
Peregrine

PART NO: GET-RES-4.0.1-ENG
Get-Resources
Tailoring Kit Guide
Version 4.0.1—For Windows
-01027-00247

Copyright © 2002 Peregrine Systems, Inc. or its subsidiaries. All rights reserved.

Information contained in this document is proprietary to Peregrine Systems, Incorporated, and may be
used or disclosed only with written permission from Peregrine Systems, Inc. This book, or any part thereof,
may not be reproduced without the prior written permission of Peregrine Systems, Inc. This document
refers to numerous products by their trade names. In most, if not all, cases these designations are claimed
as Trademarks or Registered Trademarks by their respective companies.

Peregrine Systems®, AssetCenter®, and ServiceCenter® are registered trademarks of Peregrine Systems, Inc.
or its subsidiaries.

This product includes software developed by the Apache Software Foundation (http://www.apache.org/)
and by Advantys (http://www.advantys.com). This product also contains software developed by Sun
Microsystems, Inc. and Netscape Communications Corporation.

This document and the related software described in this manual are supplied under license or
nondisclosure agreement and may be used or copied only in accordance with the terms of the agreement.
The information in this document is subject to change without notice and does not represent a
commitment on the part of Peregrine Systems, Inc. Contact Peregrine Systems, Inc., Customer Support to
verify the date of the latest version of this document.

The names of companies and individuals used in the sample database and in examples in the manuals are
fictitious and are intended to illustrate the use of the software. Any resemblance to actual companies or
individuals, whether past or present, is purely coincidental.

If you have comments or suggestions about this documentation, please send e-mail to
support-sd@peregrine.com

This edition applies to version 4.0.1 of the licensed program.
Peregrine Systems, Inc.
Worldwide Corporate Headquarters
3611 Valley Centre Drive San Diego, CA 92130
Tel 800.638.5231 or 858.481.5000
Fax 858.481.1751
www.peregrine.com

mailto:support-sd@peregrine.com

Contents
Introducing the Get-Resources Tailoring Kit 9

About this Guide . 11

Conventions Used in this Guide. 11

Chapter 1 Installing the Get-Resources Tailoring Kit 13

Installation Requirements . 14

Installing the Get-Resources Tailoring Kit. 14

Opening the Get-Resources Project 18

Setting up a tailoring environment . 18

Setting up a Development Environment 19

Setting Up a Testing Environment 19

Chapter 2 Tailoring Tasks . 21

Tailoring Tasks independent of Peregrine Studio 22

Personalization . 22

Schema extensions . 22

Tailoring tasks requiring Peregrine Studio 23

Forms and Form components . 23

Changing the strings displayed by priority, severity, or status fields on
page 192DocExplorers . 23

Scripting . 24

Schemas . 24

Data validation . 24

Default values . 24
Contents 3

Chapter 3 Using Peregrine Studio . 25

The Peregrine Studio interface . 26

Project Explorer . 27

Drag and drop . 29

Enabling the HTTP Listener and Form Information 30

Viewing XML source code . 32

Finding changes indicated with color text 32

Chapter 4 Peregrine Studio Projects and Packages 35

Peregrine Studio projects . 36

Project components . 37

Project component descriptions . 37

Project files . 40

Building a project . 41

XML to JSPs . 41

Build options. . 42

Setting project build settings . 42

Peregrine Studio project packages . 44

Saving changes with package extensions 45

Activating and deactivating packages. 45

Package dependencies . 46

Setting package dependencies . 47

Warnings for conflicts . 47

Deploying tailoring changes . 49

Deploying to Windows platforms 49

Deploying to UNIX platforms . 49

Translating tailored modules . 50

Editing existing translation strings files 51

Adding new translation strings files 52

Configure Get-Resources to use new string files 53

Adding Get-Resources to an existing frameset 54

Chapter 5 Forms and Form Components . 55

Tailoring forms . 56

Changing a form’s title . 57

Changing a form’s instructions . 58
4 Contents

Tailoring Kit Guide
Changing a form’s onload script. 59

Changing a form component’s label 60

Hiding a form component . 61

Changing a form component to read-only 62

Changing the schema that a form component uses 63

Changing the document field that a form component uses 64

Displaying a form within a frameset 67

Displaying a script variable in a form component 69

Creating a portal component . 72

Types of form components . 74

Component template containers 74

Fieldsection containers . 75

Text edit fields . 76

Selectbox fields . 77

Hidden data fields . 79

Redirections . 80

Simple table . 81

Table links . 82

Text columns . 82

Actions . 83

Chapter 6 Adding Personalization Functionality 85

Supporting personalization . 86

Activating personalization . 87

Making a schema visible to portal components 88

Personalizing with DocExplorers . 89

DocExplorer forms and functions 89

Adding a DocExplorer reference 90

Personalizing a DocExplorer reference 91

Adding Personalization to lookup fields 92

Using the personalization interface. 95

Adding an existing field to a personalized form 97

Removing a field from a personalized form 97

Personalizing a field attribute . 98
Contents 5

Chapter 7 Scripting . 99

How scripts are used. 100

Types of Scripts. 100

Where Scripts are Stored . 101

How Scripts are Used . 102

Editing an existing script . 105

Adding a custom script . 107

Testing Scripts . 109

Rhino JavaScript Debugger . 109

URL queries . 110

Common Message Operations . 113

Using ECMAScript in an Object Oriented manner 116

ECMAScript implementation in Get-Resources 116

Name resolution in ECMAScript 116

Using the object prototype for object oriented programming 116

How to use object orientation for tailoring 120

Sample Scripts . 121

General Script Samples . 121

Selecting a Field from a Schema 121

Calling Other Scripts and Combining the Results 123

Form Script Sample . 125

Creating an XML Document from a Schema 125

References . 128

Sources for Client-side JavaScript 128

JavaDocs for the Main Archway Package 128

Chapter 8 Document Schema Definitions . 129

Understanding Document Schema Definitions 130

How to use schemas . 131

Schema extensions . 132

When to use schema extensions 132

Creating schema extensions . 133

Identifying the schema to extend 133

Locating the schema on the server 134

Creating the schema extension target folders and files 134
6 Contents

Tailoring Kit Guide
Editing the schema extension files 136

Adding a new field to the Available Fields list 136

Hiding an existing field from the Available Fields list 138

Changing the label a field displays in the Available Fields list 139

Changing the list of forms where a field is visible. 140

Changing the physical mapping of a field 142

Changing the type of form component a field uses 143

Adding subdocuments to the Available Fields list 144

Creating custom schemas. 148

Adding a schema to your Peregrine Studio project 149

Adding logical and physical mappings to your schema 149

Sample schema . 155

Schema Elements And Attributes 156

<?xml> . 156

<schema> . 156

<documents> . 156

<document> . 158

<attribute> . 162

<collection> . 167

Documents . 169

Subdocuments . 170

Chapter 9 Using Get-Resources Tailoring . 177

Best Practices . 178

Tailoring Get-Resources forms . 179

Changing the request summary screen 179

Changing the request line detail screen 182

Changing the catalog select list 184

Changing the purchase order summary screen. 186

Changing the purchase order line detail screen 188

Changing the request line selection list 191

Extending Get-Resources scripts . 192

Changing request behavior . 193

Changing purchase order behavior 195

Changing the business rules. 198
Contents 7

Setting request default values . 198

Request validation . 199

Request line default values . 201

Setting request line default values from catalog entries 201

Setting request line default values to values in a request 205

Purchase order default values . 207

Purchase order validation . 207

Purchase order line default values 207

Overview of the cart experience code 209

The ActivityCartExperience template 210

The cartexperience script. 210

The request interface scripts . 212

The catalog scripts . 212

Appendix A Peregrine Studio Components . 215

Appendix B Troubleshooting and FAQs . 227

Get-Resources Environment . 228

Out of memory error . 228

Cannot start Java – JRE must be installed 228

Peregrine Studio . 229

Cannot edit — components are displayed with grey background 229

Red exclamation point (conflict icon) displayed next to nodes 230

Scripting Errors . 232

Unable to find script file . 232

Script produces an ECMAScript error 233

ECMAScript error: undefined value or property 233

Tailoring Errors. 234

Wrong start form is displayed for activity 234

Script output not appearing in form component 234

Too few parameters error . 235

Get-Resources always goes to redirection form 236

Syntax error in FROM clause . 236

Index . 237
8 Contents

Introducing the Get-Resources
Tailoring Kit
The Get-Resources Tailoring Kit includes:

Peregrine Studio

Source files for Get-Resources

The OAA Tailoring Kit is intended for Web application developers
who are familiar with Extensible Markup Language (XML),
ECMAScript, Structured Query Language (SQL), and back-end
database systems such as AssetCenter and ServiceCenter.

Peregrine Studio is a graphical development tool that you can use to
customize Get-Resources. Get-Resources consists of a series of Web-
based interfaces that allow users to, for example, order and purchase
goods, search for requests, and submit purchase orders. The Peregrine
Portal common interface determines what portions of Get-Resources
the user sees.
Introducing the Get-Resources Tailoring Kit 9

Get-Resources
The Web-based interfaces are the result of the following components:

A collection of Java Server Pages (JSPs) that provide the browser interfaces
for Get-Resources. The Get-Resources JSP content is created during the
Studio build process.

A Web server to host the Get-Resources JSP content.

A Java-enabled application server to run the Archway servlet. The
Archway servlet routes and formats data requests between Get-Resources
and the back-end database.

A collection of ECMAScripts that allow for dynamic parsing and
formatting of Get-Resources data sent to and received from the client Web
browser.

From an administrative perspective, Get-Resources are the output of one or
more Peregrine Studio project files. Studio elements such as packages,
modules, activities, and forms describe the end-user interface. Other
Peregrine Studio elements such as ECMAScripts and document schema
definitions determine what data the Get-Resources interface receives or
processes from back-end database.

The Get-Resources files produced during a build are the result of the
following Peregrine Studio components:

A project file that describes Get-Resources. Each project file contains only
the code necessary to produce and deploy Get-Resources.

Components that define the functionality of Get-Resources. The Get-
Resources project is built from packages, modules, activities, forms, and
form components. Each of these project components is saved as an XML
file in the Peregrine Studio project.

A back-end database or application to store the data accessed by Get-
Resources forms, track workflow tasks, and store personalization changes.

Document schema definitions used to format message objects between the
Archway servlet and the back-end database. All message objects are
formatted as XML documents.

ECMAScripts to generate and send message objects to the Archway servlet.
The messenger objects can be used to query the back-end database for
specific data and format the results for display in Get-Resourcesforms.
10 Introducing the Get-Resources Tailoring Kit

Tailoring Kit Guide
About this Guide

This guide is intended for use by a developer who will be tailoring Get-
Resources.

This guide should be used in conjunction with several other manuals, which
are:

The Get-Resources installation and administration guides.

The back-end database documentation for your installation.

The application server documentation for your installation.

Conventions Used in this Guide
Screen shots in this guide are included as examples only. Get-Resources
forms are shown using the Classic theme.

The following documentation conventions are used in this guide:

Object Example

Button Click Next

File name The login.jsp file

Sample script or XML code var msgTicket = new Message("Problem");

...
msgTicket.set("_event", "epmc");
The ellipsis (...) is used to indicate that portions of
a script have been omitted because they are not
needed for the current topic. Samples of code are
not entire files, but they are representative of the
information being discussed in a particular
section.

Menu option Select Start>Program Files.

Book title Refer to the Get-Resources Installation Guide.
About this Guide 11

Get-Resources
12 Introducing the Get-Resources Tailoring Kit

CHAPTER

1
 Installing the Get-Resources Tailoring
Kit
The Get-Resources Tailoring Kit installation allows you to install a JDK,
Peregrine Studio, and the source files for Get-Resources.

Before you begin the installation, you should have already installed
Get-Resources and any application servers and back-end systems required.

This chapter covers the following topics:

Installation Requirements on page 14

Installing the Get-Resources Tailoring Kit on page 14

Opening the Get-Resources Project on page 18

Setting up a tailoring environment on page 18
Installing the Get-Resources Tailoring Kit 13

Get-Resources
Installation Requirements

You can install the Get-Resources Tailoring Kit on any system that meets the
following requirements:

Windows operating system

Java 2 SDK Standard Edition version 1.3.1_05

Peregrine Studio installed

You can install the Java 2 SDK and Peregrine Studio from the Get-Resources
Tailoring Kit installation CD.

Tip: Do not install the Get-Resources Tailoring Kit on your production
system. Instead, install the tailoring kit on a development environment
and then deploy your changes after you have had a chance to test them.

Installing the Get-Resources Tailoring Kit

The following sections describe how to install the Get-Resources Tailoring
Kit.

To install the Get-Resources Tailoring Kit:

1 Insert the Get-Resources Tailoring Kit installation CD into the CD-ROM
drive.
14 Chapter 1—Installing the Get-Resources Tailoring Kit

Tailoring Kit Guide
The Get-Resources Tailoring Kit splash screen opens displaying a list of
installation options.

2 Install any required components for the Get-Resources Tailoring Kit.

Install JDK. Click this button to install the Java 2 SDK on your system.

Warning: You must install a JDK if you have installed Get-Resources with
Tomcat.

Install Studio. Click this button to install Peregrine Studio on your
system.

3 Click Tailoring Kit.
Installing the Get-Resources Tailoring Kit 15

Get-Resources
The Get-Resources Tailoring Kit installer opens.

4 Click Next to continue.

The Choose Destination Location page opens.

5 Click Next to accept the default installation location, or click Browse to select
another installation location, and then click Next to continue.
16 Chapter 1—Installing the Get-Resources Tailoring Kit

Tailoring Kit Guide
The Start Copying Files page opens.

6 Verify that the information is correct, and then click Next.

The installer copies and deploys the files to your system and then the
InstallShield Wizard Complete page opens.

7 Click Finish to close the InstallShield Wizard.
Installing the Get-Resources Tailoring Kit 17

Get-Resources
Opening the Get-Resources Project

After the installation is complete, you can open the Get-Resources project in
Peregrine Studio using the following procedure.

Important: If you have not already received a Peregrine Studio
authorization file, contact Peregrine Customer Support. You
will need this file in order to edit your Get-Resources files.

To open the Get-Resources project in Peregrine Studio:

1 Click Start > Programs > Peregrine > Studio > Peregrine Studio.

Peregrine Studio opens.

2 Click Tools > Authorization file.

3 In any text editor, open the authorization file provided for Peregrine Studio.

4 Copy the contents of the authorization file into the Authorization file dialog
box in Peregrine Studio. Click OK.

5 Click File > Open project.

6 Browse to the location of your Get-Resources project file (.adw file). For
example:

C:\Program Files\Peregrine\Get-It Tailoring Kit\get-resources

7 Click Open.

8 Create a new package to save your changes. See Saving changes with package
extensions on page 45.

Setting up a tailoring environment

You can set up one or more development environments separately from your
deployment platform. A development environment lets you modify and
build Get-Resources on a separate computer system than your test or
deployment environments.
18 Chapter 1—Installing the Get-Resources Tailoring Kit

Tailoring Kit Guide
Setting up a Development Environment
You need the following minimum components for a Get-Resources
Tailoring Kit development environment:

Peregrine Studio.

Java Runtime Environment 1.3 or later (necessary to run Studio), or the
Java Development Kit provided with your Web application installation.

Get-Resources source files.

Java Development Kit 1.2.2 or later if you want to create or edit your own
wizards for Peregrine Studio.

With this minimal development environment, you can modify
Get-Resources using the built-in Peregrine Studio tools and wizards. You can
then do one of the following:

Build your Get-Resources projects on the development computer and
copy the results to a deployment computer

or

Enter the network path to the deployment computer in your Peregrine
Studio Build Settings.

Important: If you are using source control software to store your project
files, you will need to configure your Peregrine Studio Project
Settings to check out and check in the source files.

Setting Up a Testing Environment
You need the following components to test or debug your modifications:

Peregrine Studio.

Java Runtime Environment 1.3 or later (necessary to run Peregrine
Studio).

Get-Resources source files.

If you want to create or edit your own wizards for Peregrine Studio, you
will need to install a Java Development Kit 1.2.2 or later. The Java 2 SDK
Standard Edition v1.3.1_05 is provided on the installation CD for your
Web application.

An installed instance of Get-Resources.
Setting up a tailoring environment 19

Get-Resources
Web server (necessary to serve Get-Resources JSP content).

Java-enabled application server (necessary to run the Archway servlet).
Tomcat is provided on the Get-Resources installation CD.

JavaScript-enabled Web browser (necessary to view changes to
Get-Resources).

With this testing environment, you can build and view your changes from a
single computer. To set up a testing environment, perform a full installation.
Refer to the Get-Resources Installation Guide for instructions and
requirements.

Peregrine Studio also allows you to save multiple versions of our changes in
separate project files. When you are ready to test a particular tailoring
change, you can load the project, build it, and deploy it to your test
environment.
20 Chapter 1—Installing the Get-Resources Tailoring Kit

CHAPTER

2
 Tailoring Tasks
The following chapter lists all the tailoring tasks you can perform with the
Get-Resources tailoring kit.

This chapter covers the following topics:

Tailoring Tasks independent of Peregrine Studio on page 22

Tailoring tasks requiring Peregrine Studio on page 23
Tailoring Tasks 21

Get-Resources
Tailoring Tasks independent of Peregrine Studio

The following tailoring task can be done outside of Peregrine Studio.

Personalization
You can perform the following tailoring tasks using the on-screen
personalization interface:

Activating personalization on page 87.

Making a schema visible to portal components on page 88.

Adding an existing field to a personalized form on page 97.

Removing a field from a personalized form on page 97.

Personalizing a field attribute on page 98.

Schema extensions
You can perform the following tailoring tasks by creating schema extensions:

Creating schema extensions on page 133

Adding a new field to the Available Fields list on page 136

Hiding an existing field from the Available Fields list on page 138

Changing the label a field displays in the Available Fields list on page 139

Changing the list of forms where a field is visible on page 140

Changing the physical mapping of a field on page 142

Changing the type of form component a field uses on page 143

Adding subdocuments to the Available Fields list on page 144
22 Chapter 2—Tailoring Tasks

Tailoring Kit Guide
Tailoring tasks requiring Peregrine Studio

The following tailoring task require Peregrine Studio.

Forms and Form components
You can use Peregrine Studio to tailor forms and form components in the
following ways:

Changing a form’s title on page 57.

Changing a form’s instructions on page 58.

Changing a form’s onload script on page 59.

Changing a form component’s label on page 60.

Hiding a form component on page 61.

Changing a form component to read-only on page 62.

Changing the schema that a form component uses on page 63.

Changing the document field that a form component uses on page 64.

Displaying a form within a frameset on page 67.

Displaying a script variable in a form component on page 69.

Creating a portal component on page 72

Tailoring Get-Resources forms on page 179

Changing the request summary screen on page 179

Changing the request line detail screen on page 182

Changing the catalog select list on page 184

Changing the purchase order summary screen on page 186

Changing the purchase order line detail screen on page 188

Changing the request line selection list on page 191

DocExplorers
You can use Peregrine Studio to add and customize DocExplorers in the
following ways:

Adding a DocExplorer reference on page 90.

Personalizing a DocExplorer reference on page 91.

Adding Personalization to lookup fields on page 92.
Tailoring tasks requiring Peregrine Studio 23

Get-Resources
Scripting
You can use the following scripting methods for tailoring:

Editing an existing script on page 105

Adding a custom script on page 107

Common Message Operations on page 113

Extending Get-Resources scripts on page 192

Changing request behavior on page 193

Changing purchase order behavior on page 195

Schemas
You can use Peregrine Studio to tailor schemas in the following ways:

Creating custom schemas on page 148

Adding a schema to your Peregrine Studio project on page 149

Adding logical and physical mappings to your schema on page 149

Data validation
You can use Peregrine Studio to add data validation in the following ways:

Request validation on page 199

Purchase order validation on page 207

Default values
You can use Peregrine Studio to assign default values to items in the
following ways:

Changing the business rules on page 198

Setting request default values on page 198

Request line default values on page 201

Setting request line default values from catalog entries on page 201

Setting request line default values to values in a request on page 205

Purchase order default values on page 207

Purchase order line default values on page 207
24 Chapter 2—Tailoring Tasks

CHAPTER

3
 Using Peregrine Studio
This chapter provides an overview of the Peregrine Studio interface. For
more information about configuring or using Peregrine Studio, refer to the
Peregrine Studio online help.

This chapter covers the following topics:

The Peregrine Studio interface on page 26

Enabling the HTTP Listener and Form Information on page 30

Viewing XML source code on page 32

Finding changes indicated with color text on page 32
Using Peregrine Studio 25

Get-Resources
The Peregrine Studio interface

The Peregrine Studio interface includes:

Project Explorer

Properties window

Edit toolbar

General information display

Contextual help

Address

Package selector

Advanced information

All elements of the interface except the Project Explorer and the Properties
Window can be hidden by clearing them on the View menu.

Project Explorer

Properties window

Package selector
Address

General information Contextual help Advanced information

Edit toolbar
26 Chapter 3—Using Peregrine Studio

Tailoring Kit Guide
Project Explorer
The Project Explorer provides a hierarchal view of all the components that
comprise a Peregrine Studio project. The Project Explorer window displays
each component as a separate node within the tree.

Left-click a node

Click the node listing the component you want to change and the properties
of the component display in a window of the Properties pane.

Right-click a node

Right-click a node to display a list of context-sensitive options.

Group of
Modules

Module
Activity

Group of Templates

DocExplorer
Form

Actions
The Peregrine Studio interface 27

Get-Resources
The options listed in the following table are available for all nodes.

Menu item Description

New (and/or Open) Provides a context-sensitive menu of allowed components
that you can add from the current node. The list of
components in this menu is dynamically updated for each
node of the Project Explorer tree.

Open Displays the properties of the selected component in a
window of the Properties pane.

Open in New
Window

Displays the properties of the selected component in a new
window of the Properties pane.

Rename Renames the selected node to the new name typed by the
user. This option will only be available when a package
extension has been activated as the save location for
changes.

Cut Removes the selected node, and all child nodes underneath,
and places a copy in the Windows clipboard.

Copy Copies the selected node, and all child nodes underneath, to
the Windows clipboard.

Paste Inserts the contents of the Windows clipboard. If the
clipboard contains a Studio component, it will be
automatically placed within the tree according to the type
of component it is.

Delete Deletes the selected node and all child nodes. This option
will only be available when a package extension has been
activated as the save location for changes.

Help Displays the Studio help system.

Export node Saves a copy of the selected node, and all child nodes
underneath, as an XML file, which can be imported into a
Studio project.

Import node Opens a user-selected XML file describing Studio nodes
and inserts it into the tree. The imported node will be
inserted below the node you right-clicked.

Add Bookmark Adds a bookmark link to the node you currently have open
in Studio. If you browse to another location and then want
to return to this node, click the Bookmarks tab in the
General Information window and select the appropriate
bookmark.
28 Chapter 3—Using Peregrine Studio

Tailoring Kit Guide
The following image shows how some of the common Peregrine Studio
components are displayed in a Peregrine Web application interface.

The address bar

You can use the Address Bar to navigate directly to any Peregrine Studio
project component. The address bar will display as a text box below the Edit
Toolbar.

To display the address bar:

1 Open Peregrine Studio.

2 Click View > Address Bar.

The Address Bar displays below the menus.

Drag and drop
Peregrine Studio supports drag and drop movement of components within
the Project Explorer. Changing the order of nodes in the Project Explorer will
change how the items are presented in the Peregrine Studio build.

To move a component within the Project Explorer:

1 Click and hold the left mouse button over the name of the node you want to
move.

FormForm component

Module

Activities
The Peregrine Studio interface 29

Get-Resources
2 Drag the node to the new location in the Project Explorer tree.

The node appears underneath the component (of the same level) where you
drop the node.

Note: You cannot move components out of the order enforced by the DSD.
For example, you cannot move a form out of an activity and place it at
the same level as a module. You can, however, change the order of the
forms listed under an activity.

Enabling the HTTP Listener and Form Information

Using the HTTP Listener, you can click on the Form Information address
listed for a given form and the appropriate form properties will be displayed
in Peregrine Studio. This debugging feature allows you to navigate through
Get-Resources with a browser and quickly bring up any particular form that
needs modification.

Important: The HTTP Listener cannot bring up certain forms that are built
using DocExplorer as the source code is no longer provided with
the Get-Resources tailoring kit.

The HTTP Listener is best used to tailor forms that are built from Peregrine
Studio form components.

To enable the HTTP Listener and Form Information functionality:

1 Enable the HTTP listener as follows:

a Open Peregrine Studio.

b Click Tools > Options.

c Select the Use listener check box from the HTTP Listener section.

d Select the port number you want the HTTP listener to use (the default port
is 81), and then click OK.

e Save your Peregrine Studio project.

f Close and then re-open Peregrine Studio to initialize the HTTP listener.

2 Open the project file containing the form you want to change in Peregrine
Studio.

Note: Be sure to select or create a package extension in which to save any
changes. See Saving changes with package extensions on page 45.
30 Chapter 3—Using Peregrine Studio

Tailoring Kit Guide
3 Log in to Get-Resources as an administrator, or access the Admin module
directly from the Administrator login page (admin.jsp).

4 Click Admin > Settings to display the Settings form.

5 On the Logging tab, set the Show form info setting to true.

6 Click Save at the bottom of the form to activate your new settings.

7 On the Control Panel form of the Admin module, click Reset Server to
commit your changes.

8 Navigate to the form you want to tailor.

9 Click the Peregrine Studio address displayed in the Form Information
banner of the Web application form.

Peregrine Studio will appear as the active window and display the current
form’s properties page.

Viewing Referenced Components
Whenever an item links to or references another component, Peregrine

Studio will display a magnifying glass button next to the field.

Click this link to open the
form in Studio.
Enabling the HTTP Listener and Form Information 31

Get-Resources
You can click this button to display the form, image, schema, or script that is
called by the reference.

Use Go to Previous View (the orange arrow pointing to the left) to return
to the component making the reference.

Viewing XML source code

All project information is saved in XML files that you can see from Peregrine
Studio. Peregrine Studio does not support direct editing to the XML source
of components. All XML source views are listed with a grey background
which indicates that the item is read-only.

To view the XML source code:

1 Select the node of the Web application or component you want to view from
the Project Explorer.

2 Click the Source view button (the blue capital A).

The XML source appears in the Properties window. The XML source code is
color coded as you define in the project settings.

Finding changes indicated with color text

All changes or additions you make to your Peregrine Studio project are
highlighted with blue text.

Within the Project Explorer view, Peregrine Studio highlights each node of
the tree that contains a component that has been changed or added. This
allows you to navigate through the Project Explorer tree view and locate
where you have made changes and additions.

To view the changes made in a project:

1 Select a node displayed with blue text to view the component properties.

2 Review the properties listed in the window displayed to the right of the
Project Explorer (the Properties window). Changes that were made to this
component will be displayed with blue text. If no blue text is displayed in the
Properties window, then the change or addition is in one of the child nodes
below the current node.
32 Chapter 3—Using Peregrine Studio

Tailoring Kit Guide
3 If necessary, expand any child nodes highlighted with blue text and review
the Properties window for changes.
Finding changes indicated with color text 33

Get-Resources
34 Chapter 3—Using Peregrine Studio

CHAPTER

4
 Peregrine Studio Projects and
Packages
Peregrine Studio projects contain all of the packages that make up an
application. A new package, or multiple packages, must be created when you
are making changes to your project. These packages can then be activated or
deactivated, depending on which features you want to be included in your
current project.

This chapter includes the following topics:

Peregrine Studio projects on page 36

Building a project on page 41

Peregrine Studio project packages on page 44

Warnings for conflicts on page 47

Deploying tailoring changes on page 49

Translating tailored modules on page 50

Adding Get-Resources to an existing frameset on page 54
Peregrine Studio Projects and Packages 35

Get-Resources
Peregrine Studio projects

Peregrine Studio saves all the source files for Get-Resources as a project. A
Studio project consists of several components that are combined during the
build process.

*ECMAScript is the core language standard shared between the JavaScript
and JScript libraries.

Studio component Description

Get-Resources
components

The XML files that define the functionality of
Get-Resources consisting of packages, modules, activities,
forms, and form components.

ECMAScripts* ECMAScripts create and format message objects to the
Archway servlet. Get-Resources components will use
ECMA message objects to display and process data.

Document schema
definitions

The XML files that define how the Archway servlet should
format the ECMA message objects sent to and received
from back-end databases. Get-Resources components will
use the ECMA message objects to display and process data.

Presentation files Any supporting files such as images, client-side JavaScript,
hand-coded HTML or JSP files, or translation strings that
will be included with Get-Resources.

Stylesheets The Cascading Style Sheet (CSS) files that define the colors
and fonts that will be used in your Get-Resources pages.
36 Chapter 4—Peregrine Studio Projects and Packages

Tailoring Kit Guide
Project components
Peregrine Studio organizes project components into a hierarchy of parent
and child elements. The position of a project component determines the
individual properties it can have. Properties include, for example, what other
project components can be placed within the component and the type of
editor used to edit the component. All Peregrine Studio projects conform to
the same hierarchy:

Project component descriptions
This table lists and describes some of the Studio components. For a complete
list of the components that make up a Studio project, refer to Appendix A,
beginning on page 215.

Template

Group of modules

Module

Activity

Form

** Form components

Component Description

Project The project component:

is the container for all the elements that are part of
your current project file.
is always the top node of the Project Explorer tree.

is represented by an open package icon () in the
Project Explorer tree.

Templates (support files) The templates component:

is the container for all the common elements reused
throughout the project.

appears with a yellow cube icon () in the Project
Explorer tree.
Peregrine Studio projects 37

Get-Resources
Group of modules The group of modules component:

is the container for all the supporting files and
modules that make up Get-Resources.

appears with a double red cubes icon () in the
Project Explorer tree.
does not have any one dedicated graphical
representation in the built project.

Module The module component:

is a container for the activities and forms that make
up Get-Resources.

appears with a double red box icon () in the
Project Explorer tree.
appears as a text link on the navigation sidebar and
may also appear on the Get-Resources Home
Menu.

Note: The module component is usually where
access restrictions are defined. Setting access
restrictions limits a module to particular user roles.

Activity The activity component:

defines a particular task or action such as searching
for records, displaying records, or entering records.
is a container for a particular set of forms.
appears with a cube and two window panes icon
() in the Project Explorer tree.

appears as a text link on the navigation sidebar
(Activity Menu).

Form The form component:

is where Get-Resources user interfaces and displays
are defined.
appears with a cube and a single window pane icon
() in the Project Explorer tree.

Note: Typically, the system displays each form
component as a page in the main frame.

Form components Form components such as fields, actions, tables,
and lookups define the actual user interfaces and
displays used in a Get-Resources form.
Form components appear with a variety of icons in
the Project Explorer Tree.
Most form components also have a graphical
element in a Get-Resources form.

Component Description
38 Chapter 4—Peregrine Studio Projects and Packages

Tailoring Kit Guide
*Portal Components are available only in the portal module.

Group of scripts The group of scripts component:

is a container for all the server-side ECMAScripts
used by Get-Resources.
appears with a document with a yellow border icon
() in the Studio Project Explorer tree.

Group of schemas The group of schemas component:

is a container for all the document schema
definitions that Get-Resources uses.

appears with a data store and document icon ()
in the Studio Project Explorer tree.

Group of files The group of files component:

is a container for supplemental files that your Web
applications can use. You can store images,
client-side JavaScript, localized string files, or
initialization files here.

appears with a folder icon () in the Studio
Project Explorer tree.

Component Description
Peregrine Studio projects 39

Get-Resources
Project files
This table describes the files that make up a Studio project and the
information they contain. Items listed in italics are variables. To determine
the actual file name, replace the italic text with the component name.

Warning: Do not edit these files outside of Studio. Manual changes you make
outside of Studio will be lost during the build process.

Component Saved as Contains

project ..\Program Files\Peregrine\Studio\
project\project.adw

<package> names
Path to package.xml

package ..\Program Files\Peregrine\Studio\
packages\package\package.xml

<package> name
<modules> name
<module> names
Path to module.xml
Schema Names
Path to schema.xml
Script Names
Path to script.xml

modules part of
..\Program Files\Peregrine\Studio\
packages\package\package.xml

<modules> name

module ..\Program Files\Peregrine\Studio\
packages\package\modules\
module.xml

<module> name
XML code for <activity>,
<form>, and <form>
components

schema ..\Program Files\Peregrine\Studio\
packages\package\modules\Schemas\
schema.xml

XML code for <schema>

script ..\Program Files\Peregrine\Studio\
packages\package\modules\
ServerScripts\script.xml

XML code for <script>

presentation
files

..\Program Files\Peregrine\Studio\
packages\package\modules\
Presentation

Directory where
presentation files can be
stored to be included in a
Studio build.
40 Chapter 4—Peregrine Studio Projects and Packages

Tailoring Kit Guide
Building a project

During the build process, Studio compiles the XML components of your
project into a collection of Java Server Pages (JSP). The JSP content will be
generated in whatever folders you selected in your Studio Build Settings.
Generally, Studio produces one JSP for each form.

XML to JSPs
This table summarizes how the XML content of your project is converted
into JSPs during the build process. Items listed in italics are variables. To
determine the actual file name, replace the italic text with the component
name.

Warning: Do not edit these files outside of Studio. Manual changes you make
outside of Studio will be lost during the build process.

Example

Modules name = search
Module name = employees
Activity name = empsearch
Form name = search

XML files saved in project = search.xml and employees.xml.
JSP created during build = e_employees_empsearch_search.jsp.

Project component Built as

package A collection of JSP files, XML files, and string files.

modules A collection of JSP files, XML files, and string files.

module A collection of JSP files, XML files, and string files.

activity A collection of JSP files, XML files, and string files.

form e_module_activity_form.jsp

form components as part of e_module_activity_form.jsp
Building a project 41

Get-Resources
Build options
Peregrine Studio offers the following build options from the Build menu:

Important: If you use the Clean the target folders option, you will have to
redeploy Get-Resources in addition to rebuilding the project. It
is recommended that you avoid using this option unless you are
removing a Get-Resources installation.

Setting project build settings
You can define the build settings option to define the file locations and file
formats used during the build process. Each Peregrine Studio project can
have its own project settings.

To set project build settings:

1 From the Build menu, select Project settings.

Build option Description

Clean the target folders Deletes the contents of the presentation and deployment
folders.

Build element Builds the currently selected element in the project
explorer. This element will not be rebuilt the next time a
differential build is performed.

Differential build Builds only those elements that have changed since the
last build.

Rebuild all Builds all elements of the project.

Stop Build Stops a currently running build process.
42 Chapter 4—Peregrine Studio Projects and Packages

Tailoring Kit Guide
The Project Settings window opens.

2 Click the Build Variables tab.

3 Enter or browse to the proper directory for the following settings.

Root Build Directory—the root folder for the build.

Presentation folder—the folder where you want generated files to be
created during a build. Generally, this is the same folder where you create
a Web server virtual directory mapping to run Get-Resources. Typically,
the presentation folder is the WEB-INF folder of your application server.

Deployment folder—the folder where scripts, schemas, and screen
descriptions are located.

Warning: Do not change this option.

Temporary folder—the folder where Peregrine Studio will generate
temporary files used in the build process.

Exclude files—a semicolon-separated list of files or directories that you
want Peregrine Studio to exclude from removing or rebuilding during a
build.

Character encoding—Not used. JSP encoding is determined by the
character encoding setting on the Settings page of the Admin module.

Ejb User—Enterprise Java Beans. The BizDoc database user (rome).

4 Click OK to save your settings.
Building a project 43

Get-Resources
Peregrine Studio project packages

Packages contain all the XML documents, ECMAScripts, and schemas
necessary to run Get-Resources. Your Get-Resources project is defined by
one or more packages, which are either system or extension packages:

System packages. The system packages provided by Peregrine define the
out of the box functionality of Get-Resources.

Extension packages. Any packages you create are called extensions.
Package extensions store all of your additions or modifications.
Extensions store only the elements that you have added or changed from
the base system package.

You can see the system packages and the extensions that make up your
project from the Package Activation toolbar. This view displays the active
packages that can be edited and built in your project. When a package is
activated, the changes or additions will be included in the build. When a
package is deactivated, the changes or additions will not be included in the
build. The modular design of packages allows you to decide which changes
and additions will be included or excluded from the build process.

Tip: Group similar Web application functions in the same package
extension. This will allow you to activate or deactivate groups of
functions using the Package Activation toolbar. For example, if you are
testing different interfaces with the same functionality, you may want to
save each interface in a different package extension. After you determine
which interface is better, you can implement the new interface by only
activating that package extension and rebuilding the project.

Packages are not displayed in the Project Explorer Project tree. The list of
available packages (packages that have been activated) is included in the
Package Explorer drop-down list located below the toolbar in Peregrine
Studio.
44 Chapter 4—Peregrine Studio Projects and Packages

Tailoring Kit Guide
Saving changes with package extensions
All additions and changes to a project must be saved under a package
extension name. By default, all of the packages that ship with Get-Resources
are write-protected and cannot be used as the save location for your tailoring
efforts. To tailor your installation you need to create one or more new
package extensions where your changes and additions will be saved.

To create a new package extension:

1 Open Peregrine Studio.

2 Click File > New package to start the Create New Package wizard.

3 Enter the name and package dependencies for the new package.

Name. Enter a name for the new package extension. The package
extension name cannot contain spaces or special characters.

Dependencies. Select the existing package or packages that your package
extension will be dependent on. Your new package extension must be
dependent on at least one existing package. Clear the check boxes of the
packages that you do not want your new package to be dependent on.

4 Click OK to complete the wizard.

5 Save your Peregrine Studio project file.

6 Close and then restart Peregrine Studio.

Any changes or additions you make to Get-Resources will now be saved in
your new package.

Activating and deactivating packages
You can control the packages and package extensions that are part of
Get-Resources by activating or deactivating them from the Package
Activation menu. To include a package in Get-Resources installation,
activate the package, and then build the Studio project. To remove a package
from your installation, deactivate the package and then rebuild the Studio
project.
Peregrine Studio project packages 45

Get-Resources
To activate a package:

1 To display the package activation toolbar, click View, and then click Package
Selector.

The Package Activation toolbar is displayed.

2 Click the Package activation button ().

3 Select the checkbox next to the package name or names you want to activate.

4 Click OK.

All active packages will be included in the next build.

To deactivate a package:

1 Click the Package activation button ().

2 Clear the check box next to the package name or names you want to
deactivate.

3 Click OK.

All deactivated packages will be excluded from the next build.

Package dependencies
Each package has a list of dependencies that define what other packages are
affected by the current package’s changes or additions.

When you create package extensions, you must select the other packages that
your new extension will be dependent on. You will be able to make changes
or additions to only the packages that are listed in your extension’s
dependencies. If you try to make changes outside your extension’s
dependencies, you will produce a conflict.

You can use the package dependency list to determine what other packages a
particular extension affects. This information is particularly useful if you are
trying to resolve conflicts in your projects.

Package dependencies are first defined by the New Package wizard when you
create a package. You can manually change the package dependencies using
the procedures described below.
46 Chapter 4—Peregrine Studio Projects and Packages

Tailoring Kit Guide
Setting package dependencies
To set package dependencies:

1 Go to Tools > Package Dependencies.

2 From the left pane, select the package name for which you want to set
dependencies.

The list of defined dependencies appears in the right pane.

3 Select the check boxes next to the package names you want to add as package
dependencies. Clear the check boxes next to the package names you want to
remove as package dependencies.

Note: Dependent packages activate or deactivate as a group. For example,
suppose you create a user extension called New_Interface that is
dependent on the Extension package. If you deactivate the Extension
package, you will also deactivate the New_Interface package. If you
activate the New_Interface package, you will also activate the Extension
package.

4 Click OK to set the dependencies.

Warnings for conflicts

Peregrine Studio validates your project and ensures that there are no
conflicting instructions or missing components. If Peregrine Studio
encounters a conflict, it displays an exclamation point icon next to each
node that contains a conflicting component within the Project Explorer view.

Peregrine Studio will display a conflict warning if any of the following
conditions occur.

Two or more active project components describe the same thing. For
example, if you have two active package extensions that rename the same
button, you will create a conflict.

You make changes or additions to a package that is not defined as a
dependent package. For example, if you create a package called test that is
solely dependent on the package changes, then the test package cannot
make changes or additions to other packages, such as incidentmgt.
Attempting to make such changes will create a dependency conflict.
Warnings for conflicts 47

Get-Resources
Resource conflicts
Resource conflicts occur when two or more activated package extensions
describe the same project components. For example, if the Extension package
extension adds a submit action to a form, then you will see a resource conflict
if another package extension (for example, called demo) also adds a submit
action to that form. The submit action on that form can only be described by
one package extension at a time.

Resolving Resource Conflicts
To resolve a resource conflict, you can either deactivate the package
extension with the conflicting project component or you can delete the
project component creating the conflict from one of the package extensions.
Continuing the example from above, you could either deactivate the demo
package extension or you could delete the submit action from the demo
package extension.

Dependency Conflicts
Dependency conflicts occur when you change a project component in a
packages that is not listed as a dependency for your current package
extension. For example, if the demo package extension is solely dependent on
the incidentmgt package, then the demo package extension cannot make
changes to the sharedtemplates package without creating a dependency
conflict.

Resolving Dependency Conflicts
To resolve a dependency conflict you can either add a dependency to the
package extension, or you can move the changes to another package
extension with the proper dependencies. Continuing the example above, you
could either make the demo package extension dependent on the
sharedtemplates package or you could move the changes from the demo
package extension to another package extension such as extension, which is
already dependent on the sharedtemplates package.

Viewing Conflict Information
The Information on Selection tells you whether you have a resource or a
dependency conflict.
48 Chapter 4—Peregrine Studio Projects and Packages

Tailoring Kit Guide
To view conflict information:

1 Select a node with an exclamation point icon displayed next to the name
from the Project Explorer view.

2 Click View > Information on Selection.

A new information window will be displayed at the bottom of the Peregrine
Studio interface. This window displays information on the conflict.

For additional information about a particular project component and its
possible settings, refer to the Studio Introduction and the Studio online help.

Deploying tailoring changes

After you build your Peregrine Studio project file, you will need to deploy
your new files to your Get-Resources server. The following sections describe
how to deploy your tailoring changes to your test and production
environments.

Deploying to Windows platforms
You can deploy your tailoring changes directly over your Windows network.

To deploy tailoring changes on Windows platforms:

1 Stop the application server on the target machine.

2 Copy the files from the Peregrine Studio deployment directory to the
application server’s deployment directory on the target server.

3 Restart the application server on the target machine.

Deploying to UNIX platforms
You can deploy your tailoring changes to UNIX platforms using whatever
cross-platform methods you have available such as FTP, shared drives, or
e-mail.
Deploying tailoring changes 49

Get-Resources
Translating tailored modules

Out of the box, all Get-It web applications are provided in English. You can
order translated versions of Peregrine Studio by purchasing a language pack.
Peregrine Studio 4.0 language packs are available in the following languages:

French

Italian

German

Note: Refer to the Peregrine support web site to determine the current
availability of Get-Resources language packs.

If you tailor your installation of Get-Resources, you will need to translate any
strings that you added. The following sections describe how you can translate
your tailored modules.

If you have a language pack version of Get-Resources, you will need to edit
the existing string files for these applications and add any new strings that
resulted from your tailoring efforts. For more information on the process,
refer to Editing existing translation strings files on page 51.

If you do not have a language pack version of Get-Resources and you want to
create a new translation, refer to the instructions in Adding new translation
strings files on page 52.

To configure Get-Resources to use your new translation, refer to Configure
Get-Resources to use new string files on page 53.
50 Chapter 4—Peregrine Studio Projects and Packages

Tailoring Kit Guide
Editing existing translation strings files
You can make edits, additions, and deletions to string files outside of
Peregrine Studio using any text editor or standard translation software.

To edit an existing translation string file:

1 Open the English string file for your Peregrine Studio project in a text editor
or translation program.

You can find all the translation string files in the application server’s
deployment directories:

<application server install>\webapps\oaa\WEB-INF\strings

<application server install>\webapps\oaa\WEB-INF\apps\<application
group of modules name>

Note: The English string file will have the ISO-639 two letter abbreviation
EN in the file name.

All strings files have a STR file extension.

2 Search for any new text that you added to your tailored Peregrine Studio
project.

The string file uses the format illustrated below:

String_label, "translated string"

Where String_label is the Peregrine Studio name given to the string, and

Where translated string is the actual value of the string to be translated.

For example if you added a new button, you might look for:

EMPLOOKUP_EMPLOYEELOOKUP_SEARCH_LABEL, "Search"

3 Copy the entire line containing the English string.

4 Open the string file for the target language in which you want to add a
translation.

Note: The string file will use the ISO-639 two letter abbreviation for the
language in the file name.

5 Paste the copied English string into the target string file. You can paste the
string at the end of the string file.
Translating tailored modules 51

Get-Resources
6 Change the "translated string" portion of the new string to the target language
of your translation. For example, to change the string listed above to French,
you might enter the following:

EMPLOOKUP_EMPLOYEELOOKUP_SEARCH_LABEL, "Recherche"

7 Save the new string file.

The new translation strings will be available as soon as you stop and restart
the application server.

Adding new translation strings files
You can add new string files to provide additional language support to
Get-Resources. The translation process can be accomplished using any text
editor or standard translation software.

Important: Peregrine does not support any user translated versions of
Get-Resources.

To edit an existing translation string file:

1 Open the English string file for your Peregrine Studio project in a text editor
or translation program.

You can find all the translation string files in your application server’s
installation directory:

<application server install>\webapps\oaa\WEB-INF\strings

<application server install>\webapps\oaa\WEB-INF\apps\<application
group of modules name>

Note: The English string file will have the ISO-639 two letter abbreviation
EN in the file name.

All strings files have a STR file extension.

2 Copy the entire the English string file.

3 Create a new string file for the target language in which you want to add a
translation.

Note: The string file must use the ISO-639 two letter abbreviation for the
language in the file name.

4 Paste the copied English string file into the new file.
52 Chapter 4—Peregrine Studio Projects and Packages

Tailoring Kit Guide
5 Change the "translated string" portion of each string to the target language of
your translation.

6 Save the new string file.

The new translation strings will be available as soon as you stop and restart
the application server.

Configure Get-Resources to use new string files
1 Log in as an administrator (the administrator login page is located at

admin.jsp).

2 Click Settings.

3 Click the Common tab.

4 Enter the two letter ISO-639 language code for the languages you want to
support in the Locales field. The first code entered will be the default
language used. The other languages you define will be available in a
drop-down list.

5 In the Content type encoding field, enter the character encoding to be used
for the display language. The following table lists some of the common
character encoding formats.

6 Click Save at the bottom of the Settings form to save your changes.

7 On the Console form, click Reset Server to implement your changes.

Users will now be able to select the display language for their session used
when they login to the Peregrine OAA Platform.

Character Encoding Character Set

ISO-8859-1 U.S. and Western European character sets. This is
the default character set used by Studio.

Shift_JIS Japanese character set

ISO-8859-2 Polish and Czech character set
Translating tailored modules 53

Get-Resources
Adding Get-Resources to an existing frameset

You can add Get-Resources to an existing frameset to incorporate into your
corporate intranet. To do this, you will need to edit a JavaScript file within
your project file and add a reference to Get-Resources to the parent frameset.

To add Get-Resources to an existing frameset:

1 Open the following file in a text editor:

<tomcat installation>\webapps\oaa\js\setDomain.js

or locate the file in the equivalent directory in your application server.

2 Add the following line to the bottom of the script:

setDomain(server name);

where server name is the name of the server where the parent frameset is
located.

3 Save the file.

4 Add the following line to each JSP file that will include Get-Resources in a
frameset. These files must be saved on the server listed in step 2.

<script language="JavaScript" SRC="js/setDomain.js">
</script>

5 Save the updated JSP files.
54 Chapter 4—Peregrine Studio Projects and Packages

CHAPTER

5
 Forms and Form Components
This chapter provides an introduction to the tailoring Peregrine Studio
forms. Topics include:

Tailoring forms on page 56

Creating a portal component on page 72

Types of form components on page 74
Forms and Form Components 55

Get-Resources
Tailoring forms

Each page displayed in Get-Resources consists of a form and several form
components. Each form also has the following supporting elements:

An onload script that gathers the data that the form displays or processes
information from the previous form.

A schema, which maps to fields in the database and determines what
information to display.

For a complete list of each component available in Studio, see Appendix A,
beginning on page 215.

You can change a form’s title, instructions, onload script, and component
labels. You can also hide a form component and make a form read-only.

To tailor Get-Resources forms:

Step 1 Open the project file you want to tailor in Peregrine Studio.

Step 2 Select or create a package extension in which to save your changes.

Step 3 Open your browser and log in to Get-Resources.

Step 4 Navigate to the form you want to tailor by doing one of the following:

Click the Studio address in the Form Information banner. Peregrine
Studio will appear as the active window and display the current form’s
properties page.

OR

In Peregrine Studio, locate the form in the Project Explorer.

Step 5 Modify the Get-Resources form in Peregrine Studio. Options include:

Changing a form’s title on page 57.

Changing a form’s instructions on page 58.

Changing a form’s onload script on page 59.

Changing a form component’s label on page 60.

Hiding a form component on page 61.

Changing a form component to read-only on page 62.

Changing the schema that a form component uses on page 63.
56 Chapter 5—Forms and Form Components

Tailoring Kit Guide
Changing the document field that a form component uses on page 64.

Displaying a form within a frameset on page 67.

Displaying a script variable in a form component on page 69.

Step 6 Save the project file.

Step 7 Rebuild the project file.

Tip: If you have only made changes to one or more forms in an activity or

module, use the Differential Build option () to build just the
components that have changed. This option will reduce the time needed
to build your Peregrine Studio project.

Step 8 Restart your application server to clear the cache.

Step 9 Refresh the browser to reload the form you modified.

Step 10 Review your changes and test the added functionality.

Tip: If you want to test new access right settings for your components, log on
to Peregrine Studio with several different users with different access
rights.

Changing a form’s title
Each form displays a title at the top of the navigation menu. If you want to
change or remove the title displayed for a particular form, set the following
form properties.

To change a form title:

1 Open the form’s properties in Peregrine Studio.

2 In the Title (en) field, enter the new form title

3 Click the check mark button () at the right of the field to accept the new

title.
Tailoring forms 57

Get-Resources
4 Save and build your project file.

Changing a form’s instructions
Most forms display a set of instructions at the top of the frame. You can
change the instructions to match any changes you make to the form’s
interface.

To change form instructions:

1 Select the form in the Project Explorer.

2 Select the Instructions tab in the Properties window.

3 In the Instructions (en) field, enter the new form instructions.

4 Click the check mark button () at the right of the field to accept the new

form instructions.
58 Chapter 5—Forms and Form Components

Tailoring Kit Guide
5 Save and build your project file.

Changing a form’s onload script
A form’s onload script gathers all the data that the form displays, or processes
information from the previous form. Many onload scripts also invoke
schemas to present back-end database information in a format that is easier
to map to particular form fields or form components.

To change the onload script invoked by a form:

1 Select the form in Studio.

2 Click the Script tab in the Properties window.

3 In the Server Onload Script field, enter or select the script you want to invoke
when this form is loaded. You can use the drop-down list to select any of the
scripts saved in your project file.

4 Save and build your project file.

5 Restart your application server.
Tailoring forms 59

Get-Resources
Changing a form component’s label
Many form components contain a label that is displayed next to or above the
form component. Some of the most commonly configured form
components are the field form components (check box, select box, edit field,
and so forth).

To change a component label (field label):

1 Select the form in the Project Explorer.

2 On the General tab, select the Label (en) field, enter the new form component
label, and press ENTER.

3 Save your project.

4 Build your project file.
60 Chapter 5—Forms and Form Components

Tailoring Kit Guide
Hiding a form component
All form components have a Visible flag property that hides or displays the
component in the Web application interface. If you want to remove a form
component from the interface but still have it available in Peregrine Studio,
you can toggle the form component’s Visible flag to No. This prevents the
form component from being part of the next Peregrine Studio build.
Non-visible (and thus non-built) form components are displayed with a red
X over the form component icon in the Project Explorer tree.

To hide a form component in the interface:

1 Select the form in the Project Explorer.

2 On the Advanced tab, clear the Visible flag option.

3 Save your project.

4 Build your project file.
Tailoring forms 61

Get-Resources
Changing a form component to read-only
Certain form components such as edit fields and text areas are available for
users to enter and change information. If you want to restrict these form
components so that they only display data, you can set the readonly attribute
for the form component. The data displayed by a readonly form component
will no longer have a bounding box or area to indicate that it can be edited or
changed.

You can change a form component back to its original state by removing the
readonly attribute.

To make a form component read-only:

1 Select the form in the Project Explorer.

2 On the General tab, select the Readonly check box.

3 Save your project.

4 Build your project file.
62 Chapter 5—Forms and Form Components

Tailoring Kit Guide
Changing the schema that a form component uses
Certain form components such as selectfields and simple tables use a schema
to determine what information to display. You can change the information
these form components display by changing the schema defining the
document fields. In some cases you may also need to change other form
component attributes that depend on the fields defined in the schema.

To change the schema that a form component uses:

1 Select the form in the Project Explorer.

2 Click the Advanced tab.

3 In the Databound section, select the Document field, and enter or select the
name of the schema that you want to use as the source document for this
form component.

4 Save and build your project file.
Tailoring forms 63

Get-Resources
Changing the document field that a form component uses
Certain form components such as selectfields and table columns use a
particular document field of a schema to determine what information to
display. You can change the information these form components display by
changing the document fields these components use.

Note: The list of document fields available to a form component is
determined by the schema used. Peregrine Studio does not validate the
document field you select.

To change the document field that a form component uses:

1 Select the form component in Peregrine Studio to display the component’s
properties.

2 In the Document Field field, enter the name of the field in the XML message
where this form component’s information is stored.

Note: The field you select must be defined as an attribute in the schema
defined in the form component’s properties.

3 Save your project.
64 Chapter 5—Forms and Form Components

Tailoring Kit Guide
4 Build your project file.

Format of document field name
The Document Field attribute of forms is always mapped to an element in the
Message object returned by the form’s onload script.

The Archway servlet formats Message objects as XML files using the tag
definitions and back-end database table and field information that the
schemas provide.

The Document Field attribute of a form component must map to an
<attribute> element in a schema.

You can specify the Document Field attribute that a form component uses in
one of several ways:

If the Document Field attribute has a unique <attribute> name in the
schema, you can list just the <attribute> name.
Tailoring forms 65

Get-Resources
If the Document Field attribute is repeated in the schema, you must
specify the nested <document> name or names and the <attribute> name.
The <document> name and the <attribute> name must be separated by a
slash character (/).

If the Document Field attribute is part of a nested <document> element,
you have the choice of either listing the <attribute> name by itself or
specifying the some or all of the path using the syntax of
<documents>/<document>/<attribute>. This syntax allows Web application
developers to specify as much or as little of the document path as is needed
to create a field attribute mapping.

Example

Suppose you are creating a form where users can review and submit asset
requests. A typical asset request may be formatted as the following XML
message:

<request>
 <Number>012345</Number>
 <Purpose>Asset Management</Purpose>
 <EndUser>
 <FirstName>Michaela</FirstName>
 <LastName>Tossi</LastName>
 </EndUser>
 <Requester>
 <FirstName>Richard</FirstName>
 <LastName>Hartke</LastName>
 </Requester>
</request>

In this case, the <FirstName> and <LastName> tags are repeated in two
different sections of the XML message. To display these tags in a form, you
will need to specify more of the document path when you enter the path of
the Document Field attribute. The entries below illustrate the minimum
document path needed for the Document Field attribute in a form
component.

Number
Purpose
EndUser/FirstName
EndUser/LastName
Requester/FirstName
Requester/LastName
66 Chapter 5—Forms and Form Components

Tailoring Kit Guide
You can also specify the Document Field attribute path using all the elements
of the XML message. The following entries illustrate the full document path
that can be used for the Document Field attribute in a form component.

request/Number
request/Purpose
request/EndUser/FirstName
request/EndUser/LastName
request/Requester/FirstName
request/Requester/LastName

The number of elements that you must specify in the document path is
determined by how you set up your schemas.

Displaying a form within a frameset
You can display forms within multiple frames by creating a special frameset
form. All frames within a frameset form will be displayed within the frame
normally reserved for forms.

To display forms within a frameset:

1 Right-click the activity where you want the frameset form to be, point to
New, and then click Form.

2 Click the Others tab.

3 Select Frameset from the Formtype drop-down list box.

4 Enter row and column sizes in the Frameset pane.
Tailoring forms 67

Get-Resources
Note: You can use percentage to describe frameset size properties.

5 Create a new form for each frame in the frameset form.

6 Create a redirection under the frameset form for each target form in the
frameset.

7 Save your project.

8 Build your project file.

To display the form title within a frameset:

1 Open the frameset form’s component properties in Studio.

2 Create a new server onload script within your project.

3 Add the following lines to the script:

top.setTitle(TitleText)

Where TitleText is the title you want to display at the top of the frameset.

4 Open the component properties page for the target form within the frameset.

5 Click the Script tab.
68 Chapter 5—Forms and Form Components

Tailoring Kit Guide
6 Select the server script you created in step 2.

7 Save your project.

8 Build your project file.

Displaying a script variable in a form component
You can use script variables to reuse information gathered from other forms
in form components such as form titles and instructions.

All script variables begin with a double dollar sign notation and then display
the variable name in parentheses; for example, $$(FirstName). All variable
names map to an XML element name in the script output of a form. Thus the
script variables $$(FirstName) and $$(LastName) map to the elements
<FirstName> and <LastName> in the XML output of a script.
Tailoring forms 69

Get-Resources
In the case of a search for an employee named Richard Hartke, the script
output might look like the following.

The contents of each variable are displayed in the form title.

Note: You must select the Display form information option from
Administration > Settings in order to see the Script Input and Script
Output options.
70 Chapter 5—Forms and Form Components

Tailoring Kit Guide
Variable names can also include schema attribute names or nested elements
names using a slash notation. For example, the buyer script uses the
$$(Price/currency) variable to pass information from the currency attribute
of the <Price> element. Using the sample data, the $$(Price/currency)
variable would pass 1119.00 for the <Price> and USD for the currency
attribute.
Tailoring forms 71

Get-Resources
Creating a portal component

Portal components are special forms that display on the Peregrine Portal
home page within special portal frames. To create your own portal
components you need:

Get-Resources packages and source code (included with the
Get-Resources tailoring kit)

Peregrine Studio

To create a portal component:

1 Open the Get-Resources project in Peregrine Studio.

2 Right-click the Group of Modules node to which you want to add a portal
component and then select New > Group of Portal Components.

You do not have to add another Group of Portal Components if one already
exists in your project.

3 Right-click the Group of Portal Components node from the navigation tree
and select New > Portal Component.

4 Enter the following properties for the portal component:

a Label (en). Enter the name you want the portal component to have in the
Add/Remove content page.

b Column type. Select either wide or narrow. This setting determines the
size of the portal frame where Peregrine Studio displays the portal
component.

c Height of IFRAME. Enter a height value if you plan to display this portal
component from WebSphere Portal Server.

5 Right-click on the new portal component and select New > Contents.

A standard form page is added.

6 Enter any form components, onload scripts, parameters, or access
restrictions you want the portal component to have.

Tip: You can use existing Get-Resources portal components as a template.

Keep in mind the following considerations:

Portal components have less space then normal forms to display
information. You should design your form component to fit in either a
narrow or wide portal component frame.
72 Chapter 5—Forms and Form Components

Tailoring Kit Guide
Portal components cannot include the redirection form component. If
you want to direct users to another form or HTML page, you will need to
use the Business View Authoring tool.

You can import a static JSP or HTML page into a portal component.

7 Right-click on the new portal component and select New > Configure.

A standard form page is added.

8 On the configure form, add any form components and onload scripts you
want to use to configure your portal component.

Important: You can only have one server onload script per portal
component that runs from either the contents or the configure
forms.

9 Save your project file.

10 Build your project and deploy your updated JSP files to your application
server’s presentation folder.

Important: You must add an adapter name entry to the Alias for field in the
PortalDB tab in order for Get-Resources to display portal
components. This setting is available from the Administration
page (admin.jsp).
Creating a portal component 73

Get-Resources
Types of form components

The following sections describe some of the more commonly used form
components. For a complete list and description of all Studio components,
see Appendix A, beginning on page 215.

Component template containers
A component template is a special type of container used to store groups of
preconfigured form components. A component template allows you to reuse
the form components stored in the template throughout your project. After
you create a component template, the component template name appears in
the templates list of the Create and New menus. A component template
references all the child form components and attributes settings defined in
the template.

If you add a component template to Get-Resources and do not modify it,
Peregrine Studio saves the form components as links to the component
template. If you make changes to the form components in the template,
Peregrine Studio saves only the changes you have made and links to the form
components that you did not change.

Tip: Use component templates to re-use common elements of your forms.
For example, if several of your forms contain customized search
functionality, then you could create a component template that
automatically calls the correct search schema, queries your back-end
system, and displays the proper search fields.

To create a component template:

1 Right click the Templates nodes and click New > Field Container >
Component Template.

Peregrine Studio adds a new component template node to the Project
Explorer Tree.

2 Enter the name for the component template.

3 Right click the new component template node and use the New option to add
form components.

4 Configure the form components you add to the template component.
Peregrine Studio uses these settings as the default settings of the template
component.
74 Chapter 5—Forms and Form Components

Tailoring Kit Guide
5 Save and build your Peregrine Studio project.

The new template component appears as an option in the New menu.

Important: Do not copy and paste or drag and drop items between template
components. Instead add form components via the
context-sensitive or Create menus. Studio does not use the
linking features of template components on items that you copy
from existing template components.

To add a component template to a form:

1 Right-click the form where you want the component template to be.

2 From the New menu, select the template you want to add.

Form components you can add to a component template

All except Action and Redirection.

Tip: You can use a component template as the container for any form
components that require a container. This is typically done for form
components such as hiddenfields where you are not concerned about
the display of the fields.

Attributes you can set for a component template

Title, Summary, Order, User Role Restrictions, and Dynamic Runtime
Restrictions.

Fieldsection containers
The fieldsection component is a container that aligns fields into a column.
The fieldsection component displays each field on its own line in the column
and aligns the field labels along the left of each field. Each fieldsection can
have a border that surrounds the columns and visually indicates that the
fields in the container are related. You can also add a header or instructions
to your fieldsection as well as add labels and instructions to the individual
fields in the fieldsection.

Tip: You can use the fieldsection form component to group and align related
input fields. For example, if you have several fields to input search
information, you can align the fields in a single fieldsection and add a
header and instructions that will apply to all fields.
Types of form components 75

Get-Resources
To create a fieldsection:

1 Right click the form where you want the fieldsection to be.

2 Click New > Field Container > Field section.

Form components you can add to a fieldsection

Field, Component, HTML, Header, Import, and Instructions.

If you select the Header or Instructions form components, Studio will display
the text editor screen for you to enter HTML code for your header and
instructions. Peregrine Studio will not check the validity of your HTML code.

Attributes you can set for a fieldsection

Title, Summary, Order, User Role Restrictions, Dynamic Runtime
Restrictions, Border, and Readonly.

If you plan on having multiple fieldsections in a form, you can use the border
Presentation property to display a line around a fieldsection to help visually
distinguish the fieldsection from other elements in your Web application
interface. You may also want to add a Form Columns layout container to
display your fieldsections in two or more facing columns rather than a single
column down the form.

Text edit fields
A text edit field provides a bordered field in which to display or enter a value
as plain text. Text edit fields can only be added to forms within a container
such as a component template or fieldsection.

The most common use for text edit fields is to provide a space for users to
enter keyboard input. A text edit field saves the text entered into a particular
schema field when a user submits the form.

Tip: To use a text edit field for text input, add an action to the form that
submits the field information to another form. Set the Document Field
attribute of the text edit field to the corresponding attribute name used
in the document schema.

You can also use text edit fields to display information by default. To display
information in a text edit field, create an onload server script that performs a
document query, and then map the text edit field to one of fields of the
schema.
76 Chapter 5—Forms and Form Components

Tailoring Kit Guide
Tip: To use a text edit field to display of information by default, add a schema
to the parent form that defines the information to be displayed. Set the
Document Field attribute of the text edit field to the corresponding
attribute name used in the schema. Set the readonly attribute under
Presentation to Yes if you do not want users to change the information
displayed.

To create a text edit field:

1 Right-click the container where you want the field to be. This displays the
context-sensitive menu.

2 Click New > Field > Text Edit.

Form components you can add to a text edit field

None.

Attributes you can set for a text edit field

Instructions, Label, Title, Document Field, Display Value, Max Characters,
and Data.

Selectbox fields
A selectbox provides a drop-down list box from which users can select
predefined values. You can add items to the selectbox in one of two ways:

Explicitly define the options. The selectbox always displays the options
you enter and always displays them in the order you define them in the
Order attribute.

Query your back-end database and generate an XML document that
provides the display options. The selectbox displays the options as defined
by the schema used to generate the XML document. Typically, the
selectbox uses the same schema as the form of which it is a part. If you
want to use a schema to display the options in a selectbox, then you must
set the Document field attribute to an attribute name in a schema.

Tip: Use the schema query method to avoid duplicating information that is
already stored in your back-end database. If you explicitly enter the
options in the selectbox, then you have to update, rebuild, and
re-deploy your project every time you change the list of selectbox
options. If you store the selectbox options on your database, however,
then you only need to change the database values, and your schema
query will automatically pick up any changes you make.
Types of form components 77

Get-Resources
When you are working with selectboxes, keep in mind that:

You can only add selectbox fields within a container such as a component
template or fieldsection.

Users cannot add entries to selectbox fields. To implement such
functionality, you would need to write a client-side JavaScript to insert any
information added into your back-end databases.

Get-Resources uses selectbox fields to constrain user input to a list of
predefined items. The selectbox field saves the selected item to a particular
field when a user submits the form. The field used to save the information
must match a field defined in a document schema.

If you have a large number of selections for users to choose from you may
want to use a lookupfield in place of a selectbox. The advantage of using
lookupfields are:

they can be personalized

they are not loaded into memory until the lookupfield is selected, which
reduces the amount of time necessary to render the form.

To create a selectbox field:

1 Right click the container where you want the field to be.

2 Click New > Field > Selectbox.

Form components you can add to a selectbox field

Option. The Option form component allows you to explicitly define the
entries displayed in the selectbox.

Attribute categories you can set for a selectbox field

Instructions, Label, Title, Document Field, Display Value, Size, Multiple
Selection, Permit Blank, Data, Presentation, Events, User Role Restrictions,
Dynamic Runtime Restrictions, Process, Presentation, and Databound.
78 Chapter 5—Forms and Form Components

Tailoring Kit Guide
Databound attributes

The Databound attributes are where you will define what schema and
schema attributes provide the information for the selectbox. The following
list describes what information to enter in the Databound attributes.

Document. Enter the schema name you want to use to query and display
the information requested in the selectbox.

Values. Enter the attribute name from your schema that defines what
information you want to use to sort and identify the information in the
selectbox. This value can be identical to the displaylist attribute, but it is
recommended that you use the Id attribute name defined in the schema.
The Id attribute is the preferred choice because it is a unique value and
requires less memory to sort since it is only a number.

Captions. Enter the attribute name from your schema that defines what
database information you want displayed in the selectbox.

Hidden data fields
A hidden data field stores form information without displaying it to the user.
Get-Resources passes the information stored in a hidden data to other forms
when the form is submitted.

Tip: You can use hidden data fields to prevent users from having to input the
same information on multiple forms. For example, if a user enters
contact information in one form, then you can use hidden data fields to
store this contact information in later forms.

To create a hidden data field:

1 Right click the container where you want the field to be.

2 Click New > Field > Hidden Data field.

Form components you can add to a hidden data field

None.

Attributes you can set for a hidden data field

Document Field, Display Value, Visible Flag, Unique Key Field, User Role
Restrictions, and Dynamic Runtime Restrictions.
Types of form components 79

Get-Resources
Redirections
A redirection takes users to another form when the onload server script
generates a certain condition. A conditional redirection requires the parent
form to run a server script when it is loaded. To use a conditional redirection,
you must create a server script that checks for a particular condition and then
outputs a condition message when this condition occurs.

You can only add a redirection to a form; you cannot add a redirection to a
form component.

Tip: You can use a redirection to take users to a form when they enter
particular information or a particular result, such as when an error
occurs or when no results are generated.

To create a redirection:

1 Right-click the form where you want the redirection to be.

The context-sensitive menu is displayed.

2 Click New > Redirection.

Form components you can add to a redirection

None.

Attribute categories you can set for a redirection

Visible flag, Condition, Frameset, HTTP Submit Method, Parameters, Target
(form, field, or URL), User Role Restrictions, and Dynamic Runtime
Restrictions.

Redirection attributes

For most redirections, the two most important attributes to set are the
condition and the target form.

Condition. Enter the message generated by your server script that activates
the redirection to another form. If there is no condition, the redirection
will activate every time the page is loaded.

Target form. Enter the full Peregrine Studio path to the form where the
user should be redirected.
80 Chapter 5—Forms and Form Components

Tailoring Kit Guide
Simple table
A simple table is a container to display information generated from a schema
document query. The simple table form component only has two basic
functions by itself. The simple table form:

Calls the schema that will generate the table data, and

Describes how the data will be displayed in the columns of the table.

A simple table requires columns components in order to display data.

To create a simple table:

1 Right-click the form where you want the table to be.

2 Click New > Table > Simple Table.

Form components you can add to a simple table

Link, Text Column, Entry Column, Spinner Column, Select Column, Radio
Button Column, Checkbox Column, Image Column, Link Column, and
Lookup Column.

Attributes you can set for a simple table

Visible Flag, Caption (en), Title (en), Summary (en), Size, Preview, Order,
Readonly, Required, Column Sorting, Border, Process, Document, Data,
Dynamic Headers and Columns, Instructions (en), Events, User Role
Restrictions, and Dynamic Runtime Restrictions.

The Document attribute defines the schema the simple table uses. You can
enter a schema name or select one from the drop-down list box.

Simple tables include a built interface to view large tables in smaller pages.
You can use the size attribute to set the number of rows to display on one
page. When users want to view more of the table results, they can click on the
next x rows button to view the next page of table rows. All simple tables
include the link icons to browse forward and backward in the table.
Types of form components 81

Get-Resources
Table links
A table link allows the user to click on a table row and be redirected to
another form. The table link also saves some field information about the row
the user selects and submits this information to the target form. Table links
are typically used for two functions:

To display more information about an item selected in the table, or

To copy certain information about the item selected in the table into a new
form such as, for example, the price of an item in a purchase request form.

To create a table link:

1 Right-click the table where you want the table link to be.

2 Click New > Link > Table Link.

Form components you can add to a table link

None.

Attributes you can set for a simple table

Visible Flag, Label (en), Title (en), Balloon (en), Style Class, Data, Image,
HTTP Submit Method, Parameters, Target (frame, form, field, script, or
URL), Events, User Role Restrictions, and Dynamic Runtime Restrictions.

Table link attributes

For most table links, the two most important attributes to set are the
Document field and the target form.

Document field. Enter the field that describes what information should be
passed when a table link is submitted. The Document Field attribute
should match the attribute name of an item in your schema. The attribute
is typically set to the Id schema attribute.

Target form. Enter the full Peregrine Studio path to the form where the
user should be redirected when they click on a table row.

Text columns
A text column displays the results of a document query in a table column as
plain text. Each text column displays one field of information from a
back-end database. The field must match an attribute name listed in the
document schema of the parent table.
82 Chapter 5—Forms and Form Components

Tailoring Kit Guide
When working with text columns, keep in mind that they:

Are always read-only and cannot be used to update information in the
back-end database.

Can only be added as child nodes of a simple table.

To create a text column:

1 Right click the table where you want the text column to be.

2 Click New > Text Column.

Form components you can add to a text column

None.

Attributes you can set for a text column

Visible Flag, Order, Label (en), Title (en), Support Links, Data Type,
Document Field, Translation Function, Style Class, Events, User Role
Restrictions, and Dynamic Runtime Restrictions.

Text column attributes

For most text columns, the two most important attributes to set are the
Document field and the Label (en).

Document Field. Enter the field that describes what information should be
displayed in the text column. The Document Field attribute should match
the attribute name of an item in your schema.

Label (en). Enter the label you want displayed in the first row of the table
as the column heading. If you are using dynamic headers and columns,
you will want to leave this attribute blank.

Actions
An action is a button that submits form information or follows a particular
link. The following is a list of the possible actions you can include in your
forms:

Action. Use to submit form information or follow a link.

Back. Use to navigate back to the previous form.

Close. Use to close pop-up windows.

Default Action. Use to define a form’s submit action when no buttons are
displayed in a form.

Home. Use to navigate to the portal home page.

Print. Use to print the current form.
Types of form components 83

Get-Resources
To create an action:

1 Right-click the form where you want the action to be.

2 Click New > Action and then click the action type you want to add.

Form components you can add to an action

None.

Attributes you can set for an action

Submit Form, Target (frame, form, field, script, or URL), Label (en), Title
(en), Balloon (en), Image, Parameter, HTTP Submit Method, Events, User
Role Restrictions, Dynamic Runtime Restrictions, Visible Flag, and
Presentation.

Action attributes

For most actions, the three most important attributes to set are the Image
Folder, Target form and the Label (en).

Image. Enter the file name of the image to be used for the button.

Target form. Enter the full Peregrine Studio path to the form where the
user should be redirected when they click on the button.

Label (en). Enter the label you want displayed in the button.
84 Chapter 5—Forms and Form Components

CHAPTER

6
 Adding Personalization Functionality
This chapter covers the following topics:

Supporting personalization on page 86

Personalizing with DocExplorers on page 89

Using the personalization interface on page 95
Adding Personalization Functionality 85

Get-Resources
Supporting personalization

Personalization of Get-Resources is provided in two ways:

End-users can use personalization for all forms that have been built using
Document Explorers (DocExplorers). Personalization allows authorized
users to change the appearance and functionality of Get-Resources
directly from the Web interface.

Developers can use Peregrine Studio to add personalization capabilities to
their own Get-Resources forms by creating new DocExplorers. This
functionality can be enabled only by using Peregrine Studio.

To add Personalization capabilities to Get-Resources, you must have these
components:

An AssetCenter or ServiceCenter back-end database. Personalization
requires you to store each user’s login rights and personalization changes
in a back-end database.

A user account with personalization rights enabled. A user’s login profile
determines the level of personalization rights Get-Resources grants to the
user. A user’s personalization rights determine not only what personalized
components can be seen and changed, but also determines whether other
users will see their personalization changes.

A configured DocExplorer activity to provide personalization in the
Get-Resources Peregrine Studio project. You must configure each
DocExplorer activity with an adapter name and a schema name. A
DocExplorer can only use one schema at a time.
86 Chapter 6—Adding Personalization Functionality

Tailoring Kit Guide
Activating personalization
You can grant access to personalization features in one of two ways:

Grant all users personalization rights with the end-user personalization
administrative setting

Grant specific users personalization rights by adding a security capability
to their user profile.

You can globally define end-user access to personalization by selecting one of
three options from the End User Personalization options on the
Administration > Settings page. The end user personalization setting can
have one of three values:

Enabled. This global setting enables end-users to personalize any
DocExplorer activity that they have rights to see. End-users can add or
remove any field listed in the schema used by the DocExplorer. However,
only end-users with a getit.personalization.admin (or equivalent) security
capability will be able to use the advanced explore options.

Limited. This global setting enables end-users to personalize any
DocExplorer activity that they have rights to see. Unless they have another
security capability with greater rights, end-users can add or remove only
the fields that an administrator has revealed. This setting also prevents
end-users from changing read-only fields to editable fields.

Disabled. This setting globally turns off all personalization except to users
who the administrator has explicitly granted a personalization security
capability. All other end-users do not see the personalization wrench icon,
and only see the fields that an administrator has configured.

You can individually grant users personalization rights by adding a capability
word to the user profile stored in the Get-Resources back-end database. The
following personalization security capabilities are available:

getit.personalization.limited – User can only personalize features that have
been exposed by a user with greater personalization rights.

getit.personalization.default – User can change the layout and add or remove
fields from the Get-Resources interface.

getit.personalization.admin – User can do all that default security capabillity
can do plus can set personalization options and save personalization
changes as the default layout. The admin security capability also grants the
following rights:

Document Creation. Specify which security capabilities can create new
records in the back-end database.
Supporting personalization 87

Get-Resources
Document Update. Specify which security capabilities can change and
submit records to the back-end database.

Document Deletion. Specify which security capabilities can delete
records from the back-end database.

Save. Enables users to save their personalization changes as the default
view that other users see.

Tip: You can use the Save option to propagate personalization changes from
administrative users to all other users.

After you add a DocExplorer to a Peregrine Studio project, you can add or
remove fields from the personalization Web interface.

Making a schema visible to portal components
The Business View Authoring (BVA) tools – Document List and My Menu –
use public schemas to determine what back-end database fields and tables
users can see. The Business View Authoring tools can only see the fields and
tables that you define in public schemas.

To make a schema visible to portal components:

1 Login in to the server where you have installed Get-Resources.

2 Open Windows Explorer and navigate to your Get-Resources apps folder.
For example:

C:\Program Files\Peregrine\Common\Tomcat4\webapps\oaa\WEB-INF
\apps

Each module of your Peregrine Studio project has its own folder of schemas.

3 Navigate to the folder name matching the module for which you want to
enable public schemas. For example:

request

4 Create a text file called publicSchemas.xml in this folder.

5 Add the following entries to publicSchemas.xml:
<schemas>
<document name=”Schema Name” label=”Label to appear in BVA”/>
...

<schemas>

Add one <document> element for each schema that you want to make
available to the Business View Authoring tools.
88 Chapter 6—Adding Personalization Functionality

Tailoring Kit Guide
For the name attribute, enter the file name of the schema as it is listed
Peregrine Studio.

For the label attribute, enter any text that you want to use to describe the
schema. This text will appear as a description in the BVA interfaces.

6 Save the text file.

7 Repeat steps step 3 to step 6 for each module that is in your Peregrine Studio
project.

Personalizing with DocExplorers

DocExplorers allow end users a means to create and customize searches of
Get-Resources data. From the end-user perspective, a DocExplorer is a
special activity that allows someone to personalize part of the interface. The
user’s profile determines the Personalization rights granted.

From the developer’s perspective, a DocExplorer is a template activity that
allows for the rapid development of Get-Resources changes without the need
to rebuild a Studio project for every change made. A DocExplorer enables
you to add or remove fields, change the layout of a form, and change
interface elements such as headers and buttons in real time using the browser
interface.

DocExplorer forms and functions
All DocExplorers provide the following forms and functionality:

A search form for defining search criteria.

A list form for displaying search results.

A details form for displaying detailed information about search results.

If you grant end-users administrative rights, they can also use
Personalization for the following actions:

Add a new record to the database.

Update existing records in the database.

Delete existing records from the database.
Personalizing with DocExplorers 89

Get-Resources
in order for users to use a DocExplorer from the Web interface, you must
define at least two settings in Peregrine Studio:

The schema the DocExplorer uses. The schema determines what database
tables and fields are available to query.

The adapter the DocExplorer uses to connect to the back-end database.

You can use any of the existing schemas provided with Get-Resources or
create your own schema entries. For more information on schemas refer to
Document Schema Definitions on page 129.

Adding a DocExplorer reference
A DocExplorer Reference is the preferred method for adding a DocExplorer
to a Peregrine Studio project. A DocExplorer Reference is a special template
that redirects users to a full DocExplorer activity with two parameters: the
schema and adapter to be used. You can use a DocExplorer Reference to call
any generic DocExplorer functionality.

To add a DocExplorer Reference:

1 Right-click on a Module component in your project. Select New >
DocExplorerReference.

2 Enter a name for your new DocExplorer Reference activity. The default name
is DocExplorerReference.

3 Expand the DocExplorerReference activity.

4 Click on the setup form.

5 On the form properties page, click the General tab and enter the following
required information:

Title (en).

6 Select the redirect action.

7 On the properties page, click the Link Params tab.

8 Enter the parameters you want to use in the Param field. By default, this field
has the following value:

_docExplorerContext=<DOCUMENT_NAME>&_DocExplorerBackend=<TARGET_NAME>
&_docExplorerSubType=<SUBTYPE_INSTANCE>

Replace <DOCUMENT_NAME> with the schema name you want the
DocExplorer to use. This is a required parameter.
90 Chapter 6—Adding Personalization Functionality

Tailoring Kit Guide
Replace <TARGET_NAME> with the adapter alias you want the DocExplorer to
use. For example, enter ac for the AssetCenter adapter for Get-Resources.
This is a required parameter.

Replace <SUBTYPE_INSTANCE> with the personalization form subtype
you want to invoke or leave blank to use no subtype. See x for more
information on personalization form subtypes. This is an optional
parameter.

Important: Do not change the target form of the redirect action. This action
must go to docExplorer.default.start.

9 Save your project.

10 Click the Differential build of project button to rebuild your project.

Personalizing a DocExplorer reference
After you have added a DocExplorer Reference, you can make changes to this
activity directly from the Get-Resources Web interface.

To personalize DocExplorer pages:

1 Log in to Get-Resources.

2 Click the activity name for your Document Explorer from the navigation
sidebar. By default, the Document Explorer will be called DocExplorer.

Important: The first time you access a Document Explorer, the interface will
display a blank search form.

3 Click the wrench icon on the upper right of the interface.

4 Make your changes to the search form, and then click Save.

Your personalized search form is displayed.

5 Click Search to display the results list form.

6 Click the wrench icon from the upper right of the interface.

7 Make your changes to the list form, and then click Save.

8 Click on any of the results displayed in your personalized list form to go to
the detail form.

9 Click the wrench icon from the upper right of the interface.

10 Make your changes to the detail form, and then click Save.
Personalizing with DocExplorers 91

Get-Resources
11 If you have user rights to create documents, click the activity name for your
Document Explorer from the navigation sidebar to return to the search form.

12 Click Create to display the create form.

13 Click the wrench icon from the upper right of the interface. Make your
changes to the create form, and then click Save.

Adding Personalization to lookup fields
You can create automatically-generated lookup fields using Personalization.
These personalization features reduce the number of forms and
configuration necessary to create a pop-up window with lookup
information. You can use Personalization features to configure two types of
lookup fields:

Field Lookup—use this lookup to select one particular field from your
schema. For example, you might want to select just the Name field from
your Employee schema. See Field lookup on page 92.

Nested Document Lookup—use this lookup to select one or more fields
that are nested under a subdocument in your schema. For example, you
could lookup the Location subdocument from your Employee schema to
update several fields such as address, state, zip, and country. See Nested
document lookup on page 93.

Note: When you select an entry from a Nested Document Lookup, all the
fields used by the lookup schema are returned. Any other form
components that use these fields will be automatically updated. This
allows users to quickly change multiple fields on a form.

Field lookup
To create a field lookup:

1 Right click the form to which you want to add the lookup.

2 Go to New > Field > Lookup.

3 Enter the following settings for the Data attributes:

Display Field—the name field that you want to be displayed in the Web
application form when a user makes a selection from the lookup field. If
you do not enter a value for this parameter it defaults to the Document
Field parameter described below.
92 Chapter 6—Adding Personalization Functionality

Tailoring Kit Guide
Document Field—the name of the key field used to uniquely identify each
individual document record. The value of this field is used to lookup the
document field defined in step 3 below. This value will also be posted to
the onload script when a particular lookup entry is selected.

4 Enter settings for the following DocExplorer Adapter attributes:

Adapter—the name of the database adapter where your lookup
information is stored.

Document Path—the name of the schema and field name that you want to
lookup and enter into the Web application form. The naming convention
used with this parameter is schema name.field name with a period (.)
between them. For example, the entry employee.name will lookup the name
field from the employee schema.

5 Enter the following setting for the Link Parameters attribute:

Target Form—enter docExplorer.fieldlookup.start as the form name. This
value enables personalization if the end-user has sufficient personalization
rights.

6 Click the Differential build of project button to rebuild your project.

7 Log in to Get-Resources, browse to the updated form, and click the

magnifying glass lookup icon () to display a pop-up lookup form.

The lookup field displays a list of values that match the Document Path you
entered in step 3 above.

8 If you want to change the field used for the lookup, click the Personalize this
page link and select the new field you want to use.

Nested document lookup
To create a nested document lookup:

1 Right click the form to which you want to add the lookup.

2 Go to New > Field > Lookup.

3 Enter the following settings for the Data attribute:

Display Field—the name field that you want to be displayed in the Web
application form when a user makes a selection from the lookup field. If
you do not enter a value for this parameter it defaults to the Document
Field parameter described below.
Personalizing with DocExplorers 93

Get-Resources
Document Field—the name of the key field used to uniquely identify each
individual document record. The value of this field is used to lookup all
other document fields of the subdocument. This value is posted to the
onload script when a particular lookup entry is selected.

4 Enter settings for the following for the DocExplorer Adapter attributes:

Adapter—the name of the database adapter where your lookup
information is stored.

Document Path—the name of the schema and subdocument name that
defines the subdocument you want to lookup. The naming convention
used here is schema name.subdocument name with a period (.) between
them. For example, the entry employee.location will lookup the location
subdocument from the employee schema.

5 Enter the following setting for the Link Parameters attribute:

Target Form. Enter docExplorer.documentlookup.start as the form name.

6 Click the Differential build of project button to rebuild your project.

7 Log in to your Web application, browse to the updated form and click the

magnifying glass lookup icon () to display a pop-up lookup form.

The lookup field will display a list of values that match the Document Path
you entered in step 3 above.

8 If you want to change the subdocument used for the lookup, click the
Personalize this page link and select the new subdocument you want to use.
94 Chapter 6—Adding Personalization Functionality

Tailoring Kit Guide
Using the personalization interface

You can personalize any Web application interface that displays a wrench
icon in the top right of the interface frame. The wrench icon will appear only
in activities where a Personalization form has been defined. The
Personalization form determines what options are displayed in the
Personalization pop-up window.

When you click on the Personalization icon, a pop-up window opens
displaying the current settings for the form you are viewing.

All personalization pop-up windows have the format described below.

Available Fields—shows all the document fields and subdocument
collections that can be added to the current form. The name of this
column will vary depending on the type of form you are viewing. Studio
generates the list of available fields by dynamically reading the schema
used by the form. Any items listed between dashes are form components
you can use to organize and arrange how document fields are displayed in
the form.
Using the personalization interface 95

Get-Resources
Current Configuration—shows all the document fields, subdocument
collections, and displays components that have been selected for the
current form. The first time a form is personalized, this column will be
empty.

Form Options—allows you to define the title and instructions the form
uses. Get-Resources forms use a string file reference so that the title and
instructions can be localized. You can use the existing string file reference
or add a new one.

Explorer Options—allows you to define which DocExplorer forms
Get-Resources displays when a particular event occurs. Only users with
getit.personalization.admin rights will see this section.

Restrict operations to the following roles—allows you to define which user
roles can update, create, or delete records from the back-end database
system. Only users with getit.personalization.admin rights will see this
section.

Revert to Default—removes all personalization entered by the end-user
and returns the form to the default state. A default form may still display
fields if the administrator or the form’s schema has defined any default
fields to be displayed.

Save—saves and applies your Personalization changes to the current form.

Note: The first time you browse to a new DocExplorer activity, the form will
be blank. Use Personalization to add the fields you want to appear on
each form.
96 Chapter 6—Adding Personalization Functionality

Tailoring Kit Guide
Adding an existing field to a personalized form
Users can add any field to a personalized form that you have exposed in the
DocExplorer’s schema. The user’s personalization rights determine the list of
fields they see from this schema. See Activating personalization on page 87 for
more information on personalization rights.

If you want to add a field that is not currently available in the DocExplorer’s
schema, you must create a schema extension. See Adding a new field to the
Available Fields list on page 136 for more information on adding a new field.

To add an existing field to a personalized form:

1 Select a field from the Available Fields list.

2 Click Add, and the field will appear in the Current Configuration list.

3 Click Save.

To arrange the order of fields:

1 Select a field from the Current Configuration list.

2 Click the up arrow or down arrow to change the field’s position in the
Current Configuration list.

3 Click Save.

Removing a field from a personalized form
Users can remove fields from any form that offers personalization. The user’s
personalization rights determine the list of fields that is available for them to
remove. See Activating personalization on page 87 for more information on
personalization rights.

To remove fields from a form:

1 Select a field from the Current Configuration list.

2 Click the X button to remove the field.

3 Click Save.
Using the personalization interface 97

Get-Resources
Personalizing a field attribute
Each field in a personalization form has its own set of attributes. The user’s
personalization rights determine the list of attributes that can be configured.
See Activating personalization on page 87 for more information on
personalization rights.

To configure field attributes:

1 Double-click a field from the Current Configuration list. A new
Personalization pop-up window is displayed.

2 Enter the new field attributes:

Label—the name to be used as the field label. This name appears next to
the field in the interface.

Readonly—enter true if you do not want users updating information
displayed in the field.

Required—enter true if this field must have a value before a form can be
submitted.

3 Click Save.
98 Chapter 6—Adding Personalization Functionality

CHAPTER

7
 Scripting
This chapter provides an overview of how scripts are put together and used.
You should be familiar with JavaScript and ECMAScript and should have
access to the JavaDocs provided with your Get-Resources installation.

This chapter covers the following topics:

How scripts are used on page 100

Testing Scripts on page 109

Common Message Operations on page 113

Using ECMAScript in an Object Oriented manner on page 116

Sample Scripts on page 121

References on page 128
Scripting 99

Get-Resources
How scripts are used

Get-Resources uses scripts to query back-end databases and to format the
results into XML documents based on schemas. Generally, you will only need
to create new scripts if you create new forms. Most customizations do not
require changes to the script, but rather to the schema that the script uses to
display data. When you need to create or make changes to a script, you must
have created or activated a writable package extension in which to save your
changes.

Tip: You can use the existing scripts as templates for your custom scripts. Try
and find a script that has similar functionality to what you want, and
then copy and paste the script into your Peregrine Studio project.

Types of Scripts
Get-Resources uses two types of scripting to transfer and format data
between your back-end databases and Web application forms:

Server-side scripting—Server-side scripts run from a Web server.
Server-side scripts have access to both user-submitted form data and any
data generated by a back-end system. The output of server-side scripts can
be returned to both a back-end system and the remote browser. All
Get-Resources server-side scripts are written in ECMAScript. An example
of server-side scripting would be querying a back-end system for the list of
items associated with a particular order.

Client-side scripting—Client-side scripting runs from a
JavaScript-capable browser. Client-side scripts have access to user data
before it is submitted to a Web server and any back-end data that was
uploaded with the current Web page. The output of client-side scripts can
be used only by the client browser. All Get-Resources client-side scripts
are written in JavaScript. An example of using client-side scripting would
be updating the total price displayed on an order form when an amount is
entered in another field of the page.
100 Chapter 7—Scripting

Tailoring Kit Guide
Where Scripts are Stored
The following table describes how you can include both types of scripting
into your projects.

Peregrine Studio stores all server-side ECMAScripts as part of your project
file. At build time, Peregrine Studio copies the scripts into your application
server’s deployment folder and creates all necessary Get-Resources JSP pages.
At run time, the deployment application server executes the JSP pages along
with any server-side scripts called by the JSP pages and sends the output to
the client browser. The client browser will execute any client-side JavaScript
present in the rendered JSP page.

Script type Language used Where created and stored

Server-side ECMAScript You can author server-side scripts only in
Peregrine Studio. Each script then becomes an
object available for use throughout the project.

Client-side JavaScript You can author client-side scripts outside of
Peregrine Studio and add them to your project.
You can also include client-side scripts as part
of the HTML code stored with a form.
How scripts are used 101

Get-Resources
How Scripts are Used
The Archway servlet supports several different methods to invoke and utilize
scripts within Get-Resources. The following sections describe the different
ways in which ECMAScript and JavaScript can be used within
Get-Resources.

Forms—Server Side
All Get-Resourcesforms support invoking onload server-side scripts.
Typically, the onload script creates an XML message to gather and format
information from a back-end database. The script message can contain
queries or updates to the database or to XML documents built from a
schema. The scripts typically use a schema, one or more input parameters,
and a back-end database query to create an XML document.

Many server onload scripts use one of the following API calls:

DATABASEADAPTER

Sends
response

to Adapter

Calls Java
Class

Transforms
XML Msg
object to

SQL/action

Formats XML
Msg object

Formats
XML Msg
object for
Adapter

Executes
SQL/action

Sends
response to
DocManager

Formats
response
as XML

Msg object

Sort, add,
or delete
data from

Msg object

Add and
delete data
from Msg

object

DOC

MANAGER

Creates XML
Msg object

View XML
Msg object
from Script

input

Renders
XML as
HTML

View XML
Msg object

from
PreXSL tab

1 2 3 4 5

678910

SCRIPT

RUNNER

ECMASCRIPT

JSP FILES
XSL

PROCESSOR
102 Chapter 7—Scripting

Tailoring Kit Guide
sendDocQuery—sends an SQL or XML document query to the back-end
database. Archway queries the record using the table and field information
supplied by the schema. The database then returns the results of the query
as an XML document formatted as defined in the schema.

sendDocInsert—sends an XML document to the back-end database that
describes a new record. Archway creates the new record in the database
using the table and field information supplied by the schema.

sendDocUpdate—sends an XML document to the back-end database that
describes an update to an existing database record. Archway updates the
record using the table and field information supplied by the schema.

sendDocDelete—sends an XML document to the back-end database that
describes a record in the database to be deleted. Archway deletes the
record using the table and field information supplied by the schema.

Get-Resources typically use the following ECMAScript syntax to refer to
schemas. For additional methods of formatting these messages, refer to the
JavaDocs API documentation provided with your Get-Resources
installation.

archway.sendDocQuery("adapter name", "schema name", input msg);
archway.sendDocInsert("adapter name", message object);
archway.sendDocUpdate("adapter name", message object);
archway.sendDocDelete("adapter name", message object);

For adapter name, enter the name for the back-end database adapter. The
adapter listed here will use the ODBC connection that you have defined in
the achway.ini file. For most applications, the adapter will be a two letter
name.

For schema name, enter the name defined in the <document
name="schema name"> element of the schema file.

For the input msg, enter the variable name of a message that OAA uses to
store input parameters for the ECMAScript function. The default input
message is the msg object that is defined in all onload functions. The input
message is the XML message containing the HTML page parameters.

For message object, enter a variable name of a message object containing a
schema name and any input parameters.

For example, the script sample below defines a variable called msgReturn that
sends a document query to ServiceCenter using the empdetail schema and any
input parameters stored in the msg message object. The variable msgReturn
then returns the result of the document query.
How scripts are used 103

Get-Resources
var msgReturn = archway.sendDocQuery("sc", "empdetail", msg);
return msgReturn;

Client Side
The browser handles all client-side scripting when a user views a Web
application.

Note: Peregrine does not provide customer support for custom client-side
scripts.
104 Chapter 7—Scripting

Tailoring Kit Guide
Editing an existing script
You can edit the ECMAScript in your project directly from the Peregrine
Studio interface.

Important: You may lose changes that you make to existing scripts when you
next upgrade.

To edit an existing script:

1 Select the form in the Project Explorer.

2 Click the Script tab in the Properties window.
How scripts are used 105

Get-Resources
3 In the Server Onload Script field, click the magnifying glass button () to

view the script in the Peregrine Studio text editor.

4 Make any changes to the script in the text editor.

5 Save your project.

6 Build your project file.

7 Restart your application server or set the File Change Monitor option from
the Administration page.

The script update is loaded into Get-Resources.
106 Chapter 7—Scripting

Tailoring Kit Guide
Adding a custom script
You can add custom scripts to your Peregrine Studio project for use by
forms, schemas, and form components.

To add a custom script:

1 Determine what kind of script you want to create.

You can create the following types of script:

Form onload script. These are scripts run to gather data for
non-DocExplorer forms. Peregrine Studio stores form on-load scripts
underneath the first Group of Scripts node (Typically called Scripts or
ServerScripts).

Preexplorer. These are scripts run to manipulate the XML document that
the gets rendered in the Get-Resources interface. Peregrine Studio stores
preexplorer scripts underneath the Preexplorer Group of Scripts node.

Preload. These are scripts run to gather data for DocExplorer forms.
Peregrine Studio stores preload scripts underneath the Preload Group of
Scripts node.

Schema. These are scripts run before or after an adapter connects with the
back-end database. Peregrine Studio stores schema scripts underneath the
Schema Group of Scripts node.

2 Right-click the appropriate Group of Scripts node, point to New, and then
click Script.

Peregrine Studio creates a new script node underneath the Group of Scripts.

3 Type in the name of your script and press ENTER.

4 Right-click the new Script node, point to New, and then click Header.

Peregrine Studio creates a new Header node underneath the Script node.

5 Using the text editor window, type in the header information for your new
script.

6 Right-click the new Script node, point to New, and then click Function.

Peregrine Studio creates a new Function node underneath the Script node.

7 Using the text editor window, type in the function information for your new
script.

8 Save your project.

9 Build your project file.
How scripts are used 107

Get-Resources
10 Restart your application server or set the File Change Monitor option from
the Administration page.

The new script is loaded into Get-Resources.
108 Chapter 7—Scripting

Tailoring Kit Guide
Testing Scripts

Get-Resources offers two means of testing your ECMAScript:

Rhino JavaScript Debugger

URL Queries

Rhino JavaScript Debugger
You can now configure Get-Resources to send script output to the Rhino
JavaScript Debugger provided by Mozilla. The Rhino JavaScript Debugger
provides a graphical user interface for debugging interpreted JavaScript and
ECMAScript. When you enable the Rhino JavaScript Debugger, you can log
on to the Get-Resources server and see debugging information about your
installation as you browse through the Get-Resources interface.

Important: To use the Rhino JavaScript debugger your application server
cannot be configured to run as a service.

To enable the Rhino JavaScript debugger:

1 Login to the Get-Resources administration page.

2 Click Settings > Logging tab.

3 For the Debug script option, select Yes.

4 Click Save to store your changes.

5 Login to the Get-Resources server.

6 Browse to the Get-Resources deployment directory. By default this directory
has the following path:

<application server>\<context>\WEB-INF

For <application server>, enter the installation path to your application
server. For example, C:\Program Files\Peregrine\Common\Tomcat4

For <context>, enter the path where you deployed the Get-Resources files.
For example, webapps\oaa.

7 Using any text editor, open the file local.xml.

8 Add the following line anywhere between the <settings> elements:

<showDebugger>true</showDebugger>

9 Save the file.
Testing Scripts 109

Get-Resources
10 Copy the file rhinodebugger.jar from the Get-Resources Tailoring Kit
Installation CD to the following path on your test server:

<application server>\<context>\WEB-INF\lib

For <application server>, enter the installation path to your application
server.For example, C:\Program Files\Peregrine\Common\Tomcat4

For <context>, enter the path where you deployed Get-Resources the files.
For example, webapps\oaa.

11 Restart your application server.

The Rhino JavaScript Debugger appears the next time you start your
application server on this system.

For more information about the Rhino JavaScript Debugger, see the Mozilla
Web site:

http://www.mozilla.org/rhino/debugger.html

URL queries
You can test the output generated by your server-side onload scripts and
schemas by using URL queries to the Archway servlet.
110 Chapter 7—Scripting

Tailoring Kit Guide
Archway will invoke the server script or schema as an administrative user and
return the output as an XML document. Your browser will need an XML
renderer to display the output of the XML message.

Using URL queries can be useful for debugging your tailoring changes and
for using the Archway servlet without having to log into Get-Resources.

URL Script
Queries

Archway URL script queries use the following format:

http://server name/oaa/servlet/archway?script name.function name

For server name, enter the name of the Java-enabled Web server. If you are
testing the script from the computer running the Web server, you can use
the variable localhost as the server name.

The /oaa/servlet mapping assumes that you are using the default URL
mapping that Get-Resources automatically defines for the Archway
servlet. If you have defined another URL mapping, replace the servlet
mapping with the appropriate mapping name.

For script name, enter the name of the script as defined in Studio.

For function name, enter the name of the function used by the script.

Note: Your browser may prompt you to save the XML output of the URL
query to an external file.

URL Schema
Queries

Archway URL schema queries use the following format:

http://server name/oaa/servlet/archway?adapter name.Querydoc&_document=
schema name

For adapter name, enter the name for the back-end database adapter the
schema uses. The adapter listed here will use the ODBC connection that
you have defined in the Admin module Settings page.

For schema name, enter the name defined in the <document name=“schema
name”> element of the schema file.

The /oaa/servlet mapping assumes that you are using the default URL
mapping that Get-Resources automatically defines for the Archway
servlet. If you have defined another URL mapping, replace the servlet
mapping with the appropriate mapping name.
Testing Scripts 111

Get-Resources
Your script output should be similar to this.

Note: Your browser may prompt you to save the XML output of the URL
query to an external file.
112 Chapter 7—Scripting

Tailoring Kit Guide
Common Message Operations

The following section describes some common methods that server-side
scripts can be used to create XML messages. Refer to the JavaDocs (especially,
com.peregrine.oaa.core.Message) for more information about and examples
of XML message operations.

Create a new generic message. You can use archway.sendDocQuery() to create
a generic XML message. You can then add elements to the XML message
with other methods.

var msgQuery = new Message();
Creates an empty XML message called Message.

Create a new message with a specific XML element tag. You can then use
archway.sendDocUpdate() and archway.sendDocInsert() to send the XML
message to the back-end database.

var msgRequest = new Message("Request");
Creates an XML message called Message with the element <Request>.

Add a value to a particular XML element. You can use this method to add
a new element and value to the XML message.

msgQuery.add("LastName", "Jones");
Adds the value Jones to the element <LastName>. The output is in standard
XML format: <LastName>Jones</LastName>.

Set the value of an XML element. You can use this method to overwrite the
value of an existing element in the XML message.

msgQuery.set("LastName", "Jones");
Sets the value of the element <LastName> to Jones. The output is in
standard XML format: <LastName>Jones</LastName>.

Get the value of an element in the XML message. This method returns an
empty string "" if there is no value for the element.

var strName = msg.get("LastName");
Sets the variable strName to the value of the element <LastName> in the
XML message. For example, if the XML message contains the element
<LastName>Jones</LastName> then strName uses the value Jones.

Get all of the elements and values (the subdocument) listed under a
particular element in the XML message. This method returns an empty
string "" if there is no subdocument for the element.

var msgRequest = msg.getMessage("Request");
Common Message Operations 113

Get-Resources
Sets the variable msgRequest to the subdocument listed under the element
<Request> in the XML message. For example, suppose the XML message
contains the following elements:

<Request>
<ID>1234</ID>
<LastName>Jones</LastName>
<Status>Approval</Status>

</Request>

Then, the msgRequest uses the subdocument:
<ID>1234</ID><LastName>Jones</LastName><Status>Approval</Status>.

Set a script condition when the script returns a particular XML message
result. You can use conditions to control when Peregrine Studio form
components such as redirections and access fields should be activated. For
example, the following script checks the value of the Name element:

if (msg.get("Name") == "")
{
msgResponse.setCondition("error");
return msgResponse;

}

Searches the XML message for the value of the <Name> element. If the
value is empty, then the script sets the error condition.

Return the number of instances that a particular element appears in an
XML message. You can use this method to set a condition for further
actions. For example, the following script uses the getList method to set a
condition:

var list = msgResponse.getList("Location");
if (list.getLength() == 0)
msg.setCondition("noresults")
var i = 0;
while (i < list.getLength())
{
// add function to process records in the list ...
}

Sets the variable list to the number of <Location> elements in the XML
message. If the number of instances is zero, then the script sets the noresults
condition, otherwise the script performs some other action.
114 Chapter 7—Scripting

Tailoring Kit Guide
Log the contents of a particular XML message. This method saves the
output of the script to the file archway.log. This is another way of
debugging your ECMAScript in addition to the Rhino JavaScript Debugger
on page 109.

env.debuglog("sendDocQuery returned the message " +
msgResponse.getContent());

Important: You must enable the Debug Logging option from the
Get-Resources administrative interface (Administration >
Settings > Logging tab).

Tip: Remove or comment out this method before deploying to your
production environment as script logging is CPU-intensive and
degrades server performance.
Common Message Operations 115

Get-Resources
Using ECMAScript in an Object Oriented manner

ECMAScript implementation in Get-Resources
All Scripts defined in Peregrine Studio end up being loaded as one ECMA
script object. The functions defined in the Script are the object’s methods,
and the variables declared outside a function are the object’s attributes. This
implementation as an object is what enables you to use the dot syntax to call
scripts and functions.

Name resolution in ECMAScript
Every ECMAScript object has a special property: its prototype. A prototype is
an ECMA script object, and it is used in the property name resolution for the
object.

Every script is run within a scope that holds a set of objects and variables
declared in the same scope.

When you access a property or call a function in a given environment, ECMA
script tries to resolve the name in the current scope first (usually the
function’s context). If it does not find it, it tries in the current object's
prototype. If it does not find the property in the prototype, or in the
prototype’s prototype, the ECMAScript engine searches in the parent scope.

Using the object prototype for object oriented programming
The fact that ECMAScript looks up for a variable name or a function name
in the prototype if it does not find it in the object, gives some ability to define
a standard behavior as an object’s method, and make this object the
prototype for another object that can overwrite the behavior by providing a
method with the same name.

1 2 3Prototype Prototype

4 5 6Prototype Prototype

Parent scope
116 Chapter 7—Scripting

Tailoring Kit Guide
The following is an example that you can try with the ECMAScript command
line utility.

To use an object prototype:

1 In the WEB-INF/lib folder, type java -jar js.jar to start the command line.

2 Create three objects, one for each class:

3 Try the start method for each of these objects:

function vehicle()
{
 function _start ()
 {
 print("starting " + this.getVehicleName())
 }
 this.start = _start;
 this.getVehicleName = new Function("return 'vehicle'; ");
}

function airplane()
{
 this.getVehicleName = new Function("return 'airplane'; ");
}
airplane.prototype = new vehicle();

function car(make)
{
 this.getVehicleName = new Function("return 'car ' + this.make;");
 this.make = make;
}
car.prototype = new vehicle();

var myVehicle = new vehicle();
var myPlane = new airplane();
var myHonda = new car("Honda");

js> myVehicle.start()
starting vehicle

js> myPlane.start()
starting airplane

js> myHonda.start()
starting car Honda
Using ECMAScript in an Object Oriented manner 117

Get-Resources
You can see that although the airplane class and the car class do not
implement the start method, start is found in their prototype. You can also
see that since these two classes overwrite the getVehicleName function, the
start method calls the method that was defined in the object. These are
standard behaviors in object-oriented languages.

Overwriting a method to extend the parent class method can be more
complicated in ECMA script.

To overwrite a method to extend the parent class method:

1 Create a sports car class that derives from the car class, and extend the start
method to add a warm-up phase before the car actually starts.

2 Create an object for this class:

var myMaserati = new sportscar1("Maserati");

3 Call the start method:

function sportscar1(make)
{
 // other way to declare that the prototype for the
 // sportscar object is a car object. Contrary to
 // the other way, where only one vehicle object is the
 // prototype of all the car objects, here there will be
 // one car object per sportscar1 object.
 this.parentCar = new car(make);
 this.__proto__ = this.parentCar;
 // Extend the start function
 function _start()
 {
 print("warming up");
 this.parentCar.start();
 }
 this.start = _start;
 // Change also the vehicle name to reflect that this is
 //a sports car
 this.getVehicleName = new Function("return 'sports car ' +
this.make;");
}

js> myMaserati.start();
warming up
starting car Maserati
118 Chapter 7—Scripting

Tailoring Kit Guide
You can see that the new start method is called, that the start method
declared in vehicle is called as well. But the new getVehicleName was not
called, as the second line that was printed should show as starting sports car
Maserati. This is because using this.parentcar.start() changes the scope in
which the start function is called from the sportscar1 object to the parentcar
object (car class), and as a result the getVehicleName is resolved in the scope
of the car object. To change this behavior, a the parent function must be
called in a specific way that is illustrated in the following sportscar2 class.

To change the start method:

1 Create an object for this class:

var myFerrari = new sportscar2("Ferrari");

2 Call the start method:

js> myFerrari.start();
warming up
starting sports car Ferrari

You can see that we now get the expected result. The code is using the apply
method of the Function object, and passes the object that will be used as this
first, and the arguments that were passed to the current function (_start).

function sportscar2(make)
{
 this.parentCar = new car(make);
 this.__proto__ = this.parentCar;
 // Extend the start function
 function _start()
 {
 print("warming up");
 this.parentCar.start.apply(this, arguments);
 }
 this.start = _start;
 // Change also the vehicle name to reflect that this is
 //a sports car
 this.getVehicleName = new Function("return 'sports car ' +
this.make;");
}

Using ECMAScript in an Object Oriented manner 119

Get-Resources
Note: The code uses this.parentCar instead of this.__proto__, which could
seem to be valid, but can cause an infinite recursive call if another class
deriving from sportscar2 extends the start method and call it parent,
because this.__proto__ would still be evaluated against the derived
object, and the start function in sportscar2 would keep calling itself. It
is therefore preferable to store the parent object in a variable that is not
overwritten by the subclasses. Here, with a nomenclature that uses the
parent prefix and the parent class name, the uniqueness is ensured.
You can try if you want with a racecar class that would derive from
sportscar2 and overwrite the start function by calling the parent)

How to use object orientation for tailoring
In Get-Resources, objects are instantiated automatically from the script files
when they are loaded in memory. To implement the prototype hierarchy, the
__proto__ attribute must be set in a script file’s header.

For example:

The previous valueOf method returns a pointer to the requestinterfacebase
object. The line is equivalent to this.__proto__ = requestinterfacebase;.

If you need to call a parent method, you can specify it using the dot format.
For example:

As long as each object has a unique name, for example the script name, there
is no need to store the parent object in a member variable. In that respect,
using object orientation in Get-Resources is simpler than in the general case.

import requestinterfacebase;
this.__proto__ = requestinterfacebase.valueOf();

// Submit the request (Call the parent method)
var msgNewRequest = requestinterfacebase.saveRequest.apply
(this, arguments);
120 Chapter 7—Scripting

Tailoring Kit Guide
Sample Scripts

The following sections provide sample server-side ECMAScripts and
descriptions that you can use as templates in Get-Resources. If you need help
with a client-side scripting, a list of suggested reference materials is provided
on page 128.

General Script Samples
You can use ECMAScript to serve a number of different functions such as
creating an XML document from a schema, running a SQL query, or
formatting the data received from a database query. The following samples
show some of the ways in which you can use ECMAScript to gather data.

Selecting a Field from a Schema
function getCityList (msg)
{
//Query sample database for the records using the citylist
//schema
var msgQuery=newMessage();
msgQuery.set(“_return”, “Name”);
var msgReturn=archway.sendDocQuery (“xx”,”citylist”, msgQuery);

return msgReturn;
}

Input

A message object, msg. This script does not typically have input from any
previous form. If you change this script to be part of a results form, then the
input message could contain form fields or values from a prior list form.

Output

The script produces an XML document built from the schema and adapter
specified in the sendDocQuery function. The XML output below is an
example of the kind of data that could be returned using a similar script.

<recordset _count="-1" _countFound="3" _more="0" _start="0">
<citylist>
<Id>1</Id>
<Name>Burbank</Name>

</citylist>
<citylist>
<Id>2</Id>
<Name>London</Name>
Sample Scripts 121

Get-Resources
</citylist>
<citylist>
<Id>3</Id>
<Name>Santa Clara</Name>

</citylist>
</recordset>

Although the sendDocQuery function specifies only the <Name> element,
Archway automatically includes the <ID> element in the XML document
produced. This is expected behavior of the Archway servlet.

Description

This script gathers a list of city names for the an employee search form. The
sendDocQuery function creates an XML document built from the citylist
schema and searches for the value of the <Name> element. You can use
parameters like “Name” in your script messages to limit or add to the list of
values returned by your schema query.
122 Chapter 7—Scripting

Tailoring Kit Guide
Calling Other Scripts and Combining the Results
function getSearchInfo(msg)
{
//Create empty variable msgResponse
var msgResponse = new Message();

//Call getDepList function and add results to msgResponse.
msgResponse.add(this.getDepList(msg));
// Call getCityList function and add results to msgResponse
msgResponse.add(this.getCityList(msg));

return msgResponse;
}

Input

A message object, msg. This script does not typically have input from any
previous form. If you change this script to be part of a results form, then the
input message could contain form fields or values from a prior list form.

Output

The script produces an XML document built from two other scripts,
getDepList and getCityList. Each script adds to the XML document stored in the
msgResponse variable by running a sendDocQuery function with a schema. The
XML output below is an example of the kind of data that could be returned
using a similar script.

<_doc>
<recordset _count="-1" _countFound="19" _more="0" _start="0">
<departmentlist>
<Id>1</Id>
<DepartmentName/>

</departmentlist>
<departmentlist>
<Id>2</Id>
<DepartmentName>Administration</DepartmentName>

</departmentlist>
<departmentlist>
<Id>3</Id>
<DepartmentName>Administrative Services</DepartmentName>

</departmentlist>
<departmentlist>
<Id>4</Id>
<DepartmentName>Burbank Agency</DepartmentName>

</departmentlist>
...
Sample Scripts 123

Get-Resources
</recordset>
<recordset _count="-1" _countFound="3" _more="0" _start="0">
<citylist>
<Id>1</Id>
<Name>Burbank</Name>

</citylist>
<citylist>
<Id>2</Id>
<Name>London</Name>

</citylist>
<citylist>
<Id>3</Id>
<Name>Santa Clara</Name>

</citylist>
</recordset>
<_form>e_employeelookup_search_search.jsp</_form>
</_doc>

Description

This script generates the city and department names that a user can select
from in an employee search form. The .add function appends the output of
the getDepList and getCityList functions to the msgResponse variable. The two
script references use the relative naming convention (this) to indicate that the
functions called are part of the same script as getSearchInfo.
124 Chapter 7—Scripting

Tailoring Kit Guide
Form Script Sample
Most ECMAScripts run during a form’s onload processing. Typically, form
scripts query and format data for display in a Web application form, but you
can also use them to update existing database records or insert new ones. The
following samples show how to use server onload scripts to search a database
for employee information.

Creating an XML Document from a Schema
function getEmpList(msg)
{
//Add Department subdocument to the input message
var strReturn = msg.get("_return");
if (strReturn.length > 0)
msg.set("_return", strReturn + ";Department");

//In msg, set sort to LastName and then FirstName
msg.add("_sort", "LastName,FirstName");

//Query sample database for the records using the
//employeedetail schema and the criteria found in the msg object
var msgReturn = archway.sendDocQuery("xx", "employeedetail", msg);
//Test if the number of items returned is zero, if true set
//ListEmpty condition
if (msgReturn.get("_countFound") == "0")
msgReturn.setCondition("ListEmpty");

//Return the contents of the msgReturn variable
return msgReturn;
}

Input

A message object, msg. This script has an input message from a previous
search form. In this case, the input message is amended to include a
subdocument, Department, in addition to any other input data passed to the
script. This subdocument looks up the DepartmentName field data that the
database stores in a separate table. In addition to adding a subdocument, the
script sorts the input message by the LastName and FirstName elements. The
following XML demonstrates what the input message would look like if a
search were conducted on the CityName of Burbank (CityID=1).

<_doc>
<_form>e_employeelookup_employee_emplist.jsp</_form>
<_start>0</_start>
<_return>;employeedetail;CityName;OfficePhone;DepartmentName;
FirstName;LastName;Id;</_return>
<_count>10</_count>
Sample Scripts 125

Get-Resources
<_ctxobj/>
<_ctxidfld/>
<_ctxidval/>
<CityID>1</CityID>
<search>1</search>
<_blankFields>;FirstName;false;LastName;false;DepartmentID;false
</_blankFields>
<__x>__y</__x>
<_callingform>e_employeelookup_search_search.jsp</_callingform>
<FirstName insertblank="false"/>
<LastName insertblank="false"/>
<DepartmentID insertblank="false"/>
</_doc>

Output

The script produces an XML document built from the schema and adapter
specified in the sendDocQuery function. The XML output below is an example
of the kind of data that could be returned using a similar script.

<recordset _count="10" _countFound="2" _more="0" _start="0">
<employeedetail>
<Id>10</Id>
<FirstName/>
<LastName>Burbank Agency</LastName>
<OfficePhone>(408) 422-5501</OfficePhone>
<CityName>Burbank</CityName>
<DepartmentID>16</DepartmentID>
<Department>
<DepartmentName>Sales</DepartmentName>

</Department>
</employeedetail>
<employeedetail>
<Id>11</Id>
<FirstName/>
<LastName>Burbank Unit</LastName>
<OfficePhone>(650) 572-9000</OfficePhone>
<CityName>Burbank</CityName>
<DepartmentID>19</DepartmentID>
<Department>
<DepartmentName>Technical Support</DepartmentName>

</Department>
</employeedetail>

<_form>e_employeelookup_employee_emplist.jsp</_form>
</recordset>

Description

This script displays the results list generated by the search form. The script
uses two functions to change the data in the msg input message object. The
first function checks the input message to determine the number of elements
returned by the search results. If there any search results to return, the scripts
126 Chapter 7—Scripting

Tailoring Kit Guide
adds the Department subdocument to the msg message object. The second
function sorts the input message by LastName and then FirstName. Using the
adapter name and document schema name, this script then runs a
SendDocQuery function to gather any search results that match those listed in
the input message. The script then checks the <_countfound> tag generated
by the query and determines if the return list is empty. If the list is empty, the
script sets the msgReturn variable to the ListEmpty condition. This condition
redirects users to the listempty form.
Sample Scripts 127

Get-Resources
References

This section contains reference material to help you with scripting.

Sources for Client-side JavaScript
Devguru (JavaScript, VB script, HTML, etc.): http://www.devguru.com/

HTML Writer’s Guild: http://www.hwg.org/

JavaScript, The Definitive Guide, David Flanagan, 3rd Edition, O’Reilly
Publishing.

JavaScript articles at IRT.org: http://www.tech.irt.org/articles/script.htm

JavaScript Made Easy: http://www.easyjavascript.com/

JavaScript Source: http://javascriptsource.com/

JavaScript Source master list: http://javascript.internet.com/master-list/

Netscape’s Developer Site: http://developer.netscape.com

Netscape’s online JavaScript documentation.:
http://developer.netscape.com/docs/manuals/index.html?content=
javascript.html

Web Monkey: http://www.webmonkey.com/

ZDNet JavaScript introduction:
http://www.zdnet.com/devhead/filters/0,,2133214,00.html

JavaDocs for the Main Archway Package
For in-depth information about the Archway servlet and all the functions it
supports, refer to the JavaDocs that are installed with Get-Resources. The
JavaDocs are located in the \docs\api folder of your installation. To view the
docs, launch the index.html file from this folder.
128 Chapter 7—Scripting

CHAPTER

8
 Document Schema Definitions
This chapter describes document schema definitions and explains how they
map data between Get-Resources and the back-end database. In addition,
this chapter discusses how to use schema extensions to add new physical
mappings to existing schemas.

This chapter covers the following topics:

Understanding Document Schema Definitions on page 130

How to use schemas on page 131

Schema extensions on page 132

Editing the schema extension files on page 136

Creating custom schemas on page 148

Schema Elements And Attributes on page 156
Document Schema Definitions 129

Get-Resources
Understanding Document Schema Definitions

A document schema definition (also called a schema) is an XML file that
instructs the Archway Document Manager how to query back-end databases
and generate XML documents containing the query response. Schemas are
mapping tools that determine which XML tags used in dynamically created
documents map to the table and field names in a given back-end database.
These generated XML documents provide the data that Get-Resources
displays and processes.

All schemas consist of two types of definitions:

Base definitions—The schema entries that provide a logical mapping
between the XML tags generated in a document query to the
Get-Resources interface are collectively referred to as the schema base
definitions. The Archway Document Manager uses the base definitions to
generate XML tags based on the elements listed in the schema. The
Archway Document Manager converts the name value listed in an
<attribute> element into an XML tag of the same name.

Derived definitions—The schema entries that provide a physical mapping
between the XML tags generated in a document query to the table and
field names in the back-end database are collectively referred to as the
schema derived definitions. The Archway Document Manager queries the
tables and field names listed in the schema and creates an XML document
with the results of the query. The Archway Document Manager converts
the table and field values listed in the <document> and <attribute> elements
into a SQL query.

Note: The document schema definitions used by Peregrine Studio are not
the same as the schemas being proposed and developed by the W3C.

The base and derived definitions each have their own list of legal elements
and attributes. For more information on schema elements and attributes and
how to use them, refer to Schema Elements And Attributes on page 156.
130 Chapter 8—Document Schema Definitions

Tailoring Kit Guide
How to use schemas

You can use schemas to present and store data from your back-end database
in the Get-Resources interface. The Archway Document Manager uses
schemas to create XML documents when a form on-load script requests data
from a back-end database. Typically, a form component such as a table or
input field displays the requested schema data, but a script may also use the
schema data to update or insert records in the back-end database as well.

You can tailor schemas in two ways:

Create schema extensions. A schema extension is a separate file listing only
the changes you make to an existing schema’s logical or physical
mappings. For example, you could create a schema extension to provide
updated physical mappings when you upgrade your back-end database.
Creating schema extensions is the preferred method of tailoring schemas
as your changes are stored in separate files that can be easily carried over
during an upgrade.

Create new schemas. You can create your own schemas to provide all form
components in your project access to the custom logical and physical
mappings you create for Get-Resources. For example, you could create a
new schema to query a collection of custom-created tables and fields that
you have added to your back-end database. While you can create new
schemas from any text editor without the Get-Resources Tailoring Kit,
you will need Peregrine Studio to configure and test any server on-load
scripts and form components that use your custom-built schemas.

Important: Do not directly edit an existing schema as any changes you make
to existing logical and physical mappings will be overwritten
when you upgrade to a newer version of Get-Resources.
How to use schemas 131

Get-Resources
Schema extensions

You can create schema extensions to add new logical and physical mappings
to your existing schemas. Schema extensions allow you to save any additional
mappings in separate files that preserve the original schema files shipped by
Peregrine Systems. This separate file organization ensures that any upgrades
will not overwrite your tailoring changes.

When to use schema extensions
Schema extensions generally provide the most benefit when you use them to
extend existing DocExplorer schemas. Extending a schema allows you to do
the following tailoring tasks without the need to rebuild a project in
Peregrine Studio:

Add new fields to the Available Fields list.

Hide existing fields from the Available Fields list.

Change the label that a field displays in the Available Fields list.

Change the list of forms where a field displays.

Change the physical mapping of a field.

Change the type of data a field stores.

Add subdocuments to the personalization Available Fields list.

For instructions how to perform these schema extension tasks, see Creating
schema extensions on page 133.

There are some application tailoring tasks where you must use Peregrine
Studio to update schema information. These tasks include:

Call custom scripts from a schema. See Adding a custom script on page 107.

Change the schema used by a non-DocExplorer form component. See
Changing the schema that a form component uses on page 63.

Display any new fields that you add to a schema in non-DocExplorer form
components such as select fields or tables. See Changing the document field
that a form component uses on page 64.

Change the schema used by a DocExplorer. See Personalizing with
DocExplorers on page 89.

Add a new schema to your project. See Creating custom schemas on
page 148.
132 Chapter 8—Document Schema Definitions

Tailoring Kit Guide
Creating schema extensions
You can create schema extensions outside of Peregrine Studio using any Text
editor. The following procedures outline the steps required to create a
schema extension.

To create schema extensions:

Step 1 Identify the schema that you want to extend. See Identifying the schema to
extend on page 133.

Step 2 Locate the schema file on the Get-Resources server. See Locating the schema
on the server on page 134.

Step 3 Create the schema extension target folders and copy XML files. See Creating
the schema extension target folders and files on page 134.

Step 4 Edit the schema extension files to support the features you want. See Editing
the schema extension files on page 136.

Identifying the schema to extend
You can identify the schema used by a particular form directly from the
Get-Resources interface. Typically each form uses only one schema, but in
some cases a form will use a subdocument that references another schema.
The following procedures will help you determine what schema a particular
form uses.

To identify the schema used by a particular form:

1 Enable Display form information from the Administration > Settings >
Logging tab page.

The Form information button displays in the banner bar of the
Get-Resources interface.

2 Browse to the form that you want to tailor.

3 Click the Display form information button.

The form information window opens.

4 Search for one of the following entries on the Script Input tab:

_docExplorerContext. The last value listed after a slash in this element is the
schema name. For example:
<_docExplorerContext>incident/ticketcontact</_docExplorerContext>
uses the the ticketcontact.xml schema file.
Schema extensions 133

Get-Resources
Note: In this example, ticketcontact.xml is a subdocument of the primary
schema document incident.xml. Only DocExplorers will use this
document/subdocument format.

_ctxschema. The value listed in this element is the schema name. For
example:
<_ctxschema>ticketcontact</_ctxschema>
uses the ticketcontact.xml schema file.

document.The value listed in this element is the schema name. For
example:
<document>savedRequest</document>
uses the savedRequest.xml schema file.

Locating the schema on the server
After you have determined the name of the schema you want to extend, you
can find it using your operating system’s file search function. The following
guidelines are provided to help narrow down your search:

All schemas files have a .XML extension

All schemas files are stored in the WEB-INF\apps folder of your application
server’s deployment directory. For example:
C:\Program Files\Peregrine\Common\Tomcat4\webapps\oaa

Creating the schema extension target folders and files
Schema extensions require two separate files in the same directory where you
found the source schema. For example:

C:\Program Files\Peregrine\Common\Tomcat4\webapps\oaa\WEB-INF\
apps\resources\Schemas
134 Chapter 8—Document Schema Definitions

Tailoring Kit Guide
Schema extension logical mappings. This file contains the schema base
definitions. These definitions determine the logical names and labels used
for each field. You must create this file in an sub folder of Schemas called
extensions, and it must have the same name as the schema that it extends.
For example:
Schemas\extensions\request.xml.

Schema extension physical mappings. This file contains the schema
derived definitions. These definitions determine the back-end database
tables and fields to which each logical name physically maps. You must
create this file in a sub folder of extensions that matches the adapter name
to your back-end database, and it must have the same name as the schema
that it extends. For example:
Schemas\extensions\ac\request.xml.

To create the schema extension target folders and files:

1 Copy the schema XML source file. For example, request.xml.

2 Create two new folders as follows:

Create an extensions folder in the same directory where you found the
source schema. For example:

C:\Program Files\Peregrine\Common\Tomcat4\webapps\oaa\WEB-INF\
apps\resources\Schemas\extensions

Create an <adapter name> folder in the extension folder.

For <adapter name>, enter the abbreviation of the adapter used to connect
to your back-end database such as ac. For example:

C:\Program Files\Peregrine\Common\Tomcat4\webapps\oaa\WEB-INF\
apps\resources\Schemas\extensions\ac

3 Paste a copy of the source schema file in each of the two folders you created.
Schema extensions 135

Get-Resources
Editing the schema extension files

The edits that you need to do the schema extension files depend upon what
features you are trying to include. The following sections outline what edits
you need to perform for each feature.

Adding a new field to the Available Fields list on page 136.

Hiding an existing field from the Available Fields list on page 138.

Changing the label a field displays in the Available Fields list on page 139.

Changing the list of forms where a field is visible on page 140.

Changing the physical mapping of a field on page 142.

Changing the type of form component a field uses on page 143.

Adding subdocuments to the Available Fields list on page 144.

Adding a new field to the Available Fields list
You can add a field to any form that uses personalization. New fields display
as options in the personalization Available Fields list.

To add a new field to Available Fields list:

1 Open the schema extension file in the extension folder.

This file is for your schema extension logical mappings.

2 Delete all the derived definitions listed in the bottom half of the original
schema.

The derived definitions section starts after the first </documents> element
and usually has a comment section describing what back-end databases and
versions the derivations apply to.

3 In the <document> section that remains, add a logical mapping <attribute>
element for each field you want to add to the list of Available Fields.

You must add each <attribute> element between the <document> tags:

a Add the required name and type attributes to each <attribute> element.

<documents name="base">
<document name="schema">
<attribute name="Contact" type="string" />

</document>
</documents>

Add new logical
mappings here
136 Chapter 8—Document Schema Definitions

Tailoring Kit Guide
b Add any optional attributes you want to use for each <attribute> element.

Refer to <attribute> on page 162 for additional information on the
<attribute> element.

4 Delete any other logical mappings that you will not be updating in the
physical mapping schema extension file.

Tip: List only the new logical mappings in your schema extension files.
Schema extension entries that duplicate entries in the source schema
may reduce your system performance.

5 Save the logical mappings schema extension file.

6 Open the schema extension file in the <adapter name> folder.

This file is for your schema extension physical mappings.

7 Delete all the base definitions listed in the top half of the original schema.

The base definitions section starts with the first <documents name="base" ...>
element and includes all entries up to the closing </documents> element.

8 Find the element <documents> that has the name and version attribute values
that match the adapter you want to use. For example, <documents name="ac"
version="4">.

If you cannot find a matching <documents> element entry for your adapter,
you must create one. See <documents> on page 156 for more information on
the requirements of a <documents> physical mapping.

9 Verify that the <document> element beneath your chosen adapter lists the
proper table and connection attributes required for your new fields.

If the attributes are not what your new fields require, you must edit the
attributes. See <document> on page 158 for more information on the
requirements of a <document> physical mapping.

10 Beneath the <document> element, add one physical mapping <attribute>
element for each entry you added in the logical mapping.

You must add each <attribute> element between the <document> tags:

a Add the required name and field attributes for each entry you defined in the
logical mapping.

<documents name="ac" version="4.0">
<document name="schema" table="table1">
<attribute name="Contact" field="contact_name" />

</document>
</documents>

Add new physical
mappings here
Editing the schema extension files 137

Get-Resources
b Add any optional attributes you want to use for the physical mapping.

See <attribute> on page 162 for more information on optional attributes of
the <attribute> element.

11 Delete any other physical mappings that you will not be updating in this
schema extension file.

Tip: List only the new physical mappings in your schema extension files.
Schema extension entries that duplicate entries in the source schema
may reduce your system performance.

12 Save the physical mappings schema extension file.

Hiding an existing field from the Available Fields list
You can hide a field from the list of Available Fields in personalized forms.
Hidden fields will not be available to any user regardless of user rights.

To hide an existing field from the Available Fields list:

1 Open the schema extension file in the extension folder.

This file is for your schema extension logical mappings.

2 Delete all the derived definitions listed in the bottom half of the original
schema.

The derived definitions section starts after the first </documents> element
and usually has a comment section describing what back-end databases and
versions the derivations apply to.

3 Locate the logical mapping for the field you want to remove.

Use the label attribute to identify the proper field. For example, if the
DocExplorer Available Field you want to remove is called Contact, search the
<attribute> element that has the value label="Contact".

4 Add the following four attributes to the <attribute> element you want to
remove from the DocExplorer Available Fields list:

search="false"
list="false"
detail="false"
138 Chapter 8—Document Schema Definitions

Tailoring Kit Guide
create="false"

These settings tell DocExplorer to hide the field on the search, list, detail, and
create forms.

5 Delete any other logical mappings that you will not be updating in the
physical mapping schema extension file.

Tip: List only the new logical mappings in your schema extension files.
Schema extension entries that duplicate entries in the source schema
may reduce your system performance.

6 Save the logical mappings schema extension file.

7 If you will not be making any changes to the physical mappings in this
schema, you may delete the schema extension file in the <adapter name>
folder.

You only need to edit this file if you will define new physical mappings for
your DocExplorer fields.

Changing the label a field displays in the Available Fields list
You can change the label that appears in the Available Fields list of
personalized forms. Typically, you will only need to add labels to new fields
that you have added to a schema.

To change the label a field displays in the Available Fields list:

1 Open the schema extension file in the extension folder.

You will define the logical mappings in this file.

2 Delete all the derived definitions listed in the bottom half of the original
schema.

The derived definitions section starts after the first </documents> element
and usually has a comment section describing what back-end databases and
versions the derivations apply to.

3 Locate the logical mapping for the field you want to change.

<documents name="base">
<document name="schema">
<attribute name="contact" label="Contact" search="false"
 list="false" detail="false" create="false" />

</document>
</documents>

Add search, list, detail,
and create attributes
Editing the schema extension files 139

Get-Resources
Use the label attribute to identify the proper field. For example, if the
DocExplorer Available Field you want to change is called Contact, search the
<attribute> element that has the value label="Contact".

4 Change the label attribute to the new desired value.

5 Delete any other logical mappings that you will not be updating in the
physical mapping schema extension file.

Tip: List only the new logical mappings in your schema extension files.
Schema extension entries that duplicate entries in the source schema
may reduce your system performance.

6 Save the logical mappings schema extension file.

7 If you will not be making any changes to the physical mappings in this
schema, you may delete the schema extension file in the <adapter name>
folder.

You only need to edit this file if you will define new physical mappings for
your DocExplorer fields.

Changing the list of forms where a field is visible
You can determine the list of DocExplorer forms in which a field is visible.
By default, a field is visible in all DocExplorer forms.

To change the list of forms where a field is visible:

1 Open the schema extension file in the extension folder.

You will define the logical mappings in this file.

2 Delete all the derived definitions listed in the bottom half of the original
schema.

The derived definitions section starts after the first </documents> element
and usually has a comment section describing what back-end databases and
versions the derivations apply to.

3 Locate the logical mapping for the field you want to remove.

<documents name="base">
<document name="schema">
<attribute name="contact" type="string" label="Representative" />

</document>
</documents>

Update the label
attribute
140 Chapter 8—Document Schema Definitions

Tailoring Kit Guide
Use the label attribute to identify the proper field. For example, if the
DocExplorer Available Field you want to remove is called Contact, search the
<attribute> element that has the value label="Contact".

4 Change or add a true value for each DocExplorer form in which you want the
field to appear. For example, the following settings will have a field appear in
all DocExplorer forms:

search="true"
list="true"
detail="true"
create="true"

5 Delete any other logical mappings that you will not be updating in the
physical mapping schema extension file.

Tip: List only the new logical mappings in your schema extension files.
Schema extension entries that duplicate entries in the source schema
may reduce your system performance.

6 Save the logical mappings schema extension file.

7 If you will not be making any changes to the physical mappings in this
schema, you may delete the schema extension file in the <adapter name>
folder.

You only need to edit this file if you will define new physical mappings for
your DocExplorer fields.

<documents name="base">
<document name=”schema”>
<attribute name="contact" type=”string” label="Contact"
 search="true" list="false" detail="true" create="false" />

</document>
</documents>

Set search, list, detail,
and create attributes
Editing the schema extension files 141

Get-Resources
Changing the physical mapping of a field
You can change the physical mapping that a field uses to point to another
back-end database, table, or physical field.

To change the physical mapping of a field:

1 Open the schema extension file in the extension folder.

You will define the logical mappings in this file.

2 Delete all the derived definitions listed in the bottom half of the original
schema.

The derived definitions section starts after the first </documents> element
and usually has a comment section describing what back-end databases and
versions the derivations apply to.

3 Locate the logical mapping for the field whose physical mapping you want to
change.

Use the label attribute to identify the proper field. For example, if the
DocExplorer Available Field you want to change is called Contact, search the
<attribute> element that has the value label="Contact".

4 Delete any other logical mappings that you will not be updating in the
physical mapping schema extension file.

Tip: List only the new logical mappings in your schema extension files.
Schema extension entries that duplicate entries in the source schema
may reduce your system performance.

5 Save the logical mappings schema extension file.

6 Open the schema extension file in the <adapter name> folder.

This file is for your schema extension physical mappings.

7 Delete all the base definitions listed in the top half of the original schema.

The base definitions section starts with the first <documents name=“base” ...>
element and includes all entries up to the first </documents> element.

8 Find the element <documents> that has the name and version attribute values
that match the adapter you want to use. For example, <documents name="ac"
version="4">.

If you cannot find a matching <documents> element entry for your adapter,
you must create one. See <documents> on page 156 for more information on
the requirements of a <documents> physical mapping.
142 Chapter 8—Document Schema Definitions

Tailoring Kit Guide
9 Verify that the <document> element beneath your chosen adapter lists the
proper table and connection attributes required for your new fields.

If the attributes are not what your new fields require, you must edit the
attributes. See <document> on page 158 for more information on the
requirements of a <document> physical mapping.

10 In the <document> section you selected, change the physical mapping
<attribute> element to match the new physical mapping you want.

The physical mapping <attribute> elements are between the <document> tags:

a Change the field attribute to the new physical mapping.

b Add any optional attributes you want to use for the physical mapping.

Refer to <attribute> on page 162 for more information on optional attributes
of the <attribute> element.

11 Delete any other physical mappings that you will not be updating in this
schema extension file.

Tip: List only the new physical mappings in your schema extension files.
Schema extension entries that duplicate entries in the source schema
may reduce your system performance.

12 Save the physical mappings schema extension file.

Changing the type of form component a field uses
You can change the type of form component a field uses by changing the type
attribute value in a schema extension. For a list of all possible types and the
form components they use, see <attribute> on page 162.

To change the type of form component a field uses:

1 Open the schema extension file in the extension folder.

You will define the logical mappings in this file.

2 Delete all the derived definitions listed in the bottom half of the original
schema.

<documents name="ac" version="4.0">
<document name="schema" table="table1">
<attribute name="Contact" field="contact_name" />

</document>
</documents>

Change physical
mappings here
Editing the schema extension files 143

Get-Resources
The derived definitions section starts after the first </documents> element
and usually has a comment section describing what back-end databases and
versions the derivations apply to.

3 Locate the logical mapping for the field you want to change.

Use the label attribute to identify the proper field. For example, if the
DocExplorer Available Field you want to change is called Contact, search the
<attribute> element that has the value label="Contact".

4 Change the type attribute to the new desired value.

5 Delete any other logical mappings that you will not be updating in the
physical mapping schema extension file.

Tip: List only the new logical mappings in your schema extension files.
Schema extension entries that duplicate entries in the source schema
may reduce your system performance.

6 Save the logical mappings schema extension file.

7 If you will not be making any changes to the physical mappings in this
schema, you may delete the schema extension file in the <adapter name>
folder.

You only need to edit this file if you will define new physical mappings for
your DocExplorer fields.

Adding subdocuments to the Available Fields list
You can add a subdocument to add a lookup form component that
references information from another schema. Subdocuments have two
different formats depending upon the results returned by the schema query.
For more information on the schema elements and formats used with
subdocuments, see Subdocuments on page 170.

To add subdocuments to the Available Fields list:

1 Open the schema extension file in the extension folder.

This file is for your schema extension logical mappings.

<documents name="base">
<document name="schema">
<attribute name="contact" type="string" label="Contact" />

</document>
</documents>

Update the type attribute
144 Chapter 8—Document Schema Definitions

Tailoring Kit Guide
2 Delete all the derived definitions listed in the bottom half of the original
schema.

The derived definitions section starts after the first </documents> element
and usually has a comment section describing what back-end databases and
versions the derivations apply to.

3 In the <document> section that remains, add one of the following sets of
elements for each subdocument you want to add to the list of Available
Fields:

4 Delete any other logical mappings that you will not be updating in the
physical mapping schema extension file.

Tip: List only the new logical mappings in your schema extension files.
Schema extension entries that duplicate entries in the source schema
may reduce your system performance.

5 Save the logical mappings schema extension file.

Element Condition for use Subdocument requirements

<document> Use if the subdocument query
always returns one and only one
result for each requested element
in the subdocument. For
example, a contact should only
have one name.

Required attributes

name

Optional attributes

docname

<collection> Use if the subdocument query
can return more than one result
for each requested element in the
subdocument. For example, a
contact can have multiple
requests open in his name.

Required attributes

name

Required elements

<document>

<documents name="base">
<document name="schema">
<attribute name="contact" type="string" label="Contact" />
...
<document name="address" docname="external_schema" />
...
<collection name="telephone_numbers">
<document name="telephone_number" />

</collection>
...

</document>
</documents>

Subdocument with one
result – address

Subdocument with
multiple results –
telephone numbers
Editing the schema extension files 145

Get-Resources
6 Open the schema extension file in the <adapter name> folder.

This file is for your schema extension physical mappings.

7 Delete all the base definitions listed in the top half of the original schema.

The base definitions section starts with the first <documents name=“base” ...>
element and includes all entries up to the first </documents> element.

8 Find the element <documents> that has the name and version attribute values
that match the adapter you want to use. For example, <documents name="ac"
version="4">.

If you cannot find a matching <documents> element entry for your adapter,
you must create one. See <documents> on page 156 for more information on
the requirements of a <documents> physical mapping.

9 Verify that the <document> element beneath your chosen adapter lists the
proper table and connection attributes required for your new fields.

If the attributes are not what your fields require, you must edit the attributes.
See <document> on page 158 for more information on the requirements of a
<document> physical mapping.
146 Chapter 8—Document Schema Definitions

Tailoring Kit Guide
10 Beneath the <document> element, add one of the following sets of elements
for each logical subdocument that you added:

11 Delete any other physical mappings that you will not be updating in this
schema extension file.

Tip: List only the new physical mappings in your schema extension files.
Schema extension entries that duplicate entries in the source schema
may reduce your system performance.

12 Save the physical mappings schema extension file.

Element Condition for use Subdocument requirements

<document> Use if the subdocument query
always returns one and only one
result for each requested element
in the subdocument. For
example, a contact should only
have one name.

Required attributes

table
field
joinfield
joinvalue

Optional attributes

docname

<collection> Use if the subdocument query
can return more than one result
for each requested element in the
subdocument. For example, a
contact can have multiple
requests open in his name.

Required attributes

name

Required elements

<document>

<documents name="ac" version="4.0">
<document name="schema" table="table1">
<attribute name="contact" field="contact_name"/>
...
<document name="address" table="table2" joinfield="addressee"
 joinvalue="id" />
...
<collection name="telephone_numbers">
<document name="telephone_number" table="table3"
 joinfield="contact" joinvalue="id" />

</collection>
...

</document>
</documents>

Subdocument maps to
external table – table2

Subdocument maps to
external table – table3
Editing the schema extension files 147

Get-Resources
Creating custom schemas

You can create custom schemas to instruct the Archway Document Manager
how to query, update, or insert information to your back-end databases. A
custom schema give you complete control over the logical and physical
mappings used by your forms.

Tip: For most tailoring tasks, you can accomplish the same results using a
schema extension. For more information on schema extensions, see
Schema extensions on page 132.

If you want to create custom schemas you will need to use Peregrine Studio
to add the custom schema to your project and then to configure other project
components to use the custom schema. Deploying a custom schema will also
require building and copying project files to your Get-Resources server. The
following procedures outline how to create a custom schema.

Step 1 Create or activate a package extension to save your changes in Peregrine
Studio. See Peregrine Studio project packages on page 44.

Step 2 Add a new schema file to your Peregrine Studio project. See Adding a schema
to your Peregrine Studio project on page 149.

Step 3 Add logical and physical mappings to your schema file. See Adding logical and
physical mappings to your schema on page 149.

Step 4 Configure other project components to use your custom schema. See Forms
and Form Components on page 55.

Step 5 Rebuild your Get-Resources project. See Building a project on page 41.

Step 6 Deploy your new Get-Resources project files. See Deploying tailoring changes
on page 49.
148 Chapter 8—Document Schema Definitions

Tailoring Kit Guide
Adding a schema to your Peregrine Studio project
You can only add a custom schema to a group of schemas node. This node will
also be a child element of a group of modules node, and typically has the name
Schemas.

To add a schema to your Peregrine Studio project:

1 Right-click the group of schemas node to which you want to add a schema.

This node will be underneath the group of modules node for Get-Resources.
If your project contains more than one group of modules, choose the one
that has a group of schemas node.

2 Point to New, and then click Raw Schema.

A new node appears with the name Schema.

3 Rename your schema using the following conventions.

Schema Naming Conventions
Each custom schema you create should have a unique name to prevent data
errors from naming conflicts. Your custom schema name should meet the
following criteria:

The schema name is unique from any other schema name in the Peregrine
Studio project.

The schema name is unique from any attribute name mapping within the
schema.

Adding logical and physical mappings to your schema
After you have added a new schema to your Peregrine Studio project, you are
ready to add logical and physical mappings. Studio displays the content of
your custom schema in a text editor window. You can use the text editor
window to review and edit the XML source code of your schema. You can
also use any text editor to edit your schema.

Note: If you use an external text editor to edit your custom schema,
Peregrine Studio will not pick up the changes until the next time you
open the project file.
Creating custom schemas 149

Get-Resources
All schemas must have both a logical and a physical mapping section. The
logical mapping section is where you define what names and labels
Get-Resources uses for fields in the user interface. The physical mapping
section is where you define what back-end database tables and fields are used
by each logical mapping. The following sections describe how to create the
logical and physical mapping sections.

Creating the logical mappings
Step 1 Add the XML namespace element and the two <schema> elements. See

Adding required schema elements on page 150.

Step 2 Add two <documents> elements for the logical mappings. See Adding logical
mapping <documents> elements on page 150.

Step 3 Add two <document> elements to define the schema name. See Adding logical
mapping <document> elements on page 151.

Step 4 Add one <attribute> element for each logical mapping you want to create. See
Adding logical mapping <attribute> elements on page 151.

Adding required schema elements

1 Add an <?xml> element to the top of the file:

<?xml version="1.0"?>

This element declares that the file uses the XML namespace.

2 Add two <schema> elements underneath the namespace declaration:

<schema>
</schema>

These elements notify the Archway Document Manager that this file is a
schema. All schema definitions must be enclosed between these two
elements.

Adding logical mapping <documents> elements

1 Add two <documents> elements between the <schema> element containers:

<documents>
</documents>

These elements are the container for the logical mappings.

2 Add the name attribute to the <documents> element:

<documents name="base">
150 Chapter 8—Document Schema Definitions

Tailoring Kit Guide
The attribute value name="base" is required. This attribute value notifies the
Archway Document Manager that this section is for logical mappings.

Adding logical mapping <document> elements

1 Add two <document> elements between the <documents> element containers:

<document>
</document>

These elements are the container for the schema document.

2 Add the name attribute to the <document> element:

<document name="schema_name">

For schema_name, enter the same name you selected when adding the
schema to the Peregrine Studio project. This attribute value must match the
file name of the schema (without the .xml extension) or an error will occur.
The Archway Document Manager uses this attribute value to create an XML
document of the same name.

Adding logical mapping <attribute> elements

1 Add one <attribute> element between the <document> elements for each
logical mapping you want to create:

<attribute />

Note: You can use the standard XML self-closing tag syntax <element /> with
the <attribute> element. You can also close every <attribute> element
with a </attribute> element if you want.

2 Add a name attribute to each <attribute> element:

<attribute name="sample" />

The Archway Document Manager uses this attribute value to create an XML
element in any document message built from this schema. For example, the
Archway Document Manager would convert this attribute into the XML
element <sample>.

3 Add a type attribute to each <attribute> element:

<attribute name="sample" type="string" />

Get-Resources uses this attribute value to determine how to render the field
in the user interface. For more information about the type attribute, see
<attribute> on page 162.
Creating custom schemas 151

Get-Resources
4 Add any optional attributes to the <attribute> elements.

For more information about the attributes available for the <attribute>
element, see <attribute> on page 162.

Creating the physical mappings
Step 1 Add two <documents> elements for each adapter you want to support. See

Adding physical mapping <documents> elements on page 152.

Step 2 Add two <document> elements to define the back-end database table name.
See Adding physical mapping <document> elements on page 153.

Step 3 Add one <attribute> element for each logical mapping you created. See
Adding physical mapping <attribute> elements on page 154.

Adding physical mapping <documents> elements

1 Add another set of <document> elements between the <schema> element
containers:

These elements are the container for the physical mappings.

2 Add the name attribute to the <documents> element:

<documents name="adapter_name">

For adapter_name, enter the abbreviation of the adapter you want to use to
connect to your back-end database such as ac.

3 Add the version attribute to the <documents> element if you plan to add
different physical mappings for each version of your back-end database:

<documents name="ac" version="4">

<?xml version="1.0"?>
<schema>
<documents name="base">
<document name="schema_name">
<attribute name="Id" type="id">
<attribute name="sample" type="string" />

</document>
</documents>

<documents>
</documents>

</schema>

Add a second set of
<documents> elements
here
152 Chapter 8—Document Schema Definitions

Tailoring Kit Guide
Important: You can skip to the next section if you are not going to provide
different physical mappings for multiple versions of your
back-end database.

4 If you want to provide physical mappings for each version of your back-end
database, repeat steps 1 through 3 for each version you want to support.

You must provide a different value for the version attribute for each set of
<documents> elements.

Adding physical mapping <document> elements

1 Add another two <document> elements between the physical mapping
<documents> element containers:

These elements are the container for the back-end database table to be
queried.

2 Add the name attribute to the <document> element:

<document name="table_name">

For table_name, enter the SQL name of the table you want to map to. The
Archway Document Manager uses this attribute value to query the back-end
database table.

3 Add any optional attributes to the <document> element that you want to use
to connect to the back-end database or to run process scripts.

For more information about the attributes available for the <document>
element, see <document> on page 158.

<?xml version="1.0"?>
<schema>
<documents name="base">
<document name="schema_name">
<attribute name="Id" type="id">
<attribute name="sample" type="string" />

</document>
</documents>

<documents name="ac">
<document>
<document/>

</documents>

</schema>

Add a second set of
<document> elements
here
Creating custom schemas 153

Get-Resources
Adding physical mapping <attribute> elements

1 Add one <attribute> element between the physical mapping <document>
elements for each logical mapping you created:

<attribute />

Note: You can use the standard XML self-closing tag syntax <element /> with
the <attribute> element. You can also close every <attribute> element
with a </attribute> element if you want.

2 Add the identical name attribute to each <attribute> element as you defined in
the logical mappings:

<attribute name="sample" />

Each logical mapping <attribute> element must have a matching physical
mapping <attribute> element. The Archway Document Manager uses this
value to determine which logical name maps to a particular back-end
database field.

3 Add a field attribute to each <attribute> element:

<attribute name="sample" field="field_name" />

For field_name, enter the SQL name of the field you want to map to. The
Archway Document Manager uses this attribute value to query the back-end
database field.

4 Add any optional attributes to the <attribute> elements.

For more information about the attributes available for the <attribute>
element, see <attribute> on page 162.
154 Chapter 8—Document Schema Definitions

Tailoring Kit Guide
Sample schema
The following is a sample schema that you can use for as a template for your
own custom schemas.

<?xml version="1.0"?>
<schema>

<!--==
Logical Mappings: XML elements and data types defined
==-->
<documents name="base">
<document name="sample">
<attribute name="Id" type="number">
<attribute name="contact" type="string" label="Contact" />

</document>
</documents>

<!--==
Physical Mappings: Logical names mapped to SQL names
==-->
<documents name="ac">
<document name="sample" table="amRequest">
<attribute name="Id" field="lReqId" />
<attribute name="contact" field= "lEmplDeptId" />

<document/>
</documents>

</schema>

Physical mapping uses
same attribute elements

XML namespace

Logical mappings always
use name="base"
Document name
determines schema name.
This schema is sample.xml

Physical mapping lists
adapter name
Creating custom schemas 155

Get-Resources
Schema Elements And Attributes

All schemas use a standard set of XML elements and attributes that the
Archway Document Manager recognizes. The following sections describe the
XML elements and associated attributes that you can use to create valid
schemas.

<?xml>
The <?xml> element is the standard XML namespace identifier. This element
should always include the version attribute. All schemas require that this be
the first element listed.

<schema>
The <schema> element is a required element of all schemas. The <schema>
element functions as a container for the logical and physical mappings. The
<schema> element does not have any attributes.

<documents>
Two sets of <documents> elements are required for each schema. One set of
<documents> elements is the container for the logical mappings and the other
set of <documents> elements is the container for the physical mappings.

Use in logical mapping
All schemas require one <documents> element where the name attribute has
the value name="base". When this element has this name value, it becomes the
container for the logical mappings.

Required
attributes

name. This attribute identifies the <documents> element container used by
the logical mappings. This attribute must have the value name="base".
156 Chapter 8—Document Schema Definitions

Tailoring Kit Guide
Optional
attributes

None. There are no optional attributes for the logical mapping portion of
the schema.

Use in physical mapping
All schemas require at least one <documents> element where the name
attribute has the value of an adapter name such as name="ac". You can add
one <documents> element for each adapter you want to provide physical
mappings for. You can also support multiple versions of the same adapter if
you use the version attribute.

Required
attributes

name. This attribute determines what adapter the schema uses to make
connections to the back-end database. The value of this attribute must be
an adapter name such as name="ac".

Optional
attributes

version. This attribute determines what version of the back-end database is
required to use the physical mappings defined in this container. The value
of this attribute must be a number recognized by the adapter.

The Archway Document Manager uses the following rules to match the
back-end database to the version listed in this attribute:

<?xml version="1.0"?>
<schema>

<documents name="base">
...

</documents>

...

Logical mappings always
use name="base"

<?xml version="1.0"?>
<schema>

...

<documents name="ac" version="3">
...

</documents>

<documents name="ac" version="4">
...

</documents>

...

You can add a
<documents> element
for each adapter

Each <documents>
element can describe a
different version
Schema Elements And Attributes 157

Get-Resources
If the <documents> element has no version attribute, then the Archway
Document Manager accepts the physical mappings in this element if it
cannot find another matching value.

If the <documents> element has a version attribute value greater than the
version number of the back-end database, then the Archway Document
Manager ignores the physical mappings in this element.

If the <documents> element has a version attribute value less than the
version number of the back-end database, then the Archway Document
Manager accepts the physical mappings in this element if it cannot find
a higher matching value.

If the <documents> element has a version attribute value equal to the
version number of the back-end database, then the Archway Document
Manager accepts the physical mappings in this element.

<document>
You must add at least two sets of <document> elements to create a valid
schema – one set for the logical mappings and another set for the physical
mappings. You can add additional <document> elements in the physical
mapping section if you want to support multiple adapters or multiple
versions of the same back-end database.

Use in logical mapping
The logical mapping section uses the <document> elements as a container for
the XML document that the Archway Document Manager produces. All
XML elements produced by this schema will be child elements of the
<document> element.

Required
attributes

name. This attribute determines what XML element the Archway
Document Manager generates as the top-level element in any generated
document using this schema. The value of this attribute must match the
file name of the schema (without the .xml extension).

Optional
attributes

ACLcreate. This attribute determines the default access control list for
DocExplorer forms that use this schema. The value of this atrribute must
be a capability word. Users who meet or exceed the capability word listed
in this attribute will see a Create button in DocExplorer forms that use this
schema.
158 Chapter 8—Document Schema Definitions

Tailoring Kit Guide
ACLdelete. This attribute determines the default access control list for
DocExplorer forms that use this schema. The value of this atrribute must
be a capability word. Users who meet or exceed the capability word listed
in this attribute will see a Delete button in DocExplorer forms that use this
schema.

ACLupdate. This attribute determines the default access control list for
DocExplorer forms that use this schema. The value of this atrribute must
be a capability word. Users who meet or exceed the capability word listed
in this attribute will be able to edit fields in DocExplorer detail forms that
use this schema.

create. This attribute determines if a subdocument using this element is
visible in DocExplorer create forms. The value of this attribute must be
either true or false. Set the value to create="true" if you want this
subdocument to be available on DocExplorer create forms. Set the value
to create="false" if you want to prevent this subdocument from being
available on DocExplorer create forms.

detail. This attribute determines if a subdocument using this element is
visible in DocExplorer detail forms. The value of this attribute must be
either true or false. Set the value to detail="true" if you want this
subdocument to be available on DocExplorer detail forms. Set the value to
detail="false" if you want to prevent this subdocument from being available
on DocExplorer detail forms.

docname. This attribute defines the external schema that you want the
Archway Document Manager to use to create a subdocument. The value
of this attribute must match the file name of the schema (without the .xml
extension) that you want to use for the subdocument. You only need this
attribute if you want to create a subdocument using an another schema.

label. This attribute determines what name the schema has in DocExplorer
forms that use this schema. The value of this attribute can be any text
string. Typically, you will want to set this value to a user-friendly name
describing the content of the schema.

list. This attribute determines if a subdocument using this element is
visible in DocExplorer list forms. The value of this attribute must be either
true or false. Set the value to list="true" if you want this subdocument to be
available on DocExplorer list forms. Set the value to search="false" if you
want to prevent this subdocument from being available on DocExplorer
list forms.
Schema Elements And Attributes 159

Get-Resources
loadscript. This attribute determines what ECMAScript runs when this
schema is used in a DocExplorer form. The value of this attribute must be
the Peregrine Studio name of the ECMAScript you want to run. You can
use this script to load additional data for use by DocExplorer forms. This
script uses the same XML message input as the form onload script.

preexplorer. This attribute determines what ECMAScript runs when this
schema is used in a DocExplorer form. The value of this attribute must be
the Peregrine Studio name of the ECMAScript you want to run. You can
use this script to make formatting changes to the XML message rendered
by DocExplorer forms.

search. This attribute determines if a subdocument using this element is
visible in DocExplorer search forms. The value of this attribute must be
either true or false. Set the value to search="true" if you want this
subdocument to be available on DocExplorer search forms. Set the value
to search="false" if you want to prevent this subdocument from being
available on DocExplorer search forms.

subtypeprop. This attribute determines whether this element inherits the
attribute properties of the parent <collection> element. The value of this
attribute must be inherit if you use the attribute at all. If you want this
element to inherit the attribute properties set the value to
subtypeprop="inherit". If you want to specify the the attribute properties for
this element, do not include a subtypeprop attribute.

Use in physical mapping
The physical mapping section uses the <document> elements to define the
SQL name of the back-end database table.

Required
attributes

name. This attribute determines what XML element the Archway
Document Manager matches to a back-end database table. The value of
this attribute must match the file name of the schema (without the .xml
extension).

table. This attribute identifies the table in the back-end database that the
schema uses.The value of this attribute must be the SQL name of the table
you want to use for source data. Each <document> element can only have
one table attribute. To use data from other tables, you can create
subdocuments within your schema.

Optional
attributes

attachtable. This attribute identifies the ServiceCenter table where
references to attachments are located. The value of this attribute must be
the SQL name of SerivceCenter table you want to use.
160 Chapter 8—Document Schema Definitions

Tailoring Kit Guide
Note: You can only use this attribute when you are using ServiceCenter as
your back-end database.

field. This attribute identifies the field in the back-end database that you
want the schema to use for document queries. The value of this attribute
must be the SQL name of the field you want to use for the data source. You
only need this attribute if you want to create a subdocument within your
schema.

insert. This attribute identifies the event name to be sent to ServiceCenter
when Get-Services inserts (creates) a new record. The value of this
attribute must the SQL name of the ServiceCenter event.

Note: You can only use this attribute when you are using ServiceCenter as
your back-end database.

joinfield. This attribute identifies the field in the back-end database that
you want the schema to use to query for additional information in another
schema or table. The value of this attribute must be the SQL name of the
field you want to use for the source data. You only need this attribute if
you want to create a subdocument within your schema. The joinfield
attribute defines what field will be the selection criteria in a SQL WHERE
clause. The SQL equivalent of the joinfield is:

SELECT <field> FROM <external table> WHERE <joinfield>=<joinvalue>

If you do not provide a joinfield value, then the Archway Document
Manager uses the field listed for the <attribute name="Id"> element as the
joinfield.

joinvalue. This attribute identifies the <attribute> element that has the value
you want to use to query for additional information in another schema or
table. The value of this attribute must be the name of an <attribute> element
in the current schema. You only need this attribute if you want to create a
subdocument within your schema. The joinvalue attribute defines what
value a field must have in a SQL WHERE clause. The SQL equivalent of the
joinvalue is:

SELECT <field> FROM <external table> WHERE <joinfield>=<joinvalue>

If you do not provide a joinvalue value, then the Archway Document
Manager uses the value returned for the <attribute name="Id"> element as
the joinvalue.
Schema Elements And Attributes 161

Get-Resources
link. This attribute identifies the field in the back-end database that you
want the schema to use to query for additional information in a table with
lookup or link fields. The value of this attribute must be the SQL name of
the field you want to use for the source data. You only need this attribute
if you want to create a subdocument within your schema. In most cases,
the link attribute is the same as the joinfield attribute. This value will only
be different if the SQL name of the link field in the source table is different
from the SQL name from the target field in the target table.

preprocess. This attribute determines what ECMAScript runs before the
Archway Document Manager connects to the back-end database. The
value of this attribute must be the Peregrine Studio name of the
ECMAScript you want to run. You can use this script to format the request
sent to the back-end database. For example, you can add additional SQL
commands or validate that all required fields are listed in the request.

postprocess. This attribute determines what ECMAScript runs after the
Archway Document Manager receives a response from the back-end
database. The value of this attribute must be the Peregrine Studio name of
the ECMAScript you want to run. You can use this script to format the
response sent from the back-end database. For example, you can sort the
data by a particular criteria or return an error message if no records are
found.

update. This attribute identifies the event name to be sent to ServiceCenter
when Get-Services updates an existing record. The value of this attribute
must the SQL name of the ServiceCenter event.

Note: You can only use this attribute when you are using ServiceCenter as
your back-end database.

<attribute>
You must add at least two sets of <attribute> elements to create a valid schema
– one set for the logical mappings and another set for the physical mappings.

Use in logical mapping
The logical mapping sections use the <attribute> elements to create an XML
element in any document message built from this schema.
162 Chapter 8—Document Schema Definitions

Tailoring Kit Guide
Required
Attributes

name. This attributes determines the XML tag that the Archway Document
Manager generates when it uses the schema. The value of this attribute can
be any string value. For example, if you set the value to name="contact" then
the Archway Document Manager creates a <contact> XML tag. You must
define at least one <attribute> element where the name attribute has the
value name="Id". This <attribute> element is required to uniquely identify
each record returned by a schema query.

type. This attribute determines what data format the elements uses as well
as how Get-Resources renders the data in the user interface. The value of
this attribute must be one of the following strings:

attachment—This element is a path and file name to an attachment.
Get-Resources renders this element as a collection of attachment
controls.

boolean—This element is a true or false string. Get-Resources renders
this element as a check box.

date—This element is a date listing. Get-Resources renders this element
as a date edit control that includes a popup calendar.

datetime—This element is a combined date and time listing.
Get-Resources renders this element as a time edit control.

id—This element is a number that uniquely describes a back-end
database record. Get-Resources renders this element as a single-line
edit field.

image—This element is an image. Get-Resources renders this element
as an imagefield.

link—This element is a subdocument described elsewhere in the
schema. Get-Resources renders this element a lookup field.

memo—This element is a text string. Get-Resources renders this
element a multi-line edit box.

money—This element is a currency amount. Get-Resources renders this
element a money field that includes a currency selection tool.

number—This element is an integer. Get-Resources renders this
element an editfield with spinner buttons.

preload—This element is an executable script. Get-Resources runs the
script listed in this element.

string—This element is text. Get-Resources renders this element an
editfield.
Schema Elements And Attributes 163

Get-Resources
time—This element is a time listing. Get-Resources renders this element
as a time edit control.

url—This element is a Web site address. Get-Resources renders this
element as an HREF link icon.

Note: The Archway Document Manager does not validate that the contents
of an element matches the type attributed listed for it.

Optional
attributes

access. This attribute determines if the element is read-only or editable in
DocExplorer forms. The value of this attribute must be either r or null. Set
the value to access="r" if you want to make this element read-only. Clear
the value or remove the attribute if you want to make the element editable.

ACLcreate. This attribute determines the default access control list for
DocExplorer forms that use this element. The value of this atrribute must
be a capability word. Users who meet or exceed the capability word listed
in this attribute will see this element in DocExplorer create forms that use
this schema.

ACLdetail. This attribute determines the default access control list for
DocExplorer forms that use this element. The value of this atrribute must
be a capability word. Users who meet or exceed the capability word listed
in this attribute will see this element in DocExplorer detail forms that use
this schema.

ACLlist. This attribute determines the default access control list for
DocExplorer forms that use this element. The value of this atrribute must
be a capability word. Users who meet or exceed the capability word listed
in this attribute will see this element in DocExplorer list forms that use this
schema.

ACLsearch. This attribute determines the default access control list for
DocExplorer forms that use this element. The value of this atrribute must
be a capability word. Users who meet or exceed the capability word listed
in this attribute will see this element in DocExplorer search forms that use
this schema.

create. This attribute determines if the element is visible in DocExplorer
create forms. The value of this attribute must be either true or false. Set the
value to create="true" if you want this field to be available on DocExplorer
create forms. Set the value to create="false" if you want to prevent this field
from being available on DocExplorer create forms.
164 Chapter 8—Document Schema Definitions

Tailoring Kit Guide
detail. This attribute determines if the element is visible in DocExplorer
detail forms. The value of this attribute must be either true or false. Set the
value to detail="true" if you want this field to be available on DocExplorer
detail forms. Set the value to detail="false" if you want to prevent this field
from being available on DocExplorer detail forms.

label. This attribute determines what name the element has in
DocExplorer Available Field list. The value of this attribute can be any text
string. Typically, you will want to set this value to a user-friendly name
describing the content of the field.

list. This attribute determines if the element is visible in DocExplorer list
forms. The value of this attribute must be either true or false. Set the value
to list="true" if you want this field to be available on DocExplorer list forms.
Set the value to search="false" if you want to prevent this field from being
available on DocExplorer list forms.

required. This attribute determines if this element requires a value in order
to insert or update a record in the back-end database. The value of this
attribute must be either true or false. Set the value to required="true" if you
want to make the element a required input field when it is added to
DocExplorer forms.

search. This attribute determines if the element is visible in DocExplorer
search forms. The value of this attribute must be either true or false. Set the
value to search="true" if you want this field to be available on DocExplorer
search forms. Set the value to search="false" if you want to prevent this field
from being available on DocExplorer search forms.

Use in physical mapping
The physical mapping sections use the <attribute> elements to define the
fields in the back-end database that map to each logical mapping.

Required
Attributes

name. This attributes determines the XML tag in which the Archway
Document Manager places query results. The value of this attribute must
match an element defined in the logical mapping section.

field. This attribute identifies the field in the back-end database that you
want the schema to use for document queries. The value of this attribute
must be the SQL name of the field you want to use for the data source.
Schema Elements And Attributes 165

Get-Resources
Optional
attributes

link. This attribute identifies a lookup or link value to another table. The
value of this attribute must be the SQL name of the link. You will only
need this attribute if you want to query information from a field in one
table that links to another field in a linked table. The link attribute defines
what field is the selection criteria in a SQL WHERE clause. The SQL
equivalent of the link is:

SELECT <linkfield> FROM <linktable> WHERE <link>=<field>

linkfield. This attribute identifies the target field called by a lookup or link
value to another table. The value of this attribute must be the SQL name
of the target field. You will only need this attribute if you want to query
information from a field in one table that links to another field in a linked
table. The linkfield attribute defines what field is selected. The SQL
equivalent of the link is:

SELECT <linkfield> FROM <linktable> WHERE <link>=<field>

linkkey. This attribute identifies the field, lookup, or link that connects two
fields in linked tables. The value of this attribute must be the SQL name of
the linking field. You will only need this attribute if you want to query
information from a field in one table that links to another field in a linked
table. The linkkey attribute defines what field is selected. The SQL
equivalent of the link is:

SELECT <linkfield> FROM <linktable> WHERE <linkkey>=<field>

If you do not define a linkkey value, then the Archway Document Manager
uses the link attribute as the linkkey.

linktable. This attribute identifies the target table called by a lookup or link
value. The value of this attribute must be the SQL name of the target table.
You will only need this attribute if you want to query information from a
field in one table that links to another field in a linked table. The linktable
attribute defines what table is named in a SQL FROM clause. The SQL
equivalent of the linktable is:

SELECT <linkfield> FROM <linktable> WHERE <link>=<field>

linktype. This attribute defines how the Archway Document Manager
performs document inserts and updates. The value of this attribute must
be either soft or hard:

soft—The Archway Document Manager queries the back-end database
using the locations listed in the linktable and linkfield attributes, and sets
the link attribute to the value to the query result.
166 Chapter 8—Document Schema Definitions

Tailoring Kit Guide
hard—The Archway Document Manager creates a new record in the
back-end database at the location listed in the linktable and linkfield
attributes. The Archway Document Manager retrieves the linkkey value
for the new record and saves it in the field listed in the link attribute.

If you do not specify a linktype value, then it defaults to soft. You will only
need this attribute if you want to query information from a field in one
table that links to another field in a linked table.

<collection>
This is an optional element that you can use to create subdocuments where
more than one item can be returned for the document you query. For
example, you can create a set of <collection> elements to query for all the
requests that a particular user has open. In database terminology, a
<collection> element returns the records from an intersection table. You must
add one set of <collection> elements for each multiple item subdocument you
want to create.

Use in logical mapping

The logical mapping section uses the <collection> elements to create the XML
elements that the subdocuments use.

Required
attributes

name. This attribute determines what XML element the Archway
Document Manager generates as the top-level element in any generated
document using this schema. The value of this attribute must match the
file name of the schema (without the .xml extension) that the
subdocument uses.

Optional
attributes

ACLcreate. This attribute determines the default access control list for
DocExplorer forms that use this subdocument. The value of this attribute
must be a capability word. Users who meet or exceed the capability word
listed in this attribute will see a Create button in DocExplorer forms that
use this schema.

ACLdelete. This attribute determines the default access control list for
DocExplorer forms that use this subdocument. The value of this atrribute
must be a capability word. Users who meet or exceed the capability word
listed in this attribute will see a Delete button in DocExplorer forms that
use this schema.
Schema Elements And Attributes 167

Get-Resources
ACLupdate. This attribute determines the default access control list for
DocExplorer forms that use this subdocument. The value of this atrribute
must be a capability word. Users who meet or exceed the capability word
listed in this attribute will be able to edit fields in DocExplorer detail forms
that use this schema.

create. This attribute determines if a subdocument using this element is
visible in DocExplorer create forms. The value of this attribute must be
either true or false. Set the value to create="true" if you want this
subdocument to be available on DocExplorer create forms. Set the value
to create="false" if you want to prevent this subdocument from being
available on DocExplorer create forms.

detail. This attribute determines if a subdocument using this element is
visible in DocExplorer detail forms. The value of this attribute must be
either true or false. Set the value to detail="true" if you want this
subdocument to be available on DocExplorer detail forms. Set the value to
detail="false" if you want to prevent this subdocument from being available
on DocExplorer detail forms.

label. This attribute determines what name the subdocument has in
DocExplorer forms that use this schema. The value of this attribute can be
any text string. Typically, you will want to set this value to a user-friendly
name describing the content of the schema.

list. This attribute determines if a subdocument using this element is
visible in DocExplorer list forms. The value of this attribute must be either
true or false. Set the value to list="true" if you want this subdocument to be
available on DocExplorer list forms. Set the value to search="false" if you
want to prevent this subdocument from being available on DocExplorer
list forms.

search. This attribute determines if a subdocument using this element is
visible in DocExplorer search forms. The value of this attribute must be
either true or false. Set the value to search="true" if you want this
subdocument to be available on DocExplorer search forms. Set the value
to search="false" if you want to prevent this subdocument from being
available on DocExplorer search forms.

Use in physical mapping

The physical mapping section uses the <collection> elements to define the
SQL name of the back-end database table.
168 Chapter 8—Document Schema Definitions

Tailoring Kit Guide
Required
attributes

name. This attribute determines what XML element the Archway
Document Manager matches to a back-end database table. The value of
this attribute must match the file name of the schema (without the .xml
extension).

Optional
attributes

None. There are no optional attributes for the physical mapping portion
of a <collection> element.

Documents
The Archway Document Manager uses schemas to create documents, which
are XML messages created from the following components:

Schema logical definitions. The schema logical definitions determine what
XML elements make up the generated document.

The return values of database queries. The Archway Document Manager
uses the schema physical mappings to create database queries. The return
values of these queries determine the content of the elements and
attributes of the generated document.

ECMAScript formatting. ECMAScripts can modify a document before
and after any queries have been made to the back-end database.

The final output of these three processes is an XML document that the
Archway Document Manager renders as HTML in the Get-Resources
interface.

You can see the raw Get-Resources XML documents by enabling the Show
form information option from the Administration settings. The form
information window displays the following document information:

Script Input. This tab displays the document submitted to the current
form from the output of a previous form. For example, a list form displays
the output of a prior search form. This document is passed to the form
onload script as an input parameter.

Script Output. This tab displays the document generated by the output of
the current form’s onload script. Typically, each onload script invokes a
schema that queries the back-end database for relevant information. For
example, a service form will invoke a database query through the incident
schema.

PreXSL. This tab displays the document after the Archway servlet has
processed the document and prepared it to be rendered by the client-side
browser.
Schema Elements And Attributes 169

Get-Resources
Subdocuments
Each Get-Resources form typically maps to one schema, which in turn maps
to one table in the back-end database. In order to collect and represent data
from multiple schema and database sources, you must create subdocuments.

Subdocuments are XML messages added to the current document that query
additional schemas and tables. You can create subdocuments in one of two
ways:

You can add a new <document> element inside an existing <document>
element if the result of the query will be one and only one subdocument.

You can add a <collection> element inside an existing <document> element
if the result of the query will be a collection of one or more subdocuments.

The following sections examples of each method.

Creating subdocuments with the <Document> element
Each <document> element is intended to return one subdocument, that is,
one record set. For example, you can create sudocument to query for the
contact name for a specific request, but each request should only have one
contact name.
170 Chapter 8—Document Schema Definitions

Tailoring Kit Guide
Schema

The following schema segment illustrates how to add a subdocument using
the <document> element.

XML Output

The Archway Document Manager produces an XML document with the
following structure. You can view such documents from the Script Input and
Script Output tabs of the Form Information window. The values stored in the
XML elements vary depending on the actual user record you select.

<documents name="base">
<document name="Request" label="Request"...>
<attribute name="Id" type="id".../>
<attribute name="Number" type="string" label="Number".../>
<attribute name="Purpose" type="string" label="Purpose".../>
...
<document name="EndUser" docname="Employee" label="End User"/>
...

<document>
<documents>

<documents name="ac" version="4">
<document name="Request" table="amRequest"...>
<attribute name="Id" field="lReqId"/>
<attribute name="Number" field="ReqNumber"/>
<attribute name="Purpose" field="ReqPurpose"/>

...
<document name="EndUser" docname="Employee" table="amEmplDept"
 field="lUserId" link="lUserId" joinfield="lEmplDeptId"
 joinvalue="EndUserId"/>
...

<document>
<documents>

Logical mapping for
subdocument – EndUser

Physical mapping for
subdocument – EndUser

<Request>
<Id>32097</Id>
<Number>REQ000042</Number>
<Purpose>Purpose 1</Purpose>
...
<EndUserId>15630</EndUserId>
...

</Request>

Elements from schema
mapping – Id, AssetTag

Joinvalue – EndUserId
Schema Elements And Attributes 171

Get-Resources
Creating subdocuments with the <Collection> element
Each <collection> element is intended to return more than one
subdocument or record set. For example, you can create a query to return all
the requests belonging to a particular contact.
172 Chapter 8—Document Schema Definitions

Tailoring Kit Guide
Schema

The following schema segment illustrates how to add a subdocument using
the <collection> element.
Schema Elements And Attributes 173

Get-Resources
<documents name="base">
<document name="Request" label="Request"...>
<attribute name="Id" type="id".../>
<attribute name="Number" type="string" label="Number".../>
<attribute name="Purpose" type="string" label="Purpose".../>
...
<collection name="RequestLines" label="Composition">
<document name="RequestLine"/>

</collection>
...

<document>
<documents>

<documents name="ac" version="4">
<document name="Request" table="amRequest"...>
<attribute name="Id" field="lReqId"/>
<attribute name="Number" field="ReqNumber"/>
<attribute name="Purpose" field="ReqPurpose"/>
...
<!-- No physical mapping for the RequestLines collection. -->
...

<document>
<documents>

<documents name="base">
<document name="RequestLine" label="Request Line"...>
<attribute name="Id" type="id" search="false" list="false"
 detail="false" create="false" />
...
<collection name="RequestLines" label="Composition" detail="true"
 create="true">
<document name="RequestLine" table="_null"/>

</collection>
...

<document>
<documents>

<documents name="ac" version="4.0">
<document name="RequestLine" table="amReqLine"...>
<attribute name="Id" field="lReqLineId" />
...
<collection name="RequestLines" label="Composition">
<document name="RequestLine" table="_null"
 joinfield="lParentId" />

</collection>
...

<document>
<documents>

Logical mapping for
subdocuments –
RequestLine

No physical mapping for
subdocuments –
RequestLine. Therefore,
physical mapping
defaults to that listed in
RequestLine schema

Logical mapping for
RequestLine schema

Logical mapping for
subdocuments –
RequestLine

Physical mapping for
subdocuments –
RequestLines
174 Chapter 8—Document Schema Definitions

Tailoring Kit Guide
XML Output

The Archway Document Manager produces an XML document with the
following structure. You can view such documents from the Script Input and
Script Output tabs of the Form Information window. The values stored in the
XML elements vary depending on the actual user record you select.

<Request>
<Id>32098</Id>
<Number>REQ000043</Number>
<Purpose>Purpose 2</Purpose>
...
<RequestLines _count="-1" _countFound="3" _more="0" _start="0">
<RequestLine>
<Id>32100</Id>
<RequestId>32098</RequestId>
<RequestNumber>REQ000043</RequestNumber>
...

</RequestLine>

<RequestLine>
<Id>32101</Id>
<RequestId>32098</RequestId>
<RequestNumber>REQ000043</RequestNumber>
...

</RequestLine>

<RequestLine>
<Id>32102</Id>
<RequestId>32098</RequestId>
<RequestNumber>REQ000043</RequestNumber>
...

</RequestLine>
</RequestLines>

</Request>

Elements from schema
mapping – Id, AssetTag

Subdocuments –
RequestLine
Schema Elements And Attributes 175

Get-Resources
176 Chapter 8—Document Schema Definitions

CHAPTER

9
 Using Get-Resources Tailoring
This chapter describes methods and best practices for tailoring your
Get-Resources project.

This chapter covers the following topics:

Best Practices on page 178

Tailoring Get-Resources forms on page 179

Extending Get-Resources scripts on page 192

Changing the business rules on page 198

Overview of the cart experience code on page 209
Using Get-Resources Tailoring 177

Get-Resources
Best Practices

The following general tips will enhance the ability to upgrade your project:

Personalize the screens using the personalization menu (wrench)
whenever possible.

Avoid using studio to patch existing files. Get-Resources provides ways to
extend the existing schemas and to locally change the product’s behavior
by deriving some scripts.
178 Chapter 9—Using Get-Resources Tailoring

Tailoring Kit Guide
Tailoring Get-Resources forms

The following sections describe how to tailor particular Get-Resources
forms. In most cases, you can use personalization to add, remove, or change
form content. Each section that requires manual tailoring has its own
instructions.

Changing the request summary screen
There are two main areas of this screen:

The request detail information section (upper section).

The list of selected items section (lower section).

You can customize each area with a different method.

The request detail information section
Use the personalization (wrench) icon to change the display. If you do not
find a field that you need on the personalization screen, you must first add it
to the Request schema. To display a subdocument (such as User
information), you might have to extend the corresponding schema as well.

Request
detail
information

List of selected
items
Tailoring Get-Resources forms 179

Get-Resources
The list of selected items section
You cannot personalize this list, which means that you must use Peregrine
Studio to make any changes.

Warning: This type of change will not upgrade automatically, and will
necessitate a non-trivial merge on your part at the time of upgrade.
Therefore, you need to make sure you carefully weigh the need for
a change in this area, and the ease of upgrade.

To change the template for all lists of selected items:

To change individual lists of selected items:

Schema used:

RequestLine

By default, you can add any form component that uses a document field from
the RequestLine schema. If you do not find the fields you want to display in
this schema, you must create a schema extension to add the fields you want.

You can add read-only or editable form components to this list from
Peregrine Studio.

Make the change in for

Project.Templates.newcart.newcatalog.doctable All request and purchase
order summaries.

Make the change in for the

Project.resources.request.build.
requestsummary.newcart.newcatalog.doctable

Request checkout screen.

Project.resources.approve.approvedetail.
requestsummary.newcart.newcatalog.doctable

Show Approval List
activity.

Project.resources.request.requeststatus.
requestsummary.newcart.newcatalog.doctable

Request summary in the
My submitted requests
and My requests history
activity.
180 Chapter 9—Using Get-Resources Tailoring

Tailoring Kit Guide
For an editable form component that you add to this list, you must create
both a editable and a read-only version of the form component.
Get-Resources determines which form component to display based the result
of the form component’s access field.

Step 1 Create an editable form component. See Adding an editable form component
on page 181.

Step 2 Create a read-only version of the editable form component. See Adding the
read-only version of the editable form component on page 181.

Step 3 Build and deploy your changes.

Adding an editable form component
To add an editable form component:

1 Select the new form component from Peregrine Studio.

2 Click the Access tab.

3 Enter the following values:

Access Field. Enter _bReadOnly.

Access Value. Leave empty.

Adding the read-only version of the editable form component
To add the read-only version of the editable form component:

1 Select the new form component from Peregrine Studio.

2 Click the Access tab.

3 Enter the following values:

Access Field. Enter _bReadOnly.

Access Value. Enter true.

Note: When creating a new request, the field that you added might be blank.
If you want the default information pre-populated instead, see Request
line default values on page 201.
Tailoring Get-Resources forms 181

Get-Resources
Changing the request line detail screen
The Request line detail screen opens:

When you look at the catalog item details.

After clicking on Configure for a catalog item.

When looking at the details of an item from the selected item list in the
Request summary screen.

When looking at the details of a subline item (from the Composition table
in one of the screens previously listed).

You can personalize these screens and change their content using
personalization. If you do not find the fields that you need on the
personalization screen, you must first create a schema extension to add fields
to the RequestLine schema.

Request line detail screens have more than one layout. The detail shown
depends on two criteria:

The line item subtype

bundle

off catalog

cable

work order

contract

training

ShopDirect

other

The DocExplorer context

Called from the catalog item list

Called from the selected item list (from the Request summary page)

Called from a subline item list (as part of a bundle)

One screen definition is saved for every combination of these two criteria.
For example, a Cable detail screen can be configured differently when you
select the detail from the catalog list than when you select it from the selected
item list, or when you select it as part of a bundle (showing as a subitem).
Likewise, a Training detail item can be personalized independently from a
Cable detail.
182 Chapter 9—Using Get-Resources Tailoring

Tailoring Kit Guide
Adding or removing subtypes from request line item details
You can add or remove subtypes from request line items by creating a custom
ECMAScript function. You may use the existing function
getLineItemSubType as a template. This function computes the subtype
based on a line item’s content.

To ensure an easier upgrade, you should create a custom request interface
script to add or remove subtypes (see Extending Get-Resources scripts on
page 192). Within your custom script, you can use any line item field listed
in the RequestLine schema to determine the item’s subtype.

If you want to add a subtype to the subtypes provided with Get-Resources,
then your custom function needs to first check for new subtypes and then call
the existing getLineItemSubType function to determine the out-of-box
subtypes.

The ECMAScript
getLineItemSubType
function for Peregrine Studio address

ServiceCenter Project.cartexperience.Scripts.requestinterfacebase.
getLineItemSubType

AssetCenter Project.resources.NewScripts.acrequestinterface.
getLineItemSubType

function getLineItemSubType(msgLineItem)
{
var strSubType = "";
// Try to determine your custom subtype here
...

// If you did not find anything you were looking for in the
// msgLineItem you can default to the parent behavior (shown here
// for AssetCenter 4)
if (strSubType == "")
strSubType = ac4requestinterface.getLineItemSubType.apply
(this, arguments);

// Here, you can re-map the out-of-box subtypes that you
// do not want any more, to another subtype. For example
// if you do not care about the cable subtype:
if (strSubType == "cable")
strSubType == "catalogbase"

return strSubType;
}

Type in your code here
to determine the
subtype based on the
msgLineItem attribute
values

Call the out-of-the box
script if your code
cannot determine the
subtype
Tailoring Get-Resources forms 183

Get-Resources
If you do not use the out-of-box subtypes in Get-Resources, you can modify
the your custom script by adding new subtypes to your getLineItemSubType
function. You can use the following existing scripts as templates for subtypes.

Changing the catalog select list
The Catalog select list screen opens:

When you look at the catalog item list.

When you look at the bundle list.

You cannot personalize this list, which means that you must use Peregrine
Studio to make the changes.

Using this back-end Use this script as a template

AssetCenter ac4requestinterface or
ac3requestinterface

ServiceCenter screquestinterface

Catalog items in a
bundle list
184 Chapter 9—Using Get-Resources Tailoring

Tailoring Kit Guide
Warning: This type of change will not upgrade automatically, and will
necessitate a non-trivial merge from your part at the time of
upgrade. Therefore, you need to make sure you carefully weigh the
need for a change in that area, and the ease of upgrade.

To change the template for all lists of selected items:

To change individual lists of selected items:

Schema used:

Product

By default, you can add any form component that uses a document field from
the Product schema. If you do not find the fields you want to display in this
schema, you must create a schema extension to add the fields you want.

Make the change in for

Project.Templates.newcatalog.doctable All catalog screens that
are used when building
a new request or a new
purchase order.
The list of selected
items in the Request
summary screen and
Purchase order
summary screen.

Make the change in for the

Project.resources.request.build.itemlist.
newcatalog.doctable

Create a new request
activity.

Project.resources.approve.approvedetail.itemlist.newc
atalog.doctable

Show Approval List
activity.
Tailoring Get-Resources forms 185

Get-Resources
Changing the purchase order summary screen
There are two main areas of this screen:

The purchase order detail information (upper section).

The list of selected items (lower section).

You can customize each area with a different method.

The purchase order detail information section
Use the personalization (wrench) icon to change the display. If you do not
find a field that you need on the personalization screen, you must first add it
to the GRPurchaseOrder schema. To display a subdocument (such as User
information), you might have to extend the corresponding schema as well.

The list of selected items section
You cannot personalize this list, which means that you must use Peregrine
Studio to make any changes.

Warning: This type of change will not upgrade automatically, and will
necessitate a non-trivial merge on your part at the time of upgrade.
Therefore, you need to make sure you carefully weigh the need for
a change in this area, and the ease of upgrade.

List of
selected items

Purchase
order detail
information
186 Chapter 9—Using Get-Resources Tailoring

Tailoring Kit Guide
To change the template for all lists of selected items:

To change individual lists of selected items:

Schema used:

GRPOLine

By default, you can add any form component that uses a document field from
the GRPOLine schema. If you do not find the fields you want to display in this
schema, you must create a schema extension to add the fields you want.

You can add read-only or editable form components to this list from
Peregrine Studio.

For an editable form component that you add to this list, you must create
both a editable and a read-only version of the form component.
Get-Resources determines which form component to display based the result
of the form component’s access field.

Step 1 Create an editable form component. See Adding an editable form component
on page 188.

Step 2 Create a read-only version of the editable form component. See Adding the
read-only version of the editable form component on page 188.

Step 3 Build and deploy your changes.

Make the change in for

Project.Templates.newcart.newcatalog.doctable All request or purchase
order summaries.

Make the change in for the

Project.resources.buyer.createnewpo.requestsummary.
newcart.newcatalog.doctable

The following activities:

Create a new PO
My saved purchase
orders in preparation
POs to review

Project.resources.buyer.postatus.requestsummary.
newcart.newcatalog.doctable

My submitted purchase
orders activity.
Tailoring Get-Resources forms 187

Get-Resources
Adding an editable form component
To add an editable form component:

1 Select the new form component from Peregrine Studio.

2 Click the Access tab.

3 Enter the following values:

Access Field. Enter _bReadOnly.

Access Value. Leave empty.

Adding the read-only version of the editable form component
To add the read-only version of the editable form component:

1 Select the new form component from Peregrine Studio.

2 Click the Access tab.

3 Enter the following values:

Access Field. Enter _bReadOnly.

Access Value. Enter true.

Note: When creating a new purchase order, the field that you added might
be blank. If you want the default information pre-populated instead,
see Request validation on page 199 and Purchase order line default
values on page 207.

Changing the purchase order line detail screen
The Purchase order line detail screen opens:

When you select an item’s details or you click Configure from the Select
an item to add to the cart screen (first screen of the Create a new PO
activity).

When looking at the details of an item from the selected item list in the
Purchase order summary screen.

When looking at the details of a subline item (from the Composition table
in one of the screens previously listed).

You can personalize these screens and change their content using
personalization. If you do not find the fields that you need on the
personalization screen, you must first create a schema extension to add fields
to the GRPOLine schema.
188 Chapter 9—Using Get-Resources Tailoring

Tailoring Kit Guide
Purchase order line detail screens have more than one layout. The detail
shown depends on two criteria:

The line item subtype

bundle

off catalog

cable

work order

contract

training

ShopDirect

other.

The DocExplorer context

Called from the Select an item to add to the cart screen

Called from the selected item list (on the Purchase order summary
screen)

Called from a subline item list (as part of a bundle)

One screen definition is saved for every combination of these two criteria.
For example, a Cable detail screen can be configured differently when you
select the detail from the catalog list than when you select it from the selected
item list, or when you select it as part of a bundle (showing as a subitem).
Likewise, a Training detail item can be personalized independently from a
Cable detail.

Adding or removing subtypes from purchase order line item
details
You can add or remove subtypes from purchase order line items by creating
a custom ECMAScript function. You may use the existing function
getLineItemSubType as a template. This function computes the subtype
based on a line item’s content.

The ECMAScript
getLineItemSubType
function for Peregrine Studio address

AssetCenter Project.resources.NewScripts.acporderinterface.getLi
neItemSubType
Tailoring Get-Resources forms 189

Get-Resources
To ensure an easier upgrade, you should create a custom request interface
script to add or remove subtypes (see Extending Get-Resources scripts on
page 192). Within your custom script, you can use any line item field listed
in the OrderLine schema to determine the item’s subtype.

If you want to add a subtype to the subtypes provided with Get-Resources,
then your custom function needs to first check for new subtypes and then call
the existing getLineItemSubType function to determine the out-of-box
subtypes.

function getLineItemSubType(msgLineItem)
{
var strSubType = "";
// Try to determine your custom subtype here
...

// If you did not find anything you were looking for in the
// msgLineItem you can default to the parent behavior (shown here
// for AssetCenter 4)
if (strSubType == "")
strSubType = acporderinterface.getLineItemSubType.apply
(this, arguments);

// Here, you can re-map the out-of-box subtypes that you
// do not want any more, to another subtype. For example
// if you do not care about the cable subtype:
if (strSubType == "cable")
strSubType == "catalogbase"

return strSubType;
}

Type in your code here
to determine the
subtype based on the
msgLineItem attribute
values

Call the out-of-the box
script if your code
cannot determine the
subtype
190 Chapter 9—Using Get-Resources Tailoring

Tailoring Kit Guide
Changing the request line selection list
The request line selection list opens:

In the Select an item to add to the cart screen of purchase orders.

You cannot personalize this list, which means that you must use Peregrine
Studio to make any changes.

Warning: This type of change will not upgrade automatically, and will
necessitate a non-trivial merge on your part at the time of upgrade.
Therefore, you need to make sure you carefully weigh the need for
a change in this area, and the ease of upgrade.

Request line select list
Tailoring Get-Resources forms 191

Get-Resources
To change individual lists of selected items:

Schema used:

RequestLine

By default, you can add any form component that uses a document field from
the RequestLine schema. If you do not find the fields you want to display in
this schema, you must create a schema extension to add the fields you want.

Extending Get-Resources scripts

Using a script extension, you can override some of the out-of-box behavior
without modifying the scripts that are shipped with Get-Resources. Using a
script extension ensures that upgrades to later releases are easy by keeping
your changes separate from existing Get-Resources functionality.

You can use script extensions to:

Change the request behavior

Set default values

Create data validation rules

Determine how data is retrieved from the back-end database

Determine how data is written to the database.

Add or hide actions on a Get-Resources page

Determine if data is displayed in read-only fields

Make the change in for the

Project.resources.buyer.createnewpo.itemlist.newcatal
og.doctable

Create a new PO activity
192 Chapter 9—Using Get-Resources Tailoring

Tailoring Kit Guide
Changing request behavior
You can change the way the request and request line items work by creating
a custom request interface script.

To change the request behavior:

1 Open the Get-Resources project file in Peregrine Studio.

2 Right-click a group of scripts node, and then click New > Script.

For example, you could select the following group of scripts:

Project.resources.NewScripts

3 Give your script a unique name. For example, myrequestinterface.

4 Right-click your new script node, and then click New > Header.

Right-click on the
NewScripts node and
then click New >
Script.
Extending Get-Resources scripts 193

Get-Resources
You can accept the default Header name Header.

5 Use the following table to determine the script name that your custom script
needs to import.

6 Use the Peregrine Studio text editor to add a ECMAScript header that
imports and makes a prototype of the script specific to your back-end
database. For example:

7 Edit the existing getRequestInterface ECMAScript function to call your
custom script name.

The existing script has the following Peregrine Studio address:

Project.resources.NewScripts.requestexperience.getRequestInterface.

You can delete checks for the back-end database versions from the
getRequestInterface function since you already imported the necessary
script for your back-end database version in a previous step. For example,
your finished script might look like:

8 Use the following table to determine the script name that your back-end uses
to display the status of a request.

Back-end database Script name

AssetCenter 3 ac3requestinterface

AssetCenter 4 ac4requestinterface

ServiceCenter 4 or 5 sc4requestinterface

import sc4requestinterface;
this.__proto__ = sc4requestinterface.valueOf();

Script name must
match that used for
your back-end
database

Back-end database Script name

AssetCenter 3 ac3activerequestinterface

function getRequestInterface(msg)
{
return “myrequestinterface“;

}

Return the name of
your custom script
194 Chapter 9—Using Get-Resources Tailoring

Tailoring Kit Guide
9 Edit the display status script you selected above in Peregrine Studio to
include a call to your custom script name. For example:

10 You can now add the new functions to your custom script as described in the
request sections. For example, Changing the request line detail screen on
page 182.

You can copy the existing request interface functions into your custom
script.

11 Save and build your Get-Resources project file.

Changing purchase order behavior
You can change the way the purchase orders and purchase order line items
work by creating a custom request interface script.

1 Open the Get-Resources project file in Peregrine Studio.

2 Expand the resources group of modules node.

3 Expand the NewScripts node.

AssetCenter 4 ac4activerequestinterface

ServiceCenter 4 or 5 sc4activerequestinterface

Back-end database Script name

import myrequestinterface;
this.__proto__ = myrequestinterface.valueOf();

Script name must
match your custom
script name
Extending Get-Resources scripts 195

Get-Resources
4 Right-click the NewScripts node, and then click New > Script.

5 Give your script a unique name. For example, myporderinterface.

6 Right-click your new script node, and then click New > Header.

You can accept the default Header name Header.

7 Use the Peregrine Studio text editor to add a ECMAScript header that
imports and makes a prototype of the acporderinterface script. For example:

8 Edit the existing getRequestInterface ECMAScript function to call your
custom script name.

The existing script has the following Peregrine Studio address:

Right-click on the
NewScripts node and
then click New >
Script.

import acporderinterface;
this.__proto__ = acporderinterface.valueOf();

Script name must be
acporderinterface
196 Chapter 9—Using Get-Resources Tailoring

Tailoring Kit Guide
Project.resources.NewScripts.purchaseorderexperience.
getRequestInterface.

You can delete checks for the back-end database versions from the
getRequestInterface function. For example, your finished script might look
like:

9 Edit the existing ac4submittedporderinterface script in Peregrine Studio to
make your custom script its prototype. For example:

10 You can now add the new functions to your custom script as described in the
purchase order sections. For example, Changing the purchase order line detail
screen on page 188.

You can copy the existing request interface functions into your custom script
from one of the following scripts:

acporderinterface

requestinterfacebase

11 Save and build your Get-Resources project file.

function getRequestInterface(msg)
{
return "myporderinterface";

}

Return the name of
your custom script

import myporderinterface;
this.__proto__ = myporderinterface.valueOf();

Script name must
match your custom
script name
Extending Get-Resources scripts 197

Get-Resources
Changing the business rules

You can change the following business rules:

Set default values

Enforce data validation

The following sections describe how to change the business rules for each
part of the Get-Resources interface.

Setting request default values
The default values presented on the Request summary screen are defined in
the getRequestDefaultValues function of the commonrequestinterface
script.

This script is called on a new request before presenting the Request summary
screen, and also, as the request is saved for the first time in the database. This
script’s only parameter is the message generated from the Request schema.
The function must return the full request document, with the default values
set. It can modify the request document directly and send it back, or work on
a copy of the request document and send the copy back.

It is this function’s responsibility to make sure that a value is empty before
setting a default value.

Warning: Failure to observe this rule could result in the function overwriting
user entries.

Peregrine recommends that you extend the getRequestDefaultValues
function with a custom script rather than updating the function directly. For
more information of extending scripts, see Extending Get-Resources scripts on
page 192.

While extending the getRequestDefaultValues function, implement the
default values you want and call the out-of-box function to fill in any
remaining default values. The advantages of this approach are:

Less code to maintain on your end.

Smoother upgrades for future releases.
198 Chapter 9—Using Get-Resources Tailoring

Tailoring Kit Guide
Important: If you edit the out-of-the-box getRequestDefaultValues
function directly, then you will need to maintain the default
values for any new fields Peregrine adds to the request schema in
future versions of Get-Resources.

For example, the following sample adds a getRequestDefaultValues function
to the myrequestinterface custom script. This function changes the default
values for the Purpose and RequestedFor fields. See Extending Get-Resources
scripts on page 192 for more information about this sample custom script.

Request validation
The validateRequest function validates user requests as part of the
acrequestinterface script. Get-Resources calls this script before saving a
request to the database from the Request summary screen. The only
parameter is the document generated by the Request schema. The function
must return the request message. Furthermore it must set an error condition
and add an explanation to the user object if the request is not valid.

// Set the default values in the request according to the values
// already set in msgRequest
function getRequestDefaultValues(msgRequest)
{
// Set the RequestedFor Date default two weeks from now
if (msgRequest.get("RequestedFor", false) == "")
{
var date = Calendar.getInstance();
date.add(Calendar.DATE, 14);
msgRequest.set("RequestedFor",
DataFormatter.getArchwayDate(date.getTime().getTime()), false);

}

// Set the default purpose to upgrade
if (msgRequest.get("Purpose", false) == "")
{
msgRequest.set("Purpose", "Enter Purpose", false);

}

// Call the out-of-box (parent) script that will set the remaining
// default values
msgRequest = sc4requestinterface.getRequestDefaultValues.apply
(this, arguments);

return msgRequest;
}

Sets the RequestedFor
date to 14 days

Sets the Purpose to
Enter Purpose

Calls the parent script
for your back-end
database
Changing the business rules 199

Get-Resources
Peregrine recommends that you extend the validateRequest function with a
custom script rather than updating the function directly. For more
information of extending scripts, see Extending Get-Resources scripts on
page 192.

Important: If you edit the validateRequest function directly, then you will
need to maintain the request validation for any changes to the
request schema and validation scripts that Peregrine makes in
future versions of Get-Resources.

For example, the following sample adds a validateRequest function to the
myrequestinterface custom script. This function checks to see if the user
actually populated the Purpose field before saving. See Extending
Get-Resources scripts on page 192 for more information about this sample
custom script.

function validateRequest(msgRequest)
{
var bValid = true;
// Check that the purpose was actually set by the user
if (msgRequest.get("Purpose", false) == "Enter Purpose")
{
// If purpose is default, then add an user message retrieved
// from a string file
user.addMessage(IDS.get("resources", "my_error_message"));
bValid = false;

}
// Call the out-of-box (parent) script
msgRequest = sc4requestinterface.validateRequest.apply
(this, arguments);

if (!bValid)
 {

// If bValid is false, then set an error condition to prevent
// Get-Resources from updating the database
msgRequest.setCondition("error");

}
return msgRequest;

}

Check Purpose field for
default value

Set user message to
custom error message

Call the parent script
for your back-end
database

Set error condition if
bValid is false
200 Chapter 9—Using Get-Resources Tailoring

Tailoring Kit Guide
Request line default values
You can set the request line default values in two places:

As the user selects catalog entries

In the getRequestDefaultValues function

Setting request line default values from catalog entries
Get-Resources generates a document using the RequestLine schema as a user
selects items from the catalog. This document is updated with default values
every time the user shows a catalog entry detail or clicks the Configure, Add,
or Add Selected buttons. By setting the default values at these times, users can
review the values before they decide whether to add the item to their request.
This also allows Get-Resources to set default values that depend on the
catalog entry without having to re-query the catalog information later.

The default values presented on the Request line screen are defined in the
getNewRequestLine function of the catalog script. The catalog script can also
display a filtered list of items based on the category, quick search, and
advanced search criteria parameters entered.

The catalogbase script implements the basic catalog functionality. There are
additional scripts that extend the catalogbase script to add more specific
catalog functionality:

ac3productcatalog

ac4bundlecatalog

sccatalog

offcatalog.

To change the generated request line document:

Step 1 Identify the catalog script used to generate the request line detail you want to
change. See Identifying the catalog script that builds a request line detail on
page 202.

Step 2 Create a new script that extends the identified catalog script. See Creating an
extension of the existing catalog script on page 202.

Step 3 Make Get-Resources call your new script. See Calling your extended script on
page 204.
Changing the business rules 201

Get-Resources
Identifying the catalog script that builds a request line detail
1 Enable the show form info setting from the Administration > Settings page.

2 Go to a request line detail screen. For example:

Create a request

Select a category

Select one of the items on the catalog item list

3 Click the form information button.

The form information window opens.

4 Click the Script Input tab.

5 Search for the <CatalogId> element.

The value listed between the <CatalogId> elements is the name of the catalog
script that generated the request line document.

Creating an extension of the existing catalog script
You can create a script extension to preserve the original script function
provided with Get-Resources. This method improves the upgrade process for
your installation.

Use the following information to create your script extension. For more
information of creating script extensions, see Extending Get-Resources scripts
on page 192.

The mycatalog header must import the sccatalog script:

Script setting Value

Script to extend sccatalog

Sample script extension mycatalog

import sccatalog;
this.__proto__ = sccatalog.valueOf();

Import sccatalog
202 Chapter 9—Using Get-Resources Tailoring

Tailoring Kit Guide
Add a getNewRequestLine function to mycatalog.

The RequestLine schema defines the structure of the request line document.
Refer to this schema to determine what fields are available for default values
and format settings.

function getNewRequestLine(msg)
{
// Call the parent function to build the out-of-box request line
// document
var msgReqLine = sccatalog.getNewRequestLine.apply
(this, arguments);
// Set the default values you want. Here let's say that the default
// requested quantity is 2 instead of 1
msgReqLine.set("Quantity", "2", false);

return msgReqLine;
}

Call the sccatalog
script to create the
request line document

Sets the Quantity field
to 2
Changing the business rules 203

Get-Resources
Calling your extended script
Use the following information to have Get-Resources call your script
extension. For more information of creating script extensions, see Extending
Get-Resources scripts on page 192.

Customize the getCatalogId and getDefaultSearchCatalogId methods:

Script setting Value

Script to extend sccatalog

Sample script extension mycatalog

Functions to customize getCatalogId

getDefaultSearchCatalogId

function getCatalogId(msg)
{
// Call the parent method
var strCatalogId = sc4requestinterface.getCatalogId.apply
(this, arguments);
// Override the result only if the parent method returns sccatalog
if (strCatalogId == "sccatalog")
strCatalogId = "mycatalog";

return strCatalogId;
}

function getDefaultSearchCatalogId(msg)
{
// Call the parent method
var strCatalogId = sc4requestinterface.getDefaultSearchCatalogId.
apply(this, arguments);
// Override the result only if the parent method returns sccatalog
if (strCatalogId == "sccatalog")
strCatalogId = "mycatalog";

return strCatalogId;
}

Call your custom script
if the catalog Id is
sccatalog

Call your custom script
if the search catalog Id
is sccatalog
204 Chapter 9—Using Get-Resources Tailoring

Tailoring Kit Guide
Setting request line default values to values in a request
You can reuse any values entered in a prior request as default values in line
item documents. For example, if you set the End User field in a request, you
can re-use the value of this field for all line items that do not have another
value explicitly defined.

Peregrine recommends that you extend the getRequestDefaultValues
function with a custom script rather than updating the function directly. For
more information of extending scripts, see Extending Get-Resources scripts on
page 192.

While extending the getRequestDefaultValues function, implement the
default values you want and call the out-of-box function to fill in any
remaining default values. The advantages of this approach are:

Less code to maintain on your end.

Smoother upgrades for future releases.
Changing the business rules 205

Get-Resources
For example, you can extend the getRequestDefaultValues function to
update the EndUser fields in the RequestLines collection based on the value
of the End User field in the request document.

function getRequestDefaultValues(msgRequest)
{
...
// Call the out-of-box (parent) script that will set the remaining
// default values
msgRequest = sc4requestinterface.getRequestDefaultValues.apply
(this, arguments);

// Comment out the line below to enable the request line default
// values if (false)
{
var strEndUser = msgRequest.get("EndUserId", false);
var msgEndUser = msgRequest.getMessage("EndUser", false);
// Get the message corresponding to the collection for Request
// Lines
var msgReqLines = msgRequest.getMessage("RequestLines", false);
// Test if the collection exists
if (msgReqLines)
{
// The collection exists, get the list of request lines
var list = msgReqLines.getList("RequestLine", false);
// Browse the request lines to set their default values
for (var i = 0; i < list.getLength(); i ++)
{
// Get the request line for index i
var msgReqLine = list.getMessage(i);
// If there is no end user set, set it to the request's
var strRLEndUser = msgReqLine.get("EndUserId", false);
var strDefValRLEndUser = msgReqLine.get("_DefValEndUserId",
false);
if ((strRLEndUser == "" || strRLEndUser ==
strDefValRLEndUser) && strEndUser != strRLEndUser)
{
// set the end user id
msgReqLine.set("EndUserId", strEndUser, false);
msgReqLine.set("_DefValEndUserId", strEndUser, false);
// set the EndUser subdocument, used to display the values.
msgReqLine.remove("EndUser", false);
if (msgEndUser)
msgReqLine.add(msgEndUser);

}
}

}
}
return msgRequest;

}

Previous examples
truncated

Call to request default
values

Set EndUserId to value
returned in message
request

Gather request values
for EndUserId and
EndUser
206 Chapter 9—Using Get-Resources Tailoring

Tailoring Kit Guide
Purchase order default values
To set the purchase order default value, you can extend the
getRequestDefaultValues function defined in the acporderinterface script.
See Setting request default values on page 198 for an example extension.

Purchase order validation
To validate the purchase order before it is saved, you can extend the
validateRequest function defined in the acporderinterface script. See
Request validation on page 199 for an example extension.

Purchase order line default values
You can set the purchase order line default values in two places:

As the user selects approved request line items.

As the purchase order default values are being set

Setting purchase order line default values as the user selects
request line items
You can set default values on the purchase order default lines page that
depend on the request lines. To do so, you must:

Extend the getNewRequestLine function located in the
acrequestlinescatalog script with a similar function in your own catalog
script (for example, myreqlinecatalog). This function should return a
GRPOLine document as defined in the GRPOLine schema.

Extend the getCatalogId and getDefaultSearchCatalogId functions located
in the acporderinterface script with similar functions in your own request
interface script (for example, myporderinterface). You can have these
functions return to your custom catalog script (for example,
myreqlinecatalog).

For an example of how to extend these scripts and functions, refer to Setting
request line default values from catalog entries on page 201.
Changing the business rules 207

Get-Resources
Setting purchase order line default values with the purchase
order values
You can set default values for purchase order line items that depend on the
purchase order values. To do so, you must:

Extend the getRequestDefaultValues function located in the
acporderinterface script with a similar function in your own purchase
order interface script. This function should check the documents returned
by the OrderLines collection and set the default values based on the
purchase order values.

For an example of how to extend these scripts and functions, refer to Setting
request line default values to values in a request on page 205.
208 Chapter 9—Using Get-Resources Tailoring

Tailoring Kit Guide
Overview of the cart experience code

The cart experience code allows you to do the following:

Create new requests

Create new purchase orders

Review a request details

Review purchase order details

Display request line items

Display purchase order line items.

Select a request types

Select item categories

Select catalog items

The Get-Resources cart experience code is organized in four layers:

The ActivityCartExperience template defines the screen flow.

The cartexperience script controls the screen flow and checks that all of
the fields, messages, and so on are passed to the screen. The actual data
gathering and interactions with the back-end are handled by the
requestinterface script.

The requestinterfacebase script, and any scripts you create to extend it,
are responsible for interacting with the back-end, implementing business
rules, and describing the actions that are possible on requests and
purchase orders. It is also responsible for listing what request categories,
item categories, and catalogs are available.

The catalogbase script, and any scripts you create to extend it, are
responsible for retrieving the list of catalog entries and building a request
or purchase order line upon request. The catalog scripts can be called by a
request interface script or by the cartexperience script, however, the
cartexperience script always gets the name of the catalog script from the
request interface script.
Overview of the cart experience code 209

Get-Resources
The ActivityCartExperience template
You can create your own request activity using the CartExperience template.

To create a CartExperience activity:

1 Open your Get-Resources project in Peregrine Studio.

2 Expand the resources group of modules node.

3 Select a module to add the new activity to

4 Right-click the module and then click ActivityCartExperience.

A new activity node appears underneath the selected module.

5 Rename the new activity.

6 Expand the new activity node and then expand the first form setuprequest.

7 Select the start action form component.

8 Click the Link properties tab from the properties page.

9 Click the Param attribute and locate the _cartExperience entry.

10 Replace the value <Set your cart experience script name here> with the name of
your cart experience script. For example,

_cartExperience=mycartexperience

You can create a custom cart experience script that is similar to
requestexperience, requeststatusexperience, or purchaseorderexperience
scripts. Your custom cart experience script must contain an init function and
a getRequestInterface function that returns the name of a request interface
script (the name of the script that extends requestinterfacebase).

The cartexperience script
The cartexperience script generates and manages the data for the screens
found in the ActivityCartExperience template. This script has at least one
function for each screens in the ActivityCartExperience template.

The script is responsible to maintain the context information used in the cart
experience activity. This context information is stored in an ECMAScript
user object, one object per activity. The cartexperience.getCartSession
method returns this context object for the current activity. The Message
parameter passes _module and _activity elements that uniquely identify the
current activity. These two parameters are always set in onload messages.
210 Chapter 9—Using Get-Resources Tailoring

Tailoring Kit Guide
The main context object attributes are:

Attribute name Attribute type Description

strCartExperience ECMAScript String The name of the cart experience
script declared in the setuprequest
screen of ActivityCartExperience.

strRequestInterface ECMAScript String The name of the request interface
script used to interact with the
database in this activity.

msgRequestCategory Message An XML document containing
some information about the
current request type. If a request
category was selected it contains at
least an Id attribute, and optionally
a SubType attribute (that controls
how the checkout screen
personalization is saved).

msgRequestContent Message An XML document containing the
request or purchase order
document being edited. The
document format depends on the
schema that the request interface
uses.

strApprovalId ECMAScript String The workflow task Id that the
approver will either approve or
deny. This string is set only when in
the approval activity

strCategoryId ECMAScript String The id of the last item category that
was selected in this activity.

strCatalogId ECMAScript String The name of the last catalog used to
display the list of items. It is used
mainly when the users click the
Add more items button.

strCallingListForm ECMAScript String The form name
(<module>.<activity>.<formname
>) from which the current activity
was called. It is used to go back to
the caller screen, when you click the
Back to List or Discard Changes
button.
Overview of the cart experience code 211

Get-Resources
The request interface scripts
A request interface script is a script that extends the existing
requestinterfacebase script.

There is only one request interface script used in a given activity.

In most functions, you can get the context object by calling
cartexperience.getCartSession. You can store information for the current
activity in this context object as needed. Just add your own parameters when
needed.

The noticeable functions where the context object cannot be retrieved are the
getRequestDefaultValues and validateRequest functions. They only take a
request or purchase order message as a parameter.

The catalog scripts
A catalog script is a script that extends the existing catalogbase script.

A catalog script name is always retrieved through a request interface script,
by calling the getCatalogId function. Before using this script, you need to call
the request interface’s getCatalogScript function, which loads the script in
memory if needed.

strCallingListParam ECMAScript String Parameters that need to be passed
backed to the caller screen.

msgCurrentLineItem Message An XML document containing the
last request or purchase order line
item for which details were
presented. The document format
depends on the schema that the
request interface uses.

Attribute name Attribute type Description
212 Chapter 9—Using Get-Resources Tailoring

Tailoring Kit Guide
There are three major functions in a catalog script:

Script Function

getItemListStyle Returns a constant that the cartexperience script uses to
determine what style to display a selected catalog. The list
style can be a list of items (the default view in catalogs) or
a detail (as implemented in the offcatalog script). Other
values are reserved for a future use.

getItemList Returns a list of catalog items. This script must use the
query parameters passed into the message when coming
from the advanced search screen. It must also use the
_searchText parameter passed in when performing a quick
search. The quick search is the search box at the top of the
item category and catalog list screens.

getNewRequestLine Builds a request or purchase order line from a catalog item.
This script must add all the needed sub-documents and, if
necessary, add the item's composition. Every subline item
must have its own Id, that can be set using the following
formula:
env.getUniqueId() + "_" +
Math.round(10000*Math.random())
There are two special parameters that can be set in this
function to change the way a line item or a subline item is
saved:

DoNotSave. If set to true, the function does not save the
line item. This flag is set for example with AssetCenter
3.x on the subitems, because AssetCenter adds them
automatically with the main line item.
DoNotSavePrices. If set to true, the function does not
save the prices stored in the document, but will let the
back-end set its own default values when the line item is
saved.
Overview of the cart experience code 213

Get-Resources
214 Chapter 9—Using Get-Resources Tailoring

APPENDIX

A
 Peregrine Studio Components
This appendix contains a list and description of all of the components you
can add to a Project in Studio. The information is grouped according to the
menu structure with which these components are presented in Studio,
following each component down to display all of the subcomponents
available.

The menus displayed when you open the Get-Resources package in Peregrine
Studio may vary slightly from the menu options documented here. Menu
options change depending on the components you have created. For
example, you must have the folder called shared templates in your package
to enable DocExplorer Reference as a menu option.
Peregrine Studio Components 215

Get-Resources
To add components to your Project, right-click on the node to which you
want to add a component, and a menu of options is displayed.

Project > New >
Directory Object—not supported.

Group of Modules > New >

When you create a Group of Modules component, it includes a folder called
Explorers that contains default content for DocExplorer personalization
screens. It also includes a Group of Roles, which is a list of roles that are used
to control access rights. From the Group of Modules, you can create the
following:

Module—Get-Resources is organized into modules. Modules are often
determined by the role that a user will take in performing tasks. For
example, one module could be designed for employees who will be
opening requests for service. Another module could be for managers
approving requests. Modules are typically assigned specific access role
restrictions so that only those users who need to perform the module’s
task have permission to do so.
216 Appendix A—Peregrine Studio Components

Tailoring Kit Guide
The Peregrine Portal > Activity—Each module should contain one or
more activities that define the steps users can take to complete the
module’s task. For example, a Request module could have activities for
browsing catalogs, reviewing a shopping cart, and filling out a request
form. Each activity is typically displayed in Get-Resources on a sidebar
menu at the left of a form. Activities are typically assigned specific
access role restrictions so that only those users who need to perform the
activity’s task have permission to do so.

Form—Defines a Get-Resources screen displayed as a page in a
browser. The typical form includes a title, instructions, form fields,
and one or more actions. Each form contains an onload script that
executes on the server side before the page is sent to the browser.
The script obtains form data that may be displayed within the form.
In turn, each form action leads to the display of the next form in
Get-Resources. Data entered in a form is submitted to the onload
script of the next form to be displayed.

Field >

Check Box—Allows the user to toggle a value on or off.

Selectbox—Allows the user to select a value from a list
displayed in a Combo Box field.
 217

Get-Resources
Date—Allows the user to view or enter a date. An optional
calendar widget (Date Picker) can be enabled or disabled (the
default is enabled). To define a start year for the drop-down
list or for the calendar widget, add a + or - sign in front of a
number. This number specifies the number of years before or
after the current year you want the start and end years to be.

Time—Allows the user to view or set a time value.

Timespan—Allows the user to view or edit a timespan value.

Date/Time—Allows the user to view or set a date and time
value. There is an optional calendar widget (Date Picker) that
can be enabled or disabled in Studio (the default is enabled).
See Date component.

Password—Allows the user to enter a password.

Radio Button—Allows the user to select one of several
choices presented by radio buttons.

To designate a
Date/Time calendar
year start and end, add
a + or - in front of a
number to specify the
number of years before
or after the current year
you want the start and
end years to be.

Enable or disable the
calendar widget.
218 Appendix A—Peregrine Studio Components

Tailoring Kit Guide
Spinner—Allows the user to enter a numerical value. The
control allows the number to be typed in directly. It also
allows the user to select a number by clicking on the spinner
buttons that increase and decrease the value.

Text Edit—Allows the user to display or edit a value in a plain
text field.

Text Area—Allows the user to enter text into a multiline edit
field.

Link—Displays a hyperlink that the user can click on to
navigate to another Web location or site.

Link Button—Displays an image button created out of
background images and text.

Image—Displays an image.

Composite—Allows the creation of a field that consists of
two or more fields placed next to each other.

Money—Allows the user to view or edit a monetary value.

Unit of Measure—Allows the user to view or edit a value that
is a unit of measure.

Enumerated Select—Allows the user to select a value from a
list displayed in a Combo Box field.

Lookup—Allows the user to enter a value by performing a
lookup operation. The lookup is done in a separate pop-up
window.

Attachments—Allows the user to view and add attachments
to a document.

Language—Allows the user to select their preferred language
from a list of supported languages.

Translated Value Field—Displays text returned by a
translation script function.

Hidden Data Field—Stores data obtained by the form’s
onload script without displaying it to the user. The data is
included when the form is submitted and the user navigates
to another form.

Component >

Treelink—Displays a treelink component.
 219

Get-Resources
Directory—Displays a directory component based on data
received from a document query to an adapter.

List Builder—Allows users to configure a list by selectively
adding items to a listbox from a list of choices.

Workflow—Displays a workflow diagram.

OAA Workflow—Displays a workflow diagram.

Stack—Displays a stack component.

SVG—Displays an SVG component.

Web Application Menu—Displays a menu of all registered
modules or packages in the current Web application.

HTML >

Blank Line—Adds a blank vertical line to the form.

Free-form HTML—Allows you to insert arbitrary HTML
tags into a form. Can also be used to insert client-side
JavaScript into a Web page, although large amounts of
JavaScript should be moved to a presentation file that can be
imported by the page.

Import >

Static Import—Imports the text content of a file for
inclusion in a Web page. For example, you can import files
that define static HTML, JSP code or browser-side JavaScript
functions.

External HTML Plugin—Includes dynamic content into the
form. At run time, the URL referenced by the plugin is
accessed by the server, returning contents which are then
inserted into the form.

Field Container >

Field Section—Aligns fields into a column. Displays all field
labels in an aligned column to the left of the fields. Fields can
be divided into groups by inserting Headers and Instructions
as needed. To display more than one column of fields, create
a Form Columns container and place a Field Section
container in each column.

Multicolumn Field Table—Organizes input fields into a
multi-column table. It is recommended that you use
FieldColumns and FieldSections instead.
220 Appendix A—Peregrine Studio Components

Tailoring Kit Guide
Entry Table with Field Instructions—Organizes input fields
into a multicolumn table with fields on the left and
instructions for each field on the right.

Component Template—Allows you to define a group of
form elements that can be reused in more than one form.
Changes to the template are propagated to all places where
the template is used.

Tabs—Adds tabs to a form, each pointing to different
content defined by a separate form.

Dynamic Menu—Displays a multicolumn menu based on
data received from a document query to an adapter.

Form Columns—Divides the form into columns, allowing
content to be grouped and organized.

Table >

Simple Table—Displays a list of documents resulting from a
query.

Document Table—Displays a list of documents resulting
from a query.

Tree—Displays a list of documents resulting from a query as
a tree.

Portal Component >

Component Editor—Generates fields elements used to
configure a specific portal component. Not intended for
general Get-Resources use.

Portal Header—Generates the portal page header. Not
intended for general Get-Resources use.

Corkboard Header—Generates header information needed
by any page that includes a corkboard. Not intended for
general Get-Resources use.

Corkboard Configurator—Generates a list of choices
containing all known portal components. The list can be used
to configure the components to display in a specific
corkboard container.

Corkboard—Displays the portal components chosen and
configured by each user.

Custom Configurator—Allows users to define their own
custom component configurators.
 221

Get-Resources
Document Explorer >

Search—Displays a personalized list of fields used to perform
document searches.

List—Displays a personalized table with the list of documents
found as a result of a search.

Detail—Displays a personalized view of a document detail.

Action >

Action—Displays a button for an action. The button can be
a link to another page or a submit action.

Default Action—Defines a form’s submit action when no
actual buttons are displayed.

Back—Navigates to the previous page of the Web
application.

Home—Navigates to the home page of the Web application.

Print—Prints the current Get-Resources form.

Close—Use to close pop-up windows.

Redirection—Redirects a page to a link depending on the result
of the onload script matched against the condition

Transition—Contains an onload script and redirect arguments. After
the script runs, execution is redirected according to the condition
returned by the script. The options available from the Transition
menu are the same as the Form menu, except there is no Action
option.

Group of Strings—List of multilingual strings.

Multilingual String—The name of the StringResource is the ID of
the string.

Group of Scripts—Server-side ECMAScripts.

Script—Server-side ECMAScript (JavaScript) file containing functions
used by Web application forms.

Header—Initial comments and imports required in this script file.

Function—Script function defining application logic executed on
the server. All functions that have public access should accept a
Message object as the single input parameter and return a Message
object as a response. For example:
222 Appendix A—Peregrine Studio Components

Tailoring Kit Guide
function xyz(msg) {var msgResponse=new Message();...return
msgResponse;}

A script requires this public access interface if it is used as an onload
script for a form or if it is called directly via an Archway HTTP
message.

Group of Scripts—Server-side ECMAScripts.

Group of Triggers—A collection of triggers. Used by applications using
BizDoc.

Trigger—Individual trigger for a document.

Message action—Message action executed by the trigger.

Workflow action—Workflow action executed by the trigger.

Script action—Script action executed by the trigger.

Bizdoc Java action—Java action executed by the trigger inside
Bizdoc.

Group of Triggers—Collection of triggers.

Trigger—Individual trigger for a document.

Group of Triggers—Collection of triggers.

Group of Schemas—Database schemas describing documents accessible
by Get-Resources. Schemas define the field table mapping between
Get-Resources and the back-end database.

Raw Schema—Description of a document’s mapping on a real
database.

Schema—not supported.

Group of Images—Folder containing the image files to be used in your
Web application.

Image—The image is loaded into the ImageData property as binary
data. The file name property is used only the first time to load the
image.

Group of Images—Folder containing image files.

Image—The image is loaded into the ImageData property as binary
data. The file name property is used only the first time to load the
image.

Group of Images—Folder containing image files.

Group of Presentation Files—Folder containing files copied directly to
the presentation folder for use within the Get-Resources Web server.
 223

Get-Resources
Text Presentation File—Any generic file in the Presentation folder that
is needed by the Web server, for example, client-side JavaScript, static
JSP files.

Binary Presentation File—Binary file outputted in the presentation
folder. Accessed by the Web server and used by the browser.

Group of Presentation Files—Folder containing files copied directly to
the presentation folder for use within the Get-Resources Web server.

Text Presentation File—Any generic file in the Presentation folder
that is needed by the Web server, for example, client-side
JavaScript, static JSP files.

Binary Presentation File—Binary file outputted in the presentation
folder. Accessed by the Web server and used by the browser.

Group of Presentation Files—Folder containing files copied
directly to the presentation folder for use within the Get-Resources
Web server.

Group of default DocExplorer screens—Folder containing default
content for DocExplorer Personalization screens.

Reference of a file—File object.

Directory Object—not supported.

Group of Portal Components—Components that appear in the portal
components menu and can be added to the home page by the user.

Portal Component

(contents)—The content of the portal component that is displayed.

(configure)—Allows configuration of a portal component.

Group of Files—A temporary container of miscellaneous files used by a
Web application. For example, string files and scriptpoller.ini files are
stored here.

String file—Temporary representation of a string file.

Ini file—Temporary representation of a scriptpoller.ini file.

Group of Strings—List of multilingual strings.

Multilingual String—The name of the StringResource is the ID of the
string.

Group of Roles—not supported.
224 Appendix A—Peregrine Studio Components

Tailoring Kit Guide
Group of Style Sheets > New >

Style Sheet—Not supported.

Group of Roles—not supported.

Group of Files > New >

String file—Temporary representation of a string file.

Ini file—Temporary representation of a scriptpoller.ini file.

Group of Strings > New >

Multilingual string—The name of the StringResource is the ID of the
string.

Entities (collection of business objects) > New >

Entity—Used by applications using BizDoc.

Interfaces > New >

Interface—Not supported.

System enumerations > New >

System enumeration—Describes a system enumeration, used to define
data attributes where the value stored is not the value displayed to the user.
This allows multilingual databases.

Value—Defines one value for a system enumeration.

Templates > New
Schema >Not supported.

Field Container

Component Template

Directory Object—not supported.

Group of Methods—Includes a list of methods. You can create new
methods under this element.

Method—Java Method. The name is not significant. You can add a
comment to the method.

Method—Java Method. The name is not significant. You can add a
comment to the method.

Message action—Message Action executed by the trigger.
 225

Get-Resources
Workflow action—Workflow action executed by the trigger.

Bizdoc Java action—Java action executed by the trigger inside Bizdoc.

Script action—Script action executed by the trigger.

Trigger—Used by applications using BizDoc.

Group of Images—Allows you to create a group of images.

Attribute—Ejb attribute. Used by BizDoc.

Reference—Ejb reference. Used by BizDoc.

Contain—Contain an object as an embedded member.

Computed—Computed property.

Structure—Ejb structure. Used by BizDoc.

Collection—Ejb collection. Used by BizDoc.

Methods—Ejb method. Used by BizDoc.

Entity—Ejb entity. Used by BizDoc.
226 Appendix A—Peregrine Studio Components

CHAPTER

B
 Troubleshooting and FAQs
This chapter contains troubleshooting information for Peregrine Studio and
tailoring tasks.

This chapter covers the following topics:

Get-Resources Environment on page 228

Peregrine Studio on page 229

Scripting Errors on page 232

Tailoring Errors on page 234
Troubleshooting and FAQs 227

Get-Resources
Get-Resources Environment

This section describes warnings or errors that can be generated while running
a Get-Resources in your system environment.

Out of memory error
Problem

Your application server has run out of memory resources.

Solution

Get-Resources run best on a system with a minimum of 512 MB of RAM. If
you cannot add more physical memory to your machine, you can increase
the virtual memory space used on your Windows system. Adding virtual
memory will require more hard disk space and may degrade system
performance as cached information is saved to and retrieved from the hard
disk. Refer to your Windows help for information on setting or changing
virtual memory.

Cannot start Java – JRE must be installed
Problem

Peregrine Studio produces an error message when you attempt to create a
package or build a project.

Cannot start Java (‘jvm.dll’ not found). The JRE (Java Runtime
Environment) must be installed ...

Solution

Install a dedicated copy of the Java 2 SDK for Peregrine Studio to use. You
can install the Java 2 SDK from the Get-Resources installation CD.
228 Appendix B—Troubleshooting and FAQs

Tailoring Kit Guide
Peregrine Studio

This section describes common problems with write protections, conflicts,
and build errors generated with Peregrine Studio.

Cannot edit — components are displayed with grey background
Problem

Peregrine Studio displays some or all of your project components with a grey
background, and you cannot make or save changes to the project
components.

Solution

Peregrine Studio uses the grey background to indicate that an item is write
protected. The most common reasons that Peregrine Studio components are
write protected are:

A write-protected package is selected in the package selector.

The project (.adw) file is set to read-only.
Peregrine Studio 229

Get-Resources
Packages delivered by Peregrine are write-protected. You must save all of
your changes and additions to a user-created package extensions. If the
package selection box displays one of the Peregrine Studio default packages,
then your project will be write protected until you create and activate a new
package extension in which to save your changes.

Red exclamation point (conflict icon) displayed next to nodes
Problem

Peregrine Studio displays a conflict icon next to one or more of your project
components, and you cannot build the project. The conflict could be the
result of multiple packages attempting to change or modify the same
component, or the conflict could be the result of improperly defined package
dependencies.

Solution

To resolve the conflict you should first view more information about the
nodes displaying the conflict icon.

To view information about a conflict:

1 Select a node with an exclamation point icon displayed next to the name
from the Project Explorer view.

2 Click View > Advanced Information. Studio displays a new information
window at the bottom of the interface. This window displays information on
the conflict.
230 Appendix B—Troubleshooting and FAQs

Tailoring Kit Guide
The information on selection will tell you whether you have a resource or a
dependency conflict.

Resource conflicts

Resource conflicts occur when two or more project components describe the
same thing. To resolve a resource conflict, delete or reconfigure one of the
project components that is creating the conflict. If the conflicting
components are part of separate package extensions, you can choose to
deactivate one of the package extensions to resolve the conflict.

Dependency conflicts

Dependency conflicts occur when a package extension attempts to modify a
package that is not listed as a dependent package. To resolve the conflict you
can choose one of two solutions:

Add the package you want to modify as a package dependency of the
conflicting package extension.

Move the changes in the conflicting package extension to another package
extension that already has the proper package dependencies.

Conflict icon

Information about the conflict
Peregrine Studio 231

Get-Resources
Scripting Errors

Information about scripting errors is displayed as text at the top of the main
frame and in the archway.log file.

Unable to find script file
Problem

The following error message is displayed when you select a form:

Unable to find script file for <name>

This message will also appear in the archway.log file.

Solution

This error message is usually the result of a script file trying to call an
undefined adapter. This is a common problem if you import a Web
application into a project that contains a new adapter. Review your script file
and determine what adapters it calls. If the <name> value is the name of a
new adapter defined in the script file, then define the new adapter in the
Admin Settings module, stop and restart your application server, and then
restart the Archway server (using the Admin Control Panel) to correct the
problem.

This error message can also appear if a form is calling an invalid script file
name. Verify in Studio that the form is calling a valid script file name. If you
copied a script from another form or Web application you may have
renamed the script incorrectly.

If you have verified that the script file exists and uses the proper adapter, then
stop and restart your application server. This will refresh the adapter settings.
232 Appendix B—Troubleshooting and FAQs

Tailoring Kit Guide
Script produces an ECMAScript error
Problem

An ECMAScript Error is displayed with the script name, source code, and
line number of the error when a form is displayed.

Solution

Open Peregrine Studio, review the error-producing script for typos, and
verify that it uses the correct function and schema names. For example, you
might have a function where msg is incorrectly listed as nsg. Correct any
errors and rebuild the project.

Note: ECMAScript is case sensitive and will return an error message if the
case does not match the object called.

Tip: If you have enabled the HTTP listener in Peregrine Studio, you can click
on the underlined script name listed at the top of the error message to
go directly to the script and line number of the error. Peregrine Studio
must be open for the hyperlink to work.

ECMAScript error: undefined value or property
Problem

The following error is displayed when you select a form:

ECMAScript Error: Error Message: Runtime error Function called on undefined value
or property

This error will also be displayed in the archway.log file.

Solution

Verify that the form calls the proper script name in the server onload script
attribute. Also check that the script name contains no typos and that it is
listed with the proper case. If the script name listed in the form is correct,
there is a possibility that there is a script name conflict. Each script in your
project needs a unique name. Try renaming your script to a new name,
updating the server onload script attribute, and rebuilding your project. If
renaming the script fixes the problem then you had a script name conflict.
Scripting Errors 233

Get-Resources
Tailoring Errors

The following sections describe some of the common errors associated with
tailoring Get-Resources. Refer to the sections below for solutions to common
tailoring problems.

Wrong start form is displayed for activity
Problem

You want Get-Resources to display a particular form when you select an
activity, but the wrong form is displayed. You may have also re-ordered the
form listing in the Project Explorer tree, but the proper form still is not
displayed.

Solution

You need to define the Start Page attribute of the activity. This attribute
determines what form is first displayed when the activity is selected. By
default, the Start Page is blank.

To set the Start Page of an activity:

1 Open Peregrine Studio and select the activity you want to change.

Tip: To select the activity properties, select the activity node, double-click
any form in the flowchart view displayed, and then click the Control tab.
The activities properties will be displayed to the right of the control
flowchart.

2 In the properties of the activity, use the selectbox of the Start Page attribute
to choose a starting form.

3 Save and rebuild your project file.

Script output not appearing in form component
Problem

Data is not displayed in your Get-Resources form component. This problem
could be the result of a faulty script that is not generating an XML document
or the result of form components that are not properly mapped to the fields
of the generated XML document.
234 Appendix B—Troubleshooting and FAQs

Tailoring Kit Guide
Solution

Verify whether your script is generating an XML document by enabling the
Show form information option and then looking at the contents of the Script
Output tab. If the script is working properly, you should see your
Get-Resources data encoded as in the XML document displayed on the Script
Output page. If you do not see an XML document, then your script has an
error.

If you can see data displayed in the Script Output tab, then the problem is
how you have mapped the form components to the XML fields. View the
form component properties from Peregrine Studio, and verify that the
Document Field attribute of the form component maps to an XML tag
displayed in the Script Output tab.

Too few parameters error
Problem

The following error message is displayed when you select a form:

ERROR:...: ***SQL Exception caught***

The script output displays the following error:

-3010: [...][...] Too few parameters. Expected 1.

These messages will also appear in the archway.log file.

Solution

There is an incorrect field mapping or typo in the schema used in this form.
Review the schema(s) used by this form and verify that there are no typos.
Also verify that all the attributes defined in the schema map to valid fields in
the back-end database. The value in the field attribute must match the field
name of the back-end database. This is particularly important for the ID
attribute, which must map to a unique numerical value that identifies each
record.
Tailoring Errors 235

Get-Resources
Get-Resources always goes to redirection form
Problem

You have defined a redirection to another form in Get-Resources and the
source form always takes users to the redirection form regardless of the
search conditions and results.

Solution

Validate that the Condition attribute of the redirection is not blank. The
Condition value should match the value defined by the setCondition
function of your form’s ECMAScript. If the Condition attribute is left blank,
the default action is to redirect to the target form regardless of the returned
results.

Syntax error in FROM clause
Problem

The following error message is displayed when you select a form:

ERROR:...: ***SQL Exception caught***

The script output displays the following error:

-3506 [...][...] Syntax error in FROM clause.

This error will also be displayed in the archway.log file.

Solution

The schema name you defined for the form is wrong. The schema name
could be listed incorrectly in two places:

The form’s onload script may refer to the wrong schema name.

The <document name=value> does not match the schema file name.
236 Appendix B—Troubleshooting and FAQs

Index
A
actions. See form components
activity component 38
Archway

scripts 102
Archway Document Manager

and schemas 131
AssetCenter 86
authorization file

Peregrine Studio 18

B
bookmarks, adding in Studio 28
build options 42–43

build directory 43
character encoding 43
EJB user 43
exclude files 43
presentation folder 43
temporary directory 43

C
cart experience 209
cascading style sheets 36
component template 74–75
components

group of files component 39
group of modules component 38
group of schemas component 39
group of scripts component 39
hierarchy of 37

in Peregrine Studio 215
module component 38
modules 41
package 41
relationships among 38–39

conflicts
defined 47
resolving 48, 231

creating
nested document lookups 93
package extensions 45
schemas 149

D
data validation

for purchase order 207
for request summary 199
tailoring tasks 24

default values
for purchase order 207
for purchase order line 207
for request line 201
for request summary 198
tailoring tasks 24

dependencies
setting for packages 47

dependency conflicts. See Conflicts
deployment directory 43
development environment

requirements for 19
DocExplorer Reference
Index 237

adding 90
DocExplorers

personalizing with 89
tailoring tasks 23

Document field
format of names 65

document schema definitions. See schemas

E
ECMAScript 101
errors

sysntax error in FROM clause 236
too few parameters 235
Unable to find script file 232
undefined value or property 233

F
field labels, changing 60
fields. See form components
fieldsection component 75
form component 38
form components

action 38, 83–84
changing schemas 63
component template 74
date picker 218
described 38
field form components 60
fields 38
fieldsection 75–76
hidden data field 79
hiding 61
labels 60
lookups 38
making read-only 62
names in 65–67
redirection 80
selectbox 77–79
simple table 81
table link 82
tables 38
tailoring 56–84
tailoring tasks 23
text columns 82–83
text edit 76–77

forms
changing instructions 58
changing onload scripts 59
changing titles 57
server-side 102–103
tailoring tasks 23

framesets
displaying forms in 67

G
Get-Resources forms 179–192

catalog select list 184
purchase order line detail 188
purchase order summary 186
request line detail 182
request line selection 191
request summary 179

group of scripts component 39

H
HTTP Listener 30
HTTP listener

enabling in Peregrine Studio 30

I
installation

tailoring kit 14
instructions, changing in forms 58
interface components. See Form components 38
ISO character encoding. See character encoding

J
JavaDocs 128
JavaScript 101

L
lookup fields 92

creating 92
nested document lookups 93

lookups. See form components

M
messages, scripts 113
238 Index

Tailoring Kit Guide
N
nodes 29, 230

group of schemas node 149

O
onload scripts

changing in forms 59
defined 59

P
package extensions 45–47
packages

activating 46
deactivating 46
defined 44
dependencies 46, 47

Peregrine Studio
authorization file 18

Personalization
adding existing fields 97
configuring fields 98
interface, described 95
lookup fields 92
removing existing fields 97
requirements 86
settings 87
tailoring tasks 22

Portal components
Business View Authoring 88
creating 72
making schemas visible to 88

presentation files 36
Project Explorer 29
projects

See also Web applications
components of 36
conflicts within 49
files within 40

R
resource conflicts. See conflicts
Rhino JavaScript Debugger 109–110

S
schema elements

 167
schema template example 155
schemas

adding logical and physical mappings 149
Archway Document Manager and 131
changing in form components 63
creating 149
creating your own 148
defined 130
document fields 64
elements 156–175
extension folders 135
extensions 22, 132–147
identifying schema used 133
locating 134
sample 155
tailoring tasks 22, 24
testing from a URL 111–112
uses for extensions 136
using with DocExplorers 90

scripts
adding to Peregrine Studio project 107
cartexperience 210
catalog 212
client-side 100
creating XML message objects 113
displaying variables in form components 69
ECMAScript 101
editing 105
extending the request interface script 193–

197
extensions of 192
format of variables 69
JavaScript 101
list of references 128
object oriented usage 116
onload scripts 102–103
prototype property 116
request interface 212
roles of 102
samples 121–127
server scripts 101
server-side 100
tailoring tasks 24
testing from a URL 110–111
Index 239

uses for 100
ServiceCenter 86
source files

opening in Peregrine Studio 18
string files

translating 51, 52

T
tables. See form components
tailoring

form components 56–84
tailoring kit

installation 14
tailoring tasks

requiring Peregrine Studio 23
that can be done outside of Peregrine Studio

22
templates

ActivityCartExperience 210
templates component 37
testing environment

requirements for 19
titles, changing in forms 57
translating

tailored modules 50
troubleshooting

cannot start Java 228
conflicts 230
JRE must be installed 228
Read-only components 229
redirections 236
script error 233
script error Unable to find script file 232
script error undefined value or property 233
sysntax error in FROM clause 236
too few parameters 235
virtual memory error 228

U
UNIX

deploying tailoring changes to 49
URL

querying scripts and schemas from 110
user rights, Personalization 87

V
variables

referring to XML attributes 71
visible flag

hiding form components 61

W
Web applications

described 10
viewing changes 32

X
XML

components. See components
creating message objects from scripts 113
example of Document field names 66
example of script variable name 69
viewing source code 32
240 Index

February 28, 2003

	Contents
	Introducing the Get-Resources Tailoring Kit
	About this Guide
	Conventions Used in this Guide

	Installing the Get-Resources Tailoring Kit
	Installation Requirements
	Installing the Get-Resources Tailoring Kit
	Opening the Get-Resources Project
	Setting up a tailoring environment
	Setting up a Development Environment
	Setting Up a Testing Environment

	Tailoring Tasks
	Tailoring Tasks independent of Peregrine Studio
	Personalization
	Schema extensions

	Tailoring tasks requiring Peregrine Studio
	Forms and Form components
	DocExplorers
	Scripting
	Schemas
	Data validation
	Default values

	Using Peregrine Studio
	The Peregrine Studio interface
	Project Explorer
	Drag and drop

	Enabling the HTTP Listener and Form Information
	Viewing XML source code
	Finding changes indicated with color text

	Peregrine Studio Projects and Packages
	Peregrine Studio projects
	Project components
	Project component descriptions
	Project files

	Building a project
	XML to JSPs
	Build options
	Setting project build settings

	Peregrine Studio project packages
	Saving changes with package extensions
	Activating and deactivating packages
	Package dependencies
	Setting package dependencies

	Warnings for conflicts
	Deploying tailoring changes
	Deploying to Windows platforms
	Deploying to UNIX platforms

	Translating tailored modules
	Editing existing translation strings files
	Adding new translation strings files
	Configure Get-Resources to use new string files

	Adding Get-Resources to an existing frameset

	Forms and Form Components
	Tailoring forms
	Changing a form’s title
	Changing a form’s instructions
	Changing a form’s onload script
	Changing a form component’s label
	Hiding a form component
	Changing a form component to read-only
	Changing the schema that a form component uses
	Changing the document field that a form component uses
	Displaying a form within a frameset
	Displaying a script variable in a form component

	Creating a portal component
	Types of form components
	Component template containers
	Fieldsection containers
	Text edit fields
	Selectbox fields
	Hidden data fields
	Redirections
	Simple table
	Table links
	Text columns
	Actions

	Adding Personalization Functionality
	Supporting personalization
	Activating personalization
	Making a schema visible to portal components

	Personalizing with DocExplorers
	DocExplorer forms and functions
	Adding a DocExplorer reference
	Personalizing a DocExplorer reference
	Adding Personalization to lookup fields

	Using the personalization interface
	Adding an existing field to a personalized form
	Removing a field from a personalized form
	Personalizing a field attribute

	Scripting
	How scripts are used
	Types of Scripts
	Where Scripts are Stored
	How Scripts are Used
	Editing an existing script
	Adding a custom script

	Testing Scripts
	Rhino JavaScript Debugger
	URL queries

	Common Message Operations
	Using ECMAScript in an Object Oriented manner
	ECMAScript implementation in Get-Resources
	Name resolution in ECMAScript
	Using the object prototype for object oriented programming
	How to use object orientation for tailoring

	Sample Scripts
	General Script Samples
	Selecting a Field from a Schema
	Calling Other Scripts and Combining the Results
	Form Script Sample
	Creating an XML Document from a Schema

	References
	Sources for Client-side JavaScript
	JavaDocs for the Main Archway Package

	Document Schema Definitions
	Understanding Document Schema Definitions
	How to use schemas
	Schema extensions
	When to use schema extensions
	Creating schema extensions
	Identifying the schema to extend
	Locating the schema on the server
	Creating the schema extension target folders and files

	Editing the schema extension files
	Adding a new field to the Available Fields list
	Hiding an existing field from the Available Fields list
	Changing the label a field displays in the Available Fields list
	Changing the list of forms where a field is visible
	Changing the physical mapping of a field
	Changing the type of form component a field uses
	Adding subdocuments to the Available Fields list

	Creating custom schemas
	Adding a schema to your Peregrine Studio project
	Adding logical and physical mappings to your schema
	Sample schema

	Schema Elements And Attributes
	<?xml>
	<schema>
	<documents>
	<document>
	<attribute>
	<collection>
	Documents
	Subdocuments

	Using Get-Resources Tailoring
	Best Practices
	Tailoring Get-Resources forms
	Changing the request summary screen
	Changing the request line detail screen
	Changing the catalog select list
	Changing the purchase order summary screen
	Changing the purchase order line detail screen
	Changing the request line selection list

	Extending Get-Resources scripts
	Changing request behavior
	Changing purchase order behavior

	Changing the business rules
	Setting request default values
	Request validation
	Request line default values
	Setting request line default values from catalog entries
	Setting request line default values to values in a request
	Purchase order default values
	Purchase order validation
	Purchase order line default values

	Overview of the cart experience code
	The ActivityCartExperience template
	The cartexperience script
	The request interface scripts
	The catalog scripts

	Peregrine Studio Components
	Troubleshooting and FAQs
	Get-Resources Environment
	Out of memory error
	Cannot start Java – JRE must be installed

	Peregrine Studio
	Cannot edit — components are displayed with grey background
	Red exclamation point (conflict icon) displayed next to nodes

	Scripting Errors
	Unable to find script file
	Script produces an ECMAScript error
	ECMAScript error: undefined value or property

	Tailoring Errors
	Wrong start form is displayed for activity
	Script output not appearing in form component
	Too few parameters error
	Get-Resources always goes to redirection form
	Syntax error in FROM clause

	Index

