
HP OpenView
Event Correlation Services

Developer’s Guide and Reference

HP-UX, Solaris, Windows NT®, Windows® 2000 and Windows® XP
Manufacturing Part Number: J1095-90315

January 2003

© Copyright 2001 Hewlett-Packard Company.

Legal Notices
Hewlett-Packard makes no warranty of any kind with regard to this
manual, including, but not limited to, the implied warranties of
merchantability and fitness for a particular purpose. Hewlett-Packard
shall not be held liable for errors contained herein or direct, indirect,
special, incidental or consequential damages in connection with the
furnishing, performance, or use of this material.

Warranty. A copy of the specific warranty terms applicable to your
Hewlett- Packard product and replacement parts can be obtained from
your local Sales and Service Office.

Restricted Rights Legend. All rights are reserved. No part of this
document may be photocopied, reproduced, or translated to another
language without the prior written consent of Hewlett-Packard
Company. The information contained in this document is subject to
change without notice.

Use, duplication or disclosure by the U.S. Government is subject to
restrictions as set forth in subparagraph (c) (1) (ii) of the Rights in
Technical Data and Computer Software clause at DFARS 252.227-7013
for DOD agencies, and subparagraphs (c) (1) and (c) (2) of the
Commercial Computer Software Restricted Rights clause at FAR 52.227-
19 for other agencies.

HEWLETT-PACKARD COMPANY

3404 E. Harmony Road

Fort Collins, CO 80528 U.S.A.

Use of this manual and flexible disk(s), tape cartridge(s), or CD-ROM(s)
supplied for this pack is restricted to this product only. Additional copies
of the programs may be made for security and back-up purposes only.
Resale of the programs in their present form or with alterations, is
expressly prohibited.

Copyright Notices. © Copyright 1983-2001 Hewlett-Packard Company,
all rights reserved.

Reproduction, adaptation, or translation of this document without prior
written permission is prohibited, except as allowed under the copyright
laws.
2

Contains software from AirMedia, Inc.

© Copyright 1996 AirMedia, Inc.

Trademark Notices

Java™ is a U.S. trademark of Sun Microsystems, Inc.

Microsoft® is a U.S. registered trademark of Microsoft Corporation.

Windows NT® is a U.S. registered trademark of Microsoft Corporation.

Windows® 2000 is a U.S. registered trademark of Microsoft Corporation.

Windows® and MS Windows® are U.S. registered trademarks of
Microsoft Corporation.

Netscape™ and Netscape Navigator™ are U.S. trademarks of Netscape
Communications Corporation.

Oracle® is a registered U.S. trademark of Oracle Corporation, Redwood
City, California.

Oracle7™ is a trademark of Oracle Corporation, Redwood City,
California.

OSF/Motif® and Open Software Foundation® are trademarks of Open
Software Foundation in the U.S. and other countries.

Pentium® is a U.S. registered trademark of Intel Corporation.

UNIX® is a registered trademark of The Open Group.

Perl is a trademark of O’Reilly & Associates, Inc.

All other product names are the property of their respective trademark
or service mark holders and are hereby acknowledged.
 3

4

Contents
1. Introduction
Purpose. .12
Audience. .13

2. Introduction
Integrating ECS With Your Application. .17
Event Annotation. .19
Interprocess Communication .21
Drill Down .22
Circuit Serialization .25
Multiple Event Creation .26
C API Library and Header Files. .27

3. The Socket Stack API
The Socket Stack Architecture .31
The Socket Stack API (ESOK) .34
Designing an ECS Engine Interface. .36

4. Event I/O
Designing Event I/O .41

SNMP Traps .43
Using the Event I/O API in a pmd-linked Environment43
ECS Event Header Attributes .44

encoding_type .44
event_syntax .45
create_time .46

Compiling .47
Writing an Input Process .48

Initialization .48
Sending Events. .50
Resetting the Connection .52
Error handling .53
 5

Contents
Writing an Output Process . 54
Initialization . 54
Receiving Events . 54
Resetting the Connection . 57
Stream . 57

Using a Select Loop . 58

5. Annotation Servers
Annotation Concepts . 65
The Annotation Mechanism. 67
Annotation Data Types . 70

Integer . 72
Real . 72
Boolean . 73
Time . 74
Duration . 75
String . 76
Oid . 77
Null . 78
List . 78
Tuple . 79

Receiving Annotation Requests . 81
Extracting Values from the Annotation Request 81
Getting Additional Request Information . 83

Constructing an Annotation Response . 85
Testing a Circuit with an Annotate Node . 86

Generating an Annotation Log using the ECS Engine 87
Generating an Annotation Response Log using the ECS Designer 88

6. Drill Down
Drill Environment . 93

Drill Record Format . 94
6

Contents
Logging of Drill Information .95
ECDL built in functions for capturing the drill information96
Drill API .97

EDI_initDrilling .97
EDI_openDrillLog .97
EDI_closeDrillLog .98
EDI_resetDrilling .98
EDI_getDrillInfo .99
EDI_getNextDrillInfo .99
EDI_getDrillEvent .100
EDI_getNextDrillEvent .101

Custom Logging framework. .102
EDI_INITIALIZE_FNT. .102
reset .103
writeDrillInfo. .103
writeDrillEvent .104

7. ECDL Enhancments
Circuit Serialization .109
Multiple Event Creation .111

Modification of Event List .112
Engine Flow .113

Tracing and Logging .114

8. ECS Classes
C++ Class Library .118

Libraries .118
Header Files .119
Sample Source Code .119
Event Input. .120
Event Output .120
Annotation .121
 7

Contents
Filtering. 121

 Glossary
8

Contact Information

Contacts Please visit our HP OpenView web site at:

http://openview.hp.com/

There you will find contact information as well as details about the
products and services HP OpenView has to offer.

Support The “hp OpenView support” area of the HP OpenView web site includes:

• Downloadable documentation

• Troubleshooting information

• Patches and updates

• Problem reporting

• Training Information

• Support program information
 9

10

1 Introduction
11

Introduction
Purpose
Purpose
The HP OV ECS Developer’s Guide contains the information you require
to use the HP OpenView Event Correlation Services Event Input/Output
and Annotation Application Programming Interfaces (APIs). This guide
contains information on:

• The connection architecture.

• Developing event input and output processes.

• Developing an annotate server process.
12 Chapter 1

Introduction
Audience
Audience
This manual is written for network application developers who will
design and build event input, output and annotate server processes, or
add these services to existing applications. Readers of this document are
assumed to have the following background:

• A detailed understanding of the event types generated within the
network.

• For ASCII events, a general knowledge of Message Description
Language (MDL).

• For SNMP and CMIP events, a knowledge of the HP OpenView
Distributed Management platform and how it manages MIBs.

• Familiarity with the C programming language and application
development techniques

• A general understanding of ECS circuit design and use of the ECS
Designer.
Chapter 1 13

Introduction
Audience
14 Chapter 1

2 Introduction
15

Introduction
This chapter introduces the HP OV ECS Event I/O and Annotation APIs
and describes their high-level architecture.This chapter has the
following sections.

• “Integrating ECS With Your Application” on page 17

• “Event Annotation” on page 19

• “Drill Down” on page 22

• “Circuit Serialization” on page 25

• “Multiple Event Creation” on page 26

• “C API Library and Header Files” on page 27

Example application code (in both source and compiled form) is provided
to illustrate use of the APIs. The same example code is used in this
guide.

NOTE The HP OV ECS APIs described in this guide (ESOK, EIO, ANNO,EDI
and EV) are not thread-safe and are designed to be used in
single-threaded applications only.
16 Chapter 2

Introduction
Integrating ECS With Your Application
Integrating ECS With Your Application
The ECS event I/O API enables you to integrate the high-speed,
real-time event correlation mechanism provided by the HP OV ECS
engine into a new or existing system.

The Event I/O API allows the input and output of arbitrary length event
PDUs (Protocol Data Units) between your application(s) and an ECS
Engine running as a separate process on the same machine. Your
application can send events into an engine, or receive events from an
engine, or both. As illustrated in Figure 2-1, the event I/O API is the glue
that binds your application process with the ECS Engine process.

Figure 2-1 ECS Integration Architecture

The callback function shown in Figure 2-1 is registered with the Event
I/O API by your application. It can be registered to receive all the output
events (as shown here) or a subset of the output events (as illustrated in
Figure 2-2). Event subsets can be selected by either event encoding type
(for example, all “mdl” events) or event encoding type plus event syntax
(for example, a specific ASCII/TL1 message format).

Input
events

Event
I/O

User
Application ECS

Engine

Process
boundary

Socket
Stack

User’s
callback
function

Output
events
Chapter 2 17

Introduction
Integrating ECS With Your Application
Figure 2-2 Callback Functions Register for an Event Subset

The callback functions can be in the same process or different processes.
Callback functions in the same process can share a common socket stack
connection to the ECS Engine.

One of the callback functions can be registered as a default callback. If
an event does not match the registration conditions established for any
other callback then the default callback receives it.

User’s
callback
function

User
Application

Event
I/O

Socket
Stack

User’s
callback
function

User’s
callback
function
18 Chapter 2

Introduction
Event Annotation
Event Annotation
Annotation is a method by which an ECS circuit can perform actions and
obtain information from outside the ECS Engine and its associated Data
and Fact Stores. For example:

• An alarm management circuit may need to query an external server
for retrieving the name of the person responsible for maintaining a
faulty node.

• A fault management application may need to gather additional
information from the network before suppressing a fault report.

An annotation server is a user-supplied process external to the ECS
Engine that receives annotation requests and sends back annotation
responses. The annotation API allows you to link one or more annotation
servers directly to one or more ECS Engines to exchange annotation
requests and responses.

Figure 2-3 Annotation Architecture

Compare the annotation architecture illustrated in Figure 2-3 with the
event I/O architecture shown in Figure 2-1. Both architectures rely on
the Socket Stack to transport data between the ECS Engine process and
the user’s application process. In the same way that the event I/O can
register a callback for specific events, the annotation server can register
its callback to receive specific annotation requests, based on the name of
the circuit and the name of the node. Alternatively, an annotation server

Annotation
Server

User’s
callback
function

Annotation
API

Socket
Stack

Response

ECS
Engine

Request

Process
boundary
Chapter 2 19

Introduction
Event Annotation
can register for all annotation requests emitted from an engine.

Request and response data is easily manipulated using the supplied API
functions. However, it is essential that the circuit designer and
annotation server developer agree on the number and types of request
and response data components.
20 Chapter 2

Introduction
Interprocess Communication
Interprocess Communication
Underlying both the event I/O and the annotation APIs is the socket
stack. In Figure 2-1 and Figure 2-3 you can see that the socket stack is
partly exposed to the user application (or annotation server) to provide a
common, flexible interprocess communication mechanism.

Basically, there are three things you need to do using the socket stack
API:

• open a socket stack connection

• regularly call the socket stack process function ESOK_process()

• close the socket stack connection.

All other interaction with the ECS Engine (between opening and closing
of the socket stack) is through the event I/O and/or annotate API, as
appropriate.

The need to call ESOK_process() arises because the design of the socket
stack does not rely on threads or any other form of concurrent
processing. You must, therefore, explicity provide the stack with
processing time by calling the socket stack API function
ESOK_process().

NOTE On Windows NT, the port numbers used for ECS socket stack
connections start at 8910. The actual port number used for a particular
engine instance number is hard-coded as (8910 + instance_number - 1).

For example, if the instance number is 2, the port number is 8911.
Chapter 2 21

Introduction
Drill Down
Drill Down

A correlated event1 may have a number of correlating events2 or none of
them. A correlating event can also be a correlating event for some other
correlated events. This implies that an event can be both a correlating
event as well as correlated event at the same time.

Any application receiving a correlated event from ECS may be intrested
in knowing all the correlating events for the correlated event. This is
called drilling down. Conversely, an application maybe interested in
finding out all the correlated events for a given correlating event. This is
called drilling up.

In order to do a drilldown or a drillup on a given event , the correlation
relationship related to the event need to be captured. ECS provides
ECDL function append for specifying relationship between correlated
event and correlating event. append can be used in a node’s condition
parameter.

Figure 2-4 Drill Down

1. An event output by correlation is called a correlated event.
2. An input event contributing to correlation of another event is called

correlating event.

Event
I/O

ECS
Engine

Correlation
Log

DrillEvent
Log

Circuit

append
22 Chapter 2

Introduction
Drill Down
The ECS engine collects drill information of each event and logs it to
appropriate log files. ECS engine provides a default Correlation log1 and
a default DrillEvent log2. Applications may register their own
Correlation and DrillEvent logs for a stream. Both these logs can be
registered independently. Only the events output on the stream will be
logged in them. Logging can be optionally enabled or disabled
independently on any stream (If applications did not specify their own
log files, default stream logs will be used). ECS engine’s default drill
logging can also be optionally enabled or disabled.

ECS also provides Drill API’s for offline reading of generated drill log
files. Refer “Drill API” on page 97 for more details.

Figure 2-5 Drill Down

ECS also provides Custom logging framework to allow the integrating
applications to provide their own logging mechanisms for drilling
events.Refer to “Custom Logging framework” on page 102 for more
details.

The framework and the ECDL built-in functions are the external
interfaces provided to facilitate the development of custom drilling
applications.

1. Correlation log contains relation tree for an event
2. DrillEvent log contains the event for all events in correlation log.

DrillEvent
Log

Correlation
LogUser

Application
Driling
APIs

Query

Info

Query

Info
Chapter 2 23

Introduction
Drill Down
Figure 2-6 Drill Down

ECS
Engine

Custom
logging
callback
functions

Custom
log file

Custom
logging
machanism

Custom
log file(s)
24 Chapter 2

Introduction
Circuit Serialization
Circuit Serialization
When an is event emitted from one circuit and fed to other circuits it is
called Circuit Serialization

Events that are emitted from a circuit could be

• one of the events that were input to the circuit

• a new event that was created using the create node in the circuit

• modified primitive event

Primitive events can be fed back to all other circuits including or
excluding the circuit which emmited the event. All circuits should be in
the same engine. For more information on how Circuit Serilaization
works refer to “Circuit Serialization” on page 109.
Chapter 2 25

Introduction
Multiple Event Creation
Multiple Event Creation
At the arrival of an event at the Input port, of the create node, it creates
a new event using the specfied Encoding Type and Event Syntax as
specified in the Create Node configuration parameters. There is a default
event that is always returned to the engine in the case of the Create
node. The Create Node can be enhanced to create multiple events upon
the arrival of an input event.

Multiple events can be created using multiple (event type,event syntax)
pairs where each pair corresponds to one event. The events output from
the create node are then modified and then sent to the engine.

The create_events() API is used to create multiple events from a
Create node. This API is used in the create spec of a create node. It takes
a list of tuples as argument and returns a list of many arguments. For
more information on Multiple Event Creation refer “Multiple Event
Creation” on page 111
26 Chapter 2

Introduction
C API Library and Header Files
C API Library and Header Files
The Event I/O, Annotate and drill down libraries and header files are
installed by selecting the appropriate option during installation. See the
HP OpenView Communications Event Correlation Services Installation
Guide for details.

There are libraries called libecsio.a (libecsio.lib on Windows NT)
and libdrill.a(libdrill.lib on Windown NT) containing all the API
functions discussed in this guide and it is installed in:

UNIX

$OV_LIB

Windows NT

%OV_LIB%

Header files are installed in subdirectories under:

UNIX

$OV_HEADER/ecs

Windows NT

%OV_HEADER%\ecs

You need only include EIO.h for event I/O, ANNO.h for an annotation
server, or both if you are writing an application that supports both
functions. All other header files are included as required.

You need to include the drill_api.h for an application using drilling APIs.
custom_struct.h needs to be included for developing for custom logging
shared library.

Sample source code is in:

UNIX

$OV_PROG_SAMPLES/ecs/event_io

Windows NT

%OV_PROG_SAMPLES%\ecs\event_io

UNIX

$OV_PROG_SAMPLES/ecs/annotate
Chapter 2 27

Introduction
C API Library and Header Files
Windows NT

%OV_PROG_SAMPLES%\ecs\annotate

and

UNIX

$OV_PROG_SAMPLES/ecs/drill_down

For last minute changes see the following file:

UNIX

$OV_RELNOTES/ECS

Windows NT

%OV_RELNOTES%\ECS.txt
28 Chapter 2

3 The Socket Stack API
29

The Socket Stack API
This chapter describes the socket stack architecture (ESOK) on which
the event I/O (EIO) and annotate (ANNO) APIs are based. It explains the
basic steps needed to initialize, open, and reset a socket stack connection,
and the limitations you must be aware of when establishing multiple
connections.

• “The Socket Stack Architecture” on page 31

• “The Socket Stack API (ESOK)” on page 34

• “Designing an ECS Engine Interface” on page 36
30 Chapter 3

The Socket Stack API
The Socket Stack Architecture
The Socket Stack Architecture
The ECS Engine event I/O and annotation server interfaces are based on
a socket stack architecture that supports multiple connections between
one or more engines, and one or more separate user processes. The socket
stack architecture is also used to control the engine using the ecsmgr
program.

Event I/O and annotate processes are separate to the ECS Engine
process. A single process can handle input, output, annotation, or any
combination of these facilities. Event I/O and annotation can be added to
existing applications that require an interface to ECS, or they can be
provided by new applications.

All processes that interface with the ECS Engine must run on the same
machine as the engine. Network sockets are not supported.

The APIs are arranged in two levels:

• The socket stack itself, whose primary purpose is to move raw data to
and from the engine. This is the ESOK set of API functions.

• Event I/O and annotate APIs that simplify implementation of event
I/O and annotate servers on top of the lower-level socket stack. Two
APIs are provided: EIO for event I/O and ANNO for annotate servers.

Figure 3-1 Architecture of the Socket Stack APIs

EIO
API

ANNO
API

ESOK
API

Client

Socket Stack
Chapter 3 31

The Socket Stack API
The Socket Stack Architecture
Socket connection
limits

As illustrated in Figure 3-2, there are limits to the number of
connections that can be established between an ECS Engine and
supporting applications. In the context of this illustration, an application
is any annotation server or event I/O code that opens a connection. These
limits are explained in detail in the following paragraphs.

Up to eight socket stack connections can be opened. A define for this
value (ESOK_MAXCON) is provided. The ECS Engine management process
(ecsmgr) uses one of these connections, leaving seven connection IDs to
be shared between all event I/O and annotate API functions. An error
(ESOK_RESOURCE_LIMIT) is returned by ESOK_open() if the maximum
number of connections would be exceeded.

Figure 3-2 shows seven applications communicating with one ECS
Engine, plus ecsmgr. The ECS management program (ecsmgr) uses the
same socket stack mechanism for communication with the engine as any
other application.

WARNING It is your responsibility to ensure that a spare connection is
available for ecsmgr. If a connection is not available you will be
unable to use ecsmgr until a connection is freed.

Event I/O
connection Limits

In addition to the socket connection limit, there is a limit of eight event
I/O and eight annotate connections with a single ECS Engine. That is,
one engine can support a maximum of eight event I/O connections,
whether they are on one socket stack connection or spread over several
socket stack connections, and the same limitation applies to the annotate
API. The EIO_open() function returns EIO_RESOURCE_LIMIT if the
maximum number is exceeded. A define (EIO_MAXCON) is provided for
safe coding.
32 Chapter 3

The Socket Stack API
The Socket Stack Architecture
Figure 3-2 Connection and API Limits

Application Application

Application

Application

Application

Application

Application

Application

ecsmgr

An application
can communicate
with up to 8
engines.

A machine can run any
number of standalone
engines, plus one DM-
linked engine.

Up to 8 applications can
communicate with one
engine.

...

ECS Engine

ECS Engine

ECS Engine

ECS Engine

ECS Engine

ECS Engine

ECS Engine
Chapter 3 33

The Socket Stack API
The Socket Stack API (ESOK)
The Socket Stack API (ESOK)
The socket stack API (ESOK) enables a socket-based connection to be
established between your application and the ECS Engine. It establishes
a generic low-level connection that is shared by:

• Event I/O (EIO) API

• Annotate (ANNO) API

• Management program (ecsmgr)

• The CGI interface for the NNM ECS Correlation Services GUI

The socket stack API is capable of supporting connections between
multiple applications and multiple engines running on the one machine.

To establish a connection that can be used by the event I/O API or the
annotate API your program must complete the following steps. All these
steps are described in Chapter 4, “Event I/O,” on page 39 and the steps
specific to annotation are described in Chapter 3, “The Socket Stack
API,” on page 29.

1. Initialize the socket stack.

2. Open a socket stack to obtain a connection ID (cid) for a specific
engine instance.

3. Initialize the event I/O and/or annotate interface.

4. Open an event I/O or annotate connection on top of the cid.

The first four steps are described for event I/O in “Initialization” on
page 48. The next steps are described separately for each of the three
architectures

5. For an event I/O application, register one or more callback function(s)
to receive events output from the ECS Engine. This step is only
required if you want this process to receive events from the engine.
For an annotation server, register a function that will be called when
an annotation request is generated.
34 Chapter 3

The Socket Stack API
The Socket Stack API (ESOK)
6. For each event I/O callback function that is registered to a specific
event I/O connection ID (eid), set a filter to ensure that the callback
is registered to receive just those events you want. Callbacks
registered as the default cannot be filtered. For an annotation server,
you establish an annotation connection ID (annid) with a specified
ECS Engine, circuit, or Annotation node.

7. Loop while passing data to the engine and calling the
ESOK_process() function to process data through the stack and
cause the callbacks to be called when necessary.

8. Close the event I/O and/or annotate API connection. If you want to
close all connections specific to this eid, or annid (or there is only one
connection) then this step can be omitted, in which case all
connections specific to this task are closed when the connection is
reset.

9. Close the cid. If you want to close all connections based on this socket
stack connection (or there is only one connection) then this step can
be omitted, in which case all connections are reset when the socket
stack is reset.

10.Reset the event I/O or annotate connection.

11.Reset the socket stack.

If your application will dynamically open connections (cids, eids or
annids) you should take special care not to exceed the connection limits
discussed in “The Socket Stack Architecture” on page 31. In addition, you
must ensure that a cid is always available for ecsmgr to use when
necessary.
Chapter 3 35

The Socket Stack API
Designing an ECS Engine Interface
Designing an ECS Engine Interface

The select() loop The major issue when designing a process to use the ECS socket stack
interface is whether to base the design around a select() loop or not.
Using a select() loop is a simple and efficient way to ensure that the
socket stack gets called promptly, only when there is processing to be
done, in a real-time environment.

However, when processing events outside real-time (such as correlating
event history files), the event input process can be simplified to a loop
that simply tests for end of file.

The following pseudocode outlines the main elements of a select() loop:

Figure 3-3 Elements of the select() loop.

The sequence of events inside the select() loop sets up a bitmap, where
each bit in the bitmap represents a file descriptor. A 1-bit represents a
file descriptor you are interested in and a 0-bit indicates that you are not
interested in that file descriptor. The select() call returns when there
is activity on a file descriptor you are interested in.

There are two types of file descriptors you must watch:

• File descriptors in use by the ECS Engine.

• File descriptors used to read events from other sockets.

ESOK_getFdSet(...)

FD_SET(my_fd, ...)

select(...)

if(FD_ISSET(my_fd))

read(my_fd, ...)
EIO_sendEvent(...)

ESOK_process(...)

{

}

forever
{

}

Loop forever...

Set mask to include socket stack fds.

Include fd we are reading events from.

Wait for activity on one of the fds...

If an event is ready for input...

Read the event and send it to the ECS
Engine through the EIO interface.
Could call ANNO_sendEvent instead.

Call the socket stack to give it
processing time and (possibly)
call the receive callback function.
36 Chapter 3

The Socket Stack API
Designing an ECS Engine Interface
You obtain a mask of file descriptors currently used by the engine by
calling ESOK_getFdSet(). Additional file descriptor bits are set explicitly
(using the FD_SET() macro if available).

Shutting down When a select() loop is used, the program’s main loop is usually
infinite. This is required because it is not possible to know when the last
event has been processed. For example, a circuit can introduce an
arbitrarily long delay while waiting to see if a cancelling event arrives.
At the least you should provide a signal-based interrupt handler so that
the event I/O, annotate and stack connections can be reset before exiting.
More sophisticated mechanisms to close individual connections can be
implemented as required.

See Also For more information on select(), see:

• “Using a Select Loop” on page 58 for an explanation of the select()
loop used in the supplied sample program ecsio.c

• The following reference pages:

HP-UX: select(2)

Solaris: select(3c)

Windows NT: Online documentation provided
with your development
environment.
Chapter 3 37

The Socket Stack API
Designing an ECS Engine Interface
38 Chapter 3

4 Event I/O
39

Event I/O
This chapter discusses how to design and construct event input and
output processes HP OpenView Event Correlation Services Engine. The
process is illustrated with three simple approaches that highlight the
issues involved.

• “Designing Event I/O” on page 41

• “Writing an Input Process” on page 48

• “Writing an Output Process” on page 54

• “Using a Select Loop” on page 58
40 Chapter 4

Event I/O
Designing Event I/O
Designing Event I/O
Before designing your event I/O code, you must decide the following:

• How many separate processes do you need and how will these
processes connect with ECS Engine(s)? Each process uses additional
resources. For example, if you have two independent processes: one
for event input to the engine and another to handle event output, the
same connection cannot be shared by both.

• How will the create_time event header attribute be set? Creation
time can be an important factor in event correlation.

• Is any special event handling needed (for example, to handle
binary-encoded SNMP traps)?

• Will a select() loop be used? (See “Designing an ECS Engine
Interface” on page 36.)

Connection
resources

The number of connections supported by an ECS Engine is limited. Each
additional process that communicates with the engine requires an
additional connection.

Figure 4-1 Connection Resources and Processes

Process

Process A

Process B

Callback

Callback

Combined I/O requires
just one cid.

If input and output are
in separated processes
then two cids are
needed.

eids cids
ESOK
Socket
Stack O

n
e

T
w

o
co

n
n

ec
ti

o
n

s
w

it
h

 E
C

S
co

n
n

ec
ti

o
n

w
it

h
 E

C
S

ESOK

ESOK
Chapter 4 41

Event I/O
Designing Event I/O
Use the smallest number of separate processes to communicate with the
engine. This will conserve scarce connection resources, as well as
improving efficiency by eliminating the overhead incurred for each new
process.

Header attributes Decide how ECS event header attributes will be determined. Some
attributes can be set through the event I/O API. In conjunction with the
ECS circuit designer and the developer of the MDL message definition,
you must decide if and when to override header attributes such as
create_time and event_type.

Event handling Different event protocols will require specific handling in the event I/O
process. For example, SNMP events use a different endecoder to ASCII
events. Consequently, they require different handling within the event
I/O process.
42 Chapter 4

Event I/O
Designing Event I/O
SNMP Traps

The event I/O APIs can be used to process SNMP Traps. However, if the
pmd-linked version of ECS is used, then SNMP Traps must be processed
through the postmaster and cannot be processed through the event I/O
APIs.

The SNMP Trap is supplied as an ASN.1 syntax BER-encoded SNMP
Trap-PDU Message (as described in RFC1157). Obtaining this PDU from
the network is the developer’s responsibility. When designing event I/O
to handle SNMP events, be aware that the SNMP event PDU string
(pdu) will contain embedded nulls. This means that you cannot use
functions that assume null-terminated strings, such as strlen(3C).
Instead, you must find out the length of the PDU by other means.

SNMP events always have an encoding_type of "ber" and an event
syntax of "Trap-PDU". The event_type header event attribute is set to
the generic trap number.

Using the Event I/O API in a pmd-linked Environment

In a pmd-linked environment, ASCII events can be processed through
the event I/O APIs while SNMP and CMIP events are processed through
the postmaster. Such an architecture makes it possible to convert
between all three event formats, using correlation circuits that recognize
patterns of events in one format and create events in an alternative
format. See the appropriate module guide(s) for further details:

• HP OpenView Event Correlation Services SNMP Module

• HP OpenView Event Correlation Services CMIP Module

• HP OpenView Event Correlation Services ASCII Module

pmd SNMP and CMIP events cannot be processed through the event I/O APIs of a
pmd-linked engine.
Chapter 4 43

Event I/O
Designing Event I/O
ECS Event Header Attributes

There are seven ECS event header attributes. These attributes are
added to all events when they enter the ECS Engine and are stripped
and discarded when the event leaves the engine. These attributes are
summarized in Table 4-1.

Some of these header attributes can be controlled from the event I/O
API. How and why you would want to do this is explained in the
following sub-sections.

Refer to the appendix for a complete description of the EIO_sendEvent()
and EIO_addFilter() API calls discussed below.

encoding_type

The encoding_type is passed as a parameter to the EIO_sendEvent()
function. The following string values for encoding types are supported by
this API:

Table 4-1 Event Header Attributes

Header Attribute Description Remarks

encoding_type The endecoder module used to
decode and encode the event.

These three
parameters
collectively
define the event’s
structure.

event_syntax The ber mib or mdl syntax that
defines the event structure.

event_type Defines the detailed event structure.

create_time The time at which the event was
created.

arrival_time The time at which the event was
received by the ECS Engine.

These three
parameters are
visible only
inside the ECS
Engine. They are
not accessible in
the API.

unique_id A value that uniquely identifies an
event.

event_class Classifies an event as primitive,
temporary or composite
44 Chapter 4

Event I/O
Designing Event I/O
No other values are valid in the event I/O API.

The encoding_type is also a parameter to EIO_addFilter(). The value
specified here determines which receive function is called for a given
encoding type.

The encoding_type is also a parameter to the receive function itself.
The value passed is always the same as that specified for the
corresponding EIO_addFilter().

event_syntax

The event_syntax is a parameter to EIO_sendEvent(). The value of
event_syntax varies depending on the event, as follows:

SNMP Events SNMP events have an event syntax of "Trap-PDU".
When calling EIO_sendEvent() with an SNMP trap you must set the
event_syntax parameter to the string value "Trap-PDU".

ASCII Events ASCII events have an event syntax that matches the
syntax name in the MDL message definition. For example, the
SimpleEvent message definition contains the following statement that
defines the syntax name:

syntax SimpleEvent
 attributes
 ...

For further details on MDL see HP OpenView Event Correlation Services
ASCII Module.

Table 4-2 Valid encoding_type Values

Event format encoding_type

SNMP events "ber"

8-bit text (and ASCII) events "mdl"
Chapter 4 45

Event I/O
Designing Event I/O
create_time

Event create_time is a header attribute added to all ECS events that is
used by the ECS circuit to compensate for delays in the delivery of
events.

There are three ways that the create_time header attribute can be set:

• The create_time parameter to EIO_sendEvent() overrides any
other settings.

• If the create_time parameter to EIO_sendEvent() is set to 0 then
an attempt is made to obtain the creation time from the event, as
described below.

• Unless otherwise specified, an event’s create_time is set to the time
that it arrived at the ECS Engine.

If the create_time is obtained from the event then the method used
depends on the event as follows:

SNMP SNMP events do not contain a record of the time at which they
were created. If you are able to calculate a creation time then you could
pass this value as a parameter to EIO_sendEvent(). Otherwise, if a
value of 0 (zero) is passed to EIO_sendEvent() then the create_time is
set to the time that the event arrived at the ECS Engine.

ASCII The MDL message definition can define create_time in terms of
some other event attribute(s). If a creation time is not defined in the
message definition (that is, if there is no create_time part in the MDL)
then it is set to the event’s arrival time at the ECS Engine, unless
overridden by EIO_sendEvent() create_time parameter.
46 Chapter 4

Event I/O
Designing Event I/O
Compiling

The supplied library (libecsio.a (libecsio.lib on Windows NT))
must be linked with your event I/O code.

The only header files that you need to include in your source code are
listed in Table 4-3.

Additional header files are automatically included as required.

Table 4-3 C Header Files

API #include file

ESOK only sockstack.h

EIO EIO.h (includes sockstack.h)
Chapter 4 47

Event I/O
Writing an Input Process
Writing an Input Process
This section describes the construction of a simple ECS event input
process. This process initializes the socket stack, opens a connection,
sends a series of events that it reads from standard input, and resets.

Sample code for this process is in:

 HP-UX, Solaris

$OV_PROG_SAMPLES/ecs/event_io/ecsin.c

 Windows NT

%OV_PROG_SAMPLES%\ecs\event_io\ecsin.c

Initialization

Before communicating with the ECS Engine you must initialize the
socket stack and open a connection. This is done in four steps:

1. Initialize the socket stack.

2. Open a socket stack to obtain a connection ID (cid) for a specific
engine instance and a specific stream.

3. Initialize the event I/O interface.

4. Open an event I/O connection (eid) on top of the cid.

The following code fragment establishes an event I/O connection with the
engine identified by instance. The event I/O connection ID is
represented by eid.

int instance = 1;
ESOK_Remote remote;
ESOK_ConnectionId cid;
EIO_ConnectionId eid;

...

/*
** Build a socket connection structure from the instance number
** of the engine that we want to communicate with.
*/

ESOK_buildRemote(instance, &remote);
48 Chapter 4

Event I/O
Writing an Input Process
/*
** Initialize the stack, open it, and then open a connection with
** the ECS engine
*/

ESOK_stackInit ();
EIO_stackInit ();
ESOK_open(&remote, &cid); /* open a socket connection */
EIO_open (cid, 0, &eid); /* open an EIO connection
 ** with default (0) stream */

For clarity, error checking has been eliminated from this example.
Normally, you would check that each ESOK_ and EIO_ function returns
ECS_SUCCESS.

The function ESOK_buildRemote() fills in a structure of type
ESOK_Remotewhich is then passed to ESOK_open() to establish the
socket stack connection. The instance parameter to
ESOK_buildRemote() identifies the ECS Engine to connect with.
Multiple cid connections can be established with the same engine
instance. To establish connections with multiple engines you must call
ESOK_buildRemote() with the appropriate cid instance parameter for
each engine instance.

If you used malloc(3C) to allocate storage for the remote structure, it can
be freed immediately after a successful call to ESOK_open().

The socket stack connection (cid) is passed to EIO_open() along with
the address of the eid to be initialized. The eid is used in all further
communication with the engine, in much the same way as a file handle is
used for file I/O. Multiple eid connections can be established on the same
or different cids.

Instance numbers By default the instance number for the first instance of an ECS Engine
on a given machine is 1. However, if an engine is already running on the
same machine then the second and subsequent instances must each be
assigned a unique positive instance number when each instance is
started, using the command:

ecsd -i n

Where n is the instance number. See HP OpenView Event Correlation
Services Administrators Guide for details.
Chapter 4 49

Event I/O
Writing an Input Process
Sending Events

Once an Event I/O connection ID (eid) has been established we can use
it to send events to the ECS Engine, as in the following code fragment
that simply reads ‘events’ from stdin one line at a time, and sends them
to the engine identified by eid:

int instance = 1;
ESOK_Remote remote;
ESOK_ConnectionId cid;
EIO_ConnectionId eid;
int32 create_time = 0;
char* syntax = NULL;
char* encoding_type = NULL;
char pdu [MAX_PDU_LEN];
int32 pdu_length = 0;
int rc;

...
/*
** Build a socket connection structure from the instance number
** of the engine that we want to communicate with. Unles otherwise
** specified (on the command line) the instance number is always 1
*/

ESOK_buildRemote(instance, &remote);
/*
** Initialize the stack, open it, and then open a connection with
** the ECS engine
*/

ESOK_stackInit ();
EIO_stackInit ();
ESOK_open(&remote, &cid); /* open a socket connection */
EIO_open (cid, 0, &eid); /* open an EIO connection
 ** with default (0) stream */

/*
** Read an event from stdin, process it, and continue reading the
** next event until there are no more events to read. Events are
** assumed to be separated by newline characters.
*/

create_time = 0; /* create_time will come from the event */
encoding_type = “mdl”; /* Always MDL for ASCII events */
syntax = “SimpleEvent”; /* SimpleEvents only */
50 Chapter 4

Event I/O
Writing an Input Process
while (gets (pdu))
{
 pdu_length = strlen(pdu);
 if (pdu_length <= 0)
 {
 continue; /* Don’t send the empty line as an event */
 }
 EIO_sendEvent (eid, pdu, pdu_length, create_time,
 encoding_type, syntax);
 /*
 ** Call ESOK_process() so that the socket stack has a chance
 ** to do some processing. Specify a wait of 0 ms so that it
 ** returns immediately if there is nothing to do.
 */
 ESOK_process (0);
}

The maximum size of the event buffer pointed at by pdu is subject to any
limits imposed by the underlying transport mechanism, and to the limits
imposed by the MDL endecoder (currently 8K bytes).

In this example, the actual size of the event is determined with a simple
call to strlen(3C). However, SNMP events need not be null-terminated
and may contain embedded nulls, and require a more sophisticated
approach to determining the event size.

The create_time parameter may be used to override the event
create_time header attribute. A value of 0 (zero) causes create_time to
be calculated in the normal way. See “create_time” on page 46 for details.

The encoding_type parameter must point to a string value that the
engine can use to identify the appropriate endecode module. See
Table 4-2 for a list of valid string values.

The syntax parameter points to a string value that the endecode module
uses to identify the particular message definition to use when decoding
and encoding this event. In this example, the "SimpleEvent" syntax is a
hard-coded value. However, it may be necessary to infer the value from
the event itself, before calling EIO_sendEvent(). For example, if your I/O
process deals with several different event encodings, you may need to
partially decode the event to determine its syntax.

EIO_sendEvent() returns a value of ECS_SUCCESS if the event is sent
successfully. In this example the loop is broken if any other value is
returned.
Chapter 4 51

Event I/O
Writing an Input Process
The socket stack and event I/O implementation does not rely on threads,
signals or any other multi-tasking mechanism. It is therefore essential
for your event I/O process to make regular calls to ESOK_process() to
provide the API code with execution time. ESOK_process() takes just
one parameter, which determines how many milliseconds to wait for
some activity to occur. A value of –1 will cause it to wait forever. A value
of 0 (zero) will cause it to return immediately if there is no processing to
be done.

Resetting the Connection

Your input process may run forever, waiting for events to arrive over a
network connection and dispatching them to the ECS Engine for
correlation.

Alternatively, it may process a finite number of events and exit. Calling
EIO_sendEvent() is not sufficient to ensure that all events have been
processed through the socket stack. You must arrange for
ESOK_process() to be called after the last event has been sent, and you
must continue calling ESOK_process() until all events have been
processed through the socket stack. This raises the problem of knowing
when all the events sent through the stack have been processed and
when to stop calling ESOK_process(). This is conveniently achieved by
waiting for ESOK_stackEmpty() to return non-zero, as in the following
code fragment:

while (! ESOK_stackEmpty())
ESOK_process(0);

Waiting for a value of ESOK_NOTHING_DONE to be returned from
ESOK_process() is not sufficient by itself.

When all events have been processed through the socket stack you can
close connections and reset the stacks, as in the following code fragment:

EIO_close(eid);
EIO_stackReset();
ESOK_close(cid);
ESOK_stackReset();
exit (0);

If there is only one connection (as in this example) calling EIO_close()
and ESOK_close() is unnecessary because the corresponding
EIO_stackReset() or ESOK_stackReset() calls will close any
outstanding connections.
52 Chapter 4

Event I/O
Writing an Input Process
However, if you had established several eids on a single cid, the
EIO_close() function allows you to selectively close connections.
Alternatively, where you have established different cids (possibly with
different ECS Engine instances) ESOK_close() allows you to close a
connection with one engine, without affecting others.

Error handling

Most API functions return ECS_SUCCESS if they complete successfully.
You should generally check for this value and take corrective action if
any other value is received. See the function reference (manpages) for
specific return codes and suggested actions.

In general, return codes less than ECS_SUCCESS are errors and codes
greater than ECS_SUCCESS are warnings that indicate that the function
completed but the result may not be as expected.
Chapter 4 53

Event I/O
Writing an Output Process
Writing an Output Process
Obtaining events output from an ECS Engine requires registration of a
callback function. The callback function is called by the API interface
code whenever an event is available, during the processing phase
initiated by the ESOK_process() function.

The output process used to illustrate this is contained in the file:

 HP-UX, Solaris

$OV_PROG_SAMPLES/ecs/event_io/ecsout.c

 Windows NT

%OV_PROG_SAMPLES%\ecs\event_io\ecsout.c

It initializes a connection, opens it, registers a simple callback function
that writes events to stdout, and loops while calling ECS_process() and
waiting for events to arrive.

Event output processes cannot come and go in the same way that an
event input process can. Where an input process may be able to detect
the end of a stream of events it is not possible for the output process to
know if more events will arrive in the future. Because of this, output
processes must run ‘forever’, or at least as long as output is of use.

Initialization

Initialization is identical to that described for event input in
“Initialization” on page 48. If input and output are being done in the
same process then the same eid connection can be shared for input and
output.

Receiving Events

To receive events you must do four things:

• Call EIO_Open to open a connection with a specific stream on a
specific engine.

• Add one or more filters to discriminate between different events.

• Register at least one callback function to receive the events.
54 Chapter 4

Event I/O
Writing an Output Process
• Call ESOK_process() to process events through the socket stack.

The following example registers a callback function and adds a single
filter that allows the callback function to be called for all events with an
encoding_type of "mdl":

char* syntax = NULL;
char* encoding_type = NULL;

...

/**
* A filter must be added before events can be received. *
* Here, we set the filter to allow mdl events of all sorts to be*
* accepted *
**/

encoding_type = “mdl”; /* Must be MDL for ASCII events */
syntax = NULL; /* all event syntaxes */
EIO_addFilter (eid, encoding_type, syntax);

/**
* Register a callback function. The function address passed *
* here is called whenever an event is ready for output from *
* the ECS engine. If eid is set to EIO_ALLCON this function *
* will be called for all PDUs that don’t have a specific *
* receive function specified. *
**/

EIO_registerReceiveFn(eid, recvFn);

/**
* Call ESOK_process() to process events. *
* Loop while we receive good return codes from ESOK_process(). *
* If any other value is received then the loop is exited *
* *
* Loop forever (until process is interrupted by Ctrl+C, etc) *
**/
mSecs = 0;
while ((rc = ESOK_process(mSecs)) == ECS_SUCCESS
 || rc == ESOK_NOTHING_DONE);

The call to ESOK_process() provides the API with an opportunity to call
the registered callback function (recvFn) when appropriate. The while
loop runs for as long as ESOK_process() returns a non-error value. If it
returns an error code the loop is exited and you should test the value of
rc to determine why ESOK_process() failed.
Chapter 4 55

Event I/O
Writing an Output Process
The receive callback function recvFn must be supplied by you. You can
register one callback function for each eid. If you want to register
several callback functions (for example, to handle different event types in
different ways) you must open an eid for each one.

There are two ways that you can control when a callback function gets
called:

• Specify a valid eid and specify a filter. The filter controls the
encoding_type and event_syntax for which this callback function is
invoked.

• Or, specify a value of EIO_ALLCON for the eid parameter. This
registers the callback as a default callback function.

In the second case, the callback function registered with an eid of
EIO_ALLCON is called if an event is not processed by any of the other
registered callbacks.

If EIO_ALLCON is specified for the eid then a filter cannot be specified.
Otherwise, if an eid is specified then you must call EIO_addFilter()
before any events can be received.

For example, there may be several receive functions registered for
different eids, each of which is filtered on a different encoding_type
and event_syntax. In addition, a default receive function could be
registered with an eid value of EIO_ALLCON that receive all events that
do not match any of the filtered eids.

A trivial receive function that simply writes the event to stdout is:

int32
recvFn(EIO_ConnectionId id,
 const void* pdu,
 int32 pdu_length,
 int32 create_time,
 const char* encoding_type,
 const char* syntax)
{
 fwrite (pdu, 1, pdu_length, stdout);
 return ECS_SUCCESS;
}

The parameter streamId is reserved for future use.

fwrite() is used in preference to printf() because the string pdu may
not be null-terminated.
56 Chapter 4

Event I/O
Writing an Output Process
Resetting the Connection

As mentioned previously, generally you cannot know when all events
have been processed and so the main loop for the event output process
loops forever.

The sample program shown in ecsout.c takes a simple approach and
simply resets all connections if a signal is received. A more sophisticated
approach might implement a control interface that could close individual
connections.

Stream

To register for the default stream, use EIO_open(cid, 0, &eid).

To register for a stream called “myStream”, use:

EIO_open(cid, “myStream”, &eid)
Chapter 4 57

Event I/O
Using a Select Loop
Using a Select Loop
The select()system call can be used to construct a convenient and
efficient multi-tasking system based around file activity. This method
replaces the simple loop used in previous examples with a slightly more
complicated loop that includes a call to select(). If there is no activity
on any of the file descriptors we are interested in then select() blocks
until there is (or until it times out).

The sample source code in the following files illustrates how the
select() call is used:

 HP-UX, Solaris

$OV_PROG_SAMPLES/ecs/event_io/ecsio.c

 Windows NT

%OV_PROG_SAMPLES%\ecs\event_io\ecsio.c

In this example, events are read from stdin and sent to the ECS Engine.
A child process is used to simulate a simple network connection so we
can monitor the input file descriptor in the select() loop. The process
also registers a callback function (recvFn()) that is called whenever an
event is available from the engine.

/**
* This process is at the other end of the socketpair with child().
* It does all the work of routing events received from
* child() into the ECS engine via the ECS socket stack,
* setting up a callback function to receive events back
* from the ECS engine, and controlling the ECS socket stack
* by calling ESOK_process().
**/

int
parent(ESOK_Remote *pRemote)
{
 ESOK_ConnectionId cid;
 EIO_ConnectionId eid;
 int32 create_time;
 char* syntax;
 char* encoding_type;

 char pdu [MAX_PDU_LEN];
58 Chapter 4

Event I/O
Using a Select Loop
 int32 pdu_length;

 int rc = 0;

 int32 nfds = 0;
 int32 msize = 0;
 int32 nbits = 0;
 fd_set readFds;
 fd_set writeFds;
 fd_set exceptFds;
 const fd_set* fds = 0;

 FD_ZERO(&readFds);
 FD_ZERO(&writeFds);
 FD_ZERO(&exceptFds);

 /*
 ** Initialize the stack, open it, and then open a connection
 ** with the ECS engine
 */

 ESOK_stackInit ();

 EIO_stackInit ();

 ESOK_open(pRemote, &cid); /* open a socket connection */

 EIO_open (cid, “default”, &eid); /* open an EIO connection */
 ** with a named stream
 ** (“default” in this case) */

 /*
 ** A filter must be added before events can be received.
 ** Here, we set the filter to allow mdl events of all sorts
 ** to be accepted. The filter is applied to the open
 ** connection identified by eid.
 */

 encoding_type = “mdl”; /* Must be MDL for ASCII events */
 syntax = “SimpleEvent”; /* SimpleEvents only */

 EIO_addFilter (eid, encoding_type, syntax);

 /*
 ** Register a callback function. The function address passed
 ** here is called whenever an event is ready for output from
Chapter 4 59

Event I/O
Using a Select Loop
 ** the ECS engine. If eid is set to IO_ALLCON this function
 ** will be called for all PDUs that don’t have a specific
 ** receive function specified.
 */

 EIO_registerReceiveFn(EIO_ALLCON, recvFn);

 /*
 ** Loop around while we keep track of i/o activity by examining
 ** the result of a select() call. If there is there is data
 ** waiting on the input stack, read it, and route it to the ECS
 ** engine. Call ESOK_process() to ensure that the stack gets
 ** processor time.
 **
 ** IMORTANT: we cannot know when the ‘last’ event has been
 ** received from ECS and so cannot deduce when to exit this loop.
 **
 ** In this test program press Ctrl+C to kill it.
 */

#ifdef SYS_X86_NT35
 fds = (fd_set *)malloc(sizeof(fd_set));
#endif

 for (pdu_length=1; ;) /* forever */
 {
 /* get file descriptors in use by ECS engine */
 msize = ESOK_getFdSet(ESOK_READMASK, &nfds, &fds);
 memcpy(&readFds, fds, msize);

 msize = ESOK_getFdSet(ESOK_WRITEMASK, &nfds, &fds);
 memcpy(&writeFds, fds, msize);

 msize = ESOK_getFdSet(ESOK_EXCEPTIONMASK, &nfds, &fds);
 memcpy(&exceptFds, fds, msize);

 /* Set additional file descriptors we want to select on.
 ** Because select() returns immediately if a file cannot
 ** be read, only set the bit for this fd if the last read
 ** returned something, as indicated by pdu_length.
 */

 if(pdu_length > 0 && !FD_ISSET(fildes[FD_PARENT], &readFds))
 FD_SET(fildes[FD_PARENT], &readFds);

 /* Wait for some activity on nominated fds */
60 Chapter 4

Event I/O
Using a Select Loop
 nbits=select(nfds, &readFds, &writeFds, &exceptFds, 0);

 /* If there is an incoming event on our socket fd,
 ** read one event and send it to the ECS engine
 */
 if(FD_ISSET(fildes[FD_PARENT], &readFds))
 {
 pdu_length = read_pdu(fildes[FD_PARENT], pdu, MAX_PDU_LEN);
 if(pdu_length > 0)
 {
 ++numEventsSent;
 EIO_sendEvent(eid, pdu, pdu_length, create_time,
 encoding_type, syntax);
 }
 else
#ifndef SYS_X86_NT35
 close(fildes[FD_PARENT]);
#else
 closesocket(fildes[FD_PARENT]);
#endif
 }

 /*
 ** ESOK_process() must be called in this loop to ensure that
 ** the ECS stack and the receive function get a share of
 ** processor time.
 */
 ESOK_process(0);
 }

/*execution never reaches this point, exit is via signal handler*/
}

The ESOK_getFdSet() API call fills in a pointer to the file descriptor
bitmask and the size of the bitset. The size of the bitset is variable. A bit
is set for each file descriptor in use by the ESOK API. Three separate
calls are needed, one each for read, write and exception file descriptors.

Once the ESOK API file descriptors have been set, the FD_SET() macro
is used to set the bit in the read mask that corresponds to the file
descriptor fd that we read events from. In this example we use
pdu_length as a flag to indicate whether end-of-file has occurred and
only set the bit if we have not yet reached the end of the file.

The call to select() blocks until there is activity on one of the file
descriptors in one of the three masks.
Chapter 4 61

Event I/O
Using a Select Loop
The FD_ISSET() macro returns true if fd is ready for reading, in which
case we read an event from fd and send it to the ECS Engine.

Note that ESOK_process() is called whenever select() returns, even if
we do not send an event to the engine. This is required for two reasons:

• To process events in the socket stack.

• To provide an opportunity for the callback function to be invoked (if
events are received from the engine by this process).

See Also For more information on select(), see the following references:

HP-UX: select(2)

Solaris: select(3c)

Windows NT: Online documentation provided with
your development environment.
62 Chapter 4

5 Annotation Servers
63

Annotation Servers
The Annotate node allows an external mechanism to be used to obtain
data asynchronously from outside the ECS Engine. The data could
typically be corporate data such as equipment inventory, network
topology or management information.

The Annotate node depends on the existence of an appropriate
annotation server process. The Annotate node sends a request to the
server and waits for a response. Both the request and the response are
complex data types capable of conveying arbitrary amounts and types of
data.

Refer to the HP OpenView Event Correlation Services Designer’s
Reference for a description of the configuration and functionality of the
Annotate node.

This chapter provides a detailed discussion of the annotation mechanism
from the perspective of the developer of an annotation server, followed by
a discussion of how an annotation server should be created:

• “Annotation Concepts” on page 65

• “The Annotation Mechanism” on page 67

• “Annotation Data Types” on page 70

• “Receiving Annotation Requests” on page 81

• “Constructing an Annotation Response” on page 85
64 Chapter 5

Annotation Servers
Annotation Concepts
Annotation Concepts
The HP OpenView Event Correlation Services (ECS) annotation
mechanism allows a request for data to be issued by an Annotate node in
an ECS circuit and sent to some process that is external to the engine.
The requested data may be obtained from a remote system, totally
unrelated to ECS, and a response returned to the Annotate node that
issued the request.

Consider the situation where a communication facility fails, and that
facility provides services to many customers. The question arises: which
services should be re-routed to use the limited backup capacity? This
raises two further problems: which customers qualify for special
treatment, and finally, which services were in use by them.

The event stream itself contains no information about customers or the
services they are entitled to—additional data is required.

Figure 5-1 Example Link Failure Problem

?

Customer
Database

Annotation
Server

ECS
Engine

Node A Node B

Fault report

What traffic
should be re-routed
over the backup
link?

Request Response

High capacity
link fails.

Backup, low
capacity llink.
Chapter 5 65

Annotation Servers
Annotation Concepts
The problem and a sample architecture for an ECS-based solution is
illustrated in Figure 5-1. Assume that systems exist somewhere that
relate equipment IDs to services and customers. Those systems could be
queried from within the ECS circuit so that the circuit could
automatically generate events to re-route high-priority services for
specific customers.

The circuit designer uses an Annotate node as a gateway through which
a request for information is issued. The request is sent to a
user-developed application referred to as an annotation server. This
process performs whatever operations are required to obtain the
requested data, possibly querying other systems such as equipment
databases and billing systems, and returns a response to the requesting
Annotate node.

The annotate API (ANNO) provides the developer with a way to
exchange requests and responses with one or more ECS Engine running
on the same machine. Figure 2-3 on page 19 shows the basic
arrangement. In addition to multiple engines, the API supports multiple
circuits and multiple Annotate nodes, and guarantees that responses
always find their way back to the Annotate node that sent the original
request.

The only limitation is that annotation servers and the ECS Engine(s)
that they serve must be located on the same machine.
66 Chapter 5

Annotation Servers
The Annotation Mechanism
The Annotation Mechanism
The annotate API (ANNO) is a library of functions that you link into
your annotation server. The mechanism is similar to the event I/O API
(see Chapter 4, “Event I/O,” on page 39 for details). Like the event I/O
API, the annotate API depends on the lower-level socket stack API to
communicate between the ECS Engine and the annotation server. See
Chapter 3, “The Socket Stack API,” on page 29 for details.

Figure 5-2 The Annotation Mechanism

Figure 5-2 shows the annotation mechanism in detail. When an event
enters the Annotate node through its Input port, the ECS Engine calls a
user-supplied function that you register through the annotate API in the
annotation server. The interprocess communication between the engine
and the annotation server (a Unix domain socket) is transparent. The
callback function receives a pointer to a data structure containing
information passed by the circuit designer in the Annotate Spec
parameter of the Annotate node. This data is a C-language
representation of the list defined by the circuit designer.

...

Request Response

Configuration:

ECS Engine

Annotation Server
(user supplied process)

circuitName
nodeName
requestId
[requestData...]

ECS Socket stack

Time Limit
Annotate Spec

circuitName
nodeName
requestId
[responsetData...]

Input Event

Composite Event

Temporary event with
each responseData
item as an attribute

Correlation
Circuit

ANNO API

Source Annotate
Node

ANNO API
Chapter 5 67

Annotation Servers
The Annotation Mechanism
The annotation server identifies annotation requests by a unique
requestId. The requestId must be returned with the response to
ensure that the response is sent to the appropriate Annotate node in the
appropriate circuit.

The annotation server decodes the annotation request and determines
the action required. The annotation server may discriminate between
requests in a number of ways:

• by the name of the circuit

• by the Annotate node name

• on the basis of the data contained in the request itself.

To service requests from a specified circuit and/or Annotate node you
specify the circuit name and/or Annotate node name when the annotate
API connection is established. This is useful when different circuits
require different annotation servers, or when several different types of
annotation are used in one or more circuits.

NOTE The circuit designer and the annotation server developer must agree
beforehand on the data to be passed between the Annotate node and the
annotation server.

The Annotate node has two parameters:

• Time Limit specifies the maximum time that the Annotate node can
detain the input event while awaiting a response from the annotation
server.

• Annotate Spec defines the requestData to be sent to the annotation
server, in the form of an ECDL List.

The requestData List can contain nested Lists, Tuples and other ECDL
data types. The Annotate node attaches some additional information to
the List, serializes it, and forwards it to the annotation server through
the ECS socket stack (ESOK) and the annotate API (ANNO).

The annotate API deserializes the data and calls the user’s callback
function, passing it a pointer to the List of data. The annotation server
extracts values from the List and uses them to generate, for example, a
database query.
68 Chapter 5

Annotation Servers
The Annotation Mechanism
The response data (for example, the result of the database query) is sent
back using the reverse mechanism. The annotation server assembles a
response List and passes it to the annotate API. The List can consist of
any number of values in any mixture of the supported data types.

When the Annotate node receives the response, it creates a temporary
event whose attributes are composed of the information passed back in
the EV_attrValue structure. The temporary event is enclosed in a
composite event containing the original input event together with the
temporary event, and transmitted from the output port. It is the
responsibility of downstream nodes to use this data in subsequent
correlation decisions.
Chapter 5 69

Annotation Servers
Annotation Data Types
Annotation Data Types
Annotation request and response data is passed in the form of an
EV_AttrValue structure. This is a recursive structure capable of
representing a (nested) list of values of various data types. It is a direct
representation of the ECDL List constructed by the Annotate Spec
parameter of the Annotate node and supports most ECDL data types
(see Table 5-1).

Two API functions are provided to simplify dealing with EV_AttrValue
structures:

• EV_extractElement() gets a pointer to the data for a given element
in the list. You use this function to extract data from the annotation
request.

• EV_parseFormattedValue() constructs an EV_AttrValue from a
string representation that looks like an ECDL List of values. The
formatted list is most easily assembled using sprintf (3C).

These API functions allow you to treat the EV_AttrValue as a handle to
an opaque data structure representing an ECDL List or Tuple data
value. Their use is explained in detail in the following sections.

CAUTION The EV_AttrValue structure is documented in
$OV_HEADER/value_struct.h. However, because of the complexity of
this structure and because it is subject to change in future releases,
pointers to EV_AttrValues should be regarded as opaque. Direct access
to EV_AttrValue internal structure should be unnecessary and is not
supported as HP may make changes to this structure at any time
without notice.

The Type Identifier in Table 5-1 defines a mapping between an ECDL
data type in the original Annotate Spec parameter, and a C data type
(or structure).

Some data types are represented as simple values (for example,
EV_INTEGER is stored as a single 32-bit integer value). Other data types
are represented as structures (For example, EV_TIME consists of two
integers: seconds and microseconds; and EV_LIST and EV_TUPLE are
EV_AttrValues).
70 Chapter 5

Annotation Servers
Annotation Data Types
Table 5-1 EV_AttrValue Data Type Summary

Type Identifier
and ECDL Type

Example Response Text
String

C Data Type For details see...

EV_INTEGER
Integer

123 int32 * “Integer” on
page 72

EV_REALReal 12.345 real64 * “Real” on
page 72

EV_BOOLEAN
Boolean

true ecsbool * “Boolean” on
page 73

EV_TIME

Time

19971231095959.0Z struct {
 u_int32 _secs;
 u_int32 _usecs;
} EV_Time *;

“Time” on
page 74

EV_DURATION

Duration

1.5h

 or

12345.67s

 or

1h 30m 2.1s

struct{
 int32 _secs;
 u_int32 _usecs;
} EV_Duration *;

“Duration” on
page 75

EV_STRING
String

"LNKUP" char * “String” on
page 76

EV_OID
Oid

1.234.5.67 u_int32 * “Oid” on page 77

EV_NULL
Void

() 0 “Null” on
page 78

EV_LIST
List

[1, "Two", 3.4] EV_AttrValue * “List” on page 78

EV_TUPLE
Tuple

(1, "Two", 3.4) EV_AttrValue * “Tuple” on
page 79
Chapter 5 71

Annotation Servers
Annotation Data Types
EV_AttrValue structures can be constructed recursively to any depth
using Lists and Tuples in the following ways:

• A List, and each of the elements in the List, is an EV_AttrValue that
points to the next element. An element may itself be a List or a Tuple
data type.

• A Tuple, and each of the elements in the Tuple, is an EV_AttrValue
that can be of any data type including List and Tuple.

Integer

The internal representation of an integer is a signed 32-bit quantity.

Real

The internal representation of a real number is as a 64-bit IEEE format
double precision floating point number.

ECS Circuit ECDL type: Integer

Example: [123]

Request Type Identifier: EV_INTEGER

C Data type: int32;

Example: int32 *pint;
...
case EV_INTEGER:
 pint = (int32*) elementData;

Response Format: sprintf(buf, "[%d]", *pint);

Example: [123]

ECS Circuit ECDL type: Real

Example: [1.23]

Request Type Identifier: EV_REAL

C Data type: real64;
72 Chapter 5

Annotation Servers
Annotation Data Types
Boolean

The internal representation of a boolean is as an ecsbool type with the
value 1 for true or 0 for false.

ECS Circuit ECDL type: Boolean

Example: [true]

Example: real64 *preal;
...
case EV_REAL:
 preal = (real64*) elementData;

Response Format: sprintf(buf, "[%f]", *preal);

Example: [1.23]

ECS Circuit ECDL type: Boolean

Example: [true]

Request Type Identifier: EV_BOOLEAN

C Data type: ecsbool;

Example: ecsbool *pbool;
...
case EV_BOOLEAN:
 pbool = (ecsbool*) elementData;

Response Format: sprintf(buf, "[%s]",
 *pbool ? "true" : "false");

Example: [true]
Chapter 5 73

Annotation Servers
Annotation Data Types
Time

The internal representation of time is two integers counting seconds and
microseconds since Unix Epoch (1 January 1970). All times are assumed
to be UTC (Universal Coordinated Time).

When converting to seconds be aware that the microseconds component
can be greater than 106, so (where ptime is a pointer to an EV_Time
struct):

realT = (ptime->_secs * 1000000 + ptime->_usecs)
/ 1000000;

When building a response from a tm time structure remember to add the
century to the year, and to count months from 1 to 12 instead of 0 to 11.

ECS Circuit ECDL type: Time

Example: [19911231235959.123456Z]

Request Type Identifier: EV_TIME

C Data type: typedef struct{
 u_int32 _secs;
 u_int32 _usecs; } EV_Time;

Example: EV_Time *ptime;
...
case EV_TIME:
 ptime = (EV_Time*) elementData;

Response Format: /* get time into tm, then... */

sprintf(buf,
 "[%04d%02d%02d%02d%02d%02d.%06dZ]",
 tm.tm_year+(tm.tm_year>69?1900:2000),
 tm.tm_mon+1, /* 1 to 12 */
 tm.tm_mday,
 tm.tm_hour,
 tm.tm_min,
 tm.tm_sec,
 usecs);

Example: [19971231235959.123456Z]
74 Chapter 5

Annotation Servers
Annotation Data Types
The decimal point separating seconds from microseconds is mandatory. If
there are no microseconds then .0 must be specified. For example,
19971231235959.0Z. If the decimal point is omitted then a runtime
error will be generated. The terminating ‘Z’ (for Zulu) indicates that the
time value is UTC and is required to distinguish a Time value from a
Real.

Duration

The internal representation of duration is two integers counting seconds
and microseconds.

When converting to seconds be aware that the microseconds component
can be greater than 106, and that secs is signed whereas _usecs is
unsigned, so you need to be careful to calculate the sign if you convert an
EV_Duration to a floating point number, as in the following example
(where pdur is a pointer to an EV_Duration struct):

ECS Circuit ECDL type: Duration

Example: [1h 33m 29.123s]

Request Type Identifier: EV_DURATION

C Data type: typedef struct{
 int32 _secs;
 u_int32 _usecs;} EV_Duration;

Example: EV_Duration *pdur;
...
case EV_DURATION:
 pdur = (EV_Duration*) elementData;

Response Format: sprintf(buf, "[%dh %dm %d.%ds]",
 tm.tm_hr,
 tm.tm_min,
 tm.tm_sec,
 usecs);

Example: [1h 33m 29.123s]
Chapter 5 75

Annotation Servers
Annotation Data Types
real64 realD = (pdur->_secs < 0) ?
 ((pdur->_secs * 1000000 - pdur->_usecs) / 1000000) :
 ((pdur->_secs * 1000000 + pdur->_usecs) / 1000000);

The formula above ensures that realD, a floating point number, has the
correct sign.

String

Strings are represented as an array of a specified number of bytes. Bytes
in the array may contain any value, including null (’\0’).

Because string data types can contain embedded nulls, and because
there is no guarantee that strings are nul-terminated, you must rely on
the size parameter returned by EV_extractElement() to delimit the
character array. Do not use standard C library string functions such as
strlen(3C) or strcpy(3C) on string elements that may contain nulls.

ECS Circuit ECDL type: String

Example: ["ber"]

Request Type Identifier: EV_STRING

C Data type: char;

Example: char *s;
...
 case EV_STRING:
 s = (char*) elementData;

Response Format: sprintf(buf,"[\"%s\"]", s);

Example: ["ber"]
76 Chapter 5

Annotation Servers
Annotation Data Types
Oid

Oid data types are Object Identifiers with a text representation of the
form n.n.n... Each number n is an integer value between 0 and 232
inclusive. There must be at least three numbers, and each number must
be separated from the next with a period (.)

The native representation of an Oid is as an array of unsigned 32-bit
integers, where each number n is an integer in the array.

In the C code fragment for the request example, above, the size (in
bytes) returned by EV_extractElement() is divided by
sizeof(u_int32) to yield the number of elements in the array of
integers.

ECS Circuit ECDL type: Oid

Example: [123.45.6.7.89]

Request Type Identifier: EV_OID

C Data type: u_int32[];

Example: u_int32 id, *oid;
int n; /* index of id in oid */
char buf[64], *pbuf;
...
case EV_OID:
 oid = (u_int32*) elementData;
 if (n < size/sizeof(u_int32))
 id = oid[n];

Response Format: for(i=0,pbuf=buf;i<len;i++)
{
 if(i != 0)
 pbuf += sprintf(pbuf, ".");
 pbuf += sprintf(pbuf, "%d", oid[i]);
}

Example: [123.45.6.7.89]
Chapter 5 77

Annotation Servers
Annotation Data Types
Null

A Void type is required to support optional event attributes and ASN.1
CHOICE values in SNMP and CMIP events. When type is EV_NULL, the
value of elementData is always 0 (NULL), and size is always 0 (zero).

List

The List data type represents an ordered list of values. The number of
elements in a List is variable. A List is represented internally as a data
structure of type EV_AttrValue. To extract a value from a list, you pass
a pointer to the EV_attrValue and the index number of the element you
wish to extract to the EV_extractElement() API function. See
“Extracting Values from the Annotation Request” on page 81.

The callback function that you define receives a pointer to a List as one of
its parameters.

ECS Circuit ECDL type: Void

Example: [()]

Request Type Identifier: EV_NULL

C Data type: void;

Example: void *ptr;
...
case EV_NULL:
 ptr = elementData; /*NULL*/

Response Format: sprintf(buf, "[()]");

Example: [()]

ECS Circuit ECDL type: List

Example: [["Severity", 0], []]

Request Type Identifier: EV_LIST

C Data type: EV_AttrValue*;
78 Chapter 5

Annotation Servers
Annotation Data Types
The ECS Circuit and Response examples above shows a List with two
nested lists, the first containing two elements, and the second containing
none.

CAUTION Pointers to EV_AttrValue structures should always be regarded as
opaque. The details of this structure are not defined, and code that
references the internal structure is unsupported.

Tuple

The Tuple data type represents a fixed collection of elements. The Tuple
is represented internally as a data structure of type EV_AttrValue. To
extract a value from a Tuple, you pass a pointer to the EV_attrValue
and the index number of the element you wish to extract to the
EV_extractElement() API function. See “Extracting Values from the
Annotation Request” on page 81.

The distinction between Tuples and Lists is subtle and is only important
within an ECS circuit. In the annotation interface, both Lists and Tuples
should be handled as opaque pointers of type EV_AttrValue *.

Example: EV_AttrValue *AV;
...
case EV_LIST:
 AV = (EV_AttrValue*) elementData;

Response Format: sprintf(buf,"[[\"%s\", %d],[]]", s, i);

Example: [["Severity", 0],[]]

ECS Circuit ECDL type: Tuple

Example: [("Severity", 0), ()]

Request Type Identifier: EV_TUPLE

C Data type: EV_AttrValue*;
Chapter 5 79

Annotation Servers
Annotation Data Types
The ECS Circuit and Response examples above show a List with two
Tuples, the first containing two elements and the second containing
none. The form of the empty Tuple () is the same as a Void data type and
is in fact a Void. Since Void data types have no defined value you must be
careful not to misinterpret empty Tuples.

CAUTION Pointers to EV_AttrValue structures should always be regarded as
opaque. The details of this structure are not defined, and the code that
references the internal structure is not supported.

Example: EV_AttrValue *AV;
...
case EV_TUPLE:
 AV = (EV_AttrValue*) elementData;

Response Format: sprintf(buf,"[(\"%s\", %d),()]", s, i);

Example: [("Severity", 0),()]
80 Chapter 5

Annotation Servers
Receiving Annotation Requests
Receiving Annotation Requests
Whenever an annotation request is received, the annotate API calls the
function that you register with the ANNO_registerReceiveFn()
function. The callback function must conform with the following
prototype:

ANNO_receiveFn(const ANNO_ConnectionId cid,
 const ANNO_requestId requestId,
 const EV_AttrValue *annoRequest);

The cid identifies the connection on which the request was received, and
the requestId uniquely identifies the request from this connection. Both
parameters must be passed back with the response so that the interface
can align the response with the original request.

The annoRequest pointer points to an EV_AttrValue structure of type
EV_LIST. This is the start of the ECDL List data structure passed in the
Annotate node’s Annotate Spec parameter.

CAUTION You must not change any of the contents of annoRequest and you must
not pass the annoRequest pointer back as a response (through
ANNO_sendResponse()).

It is essential that the circuit designer and annotation server developer
cooperate in designing the list of data passed from the Annotate Spec
parameter of the Annotate node.

Extracting Values from the Annotation Request

Values are extracted from the annotation request list by using the
EV_extractElement() API function:

int32 EV_extractElement(
 const EV_AttrValue *requestList,
 int32 index,
 EV_AttrType *type,
 int32 *size,
 const void **elementData
)
Chapter 5 81

Annotation Servers
Receiving Annotation Requests
You pass it a pointer to the requestList and an index representing the
number of the element that you want to extract from the list (the first
element has an index of 1). If you pass an index value greater than the
number of elements in the list then a value of EV_NO_SUCH_ELEMENT is
returned.

Otherwise, if the element exists, then EV_extractElement() fills in the
type, size and elementData, as follows:

• type is an EV_AttrType with one of the values listed in Table 5-1 on
page 71 such as EV_INTEGER, EV_STRING, etc. The type may be used
in a switch statement to decode generic requestLists, where the
type of an element is not known ahead of time. The type indicates the
Type Identifier and hence the C data type to which the elementData
pointer must be cast.

• size is a 32-bit integer that is set to the size of the data element
pointed at by elementData. The size of the data is measured in bytes
and is suitable for use with malloc(3C) to allocate storage that can be
used to hold a copy of the data. For some data types (such as EV_LIST
and EV_TUPLE) the size is 0 (zero).

• elementData is the address of a pointer to a void data type that is set
to the address of the data. You must cast this pointer to the
appropriate C data type (based on the type value) before accessing
the data. Note the double indirection.

The following code fragment illustrates how to copy a String element
from a requestList into a null-terminated C string called surname.

char* surname = 0;
EV_AttrType type;
int32 size;
void* elementData;

/* -- Get the Surname --- */
int index = 1;
if(requestList != 0
 &&
EV_extractElement(requestList,index,&type,&size,&elementData)
 == ECS_SUCCESS
 && type == EV_STRING
)

{
 surname = (char*) malloc(size+1);
82 Chapter 5

Annotation Servers
Receiving Annotation Requests
 memcpy(surname, elementData, size);
 surname[size] = ’\0’;
}

Data of type EV_STRING is not necessarily nul-terminated, and may
contain embedded nuls. It is therefore essential to use memcpy() rather
than strcpy(). Note also that an additional byte is allocated for the
terminating null that we add.

Copying Data Normally, it is sufficient to retrieve a pointer to the data. However, there
are occasions when you must copy the data. These are:

• If the data must be kept for a relatively long time, either after a
response has been returned or after the request expiryTime
(returned by a call to ANNO_getRequestInfo()) has occurred.

• If the value of the data pointer (*elementData) , or the storage it
points to (elementData), may be modified.

If either of these conditions is true then you cannot simply copy the data
pointer. Some data types (EV_TUPLE and EV_LIST) cannot be copied as
they contain embedded pointers. Such data types always have a size of 0
(zero).

Getting Additional Request Information

ANNO_getRequestInfo() can be used to obtain additional information
about a specific annotation request. You supply the Connection ID and
Request ID, and ANNO_getRequestInfo() fills in the circuit name,
Annotate node name, sequence number, and expiry time. The prototype
is:

int32 ANNO_getRequestInfo(
 const ANNO_ConnectionId annoId,
 const ANNO_RequestId requestId,
 char **circuitName,
 char **annotateNodeName,
 int32 *seqNum,
 int32 *expiryTime
)

The returned data may be used to discriminate between requests,
ascertain the order in which requests were sent, or to determine if the
time for a response has expired. The parameters are :
Chapter 5 83

Annotation Servers
Receiving Annotation Requests
• circuitName is the address of a pointer to a string containing the
name of the circuit that issued the request. Storage for this string is
allocated from the heap and must be freed by calling free(3c).

• annotateNodeName is the address of a pointer to the name of the
Annotate node generating the annotation request. It is a string of the
form: moduleN.compoundP…compoundT.annotateX . Storage for this
string is allocated from the heap and must be freed by calling free(3c).

• seqNum is incremented by the circuit for each annotation request
generated by that circuit. This number may be useful in preserving
the order in which requests are processed.

• expiryTime is the time and date by which a response is needed, if the
response is to be included in the Annotate node’s output. This time_t
type value is passed across from the originating Annotate node’s Time
Limit parameter. If the response arrives at the Annotate node after
the expiryTime, it is discarded by the engine.

The engine makes no allowance for the round-trip network transit delays
involved in delivering the request to the annotation server and returning
the response back to the Annotate node. It is the responsibility of both
the circuit designer and the annotation server developer to allow for any
delays.

The annotation server must respond to every request, even if the
expiryTime has passed. This allows the API to release resources that
are allocated for each request. If a valid response cannot be provided
before expiryTime has been reached, then a null response can be sent.
84 Chapter 5

Annotation Servers
Constructing an Annotation Response
Constructing an Annotation Response
Constructing an annotation response requires that you assemble an
EV_AttrValue structure containing the data to be returned. You then
call ANNO_sendResponse() passing a pointer to this EV_AttrValue
structure, the connection ID, and the request ID. The connection ID and
the request ID (supplied as the cid and requestId parameters to your
callback function) ensure that the response is returned to the Annotate
node that issued the request, and that the response is identified with a
particular request from that node.

You must not change any of the contents of the original request
(annoRequest) and you must not pass the request pointer back as a
response. Instead, you must construct a new response using the
EV_parseFormattedValue() API function.

Alternatively, if you do not want to send a response, a null response can
be sent as described below.

NOTE Every request received by the server must be responded to by calling
ANNO_sendResponse(). Resources consumed by the request are freed
when a response is sent.

EV_parseFormattedValue() takes an ECDL-like string representation
of a list and assembles an EV_AttrValue structure. The simplest way to
construct the string representation is to use sprintf(3S):

EV_AttrValue *responseList;
char responseString[1000];
char text[] = "Hourly rate";
real64 salary = 1.23;

sprintf(responseString, "[\"%s\", %f]", text, salary);
rc = EV_parseFormattedValue(responseString, &responseList);
if(rc == ECS_SUCCESS)

ANNO_sendResponse(conId, reqId, responseList);
else

ANNO_sendResponse(conId, reqId, 0);
EV_deleteValue(responseList);
Chapter 5 85

Annotation Servers
Constructing an Annotation Response
For sprintf(3S) formats, refer to Table 5-1 on page 71, and details of the
appropriate data type.

Note that EV_parseFormattedValue() takes the address of an
uninitialized pointer to an EV_AttrValue structure. Storage is allocated
to the structure by EV_parseFormattedValue() and must be released by
calling EV_deleteValue() when it is no longer needed.

Sending a Null
Response

If a meaningful result cannot be returned before expiryTime has been
reached, or an error occurs (in the example above, if rc is not equal to
ECS_SUCCESS) then a null response can be sent by calling
ANNO_sendResponse() with a value of 0 (zero) for the annoResponse
parameter. This allows the API to clean up the corresponding request,
preventing memory leaks.

Testing a Circuit with an Annotate Node

A circuit using an Annotate node can be tested in the ECS Designer in
Simulate mode. You cannot run the ECS Designer with an annotation
server to perform “live” annotation—you can only run “live” annotation
with the ECS Engine. Therefore, you must simulate annotation requests
and responses using event logs. The ECS Designer has a facility to
capture annotation requests to a log, and to read annotation responses
from a log.

To use the ECS Designer to simulate annotation you can take one of two
approaches:

• Run the circuit in the ECS Engine connected to the real annotation
server and collect the input log. This log is then used as both the
input and annotation log. When used as an input log, only the events
are read (the annotation responses are ignored), and when used as
the annotation log, only the annotation responses are read (the events
are ignored).

• Run the circuit in the ECS Designer’s simulation mode using an input
log designed for testing the circuit (this can be either hand crafted or
an event log from a running ECS Engine). Capture the annotation
requests and manually alter them to be annotation responses. You
can now simulate the annotation circuit in the ECS Designer.

The first approach is more appropriate when you are trying to diagnose a
circuit design problem with an existing annotation server. The second
approach is generally preferred because it is quicker and simpler, and
86 Chapter 5

Annotation Servers
Constructing an Annotation Response
does not require the ECS Engine or an annotation server. Both
approaches are described in detail in the following sections.

Generating an Annotation Log using the ECS Engine

1. Using the ECS Designer, design and build a circuit that performs
annotation. In this example, the circuit is called anno.ecs.

2. Select Circuit:Compile from the ECS Designer menu to convert the
circuit to a form that can be loaded by the engine. The compiled
circuit is called anno.eco.

3. Start an ECS Engine and load the circuit, naming it “simulate”. You
must give it the name “simulate” if you want the resulting logs to be
usable by the ECS Designer. For example:

ecsd
ecsmgr -circuit_load simulate anno.eco

4. Enable input logging on the circuit and enable the circuit. For
example:

ecsmgr -log_events_in on
ecsmgr -enable simulate

5. Start your annotation server(s).

6. Fire events at the ECS Engine – either live events or an event log
sent using the ecsevgen utility.

7. When your input events have finished, and you have received all of
your annotation responses, shut down the ECS Engine and your
input and annotation event log is in the $OV_LOG/ecs/1/ecsin.evt0
log file just generated.

8. Rename the event log to ecsin.evt so you can read it in the ECS
Designer.

9. Start the ECS Designer and load the circuit.

10.Switch to Simulate mode by selecting the [Simulate] button.

11.Load the ecsin.evt log as the input log by selecting Simulate:Load
Input Events. Inspection should show that it contains only normal
events, not the annotation responses.

12.Load the ecsin.evt log as your annotation log by selecting
Simulate:Load Annotation Events. Inspection should show that it
contains only annotation responses.
Chapter 5 87

Annotation Servers
Constructing an Annotation Response
13.Start the simulation by selecting [Run]. The input events should
enter the circuit and generate annotation requests. These requests
will match the appropriate responses out of the annotation responses
log, but they will not enter the circuit until the transit delay has
expired.

14.If annotation responses arrive after the last event in the input log,
select the Step-by [Time] button to see the responses enter the
circuit. You may find it convenient to set a breakpoint on the
Annotate node and set a large value for the time.

Generating an Annotation Response Log using the ECS Designer

It is frequently quicker and easier to use the ECS Designer to generate
annotation requests, and to hand craft these into annotation responses.

The great advantage of this approach is that you can develop and
simulate circuit containing Annotate nodes before building the
annotation server. Once you know how the circuit and the annotation
server should operate, you can construct the annotation server to provide
the responses required.

1. Using the ECS Designer, design and build a circuit.

2. Switch to Simulate mode by selecting the [Simulate] button.

3. Load input events by selecting Simulate:Load Input Events from
the menu.

4. Run a simulation using these input events by selecting the [Run]
button. The circuit generates annotation requests, though there are
no annotation responses to match them.

5. Save the output log by selecting Simulate:Show Output Events->
Save. The output log contains the annotation requests.

6. Using a text editor, change all occurrences of % anno:request: to %
anno:response:. This will change the requests to matching
responses. Now you can hand craft the annotation responses to match
what you expect your annotation server to reply. If you want to
simulate transit delays between the request and response then add
the number of seconds delay to the end of the line. For example, to
simulate a 12 second transit delay before the response:

% anno:response:12

Save the response log.
88 Chapter 5

Annotation Servers
Constructing an Annotation Response
7. Reset the simulation by selecting the [Reset] button, and load the
response log by selecting Simulate:Load Annotation Events.

8. Start the simulation by selecting the [Run] button. The input events
should enter the circuit and generate annotation requests. These
requests will match the appropriate responses out of the annotation
responses log, but the responses will not enter the circuit until the
transit delay has expired.

9. If annotation responses arrive after the last event in the input log,
select the Step-by [Time] button to see the responses enter the
circuit. You may find it convenient to set a breakpoint on the
Annotate node and set a large value for the time.
Chapter 5 89

Annotation Servers
Constructing an Annotation Response
90 Chapter 5

6 Drill Down
91

Drill Down
This chapter discusses the drill environment in HP OpenView Event
Correlation Services Engine. The process is illustrated with two simple
approaches that highlight the issues involved.

• “Logging of Drill Information” on page 95

• “ECDL built in functions for capturing the drill information” on
page 96
92 Chapter 6

Drill Down
Drill Environment
Drill Environment
In ECS every circuit is associated with a output stream. A circuit can be
enabled on more than one stream at a time.

Figure 6-1 Drill Record

Every stream has associated with it two files, namely

• drill information log

• drill event log

The drill information for an event flowing through a circuit is specified
by the circuit designer within the node’s condition parameter. The engine
stores this information in either an application specified Correlation log
(drill information log) or the default Correlation log. The events which
are refered from within the drill information are logged seperately in
drill events log. Like Correlation log, drill event log can be application
specified or default.

Drill logging can be enabled or disabled with the help of ecsmgr
commands as listed below:

By default ECS uses the following files to log correlation info and drill
event.

$OV_LOG/ecs/<instance>/drill_info.log0 and
$OV_LOG/ecs/<instance>/drill_event.log0.

By default logging is disabled and can be enabled through ecsmgr
interface.

ECS Engine

Stream 1

Stream 2

Stream 3

Circuit 1

Circuit 2

Output Events

Output Events
Chapter 6 93

Drill Down
Drill Environment
The application can also register their own drill logs through ecsmgr
interface. Drill logging for a stream by default is disabled.

Create a stream To create a new stream :

ecsmgr -create_stream stream_name

where stream_name is the name of the stream created by user.

Enable default drill
logging

ecsmgr -log_drill_info on

ecsmgr -log_drill_event on

Enable drill
logging on new
stream

ecsmgr -log_drill_info stream stream_name on

ecsmgr -log_drill_event stream stream_name on

Register drill log
files on new
stream

ecsmgr -stream stream_name -drill_info_log <path>

ecsmgr -stream stream_name -drill_event log <path>

Drill Record Format

Drilldown and drillup information is logged in drill information log in
the following format

ueid : ueid -> relation -> relation.... : ueid -> relation ->
relation :: ueid ->relation -> relation : ueid ->
relation -> relation

Drill events are logged in the drill event log in the following format

ueid : textevent :: ueid : textevent :: ueid : textevent

The Correlation log will have the complete drill information of an event
logged as a tree. Drill information is separated by the first ‘:’. A
correlating event and its relationship forms a corrleation tuple. The
correlated tuples are seperated by ‘:’ and event and relationship are
separated by “->”. The drill-up and drill-down information are seperated
by ‘::’. In the specified drill information format the drill-up information
will always follow the drill-down information. For example

e1:e2->relation_string:........::e5->relation_string

where e1,e2 etc are the unique event-ids generated by the ECS engine
during the event flow.
94 Chapter 6

Drill Down
Drill Environment
In the above example , e1 is the correlated output event whose drill
information follows after the first ‘:’. The tuples e2, relation_string can
repeat seperated by ‘:’. There may be no drill information for e1 which
will mean that e1 is output without being correlated or the circuit
designer did not choose to put any drill information for this event. the
tuples after ‘::’ specify drill-up information. For example , e1 is a
correlating event of e5 and any other events that follow.

An event in the drill event log will be logged exactly once. The
relation_string can be any arbitrary alpha-numeric string. This string is
provided to indicate the relationship of e1 with event e2.

The user can specify the relationship string which may best indicate the
relationship. For example e1:e2,”suppressed” .

The engine will create and maintain a datastructure on a per event basis
to record the drill information tree. The memory will be free once the
event is either deleted or output.

Logging of Drill Information

The Drill information tree will be logged in the Correlation log and the
events refered from the drill information will be logged in the drill event
log. The engine will itself provide a default Correlation log and a default
drill event log.

Correlation and drill event logs can be registered for a stream. Both
these logs can be registered independently. An application may also
choose to work with default logs.

The physical logging of both the logs will be done by the engine at the
time of either outputting the event to the stream or deleting the event
from the engine .
Chapter 6 95

Drill Down
Drill Environment
ECDL built in functions for capturing the drill
information

The drill information for an event can be added to an event from within
any node within the node’s condition parameter.

append <event 1> <event 2> <relation string>

The above function is used to add to correlation information to an event.
It takes the correlated event, correlating event and the relation string as
parameters. In the above example event 1 is the correlated event and
event 2 is the correlating event.

A drill information can be added more than once to an event. A
correlation tuple can be appended to an event more than once by two
nodes or two different circuits. For example if the engine puts

e1:e2->string 1->string 2:......

e2 correlates to e1 with the relationship “string 1” in one circuit and in
another circuit e2 correlates to e1 with another relationship specified as
in “string 2”.

There maybe conditions when the user is sure that the event is going to
be stored within the circuit forever then it is required to flush this event
to guarantee the singleness of the log. The general format of this API is

flush <event>

where event is the event that is to be logged.

Since the output streams cannot be determined in advance for an event
being flushed, the drill information of the event will be logged to all the
streams where the circuit is enabled.

NOTE flush can also be used on events if there cannot be any more appends
happening with the event. This will force drill logging of the event. As
flush forces drill logging for an event, using append with the event
already flushed should be avoided. If used it will result in duplicate
correlation records (in Correlation log files) for the event
96 Chapter 6

Drill Down
Drill Environment
Drill API

Drilling APIs are provided for easy, off-line reading of drill log files.These
APIs call drill logging functions for reading, if they are available.
Following are the APIs used for reading of the drill logs.

EDI_initDrilling

Function int32 EDI_initDrilling()

It initializes drill log browsing. This should be the first function called by
drilling API called by any application. This should be called only once,
even for browsing multiple drill log files.

Input Parameters None

Return
Parameteres

ECS_SUCCESS, if successful

EDI_INIT_ALREADY_DONE, if alsready intialized

EDI_MALLOC_FAILED, if memory allocation failed

WARNING The above function must be called before using any other
drilling functions.

EDI_openDrillLog

Function int32 EDI_openDrillLog

 (char *drillInfoLog,

 char *drillEventLog

)

It opens drill log files specified by the user. The log files should be in ECS
engine’s drill log format.

One drill log file can be opened by passing NULL for the other
parameter. Also, multiple files can be opened by calling this many times
in the same session.

If both drill log files are mentioned, they should be related ie, should
have been created on the same stream and/or engine.
Chapter 6 97

Drill Down
Drill Environment
Input Parameters drillInfoLog - drill info log file name

drillEventLog - drill event log file name

Return Parameters id, if succeeful id >=0 ,else one of the following errors is returned

EDI_INITNOTDONE, if drilling is not intialized

EDI_INVALID_PARAMS, if both drillInfoLog and drillEventLog are null

EDI_MALLOC_FAILED, if memory allocation failed

EDI_CANNOT_OPEN_FILE, if log files could not be opened

EDI_PARSE_ERROR, if the log files have invalid format

EDI_INTERNAL_ERROR, in case of other errors

EDI_closeDrillLog

Function int32 EDI_closeDrillLog(int32 id)

Closes previously opened drill log files

Input Parameters id - drilling id (id returned by EDI_openDrillLog)

Return Parameters ECS_SUCCESS, if successful

EDI_INITNOTDONE, if drilling is not initialized

EDI_INVALID_PARAMS, if the id is invalid

EDI_resetDrilling

Function int32 EDI_resetDrilling()

Resets and cleans-up drill log browsing session. It closes all opened drill
log files and sets the drilling session to the initial state.

Return Parmeters ECS_SUCCESS
98 Chapter 6

Drill Down
Drill Environment
EDI_getDrillInfo

Function int32 EDI_getDrillInfo

 (int32 id,

 EDI_UEID *ueid,

 char **drillInfo

)

Reads the drill information from drill info log file. The memory for the
drill info record in allocated in the drillInfo parameter and returned to
the calling application. The application has to free the memory returned
in drillInfo parameter.

Input Parameters id - drilling id

ueid - ueid of the event whose record has to be read

drillInfo - pointer to hold the record

Return Parameters size of drill record (>=0, if successful)

EDI_INVALID_PARAMS, if id is invalid or drillInfo is invalid

EDI_INITNOTNODE, if drilling is not intialized

EDI_BAD_PARAMETER, if ueid is not valid

EDI_INTERNAL_ERROR, if any other error

EDI_getNextDrillInfo

Function int32 EDI_getNextDrillInfo

 (int32 id,

 EDI_UEID *ueidBase,

 EDI_UEID *ueidNext,

 char **drillInfo

)

Reads the drill information record from drill info log file. The memory for
drill info record is allocated in the drillInfo parameter. The application
has to free the memory returned in drillInfo parameter.
Chapter 6 99

Drill Down
Drill Environment
Unique event id of the event whose record is read is returned in ueidNext
parameter. This can be used for sequential reading of drill info records.

Input Parameters id - drilling id

ueidBase - ueid of the event whose next record has to be read

ueidNext - ueid of the event whose record is read

drillInfo - pointer to hold the record

Return Parmaters size of drill record (>=0, if successful)

EDI_INVALID_PARAMS, if id is invalidor drillInfo is invalid

EDI_INITNOTNODE, if drilling is not intialized

EDI_BAD_PARAMETER, if ueid is invalid

EDI_EOF, if end of fifle is reached

EDI_INTERNAL_ERROR, if any other error

EDI_getDrillEvent

Function int32 EDI_getDrillEvent

 (int32 id,

 EDI_UEID *ueid,

 char **drillEvent

)

Reads the event from drill event log file. The memory for drill event
record is allocated in the drillEvent parameter. The application has to
free the memory returned in drillEvent parameter.

Input Parameters id - drilling id

ueid - ueid of the event whose record that has to be read

drillEvent - pointer to hold the record

Return Parameters size of drill event record(>=0, if successful

EDI_INVALID_PARAMS, if id is invalid or drillEvent is invalid

EDI_INITNOTDONE, if drilling is not intialized
100 Chapter 6

Drill Down
Drill Environment
EDI_BAD_PARAMETER, if ueid is invalid

EDI_INTERNAL_ERROR, if any other error

EDI_getNextDrillEvent

Function int32 EDI_getNextDrillEvent

 (int32 id,

 EDI_UEID *ueidBase,

 EDI_UEID *ueidNext,

 char **drillEvent

)

Reads next event from drill event log file. The memory for drill event log
is allocated int eh drillEvent parameter.The application has to free the
memory returned in drillEvent parameter.

Unique event id of the event whose record is read is returned in ueidNext
parameter. This can be used for sequential reading of drill info records.

Input Parameters id - drilling id

ueidBase - ueid of the event whose next record has to be read

ueidNext - ueid of the event whose record is read

drillEvent - pointer to hold the record

Return Parameters size of drill event record(>=0), if successful

EDI_INVALID_PARAMS, if id is invalid or drillEvent is invalid

EDI_INITNOTNODE, if drilling is not intialized

EDI_BAD_PARAMETER, if ueid is invalid

EDI_EOF, if end of file is reached

EDI_INTERNAL_ERROR, if any other error
Chapter 6 101

Drill Down
Drill Environment
Custom Logging framework

By default, the drill logging of events takes place through flat files. The
user may create a mechanism to capture drill information according to
his needs, for example to use a database.

The custom drill logging mechanism can be supplied to ECS using a
shared library. If specified all drill logging will happen by the calling
function from the specified framework. The library is placed under
$OV_CONF/ecs/drilllog directory and with libEDICL.sl name.
This library should contain user functions for initializing, resetting,
storing drill info and storing drill event.

The custom logging framework is initialized by calling the function
EDI_INITIALIZE_FNT from the shared library. This function should
return the other three custom logging functions to the engine. These
functions get called on a per event basis.

The custom logging functions are listed below along with their
functionality.

EDI_INITIALIZE_FNT

Function int32

EDI_INITIALIZE_FNT

 (int32 instance,

 EDI_Definition *defn

)

Initializes the custom logging framework. This is the first function called
by engine in the custom logging framework. Typically all initialization
required for custom logging should be done in this function. This is
called only once by an engine.

User has to supply other logging function in defn parameter like,

 defn->writeDrillInfo = mywriteDrillInfo;

 defn->writeDrillEvent = mywriteDrillEvent;

 defn->reset = myreset;

where mywriteDrillInfo, mywriteDrillEvent and myreset are user
functions for custom logging.
102 Chapter 6

Drill Down
Drill Environment
Input Parameters engine instance - the instance number of the engine calling
the function.

defn - custom logging definition structure. Contains pointers to custom
logging function.

Return Parameters ECS_SUCCESS, if successful

ECS_ERROR, in case of error

reset

Function int32 reset (int instance)

resets the custom logging framework. This is the last function called by
engine to reset custom logging. Typically, all reset operation including
closing of files should happen here. This is called only once by an engine.

Input Parameters engine instance - the instance number of the engine calling
the function.

Return Parameters ECS_SUCCESS, if success

ECS_ERROR, in case of error

writeDrillInfo

Function int32 writeDrillInfo

 (int32 instance,

 int32 nstrm,

 char** streamName,

 EDI_UEID *ueid,

 int32 nDrillDown,

 EDI_CorrelInfo *drillDown,

 int32 nDrillUp,

 EDI_CorrelInfo *drillUp

)

This user supplied function is used for storing drill information of an
event. Event’s unique id is passed in ueid parameter and drill down and
Chapter 6 103

Drill Down
Drill Environment
drill up informations are contained in drillDown and drillUp parameters.
The streams which output the event are passed in streamName
parameter.

Unlike drilling APIs, this function should not freeup memory of any
parameter. If parameters are freedup then the behaviour is undefined.

NOTE StreamNames parameter will contain only the names of streams on
which drill info logging is enabled or NULL. A stream name of NULL
indicates engine’s default drill info logging is enabled.

Input Parameters instance - engine’s instance number

nstrmNames - number of stream names contained in strmNames
parameter

strmNames - array of stream names, where the event is output

ueid - events unique event id

nDrillDown - number of drilldown info contained in drillDown param

drillDown - array of drilldown info for the event

nDrillUp - number of drillup info contained in drillUp param

drillUp - array of drillup info for the event

Output Parameters ECS_SUCCESS, if successful

ECS_ERROR

writeDrillEvent

Function int32 writeDrillEvent

 (int32 instance,

 int32 nstrm,

 char** streamName,

 EDI_UEID *ueid,

 char *textevent

)
104 Chapter 6

Drill Down
Drill Environment
This user supplied function is used for storing text format of an event.
Event’s unique id is passed in ueid parameter and text format of the
event is contained in textevent parameter. Parameter streamname
contains the list of streams where the event has to be stored. This list
may include streams that did not output the event. This is required to
preserve the completeness of drill logs. (If an event A has participated in
the correlation of another event B which is output on a stream S, B’s drill
information is logged in stream S’s log file. Both events are logged to drill
event log, even though A is not output on S, as drill information has
reference to both).

Unlike drilling APIs, this function should not freeup memory of any
parameter. If parameters are freedup then the behaviour is undefined.

NOTE StreamNames parameter will contain only the names of streams on
which drill event logging is enabled or NULL. A stream name of NULL
indicates engine’s default drill event logging is enabled.

Input Parameters instance - engine’s instance number

nstrmNames - number of stream names contained in strmNames
parameter

strmNames - array of stream names, where the event is output

ueid - events unique event id

textevent - text format of the event.

Return Parameters ECS_SUCCESS, if drill event is successfully logged

ECS_ERROR, in case of error.
Chapter 6 105

Drill Down
Drill Environment
106 Chapter 6

7 ECDL Enhancments
107

ECDL Enhancments
This chapter discusses the ECDL enhancements in HP OpenView
Communications Event Correlation Services Engine. The following
features are described:

• “Circuit Serialization” on page 109

• “Multiple Event Creation” on page 111

• “Tracing and Logging” on page 114
108 Chapter 7

ECDL Enhancments
Circuit Serialization
Circuit Serialization
The Engine performs specific correlation actions on an event stream,
resulting in a stream of correlated events. Events emitted from the
engine can be fed to other circuits. Events emitted from one circuit can be
fed to the input node of other circuits. This feature of feeding of events
emitted from the engine to othere circuits is called Circuit Serilaization.

The events that are to be fed back into the engine are done using the
feed() API. The feed() API is provided to identify the events that will
be sent to other circuits. feed() is provided to be used in the
configuration of any node. The feed() API would have representation as
below:

feed [true/false]

where <event> is a valid event

The second argument to the feed() API is optional. The default value is
“false” . In this case the event is fed back to all other circuits except the
source circuit.

If the argument is”true” then the event is fed back to all circuits
including the source circuit.

To ease the use of the feed() API, two new APIs have been added

• feedall <event>

• feedothers <event>

The feedothers () API feeds back events to all circuits in the same
engine excluding the source circuit which sends the event.
Chapter 7 109

ECDL Enhancments
Circuit Serialization
Figure 7-1 Circuit Serialization using feedothers API

The feedall () API feeds back events to all the circuits in the same
engine including the source circuit which sends the event.

Figure 7-2 Circuit Serialization using feedall API

When the flagToSrcCircuit is set to “true”, proper conditions must
be given to avoid the continous feedback of events into the source circuit.
This could lead to an infinite loop being created.

The designer can load only one circuit at a time and hence the circuits
with circuit serialization cannot be simulated in the designer.

circuit 1

circuit 2

circuit 3

ECS
Engine

feedothers

circuit 1

circuit 2

circuit 3

ECS
Engine

feedall
110 Chapter 7

ECDL Enhancments
Multiple Event Creation
Multiple Event Creation
ECS supports the creation of multiple events from a single create
node.The list of events is passed as a tuple list to the create node. The
create_events API is of the form

create_events [(encoding type,event syntax), (encoding type,event
syntax),]

Example 7-1 create_event ECDL function

create_events
[(“ber”,1.3.6.1.4.1.11.2.2.6.6),(“ber”,Trap_PDU)]

The create_events returns a list that is modified and then sent to the
engine.This API is used in the create spec of the create events. The
create spec of the create node to create multiple events may look like the
following:

let

 --define a list if tuples to create events using
create_events

 val evtype = [(“ber”,1.3.6.1.4.11.2.2.6.6),
(“ber”,”Trap-PDU”), (“mdl”,”SimpleEvent”)]

 -- Create events by passing evtype as parameter

 -- the returned value is assigned to events, which will
contain [cmip event,snmp event, mdl event]

 val events = create_events evtype

 -- modify the cmip event, for simplicity alter spec is left
out

 val _ = (nth 1 events) alter (......)

 -- modify the snmp event, for simplicity alter spec is left
out

 val _ = (nth 2 events) alter (......)

 -- modify the mdl event, for simplicity alter spec is left
out

 val _ = (nth 3 events) alter (......)

 -- return the created events to engine
Chapter 7 111

ECDL Enhancments
Multiple Event Creation
in

 events

end

The statement events in the above example denotes that the engine list
is stored as a whole and is returned to the engine.

Modification of Event List

The event list has to be modified before it is fed into the engine. There
are a set of ECDL functions that can be used to perform the modification.

• foldl that has the iteration from left to right

• foldr that has the iteration from right to left

The events that have been created in the previous section can be
modified as shown below:

let

 -- define a list of tuples to create events using
create_events

 val evtype =
[(“ber”,1.3.6.1.4.11.2.2.6.6),(“ber”,”Trap-PDU”),(“mdl”,”Simpl
eEvent”)]

 --Create events by passing evtype as parameter

 -- the returned valuse will is assigned to events, which will
contain [cmip event, snmp event,mdl event]

 val events = create_events evtype

 -- function for iterating over elements in the event list

 fun loopThru element el_list =

 let

 val syntax = element “event_syntax”

 in

 choose syntax of

 1.3.6.1.4.1.11.2.2.6.6 => element alter (....)

 -- alter spec for cmip events

 |”Trap-PDU” => element alter (....)
112 Chapter 7

ECDL Enhancments
Multiple Event Creation
 -- alter spec for snmp events

 | “SimpleEvent” => element alter (....)

 -- alter spec for mdl events

 end

 end

 -- modify new enents

val_ = foldl loopThru 0 events

 --return the created events to engine

in

 events

end

Engine Flow

Once the events have been modified they have to be sent to the engine.
The ECS engine will further enhance it, and then outputs it. The order in
which the events are output is in the same order in which it appears in
the list.

If the create spec returns an event list [ev1,ev2,ev3,ev4]

• ev1 will be sent out of create node first. This event travels through list
of nodes connected to output port of the create node till it reaches a
strorage (in unless node, table node etc) or it reaches an output node.

• ev2 is taken for processing and it is sent out of create node.

• this flow continues till end of list is reached in this case ev4.
Chapter 7 113

ECDL Enhancments
Tracing and Logging
Tracing and Logging
The ECS Engine can log events as they arrive at the engine, as they
leave a specific stream or a correlation circuit. Events that fail to enter a
circuit within a stream can also be logged. Each Event log contains the
ASCII representation of the logged events in the form that can be edited
and displayed using text editing tools. Error messages can be logged
from the ECS Engine to the engine log file, and trace the internal
operations of the ECS Engine to the engine trace file.

The ECS Engine maintains two logs to

• Trace Log

• Engine Log

The Trace log captures the following kind of information

• Automatic logging of circuit functionality such as event flow, event
and node creation and deletion.

• String output

The engine log captures the following types of information

• Automatic logging of Errors and Warnings for the engine operations.
In case of errors from within a node the error messages with the
decoded events are also logged.

• Audit logging as specified by the Circuit Designer. Audit log can be
specified in any node using the ECDL built-in function. Refer to the
HP OV ECS Designer’s Reference Guide for more information.

In a real time scenario, there could be a situation where in the user feels
the need to check if the circuit is working suitably. The user can then
debug the circuit. The contents of the node can be extracted using the
function System.node_dump.

For Example a node dump within a Table node will dump the table
persistent data available at the time of a trigger. Similarly the Combine
node would generate all the events queued up waiting for combine.

The System.node_dump does not take any parameters. It performs a
node level dump and generates node specific data into the Trace log.

The System.node_dump could look like
114 Chapter 7

ECDL Enhancments
Tracing and Logging
let

 val _ = System.trace("BEGIN_LOG_&_TRACE")

 val _ = System.node_dump()

 val _ = System.trace("END_LOG_&_TRACE")

in

 false

end
Chapter 7 115

ECDL Enhancments
Tracing and Logging
116 Chapter 7

8 ECS Classes
117

ECS Classes
C++ Class Library
C++ Class Library
The C++ class library provides the same functionality as provided by the
Annotation API and event I/O API through the C++ interface. The
interface provided is at a higher level than that provided by the
corresponding C interfaces. In particular connection management it is
handled transparently by the API.

The API consists of the following classes:

• ECS

• ECS_AnnoData

• ECS_AnnoFilter

• ECS_AnnoRequest

• ECS_Annotater

• ECS_AttrValueList

• ECS_Engine

• ECS_Event

• ECS_EventFilter

• ECS_EventReceiver

• ECS_Reader

See the relevant reference pages for further information.

Libraries

All of these classes are in a library called:

 UNIX

$OV_MAIN/lib/libECSAIO.a

 Windows NT

%OV_MAIN_PATH%\lib\libECSAIO.lib

The Windows NT library also requires libecsio.dll, normally included
as part of the ECS Engine runtime.
118 Chapter 8

ECS Classes
C++ Class Library
Header Files

Typical header files you need are illustrated by the following precompiler
source code:

#ifdef _WIN32
#include <WINSOCK.H>
#include <stdio.h>
#endif

#include <ECS/ECS.hh>

#ifndef _WIN32
#include <unistd.h>
#endif
#include <stdlib.h>

Sample Source Code

A sample of C++ source code will be found in the following locations:

UNIX

$OV_PRG_SAMPLES/ecs/anno_api

Windows NT

%OV_PRG_SAMPLES%\ecs\anno_api
Chapter 8 119

ECS Classes
C++ Class Library
Event Input

An ECS_Event object is a process you can construct to input events into
the ECS engine. An ECS_Event object is a wrapper around the event
PDU (Protocol Data Unit), the encodingType, and the eventSyntax.
There are various constructors and ancillary methods you can use to
create an ECS_Event object and to set its limits.

Next you instantiate an ECS_Engine object, passing to it the instance
number of the ECS Engine with which you want to communicate. Finally
to send the event, you call the ECS_Engine processEvent() method,
passing to it the ECS_Event object containing the event to be sent.

See the sample program code in:

 UNIX

$OV_PRG_SAMPLES/ecs/anno_api/ecsin.cc

 Windows NT

%OV_PRG_SAMPLES%\ecs\anno_api\ecsin.cc

Event Output

The process that receives events generally sits in a loop calling
ECS::poll(). Whenever an event is output from the ECS Engine, a
callback method that you supply is called. The callback is constructed by
subclassing the ECS_EventReceiver class and overriding its
handleEvent() method. Usually, your handleEvent() method will
extract the PDU from the passed in ECS_Event object by calling its
getPdu() method, and pass the PDU on.

See the sample program code in:

 UNIX

$OV_PRG_SAMPLES/ecs/anno_api/ecsout.cc

 Windows NT

%OV_PRG_SAMPLES%\ecs\anno_api\ecsout.cc
120 Chapter 8

ECS Classes
C++ Class Library
Annotation

To construct an annotation server, you subclass the ECS_Annotater class
and override its receiveRequest() method. Inside your
receiveRequest() method you call getData() to extract the annotation
request in the form of an ECS_AnnoData object. You then use the
typeOfNthItem() method on the ECS_AnnoData object to determine the
data type of each indexed element. Once you know the data type of an
element, you can call getInteger(), getReal(), getBool(),
getString(), etc. as appropriate, to retrieve a pointer to the data itself.

After using the data to perform the database query (or whatever the
annotation server’s primary task is) you can construct an appropriate
response by instantiating another ECS_AnnoData object (do not try to
reuse the request object) and calling its setValue() method once for
each element in the response. Finally, call the respond() method to send
the response to the engine.

See the sample program code in:

 UNIX

$OV_PRG_SAMPLES/ecs/anno_api/anno.cc

%OV_PRG_SAMPLES%\ecs\anno_api\anno.cc

 Windows NT

Filtering

Both event output and annotation can make use of filters to constrain
the events or requests that they receive.

The filter will apply to the output of all engines with which the instance
is registered. If multiple filters are required then separate instances
must be used.

For example, to separate events with a syntax of “syntax1” from those
with “syntax2” in an event output process:

ECS_EventFilter filter1(“mdl”, “syntax1”);
ECS_EventFilter filter2(“mdl”, “syntax2”);

ECS_EventReceiver rec1;
ECS_EventReceiver rec2;

rec1.setFilter(filter1);
Chapter 8 121

ECS Classes
C++ Class Library
rec1.setFilter(filter2);

ECS_Engine engine(1);

engine.addEventReceiver(rec1);
engine.addEventReceiver(rec2);

ECS::mainloop();

rec1 will receive events with event syntax “syntax1” and rec2 will receive
events with “syntax2”.
122 Chapter 8

Glossary
Abstract Syntax Notation 1
(ASN.1) An OSI standard related
to the Presentation Layer where
the abstract representation of the
data is independent of its physical
encoding. It is specified in ISO/IEC
8824, X.208.

agent A program or process
running on a remote device or
computer system that responds to
management requests, performs
management operations, and/or
sends event notifications.

annotation API A set of
application program interface
functions and data structures that
supports the transfer of data
between an external annotaton
server and one or more Annotate
nodes in an ECS circuit.

annotation server A user
supplied server that receives a
request from an Annotation node
within a correlation circuit,
performs some action, and returns
a response to the Annotate node.
The action performed by the
annotation server may involve
information extracted from events
in the circuit, and the information
returned is typically obtained
external to the ECS Engine and
the annotation server.
arrival time The time an event
arrives at the ECS engine in
Universal Coordinated Time
(UTC).

ASCII American Standard Code
for Information Interchange. A
standard used by computers for
interpreting binary numbers as
characters.

ASN.1 Abstract Syntax Notation
1.

attribute An object characteristic
or property that describes the
current state of the object and
which has a unique identifier by
which it is accessed. In ECS, for
example, the “eventTime”
attribute of a CMIP event, or the
“Rate” attribute of a Rate node.
See event attribute; identifier;
correlation node attribute.

attribute-value pair The
combination of an attribute
identifier and the value of that
attribute for a specific object. In
ECS, attribute-value pairs are
represented as key-value pairs in
an ECDL dictionary. See also
key-value pair; dictionary.
123

Basic Encoding Rules (BER)

Defines how ASN.1 data types are
encoded for transport on the
network.

breakpoint A point in a program
at which execution is halted so
that the program’s status, contents
of variables and other factors can
be examined. In the ECS Designer,
in simulation mode, breakpoints
are locations in a correlation
circuit where event processing is
halted to allow for manual
intervention.

canvas The working area of the
ECS Designer screen. This is
where you place, connect, and
configure correlation nodes to
create your correlation circuit.

CCITT The International
Telegraph and Telephone
Consultative Committee, an
international organization
concerned with proposing
recommendations for international
communications. Replaced by the
International Telecommunications
Union, Telecommunications
(ITU-T) in 1992. See International
Telecommunications Union,
Telecommunications (ITU-T).

circuit See correlation circuit.
124
CMIP See Common Management
Information Protocol (CMIP).

Common Management
Information Protocol (CMIP) A
protocol for exchanging network
management information in an
OSI environment (ISO/ITU-T
X.710). CMIP communicates
management information between
a manager and an agent. CMIP
allows a manager to retrieve (get)
management information from, or
to alter (set) management
information on an agent. CMIP
also allows the manager to create
and delete instances of an object
managed by the agent, or perform
an action on an object. An agent
can also emit unsolicited messages,
called notifications, to alert
managers of noteworthy local
conditions.

component event An event that
is combined with other events to
create a new event. In ECS, a
composite event is composed of two
or more component events. See
composite event.

composite event In ECS, a
composite event consists of a
structured aggregation of
addressible component events each
of which may be a primitive event,
a temporary event, or a composite

event. A composite event may only
exist within a correlation circuit.
See also component event;
primitive event; temporary event.

compound node A graphical
element that represents a
container of lower level
components. The lower level
components will be displayed when
the user opens the compound node.
In ECS, a correlation circuit
fragment may be encapsulated in a
compound node, hence creating a
new user-defined correlation node.
Compound nodes may be added to
libraries and re-used by reference
or by copy. Compare with primitive
node.

condition (parameter) In ECS, a
condition is an ECDL expression
specified for a correlation node
parameter, usually involving
attribute from an event, that
returns a value used to modify the
behavior of the correlation node.

correlation A procedure for
evaluating the relationship
between sets of data or objects to
determine the degree to which
changes in one are accompanied by
changes in the other. In ECS,
correlation is a process of
analyzing a stream of events by
filtering and detecting patterns
and replacing groups of events
with single events that have
(possibly) higher information
content.

correlation circuit In ECS, a
collection of interconnected
primitive nodes and compound
nodes, configured to perform a
filtering or correlation activity.
Each correlation node is configured
appropriately to the correlation
requirement. The configuration
includes the specification of the
event types, and the allowed
transit delays for those events, to
be accepted from the external
event stream. A correlation circuit
can be loaded into an ECS Engine.

correlation circuit port The
logical connections between a
correlation circuit and the
containing infrastructure where
events enter and leave the circuit.
These ports may be configured to
select a subset of events in the
input event stream, based upon
event encoding type and event
syntax. A single port may be
connected to multiple Source/Sink
nodes, and a single Source/Sink
node may be connected to multiple
circuit ports.
125

correlation engine The ECS
runtime component that reads an
input event stream, decodes the
input events, performs the event
correlation, encodes the output
events and returns the output
events to the event stream. The
event correlation is as specified by
the one or more correlation circuits
loaded into the correlation engine.

correlation node A processing
element in a correlation circuit.
See also compound node; primitive
node.

correlation node attribute A
property of a correlation node that
can be read from another
correlation node. The Count, Rate,
and Table nodes have attributes
(which may be exported by a
containing compound node as
attributes of the compound node).
Attributes are addressed using a
dot notation:
“node_name.attribute_name”.

correlation node parameter In
the ECS Designer, a correlation
node parameter is an ECDL
expression used to configure a
correlation node.

correlation node port One of
possibly many connection points of
a correlation node used to
126
interconnect correlation nodes.
Events enter a correlation node
through a port and leave a
correlation node through a port.
Port types include input, output,
control, reset, and error ports. In
the ECS Designer, ports visually
indicate the sense of the associated
event flow. Optional ports are not
displayed by default.

creation time The time an event
was created. Inside the ECS
Engine creation time is
represented in Universal
Coordinated Time (UTC).

daemon A process that “serves”
clients. Sometimes referred to as a
server.

data store In ECS, a component
of the ECS Engine which holds
user-specified named data items of
an ECDL data type. The entries in
the data store may be referenced
from the ECDL expressions
configured into the correlation
nodes. A correlation circuit may be
associated with one of the possibly
many data stores loaded into the
correlation engine.

data type A particular kind of
data; for example integer,
alphanumeric, boolean, date. In
ECS, data types are ECDL data

types which define the type and
range of values to which an
identifier may be assigned. Every
value in ECDL has a data type, but
the type need not be explicitly
stated. The types range from
simple types such as integers, to
compound types such as
dictionaries and lists, and special
types such as functions and events.

dictionary (data type) In ECS, a
dictionary is an ECDL data type
comprised of an unordered list of
key-value pairs. Any value is
accessed via reference to the key.
Within ECS, an event is treated as
a dictionary with attribute names
being the dictionary keys which
provide access to the attribute
values.

Distributed Management
Platform (DM) HP OpenView
Communications Distributed
Management Platform, the
platform which provides the
infrastructure for implementing
OSI-based management solutions.

DM See Distributed Management
Platform (DM)
duration data type In ECS, a
duration is an ECDL data type
used to represent relative or
elapsed time values. Compare with
time data type.

dynamic parameter A
parameter whose value is
determined during program
execution. In ECS, an ECDL
expression configured for a
correlation node parameter which
is evaluated each time an event
enters the correlation node.
Typically, the value returned by a
dynamic parameter changes for
each event processed.

ECDL See Event Correlation
Description Language (ECDL).

ECS See Event Correlation
Services (ECS).

ECS circuit See correlation
circuit.

ECS Designer The ECS Designer
is the ECS component which you
use to create and test correlation
circuits. The ECS Designer works
in two modes: build mode where
you create correlation circuits, and
simulate mode where you test the
circuits.
127

ECS Engine See correlation
engine.

ecsmgr The command line
program used to administer a
running ECS Engine.

endecode In ECS, a term used to
refer to a combined encoding or
decoding function or capability. An
endecode module is an
architectural entity which provides
encoding and decoding for a
specific type of event.

evaluation license A license
granted for a specific period of time
for the purpose of evaluating ECS.

event An event is an unsolicited
notification such as an SNMP trap,
a CMIP notification, or a TL1
event, generated by an agent
process in a managed object or by a
user action. Events usually
indicate a change in the state of a
managed object or cause an action
to occur. In ECS, an event is
encoded as a primitive, compound,
or temporary event. ECS events
contain header attributes added to
the input events to assist the
processing of the events while they
are in the ECS correlation circuit.
The header attributes are stripped
before the events are transmitted
from the ECS circuit.
128
event attribute A characteristic
property of an event. In ECS, event
attributes are either part of the
internally created event header
common to all event types, or part
of the event body that contains the
input event.

Event Correlation Description
Language (ECDL) The language
used to specify correlation circuits
(node relationships, parameter
expressions, data and fact store
values) for the ECS Engine.

Event Correlation Services
(ECS) The HP OpenView
Communications Event
Correlation Services product.

event encoding type The first
and highest level in the
three-tiered ECS event
classification system. An event’s
encoding type determines the
endecode module that will be used
to translate the event to and from
its native format. For example,
CMIP notifications and SNMP
traps both use the BER encoding
type. ASCII events use the MDL
encoding type, and OVO messages
use the OVO encoding type. See
also event syntax; event type

event flow An ECS circuit
represented graphically as a
circuit schematic consisting of
correlation nodes interconnected
by lines (connections). See also
correlation circuit.

event body The body of an event
depends on the event class. The
body of a primitive event is the
original message, trap or event;
the body of a temporary event may
be empty; and the body of a
composite event consists of other
events.

event header Inside ECS and
event is augmented with
additional information such as the
event encoding type, event syntax,
event type, and event class. This
information is carried in a header
that is attached to the event body.
See also event body.

event I/O API A set of application
program interface functions and
data structures that supports the
input and output of events to and
from the ECS Engine.

event syntax The rules governing
the structure and content of an
event. In ECS, the event syntax is
the second level in the three-tiered
ECS event classification system.
An event’s syntax determines how
the event’s attributes are read and
written. For example, SNMP traps
have an event syntax of Trap-PDU
and CMIP notifications have an
event syntax that evaluates to an
OID identifying the GDMO
notification. ASCII events have a
syntax determined by the MDL
definition used to read and write
them. See also event encoding
type; event type.

event type A classification of an
event into a particular category
that further defines the nature of
the event. In ECS, the event type
is the third and lowest level in the
three-tiered event classification
system. The event type is
represented by the ECS header
attribute “event_type”. For SNMP
traps the event type is the generic
trap number (1-6). The CMIP
event type is the OID of the
notification. ASCII events have an
event type determined by the MDL
definition used to read and write
them. See also event encoding
type; event syntax.

expiry time Annotation requests
are valid for a limited time,
determined by the Annotate node’s
Time Limit parameter. The expiry
time is the time at which the
annotation request was generated
129

plus the Time Limit. In other
words, it is the time at which the
request expires.

expression In general, a set of
reserved words, symbols, variables,
and functions that is evaluated to
provide a result. In ECS, an
expression is any collection of valid
ECDL statements. Note that
ECDL is a functional language
that has no concept of variables.

fact store A component of the
ECS Engine which stores
relationships between objects. Any
two objects which may be any
ECDL data type, may be related
using any user-defined
relationship. The facts may be
accessed at runtime by the ECDL
expressions configured into the
correlation node parameters.

FLEXlm A Licensing technology
used in stand-alone and
DM-integrated ECS products.

floating license A license where
there is a single license server for
all licensing clients on the
network. Any licensing client on
the network can access the license
server to check out a license.
130
function A general term for a
portion of a program that performs
a specific task. In ECS, an ECDL
function is one of the built-in
functions or operators, or a user
defined function. ECDL functions
can be named or anonymous, but
must return an ECDL value.

GDMO See Guidelines for the
Definition of Managed Objects
(GDMO).

Greenwich Mean Time

Standard time used throughout
the world based on the mean solar
time of the meridian of Greenwich.
See Universal Coordinated Time
(UTC).

Guidelines for the Definition of
Managed Objects (GDMO)

Describes a formal method for
describing the important
characteristics and operations of
an object class. Specified in ISO
10165-4, X.722.

HP OpenView A family of
network and system management
products, and an architecture for
those products. HP OpenView
includes development
environments and a wide variety of
management applications.

identifier A name that within a
given scope uniquely identifies the
object with which it is associated.

IEC International
Electrotechnical Commission.

IEEE Institute of Electronic and
Electrical Engineers.

International
Telecommunications Union,
Telecommunications (ITU-T)

The ITU is a world-wide
organization within which
governments and industry
coordinate the establishment and
operation of telecommunications
networks and services. It is
responsible for the regulation,
standardization, coordination and
development of international
telecommunications as well as the
harmonization of national policies.
The ITU is an agency of the United
Nations. In 1992 it took over the
functions of the CCITT.

ISO International Standards
Organization.

ITU-T International
Telecommunications Union,
Telecommunications.
key-value pair A data storage
item consisting of a search key
paired with a value. In ECDL, a
key-value pair is written as “key
=> value”. See also dictionary.

library In ECS, a repository for
compound nodes. Compound nodes
in the library may be referenced
from a circuit, or copied from the
library and modified.

license The legal right to use a
feature in a software program.

license server The server
processes that manage access to
ECS features by licensed users.

list data type a variable-length
ordered set of values all of the
same data type. In ECDL, a list
data type may contain a set of
values of any other ECDL data
type including complex types such
as lists and tuples.

Management Information Base
(MIB) A logical collection of
configuration and status values
that can be accessed via a network
management protocol.

MDL See Message Description
Language.
131

message description Detailed
information about an event or
message. In ECS, a description of
the attributes and formatting of a
text-based event (message), that
allows the MDL endecode module
to decode and encode events
consistent with that syntax.
Message descriptions which are
written in Message Description
Language (MDL) are translated
into metadata before being used by
the ECS engine endecode module.
See metadata.

Message Description
Language A language used to
describe a text event’s attributes
and formatting. Each text event
syntax has its own message
definition written in MDL. See also
message definition; event syntax.

metadata Data about data. In
ECS, message descriptions are
translated into metadata which is
a form which maximizes access
performance by the MDL endecode
module. See message description.
CMIP and SNMP metadata is
derived from MIBs.

MIB Management Information
Base (MIB).
132
Network Node Manager
(NNM) Definition to come from
OVSD.

NNM See Network Node Manager
(NNM).

node 1. A computer system or
device (e.g., a printer, router,
bridge) in a network. 2. A
graphical element in a drawing
that acts as a junction or
connection point for other
graphical elements. 3. In ECS, see
correlation node.

nodelock license A license where
the license server and license
clients must be on the same
machine, meaning that the
licensed application is “locked” to
running on the node that is the
license server.

object identifier (OID) A unique
sequence of numbers or string of
characters used for specifying the
identity of an object, that is
obtained from an authorized
registration authority or an
algorithm designed to generate
universally unique values.

OID See object identifier (IOD).

oid data type In ECS, an oid is an
ECDL data type which contains an
Object Identifier in dot-separated
notation (e.g., 1.2.3.4.5). Where the
data item is dynamically
interpreted, at least three
elements (2 dots) are required to
avoid interpretation as a real data
type.

Open Systems Interconnection
(OSI) A standardization model in
which a manager process is
responsible for executing specific
management functions requested
by the user through interactions
with an agent process. The agent
process represents the
management services offered by
the managed objects.

OSI See Open Systems
Interconnection (OSI).

OVO HP OpenView Operations, a
distributed client/server software
solution that helps system
administrators detect, solve, and
prevent problems occurring in
networks, systems, and
applications.

parameter In ECS, see correlation
node parameter.

pmd HP OpenView postmaster
daemon.
port 1. A location for passing
information into and out of a
network device. 2. In ECS, a
location for passing events into
and out of a correlation node or a
correlation circuit. See correlation
node port; correlation circuit port.

primitive event An ECS internal
event which encapsulates an input
event. Several header attributes
are added as a header for
correlation and control purposes,
which are stripped before the
primitive event leaves the ECS
engine. See also event; temporary
event; composite event.

reserved word Words that have
special meaning in ECS and
cannot be used for any other
identifier.

Simple Network Management
Protocol (SNMP) The ARPA
network management protocol
running above TCP/IP used to
communicate network
management information between
a manager and an agent. SNMPv2
has extended functionality over
the original protocol.

simulate See simulation.
133

simulation In general, the
imitation by a program of a process
or set of conditions affecting one or
more objects such that the results
of the program reflect the impact of
the process or changes in
conditions. In ECS, a simulation is
the process of feeding events from
an event log file through the
correlation circuit to observe the
behavior of the correlation circuit
using aids such as breakpoints,
tracing, and stepping.

SNMP See Simple Network
Management Protocol (SNMP).

SNMP trap An unconfirmed
event, generated by an SNMP
agent in response to some internal
state change or fault condition,
which conforms to the protocol
specified in RFC-1155. See event.

socket stack An interface that
supports interprocess
communication based on the use of
file handles. In ECS a socket stack
is used to communicate with the
ECS Engine for command, i/o and
annotation purposes.

Software Distributor (SD) HP
OpenView multi-platform software
installation product.
134
static parameters In general,
parameters whose values are
determined prior to program
execution. In ECS, a statically
evaluated parameter is a
correlation node parameter where
the value is defined when the
correlation circuit is loaded. The
value does not change when an
event enters the associated
node/port. See dynamic
parameters.

syntax In general, the rules
governing the structure and
content of a language or the
description of an object. In ECS,
see event syntax.

Telecommunications
Management Network (TMN)

The term used to identify a
homogeneous approach to the
management of heterogeneous
networks. It is defined in the
international standards referred to
as ITU-TSS M3100. TMN
recommendations incorporate OSI
NM concepts, principles, protocols
and application services.

temporary event In ECS, an
event that is created transparently
by particular correlation nodes,
and which may exist only within a
correlation circuit. Temporary

events may consist only of header
attributes created by the
correlation engine, or they may
additionally contain user data.
Temporary events cannot be
transmitted outside the correlation
engine. See also event; primitive
event; composite event.

time data type An ECDL data
type that includes time and date.

TL1 Transaction Language One
was developed by Bellcore and is a
management system protocol that
uses structured text messages to
pass information about networks
and network element states.

TMN See Telecommunications
Management Network (TMN).

transit delay The difference
between an event’s arrival time
and its creation time. Transit
delays can be caused by external
network delays or by deliberately
introduced delays in an ECS
circuit.

trap See SNMP trap; event.

tuple data type An ECDL data
type. A data structure consisting of
a fixed collection of elements,
where each element is a simple
ECDL type or a complex ECDL
data type.

Universal Coordinated Time
(UTC) Standard time used
throughout the world based on the
mean solar time of the meridian of
Greenwich. Formerly known as
Greenwich Mean Time (GMT).

universal pathname A set of
environment variables that
describe standard pathnames.
Universal pathnames hide
variations between pathnames on
different versions of Unix.

UTC See Universal Coordinated
Time (UTC).

X/Open Management Protocol
(XMP) An API specified by the
X/Open standards body that
provides a common access
mechanism to both CMIS and
SNMP management protocol
services.

XMP See X/Open Management
Protocol (XMP).

Zulu See Universal Coordinated
Time (UTC).
135

136

Index
A
ANNO library, 67
ANNO.h, 27
ANNO_getRequestInfo(), 83
ANNO_receiveFn, 81
ANNO_registerReceiveFn(), 81
ANNO_sendResponse(), 85
ANNO_stackReset(), 52
annoRequest, 81
Annotate node, 63
Annotate Spec parameter, 67
annotateNodeName, 84
annotation

architecture, 19
concepts, 65
data types, 70
mechanism, 67
overview, 19
requests, 19
requests, format of, 20
responses, 19
responses, format of, 20
servers, 19

annotation API
building a server, 63
overview, 19

Annotation log
generated by the ECS Engine, 87

annotation requests
discrimination of, 68
examples, 65, 81
extracting values from, 81
simulation for testing circuits, 86

Annotation response log
generated by the ECS Designer, 88

annotation responses
construction of, 85
examples, 65

annotation server developer, 68

API
annotate (ANNO), 67
event I/O (EIO), 39
socket stack (ESOK), 29

append, 96
application integration, 17
architecture

annotation, 19
event I/O, 17
socket stack, 31

arrival_time, event header attribute, 44
ASCII events

and pmd-linked environments, 43
create_time, 46
event_syntax, 45

ASN.1, 43

B
blocking vs. non-blocking I/O, 58
boolean, 71, 73

C
C data type and ECDL type, 71
C++ Class Library, 118
callback functions

annotation, 19
default, 56
overview, 17
registration of, 55

CGI interface, 34
cid

and eids, 53
annotation, 81
for a specific engine instance, 34
for a specific engine instance and a specific

stream, 48
circuit designers, 20, 68
circuitName, 84
Index 137

Index
compiling, 47
connection

limits, 32, 41
resetting, 52, 57

connection ID. See cid
copying annotation request data, 83
correlation log, 93, 94, 95
create_time

event header attribute, 44, 46
parameter, 51

D
data types, 70
default callback functions, 56
designing

annotation servers, 65
event I/O, 41
with socket stacks, 36

DM, 43
drill event log, 93, 95
drill info, 96
drill information log, 93
drill log, 97
drill-down, 94
drill-up, 94
duration, 71, 75

E
ECS Engine, 17
ECS_Event object, 120
ECS_SUCCESS, 49, 53
ecsd, 49
ecsin.c, 48
ecsio.c, 58
ecsmgr, 93

connection requirement, 32
controlling the ECS Engine, 31
socket based connection, 34

ecsout.c, 54
eid

example code, 48
multiple connections, 49
overview, 35
selectively closing, 53

EIO library, 39
EIO.h, 27, 47
EIO_addFilter(), 44, 56
EIO_ALLCON, 56
EIO_close(), 52
EIO_sendEvent(), 44, 51
EIO_stackReset(), 52
elementData, 82
encoding_type

event header attribute, 44
parameter, 44, 51, 56

endecoder, pdu size limit, 51
error checking, 49, 53
ESOK library, 29
ESOK_buildRemote(), 49
ESOK_close(), 52
ESOK_getFdMask(), 37
ESOK_NOTHING_DONE, 52
ESOK_open(), 32, 49
ESOK_process(), 21, 52, 55
ESOK_Remote, 49
ESOK_RESOURCE_LIMIT, 32
ESOK_stackEmpty(), 52
establishing a connection, 34
EV_ INTEGER, ECDL type, 71
EV_AttrValue, 70, 80
EV_BOOLEAN, ECDL type, 71
EV_DURATION, ECDL type, 71
EV_extractElement(), 70, 81
EV_LIST, ECDL type, 71
EV_NO_SUCH_ELEMENT, 82
EV_NULL, ECDL type, 71
EV_OID, ECDL type, 71
138 Index

Index
EV_parseFormattedValue(), 70, 85
EV_REAL, ECDL type, 71
EV_STRING, ECDL type, 71
EV_TIME, ECDL type, 71
EV_TUPLE, ECDL type, 71
event header attributes, 42, 44
event I/O API

overview, 17
use of, 40

event protocols, specific handling, 42
event_class, event header attribute, 44
event_syntax

event header attribute, 44
parameter, 45, 51, 56

event_type, event header attribute, 44
events

filtering, 56
I/O design, 41
input process, 48
output process, 54
protocol conversion, 43
receipt of, 54
selecting subsets, 17, 56
sending, 50

exiting after the last event, 37, 52, 57
expiryTime, 84
external servers, 19

F
FD_SET(), 37
file descriptors, 36, 58
filtering events, 56
flush, 96
functions and null-terminated strings, 43

H
header files

installation of, 27

needed in source code, 47
typical, 119

HP OpenView DM. See DM

I
initializing the socket stack, 48
input of events

sample code, 48
instance numbers, 49
instances parameter, 49
integer, 71, 72
interprocess communication, 21

L
libecsio.a, 27, 47
library files, installation of, 27
limits to connections, 32
linking, 47
list, 71, 78

M
malloc(), 49
MDL message definition, 42
mediation, 43
memory leaks, 86

N
network delays, 84
null, 78
null-terminated strings, 43
number of connections, 32

O
oid, 71, 77
output of events

output process, 54
Index 139

Index
P
PDU

maximum size, 51
output by Event I/O API, 17

pmd-linked ECS, 43
processes, 17, 31, 42

R
real, 71, 72
registering for a stream, 57
requestData, 68
resetting a connection, 52, 57
resources, 41

S
select loop

design of, 41
example code, 58
overview, 36

seqNum, 84
shutting down, 37, 52, 57
size, 82
SNMP

create_time, 46
determining the size of, 51
event_syntax, 45

SNMP traps, 41, 43
socket stack

API, 29
architecture, 31
connection limits, 32
overview, 18, 21

sockstack.h, 47
source code samples, 27
stream, 93
stream, registering for, 57
string, 71, 76
string handling example, 82

T
time, 46, 68, 71, 74
Time Limit parameter, 68
tuple, 71, 79
type, 82
type identifier and ECDL type, 71

U
unique_id, event header attribute, 44
Universal Coordinated Time, 74
UTC, See Universal Coordinated Time

V
void, 71, 78
140 Index

	HP OpenView Event Correlation Services Developer’s Guide and Reference
	1� Introduction
	Purpose
	Audience

	2 Introduction
	Integrating ECS With Your Application
	Event Annotation
	Interprocess Communication
	Drill Down
	Circuit Serialization
	Multiple Event Creation
	C API Library and Header Files

	3 The Socket Stack API
	The Socket Stack Architecture
	The Socket Stack API (ESOK)
	Designing an ECS Engine Interface

	4 Event I/O
	Designing Event I/O
	SNMP Traps
	Using the Event I/O API in a pmd-linked Environment
	ECS Event Header Attributes
	Compiling

	Writing an Input Process
	Initialization
	Sending Events
	Resetting the Connection
	Error handling

	Writing an Output Process
	Initialization
	Receiving Events
	Resetting the Connection
	Stream

	Using a Select Loop

	5 Annotation Servers
	Annotation Concepts
	The Annotation Mechanism
	Annotation Data Types
	Integer
	Real
	Boolean
	Time
	Duration
	String
	Oid
	Null
	List
	Tuple

	Receiving Annotation Requests
	Extracting Values from the Annotation Request
	Getting Additional Request Information

	Constructing an Annotation Response
	Testing a Circuit with an Annotate Node

	6 Drill Down
	Drill Environment
	Drill Record Format
	Logging of Drill Information
	ECDL built in functions for capturing the drill information
	Drill API
	Custom Logging framework

	7 ECDL Enhancments
	Circuit Serialization
	Multiple Event Creation
	Modification of Event List
	Engine Flow

	Tracing and Logging

	8 ECS Classes
	C++ Class Library
	Libraries
	Header Files
	Sample Source Code
	Event Input
	Event Output
	Annotation
	Filtering

	Glossary
	A
	B
	C
	D
	E
	F
	H
	I
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V

