358
logical name 340
non-scaler 369
SOURCE 347
Source Field (Fill To) 365
TARGET 347
Target Field (Fill From) 365

file/record
defined 211

fill function 341, 342, 345, 361
how it works 345
link query 337
scripting 74–76

fill.recurse 350
find function 339, 341, 344, 361

how it works 344
392 Index

System Tailoring, Volume 3
link query 337
Format Control 63

executing a script 83–84
scripting 70, 71, 74

forms 23–27
naming conventions 27
workflow 26

Forms Designer
fill boxes 74–76
scripting 74–76

functions
detailed reference 235–324

axis 235
cleanup 236
contents 236
copyright 237
currec 237
current device 237
current.format 238
current.screen 238
current.scroll 238
current.window 239
cursor.column 240
cursor.field.contents 240
cursor.field.name 241
cursor.field.name.set 242
cursor.field.readonly 242
cursor.filename 243
cursor.line 243
cursor.window 243
date 244
day 244
dayofweek 245
dayofyear 245
delete 245
denull 246
descriptor 246
evaluate 247
exists 247
fduplicate 248
file.position 249
filename 248
filesize 250
filesizes 250
fillchar 251

fixed.key 251
frestore 252
genout 252
get.base.form.name 253
get.dateformat 254
get.timezoneoffset 254
gui 256
index 256
insert 257
iscurrent 259
lng 259
locks 259
logoff 260
logon 261
mandant 261
max 262
messages 262
min 264
modtime 265
month 265
null 266
nullsub 266
operator 267
option 267
parse 268
perf 268
pfdesc 269
pfmap 269
printer 270
priority 270
process 271
prof 272
recordcopy 273
recordtostring 273
replicate 274
round 275
rtecall("alalnum") 276
rtecall("alnum") 277
rtecall("alpha") 278
rtecall("counter") 279
rtecall("datemake") 279
rtecall("escstr") 281
rtecall("filecopy") 283
rtecall("fileinit") 284
rtecall("FILLDATE") 282
Index 393

ServiceCenter
rtecall("getnumber") 284
rtecall("getrecord") 286
rtecall("getunique") 286
rtecall("log") 287
rtecall("notypecheck") 289
rtecall("passchange") 290
rtecall("policycheck") 291
rtecall("qbeform") 291
rtecall("radhistory") 292
rtecall("recdupl") 293
rtecall("rfirst") 295
rtecall("rgoto") 295
rtecall("rid") 296
rtecall("sort") 297
rtecall("transtart") 298
rtecall("transtop") 299
rtecall("trigger") 300
same 301
scmsg 303
set.timezone 304
setsort 304
share 304
shutdown 305
str 305
stradj 305
strchrcp 306
strchrin 307
strclpc 307
strclpr 308
strcpy 308
strdel 309
strins 310
strpadl 310
strpadr 311
strrep 312
strtrml 312
strtrmr 313
substr 313
sysinfo.get 314
time 317
tod 318
tolower 318
toupper 319
translate 319
trunc 320

type 320
val 321
variable.send 323
version 323
year 324

locating, procedures for 225–227
processing statements 225
project 367
quick reference 227–234

G
global variables 217

I
Incident Management

executing scripts from 81–82
incident tickets 20, 28

alerts 31–34
copying non-scalar data to scalar fields

370–371
scalar/non-scalar field links 369
stored queries 85

K
keys

stored queries 48

L
link maintenance

data relationships 337
us.link 350–355

link query 366–367
link records

field descriptions 358
fields

Field Name (From/Source) 358
Field Name (To/Target) 358
Format/File Name (To/Target) 358
SOURCE 347
Source Field (Fill To) 365
TARGET 347

link structure 363
options

Check Field 360
Check Field Name 366
394 Index

System Tailoring, Volume 3
Delete Line 360, 366
Insert Line 360, 366
Select Line 360

Target Field (Fill From) 365
using to copy non-scalar data to scalar fields

370–371
links 337

advanced editing features 361
build.problem.summary 372
dependencies 372
how to add 359
how to delete 360
how to modify 360
IR Expert 339
link query 337
non-scaler 369
problem file 18
probsummary file 18–20
scaler 369
scripting 74
select line option 19–20

literals
booleans 216
character strings 214
forming 213
numbers 215
times 215

local variables 217
scripting 74

M
macros

conditions 129
creating 134–135
macro editor

accessing records 130–133
field descriptions 137

macro list fields 136
predefined in ServiceCenter 138–140

marquees
running stored queries 43

Microsoft
Excel 158

N
non-scaler field links 369

O
operator records 29
operators (symbols)

stored queries 49
operators, in statements

arithmetic 218
logical 219
relational 221
special 222
string 219

options
Check Field 360
Check Field Name 366
Delete Line 360, 366
Insert Line 360, 366
Select Line 360, 370

Options menu
expert search 45

P
parameters

command line 330
debugging 330

parent variables 217
PassFocus option 173
Peregrine Systems

Corporate headquarters 14
customer support 13
Worldwide Contact Information 14

plug-in
creating 101

Plug-In Functions 98
plug-ins 97

installing 99
PMStatus fields 200
prefix, sequential number 60
previous command panel 212
probsummary file 17

links 18–20
searching 21–22

profile groups 30
profile records 30
Index 395

ServiceCenter
profiles
Incident Management

executing scripts from 81–82
selecting 31

pseudo fields 324
purging

revisions 156

Q
QBE lists

Alternate column names 192
queries

link query 337
stored

agent records 43
capability words 45, 47–54
chart buttons 41, 43
creating 39
defined 35
display objects 41–43
example 37
expert search 45
field definitions 36–38
keys 48
marquees 43
operators 49
query groups 38
running 40–46
scripts 44
using variables 37

query groups
defining in operator record 40
stored queries 38

R
RAD

dde panel
advise 174

FrameRestore option 172

structure support option 174
initiate 171

debugger 325–330
accessing 325
commands 327–330

RTM trace parameter 330

scripting 64
tracing command 327–328

reserved words 213
revision control

creating a baseline 151
creating revisions 150–152
introduction 149
purging revisions 156
reverting to previous revision 154
revisions panel 153–156

field definitions 153–154
searching for 154–155
single revisions 152

revisions
Data Policy 183–184

rinit command panel 211
RTM trace parameters 330

S
scaler fields

links 369
scripting 63

accessing
Database Manager 67
menu button 67

bypass condition option 69
creating a script

creating forms 74–76
diagraming the flow 71–73
first panel 77
last panel 80
script definitions 77–80

deleting a script 89–90
displayoptions 75
displayscreen record 69
displayscreen records 74
executing a script 80–88

displayoption 82–83
Format Control 83–84
Incident Management 81–82
stored queries 84–88

fill boxes 74–76
Format Control 70, 71, 74
links 74
local variables 74
396 Index

System Tailoring, Volume 3
processing flow 63, 71
reports 90–95

script detail 94
script flow 93
script tree 95

running stored queries 35, 44
screen ID 83
script definition fields 68–70
script flow 65–66
skip display option 69
uses 63

security
capability words 30
profile groups 30
selecting profiles 31
user profiles 30
users 29

select command panel 212
sequential numbering

accessing records 56
counter setup 58
creating a record 58
decrement setup 59
deleting a record 61
fields 57
file defined 55
prefix 60
suffix 60
updating a record 61

statements, assignment
FOR 224
IF 224
WHILE 224

stored queries
agent records 43
capability words 45, 47–54
chart buttons 41, 43
creating 39
defined 35
display objects 41–43
example 37
executing a script 84–88
executing from an incident ticket 85
expert search 45
field definitions 36–38

keys 48
marquees 43
operators 49
query groups 38
running 40–46
scripts 44
variables 37

suffix, sequential number 60
system events 158

accessing records 175–176
architecture 176–179
editing in pmtapi file 160–162
included in standard system 159–168

editable 160–162
hardcoded 159–160

SystemEvents file 175–176
used with DDE 158–163

T
technical support 13
thread variables 217
tracing, RAD flow 327–328
training services 15

U
us.link 344, 347–355
users

operators records 29
profile records 30

V
variables

$File 352, 372
$file 372
$pfile 372
forming 216
global 329
local 329
parent 329
using 216
using in stored queries 37
variable pools 217

virtual join 341, 342, 347
Index 397

ServiceCenter
W
Wizards

creating 109
398 Index

May 28, 2003

	Contents
	Getting Started
	Tailoring ServiceCenter
	Using the System Tailoring Guides
	Knowledge Requirements
	Examples
	Contacting Customer Support
	Peregrine’s CenterPoint Web Site
	Corporate Headquarters
	North America and South America
	Europe, Asia/Pacific, Africa

	Contacting Education Services

	Incident Management Structure
	Problem and Probsummary Records
	Before an update
	After an update
	Linking the problem and probsummary files
	Searching the probsummary file

	Categories and Forms
	Formats
	Workflow
	Form naming conventions

	Assignment Groups
	Example

	Security Model
	Users
	Profiles
	Profile groups
	Capability words
	How the system selects a profile

	Alerts
	Alerts & calendars
	Alert expressions
	Alert notifications

	Stored Queries
	Accessing Stored Queries
	Stored Query Maintenance Form
	Fields

	Creating Stored Queries
	Running Stored Queries
	Display objects
	Scripts
	Menu option searches

	Capability Words
	query.window
	query.stored
	query.stored.mod
	QueryAdmin

	Sequential Number Setup
	Accessing the Sequential Number File
	Sequential Number Fields

	Creating a Sequential Number Record
	Setup a simple number counter
	Using decrement in sequential numbers
	Using Prefix and Suffix in sequential numbers

	Updating a Sequential Number Record
	Deleting a Sequential Number Record

	Scripting
	Script Flow
	Accessing Scripting
	Menu button
	Database Manager

	Processing Flow
	Creating a Script
	Diagraming the script flow
	Creating the forms
	Defining the scripts
	Executing the script

	Deleting a Script
	Script Reports
	Script flow
	Script detail
	Script tree

	Plug-ins
	Plug-In Platform Support
	Plug-In Functions
	Installing a Plug-In
	Calling a Plug-In from RAD
	Operands
	Creating a Plug-In
	Macro Definitions

	The Wizard Creation Tool
	Accessing the Wizard Creation Tool
	Creating a Wizard
	Calling a Wizard

	Field Definitions
	Sample Wizard: Add New Device

	Macro Editor
	Macro conditions
	Accessing Macro Records
	Creating a Macros
	Definitions for Macro Forms
	Macro list form
	Macro editor

	Macros Provided with ServiceCenter

	Development Audit Utility
	Development Auditor Menu and Functions
	Turn Auditing On/Off
	View Audit History
	Unload an Audit Delta
	Purge Audit Records

	Revision Control
	Creating Revisions
	Create a baseline revision
	Create a single revision

	The Revisions panel
	Fields on the Revisions Panel
	Options Menu
	Reverting to a Previous Revision
	Searching for revisions
	Purging Revisions

	DDE Support
	DDE Server
	Implementation—System Events

	Events in the Standard System
	Hardcoded events
	Editable events
	Example
	Usage notes
	Requests and pokes
	Executes
	Example
	The DDE Script panel

	DDE Client
	The Process panel
	The DDE RAD panel
	Frame Restore option
	PassFocus Option
	Structure support option

	SystemEvents File
	Accessing records

	Architecture

	Data Policy
	Accessing Data Policy
	Data Policy Expressions
	Data Policy and the Object record
	Data Policy and Revisions
	Fields on the Data Policy Form
	Engine Specifications Tab
	IR Specifications tab
	SC Manage tab

	Clocks
	What is a Clock?
	Starting and stopping clocks

	System Language
	Data Types Available in ServiceCenter
	Primitive Data Types
	Compound Data Types

	File/Record
	Reserved Words
	Rules for Forming Literals
	Character Strings
	Numbers
	Times
	Booleans

	Rules for Forming Variables
	Using Variables
	Variable Pools

	Using Operators
	Arithmetic Operators
	String Operators
	Logical Operators
	Relational Operators
	Special Operators

	Using Expressions and Statements
	Assignment Statements
	FOR Statements
	IF Statements
	WHILE Statements

	RAD Functions
	Processing Statements
	Locating Functions
	Quick Reference List
	Function Definitions

	Pseudo Fields
	Month
	Name

	Debugging RAD Flows
	RAD Debugger
	Command Line Parameters

	Default Variables in ServiceCenter
	Link Maintenance
	Data Relationships and the Link File
	Multiple line links
	Find, Fill and Virtual Join

	Find Functionality
	Fill Functionality
	Virtual Joining Functionality
	Us.link
	Changes to find, fill, and fill.recurse
	us.link
	Calling us.link
	Access to $File / Dates
	Find from / fill to a $ variable
	Find from / fill to a structured array
	Variables used by us.link
	Changes to $fill.display, $fill.display.add

	Understanding Links
	Accessing Links
	Fields on the Link File Format
	Adding a New Link File
	Testing a link

	Modify an Existing Link
	Options pull-down menu

	Delete a Link
	Advanced Link Editing Features
	Fields on the Link Structure Format
	Link Structure Options Menu
	Specifying a Link Query

	Copying Fields by Name During Fill Operations
	Scalar/NonScalar field links
	Keeping Changes

	Link Dependencies within the Help Desk
	Document Engine Master Link Record

	Virtual Joins
	Creating Virtual Joins
	Understanding Subformats
	How to Create a Subformat
	Building the sales Form
	Creating the sales File
	Creating the Sales QBE
	Adding Data to the sales File
	Creating the sales1 Subformat
	Creating the Orders form
	Building The Virtual Join Into The Form
	Building the Link
	Link Record Field Definitions
	Using the Virtual Join

	Index

