
Peregrine

PART NO: PDI-7.2.0-ENG-010
Desktop Inventory
Plug-in Interface Guide
For use with Desktop Inventory 7.2.0
06-00287

Copyright © 2003 Peregrine Systems, Inc. or its subsidiaries. All rights reserved.

Information contained in this document is proprietary to Peregrine Systems, Incorporated, and may be
used or disclosed only with written permission from Peregrine Systems, Inc. This book, or any part thereof,
may not be reproduced without the prior written permission of Peregrine Systems, Inc. This document
refers to numerous products by their trade names. In most, if not all, cases these designations are claimed
as Trademarks or Registered Trademarks by their respective companies.

Peregrine Systems® and Desktop Inventory® are registered trademark of Peregrine Systems, Inc. or its
subsidiaries.

This document and the related software described in this manual are supplied under license or
nondisclosure agreement and may be used or copied only in accordance with the terms of the agreement.
The information in this document is subject to change without notice and does not represent a
commitment on the part of Peregrine Systems, Inc. Contact Peregrine Systems, Inc., Customer Support to
verify the date of the latest version of this document.

The names of companies and individuals used in the sample database and in examples in the manuals are
fictitious and are intended to illustrate the use of the software. Any resemblance to actual companies or
individuals, whether past or present, is purely coincidental.

If you have comments or suggestions about this documentation, please contact Peregrine Systems, Inc.,
Customer Support.

This edition applies to version 7.2.0 of the licensed program.
Peregrine Systems, Inc.
Worldwide Corporate Headquarters
3611 Valley Centre Drive San Diego, CA 92130
Tel 800.638.5231 or 858.481.5000
Fax 858.481.1751
www.peregrine.com

About this Guide
Structure of the guide
This guide consists of two chapters:

! The Overview chapter is intended for anyone with a desire to know
about the capabilities of the Desktop Inventory Scanner Plug-in
Interface.

! The Technical chapter is intended for IT staff that require intimate
knowledge of the interface in order to implement customized plug-
ins.

Contacting Peregrine Systems
For technical support on this or any other product from Peregrine
Systems, Inc., refer to the Customer Support Web site at:

http://support.peregrine.com
About this Guide ! 3

Desktop Inventory
4 " About this Guide

Plug-in Interface
Guide
 Table of Contents
About this Guide . 3
Structure of the guide . 3

Contacting Peregrine Systems. 3

Chapter 1 Overview . 7

Implementation and distribution . 8

Sample distribution . 9

Using the plug in . 10

Files included with this SDK . 10

Configuration file format . 12

Options . 13

API Overview. . 15

Chapter 2 Technical Reference . 17

Returning API version information 17

Scanner Generator Interface – Configuration DLL 17

Collecting information on a file by file basis (Data File Recognition) 19

Scanner Interface – Data File Recognition 19

Analysis Interface – Data File Recognition 21

Collecting information from the new Archive formats 23
Contents ! 5

Desktop Inventory
6 " Contents

CHAPTER

1
 Overview
The Desktop Inventory Scanners provide an interface for “plug-in” modules.
Organizations that require additional information to be collected during the
scan, or wish to develop plug-ins for reselling, can use the information in this
document to assist in writing a plug-in module.

The current plug-in interface allows two different kinds of data to be
collected:

! Using the Data File Recognition method, information can be collected
from each file the scanner accesses.

! Using the Archive Processing method, a plug-in can implement scanning of
a new archive type, recognize a file as an archive, and send data (filename,
size, CRC, etc.) on each file in the archive back to the scanner.

The possibilities for collecting data for individual files on a machine are
limited only by imagination – with the appropriate plug-in, it would be
possible to extract keywords from documents, highlight Year 2000 problems
in spreadsheets or databases, scan for possible virus infections, etc.

The archive processing can be used to implement support for one or more of
the less common archive types not natively supported by the Scanners, such
as SQZ. In addition, it would be possible to implement support for disk
image files, which also can be considered archive files as they are files that
themselves contain directories and files. With the right code available, it is
also feasible to use this feature to scan message databases or other file stores
using this feature.
Overview ! 7

Desktop Inventory
Implementation and distribution

A plug-in consists of a number of dynamic link libraries, along with a
configuration file that identifies the plug-in and the files that it comprises.
Due to the fact that DOS has no support for DLLs, the DOS scanners do not
support plug-ins.

A Scanner plug-in is made up of at least one but optionally several executable
components:

! Scanner Generator DLL:

This DLL is required if the plug-in needs advanced configuration not
covered using the standard plug-in options of the Scanner Generator. If
present, the DLL should display a dialog box displaying relevant options,
initialize its controls from data obtained from the Scanner Generator, and
send the modified configuration information back to the Scanner
Generator.

! Scanner DLLs:

This is the core of the plug-in, which implements the information
gathering functionality of the plug-in. The DLL is initialized at scan-time
with the configuration obtained from the Scanner Generator, and is then
passed a reference to each file that the scanner examines. The DLL is free
to do its own examination of the file, is allowed full read access to the file
through scanner interface functions, and can store any information (or
none) that it gathers into the generated fingerprint.
For full platform-support, separate scanner DLLs for Win32, Win16 and
OS/2 should be produced.

! Analysis DLL:

Provides an interface to the plug-in data for those Desktop Inventory tools
parsing the scan result. The interface allows the plug-in to structure the
data efficiently, while allowing the data to be displayed and queried like
any other data collected by the Scanners. An analysis DLL is not required
for plug-ins using the Archive Recognition method.

All of the DLLs in question, except for the Win16 and OS/2 Scanner DLLs,
must be Win32 PE DLLs.
8 " Overview

Plug-in Interface Guide
Each of the files must be given a file name of the format “pgNNNTTT.EXT”,
where

! NNN is a unique plug-in ID, which is a number in the range [100 <= ID
<= 999]. The plug-in ID must be unique across all installed plug-ins; to
obtain a unique ID for a new plug-in, please contact Peregrine Systems,
Inc. Technical Support. All files that make up the plug-in must have the
same ID in the filename.

Note: Compiled DLL files have an internally hard-coded library name,
which is used by the operating system to determine the module handle of
the DLL. The actual name of the DLL must be the same as its internal
name.

Plug-in IDs below 100 are reserved for the use of Peregrine Systems, Inc.

! TTT is the type of the file; any names can be used. The convention used
for Desktop Inventory plug-ins is:

! cfg: Indicates that this is a Scanner Generator DLL.

! w16, w32 or os2: Identifies that this is a Scanner DLL, and further
identifies the platform that this DLL is intended for. The platforms are
Win32, Win16 and OS/2 respectively.

! anl: Indicates that this is an Analysis DLL.

! ini: Indicates that this is a plug-in configuration file.

! EXT is the filename extension.

To package a plug-in such that the Scanner Generator will be able to install it
using the Install button of the plug-in configuration page, compress all of the
files comprising the plug-in into a ZIP format archive with an extension of
“.ZIP”.

Sample distribution
A plug-in with a unique plug-in ID of 218, implementing a plug-in for
collecting extra file information when using the Win32 and OS/2 scanners,
and requires special setup in the Scanner Generator would consist of the
following files:

! pg218cfg.dll Scanner Generator configuration DLL

! pg218w32.dll Scanner DLL for the Win32 scanner

! pg218os2.dll Scanner DLL for the OS/2 scanner
Implementation and distribution ! 9

Desktop Inventory
! pg218anl.dll Analysis DLL

! pg218ini.ini Plug-in configuration file used by the Scanner Generator

To distribute this plug-in, all of these files should be compressed using
PKZip. The file name of the archive is irrelevant, as long as the extension used
is .zip.

Using the plug in
When a plug-in is configured in the Scanner Generator, the Configuration
DLL is invoked (using the interface discussed in the Technical Guide section
of this document) when the user presses the Advanced button for the plug-
in. If the configuration file indicates that the plug-in does not contain a
Configuration DLL, the Advanced button will be grayed out.

When the Scanner Generator generates the scanner executables, all relevant
Scanner DLLs are packaged inside the scanner executable itself and are
extracted on demand. Even when using one or more plug-ins, the scanner
consists of a single self-contained executable only.

When launching the Desktop Inventory Viewer, all Analysis DLLs available
are enumerated and initialized. Any scan files (FSFs or xml.gz) containing
data collected using plug-ins are processed normally, using the relevant
Analysis DLL to parse the plug-in data stored. Plug-in data for which an
Analysis DLL cannot be found is ignored.

In the Desktop Inventory Analysis Workbench, all Analysis DLLs are also
enumerated, and the Options dialog allows the user to choose which plug-in
generated data should be loaded, if any. As for the Viewer, all scans
containing any of the plug-in data selected for loading is parsed using the
Analysis DLLs and is available for detailed analysis. Plug-in data for which an
Analysis DLL cannot be found is ignored.

Files included with this SDK

This Software Development Kit includes several files demonstrating how to
write a plug-in using either MS Visual Studio (C source code) or Borland
Delphi (Pascal source code).

The source code included was developed and tested using Microsoft Visual
Studio v5.0 and Borland Delphi v3.02.
10 " Overview

Plug-in Interface Guide
The plug-in is given an ID of 13, and contains a Configuration DLL, a
Scanner DLL for Win32 only, and an Analysis DLL. The plug-in, which uses
the Data File Recognition method, extracts and stores the first 4 bytes of
every file scanned.

Directory File Name Purpose

sdk\plugin\1.0 Plugin Interface.pdf This document

sdk\plugin\1.0\c fp_def.h Header file defining Desktop
Inventory data type aliases

fpplgint.h Header file defining the Desktop
Inventory Plug-in Interface

pg13cnst.h Header file defining constants
specific to this plug-in

sdk\plugin\1.0\c\pg013cfg pg013cfg.h Header file defining the
exported functions of the
Configuration DLL

pg013cfg.cpp C source code for the
Configuration DLL

pg013cfg.def Linker definition file for the
Configuration DLL

pg013cfg.res Resource file containing dialog
design for the Configuration
DLL

sdk\plugin\1.0\c\pg013w3
2

pg013w32.h Header file defining the
exported functions and Instance
Data structure of the Scanner
DLL

pg013w32.cpp C source code for the Scanner
DLL

pg013w32.def Linker definition file for the
Scanner DLL

sdk\plugin\1.0\c\pg013anl pg013anl.h Header file defining the
exported functions and Instance
Data structure of the Analysis
DLL

pg013anl.cpp C source code for the Analysis
DLL
Files included with this SDK ! 11

Desktop Inventory
Configuration file format

The plug-in configuration file describes the version information,
components and default configuration of the plug-in. The file, which is used
by the Scanner Generator, is a Windows INI file, with the following sections,
of which only the Options section is mandatory:

! Options: Describes version information and specifies the default
configuration of the plug-in.

! <platform>ScannerFiles: Indicates the name of the Scanner DLL and any
data files required for the Scanner plug-in for the platform <platform>.

! CfgFiles: Indicates the name of the scanner generator DLL.

! AnalysisFiles: Indicates the name of the analysis DLL.

pg013anl.def Linker definition file for the
Analysis DLL

sdk\plugin\1.0\pascal use32.pas Unit redefining various Integer
types based on target platform
and compiler

fpplgint.pas Unit defining the Desktop
Inventory Plug-in Interface

sdk\plugin\1.0\pascal\pg0
13

pg13cnst.pas Unit with constant definitions
specific to this plug-in

pg013cfg.dpr Delphi source file for the
Configuration DLL

pg013cfg.r32 Resource file containing dialog
design for the Configuration
DLL

pg013w32.dpr Delphi source file for the
Scanner DLL

pg013anl.dpr Delphi source file for the
Analysis DLL

sdk\plugin\1.0\dist pg013c.zip Sample plug-in distribution
archive, based on output from
the C source code

pg013pas.zip Sample plug-in distribution
archive, based on output from
the Pascal source code
12 " Overview

Plug-in Interface Guide
Options
The options section of the configuration file can contain the following key
values:

! Name: The name of the plug-in.

! Description: A brief description of the plug-in.

! ID: The ID of the plug-in.

! LimitByName, LimitBySize: Default configuration information. These are
boolean values. A ‘0’ indicates ‘false’, a ‘1’ indicates ‘true’.

! MinFileSize, MaxFileSize: Default configuration information. These
values are only pertinent if ‘LimitBySize’ is set to true. These are numerical
integer values, in bytes.

! IncludeFileMask, ExcludeFileMask: Default configuration information.
These keys are only pertinent if ‘LimitByName’ is set to true. These values
are unquoted, text values containing comma-delimited lists of file-masks.

<platform>ScannerFiles
These sections must contain at least one key:

<filenameN>= Description of file

Valid values for <platform> are Win16, Win32 and OS2. The filenames listed
must start with the name of the Scanner DLL for the platform. Following this,
the names and descriptions of any data files used by the Scanner DLL for the
platform can be specified, if any are required.

CfgFiles
This section contains must contain at least one key:

<CfgFileName>= Description of Configuration DLL.

If the Configuration DLL requires additional files, these should be listed in
this section as well.

AnalysisFiles
This section must contain at least one key:

<AnalysisFileName> = Description of Analysis plug-in DLL.

If the Analysis DLL requires additional files, these should be listed in this
section as well.
Configuration file format ! 13

Desktop Inventory
Example

The content of the configuration file for the hypothetical plug-in mentioned
above, pg218ini.ini, could be:

[Options]
Name=Sample
Description=Hypothetical Plug-in for Scanners
ID=218
LimitByName=1
IncludeFileMask=*.EXE;*.COM
ExcludeFileMask=WIN*.*
LimitBySize=1
MinFileSize=1000
MaxFileSize=100000

[Win32ScannerFiles]
pg218w32.dll=The hypothetical Win32 Scanner DLL

[Os2ScannerFiles]
pg218os2.dll=The hypothetical OS/2 Scanner DLL

[CfgFiles]
pg218cfg.dll=The hypothetical Configuration DLL

[AnalysisFiles]
pg218anl.dll=The hypothetical Analysis DLL
14 " Overview

Plug-in Interface Guide
API Overview

The table below lists the names of all entry points relevant to plug-ins, where
they are or should be defined, and how they can be used. Please refer to the
Technical Guide chapter for detailed information on each API, or refer to the
source code files defining the interface (fp_def.h, fpPlgInt.h for C
programmers and fpPlgInt.pas for Pascal programmers):

API Name Defined in Usage

PlgGetAPIVersion Configuration DLL
Scanner DLLs
Analysis DLL

Called by Desktop Inventory
components to verify that the
plug-in is compatible with the
Desktop Inventory software used.

PlgConfigure Configuration DLL Allows the DLL to call and
interface to the Scanner
Generator functions.

Int->OptSetValue Scanner Generator Internal Scanner Generator
function, the address of which is
passed to the Configuration DLL.
Used to set the value of a plug-in
specific option.

Int->OptGetValue Scanner Generator
Scanners
Analysis DLL

Internal Scanner Generator,
Scanner and Analysis function.
Used to retrieve the value of a
plug-in specific option.

PlgInit Scanner DLLs Called by the Scanner at start-up.
During this call, the DLL is
expected to initialize any required
internal data structures, as well as
return information about itself to
the scanner.

PlgRecogniseDataFile Scanner DLLs Called by the Scanner (for Data
File Recognition plug-ins) for
each file the plug-in has been set
up to process.

PlgIsArchive Scanner DLLs Called by the Scanner (for
Archive Processing) for each file
the plug-in has been set up to
process.
API Overview ! 15

Desktop Inventory
PlgFindFileInArchive Scanner DLLs Called by the Scanner (for
Archive Processing) several times
for each file identified as a
supported archive.

PlgStoreData Scanner DLLs Called by the Scanner when
scanning is complete. During this
call, the plug-in can call the
MemStore Scanner function to
store any data collected by the
plug-in.

PlgDone Scanner DLLs Called by the Scanner prior to
exiting. The plug-in should free
all memory previously allocated.

ScanInt->FileSeek Scanners Seek to a given offset of a file.

ScanInt->FileRead Scanners Read a block of data from a file.

Int->MemGet Scanners
Analysis DLL

Can be used by the plug-in to
dynamically allocate memory.

Int->MemFree Scanners
Analysis DLL

Frees memory allocated using
MemGet

ScanInt->MemStore Scanners Store a block of data in the scan
file.

PlgGetColumns Analysis DLL Called to retrieve a list of columns
the plug-in defines.

PlgNewData Analysis DLL Called when a new scan file is
about to be loaded, allowing the
plug-in data block to be retrieved
from the scan file.

PlgGetColumnData Analysis DLL Called to retrieve plug-in data for
a specific column for a given file.

PlgFreeData Analysis DLL Called when all data from the
current scan file has been
retrieved; memory allocated can
be freed.

AnalysisInt-
>MemLoad

Desktop Inventory tool Load a block of data previously
saved by the Scanner DLL from
the scan file.
16 " Overview

CHAPTER

2
 Technical Reference
Returning API version information

Every DLL component of a plug-in must export a function similar to the
following:

unsigned short FPCALLCONV PlgGetAPIVersion()
{
return PlgAPIMinorVer + (PlgAPIMajorVer << 8);
}

The various Desktop Inventory applications will query the component in
order to find out what version of the plug-in API it supports. In the current
implementation, this function must return a major version of 1 and a minor
version of 0.

Scanner Generator Interface – Configuration DLL

The Scanner Generator is able to store advanced options for a plug-in. The
format of the advanced options data is completely arbitrary, and at the sole
discretion of the author of the plug-in. The data is communicated as pairs of
NULL terminated strings, one for the name of the option, and one for its
value.
Technical Reference ! 17

Desktop Inventory
The Scanner Generator will only store an option if it actually contains data.
The following statement has no effect:

_SGInt->OptSetValue("MyOption", "");

Similarly, if a non-existing option is queried, it will return NULL (no data).

The interface between the Configuration DLL and the Scanner Generator
works as follows:

! The Scanner Generator invokes the Configuration DLL by calling its single
exported function, declared as:

void FPCALLCONV PlgConfigure(const TPlgSGInterface* _SGInt);

The _SGInt parameter is a data structure containing pointers to the SG
Interface functions. Refer to the file �fpPlgInt.h� for the full structure of
this item.

! PlgConfigure should then display a dialogue box, initializing its controls
with data obtained from the Scanner Generator via the function

_SGInt->OptGetValue

which is declared as:

void (FPCALLCONV *OptGetValue)(const char* Name, char* Value);

! The user then configures the plug-in via this dialogue box. When the
configuration is completed, the DLL can send the new configuration back
to the Scanner Generator via the function:

_SGInt->OptSetValue

which is declared as:

void (FPCALLCONV *OptSetValue)(const char* Name, char* Value);

For plug-ins that feature a Configuration DLL, the user may not have used
the Advanced button when configuring the plug-in in the Scanner
Generator. In this case, no advanced configuration data is stored and the
Scanner DLLs must be able to assume reasonable defaults in this case.
Only settings differing from the default should be saved using the _SGInt-
>OptSetValue function.
18 " Technical Reference

Plug-in Interface Guide
Collecting information on a file by file basis (Data File
Recognition)

Scanner Interface – Data File Recognition
The Scanner DLL will be given an opportunity to examine every file that the
scanner examines. The DLL can extract data from these files, and store it in
data structures internal to the DLL. For each file, the DLL passes a unique
index back to the scanner. The scanner stores this index, along with the plug-
in ID, with the file’s data. At the end of the scanning process, the DLL will be
given an opportunity to write the data that it has collected into the
fingerprint file. The Scanner Generator treats this information as a blob,
writing it ‘as-is’ into the scan file.

At analysis time, the information is read from the fingerprint and passed to
the Analysis DLL as a blob, exactly as it was written to the scan file. When the
plug-in data for a specific file is needed, the Analysis DLL is passed the indices
that were generated by the Scanner DLL and is expected to extract the
pertinent data from the blob and pass it back to the caller.

The interface between the scanner and the Scanner DLL works as follows:

! The scanner calls a function of the DLL, where any initialization required
by the DLL can be performed:

void FPCALLCONV PlgInit(const TPlgScannerInterface *ScanInt, r
TPlgScanInfo Info)

When this function is called, the DLL is also required to send return
information to the scanner. This information is returned via the Info
structure, defined as follows:

typedef struct _TplgScanInfo
{
long Id; /* Unique ID of the plug-in */
long Flags; /* Bitmapped field */
char* Description; /* Description of the plug-in */
void* InstanceData; /* Per-instance data of the plug-in */
long Reserved[4];
} TPlgScanInfo;

The plug-in ID is sent back via the Id member.

The plug-in ID is sent back via the Id member.
Collecting information on a file by file basis (Data File Recognition) ! 19

Desktop Inventory
The Flags member is a bitmapped value used to indicate the type of plug-
in, that is, a Data File Recognition plug-in, or an Archive plug-in.

A brief description of the plug-in is sent back via the Description
member. This description will be displayed in the ‘Messages’ text box on
the software page of the scanner.

The InstanceData member is used to store a reference to any internal
data that the DLL allocates. This InstanceData pointer is passed to every
subsequent function call, so that the DLL always has access to its allocated
data. Allocating data and storing the references to it in variables that are
global to the DLL should be avoided, as this could lead to conflicts in a
multi-threading environment, or when using a DLL instancing the Data
segment only once.

Along with the references to its own internal data, the Scanner DLL must
ensure that InstanceData points to a structure that also stores a reference
to ScanInt, as this pointer is not passed to any further functions. ScanInt
is a structure that contains pointers to all of the internal Scanner functions
necessary to seek and read in files, extract advanced configuration options
and write information to the scan file. For the exact structure of this item,
see the header file �fpPlgInt.h�.

! For each file read by the scanner, matching the criteria specified in the
Scanner Generator plug-in configuration (File size and name restrictions),
it invokes the DLL’s exported function

FP_BYTE FPCALLCONV PlgRecogniseDataFile(void* InstData,
 const TPlgFileInfo *DataFile,
 TPlgFileData *Data,
 const void *_Buffer);

The scanner DLL can now read the file using the functions provided by
ScanInt. The file handle required by ScanInt->FileSeek and ScanInt-
>FileRead can be obtained from DataFile->Handle. Any information
collected can be stored in the DLL’s internal data structures, and an
identifying index passed back via Data->DataID. Other useful
information about the file can be found in the DataFile structure.

If the plug-in has data to store for the file, the function should return 1. If
not, it should return a value of 0, in which case the value of Data->DataID
is ignored.
20 " Technical Reference

Plug-in Interface Guide
The first 8192 bytes of the file have already been read by the scanner, and
are cached in a buffer pointed to by the _Buffer parameter. When at all
possible, this buffer should be used instead of the file reading functions,
for example, for signature scanning. This could potentially save one read
per scanned file, which amounts to thousands of reads over the course of
the scan, a significant time saving.

! When the scan is complete, the Scanner will invoke the DLL’s exported
function

void FPCALLCONV PlgStoreData(void *InstData);

Using the function ScanInt->MemStore, the DLL can now write its data
to the scan file. MemStore may be called more than once if necessary, for
example, to store blocks larger than 64kb in a Win16 environment. If
MemStore is called multiple times, the individual data blocks will be stored
sequentially, right behind each other, so that the contiguity of the blob is
preserved. It is advised that the data collected by the DLL be stored in as
tight a format as possible, to minimize the size of the scan file.

! Finally, the scanner will invoke the function

void FPCALLCONV PlgDone(void *InstData);

During this function, the DLL should de-allocate any memory that it has
allocated.

Analysis Interface – Data File Recognition
When Desktop Inventory tools read scan files containing plug-in data, the
Analysis DLLs are used to parse the data. On startup, the Analysis DLL is
called to get information about the number and type of ‘columns’ required
to display its data. This function is called only once for each Analysis DLL.

Each time a new scan file with plug-in data is read, the Analysis DLL is
notified in order for it to initialize its data based on the data blob stored in
the fingerprint by the plug-ins Scanner DLL. To do this, the Analysis DLL is
supplied with the addresses of a set of entry points that allow the data block
to be read from the scan file, plug-in options to be queried, etc.
Collecting information on a file by file basis (Data File Recognition) ! 21

Desktop Inventory
As software data is read from the scan file, the Analysis DLL is called for each
file of interest, passing the file index generated by the Scanner DLL along with
a plug-in column identifier. When this occurs, the DLL should extract the
pertinent data from the its data structures and pass it back in the format
specified. The only format currently supported by Desktop Inventory is null-
terminated string. Note that not all files or columns may be queried, and that
the order in which the data is retrieved is indeterminate.

When all software data has been read, the Analysis DLL may be asked to free
memory used by internal data structures. Whether this function is called or
not, the Analysis DLL should be ready to for the next scan file and be able to
handle the situation where plug-in data from several scan file is requested in
any order.

! The columns defined by the plug-in are queried via the function

void FPCALLCONV PlgGetColumns(FPULONG ID, FP_ULONG* Count,
 TPlgColumnStruc** Columns);

The DLL passes back a pointer to the first element in an array of
TplgColumnStruc structures. For the format of this structure, see the file
�fpPlgInt.h�.

! The initialization call of the DLL takes the form

void FPCALLCONV PlgNewData(FP_ULONG ID,
 const TPlgAnalysisInterface* AnalysisInt,
 TPlgAnalysisInfo* Info);

The AnalysisInt member contains pointers to the functions used to read
the blob from the scan file, as well as functions that permit the analysis
DLL to obtain the plug-in configuration data from the scan file. The DLL
should read the blob back from the scan file, and construct data structures
that permit it to extract the correct information depending on the file
index it is passed. A reference to internal data structures should again be
stored in the Info->InstanceData pointer.

This function is called for every scan file to be processed, so the Analysis
DLL should allocate separate Instance data for each scan file.

! The Analysis tool requests data from the plug-in on a per file/per column
basis. The function

void FPCALLCONV PlgGetColumnData(void *InstData,
 FP_ULONG DataID,
 FP_ULONG Column,
 TPlgColumnData* Data);
22 " Technical Reference

Plug-in Interface Guide
requests data from the DLL for the file identified by DataID, and the
column identified by Column. The pertinent data should be passed back
via one of the members of the TplgColumnData union.

! After all of the files have been read from an scan file, the DLL may be asked
to free all of its internal data structures for that scan file via the function

void FPCALLCONV PlgFreeData(void *InstData);

Collecting information from the new Archive formats
A plug-in that provides support for new archive formats requires no Analysis
DLL. The files that it reports the existence of are included with the rest of the
files in the generated fingerprint. This section deals only with the scanning
portion of this type of plug-in, as the configuration section is identical to that
of a Data File Recognition plug-in.

The general logic of the interface is as follows:

! The scanner invokes the DLL with a call to

void FPCALLCONV PlgInit(const TPlgScannerInterface *ScanInt,
 TPlgScanInfo *Info);

The DLL is initialized in the same way that a Data File Recognition
Scanner DLL is initialized. However, the DLL sends a flag back to the
scanner to indicate that it is an archive scanning DLL (spfArchive,
instead of spfDataFileRecognition).

! The Scanner DLL is given a reference to each file as the scanner examines
it via a call to

FP_BYTE FPCALLCONV PlgIsArchive(void *InstData,
 const TPlgFileInfo* ArcFile,
 const void *Buffer);

During this call, the Scanner DLL can now examine the file to determine
if it is an archive of the format(s) that the DLL is meant to recognize. In
order for the check to be fast, the archive signature should be checked as
this eliminates the need for reading files that are obviously not of the
desired archive types. For performance reasons, the 8kb buffer pointed to
by the Buffer parameter should be used in preference to reading the file
when possible.

The DLL must return a value of 1 if this is a readable archive, and 0
otherwise.
Collecting information on a file by file basis (Data File Recognition) ! 23

Desktop Inventory
! If the Scanner DLL indicated that the file was indeed a readable archive,
the DLL is repeatedly queried about the files in the archive until it
indicates that there are no more files. The method is conceptually identical
to a ‘Find First…Find Next’ iteration. The function that is repeatedly
called is

FP_BYTE FPCALLCONV PlgFindFileInArchive(void *InstData,
 const TPlgFileInfo *Archive,
 TPlgArcFileInfo* FileInArc,
 FP_BYTE First);

The DLL reports information on the files by filling in the members of the
FileInArc parameter, and returning a value of 1. The DLL indicates that
there are no more files to report in this archive by returning a value of 0.
When this function is called for the first time, the First parameter is set
to 1 and 0 otherwise.

! The DLL is finalized by the scanner after the scan is complete via a call to

void FPCALLCONV PlgDone(void *InstData);

The DLL is required to free any memory that it has allocated for its own
uses.
24 " Technical Reference

April 10, 2003

	Structure of the guide
	Contacting Peregrine Systems
	Overview
	Implementation and distribution
	Sample distribution
	Using the plug in

	Files included with this SDK
	Configuration file format
	Options

	API Overview

	Technical Reference
	Returning API version information
	Scanner Generator Interface – Configuration DLL
	Collecting information on a file by file basis (Data File Recognition)
	Scanner Interface – Data File Recognition
	Analysis Interface – Data File Recognition
	Collecting information from the new Archive formats

