
HP SOA Systinet

Software Version: 3.10

Developer Guide

Document Release Date: January 2009
Software Release Date: January 2009

Legal Notices

Warranty

The only warranties for HP products and services are set forth in the express warranty statements
accompanying such products and services. Nothing herein should be construed as constituting an additional
warranty. HP shall not be liable for technical or editorial errors or omissions contained herein.

The information contained herein is subject to change without notice.

Restricted Rights Legend

Confidential computer software. Valid license from HP required for possession, use or copying. Consistent
with FAR 12.211 and 12.212, Commercial Computer Software, Computer Software Documentation, and
Technical Data for Commercial Items are licensed to the U.S. Government under vendor's standard
commercial license.

Third-Party Web Sites

HP provides links to external third-party web sites to help you find supplemental information. Site content
and availability may change without notice. HP makes no representations or warranties whatsoever as to
site content or availability.

Copyright Notices

' Copyright 2003-2009 Hewlett-Packard Development Company, L.P.

Contents
About this Guide. 5

In this Guide. 5

Document Conventions. 7

Documentation Updates. 8

Support. 9

1 IDE Integration. 11

WSIL Report – IBM RAD and Eclipse. 11

Microsoft Visual Studio. 12

2 REST Interface. 15

Atom-Based REST Interface. 15

Proprietary REST Interface. 39

Proprietary REST Client. 75

3 SDM Client. 81

Basic Principles. 82

SDM Client Package. 86

4 Technical Security. 87

SOA Systinet Overview. 87

Users and Groups. 88

Transport Security. 90

Authentication. 91

Resource ACL. 91

WEB Security. 93

Platform Services. 93

Reporting Services. 94

Policy Manager Services. 94

3

5 RSS. 95

Kinds of RSS Feed. 95

Syndication Syntax. 95

Subscriptions over RSS. 96

6 Custom Source Parsers. 97

7 Custom Validation Handlers. 101

8 Validation Client. 103

Downloading Policies and Assertions (sync). 103

Local Validations (validate). 104

Validating Against Policy On Server (server-validate). 107

Rendering Output from XML Reports (render). 108

4

About this Guide
Welcome to HP SOA Systinet, the foundation of Service Oriented Architecture, providing an enterprise
with a single place to organize, understand, and manage information in its SOA. The standards-based
architecture of SOA Systinet maximizes interoperability with other SOA products.

HP Software controls access to components of SOA Systinet with a license. This document describes
the full functionality of SOA Systinet including licensed components. If your license does not
include these licensed components, their features are not available.

In this Guide
SOA Systinet Developer Guide describes additional features and methods to enable developers to better
interact with SOA Systinet.

It contains the following chapters:

• Chapter 1, IDE Integration

How to integrate SOA Systinet with IDEs.

• Chapter 2, REST Interface

A guide to the REST Interfaces.

• Chapter 3, SDM Client

Using the SDM Client.

• Chapter 4, Technical Security

A technical overview of SOA Systinet from the security point of view.

• Chapter 5, RSS

5

The RSS format used in SOA Systinet.

• Chapter 6, Custom Source Parsers

How to write your own source parser.

• Chapter 7, Custom Validation Handlers

How to write your own validation handler.

• Chapter 8, Validation Client

A command-line tool for policy compliance validation.

6

Document Conventions
This document uses the following typographical conventions:

Script name or other executable command plus mandatory arguments.run.bat make

Command-line option.[--help]

Choice of arguments.either | or

Command-line argument that should be replaced with an actual value.replace_value

Choice between two command-line arguments where one or the other is
mandatory.

{arg1 | arg2}

User input.java -jar hpsystinet.jar

File names, directory names, paths, and package names.C:\System.ini

Program source code.a.append(b);

Inline Java class name.server.Version

Inline Java method name.getVersion()

Combination of keystrokes.Shift+N

Label, word, or phrase in a GUI window, often clickable.Service View

Button in a user interface.OK

Menu option.New→Service

7

Documentation Updates
This guide's title page contains the following identifying information:

• Software version number, which indicates the software version

• Document release date, which changes each time the document is updated

• Software release date, which indicates the release date of this version of the software

To check for recent updates, or to verify that you are using the most recent edition of a document, go to:

http://h20230.www2.hp.com/selfsolve/manuals

This site requires that you register for an HP Passport and sign-in. To register for an HP Passport ID, go to:

http://h20229.www2.hp.com/passport-registration.html

Or click the New users - please register link on the HP Passport logon page.

You will also receive updated or new editions if you subscribe to the appropriate product support service.
For details, contact your HP sales representative.

8

http://h20230.www2.hp.com/selfsolve/manuals
http://h20229.www2.hp.com/passport-registration.html

Support
You can visit the HP Software Support Web site at:

http://www.hp.com/go/hpsoftwaresupport

HP Software Support Online provides customer self-solve capabilities. It provides a fast and efficient way
to access interactive technical support tools needed to manage your business. As a valued support customer,
you can benefit by using the HP Software Support web site to:

• Search for knowledge documents of interest

• Submit and track support cases and enhancement requests

• Download software patches

• Manage support contracts

• Look up HP support contacts

• Review information about available services

• Enter into discussions with other software customers

• Research and register for software training

Most of the support areas require that you register as an HP Passport user and sign in. Many also require a
support contract.

To find more information about access levels, go to:

http://h20230.www2.hp.com/new_access_levels.jsp

To register for an HP Passport ID, go to:

http://h20229.www2.hp.com/passport-registration.html

9

http://www.hp.com/go/hpsoftwaresupport
http://h20230.www2.hp.com/new_access_levels.jsp
http://h20229.www2.hp.com/passport-registration.html

10

1 IDE Integration

This chapter explains how to allow IDEs to access the SOA Systinet repository.

It contains the following sections:

• WSIL Report – IBM RAD and Eclipse on page 11

How to use the WSIL query include with SOA Systinet to add it to an IDE.

• Microsoft Visual Studio on page 12

How to add SOA Systinet as a Web Reference in MS Visual Studio.

WSIL Report – IBM RAD and Eclipse
A WSIL (Web Service Inspection Language) dynamic query is included to make it easy for IDEs, like IBM
RAD, to leverage the SOA Systinet repository. This query provides a list of all web services and their
WSDLs and is used by RAD to create a service proxy. You can access this query from the Tools tab menu
Generate WSIL Document, or at the referenced location
http://yourhost:yourport/soa/systinet/platform/restBasic/service/system/wsil

Launch IBM RAD 6.0's Web Services Explorer, and enter the WSIL report URL (the page that is generated
by the WSIL link of Search.

11

From there, you will be able to access the services' WSDL documents.

Microsoft Visual Studio
The Add Web Reference facility of Microsoft Visual Studio’s Solution Explorer is fully supported.

12

Enter the URL of your SOA Systinet installation (for example, http://yourserver:8080/soa/) to access SOA
Systinet within Microsoft Visual Studio.

Notice the instructions from Microsoft Visual Studio at the top. In this case, you are navigating to a WSDL
file stored in SOA Systinet. On the right, you can see that Microsoft Visual Studio does not recognize web
service discovery information on the current page.

To find the service you are looking for, see the Full Text Search section in the HP Systinet User Guide.

Select the WSDL artifact for the service.

From this page you can access the WSDL document by clicking Cached version. At this point, Microsoft
Visual Studio’s Solution Explorer recognizes that the document accessed is WSDL. You can now click
Add Reference to read the web service definition(s) into Microsoft Visual Studio.

13

14

2 REST Interface

SOA Systinet utilizes two REST interfaces in this release as an intermediate measure.

• An ATOM-based REST interface, based on HP Symphony SDK.

The ATOM-based interface is partially implemented in this release and utilizes only READ/GET
functionality.

• A proprietary REST interface, developed by Systinet.

The interfaces are described in the following sections:

• Atom-Based REST Interface on page 15

• Proprietary REST Interface on page 39

• Proprietary REST Client on page 75

Atom-Based REST Interface
SOA Systinet uses an ATOM-based REST interface, developed using HP Symphony SDK.

For more information about Symphony SDK, see the product documentation.

In this release, the ATOM-based REST interface only uses READ functionality.

The SOA Systinet platform service document can be accessed using the following URL:

http://hostname:port/context/platform/rest

15

Hostname, port, and context are set during installation. For example, if you used the default settings and
installed to your local machine, use the following URL:

http://localhost:8080/soa/platform/rest

If set up during installation, an HTTPS secure endpoint is available which requires credentials to access.

A default secure endpoint uses the following URL:

https://localhost:8443/soa/platform/rest

Use restSecure instead of rest if you are using HTTP basic authentication.

The service document consists of workspaces, which in turn contains feeds made up of entries, as shown
in Example 1 on page 17.

16

Example 1: Platform Service Document

<?xml version="1.0" encoding="UTF-8"?>
<app:service xml:base="http://localhost:8080/soa/platform/rest/" xmlns:app="http://www.w3.org/2007/app">
 <app:workspace>
 <atom:title type="text" xmlns:atom="http://www.w3.org/2005/Atom">SDM collections</atom:title>
 <app:collection href="./artifact/reportArtifact">
 <app:accept/>
 <atom:title type="text" xmlns:atom="http://www.w3.org/2005/Atom">Collection of Reports</atom:title>
 <app:categories href="./category-document/
 uddi:systinet.com:soa:model:taxonomies:artifactTypes:_artifactType"/>
 <app:categories href="./category-document/
 uddi:systinet.com:soa:model:taxonomies:reportTypes:reportType"/>
 <app:categories href="./category-document/
 uddi:systinet.com:soa:model:taxonomies:reportCategories:reportCategory"/>
 <app:categories href="./category-document/
 uddi:systinet.com:soa:model:taxonomies:reportStatus:reportStatus"/>
 <app:categories href="./category-document/
 uddi:systinet.com:soa:model:taxonomies:reportResultCodes:reportResultCode"/>
 <app:categories href="./category-document/
 uddi:systinet.com:soa:model:taxonomies:associatedApplication:associatedApplication"/>
 </app:collection>
 ...
 </app:workspace>
 <app:workspace>
 <atom:title type="text" xmlns:atom="http://www.w3.org/2005/Atom">Publishing Locations</atom:title>
 <app:collection href="./location">
 <app:accept/>
 </app:collection>
 </app:workspace>
 <app:workspace>
 <atom:title type="text" xmlns:atom="http://www.w3.org/2005/Atom">System Information</atom:title>
 <app:collection href="./system">
 <app:accept/>
 </app:collection>
 </app:workspace>
</app:service>

The interface is described in the following sections:

• Workspaces on page 18

• Feeds on page 19

17

• Entries on page 27

• Category Documents on page 38

Workspaces

The platform service document consists of the following workspaces:

• SDM Collections Workspace on page 18

The SDM workspace reflects the structure of the SOA Definition Model (SDM) and defines feeds for
the collections in the SOA Systinet repository.

• Publishing Locations Workspace on page 19

The locations workspace reflects the structure of attached data content in SOA Systinet created by the
publisher.

• System Collections Workspace on page 19

The system workspace contains system information used by SOA Systinet.

SDM Collections Workspace

The SDM collections workspace contains a collection for each artifact type in the SOA Definition Model
(SDM) for which an instance can be created within its artifact hierarchy.

HP SOA Systinet Customization Editor can be used to modify the SDM, so your configuration
may vary from specific examples in this documentation.

For more details, see the HP SOA Systinet Customization Editor Guide.

Each collection in the workspace consists of the following:

• <app:collection href="./artifact/artifactType">

The reference defines the URL used for the feed for that particular artifact type collection.

For details, see Artifact Collection Feeds on page 20.

18

• <app:categories href="./category-documents/taxonomy">

Categories can occur in feed entries and some feed readers can perform filtering according to these
categories.

Publishing Locations Workspace

The publishing locations workspace consists of a single collection. This collection is an atom feed made
up of entries where the entry can be one of the following types:

• Subcollection

• Resource

The subcollections and resources reflect content uploaded to SOA Systinet using its publication feature.

For more details, see "Publishing Service Infrastructure from Definition Documents" in the HP SOA Systinet
User Guide.

This location is available as a feed.

For details, see Publishing Location Feeds on page 25.

System Collections Workspace

The system collections workspace contains a single collection. This collection contains information about
the running system.

Feeds

You can access the content of the repository using feeds.

• Artifact Collection Feeds on page 20

• Publishing Location Feeds on page 25

• Artifact History Feed on page 27

19

Artifact Collection Feeds

Every artifact type collection in the SDM is accessible as a feed.

Use the reference defined in the SDM collections workspace to access a collection feed.

For example, the WSDL collection feed is accessed with URL:

http://localhost:port/context/platform/rest/artifact/wsdlArtifact

Example 2: WSDL Collection Feed

<feed xml:base="http://localhost:8080/soa/platform/rest/artifact/wsdlArtifact"
xmlns="http://www.w3.org/2005/Atom">
 <id>hp-soa:atom:feed:sdm:wsdlArtifact</id>
 <updated>2008-04-29T13:59:47.240+02:00</updated>
 <title type="text" xml:lang="en">Collection of WSDLs</title>
 <link href="artifactBase" type="application/atom+xml;type=feed"
 rel="related-super" title="parent sdm feed"/>
 <link href="wsdlArtifact?start-index=1&page-size=50" type="application/atom+xml;type=feed" rel="self"
 title="feed self"/>
 <generator>HP SOA Systinet</generator>
 <opensearch:startIndex>1</opensearch:startIndex>
 <opensearch:itemsPerPage>50</opensearch:itemsPerPage>
 <entry>
 <id>f726b881-9763-4a9f-8977-1992dd9e2b95</id>
 <updated>2008-04-29T12:10:22.981+02:00</updated>
 <title type="text" xml:lang="en">account_portType.wsdl</title>
 ..
 </entry>
 ..
</feed>

Each artifact type collection feed consists of the following descriptors:

DescriptionDescriptors

The feed identification.id

The last update time.updated

The name of the feed.title

20

DescriptionDescriptors

A set of links with the following link types indicated by the rel attribute:

• related-super

Links to collection feeds for super artifacts in the inheritance category.

• related-sub

Links to collection feeds for descendant artifact types.

link

The set of entries in the feed. For more details, see Artifact Atom Entries on page
28.

entry

Starting point for the feed relative to index entries. The first indexed item is 1.opensearch:startIndex

Number of items per page.opensearch:itemsPerPage

You can modify the output of the feed as described in the following sections:

• Filtering Feeds on page 22

• Viewing Entry Content in Feeds on page 22

• Property Based Searching on page 23

• Feed Ordering on page 24

• Feed Paging on page 25

You can also combine these output methods.

Separate each term with &.

For example, to get artifacts 10-79 which contain policy in the description, ordered primarily by their name
in descending order and then by description in ascending order, and displaying properties defined in
artifactBase, use the following URL:

http://host:port/context/platform/rest/artifact/artifactBase?p.description=policy&start-index=10&page-

size=70&order-by=name-,description&inline-content

21

Filtering Feeds

Feeds are presented in the REST interface as a set of equivalent collections.

Examples of feeds include:

• http://localhost:port/context/platform/rest/artifact/implementationArtifact

• http://localhost:port/context/platform/rest/artifact/xmlServiceArtifact

• http://localhost:port/context/platform/rest/artifact/webServiceArtifact

• http://localhost:port/context/platform/rest/artifact/businessServiceArtifact

• http://localhost:port/context/platform/rest/artifact/wsdlArtifact

Viewed in this way, the feeds form a flat structure. However, there are established relationships between
feeds in terms of an inheritance hierarchy.

The root of the hierarchy is http://localhost:port/context/platform/rest/artifact/artifactBase.

You can use abstract artifact type feeds to obtain all artifact types lower in the hierarchy. For example, the
implementationArtifact feed contains all SOAP service, XML service, and web application artifacts.

The relationships between feeds are realized via related-sub and related-super links.

Viewing Entry Content in Feeds

You can use feeds to obtain multiple artifact entry content as well.

Add ?inline-content to the collection feed URL to obtain the full content for each entry in the feed.

The properties displayed in the content for an entry are determined by the artifact type used in the
feed URL. Properties specific to an artifact type lower in the hierarchy are not displayed. However
relational properties are always displayed regardless the artifact type used in the feed URL.

22

Property Based Searching

You can search for specific artifacts in a feed with property based filtering. You can filter by any property
type regardless of its type and cardinality, but the elementary conditions are always primitive values. The
filtering property must be present in the artifact type defining the feed.

The property must be one of the following elementary types:

• text

• integer

• bigInteger

• date

• double

• boolean

• uuid

To view the permitted property names for a particular artifact feed, you can examine the SDM with URL:

http://host:port/context/platform/rest/system/model.

If you want to filter by a compound property (for example, category property which has 3 compounds:
taxonomyUri, name, value) you must use dot notation. For example to search by compound val (value) of
property criticality on businessServiceArtifact use the following URL:

http://host:port/soa/platform/rest/artifact/businessServiceArtifact?p.criticality.val=uddi:systinet.com:soa:model:taxonomies:impactLevel:high

Only business services artifacts with high criticality are listed.

For text property filtering, operator case-insensitive-equals is used, but can explicitly use wildcards. To
find all service artifact with svc in their name submit the following URL:

http://host:port/soa/platform/rest/artifact/businessServiceArtifact?p.name=*svc*

The following wildcards are supported:

23

• * for zero or more arbitrary characters.

• _ for exactly one arbitrary character.

SOA Systinet does not support explicit boolean operators but there is an implicit AND for conditions
on different properties and an implicit OR on conditions on the same property.

The following examples show various ways to use property searching:

• Artifacts with a name starting with service and a description containing assertion:

http://host:port/context/platform/rest/artifact/artifactBase?p.name=service*&p.description=*assertion*

• Artifacts with a name containing either starting with service or containing assertion:

http://host:port/context/platform/rest/artifact/artifactBase?p.name=service*&p.name=*assertion*

• Deleted artifacts only.

http://host:port/context/platform/rest/artifact/artifactBase?p._deleted=true

Feed Ordering

By default, entries in feeds are ordered by their atom:updated element.

Add ?order-by= to the collection feed URL to change the order.

• Entries ordered by name (ascending):

http://host:port/context/platform/rest/artifact/artifactBase?order-by=name

• Entries ordered by name (descending):

http://host:port/context/platform/rest/artifact/artifactBase?order-by=name-

• Entries ordered by name (descending), then description (ascending):

http://host:port/context/platform/rest/artifact/artifactBase?order-by=name-,description

24

You can also use properties for ordering with the same conditions as for searching.

For details, see Property Based Searching on page 23.

Feed Paging

You can also control the feed paging.

• The first ten entries:

http://host:port/context/platform/rest/artifact/artifactBase?page-size=10

• Entries 10-19 (inclusive):

http://host:port/context/platform/rest/artifact/artifactBase?page-size=10&start-index=10

The default number of entries is 50 and the maximum number of entries is 500.

Publishing Location Feeds

The location feed enables you to browse the attached data content in the repository.

SOA Systinet adds this content whenever you publish an artifact associated with attached data content.

For details, see "Publishing Service Infrastructure from Definition Documents" in the HP SOA Systinet
User Guide.

The content consists of resources (the data content) organized into collections (folders).

You can access the feed using the following URL:

http://localhost:8080/soa/platform/rest/location

If you use a browser, open a view which enables you to examine the data content and interact with it.

The view of a collection location only displays resources that you have permissions for.

25

SOA Systinet publisher creates a collection within the publishing location when you upload data content.

For more details, see "Publishing Service Infrastructure from Definition Documents" in the HP SOA Systinet
User Guide.

Open a collection by clicking its name, or download a zip file of its content by clicking Download as
Archive.

At the lowest level, the browser shows the actual data content.

For the actual content, click the content name.

Click Advanced View to open the detail view of the related artifact in SOA Systinet.

For details, see "Artifact Detail Pages" in the HP SOA Systinet User Guide.

You can change the output of the location space on your browser using alternative media types:

• http://hostname:port/context/platform/rest/location

The default output as described above.

• http://hostname:port/context/platform/rest/location?alt=text/html

The HTML representation which is the default output.

• http://hostname:port/context/platform/rest/location/foo?alt=application/zip

Output all files from a particular collection (foo) to a zip archive.

• http://hostname:port/context/platform/rest/location/test?alt=application/atom%2bxml

View the Atom feed for a collection location.

• http://hostname:port/context/platform/rest/location/foo?alt=text/javascript

Output a particular collection location as a JSon representation.

By default, the last revision of a resource or collection is shown, but you can request revisions from a
particular date using the following pattern:

26

http://hostname:port/context/platform/rest/location;datetime=[datetimeValue]

For example, http://hostname:port/context/platform/rest/location/foo/a.wsdl, corresponds to the last revision
of a the a.wsdl resource in the foo location.

http://hostname:port/context/platform/rest/location;datetime=2008-01-01T12:00:00.000Z/foo/a.wsdl, corresponds
to the revision of the a.wsdl resource at 12:00 on 1/1/2008.

If a particular collection is reused and the older resources overwritten, then the older revisions of
the original content may not be available.

By default, specifying a collection location that does not exist returns an exception.

Use the noexc parameter to prevent the exception and return the location as an empty collection.

For example, http://hostname:port/xcontext/platform/rest/location/foo?noexc

Artifact History Feed

You can view the revision history of an artifact as a feed.

For example, to view the revision history of my.wsdl, use the URL:

http://host:port/context/platform/rest/artifact/wsdlArtifact/my.wsdl/history

Entries

The detailed information about an artifact in the repository is available as an entry.

Entries are described in the following sections:

• Artifact Atom Entries on page 28

• Artifact History Entries on page 31

• Atom Entry Property Descriptors on page 31

• Artifact Data on page 37

27

• Resource Identification on page 38

Artifact Atom Entries

The information about each entry in the collection feed is only a summary. Each entry can be accessed
directly using its self link as referenced in the artifact feed, which is formed from either its restName or id.

For example, you can access a particular user profile entry with URL:

http://localhost:port/context/platform/rest/artifact/personArtifact/admin

28

Example 3: Admin User Profile Entry

<entry xml:base="http://localhost:8080/soa/platform/rest/artifact/personArtifact"
 xmlns="http://www.w3.org/2005/Atom">
 <id>47526745-d855-44a4-afa0-bb1fddcf6f37</id>
 <updated>2008-05-22T16:41:42.623+02:00</updated>
 <title type="text" xml:lang="en">admin</title>
 <link href="personArtifact/101?alt=application%2Fatom%2Bxml" type="application/atom+xml"
 rel="self" title="artifact detail"/>
 <link href="personArtifact/101?alt=application%2Fxml" type="application/xml" rel="alternate"
 title="XML representation"/>
 <link href="personArtifact/101?alt=application%2Fatom%2Bxml" type="application/atom+xml"
 rel="last-revision" title="last revision"/>
 <link href="personArtifact" type="application/atom+xml;type=feed" rel="collection"
 title="sdm feed"/>
 <link href="personArtifact/101/history" type="application/atom+xml;type=feed" rel="history"
 title="history feed"/>
 <link href="personArtifact/101?alt=text%2Fhtml" type="text/html" rel="alternate"
 title="UI view page"/>
 <category label="S1" scheme="uddi:systinet.com:soa:model:taxonomies:accountStates:accountState"
 term="S1"/>
 <category label="Artifact"
 scheme="uddi:systinet.com:soa:model:taxonomies:artifactTypes:_artifactType"
 term="urn:com:systinet:soa:model:artifacts"/>
 <category label="Content"
 scheme="uddi:systinet.com:soa:model:taxonomies:artifactTypes:_artifactType"
 term="urn:com:systinet:soa:model:artifacts:content"/>
 <category label="Contact"
 scheme="uddi:systinet.com:soa:model:taxonomies:artifactTypes:_artifactType"
 term="urn:com:systinet:soa:model:artifacts:content:contact"/>
 <category label="User Profile"
 scheme="uddi:systinet.com:soa:model:taxonomies:artifactTypes:_artifactType"
 term="urn:com:systinet:soa:model:artifacts:content:contact:person"/>
 <author>
 <name>admin</name>
 </author>
 <content type="application/xml">
 ...
 </content>
 <summary type="text" xml:lang="en">Automatically created user account</summary>
</entry>

Each artifact entry consists of the following descriptors:

29

DescriptionDescriptor

A unique id for the artifact (uuid).id

The last update time.updated

The name of the entry.title

A set of links with the following link types indicated by the rel attribute:link

The atom entry details.self

The associated artifact collection feed. For details, see Artifact
Collection Feeds on page 20.

collection

The last revision of this artifact.last-revision

The associated data content for an artifact.edit-media

The collection feed for revisions of this artifact.history

A set of alternate views of the artifact, including:alternate

• application/xml The bare XML representation of the content
descriptor.

• text/html Points to the SOA Systinet Services UI view of the
artifact or the Tools UI view as a fallback.

Links to related artifacts.related

Related artifacts may also be linked where the link has the
rel attribute with a specific relationship name. For details,
see Relationship Properties Atom Representation on page
35.

30

DescriptionDescriptor

A set of taxonomic values from:

• Taxonomy property values

• categoryBag and identifierBag

• sdmTypes taxonomy values

category

The creator of this revision of the artifact.author

The bare XML representation of the content descriptor. For details, see Atom Entry
Property Descriptors on page 31.

content

An artifact description.summary

Artifact History Entries

By default, entries display the latest revision. You can view older revisions by adding ;rev=X to the entry
URL.

For example, the first revision of a WSDL can be obtained with the URL:

https://host:port/context/platform/rest/artifact/wsdlArtifacts/mywsdl;rev=1

Atom Entry Property Descriptors

Atom entries contains an XML representation of an artifact in the content descriptor.

31

Example 4: Admin User Entry Content

<content type="application/xml">
 <art:artifact name="personArtifact" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:p="http://hp.com/2008/02/systinet/platform/model/property"
 xmlns:sdm="http://hp.com/2007/10/systinet/platform/model/propertyType"
 xmlns:art="http://hp.com/2008/02/systinet/platform/model/artifact">
 <p:loginName sdm:type="text">admin</p:loginName>
 <p:address xsi:nil="true" sdm:type="address"/>
 <p:email sdm:type="text" p:multi="true">admin@example.com</p:email>
 <p:phone xsi:nil="true" sdm:type="text" p:multi="true"/>
 <p:instantMessenger xsi:nil="true" sdm:type="text" p:multi="true"/>
 <p:primaryGroup xsi:nil="true" sdm:type="text"/>
 <p:accountState name="S1" taxonomyUri="uddi:systinet.com:soa:model:taxonomies:accountStates"
 value="S1" sdm:type="category"/>
 <p:designTimePolicy xsi:nil="true" sdm:type="documentRelationship" p:multi="true"/>
 <p:documentation xsi:nil="true" sdm:type="documentRelationship" p:multi="true"/>
 <p:_ownerLowerCase sdm:type="text">admin</p:_ownerLowerCase>
 <p:_uuid sdm:type="uuid">47526745-d855-44a4-afa0-bb1fddcf6f37</p:_uuid>
 <p:_revision sdm:type="integer">1</p:_revision>
 <p:_checksum sdm:type="bigInteger">0</p:_checksum>
 <p:_contentType sdm:type="text">application/xml</p:_contentType>
 <p:_revisionTimestamp sdm:type="date">2008-05-22T14:41:41.013Z</p:_revisionTimestamp>
 <p:categoryBag xsi:nil="true" sdm:type="categoryBag"/>
 <p:_revisionCreator sdm:type="text">admin</p:_revisionCreator>
 <p:_artifactType name="Artifact"
 taxonomyUri="uddi:systinet.com:soa:model:taxonomies:artifactTypes"
 value="urn:com:systinet:soa:model:artifacts" sdm:type="category" p:multi="true"/>
 <p:_artifactType name="Content"
 taxonomyUri="uddi:systinet.com:soa:model:taxonomies:artifactTypes"
 value="urn:com:systinet:soa:model:artifacts:content" sdm:type="category" p:multi="true"/>
 <p:_artifactType name="Contact"
 taxonomyUri="uddi:systinet.com:soa:model:taxonomies:artifactTypes"
 value="urn:com:systinet:soa:model:artifacts:content:contact" sdm:type="category"
 p:multi="true"/>
 <p:_artifactType name="User Profile"
 taxonomyUri="uddi:systinet.com:soa:model:taxonomies:artifactTypes"
 value="urn:com:systinet:soa:model:artifacts:content:contact:person" sdm:type="category"
 p:multi="true"/>
 <p:identifierBag xsi:nil="true" sdm:type="identifierBag"/>
 <p:description sdm:type="text">Automatically created user account</p:description>
 <p:_owner sdm:type="text">admin</p:_owner>
 <p:_deleted sdm:type="boolean">false</p:_deleted>
 <p:name sdm:type="text">admin</p:name>

32

 <p:consumptionContract xsi:nil="true" sdm:type="documentRelationship" p:multi="true"/>
 <p:consumptionRequest xsi:nil="true" sdm:type="documentRelationship" p:multi="true"/>
 <p:provides xsi:nil="true" sdm:type="documentRelationship" p:multi="true"/>
 <p:contactRole xsi:nil="true" sdm:type="category"/>
 <p:geographicalLocation xsi:nil="true" sdm:type="category" p:multi="true"/>
 <p:languageCode xsi:nil="true" sdm:type="category"/>
 <p:hpsoaApplicationContact xsi:nil="true" sdm:type="documentRelationship" p:multi="true"/>
 <p:externalDefinition xsi:nil="true" sdm:type="documentRelationship" p:multi="true"/>
 </art:artifact>
</content>

The content is effectively a list of the properties of an artifact.

The property types are described in the following sections:

• Primitive Properties Atom Representation on page 33

• Taxonomy Properties Atom Representation on page 34

• Relationship Properties Atom Representation on page 35

• Special Properties Atom Representation on page 36

Primitive Properties Atom Representation

Primitive properties are represented as follows:

<p:NAME sdm:type="TYPE">VALUE<p:NAME>

The following primitive property types use this form:

xsi:type CorrespondanceProperty Type

xs:dateTimedate

xs:booleanboolean

xs:doubledouble

xs:intinteger

xs:integerbigInteger

xs:stringtext

33

xsi:type CorrespondanceProperty Type

xs:stringuuid

For example:

<p:phone sdm:type="text">774 789 784</p:phone>

Taxonomy Properties Atom Representation

Taxonomy properties are propagated in two places in the Atom entries.

The category descriptor, which also appears in collection feeds, describes the taxonomy and category as
follows:

<category label="..." scheme="..." term="..."/>

• label corresponds to the category name.

• scheme corresponds to the taxonomy URI combined with the property name.

• term corresponds to the category URI.

This is reproduced in the entry content as a property:

<p:NAME name="..." taxonomyUri="..." value="..." sdm:type="category"/>

For example, a web service with Failure Impact set to High is represented as a property in the entry for the
web service:

<p:criticality name="High" taxonomyUri="uddi:systinet.com:soa:model:taxonomies:impactLevel"

value="uddi:systinet.com:soa:model:taxonomies:impactLevel:high" sdm:type="category"/>

Note that the property representing this taxonomic category is criticality.

The property is propagated to Atom metadata as an atom:category element:

<atom:category label="High" scheme="uddi:systinet.com:soa:model:taxonomies:impactLevel:criticality"

term="uddi:systinet.com:soa:model:taxonomies:impactLevel:high"/ >

34

Relationship Properties Atom Representation

Relationship properties are propagated in two places in the Atom entry.

In feeds the link exists as metadata.

The link descriptor describes the following link types:

• A generic related link.

• A specific relationship bound link where the rel attribute uses a hp-systinet- prefix with the relationship
name.

In entries, relationships are described as a set of property atom content descriptors:

35

Example 5: Relationship Properties

Incoming relationship example:
<p:inBusinessService xlink:href="businessServiceArtifact/1210"
 sdm:type="documentRelationship" p:multi="true">
 <t:source>c519d961-03b3-4303-b61b-8809b945b7ae</t:source>
 <t:exact>false</t:exact>
</p:inBusinessService>

Exact incoming:
<p:inBusinessService xlin:href="businessServiceArtifact/1210"
 sdm:type="documentRelationship" p:multi="true">
 <t:source>c519d961-03b3-4303-b61b-8809b945b7ae</t:source>
 <t:exact>true</t:exact>
</p:inBusinessService>

Outgoing relationship example:
<p:service xlin:href="webServiceArtifact/5"
 sdm:type="documentRelationship" p:multi="true">
 <t:target
 deleted="false">5a4aeca7-a8f9-4761-b504-82723ab2f417</t:target>
</p:service>

Exact outgoing:
<p:service xlin:href="xmlServiceArtifact/101.xml;rev=1"
 sdm:type="documentRelationship" p:multi="true">
 <t:target revision="1"
 deleted="false">72ab6f1f-e943-4fd2-a7bc-5d227e6e134a</t:target>
</p:service>

Special Properties Atom Representation

Special properties are defined by an XML schema which determines their structure.

SOA Systinet contains an XML schema which defines the following property types:

• address

• categoryBag

• identifierBag

36

• dailyInterval

• nameURLPair

• nameValuePair

• parameterList (XQuery parameter)

• scheduled

• selector

Artifact Data

If an artifact has associated data content, then you can directly access the data content.

For example, a WSDL artifact is usually associated with the actual WSDL file.

Access the WSDL entry with the URL:

https://localhost:8443/soa/platform/rest/artifact/wsdlArtifact/mywsdl?alt=application%2Fatom%2Bxml

Example 6: WSDL Entry

<entry xml:base="https://localhost:8443/soa/platform/restSecure/artifact/wsdlArtifact"
xmlns="http://www.w3.org/2005/Atom">
 <id>c686605d-6149-48f8-a7c7-d593999735eb</id>
 <updated>2008-06-12T17:45:17.808+02:00</updated>
 <title type="text" xml:lang="en">mywsdl</title>
 ...
 <link href="../location/wsdls/google/mywsdl.wsdl" type="text/xml" rel="edit-media" title="attached
data"/>
 ...

The entry contains a link pointing to the locations workspace. The data is also available using a /data suffix.

For example, https://localhost:8443/soa/platform/rest/artifact/wsdlArtifact/mywsdl/data

You can also access older revisions of the data with the URL:

37

https://localhost:8443/soa/platform/rest/artifact/wsdlArtifact/mywsdl;rev=1/data

Using any relative references in the XML data will probably cause an error because they are
resolved relatively to the GET context. Use the location context to navigate references instead.

Resource Identification

A web service artifact with uuid 65a2b119-9a6b-491e-8353-3692f4b9e3e5 and name MyService is available in the
artifacts collection:

http://localhost:port/context/soa/platform/rest/artifact/

At the following locations:

• artifactBase/65a2b119-9a6b-491e-8353-3692f4b9e3e5

• implementation/65a2b119-9a6b-491e-8353-3692f4b9e3e5

• webServiceArtifact/65a2b119-9a6b-491e-8353-3692f4b9e3e5

These URLs are not user-friendly. For newly created artifacts, SOA Systinet auto-generates a REST name
which in most cases is more user-friendly than the uuid.

This REST name can be used instead of the uuid in the URL.

http://localhost:port/context/soa/platform/rest/artifact/webServiceArtifact/MyService

If you migrate or federate resources (for example, with UDDI Registry import/export), the user-
friendly URLs are lost.

User-friendly REST names remain the same, even if you change the artifact name.

Category Documents

Atom categories are a way to categorize large amounts of data. The permitted values in Atom categories
can be either fixed or unrestricted. Category documents group permitted category values.

38

An example of a category group with a fixed set of values is the impact level criticality category group.

http://host:port/context/platform/rest/category-

document/uddi:systinet.com:soa:model:taxonomies:impactLevel:criticality

Example 7: Impact Criticality Category Document

<?xml version="1.0" encoding="UTF-8"?>
<app:categories xmlns:app="http://www.w3.org/2007/app" xmlns:atom="http://www.w3.org/2005/Atom"
 xmlns:hp="http://hp.com/2008/02/systinet/platform/model/taxonomy"
 xmlns:v355tax="http://systinet.com/uddi/taxonomy/v3/5.5"
 xmlns:v350tax="http://systinet.com/uddi/taxonomy/v3/5.0" fixed="yes"
 scheme="uddi:systinet.com:soa:model:taxonomies:impactLevel:criticality">
 <atom:category term="uddi:systinet.com:soa:model:taxonomies:impactLevel:high" label="High"/>
 <atom:category term="uddi:systinet.com:soa:model:taxonomies:impactLevel:medium" label="Medium"/>
 <atom:category term="uddi:systinet.com:soa:model:taxonomies:impactLevel:low" label="Low"/>
</app:categories>

SOA Systinet uses taxonomies, which are an abstraction almost identical to Atom categories. These
taxonomies are sometimes transferable to Atom category documents, which can be referenced from the
service document.

The categories in the taxonomy then appear as Atom categories, corresponding to the taxonomy values in
artifact entries and feeds.

Proprietary REST Interface
The types of resource that the REST interface provides access to are described in the Repository Element
Formats section in the HP Systinet Reference Guide. That is, a hierarchy of collections each containing:

• Collections

• Documents, of type:

• XML

• Binary

This chapter contains the following sections:

39

• REST Interface URIs on page 40

The set of HTTP URL paths identifying resources

• Resource Representations on page 46

The REST view of resources

• REST Operations on page 52

REST operation mapping to HTTP methods and URL query parameters

• REST Exceptions on page 69

HTTP response formats

• Executable Objects on page 72

How REST handles reports and queries

REST Interface URIs

As the interface uses HTTP, the URIs used to access it are HTTP URLs. Table 1 explains how different
parts of a URL are used for different purposes, including:

• Specifying a WS endpoint provided by the REST interface.

• Identifying an existing resource.

• Specifying details of an operation, in conjunction with the HTTP method.

• Specifying how a resource is represented, in conjunction with the HTTP Content-type header.

A REST interface URL has this form:

protocol://hostname:port/soa/systinet/platform/interface/namespace/{collection/}*document?

40

Table 1. Components of a REST Interface HTTP URL

DescriptionComponent

HTTP, or HTTPS if using SSL.protocol

The host where the JEE server running SOA Systinet is installed. It can also be
the host where the loadbalancer or proxy runs.

hostname

The port depends on the configuration of the JEE server. The default installation
on JBoss uses:

port

• 8080 if the protocol is http

• 8843 if the protocol is https

The port must be specified unless it is the default configured for the protocol in
a browser.

SOA Systinet context path. soa/ is the context of the application in the JEE
container.

soa/systinet/platform/

This completes the service path. For REST it is one of the following:interface

• rest for anonymous access or internal request using internal SSO
authentication

• restBasic for access using HTTP Basic authentication

This field allows more than one database storage. It can also be used as a
namespace for non-persistent objects. For SOA Systinet, two values are legal:

namespace

• repository is the database storage for collections and documents

• service is a namespace where functional resource reside

The remainder of the path identifies a resource in the repository. The first /
identifies the root collection. Each subsequent /, separates a collection from a

collection

resource it contains. Zero or more additional collections can be specified in this
way.

41

DescriptionComponent

A single document resource name may be present to complete the identification
of the resource. If none are present, then the resource is the collection specified
by the preceding fields.

document

An HTTP URL query string may encode additional options and parameters
necessary to fully specify a REST operation:

• The choice of REST operation is encoded in an HTTP request using the HTTP
method and/or a query string field. For details, see REST Operations on page
52.

• Support for the creation of resources requires that the new resource is specified
as a query parameter relative to an existing collection (specified in the URL
path). For details, see REST Operations on page 52.

• Parameters of the representation type may appear in the query string. For
details, see Resource Representations on page 46

In the following, query parameter is used to refer to fields of the form name=value.
Boolean options are specified by the appearance or absence of a field containing
only an option identifier, and are referred to as query fields.

A complete list of query parameters is listed in Table 2.

query string

42

Table 2. REST URL Query Parameters

DescriptionValueOperationQuery
parameter

Category

Denotes the CREATE operation on HTTP
POST

no valueN/Acreateoperation

Denotes the UPDATE operation on HTTP
POST

no valueN/Aupdateoperation

Denotes the DELETE operation on HTTP
POST

no valueN/Adeleteoperation

Denotes the UNDELETE operation on
HTTP POST

no valueN/Aundeleteoperation

Denotes the PURGE operation on HTTP
POST

no valueN/Apurgeoperation

Denotes the GET operation on HTTP
POST.

no valueN/Agetoperation

Denotes the EXIST operation on HTTP
GET.

no valueN/Aexistoperation

Specifies the name and type of resource to
create. If the name ends with "/", then a

stringCresourceresource
identification

collection is created. Otherwise, a
document is created. If not given, then a
document is created with a generated name.

Identifies the name of a subresource in the
collection given by request URI

stringG,U,D,Un,Presourceresource
identification

Identifies the resource revision to GETinteger, >=0Grevisionresource
identification

Identifies the resource revision to
UPDATE/DELETE/PURGE. If the given

integer, >=0U,D,Previsionresource
identification

revision is not the last resource revision,
then the UPDATE/DELETE/PURGE
operation fails.

43

DescriptionValueOperationQuery
parameter

Category

Datetime identifying the resource revision
to GET (timeslice).

datetime in ISO8601
based format (e.g.,
2006-07-

11T11:28:51.348Z)

Gdatetimeresource
identification

Datetime identifying the resource revision
to UPDATE/DELETE/PURGE. If the
given revision is not the last resource
revision, then the
UPDATE/DELETE/PURGE operation
fails (timeslice).

datetime in ISO8601
based format (e.g.,
2006-07-

11T11:28:51.348Z)

U,D,Pdatetimeresource
identification

Returns unresolved data, such as when a
WSDL is imported and contains
unresolved imports.

no valueGoriginalresource
identification

Returns only deleted subresources in a
collection listing. If not given, then only
live subresources are listed.

no valueGdeletedresource
identification

Sets the content-type metadatum of a
created resource. If not given, then the
HTTP header Content-Type header is used
(for RAW request message) or content-type
metadatum in passed metadata (for REST
resource serialization).

stringCcontentTyperequest data
param

If given, then the REST resource
serialization is returned with a set metadata
section.

no valueGmetarepresentation

If given, then the REST resource
serialization is returned with a set
descriptor section.

no valueGdescrepresentation

If given, then the REST response to a
CREATE/UPDATE operation will contain
the descriptor section of the
created/updated resource.

no valueC,Udescrepresentation

44

DescriptionValueOperationQuery
parameter

Category

If given, then the REST resource
serialization is returned with a set data
section.

no valueGdatarepresentation

If given, then the REST resource
serialization is returned with a set acl
section.

no valueGaclrepresentation

If given, then the REST response to
CREATE/UPDATE operation will contain
the ACL section of created/updated
resource.

no valueC,Uaclrepresentation

If given, then the REST resource
serialization is returned with the data
section filled with all resource revisions.

no valueGhistoryrepresentation

If given, then the RSS of the resource is
returned. An optional value specifies the
RSS format (for example atom_0.3; for the
full list of values, see Chapter 5, RSS).

optional stringGrssrepresentation

If given, then the HTTP redirect (302) to
URL of the resource UI representation (for
browsers).

no valueGviewrepresentation

Executes the resource. It is bound to HTTP
GET.

no valueGexecuteexecution

Prefix for execute parameters. A functional
resource can accept parameters without
this prefix, however the prefix can be used
for backward compatibility.

stringGex_execution

Fulltext search query string.stringGfulltextexecution

Prefix for a collection handler parameter
(for example, 'chp_foo=bbb' for parameter
'foo').

stringG,U,D,Un,Pchp_processing
parameter

45

DescriptionValueOperationQuery
parameter

Category

URI of an XSLT stylesheet for a response
transformation. The URI can be absolute
or relative. A relative URI is resolved to a
repository base URL.

URIG,U,D,Un,Pstyleresponse
data
parameter

Prefix for a stylesheet parameter (for
example, 'st_foo=bbb' for parameter 'foo').

stringG,U,D,Un,Pst_response
data
parameter

Overrides HTTP header Content-Type. If
no value is given, then application/octet-
stream is used.

optional stringG,U,D,Un,Pexportresponse
data
parameter

Prefix for parameter that limits result of
collection listing to artifact matching the
condition.

stringGcs_search

Prefix for parameter that specifies order of
artifact in collection listing.

(integer,)?asc|descGco_search

If specified, only the resource on the page
with the number are included in collection
listing.

positive integerGpagepaging

The page size. Default value is 30.positive integerGpageSizepaging

Resource Representations

REST Representations are views of resources. In SOA Systinet, they are HTTP messages using one of the
two models shown in the following table:

46

Table 3. Models of Communication

DescriptionModel

This is the default (if no URL query fields configure the XML model).

The resource is represented by its raw data.

For documents, the raw data is contained in the message body (for both request
and response) or in the first part of a multi-part request message resulting from
the use of a file upload on an HTML form. For details, see RFC1867
[http://www.zvon.org/tmRFC/RFC1867/Output/chapter1.html].

In a request, the type of the raw data is specified with an HTTP Content-type
value, either in the message header or in the message part containing the data.
In response, the Content-Type is set to the value stored in the resource's
metadatum content-type. It is not application/xml, because it is used for REST
resource serialization model.

For collections, an XML serialization is always used in place of a native format,
as shown in Example 8 on page 48.

Raw

This model is requested by specific URL query fields in the HTTP request, as
described in XML REST Resource Serialization Model on page 49.

The resource is represented in the canonical XML format, described by the XML
schema in the Resource Serialization Schema section in the HP SOA Systinet
Reference Guide. This supports the content types specified by the URL query
fields. The namespace prefix rest: is used for its target namespace in HTTP
responses.

The HTTP Content-type header is application/xml.

XML REST resource
serialization

Representations of resources are encoded in the HTTP message body. Type information is also given in:

• The HTTP content-type header

• URL query parameters

47

http://www.zvon.org/tmRFC/RFC1867/Output/chapter1.html

Example 8: XML Serialization of a Single-item Collection

<?xml version="1.0" encoding="UTF-8"?>
<rest:resource xlink:href="http://localhost:8080/soa/systinet/platform/rest/repository/test/"
 xml:base="http://localhost:8080/soa/systinet/platform/rest/repository/"
 type="collection" name="test/"
 requestURI="http://localhost:8080/soa/systinet/platform/rest/repository/test/"
 readURI="http://localhost:8080/soa/systinet/platform/rest/repository/test/?meta&desc&data"
 revisionURI="http://localhost:8080/soa/systinet/platform/rest/repository/test/?revision=1"
 updateURI="http://localhost:8080/soa/systinet/platform/rest/repository/test/?update"
 updateRevisionURI="http://localhost:8080/soa/systinet/platform/rest/repository/test/?update&revision=1"

 purgeURI="http://localhost:8080/soa/systinet/platform/rest/repository/test/?purge"
 viewURI="http://localhost:8080/soa/systinet/platform/rest/repository/test/?view"
 createURI="http://localhost:8080/soa/systinet/platform/rest/repository/test/?create"
 aclURI="http://localhost:8080/soa/systinet/platform/rest/repository/test/?acl"
 revision="1"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:a="http://systinet.com/2005/05/soa/model/artifact"
 xmlns:r="http://systinet.com/2005/05/repository"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:pt="http://systinet.com/2005/05/soa/model/property/type"
 xmlns:rest="http://systinet.com/2005/05/soa/resource"
 xmlns:p="http://systinet.com/2005/05/soa/model/property"
 xmlns:xlink="http://www.w3.org/1999/xlink"
 xmlns:g="http://systinet.com/2005/05/soa/model/propertyGroup">
 <rest:data representation="list">
 <rest:resource xlink:href="http://localhost:8080/soa/systinet/platform/rest/repository/test/a"
 type="document"
 name="a"
 readURI="http://localhost:8080/soa/systinet/platform/rest/repository/test/a?meta&desc&data"
 revisionURI="http://localhost:8080/soa/systinet/platform/rest/repository/test/a?revision=1"
 updateURI="http://localhost:8080/soa/systinet/platform/rest/repository/test/a?update"
 updateRevisionURI="http://localhost:8080/soa/systinet/platform/rest/repository/test/a?update&revision=1"

 deleteURI="http://localhost:8080/soa/systinet/platform/rest/repository/test/a?delete"
 deleteRevisionURI="http://localhost:8080/soa/systinet/platform/rest/repository/test/a?delete&revision=1"

 undeleteURI="http://localhost:8080/soa/systinet/platform/rest/repository/test/a?undelete"
 purgeURI="http://localhost:8080/soa/systinet/platform/rest/repository/test/a?purge"
 purgeRevisionURI="http://localhost:8080/soa/systinet/platform/rest/repository/test/a?purge&revision=1"

 viewURI="http://localhost:8080/soa/systinet/platform/rest/repository/test/a?view"
 viewRevisionURI="http://localhost:8080/soa/systinet/platform/rest/repository/test/a?view&revision=1"

48

 aclURI="http://localhost:8080/soa/systinet/platform/rest/repository/test/a?acl"
 revision="1"/>
 </rest:data>
</rest:resource>

XML REST Resource Serialization Model

Messages that use the XML model, as shown in Table 3, have XML content in the format described in the
Repository Element Formats section in the HP SOA Systinet Reference Guide. This has a number of optional
elements, meeting the various requirements of the REST interface.

The following messages are in the XML REST resource serialization model:

• Responses

• CREATE, UPDATE, DELETE, UNDELETE, and PURGE response messages

Returned Resource contains the metadata of the requested resource.

• GET response message

Requests, which have set data, meta, acl, desc in the request URL. Returned Resource contains parts
according to the request.

• GET on a collection response message

If there is no data, meta, acl or desc, in the request URL, then the default is data. Returned Resource
contains parts according to the request.

If the request for collection's data contains meta and/or desc representation option, the metadata or
descriptor of the documents are also included. Note, however, that these data are not fully processed
and, for example, information about relations is not included.

• Request

• CREATE and UPDATE request message

Resource in a request message has set resource parts.

49

For full details, see the Repository Element Formats section in the HP SOA Systinet Reference Guide. The
root element of the representation is described, and it provides a number of attributes designed for the REST
interface.

Resource Revision Identification

Each resource modification creates a new resource revision. Each revision is identified by these parameters:

• Revision number

The revision number can be specified by a URI parameter revision, as shown in Table 2, where the
value is the revision number. The first revision (a new resource) is 1. Value 0 represents the latest revision.

• Timeslice (datetime)

Timeslice identifies the revision using the value of parameter datetime, as shown in Table 2.

• Collection and document revision semantics differ - the collection revision is incremented by
a meta update, not on create/update/delete/purge of subresources. Document revision is
incremented by a meta/descriptor/data update.

• Revision is not incremented by an incoming relationship creation. That is, if another resource
establishes a relationship targeting the resource.

The following table presents a combination of revision and datetime parameters:

50

Table 4. URL Query Parameters: revision and datetime

UPDATE,
DELETE, PURGE

relationship in
CREATE, UPDATE

GET urlParameters

Resource's last
revision

Targets last revisionReturns last revisionno revision,
datetime

Resource's last
revision

Targets last revisionReturns last revisionrevision=0

Resource must be in
given revision

Targets given revisionReturns the content of the given revision
number. Relationships are as they were
at datetime just before revision ended or
at the current datetime.

revision>=1

Resource revision in
DT must be the last
revision

Targets revision at
given DT

Returns the content of the revision at the
given DT. Relationships are as they were
at DT (timeslice). Relationships in
metadata and descriptor have set datetime
parameter of DT

datetime=DT

See datetime=DTTargets last revisionSee datetime=DTrevision=0,
datetime=DT

Resource must be in
given revision

Targets given revision
(datetime is ignored)

Returns the content of the given revision
number. Relationship are as they were at
given DT (if DT falls into datetime of
given revision, otherwise datetime just
before revision end of current datetime.
Relationships in metadata and descriptor
have set datetime parameter of DT

revision>=1,
datetime=DT

If datetime has no specified value (DT), then it is set as follows:

• If no revision parameter is given or revision=0, then it DT is set to datetime when request is
processed. That is, current datetime.

• If revision>=1, then DT is set to datetime of the revision

51

REST Operations

To use the SOA Systinet REST interface, applications must map each operation to an HTTP request. For
details, see Table 5.

SOA Systinet REST operations map to HTTP GET, POST, and HEAD only, because these requests can be
received by servers or via proxies that do not support HTTP PUT and DELETE.

Each REST operation is executed on a resource identified by a request URL. For CREATE, the URL
identifies an existing collection in which the new resource will be created. The query parameter resource
names the new resource.

For other operations (GET, EXIST, UPDATE, DELETE, UNDELETE and PURGE), the resource is
identified in the following ways:

• The URL is consistent with CREATE and specifies:

• a collection, in the path

• a resource, in query parameter resource

or

• the complete path to the resource is specified in the path, and there is no resource parameter

The name of a collection is always followed by a /, whether in the path, or in the resource query parameter.
When a resource is created, the new resource is a collection only if the resource parameter includes a trailing
/.

52

Table 5. Summary of REST Operations

NotesQuery FieldHTTP methodREST Operation

The path specifies the containing collection
and the resource URL parameter contains
the name of the resource to create (if
omitted, then a unique name is generated
by the server).

createPOSTCREATE

The data represented in the response
depends on the request.

NoneGETGET

It is possible to convert all GET requests
to POST requests using get, and moving
parameters from query part to a body of
type multipart/form-data. However, this is
not recommended unless the size of
parameters is too high.

getPOSTGET

Used to check if the resource exists.existGETEXIST

Used to check if the resource exists.noneHEADEXIST

Updates the resource.updatePOSTUPDATE

Only for documents. GET, UNDELETE,
and PURGE operations can be run on
deleted resources.

deletePOSTDELETE

Undeletes the deleted resource. It can then
be updated again.

undeletePOSTUNDELETE

Purge physically removes a resource.purgePOSTPURGE

For operations other than GET and EXIST, the response contains a message from the XML REST resource
serialization model, where Resource contains the metadata of the requested resource and optionally, the
descriptor and/or acl sections (when the request URL contains desc and/or acl query parameters).

CREATE

The request message can contain any model of representation.

For collections, it is not possible to specify the data and so only metadata can optionally be represented.

53

The created document type is XML if the content-type of the data is text/xml, otherwise it is binary. It is not
possible to change the document type using update.

Example 9: Create collection c/ at the root collection.

POST http://localhost:8080/soa/systinet/platform/restBasic/repository/?resource=c/&create

Since this operation requires an HTTP POST request, you cannot simply enter the URL into a
browser. Typically the request is coded in an application. It is possible to use Javascript or HTTP
command line clients.

54

Example 10: Response to Example 9 on page 54

<?xml version="1.0" encoding="UTF-8"?>
<rest:resource
 xlink:href="http://localhost:8080/soa/systinet/platform/restBasic/repository/c/"
 xml:base="http://localhost:8080/soa/systinet/platform/restBasic/repository/"
 type="collection"
 name="c/"
 requestURI="http://localhost:8080/soa/systinet/platform/restBasic/repository/?create=&resource=c%2F"

 readURI="http://localhost:8080/soa/systinet/platform/restBasic/repository/c/?meta&desc&data"
 revisionURI="http://localhost:8080/soa/systinet/platform/restBasic/repository/c/?revision=1"
 updateURI="http://localhost:8080/soa/systinet/platform/restBasic/repository/c/?update"

updateRevisionURI="http://localhost:8080/soa/systinet/platform/restBasic/repository/c/?update&revision=1"

 purgeURI="http://localhost:8080/soa/systinet/platform/restBasic/repository/c/?purge"
 viewURI="http://localhost:8080/soa/systinet/platform/restBasic/repository/c/?view"
 createURI="http://localhost:8080/soa/systinet/platform/restBasic/repository/c/?create"
 aclURI="http://localhost:8080/soa/systinet/platform/restBasic/repository/c/?acl"
 revision="1"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:a="http://systinet.com/2005/05/soa/model/artifact"
 xmlns:r="http://systinet.com/2005/05/repository"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:pt="http://systinet.com/2005/05/soa/model/property/type"
 xmlns:rest="http://systinet.com/2005/05/soa/resource"
 xmlns:p="http://systinet.com/2005/05/soa/model/property"
 xmlns:xlink="http://www.w3.org/1999/xlink"
 xmlns:g="http://systinet.com/2005/05/soa/model/propertyGroup">
 <rest:metadata>
 <rest:path>c/</rest:path>
 <rest:collection></rest:collection>
 <rest:binary>0</rest:binary>
 <rest:type>collection</rest:type>
 <rest:deleted>0</rest:deleted>
 <rest:owner>demouser</rest:owner>
 <rest:revision>
 <rest:number>1</rest:number>
 <rest:timestamp>2007-04-25T16:01:35.031Z</rest:timestamp>
 <rest:creator>demouser</rest:creator>
 <rest:label xsi:nil="true"/>
 <rest:last>1</rest:last>
 </rest:revision>
 <rest:relationships/>

55

 <rest:cached>0</rest:cached>
 <rest:checksum>0</rest:checksum>
 </rest:metadata>
</rest:resource>

Example 11: Create an XML document

POST http://localhost:8080/soa/systinet/platform/restBasic/repository/c/?resource=d&create

POST /soa/systinet/platform/restBasic/repository/c/?create&resource=d HTTP/1.1
User-Agent: Systinet Server for Java/5.5 (Java/1.4.2_10; Windows XP/5.1; build SSJ-5.5-20070426-0008)
Host: localhost:8080
Transfer-Encoding: chunked
Connection: keep-alive
Content-type: text/xml; charset=utf-8
Authorization: Basic ZGVtb3VzZXI6Y2hhbmdlaXQ=

4
<a/>
0

56

Example 12: Response to Example 11 on page 56

HTTP/1.1 201 Created
Server: Apache-Coyote/1.1
X-Powered-By: Servlet 2.4; JBoss-4.0.5.GA (build: CVSTag=Branch_4_0 date=200610162339)/Tomcat-5.5
Location: http://localhost:8080/soa/systinet/platform/restBasic/repository/c/d
Content-Type: application/xml;charset=utf-8
Transfer-Encoding: chunked
Date: Thu, 26 Apr 2007 11:35:30 GMT

ab0
<?xml version="1.0" encoding="UTF-8"?>
<rest:resource xlink:href="http://localhost:8080/soa/systinet/platform/restBasic/repository/c/d"
 xml:base="http://localhost:8080/soa/systinet/platform/restBasic/repository/" type="document" name="d"
 requestURI="http://localhost:8080/soa/systinet/platform/restBasic/repository/c/?create=&resource=d"

 readURI="http://localhost:8080/soa/systinet/platform/restBasic/repository/c/d?meta&desc&data"
 revisionURI="http://localhost:8080/soa/systinet/platform/restBasic/repository/c/d?revision=1"
 updateURI="http://localhost:8080/soa/systinet/platform/restBasic/repository/c/d?update"

updateRevisionURI="http://localhost:8080/soa/systinet/platform/restBasic/repository/c/d?update&revision=1"

 deleteURI="http://localhost:8080/soa/systinet/platform/restBasic/repository/c/d?delete"

deleteRevisionURI="http://localhost:8080/soa/systinet/platform/restBasic/repository/c/d?delete&revision=1"

 undeleteURI="http://localhost:8080/soa/systinet/platform/restBasic/repository/c/d?undelete"
 purgeURI="http://localhost:8080/soa/systinet/platform/restBasic/repository/c/d?purge"
 purgeRevisionURI="http://localhost:8080/soa/systinet/platform/restBasic/repository/c/d?purge&revision=1"

 viewURI="http://localhost:8080/soa/systinet/platform/restBasic/repository/c/d?view"
 viewRevisionURI="http://localhost:8080/soa/systinet/platform/restBasic/repository/c/d?view&revision=1"

 aclURI="http://localhost:8080/soa/systinet/platform/restBasic/repository/c/d?acl" revision="1"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:a="http://systinet.com/2005/05/soa/model/artifact"
 xmlns:r="http://systinet.com/2005/05/repository" xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:pt="http://systinet.com/2005/05/soa/model/property/type"
 xmlns:rest="http://systinet.com/2005/05/soa/resource"
xmlns:p="http://systinet.com/2005/05/soa/model/property"
 xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:g="http://systinet.com/2005/05/soa/model/propertyGroup">

 <rest:metadata>
 <rest:path>c/d</rest:path>
 <rest:collection>c/</rest:collection>

57

 <rest:binary>0</rest:binary>
 <rest:contentType>text/xml; charset=utf-8</rest:contentType>
 <rest:type>document</rest:type>
 <rest:deleted>0</rest:deleted>
 <rest:owner>demouser</rest:owner>
 <rest:revision>
 <rest:number>1</rest:number>
 <rest:timestamp>2007-04-26T11:35:29.812Z</rest:timestamp>
 <rest:creator>demouser</rest:creator>
 <rest:label xsi:nil="true"/>
 <rest:last>1</rest:last>
 </rest:revision>
 <rest:relationships/>
 <rest:cached>0</rest:cached>
 <rest:checksum>0</rest:checksum>
 </rest:metadata>
</rest:resource>
0

GET

The REST GET differs significantly from other operations, as shown in Table 5. In particular, there is no
need to specify the operation with a query parameter, because it is one of two operations that maps to HTTP
GET.

The response contains a representation of the resource depending on the request. Parameters can specify
which representation is required. The default is Raw. For details, see Resource Representations on page 46.

For details of REST GET operations that execute the resource they operate on and return the execution
result as a REST representation, see Executable Objects on page 72.

Example 13: Get collection /c/

GET http://localhost:8080/soa/systinet/platform/restBasic/repository/c/

The content of a response to a similar request is shown in Example 8 on page 48.

Example 14: Get the XML serialization of a document

http://localhost:8080/soa/systinet/platform/restBasic/repository/c/d?meta&data&acl

58

Example 15: Response to Example 14 on page 58

<?xml version="1.0" encoding="UTF-8"?>
<rest:resource xlink:href="http://localhost:8080/soa/systinet/platform/restBasic/repository/c/d"
 xml:base="http://localhost:8080/soa/systinet/platform/restBasic/repository/"
 type="document"
 name="d"
 requestURI="http://localhost:8080/soa/systinet/platform/restBasic/repository/c/d?acl=&data=&meta="

 readURI="http://localhost:8080/soa/systinet/platform/restBasic/repository/c/d?meta&desc&data"
 revisionURI="http://localhost:8080/soa/systinet/platform/restBasic/repository/c/d?revision=1"
 updateURI="http://localhost:8080/soa/systinet/platform/restBasic/repository/c/d?update"

updateRevisionURI="http://localhost:8080/soa/systinet/platform/restBasic/repository/c/d?update&revision=1"

 deleteURI="http://localhost:8080/soa/systinet/platform/restBasic/repository/c/d?delete"

deleteRevisionURI="http://localhost:8080/soa/systinet/platform/restBasic/repository/c/d?delete&revision=1"

 undeleteURI="http://localhost:8080/soa/systinet/platform/restBasic/repository/c/d?undelete"
 purgeURI="http://localhost:8080/soa/systinet/platform/restBasic/repository/c/d?purge"
 purgeRevisionURI="http://localhost:8080/soa/systinet/platform/restBasic/repository/c/d?purge&revision=1"

 viewURI="http://localhost:8080/soa/systinet/platform/restBasic/repository/c/d?view"
 viewRevisionURI="http://localhost:8080/soa/systinet/platform/restBasic/repository/c/d?view&revision=1"

 aclURI="http://localhost:8080/soa/systinet/platform/restBasic/repository/c/d?acl"
 revision="1"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:a="http://systinet.com/2005/05/soa/model/artifact"
 xmlns:r="http://systinet.com/2005/05/repository"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:pt="http://systinet.com/2005/05/soa/model/property/type"
 xmlns:rest="http://systinet.com/2005/05/soa/resource"
 xmlns:p="http://systinet.com/2005/05/soa/model/property"
 xmlns:xlink="http://www.w3.org/1999/xlink"
 xmlns:g="http://systinet.com/2005/05/soa/model/propertyGroup">
 <rest:metadata>
 <rest:path>c/d</rest:path>
 <rest:collection>c/</rest:collection>
 <rest:binary>0</rest:binary>
 <rest:contentType>text/xml; charset=utf-8</rest:contentType>
 <rest:type>document</rest:type>
 <rest:deleted>0</rest:deleted>
 <rest:owner>demouser</rest:owner>

59

 <rest:revision>
 <rest:number>1</rest:number>
 <rest:timestamp>2007-04-26T11:35:29.812Z</rest:timestamp>
 <rest:creator>demouser</rest:creator>
 <rest:label xsi:nil="true"/>
 <rest:last>1</rest:last>
 </rest:revision>
 <rest:relationships/>
 <rest:cached>0</rest:cached>
 <rest:checksum>0</rest:checksum>
 </rest:metadata>
 <rest:acl>
 <rest:owner>demouser</rest:owner>
 <rest:ace>
 <rest:principal type="group">system#everyone</rest:principal>
 <rest:permission>read</rest:permission>
 </rest:ace>
 <rest:effectivePermissions>
 <rest:permission>read</rest:permission>
 <rest:permission>write</rest:permission>
 </rest:effectivePermissions>
 </rest:acl>
 <rest:data representation="xmldata">
 <rest:xmlData contentType="text/xml; charset=utf-8"
 xml:base="http://localhost:8080/soa/systinet/platform/restBasic/repository/c/d">
 <a/>
 </rest:xmlData>
 </rest:data>
</rest:resource>

Search in collection

The collection search functionality enables you to choose which documents are included in a collection
listing. The listing contains only documents whose descriptor satisfies the conditions expressed in the
request.

The search does not work for documents without a descriptor. A condition containing a property which is
not in the descriptor's schema is never satisfied.

The condition consists of a name of a property, prefixed with cs_. The value is a string. If the value is
prefixed with an asterisk (*), it is interpreted as case insensitive substring match. Otherwise, it is case
sensitive. For properties with multiple value, one matching value is enough to satisfy the condition.

60

The query can contain more conditions. More conditions for one property form a set of alternatives (logical
OR). Finally all remaining conditions and alternatives are joined with an AND logical operation.

It is possible to set the order of the documents using parameters, starting with the name of the property
prefixed with co_. For example co_name=1,asc or equivalently co_name=asc. The number is precedence of the
ordering. The property cannot be of some type with (potentially) multiple values.

Example 16: All WSDLS containing substring hello in its name

GET http://localhost:8080/soa/systinet/platform/rest/repository/wsdls/?cs_name=*hello

Example 17: All person artifacts ordered by name

GET http://localhost:8080/soa/systinet/platform/rest/repository/
contactArtifacts/?data&cs_artifactType=urn:com:systinet:soa:model:artifacts:content:contact:person&co_name=asc

Search options can be combined with meta, desc, and rss.

EXIST

The EXIST operation is used to check the existence of a resource.

It is bound to HTTP GET or HEAD. The response does not contain an HTTP body, it contains only HTTP
headers. The most important part of the response is the HTTP status code: 200 – resource exists, or 404 –
resource does not exist.

Example 18: Check the existence of resource /c/a

GET http://localhost:8080/soa/systinet/platform/restBasic/repository/c/a?exist

61

Example 19: Response to Example 18 on page 61

HTTP/1.1 200 OK
Server: Apache-Coyote/1.1
X-Powered-By: Servlet 2.4; JBoss-4.0.5.GA (build: CVSTag=Branch_4_0 date=200610162339)/Tomcat-5.5
Pragma: no-cache
Cache-Control: no-cache
Content-Length: 0
Date: Thu, 26 Apr 2007 12:17:22 GMT

Example 20: Check the existence of resource /c/a

HEAD http://localhost:8080/soa/systinet/platform/restBasic/repository/c/a

Example 21: Response to Example 20 on page 62

HTTP/1.1 200 OK
Server: Apache-Coyote/1.1
X-Powered-By: Servlet 2.4; JBoss-4.0.5.GA (build: CVSTag=Branch_4_0 date=200610162339)/Tomcat-5.5
Pragma: no-cache
Cache-Control: no-cache
Content-Length: 0
Date: Thu, 26 Apr 2007 12:17:22 GMT

UPDATE

A similar operation to CREATE, this creates a new revision of the resource.

As with CREATE, it is not possible to specify the content of a collection.

Example 22: Update a document

POST http://localhost:8080/soa/systinet/platform/restBasic/repository/c/?resource=d&update

You cannot enter the URL into a browser, as this will result in a GET request.

62

DELETE

A successful DELETE results in a response containing resource metadata, which shows that it has been
deleted.

Example 23: Delete a document and return the XML serialization

POST http://localhost:8080/soa/systinet/platform/restBasic/repository/c/d?delete

You cannot enter the URL into a browser, as this will result in a GET request.

63

Example 24: Response to Example 23 on page 63

<?xml version="1.0" encoding="UTF-8"?>
<rest:resource xlink:href="http://localhost:8080/soa/systinet/platform/restBasic/repository/c/d"
 xml:base="http://localhost:8080/soa/systinet/platform/restBasic/repository/"
 type="document"
 name="d"
 requestURI="http://localhost:8080/soa/systinet/platform/restBasic/repository/c/d?delete="
 readURI="http://localhost:8080/soa/systinet/platform/restBasic/repository/c/d?meta&desc&data"
 revisionURI="http://localhost:8080/soa/systinet/platform/restBasic/repository/c/d?revision=1"
 updateURI="http://localhost:8080/soa/systinet/platform/restBasic/repository/c/d?update"
 updateRevisionURI="http://localhost:8080/soa/systinet/platform/restBasic/repository/c/d?update&revision=1"

 deleteURI="http://localhost:8080/soa/systinet/platform/restBasic/repository/c/d?delete"
 deleteRevisionURI="http://localhost:8080/soa/systinet/platform/restBasic/repository/c/d?delete&revision=1"

 undeleteURI="http://localhost:8080/soa/systinet/platform/restBasic/repository/c/d?undelete"
 purgeURI="http://localhost:8080/soa/systinet/platform/restBasic/repository/c/d?purge"
 purgeRevisionURI="http://localhost:8080/soa/systinet/platform/restBasic/repository/c/d?purge&revision=1"

 viewURI="http://localhost:8080/soa/systinet/platform/restBasic/repository/c/d?view"
 viewRevisionURI="http://localhost:8080/soa/systinet/platform/restBasic/repository/c/d?view&revision=1"

 aclURI="http://localhost:8080/soa/systinet/platform/restBasic/repository/c/d?acl"
 revision="1"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:a="http://systinet.com/2005/05/soa/model/artifact"
 xmlns:r="http://systinet.com/2005/05/repository"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:pt="http://systinet.com/2005/05/soa/model/property/type"
 xmlns:rest="http://systinet.com/2005/05/soa/resource"
 xmlns:p="http://systinet.com/2005/05/soa/model/property"
 xmlns:xlink="http://www.w3.org/1999/xlink"
 xmlns:g="http://systinet.com/2005/05/soa/model/propertyGroup">
 <rest:metadata>
 <rest:path>c/d</rest:path>
 <rest:collection>c/</rest:collection>
 <rest:binary>0</rest:binary>
 <rest:contentType>text/xml; charset=utf-8</rest:contentType>
 <rest:type>document</rest:type>
 <rest:deleted>1</rest:deleted>
 <rest:owner>demouser</rest:owner>
 <rest:revision>
 <rest:number>1</rest:number>
 <rest:timestamp>2007-04-26T12:41:19.906Z</rest:timestamp>

64

 <rest:creator>demouser</rest:creator>
 <rest:label xsi:nil="true"/>
 <rest:last>1</rest:last>
 </rest:revision>
 <rest:relationships/>
 <rest:cached>0</rest:cached>
 <rest:checksum>0</rest:checksum>
 </rest:metadata>
</rest:resource>

UNDELETE

A successful UNDELETE results in a response containing resource metadata, which shows that it has been
undeleted.

Example 25: Undelete a document and return the XML serialization

POST http://localhost:8080/soa/systinet/platform/restBasic/repository/c/d?undelete

You cannot enter the URL into a browser, as this will result in a GET request.

65

Example 26: Response to Example 25 on page 65

<?xml version="1.0" encoding="UTF-8"?>
<rest:resource xlink:href="http://localhost:8080/soa/systinet/platform/restBasic/repository/c/d"
 xml:base="http://localhost:8080/soa/systinet/platform/restBasic/repository/"
 type="document"
 name="d"
 requestURI="http://localhost:8080/soa/systinet/platform/restBasic/repository/c/d?undelete="
 readURI="http://localhost:8080/soa/systinet/platform/restBasic/repository/c/d?meta&desc&data"
 revisionURI="http://localhost:8080/soa/systinet/platform/restBasic/repository/c/d?revision=1"
 updateURI="http://localhost:8080/soa/systinet/platform/restBasic/repository/c/d?update"
 updateRevisionURI="http://localhost:8080/soa/systinet/platform/restBasic/repository/c/d?update&revision=1"

 deleteURI="http://localhost:8080/soa/systinet/platform/restBasic/repository/c/d?delete"
 deleteRevisionURI="http://localhost:8080/soa/systinet/platform/restBasic/repository/c/d?delete&revision=1"

 undeleteURI="http://localhost:8080/soa/systinet/platform/restBasic/repository/c/d?undelete"
 purgeURI="http://localhost:8080/soa/systinet/platform/restBasic/repository/c/d?purge"
 purgeRevisionURI="http://localhost:8080/soa/systinet/platform/restBasic/repository/c/d?purge&revision=1"

 viewURI="http://localhost:8080/soa/systinet/platform/restBasic/repository/c/d?view"
 viewRevisionURI="http://localhost:8080/soa/systinet/platform/restBasic/repository/c/d?view&revision=1"

 aclURI="http://localhost:8080/soa/systinet/platform/restBasic/repository/c/d?acl"
 revision="1"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:a="http://systinet.com/2005/05/soa/model/artifact"
 xmlns:r="http://systinet.com/2005/05/repository"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:pt="http://systinet.com/2005/05/soa/model/property/type"
 xmlns:rest="http://systinet.com/2005/05/soa/resource"
 xmlns:p="http://systinet.com/2005/05/soa/model/property"
 xmlns:xlink="http://www.w3.org/1999/xlink"
 xmlns:g="http://systinet.com/2005/05/soa/model/propertyGroup">
 <rest:metadata>
 <rest:path>c/d</rest:path>
 <rest:collection>c/</rest:collection>
 <rest:binary>0</rest:binary>
 <rest:contentType>text/xml; charset=utf-8</rest:contentType>
 <rest:type>document</rest:type>
 <rest:deleted>0</rest:deleted>
 <rest:owner>demouser</rest:owner>
 <rest:revision>
 <rest:number>1</rest:number>
 <rest:timestamp>2007-04-26T12:41:19.906Z</rest:timestamp>

66

 <rest:creator>demouser</rest:creator>
 <rest:label xsi:nil="true"/>
 <rest:last>1</rest:last>
 </rest:revision>
 <rest:relationships/>
 <rest:cached>0</rest:cached>
 <rest:checksum>0</rest:checksum>
 </rest:metadata>
</rest:resource>

PURGE

A successful PURGE results in a response containing resource metadata, which shows that it has been
purged:

Example 27: Delete a document and return the XML serialization

POST http://localhost:8080/soa/systinet/platform/restBasic/repository/c/d?purge

You cannot enter the URL into a browser, as this will result in a GET request.

67

Example 28: Response to Example 27 on page 67

<?xml version="1.0" encoding="UTF-8"?>
<rest:resource xlink:href="http://localhost:8080/soa/systinet/platform/restBasic/repository/c/d"
 xml:base="http://localhost:8080/soa/systinet/platform/restBasic/repository/"
 type="document"
 name="d"
 requestURI="http://localhost:8080/soa/systinet/platform/restBasic/repository/c/d?purge="
 readURI="http://localhost:8080/soa/systinet/platform/restBasic/repository/c/d?meta&desc&data"
 revisionURI="http://localhost:8080/soa/systinet/platform/restBasic/repository/c/d?revision=1"
 updateURI="http://localhost:8080/soa/systinet/platform/restBasic/repository/c/d?update"
 updateRevisionURI="http://localhost:8080/soa/systinet/platform/restBasic/repository/c/d?update&revision=1"

 deleteURI="http://localhost:8080/soa/systinet/platform/restBasic/repository/c/d?delete"
 deleteRevisionURI="http://localhost:8080/soa/systinet/platform/restBasic/repository/c/d?delete&revision=1"

 undeleteURI="http://localhost:8080/soa/systinet/platform/restBasic/repository/c/d?undelete"
 purgeURI="http://localhost:8080/soa/systinet/platform/restBasic/repository/c/d?purge"
 purgeRevisionURI="http://localhost:8080/soa/systinet/platform/restBasic/repository/c/d?purge&revision=1"

 viewURI="http://localhost:8080/soa/systinet/platform/restBasic/repository/c/d?view"
 viewRevisionURI="http://localhost:8080/soa/systinet/platform/restBasic/repository/c/d?view&revision=1"

 aclURI="http://localhost:8080/soa/systinet/platform/restBasic/repository/c/d?acl"
 revision="1"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:a="http://systinet.com/2005/05/soa/model/artifact"
 xmlns:r="http://systinet.com/2005/05/repository"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:pt="http://systinet.com/2005/05/soa/model/property/type"
 xmlns:rest="http://systinet.com/2005/05/soa/resource"
 xmlns:p="http://systinet.com/2005/05/soa/model/property"
 xmlns:xlink="http://www.w3.org/1999/xlink"
 xmlns:g="http://systinet.com/2005/05/soa/model/propertyGroup">
 <rest:metadata>
 <rest:path>c/d</rest:path>
 <rest:collection>c/</rest:collection>
 <rest:binary>0</rest:binary>
 <rest:contentType>text/xml; charset=utf-8</rest:contentType>
 <rest:type>document</rest:type>
 <rest:deleted>1</rest:deleted>
 <rest:owner>demouser</rest:owner>
 <rest:revision>
 <rest:number>1</rest:number>
 <rest:timestamp>2007-04-26T12:41:19.906Z</rest:timestamp>

68

 <rest:creator>demouser</rest:creator>
 <rest:label xsi:nil="true"/>
 <rest:last>1</rest:last>
 </rest:revision>
 <rest:relationships/>
 <rest:cached>0</rest:cached>
 <rest:checksum>0</rest:checksum>
 </rest:metadata>
</rest:resource>

REST Exceptions

Exceptions that result from a REST operation are represented in the HTTP response in XML.

69

Example 29: Error Response

<?xml version="1.0" encoding="UTF-8"?>
<rest:exception xml:base="http://localhost:8080/soa/systinet/platform/restBasic/repository/"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:a="http://systinet.com/2005/05/soa/model/artifact"
 xmlns:r="http://systinet.com/2005/05/repository"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:pt="http://systinet.com/2005/05/soa/model/property/type"
 xmlns:rest="http://systinet.com/2005/05/soa/resource"
 xmlns:p="http://systinet.com/2005/05/soa/model/property"
 xmlns:xlink="http://www.w3.org/1999/xlink"
 xmlns:g="http://systinet.com/2005/05/soa/model/propertyGroup">
 <rest:code>r:document-not-found</rest:code>
 <rest:message>{http://systinet.com/2005/05/repository}document-not-found:
 REST request processing failed. Method: GET, URL:
http://localhost:8080/soa/systinet/platform/restBasic/repository/absent.xml
 </rest:message>
 <rest:stackTrace>com.systinet.platform.RepositoryException: {http://systinet.com/2005/05/repository}document-
not-found:
 REST request processing failed. Method: GET, URL:
http://localhost:8080/soa/systinet/platform/restBasic/repository/absent.xml

 at com.systinet.platform.rest.service.RestService.process(RestService.java:236)
 at com.systinet.platform.servlet.processing.RawServiceClassWrappingServlet.
 genericDo(RawServiceClassWrappingServlet.java:139)
 at com.systinet.platform.servlet.processing.RawServiceClassWrappingServlet.
 doGet(RawServiceClassWrappingServlet.java:126)
 at javax.servlet.http.HttpServlet.service(HttpServlet.java:697)
 at javax.servlet.http.HttpServlet.service(HttpServlet.java:810)
 at org.apache.catalina.core.ApplicationFilterChain.internalDoFilter(ApplicationFilterChain.java:252)
 at org.apache.catalina.core.ApplicationFilterChain.doFilter(ApplicationFilterChain.java:173)
 at com.systinet.platform.servlet.processing.security.HttpBasicFilter.doFilter(HttpBasicFilter.java:116)
 at
com.systinet.platform.servlet.processing.security.AbstractSecurityFilter.doFilter(AbstractSecurityFilter.java:72)

 at org.apache.catalina.core.ApplicationFilterChain.internalDoFilter(ApplicationFilterChain.java:202)
 at org.apache.catalina.core.ApplicationFilterChain.doFilter(ApplicationFilterChain.java:173)
 at com.systinet.platform.servlet.processing.security.SiteminderFilter.doFilter(SiteminderFilter.java:95)

 at
com.systinet.platform.servlet.processing.security.AbstractSecurityFilter.doFilter(AbstractSecurityFilter.java:72)

 at org.apache.catalina.core.ApplicationFilterChain.internalDoFilter(ApplicationFilterChain.java:202)
 at org.apache.catalina.core.ApplicationFilterChain.doFilter(ApplicationFilterChain.java:173)

70

 at com.systinet.platform.servlet.processing.security.InitSecurityFilter.doFilter(InitSecurityFilter.java:30)

 at org.apache.catalina.core.ApplicationFilterChain.internalDoFilter(ApplicationFilterChain.java:202)
 at org.apache.catalina.core.ApplicationFilterChain.doFilter(ApplicationFilterChain.java:173)
 at org.jboss.web.tomcat.filters.ReplyHeaderFilter.doFilter(ReplyHeaderFilter.java:96)
 at org.apache.catalina.core.ApplicationFilterChain.internalDoFilter(ApplicationFilterChain.java:202)
 at org.apache.catalina.core.ApplicationFilterChain.doFilter(ApplicationFilterChain.java:173)
 at org.apache.catalina.core.StandardWrapperValve.invoke(StandardWrapperValve.java:213)
 at org.apache.catalina.core.StandardContextValve.invoke(StandardContextValve.java:178)
 at org.jboss.web.tomcat.security.SecurityAssociationValve.invoke(SecurityAssociationValve.java:175)
 at org.jboss.web.tomcat.security.JaccContextValve.invoke(JaccContextValve.java:74)
 at org.apache.catalina.core.StandardHostValve.invoke(StandardHostValve.java:126)
 at org.apache.catalina.valves.ErrorReportValve.invoke(ErrorReportValve.java:105)
 at org.jboss.web.tomcat.tc5.jca.CachedConnectionValve.invoke(CachedConnectionValve.java:156)
 at org.apache.catalina.core.StandardEngineValve.invoke(StandardEngineValve.java:107)
 at org.apache.catalina.connector.CoyoteAdapter.service(CoyoteAdapter.java:148)
 at org.apache.coyote.http11.Http11Processor.process(Http11Processor.java:869)
 at
org.apache.coyote.http11.Http11BaseProtocol$Http11ConnectionHandler.processConnection(Http11BaseProtocol.java:664)

 at org.apache.tomcat.util.net.PoolTcpEndpoint.processSocket(PoolTcpEndpoint.java:527)
 at org.apache.tomcat.util.net.MasterSlaveWorkerThread.run(MasterSlaveWorkerThread.java:112)
 at java.lang.Thread.run(Thread.java:595)
 Caused by: com.systinet.platform.RepositoryException: {http://systinet.com/2005/05/repository}document-
not-found:
 The document absent.xml was not found.

 at com.systinet.platform.rdbms.runtime.impl.Resource.invokeGetResourceInternal(Resource.java:1383)
 at com.systinet.platform.rdbms.runtime.impl.Resource.getResourceInternal(Resource.java:1327)
 at com.systinet.platform.rdbms.runtime.impl.Resource.getResourceByPath(Resource.java:323)
 at com.systinet.platform.rdbms.runtime.xmldbadapter.DbSessionImpl.doGetResource(DbSessionImpl.java:109)
 at com.systinet.platform.xmldb.DbSession.getResource(DbSession.java:271)
 at com.systinet.platform.impl.SessionImpl.getDocument(SessionImpl.java:426)
 at com.systinet.platform.rest.service.RestHelper.getDocumentResource(RestHelper.java:620)
 at com.systinet.platform.rest.service.RestGETProcessing.processGetRaw(RestGETProcessing.java:751)
 at
com.systinet.platform.rest.service.RestGETProcessing.getProcessSetHttpOkNoCache(RestGETProcessing.java:206)

 at com.systinet.platform.rest.service.RestGETProcessing.processGetPreparsed(RestGETProcessing.java:147)
 at com.systinet.platform.rest.service.RestGETProcessing.processGet(RestGETProcessing.java:117)
 at com.systinet.platform.rest.service.RestService.executeOperation(RestService.java:279)
 at com.systinet.platform.rest.service.RestService.process(RestService.java:226)
 ... 34 more
 </rest:stackTrace>
</rest:exception>

71

The Content-type of the response is text/xml. The interpretation of HTTP response codes for different
operations is summarized in the following table.

Table 6. Possible HTTP Response Codes

MeaningDELETEUPDATEGETCREATECode

Bad request if:yesyesyesyes400 Bad
Request

• the request REST operation is invalid

• serialization is erroneous

• mime type is not supported

• resource is not supported

Authentication failure. Credentails are required
or were invalid. Serialization of the exception
is not provided because the Java object is not
available.

yesyesyesyes401
Unauthorized

The current user does not have the right to
perform the requested action.

yesyesyesyes403
Forbidden

The resource does not exist – the containing
collection in the case of CREATE.

yesyesyesyes404 Not
Found

Conflict, if the resource already exists for create
or concurrent modification for update and delete.

yesyesnoyes409
Conflict

Executable Objects

In SOA Systinet there are two kinds of objects that can be executed: functional resources and some artifacts,
for example, task artifacts. What these objects have in common is that they are basically a description of a
function which builds its result based on (some part of) data stored on the repository.

72

Functional Resources

A functional resource is a piece of code that can handle a request and somehow provide a response. In SOA
Systinet, they are accessible though the REST interface with URIs that contain service namespace. For
details, see Table 1.

For example:

http://localhost:8080/soa/systinet/platform/rest/service/system/product-information

It is possible to map more resources to the same collection (e.g. system/). However, it is not possible to map
one functional resource under another one. For example it would be illegal to add a resource mapped to
system/product-information/jvm-information; the space already belongs to the product information functional
resource.

A functional resource (or its programmer) can choose which HTTP operations to support, and is reponsible
for handling the request parameters.

The functional resource are meant to replace XQueries which, in the previous versions, serve the same
purpose.

For example the WSIL functionality is now implemented by the functional resource available at:

http://localhost:8080/soa/systinet/platform/rest/service/system/wsil

However, in the previous version the XQuery providing the WSIL document was located elsewhere. This
problem is addressed by the introduction of aliases: documents with a special content type that are located
in the repository namespace. An execute request for the alias is forwarded to the associated functional
resource.

For example, the following request returns the same document as the previous one:

GET http://localhost:8080/soa/systinet/platform/rest/repository/queries/wsil.xqy?execute

Executable Artifacts

Several kinds of repository documents can be executed: task artifacts, saved search artifacts, and aliases.
A document is executed by a request containing an execute parameter.

73

The parameter execute is also used in conjunction with the fulltext parameter, to run a full text
search through a given collection (and its subcollections).

The result of an execution of a task artifact is the resulting report document.

The representation of the result can be modified by request parameters data or rss.

The last kind executable documents are aliases. They are, technically speaking, not artifacts but they appear
in a collection for artifacts. The data they contain is a reference to associated functional resource:

<?xml version="1.0" encoding="UTF-8"?>
<rest:resource xlink:href="http://localhost:8080/soa/systinet/platform/rest/repository/queries/wsil.xqy"
 xml:base="http://localhost:8080/soa/systinet/platform/rest/repository/"
 type="document"
 name="wsil.xqy"
 ...
 >
 <rest:metadata>
 <rest:path>queries/wsil.xqy</rest:path>
 <rest:collection>queries/</rest:collection>
 <rest:binary>0</rest:binary>
 <rest:contentType>x-application/alias</rest:contentType>
 <rest:type>document</rest:type>
 <rest:deleted>0</rest:deleted>
 <rest:owner>systinet:admin</rest:owner>
 <rest:revision>
 <rest:number>1</rest:number>
 <rest:timestamp>2007-04-26T09:42:31.578Z</rest:timestamp>
 <rest:creator>systinet:admin</rest:creator>
 <rest:label xsi:nil="true"/>
 <rest:last>1</rest:last>
 </rest:revision>
 <rest:relationships/>
 <rest:cached>0</rest:cached>
 <rest:checksum>0</rest:checksum>
 <rest:extensions>
 <r:alias xmlns:r="http://systinet.com/2005/05/repository">/system/wsil</r:alias>
 </rest:extensions>
 </rest:metadata>
 <rest:descriptor/>
 <rest:data representation="xmldata">
 <rest:xmlData contentType="x-application/alias"
 xml:base="http://localhost:8080/soa/systinet/platform/rest/repository/queries/wsil.xqy"/>

74

 </rest:data>
</rest:resource>

Proprietary REST Client
The Java REST HTTP client hides the technical details of the REST protocol.

It is composed of the following base packages and classes:

• org.systinet.platform.rest

A package containing the foundation of the client that is used through its implementation, mainly:

• org.systinet.platform.rest.Client

REST Client implementation.

• org.systinet.platform.rest.Source

Hides REST request data format complexity.

• org.systinet.platform.rest.ClientException

Client exception thrown by the client.

• org.systinet.platform.rest.RestHelper

Constants and helper methods.

• org.systinet.platform.rest.schema.model.xsd

A package containing object representation classes of a REST resource.

• org.systinet.platform.rest.schema.model.xsd.Resource

The root class of the REST resource serialization.

For more details, see the Javadoc located in SOA_HOME/doc/api.

75

Basic Principles

This section will show you how to interact with SOA Systinet using the REST HTTP client.

For a REST GET, use the following steps:

1 GET credentials.

It is possible to omit this step and access the server without any credentials - using anonymous access.
However, only publicly visible documents can be accessed in this way.

The other option is to use HTTP Basic authentication:

Credentials credentials = SecurityHelper.createCredentials("demouser", "changeit",
SecurityHelper.HttpBasic);

2 Construct the resource URL. For HTTP Basic authentication the base URL is:

public static String RESTBaseHttpBasicUrl =
"http://localhost:8080/soa/systinet/platform/restBasic/repository/";

For single sign-on, it resembles the following URL:

public static String RESTBaseAnonymousUrl =
"http://localhost:8080/soa/systinet/platform/rest/repository/";

A resource URL is composed of a server base URL, collection name, and the resource name:

String resourceUrl = RESTBaseHttpBasicUrl + "businessServiceArtifacts/test";

3 GET resource by invoking the GET method on the REST client. In this example, we GET the REST
resource representation with sections data, meta, descriptor, and ACL:

Resource resource = Client.get(resourceUrl, AccessMode.DATA_META_DESC_ACL, credentials);

4 Output the result:

76

System.out.println(resource.getMetadata().getPath());

The complete code fragment (HTTP Basic) is shown below:

// Copyright 2001-2007 Systinet Corp. All rights reserved.
// Use is subject to license terms.

package example;

import org.idoox.security.Credentials;
import org.idoox.wasp.SecurityHelper;
import org.systinet.platform.rest.AccessMode;
import org.systinet.platform.rest.Client;
import org.systinet.platform.rest.Source;
import org.systinet.platform.rest.schema.model.xsd.Resource;

public class RESTExample {
 public static String RESTBaseHttpBasicUrl =
 "http://localhost:8080/soa/systinet/platform/restBasic/repository/";

 public static void main(String[] args) throws Exception {
 Credentials credentials =
 SecurityHelper.createCredentials("demouser", "changeit", SecurityHelper.HttpBasic);

 String resourceUrl = RESTBaseHttpBasicUrl + "businessServiceArtifacts/test";

 Resource resource = Client.get(resourceUrl, AccessMode.DATA_META_DESC_ACL, credentials);
 System.out.println(resource.getMetadata().getPath());
 }
}

To REST CREATE, follow these steps:

1 GET credentials in the same way as described in the inquiry case.

2 CREATE resource parts (in this example we provide data only):

Source data = new Source("example text content");

3 Use a secure endpoint to publish the artifact:

77

Resource resource = Client.createDocument(rootCollectionUrl, "test", data, credentials);

The complete code fragment (HTTP Basic) is shown below:

// Copyright 2001-2007 Systinet Corp. All rights reserved.
// Use is subject to license terms.

package example;

import org.idoox.security.Credentials;
import org.idoox.wasp.SecurityHelper;
import org.systinet.platform.rest.AccessMode;
import org.systinet.platform.rest.Client;
import org.systinet.platform.rest.Source;
import org.systinet.platform.rest.schema.model.xsd.Resource;

public class RESTExample {
 public static String RESTBaseHttpBasicUrl =
 "http://localhost:8080/soa/systinet/platform/restBasic/repository/";

 public static void main(String[] args) throws Exception {
 Credentials credentials =
 SecurityHelper.createCredentials("demouser", "changeit", SecurityHelper.HttpBasic);

 String rootCollectionUrl = RESTBaseHttpBasicUrl;

 Source data = new Source("example text content");
 Resource resource = Client.createDocument(rootCollectionUrl, "test", data, credentials);

 System.out.println(resource.getMetadata().getPath());
 }
}

For more details, see the HP SOA Systinet Demo Guide and Chapter 2, REST Interface.

REST Client Package

This section describes how to use the client distribution. This client allows you to access SOA Systinet
through a REST HTTP interface.

The installation program creates the client distribution in the subdirectory, client, of the directory in which
SOA Systinet is installed. In this section, the system property CLIENT_HOME refers to this directory.

78

The CLIENT_HOME directory contains all required files and can be copied to a location of your choice.

The CLIENT_HOME contains three subdirectories:

• bin - shell scripts for running the REST tools. Not necessary unless you want to use these tools.

• conf - files with client's configuration.

• lib - jar files that compose the client.

Directory conf/sdm/, including its content and file lib/platform_sdm.jar, are not necessary for the
REST client. They are used only in the SDM client.

If you want to use an HTTPS connection to an SOA Systinet server, you must import the server's
certificate into the truststore using the standard Java keytool command. The recommended location
and name is CLIENT_HOME/conf/client.truststore.

You do not have to place client files to directories that have specific names. For example, all client
files can be copied to the flat directory.

Client Classpath

For each Java program using the REST client, the associated .jar files must be added to the classpath. The
classpath must contain all the .jar files located in the lib directory of the client distribution (except the
platform_sdm.jar):

jdbc-driver-path.jar
extensions-lib.jar
pl-repository-old.jar
pl-repository-api.jar
sc-merged-sdm.jar
pl-model.jar
pl-persistence.jar
client-utils.jar
configuration.jar

79

Client Environment

To run your HP SOA Registry Foundation client code, you must set the following Java properties:

-Dwasp.location=CLIENT_HOME
-Dwasp.config.location=conf/clientconf.xml
-Djava.security.auth.login.config=CLIENT_HOME/conf/jaas.config
-Didoox.debug.level=1
-Didoox.debug.logger=log4j
-Dorg.apache.commons.logging.Log=org.apache.commons.logging.impl.SimpleLog

If the client will use HTTPS transport, set this additional property:

-Djavax.net.ssl.trustStore=CLIENT_HOME/conf/client.truststore

Replace CLIENT_HOME with an appropriate directory name or variable.

80

3 SDM Client

The SDM client provides a high-level abstraction of artifact descriptors and relationships. It is built on top
of the Proprietary REST Client on page 75, and provides methods to speed up modeling and interaction
with SOA Systinet.

It is composed of the following base packages and classes:

• org.systinet.platform.sdm

A package containing the foundation of the client that is used through its implementation, mainly:

• org.systinet.platform.sdm.SdmClientConstants

Constants used to reference particular repository collections where artifacts are stored and taxonomy
URN.

• org.systinet.platform.sdm.SdmClientHelper

Helper class providing useful methods for artifacts manipulation.

• org.systinet.platform.sdm.SdmClient

Core of the generic client allowed to work with any artifact type. On top of this core is a specific
adaptor for each artifact. This client is not typically used directly.

• org.systinet.platform.sdm.xsd.artifact

A package containing implementation classes for each artifact type. Each artifact type class contains
CRUD methods allowing the creation of artifact instances and their manipulation.

• org.systinet.platform.sdm.xsd.artifact.Artifact

Superclass of all artifact type classes.

81

• org.systinet.platform.sdm.xsd.property

Implementation of all artifact properties.

For more details please see the Javadoc located in SOA_HOME/doc/api.

Basic Principles
This section shows how to interact with SOA Systinet using the SDM Client.

For an inquiry pattern, use the following steps:

1 Get credentials.

Unless you want to use anonymous access, it is necessary to create HTTP Basic credentials:

Credentials credentials
 =SecurityHelper.createCredentials("demouser", "changeit", SecurityHelper.HttpBasic);

2 Construct the artifact URL. For SSL transport HTTP Basic authentication the base URL follows this
example:

static final String restEndpoint="https://localhost:8843/soa/systinet/platform/restBasic/repository/";

In the case of anonymous access, use the following URL:

static final String restEndpoint="https://localhost:8843/soa/systinet/platform/rest/repository/";

An artifact URL is comprised of a server base URL, collection name, and the artifact name:

String webServiceUrl
 = restEndpoint+"/"+SdmClientConstants.COLLECTION_NAME_WEBSERVICE+"/"+artifactName;

3 Get the artifact by invoking the static method on the artifact type class:

82

WebServiceArtifact webServiceArtifact
 = WebServiceArtifact.get(webServiceUrl, credentials);

4 Output the result:

SdmClientHelper.showArtifact(webServiceArtifact);

The complete code fragment (HTTP Basic) is shown below:

// Copyright 2001-2007 Systinet Corp. All rights reserved.
// Use is subject to license terms.

package example;

import org.idoox.security.Credentials;
import org.idoox.wasp.SecurityHelper;
import org.systinet.platform.sdm.SdmClientConstants;
import org.systinet.platform.sdm.SdmClientHelper;
import org.systinet.platform.sdm.xsd.artifact.WebServiceArtifact;

public class InquiryExample {
 static final String restEndpoint="https://localhost:8843/soa/systinet/platform/restBasic/repository/";
 static final String artifactName="MyWebServiceArtifact";

 public static void main(String[] args) throws Exception {
 Credentials credentials
 =SecurityHelper.createCredentials("demouser", "changeit", SecurityHelper.HttpBasic);

 String webServiceUrl
 = restEndpoint + "/" + SdmClientConstants.COLLECTION_NAME_WEBSERVICE + "/" + artifactName;

 WebServiceArtifact webServiceArtifact
 = WebServiceArtifact.get(webServiceUrl, credentials);

 SdmClientHelper.showArtifact(webServiceArtifact);
 }
}

To publish, follow these steps:

1 Get credentials in the same way as described in the inquiry case.

83

2 Build artifact:

WebServiceArtifact artifact = new WebServiceArtifact();

artifact.setNameGroup(new NameGroup(new Name[] {
 new Name("en","FTP Web Service")
 }));

artifact.setDescriptionGroup(new DescriptionGroup(
 new Description[] {
 new Description("en",
 "Web Service artifact representing a Web Service interface to the FTP protocol.")
 }));

AccessPoint accessPoint = new AccessPoint("http://soap.systinet.net:9080/FTPService");
accessPoint.setUseType("Unsecured endpoint");
artifact.setAccessPointGroup(new AccessPointGroup(new AccessPoint[]{
 accessPoint
 }));

// production stage
artifact.setProductionStage(
 new ProductionStage(
 "Production",
 SdmClientConstants.TAXONOMY_LIFECYCLE_STAGES,
 "uddi:systinet.com:soa:model:taxonomies:lifecycleStages:production"));

3 Use a secure endpoint to publish the artifact:

String webServiceUrl
 = WebServiceArtifact.create(
 restEndpoint,
 artifactName,
 buildWebServiceArtifact(),
 null,null,credentials);

The complete code fragment (HTTP Basic) is shown below:

// Copyright 2001-2007 Systinet Corp. All rights reserved.
// Use is subject to license terms.
package example;

import org.idoox.security.Credentials;

84

import org.idoox.wasp.SecurityHelper;
import org.systinet.platform.sdm.SdmClientConstants;
import org.systinet.platform.sdm.xsd.artifact.WebServiceArtifact;
import org.systinet.platform.sdm.xsd.group.AccessPointGroup;
import org.systinet.platform.sdm.xsd.group.DescriptionGroup;
import org.systinet.platform.sdm.xsd.group.NameGroup;
import org.systinet.platform.sdm.xsd.property.AccessPoint;
import org.systinet.platform.sdm.xsd.property.Description;
import org.systinet.platform.sdm.xsd.property.Name;
import org.systinet.platform.sdm.xsd.property.ProductionStage;

public class PublicationExample {
 static final String restEndpoint="https://localhost:8843/soa/systinet/platform/restBasic/repository/";
 static final String artifactName="MyWebServiceArtifact";

 public static void main(String[] args) throws Exception {
 Credentials credentials
 =SecurityHelper.createCredentials("demouser", "changeit", SecurityHelper.HttpBasic);

 String webServiceUrl = WebServiceArtifact.create(
 restEndpoint,
 artifactName,
 buildWebServiceArtifact(),
 null, null, credentials);

 System.out.println("Creates Web Service artifact: "+webServiceUrl);
 }

 private static WebServiceArtifact buildWebServiceArtifact() {
 WebServiceArtifact artifact =new WebServiceArtifact();

 artifact.setNameGroup(new NameGroup(new Name[] {
 new Name("en","FTP Web Service")
 }));

 artifact.setDescriptionGroup(new DescriptionGroup(
 new Description[] {
 new Description("en","Web Service artifact representing FTP Web Service.")
 }));

 AccessPoint accessPoint = new AccessPoint("http://soap.systinet.net:9080/FTPService");
 accessPoint.setUseType("Unsecured endpoint");
 artifact.setAccessPointGroup(new AccessPointGroup(new AccessPoint[]{
 accessPoint
 }));

85

 // production stage
 artifact.setProductionStage(
 new ProductionStage(
 "Production",
 SdmClientConstants.TAXONOMY_LIFECYCLE_STAGES,
 "uddi:systinet.com:soa:model:taxonomies:lifecycleStages:production"));

 return artifact;
 }
}

For more details, see the HP Systinet Demo Guide and Chapter 2, REST Interface.

SDM Client Package
The SDM client is the same as the REST client described in REST Client Package on page 78.

Do not remove conf/sdm and include lib/platform_sdm.jar in the classpath.

86

4 Technical Security

This chapter provides a technical description of SOA Systinet security.

Security is described in the following sections:

• SOA Systinet Overview on page 87

• Users and Groups on page 88

• Transport Security on page 90

• Authentication on page 91

• Resource ACL on page 91

• WEB Security on page 93

• Platform Services on page 93

• Reporting Services on page 94

• Policy Manager Services on page 94

SOA Systinet Overview
SOA Systinet consists of the following components:

• Web UI

Exposes the WEB service providing the SOA Systinet UI.

• Platform

Provides a repository (data store) for artifacts.

87

Exposes WEB and REST services to manage artifacts.

• Policy Manager

Engine for policy validation.

Exposes REST services to policy management and validation.

• Reporting

Store for report definitions and data.

Engine for report generation.

Exposes REST service for report management.

These components are deployed as a single EAR file which is generated by the installation.

For details, see the HP SOA Systinet Installation and Deployment Guide.

Users and Groups
SOA Systinet delegates authentication to the J2EE container. The userstore is not managed by SOA Systinet,
but by the application server or LDAP/AD tools.

SOA Systinet uses the following definitions:

• User

A user represents the identity accessing SOA Systinet.

Use your application or LDAP/AD tools to manage users.

• User Profile

Profiles provide additional information for SOA Systinet. For example, a contact email used for mail
notifications and a primary group used for collective ownership.

• Role

88

Roles are defined by functional security. They define the actions permitted to a user. Currently, only
the administrator role is defined.

• Group

Groups are defined by organizational security following the company structure.

SOA Systinet uses the following types of groups:

• external

Groups defined by LDAP. These must be managed within LDAP.

• internal (local)

Groups managed within SOA Systinet by the administrator.

SOA Systinet uses the following user types for processing:

• authenticated

A user authenticated by J2EE. For example, a user/password for HTTP.

See Authentication on page 91 for authentication mechanisms.

• anonymous

A user who does not pass any credentials and accesses service on access points with an anonymous
authentication mechanism.

The name used in ACL is systinet#anonymous.

• resource owner

A user who owns the accessed resource. Used in ACL evaluation.

• administrator

89

A user with the administrator role. The administrator has the rights to perform all actions (no ACLs are
applied on resources, management tasks, and so on).

During installation, you must define an administrator.

SOA Systinet user and group management enables you to assign the administrator role to users or entire
user groups.

• system administrator

An internal identity used for the execution of internal tasks. It is not possible to authenticate (log in)
with this identity. This user has the same capabilities as an administrator.

The name used in ACL is systinet:admin.

SOA Systinet uses the following built-in groups:

• system#registered

All users who exist in the userstore. In other words, users who are authenticated.

• system#everyone

Both authenticated users (group system#registered) and anonymous users (systinet#anonymous).

Transport Security
SOA Systinet provides several REST and WEB services. They are exposed at access points mapped on the
HTTP and HTTPS transports provided by the hosting application server. It also provides installation scenarios
where you can enable or disable HTTP or HTTPS.

SOA Systinet does not provide SSL management (certificates) because HTTPS transport is provided by
the application server.

For simple JBoss configuration, SOA Systinet provides automatic SSL enablement (certificate generation
and SSL configuration) during installation.

90

On the client side (for example, SOA Systinet accesses HTTPS URLs to upload WSDLs), the handling of
SSL certificates is configurable (for example, the selection of truststores, enable/disable hostname
verification).

Authentication
Authentication is provided by the J2EE application server. The application server capability determines
which method is used (for example, HTTP Basic, SiteMinder). For backward compatibility, it is possible
to configure SOA Systinet authentication (SiteMinder and client SSL certificates) but the preferred
authentication is via J2EE application servers,

For details on SOA Systinet authentication, see the HP SOA Systinet Installation and Deployment Guide.

J2EE session management is used for both WEB and REST services.

Resource ACL
SOA Systinet does not use J2EE authorization to access service resources (for example, REST resources
are artifacts and collection or WEB resources are tasks).

Platform, Policy Manager, and Reporting Service components provide hierarchical resource models accessible
by REST. In these models there are collections and resources, where a collection can contain both individual
resources and other collections.

Platform and Reporting Service use the same ACL model.

When access to a resource is requested, ACL is used to authorize access for a user using the following
model:

• An ACL is a list of ACEs, where an ACE is composed of the following model:

• resource owner

Can be either a user or a group.

resource owner and administrator always have read and write permission granted so ACLs are
not evaluated in these cases.

• ACL is a list of ACEs, where an ACE is composed of:

91

user or group identification•

• granted permission:

• read:

• artifact/resource — permission to read any data and metadata of the artifact.

• collection — permission to read the content and metadata of the collection.

• write:

• artifact/resource — permission to update any data and metadata of the artifact.

• collection — permission to create new artifacts, resources, and sub-collections, and to
update the metadata of the collection.

• No negative ACE.

It is not possible to deny permission to a user or group.

• No inheritance or propagation of ACL.

Only the ACL of the accessed artifact is used for authorization.

A change to a collection ACL does not change any ACLs of collection members.

To read or update an artifact, it is sufficient to have read or write permission on the resource.

• When a resource is created, its default ACL is set by artifact. It is possible to configure default ACLs
per collection (for example, artifact type).

For details about the default ACL configuration, see "Default ACL Configuration" in the HP SOA Systinet
Reference Guide.

92

For details about changing the default ACL configuration, see "Configuring the Default ACLs" in the HP
SOA Systinet Administrator Guide.

WEB Security
The UI is composed of tasks mapped on URLs. All UI tasks require an authenticated user who must sign
in to SOA Systinet.

The UI is composed of static tasks, so this setup is part of the WEB configuration.

WEB uses J2EE session management, provided by the application server.

Platform Services
Platform provides two REST services. They are exposed on the following access points, mapped on HTTP
and HTTPS transports provided by the hosting application server:

• Proprietary REST

http://host:port/context/systinet/platform/rest/ and https://host:port/context/systinet/platform/rest/
operate with the anonymous authentication mechanism.

http://host:port/context/systinet/platform/restBasic/ and
https://host:port/context/systinet/platform/restBasic/ operate with the default HTTP Basic authentication
mechanism, specified by the application server.

• Atom-Based REST

http://host:port/context/platform/rest/ and https://host:port/context/platform/rest/ operate with the
anonymous authentication mechanism.

http://host:port/context/platform/restSecure/ and https://host:port/context/platform/restSecure/ operate
with the default HTTP Basic authentication mechanism, specified by the application server.

The REST service uses J2EE session management, provided by the application server.

93

Reporting Services
Reporting provides a REST service. It is exposed on the following access points, mapped on HTTP and
HTTPS transports provided by the hosting application server:

• Atom-Based REST

http://host:port/context/reporting/rest/ and https://host:port/context/reporting/rest/ operate with the
anonymous authentication mechanism.

http://host:port/context/reporting/restSecure/ and https://host:port/context/reporting/restSecure/ operate
with the default HTTP Basic authentication mechanism, specified by the application server.

The REST service uses J2EE session management, provided by the application server.

Policy Manager Services
Policy Manager provides a REST service. It is exposed on the following access points, mapped on HTTP
and HTTPS transports provided by the hosting application server:

• Atom-Based REST

http://host:port/context/policymgr/rest/ and https://host:port/context/policymgr/rest/ operate with the
anonymous authentication mechanism.

http://host:port/context/policymgr/restSecure/ and https://host:port/context/policymgr/restSecure/ operate
with the default HTTP Basic authentication mechanism, specified by the application server.

The REST service uses J2EE session management, provided by the application server.

94

5 RSS

RSS (Really Simple Syndication) is an XML-based system for subscribing to information sources. For
details, see http://www.rss-specifications.com/rss-specifications.htm.

SOA Systinet provides RSS feeds, and can be used to subscribe to others.

This section describes the kind of RSS Feeds supported, where to find them, and how to use the Feed
Reader dashboard portlet.

Kinds of RSS Feed
SOA Systinet provides the following kinds of RSS feed:

• document feed

Contains the document revisions as separate items.

• collection feed

Consists of recently changed documents in collections.

• saved search feed

The RSS representation of saved search results.

Syndication Syntax
Each request for RSS must contain a URL parameter rss, which can be parameterized. The optional value
specifies the required format of the syndicate. SOA Systinet supports the following popular syntaxes of
syndicates:

• Atom v0.3 (use URL parameter ?rss=atom_0.3)

95

http://www.rss-specifications.com/rss-specifications.htm

• Atom 1.0 (use URL parameter rss=atom_1.0)

• RSS 0.9 (use URL parameter rss=rss_0.9)

• RSS 0.92 (use URL parameter rss=rss_0.92)

• RSS 0.93 (use URL parameter rss=rss_0.93)

• RSS 0.94 (use URL parameter rss=rss_0.94)

• RSS 1.0 (use URL parameter rss=rss_1.0)

• RSS 2.0 (use URL parameter rss or rss=rss_2.0), which is the default RSS format.

Subscriptions over RSS
Although SOA Systinet has no abstraction of subscriptions, you can be notified of changes to repository
data.

Notifications about new items in syndicates are a natural feature of RSS feed readers. Feed readers cache
the syndicated items and inform users about new ones from the latest feed.

RSS feed readers use the item attribute, link, to recognize if the item has already been read or not. SOA
Systinet's RSS feed item identifiers are based on the REST revision URL of the syndicated resource. So,
when the resource is created/modified, the URL of the current revision of the resource is changed. The RSS
feed reader is then able to recognize that a new item has appeared in the syndication (replacing the old one),
and informs the user about the changes.

The main advantage of this kind of subscription is that users need not learn any new proprietary subscription
API. Users can use their favorite RSS feed readers or the one implemented as a SOA Systinet dashboard
portlet.

96

6 Custom Source Parsers

The source parser you write creates an object representation of a log of messages—when your input source
is only a single message, it creates a log of one message.

The following list specifies a mapping between concepts and classes in HP SOA Systinet Policy Manager
API:

• A log of messages corresponds to an instance of org.systinet.policy.validation.ValidationSourceCollection.
It can contain both inline request/response messages and references to external messages. As credentials
are passed along, the external messages can be secured with HTTP basic authentication.

• A request/response conversation (or a single message, if it is one-way) corresponds to an instance of
org.systinet.policy.validation.ValidationSource. When creating an instance of this class, make sure you
set up:

• SourceType – this should be set to
org.systinet.policy.validation.ValidationConstants#Elements.SOURCE_CONVERSATION, in case of
request/response conversation, or soap:Envelope for single-message validation.

• One (for one-way) or two (for request-response conversation) messages.

• A message corresponds to an instance of org.systinet.policy.validation.ValidationSourceDocument.

You should set up:

• content

The SOAP payload of the message.

• contentURL

The url of the SOAP payload. If the SOAP message is inline in the parsed source, you can use
org.systinet.xml.XPointerHelper.appendToURL(java.lang.String,java.lang.String), together with

97

org.systinet.xml.DOMHelper.getXPointer(org.w3c.dom.Element) to create a URL pointing directly to the
payload.

• contentBOM (optional)

The BOM signature of the content.

• description (optional)

The WSDL description of the message.

• descriptionURL (optional)

URL of the WSDL description of the message.

• metadata (optional)

Metadata associated with the message. Anything which is java.io.Serializable can be added to the
metadata. The built-in handlers understand only
org.systinet.policy.validation.SOAPMetadataConstants.METADATA_MESSAGE_HEADERS, which is used as a
key to access transport headers.

• sourceType

This field should be either soap:Envelope to indicate that only a SOAP content is available, or
org.systinet.policy.validation.ValidationConstants#Elements.SOURCE_MESSAGE, to indicate that additional
metadata is available.

• sourceDocumentURL

This field should be set to the URL of the whole message; that is, the container for the SOAP payload
and metadata. If this container is inlined in a bigger structure, you may use the XPointerHelper class
mentioned above to get a more detailed URL. If there is no URL, rather than leaving this field empty,
use the URL of the SOAP payload or of the whole request/response conversation.

The parser's main method is public ValidationSourceCollection parse(String uri, String
rootElementNamespaceURI, String rootElementLocalName, SourceResolver resolver, CredentialsList credentials)

throws SourceParseException, CredentialsException. Usually, the parser follows these steps:

98

1 The parser inspects the rootElementNamespaceURI and rootElementLocalName to determine if the document
should be handled by this parser. If not, it returns immediately with null and the parsing framework
continues with the next parser.

2 The parser retrieves the parsed document from the source resolver: Source source =
resolver.getSource(uri, credentials). This call fetches the document if this is the first time the document
was accessed (this is why credentials must be passed) or uses a cached version if the document has
been fetched already. The cache expires when the validation of this source ends.

3 The source parser should either create an instance of ValidationSourceDocument, pass a reference to
another document, or do both. For example, a WSDL source parser creates an instance of
ValidationSource, adds the parsed WSDL as a new ValidationSourceDocument, and then includes each
contained/referenced xml schema via ValidationSource.addReferencedDocument. All the referenced
documents are parsed before the validation starts.

4 If the resource being parsed is a collection, the parser should create a ValidationSourceCollection and
add the references via addReferencedSource.

The URL which goes to the addReferencedXXX methods might point inside the parsed resource if XPointer
is used. You can use DOMHelper.getXPointer() and XPointerHelper.appendToURL() to create such a URL.

To be recognized by the source parsing framework, the parser must be bound to the
/systinet/policy/validation/sources/ JNDI context.

99

100

7 Custom Validation Handlers

In addition to the built-in handlers described in the Assertion Schema section in the HP SOA Systinet
Reference Guide, you can write and deploy your own validation handlers without further changes to the
HP SOA Systinet Policy Manager installation.

The following points should be kept in mind:

• Home and remote interfaces

The handler must have org.systinet.policy.validation.handlers.DialectValidator as its remote interface
and org.systinet.policy.validation.handlers.DialectValidatorHome as its remote home interface.

• Classloaders

The handler should be deployed within the same classloader. This not only makes sure of better
performance, but you also do not have to modify the existing systinet-policy.ear. For further details,
see jboss-app.xml.

• Deployment path

The handler must be deployed to the systinet/policy/validation/handlers/ JNDI context.

• Exceptions

The handler should never throw an exception, apart from org.systinet.http.CredentialsException. If an
error occurs, the handler should always create a report saying that there has been an error.

• Incoming assertions

The incoming list of assertions contains instances of
org.systinet.policy.validation.handlers.DialectValidator#AssertionRecord.

• Return value

101

The return value must be a list of org.systinet.policy.model.report.Result. In this list, there is one result
for each of the assertions in the incoming list, placed in the same order.

• getDialect()

This method returns the URI of the dialect this handler accepts. It must be the same as the namespace
URI of the first element in the pe:Enforcement section of the assertion definition. It is used to filter the
input list of assertions. Only the assertions with this namespace are passed into this handler.

102

8 Validation Client

Policy Manager includes a command-line validation client that you can copy to another computer on the
network. The validation client is designed for the following uses:

• Validating local and/or remote documents against local policies. These validations run on the client.

• Validating remote documents against policies located on a server. These validations run on the server.

The validation client is located at SOA_HOME/client. To install the client, copy this folder to the location of
your choice.

The validation client command-line tools are located in SOA_HOME/client/bin. The tools and their functions
are described in the following sections:

• Downloading Policies and Assertions (sync) on page 103

• Local Validations (validate) on page 104

• Validating Against Policy On Server (server-validate) on page 107

• Rendering Output from XML Reports (render) on page 108

Downloading Policies and Assertions (sync)
To perform validations locally, you need local copies of the policies and assertions in the SOA Systinet
repository. To download these policies and assertions, run the sync tool. Your computer has to be connected
to the SOA Systinet server/cluster when you run sync.

To run sync, simply enter sync -u SOA Systinet username -p SOA Systinet password. If SOA Systinet does not
require any credentials, enter sync -noauth. The sync tool gets the hostname and port of the SOA Systinet
host from the SOA_HOME/client/conf/setup/policy-manager.properties file, created automatically when SOA
Systinet is installed.

103

The property used is determined by the shared.https.use property and is either:

• shared.http.urlbase=http\://host\:port/context

• shared.https.urlbase=https\://host\:8443/context

Local Validations (validate)
Validate documents against local copies of technical policies by running the validate tool. The syntax is
validate [OPTIONS] {--policy local_technical_policy_name,_file_or_uri...} {--source source_file_or_uri...}
. For a full list of options and examples of commands, enter validate --help.

Local documents must exist before you can validate them. Download a set of documents with the
sync tool before running validate.

Policy Formats

You can write technical policies in the following formats:

• As the plain text name of the policy, in quotation marks. For example, "Systinet Best Practices".

• As the file name (full or relative) of the policy file. For example,
C:/opt/systinet/policymgr/client/data/policies/systinet-best-practices.xml.

• As the full URI of the policy. For example, file:///opt/systinet/policymgr/client/data/policies/systinet-
best-practices.xml.

Source Formats

You can write source document locations in the following formats:

• As the file name (full or relative) of the document. For example, C:/tmp/services/service1.wsdl.

• As the full URI of the document. For example, http://host:port/services/service1.wsdl.

To validate one source against one policy it is not necessary to include any options in the command line.
For example, to validate a local copy of service1.wsdl against a local copy of the Systinet Best Practices
technical policy, you can run validate "Systinet Best Practices" C:/tmp/services/service1.wsdl.

104

Validating Multiple Sources With Multiple Policies

You can validate multiple source documents and/or use multiple technical policies. In this case, it is
mandatory to use the -p|--policy and -d|--source options. For example, validate -p "Systinet Best Practices"
-p file:///opt/systinet/policymgr/client/data/policies/wsdl-validity.xml -d C:/tmp/services/service1.wsdl
-d C:/tmp/services/service2.wsdl validates service1.wsdl and service2.wsdl against the Systinet Best
Practices and WSDL Validity technical policies.

You can make the validation stop the first time a policy is violated. Use the -c/--stop option. For example,
the validation launched by validate --stop -p "WSDL Validity" -p "Systinet Best Practices" -d
C:/tmp/services/service1.wsdl -d C:/tmp/services/service2.wsdl would stop when either service1.wsdl or
service2.wsdl violated either Systinet Best Practices or WSDL Validity.

Selecting Sources By Wildcard

Instead of specifying every source document to be validated, you can specify a directory of documents and
pass a wildcard so all matching documents in that directory will be validated. Specify the directory with
the -d|--source option and use the -e|--pattern to pass the wildcard. For example, validate -p "Systinet
Best Practices" -d C:/tmp/services -e service*.wsdl would validate service1.wsdl, service2.wsdl, etc,
against the Systinet Best Practices technical policy.

Setting Up Output

By default, validation reports are created in text format and printed in the console window. You can save
the report as a file by using the -o|-outputDir option and the file location. For example, validate -o
C:/tmp/reports "Systinet Best Practices" C:/tmp/services/service1.wsdl would create the file
C:/tmp/reports/service1.txt.

Report names are based on source names by default. To give a report a different name, use the -n|--name
option.

You can produce output in HTML or XML format instead of text. Use the --format html or --format xml
option, respectively. When producing HTML or XML output, specify an output location with the -o|-
outputDir option. Otherwise the raw HTML or XML is only printed out to the console.

If you produce a report in XML format, you can use it to produce any number of HTML reports with the
render tool. See Rendering Output from XML Reports (render) on page 108.

105

When the validate tool produces HTML output, it uses a template combining XSL and graphics. The
validation client comes with a default template that reproduces the Policy Manager report style. You can
add additional templates by saving them in the ../client/templates folder. Specify the template to be used
by using the -m|--template option. For example, if you saved a custom template in
.../client/templates/MyCustomTemplate, use it to produce HTML output by running validate.sh --format
html --template MyCustomTemplate [-p policy] [-d source]. If you do not specify a template, the default
template is used.

ANT Task Automation of validate

You can automate the execution of the validate tool as an ANT task. Write an ANT script to launch validate
and save the script in .../client/bin. Launch it with the ant command. For example, if you create an ANT
script called /client/bin/validatetask.xml, launch it with ant -f validatetask.xml.

The elements of the ANT task are given in Table 7. Example 1 on page 107 is an example of an ANT task
script for launching validate.

Table 7. validate ANT Task Elements

AttributesElement name

taskdef Must be validate.name

Must be com.systinet.policy.tools.ant.ValidateTaskclassname

validate (Child of
target)

Output format. Takes one of xml, html, or txtformat

Specifies Policy Manager properties file. Usually
../conf/policy-manager.properties

policyPropsFile

Output file path, such as C:/opt/reports/ or C:/tmp/myreport.html.
If file name is not specified, it will match the validated source's
name or summary.txt|xml|html if it is a summary report.

output

Boolean. true stops the validation at the first failure.cancel

No attributes. Contains a list of all policies to be used for the validation, in nested
ANT elements (fileset/include).

policies (Child of
validate)

No attributes. Contains a list of sources to be validated, in nested ANT elements (uri,
fileset/include).

sources (Child of
validate)

106

Example 1: validate ANT Task

<?xml version="1.0"?>
<project name="validatetool" default="main">
 <taskdef name="validate" classname="com.systinet.policy.tools.ant.ValidateTask"/>
 <target name="main">
 <validate format="html" policyPropsFile="../conf/policy-manager.properties" output="C:/tmp/out">
 <policies>
 <fileset dir="../data/policies/">
 <include name="wsdl-validity.xml"/>
 <include name="systinet-best-practices.xml"/>
 </fileset>
 </policies>
 <sources>
 <uri value="http://api.google.com/GoogleSearch.wsdl"/>
 <fileset dir="../data/policies/">
 <include name="wsdl-validity.xml"/>
 </fileset>
 </sources>
 </validate>
 </target>
</project>

Validating Against Policy On Server (server-validate)
Validate a document against a technical policy in an SOA Systinet repository, or remotely run a business
policy validation, by running the server-validate tool. The tool publishes a report in the same SOA Systinet
repository that contains the policy. The URL of the report is printed on the command-line console.

The syntax for validating a document against a technical policy is
server-validate [OPTION] {-u SOA Systinet username} {-p SOA Systinet password} [-s SOA Systinet server URL]
{ POLICY_URI } {SOURCE_FILE_OR_URI}
. The syntax for running a business policy validation is
server-validate [OPTION] {-u SOA Systinet username} {-p SOA Systinet password} [-s SOA Systinet server URL]
{-b BUSINESS_POLICY_URI}
For a full list of options and examples of commands, enter server-validate --help.

Policy URIs

Policy URIs are in the following formats:

107

• Technical policy URI: http|https://host:port/soa/systinet/platform/rest/repository/wsPolicies/policy-
name

• Business policy URI: http|https://host:port/soa/systinet/platform/rest/repository/businessPolicies/policy-
name

Source Formats

Only specify a source document if you are validating one against a technical policy. You can write source
document locations in the following format:

• As the full URI of the document. For example, http://api.google.com/GoogleSearch.wsdl.

Selecting the SOA Systinet Server

By default, the server-validate tool communicates with the installation of SOA Systinet from which the
validation client was copied. It can use a policy in a different SOA Systinet repository. Specify the SOA
Systinet repository with the -s|--server option and the URL of the SOA Systinet host. Be careful to use the
authorization credentials for that server.

Rendering Output from XML Reports (render)
If you have a report in XML, you can use it to generate HTML reports by running the render tool. The syntax
is
render {--input full_path_to_XML_report} {--outDir output_directory} [OPTIONS]
. For a full list of options and examples of commands, enter render.bat|.sh --help.

Overwriting Reports

The render tool cannot overwrite existing reports of the same name in the same directory. By default, render
gives the output file the same name as the input file. If a file of the default name already exists and you
want to generate a report in the same location, give it a different name by using the -n|--name option.

Selecting Output Template

The render tool uses a template combining XSL and graphics. The validation client comes with a default
template that reproduces the Policy Manager report style. You can add additional templates by saving them
in the ../client/templates folder. Specify the template to be used by using the -m|--template option. For

108

example, if you saved a custom template in ../client/templates/MyCustomTemplate, use it to produce HTML
output by running render.sh [-i XML_input_file] [-o output_directory] -m MyCustomTemplate. If you
do not specify a template, the default template is used.

109

	HP SOA Systinet
	About this Guide
	In this Guide
	Document Conventions
	Documentation Updates
	Support

	1 IDE Integration
	WSIL Report – IBM RAD and Eclipse
	Microsoft Visual Studio

	2 REST Interface
	Atom-Based REST Interface
	Workspaces
	SDM Collections Workspace
	Publishing Locations Workspace
	System Collections Workspace

	Feeds
	Artifact Collection Feeds
	Filtering Feeds
	Viewing Entry Content in Feeds
	Property Based Searching
	Feed Ordering
	Feed Paging

	Publishing Location Feeds
	Artifact History Feed

	Entries
	Artifact Atom Entries
	Artifact History Entries
	Atom Entry Property Descriptors
	Primitive Properties Atom Representation
	Taxonomy Properties Atom Representation
	Relationship Properties Atom Representation
	Special Properties Atom Representation

	Artifact Data
	Resource Identification

	Category Documents

	Proprietary REST Interface
	REST Interface URIs
	Resource Representations
	XML REST Resource Serialization Model
	Resource Revision Identification

	REST Operations
	CREATE
	GET
	Search in collection

	EXIST
	UPDATE
	DELETE
	UNDELETE
	PURGE

	REST Exceptions
	Executable Objects
	Functional Resources
	Executable Artifacts

	Proprietary REST Client
	Basic Principles
	REST Client Package
	Client Classpath
	Client Environment

	3 SDM Client
	Basic Principles
	SDM Client Package

	4 Technical Security
	SOA Systinet Overview
	Users and Groups
	Transport Security
	Authentication
	Resource ACL
	WEB Security
	Platform Services
	Reporting Services
	Policy Manager Services

	5 RSS
	Kinds of RSS Feed
	Syndication Syntax
	Subscriptions over RSS

	6 Custom Source Parsers
	7 Custom Validation Handlers
	8 Validation Client
	Downloading Policies and Assertions (sync)
	Local Validations (validate)
	Policy Formats
	Source Formats
	Validating Multiple Sources With Multiple Policies
	Selecting Sources By Wildcard
	Setting Up Output
	ANT Task Automation of validate

	Validating Against Policy On Server (server-validate)
	Policy URIs
	Source Formats
	Selecting the SOA Systinet Server

	Rendering Output from XML Reports (render)
	Overwriting Reports
	Selecting Output Template

